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Divide each difficulty into as many parts as is feasible

and necessary to resolve it.

Discourse on the Method, 1637

René Descartes
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Abstract

The objective of super-resolution (SR) techniques is to produce a high resolution and

high quality image using as starting point a series of low resolution and low quality

images from the same scene. The images can come from many sources: a video, a

sequence of photographs from the same scene, medical images, satellite images, etc. In

general, SR is useful when it has been impossible to obtain suitable images due to high

cost problems, physical limitations of the system or other causes.

Super-resolution is one of the imaging digital signal processing problems that is

more open nowadays, besides the huge quantity of works that have appeared since

the first paper that touched this problem, which was published in 1,984 (“Multi-frame

image restoration and registration”, by Tsai and Huang). Among the premises that are

necessary for SR to be possible is the need for aliasing to be present in the images, which

means that the images must be sampled under the Nyquist frequency, with movement

among themselves. In this way, each low resolution image contains different information

and it is possible to extract a bigger resolution image from the sequence. The problems

or stages that we need to solve to obtain the final high resolution image are:

1. The register of the images. It presents special difficulties due to the fact that we

are registering aliased images, so the common information among them is less

than in other image processing problems.

2. Interpolation. We must pass from a series of irregular samples to a regular sam-

pling grid that can be addressed algorithmically and easily visualized.

3. Restoration. Here we include noise reduction and deblurring the distortions due

to the lenses and the sensor.

These problems can be solved individually or jointly: we do not intend to suggest with
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the previous list that the SR problem is always separable in this way. The methods

employed in SR have been widely varied: methods in the frequency domain, based

on projections on convex sets, posing an algebraic system, based on polynomial local

approximations, using wavelets, etc.

Besides of this, super-resolution techniques have not arrived yet to matureness. In

general, they are quite restrictive in the allowed motion models, computationally very

costly, and not always effective. Thus, there is an ample field of possible improvements

that remains open.

In this dissertation we present novel algorithms in each of the previously exposed

SR stages:

1. A simultaneous registration method for multiple images that establishes rela-

tionships among the motion transformations of all the images to achieve a more

accurate registration. In the presented experiments we demonstrate better perfor-

mance with regard to classical registration methods and also to other multi-frame

registration methods.

2. Interpolation. We demonstrate that the implicitly assumed data model in most SR

methods leads to the appearance of aliasing artifacts in the reconstructed images.

We propose a novel method that projects orthogonally on the desired basis the

low resolution images samples, following classical sampling theory. In this way,

we are able to remove aliasing artifacts in the reconstructed images, achieving

quantitatively and visually better quality regarding to other SR methods.

3. Restoration. One of the biggest problems in SR is the appearance of outliers due

to problems in the sensor, misregistration, etc. To address these problems, people

resort to robust SR methods (that is, with robust estimation mechanisms). We

propose a median filter for irregular samples to remove outliers as a previous

step before applying the SR method of choice. We have demonstrated that this

method is able to obtain better results than other robust SR algorithms.



Resumen

El objetivo de las técnicas de súper-resolución (SR) es producir una imagen de alta

resolución y alta calidad a partir de una serie de imágenes de baja resolución y escasa

calidad de una misma escena. Las imágenes pueden provenir de muy variadas fuentes:

un vídeo, una secuencia de fotos tomadas de una misma escena, imágenes médicas, de

satélite, etc. En general, la SR resulta de utilidad cuando nos ha sido imposible tomar

imágenes de una calidad adecuada debido a problemas de coste, limitaciones físicas del

sistema u otras causas.

La SR es uno de los problemas de tratamiento digital de imágenes que se encuentra

más abierto hoy en día a pesar de los numerosos trabajos aparecidos desde el primer

artículo que trataba este problema, el cual fue publicado en 1.984 (“Multi-frame image

restoration and registration”, por Tsai y Huang). Entre las premisas que son necesarias

para que la SR sea posible se encuentran que las imágenes presenten aliasing, es decir,

que se encuentren muestreadas por debajo de la frecuencia de Nyquist, y que las imá-

genes presenten movimiento entre ellas. De esta forma, cada imagen de baja resolución

contiene distinta información y es posible extraer una imagen de mayor resolución de

la secuencia. Los problemas que es necesario resolver para alcanzar la imagen de alta

resolución final son:

1. El registro de las imágenes. Éste presenta una especial dificultad debido a que re-

gistramos imágenes con aliasing, por la que la información que poseen en común

es menor que en otros problemas de procesamiento de imágenes.

2. Interpolación. Debemos pasar de una serie de muestras irregulares a un muestreo

regular en rejilla que pueda ser fácilmente tratado algorítmicamente y visualiza-

do.
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3. Restauración. Aquí se incluye la reducción de ruido y la corrección de desenfoque

debido a las lentes y al sensor.

Estos problemas pueden resolverse de forma individual o bien conjuntamente, no pre-

tendiendo sugerir con la lista anterior que el problema de la SR sea separable siempre

de esta forma. Los métodos empleados en la SR han sido extremadamente variados: mé-

todos en el dominio de la frecuencia, basados en proyección sobre conjuntos convexos,

planteamiento de un sistema algebraico, aproximaciones polinómicas locales, basados

en wavelets, etc.

A pesar de esto, las técnicas de súper-resolución aún no han llegado a la madurez.

En general, son bastante restrictivas en los modelos de movimiento permitidos, compu-

tacionalmente muy costosas y no siempre eficaces. Existe, por tanto, un amplio campo

de posibles mejoras que permanece abierto.

En esta tesis presentamos algoritmos novedosos en cada una de las etapas de la SR

que hemos expuesto:

1. Un método de registro simultáneo de múltiples imágenes que establece relaciones

entre las transformaciones de todas las imágenes para conseguir un registro más

preciso. En los experimentos realizados demostramos un rendimiento superior

con respecto a métodos clásicos de registro y otros métodos de registro para

múltiples imágenes

2. Interpolación. Demostramos que el modelo implícitamente asumido en la mayo-

ría de los métodos de SR lleva a la aparición de aliasing en las imágenes recons-

truidas. Se propone un nuevo método que proyecta ortogonalmente sobre la base

deseada las muestras de las imágenes de baja resolución, siguiendo la teoría clá-

sica de muestreo. De esta forma, conseguimos que las imágenes reconstruidas no

contengan artefactos debidos al aliasing, consiguiéndose así una mayor calidad

tanto cuantitativamente como cualitativamente con respecto a otros métodos de

SR.

3. Restauración. Uno de los mayores problemas en SR es la aparición de puntos no

válidos (outliers) debidos a problemas del sensor, registro, etc. Para combatir es-

tos problemas se recurre a métodos de SR robustos (es decir, con mecanismos de

estimación robustos). Proponemos un filtro de la mediana sobre muestras irregu-

lares como paso previo de eliminación de outliers antes de aplicar el algoritmo de
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SR. Hemos demostrado que este método consigue mejores resultados que otros

algoritmos de SR robustos.
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Chapter 1
Introduction

1.1 Problem Description

In most imaging applications there is a tradeoff between the resolution and other pa-

rameters. For instance, to increase the resolution the pixel size is reduced in the sensor,

but this reduces the amount of light available. It also generates shot noise that degrades

the image quality severely. Another example is the processing and storage limitations

that appear when taking a video with a mobile phone, which make the manufacturer

limit the video resolution for these devices. Sensor technology is also important: while

charged-coupled devices (CCD) and CMOS image sensors for current cameras offer suf-

ficient resolution for most applications, forward looking infrared (FLIR) sensors have

still many limitations. This happens also in medical applications: positron emission

tomography (PET), computed tomography (CT), etc. All these devices offer a limited

resolution.

Besides of increasing the resolution, the idea of reducing the noise, deblur or mini-

mize other degradations of an image emerges naturally when we have a sequence of im-

ages that include the same region of interest in all of them. The aim of Super-Resolution

(SR) is to solve simultaneously these two problems: it uses a sequence of images to

increase resolution and to improve the quality of the image. We can then define Super-

Resolution as a signal processing technique that creates images of bigger resolution and

better quality (high resolution images, HR) from a series of images of small resolution

and low quality (low resolution images, LR). This can be extended to a problem of si-

multaneous resolution enhancement in time as well as in space, which increases the

27
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Figure 1.1: Transformations that a real-world scene suffers until it is converted to a
digital image.

temporal (frames per second) as well as the spatial resolution of a video (Robertson and

Stevenson, 2001; Shechtman et al., 2002).

Now that we have defined the concept, it is of the utmost importance to define the

process of formation of the input images for SR algorithms. The sequence of steps that is

followed when an image is acquired can be seen in Fig. 1.1. Initially, an ideal continuous

image is the object of a transformation, which might be a shift, a rotation, an affine

or projective transform, or a more complex motion. This transformation models the

location of our imaging system (the LR image plane) as regards the real world scene

plane that we will take as our reference for the reconstruction of the HR image. Then,

the image is blurred by the camera, including this blur the Point Spread Function (PSF)

of both the lens and the sensor (optical and acquisition blur). The image is finally

sampled, that is, discretized, and additive noise due to the acquisition process is also

incorporated to the samples. This process for a given LR image k can be modeled by the

equation

wk[m, n] = dk (hk(x, y) ∗ (z(gk(x, y)))) + nk[m, n] for k = 1, . . . , N, (1.1)

where the parentheses are used for functions defined in R2 and the square brackets
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denote functions defined in Z2. In the equation we suppose that we have N LR images,

z(x, y) is the continuous HR image, gk(x, y) is the transformation from the reference

plane to the imaging system plane for a given LR image k, hk(x, y) is the blurring for

image k, dk : R2 −→ Z2 is a sampling operator that converts from the continuous to the

discrete domain, nk[m, n] represents the process additive noise, ∗ represents convolution,

and wk[m, n] is the discrete image finally obtained. This equation is a slightly modified

version of the one that can be found in Irani and Peleg (1993).

The discretization is the key to achieve super-resolution: if the image on the sensor

plane is properly sampled at the Nyquist frequency, we will have the same information

in each of the LR images and no resolution improvement is possible. At most, by using

the available LR images, we could reduce the noise and improve the deblurring, but we

could not increase the spatial resolution and show high frequency details. Therefore,

the aliasing is fundamental: we need it in the LR images to make super-resolution pos-

sible. In fact, SR can be seen as the unfolding of the aliased high-frequency information

present in a set of images from the same scene. This also means that if there is some

kind of anti-aliasing filter in the imaging system it will not be possible to increase the

resolution more than what is allowed by the low pass filter. Taking a look at (1.1), we

can also point out that if dk, hk, and gk are the same for all the available images it is again

not possible to improve the resolution even when aliasing is present, as we would be

sampling always at the same points of z(x, y). The images would be the same but for the

noise, converting it in a restoration problem again. As dk and hk usually are the same

for a sequence of images, since we normally take all of them with the same imaging

system, this implies that there must be a relative movement among the LR images to

make SR possible. That is, in the terminology of computer vision, the images must be

misregistered among themselves.

To solve the inverse problem of finding the function z present in (1.1) we need to

accomplish the following tasks:

1. Image registration. We need to move all the samples of the LR images to a

common reference frame. It is fundamental for achieving super-resolution, as

we need to perform it with subpixel precision. In fact, it is the main bound for

improving SR that current algorithms find (Robinson and Milanfar, 2006). This is

because of the aliased nature, needed to make SR possible, of the LR images we
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Figure 1.2: Tasks for achieving Super-Resolution

want to register.

2. Interpolation. Or fusion or resampling. Once we have all samples in a common

reference, we will use that information to find values for the rectangular grid of

the HR image.

3. Restoration. Including deblurring and noise dumping. The deblurring problem

can be considered blind (unknown PSF) or not depending on the information

we have of the imaging system. With very few exceptions (Borman and Steven-

son, 2004; Sroubek et al., 2007), the PSF is normally assumed to be linear shift-

invariant (LSI). The noise is usually considered white and Gaussian, although

robust methods can be applied under different noise distributions (examples of

robust methods are Zomet et al. (2001) and Farsiu et al. (2004b)).

These tasks do not need to be solved separately, many SR algorithms group some or

all of them to have more chances of reaching a global optimization, but at the price of

increased complexity. In Fig, 1.2 we can see an example of an SR framework that solves

these problems separately. Firstly, the images are registered. Then, the LR samples

are used to find a first approximation of the HR image through interpolation. This is

combined with a noise filtering scheme. Finally, blind deblurring is performed: the PSF

is estimated from the LR images and the HR image is deblurred with it as input.

To end this section we provide two illustrative examples in figures 1.3 and 1.4. In the

first of them, an image is super-resolved using a black and white low-resolution video

taken with a common photographic camera. It is clearly seen that the heavily aliased

areas where bricks appear in Fig. 1.3a have well-defined borders in the super-resolved

image in Fig. 1.3c. In the second one, SR is applied to the three channels of a color video

taken with a mobile phone. It is seen that resolution is improved in Fig. 1.4c regarding
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(a)

(b)

(c)

Figure 1.3: (a) A low resolution image from a black and white sequence, (b) its inter-
polation using cubic splines when multiplying by two its resolution, and (c) the super-
resolved version using 20 images from the sequence with an SR factor of two.
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(a)

(b)

(c)

Figure 1.4: (a) A low resolution image from a color sequence, (b) its interpolation usig
cubic splines when multiplying by two its resolution, and (c) the super-resolved version
using 10 images from the sequence with an SR factor of two.
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to image Fig. 1.4a, especially in the borders of the building and that JPEG compression

artifacts are reduced.

1.2 Applications for Super-Resolution

Applications for the techniques of super-resolution restoration from image sequences

appear to be growing rapidly as the theory gains exposure. Continued research and

the availability of fast computational machinery have made these methods increasingly

attractive in applications requiring the highest restoration performance. If we consider

that in many applications the increase in sensor resolution comes at a high cost and that

increase could be carried out using SR techniques, we can easily see that in many cases

is preferable to employ SR instead of increasing physically the sensor resolution. Of

course in some cases this is difficult: complicated registration of the images or resolution

already limited by the diffraction limit may prevent the use of SR techniques. But as SR

theory starts to stabilize, applications start to soar.

