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Introduction

The human being has been consuming the resources of the planet since thou-
sand years ago. The more advance is technology and human needs, the higher
consumption of planet resources. According to the IEA (International En-
ergy Agency) on 6th June, 2013 (IEA, 2013)1, fossil fuels currently meet
80% of global energy demand. Even if every countries change their policy
commitments to fight against climate change and achieve other challenges,
global energy demand in 2035 is expected to by 40% (with fossil fuels still
contributing 75%). Taking into account the global reserves and current con-
sumption levels:

• Oil is expected to last in the range of 40 to 45 years but it will grow
as resources are successfully converted into reserves. Despite growth
in consumption, global reserves have increased since 1990.

• Conventional gas is thought to remain in the range of 55 to 60 years.
Nevertheless, unconventional gas reserves are very difficult to be esti-
mated, because of rock formation heterogeneity.

• Reserves of coil are high and the ratio is in the range 110 to 120 years
at current consumption levels.

With adequate resources of fossil fuels to meet the increasing energy de-
mand, Resources to Reserves 2013 shows that the emphasis now is on the
technology, prices and policies that can ensure resources are developed into
proven reserves in financially viable and environmentally sustainable ways.

Fossil fuels had a strong impact on environment, so nuclear energy is a
great alternative. Remarkable amounts of energy can be obtained by this en-
ergy. Currently, nuclear fission, which was discovered in 1939 by the German
researchers Hahn and Strassmann, can be safely handle. Despite of this, ex-
traction, enrichment, chemical reprocessing and use of high molecular weight
materials (like uranium), produce radioactive waste which harm the environ-
ment for thousand years. In spite of the high security, the danger of possible

1This information has been obtained on the web page:
http://www.iea.org/newsroomandevents/news/2013/June/name,38548,en.html
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accidents in atomic power plants generate the population rejection against
nuclear fission.

At this point, renewable energies are bound to be a great alternative.
Towards the middle of the 21th century, the use of renewable energies is
expected to increase significantly, albeit it will barely cover the growth of
the energy demand. By regions, the EU will be in the head of the renewable
primary energy demand, followed by the USA and China. Studies point out
that there will be a reduction in the price of the electricity generated by
renewable energy (de Vries et al., 2007).

At the crossroads of renewable and fossil energies, on the one hand, fossil
fuels ensure supply for a few decades endangering the future of the envi-
ronment. On the other hand, renewable energies represent an unlimited
and harmless resource of energy, but unable to cover the worldwide energy
demand. Hence, the importance of achieve nuclear fusion.

The energy from the stars is called nuclear fusion. Sir Arthur Eddington,
in 1926, proposed that there is a limit where the pressure of the stars light
on the atmosphere is large enough to balance the gravitational weight of
the stellar atmosphere entirely, known as the Eddington luminosity limit. If
the star were any brighter, the light of the star would push away the outer
layers of the atmosphere, thus causing the star to lose mass. Eddington
described stars as gas spheres at high temperature, mainly composed by
hydrogen (Eddington, 1926). The pressure of gravitational forces can reach a
temperature which turns gases into plasma (the fourth state of the matter).
In 1927, Lewi Tonks and Irving Langmuir designated as plasma, a nearly
neutral ionised gas in which ions and electrons were moving independently
(Tonks and Langmuir, 1929). The temperature and pressure in the stars
fuse hydrogen nuclei in plasma producing helium and energy. Nuclear fusion
as renewable energy attempt to generate electricity reproducing the reaction
which happens in the stars. The fuel used in nuclear fusion reactors will
be tritium ( a hydrogen radioactive isotope, which can be obtained from
lithium). It should be considered the low CO2 emissions (6 − 12 Cg/kWh)
of nuclear fusion, followed by hydroelectric energy (4.8 Cg/kWh) and light
water reactors (5.7 Cg/kWh). Photo-voltaic (16 Cg/kWh) and Wind (33.7
Cg/kWh) energies also have low CO2 emissions but the inconvenient is the
manufacture processes and the unstable production of energy, it means, they
are not able to produce reliable continuous power. Albeit, oil(200 Cg/kWh)
and coal (270 Cg/kWh) are the most contaminant energies (Kikuchi, 2009).

There is a great advantage in fusion against fission. In contrast to fission,
which employs a large quantity of uranium or plutonium fuel, nuclear fusion
employs a very small amount of tritium and deuterium fuel. If fuel is not
continually replaced, the fusion reaction goes out and stays out, so there
is no danger of an accident, nuclear fusion is a reaction happened in stars,
not in the Earth. A second advantage is the radioactive waste. Radioactive
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substances from the fission fuel cycle, that need to be separated from the
unused fuel and stored safely for thousands of years, are the most difficult
to process and store. Nuclear fusion generates none radioactive waste, it
produces helium gas and tritium. Tritium is radioactive but it decays quickly
( 12.32 years half-life) against uranium ( 238.45 million years half-life), even,
the purpose is to recycle the tritium fuel used in the power-plant. In addition,
mining exploitation is not necessary in nuclear fusion because deuterium and
tritium are easy to obtain. The materials can be obtained with lithium and
water all around the planet for any country. There is enough lithium to last
for ten thousands of years and enough deuterium in the oceans, (McCracken
and Stott, 2005).

Goals

The challenge in this thesis is to deal with the massive and noisy databases in
nuclear fusion to extract useful information and develop artificial intelligence
algorithms and techniques to sort out specific problems in nuclear fusion.
This is a work focused in disruption prediction and its databases. The most
dangerous instabilities in tokamak devices need to be predicted to carry out
mitigation actions but the data provided to develop predictors is not trivial,
it must be studied, analysed and conveniently processed. The roadmap to
fusion is long, but every big goal is formed by small steps.

Contents

This thesis is structured in five chapters. Chapter 1 contains the most im-
portant concepts about nuclear fusion and summarizes the plasma physics
theory to understand the framework of this thesis. This chapter introduces
the main problem in tokamak devices, the disruptions. Then in chapter 2 the
data mining techniques which have been used in this thesis are explained.
Chapter 3 shows the generation of nuclear fusion databases. Then in this
chapter APODIS is widely study: its assessment and performance during
the ILW campaigns at JET, its robustness and a sliding window mechanism.
The determination of the disruption time automatically is treated in chapter
4. Finally chapter 5 covers the studies on disruption prediction in view of
the next generation of tokamaks.
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Chapter 1

Fusion, the energy of the future

In this chapter, a brief introduction to nuclear fusion, plasma confinement
and fusion devices is exposed. The tokamak device, JET will be briefly
explained and the main instability, disruptions, which happen in plasma at
magnetic confinement devices.

1.1 Nuclear fusion

As it was mentioned in the introduction, nuclear fusion as renewable energy
attempt to generate electricity reproducing the reaction which happens in
the stars. Sir Arthur Eddington, in 1926, proposed that there is a limit
where the pressure of the stars light on the atmosphere is large enough to
balance the gravitational weight of the stellar atmosphere entirely, known as
the Eddington luminosity limit. If the star were any brighter, the light of
the star would push away the outer layers of the atmosphere, thus causing
the star to lose mass. Eddington described stars as gas spheres at high tem-
perature, mainly composed by hydrogen (Eddington, 1926). The pressure of
gravitational forces can reach a temperature which turns gases into plasma
(the fourth state of the matter). In 1927, Lewi Tonks and Irving Langmuir
designated as plasma, a nearly neutral ionised gas in which ions and electrons
were moving independently (Tonks and Langmuir, 1929). The temperature
and pressure in the stars fuse hydrogen nuclei in plasma producing helium
and energy.

There are many possible reactions to achieve fusion, but in all of them
several light nuclei combine together into heavier and more stable nuclei.
The difference in mass between the reactants and the products is converted
to energy according to Einstein’s formula, ∆E = ∆mc2, where c is the speed
of light. The intent is to use the kinetic energy from the reaction to produce
electricity and to sustain new fusion reactions.

Unfortunately, nuclear fusion in practice is hard to attain. In random
collision between two nuclei, they need extremely high energies and must

1
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be close enough (' 10−15) to overcome the repulsive electrostatic Coulomb
force, known as the Coulomb barrier, and get over the strong nuclear force.
To provide this energy to get close enough and fuse, their temperature must
be raise until 10−100 keV 1. Under these conditions a thermonuclear plasma
is obtained, it means that atoms are ionized and remain a gas formed by
ions and electrons separated (Spitzer, 1962; Goldston and Rutherford, 1995).
However, the closeness of the particles implies that the density of the fuel
must also be very high. In a star, this density is maintained by the massive
gravity, but on earth there’s no conceivable material can confine the plasma
and withstand such high temperatures. Hence, the confinement by walls is
necessary.

The fusion of hydrogen atoms generates helium releasing 6x108 MJ per
hydrogen Kg, this is above 60 millions more than the energy per Kg produced
by chemical fuels (Wesson, 1999). The reactions used in fusion studies start
with deuterium, either alone or mixed with the heavier hydrogen isotope,
tritium. There are three possible reactions (Wesson, 1999):

D +D → He3 + n+ 3.3 MeV (1.1)

D +D → T +H + 4.0 MeV (1.2)

D + T → He4 + n+ 17.59 MeV (1.3)

where D is a deuteron, T a triton, H a proton, n a neutron and He4, the
isotope of helium being an α− particle. The energies shown are the kinetic
energy provided by the reaction products. It can be seen that tritium is pro-
duced in one reaction. Deuterium can be distilled from all forms of water.
It is a widely available, harmless, and virtually inexhaustible resource. In
every litre of seawater, for example, there are 33 mg of deuterium. Moreover
deuterium is routinely produced for scientific and industrial applications.
Nevertheless, tritium must be bred artificially: activated hydrogen in the
water or during the fusion reaction through contact with lithium (when neu-
trons escaping the plasma interact with lithium contained in the blanket wall
of the device).

In figure 1.1 (EUROFUSION c©) is shown the cross section for reactions in
equations 1.1, 1.2, 1.3. At temperatures of 100 keV, cross-section for D − T
reaction is much higher than the others. At this point, the real problem
is to reproduce this reaction on Earth, where gravitational forces are 27.9
times smaller than the Sun. Furthermore, another problem is how to handle
particles at temperatures tens of times larger than the Sun’s temperature.
For example, the temperature in the core of the Sun is 15 million K in

1In nuclear physics, temperature is expressed in energy units, i.e. 1 eV= 1.16x104 K.
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Figure 1.1: Cross-section for the most common reactions in plasma fusion

contrast to the temperature in the centre of the plasma in JET that can reach
200 million K. To overcome this problems, plasma properties are studied.

1.1.1 A brief approach to plasma physics

Plasma can thought of in two basic ways. The first one, how individuals
electrons and ions behave whose motion is dominated by a magnetic field.
The second one is to consider electrons and ions behaving as forming fluids.
The electron and ion fluids then have their own temperatures and pressures,
and also properties of gases as viscosity and thermal conductivity. It is
thought sometimes ions and electrons as a single fluid to develop a simpler
approach to analysing stability. The main properties of plasma are:

Basic parameters:

The temperature of the plasma is a way of describing the average kinetic
energy of the particles. The kinetic temperature is invariably measured in
electron-volts (1 J= 6.24 · 1018 eV). Considering an idealized plasma with
the same number of electrons, mass me and charge −e, and ions, with mass
mi and charge +e, the kinetic temperature would be,

Ts =
1

3
msv

2
s ; (1.4)

Assuming that both ions and electrons are characterized by the same T
(which is, by no means, always the case in plasmas), we can estimate typical
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particle speeds via the so-called thermal speed,

vts =
√

2T/ms. (1.5)

Thermonuclear plasmas have densities of a few times 1019 molecules per
cubic metre, while the density of molecules in the atmosphere is about 3·1025

molecules per cubic metre. Generally, density and temperature are functions
of position in a plasma.

Figure 1.2: Range of plasmas

In figure 1.2 typical parameters of some plasmas can be seen and the
enormous range of these magnitudes.

Plasma frequency and oscillations:

If we pull the electrons, with e charge, me mass and density ηe, in a
region of the plasma (x > 0) slightly to the right a distance d, they oscillate
with the electron plasma frequency:

w2
p =

e2ηe
ε0me

. (1.6)

A layer of the non-neutralized background with the charge density ρ =
−ηee is left. The electric field, produced by this layer on the electrons on
both edges is E = 2πρd = −2πηeed (for the electrons at the right edge)
and E = 2πρd = 2πηeed (for the electrons at the left edge). The force
F = eE = −2πηee2d accelerates the electrons at the right edge to the left,
while the electrons at the left edge experience similar acceleration to the
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right. The relative acceleration of the electrons at the right and left edges
would be a = 2(eE/me) = −4πηee2d/me. On the other hand, a = d̈, so that
one has,

d̈ = −w2
pd→ w2

p =
4πηee

2

me
. (1.7)

The derived equation describes oscillations with the plasma frequency wp. It
should be emphasized that the motion is caused by the coordinated move-
ment of many particles together and is thus a purely collective effect. In
order to be able to observe these oscillations their period should be much
smaller than the typical life time of the system.

Debye length and screening:

The Debye length is one of the most important and fundamental length
scales in plasma physics. It describes a screening distance, beyond which
charges are unaware of other charges inside of the Debye length. A charge in
a plasma will attract opposite charges and repel like charges to the point that
its electric field is screened by the charges it has attracted, so particles outside
the screening charges are unaware of the presence of the interior charge. We
are going to assume that ions and electrons have the same temperature T
and density η. If we have a plasma with temperature T and density η, and a
positive charge, e, is added, the particles will move around until they reach
thermal equilibrium. So the probability of being in a state of energy U is
proportional to Boltzmann factor P (U) ≈ e−U/T . At this point, given the
potential of a single particle from the new charge U = enV , its distribution
function would be,

f(u) = Ae
−(
µ2

2
+enV )/T

= η0

√
m

2πT
e
−(
µ2

2
+enV )/T

, (1.8)

with η0 as the equilibrium particle density, it means, before the arrival
of the new charge. We can obtain the total particle number density by the
integral, ∫ inf

− inf
f(u)du = η → η = η0e

−enV/T . (1.9)

Once we have obtained the number density, the charge density is given
by ρ = ηie − ηe(−e), the number density of ions minus the number density
of electrons. With 1.9 using −e rather than en,

ρ = ηie− ηe(−e) = e(ηi + ηe) = eη0(e−eV/T − eeV/T ) = −eη0sinh(eV/T ).
(1.10)

Taking Posson’s equation,

∇2V = − ρ
ε0

=
eη0sinh(eV/T )

ε0
. (1.11)
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A nonlinear second-order differential equation is obtained, albeit it is
simplified by assuming the potential energy of the particles in the applied
field is much smaller than their thermal energy, eV << T . Through a Taylor
series it yields a second-order linear differential equation:

∇2V =
eη0

ε0

(
eV

T

)
=
η0e

2

Tε0
V. (1.12)

At this point, we define the Debye lenght as:

λD =
√
εoTη0e

2. (1.13)

So equation 1.11 is now,

∇2V =
V

λ2
D

→ V = V0e
−x/λD . (1.14)

where the decaying solution follows the condition of V → 0 and x→ inf.
The meaning of λD is that charges feel the potential due to the central charge
inside Debye’s length; and the potential falls off exponentially without any
presence of the central charge, outside the Debye’s length. It can be easily
explained, if you arrive late to a concert crowd of people, probably you will
not be able to see anything because people will be screening you.

Plasma parameter:

Firstly, we are going to define the average distance between particles as

rd = η−1/3, (1.15)

and the distance of closest approach as,

rc =
e2

4πε0T
. (1.16)

The distance of closest approach, rc, is the distance at which the Coulomb
Energy, U(r, v), of one charged particle in the electrostatic field of another
vanishes, i.e., U(rc, vt) = 0. Attending to the ratio:

• rc/rd <<: plasmas are termed strongly coupled. Charged particles are
dominated by one another’s electrostatic influence more or less contin-
uously, and their kinetic energies are small compared to the interaction
potential energies.

• rc/rd >>: strong electrostatic interactions between particles are rare
events. The common is that a particle is electrostatically influenced
by all of the others within its Debye sphere. Albeit, this interaction
does not cause usually a change in its motion and plasmas are termed
weakly coupled.
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A weakly coupled plasma can be described using the same type of equa-
tion which is usually used for a neutral gas, a standard Fokker-Planck equa-
tion. However, it is more difficult to understand strongly coupled plasma,
which has more in common with a liquid. After that, the plasma parameter
is defined as:

Λ = 4πηλ3
D. (1.17)

The plasma parameter is equal to the number of particles in a Debye
sphere. This dimensionless parameter can be expressed combining 1.15, 1.16
and 1.17:

Λ =
λD
rc

=
1√
4π

(
rd
rc

)3/2

=
4πε

3/2
0

e3

T 3/2

η1/2
. (1.18)

From equation 1.18, it can be deduced:

• If Λ << 1, we have strongly coupled plasma and Debye sphere would
be slightly populated.These plasmas tend to be cold and dense. For
example: solid-density laser ablation plasmas, the very ’cold’ (with
kinetic temperatures similar to the ionization energy) plasmas found
in ’high pressure’ arc discharges, and the plasmas which constitute the
atmospheres of collapsed objects such as white dwarfs and neutron
stars.

• If Λ >> 1, we have a weakly coupled plasma and Debye sphere is highly
populated. These plasmas tend to be diffuse and hot. For example:
plasmas typically encountered in ionospheric physics, astrophysics, nu-
clear fusion, and space plasma physics

Plasma \ Parameter η[m−3] T[eV] wp[s−1] λD[m] Λ

Interstellar 10−6 10−2 6x104 0.7 4 · 106

Solar chromosphere 1018 2 6 · 1010 5 · 10−6 2 · 103

Solar wind (1AU) 107 10 2 · 105 7 5 · 1010

Ionosphere 1012 0.1 6 · 107 2 · 10−3 1 · 105

Arc discharge 1020 1 6 · 1011 7 · 10−7 5 · 1012

Tokamak 1020 104 6 · 1011 7 · 10−5 4 · 108

Inertial confinement 1028 104 6 · 1015 7 · 10−9 5 · 104

Table 1.1: Main parameters for some typical weakly coupled plasmas

In table 1.1 are shown the key parameters for some typical weakly coupled
plasmas.

Magnetic field effects:

The motion of a charged particle inside a magnetic field is very impor-
tant in thermonuclear plasmas. In uniform magnetic fields, the motion of
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the charged particle has two parts. The first one is a circular motion per-
pendicular to the magnetic field, it can be seen in figure 1.3a. The radius
is called Larmor radius, which increases with the energy of the particle and
decreases with the strength of the magnetic field. For example, a typical
plasma in JET has a Larmor radius of few millimetres. The electrons and
ions go in opposite directions because of their charges. The second motion is
along the magnetic field, the charged particle’s motion parallel to the field is
constant; figure 1.3b. Once the two motions are combined, an helical motion
is obtained as it is shown in figure 1.3c.

If the magnetic field becomes stronger along its trajectory, the particle
receives a force in the direction away from the stronger field. If the magnetic
field increases enough, the particle can be reflected along its path, this is
called “mirror force”. This force can be seen in figure 1.3c.

(a) Circular motion (b) Parallel motion

(c) Compound motion: helical trajectory

Figure 1.3: Trajectories of a charged particle in a magnetic field

The fundamental measure of a magnetic field’s effect on a plasma is the
magnetization parameter δ. The fundamental measure of the inverse effect is
called β, which is the ratio of the thermal energy density ηT to the magnetic
energy density B2/2µ0. Conventionally, plasma energy density is expressed
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as the pressure, p = ηT . So it yields,

β =
2µ0p

B2
. (1.19)

Collisions:

In plasmas, collisions between charged particles are widely different than
typically collisions between molecules in a normal gas. The reason is that in
a normal gas the collision is produced by the contact between the molecules,
but plasma particles collide with distant particles. Coulomb force leads the
interaction between charged particles in the plasma; this force falls off with
the inverse square of the distance between particles, hence this long range
interaction makes that any particle collides simultaneously with many other
particles. For example, at JET, each particle is colliding at the same time
with millions of other particles.

Therefore, collisions are described by the global effect of all the separate
collisions.There are two types of collisions. Although each distant collision
causes only a small deflection of the particle trajectory, they are largely
present that their total action upon the particle is greater than relatively
rare close collisions. It means that the influence of close collisions on kinetic
processes in plasma is, generally, negligibly small in comparison to the action
of distant collisions.

The theory briefly exposed has been obtained from many sources (Wes-
son, 1999; Spitzer, 1962; Goldston and Rutherford, 1995; Miyamoto, 2000;
Fitzpatrick, 2014).

1.1.2 Fusion Devices

First of all, it is necessary to define the conditions at fusion reactors can reach
ignition, it means, the heating of the plasma by the products of the fusion
reactions is sufficient to maintain the temperature of the plasma against all
losses without external power input. In 1957, J. D. Lawson showed that the
product of ion density and confinement time determined the minimum con-
ditions for productive fusion, and that product is commonly called Lawson’s
criterion. It is typically used the triple product, it specifies that successful
fusion will be achieved when the product of the three quantities, η, the par-
ticle density of a plasma, τ , the confinement time and T the temperature,
reaches a certain value. Above this value of the triple product, the fusion en-
ergy released exceeds the energy required to produce and confine the plasma.
For deuterium-tritium fusion this value is about :

ητT ≥ 5 · 1021m−3sKeV. (1.20)
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Figure 1.4: Progress of the fusion “triple product” of plasma ion density, ion
temperature and energy confinement time

Figure 1.4 shows the fusion triple product achieved on different magnetic
fusion facilities. Notice that the unit on the temperature scale is keV, and
that at very high temperatures the difference between Kelvins (◦K) and
degrees Celsius (◦C) is negligible. The graph shows clearly that new facilities
performed better than previous ones. The present large machines, from the
point of view of the fusion product, have now achieved their engineering
limits so that only the next step facility, ITER, can bring about decisive
progress.

Currently, fusion research is practically based on two approaches: inertial
and magnetic confinement. In inertial confinement, an hydrogen sphere is
compressed by a laser to such a high temperatures and densities that Lawson
criterion is satisfied. The existing methods for inertial confinement, gener-
ally follow three steps, figure 1.5. Firstly, the hydrogen sphere is heated
by an external power source (generally, lasers). This heating blows off the
outer layers of the sphere and compresses the core to 1/1000th of its original
volume. The external pulse sends a shock wave to compress the centre of the
sphere. The wave, without any hydrodynamic instabilities, will be able to
produce high temperatures and pressures in the centre of the sphere, reach-
ing densities about 1023 m−3 and temperatures about tens of KeV. These
conditions are maintained during very short periods of time (nanoseconds).

The National Ignition Facility (NIF) probably has been the best approach
to achieve inertial confinement fusion at the moment. Over a decade in the
works, it began experiments at full power earlier 2010 (Glenzer et al., 2010).
However, these devices requires high lasers energy whose development and
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Figure 1.5: Inertial confinement procedure

application in a continual cycle are far to be solved (Dendy, 1995).
At magnetic confinement we can find two different devices, stellarators

and tokamaks. In 1951, Lyman Spitzer designed a new configuration called
stellarator (steady-state generator) (Spitzer, L. , 1951). This configura-
tion is based on a magnetic field produced by solenoidal coils around the
toroidal tube. The configuration is characterized by a rotational transform, it
means,such a line magnetic field wrapping around the plasma surface, rather
than simply go around as a set of individual disconnected lines (Spitzer,
1958). This configuration allows a stationary operation and current external
control. The complexity of the geometry wraps the magnetic field describing
an helical trajectory. This configuration is illustrated on figure 1.6. There
are different types:

• Torsatron: configuration with continuous helical coils or discrete coils
producing similar fields.

• Heliotron: configuration with a helical coil is used to confine the plasma,
together with a pair of poloidal field (PF) coils to provide a vertical
field. Toroidal field (TF) coils can also be used to control the magnetic
surface features.

• Modular: configuration with a set of modular (separated) coils and a
twisted toroidal coil (Johnson, 1999).

• Heliac: helical axis stellarator; configuration where the complexity of
the geometry wraps the magnetic field describing an helical trajectory.
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Typically can provide more twist than the Torsatron or Heliotron, es-
pecially near the centre of the plasma (magnetic axis). The original
Heliac consists only of circular coils, and the flexible heliac (Harris et
al., 1985) (H-1NF, TJ-II, TU-Heliac) adds a small helical coil to allow
the twist to be varied by a factor of up to 2.

• Helias: helical advanced stellarator; configuration which use an opti-
mized modular coil set designed to simultaneously achieve high plasma,
low Pfirsch-Schluter currents and good confinement of energetic par-
ticles; i.e., alpha particles for reactor scenarios. The Helias has been
proposed to be the most promising stellarator concept for a power
plant, with a modular engineering design and optimised plasma, MHD
and magnetic field properties. The Wendelstein VII-X device is based
on a five field-period Helias configuration.

Figure 1.6: Stellarator configuration (TJ-II, Ciemat, Spain)

The absence of induced plasma current makes stellarator to be a great
option for a commercial power-plant, because it is a configuration which
works stationary and without disruptions. This last concept will be explained
later. Moreover, stellarators have a wider range of possible configuration
and a better control than tokamaks. However, it is difficult to calculate
and engineer the correct shape for the helically twisted coils; only with the
advent of powerful computers and sophisticated manufacturing techniques
could stellarators become a commercial power-plant. Other disadvantages
are the high electromagnetic forces between coils. In table 1.2 are shown
some of the most relevant stellarators devices nowadays.
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Name Location
H1 Australia
LHD Japan
TJ-II Spain
HSX USA
NCSX USA
W7-X Germany

Table 1.2: Stellarators devices

1.1.3 Magnetic confinement devices, Tokamaks

The other magnetic confinement devices, tokamaks, will be explain widely.
In particular, the Joint European Torus (JET), because the topic of this
thesis uses the data provided by the JET experiments. In this devices, a
toroidal current is induced through the plasma itself by a central solenoid.
This current produces a poloidal magnetic field, whose field lines pass around
the plasma, being able to hold the plasma in place and provide an equilibrium
force balance. In figure 1.7, these fields are illustrated and the helical field
lines from the combination of the toroidal and poloidal magnetic fields.

Figure 1.7: Current and fields in a tokamak plasma

By 1950, two scientifics, Sakharov and Tamn, from the Soviet Union
designed the tokamak configuration. The meaning of tokamak comes from
“toroidalnaya kamera ee magnitnaya katushka” in Russian, that could be
translated as “toroidal chamber with toroidal coil”. In (Leontovich, 1961),
Shakarov came up with the idea of confining plasma in a toroidal chamber
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with a strong longitudinal magnetic field and Tamn proposed the general
methods of solving the kinetic equation for toroidal plasmas in the presence
of induced current and showed that thermal plasma conductivity in a torus
may be higher than in a cylinder for equal magnitudes of a longitudinal
magnetic field and induced current magnetic field. Although a tokamak is
more robust and easier to build from an engineer point of view, the are two
significant problems: the confinement of the plasma is not as good as the
theory explain and the appearance of violent instabilities, called disruptions.
The first tokamak was the TMF in 1955, whose parameters were: R = 0.8
m, a = 0.13 m, Bt = 1.5 T and I = 0.26 MA, where R is the major radius,
a is the minor radius, Bt the magnetic field and I the induced current. The
plasma volume was V = 0.27 m3. From 1955 until 1990 many devices have
been developed (Azizov, 2012):

• During 1955-1969: eight facilities similar to TMF were built at the
Kurchatov Institute, T-1, T-1, T-3, T-5. TM-1, TM-2,TM-3 and T-
3A. Nearly every year, a facility was constructed.

• During 1970-1990: the first tokamak outside the USSR, LT-3 in Can-
berra (Australia). In all, over 200 tokamaks have been constructed in
the world to date, including 31 in the USSR and Russia, 30 in USA,
32 in Europe and 27 in Japan.

The most important tokamaks experimental devices currently in opera-
tion can be seen in table 1.3 and their principal features.

Furthermore, there are two future approaches, ITER and DEMO. DEMO
is a proposed nuclear fusion power plant that is intended to build upon the
expected success of the ITER experimental nuclear fusion reactor.
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Parameters \ Device Alcator C-Mod DIII-D NSTX
Location USA USA USA
Year 1991 1986 1999

R(m);R/a[range] 0.67; 3.04 1.66; 2.47 1; 1.6
B(T)[range] 8 2.2 0.3
I(MA)[max] 2 3 1.4

Plasma Volume(max,m3) 1 24 14
Pulse Length (s) 5 25 3.5

Plasma Facing Materials Solid Mo and W C CFC/Graphit, Li coating
Parameters \ Device ASDEX-U FTU JET

Location Germany Italy UK
Year 1991 1990 1983

R(m);R/a[range] 1.65; 3.2 0.94; 3.2 2.96; 3.1
B(T)[range] 3.1 8 4
I(MA)[max] 2 1.6 6

Plasma Volume(max,m3) 13 − 100
Pulse Length (s) 10 1.7 60

Plasma Facing Materials C, W-coated Mo limiters C, Be, W-coated
Parameters \ Device JT-60U MAST TCV

Location Japan UK Switzerland
Year 1985 1999 1992

R(m);R/a[range] 3.2; 4 0.8; 1.3 0.86; 3.6
B(T)[range] 4.8 0.52 1.43
I(MA)[max] 5 1.4 0.8

Plasma Volume(max,m3) 90 8 −
Pulse Length (s) 10 1 2

Plasma Facing Materials C C C
Parameters \ Device KSTAR EAST

Location Korea China
Year 2008 2006

R(m);R/a[range] 1.8; 3.6 1.9; 4.2
B(T)[range] 3.5 3.5
I(MA)[max] 2 1

Plasma Volume(max,m3) 17.8 38
Pulse Length (s) 300 1000

Plasma Facing Materials CFC/Graphite CFC/Graphite

Table 1.3: Tokamaks devices and features

1.1.3.1 Joint European Torus - JET

Currently, Joint European Torus (JET) is the largest nuclear fusion experi-
mental device in the world, located in Culham, Oxfordshire, Unite Kingdom.
The design was started in 1973 by P.H.Rebut and was completed with the
publication “The Jet Design Proposal” (Team, 1976), in 1975. This document
presented an impressively detailed design of the components. The structure
in the design was almost identical to the device which would ultimately be
built; the original design can be seen in figure 1.8. The construction of JET
lasted 4 years, 1979− 1983. The first pulse of JET was on 25th June, 1983.
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The JET proposal was described in the design proposal: the essential objec-
tive of JET is to obtain and study a plasma in conditions and dimensions
approaching those needed in a thermonuclear reactor. These studies will be
aimed at defining the parameters, the size and the working conditions of a
Tokamak reactor. The realisation of this objective involves four main areas
of work:

1. the scaling of plasma behaviour as parameters approach the reactor
range,

2. the plasma-wall interaction in these conditions,

3. the study of plasma heating and

4. the study of alpha − particle production, confinement and consequent
plasma heating.