SR restoration techniques have already been applied to problems in:

• Black and white photography (most papers apply SR to them, like in Irani and

Peleg (1991) or Schultz and Stevenson (1996)).

• Satellite imaging (Tsai and Huang, 1984; Rochefort et al., 2006; Merino and Núñez,

2007).

• Astronomical imaging (Sheppard et al., 1996; Hunt, 2004).

• Video enhancement and restoration (Farsiu et al., 2006b).

• Video standards conversion (Patti et al., 1995).

• Confocal Microscopy (Wilson and Hewlett, 1991).

• Applied jointly with mosaicing (Capel and Zisserman, 1998).

• Aperture displacement cameras (Lenz and Lenz, 1990).

• Diffraction tomography (Schatzberg and Devaney, 1992).

• Restoration of MPEG-coded video streams (Segall et al., 2001).

• Magnetic Resonance Imaging (MRI) (Greenspan et al., 2002).

• Positron Emission Tomography (PET) (Kennedy et al., 2006).

• Applied to photographic camera color images (Farsiu et al., 2006a).

• Forward looking infrared cameras (Hardie et al., 1997; Pham et al., 2006).
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The already wide number of applications continues to grow as the effectiveness of

SR methods increases. In fact, there are commercial software packages already available

to improve video resolution for the general public (MotionDSP, 2008).

1.3 Motivation and Objectives

The motivation behind SR is quite clear: there are many situations where the resolution

that can give a sensor is limited because of physical or economical constraints. SR can

improve the resolution in many cases where other techniques are not feasible. The

ample range of applications that we exposed in the previous section exemplifies this.

The specific objectives that we pursue in this dissertation are explained below.

In the super-resolution literature, the representation of the system (1.1) as a discrete

linear system has been the mainstream in most recent publications. The trend is to

solve the problem as a whole, performing jointly as most tasks as possible: registration,

interpolation, deblurring and restoration. Although supposedly we could then achieve

a global optimum that would be unattainable otherwise, this leads to a very complex

problem with too many degrees of freedom.

One of the main ideas behind this dissertation is to demonstrate that we can achieve

the same or even better performance in SR if we attack the different tasks separately but

using at all moments all the available information. Therefore, we have made different

contributions to solve separately the different parts of the SR problem and we have

compared the results with methods that perform jointly most SR tasks. In all cases, we

have achieved similar or better performance than these methods, as will be seen in the

next chapters.

1.4 Contributions of Thesis

The contributions of this thesis span through the different stages of SR:

• Registration. We have introduced a new multi-frame registration method that

forces the registration to be coherent among all frames. It differs from similar

methods in a per-pixel weight that allows the method to work correctly under

motion models different from just shifts among the images.
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• Interpolation. We have demonstrated that the discrete model usually employed

in SR implies that the function to be estimated is a bandwidth limited function,

which is not always necessarily true. To avoid the aliasing artifacts that this as-

sumption generates, we have created a new SR method that applies a prefiltering

step to the data from the LR images. The proposed method employs B-splines as

projection basis and Delaunay triangulation as a mean of passing from discrete

samples to a continuous function.

• Restoration. One of the main problems in SR is the abundance of outlier samples

that appear due to registration errors, different lighting conditions, etc. We intro-

duce a novel mean filter for irregular samples that erases these outliers before the

SR process begins, which makes it perform better than other robust SR methods

(Zomet et al., 2001; Farsiu et al., 2004b) that treat outliers at the same time at which

the HR image is being estimated.

1.5 Outline of Thesis

This dissertation is structured as follows:

1. Chapter 1 describes the SR problem and exposes the motivation and objectives of

the thesis. The contributions that have been done are enumerated.

2. Chapter 2 provides a review of the most significative results in the field and

relates them to the research made for the thesis.

3. Chapter 3 introduces a novel multi-frame registration method that allows multi-

ple registration models.

4. Chapter 4 exposes a new SR method that erases aliasing artifacts from the recon-

structed images.

5. Chapter 5 exposes methods for SR restoration, including deblurring and denois-

ing. A novel mean filter for irregular samples is introduced.

6. Chapter 6 finalizes the dissertation, drawing some conclusions and also exploring

directions for future research.
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Chapter 2
Literature Review

2.1 Introduction

There have already been many proposals for achieving SR. We can cite as most signi-

ficative those proposed in Tsai and Huang (1984), Kim et al. (1990), Ur and Gross (1992),

Irani and Peleg (1993), Hardie et al. (1997), Elad and Feuer (1997), Shekarforoush and

Chellappa (1999), Elad and Hel-Or (2001), Zomet et al. (2001), Lertrattanapanich and

Bose (2002), Farsiu et al. (2004b), Borman and Stevenson (2004), Pham et al. (2006), and

He et al. (2007). There are also some good tutorials that provide an excellent introduc-

tion to the field, like Borman and Stevenson (1998), Park et al. (2003), and Farsiu et al.

(2004a).

In this chapter we will make a review of the most important approaches to SR in the

literature and also of the results in the important topic of limits in SR. We have divided

the remaining of the chapter in five sections: section 2.2 will expose the earliest methods

invented for SR and will serve also as a historical introduction to the matter. Section 2.3

reviews SR methods that try to solve the problem as a whole defining SR as an ill-posed

problem and solving it in the context of estimation theory. Section 2.4 looks at research

that has split SR in different tasks and solved them separately. In section 2.5 we take

a look at the very important issue of the limitations that real imaging systems pose for

super-resolution. There has been not too much research in this topic, but we include it

in this chapter due to its importance for practical systems. Finally, section 2.6 presents a

table summarizing the differences among the most important SR methods.

37
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2.2 Early Approaches

Super-Resolution was first proposed in a seminal paper by Tsai and Huang (1984), who

suggested a frequency domain approach to super-resolution. This initial approach as-

sumes a translational movement among the LR images and is based on the following

principles:

• The shifting property of the Fourier transform.

• The aliasing relationship between the continuous Fourier transform of the ideal

HR image and the discrete Fourier transform of the observed LR images.

• The assumption that the ideal HR image is band-limited.

Registration and interpolation is performed simultaneously, thanks to the shifting prop-

erty of the Fourier transform. The original method provided no protection against noise,

being addressed that drawback in Kim et al. (1990), Kim and Su (1993), and Bose et al.

(1993).

The main contribution of the frequency domain approach was the theoretical estab-

lishment of a clear relationship between possible increments of spatial resolution and

aliasing. However, the observation model is restricted to only global translations and

LSI blur. It is also difficult to transfer any possible a priori knowledge that we had in the

spatial domain to the frequency domain. Another important drawback is the implicit

supposition that we are dealing with ground-truth band-limited images, limiting the

data model. Chapter 4 presents a novel SR method that does not make this supposition.

Another early approach is Projection Onto Convex Sets (POCS). This is a set theoretic

method that was first applied to SR by Stark and Oskoui (1989) and then extended to

include observation noise in Tekalp et al. (1992). POCS is based on defining convex sets

of restrictions on a vectorial space with as many dimensions as pixels has the HR image

z. The successive projection of a point of the vectorial space on the convex sets ends up

leading to the intersection of the above mentioned sets if that intersection exists. The

projection on a set is understood as an operator that relates any point in the space to the

nearest point that belongs to the set. In each iteration, to obtain the point zn+1 from zn

we would use the formula

zn+1 = PmPm−1 · · · P1zn, (2.1)
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where each Pi would be a projection operator onto a restriction set. That restrictions

sets are defined using the LR images. For each pixel of each LR image, the following

restrictions set is defined:

C(m1, m2, k) =
{

y(n1, n2) : |r(y)(m1, m2, k)| ≤ δ0(m1, m2, k)
}

, (2.2)

where

r(y)(m1, m2, k) = gk(m1, m2)− ∑
(n1,n2)

y(n1, n2)h(n1, n2; m1, m2, k) (2.3)

is the residue of element y of the restrictions set with regard to the one that generated

the LR image gk(m1, m2). The quantity δ0 determines the size of the set and influences

several properties of the algorithm. A low value could allow us to approach to a better

HR image, but it also can make the algorithm numerically unstable. A big δ0 can also

protect us against noise. The set (2.2) includes all possible HR images that could have

generated that pixel from LR image k.

The advantages of POCS are its simplicity and the easy way in which a priori infor-

mation can be incorporated to the algorithm. The disadvantages are non-uniqueness of

solution and slow convergence.

Irani and Peleg (1991) proposed an SR algorithm similar to iterative back-projection

(IBP), a technique commonly used in computed tomography. This method was further

improved to consider a more general motion model (Irani and Peleg, 1993). The IBP

method is similar to some methods used for solving systems of linear equations. In

each iteration we have an estimation z(n) of the HR image from which a set of low

resolution images will be generated. Those images will be compared with the original

LR images wk to obtain z(n+1). To calculate the w(n)
k , we will use

w(n)
k = ds

(
(z(n)(gk(x, y)) ∗ h

)
, (2.4)

where ds is a subsampling operator by a factor s, h is the blurring operator, gk(x, y) is

the warping of the coordinates from the kth LR image to the coordinates system of z,

and ∗ represents a convolution. To obtain the next estimation of z, we have

z(n+1) = z(n) +
1
N

N

∑
k=1

(
(us ◦ (wk − w(n)

k ))(g−1
k (x, y)) ∗ p

)
, (2.5)
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where N is the number of LR images, us is an oversampling operator by a factor s, and p

is a back-projection kernel. This kernel should ideally be the inverse of h, but in that case

it could not exist or the numerical calculations with it could be numerically unstable.

Using a kernel that is not the inverse of h is valid whenever p fulfills ‖δ− h ∗ p‖ < 1;

this increases the numerical stability of the algorithm but makes the convergence slower.

In the presence of noise, the mean of the LR images that is made in (2.5) reduces the

additive noise, which is a significant advantage of this algorithm. The main problem of

this method is that it is not always convergent.

2.3 Super-Resolution as an Estimation Problem

Quite early (Cheeseman et al., 1996; Schultz and Stevenson, 1996), it was seen that super-

resolution could be seen as an estimation problem that could be solved in a Maximum

Likelihood (ML) or Maximum a Posteriori (MAP) framework. In these approaches,

eq. (1.1) is discretized to build the linear system

wk = Akz + nk for k = 1, . . . , N, (2.6)

where wk is a vector with the lexicographically ordered pixels of the LR image k, z is a

vector with the lexicographically ordered pixels of the HR image, Ak is a matrix where

each row contains the contributions of different HR pixels to a certain pixel from the

LR image, and nk is additive noise. Vector z is supposed to contain the coefficients of a

properly sampled HR image, being in that case the coefficients the values multiplying a

sinc function as well as the values of the function in the sampling point.

The wk and nk vectors and the Ak matrices can be stacked to form the system of

linear equations

w = Az + n, (2.7)

where w, A, and n contain the stacked data from eq. (2.6) for the different LR images.

The discretization that is made of the HR image has not received too much attention,

and a criticism of that is one of the main contributions of this thesis, as we will see

in chapter 4: we prove there that the restriction of z to being band-limited to half the

sampling frequency can be too restrictive.
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Elad and Feuer (1997) reinterpreted the linear system to approach the classic the-

ory of restoration of a single image from linear blur and additive noise, proposing the

equation

wk = DkHkGkz + nk for k = 1, . . . , N (2.8)

as a decomposition of (2.6). The relationship with (1.1) can be seen here more directly:

Gk represents the geometric warping, Hk the linear blurring and Dk the decimation

operator that produces the k-th LR image. The vectors and matrices for all the LR

images can be stacked again to produce (2.7). The linear system described by (2.8) is the

canonical model that is currently used in super-resolution related research. In Elad and

Feuer (1997) it is proved that the observation models of POCS, ML and MAP approaches

can be seen as particular expressions of (2.8).

The ML solution to (2.7) is

ẑ = arg min
z
‖Az−w‖p

lp
, (2.9)

where the lp norm is used to measure distances. Usually p = 2 and then ẑ will be the

least-squares solution to (2.7), which will be an optimal ML estimator of z, provided

that n is zero mean Gaussian white noise. Farsiu et al. (2004b) have used the l1 norm

instead of the l2 norm implicitly used in least-squares estimation. In that case, the ML

estimator is optimal when n is Laplacian white noise. The l1 norm is more robust than

the l2 norm, therefore that norm improves the performance of SR under the presence of

outliers.

To find the solution to (2.9) we must solve an ill-posed problem, as certainly that

equation does not have a unique solution. An analysis of the ill-conditioning of (2.9) can

be found in Nguyen et al. (2001a). We could not have enough LR frames and in that case

the equation would be under-determined. Even when the problem is over-determined,

the solution to (2.9) can have large perturbations for small amounts of noise in the

measurements. Therefore, it is necessary to consider some form of regularization to

find the most probable solution within the possible ones. This regularization must use

some kind of a priori knowledge to compensate the missing information, so finally a

MAP problem arises. To find now the HR image we will add a penalty factor in the
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generalized minimization cost function, so we have

ẑ = arg min
z

[
‖Az−w‖p

lp
+ λΩ(z)

]
, (2.10)

where λ, the regularization parameter, is a scalar for properly weighting the first term

(similarity cost) against the second term (regularization cost) and Ω is the regularization

cost function.

One of the most widely used regularization cost functions for SR is the Tikhonov

cost function (Tikhonov, 1963)

Ω(z) = ‖Γz‖2
l2 , (2.11)

where Γ is usually a high pass operator such as derivative, Laplacian, or even identity

matrix. The idea behind this regularization term is to limit the total energy of the

image. This will force spatial smoothness and remove the noise, but with the danger

of also smoothing the sharp edges of the image. Other regularization terms have been

proposed to correct this drawback, like bilateral Total Variation (bilateral TV) (Farsiu

et al., 2004b).

2.4 Super-Resolution in its Stages

In this section we review the research that has split the SR problems in three main

tasks: registration (have all samples in the same coordinates reference), interpolation

(resampling in the HR grid) and restoration (removing noise and artifacts).

2.4.1 Super-Resolution and Registration

Registration is widely considered the most influential factor when considering sources

of poor performance in super-resolution. Registration has to be extremely accurate for

achieving real SR: if we multiply the resolution by a factor F, the registration precision

must be in the order of 1/F. A key factor is aliasing: we need it for SR to be possible,

but its presence makes the images different among themselves, which makes registration

much more difficult, as comparisons of images are affected.

Methods that apply SR in the Fourier domain perform registration and resolution

improvement simultaneously, as described in section 2.2, but with the drawback of be-
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ing that possible when there only shifts present among the images. In most cases, SR

practitioners use optical flow (Lucas and Kanade, 1981), constrained to a certain type

of movement, which could be a shift, solid rigid, affine, projective, etc. For robustness

when the movement is not limited to just a few pixels, multi-resolution approaches like

the one explained in Bergen et al. (1992) are used. In Pham et al. (2005a) it was proved,

using the Cramer-Rao lower bound, that registration between two images using opti-

cal flow iteratively are optimal whenever we have perfect knowledge of the gradient.

Unfortunately, when optical flow methods are employed, the aliasing present in the LR

images degrades greatly gradient calculations.

To address these shortcomings, some authors have applied multi-frame registration

methods to SR. The first example that we can find in the literature was exposed in Hardie

et al. (1997). In Robinson et al. (2007) the authors explore multi-frame registration under

aliasing using the method of variable projections. Another method that focuses on multi-

frame registration under rotations and shifts is proposed in He et al. (2007). In general,

all these methods are computationally very expensive and their performance depends

on the size of the final HR image that is obtained, which is not desirable. Another

approach can be found in Farsiu et al. (2005), where consistency among the registration

parameters of the LR images is enforced. In chapter 3 of this thesis we will propose an

improved alternative to this later method that is another contribution of our thesis.

Although the optical flow approach is the main registration technique used in SR due

to its accuracy, another methods have also been used by some authors. Shekarforoush

and Chellappa (1999) used the polyphase decomposition of the cross power spectrum to

achieve registration. In Vandewalle et al. (2006), the authors proposed a frequency do-

main registration method that erased the aliased part of the spectrum of the LR images

before proceeding to registration. Feature-based methods (bundle adjustment) have also

been used recently (Pickup et al., 2007) to perform registration in a Bayesian framework

where that task is jointly made with the estimation of the HR image.

2.4.2 Super-Resolution and Interpolation

As has been said before, super-resolution can be achieved solving directly the problem

posed in (1.1) or separating it into a few tasks. Interpolation comes after registration

and before image restoration, as can be seen in Fig. 1.2. In this stage, already knowing



44 CHAPTER 2. LITERATURE REVIEW

the relative position among themselves of the LR frames, the data from the different

frames is fusioned into the HR grid. This approach is only feasible when the warping

and blurring operators can be interchanged, making the order in which the problem is

solved (first interpolation, then deblurring) possible. In chapter 4 the conditions under

we can do this are exposed.

The interpolation problem is essentially a resampling problem. All samples from the

LR images are positioned in the same reference frame and to obtain the HR image we

have to find the values in a grid within that common reference. Ur and Gross (1992)

were the first to propose an interpolation approach to SR, but limited to shifted pictures.

They based their method on the generalized multichannel sampling theorem of Papoulis

(1977), in the refined form proposed later by Brown Jr (1981). Other authors (Shekar-

foroush and Chellappa, 1999) generalized Papoulis’ theorem to non-periodic samples,

but supposing the function to be estimated to be band-limited.

An approach using wavelets was proposed in Nguyen and Milanfar (2000). The

problem of finding the pixels of the HR image was transformed to finding the wavelet

coefficients that better approximated the LR samples. This was formulated in a least-

squares framework that had as main drawback the computational complexity. An inter-

polation method that is closely related to the method we propose in chapter 4 is the one

that can be found in Lertrattanapanich and Bose (2002). The method first transforms the

LR samples to the continuous domain using Delaunay triangulation and then samples

the built function to obtain the HR image. Another proposal (Pham et al., 2006) uses

polynomial approximations to describe locally the HR image we want to find.

The method proposed in chapter 4 of the thesis can be classified as belonging to this

type of algorithms. The main difference with the presented approaches lies in that it

makes no supposition about the bandwidth of the imaging system and in that it is able

to handle any type of stationary noise.

2.4.3 Super-Resolution and Deblurring

After the interpolation stage, we can proceed to deblur the image. There are two ap-

proaches here: we can suppose a known blur or suppose it unknown, having in that case

what is called a blind super-resolution problem. In the first case we can use classical im-

age restoration methods: a Wiener filter (Wiener, 1949), the Lucy-Richardson algorithm
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(Richardson, 1972; Lucy, 1974), etc. We can also take advantage of the additional infor-

mation present in the LR images and use it jointly with the interpolated image already

calculated. This idea is followed in Farsiu et al. (2004b), where the error measurement

between the deblurred and the interpolated images is weighted, pixel by pixel, by the

number of LR pixels that contributed to one of the pixels of the interpolated image. In

this way, we can combine a fast stage approach to SR with using information in the

deblurring not usually available for classical restoration methods.

There are several works on blind SR. The first attempt proposed estimating the pa-

rameters of a Gaussian blurring kernel from the edges of the image (Chiang and Boult,

1997). Later, it was proposed to use generalized cross-validation and Gauss quadrature

theory for identification of one parameter of a blurring kernel (Nguyen et al., 2001b). A

more general framework has been proposed recently (Sroubek et al., 2007) that allows

variant and non-symmetric blurring kernels. This approach uses the general theory of

multichannel blind deconvolution and generalizes it to treat the SR problem. One of the

main advantages of being able to handle variant kernels is that the algorithm is more

resistant to registration errors, as they can be compensated with the different weights of

the blurring kernel pixels in different locations.

In chapter 5 we present a comparison of approaches where deblurring and resolution

improvement is performed jointly with approaches that perform interpolation and then

apply a standard deblurring method. We will see there that not performing jointly

deblurring with other SR tasks does not necessarily lead to worse performance than

joint approaches.

2.5 Limits of Super-Resolution

A question that naturally arises when working in Super-Resolution is how to achieve

maximum performance with minimum computational cost with a given imaging system

and a given scene. That is, we want the best resolution and image quality without

wasting resources. To reach this goal, we need to answer the questions

1. Which is the maximum real increment in resolution we can achieve?

2. How many LR images are needed to maximize the image resolution and quality?

Is there a bound from which it makes no sense to add more LR images?
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The first question is equivalent to asking which is the maximum SR factor (the number

of times that the LR resolution is increased) that can be achieved without smoothing

the image instead of increasing the resolution. In section 2.5.1 we review the current

results from research in this problem. The second one can be answered in two scenarios:

supposing LR images have no noise or supposing normal conditions where noise is

unavoidable. In the first case, we would just need enough samples from the LR images

so that the Nyquist criterion is fulfilled. In this case, we are interested on the amount

of information that we need for maximizing the resolution. That is, if we know that an

imaging system bandwidth is twice its sampling rate, we could increase its resolution

by a factor F = 2. In that case, with F2 = 4 LR images shifted among themselves we

would have enough information for reconstructing the HR image. This is the case even

when the sampling is irregular, if the image is band-limited (this was the main insight of

the seminal paper by Tsai and Huang (1984)). In the second case, when noise is present,

we need to know the relationship between the SNR and the number of LR images that

we introduce in the algorithm, as we will be mainly interested on the improvement of

quality we can achieve in the reconstructed image. We will look at this in section 2.5.2.

Not too many authors have studied these problems. The first paper to address

them was Baker and Kanade (2002), which looked at maximum SR factors through the

condition number of the system matrix of (2.7). Lin and Shum (2004) employed a similar

algebraic approach, that developed explicit limits under translations and supposing a

square PSF. In Pham et al. (2005b), limits for diffraction limited imaging systems are

derived.

In this section we will try to answer the posed questions looking at the way the

Point Spread Function and the Signal-to-Noise ratio limit Super-Resolution. We will

use the previously cited works as our main sources of information. The general ideas

extracted from the studied documentation about SR limits have been taken into account

when selecting SR factors and number of input LR images in the experiments exposed

in further chapters of the thesis.

2.5.1 Influence of Point Spread Function

Due to the diffraction limit of finite-size lenses, a point source in the scene corresponds

to an intensity blob in the imaging plane, often referred to as the Airy disk or the optical
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Figure 2.1: CCD sensor with microlenses.

Point Spread Function. Due to charge transport and sampling, the digitized image is

further degraded. The combination of all degradations can be modeled by a system

blur, which is a convolution of all PSFs along the imaging path. Two types of blur are

present in all digital imaging systems: the optical blur which specifies the fine-resolving

capability of the optics and the sensor integration blur caused by the accumulation of

incoming light over a finite-size sensor element. Therefore, we define the system blur h

as

h = hSEN ∗ hOPT, (2.12)

where hSEN is the blurring due the integration on the sensor and hOPT is the blurring

due to the lenses.

The optical PSF for in-focus objects can be reduced to the diffraction limit by good

lenses. The sensor PSF, however, cannot be reduced arbitrarily because the sensor has

to be big enough to capture sufficient light for achieving a good SNR. In fact, the trend

is to occupy all possible space to capture as much light as possible. In modern camera

systems, the pixels tend to be quite small, so to decrease noise the integration area tends

to occupy all available space, which means that the so-called fill-factor tends to be 100%.

This decreases noise at the price of increasing the sensor blur. As an example, Fig. 2.1

shows the chip surface of a Super HAD CCD sensor from Sony. This is a state of the

art CCD, employed in many professional cameras. The microlenses on it increase the

fill factor to almost a 100% fill factor, but at the price of having square microlenses that

create some defocus.

We will now study the expression of hOPT and hSEN in the frequency domain. In

the case that the lens system is diffraction-limited and we have a circular aperture, the
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Figure 2.2: Transfer functions and image spectra.

Optical Transfer Function (OTF), which is the Fourier transform of hOPT is

OTF( f ) =
2
π

arccos
(

f
fc

)
− f

fc

√
1−

(
f
fc

)2
 for f < fc, 0 otherwise,

(2.13)

where f =
√

f 2
x + f 2

y is the radial frequency in a two-dimensional Fourier space { fx, fy},

and fc = 2 ·NA/λ is the cutoff frequency of the lens (NA denotes the numerical aperture

of the lens and λ is the wavelength of incoming light).

Supposing that the sensor response hSEN can be approximated by a square box func-

tion, we will obtain its Fourier transform, the Sensor Transfer Function (STF)

STF( fx, fy) = sinc
(

ω

2
fx

fs

)
· sinc

(
ω

2
fy

fs

)
, (2.14)

where fs is the sampling frequency and ω2 is the fill factor of a square pixel whose

width is ω-times the pixel pitch (ω ≤ 1).

The product of (2.13) and (2.14) will determine the analog image that is finally sam-

pled by the sensor. In Fig. 2.2 we can see typical OTF and STF transfer functions plotted.

Usually, the sampling frequency in modern devices is smaller than twice the cutoff fre-

quency of the optics ( fs < 2 fc), which makes super-resolution feasible. This is the case

displayed in Fig. 2.2, where the image finally sampled presents aliasing. The unfolding

of the aliased part of the spectrum would present details from the original image that

the system transfer function does not erase. In the case displayed in the figure, we could

duplicate the resolution in the HR images taken with that imaging system.
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Figure 2.3: Anti-aliasing filter from a digital video camera.

In practical systems, the condition fs < 2 fc usually happens, which makes SR possi-

ble in theory. However, the presence of optical anti-alias filters in common photographic

cameras makes SR difficult in some cases. These anti-aliasing filters try to reduce the

Moiré patterns that appear when demosaicing undersampled images (Adams et al.,

1998). The typical implementation of these filters in digital cameras is two layers of

birefringent material such as lithium niobate, which spreads each optical point into a

cluster of four points (Davies and Fennessy, 2001). Figure 2.3 shows an example of an

optical anti-alias filter from a digital video camera.

The different image processing tasks that are usually performed in most imaging

systems also present a problem if we cannot access the data in a raw format. Fortunately,

the presence of this kind of formats which store the data unprocessed is now common in

high-end systems. These problems for SR in real systems show that a deep knowledge

of the characteristics of the imaging system we are dealing with is fundamental to apply

SR to the data obtained with it.

2.5.2 Influence of Signal-to-Noise Ratio

Noise is present in all digital imaging systems due to a number of sources such as pho-

ton shot noise, readout noise, dark current noise, and quantization noise. While some

noise sources can be effectively suppressed such as dark current noise by cooling and

quantization noise by using more bits, others cannot. Photon shot noise, for example, is

unavoidable due to the particle nature of light. Readout noise increases with a higher

readout rate, which is desirable in high-speed cameras. The combined effect of these
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noise sources is often modeled by Gaussian additive noise. If we denote the noise vari-

ance of an LR image as σ2
I , the noise variance of the HR image obtained from a sequence

of N LR images all with the same statistics is (Pham et al., 2005b)

σ2
n =

F2

N
σ2

I , (2.15)

where F is the SR multiplying factor.

From (2.15) one could deduce that we could achieve any desired SNR just increasing

the number of LR images, provided that we can take any number of LR images we wish.

Unfortunately, the presence of noise in the LR images implies an error in registration if

we do not have any a priori knowledge of the relative movement among the LR images.