Figure 1.8: Original JET design

The vacuum vessel can hold a plasma volume in the range of 83 − 100
m3. At first, it was designed to reach a plasma current of 3.8 MA, sufficient
to confine α− particles, but then it was designed to reach 4.8 MA. Initially
the toroidal magnetic field was 2.8 T and the it was extended to 3.5 T. In
2009 the carbon components (known as CFC-wall, Carbon Fiber Composite)
were replaced with tungsten and beryllium ones (ITER-like wall, ILW), to
bring JET’s components more in line with those planned for ITER.

The toroidal magnetic field is produced by 32 D-shaped coils enclosing
the vacuum vessel, whose layout is illustrated in figure 1.9a. Each coil is
wound with 24 turns of copper bar and weigh 12 tonnes. The combined
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current carrying capacity of all the coils is 51 MA. Each coil can receive a
total force approximately about 2000 tonnes, directed toward the major axis
of the torus. The D-shaped design is due to the magnetic field inside the
toroidal field coils falls off with the major radius, 1/R, so there is a larger
magnetic force on the inboard side of the coils than the outboard side.

The poloidal field coils are 7 horizontal circular coils placed outside the
toroidal field coils, as it can be seen in figure 1.9b. The main poloidal field
coil is the inner coil wound round the central column of an iron transformer
core, to act as the primary of the transformer. The other 6 coils are optimally
placed to provide control of the plasma shape and position. The largest coil
is 11 metres diameter.

The iron transformer core is formed by 8 limbs which envelope the other
components. This structure weighs about 2600 tonnes, figure 1.9c.

(a) Toroidal field coil system (b) Poloidal field coil system (c) Transformer core

Figure 1.9: JET coil systems and iron transformer (EUROFUSION c©)

The plasma shape can vary from circular to elliptical shape. This shape is
calculated from the magnetic field measured by poloidal coils. This show the
ability to produce both circular and elongated plasmas. With plasma elon-
gation a separatrix is introduced into the magnetic geometry. This separates
the internal closed flux surfaces from external open surfaces. This change
of geometry implies that there are X-points on the separatrix flux surface,
figure 1.10. These open surfaces are used to lead the escaping plasma to
a receiving material surface remote from the plasma. The system is called,
divertor. This type of operation with higher confinement is called H-mode,
in contrast to the normal lower confinement known as L-mode.

Jet was designed to generate a pulse every 15 minutes. Each pulse needs
a total power of up to 800 MW. The power supplies used at JET combine
heavy flywheels driven up to speed by motor generators and several hundred
MW taken directly from the electricity grid.

In JET, three plasma heating system are used:

• Neutral beam injection (NBI): it supplies 23 MW power in total. High
energy hydrogen beams are injected in plasma increasing its temper-
ature. The particles injected in the plasma must be neutral particles,
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Figure 1.10: Plasma X-point

otherwise they will not be able to pass through magnetic field.

• ICRH antennae: it supplies a total power of 32 MW. High frequency
electromagnetic waves are generated by an antennae in the vacuum
vessel. Ion-Cyclotron Resonant Frequency (ICRH) system uses a fre-
quency between 23 MHz (wavelength λ = 13 m) and 57 MHz (λ = 5
m) resonant to the second harmonic of deuterium or fist harmonic of
tritium and helium.

• LHCD antennae: power supply of 12 MW. Lower-Hybrid Current Drive
(LHCD) heating uses a frequency of approximately 3.7 GHz (λ = 0.1
m) in between ion and electron cyclotron frequencies.

JET has the most complete set of diagnostics, about 100 different meth-
ods operating at the moment and new more diagnostics are been developing
or upgrading for future experiments. JET also serves as a unique test bed
for the development of diagnostics for the future fusion experimental device,
ITER. A layout of the JET diagnostic systems is illustrated in figure 1.11.

At JET, signals from all diagnostic systems are digitised and stored in
a central database. Every JET pulse produces almost 60 GBytes of raw
diagnostics data. Most of the data need further processing, this is done au-
tomatically where possible by dedicated computer codes, but in many cases
human intervention and/or data validation is required. All data are acces-
sible to all scientists on the JET site and, moreover, any scientist from any
EUROfusion Research Unit has remote access to the data from their home
institute. These information has been obtained from (Wesson and Campbell,
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Figure 1.11: Layout of JET diagnostic systems

1987), (Wesson, 1999) and (Murari, 2014), where more information can be
found.

1.1.3.2 ITER and DEMO

ITER is the largest and most advanced fusion experiment in the world. It is
designed to generate 500 MW power, which is equivalent to the capacity of
a medium size power plant, albeit, it will be an experimental fusion device.
The fusion gain would be Q = 10, according to 50 MW injected power. ITER
is also expected to be a world reference for the main technologies needed in
a fusion power plant. Currently, ITER is being built in Cadarache, southern
France, in the framework of a collaboration between China, Europe, India,
Japan, Korea, Russia and USA. The complete tokamak assembly is expected
by 2019, the first plasma would be produced in 2020, and the first Deuterium-
Tritium operation would be in 2027.

The design of ITER is illustrated in figure 1.12(ITER c©). Its main fea-
tures are descripted in table 1.4.

ITER is an important step in the roadmap toward a first fusion reactor.
The next device, DEMO(Demonstration Power Plant) will demonstrate the
large-scale production of electrical power and tritium fuel self-sufficiency. A
conceptual design of the device could be finished by 2017. The purpose,
without any problem in the schedule, is to begin DEMO operations in the
early 2030s, and to put power from nuclear fusion into the grid by 2040.
Meanwhile, several devices will be operating around the world giving com-
plementary research and development in support of ITER.
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Major radius, R(m) 6.2
Minor radius, a(m) 2

Toroidal field at R, BT (T) 5.3
Plasma current, Ip(MA) 15

Safety factor, q95 3
Average ion temperature, < Ti >(keV) 8

Average electron temperature, < Te >(keV) 8.8
Average electron density, < ηe > (1019 m−3) 10.1

Fusion power, Pfusion(MW) 400
Fusion gain, Q 10
Pulse length (s) 400

Table 1.4: ITER features

Figure 1.12: ITER design

ITER is not an end in itself: it is the bridge toward a first plant that will
demonstrate the large-scale production of electrical power and tritium fuel
self-sufficiency. This is the next step after ITER: the Demonstration Power
Plant, or DEMO for short. A conceptual design for such a machine could be
complete by 2017. If all goes well, DEMO will lead fusion into its industrial
era, beginning operations in the early 2030s, and putting fusion power into
the grid as early as 2040.

In the web page of ITER more detailed information can be found 2.

2http://www.iter.org/
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1.2 Plasma phenomena

The study of plasma operation is necessary to reach stable conditions for
thermonuclear fusion, however plasma operation is not smooth and several
events can appear. High plasma transport losses appear when high power
auxiliary heating is used. This phenomena was showed the first time in 1980,
and it was called low/L-mode confinement. A new confinement regime was
found in 1982 (Wagner et al., 1982), it was called high/H-mode confinement.
This mode is 2−3 times longer than L-mode and contrary to L-mode there is
no confinement degradation with heating (Keilhacker, 1987). The variation
of the parameters from the L-mode to the H-mode is called L/H transition.
The creation of an edge transport barrier (ETB) characterizes the transi-
tion, and the plasma returns to the L-mode if the ETB is lost. For example
this phenomena is helpful to achieve better plasma performance, but there
are several instabilities which are harmful and potentially dangerous for the
integrity of the device, therefore their mitigation is necessary. The most im-
portant and dangerous instabilities are disruptions, which are explained in
section 1.2.1. The are other important events, although they are not fully
understood they can mainly be attributed to identifiable magnetohydrody-
namics (MHD) modes:

-Mirnov oscillations: during the start-up phase of the discharge, when
the plasma current is rising, magnetic fluctuations occur. Mirnov discovered
these oscillations using magnetic coils around the plasma surface. A deceas-
ing sequence of m numbers identifies this event, and each m-number com-
ponent arises from a distortion of the magnetic structure within the plasma
due to a MHD instability with the same m-number (Wesson and Campbell,
1987).

-Sawtooth oscillations: the intensity of the soft X-rays emitted by
plasma depends on the electron temperature and density, and these soft X-
rays show a periodic relaxation in the core of the plasma (Wesson and Camp-
bell, 1987; Wesson, 1999). The fluctuations were first observed in Princeton,
in 1974 (von Goeler et al., 1974). A typical sawtooth cycle shows three
phases:

1. The ramp phase where plasma density and temperature increase lin-
early with respect to time.

2. Precursor phase, a helical magnetic perturbation grows until the last
phase.

3. The fast collapse phase, when the temperature and density drop fast
(Chapman, 2011).
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-Magnetic islands and tearing modes: MHD instabilities usually pro-
duce changes in the topology of the magnetic fields. This occurs at surfaces
with rational values of q, the lines of the magnetic field are broken and
reconnected generating magnetic islands, as it is illustrated in figure 1.13.
Magnetic islands are generally associated with resistive instabilities and par-
ticularly tearing modes, firstly described in (Rutherford, 1973). Nevertheless,
plasma is not perfectly conducting and magnetic islands can appear in the
nonlinear development of all MHD instabilities with a resonant surface in
the plasma. Two types of tearing modes can be discussed, the internally
driven tearing, analysed in the context of disruptions in (Rebut and Hugon,
1985), and the neoclassical tearing mode, analysed in (Carrera et al., 1986)
and firstly reported in (Chang et al., 1995).

Figure 1.13: Reconnection of magnetic fields producing a magnetic island

-Edge Localized Modes, ELMs: In 1982, bursts or spikes were seen
in Hα signal during the operation, in H-mode, in ASDEX (Wagner et al.,
1982). These spikes are associated with and MHD instability in the edge
of plasma, hence their name, edge localized modes (ELMs) (Keilhacker et
al., 1984). These instabilities, associated with H-mode in tokamaks, are
recognized as bursts in Hα or Dα signal which cause a drop in the density
and temperature on the plasma edge, therefore it leads a deterioration of
the plasma confinement. Firstly, in 1991 three different types of ELMs were
identified at DIII-D tokamak (Doyle et al., 1991), an example of each type
is illustrated in figure 1.14:

• Type I, giant ELMs: the plasma edge is close to the stability limit
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α ≈ alphalimit. The repetition of these ELMs is proportional to the
power and target density, and drops with increasing current. They
appear as large isolated spikes on Hα or Dα signal. These ELMs are
the most dangerous due to the heat loss and the divertor high heat
(Wesson and Campbell, 1987).

• Type II, grassy ELMs: they appear when the plasma edge is in the
connection regime between the first and the second stable ballooning
regimes. The energy lost and amplitude is lower and the frequency is
higher.

• Type III: these ELMs have similar amplitude to grassy ELMs, the
frequency decreases as the power increases. They are associated to a
deterioration of confinement.

Figure 1.14: Example of ELMs types

The fact that ELMs of type II appear only under certain conditions, a
new classification is proposed in (Zohm, 1996):

• Type I: the ELM repetition frequency vELM increases with the energy
flux through the separatrix3 (Psep):

vELM
Psep

> 0. (1.21)

3Separatrix: last closed flux surface. Surface that divides the plasma confined by the
closed magnetic lines from the Scrape Off Layer (See figure 1.10).
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• Type III:the ELM repetition frequency decreases with the energy flux
through the separatrix:

vELM
Psep

< 0. (1.22)

• Dithering cycles: for Psep ≈ PT where PT is the power threshold for
L/H transitions. L-H-L transitions may occur and the repetition fre-
quency shows a slight decrease with increasing Psep.

-Multifaceted Asymmetric Radiation From the Edge, MARFEs:
the MARFE is a radiation instability which appears in tokamaks as toroidally
symmetric ring of enhanced radiation. This instability usually appears in the
inner side of the torus, albeit it also appears around X-point of divertor con-
figurations. The cause is generally the plasma cooling by radiation. The
observation of a cold, dense region on the inboard side of the plasma was
first reported in (Baker et al., 1982). Then, more observations, analysis and
the name as MARFE appeared in (Lipschultz et al., 1984).

1.2.1 Disruptions, the most danger instability

Disruptions, plasma phenomena observed in (Gorbunov and Razumova, 1964),
are the most dangerous instabilities in tokamaks, which lead the loss of the
confinement and a abruptly drop of the plasma current (Wesson et al., 1989;
Hender et al., 2007). The device is exposed to intense heat loads when the
confinement is lost, hence, the different components and wall can be seriously
damaged by the high temperature and current. This is a serious problem
for tokamaks development, for the damage and the limit in the range of op-
eration in current and density. Disruptions can overcome suddenly without
precursors in a few milliseconds or several instabilities in hundreds millisec-
ond can finish disrupting. It is generally accepted that a disruption evolves
through four phases (Schuller, 1995; Iter Physics Expert Group on Disrup-
tions et al., 1999):

1. Initial phase : a change in plasma conditions leads to a less sta-
ble configuration, where plasma current and density slightly increase.
This change is caused by external factors (operational or mechanical
failures) or internal plasma factors(instabilities), however the variation
on plasma conditions are almost imperceptible and practically unde-
tectable.

2. Precursor phase : the onset changes in plasma configuration reach a
critical point due to new increasing and detectable MHD instabilities.
The importance of detecting early enough this phase is crucial. If
the phenomena is detected with time enough, mitigation actions are
able to be taken in order to prevent or reduce the effects. Theoretically
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this instabilities start as magnetic islands rotating around the magnetic
plasma axis, and they grow exponentially in tens of milliseconds leading
into disruption. A model of this phase was developed at Culham and
summarized in (Wesson et al., 1985).

3. Fast phase (thermal quench): a second critical point happens, the
radial current profile is flattened and the central temperature drops
drastically in a few milliseconds.

4. Quench phase (current quench): the magnetic energy of the poloidal
magnetic field is dissipated as thermal energy. The deposition of this
energy can be harmful for the integrity of the vessel. The decay time
depends on the particular conditions and plasma position.

An example of a typical disruption at JET and the phases described
previously is illustrated in figure 1.15.

Figure 1.15: Example of a disruption at JET

Unless the physics of disruptions is not understood in detail, the general
pattern of the behaviour can be described in some basics events:

1. The current profile becomes unstable leading to the growth of a tearing
mode, m = 2 is particularly important.

2. Non-linear growth of the tearing mode.

3. Sudden relaxation of the equilibrium, the current profile is flattened
and there is a dramatic loss of confinement with a collapse of the plasma
temperature.
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4. Plasma current decays.

5. Under some circumstances, the increased plasma resistance and toroidal
electric field produce runaway electrons. These electrons can carry
large currents which can persist after the current quench phase.

6. The loss of plasma energy and the current decay induce currents in the
vacuum vessel which can produce very large forces on the vessel.

These events can be found in detailed in (Wesson and Campbell, 1987).
Despite of the lack of theoretically knowledge on disruptions, there are

several studies and explanations for disruption causes. The operational limits
for steady operation are imposed by low-q and density limit disruptions.
These limits are combine in a Hugill diagram, see figure 1.16, to give a
pattern to the experimental behaviour. This diagram shows the boundary of
operation limited by disruptions plotting 1/q against neR/B, where the last
parameter is introduced in (Murakami et al., 1976), q is the safety factor,
ne is plasma electron density, R is the major radius and B is the toroidal
magnetic field.

0 2 4 6 8 10 12

x 10
19

0

0.1

0.2

0.3

0.4

0.5

n
e
R/B (m−2/T)

1/
q

Density limit

Low q boundary

Figure 1.16: Hugill diagram showing operating regime limited by disruptions

There are differences in plasma parameters and evolution of the disrup-
tion phases, which allow stablish a classification (Savtchkov, 2004; Murari et
al., 2008a):

• Low-q : the safety factor q is the ratio of the times a particular mag-
netic field line travels around a toroidal confinement from toroidal di-
rection to poloidal direction. In order to avoid instabilities, the safety
factor should be q > 1. It has been demonstrated that low-q values and
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particularly q = 2 are values which play a fundamental role in plasma
stability. Magnetic surfaces with q = 2 usually became unstable and
lead into disruption (Morris, 1992). The cause of these disruptions is
probably the incompatibility of stability between m = 1 and m = 2
modes as q is lowered.

• Density limit : this instability begins when density exceeds an upper
threshold or due to impurities in plasma. In a tokamak there are low
and high density limit (Kleva and Drake, 1991). The purpose of fusion
device is working at the highest density without leading into disruption,
in order to maximize the energy output. This is because fusion reaction
rate scales with the square of density. This upper threshold has not
a fixed value, it depends on plasma configuration. Usually increasing
density causes an increase in the radiated power, if the radiated power
exceeds the heating power, plasma current and temperature contract
while plasma detaches from the wall. This scenario usually leads intro
disruption.

• Mode Lock : due to temperature gradients, external perturbation of
the magnetic field, pressure gradients or unstable currents, MHD in-
stabilities can appear creating magnetic islands. The instability can
reach a situation in which, it stops to rotate and “locks to the wall”,
then it can grow faster enough to occlude a sector and modify the
plasma current. All of this can induce a disruption.

• High radiated power : similar to density limit disruptions but the
increase in the radiated power,in the presence of impurities, happens
before the one in plasma density. MARFEs are particularly dangerous
radiating instabilities which can lead into disruption.

• H/L transition : if a H/L transition happens at high density, usually
after a reduction of the additional heating, it can induce instabilities
and ends in a disruption, which it usually is a density limit disruption.

• Internal transport barrier : this type usually appears in plasmas
configurations called “advanced scenarios”, due to the presence of in-
ternal transport barriers (ITB). The ITBs reduce the transport of par-
ticles and energy from the inner to the outer side of the plasma. The
pressure gradient required by a ITB can generate instabilities finishing
in a disruption. This type is very difficult to predict because of the
short time scale of the precursor phase. Moreover, the time between
the precursor phase and the current and thermal quench is very short,
a few tens of milliseconds.

• Vertical displacement : they usually happen in plasma configura-
tions with elongated shapes. Unless these configurations have better
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performance than circular shapes, they are vertically unstable, hence
the presence of a vertical position and velocity controller are necessary.
If the controller fails, the plasma moves vertically towards the vacuum
vessel disrupting. These disruption are very fast and hard to predict,
albeit they rarely happen unless control system fails.

• β limit : this type is related to plasma pressure which can produce
an MHD instability. β parameter is a MHD parameter which measure
the confinement pressure, therefore it is directly linked with stability
limits. These limits are not common in JET so this type of disruption
does not happen frequently.

From an operational point of view, in (de Vries et al., 2011), the MHD
instabilities and several events which can lead into a disruption are anal-
ysed. A statistic of the technical problems which cause disruptions and a
classification of the different types are made in this work.

1.2.2 Disruption predictors

The prediction of the incoming disruption with enough time to carry out mit-
igation actions plays an increasing important role in the current and future
devices. The closest approach to ITER is JET with the new ITER-like wall
(ILW), unless the operational range is not the same. Although the develop-
ment of more robust operational scenarios has reduced the JET disruption
rate over the last decade from about 15− 10% to below 4% (de Vries et al.,
2009); disruptions probably will not be completely avoidable. The principal
cause of disruptions comes from human errors on the operation, hence, even
with better understanding of physics and being more careful, ITER aims to
operate with a disruption rate of 1% or less. This rate is bigger enough to
cause large damage on the device.To characterize plasma physics of disrup-
tion for their prediction is extremely hard. The complexity of developing a
physic driven system is due to the lack of theoretically knowledge on disrup-
tion phenomena, the large number of parameters involved in this stability
and the non linear relation between them. Therefore, several data driven
systems have been developed in the last 15 years, mainly based on neural
networks and support vector machines (SVM), and they have been employed
as an alternative approximation to detect the phenomena. Machine learning
techniques are highly adaptable to disruptions because the instability can
be considered a classification problem: disruptive and non disruptive. Not
every study approach disruptions making an adequate feature extraction or
treatment of the problem. Despite of this, several studies have been carried
out:

• Many studies by Cannas. In (Cannas et al., 2004a), it is shown that
the classifier is able to classify between disruptive or non disruptive
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discharges through a neural network training. Self Organising Maps
(SOM) are used in (Cannas et al., 2004b), where a database formed by
274 discharges is divided in groups of 86 disruptive discharges to de-
termine the training samples. This predictor based in neural networks
reaches a success rate of 68%. Unless high success rates are obtained
with the training set, in (Cannas et al., 2007) the rates notably de-
crease with the test set. Moreover the databases used in these studies
are formed by a few hundreds of discharges. Other works as (Can-
nas et al., 2013) attempt determine the type of disruption, using the
non-linear generative topographic map manifold learning technique.

• A neural network was developed to predict the occurrence of disrup-
tions caused by edge cooling mechanisms in ASDEX Upgrade, obtain-
ing good results in (Pautasso et al., 2001), around 85% of success rate
in a database of 500 shots with 65 disruptive discharges. Another study
in ASDEX Upgrade (Morabito et al., 2001), based on a fuzzy-neural
network approach, uses a training database formed by 62 discharges
and a test database of 46 discharges, obtaining 95% of success rate.
In the same device it should be pointed out the study (Pautasso et
al., 2002), following the work in (Pautasso et al., 2001), the system is
tested in a simulated real time network obtaining 1% of false alarm
rate and 79% of success rate. Other attempt to develop a real time
disruption predictor in ASDEX Upgrade is described in (Cannas et al.,
2010), where an alternative to the protection system in ASDEX Up-
grade is developed, without making use of the LM signal. The results
shows good rates on the training set but predictive performances dete-
riorate when the predictor is tested on pulses belonging to successive
campaigns.

• In DII-D neural networks were used to train a predictor for β-limit
disruptions (Wroblewski et al., 1997). This study attempt to stablish
thresholds to trigger alarms. Using 33 input magnetic features, the
predictor was trained with 56 disruptive discharges and it reached 90%
of success rate in a test set with 28 disruptive discharges. The false
alarm was high, about 20%.

• The study (Sengupta and Ranjan, 2001) in ADITYA tokamak was
intended to detect density limit disruptions. A database with only
disruptive discharges formed by 23 shots was used. This work was not
suitable to be implemented in a real time network.

• Other works with neural networks were developed in JT-60U by Yoshino.
In (Yoshino, 2003), the system is trained with 12 disruptive discharges
and 6 non-disruptive discharges. The output of the neural network
trained is validated through an analysis with a set formed by 12 dis-
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ruptive discharges. The final predictor was tested on 300 disruptive
discharges and 1008 non-disruptive discharges, reaching over 85% of
success rate 50 ms before the disruption time. The work (Yoshino,
2005) uses a database of 525 discharges and shows that a system trained
with only non-disruptive discharges and fitted with the previous work,
can obtained good results on β-limit disruption prediction, above 76%.

• An interesting study links the devices JET and ASDEX Upgrade (Wind-
sor et al., 2005). The database on this study is formed by 185 dis-
charges, where 89 come from ASDEX Upgrade and 96 from JET. A
neural network predictor is trained with data from JET and tested
on data from ASDEX Upgrade, obtaining a success rate of 67%. The
inverse procedure reaches 69% of success rate.

• In JET, Murari develops a technique with fuzzy logic (Murari et al.,
2008a). This classifier based on rules obtains low success rates, however
it shows an original analysis, using CART, of the signals significance
for disruption prediction.

The majority of the previous works are used on small databases formed
by a few hundreds discharges in the best cases. It is not possible to extrap-
olate to future devices due to the lacking of robustness of the predictors.
Disruption prediction depends on the mitigation systems, which are based
on the fast end of plasma heating, control of the plasma current and shape,
gas and pellet injection. The purpose of these systems is to mitigate the
effect of disruptions. In general, fast disruptions are been excluded from the
previous works and this can be a serious problem cause these disruptions are
uncommon but as dangerous as the others.

Alternative predictors have been developed with higher databases and
more robust. The Advanced Predictor of Disruptions (APODIS)(Rattá et al.,
2010), explained in section 3.1, obtains high success rates. This predictor was
implemented in the real time network at JET (López et al., 2012), obtaining
successful results on the first ILW campaigns (Vega et al., 2013a). In the
next chapters of this thesis, the main contributions to the current disruption
prediction knowledge on JET and future devices as ITER will be exposed.
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Data mining techniques

Large volumes of raw data are collected from nuclear fusion devices. During
an experimental campaign, plasma properties are measured by several diag-
noses which store the data in time series, (t, x). The purpose of collecting all
these data is to study the plasma physics in nuclear fusion devices, however
raw data is not usually analysed before being processed. Data mining is the
field which includes the statistical and artificial intelligence techniques that
aim to obtain knowledge from data. These techniques analyse data from dif-
ferent perspectives, extract the useful information, seek hidden patterns and
create models. So that, these techniques have become an important tool in
several fields: science, statistics, economy, medicine, business, games, social
studies, politics, etc.

This chapter covers all the techniques and theory which have been ap-
plied to nuclear fusion databases in the following chapters. Therefore this
chapter is divided in some sections: section 2.1 describes all the techniques
and methods that have been used to analyse and process the nuclear fusion
data. Then, wavelet analysis is briefly exposed in section 2.2. Classification
methods are explained in section 2.3, which is divided in the Support Vector
Machines (SVM) tool in section 2.3.1, and Conformal Predictors in section
2.3.2. In section 2.4, Support Vector Regression (SVR) are shown followed
by the UMEL tool. Finally, martingales used for change detection in data
stream are explained in section 2.5.

2.1 Data signal processing

To extract knowledge from data requires applying data mining techniques,
but in general the data are incomplete, it means lacking attribute values
or certain attributes of interest. Unfortunately, data are also noisy, con-
taining errors or outlier values that deviate from the expected, and incon-
sistent, containing discrepancies. Dealing with large databases and several
attributes requires data preprocessing. Noisy and dirty data can introduce

31



32 Chapter 2

false information into the mining procedure, resulting in unreliable output.
Therefore it is necessary cleaning the data, it means filling in missing values,
smoothing noisy data, identifying and removing outliers,etc. Other impor-
tant step is data integration and transformation, sometimes it is necessary to
deal with attributes and information from different sources, and attributes
cannot be used if the measurement units or representation is different. Some-
times this problem is overcome normalising the different variables in order to
scale the data, this allows comparing different variables or attributes. Other
times, missing values need to be estimated by interpolation or extrapolation.
Data transformation also includes more complex techniques as PCA (Princi-
pal Component Analysis), to study the importance of different variables, or
Fourier and wavelet transforms, which decompose the input data and pro-
vide information about the time and frequency domains. These techniques
allow to extract relevant information from data.

2.1.1 Data normalisation

Data normalisation consists of adjusting values measured on different scales
to a common scale, which allows comparing attributes that originally are
in a different domain or scale. If the data are not normalised, the results
can be seriously influenced by extreme values due to range of values of raw
data varies widely. Generally machine learning studies require previously
data normalisation in order to each feature contributes approximately pro-
portionately to the final result.

In this thesis it has been used decimal scaling and normalisation by scal-
ing. Decimal scaling allows changing the order of magnitude, increasing or
reducing the order in powers of 10. This transformation is particularly use-
ful when some attributes from the data are measured in a high or low range
compare to the remaining data or attributes. The transformation consist of:

x∗i = 10j · xi (2.1)

where j is the power of 10 and j ∈ N
Normalisation by scaling is a method used to standardize the range of

independent variables or features of data. This method attempt to scale the
range of the data between a maximum and minimum. The rescaling can be
done in the range [0, 1]:

x∗i =
xi − xmin
xmax − xmin

(2.2)

Or between a specific value for the maximum and minimum, [x′max, x
′
min]:

x∗i =
xi − xmin
xmax − xmin

(x′max − x′min) + x′min (2.3)

where x is the original value and x∗i is the normalised value.
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Several software libraries on machine learning, as libsvm 1 that has been
used in this thesis, make use of data normalised in ranges like [0, 1] or
[−1, 1]. The works on disruption prediction, like (Dormido-Canto et al.,
2013; Moreno et al., 2014b; Vega et al., 2013a, 2014b, 2013b,c, 2014a), use
this normalisation between [0, 1] and previously extreme values in some fea-
tures are changed by selected maximum and minimum values for this fea-
tures. This is carried out in order to eliminate outliers from measurement
or acquisition errors. Then, this maximum and minimum values are used to
normalise in the range [0, 1].

An important and extended normalisation is standardisation, which cen-
tres the values of each feature in the data around a mean value or zero and
unit variance, in order to gather all the values. This normalisation is useful
for methods which work with distances. However if the problem requires
relations between different features measured in different units, these values
will need to be scaled. Focusing on the data distribution, two normalisations
can be employed:

• Scaling to unit deviation (the general method of standardisation, (x̄, σ) =
(0, 1)): determining the distribution mean and standard deviation for
each feature. Next we subtract the mean from each feature. Then we
divide the values (mean is already subtracted) of each feature by its
standard deviation.

x∗i =
xi − x̄
σ

, where σ =

√∑n
i=1(xi − x̄)2

n− 1
(2.4)

• Scaling to unit length, (x̄, σ) = (0, 1): another option, that is widely
used, is to scale the data of a feature such that the complete vector
has length one. This usually means dividing each component by the
Euclidean length of the vector.

x∗i =
xi − x̄
L

, where L =

√√√√ n∑
i=1

(xi − x̄)2 (2.5)

Data standardisation is really useful in regression problems, in order to
extract scale laws. Several studies uses this normalisation like (González et
al., 2012; Vega et al., 2012).

2.1.2 Data interpolation

Sometimes some features present missed or unknown values, and this could
be a problem in the analysis. For example, in time series cannot be correctly

1http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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analysed if there are missed values at certain times. To sort out this problem,
there are different methods to estimate missing or unknown values. Inter-
polation is probably the most widely method used to overcome this task. It
is defined as the process which allows calculating unknown values from the
known data. This operation is useful when signals are acquired with different
sample rate. Therefore, interpolating the number of samples are changed but
the sample frequency is equalised for every signal. It is important to note
that interpolation is different from “smoothing”, using interpolation the esti-
mated line passes through all the known data points. In this section the most
common interpolation methods are explained, furthermore they are easy to
compute:

• Linear: it is the simplest interpolation method. Given two known
data points (xa, ya) and (xb, yb), the points are joined by a straight
line segment. The middle of this segment is chosen as the new point,
as it can be seen in figure 2.1. Therefore, the value y at the point x,
between xa and xb, is determined by:

y − ya
yb − ya

=
x− xa
xb − xa

→ y = ya + (yb − ya)
x− xa
xb − xa

(2.6)

This formula can be obtained geometrically from figure 2.1.

• Polynomial: it is the interpolation of a given data set by a polyno-
mial. The idea is find a polynomial which goes exactly through some
given points. Let’s assume a polynomial of degree n which defines the
interpolation and the unknown value y at x:

p(x) = cnx
n + ...+ c1x+ c0 (2.7)

Therefore polynomial p interpolates the data points (xi, yi):

p(xi) = yi (2.8)

• Spline: while linear interpolation uses a linear function for each of
intervals (xa, xb); spline interpolation uses low-degree polynomials in
each of the intervals, and chooses the polynomial pieces such that they
fit smoothly together. The resulting function is called a spline.

In figure 2.2 some interpolation methods are shown over the same raw
data. It can be seen that linear interpolation, although it is a fast operation,
results in discontinuities at each point. Often it is necessary a smoother
interpolation, therefore, in these cases it would be better to use a different
method. For example cubic or spline provide a smoother transition between
adjacent segments. However polynomial interpolation is computationally ex-
pensive compared to linear interpolation. In the case of spline interpolation,
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Figure 2.1: Linear interpolation
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Figure 2.2: Example of interpolation methods

like polynomial, it incurs a smaller error than linear and provides a smoother
result; and it is easier to evaluate than the high degree polynomials. The
method is chosen depending on the problem to be solved.

The interpolation range is chosen by the maximum value of the set formed
by the minimum temporal values of each signal, as first time; and the min-
imum temporal value of the set compound of the maximum temporal val-
ues of each signal, as the last time. This is extremely important in fusion
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databases; during a discharge many diagnoses acquired signals with different
sample rates. Therefore, this way every signal will have the same sample rate
and there will not be unknown values. This is necessary before carrying out
any study with these data. This process has been applied to generate the
databases explained in section 3.2, which have been used in many studies as
(Vega et al., 2014b; Pereira et al., 2015; Murari et al., 2013; Dormido-Canto
et al., 2013; Moreno et al., 2014b,a, 2015; Talebzadeh et al., 2015; Rattá et
al., 2015).

Sometimes these methods cannot be used due to real time applicability.
Sometimes in a real time network, we cannot interpolate between two known
points because resolution time can be lost. Therefore, due to we do not have
the two samples (xa, ya) and (xb, yb) to calculate the sample in between, it
is applied the interpolation by the nearest neighbour on the left. The last
sample provided at x is xa, ya,so the last known value is assigned to y, it
means (x, ya). This has been used in works as (López et al., 2012; Moreno
et al., 2014b)

2.1.3 Fourier transform

In 1807, Jean-Baptiste Joseph Fourier began the research in Fourier series
by demonstrating that time series can be expressed in terms of trigonometric
series. Obviously, trigonometric functions are periodic and consequently the
time series development. By definition, a function f(x) has a period P if
∀x, f(x + P ) = f(x), where P ∈ N. The minimum P value is the period of
f(x).

Given an orthonormal basis of functions φ(x), the function f(x) can be
written:

f(x) = c1φ1(x) + ...+ cnφn(x) + ..., (−c < x < c), n = 1, 2, ... (2.9)

The f(x) series is expected to converge in the function f(x). Then the
coefficients cn can be expressed:

cn =

∫ c

−c
f(x)φ∗n(x)dx, (2.10)

where φ∗ is the complex conjugate of φ. These coefficients 2.10 with the
equation 2.9 define the generic Fourier Series for f(x):

f(x) =
∞∑
n=1

cnφn(x). (2.11)

If f(x) has period 2π, the Fourier series of f(x) can be written:

f(x) =
a0

2

∞∑
n=1

(ancos(nx) + bnsin(nx)), n = 1, 2, ... (2.12)
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an =
1

π

∫ 2π

0
f(x)cos(nx)dx (2.13)

bn =
1

π

∫ 2π

0
f(x)sin(nx)dx (2.14)

Using Euler’s identity einx = cos(nx) + isin(nx) and the orthonormal

basis of functions ek(x) =
eikx√

2π
, Fourier series of f(x) yields:

f(x) =
∞∑

n=−∞
cne

inx, (2.15)

cn =
1

2π

∫ 2π

0
f(x)e−inxdx. (2.16)

It can be seen that Fourier series 2.11 is not able to represent all values
of x, if the function is not periodic. Therefore, if f(x) is not periodic, in
order to obtain a representation for all x values the previous representation
is extended to c→∞. The result is the Fourier transform:

F (n) =
1√
2π

∫ ∞
−∞

f(x)e−inxdx. (2.17)

where n ∈ R. The function can be reconstructed from its Fourier terms
using the inverse Fourier transform:

f(x) =
1√
2π

∫ ∞
−∞

F (n)einxdn. (2.18)

Fourier transform in L2[−∞,∞] preserves the norm 2.19 and the inner
product 2.20. ∫ ∞

−∞
|f(x)|2dx =

∫ ∞
−∞
|F (n)|2dn. (2.19)

∫ ∞
−∞

f(x)g∗(x)dx =

∫ ∞
−∞

F (n)G∗(n)dn. (2.20)

Further details are provided in (Brown and Churchill, 2001). Fourier
transform is widely used in signal processing and analysis. If the signals are
periodic and regular enough, successful results are obtained. On the other
hand, it does not work properly with non stationary signals. Therefore, if the
function f(x) is non stationary, the Fourier basis functions are infinite along
time but local in frequency. Fourier transform identifies a local frequency
but it is not able to provide information about the whole spectrum along the
temporal evolution. For instance, it cannot be correctly analysed by Fourier
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transform the beginning and end of a discrete signal, or the time where a
singularity happens.

To sort out this problem, the short-time Fourier transform is used, re-
ferred to as the Gabor transform, the Wigner distribution and the ambi-
guity function. The non stationary signal is divided in temporal segments
where the signal can be considered quasi-stationary, and Fourier transform
is applied to each local segment. In 1940, Gabor introduced the short-time
Fourier transform:

Sf (w, τ) =

∫
f(t)g∗(t− τ)e−iwtdt, (2.21)

where g(t) is a short-time window with a fixed width, which slides along
the time axis with a factir τ (Poularikas, 2010, c. 10.1.3). The Gaussian
function was proposed as the function g(t), and it was demonstrated that
Fourier transform of a short-time window remains Gaussian. The function
is defined as (see figure 2.3):

g(t) =
1

s
e−πt

2/s2 . (2.22)
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Figure 2.3: Gaussian function for short-time Fourier transform

Fourier transform applied to discrete signals is called discrete Fourier
transform (DFT). In most typical applications the STFT, previously ex-
plained, is performed on a computer using the Fast Fourier Transform (FFT).
The FFT can be applied when the total number of samples is a power of
two. For example, a process using FFT takes approximately O(nlog(n)) op-
erations, while DFT takes about O(n2), therefore FFT is significantly faster.
The output from FFT provides negative frequencies, which come from the
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FT properties. The first half of FFT output contains frequencies sorted in
ascending order, where the first frequency corresponds to 0Hz. The second
half of the output provides the negative frequencies. In (Vega et al., 2014b;
Pereira et al., 2015; Murari et al., 2013; Dormido-Canto et al., 2013; Moreno
et al., 2014b, 2015; Talebzadeh et al., 2015; Rattá et al., 2015), it has been
used the FFT considering only the positive frequencies and deleting the con-
tinuous component. The FFT has been used as it is explained in section
3.2.

2.2 Wavelet analysis

Wavelet analysis is an useful technique which allows analysing different types
of data as waveforms and images. Wavelet transform decomposes the input
data into time-frequency components with many applications: de-noising
audio data, signal compression, object detection, speech recognition, etc.
Wavelets are an extension of Fourier analysis (Burke, 1996, p. 5). In Fourier
analysis information about the time domain of the data are not provided,
however wavelets have good location in time and frequency domains. A
wavelet can be defined as a function ϕ ∈ L2(R) with a zero average:∫ ∞

−∞
ϕ(t)dt = 0. (2.23)

This function is normalized ‖ϕ‖ = 1, and centered around t = 0. After
that, function ϕ is scaled by s and translated by u(remaining normalised
‖ϕu,s‖ = 1):

ϕu,s(t) =
1√
s
ϕ

(
t− u
s

)
. (2.24)

Given a function f ∈ L2(R) at time u and scale s, the wavelet transform
would be:

Wf(u, s) = 〈f, ϕu,s〉 =

∫ ∞
−∞

f(t)
1√
s
ϕ∗
(
t− u
s

)
dt. (2.25)

Wavelets ϕu,s(t) generated from the same function ϕ(t), present the same
form but different scale s and translation u. Scales s > 0 are always used.
Wavelets are dilated for s > 1, and contracted for s < 1. Therefore, different
ranges of frequency are covered by changing the value of s. Lower frequencies
correspond to small values of s (Daubechies, 1992).

This wavelet transform 2.25 can be expressed as the convolution product:

Wf(u, s) = f ∗ ϕ̄s(u),with ϕ̄s(t) =
1√
s
ϕ∗
−t
s
. (2.26)

And the Fourier transform of ¯ϕs(t) is

ˆ̄ϕs(w) =
√
sϕ̂∗(sw). (2.27)
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Due to ϕ̂(0) =
∫∞
∞ ϕ(t)dt = 0, ϕ̂ can be defined as the transfer function

of a band-pass filter. This information can be found widely explained in
(Mallat, 1999, c. 4). At this point, it is necessary to construct a translation-
invariant wavelet representation. For this purpose the scale s is made discrete
along a dyadic sequence 2jj∈Z,but not the translation parameter u. The
dyadic wavelet transform of f ∈ L2(R) is written as:

Wf(u, 2j) =

∫ ∞
−∞

f(t)
1√
2j
ϕ

(
t− u

2j

)
dt = f ∗ ϕ2j (u), (2.28)

with
ϕ2j (t) = ϕ2j (−t) =

1√
2j
ϕ

(
−t
2j

)
. (2.29)

A discrete dyadic wavelet transform can be computed with a fast fil-
ter bank algorithm if the wavelet is appropriately designed. This theory is
widely explained in (Mallat, 1989, 1999). Wavelet analysis allows obtaining
wavelet coefficients of a discrete series and a multi-resolution representation
of the data. This multi-resolution representation provides a scale-invariant
hierarchical representation of data. The information is provided in two suc-
cessive detail levels 2j and 2j+1 (Mallat, 1989), where each one of these
levels provides different information of the data. Levels with a low resolu-
tion contain information about the larger patterns in the data (low frequency
behaviours), while levels with a high resolution represent the smaller details
of the data (high frequency behaviours).

In these thesis it has been used the Haar wavelet in discrete form, the
Haar transform (Walker, 1999, c. 1). This wavelet is the simplest and most
robust wavelet function, and it serves as a prototype for all other wavelet
transforms. Given a discrete signal f = (f1, f2, ..., fn, where n ∈ N, and the
values of f are f1, f2, ..., fn ∈ R. These values are usually the measurements
from an analogue signal at the time values t1, ..., tn. It is assumed that time
vector is equally spaced. Haar transform decomposes the discrete signal f in
two sub-signals with length n/2. One sub-signal contains the approximation
coefficients, which correspond to an average or trend; and the other the detail
coefficients, which correspond to a difference or fluctuation. Haar transform
can be applied at different levels. The first level corresponds to the first Haar
transform H1 given by:

f
H1→ (a1|d1), (2.30)

where a1 and d1 correspond to the approximation and detail coefficients
respectively. The approximation coefficients a1 = (a1, ..., an/2 are computed
by taking consecutive pair of values of f and calculating the average. Then
this value is multiplied by

√
2. That is:

am =
f2m−1 + f2m√

2
,with m = 1, 2, ..., n/2. (2.31)
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The detail coefficients d1 = (d1, ..., dn/2 are computed by taking consec-
utive pair of values of f and calculating half the difference. Then this value
is multiplied by

√
2. That is:

dm =
f2m−1 − f2m√

2
,with m = 1, 2, ..., n/2. (2.32)

Let’s show an example, given a function f = (4, 6, 10, 12, 8, 6, 5, 5), then
approximation coefficients, following 2.31, are a1 = (5

√
2, 11
√

2, 7
√

2, 5
√

2).
The detail coefficients, following equation 2.32, are d1 = −

√
2,−
√

2,
√

2, 0).
Successive levels can be obtained by applying Haar transform to approxima-
tion coefficients at each level, halving the number of samples in every step.
This can be seen in figure 2.4.

Figure 2.4: Haar wavelet levels

The mapping H1 in 2.30 has an inverse. From coefficients a1 and d1, it
can be obtained the function f by applying:

f =

a1 + d1√
2︸ ︷︷ ︸

f1

,
a1 − d1√

2︸ ︷︷ ︸
f2

, ...,
an/2 + dn/2√

2︸ ︷︷ ︸
fn/2

,
an/2 − dn/2√

2︸ ︷︷ ︸
fn/2

 . (2.33)

Therefore, the diagram in figure 2.4 can be followed in the opposite di-
rection.

It is important to note why the factor
√

2 is used. This factor allows
ensuring that the Haar transform preserves the energy of a signal. The
energy of a signal f is understood as the sum of the square of its values,
εf = ε(a1|d1):

εf = f2
1 + f2

2 + ...+ f2
n. (2.34)

Suppose the function from the previous example, f = (4, 6, 10, 12, 8, 6, 5, 5),
and its at level 1 coefficients a1 = (5

√
2, 11
√

2, 7
√

2, 5
√

2) and d1 = −
√

2,−
√

2,
√

2, 0).
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Then the energy would be:

εf =
n∑
i=1

f2
i =

n/2∑
i=1

(a1
i )

2 +

n/2∑
i=1

(d1
i )

2 = 440 + 6 = 446. (2.35)

The first level Haar transform conserves energy. It can be seen the most
part of the energy is compacted into the approximation coefficients, it means
that only approximation coefficients can represent the morphology of a signal
without loosing much visual information, and reducing the dimensionality
of the data. Let see an example in figure 2.5, given a signal (it corresponds
to plasma current of discharge 81852 at JET) formed by 12180 samples,
the signal is reduced and correctly plotted with 191 samples. It has been
done by applying a Haar transform at level 6. The level depends on the
resolution needed to analyse the data, higher resolutions requires lower levels
of decomposition.
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Figure 2.5: Example of Haar transform

In this thesis wavelet analysis is mainly used in sections 4.1.3 and 4.2, to
reduce the dimensionality of the data and extract the most possible infor-
mation with the less amount of data; and to de-noise and smooth signals in
order to detect high frequency pikes. However, in section 4.2, it is a prob-
lem reducing the dimensionality because it is necessary a high resolution in
order to detect an specific behaviour. The wavelet transform previously ex-
plained is also called decimated wavelet transform (DWT), where the signal
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is convolved and decimated. Therefore, a modified version has been used
to overcome the resolution problem, the Non-Decimated Wavelet Transform
(NDWT) or stationary wavelet transform. NDWT has no sub-sampling step
so it keeps the same number of coefficients of each level.

2.3 Classification

Classification problems aim to identify the label yn+1 of a new sample xn+1,
given a set of training samples with their labels (x1, y1),(x2, y2),...,(xn, yn).
Any classification method which incorporates information from training sam-
ples employs learning. Learning process is the hardest step in a classification
problem, where automatic learning algorithms and pattern recognition tech-
niques are employed to extract the information from the training samples
and develop a model. Learning comes in different forms (Duda et al., 2000,
p. 16-17):

• Supervised learning: the training samples and their respective labels,
(xn, yn), are previously known. The goal is to find patterns and build
mathematical models based on the training samples. These models are
validated with test samples and their predictive capacity is evaluated.
In this thesis this learning is broadly used by Support Vector Machines,
see section 2.3.1.

• Unsupervised learning: the training samples x1,..,xn are known but
their respective labels y1,...,yn are unknown. So that, the task is to de-
velop classification labels automatically. Unsupervised learning seeks
out the similarities between the data samples and attempts to create
clusters or groups of similar samples. There are several clustering tech-
niques. The application of martingales (see section 2.5) in section 4.1.2
could be understood as an unsupervised learning approach.

• Reinforcement learning: given an initial set of samples x1,..,xn (with
their respective labels y1,...,yn in the case of supervised learning, or
without the previous knowledge of the labels in the case of unsupervised
learning) the algorithm evaluates the new incoming sample xn+1 and
it is included in the initial set to retrain or reinforce the model for
the next test sample xn+2. The purpose is to improve the model and
the predictive capacity with every new incoming sample. There are
several techniques and applications, however in these thesis it could be
consider as reinforcement learning Venn predictors (section 5.2.1), and
prediction from scratch (section 5.2.2).

In addition, looking at how is the process between the training set and
the prediction it is possible to distinguish two classification paradigms (Gam-
merman and Vovk, 2007):
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• Induction: induction prediction firstly infers a general rule, model
or predictor from the initial training samples, this is called inductive
step. Then,in the deductive step, the model or general rule predicts the
label of the incoming sample. The bulk of the computations happens
during the inductive step when the model is calculated. Examples of
this paradigm are the Support Vector Machines (see section 2.3.1) and
Inductive Conformal Predictors (see section 2.3.2.1).

• Transduction: the prediction is obtained in a single step. It is taken
a shortcut, the training samples x1,..,xn and the incoming sample xn+1

are used to predict the label yn+1. This process must be done for each
new incoming sample, it usually takes a longer time than deductive
step. Therefore this process becomes unfeasible for large training sets.
An example of transductive prediction is Conformal Predictors, which
is explained in section 2.3.2.

Vapnik’s (Vapnik, 1998, 2000) distinction between induction and trans-
duction, as applied to the problem of prediction, is illustrated in figure 2.6.

Figure 2.6: Inductive and transductive prediction diagram

2.3.1 Support Vector Machines

The Support Vector Machines (SVM) is a set of statistical supervised learn-
ing algorithms which can be used to obtain either classification or regres-
sion. SVM theory was developed by Vladimir N. Vapnik between 1963 and
1995. The first algorithm was created in 1963 by Vladimir N. Vapnik and
Alexey Ya. Chervonenkis. In 1992, B.E. Boser, I.M. Guyon and V.N. Vapnik
presented a training algorithm that maximized the margin hyperplanes by
kernel methods (Boser et al., 1992). The current version was presented in
(Cortes and Vapnik, 1995), where the underlying idea is that input vectors
are non-linearly mapped into a higher dimensionally space. The original
space of the input vectors, the training samples, is called input space; while
the higher dimensionally space is called feature space. In the feature space
the data are linearly separable by a hyperplane, called optimal separating
hyperplane. This hyperplane is understood as a generalisation of a plane
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in a high dimensionally space which divides the feature space into two re-
gions. Unlike conventional statistical and neural network methods, SVM
does not attempt to deal with a small number of features. The mapping into
a higher dimension allows SVM to control the complexity of large number
of features. The reason is that linear decision boundaries constructed in the
feature space, with a large number of dimensions, correspond to non-linear
decision boundaries in the input space. SVM overcomes two main problems:

• Conceptual statistical problem: how to deal with the complexity of high
dimensional spaces and provide good generalization ability. This is
solved by using penalized linear estimators with a large number of basis
functions or by penalising the norm of the weighting coefficients.The
results are approached in a controlled quadratic optimisation problem
formulation of the learning problem.

• Computational problem: how to perform the numerical optimisation,
it means, how to solve the quadratic optimisation problem in a high
dimensional space. This problem is overcome by using the dual kernel
representation of linear functions.

SVM combines four different concepts, that are explained in greater
depth on (Cherkassky and Mulier, 2007, p. 355-356):

1. New implementation of the SRM (Structural Risk Minimization) in-
ductive principle.

2. Input samples mapped onto a very high dimensional space using a set
of non-linear basis function defined a priori.

3. Linear functions with constraints on complexity used to approximate
or discriminate the input samples in the high dimensional space.

4. Duality theory of optimisation used to make estimation of model pa-
rameters in a high dimensional feature space computationally tractable.

The SVM theory can be explained in three steps: optimal separating
hyperplane (section 2.3.1.1), mapping the input space into a higher dimen-
sionally feature space (section 2.3.1.2), constructing SVM (section 2.3.1.3).

2.3.1.1 The optimal separating hyperplane

In the high dimenasional feature space the separating hyperplane is under-
stood as a linear function that is able to separate the training data without
error. In (Vapnik and Kotz, 2006, p. 430) it is mentioned that the algorithm
for constructing an optimal separating hyperplane was firstly formulated in
1964 by Chervonenkis and Vapnik, and the detailed theory is contained in
the book (Vapnik and Chervonenkis, 1974). Given a training data set of
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n separable samples (x1, y1),...,(xn, yn) with x ∈ < and y ∈ +1,−1; the
separating hyperplane can be defined as:

(w · x) + w0 (2.36)

This hyperplane separates the data training samples and allows us to
solve the classification problem directly. The hyperplane satisfies the fol-
lowing constraints, where a sample xi has the same label as the sign of the
distance from the separating hyperplane:

(w · xi) + w0 ≥ 1, if yi = +1 (2.37)
(w · xi) + w0 ≤ −1, if yi = −1, i = 1, .., n (2.38)

These equations can be expresed:

yi[(w · xi + w0)] ≥ 1, i = 1, ...n (2.39)

The margin, δ, is defined as the minimal distance from the separating
hyperplane to the closest data point; and it is called optimal when the margin
is maximum and the generalization capability is better, see figure 2.7. The
distance between the hyperplane and a sample xi is |(w · xi) + w0| / ‖w‖, so
that every sample obeys:

yk[(w · xk) + w0]

‖w‖
≥ δ, k = 1, .., n (2.40)

where yk ∈ −1, 1. To find the optimal hyperplane is necessary to max-
imize the margin δ, and this is equivalent to minimizing the norm of w.
Therefore an optimal hyperplane satisfies 2.39 and minimises:

η(w) = ‖w‖2 (2.41)

In figure 2.7 it can be seen a separating hyperplane and the optimal sep-
arating hyperplane which satisfies 2.39 and minimises 2.41. The samples
in red and blue are called support vectors, they define the decision surface.
The number of support vectors is directly related to the generalisation ca-
pability, and they provide a bound on the expectation of the error rate for a
sample(Vapnik, 2000, Chapter 6.8):

En[Error rate] ≤ En[Number of support vectors]
n

(2.42)

where En is the expectation over the training set of n samples.
The determination of the optimal separating hyperplane is a quadratic

optimisation problem with linear constraints, so it is not a practical problem
to be solved for high dimensional spaces. An optimisation problem can be
represented by a dual form if the cost and constraint functions are strictly
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Figure 2.7: Example of optimal and non-optimal separating hyperplane

convex, so that solving the dual problem is similar to solve the original
problem. In this case, 2.39 and 2.41 satisfies these criteria and it is possible to
represent the problem in its dual form using Kuhn-Tucker theorem (Strang,
1986). Two steps have to be carried out to obtain the dual form from 2.39
and 2.41. Firstly the problem is constructed using Lagrange multipliers:

L(w,w0, α) =
1

2
(w · w)−

n∑
i=1

αiyi[(w · xi) + wo]− 1 (2.43)

where αi are Lagrange multipliers. This equation has to be minimised
with respect to w, w0 and maximised with respect to αi ≥ 0. After that,
in the second step the parameters w, w0 in 2.43 are expressed in terms of
αi using Kuhn-Tucker conditions. Therefore the solutions w∗, w∗0 and α∗

should satisfy:
∂L(w∗, w∗0, α∗)

∂w0
= 0 (2.44)

∂L(w∗, w∗0, α∗)
∂w

= 0 (2.45)

Solving 2.44 and 2.45, the following properties of the optimal hyperplane
are obtained:

1. The lagrange multipliers α∗i should satisfy the constraints:
n∑
i=1

α∗i yi = 0, α∗i ≥ 0 (2.46)

2. Vector w∗ is a linear combination of the vectors in the training set:

w∗ =
n∑
i=1

α∗i yixi, α
∗
i ≥ 0 (2.47)
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To obtain the equation of the optimal separating hyperplane, the dual
problem is constructed using 2.46 and 2.47 in 2.43:

L(α) = −1

2

n∑
i,j=1

αiαjyiyj(xi · xj) +

n∑
i=1

αi (2.48)

This is the dual form of the optimisation problem which should be
maximised with respect to the parameters αi. Using 2.47 in 2.36, the
optimal separating hyperplane is obtained:

n∑
i=1

α∗i yi(x · xi) + w∗0 (2.49)

The parameter w∗0 can be computed considering the conditions on sup-
port vectors. Given a support vector (xs, ys), it satisfies:

ys[(w
∗ · xs) + w∗0] = 1 (2.50)

Then, using 2.47 in 2.50, it yields:

w∗0 = ys −
n∑
i=1

α∗i yi(xi · xs) (2.51)

In a non-separable case (Vapnik, 2000, p. 136) (Cherkassky and Mulier,
2007, p. 364), it means data that cannot be separated without error. Pre-
viously it has been described that a sample is non-separable if it does not
satisfy 2.39. It is important to note that misclassification differs from non-
separable, the first ones refers to the samples which fall within the margin
in the wrong side, while the second one corresponds to samples which fall
within the margin in the right side. The purpose is to minimise the classifica-
tion error and maximise the margin of the separating hyperplane, therefore
the slack variables ξi ≥ 0 and the function 2.52 are introduced to quantify
the non-separable data.

F (ξ) =

n∑
i=1

ξpi (2.52)

where p ≥ 0. The function 2.52 under the constraints:

yi[(w · xi)− w0] ≥ 1− ξi, i = 1, .., n

(w · w) ≤ ∆−2
(2.53)

The function 2.52 is minimised to p = 1, which is computationally simple.
The ∆-margin separating hyperplane is determined by the vector:

w =
1

C∗
∑n

i=1 αiyixi
(2.54)
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where αi and C∗ are the solutions to the convex optimisation problem
which maximises the functional:

W (α,C∗) =
n∑
i=1

αi −
1

2C∗

n∑
i,j=1

αiαjyiyj(xi · xj)−
C∗

2∆2
(2.55)

subject to constraints:

n∑
i=1

αiyi = 0, C∗ ≥ 0 (2.56)

0 ≤ αi ≤ 1, i = 1, ..., n (2.57)

In order to simplify the computations it is employed the concept of soft-
margin optimal hyperplane, firstly introduced in (Cortes and Vapnik, 1995),
which is determined by the vector w that minimises the functional:

φ(w, ξ) =
1

2
(w · w) + C

n∑
i=1

ξi (2.58)

where C is a given value. The solution of this optimisation problem is
calculated following an equivalent computation as the one followed in the
separable case.

2.3.1.2 Mapping the input space into a higher dimensionally fea-
ture space

After defining the optimal separating hyperplane, the next step is mapping
the input space into a higher dimensionally feature space, which is described
in (Vapnik and Kotz, 2006, p. 432). The task is to find a feature space where
data can be linearly separable. In (Boser et al., 1992), it is presented a way
to construct the optimal separating hyperplane in a Hilbert space without
mapping the input vectors into vectors of Hilbert space. This is carried out
using Mercer’s theorem (Minh et al., 2006):

Let vectors x ∈ X be mapped intro vectors z ∈ Z of some Hilbert space.

1. There exists in X space a symmetric positive definite function K(xi, xj)
that defines the corresponding inner product in Z space:

(zi, zj) = K(xi, xj)

2. Also, for any symmetric positive definite function K(xi, xj) in X space
there exists a mapping from X to Z such that this function defines an
inner product in Z space.
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According to this theorem, the separating hyperplane 2.49 in the feature
space has the following form:

n∑
i=1

α∗i yiK(x, xi) + w∗0 = 0 (2.59)

The function K(x, xi) is called kernel function and depending on the
kernel function chosen one can make specific mappings from input space
into feature space. Kernel functions are widely explained in (Schölkopf and
Smola, 2002, c. 2).