It was demonstrated in Pham et al. (2005a) that there is a fundamental lower bound in

the registration error due to the inevitable noise present in the sensed images. Therefore,

the noise in the reconstructed image is (Pham et al., 2005b)

σ2
n =

F2

N
σ2

I + ‖∇I‖2 σ2
reg, (2.16)

where σ2
reg is the variance of the registration error and ‖∇I‖2 is the average gradient

energy. This equation shows that although we can almost suppress the first term at the

right hand of the equation just by adding more LR images, the second term does not

depend on N and imposes a limit on the SNR we can achieve. The equation can be used

as a clue to how many LR images we should use as input to the SR algorithm we use,

in function of the noise present in the data.

2.6 Comparison of Methods

As a summary, we compare in this section the main features of the most significative SR

methods. We also compare them with the features of the method we propose in chapter

4, which appears as “Optimal projection” in table 2.1.

We can see the comparison in table 2.1. The approaches that appear in the table are

frequency domain (Kim et al., 1990), POCS (Patti et al., 1997), IBP (Irani and Peleg, 1991),

ML (in Elad and Hel-Or (2001), for a special case), MAP (Schultz and Stevenson, 1996),

joint registration and interpolation under a MAP framework (He et al., 2007), Delaunay
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triangulation (Lertrattanapanich and Bose, 2002), the interpolation method by Pham

et al. (2006), and the optimal projections method (Sánchez-Beato and Pajares, 2008). The

citations in the previous sentence are meant to be the most significant publications,

although not the unique, that have followed the corresponding approach.

We will also briefly comment each row in the table:

• The motion model is limited to shifts and rotation for interpolating methods, as

those are the only cases for which we can interpolate before deblurring the image.

This fact is explained in detail in chapter 4.

• The noise model is usually assumed Gaussian, although some methods can handle

Laplacian noise changing the norm in the function to be minimized. The Delaunay

triangulation method offers no protection against noise. Our method is efficient

under any stationary noise.

• A priori knowledge is easily incorporated for POCS and MAP approaches. There

is usually a price to pay that is the need to tune a certain number of parameters

that are dependent on the sequence that is being treated.

• Registration is performed jointly with other SR tasks only under a very high com-

putational cost.

• Deblurring is performed jointly with SR in POCS, IBP, ML, and MAP approaches.

The advantage here is that this allows more general motion models, but also forces

these methods to be iterative.

• The computational cost usually increases when more tasks are performed simul-

taneously.

• Uniqueness of solution can be an issue for certain iterative approaches.

• The discretization is not usually handled properly, as the HR image is supposed

to be band-limited in many cases, but in our method.

• If the optimization method is iterative we must be careful with its convergence

and uniqueness of solution.

• If the method is parallelizable we can improve its speed just adding more proces-

sors and memory to our system.
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Looking at the table, we can emphasize the main advantages of the method proposed

in this thesis: it can handle any stationary noise, it is non-iterative, and it does not sup-

pose that the bandwidth of the imaging system is the same as that of the reconstructed

image (which means that it is the only method that makes a proper discretization of the

problem).
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Chapter 3
Multi-Frame Registration for

Super-Resolution

3.1 Introduction

A lot of research has been devoted to SR, especially to the interpolation and restoration

steps. Specific registration techniques for SR have also been studied, although not with

the intensity that the reconstruction stage has attracted. Although it seems that regis-

tration in SR is not different to registration applied to other problems, there are three

interesting facts that must be taken into account:

1. LR images are of the same scene and overlap largely

2. Usually there are many LR images

3. Images must be aliased for super-resolution to be feasible

How could we take advantage of these facts? In this chapter we describe a new registra-

tion algorithm that makes a registration not just between a reference image and another

image, repeating this for all LR images in the sequence, but among all images at the

same time, taking advantage of all the information that is available. Govindu (2004) and

previously many others (Unnikrishnan and Kelly, 2002; Davis, 1998; Shum and Szeliski,

1998; Kang et al., 2000) have used globally consistent registration methods applied to

mosaics. Farsiu et al. (2005) have applied a similar algorithm to the one used here

for super-resolution (we will analyse the differences in section 3.3). Vandewalle et al.

(2006) use the fact that images must be aliased for SR to build a registration method

for this problem. Finally, Capel and Zisserman (1998) have used bundle adjustment for

55
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registration to a joint problem of mosaicing and super-resolution.

There are also methods that jointly super-resolve and register the LR images. This

approach was examined by Hardie et al. (1997), although their implementation was

limited to a translational motion model. Tipping and Bishop (2003) use more gen-

eral motion models but at a very high computational cost, while He et al. (2007) allow

translations and rotations in their approach. Usually, the simultaneous registration and

super-resolution comes at a considerable computational cost, which limits this approach

to small images. It is also not clear in which way obtaining at the same time the HR im-

age aids the multi-frame registration: we have the same input data for both registration

and super-resolution, so the additional data that the SR algorithms give to registration

must reside in the a priori knowledge that is employed in MAP and other approaches.

These priors are not designed to improve the registration of the LR images, but to regu-

larize the problem, so maybe it is preferable to devise registration algorithms that take

advantage of all the LR data for doing its task and add specific priors for registration

instead of jointly registering and super-resolving. This is the approach we follow in this

chapter.

Another interesting issue is that of the optimality of the registration, which has

been treated by Robinson and Milanfar (2004) and by Pham et al. (2005a). Both papers

use the Cramer-Rao lower bound for deriving theoretical limits for registration estima-

tors. Pham shows that although most registration estimators are biased, the bias can be

practically reduced to zero using an iterative gradient-based estimator, approaching the

theoretical limit for an optimal estimator. This is remarkable, as most registration al-

gorithms based on block matching use that approach. These results are obtained when

two images are registered between themselves, so they are not directly applicable to

the joint registration of multiple images, but they point out that probably the use of

gradient-based algorithms for registration of multiple frames is preferable to feature-

based algorithms like bundle adjustment, like those exposed by Hartley and Zisserman

(2003). This is true when it is not a must to use feature-based algorithms, which hap-

pens when the images to register come from different imaging systems (usual in medical

imaging where PET and CT images are merged, for instance), there are differences in

luminosity, the overlapping is only partial (like in mosaics), etc. Nevertheless, SR is

normally applied to video sequences obtained with a single imaging system within a
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short time interval, which normally means constant luminosity and a high degree of

overlapping in the resulting frames.

In this chapter we propose a method for joint registration of multiple frames based

on the optical flow equation (Horn and Schunck, 1981) and on geometric restrictions

among the different images to be registered. We compare this approach with the stan-

dard optical flow algorithm (shown to be optimal in Pham et al. (2005a) for pairs of

images) and with other joint registration algorithms. As all gradient-based registration

estimators, the method is valid only for small movements due to the approximation that

is made by taking only the first two terms of the Taylor expansion of the optical flow

equation. This means that we must apply a different method for initial registration of

the frames (the multi-resolution approach of Bergen et al. (1992), for instance) and then

apply our method as the final step to achieve subpixel accuracy.

The rest of the chapter is organized as follows. Section 3.2 presents the basic optical

flow method and different motion models for the registration, including the ones most

commonly used in SR. In section 3.3 we will expose our method and its differences

against competing approaches. Section 3.4 will be devoted to the results obtained ap-

plying this method to controlled and uncontrolled experiments. Section 3.5 describes a

fast variation of our method that achieves similar performance to the original but us-

ing a fraction of the computational power required by it. In section 3.6 we apply our

method to super-resolution, comparing the results with those obtained using a standard

registration algorithm. Finally, we present the conclusions in section 3.7.

3.2 Registration Models

We will use as starting point the classical approach of the conservation of the optical

flow to register the images, as described by Lucas and Kanade (1981). If we have two

images of the same scene (we will call them I1 and I2), the pixels in one of them must be

the pixels of the other displaced a quantity that depends on the pixel position x, which

is expressed as

I1(x) = I2(x + u1,2(x)), (3.1)
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where u1,2(x) is a vector that transforms the coordinates vector x from image I1 to image

I2. Thus, we have

x(2) = x(1) + u1,2(x(1)), (3.2)

where the superscript specifies the image coordinate system for the given vector (in

(3.1) all the coordinate vectors that appear have as reference image I1, we use super-

scripts only when there are vectors defined in different coordinate systems in the same

expression).

If we develop the right side of (3.1) and take the first expansion terms of the Taylor

series, we have

I1(x) ≈ I2(x) + ~∇I(x) · u1,2(x). (3.3)

As we only take the first two terms, the gradient ~∇I(x) is supposed to be constant in

a neighborhood of x, so it is the same for the two images. For that reason, we do not

use a subscript for the gradient, and in fact we use data from the two images to obtain

a better approximation of the gradient value.

This is the general optical flow equation and is the basis for all area-based registra-

tion methods, like the one exposed in Lucas and Kanade (1981). In its more general

form we can use it to calculate an individual displacement vector u1,2 for each pixel.

However, there is not always enough information in the images to find the right u1,2

for all pixels. This is called the aperture problem in the literature (Pajares and de la

Cruz, 2008). This problem can be solved in two ways. One option is to assume that the

movement is local, and in that case the optical flow is calculated solving a regularized

minimization problem by means of a set of partial differential equations (non-parametric

or elastic registration, see Verdú-Monedero et al. (2008)). The other option is to suppose

that the movement is global and that it can be precisely modeled by a transformation

for which we must calculate certain parameters. In SR normally the second option is

chosen, as it allows a more precise registration if the model really fits the data, so this

is the choice we have taken for this research. The reason for the better accuracy of the

parametric registration resides on having much more less degrees of freedom than in

non-parametric registration. The transformation might be a translation, a rotation, a

projective transformation, etc. All of them can be described with just a few parameters

once we fix the type of transformation. The way we calculate the parameters for some of
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the transformations is shown below. We also introduce the hierarchical model estima-

tion (Bergen et al., 1992) that will be used to estimate the registration parameters before

the final and more precise step.

3.2.1 Translational Motion

In this case,

x(2) =

 p(1)
1,2

p(2)
1,2

+ x(1). (3.4)

Therefore, u1,2 = p =
(

p(1)
1,2 p(2)

1,2

)T

, being p the parameters vector, and to find these

parameters we have to minimize

E(p1,2) = ∑
x

(
∆I1,2(x) + ~∇I(x) · p1,2

)2
,

where ∆I1,2(x) is I2(x)− I1(x). Here we have moved to the right all the terms in (3.1),

squared the result, and then we have added that expression for all the positions of the

pixels where the images coincide. The final equation can be solved by least squares as

the parameters vector can be taken out of the summatory as it does not depend on x.

This transformation can model just shifts between the images, but is frequently used in

SR due to its simplicity.

3.2.2 Affine Motion

With an affine transformation we can model rotations, translations, scaling in any axis,

and reflections. The transformation is

x(2) =

 p(1)
1,2

p(4)
1,2

+

 1 + p(2)
1,2 p(3)

1,2

p(5)
1,2 1 + p(6)

1,2

 x(1). (3.5)

In this expression we use 1 + p(2)
m,n and 1 + p(6)

m,n instead of just the parameter in the

diagonal of the matrix to make the final equation easier to minimize. As the motion

will be possibly almost a rotation, this also makes the parameters in the matrix have

nearer values, which translates to a better numerical stability for optimization methods

without the need of scaling the variables (Press et al., 1992). The displacement, obtained
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subtracting x(1) to the right part (3.5), is

u1,2(x) =

 p(1)
1,2

p(4)
1,2

+

 p(2)
1,2 p(3)

1,2

p(5)
1,2 p(6)

1,2

 x.

If we define the matrix

X =

 1 x1 x2 0 0 0

0 0 0 1 x1 x2

 ,

we can then express u1,2 as

u1,2(x) = X(x)p, (3.6)

where p is the vector of parameters p =
(

p(1)
1,2 p(2)

1,2 p(3)
1,2 p(4)

1,2 p(5)
1,2 p(6)

1,2

)T

. Finally,

the expression that we have to minimize is

E(p1,2) = ∑
x

(
∆I1,2(x) + ~∇I(x) · X(x)p1,2

)2
,

where again we can extract p1,2 from the summatory and easily solve the equation by

least squares.

3.2.3 Projective Transformation

This motion model has eight parameters and can model translations, rotations, scaling

in any axis, reflections, panning, and tilting. This is the general transformation that a

plane in the 3D space suffers when viewed from a pin-hole camera. For this motion

x(2) =

 p(1)
1,2

p(4)
1,2

+

 1 + p(2)
1,2 p(3)

1,2

p(5)
1,2 1 + p(6)

1,2

 x(1)

(
p(7)

1,2 p(8)
1,2

)
x(1) + 1

. (3.7)

In this case there is not an easy expression for u1,2, it is just u1,2 = x(2) − x(1). The

expression that we would want to minimize is

E(p1,2) = ∑
x(1)

(
∆I1,2(x(1)) + ~∇I(x(1)) · (x(2) − x(1))

)2
, (3.8)
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where we cannot take out from the summatory the parameters vector. Thus, we cannot

solve this equation by least squares and we must resort to an iterative numerical method.

We have the added problem of (3.8) being not convex. This kind of nonlinear least

squares problems can be solved using, for instance, a Levenberg-Marquardt iteration

(Marquardt, 1963).

3.2.4 Hierarchical Motion Estimation

Equation (3.1) is valid only in a small neighborhood of a given point x, as we are using

only the first terms of a Taylor series. The images we are trying to register can be much

further than the two or three pixels that the optical flow method allows us to register.

Thus, we need an initial estimate of the parameters that approaches closely, up to a

couple of pixels, the final ones. The usual approach is to build a pyramid of images,

where we produce reduced versions of the original images that we register between

themselves and then use the found registration parameters as initial estimates of the

lower level parameters. Before proceeding to downsampling, the images are first low

pass filtered. This is the method we follow in this chapter, as explained by Burt and

Adelson (1983). Bergen et al. (1992) applied this method to different motion models in

the context of registration.