Figure 2.8: Input space is mapped into a feature space using a kernel function

2.3.1.3 Constructing SVM

Finally the SVM theory, as mentioned above, was presented in (Cortes and
Vapnik, 1995). Input vectors are non-linearly mapped into a higher dimen-
sionally space called feature space. The SVM construction can be followed
in (Vapnik and Kotz, 2006, p. 433). The parameters α∗i from equation 2.59
are calculated in the same way as the non-separable case:

W (α) =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj) (2.60)

subject to constraints:

n∑
i=1

αiyi = 0 (2.61)

αi ≥ 0, i = 1, ..., n (2.62)
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The optimal separating hyperplane can be expressed in terms of the
Support Vectors and the decision function yields:

D(x) =

SV∑
αiyiK(x, xi) + w0 (2.63)

where the value of this function represents the distance from the sample
evaluated to the hyperplane in the feature space. There can be used several
kernel functions, however the most used are the following:

• Linear: this is the simplest kernel function. It is given by the common
inner product.

K(x, xi) = x · xi

• Polynomial: polynomial functions of p degree. It is well suited for
problems where all data is normalized.

K(x, xi) = [(x · xi) + 1]p

• Radial basis function (RBF): is by far one of the most versatile Kernels.
It is the preferred Kernel when we don’t know much about the data
we are trying to model.

K(x, xi) = exp

{
−|x− xi|

2

2σ2

}

The given parameter σ determine the influence area of SVs. If the value
is large, the exponential will behave almost linearly and the hyperplane
will be smoother. On the other hand if the value is low, the hyperplane
will be more sensitive to noise in training data and the fitting is higher.

2.3.1.4 Examples of SVM classification

Parkinson’s disease classification

This first example shows the classification of the Parkinson’s disease data set
shown in appendix B. The data from table B.1 are classified using libsvm2

in Matlab. The data set has been divided in a training set of 20 samples, it
means 10 samples of each class, and 175 samples for testing the model. There
have been developed 4 classifiers using different kernels: two RBF kernels
with different values of γ parameter, one polynomial and one linear kernel.
The results are shown in table 2.1, where it can be seen that the best model
is obtained with RBF kernels and the lowest value of γ parameter fits better
the data reaching a success rate of 80.57% but the generalisation capability
decreases. The success rate is understood as (TP/N ∗ 100) the ratio of true
positive classifications to the total number of test samples.

2http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Kernel Success rate
Linear 68.57%

Polynomial (p = 5) 72.57%
RBF (C = 100 and γ = 1.5) 78.29%
RBF (C = 100 and γ = 0.01) 80.57%

Table 2.1: SVM classification of Parkinson’s disease

Breast cancer classification

This example presents the classification of the breast cancer database shown
in appendix C. This database is classified using libsvm3 in Matlab. Two
classifications have been carried out, and following the same process as the
previous example, each classification analyse 4 models using RBF, polyno-
mial and linear kernels.

First, the database is divided in 20 samples for training (10 benign and
10 malignant samples) and 663 for the test (434 benign and 229 malignant
samples). The results are shown in table 2.2. RBF kernels generate a non
linear hyperplane. The lowest value of γ fits better the data and is capable to
classify both benign (96.31%) and malignant (81.22%) cases. Theoretically,
when parameter γ is increased, the data fitness decreases but the general-
isation capability is higher; however in this example it can be seen that a
higher value of γ parameter classifies all the malignant cases but it is not able
to classify benign cases, 59.68%. Polynomial kernel with dimension p = 5
obtains similar results than RBF kernel with γ = 0.01, however linear kernel
reaches the best results with 96.77% of success rate in benign cases, and
94.76% in malignant cases.

The second classification trains with 100 samples for training (50 benign
and 50 malignant samples) and 583 for the test (394 benign and 189 ma-
lignant samples). The results are shown in table 2.3. If the training set is
increased, better results are obtained. The conclusion is similar in the case
of RBF kernels, but now the best result is reached by polynomial kernel. Al-
though it is similar than linear and RBF (γ = 0.01) kernels, the malignant
cases are better classified reaching a 100% of success rate.

2.3.2 Conformal Predictors

A. Gammerman, V. Vovk and V. Vapnik introduced conformal prediction
(CP) in (Gammerman, A. and Vovk, V. and Vapnik, V., 1998), assigning
values of confidence to predictions made by SVM. Then a complete theory
on CP was developed where prediction algorithms (nearest-neighbour, SVM,
ridge regression,...) can be transformed into randomness tests and, therefore,

3http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Benign cases Malignant cases
Train samples 10 10
Test samples 434 229

RBF γ = 0.01, C = 100

Success 96.31% (418) 81.22% (186)
Error 3.69% (16) 18.78% (43)

RBF γ = 1.5 C = 100

Success 59.68% (259) 100% (229)
Error 40.32% (175) 0% (0)

Polynomial p = 5

Success 96.54% (419) 83.41% (191)
Error 3.46% (15) 16.6% (38)

Linear
Success 96.77% (420) 94.76% (217)
Error 3.23% (14) 5.24% (12)

Table 2.2: First SVM classification of breast cancer

Benign cases Malignant cases
Train samples 50 50
Test samples 394 189

RBF γ = 0.01, C = 100

Success 95.43% (376) 96.30% (182)
Error 4.57% (18) 3.7% (7)

RBF γ = 1.5 C = 100

Success 64.97% (256) 100% (189)
Error 35.03% (138) 0% (0)

Polynomial p = 5

Success 95.69% (377) 100% (189)
Error 4.31% (17) 0% (0)

Linear
Success 96.70% (381) 95.77% (181)
Error 3.30% (13) 4.23% (8)

Table 2.3: Second SVM classification of breast cancer

be used for producing hedge predictions. Given a initial data set and an error
probability ε, the new samples xn+1 are evaluated obtaining a prediction
ŷ, which produces a set of labels y that also contains the label yn+1 with
probability 1− ε (Shafer and Vovk, 2008).

Firstly, the concept of nonconformity measure is defined. It is a measure
which represents how different is a new incoming sample from a bag of initial
samples. If we consider the samples zi = (xi, yi) where zi ∈ Z, the union
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of all bags (subsets) Z(n) is written as Z(∗). Therefore, the nonconformity
measure can be defined as a measurable mapping

A : Z(∗)xZ → R̄; (2.64)

to each possible set Z(n) and new sample, where A is the numerical value
which indicates how different the new sample is from the initial set Z(n)

(Vovk et al., 2005, p. 23). Given a nonconformity measure A and a subset
Zn = z1, ..., zn, it can be calculated how different is a new sample zn+1 from
Zn. In (Vovk et al., 2005, p. 25), it can be seen that this nonconformity
value is computed as

αn+1 = A(Zn, zn+1). (2.65)

However the value of αn+1 does not tell how different is the sample zn+1, so
that it is necessary to compare αn+1 with the nonconformity values α1, ..., αn
from the samples of the subset Zn. This comparison is called p-value:

#i = 1, ..., n : αi ≥ αn+1

n+ 1
(2.66)

This fraction is the p-value of the sample zn+1. If this p-value is small,it
means close to 1/(n+1), then zn+1 is nonconforming (an outlier); while if the
p-value is large, it means close to 1, then zn+1 is conforming. Nonconformity
measures can be computed in several different ways, and each one defines a
conformal predictor. In a classification problem with k classes, the p-value for
the sample zn+1 has to be computed k times. Therefore, it is considered that
sample zn+1 belongs to each one of the k classes and there will be k p-values.
According to (Saunders et al., 1999), the highest p-value, P1, determines the
class predicted by the algorithm; and the second highest p-value, P2, defines
the confidence in prediction:

Credibility→ P1 (2.67)

Confidence→ 1− P2 (2.68)

The credibility serves as indicator of how suitable the training data are for
classifying the example; while the confidence tells how likely each prediction
is of being correct. In the ideal case, a confidence of 99% or higher for all
samples in a set, means that the percentage of erroneous predictions in that
set will not exceed 1% (Papadopoulos, 2008, c. 18).

This is the transductive CP approach, where the label of sample zn+1 is
directly predicted using the training set (see figure 2.6). The computation is
carried out for each test sample, and unfortunately it means a high computa-
tional cost. On the other hand, the inductive approach, as it was explained
previously, extracts from the initial training set a general rule. This general
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rule is called model or decision rule and it is used to carry out the prediction
of the new incoming samples. The CP is a transductive algorithm which
can be highly inefficient for large data sets, so that there is an inductive CP
approach.

2.3.2.1 Inductive Conformal Prediction

There is also an inductive approach with CP, inductive conformal prediction
(ICP). The idea is to carry out the bulk of computations only once. Given
a training set z1, ..., zn ∈ Zn, classifying a test set of l samples would in-
volve implementing l independent computations. Unfortunately this entails
a high computational cost, which can be overcome following the procedure
suggested in (Papadopoulos et al., 2002a,b).

1. The initial training set is divided in two subsets: the proper training
set z1, ..., zk with k < n, and the calibration set zk+1, ..., zn.

2. A decision rule or model, F is constructed from the proper training
set. This model remains unchanged during the whole ICP process, it
means, the computation is done only once.

3. The samples from the calibration set are used to calculate the noncon-
formity scores of the new samples. So that, for every test sample the
nonconformity score and the p-value are computed for every possible
label y ∈ Y :

αn+1 = A(zk+1, ..., zn, (xn+1, y), (2.69)

p− valuey =
#i = k + 1, ..., n : αi ≥ αn+1

n− k + 2
. (2.70)

4. Predict the label of the test sample using the conformal values 2.67 and
2.68, where the label yn+1 of the sample xn+1 is given by the largest
p− valuey.

The main advantage of ICP is their computational efficiency; the bulk of
the computations is carried out only once. Then only remains to compute
the conformal values for each test sample using the calibration set and the
general rule found at the inductive step. On the other hand, the disadvantage
is a possible loss of the prediction efficiency because for CP it can be used
the whole training set.

There two approaches of ICP:

• Off-line ICP : after classifying a new sample xn+1, it is not added to
the calibration set. The advantage is that the calibration set is not
modified and it is irrelevant the order of test samples classified.
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• Semi-off-line ICP : the new sample is added to the calibration set.
Therefore, the calibration set is extended with the new sample classi-
fied. The advantage is that conformal measures are improved when a
new sample is classified and initially it requires a smaller calibration
set than off-line ICP.

The on-line version of ICP are explained in detail, with a stronger notion
of validity, in (Vovk, 2002) (Vovk et al., 2005, c. 4.1).

2.3.2.2 Examples of Conformal Prediction

Breast cancer classification

This example shows a conformal predictor using the same breast cancer
database (see appendix C) as example in section 2.3.1.4. This database
is classified using libsvm4 in Matlab. Following the same steps in section
2.3.1.4, two classifications with 3 models (using RBF, polynomial and linear
kernels) have been carried out.

The nonconformity measure chosen to develop the conformal predictor
is:

α(x) =

{
− |decisionvalue(H,x)| if x is properly classified
|decisionvalue(H,x)| if x is misclassified (2.71)

where decision value(H,x) is a value calculated by SVM which can be
understood as the distance from the hyperplane H to the sample x. The
reason is that it cannot be used for RBF kernel the formula for linear to
calculate w and consequently the distance. Note that for RBF w is infinite
dimensional, so it is not possible to have w. Instead it is calculated the
decision values. The sign of the decision value gives the predicted label of x.
Therefore x is properly classified if sign(decision value(H,x)) = y, where y
is the real label of x and misclassified otherwise.

First, the database is divided in 20 samples for training (10 benign and
10 malignant samples) and 663 for the test (434 benign and 229 malignant
samples). The results are shown in table 2.4.The best results are obtained by
linear kernel. This table shows the samples used for train and test. Moreover
for each kernel and case (benign and malignant), it is shown the rate of
samples properly classified (success), the rate of samples wrongly classified
(error), and the mean values of confidence and credibility. After that, a
second classification has been made by dividing the database in 100 samples
for training (50 benign and 50 malignant samples) and 583 for the test (394
benign and 189 malignant samples). The results are shown in table 2.5.
The best results are reached again by linear kernel with an improvement of
the success and error rate compare to the smaller training set. In addition

4http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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the confidence is also higher, it means the classification is more likely to be
correct.

Figures 2.9, 2.10 and 2.11 illustrate the credibility and confidence values
obtained for the test set. The values corresponding to the smallest training
set (20 samples) are shown in figures 2.9a, 2.10a and 2.11a; and to the
largest training set (100 samples) are shown in figures 2.9b, 2.10b and 2.11b.
Each figure shows benign and malignant cases separately, and the errors
are illustrated in red. It is important to note how the confidence values are
placed higher for larger training sets; and errors, in the majority of the cases,
are located in the low credibility areas.

Benign cases Malignant cases
Train samples 10 10
Test samples 434 229

RBF γ = 0.01, C = 100

Success 87.33% (379) 65.50% (150)
Error 12.67% (55) 34.50% (79)

Credibility 0.8063 0.5598
Confidence 0.7738 0.7571

Polynomial p = 5

Success 83.87% (364) 93.01% (213)
Error 16.13% (70) 6.99% (16)

Credibility 0.4003 0.7428
Confidence 0.7677 0.8424

Linear
Success 96.08% (417) 82.97% (190)
Error 3.92% (17) 17.03% (39)

Credibility 0.5734 0.6380
Confidence 0.9243 0.8008

Table 2.4: First CP classification of breast cancer
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Benign cases Malignant cases
Train samples 50 50
Test samples 394 189

RBF γ = 0.01, C = 100

Success 90.61% (357) 80.42% (169)
Error 9.39% (37) 10.58% (20)

Credibility 0.5754 0.5846
Confidence 0.9677 0.8862

Polynomial p = 5

Success 96.45% (380) 94.71% (179)
Error 3.55% (14) 5.29% (10)

Credibility 0.3687 0.8199
Confidence 0.9427 0.9391

Linear
Success 95.69% (377) 97.35% (184)
Error 4.31% (17) 2.65% (5)

Credibility 0.4787 0.758
Confidence 0.978 0.9738

Table 2.5: Second CP classification of breast cancer
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(a) Linear kernel - train 20 samples
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(b) Linear kernel - train 100 samples

Figure 2.9: Breast cancer conformal classification with linear kernel
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(a) Polynomial kernel - train 20 samples
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(b) Polynomial kernel - train 100 samples

Figure 2.10: Breast cancer conformal classification with polynomial kernel
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(a) RBF kernel - train 20 samples
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(b) RBF kernel - train 100 samples

Figure 2.11: Breast cancer conformal classification with RBF kernel
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2.4 Regression

Regression is a statistical technique, which allows to predict or calculate the
behaviour of a dependant variable y as a function of independent variables
(x1, ..., xn). The relation between independent and dependant variables can
be expressed by the regression model (Chatterjee and Hadi, 2006, p.2):

y = f(x1, ..., xn) + ε, (2.72)

where ε is defined as the error estimated between the function and the
dependant variable. Depending on the dependant variable y, different re-
gression techniques can be applied: Ordinary Least Squares, if y is linear;
Ridge Regression, which is a linear regression that solves the problem of
collinearity among variables; Conformal Regression, which can be linear or
non-linear regression and provides values of confidence and credibility;...

There are several regression techniques, however we will focus on Support
Vector Regression (SVR), which have been employed in these thesis in section
4.1.3.

2.4.1 Support Vector Regression

Support Vector Regression (SVR) is a technique that can obtain non-linear
regression functions. SVR is a version of SVM, previously explained in sec-
tion 2.3.1. SVR goal is finding a function f(x) as flat as possible, whose
prediction yi has an error smaller or equal as ε for all the training data
(Smola and Schölkopf, 2004). Only the points in the region [−ε, ε] are con-
sidered, while the points outside the regions are minimised. At this point,
the slack variables ξ and ξ∗ (figure 2.12) are introduced, the formulation
proposed in section 2.3.1.1 yields:

Minimise:
1

2
‖w‖2 +

C

n

n∑
i=1

(ξi + ξ∗i ) (2.73)

subject to the constraints:
yi − (w · xi)− b ≤ e+ ξi
(w · xi) + b− yi ≤ e+ ξ∗i
ξ, ξ∗i ≥ 0

(2.74)

where n is the number of samples and w are the coefficients of the es-
timated linear function. The parameter C > 0 determines the trade-off
between the flatness of the function f(x) and the tolerance of ε. SVR uses
the formulation called ε-insensitive loss function |ξ|ε (figure 2.12):

|ξ|ε =

{
0 if |ξ| ≤ ε
|ξ| − ε otherwise (2.75)
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Figure 2.12: ε-insensitive loss function

The problem on its dual form can be solved by maximising the La-
grangian:

L(αi, βi) = −1

2

n∑
i,j=1

(αi − βi)(αj − βj)(xi · xj)+

− ε
n∑
i=1

(αi + βi) +
n∑
i=1

yi(αi − βi)
(2.76)

subject to the constraints:{ ∑n
i=1(αi − βi) = 0

αi, βi ∈ [0, C]
(2.77)

Solving equation 2.76, SVs, which have non-zero coefficients (α∗, β∗), are
provided. The regression function yields:

f(x) =

n∑
i=1

(α∗i − β∗i )(xi · x) + b0, (2.78)

where b0 is the bias given by:

b0 = ys −
SV∑
i=1

(α∗i − β∗i )(xi · xs). (2.79)

Using non-linear kernels, the regression function 2.78 is expressed by:

f(x) =
n∑
i=1

(α∗i − β∗i )K(xi, x) + b0. (2.80)
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2.4.2 UMEL

In this section, the Universal Multi-Event Locator (UMEL) is described
(Vega et al., 2010). UMEL is an automatic tool which allows detecting
local events within signals, or it can be used as a filter to recognise signal
segments or image areas with relevant information.

UMEL is based on the specific regression technique SVR, explained in
the previous section. SVR fits the data regardless of factors such as sampling
rate or noise distribution. It computes a fitting functions and provides the
SVs from the training set. In SVM, in this case SVR, the number of SVs is
determined by the complexity of the model; it means simple data sets would
require smaller numbers of SVs, while complex data sets would require large
numbers of SVs. However, the number of SVs also depends on the smoothness
of the regression function. A smoother function requires less SVs than a spiky
function.
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(a) Linear
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(b) Polynomial p = 4
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(c) RBF

Figure 2.13: UMEL example with different types of kernel

The smoothness of a SVR fit is function of four parameters:

1. Kernel type: there are many kernel types, e.g. linear, polynomial or
RBF. In figure 2.13 it can be seen an example of UMEL applied to a
sinusoidal signals with 3 different kernels. Figure 2.13a corresponds to
a linear kernel, it does not fit correctly and follows practically a straight
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line. Figure 2.13b illustrates a fit computed using a polynomial kernel
which follows much better the global tendency. Finally figure 2.13c
shows a RBF fitness, which corresponds to the best fit.

2. Parameter ε: this parameter determines the margin size of the ε-
insensitive zone, which is also called ε-tube. It can be calculated by
using the equation (Cherkassky and Mulier, 2007, p. 449):

ε = Kε · σnoise ·
√
ln(n)

n
(2.81)

where σnoise is the standard deviation of the noise of the function, n
is the number of training samples, ln(n) is the natural logarithm of
the number of training samples, and Kε is a proportionality constant.
Due to the value of the noise is not usually known, the variable σnoise
is replaced by σy, where y is the function to be fitted. Therefore, the
parameter ε is settled by using K ′ε.

3. Regularization parameter C: it controls the model complexity (equa-
tion 2.58). Low values of C provides smooth regressions, and large val-
ues of C provides spiky regressions. Its values is given by (Cherkassky
and Mulier, 2007, p. 449):

C = KC ·max(|ȳ + 3 · σy|, |ȳ − 3 · σy|) (2.82)

where ȳ is the mean of the function to be fitted, σy is the standard
deviation of the function to regress, and KC is a constant that can
vary for different kind of signals. This estimation can effectively handle
outliers in the training data.

4. Kernel parameters: depending on the kernel used, it can include differ-
ent parameters. For example, for polynomial kernel it must be chosen
the polynomial degree p; or σ parameter for RBF kernel. RBF is the
most used kernel, so it exists an equation to estimate the parameter σ
(Martinez and Martinez, 2008, p. 325):

σk = Kσ · 1.06 · σy · n−1/5 (2.83)

where σy is the standard deviation of the function to regress, n is the
number of samples, and Kσ is a constant dependent on the type of
signal to regress.

UMEL provides different SVs which have not the same relevance. The
SVs that lie on or outside the ε-insensitive margin are called External Support
Vectors (ESVs). On the other hand, the SVs within the ε-insensitive margin
are called Internal Support Vectors (ISVs):

ESV ⊆ SV text∀i ∈ ESV, |yi − f(xi)| ≥ ε (2.84)



64 Chapter 2

ISV ⊆ SV text∀i ∈ ISV, |yi − f(xi)| < ε (2.85)

ISVs are necessary samples for the regression estimation. UMEL consid-
ers the ESVs the most difficult samples to regress, due to they cannot be
fitted inside the ε-insensitive margin. Therefore, ESVs provide essential in-
formation in the regression process, they show special patterns or behaviours
in the signal: peaks, gradients, anomalous behaviours,etc.

This tool has been used in section 4.1.3 to detect the disruption time as
a sudden fall of the plasma current, it means as a local event which supposes
a different pattern on the normal evolution of the signal. In figure 2.14, it is
shown an example of UMEL applied to a signal with multiple pikes. It can
be seen how SVR fit the function in the green line, and the ε-tube in the
discontinuous green line. In blue and red circles are marked the ISVs and
ESVs respectively.
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Figure 2.14: UMEL example

2.5 Martingales

Martingales are able to detect changes in data streams by testing exchange-
ability (Ho and Wechsler, 2010). In the martingale framework, the hypoth-
esis testing decides whether a change has occurred when a new sample is
observed, this method has been used and can be found widely explained
in works like (Ho and Wechsler, 2010; Vega et al., 2015b). First of all, let
see a brief explanation of martingale and exchangeability concepts. Given
a sequence of random variables Zi : 1 ≤ i <∞, the sequence Z1, ..., Zn is
ex-changeable if for every finite subset of the random variable sequence (con-
taining n random variables), the joint distribution p(Z1, ..., Zn) is invariant
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under any permutation of the random variables, i.e.,

p(Z1, ..., Zn) = p(ZΠ(1), ..., ZΠ(n)), (2.86)

for all permutations Π defined on the set 1, ..., n. Ex-changeable ran-
dom variables are identically distributed and can be either independently or
dependently distributed.

The concept of martingale, which comes from gambling, describes a fair
game of chance. Considering a person gambling in a dice game, odd results
are considered winnings and even are considered defeats. If Zi is the money
that the person earns on the ith game, this value will be negative when
he loses. Mi is defined as the total number of winnings at the end of the
ith game. In every game, Zi is independent of all previous game earnings,
so that the conditional expectation E(Zi|Z1, ..., Zi−1) = E(Zi). Therefore
the conditional expectation of the winnings Mn+1 is the value of the cur-
rent random variable Mn. A martingale is a sequence of random variables
that remains stable in value with some fluctuations as long as the process is
random,i.e., without any external interference. Therefore a sequence of ran-
dom variables Mi : 0 ≤ i <∞ is a martingale with respect to the sequence
of random variables Zi : 0 ≤ i <∞ if, for all i ≥ 0, the following conditions
hold:

• Mi is a measurable function of Z0, Z1, ..., Zi,

• E(|Mi|) <∞, and

• E(Mn+1|Z0, ..., Zn) = Mn.

The idea of testing exchangeability on-line using a martingale was firstly
introduced in (Vovk et al., 2003). An observer outputs a positive martingale
value for each new incoming data point, reflecting the strength of evidence
found against the null hypothesis of data exchangeability. Firstly, it is needed
to explain the concept of strangeness measure before introducing a martin-
gale for change detection. The strangeness measure scores how much a data
point is different from the other data points. There are different strangeness
measures related to classification, clustering and regression (Ho and Wech-
sler, 2010). For example, given an unlabelled training set X = x1, .., xn, the
strangeness of a sample xi with respect to a cluster model is defined as (Ho
and Wechsler, 2010, 2007):

s(X,xi) = ‖xi − c‖ , (2.87)

where c is the cluster centre of the training set X and ‖‖ is a distance
metric.
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Randomized Power Martingale and p̂-values

Using any strangeness measure, a family of martingales, indexed by ε ∈ [0, 1]
and referred to as the randomized power martingale (RPM) (Vovk et al.,
2003; Ho and Wechsler, 2010), is defined as:

M (ε)
n =

n∏
i=1

(εp̂ε−1
i ), (2.88)

where p̂i values are computed from the p̂-value function

p̂i((x1.y1), ..., (xi, yi), θi) =
#j : sj > si + θi#j : sj = si

i
, (2.89)

where sj is the strangeness measure for (xj , yj) with j = 1, ..., i, and θi
is a random value in the range [0, 1] at instance i. The initial martingale
value is M (ε)

0 = 1. These p̂-values are a special case of the statistical notion
of p-value in (Ho, 2008).

Simple Mixture Martingale

From RPM, equation 2.88, in order to eliminate the dependency on ε, a
different martingale can be used (Vovk et al., 2003):

Mn =

∫ 1

0
M (ε)
n dε (2.90)

This martingale is called the simple mixture martingale (SMM) of M (ε)
n .

Plug-In Martingale

A third family of martingales can be considered. It is called, Plug-In martin-
gale (PIM) and it is fully described in (Fedorova et al., 2012). The procedure
in PIM involves the computation of probability density functions using p̂-
values output by martingale test algorithm. This is achieved using kernel
methods (Martinez and Martinez, 2008). It has been used a Gaussian kernel
and the normal reference rule for bandwidth selection. In particular, the
bandwidth range used in the probability density function estimations cov-
ers the interval KN ·NREF , where NREF is the value corresponding to the
normal reference rule.

Martingale Test

Let see an important property of the p̂-values obtained from equation 2.89,
using data generated from a source that satisfies the exchangeability assump-
tion in (Ho and Wechsler, 2010):
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• Lemma: p̂-values p̂i, i = 1, 2, ... from 2.89 are independent and uni-
formly distributed on [0, 1]. (See [32, Theorem 8.2 and Section 8.7].)

The Lemma fails if the observed data samples are no longer exchange-
able. At this point, the p̂-values obtained from 2.89 have smaller values.
In addition, they are no longer uniformly distributed on [0, 1], because the
newly observed data samples are likely to have higher strangeness values
compared to the previously samples. As a result, M ε)

n increases and provides
evidence against the null hypothesis H0 of exchangeability in a data stream.
This property of M ε)

n is employed in the change detection in a data stream.
In the martingale framework for change detection, when a new data sample
is observed, hypothesis testing takes place to decide whether a change in the
data generating model occurs in the data stream. The decision is based on
whether the exchangeability assumption is violated using a RPM, SMM or
PIM.

If it is considered the null hypothesis H0, it means no change in the data
stream against the alternative H1, a change occurs in the data stream. The
martingale test continues to operate as long as

0 < M (ε)
n < λ, (2.91)

where λ is a positive number. The null hypothesis H0 is rejected when
M

(ε)
n ≥ λ. Following the procedure in (Ho and Wechsler, 2010), suppose

that Mk : 0 ≤ k <∞ is a non-negative martingale. If E(Mn) = E(M0) = 1,
then from the Doob’s Maximal Inequality (Steele, 2001),

λP

max︸︷︷︸
k≤n

(Mk) ≥ λ

 , (2.92)

it is reached the inequality

P

max︸︷︷︸
k≤n

(Mk) ≥ λ

 ≤ 1/λ, (2.93)

for λ ≥ 0 and n ∈ N. Equation 2.93 shows that it is unlikely for any Mk

to have a high value. The null hypothesis is rejected whenMk > λ. However
it is still possible to detect a change when there is none. The equation 2.93 is
an upper bound for the false alarm rate for detecting a change when there is
none. The value of λ is determined by the false alarm rate that one is willing
to accept. The martingale test algorithm is defined as (Ho and Wechsler,
2010), see appendix D.

This method for change detection in data stream has been used as an
approach to locate the disruption time in section 4.1.2.
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Databases and APODIS during
ILW

In this chapter it will explained the Advanced Predictor of Disruptions,
APODIS in section 3.1. Then the procedure for generating databases will
be exposed in section 3.2. In section 3.3, it is carried out the assessment
of APODIS during ILW experimental campaigns at JET. After this, the
robustness analysis is illustrated in section 3.4. Finally it is shown the im-
plementation of the sliding window mechanism following APODIS structure
in section 3.5.

3.1 Advanced Predictor of Disruptions, APODIS

The Advanced Predictor of Disruptions (APODIS) is a multilayer predictor
based on support vector machines (SVM) classifiers. This project started
in 2008 (Rattá et al., 2008). The current version in the real time network
at JET (López et al., 2012) differs in some aspects from the first version
(Rattá et al., 2010): development in real time, number of discharges used for
training, signals selected and an exhaustive pre-processing to delete outliers.

This predictor uses a set of models based on SVM, a machine learning
technique explained in section 2.3.1. It classifies the samples from the incom-
ing discharge between disruptive or non disruptive. Seven signals available
in real time are used to characterized plasma, see table 3.1.

For the training of APODIS, a total of 10845 discharges from campaigns
between 24th April 2006 and 23th October 2009 (C15-C27b) were taken.
These initial discharges were analysed following a similar process used in
section 3.2:

• A visual inspection of the discharges and the different signals is used
to remove discharges with signals without data or wrong measures.