3.3 Method Description

As mentioned before, we employ area-based registration in the proposed method. To

apply this approach to a set of N images, we will register all images among themselves,

that is, we will find the displacement vector for all possible combinations of images. We

will define a transformation of coordinates Tk,m to go from image k to image m. As a

convention, k will always be less than m and we suppose that Tm,k = T−1
k,m is well-defined

and unique. Therefore, we can register image m in the coordinates system of image k

and vice versa. In Fig. 3.1a we can see the transformations that will be calculated by our

algorithm in the case of four images, represented as a directed graph.

We also need to establish a link between the displacements to make them interde-

pendent. To do so, and to fulfill the requirement of a globally consistent registration,

we will require the transformations between the coordinate systems of the different LR
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(a) (b)

Figure 3.1: Transformations and restrictions for multi-frame registration. (a) Transfor-
mations calculated for 4 images and (b) restrictions for 3 images. The nodes represent
the images and the edges represent the coordinate transformation between the images.

images to be consistent. The consistency is achieved by taking sets of 3 images and en-

forcing that the transformation of one of the coordinates of one image into other image

must be the same independently of the path followed. If we take a triangle like the one

in Fig. 3.1b, we will use as constraint Tk,n = Tm,n ◦ Tk,m, where ◦ means composition of

functions. The previously described restriction that i < j for transformation Ti,j implies

that in each triangle the transformations in Fig. 3.1b follow the directions specified in

the graph when the nodes fulfill the condition k < m < n. Using image k as origin,

we will take all possible combinations of pairs of the images with index bigger than k

to build all the needed constraints, and we will do this for values of k between 1 and

N− 2. Thus, we will force global consistency of registration, as there are common edges

among the constraints. This implies that there are relationships among all images in the

set and, therefore, there are global restrictions in the transformation functions.

Once we have these definitions we can build the cost function to be minimized so

that registration can be achieved, which is

C =
N−1

∑
m=1

N

∑
n=m+1

∑
x

(∆Im,n(x) + ~∇I(x) · (Tm,n(x)− x))2 +

+λ
N−2

∑
k=1

N−1

∑
m=k+1

N

∑
n=m+1

∑
x
‖Tm,n(Tk,m(x)))− Tk,n(x)‖2. (3.9)

This equation is composed of the optical flow conservation equations derived from 3.1

(first term) and the constraints for consistency in the registration (second term). The

displacement has been substituted by um,n(x) = Tm,n(x)− x. The constant λ weights the
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importance we want to give to the constraint term and also has a conversion function

between the second term, which is measured in pixels, to light intensity. The x are the

coordinates of the pixels that are translated from one image to another. This equation

is symmetrical as we pass the same number of times over all the edges in the graph for

its second term. This can be easily seen: over the edge between nodes i and j (i < j) we

pass i− 1 times until the index k of the first summatory equals i. For that value of the

index we will pass N − (i + 1) times over that edge, and for bigger values of k we will

not pass again over it. So finally, we will pass N − 2 times over all edges in the graph.

This equation is very similar to the ones found in Farsiu et al. (2005) and could be

considered within the framework proposed there, with the following differences:

1. We make the constraint term dependent on x, so we take into account the mag-

nitude of each pixel registration error when we minimize the function. This is

not important when the images are just shifted. In that case the error between

2 frames is the same for all pixels, but this does not happen for more complex

transformations (rotations, affine, etc.). This has also the following advantage:

when the images only overlap partially (we consider our method a refinement

step after more global registration methods have been applied, so we already

have an idea of which parts of the images overlap) the constraint has more or less

weight depending on the overlapping area. That is an improvement that can be

useful even when the images are only shifted.

2. We do not estimate both Tm,n and Tn,m. We consider Tm,n = T−1
n,m a hard constraint

as we use data from both images to estimate the gradient in (3.1), so the equation

stated when we want to know the transformation from n to m is equivalent to

the one used to find the transformation from m to n. In this way we have less

parameters to estimate.

3. We use less restrictions in the constraint term of (3.9), employing just the mini-

mum number of sets of three images to consider all geometric constraints while

achieving symmetry.

4. There is another reason for taking into account each pixel registration error: if

we have, for example, images that are just shifted and we register them with a

more general motion model (affine, for instance) without being weighted by the

pixel errors, all the parameters are considered equally important, when in fact the
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rotation parameters have far more influence in the registration error. This means

that we look at the differences in value between the parameters, not to the influ-

ence they have in the overall error. Thus, the results obtained will be worse than

if we had used just the shift motion model when we use the method described

in Farsiu et al. (2005). Nevertheless, our method produces similar results in this

case independently of using a shift model or an affine model.

We can particularize (3.9) for any particular registration model. Usually, the transfor-

mation will have some parameters that will be found minimizing the cost function. For

instance, for the case of an affine transformation, we have, substituting the coordinates

in (3.5) by the nomenclature used above,

Tm,n =

 p(1)
m,n

p(4)
m,n

+

 1 + p(2)
m,n p(3)

m,n

p(5)
m,n 1 + p(6)

m,n

 x, (3.10)

where the p(i)
m,n are the parameters that we need to calculate.

To solve the minimization problem of finding the parameters of a translation or an

affine transformation among the input images for the cost function (3.9), we will use

the quasi-Newton algorithm that the Matlab (The MathWorks, 2008) function fminunc

implements. As the cost function is analytical for these motion models we also calculate

its gradient, which greatly speeds up the search of the parameters.

To end this section we present, as a summary, the steps that are taken in the algo-

rithm:

1. We select the sequence of images to be registered.

2. We choose the type of transformation that is applied between a pair of images,

which determines the shape of the Tm,n functions.

3. We minimize equation (3.9), obtaining as output the parameters of all the trans-

formations.
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Figure 3.2: Original images used in the experiments: Texture and Television

3.4 Experiments

3.4.1 Methodology

The goal of the experiments carried out here is to verify the performance of the proposed

registration approach as compared against other existing registration methods. We will

test the method with the images displayed in Fig. 3.2 for the cases of shift and rotations,

using different values for lambda and for different number of generated images. These

images are first warped using random values for the registration parameters and then

subsampled by a factor of two to obtain the different images to register. The subsam-

pling is done to force a certain degree of aliasing in the generated images. The tests will

be repeated for 30 different random realizations of the registration parameters for each

point represented in the plots (that is, 30 realizations for each value of lambda and each

number of images to register). We have tested the method only for shifts and rotations

because of the difficulty of achieving a precise enough registration for SR under more

complex motion models.

To measure the error we have to take into account that, as all frames are registered

at the same time, there is no frame that can serve as reference. What we will do is to

consider each frame as a reference and measure the registration error of the other frames

with regard to that frame. The errors will be summed up and averaged to obtain the

Mean Squared Error (MSE). If we call T I
m,n the ideal function that registers a position in

image m to image n and M the total number of pixels of an image, we will have as MSE

MSE =
1

MN(N − 1)

N

∑
m=1

N

∑
n=1
m 6=n

∑
x
‖Tm,n(x)− T I

m,n(x)‖2.
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Note that in this case we allow m to be bigger that n for Tm,n: in that case the transfor-

mation is calculated as T−1
n,m.

3.4.2 Shift

In Fig. 3.3 we can see the results for the texture and the television image both depicted

in Fig. 3.2. We have shifted the images in the x and y directions with random values

following a uniform distribution between 0 and 1 pixel. The y-axis in Fig. 3.3 represents

the ratio between the MSE for a certain number of images and a certain λ and the

MSE for λ = 0. The x-axis is λ and different plots are displayed for different number

of images. For two images we have the same case as λ = 0, so we have a line on

y = 1 that if we surpass we are doing worse than the standard registration based on

the conservation of the optical flow for two images. If we are below that line we are

making a better registration, being the difference between one and the ratio we get the

percentage of improvement.

We can see a significant improvement for both images, more than 60% for the texture

image and more than 25% for the Television image. It can be seen that as the number of

images increases the plots quickly converge, meaning that we do not need a lot of images

to achieve optimal performance. Although for the Television image the results are worse

than the reference for low λ, this is corrected when that parameter is increased. We

also see that for high enough λ values the error remains almost constant and minimal,

which means that the choice of λ is not critical: we can just stick to a high enough λ

value (around 10, for instance) for the registration of any image sequence and obtain

good results.

3.4.3 Rotation

We have tested the estimation of the rotation parameters rotating the images with ran-

dom angles between −1◦ and 1◦, following a uniform distribution. We can see the

results in Fig. 3.4. We still get very good results for the texture image, with improve-

ments of up to 25%. For the television image we obtain also a good performance for the

algorithm, with improvements near to 25% for that image. In both cases the choice of λ

is not critical for high enough λ, as happened in the tests for shifts.
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Figure 3.3: MSE ratios for shifts for (a) Texture and (b) Television images
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Figure 3.4: MSE ratios for rotations for (a) Texture and (b) Television images
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3.4.4 Comparison with other methods

We already implicitly compared our approach with the classical optical flow method

in the previous subsections. As our method is in some ways an extension to the one

found in Farsiu et al. (2005), we will also compare both methods in this section. In

both cases the implementation of the methods will try to find the parameters of an

affine transformation, independently of the transformation we will apply to the input

images. We have not made the comparison when the implementation just tries to find

the parameters of a shift because in that case the results are almost the same for both

methods. This happens because in that case all pixels make the same contribution to the

total error and the weighting per pixel in (3.9), which is the main difference between the

two methods, is not needed. Figure 3.5 displays the results of the MSE for 30 random

realizations of shifts and rotations for the Texture image, for different values of λ. These

results are for the case of four images to register. The λ for the Farsiu method is in

fact the parameter that appears in Farsiu et al. (2005) divided by the number of pixels

in the image. We do this to make it comparable to the λ in (3.9), where it multiplies

the contribution to the error of all pixels instead of multiplying the parameters as in the

method by Farsiu.

We can see that our method proves better for shift transformations. The reason for

this is that our method does not consider all parameters as equally important, but we

measure their impact on the registration of each pixel, as we explained in the previous

section. Regarding rotations, we can see that our method has again better performance

and that in this case the method by Farsiu cannot beat the standard optical flow algo-

rithm (represented in the plots when λ = 0). This happens because there is not a linear

relation between the rotation parameters and the registration error for this method when

using a model more complex than just shifts.

3.5 Fast method

In this section we propose a fast method with similar accuracy to the one proposed in

section 3.3. We will take advantage of the fast convergence when the number of images

increases as we have seen in the previous section. The fast method will consist of the

following steps:
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Figure 3.5: MSE: Comparison of methods for (a) shifts and (b) rotations

1. Apply the full algorithm for M images. This number does not need to be very

high: 4 to 6 images is usually enough.

2. Add a new image to the set. The registration parameters between the previously

registered images will be considered fixed, and we will only estimate the param-

eters of transformations between the new frame and the already registered ones.

Therefore, we will have M new parameter vectors to estimate.

3. Increase M in one and return to the previous step while there are frames left

(M < N).

The function that we must minimize when we add a new frame is

C =
M

∑
m=1

∑
x

(∆Im,M+1(x) + ~∇I(x) · (Tm,M+1(x)− x))2 +

+λ
M−1

∑
k=1

M

∑
m=k+1

∑
x
‖Tm,M+1(Tk,m(x)))− Tk,M+1(x)‖2. (3.11)

The equation uses the convention that we have already registered M images and we

want to register the M + 1 image. We will have M new parameter vectors to estimate

and (M
2 ) constraints in the second term of the equation.

In the end, the total number of registration vectors that we will calculate with this

method is the same as in the full method, but having a smaller number of parameters to

estimate when we apply the minimization algorithm. If, for instance, the minimization

algorithm is O(K2) in time, being K the number of parameters to estimate, we will

have a time complexity of O(N4) for the first method (N2 vectors to estimate) and

O(N3) for the second one (N vectors to estimate, approximately N times when N is
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Figure 3.6: MSE ratios for (a) fast method and (b) fast method with M fixed. Initial
M = 4.

big enough). The evaluation of function (3.11) and of its gradient is faster than the

evaluation of (3.9), which also adds up. It can be seen in Fig. 3.6a that the effect in

registration performance is low if we compare it with Fig. 3.3: the maximum difference

is about 3% less improvement regarding to the case where λ = 0 when we jointly register

5 or 6 images.

We can make even faster the algorithm if we select a number of frames that we

register among themselves and then we always use those frames to register the next

frames, but without adding those frames to the reference set. In that case, the time

complexity would be linear with N. The performance of this algorithm can be seen in

Fig. 3.6b, which is very similar to the case when M is not fixed. As the complexity of

this method is linear with the number of images, we conclude that this is the method of

choice when we have many images to register.

3.6 Influence of registration in Super-Resolution

In this section we will make an experiment with real data, applying the registration

method to super-resolution. We have used a sequence taken with the camera of a mo-

bile phone. For registration, we have first applied the hierarchical pyramid approach

by Bergen et al. (1992) and then our method as a final refinement step. After the reg-

istration, we have applied the SR method based on Delaunay triangulation exposed in

Lertrattanapanich and Bose (2002), duplicating the original size of the low resolution

frames. The reason for choosing this method is the high sensitivity to noise it has,
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(a) (b) (c)

(d)

Figure 3.7: Influence of registration in super-resolution. Image (a) shows a frame of
a sequence taken with a mobile phone camera, (b) is the cubic spline interpolation of
a detail of the sequence, (c) is a super-resolved image obtained after registering with
λ = 0, and (d) is the super-resolved image registered with λ = 10.

which makes it easier to show the effect of registration noise in the HR image (it is more

difficult to see it in regularizing methods). In Fig. 3.7 we can see one of the low resolu-

tion frames taken with the mobile phone, the cubic spline interpolation of a detail that

we will super-resolve, a super-resolution image obtained registering with λ = 0 and an-

other SR image registered with λ = 10 (in both cases with 20 LR frames as input). The

resolution is duplicated in the super-resolved images and in the interpolated fragment.