69
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Signal name Units
Plasma current A

Mode lock amplitude T
Plasma internal inductance −

Plasma density m−3

Diamagnetic energy time derivative W
Radiated power W

Total input power W

Table 3.1: Signals used in APODIS predictor

• A threshold analysis removed the discharges with plasma density>
1022, mode lock amplitude> 6 · 10−3, plasma internal inductance> 10
and poloidal beta> 30.

Table 3.2 shows 8407 discharges selected, it means 2438 removed. From
campaigns C19 − C22, 100 non-disruptive of 2312 discharges randomly se-
lected and 125 non intentional disruptive discharges (all possible) have been
used for the training models. From campaigns C23 − C27b, 3578 non-
disruptive discharges and 228 non intentional disruptive discharges have been
employed for the test and validation.

Campaigns Non-disruptive Non-int. disr. Int. disr. Total
C19 (02− 04/07) 585 47 41 673

C20 (04− 06/08) 703 28 12 743

C21 (06− 07/08) 573 16 3 592

C22 (07− 08/08) 451 34 3 488

C23 (09− 10/08) 490 24 8 522

C24 (10− 11/08) 362 14 12 388

C25 (11− 12/08) 570 19 22 611

C26 (01− 03/09) 1323 58 49 1430

C27a (07− 08/09) 320 43 10 373

C27b (09− 10/09) 513 70 59 642

Total 7648 521 238 8407

Table 3.2: Discharges used on Apodis training

The features are selected using the tools and methods described in (Mu-
rari et al., 2008b; Rattá et al., 2008), hence, the feature vectors are formed by
the mean value and the standard deviation of the Fourier transform module
(the continuous components are erased) of each signal, every 32 ms. This
resolution was chosen because the calculus of Fourier transform is faster for
the power that is multiple of 2; and the mitigation valve in JET at this time
needed at least 30 ms to carry out the action.
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The temporal evolution of the discharge is analysed in temporal win-
dows of 32 ms, figure 3.1. The classification system analyses every window
consecutively and decides to trigger or not an alarm to notice an incoming
disruption. If any alarm is triggered, then the predictor has decided there is
no disruptive behaviour and the discharge is safe (non-disruptive).

Figure 3.1: Temporal evolution of a JET discharge

The structure of the predictor, which is illustrated in figure 3.2, is com-
pound by two layers. The first layer is formed by the combination of three
consecutive models. Each model is a SVM classifier trained with a RBF ker-
nel (section 2.3.1). The difference of these models is the disruptive features
considered for the training process, where:

• Model M1 takes the window (−64 ms,−32 ms] before the disruption
time as disruptive sample.

• Model M2 takes the window (−96 ms,−64 ms] before the disruption
time as disruptive sample.

• Model M3 takes the window (−128 ms,−96 ms] before the disruption
time as disruptive sample.
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Figure 3.2: APODIS structure formed by two layers

The temporal window (−32 ms,0 ms] is not considered in this predictor
as disruptive sample. Three output values are obtained after the three model
analyse 3 consecutive windows. These 3 values are introduced as input for
the second layer, which is a linear SVM classifier that works as decision
function. This second layer obtained a final value which show if the behaviour
is disruptive or not. The time assigned to the evaluation is the one which
correspond to the model that analyses the last temporal window,M1. These
procedure is illustrated clearly in figure 3.3, as a discharge is in execution,
the most recent 32 ms temporal segments are classified as disruptive or non-
disruptive, the three models may disagree about the discharge behaviour and
the second layers decides.

Figure 3.3: APODIS analysis procedure during a discharge

Following the training for both layers will be described. The first layer
takes:

• For non-disruptive discharges, the first 22 window samples are not con-
sidered to avoid values out of range in the beginning of the discharge.
From the window 23 until the end of the discharge, one sample in, one
sample out, are considered as non-disruptive samples.

• For disruptive discharges, each model considers its temporal window
as disruptive sample.
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Then three models are trained with a kernel RBF in SVM.
For the second layer, the discharges are evaluated by the models obtaining

three signed outputs (distances), which are called V 1, V 2 and V 3 for M3,
M2, and M1 respectively. The decision rule employed is:

• If (V 3 > −0.8 and V 2 > −0.4 and V 1 > 0) then: an alarm is trig-
gered and a row must be written in the table of alarms. This mean a
disruptive sample for the second layer.

• Every 64 ms a row is written in the table of alarms as non-disruptive
sample if any alarm is triggered.

There are 3 possible scenarios:

1. Right alarm: in a disruptive discharge, the warning time (time of the
triggered alarm) is less than 1 s before the disruption time. The label
of this sample is +1.

2. Premature alarm: in a disruptive discharge, the warning time is higher
than 1 s before the disruption time. The label of this sample is −1.

3. False alarm: in a non-disruptive discharge an alarm is triggered. The
label of this sample is −1.

The discharge is evaluated from the beginning until an alarm is triggered
or until reach the last window. Once all discharges have been evaluated and
the table of alarms is finished, the second layer is trained with a linear kernel.
The table of alarms is shown in the table 3.3, the red cells are used for the
training of the second layer, and examples of the different possible scenarios
are shown. The model obtained in the second layer provides the coefficients
of the hyperplane which classify a sample as disruptive or safe.

Shot talarm [s] tdis [s] ∆t [ms] M1output M2output M3output Label
56658 63.911 64.021 110 −0.910 0.448 0.0852 +1

53740 45.881 50.22 4339 −0.896 −1 0.445 −1

52461 40.916 0 −40916 −1.176 −1.202 −1.008 −1

Table 3.3: Table of alarms for the second layer

3.2 Databases and signal processing

Currently, Joint European Torus is the largest nuclear fusion device in the
world as it was mentioned and explained in section 1.1.3.1. From the onset
JET was designed to use a computer based integrated control and data ac-
quisition system (CODAS) (Krom, 1999). This system has evolved over the
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years and huge databases are stored in JET. In (Farthing et al., 2007), some
simulations for data volume are done where it is shown that≈ 10 GB/pulse =
0.25 TB/day (figure 3.4 are produced reaching ≈ 60 GB/pulse in 2010. It is
estimated to store ≈ 40 TB of data in 25 years and approximately ≤ 10%
would be processed. More recent is the information given in (Murari, 2014)
where it is told that data acquired per pulse is ≥ 50 GB and the total is
≥ 250 TB.

Figure 3.4: JET raw data estimated in bytes (B)

The preparation of the databases is one of the most important steps in
data mining. The knowledge extracted from data is an iterative sequence of
some steps (Jiawei et al., 2011):

• Data cleaning (to remove noise and inconsistent data).

• Data integration (where multiple data sources may be combined).

• Data selection (where data relevant to the analysis task are retrieved
from the database).

• Data transformation (where data are transformed or consolidated into
forms appropriate for mining by performing summary or aggregation
operations, for instance).

• Data mining (an essential process where intelligent methods are applied
in order to extract data patterns).

• Pattern evaluation (to identify the truly interesting patterns represent-
ing knowledge based on some interestingness measures).

• Knowledge presentation (where visualization and knowledge represen-
tation techniques are used to present the mined knowledge to the user).
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Steps 1 to 4 are different forms of data preprocessing, where the data
are prepared for mining. It could be considered these steps as the highest
workload of the process.

The development of the databases for disruptions needs several steps,
beginning with the analysis of the discharges from every experimental session
at JET where many conditions have to be applied. Once the analysis is
finished, the signal processing is realised to obtain the processed data. In this
thesis the whole ILW campaigns C28−C34 ( September 2011 - October 2014
) have been analysed and processed for several studies. These campaigns
are extremely important because of the new ITER-like wall (ILW) and the
high performance plasmas (plasma current 3.5 MA, input power 25 MW,
electron temperature 1 keV and density 2 ·1020 m−3). In JET, the number of
disruptions varies between campaigns (de Vries et al., 2012). Comparing JET
ILW (ITER-like wall) campaigns C28 − C34 (September 2011-September
2014) with the C-wall campaigns C15 − C27b (April 2006-October 2009),
the number of non-intentional disruptions has notably increased, although
it is expected to be reduced as experience is gained on how to operate JET
with the new all (de Vries et al., 2012; Matthews, 2013).This is illustrated in
figure 3.5, on the left of the black line C-wall campaigns are shown and on
the right ILW campaigns. The percentage of non-intentional disruptions in
every campaigns per date is shown in blue bars and the percentage of non-
disruptive shots is illustrated in red bars. This count considers the databases
used in disruption prediction studies. Globally it can be seen that C-wall
campaigns contain 474 non-intentional disruptions and 7648 safe discharges,
while during ILW campaigns 589 non-intentional disruptions and 2067 safe
discharges happened.

Figure 3.5: Rate of non-intentional disruptions and non-disruptive discharges
in JET
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3.2.1 Analysis of JET campaigns

First of all, starting from the first discharge until the last one, a visual inspec-
tion of the discharges and the different signals is used to remove discharges
with signals without data or wrong measures. The main plasma parameters,
shown in table 3.4, and other useful signals to analyse disruptions, shown
in table 3.5, are observed. If every signal is right and there is no anoma-
lous behaviour at first sight, as it is illustrated in figures 3.6a and 3.6b, the
discharge is considered for the database. Albeit, if there is any failure in a
diagnostic or anomalous behaviour in any signal, the discharge is not taken
into account, as it is illustrated in figure 3.7. Data is stored in two ways
at JET: the JET pulse file (JPF) server, and the processed pulse file (PPF)
system (Layne and Wheatley, 2002). The data used for the databases is JPF
because is the one available in real time. Moreover all the discharges which
belong to restart or reconditioning sessions are not considered.

Signal name DDA/Datatype
Plasma current jpf/da/c2-ipla

Mode lock amplitude jpf/da/c2-loca
Plasma inductance jpf/gs/bl-li<s
Plasma density jpf/df/g1r-lid:003

Diamagnetic energy time derivative jpf/gs/bl-fdwdt<s
Radiated power jpf/db/b5r-ptot>out

Total input power jpf/gs/BL-PTOT<S
Poloidal beta jpf/gs/bl-bpdiam<s

Plasma vertical centroid position jpf/gs/bl-zcc<s

Table 3.4: Signals used in disruption databases with their directory of JPF
signals in JET database

Signal name DDA/Datatype
Safety factor, Q95 ppf/efit/q95

Neutral beam injection, NBI ppf/nbi/ptot
Plasma electron temperature ppf/kk3/te48
Vacuum BPHI at 2.96M ppf/efit/bvac

Loop voltage jpf/gs/bl-nflopv<s
Soft X-rays jpf/dd/h1-ad06

Error field correction coils, EFCC jpf/da/c2e-efcc<1

Table 3.5: Recommended signals for disruption analysis

After the visual inspection, a deep analysis is carried out. It is observed
if the plasma evolves without instabilities or control action which end in
disruption or anomalous behaviour. For this purpose, the comments of the
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(a) Main plasma parameters

(b) Recommended signals for disruptions

Figure 3.6: Example of a right discharge to be considered for the databases

session leader and the outputs of the JPS (JET Protection System) help to
understand the experiment. The case any control action has been taken and
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Figure 3.7: Example of a discharge not considered in the database with errors
in several signals

changes the normal evolution of the plasma, the discharge is not considered
disruptive neither non-disruptive. We catalogue these shots as “strange”
discharges, because they cannot be taken into account in disruption studies
or predictors. For example, during discharge 84634 the JPS triggers a stop
which end the plasma, so that this shot cannot be used as a non-disruptive or
disruptive discharge for the database. There are several cases with different
causes and consequences so it is not possible to enumerate all of them. In
order to show other examples, the discharge 84670, 84693, 84912 are minor
disruptions; discharge 84991 is a disruption but the plasma current is below
1 MA, therefore it has no relevance; discharge 85919 shows a low density
event at the beginning of the plasma.

Following the previous case, it is necessary to catalogue separately the
discharges where EFCC (Error Field Correction Coils) have been used. The
EFCC are specified to compensate the main harmonic contribution to error
field induced modes (Barlow et al., 2001). As it can be seen in figure 3.8,
when EFCC are activated the mode lock signal follows the same trend as
EFCC signal; however if EFCC are deactivated, there’s no effect on mode
lock signal. Therefore it is better to not consider this discharge for the
database because it would mean false information for the models. Despite of
this, these discharges are listed and stored separately in order to carry out
other studies.
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(a) Discharge with EFCC activated

(b) Discharge without EFCC

Figure 3.8: Examples of EFCC effect on mode lock amplitude

Finally, if there is no disruption, the discharge is stored as non-disruptive,
but if the discharge is disruptive, we have to look up if it is intentional or
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non-intentional. In one hand, if the disruption is intentional, it is usually
indicated by session leader. This is a common experiment to study the mit-
igation of disruption, electron runaways, vertical displacement disruptions,
etc. In the case the session leader has not written it, it can be seen if the
DMV (disruption mitigation valve, a gas is introduced to mitigate the dis-
ruption) has been programmed to be triggered. On the other hand, the
discharge will be a non-intentional disruption. Both cases will be considered
in the database although intentional disruptions must not be considered in
prediction studies because they can introduce false information in the model.
In figure 3.9, examples of intentional and non-intentional disruptions are il-
lustrated. In the intentional disruption example it can be observed there is
no precursors or previous disruptive behaviour until the disruption time, the
disruption suddenly happens ending the plasma as it had been programmed.
On the other hand, the non-intentional example shows how the plasma be-
comes unstable before disruption time. Because of this reason, intentional
disruption are useless on disruption studies.

All of this must be done by hand, the different comments of the session
leaders, outputs of the diagnostics and different types of actions and events
make almost impossible to implement an automatic analysis. Despite of
this, some parts of this analysis has been automatized: the use of EFCC,
the triggers of the DMV, triggers of APODIS and JPS.

Once all the discharges are classified, the disruption time has to be ob-
tained. This is the most important step because all the disruptive informa-
tion is around this time, hence the most precise is the time determined, the
best information we could extract as disruptive samples. This time is usually
determined by hand, but automatic tools have been developed in this thesis
to make easier this work (Moreno et al., 2014a). Therefore, this topic will
be described in section 4.
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(a) Intentional disruption

(b) Non-intentional disruption

Figure 3.9: Examples of non-intentional and intentional disruptions at JET
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3.2.2 Signal processing

This time the analysis is done, the discharges are listed in two files. The first
file contains two columns with the number of the discharge and a value 0, 1
or 2, indicating if the shot is non-disruptive, non-intentional or intentional,
respectively. The second file contains two columns with the number of the
disruptive discharge and the disruption time. Then the raw data of the
signals mentioned in 3.4 is downloaded from JET database.

We will have downloaded 9 signals (table 3.4) for every discharge. Three
more signals are calculated: plasma inductance derivative (signal 10), beta
poloidal derivative (signal 11) and vertical centroid position derivative (signal
12). For every discharge, it is selected the time for the beginning and the
end. As initial time is selected the maximum value of the set formed by
the minimum temporal values of each signal; the last time is selected as the
minimum temporal value of the set compound of the maximum temporal
values of each signal.

A threshold is applied in the amplitude of some signals:

• Maximum value of plasma current signal (signal 1) is set to 0. Any
positive value is changed to 0.

• Minimum value of mode lock signal (signal 2) is set to 0. Any negative
value is changed to 0.

• Minimum value of density signal (signal 4) is set to 0. Any negative
value is changed to 0.

• Minimum value of radiated power signal (signal 6) is set to 1000. Any
amplitude value lower than 1000 is changed to 1000.

• Minimum value of total input power signal (signal 7) is set to 1. Any
amplitude value lower than 1 is changed to 1.

After that an analysis to detect outliers is carried out. If the amplitude
of the signal is higher than a threshold, the discharge is considered an outlier
unless:

• The threshold is exceed after disruption time.

• The threshold is exceed before reaching the value of 750 kA in the
plasma current at the beginning of the discharge.

• The threshold is exceed after reaching the value of 750 kA in the plasma
current at the end of the discharge.

In these cases there is no problem cause the data is out of the useful bound-
aries to develop studies. The signals and thresholds considered in the outliers
analysis are:
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• Mode lock amplitude > 6 · 10−3

• Plasma inductance amplitude > 13

• Plasma density amplitude > 1 · 1022

• Poloidal beta amplitude > 30

Then every signal is interpolated increasing the original sampling rate of
the sequence to 1 kHz. In this way, we can process data in different temporal
windows depending our needs. The interpolation used in these databases is
a linear interpolation, as it is explained in section 2.1, this is not the best
interpolation but it is a realistic approach thinking in real time application,
where we would have to interpolate using nearing left-neighbour, and good
enough for offline studies.

Following it has to be done data standardisation, so that the maximum
and minimum for each signal is calculated. As it is explained in section 2.1,
the data is normalized, although the right way would be to calculate the
values for all the data, it has been determined maximum and minimum for
campaigns C28 − C30, and campaigns C31 − C34 has not been taken in
account for these values. Under the basis that the values should be similar it
is thought this way is better for more realistic approaches. If we use the first
campaigns to generate models and the later ones as test, it reproduces better
a process in real time. Therefore, the standardisation parameters yield:

Signal name Minimum Maximum
Plasma current −3.55 · 106 0

Mode lock amplitude 0 6 · 10−3

Plasma inductance −1 12.9698
Plasma density 0 9.5031 · 1021

Diamagnetic energy time derivative −28460799 15269191
Radiated power 1000 1.8297 · 109

Total input power 1 55606192
Poloidal beta −1 30.5776

Plasma vertical centroid position −1 1.7989
Plasma inductance derivative −12.6588 11.9698

Poloidal beta derivative −16.1936 14.3687
Plasma vertical centroid position derivative −1.4129 1.1175

Table 3.6: Standardisation parameters for databases during ILW campaigns
C28− C34

The final step is data processing, following the calculus mentioned in
section 2.1, for each signal the mean value and the standard deviation of
the Fourier transform is determined every 32 ms. The database is finally
compound of 24 features for every discharge, figure 3.10.
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Figure 3.10: Signal processing overview to generate databases

3.2.3 Summary of ILW databases

The ILW campaigns C28 − C34 ( September 2011 - October 2014 ) are
compound from discharge 81867 until discharge 87918, it means 6051 shots.
After doing the data analysis and signal processing, some discharges are
deleted:

• Campaigns C28− C30: discharges range 81852− 83793

– Due to sampling problems, 2 non-disruptive discharges are deleted.
– After threshold analysis: 2 non-disruptive discharges, 2 inten-

tional and 1 non-intentional disruptions are deleted due to exceed
inductance threshold; and 1 non-disruptive shot due to exceed
density threshold.

• Campaigns C31− C32: discharges range 84442− 85964

– After threshold analysis: 4 non-disruptive discharges and 2 non-
intentional disruptions are deleted due to exceed density thresh-
old.

• Campaigns C33: discharges range 86453− 87583

– Due to sampling problems, 1 non-intentional disruption is deleted.
– Due to low plasma current, 2 non-disruptive discharges are deleted.
– After threshold analysis: 18 non-disruptive discharges are deleted

due to exceed inductance threshold; and 1 non-disruptive shot
due to exceed density threshold.
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• Campaigns C34: discharges range 87606− 87918

– After threshold analysis: 2 non-disruptive discharges are deleted
due to exceed inductance threshold.

The final databases yield:

Campaign (0) (1) (2) Total
C28− C30 1036 201 56 1293
C31− C32 401 200 45 646

C33 491 151 106 748
C34 139 37 2 178

Table 3.7: Count of discharges from database if ILW campaigns C28−C34.
0-Non-disruptive shot, 1-non-intentional disruption, 2-intentional disruption

Although the discharges from table 3.8 are not included in the final
database (table 3.7), as previously mentioned, they are listed to have a strict
control of every discharge and the reason it has been excluded. In addition
it could be interesting to take this discharges in account for different studies.

Campaign Total
C28− C30 129
C31− C32 86

C33 69
C34 10

Table 3.8: Count of discharges from ILW campaigns C28−C34 that cannot
be considered safe neither disruptive
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3.3 Assessment of the APODIS performance in ILW
campaigns

An important task realise during this thesis has been the assessment of the
predictor APODIS, explained in section 3.1, during ILW campaigns. The
assessment during the first ILW campaigns C28 − C30 was published in
(Vega et al., 2013a). In this work, it is mentioned that high performance
plasmas (with approximately plasma current 3.5 MA, input power 25 MW,
electron temperature 1 keV and density 2×1020 m−3), as the non-disruptive
discharge 83479 and the non-intentional disruption 83480, were identified
correctly. The results show a success rate of 98.36% and false alarm rate of
0.92%. They are illustrated in figure 3.11,where Y-axis is the accumulative
fraction of detected disruptions, X-axis is the warning time and the green
line represents the rates with a warning time of 30 ms. It is important to
note that this work considers good predictions any alarm triggered before
the disruption time and after disruption time if there was more than 30 ms
from the alarm time to the end of the plasma, that is, if there was enough
time to carry out any mitigation action. In addition, during these campaigns
the mitigation valves required at least 30 ms to carry out any action.

Figure 3.11: The logarithmic graphic shows the APODIS results during
C28− C30 campaigns

The performance of APODIS during ILW campaigns C31 − C34 is pre-
sented in (Moreno et al., 2015). Albeit, the same criteria has been used to
present the performance during the ILW campaigns C28−C34. During the
ILW campaigns C28−C34 (September 2011 - October 2014), before showing
APODIS performance, it is necessary to mention the discharges excluded and
the reason. As mentioned, APODIS works using the signals showed in table
3.1, so if the EFCC (Error Field Corrections Coils) (Barlow et al., 2001) are
activated, an anomalous behaviour appears on mode lock amplitude, which
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follows the same pattern as the EFCC signal (it could be clearly seen in figure
3.8). These discharges are exclude from the results due to APODIS depend
on this signal and it is not a natural evolution of the mode lock amplitude.

However, there are 218 discharges where EFCC have been activated and
they have this effect on the mode lock amplitude. There are 148 discharges
in campaign C28−C30 where EFCC does not affect, so they can be used. In
campaign C34 there is no discharge with EFCC activated, and the remaining
70 discharges are divided in: 35 safe shots without APODIS alarm; 17 safe
discharges with APODIS alarm; 13 disruptive discharges where only 1 are
missed; and 5 shots which can be saved because the EFCC affects when the
plasma current ends.
Moreover all the discharges which do not follow a natural evolution (non-
disruptive, intentional or non-intentional disruptive) are considered sepa-
rately. It means all the discharges where any action from the control system
has been taken or any failure on diagnoses which affects a signal used by the
predictor. These anomalous discharges formed a total of 294 shots. Then,
the count of the campaigns C28− C34 yields (table 3.9):

Campaign (0) (1) (2) (3) Total
C28− C30 713 177 35 129 1054

C31 319 151 14 72 556
C32 86 51 31 14 182
C33 513 151 106 69 839
C34 141 37 2 10 190

C28− C34 1772 567 188 294 2821

Table 3.9: Count of discharges from ILW experimental campaigns C28−C34
for APODIS assessment. 0-Non-disruptive shot, 1-non-intentional disrup-
tion, 2-intentional disruption, 3-anomalous shot

Evaluation metrics play an important role in machine learning. They are
used to assess and guide the learning algorithms. In the case of disruption
prediction, which corresponds to unbalanced datasets, if a particular metric
is chosen and it does not properly evaluate the minority class, then the
learning algorithms will not be able to efficiently handle the unbalanced
problem. A typical metric that is quite common in machine learning is
the overall classification rate (i.e. accuracy). However, on an unbalanced
dataset, the overall classification is no longer a suitable metric, since the small
class has less effect on accuracy as compared with the prevalent class (Weiss
and Provost, 2003). In our case, a multiobjective complex optimization
problem is considered: the achievement of high success rates in the disruption
predictions and simultaneously the highest reduction of the false alarm rates.
Therefore, to present the results, the warning time is called the difference:
∆t = tD − ta,, where ta is the time when the alarm is triggered, and tD is
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the disruption time. Taking into account that at least 10ms are needed to
carry out mitigation action when a disruption happens, the results are going
to be presented under the following criterion:

• Valid detections: 10 ms ≤ ∆t ≤ 1.5 s

• Early detections: ∆t > 1.5 ms

• Tardy detections: 0 ≤ ∆t ≤ 10 ms

• False alarms: an alarm is triggered in a safe discharge.

• Missed alarms: in a disruptive discharge, the alarm happens after de
disruption time (∆t < 0) or there is no alarm triggered.

Therefore the performance of APODIS during these campaigns yields (table
3.10):

Campaign Valid Early Tardy False Missed
C31 81.46% (123/151) 5.96% (9/151) 3.31% (5/151) 1.88% (6/319) 9.27% (14/151)
C32 84.31% (43/51) 0% (0/51) 0% (0/51) 0% (0/86) 15.69% (8/51)
C33 74.17% (112/151) 2.65% (4/151) 3.31% (5/151) 3.51% (18/513) 19.87% (30/151)
C34 86.49% (32/37) 0% (13/37) 0% (0/37) 1.42% (2/141) 13.51% (5/37)

C28− C34 79.37% (450/567) 2.82% (16/567) 2.47% (14/567) 1.81% (32/1772) 15.34% (87/567)

Table 3.10: APODIS results during ILW campaigns C28− C34

It is important to note that the average warning time of valid alarms is
350 ms and the standard deviation is 595 ms. If we compare with the mode
lock trigger from the JPS (JET Protection System), we can see that APODIS
keep high success rate and low false alarm rate taking into account that it
is a system trained with data from C-wall campaigns and tested with data
from a wall completely different. Considering the success rate the union
of valid, early and tardy detections, the mode lock trigger reaches a suc-
cess rate of 69.66%(395/567) while APODIS obtains 84.66%(480/567) and
1.81%(32/1772) of false alarm rate. The false alarm rate cannot be consid-
ered for mode lock trigger because almost always it is used in close loop. In
figure 3.12, the results previously mentioned are illustrated in a logarithmic
graphic showing the accumulative fraction of detected disruptions and the
warning time. The green lines show 10 ms and 1.5 s before the disruption
time respectively.

Finally, APODIS has been used in close loop in some experiments dur-
ing C31 − C34 campaigns; it means that control system has carried out
mitigation action after APODIS alarm. It has been used in a total of 443
discharges, where 147 are safe shots, 70 non-intentional and 5 intentional dis-
ruptions, 12 anomalous discharges and 209 outliers. In addition, from all the
non-intentional disruptions where APODIS has not been taken in account
by control system, it means all the non-intentional shots in table 3.9, the
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Figure 3.12: APODIS performance compare with mode lock trigger from
JPS, during ILW campaigns C28− C34

anticipation of APODIS alarm respect the trigger of the DMV (Disruption
Mitigation Valve) has been analysed. In table 3.11 are shown the number
of non-intentional disruptions where DMV has been triggered; the difference
between the DMV triggered and APODIS alarm; and the mean value of these
times. It can be seen that unless APODIS is not been used in close loop, it
triggers an alarm before the DMV is opened in the 94.43% of the cases. The
5.57% of the discharges is compound of 8 shots without APODIS alarm; 1
discharge where APODIS has detected the disruption before disruption time;
and 7 missed alarms.

Campaign DMV Triggers T = tDMV − tAPODIS > 0 T̄

C28− C30 73/177 98.63% (72/73) 972.5 ms
C31 52/151 94.23% (49/52) 374.6 ms
C32 26/151 96.15% (25/26) 262 ms
C33 132/151 91.67% (121/132) 273.9 ms
C34 4/37 100% (4/4) 4.45 s

C28− C34 287/567 94.43%(271/287) 1.267 s

Table 3.11: Relation between DMV triggers and APODIS alarms in non-
intentional disruptions without APODIS in close loop
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3.4 Robustness of APODIS

As previously explained, disruption prediction with enough warning time is
necessary in order to carry out mitigation actions. This section explains the
APODIS robustness analysis (Moreno et al., 2014b). Robustness is defined
as the predictor reliability when a signal fails. The reliability has to be un-
derstood in terms of the success rate and the false alarm rate. In this study,
the success rate is defined as the fraction of disruptive discharges that have
been predicted with enough anticipation time. Enough anticipation time
means to trigger an alarm well in advance to be able to put in operation
mitigation actions. When this study was done, the minimum time in JET to
activate the disruption mitigation valve was about 30 ms. Therefore, only
predictions whose anticipation times are greater than or equal to 30 ms will
be considered a success. However, it is important to mention that disrup-
tions predicted with less than 30 ms cannot be considered missed alarms.
Therefore, disruptions with anticipation times between 1 and 30 ms have
been considered tardy detections. To accomplish the robustness analysis,
simulations have been performed. These simulations replace one by one the
signals of table 3.1 (except the plasma current) for a synthetic one. Two
different scenarios have been considered. In the first one, a synthetic signal
with mean value 0 and Gaussian noise is used during the whole discharge.
This simulation can correspond to a situation in which some kind of instru-
mentation (power supplies, amplifiers, analogue to digital converters, data
transmission lines or so) fails without notice. In the second scenario, a dif-
ferent situation is generated. The test simulates the failure of a signal from
a certain time of a discharge and the amplitude remains the same but with
a Gaussian noise added.

The purpose of the reliability analysis is not to select the best signals for
APODIS (Rattá et al., 2012), but to determine the changes in the success
and false alarm rates when a signal is in failure. As mentioned, the simu-
lations replace each signal for a synthetic one. The plasma current has not
been substituted because it is the signal that switches on/off the APODIS
predictor when it crosses a threshold of 750 kA. It should be noted that the
feature vectors have dimension 14 and, therefore, the simulation of a signal
in failure means to have two wrong features in each predictor input. This is
a consequence of using both time and frequency domains for each signal, as
explained in section 3.2. To carry out the simulations, an off-line APODIS
version and a huge database of discharges have been used (from both CFC
and ILW campaigns). Firstly, 3578 non-disruptive discharges and 228 un-
intentional disruptions, from CFC campaigns C23-C27b (September 2008 -
October 2009), have been considered. Then, 1036 non-disruptive discharges
and 201 unintentional disruptions from ILW campaigns C28−C30 (July 2013
- October 2014) have been analysed (table 3.2 and 3.7). As mentioned, the
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robustness analysis performs two different simulations, where the difference
resides on the different amplitudes that use the synthetic signals:

1. The first simulation replaces the whole signal for a Gaussian noise
distribution N(0, 1), where the notation N(µ, σ) is the usual one to
represent a Gaussian distribution with mean µ and standard deviation
σ. Figure 3.13a shows the replacement of the whole plasma inductance
signal with a Gaussian noise distribution N(0, 1) in a non-disruptive
discharge.

2. The second simulation changes the latest 5 s of the signals by a Gaus-
sian noise distribution N(0, 1). The latest 5 s are selected in different
ways for non-disruptive and disruptive discharges. For non-disruptive
discharges, they correspond to the latest 5 s before the plasma current
crosses the 750 kA threshold in the ramp down. In the case of disrup-
tive discharges, the 5 s interval coincides with the previous 5 s before
the disruption. Figure 3.13a illustrates the latest 5 s of the plasma in-
ductance signal are replaced with a Gaussian noise distribution N(0, 1)
in a disruptive discharge.

The results (table 3.12 for CFC campaigns and table 3.13 for ILW cam-
paigns) show the same statistics in both simulations (figures 3.13a and
3.13b), it means, either replacing the whole signal for a Gaussian noise
synthetic signal or replacing the signal at a certain time for a Gaussian
noise synthetic signal. The worst results appear when the mode lock and
the plasma inductance signals are in failure (figures 3.14a and 3.14b respec-
tively). Therefore, these signals are absolutely necessary for APODIS. If
either the mode lock or the plasma inductance signal is in failure, APODIS
produces wrong predictions. It should be emphasized that the results of ta-
bles 3.12 and 3.13 in relation to the simulations with all signals in the ILW
discharges do not coincide with the rates given at the end of this section.
The APODIS real-time software is in execution in the JET real-time net-
work from the discharge 82429. However, the off-line simulation starts in
shot 81852.

Then, the other signals, plasma density, diamagnetic energy time deriva-
tive, radiated power and total input power, are also important but have less
impact in the prediction than the mode lock and the plasma inductance.
Whereas the mode lock and the plasma inductance signals are essential, fail-
ures in the remaining signals slightly decrease the success rate. For example,
figure 3.15 shows the case of the diamagnetic energy time derivative in which
the success rate remains around 65% (instead of 69%) in the CFC campaigns
and 73% (instead of 77%) in ILW discharges. Also, the AWT (average warn-
ing time) has been analysed. Table 3.14 shows the AWT obtained in CFC
and ILW campaigns by simulating both the whole signal in failure and the
latest 5 s of the signal in failure. It is important to note in this table that
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Figure 3.13: Example of both simulations carried out in the robustness anal-
ysis

the off-line analysis with all the signals shows an AWT value of 491 ms (with
a standard deviation of 1.320 s). The simulation of failure in the mode lock
and in the plasma inductance gives very bad success rate and, therefore, in
these cases the computation of the AWT does not make sense. Focusing
the attention on the rest of the signals, the average AWT corresponding to
failures in plasma density, FWDIA (stored diamagnetic energy time deriva-
tive) , radiated power and total input power in CFC campaigns is 489 ms
(with a mean standard deviation of 1.093 s). With regard to the simulations
corresponding to the ILW campaigns, the average AWT is 561 ms and the
mean standard deviation is 1.695 s.

Finally the robustness analysis shows that the mode lock and the plasma
inductance signals are essential for APODIS. Any failure in these signals
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(a) Failure on mode lock amplitude

(b) Failure on plasma inductance

Figure 3.14: Results for CFC and ILW campaigns with mode lock and plasma
inductance signals in failure

produces very low success rates, (0% for the mode lock signal failure and
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Figure 3.15: Results for CFC and ILW campaigns with diamagnetic energy
time derivative signal failure

CFC campaigns 2008− 2010

Signals Success Rate Tardy alarm Rate Missed alarm Rate False alarm Rate
Replacement of the whole signal (figure 3.13a)

Offline analysis with all signals 69.3% (158/228) 11.4% (26/228) 19.3% (44/228) 7.5% (267/3578)
Mode lock failure 0% (0/228) 0% (0/228) 100% (228/228) 0% (0/3578)

Plasma inductance failure 1.3% (3/228) 1.3% (6/228) 97.4% (222/228) 0.3% (11/3578)
Plasma density failure 68.4% (156/228) 11.4% (26/228) 20.2% (46/228) 6.7% (239/3578)

FWDIA failure 64.9% (148/228) 8.8% (20/228) 26.3% (60/228) 4.1% (147/3578)
Radiated power failure 69.3% (158/228) 11.4% (26/228) 19.3% (44/228) 7.4% (266/3578)

Total input power failure 68.0% (155/228) 11.0% (25/228) 21.0% (48/228) 7.1% (254/3578)

Replacement of the last 5s of the signal (figure 3.13b)
Offline analysis with all signals 69.3% (158/228) 11.4% (26/228) 19.3% (44/228) 7.5% (267/3578)

Mode lock failure 0% (0/228) 0% (0/228) 100% (228/228) 0% (0/3578)
Plasma inductance failure 2.6% (6/228) 0.9% (2/228) 96.5% (220/228) 0.6% (20/3578)
Plasma density failure 68.4% (156/228) 11.4% (26/228) 20.2% (46/228) 6.7% (239/3578)

FWDIA failure 64.9% (148/228) 8.8% (20/228) 26.3% (60/228) 4.1% (147/3578)
Radiated power failure 69.3% (158/228) 11.4% (26/228) 19.3% (44/228) 7.4% (266/3578)

Total input power failure 68.0% (155/228) 11.0% (25/228) 21.0% (48/228) 7.1% (254/3578)

Table 3.12: CFC: C23−C27b robustness result. Both types of signal failure
provide similar outcomes

5−10% for the plasma inductance signal failure). The other signals (plasma
density, diamagnetic energy time derivative, radiated power and total input
power) are also important but have a less impact. Failures in them produce
success rates around 75%. The simulations that add Gaussian noise provide
similar results. Focusing on the radiated power signal, it can be observed in
tables 3.12 and 3.13 that its failure provides the same success rate and lower
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ILW campaigns 2011− 2012

Signals Success Rate Tardy alarm Rate Missed alarm Rate False alarm Rate
Replacement of the whole signal (figure 3.13a)

Offline analysis with all signals 76.6% (154/201) 8.5% (17/201) 14.9% (30/201) 2.2% (23/1036)
Mode lock failure 0% (0/201) 0% (0/201) 100% (201/201) 0% (0/1036)

Plasma inductance failure 3.5% (7/201) 1.0% (2/201) 95.5% (192/201) 0% (0/1036)
Plasma density failure 72.6% (146/201) 9.5% (19/201) 17.9% (36/201) 1.5% (16/1036)

FWDIA failure 73.1% (147/201) 7.0% (14/201) 19.9% (40/201) 1.5% (15/1036)
Radiated power failure 75.6%(152/201) 9.0%(18/201) 15.4% (31/201) 2.0% (21/1036)

Total input power failure 78.1% (157/201) 8.5% (17/201) 13.4% (27/201) 3.0% (31/1036)

Replacement of the last 5s of the signal (figure 3.13b)
Offline analysis with all signals 76.6% (154/201) 8.5% (17/201) 14.9% (30/201) 2.2% (23/1036)

Mode lock failure 0% (0/201) 0% (0/201) 0% (0/201) 0% (0/1036)
Plasma inductance failure 8.5% (17/201) 0.5% (1/201) 91.0% (183/201) 6.3% (65/1036)
Plasma density failure 72.6% (146/201) 9.5% (19/201) 17.9% (36/201) 1.5% (16/1036)

FWDIA failure 73.1% (147/201) 7.0% (14/201) 19.9% (40/201) 1.5% (15/1036)
Radiated power failure 75.6% (152/201) 9.0% (18/201) 15.4% (31/201) 2.0% (21/1036)

Total input power failure 78.1% (157/201) 8.5% (17/201) 13.4% (27/201) 3.0% (31/1036)

Table 3.13: ILW: C28− C30 robustness result

Substitution for synthetic signal
CFC campaigns 2008− 2010

Signals AWT (ms) STD (s)
Offline analysis with all signals 491 1.320

Mode lock failure - -
Plasma inductance failure - -
Plasma density failure 531 1.342

FWDIA failure 371 0.707
Radiated power failure 590 1.440

Total input power failure 463 0.884

ILW campaigns 2011− 2012

Offline analysis with all signals 573 1.667
Mode lock failure - -

Plasma inductance failure - -
Plasma density failure 515 1.703

FWDIA failure 561 1.700
Radiated power failure 561 1.678

Total input power failure 608 1.700

Table 3.14: AWTs and standard deviation (STD) for CFC and ILW cam-
paigns results

false alarm rate than the rest of the signals. It is interpreted as a specific
result on the range of pulses used in the analysis, and more analysis with the
incoming campaigns should be done to better understand this behaviour.
Anyway it could indicate that this signal for these experiments provides
less characteristic information for the predictor even false information. A
potential alternative to use the APODIS model with one signal in failure is
to have trained different models with only six quantities (it is assumed that
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is in failure either the plasma density or the FWDIA or the radiated power or
the total input power). This possibility has not yet been explored because the
first objective was to know the limitations of the present APODIS predictor.

3.5 Increased time resolution of APODIS

During the ILW campaigns, APODIS has missed some disruptions due to the
lack of time resolution (Vega et al., 2013a). The predictor is enabled when-
ever the plasma current is above the threshold of 750 kA. Figure 3.16 shows
a typical example of missed alarm as a consequence of a prediction period
of 32 ms. Point A in figure 3.16 indicates the last prediction of APODIS for
the given discharge. The prediction at that time is “non-disruptive”. During
the next 32 ms, a disruption takes place and the plasma current crosses the
threshold of 750 kA. Therefore, APODIS is disabled and no more predictions
are carried out. Consequently, the alarm is missed. The effect of increasing
the APODIS temporal resolution is analysed in this section.

Figure 3.16: Example of missed alarm due to a lack of resolution

Following it will be explained the database used for these purposes and
described the simulations performed to increase the time resolution by using
a sliding window mechanism. As it was explained previously, APODIS makes
a prediction every 32 ms. This prediction period should be shortened as
much as possible in order to detect any disruption signature as soon as
possible. (López et al., 2012) shows that the computation time in the JET
real-time network to form a feature vector is hundreds of µ s. Therefore,
a time resolution of 1 ms can be achieved. The objective in the present
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analysis is not to change the sampling rate of the APODIS signals (which
remain limited to 1 ksamples s−1), but to change the time resolution of the
prediction by implementing a sliding window mechanism. This mechanism
allows APODIS implementing different time resolutions (16, 8, 4, 2 or 1 ms).
In this way, APODIS is able to trigger an alarm every 16, 8, 4, 2 or 1 ms
instead of the current temporal resolution of 32 ms (figure 3.17).

Figure 3.17: Example of temporal resolution of 32 ms (how APODIS works
currently at JET) and temporal resolution of 4 ms

The database used in this analysis is made up of discharges from the three
first ILW campaigns C28−C30. It is the same database used in section 3.4
for the ILW campaigns (table 3.7), which is made up of 1036 non-disruptive
discharges and 201 unintentional disruptions. At this point, it will be shown
the results obtained from the simulations The results (table 3.15 and figure
3.18) show how the success rate increases for higher temporal resolutions,
reaching a success rate of 83% for 1 ms of temporal resolution. Furthermore,
higher temporal resolutions allow achieving better success rate and also re-
ducing the missed alarm rates (table 3.15 and figure 3.18). On the other
hand, while the success rate is increased for higher temporal resolutions, the
false alarm rate also increases (table 3.15).

Sliding window analysis shows that higher temporal resolutions can help
to achieve better success rates, reaching 83% success rate and 8.5% tardy
alarm rate for 1 ms resolutions. Despite of this, the false alarm rate slightly
increases for higher temporal resolutions. Focusing on false alarm rate in ta-
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Figure 3.18: Sliding window results

Temporal resolution (ms) Success Rate Tardy alarm Rate Missed alarm Rate False alarm Rate
32 76.6% (154/201) 8.0% (16/201) 15.4% (31/201) 2.9% (30/1036)
16 80.6% (162/201) 7.0% (14/201) 12.4% (25/201) 4.4% (46/1036)
8 81.6% (164/201) 7.5% (15/201) 10.9% (22/201) 5.0% (52/1036)
4 82.1% (165/201) 7.5% (15/201) 10.4% (21/201) 5.6% (58/1036)
2 82.5% (166/201) 8.5% (17/201) 9.0% (18/201) 6.0% (62/1036)
1 83.0% (167/201) 8.5% (17/201) 8.5% (17/201) 6.0% (62/1036)

Table 3.15: Sliding window rates

ble 3.15, 32 ms and 1ms resolutions show 2.9% and 5.98% of false alarm rate
respectively, which means an important difference. Higher time resolutions
provide better warning times, so if the main problem to overcome disruptions
is to have enough time to carry out mitigation actions, we can conclude that
increasing the temporal resolution of APODIS would be a good improvement
in terms of both success rate and warning times.
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Automatic location of
disruption times in JET

It was introduced in section 1.2.1 that the stability and confinement of the
plasma can be lost in a few hundred microseconds. The electromagnetic
forces and thermal loads produced by disruptions can damage the compo-
nents of the devices. Disruptions are difficult to understand from a theo-
retical point of view due to event complexity, highly non-linear interactions,
and diversity of causes. Furthermore, many different behaviours and current
quench scenarios are possible in disruptions. In the past JET C-wall cam-
paigns, disruptions were identified as the fast decay of the plasma current
(typically called “current quench”) produced by the increase in plasma resis-
tivity that thermal quench cooling generated (Wesson and Campbell, 1987;
Schuller, 1995) (figure 4.1 (Wesson and Campbell, 1987)).

Figure 4.1: Example of a disruption during campaigns with the JET-C wall

However, disruptions at experiments with the JET-ILW show a different
behaviour. It is not unusual for these plasmas to present several thermal

99
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quenches previous and after the current quench. In many instances the
temperature recovers and the plasma survives until the next thermal quench,
in figure 4.2 it can be seen several thermal quenches and how the temperature
recovers. Therefore, the criterion used during the JET-C experiments is
usually not valid and therefore, a new one has to be defined. A possibility is
to use the start of the current quench as disruption time, since around this
time the plasma looses completely its stability, becomes uncontrollable, and
ends abruptly.
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Figure 4.2: Disruption from JET-ILW experiments

In addition, as it was explained in section 3.2, once all the discharges
are classified, the disruption time has to be obtained. This is the most
important step because all the disruptive information is around this time,
hence the most precise is the time determined, the best information we could
extract as disruptive samples. This time is usually determined by hand, but
automatic tools have been developed in this thesis to make easier this work
(Moreno et al., 2014a). The purpose in this chapter is to provide an analysis
tool to locate the disruption time defining a new criterion.

The first section 4.1 exposes previous studies carried out to locate the
disruption time. In section 4.2, it is explained the wavelet analysis applied
to this problem.

4.1 Previous studies

Several methods have been employed to detect disruption times before the
use of wavelets achieving great results. The database used for every work in
this chapter is formed by discharges from the ILW experimental campaigns
C28−C30, see table 3.7. Firstly,in section 4.1.1 the problem has been tack-
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led as a classification problem, where SVM models have been trained using
different signals. After that, in section 4.1.3, Universal Multi-Event Locator
(UMEL), which has been explained in section 2.4.2, is used to detect the
disruption time. Then another technique known as martingales, explained
in section 2.5, is considered to this problem in section 4.1.2.

4.1.1 Classifier

Considering the location of disruption time as a classification problem to
detect only the disruption time, two set of samples are differentiated: safe
samples and disruptive samples. The idea is similar as the procedure to de-
velop predictors, however, the base is considering as disruptive sample only
the last one before the disruption time in order to trigger an alarm as close
as possible to the disruption time. At this point, we consider the disruptive
discharge is known and the purpose is only to determine the disruption time,
therefore false alarms on safe discharge are not a problem because it will be
analysed only disruptive discharges. From the ILW campaigns C28 − C30,
it has been taken the first 50 disruptive discharges and 510 non-disruptive
shots for the training, and 151 disruptive discharges for the test. The fea-
tures used in this classifier are shown in table 4.1,where mean is the mean
value of the signal amplitude and FFT is the standard deviation of the Fast
Fourier Transform. In figure 4.3 illustrates the five signals used: plasma
current, mode lock amplitude, plasma internal inductance, loop voltage and
peaking factor. These signals have been considered because they show a
distinguishable behaviour close to the disruption, as it can be seen in figure
4.3.

The data are pre-processed similarly to the method used for the databases
in section 3.2:

1. Signals are downloaded from JET database.

2. The upper and lower bounds are determined for the signals. As lower
bound is the threshold of 750 kA on the plasma current, and the upper
bound is the disruption time for disruptive discharges or the time when
the plasma current crosses 50 kA amplitude for safe shots.

3. The data is sampled to 1 kHz of frequency and normalized to the values
showed in 3.6.

4. Finally the features in table 4.1 are calculated.

The results of this approach shows that only the 19.33% of the disruptions
are detected in a temporal window of 32 ms around the disruption time. This
bad results are due to the classifier works better as predictor than detector,
so that this approach were discarded.
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Figure 4.3: Signals used on disruption time location as a classification ap-
proach

Signals Feature
Plasma current FFT

Mode lock amplitude mean and FFT
Plasma internal inductance mean and FFT

Loop voltage mean
Peaking factor mean

Table 4.1: Features for disruption time location as a classification approach

4.1.2 Martingales

Following the methodology explained in section 2.5, the location of disruption
time is focused as a problem of change detection in data streams. The
simulations will follow the diagram in figure 4.4.

Input samples are sequential feature vectors that correspond to a non-
perturbed plasma state. At a certain point, feature vectors from a perturbed
emission begin to reach the detector system. After some delay in relation
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Figure 4.4: Diagram of martingale for change detection in data streams

to the first perturbed feature vector, the output triggers an alarm. This
detection system analysis of the output has to be able to identify (with as
small error as possible) the time instant in which the change of plasma state
happened.

This analysis has been carried out following the data pre-processing ex-
plained in section 3.2, using discharges from campaigns C28 − C30 (3.7).
Three different signal sets have been used:

• Plasma current and loop voltage (S1).

• Peaking factor and plasma density (S2).

• Temporal evolution of the plasma current time derivative (S3).

Firstly, three different martingales were tested:RPM, SMM, PIM (see
section 2.5). Changing the different parameters, it was observed that the
RPM was the most efficient martingale to develop the analysis. Better re-
sults could be reached with an optimal selection of the parameters for PIM,
however it was discarded because of the high computational cost and low
improvement of the results. It is important to note that only the last 1.5−3
s of the discharge are considered in this analysis, due to the martingale test
is extremely sensitive to plasma changes. Therefore, considering this is an
offline analysis and its purpose is determining the exact time of the disrup-
tion, there is no inconvenient on taking the last seconds of the discharge.
Furthermore. this way the analysis will be faster. Let see and example,
given the plasma density (signal 1) and peaking factor (signal 2) from the
discharge 81867, the temporal evolution and the standard deviation of the
FFT are illustrated in figure 4.5. The green line shows the disruption time.
The standard deviation of the FFT of both signals are taken as input data
on martingale test, the scatter plot of the features can be seen in figure 4.6.

Many values of λ and ε parameters have been tested for each set of
signals.In tables 4.2 and 4.3, the results, for sets S1 and S2 respectively,
are shown,with λ = 10 and selecting the best ε in a range [0.990, 0.999] for
each discharge. It can be seen in table 4.2 that S1 recognizes a change in
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Figure 4.5: Density and Peaking Factor in discharge 81867

the 20 discharges analysed, the average window around the disruption time
is 113 ms. Table 4.3 shows that S2 detects a change in 19 discharges, and
three changes are detected in one discharge. The average window around
the disruption time is 124 ms. S1 obtains better results than S2, however
the location of disruption time is not good enough, the time determined by
the martingale needs to be more similar to the real disruption time.

Considering the set S1, in order to smooth the signals and eliminate
possible premature changes, a wavelet Haar was applied to both signals.
Different levels of the wavelet were tested and the best results were obtained
to level 2. In figure 4.8 the results using a wavelet Haar decomposition of
level 2 in S1 are shown. It can be seen that a change is detected in 60
discharges of 72, and taking a window of 48 ms around disruption time,
only the 51.39%(37/72) are detected. As an alternative, instead considering
the change when the value of λ reached the threshold, it was considered a
change if the value of λ reached a certain percentage of the threshold selected.
However, the results were not improved.

Finally the third set, S3 was tested following the same process. Over 29
discharges, after several combinations of the different parameters the best
results reached were 26 detections of 29 discharges. Figure 4.9 show the
histogram of the results for RPM-S3 with Haar level 2, where it can seen that
taking a window of 48 ms around disruption time, only the 41.38%(12/29)
are detected. Although the martingale test for change detection in data
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Figure 4.6: Scatter plot of the Density and Peaking Factor in discharge 81867

Following the MTA for the different martingales (RPM, SMM, PIM), the
best parameters to fit the input data have been selected. Figure 4.7 shows
the results for each martingale with their respective parameters. It can
be seen that SMM (figure 4.7b) is extremely sensitive and many changes are
detected. On the other hand, RPM (figure 4.7a) and PIM (figure 4.7c) detect
a change close to the disruption time. The time where p-values distribution
is not uniform on [0, 1], the change happens but the alarm is triggered with
a delay, when the value λ reaches the threshold. We are going to determine
the disruption time as the sample where λ reaches the threshold selected.
Despite of this assumption is theoretically incorrect, this approach provides
better times in our problem and it allows detecting automatically the change.
The case of RPM shows more uniform distribution of the p-values before the
change and it is much faster than PIM, therefore it has been decided to use
the RPM for the rest of the analysis.

streams is an useful and efficient tool, it does not fit correctly our problem.
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Figure 4.7: Martingale change detection to locate disruption time
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Shot Tdis ε Tdetected Tdis-Tdetected
81867 46.304 0.994 46.2962 0.0078
81916 51.706 0.997 51.7006 0.0054
81921 59.532 0.999 59.4976 0.0344
81922 55.5198 0.998 55.4996 0.0202
81923 55.514 0.998 54.8958 0.6182
81924 55.524 0.998 55.5028 0.0212
81925 59.518 0.997 59.5006 0.0174
81926 60.5032 0.999 60.464 0.0392
81927 60.5172 0.998 60.4948 0.0224
81928 60.5302 0.999 60.5014 0.0288
81929 54.366 0.998 54.3606 0.0054
81930 57.0754 0.997 57.0456 0.0298
81953 59.762 0.992 59.7624 −0.0004
81978 53.7788 0.995 53.7818 −0.003
81983 59.452 0.999 58.1958 1.2562
81985 52.27 0.996 52.1902 0.0798
81990 52.374 0.997 52.3392 0.0348
82001 53.362 0.997 53.3382 0.0238
82004 48.788 0.997 48.7618 0.0262
82005 53.16 0.997 53.1634 −0.0034

Table 4.2: RPM-S1 results
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Figure 4.8: Histogram of RPM-S1 results with wavelet Haar level 2
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Shot Tdis ε Tdetected Tdis-Tdetected
81867 46.304 0.997 46.29 0.014
81916 51.706 0.995 51.7032 0.0028
81921 59.532 0.995 59.5262 0.0058
81922 55.5198 0.998 55.5106 0.0092
81923 55.514 0.996 55.5344 −0.0204
81924 55.524 − − −
81925 59.518 0.998 59.511 0.007
81926 60.5032 0.998 60.4604 0.0428
81927 60.5172 0.998 60.4406 0.0766
81928 60.5302 0.997 60.526 0.0042
81929 54.366 0.998 54.3632 0.0028
81930 57.0754 0.998 56.9276 0.1478
81953 59.762 0.994 59.8018 −0.0398
81978 53.7788 0.995 53.6558 0.123
81983 59.452 0.993(3changes) 58.0464 1.4056
81985 52.27 0.997 52.0904 0.1796
81990 52.374 0.998 52.2424 0.1316
82001 53.362 0.999 53.11 0.252
82004 48.788 0.996 48.7994 −0.0114
82005 53.16 0.999 53.1312 0.0288

Table 4.3: RPM-S2 results
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4.1.3 UMEL

After the previous analysis, it was thought that Universal Multi-Event Lo-
cator (UMEL), which has been explained in section 2.4.2, could be a useful
tool for this purpose. Taking some characteristic signals which show a clearly
distinguishable behaviour at disruption time, UMEL is applied to detect the
ESP(external support vectors) out of the boundaries. In this study three
signals have been used, figure 4.10:

• Plasma current which shows an abrupt decay of the amplitude from
several MA (its operational value) to zero in some ms.

• Loop voltage (“jpf/gs/bl-nflopv<s”) is the voltage at plasma bound,
and it shows a characteristic spike.

• Peaking factor also presents a characteristic spike. The main overview
bolometer measures the radiated power density, and the processed line-
integral bolometer signals are stored as a function of channel number
and time. Two signals from the vertical camera, which are processed
data on the basis of a weighted sum of representative channels, can
be used: the total radiated power (“ppf/bolo/topi”) or the total bulk
radiation (“ppf/bolo/tobu”). The first one is selected to be employed in
this analysis although both signals practically follow the same pattern.

Considering the explanation at the beginning of this section 4, the plasma
current and temperature signals should be good enough to detect disruption
time locating the thermal and current quench; but the problem is the lack of
temperature signal in many discharges. Because of this reason, temperature
signal has been avoided. Other possible signal which were discarded is mode
lock amplitude. Mode lock shows a typical behaviour close to the disruption
but it is suitable to predict not to locate the disruption time.

In the work (Vega et al., 2010), UMEL was applied to differentiate dis-
ruptive and non-disruptive discharges without providing the times where the
disruption was detected. As earlier pointed out, this analysis does not aim
to classify between disruptive or non-disruptive discharges, it is intended to
locate with high accuracy the disruption time. Therefore, it is assumed that
the discharge has been identified as a disruptive shot previously.

The signals are downloaded and re-sampled to 1 kHz through a linear
interpolation. The discharge is analysed from the beginning, if an ESV is
detected in the loop voltage, it is checked if the other signal/s contain a ESV
in a temporal window of 300 ms around the time of the loop voltage ESV,
figure 4.11. After that, the plasma current is selected in a range of time
from 200 ms (200 samples) before the ESV chosen to 200 ms (200 samples)
after the end of the discharge. If the disruption suddenly happens, the high
frequency samples could not be detected in the next step, so that the last
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Figure 4.10: Signals used by UMEL on disruption time location

200 samples are added. The wavelet of the selected plasma current data
is calculated and UMEL is applied to the detail coefficients; locating the
disruption at the time of the first ESV, figure 4.12.
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Figure 4.11: First step: UMEL is applied to the signals and the first shared
ESV is detected
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Figure 4.12: Second step: UMEL is applied to the detail coefficients of the
plasma current data selection

Figure 4.13 shows two examples with different values of σ,C, ε for UMEL
algorithm, the discharge 81867 disrupts at 46.304 s and the time detected
is 46.2972 s in both cases. Several values for UMEL (σ,C, ε) and wavelet
(level) parameters have been tested, and the best results have been reached
using two signal combinations: plasma current with loop voltage; plasma
current, loop voltage and peaking factor. The results are shown in table 4.4.

Simulation |∆t| ≤ 30 ms |∆t| > 30 ms
1 52.53%(135/257) 94.94%(244/256)
2 63.59%(166/257) 95.72%(247/256)

Table 4.4: Results for disruption time location using UMEL. Simulation 1:
plasma current and loop voltage. Simulation 2: plasma current, loop voltage
and peaking factor. |∆t| = |tdis − tdetect|

It is concluded that UMEL could correctly recognise a discharge as safe or
disruptive. However if the purpose is to locate the disruption time, this tech-
nique is not enough accurate, therefore it would be necessary other method-
ology which allow to obtain disruption times with errors smaller than the
results obtained at this analysis.

4.2 Wavelets

After developing many analysis as previously explained, this final work using
wavelets has obtained great results and it has been chosen as the automatic
tool to locate disruption time (Moreno et al., 2014a).