It can be observed that the noise is considerably higher in the image registered with

λ = 0 (standard area based registration) than in the one registered with λ = 10, espe-

cially on the car to the right of the image and on the right border of the wall on the

lower part of the image. To choose λ, different values were tried and the one for which

the obtained image had a better visual quality was chosen. It was also seen that higher

λ values did not improve the visual quality of the HR image, which strengthens the

conclusion that it is easy to obtain near optimal results just taking a high value for λ

from the beginning.
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3.7 Conclusions

In this chapter we have presented a new method for the registration of a set of low

resolution images that have large overlapping areas. This method outperforms similar

approaches and the classical optical flow algorithm for shifts and rotations. An im-

portant characteristic of this method is that with 4 to 5 images we can obtain a very

significant improvement. We have also presented a fast version of our method that is

linear with the number of images and that hardly affects the quality of the registration.

Finally, we applied our method to a real video sequence, obtaining visually better high

resolution images when we apply super-resolution to the sequence.

After the experiments that we have made in this chapter, we conclude that the pro-

posed registration method is adequate for super-resolution and we will apply it in the

following chapters when registering sequences of images.



Chapter 4
Interpolation: Optimal Projections on

Functional Spaces

4.1 Introduction

This chapter is based on Sánchez-Beato and Pajares (2008). In it we will concentrate

on super-resolution as an interpolation problem. Similar approaches have been taken

in Lertrattanapanich and Bose (2002), where a Delaunay triangulation method was

adopted, or in Pham et al. (2006), where polynomial approximations are used to de-

scribe locally the HR image we want to find. The proposed method differs from these

two on the backing we look for in sampling theory. Our objective is to show that the

discrete approach commonly adopted for SR, like the one in Elad and Feuer (1997), im-

plicitly assumes a data model that is not always valid and we provide a more general

data model that works independently of the bandwidth of the imaging system.

We can cite as related with a sampling theory approach the first proposed meth-

ods for SR in Tsai and Huang (1984) and Kim et al. (1990), which were based on the

shifting property of the Fourier transform, but they were valid only for translational

motion models. There have also been methods based on the generalized sampling ex-

pansion theorem by Papoulis (1977) or its simplified form by Brown Jr (1981), like Ur

and Gross (1992) or Shekarforoush and Chellappa (1999), but the former was valid only

for translational motion and the latter assumes a band-limited HR image as most SR

methods. Recently, a generalization of the Papoulis-Brown theorem to the multidimen-

sional non bandlimited case has been done by Ahuja and Bose (2006). The method we

73
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propose is valid for any motion model and allows a more general data model than the

one implicitly assumed by the mentioned and other methods.

The main contribution of this chapter is a change of the commonly assumed data

model for Super-Resolution using sampling theory. We propose a framework that em-

ploys the usual anti-aliasing prefilter to orthogonally project the input signal on the

desired space that we define with a Riesz basis. In particular, we use Delaunay trian-

gulation and a B-spline basis to define a practical SR algorithm. We demonstrate the

effectiveness of this method with synthetic and real data experiments alike. Addition-

ally, we extend the result that allows interchangeability of the warping and blurring

operators for translational movement to rotation and shift for rotationally symmetrical

Point Spread Function (PSF).

The rest of the chapter is organized as follows. Section 4.2 explains the weaknesses

of the usually assumed data model for Super-Resolution. In section 4.3 we develop a

sampling theory-based approach for the SR problem. Section 4.4 proposes a concrete

algorithm for SR within the proposed framework. Competing approaches are exposed

in section 4.5 and in section 4.6 the proposed method is tested with synthetic and real

data experiments and the results are compared with them. Finally, the conclusions are

drawn in section 4.7. Additionally, a proof of a theorem that is referenced in the chapter

is exposed in the chapter appendix 4.A.

4.2 The Data Model

Usually (as in Elad and Feuer (1997), for instance), the image formation process for N

low resolution measured images has been modeled with the equation

wk = DkHkGkz + nk k = 1, . . . , N, (4.1)

where wk is a vector with the low resolution pixels from the kth low resolution image,

z contains the pixels from the high resolution image and nk comes from an additive

noise process. Gk is the geometric motion operator between the HR and the various LR

frames, whereas Hk models the blurring due to the PSF of the imaging system and Dk

is the down-sampling operator.
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It is important to recall that (4.1) is an approximation of the continuous model

wk[m, n] = dk (hk(x, y) ∗ (z(gk(x, y)))) + nk[m, n], (4.2)

which we have slightly modified from the one in Irani and Peleg (1993). In this equation,

z is the continuous image that we want to obtain, gk is an operator that produces the

geometric warping of the image, hk is the PSF of the sensor, ∗ denotes a convolution, and

dk is the down-sampling operator. The discrete function wk is composed by the pixels

of the kth measured low resolution image and nk is the additive noise. To pass from

(4.2) to (4.1) we discretize the HR image, in practice limiting its bandwidth. If z is the

sampling of z(x, y) with period Tx = 1
2 fx

in the abscissas and Ty = 1
2 fy

in the ordinates it

implies that the least squares solution to (4.1) is optimal when the input sequence comes

from an image that is bandlimited within frequencies fx and fy plus Gaussian white

noise. If the continuous image z(x, y) has information at higher frequencies, we do not

follow the data model for which the least squares solution to (4.1) is optimal anymore.

This happens also when we solve it in an ML (maximum likelihood) sense adopting a

norm different from l2: for instance, for the l1 norm we would assume a data model

composed of a bandlimited function plus Laplacian noise (Farsiu et al., 2004b). This

mismatch between the input data and the model translates to the presence of aliasing

artifacts due to the undersampling of the HR image, as we will see in later sections. The

diffraction limit determines the maximum bandwidth of an optical system, so we could

just increase the sampling rate of z until we include all possible information, but this

is not always practical. We do not always know all the characteristics of the imaging

system we are dealing with or the diffraction limit is too high and it is computationally

too expensive for calculating such a big HR image. In those cases we must be careful

with the optimality of ML or MAP (maximum a posteriori) solutions to (4.1) like those

proposed in Farsiu et al. (2004b).

4.3 A Sampling Theory Interpretation

Our goal is to find a solution to (4.2) that is more flexible with the data model, valid

for different noise types and imaging system bandwidths. The first thing we will do is

to simplify the model converting it in an interpolation problem. To do so, we need to
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interchange the warping/interpolation function gk with the convolution with the PSF, so

we can solve first the interpolation problem and then make the deconvolution. In Elad

and Hel-Or (2001) it was established that Hk and Gk of equation (4.1) can change its

application order for translational movement. We will extend that result for the contin-

uous equation (4.2), establishing that gk and the convolution with hk can be interchanged

when

1. The movement is translational. This fact was already well-known and can be

found in Kim et al. (1990) and Ur and Gross (1992).

2. The movement is a rotation plus a shift and the blurring operator presents radial

symmetry, that is, hk = hk(x2 + y2). We prove this in section 4.A.

These results let us interchange blurring and interpolation operators with certain con-

fidence, as most movements in a video sequence for temporally near frames can be

represented as rotations and translations. Additionally, most times the PSF is supposed

to have radial symmetry (in Elad and Hel-Or (2001) and Farsiu et al. (2004b), for in-

stance, the authors assume a Gaussian PSF for synthetic and non-synthetic experiments

alike). Although this is not always true for modern cameras, where the influence of the

photon integration surface in the total PSF is usually more important than that of the

optical PSF, that does not make a big difference for small rotations. Therefore, for the

rest of the chapter, z will represent the blurred image before translations and rotations.

We will also make the reasonable assumption of the equality of hk and dk for all frames,

as we suppose them captured with the same imaging system.

Now we will draw our attention to the operator Gk. This matrix resamples the

original HR image into another rectangular grid where some of the pixels coincide

with the kth LR image that is finally formed. The way we perform this resampling or

interpolation depends on the sampling model we have chosen. We must choose a basis

to represent the signal. If it is, for instance, the tensor product of the sinc function,

then each low resolution pixel could be expressed as (without losing generality we will

assume Tx = Ty = 1)

wk[m, n] =
Nx−1

∑
i=0

Ny−1

∑
j=0

z(i, j)sinc(xk,m,n − i)sinc(yk,m,n − j)
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where (xk,m,n, yk,m,n) are the coordinates of the pixel wk[m, n] in the HR grid and Nx and

Ny are the size of the HR image in the x and y directions respectively. This equation

states that the measured pixels are a linear combination of the weighted basis functions

at the low resolution pixel location and is valid for the registration models that allow

the interchange of the blurring and warping operators. In fact, the different coefficients

that multiply z for a given pixel wk[m, n] can be seen as the result of the multiplication

of the matrices Dk and Gk once we have displaced to the right Hk.

We can generalize the sampling model assuming that z(x, y) belongs to the space

of square-integrable functions L2(R2). The HR image we finally calculate, ẑ, is the

projection of z on the space V defined by the Riesz basis {ϕl,p = ϕ(x − l, y− p)l,p∈Z}

(Unser, 2000), that is

ẑ(x, y) = ∑
i∈Z

∑
j∈Z

c(i, j)ϕi,j.

The approximation of z in V with minimum error is obtained minimizing the distance

ẑ(x, y) = arg min
t∈V

‖z− t‖2. (4.3)

The optimal solution to (4.3) is (see Unser (2000))

ẑ = ∑
i∈Z

∑
j∈Z

〈z, ϕ̃i,j〉ϕi,j,

where the ϕ̃i,j’s are the dual basis functions of the ϕi,j’s. These functions are called

the analysis and synthesis functions respectively, and they fulfill the biorthogonality

condition

〈ϕ̃i,j, ϕm,n〉 = δi−m,j−n.

In the case of the sinc basis functions, the analysis and synthesis functions coincide and

the biorthogonality condition translates to an orthogonality condition among the shifted

sinc functions.

To find the coefficients c(i, j) we can, instead of minimizing (4.3), follow the equiv-

alent sampling process that can be seen in Fig. 4.1. We apply a prefiltering step, using

the analysis functions, that orthogonally projects the input to the space V and next we

sample the output of the filter, obtaining the coefficients c(i, j). These coefficients will be

used to obtain the reconstructed signal ẑ that is the solution to (4.3), filtering with the
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Figure 4.1: Standard three-step sampling paradigm.

synthesis functions. This is the approach we will follow in our method. The important

thing to note here is that we introduce an anti-alias prefilter that no other SR method

has used before and that produces an optimal solution to (4.3).

4.4 Proposed Algorithm

In this section we propose a method that fits in the previously described sampling

paradigm. We first build a continuous function using Delaunay triangulation and then

we project it on the space of polynomial splines of degree n, using a B-spline basis.

4.4.1 Prefiltering Using B-Spline Basis

We face the following dilemma: we need the continuous image z to project it on the

chosen space of representable signals, but we only have the samples from the low res-

olution images. We also want to make sure that the projection we apply is orthogonal

to V, which implies that we must apply a prefiltering step. To solve this problem we

will try to find an approximation of the continuous (and noisy) function z using the

available measured pixels. The ideal solution would be to use radial basis functions

(RBF, see Powell (1990)), which are functions centered in the sampling points that sat-

isfy certain smoothness constraints in the built function. Unfortunately, the use of RBFs

would lead to a very ill-conditioned and computationally expensive problem due to the

unbounded nature of these functions. Instead, we will build z using the Delaunay tri-

angulation of the sampling points, which is a reasonable approximation when we have

enough sampling points.

Delaunay triangulations maximize the minimum angle of all the angles of the trian-

gles in the triangulation. We will use it to make a triangulation of the low resolution

sampling points that we have and then build a piecewise linear function in two dimen-



4.4. PROPOSED ALGORITHM 79

sions. Each triangle will have an area Tp ⊂ R2. If we have P triangles, we will define

the continuous function as

z =
P

∑
p=1

zp, (4.4)

with

zp =

 k1
px + k2

py + k3
p, (x, y) ∈ Tp

0, otherwise,

where the constants k1
p, k2

p, and k3
p are defined so that z passes through all the low

resolution pixel values we have. This can be considered a first order approximation of z

in an irregular grid. Delaunay triangulation has already been used by Lertrattanapanich

and Bose (2002) for super-resolution, but just sampling the built function z without the

prefiltering step.

Now we must choose a basis to project z. The sinc function has the disadvantage

of its infinite support and a low decay rate (with 1/|x|). B-splines provide a good

approximation of the sinc behavior (Unser, 1999), have compact support and an explicit

expression (see Ahuja et al. (2005) for an analysis that concludes that B-spline basis are

the most suitable basis for SR). For one-dimensional functions, that means projecting the

function on the space Sn
T of continuous functions that are equal to a polynomial of degree

n on each interval [kT, (k + 1)T), k ∈ Z. The period will approximately determine the

maximum representable frequency in the HR image, as the Sn
T space rapidly converges

to the band-limited space with maximum representable frequency f = 1
2T as n increases.

Measured in the HR grid, we will have T = 1, and that is the convention we will follow

in the next formulae. If we adopt the B-splines of order n as basis functions for z, we

have

ẑ = ∑
i∈Z

∑
j∈Z

c(i, j)βn(x− i)βn(y− j).

In Unser et al. (1992) the prefiltering for B-splines of order n is carried out in three

steps:

1. A convolution between the input signal and the continuous kernel βn(x)βn(y) is

performed

2. The resulting function is sampled to provide the discrete sequence a(i, j)

3. Finally, we do a discrete filtering using a direct B-spline filter of order 2n + 1

The first and second steps can be performed jointly. That is done calculating the
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continuous convolution, sampled at the points (i, j), which is

a(i, j) =
∫∫

βn(u− i)βn(v− j)z(u, v)dudv. (4.5)

As the B-splines are piecewise polynomial and z is piecewise linear, we can solve (4.5)

analytically integrating it in the intersection of the differentiable areas of both func-

tions. We can easily split the B-spline functions in the areas where they are defined by

polynomials. For instance, for the centered linear B-spline

β1(x) =

 −|x|+ 1, 0 ≤ |x| < 1

0, 1 ≤ |x|,

we can develop it as

β1(x) =


x + 1, −1 < x < 0,

−x + 1, 0 ≤ x < 1

0, 1 ≤ |x|.

That is, we have two integration areas different from zero defined by polynomials. The

expression of the tensor product of two linear B-splines would produce four areas in the

plane where the function will be defined as a polynomial different from zero. In general,

for the tensor product of two B-splines of order n, we will define (n + 1)2 areas. We will

name the polynomial in these areas Bn
m(x, y), m = 1, .., (n + 1)2, with m increasing as

we move first increasing x and then increasing y. In Fig. 4.2 we can see an example for

B-splines of order two. There are nine squares for which the function β2(x)β2(y) has

different polynomials. For each of these squares we calculate the intersection with the

Delaunay triangles. Once we have that polygon (for instance, the dark area in Fig. 4.2),

we will divide it in strips always defined by four lines, where two of them will be

constant values of y. The intersection of those lines will define the final integration area.

For each B-spline polynomial Bn
m and each coefficient a(i, j) we will define an index set

Pm,i,j that will contain the indexes to the triangles that have a part of its area within the

area where Bn
m(x− i, x− j) is defined. For each triangle zp with p ∈ Pm,i,j we will have

Qr strips defined by the lines x = s1
q,ry + s2

q,r, x = s3
q,ry + s4

q,r, y = s5
q,r, and y = s6

q,r, with

q = 1, .., Qr and being r the 4-tuple r = (m, i, j, p). In the case of the polygon in the figure

we would integrate two strips with different delimiting lines. In the general case what
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Figure 4.2: Integration areas for (4.6) for a quadratic B-spline. There are 9 integration
areas with different polynomials. The figure shows how one triangle intersects with the
integration area of B2

9 and the intersection is divided in 2 strips. The equations for the
limiting lines for one of them are also shown.

we have is

a(i, j) =
(n+1)2

∑
m=1

∑
p∈Pm,i,j

Qr

∑
q=1

∫ v=s6
q,r

v=s5
q,r

∫ u=s3
q,rv+s4

q,r

u=s1
q,rv+s2

q,r

Bn
m(u− i, v− j) · zp(u, v)dudv

=
(n+1)2

∑
m=1

∑
p∈Pm,i,j

Qr

∑
q=1

∫ v=s6
q,r

v=s5
q,r

∫ u=s3
q,rv+s4

q,r

u=s1
q,rv+s2

q,r

Bn
m(u− i, v− j) · (k1

pu + k2
pv + k3

p)dudv, (4.6)

which can be calculated analytically to obtain a polynomial in function of the param-

eters k1
p, k2

p, k3
p and s1

q,r, ..., s6
q,r. After obtaining these expressions for each Bn

m, we can

easily find the contribution of a triangle for a certain coefficient just finding the inte-

gration strips and substituting the parameters in the expression. Equation (4.6) can be

efficiently implemented first reserving memory for the coefficients and setting it to zero

and then running through all the triangles in the triangulation, adding for each triangle

its contribution to different coefficients. This implies that the method is linear in time

with the number of triangles and linear in memory with the number of output pixels,

which is a big improvement when comparing with MAP approaches that must solve a

huge general system of linear equations.

Once we have the a(i, j) coefficients we can perform the third step of the prefiltering.

We have to calculate the c(i, j) samples finding the B-spline coefficients of order 2n + 1

for the data a(i, j). This can be done using a very fast recursive digital filter as explained
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in Unser et al. (1991).

4.4.2 Implementation for Cubic B-splines

In the experiments we have used a cubic B-spline, which has a good tradeoff between

computational complexity and close behavior to the sampling system constructed when

we use as basis shifted sinc functions. Its representation is

β3(x) =


2/3− |x|2 + |x|3/2, 0 ≤ |x| < 1

(2− |x|)3/6, 1 ≤ |x| < 2

0, 2 ≤ |x|.

We have used (4.6) to find the expressions needed to calculate the a(i, j) coefficients,

obtaining quite complex polynomials that we will not reproduce here because of its lack

of interest. To find the c(i, j) coefficients we need the impulse response of the B-spline

digital filter of order seven. This B-spline has Z-transform

S7(z) =
5040z3

1 + 120z + 1191z2 + 2416z3 + 1191z4 + 120z5 + z6 , (4.7)

which can be implemented as two recursive filters, one causal and another one anti-

causal, as explained in Unser et al. (1991). This kind of techniques have also been

exploited for Gaussian filtering (Young and van Vliet, 1995; Triggs and Sdika, 2006).

The denominator of S7(z) has six real roots, three of them inside the unit circle and the

other three outside. The former will be included in the causal filter and the latter in the

anti-causal one. Separating the denominator of (4.7) in its causal and anti-causal parts

(the α’s are the coefficients that has the polynomial with roots in the unit circle and the

γ’s correspond to the polynomial with roots outside it), we have

S7(z) =
5040

(1 + α1z−1 + α2z−2 + α3z−3)(γ1 + γ2z + γ3z2 + z3)
=

D(z)
X(z)

Y(z)
D(z)

.

We can now obtain the recursive equations that implement the IIR filter,

d(n) = 5040x(n)− α1d(n− 1)− α2d(n− 2)− α3d(n− 3)

y(n) = 1
γ1

(d(n)− γ2y(n + 1)− γ3y(n + 2)− y(n + 3)) .
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We will apply initially the first equation moving forwards to find the d(n) coefficients

and then we will move backwards to obtain the final output of the filter using the second

equation. For images we must apply this filter once in the x direction and once in the y

direction. This is possible because the filter is separable.

4.5 Competing Approaches

In this section we will briefly describe the methods with which we have compared our

proposal to. All of them lack the prefiltering step necessary to obtain an orthogonal

projection to the reconstruction space. To solve (4.1), most of them pose a minimization

problem with some regularization prior, so we will first describe these regularization

terms, which may be used in different methods, and then we will describe the methods

in itselves.

4.5.1 Regularization Priors

Recognizing that SR can be an ill-posed problem, which means that we can have many

solutions to the problem, we must find the HR image that would be the most probable

solution to it. As we do not have enough information in the already available data (the

samples from the LR images), we have to suppose that there is some regularity in the

ground truth that we can model as a priori knowledge. Therefore, we must search for

some term that expresses the regularity of natural images and that will be the Ω(z)

present in equation (2.10).

One of the most widely referenced regularization cost function in SR (Nguyen et al.,

2001a) is the Tikhonov cost function (we reproduce here (2.11) for convenience)

ΩT(z) = ‖Γz‖2
l2 , (4.8)

where Γ is usually a high pass operator such as a derivative or Laplacian and we employ

the squared l2 norm. It can also be the identity matrix, limiting then the energy of the

solution. If Γ is a high pass operator it forces spatial smoothness in the solution. As

the noisy and edge pixels both contain high-frequency energy, they will be removed

in the regularization process and the resulting denoised image will not contain sharp

edges. Therefore, there will be a tradeoff between the denoising and the sharpness of
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the reconstructed image.

In some of the experiments to follow, we have used a Tikhonov regularization with

operator

Γ =
1
8


1 1 1

1 −8 1

1 1 1

 , (4.9)

which is a matrix realization of the Laplacian kernel.

A very successful regularization method originally used for denoising and deblur-

ring is the total variation (TV) method (Rudin et al., 1992). The TV criterion penalizes

the total amount of change in the image as measured by the l1 norm of the magnitude

of the gradient and is defined as

ΩTV(z) = ‖∇z‖l1 , (4.10)

where ∇ is the gradient operator. The most useful property of the TV criterion is that

it tends to preserve edges in the reconstruction (Bovik and Gibson, 2000; Rudin et al.,

1992), as it does not severely penalize steep local gradients.

Based on the spirit of the TV criterion and on a related technique known as the

bilateral filter (Tomasi and Manduchi, 1998), Farsiu et al. (2004b) introduced a robust

regularizer called bilateral Total Variation (bilateral TV or BTV). This regularizer is com-

putationally cheap and preserves edges. The regularizing function looks like

ΩBTV(z) =
P

∑
l=−P

P

∑
m=1

α|m|+|l|‖z− Sl
xSm

y z‖l1 +
P

∑
l=1

α|l|‖z− Sl
xz‖l1 , (4.11)

where matrices (operators) Sl
x and Sm

y shift z by l and m pixels in the horizontal and

vertical directions respectively. This expression calculates derivatives of z at different

scales and at different directions. The scalar weight α, 0 < α < 1, is applied to give a

spatially decaying effect to the summation of the regularization terms: we penalize big

gradients in nearby pixels. As the differences are calculated in different directions, the

behavior is isotropic even although we are using the l1 norm, thing that does not happen

with (4.10). In that case, the l1 norm of the gradient favors the x and y directions, as we

calculate differences only in those directions. We have changed a little the expression

that appears in Farsiu et al. (2004b), because there is a small asymmetry in the way they
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pose the equation. To solve that issue we have separated the expression in two terms,

being the first of them all directions but the abscissas and being the second that missing

direction (in that term, m = 0).

We will use (4.8) with operator (4.9) and (4.11) as regularization priors in the exper-

iments with different methods. Note that we do not need this kind of regularization in

the proposed method, as if the SR problem we are dealing with is ill-posed, that issue is

solved when the Delaunay triangulation is calculated.

4.5.2 The l2 Norm Method

Using the l2 norm without a regularization prior means solving (2.9) as a least squares

problem. We would simply have to solve for z in

ATAz = ATw. (4.12)

The solution would be optimal in an ML sense when the samples have additive i.i.d.

zero mean Gaussian distributed noise.

If we wish to introduce regularization terms, we will solve the MAP problem

ẑ = arg min
z

[
‖Az−w‖2

l2 + λ‖Γz‖2
l2

]
. (4.13)

This is one of the methods we have used for benchmarking our projective method,

using as regularization term (4.8) with the Laplacian operator (4.9) as kernel. This was

the method proposed by Elad and Feuer (1997). We have used it in the experiments

as it can be considered the most “standard” SR method nowadays, having been widely

implemented.

4.5.3 The l1 Norm Method

The l1 method differs from the l2 method in that its optimality happens when the sam-

ples are contaminated by additive i.i.d. zero mean Laplacian distributed noised instead

of Gaussian. In the experiments we have used an l1 norm with a bilateral TV prior, as
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suggested by Farsiu et al. (2004b). The image that we want to find is

ẑ = arg min
z

[‖Az−w‖l1 + λΩBTV(z)] . (4.14)

The parameters for the bilateral TV prior defined in (4.11) will be in all cases P = 2 and

α = 0.8. The reason for the inclusion of this methods are its good performance when

there are outliers present, thing that happens frequently due to unavoidable registration

errors and also because of the nice behavior of the bilateral TV prior when it is applied

to natural images.

4.5.4 The Shift and Add Method

The shift and add method is a very fast non-iterative method proposed by Elad and

Hel-Or (2001) that solves the SR problem under a special case where

1. All the decimation operators are assumed to be the same for all frames.

2. All the blur operations are assumed to be the same for all frames. Moreover,

the blurring matrix is assumed to be block circulant, representing a linear space

invariant blur.

3. All the warp operations correspond to pure translations. Thus, the warping ma-

trices are all block circulant as well. Moreover, it is assumed that the warping is

represented through the nearest neighbor displacement paradigm, which means

that the displacement in the finer grid is rounded and the warping matrices apply

only integer translations in the HR grid. This can lead to less quality in the image

if the SR amplification factor is small.

4. The additive noise is white and i.i.d.

When all these conditions apply, it is very easy to calculate z. Solving for z in (4.12),

we have

z = (ATA)−1ATw. (4.15)

Under the conditions specified above, ATA is a diagonal matrix, so we can calculate its

inverse just with a division per HR pixel. Then we just need to multiply by matrix AT

to find the HR image.

The shift and add method obtains very good quality images with very low compu-

tational load, so it is a good method for comparison to see if the additional complexity
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that other methods introduce is compensated by an increase in quality with regard to

this method.

4.5.5 The Zomet Method

The Zomet method (Zomet et al., 2001) is another robust method that has very good

performance when outliers are present. To expose it, we will recall equation (2.6), which

is

wk = Akz + nk for k = 1, . . . , N.

In this equation, we are considering separately each LR image instead of stacking all

vectors as in (2.7). The expression we have to minimize to find the HR image adopting

the l2 norm is

L(z) =
N

∑
k=1
‖wk −Akz‖2

l2 . (4.16)

In most iterative methods, we find the gradient of (4.16) in each step to update the

solution estimated in each iteration by the expression

zn+1 = zn + β∇L(z), (4.17)

where β is a scale factor defining the step size in the direction of the gradient. The

gradient of L is the sum of the gradients computed over the input images

∇L(z) =
N

∑
k=1

bk, (4.18)

where

bk = 2AT
k (Akz−wk). (4.19)

In order to introduce robustness into the procedure, the sum of gradients coming

from different images in (4.18) is replaced with a scaled median in each pixel of the HR

image,

∇L(z)(i, j) = N ·MEDIAN {bk(i, j)}N
k=1 . (4.20)

For a symmetric distribution a median can approximate the mean quite accurately given

a sufficient set of samples. In case of distant outliers the median is much more robust

than the mean. This is the reason why the Zomet method works.
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If some prior assumptions can be made about the solution one can combine this

robust scheme with a constrained optimization algorithm. In the experiments, we have

done this adding a Tikhonov prior term to (4.16).