Wavelets are basis functions which can be used to approximate a signal
or extract information from data. They will be briefly described in this
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Figure 4.13: Example of different parameters for UMEL to locate disruption
time

section, however a wide explanation can be found in section 2.2. They are
similar to Fourier transforms but wavelets are able to represent a signal in
the time and frequency. The discrete wavelet transform (DWT), proposed
by Mallat (Mallat, 1989) is an efficient algorithm for calculating the wavelet
coefficients of a discrete series. The idea is to filter the series, using the high
and low pass filters associated with the wavelet basis to obtain the wavelet
coefficients. In DWT, the signal is convolved and decimated. Therefore, a
modified version of the traditional wavelet transform DWT has been used
in this study. Non-Decimated Wavelet Transform (NDWT) or stationary
wavelet transform has no sub-sampling step so it keeps the same number of
coefficients of each level. The basis or family functions chosen in this study is
the Haar wavelet. A Haar wavelet is the simplest type of wavelet, a sequence
of rescaled “square-shaped” functions. As a special case of the Daubechies
wavelet, the Haar wavelet is also known as D2. The main disadvantage of
this family is that it is not continuous and not differentiable; but this is an
advantage for the analysis of signals with sudden transitions.
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The data processing algorithm is based on following the temporal evolu-
tion of the plasma current time derivative during the last 3 s of the discharge
before the plasma current crosses the value of 50 kA. To this end, its evolu-
tion is analysed through a multilevel non-decimated wavelet decomposition
looking for the temporal location of the components that determine the cur-
rent quench. Two sets of coefficients are provided: detail and approximation.
The analysis has been done using both coefficients but the best results have
been obtained with the approximation coefficients. Therefore, the location is
carried out with the coefficients of the approximation of level L. This latter
signal shows large-scale features at the current quench times. To discriminate
these features from others, due to phenomena different from disruptions, it is
necessary to identify an appropriate threshold. This threshold allows select-
ing only the main peaks that correspond to the biggest changes in plasma
evolution. It is defined by the bounds of the band:

W̄L − kσW , W̄L + kσW ,

where W̄L and σW are the mean value and the standard deviation of the
approximation coefficients obtained after applying non-decimated wavelet of
level L to current time derivative, respectively, and k is a small positive inte-
ger. With regard to the developed interface and create the ground truth, the
user can select the discharge to analyse; the program will show the plasma
current, the time derivative of plasma current, and the approximation coef-
ficients with the threshold. The possible disruption times are shown and the
user chooses the point that best represents the beginning of the disruption.
In figure 4.14, it can be seen the process of the data processing algorithm.
The program shows the best options under the parameters selected (in this
case a level of 3 and for σ, k = 1) and, user selects the proper time. In this
example the difference between the current quench time estimated and the
disruption time is 1 ms.

Very promising results are obtained from the final analysis of the dis-
ruption database; which is formed by 256 non-intentional and intentional
disruptions from 2011 to 2012 JET-ILW campaigns. The discharges have
been analysed with different values of levels for non decimated wavelet (lev-
els 1 − 6) and threshold (values of k from 1 to 6). Summarizing, the best
results are obtained for levels 1, 2, 3, and 4 with sigma k = 1 (Table 4.5). A
window of 16 ms around the current quench provides a success rate of 100%
and a window of 8 ms around the current quench shows a success rate of
99.61% (only 1 discharge is outside the window of 8 ms).

Taking into account that many disruptions occur during JET experi-
ments and that analysis and estimation of disruption times are also carried
out manually, it is not unusual to find human errors when a big database
is analysed. The proposed automatic data processing algorithm allows both
reducing human efforts to locate the disruption times and standardizing the
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Figure 4.14: Example of the data processing algorithm for disruption time
location

Level (L) Sigma (k) Window of 16 ms Window of 8 ms
1 1 100%(256/256) 99.61%(255/256)
2 1 100%(256/256) 99.61%(255/256)
3 1 100%(256/256) 99.61%(255/256)
4 1 100%(256/256) 99.61%(255/256)

Table 4.5: Values of levels for non-decimated wavelet and threshold that
provide the best results

estimations (with the benefit of being less vulnerable to human errors). Lo-
cating disruption times, minimizing human errors, and establishing a general
criterion are important issues which must be addressed. Actually, disruption
predictors are developed using the disruption time to characterize the disrup-
tive features of the training samples, accordingly, enhancing the importance
of the precise estimation of disruption times. If the disruption time is not
estimated correctly, the samples that define the disruptive behaviour could
be confusing and provide false information to classifiers. This algorithm
shows a possible way to generalize and calculate the time of disruptions,
which could help in different studies: benchmarking of theoretical models,
development of physics-driven models, and training of disruption predictors.
After numerous simulations with different values of the parameters, the best
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results shown in 4.5 provide a success rate of 100% in a window of 16 ms
around the current quench and 99.61% in a window of 8 ms. Disruption
location is sometimes confused, so user selection lets determine which point
corresponds better to the beginning of disruption. Future works could in-
clude other signals and parameters to define deeply disruption time, such
as electron temperature, radiated power, loop voltage, etc. Furthermore, it
could be studied whether including the time derivative of the plasma current
in a classifier can provide useful information about disruptions.





Chapter 5

Disruption predictions for the
next generation of tokamaks

This chapter covers all the disruption prediction approaches thinking on
ITER. The first section 5.1 analyses plasma dynamics to detect the approach
to the disruption boundaries (see (Vega et al., 2015a)); and describes the
performance of some ILW predictors trained and tested with ILW data from
JET experimental campaigns (see (Moreno et al., 2015)). Then, in section 5.2
the main disruption predictor from scratch works are explained: section 5.2.1
shows the probabilistic Venn predictors applied to disruption prediction from
scratch, in section 5.2.2 the APODIS structure is applied to this approach,
and finally in 5.2.3 the disruption prediction from scratch process is applied
to to the whole ILW campaigns databases currently available.

5.1 ITER-like Wall (ILW) predictors

5.1.1 Analysis of plasma dynamics to detect the approach to
the disruption boundaries

The analysis of the plasma dynamics in disruptive discharges shows that
the plasma evolves quietly in the safe zone of the parameter space when
it is far from the disruption. Near the disruption, the plasma evolution
can alternate between disruptive and non-disruptive zones during a variable
period of time. From a certain time instant, the plasma transits for the last
time to the disruptive zone, remains in this zone also a variable time and,
finally, the plasma disrupts. The last time instant in which the plasma was
in the safe zone has been called “no-return” point.

Currently, disruption prediction is carried out by means of machine learn-
ing methods that distinguish between disruptive and non-disruptive be-
haviours in the multi-dimensional operational space. A training dataset
made up of disruptive and non-disruptive examples allows determining the
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separation frontier between both zones, as shown in figure 5.1. During the
execution of a discharge, inputs are provided to the model on a periodic ba-
sis and an alarm is triggered when the output is “disruptive”. In figure 5.1,
cyan curve represents a possible trajectory of the plasma behaviour in the
operational space during a discharge.

Figure 5.1: Operational space during a discharge

Therefore, an approach to characterized the plasma dynamics in the oper-
ational space could be the temporal evolution of the distance to the APODIS
separating hyper-plane (see section 3.1). Figure 5.2 shows some examples
of this evolution. In general the plasma evolves in a steady way during the
plasma current flat top, it means there is no erratic trajectories in the oper-
ational space. The plasma state remains at a “constant” distance from the
separating hyper-plane, the furthest the better, and the transit is fast. How-
ever, sometimes the plasma transits and comes back to the non-disruptive
state but there exist “no-return points”. This behaviour is shown at discharge
87355 in figure 5.2, and it would be a false alarm triggered by APODIS if the
discharge was non-disruptive. Despite of some events can push the plasma
towards the hyper-plane, most of times the plasma stays in the safe region
and recovers the initial distance.

The transit speed between the non-disruptive and the disruptive zones,
see figure 5.3, can be determined: v = ∆d/∆t = (d(t+ 32)− d(t))/32. From
ILW campaigns C31− C33, 297 discharges between shots 84628 and 87532
have been analysed. Figure 5.3 illustrates the transit speed distribution,
which follows a gamma probability distribution with shape parameter t =
1.6274 and scale parameter λ = 3.0516. The mean value is 0.533 and variance
0.175.

The temporal evolution of the APODIS distance can be used for the cre-
ation of specialised databases to identify events that produce loss of stability.
In this way, APODIS distances are used to create a conformal predictor (see
section 2.3.2) and provide a value of confidence and credibility for each dis-
tance value. The nonconformity measure is the distance to the hyperplane,
so the closer the samples to the hyper-plane the lesser credibility for the
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Figure 5.2: Examples of temporal evolution of the distance to the APODIS
separating hyper-plane

Figure 5.3: Example and distribuyion of transit speed

prediction. Therefore the samples are strange for low credibility values, as
illustrated in figure 5.4.

To compute the credibility, a conformal prediction framework is used:

• The first feature vector of a discharge uses the initial training dataset.
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Figure 5.4: Credibility diagram

• After computing the credibility of the first feature vector, the vector is
added to the training set.

• With each new feature vector, both the separating hyper-plane and
the credibility are computed. As new feature vectors are added, the
hyper-plane can change.

In figure 5.5 some examples are shown and it is observed the credibility is
more sensitive than the APODIS distance to diagnose the plasma dynamics.
It can be noted that a decreasing credibility means that the plasma ap-
proaches to the separating hyper-plane; and an increasing credibility means
that the plasma moves away from the separating hyper-plane.

Figure 5.5: Plasma dynamics examples with conformal prediction

If the analysis is focused to the last seconds of the discharge, see figure
5.6, it is observed a behaviour where the plasma crosses the time t1 defined as
“no-return” point. After that, the credibility decreases, it means the plasma
approaches to the separating-hyperplane until time t2. At this point, the
plasma evolves in a steady way around credibility 0 until the time t3 is
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reached, thus, the samples are around the separating-hyperplane. From t3
the credibility increases until disruption time, t4. It is understood as the
plasma moves away from the separating-hyperplane as the samples go deep
into disruptive space.

Figure 5.6: Plasma dynamics at non-return point

Figure 5.7: No-return times histogram

Finally, figure 5.7 shows some histograms. The first histogram illustrates
interval time t1− t4, where the mean is 749 ms and the standard deviation
is 1060 ms. Intervals t1− t2, t2− t3 and t3− t4 are shown in the remaining
plots showing different means and standard deviations. These results allow
to have a first approach about the evolution and duration of the plasma
dynamics around disruption boundaries. This can be a special point because
the plasma does not recover its non-disruptive character. Therefore, no-
return points have to be investigated. Physics models around these times
can provide knowledge about the disruptive behaviour and, perhaps, these
models could be used as disruption predictors. The analysis of no-return
points is a clear problem of data mining. The plasma has to be characterized
around them.
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5.1.2 Comparison between predictors trained and test with
ILW data

In view of ITER, every study in JET is extremely important due to the sim-
ilarity between the two devices, even more with the new ILW. Disruptions
have gained relevance because of the damage that the device can receive,
hence the importance of disruptions prediction and avoidance. Currently, the
only predictor implemented in real time with a high performance is APODIS.
Despite it was trained with data from C-wall experimental campaigns, it has
kept a good performance during all the ILW experimental campaigns. In par-
ticular, during campaigns C31 − C34 (July 2013- October 2014), APODIS
obtained 85.38%(333/390) of success rate with 2.46% of false alarm rate,
while mode lock trigger reached a success rate of 66.67%(333/390). Focus-
ing on ITER, it is very important to obtain results with predictors trained
and tested with data from ILW campaigns. For this purpose, a compari-
son between an APODIS version and a simpler one layer predictor has been
carried out, using ILW data for training and testing.

In 3.3 results are obtained with APODIS trained with C wall data (see
3.1) and without any retraining in spite of its use with metallic wall dis-
charges. Taking into account ITER will work with a similar wall than the
current ITER-like wall (ILW) at JET, the purpose of this study is to com-
pare predictors trained with data from JET ILW campaigns. An APODIS
version has been trained with data from campaigns C28 − C30 (1036 non-
disruptive discharges and 201 non intentional disruptions), and it has been
compared with a simpler one layer predictor trained with the same data.
They have been tested with experimental data from campaigns C31 − C34
(1051 non-disruptive discharges and 390 non intentional disruptions).

It is important to note that this is useful in ITER view because the mod-
els are trained and tested with ILW data, as it will be done at ITER. The
idea of a simpler predictor comes from the fact that a huge variety of exper-
iments have been done along C-wall campaigns (see table 3.2), while ILW
campaigns C28−C30 (see table 3.7), which have been used to train, have a
much smaller amount of data and less variety of experiments. As mentioned,
APODIS online version on JET was trained with a huge database from C-
wall campaigns (see 3.1). The database used in this study corresponds to
the table 3.7:

• Train: campaigns C28− C30 (September 2011 - July 2012), 201 non-
intentional disruptions and 1036 safe shots.

• Test : campaigns C31 − C34 (July 2013 - October 2014), 388 non-
intentional disruptions and 1031 safe discharges.

An sliding window mechanism applied to APODIS is developed in other
study that is explained in 3.15. In (Moreno et al., 2014b), the sliding window



5.1. ITER-like Wall (ILW) predictors 123

mechanism shows a better success rate but a slightly increase in the false
alarm rates for higher temporal resolutions. Despite of this, in order to
compare with APODIS structure, the same temporal resolution as APODIS
(analyse consecutive temporal windows of 32 ms) has been taken for this
simpler predictor. The selected structure in this work is a single one layer
formed by SVM classifiers. As explained in 2.3.1, SVM maps the input space
of the feature vectors into a new feature space, simplifying the separating
hyper plane (or decision function) in the feature space. This transformation
is done by a kernel function. The radial basis kernel function is the one
selected to train our SVM classifiers:

K(x, xi) = exp

{
−|x− xi|

2

2σ2

}
.

This kernel function needs as inputs the regularization parameter C and
the kernel parameter γ. SVM theory has been exposed in 2.3.1. As the struc-
ture is simpler, high-computing performance(HPC) has not been necessary
and all the models have been trained and tested in Matlab using the libsvm 1

library. Although in some studies (Moreno et al., 2014b; Pereira et al., 2015)
is demonstrated that mode lock amplitude and plasma inductance signals
are essential for APODIS, in this work it has been used two set of signals to
develop the predictor: the 7 signals (14 features after data processing) from
table 3.1 in order to use the same data as APODIS; and following the results
in (Moreno et al., 2014b), a set formed by 3 signals( 6 features after data
processing), mode lock amplitude, plasma inductance and plasma current.

Several numbers of predictors have been developed combining values of
C and γ parameters: C = 104 : 101 : 108 and γ = 0.01 : 0.05 : 10. Further-
more three different predictors have been considered taking into account the
disruptive samples selected, it means:

• P1: this predictor considers as disruptive samples only the 32 ms before
the disruption, it means there is only one disruptive sample ([−32 ms,
0]) for every disruptive discharge.

• P2: it is considered as disruptive samples 64 ms before the disruption,
it means there are two disruptive samples ([−64 ms, −32 ms], [−32
ms, 0]) in a disruptive discharge.

• P3: it is selected as disruptive samples 96 ms before the disruption; it
means there are three disruptive samples ([−96 ms, −64 ms], [−64 ms,
−32 ms], [−32 ms, 0]) in a disruptive discharge.

At this point it is necessary to remark that APODIS does not consider
the last 32 ms as disruptive sample, on the contrary, as it is shown in figure

1http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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3.2, it takes as disruptive information from 32 ms to 128 ms before the
disruption. Therefore combining 2 set of signals, 3 predictors, 5 values of C
parameters and 200 values of γ parameter, 6000 different models have been
developed. From all these models, the best results for each predictor and set
of signal are shown in table 5.1.

To present the results, the same criteria in 3.3 has been followed. The
warning time is called the difference: ∆t = tD − ta,, where ta is the time
when the alarm is triggered, and tD is the disruption time. Taking into
account that at least 10 ms are needed to carry out mitigation action when
a disruption happens, the results are presented in terms of:

• Valid detections: 10 ms ≤ ∆t ≤ 1.5 s

• Early detections: ∆t > 1.5 ms

• Tardy detections: 0 ≤ ∆t ≤ 10 ms

• False alarms: an alarm is triggered in a safe discharge.

• Missed alarms: in a disruptive discharge, the alarm happens after de
disruption time (∆t < 0) or there is no alarm triggered.

Predictor Success Valid Early Tardy False Missed
P3 92.53% 80.16% 4.12% 8.25% 2.72% 7.47%

14 features (359/388) (311/388) (16/388) (32/388) (28/1031) (29/388)

P3 92.53% 79.38% 2.32% 10.82% 1.94% 7.47%
6 features (359/388) (308/388) (9/388) (42/388) (20/1031) (29/388)

P2 91.75% 78.87% 9.02% 3.87% 2.23% 8.25%
14 features (356/388) (306/388) (15/388) (35/388) (23/1031) (32/388)

P2 92.53% 79.64% 2.32% 10.57% 1.65% 7.47%
6 features (359/388) (309/388) (9/388) (41/388) (17/1031) (29/388)

P1 90.72% 76.55% 3.87% 10.31% 1.84% 9.28%
14 features (352/388) (297/388) (15/388) (40/388) (19/1031) (36/388)

P1 92.27% 78.09% 2.84% 11.34% 2.13% 7.73%
6 features (358/388) (303/388) (11/388) (44/388) (22/1031) (30/388)

Table 5.1: Best models for each set of signals and type of predictor

The best model is P2 with 6 features, which obtains a success rate of
92.53% and the 81.6% of the detections are at least 10 ms before the disrup-
tion time; while a 10.57% is detected before the disruption time but too late
to carry out any mitigation action; and 7.47% are missed alarms. The false
alarm rate is low, only 1.65%. To make a realistic comparison an APODIS
online version has been trained and tested over the same database, however
due to the high computational cost the parameters used to APODIS offline
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training has been selected between a reduced ranges of values. For the first
layer is taken C = 1000 and γ = 0.01 as values of the RBF kernel, and the
second layer uses C = 107 as parameter of the linear kernel. In addition
APODIS offline has taken as safe discharges for the training set, the 300
first non-disruptive shots from campaigns C28−C30, this decision has been
taken due to the computational cost if the datasets are higher. Table 5.2
shows the results of the offline APODIS version trained and tested with the
same data as the new predictor; and the results of the best model selected
for the new predictor. In figure 5.8, the comparison between both predictors
is illustrated. The green lines represent 10 ms and 1.5 s before the disruption
time respectively.

Predictor Success Valid Early Tardy False Missed
P2 92.53% 79.64% 2.32% 10.57% 1.65% 7.47%

6 features (359/388) (309/388) (9/388) (41/388) (17/1031) (29/388)

APODIS 89.43% 74.74% 4.12% 10.57% 3.01% 10.57%
offline (347/388) (290/388) (16/388) (41/388) (31/1031) (41/388)

Table 5.2: Results of APODIS offline and P2-6 features
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Figure 5.8: Comparison between ILW predictors

To obtain the best results for the simpler one layer predictor, as explained
in this work, multiple models have been trained achieving a predictor with a
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good performance. This predictor formed by only one layer of a SVM classi-
fier and only 3 signals, reaches 79.64% of valid detections and 1.65% of false
alarm rate. It can predict with a warning time less than 10 ms, the 81.6% of
the disruptions. The offline version of APODIS, trained with the same data,
reached a 74.74% of valid detections and 3.01% of false alarm rate. We can
conclude that the simpler one layer predictor has a great performance, even
better than the offline version of APODIS. However it cannot be said this is
a better approach due to APODIS online was trained with a higher variety of
experimental campaigns and bigger amount of data training; on the contrary
the campaigns C28−C30 are the first campaigns of the ILW at JET, and the
experiments are quite similar. However, the one layer predictor achieves two
important requirements for disruption predictors: simplicity, this means to
develop the simplest possible classifier to distinguish between disruptive and
non-disruptive behaviours at any moment; and fast training process (think-
ing in a disruption predictor from scratch), the training process should be
fast enough (from a computational point of view).

As future work, APODIS could be trained with a higher variety of cam-
paigns in the future when JET operates more ILW campaigns; even it could
be considered the 32 ms before the disruption time as disruptive sample. On
the other hand, the simpler one layer predictor, due to its speed could be
checked from scratch as an approach to ITER.

5.1.3 Deuterium-Hydrogen ILW campaign

The last ILW campaign C34, formed by 139 non-disruptive discharges and
37 non-intentional disruptions see table 3.7), was operated using deuterium-
hydrogen, instead of deuterium-deuterium. The rest of the ILW campaigns
were developed with deuterium-deuterium discharges. Hydrogen campaigns
are interesting for physics studies but not to reach ignition or develop data-
driven models for disruption predictions. The reason is these experiments
are much more stable and the operation conditions are quite different from
the deuterium-deuterium experiments or even deuterium-tritium. However,
ITER would start the operation with an hydrogen campaign. Furthermore,
ITER and DEMO, disruption predictors have to be ready to work from the
beginning of the operations and have to be able to recognize an incoming
disruption. Therefore the first databases available to develop an efficient
disruption predictor will come from an hydrogen campaign.

The database used in this study corresponds to the table 3.7:

• Train: campaign C34, 37 non-intentional disruptions and 137 safe
shots.

• Test : campaigns C28−C33, 552 non-intentional disruptions and 1928
safe discharges.
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Following the same criterion in 5.1, several numbers of predictors have
been developed: combining values of C and γ parameters ( C = 104 : 101 :
108 and γ = 0.01 : 0.05 : 10); three types of predictors (P1,P2,P3); and two
set of signals (14 and 6 features). In this case the best results are obtained
with P1-6 features obtaining the results shown in table 5.3. The results show
70.11% of valid detections and 14.1% of false alarm rate. The predictor can
predict with a warning time less than 10 ms, the 72.83% of the disruptions.

Predictor Success Valid Early Tardy False Missed
P2 87.32% 70.11% 2.72% 14.49% 14.21% 12.68%

6 features (482/552) (387/552) (15/552) (80/552) (274/1928) (70/552)

Table 5.3: Results of disruption predictor trained with the hydrogen cam-
paign

At this point, it can be said that the results are quite unsatisfactory. In
order to analyse these results, in figures 5.9 and 5.10 it is shown a scatter
plot of the features (standard deviation of the FFT and mean value) of
plasma inductance and mode lock signals. It can be seen in figure 5.9 that
the disruptive (cyan, red and green circles) and non-disruptive (blue circles)
features on campaign C34 are practically linearly separable. On the other
hand, figure 5.10 shows an overlap of disruptive and non-disruptive features
for campaign C28 − C30. It has been plotted only campaign C28 − C30
to compare because there will be too many samples if all campaigns were
plotted. Therefore if a model is generated with data linearly separable the
decision boundary would be a linear hyperplane which cannot be able to
classify data overlapped such the data shown in figure 5.10.

Despite the previous analysis, ITER cannot wait until the end of the
first campaign, in this way it would be developed a disruption predictor
from scratch. This approach will be explained in the following section.

5.2 Disruption predictors from scratch

All the methodologies about disruption prediction that have been worked in
the previous chapters and sections depend on a database of past discharges
to create models able to predict disruptions. However, next generation of
tokamaks such as ITER and DEMO can suffer irreversible must be able to
predict disruption from scratch, it means from the beginning of the opera-
tion when there are not past discharges. Recently, two different works have
dealt with the development of adaptive data-driven predictors from scratch
to learn from the incoming data. As previous predictors based in data-driven
models, these both predictors are not based on plasma physics, but on ex-
tracting knowledge to identify the incoming disruption from the different
signals provided by the device during the experiments. As explained in 3.3,
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Figure 5.9: Scatter plot: C34 features

Figure 5.10: Scatter plot: C28− C30 features
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APODIS has achieved high success rates and low false alarm rate during the
ILW campaigns C28 − C34 (Vega et al., 2013a; Moreno et al., 2015). Fur-
thermore, APODIS has proven no ageing effect, it means that the predictor
has not suffered deterioration derived from operating the device in different
operational regions from those used for training. Due to these performance,
APODIS structure has been used to develop a predictor from scratch and
to estimate the minimum number of disruptions to have a reliable predic-
tor (Dormido-Canto et al., 2013), which is showed in 5.2.2. In (Vega et al.,
2014b), a particular algorithm based on probabilistic classifiers has been de-
veloped and it has been applied to the database of the first ILW campaigns
of JET C28− C30 (see table 3.7); this predictor is showed in 5.2.1.

Other predictor from scratch (Aledda et al., 2013) makes reference to
fault detection and isolation (FDI) techniques (Patton et al., 1989). In
(Aledda et al., 2013), the disruption prediction is formalized as a fault de-
tection problem, where the discharges which are correctly terminated (non-
disruptive discharges) are assumed as the normal operation conditions and
the disruptions are assumed as status of fault. The normal operation condi-
tions model was built with non-disruptive discharges from ASDEX Upgrade
(AUG) and the dynamic structure of the data was estimated through the fit-
ting of a multivariate AutoRegressive with eXogenous inputs (ARX) model.
The datasets are composed of time series of the radiated fraction of the total
input power, the internal inductance and the poloidal beta. The disruption
prediction system is based on the analysis of residuals in the multidimen-
sional space of the selected variables. The discrepancy between the outputs
provided by the ARX model and the actual measurements is an indication of
process fault (disruption). The predictor was applied to AUG data between
2002 and 2009. Results are promising but lower false alarm rates are needed.
It should be noted that the methodology is not applied to conditions from
scratch but the technique is susceptible of such a development. However,
thinking of ITER, the authors state that, perhaps, the method cannot be
applied during the very first pulses of ITER due to the need of a sufficient
number of pulses safely landed.

As mentioned previously, in ITER and DEMO, disruption predictors have
to be ready to work from the beginning of the operations and have to be
able to recognize an incoming disruption. As mentioned, nowadays, there are
not satisfactory physic-driven systems and data-driven models are the only
viable option. A disruption predictor is a pre-requisite for any mitigation
system, therefore, at least, the following operation requirements should be
considered for any disruption predictor from scratch: learning from scratch,
real-time operation, high success rate, high learning rate, early recognition
of disruptions, low rate of false alarms, controlled ageing effect, predictor
simplicity, fast training process and reliable predictions.

• Learning from scratch: disruption predictors require data from past
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experiments to train a model. However, there will be a complete ab-
sence of previous experimental data in ITER and DEMO. The training
has to be carried out from scratch as the discharges are produced. This
lack of previous information is not only limited to new fusion devices
but it also happens in existing devices when significant changes are
implemented (for example, in JET after the installation of the metallic
wall).

• Real-time operation: the predictor should be capable to work in a
real-time network in order to provide a decision with enough time to
mitigate the disruption.

• High success rate: it means a low number of missed alarms. For exam-
ple ITER requires a success rate ≥ 95%.

• High learning rate: a high success rate is not enough for a disruption
predictor from scratch, due to a predictor from scratch has to work
efficiently from the beginning, a high success rate should be reached as
soon as possible.

• Early recognition of disruptions: in any disruption mitigation tech-
nique, a delay between the alarm triggered by the predictor and the
start of the mitigation action exists, this is the reaction time. Then
the warning time has to be higher than the reaction time, in order to
carry out an efficient mitigation.

• Low false alarm rate: in a real-time network, a false alarm means
that control system carries out a mitigation action when an alarm
is triggered during a non-disruptive discharge but it is not possible
to know whether or not the alarm was false. Therefore, the device is
stopped and the experiment is not finished. Current and future devices
cannot allow this, they need the minimum number of false alarm.

• Controlled ageing effect : a disruption predictor should not suffer de-
terioration derived from operating the device in different operational
regions from those used for training.

• Simplicity : this means to develop the simplest possible classifier to
distinguish between disruptive and non-disruptive behaviours at any
moment. To this end, the disruption configuration space will have to
be characterized with a reduced number of features compatible with
the best possible generalization capability.

• Fast training process:due to the fact that an adaptive classifier is needed
to continuously incorporate new relevant information, the training pro-
cess should be fast enough (from a computational point of view) to
allow inter-shot trainings when necessary.
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• Reliable predictions:any training process with low number of samples is
an issue. For this reason, each individual prediction should be qualified
with estimation about its reliability.

The compliance of the requirements stablish the suitability of the pre-
dictor from scratch. Furhtermore, the training process should be done in
chronological order. The available information for training purposes is very
limited and it depends crucially on the chronological order of the discharges.
This means that the experimental program of a new device has to envis-
age a discharge sequence that takes into account the necessary continuous
learning.

5.2.1 Probabilistic Venn predictor

In general, most of the machine learning algorithms provide a prediction
without any information about its reliability. However predictions from dif-
ferent samples, it means from different feature vectors, probably contain
different values of confidence and probability. Probabilistic classifiers ex-
press the probability of a sample, represented by a specific feature vector, to
belong to a particular class. Following the Bayes’ theorem (Theodoridis and
Koutroumbas, 2008), it can be written as:

P (ci|~x) =
P (ci)P (~x|ci)

P (~x)
=

P (ci)P (~x|ci)∑Nc
i=1 P (ci)P (~x|ci)

=
Priori ·Authenticity

Evidence

(5.1)
This formula gives the posterior probability that the sample (feature

vector), ~x, belongs to the respective class ci. This probability is strictly given
under statistical randomness assumption. Feature vectors must accomplish
the i.i.d. assumption (Vovk et al., 2005). However, to apply Bayes’ theorem
the likelihood and prior probability of each class must be known. Then,
the estimation of the likelihood is an issue if this information is not known,
which is the case of disruption prediction from scratch. Therefore, in order to
avoid unjustified assumptions about the form of the probability distribution
function, non-parametric approaches are used. The Parzen window method
(Duda et al., 2000) is the most used non-parametric density estimator, which
is based on kernel methods but it needs a minimum number of samples to
produce reliable estimations. Due to there are not initial samples, Bayesian
methods are discarded.

On the contrary, Venn predictors (Vovk et al., 2005) provide a probability
prediction interval for each prediction and well calibrated outputs under the
i.i.d. assumption. A well calibrated output means that the accuracy of
the Venn predictors is bound to fall within the upper and lower probability
intervals. These predictors belong to the family of conformal predictors
(Vovk et al., 1999; Saunders et al., 1999), which have been explained in 2.3.2
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and provide additional information about the credibility and confidence of a
prediction. Basically, Venn predictors can be understand as the process to
find the most likely hypothesis of all possible. Given a training set (xi, yi)
with i = 1, ..., n− 1, whose samples satisfy the i.i.d. assumption, the feature
vectors are xi and the respective label is yi ∈ Y1, ..., YC . The objective
is to classify the new sample (xn, yn), where the label yn is unknown. The
objective is to estimate the probability of the new sample of belonging to one
class yi. This way Venn predictor framework assigns each one of the possible
classification Y1, ..., YC to the new sample xn, and divides all the possible
examples (x1, y1), ..., (xn−1, yn−1), (xn, Yj) into a number of categories based
on a taxonomy τi, i = 1, ..., T . A taxonomy is a function A which classifies
in T categories the relation between a sample (xk, yk) and the rest of the
samples:

τi = A((x1, y1), ..., (xn, yn), (xk, yk)). (5.2)

Many taxonomies have been used in Venn predictors, such as neural
networks in (Papadopoulos, 2013), logistic regression in (Nouretdinov et al.,
2012), SVM in (Lambrou et al., 2012),etc. For the disruption predictor
from scratch using Venn predictors, the nearest centroid taxonomy (NCT)
(Dashevskiy and Luo, 2008) has been selected. This taxonomy is given by:

τi = A((x1, y1), ..., (xn, yn), (xk, yk)) = Yj , (5.3)

j = arg minj=1,...,C(‖xi − Cj‖) (5.4)

where Cj are the centroids of the C classes and ‖.‖ is a metric which
corresponds to Euclidean distance.

The first step to predict the label of a new sample xn with unknown
label yn using Venn predictors formulation is to choose a taxonomy with T
categories, NCT in this case.

The next step is to assume that Yj = Y1 (i.e. yn = Y1) and partition the
examples into categories using the NCT. The empirical probability distribu-
tion of the labels in the category τ that contains (xn, Y1) is:

pY1(Yk) =
|(x∗, y∗) ∈ τ : y∗ = Yk|

, k = 1, ..., C (5.5)

Therefore, computing the probabilities of each label within the category
τ a row vector (pY1(Y1), ..., pY1(YC)) is obtained. Equally, the probability
distribution that contains (xn, Y2) is:

pY2(Yk) =
|(x∗, y∗) ∈ τ : y∗ = Yk|

, k = 1, ..., C (5.6)

and a similar vector is obtained (pY2(Y1), ..., pY2(YC)). After all possible
classifications to xn have been assigned, a set of probability distributions PC
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(a square matrix of dimension C) is generated:

PC =


pY1(Y1) pY1(Y2) ... pY1(YC)
pY2(Y1) pY2(Y2) ... pY2(YC)
... ... ... ...

pYC (Y1) pYC (Y2) ... pYC (YC)

 (5.7)

The last step in the process is to assign a label to the sample xn, which
will be yn = Ykbest . The maximum and minimum probabilities obtained for
each label Yk, it means the maximum and minimum probability value in each
column of PC , define the interval for the probability of xn belonging to Yk.

kbest = arg maxk=1,...,C( ¯p(k)) (5.8)

where ¯p(k) corresponds to the mean value of the probabilities obtained
for label Yk among all probability distributions (the mean of every column
of matrix PC). The probability interval for this prediction is [L(Yk), U(Yk)],
which is the maximum and minimum probability of column with the maxi-
mum mean value.

Figure 5.11: Data samples of Venn predictor example

For example, given the data samples in figure 5.11 with the classes Y =
I, II, III, the objective is to classify the new sample xn = 16. The taxonomy
used is the NCT, it means that the category of a sample is the same as
the label of its nearest centroid. There will be three categories τI , τII , τIII .
Firstly we assume that xn belongs to the first class I, (16, I). The centroids
will be:

Centroid(I) =
0 + 1 + 16

3
= 5.6 (5.9)

Centroid(II) =
6 + 7

2
= 6.5 (5.10)

Centroid(III) =
14 + 15

2
= 14.5 (5.11)

The label of the nearest centroid of the sample (16, I) is (14.5, III), which
means that (16, I) is in category τIII . The categories in this case yield:

τI = (0, I), (1, I), (6, II) (5.12)
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τII = (7, II) (5.13)

τIII = (14, III), (15, III), (16, I) (5.14)

Therefore, the first row of PC is computed with the data corresponding
to category τIII .

P I(I) = 1/3, P I(II) = 0, P I(III) = 2/3 (5.15)

Now we assume that xn belongs to the second class II, (16, II). The
centroids will be:

Centroid(I) =
0 + 1

2
= 0.5 (5.16)

Centroid(II) =
6 + 7 + 16

3
= 9.67 (5.17)

Centroid(III) =
14 + 15

2
= 14.5 (5.18)

The label of the nearest centroid of the sample (16, II) is (14.5, III),
which means that (16, II) is in category τIII . The categories in this case
yield:

τI = (0, I), (1, I) (5.19)

τII = (6, II), (7, II) (5.20)

τIII = (14, III), (15, III), (16, II) (5.21)

Therefore, the second row of PC is computed with the data corresponding
to category τIII .

P II(I) = 0, P II(II) = 1/3, P II(III) = 2/3 (5.22)

Finally, we assume that xn belongs to the last class III, (16, III). The
centroids will be:

Centroid(I) =
0 + 1

2
= 0.5 (5.23)

Centroid(II) =
6 + 7

2
= 6.5 (5.24)

Centroid(III) =
14 + 15 + 16

3
= 15 (5.25)



5.2. Disruption predictors from scratch 135

The label of the nearest centroid of the sample (16, III) is (15, III),
which means that (16, III) is in category τIII . The categories in this case
yield:

τI = (0, I), (1, I) (5.26)

τII = (6, II), (7, II) (5.27)

τIII = (14, III), (15, III), (16, III) (5.28)

Therefore, the third row of PC is computed with the data corresponding
to category τIII .

P II(I) = 0, P II(II) = 0, P II(III) = 1 (5.29)

Then the PC square matrix of dimension C = 3 which contains all the
probability distributions is given by:

P3 =

 1/3 0 2/3
0 1/3 2/3
0 0 1

 (5.30)

The mean of the probabilities for each class is:

¯P (I) = 1/9 = 0.11, ¯P (II) = 1/9 = 0.11, ¯P (III) = 7/9 = 0.78 (5.31)

it can be concluded that the new sample xn = 16 belongs to class yn =
III with probability 0.78 in an error bar of [0.67, 1].

In (Vega et al., 2014b; Pereira et al., 2015) , Venn predictors are used with
the NCT. Both works deal with two classes, disruptive and non-disruptive,
to predict disruptions; and they use the databases explained in 3.2, corre-
sponding to the first ILW campaigns of JET C28−C30 (1036 safe discharges
and 201 unintentional disruptions, see table 3.7). The signals used are shown
in table 3.4, and 14 features are employed by computing the mean value and
standard deviation of the FFT of each signal, see 3.2. The selection of NCT
allows to summarize the initial input data and reduce significantly all the
disruptive and non-disruptive information. The predictions are carried out
sequentially, the predictor begins with only two samples, one disruptive and
one non-disruptive. Venn predictors learn by transduction (Vapnik, 2000),
they do not need to train models as inductive classifiers.

The first predictor is obtained after the first disruption and, from that
moment, all discharges are analysed in chronological order. Each discharge is
analysed by simulating a real-time data processing, as explained in 3.2. After
a missed alarm, a new training set is created to incorporate new knowledge.
All possible combinations between 2 and 7 features, have been tested (9893
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predictors have been developed). Given a specific combination of features,
the algorithm showed in (Vega et al., 2014b) is executed for the whole dataset
of discharges. The first predictor is generated after the first disruption and
it is used with all posterior discharges, subject to retrain after every missed
alarm. The results presented in figure 5.12 correspond to the evaluation
of the predictors after the analysis of the whole database, it means, the
success and false alarm rates are the cumulative results of the process after
1237 discharges. The average prediction probability (AVP) represents the
average probability interval in Venn predictors.

Figure 5.12: Features with the best results using Venn predictors

An important drawback in (Vega et al., 2014b) was the time required to
compute the results (figure 5.12) that can be estimated in 1731 hours (≈ 2.4
months). Genetic algorithms (GA) are searching algorithms that simulate
the process of natural selection. In (Pereira et al., 2015), the GA and the
Venn predictors are combined with the objective not only of finding good
enough features within the 14 available ones but also of reducing the compu-
tational time requirements. Five different performance metrics as measures
of the GA fitness function were evaluated. The best metric was the mea-
surement called Informedness, with just 6 generations (168 predictors at 29.4
hours).

5.2.2 APODIS from scratch

APODIS has been used to predict from scratch and to estimate the minimum
number of disruptions to have a reliable predictor (Dormido-Canto et al.,
2013). The first ILW campaigns of JET C28−C30 (1036 safe discharges and
201 unintentional disruptions, see table 3.7) have been used in chronological
order. The first predictor is created after the first disruption and re-trainings
are carried out after each missed alarm. The main result is that APODIS
reproduces its good prediction capabilities and low rate of false alarms after
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including in the training process about 40 disruptions.

General methodology for disruption prediction from scratch

The problem to be solved is a binary classification but this methodology
can be extrapolated to multi-class problems. As explained in section 3.2,
the number of non-disruptive discharges is much higher than the number of
disruptive discharges. In this sense, the fusion databases to develop disrup-
tion predictors are highly unbalanced. A predictor from scratch have to be
trained as discharges are produced, this means that discharges are used in
chronological order as they occur. Regardless of the balanced or unbalanced
data, it has to be established when a retraining is required to improve the
predictor. A first criterion has been to generate a new predictor just after
the occurrence of every new disruptive discharge. The reason for this is to
incorporate any new information from disruptive discharges to be used in
the future prediction of disruptions. To explain this criterion, let us con-
sider the simplified example in figure 5.13, where a set of 50 discharges (in
chronological order) is represented. The example considers 45 non-disruptive
discharges (represented by circles) and 5 disruptive discharges (denoted by
squares). It is just an illustrative example and therefore, for didactic pur-
poses, the disruptions are chosen evenly spaced. From a practical point of
view, the methodology is exactly the same regardless of the number of disrup-
tive discharges or the variable number of non-disruptive discharges between
disruptive ones. A greater number of disruptive discharges will result in a
larger number of trained models. According to the criteria of generating a
predictor after every disruptive discharge, the situation simulated in figure
5.13 requires the generation of five predictors.

Figure 5.13: Simplified example of prediction from scratch

Two training data sets approaches have been used:

• Unbalanced training data sets: in this case, it is well known that the
decision boundary established by the machine learning algorithm tends
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to be biased towards the majority class. Therefore the minority class
samples suffer a certain risk of misclassification. In nuclear fusion
databases, the disruptive and non-disruptive samples are highly un-
balanced as mentioned previously. In this case, each predictor from
figure 5.13 will take all the disruptive and non-disruptive discharges
available until this moment. For example, M(1) training set will
be formed by disruptive discharge number 10 and non-disruptive dis-
charges 1−9;M(2) training set will be formed by disruptive discharges
number (10, 20) and non-disruptive discharges (1− 9, 11− 19); etc. It
is important to note that we are talking about unbalanced number of
discharges, the number of samples used in each disruptive and non-
disruptive discharge follow the process explain in section 3.1.

• Balanced training data sets: the balance can be understood as a guar-
antee of fairness. Most machine learning algorithms performs well due
to they aim to optimize the overall classification accuracy. It is impor-
tant to note that classification performance also depends on the train-
ing set size and the problem complexity. For example, a linearly separa-
ble problem is not susceptible to any amount of unbalance (Japkowicz
and Stephen, 2002). As the degree of complexity increases, the class
unbalance factor starts influencing the classifier generalization ability.
In this case, each predictor from figure 5.13 will take all the disruptive
discharges available until this moment, and the same number of non-
disruptive discharges selected randomly between all the safe discharges
available. For example, M(1) training set will be formed by disruptive
discharge number 10 and one non-disruptive discharge, which is chosen
randomly between the safe discharges available 1 − 9; M(2) training
set will be formed by disruptive discharges number (10, 20) and two
non-disruptive discharges, which are chosen randomly between the safe
discharges available (1− 9, 11− 19); etc.

The test set used for each model correspond to all the discharges produced
after the ones used for training. A similar metric than the one used in section
3.3 has been used, the success rate is not divided in valid, early and tardy

detections, it is defined as
disruption predictions

disruptive discharges
, where the disruption

predictions are understood as every disruption detected before the disruption
time. The objective is to achieve the highest success rate and the lowest false
alarm rate.

Twelve signals are chosen for training and testing models (see table 5.4).
The majority or all of these signals have also been used in previous research
on disruptions. This work uses two signal sets: an expanded set (that in-
cludes all the signals in table 5.4) and a reduced set (that includes the signals
from (1) to (7). These signals are the same shown in table 3.4) and three
new signals which are the time derivative of three signals from the list.
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Id number Signal name
(1) Plasma current
(2) Mode lock amplitude
(3) Plasma inductance
(4) Plasma density
(5) Diamagnetic energy time derivative
(6) Radiated power
(7) Total input power
(8) Poloidal beta
(9) Plasma vertical centroid position
(10) Plasma inductance time derivative
(11) Poloidal beta time derivative
(12) Plasma vertical centroid position time derivative

Table 5.4: List of signals

Results

The results for the unbalanced approach with both set of signals are shown in
figure 5.14. The expanded set is represented by black lines and the reduced
set is represented by grey lines. The x-axis shows the number of disruptive
discharges in each model. Each model is tested with the rest of the discharges
produced after it is generated. It can be seen that the prediction is unstable
until model 24, which determines a clear frontier. In table 5.5 it can be seen
the average rates of success and false alarms rate with the standard deviation
from model 24 onwards with both expanded and reduced signal sets.

Signal set Success rate (%) False alarm rate (%)
Expanded 85.99± 8.43 1.37± 1.19
Reduced 85.65± 7.78 2.27± 3.06

Table 5.5: Results for unbalanced approach from model 24 onwards

In figure 5.15 it is illustrated the results for the balanced approach with
both set of signals. As the previous results, the expanded set is represented
by black lines and the reduced set is represented by grey lines. Unlike what
happened with the unbalanced approach, this case obtains better results from
the first models in terms of stability, it means that the number of oscillation
has significantly been reduced. The results are very stable from model 42.
In table 5.6 it can be seen the average rates of success and false alarms rate
with the standard deviation from model 42 onwards with both expanded and
reduced signal sets.

Finally a last approach were developed, an hybrid approach based on
starting the generation of models with balanced datasets (to avoid the un-
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Figure 5.14: Unbalanced approach results

Figure 5.15: Balanced approach results

stable and erratic predictions, see figure 5.14) and switching to unbalanced
datasets at a certain point with the aim of keeping the false alarms rate
as low as possible. This point establishes the number of non-disruptive dis-
charges which will be used in the training datasets. It means from that point
onwards, the training sets will be unbalanced with the same number of non-
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Signal set Success rate (%) False alarm rate (%)
Expanded 87.63± 5.27 1.76± 1.01
Reduced 88.80± 5.41 1.48± 0.98

Table 5.6: Results for balanced approach from model 24 onwards

disruptive discharges (randomly chosen from the available safe discharges)
and a increasing number of disruptive discharges (each new disruption is in-
cluded in the new model). The switching point has been selected at model
42 due the results are quite stable after model 42 in the balanced approach,
see figure 5.15. Therefore the hybrid approach uses balanced datasets until
model 42 and unbalanced dataset from that moment, in favour of the dis-
ruptive discharges. In table 5.7 it can be seen the average rates of success
and false alarms rate with the standard deviation from model 42 onwards
with both expanded and reduced signal sets. In figure 5.16, the sharp fall in
the success rate at the end is due to the last models use very reduced test
sets. For example, model 200 is tested with only one disruptive discharge,
then if it is missed the success rate falls to 0%.

Figure 5.16: Hybrid approach results

Signal set Success rate (%) False alarm rate (%)
Expanded 93.03± 2.91 3.14± 1.14
Reduced 91.27± 3.99 2.25± 0.80

Table 5.7: Results for hybrid approach from model 24 onwards
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At this point, it is important to discuss that generating a new model
every new disruption arrives is not really necessary. If the model identifies
correctly the new incoming disruptions, a new model which includes this
disruption does not incorporate new knowledge to the classifier. Therefore
this training could be avoided by generating a new model when the new
incoming disruption is missed, in this way the new model incorporates new
knowledge from the missed disruption.

Figure 5.17 shows the success rate of an hybrid approach, using the ex-
panded signal set, that follows the criterion of retraining the system only
when a disruption is missed. For the JET ILW campaigns C28− C30, only
10 retrains after disruption 42 have been necessary (instead of 159 developed
in figure 5.16). In figure 5.17, each retraining is represented by a circle. The
numbers at the top of the figure show the number of disruptive discharges
successfully recognized by each predictor before missing a disruption. A total
number of 160 disruptions happened and 150 of them have been recognized
(93.75%). The average rate of false alarms is 2.79%.

Figure 5.17: Hybrid approach results retraining every missed disruption

5.2.3 Disruption prediction from scratch during ILW cam-
paigns C31-C34

The previous studies about disruption prediction from scratch were imple-
mented over the ILW campaigns C28− C30 (September 2011 - July 2012).
In order to extend an analysis from scratch, in this section a predictor from
scratch is applied to ILW campaigns C28−C30 (September 2011 - July 2012)
and C31− C34 (July 2013 - October 2014). The database from these cam-
paigns is formed by 1036 non-disruptive discharges and 201 non intentional
disruptions in campaigns C28−C30; and 1051 non-disruptive discharges and
390 non intentional disruptions during campaigns C31− C34 (table 3.7).

Due to the APODIS structure requires a high computational cost and
the one layer predictor developed in section 5.1 shows a great performance
with a simpler structure, the last one has been chosen for this analysis.
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The best model from section 5.1 is P2 with 6 features. It is taken the
unbalanced approach from section 5.2.2, it means, each predictor from figure
will take all the disruptive and non-disruptive discharges available until the
last disruptive discharge in the training set.

Firstly, the performances of the models trained from scratch with the
unbalanced and balanced approaches shown in section 5.2.2 are compared in
campaigns C28−C30. The disruption prediction for the unbalance dataset
approach is illustrated in figure 5.18. The x-axis represents the number of
disruptive discharges in each model. In order to compare with the previous
work in section 5.2.2, the model 24 has been selected as a reference point;
however it can be seen in figure 5.18 that there is no erratic and unstable
behaviour for the unbalanced approach. On the contrary, balanced approach
shows an erratic and unstable behaviour (figure 5.19). Due to the random
selection of non-disruptive discharges, the balanced approach has been re-
peated several times with the same behaviour.
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Figure 5.18: Unbalanced approach results with one layer predictor

Approach Success rate (%) False alarm rate (%)
Unbalanced 91.82± 3.96 0.90± 0.49
Balanced 80.99± 11.72 2.18± 10.62

Table 5.8: Results for one layer predictor from scratch from model 24 on-
wards

Table 5.8 shows the average rates of success and false alarms with the
standard deviation from model 24 onwards. The standard deviation in the
balanced approach is high because there are several fluctuations, as shown
in figure 5.19. Unlike what happened with the balanced datasets, the unbal-



144 Chapter 5

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Number of disruptive discharges

R
at

e 
(%

)

Balanced datasets

 

 

Success alarms
False alarms

Figure 5.19: Balanced approach results with one layer predictor

anced approach obtains better results in general and from the first models.
The results are quite similar than APODIS performance from scratch with
the hybrid approach in section 5.2.2. Therefore, the hybrid approach is not
necessary to be developed in this study and the unbalanced approach has
been chosen for the following analysis.

In ITER views, the first operations will be carried out in hydrogen and
helium; helium plasmas have a lower power threshold to create the first
ITER H-mode plasmas. At this point, an analysis from scratch taking as the
initial campaign the JET campaign C34 and then the rest ILW campaigns in
chronological order C28 to C33 is developed to test a possible application to
ITER. Therefore this analysis train and test from scratch the previous one
layer predictor with the unbalanced approach taking the JET ILW campaigns
in the following order: C34, C28− C30, C31, C32, C33.

Approach Success rate (%) False alarm rate (%)
Unbalanced 93.40± 1.73 3.92± 13.70

Table 5.9: Results for all ILW campaigns from scratch from model 40 onwards

The disruption prediction for all ILW campaigns with the unbalanced
dataset approach is illustrated in figure 5.20. It can be seen in figure 5.20
the erratic and unstable behaviour approximately from the beginning until
model 40. From model 40 onwards the results are quite stable and this is the
number of disruptive discharges to be used as reference. Furthermore the
number of non-intentional disruptions is 37 during campaign C34, therefore
the difference between experiments with deuterium-hydrogen and deuterium-
deuterium could be the explanation of the unstable results. The difference
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Figure 5.20: Unbalanced approach results from scratch for all ILW campaigns

between campaigns is illustrated in section 5.1.3, where figure 5.9 shows
a dataset which is practically linearly separable. On the other hand, figure
5.10 shows an overlap of disruptive and non-disruptive features for campaign
C28−C30. In table 5.9 it can be seen the average rates of success and false
alarms with the standard deviation from model 40 onwards.

To avoid the unstable and erratic behaviour on campaign C34, it has
been tested from scratch the dataset formed by campaigns C28 − C33. In
figure 5.21, it can be seen the results improve and the false alarm rate decays
under 2.5% from model 24 onwards. Therefore, this is the model to be used
as reference. Table 5.10 shows the average rates of success and false alarms
with the standard deviation from model 24 onwards. It can be seen a similar
success rate but satisfactory results are obtained from model 24 onwards
while the case which includes campaign C34 obtains stable and high success
rate from model 40 onwards. On the other hand, without campaign C34 the
false alarm rate has been significantly improved.

Approach Success rate (%) False alarm rate (%)
Unbalanced 92.76± 2.2.20 1.74± 0.70

Table 5.10: Results for ILW campaigns C28−C33 from scratch from model
24 onwards

To deal with deuterium-hydrogen campaign, a predictor from scratch
only for this campaign is developed. At this point, in figure 5.22 it is shown
the results of a predictor from scratch with the one layer predictor. Due to
the reduced number of discharges in this campaign, it has been followed the
same process in section 5.1, 1000 different models have been developed (5
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Figure 5.21: Unbalanced approach results from scratch for ILW campaigns
C28− C33

values of C and 200 values of γ parameters). Table 5.11 shows the average
rates of success and false alarms with the standard deviation.
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Figure 5.22: Unbalanced approach results from scratch for ILW campaign
C34

Approach Success rate (%) False alarm rate (%)
Unbalanced 95.09± 6.69 6.67± 4.92

Table 5.11: Results for ILW campaign C34 from scratch
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To conclude, a possible approach for ITER could be a predictor from
scratch for the first deuterium-hydrogen campaign. Afterwards, a new pre-
dictor from scratch for deuterium-deuterium campaigns would be developed
without considering data from the previous campaigns. However, in order
to reach the best results a selection of the best parameters and samples
should be carried out every time a model is trained. This selection could be
developed by implementing genetic algorithms.
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Conclusions and Future Work

Conclusions

The work that have been carried out in this thesis have led to the following
conclusions:

• An exhaustive and wide analysis of disruptions during the ILW cam-
paigns at JET has been carried out. This analysis has allowed charac-
terised the disruptive information in every discharge and to know the
events and actions which have produced this phenomena.

• Large clean and processed databases for disruption prediction have
been generated for the ILW campaigns in JET. These databases have
been used in several works for disruption prediction and disruption
analysis. Furthermore these databases are available to carry out dif-
ferent studies in nuclear fusion.

• Useful tools to analyse and identify important events during discharges
have been developed. For example the automatic location of disruption
time which allows to identify automatically the disruption time instead
of determining it manually.

• The analysis of APODIS performance during the ILW campaigns where
the predictor have been working in the real time network. In addition a
study of the APODIS robustness and a version of the predictor with a
sliding window mechanism have been done. These studies have shown
the reliability and robustness of the predictor under signals in failure,
identify the most important signals for the predictor and determine
the best temporal resolution.

• In view of ITER, several studies have been carried out. Predictors
trained and tested with ILW data have been developed and the com-
parison with an APODIS version trained and tested with the same
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data. Following this study it has been studied the disruption prediction
from scratch, where it has been done a probabilistic Venn predictor,
an APODIS version from scratch and a simpler one layer predictor.
All these studies are very useful to generate an efficient predictor for a
future device such ITER or DEMO. Furthermore, an important task
is gaining physics knowledge about disruptions. At this point it has
been developed an analysis about the no-return points.

Future Work

• Data mining on nuclear fusion databases: the understanding of dis-
ruption physics is an extremely complex task. On the one hand, this
task aims to gain physics knowledge about the disruptive event. Data-
driven models, not necessarily focused on disruption prediction, will
be deduced from data mining techniques. To this end, a set of data
analysis could be accomplished: no-return points, false alarms stud-
ies, simulation tools to analyse predictor responses when changing the
inputs, probabilistic models,... It is clear that data mining methods de-
mand HPC to analyse and extract knowledge from TB of information
(JET, AUG and DIII-D databases). On the other hand it is necessary
to apply data mining techniques on nuclear fusion databases in order
to deal with massive data and extract knowledge. In this sense several
automatic tools can be developed.

• Predictors from scratch and anomaly detections: next generation fu-
sion devices like ITER or DEMO cannot wait for hundreds of disrup-
tions to have reliable predictions to trigger avoidance and mitigation
methods. The possibility of avoiding information from past discharges
to develop efficient predictors is of big interest. Reliable predictors
with very few or even without previous information are necessary.

• Development of physics-based disruption predictors is an important
challenge taking into account the lack of plasma theoretical models to
handle disruption prediction. Binary classification predictors work well
from an engineering point of view because they learn to recognise forth-
coming disruptions although the real physics mechanism that triggers
the disruptive event remains hidden. Typically, a binary classification
predictor is developed for an individual fusion device and is put into
operation in that device. Not all quantities that intervene in the pre-
dictor can have a direct physics interpretation and also can depend on
specific implementations of diagnostics. Therefore, the development of
predictors to be used as cross-predictors between different tokamaks
is not a straightforward task. As an alternative, physics-based predic-
tors are ideal predictors due to its universal character: models can be
generated with data from either one or several tokamaks and are valid
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for others. So, the creation of data-driven models based on physics
is a possible choice to alleviate the non-existence of theory from first
principles about disruptions.
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Appendix B

Parkinson’s disease database

Parkinson’s disease data set was created by Max Little of the University of
Oxford, in collaboration with the National Center for Voice and Speech, Den-
ver, Colorado, who recorded the speech signals. The original study published
the feature extraction methods for general voice disorders.

This data set is composed of a range of biomedical voice measurements
from 31 people, 23 with Parkinson’s disease (PD). Each column in the table
is a particular voice measure, and each row corresponds one of 195 voice
recording from these individuals (“name” column). The main aim of the
data is to discriminate healthy people from those with PD, according to
“status” column which is set to 0 for healthy and 1 for PD.

Every instance corresponds to one voice recording. There are around
six recordings per patient, the name of the patient is identified in the first
column. Further details are contained in the following references (Little et
al., 2009, 2007).

The database can be downloaded from the UCI machine learning repos-
itory1. The matrix column entries (attributes) are shown in table B.1.

1https://archive.ics.uci.edu/ml/datasets/Parkinsons
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Attribute name Content
name ASCII subject name and recording number

MDVP:Fo(Hz) Average vocal fundamental frequency
MDVP:Fhi(Hz) Maximum vocal fundamental frequency
MDVP:Flo(Hz) Minimum vocal fundamental frequency
MDVP:Jitter(%)
MDVP:Jitter(Abs)

MDVP:RAP
MDVP:PPQ
Jitter:DDP

Several measures of variation in fundamental frequency

MDVP:Shimmer
MDVP:Shimmer(dB)

Shimmer:APQ3
Shimmer:APQ5
MDVP:APQ
Shimmer:DDA

Several measures of variation in amplitude

NHR
HNR Two measures of ratio of noise to tonal components in the voice

status Health status of the subject: Parkinson’s - 1, healthy-0
RPDE
D2 Two nonlinear dynamical complexity measures

DFA Signal fractal scaling exponent
spread1
spread2
PPE

Three nonlinear measures of fundamental frequency variation

Table B.1: Parkinson’s disease database
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Breast cancer database

This breast cancer databases was obtained from the University of Wisconsin
Hospitals, Madison from Dr. William H. Wolberg. Samples arrive peri-
odically as Dr. Wolberg reports his clinical cases. The database used here
reflects this chronological grouping of the data from January 1989 to Novem-
ber 1991. There are a total of 699 instances with 10 attributes which present
2 possible classes: benign (2) or malignant (4). The attribute information is
commented in table C.1. There are 16 instances with missing information on
some attributes, therefore the database remains in 683 samples. The class
distribution is 67.06%(458) of benign cases and 35.29% of malignant cases.

Attribute Domain
Sample code number id number
Clump Thickness 1− 10

Uniformity of Cell Size 1− 10
Uniformity of Cell Shape 1− 10

Marginal Adhesion 1− 10
Single Epithelial Cell Size 1− 10

Bare Nuclei 1− 10
Bland Chromatin 1− 10
Normal Nucleoli 1− 10

Mitoses 1− 10
Class: 2(benign), 4(malignant)

Table C.1: Breast cancer database

The database can be downloaded from the UCI machine learning reposi-
tory1. For further details it can be consulted the following references: (Wol-
berg and Mangasarian, 1990; Mangasarian et al., 1990, 1995; Bennett and
Mangasarian, 1992).

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
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Martingale Test Algorithm

The martingale test algorithm is defined as:

Martingale Test Algorithm (MTA)
Initialize: M(0) = 1; i = 1; T = .
Set: λ.
1: loop
2: A new example xi is observed.
3: if T = then
4: Set strangeness of xi := 0
5: else
6: Compute the strangeness of xi and data points in T .
7: end if
8: Compute the p̂-values p̂i using 2.88.
9: Compute M(i) using 2.89.
10: if M(i) > λ then
11: CHANGE DETECTED
12: Set M(i) = 1;
13: Re-initialize T to an empty set.
14: else
15: Add xi into T .
16: end if
17: i := i+ 1;
18: end loop
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