4.5.6 The Delaunay Triangulation Method

The method proposed by Lertrattanapanich and Bose (2002) uses a Delaunay triangula-

tion as in our method to obtain the function that we have defined in (4.4). The difference

with our method is that they simply sample the obtained continuous function in the

sampling interval defined by the HR grid. This implies that possibly aliasing is happen-

ing in the HR image as in the previously exposed methods, with the added drawback

of not offering any protection against noise. In any case, we have included this method

in the set we compare to, due to its similarity with ours. This is because both use a

Delaunay triangulation to pass from a set of discrete irregular samples to a continuous

function.

4.6 Experiments

We will make five experiments to show the behavior of our approach, two of them

with synthetic images, and three with real data taken with common low-end imaging

systems.

4.6.1 Experiments with Synthetic Data

The first two experiments will show the improvement in resolution for high frequencies

that brings our method when the HR image has less resolution than what could be

provided by the bandwidth of the imaging system. This will be done with simulated

video sequences. For the first of them we will generate a sequence of synthetic images

sampling the function

f =
1
2

(
1 + cos

(
40 arctan

y
x

))
. (4.21)

This function has also been used for super-resolution tests by Borman and Stevenson

(2004). This function oscillates around the origin for any given radius and has the

peculiarity that it is not bandlimited: when we approach to the origin, the frequencies

rapidly increase. We have generated 20 low resolution images sampling this function
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and then applied different super-resolution methods with an SR factor of four. The

LR images have been randomly shifted with shifts following a uniform distribution

between zero and one pixels. In Fig. 4.3 we can see two different LR frames, the cubic

spline interpolation of the first of them and the sampling of the function at the super-

resolution rate. It can be seen the high degree of aliasing present in the low resolution

images and also, to a lesser extent, in the image sampled at higher rate. Figure 4.4 shows

the results for different SR methods. The MDSP software package from the University

of California has been used for the shift and add method (Elad and Hel-Or, 2001), the

iterative MAP methods based on the l2 and l1 norms (Farsiu et al., 2004b), and for the

Zomet method (Zomet et al., 2001). No deblurring has been made in any case, that is,

Hk = I. The parameters of the different methods have been tuned to maximize the

PSNR of the images, defined as

PSNR = 10 log10

(
max(I)2

1
mn ∑m−1

i=0 ∑n−1
j=0 ‖I(i, j)− K(i, j)‖2

)
, (4.22)

where we are comparing two images I and K of size m × n. In Table 4.1 we can see

the values for the different parameters for the iterative methods (being λ the weight of

the regularization prior and β the step size for the gradient descent method) and the

results of the experiment for all methods. Our method achieves the best PSNR among

all tested algorithms. Besides that quantitative datum, it can be seen that the frequency

resolution is greatly improved by our method comparing with shift and add, l2 and l1

with regularization and Zomet, as the aliased center area of the images is much smaller.

The borders are also more clearly defined. The method by Lertrattanapanich and Bose

(2002), also based on Delaunay triangulation, performs similarly, but this method has

the disadvantage of its high sensitiveness to noise, as we will see in the next experiment.

This is due to the direct sampling it makes of the function built with the triangulation.

Table 4.1: Parameter Values and Results for Experiment One

Experiment One λ β Iterations PSNR (dB)
Shift&Add — — — 18.75

l2 with Tikhonov 0.2 8 20 20.48
l1 with bilateral TV 0.01 20 50 18.01

Zomet with Tikhonov 0.1 2 50 18.37
Delaunay — — — 21.16
Projection — — — 21.37
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For the second experiment we will generate 20 low resolution images from Fig. 4.5a,

downsampling the original by four. The LR images have been randomly shifted with

shifts following a uniform distribution between zero and one pixels. These images are

blurred with a Gaussian kernel with shape exp(−(x2 + y2)/(2σ2)) with width parame-

ter σ2 = 1 and finally white Gaussian noise is added until achieving a PSNR of 17 dB

(as defined in (4.22)). The presence of noise is important to simulate SR, as there are

theoretical limits in registration (Pham et al., 2005a) that introduce it in real world SR.

We have also generated an image with half the resolution of Fig. 4.5a, which can be seen

in Fig. 4.5b. To generate this image we first apply a low pass filter to the original image

and then we downsample it, following a standard sampling process that minimizes the

approximation error. In the experiment, we will use the low resolution images to gener-

ate an HR image that multiplies the resolution by two, without reaching the resolution

of the image that originated the LR sequence. This means that the usual SR methods

will reconstruct an HR image following the incorrect assumption that the ground truth

is band-limited to the frequencies determined by the reconstruction resolution.

In Fig. 4.6 we can see the results. The MDSP software package has been used again

for all methods but the proposed one and the pure Delaunay triangulation approach.

No deblurring has been made in any case, that is, Hk = I. The parameters of the differ-

ent methods have been tuned to maximize the PSNR of the images, defined as in (4.22).

The reference image is Fig. 4.5b. In Table 4.2 we can see the values for the different

parameters for the iterative methods (being λ the weight of the regularization prior and

β the step size for the gradient descent method) and the results of the experiment for

all methods. Our method achieves the best PSNR among all tested algorithms. Besides

that quantitative datum, it can be seen that the frequency resolution is greatly improved

by our method comparing with the rest. The borders of the lines that converge to the

center of the image present aliasing artifacts in all methods but in ours. Most methods

have good performance against noise but are not able to erase the high frequency ar-

tifacts. The method of Lertrattanapanich and Bose (Lertrattanapanich and Bose, 2002),

also based on Delaunay triangulation, has a high sensitivity to noise, due to the direct

sampling it makes of the function built with the triangulation.

To prove that the artifacts that appear in Fig. 4.6 are due to aliasing and not to noise,

we will reconstruct an HR image with the same resolution as the original image, mul-
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tiplying by four the resolution of the LR images. In this case the SR image has the

same bandwidth as the ground truth and therefore the usual data model that assumes

band-limited images up to the reconstruction resolution becomes true. We will com-

pare our method with the iterative l2 method with Tikhonov regularization. Again, the

parameters of this method have been tuned to maximize the PSNR of the images. The

parameters and the resulting PSNR values can be seen in Table 4.2. Now the PSNR is

almost the same for both methods. In Fig. 4.7 the SR images are shown. The quality of

both of them is similar, although some artifacts are still visible in the radii of the image

for the l2 method.

Table 4.2: Parameter Values and Results for Experiment Two

Experiment Two, x2 λ β Iterations PSNR (dB)
Shift&Add — — — 18.80

l2 with Tikhonov 0.01 4 20 18.80
l1 with bilateral TV 0.001 20 50 18.64

Zomet with Tikhonov 0.001 2 50 18.79
Delaunay — — — 18.54
Projection — — — 19.04

Experiment Two, x4 λ β Iterations PSNR (dB)
l2 with Tikhonov 0.1 8 20 20.26

Projection — — — 20.35

4.6.2 Experiments with Real Data

The remaining experiments have been made with data taken with real imaging systems.

For the third experiment we have taken a video with a mobile phone camera. We have

used 20 low resolution frames for the experiment. For registering, we have first ap-

plied the hierarchical method exposed by Bergen et al. (1992), supposing a translational

model. After obtaining a coarse approximation of the displacement, we have applied

the multi-frame registration method of chapter 3 as a refinement step to obtain the final

registration parameters. All the HR images obtained with the different methods have

used the same motion vector and no deblurring has been made. Figure 4.8 shows one of

the low resolution frames, its cubic spline interpolation and the result of applying our

method doubling the resolution. We can see a significant improvement of quality: more

details are present in the HR image and the artifacts provoked by the compression are

completely removed. We have also compared with the same methods as in the previous
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experiment and the results can be seen in Fig. 4.9, where we have zoomed a little area of

the HR images. It is clearly seen that the higher resolution that our projection method

has in frequency is translated to clearer borders in the upper window and in the door

that appears in the bottom of the image. The iterative methods are not able to remove

the aliasing artifacts that appear around the edges of the window and the door, whereas

the Delaunay method from Lertrattanapanich shows noisier results. The weight of the

regularization (λ), the gradient descent step and the bilateral TV parameters for the iter-

ative methods have been chosen to maximize the visual quality of the final HR images.

In Table 4.3 we can see the parameters finally used for the experiment.

Table 4.3: Parameter Values for Experiment Three

Experiment Three λ β Iterations
Shift&Add — — —

l2 with Tikhonov 0.01 8 20
l1 with bilateral TV 0.005 5 50

Zomet with Tikhonov 0.01 2 50
Delaunay — — —
Projection — — —

For the fourth experiment we have taken a black and white video with a low quality

camera, a Nikon Coolpix 3100 with a resolution of 320x240 pixels. We have used 20

low resolution frames for the experiment. For registering, we have applied again the

method proposed in Bergen et al. (1992) and after it the method exposed in chapter 3

as a final refinement step, supposing a translational model. All the HR images obtained

with the different methods have used the same motion vector and no deblurring has

been made. Fig. 4.10 shows one of the low resolution frames, its cubic spline interpo-

lation and the result of applying our method doubling the resolution. We can see a

significant improvement of quality: more details are present in the HR image and some

of the words that appear in the image are now readable. We have also compared with

the same methods as in the previous experiment and the results can be seen in Fig. 4.11,

where we have zoomed a little area of the HR images. It is clearly seen that the higher

resolution that our projection method has in frequency is translated to clearer borders in

the clock and to less visible artifacts in the letters that appear in the image. The iterative

methods are not able to remove these aliasing artifacts and the Delaunay method from

Lertrattanapanich shows noisier results and some artifacts. The weight of the regular-
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ization (λ), the gradient descent step (β) and the bilateral TV parameters for the iterative

methods have been chosen to maximize the visual quality of the final HR images. In

Table 4.4 we can see the parameters finally used for the experiment.

Table 4.4: Parameter Values for Experiment Four

Experiment Four λ β Iterations
Shift&Add — — —

l2 with Tikhonov 0.2 2 20
l1 with bilateral TV 0.01 5 50

Zomet with Tikhonov 0.1 2 50
Delaunay — — —
Projection — — —

In the fifth experiment we will show the applicability of our method to motion mod-

els with rotations and translations. Again, we have used the method by Bergen et al.

(1992) and the method of chapter 3 as a final refinement step, but now allowing rotations

and translations. The video sequence employed was captured with the same camera as

in the previous experiment under low illumination conditions. We have used 12 LR

frames, an SR factor of two, and the same registration method as in the previous exper-

iment, but with parameters allowing rotations and shifts in the images. In Fig. 4.12 we

can see two of the input LR images, the cubic spline interpolation of one of them and

the SR image obtained by our method. It can be seen the improvement in the readability

of the texts in the image and the drop of the image noise.

4.7 Conclusion

This chapter presents a new Super-Resolution method based on applying the anti-

aliasing filter present in all sampling schemes. We raise the issue of the correctness

of the data model that has been usually assumed in most SR approaches and propose a

method that can handle more general data models, providing protection against aliasing

in the HR images. We have shown in the experiments that this approach outperforms

classical SR methods with synthetic and real data experiments. Another contribution

of this chapter is the proof that we can first solve the interpolation problem and then

make the deblurring not only when the motion is translational but also when there are

rotations and shifts and the imaging system PSF is rotationally symmetric.

As a summary, we can enumerate the main advantages of the proposed method:
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1. It prevents the presence of aliasing artifacts when the HR image is undersampled,

thanks to the anti-aliasing filter. The filter also removes the high frequency noise.

2. It is non-iterative, unlike most proposed methods for SR. Therefore, it poses no

convergence problems. This also means that no initialization for the algorithm is

needed, which is an important issue for iterative methods that try to minimize a

non-convex function.

3. It is scalable. The complexity of the triangulation is O(n log n) and the application

of the prefilter is linear with n, so the final complexity is O(n log n), which makes

it scalable.

4. The Delaunay triangulation provides a very strong protection against a possible

ill-conditioning of the problem, as it gives the best possible conditioning amongst

all triangulations. In exceptional cases, ill-conditioning may still occur though.

5. There is no parameter involved in the reconstruction, which is not a minor advan-

tage. For MAP methods the gradient descent step and different parameters for

the regularization prior are needed and it is not a trivial task to find the optimal

values for a given set of images.

6. It is highly parallelizable. Once we have the triangulation, we can process each

defined triangle independently of the others.

4.A Interchange of Blurring and Warping Operators

When the warping operator g is just a translation, it is easy to see that we can interchange

it with the convolution. We want to show that h(x, y) ∗ z(x− a, y− b) = c(x− a, y− b),

being c(x, y) = h(x, y) ∗ z(x, y). This follows immediately from the shift property of the

convolution, as c(x− a, y− b) = h(x− a, y− b) ∗ z(x, y) = h(x, y) ∗ z(x− a, y− b).

In this section we also demonstrate that the geometric warping operator g and the

convolution with h of (4.2) can be applied in inverse order if g produces a rotation and

translation and h presents radial symmetry.

Theorem. Let z and h be square integrable functions in R2, with h(x, y) = hr(x2 + y2) and

define

g(x, y) =

 a

b

+

 cos θ − sin θ

sin θ cos θ


 x

y

 .



4.A. INTERCHANGE OF BLURRING AND WARPING OPERATORS 95

Then

h(x, y) ∗ z(g(x, y)) = c(g(x, y)), (4.23)

being c(x, y) = h(x, y) ∗ z(x, y).

Proof. We take first the Fourier transform of the left part of (4.23), using the Fourier

rotation and translation theorem (McGuire, 1998):

F [z(g(x, y)) ∗ h(x, y)] = ejauejbv

·Z(u cos θ − v sin θ, u sin θ + v cos θ)H(u, v). (4.24)

Now we take the transform of the right side of (4.23), obtaining

F [c(g(x, y))] = ejauejbv

·Z(u cos θ − v sin θ, u sin θ + v cos θ)

·H(u cos θ − v sin θ, u sin θ + v cos θ). (4.25)

As h(x, y) has radial symmetry, its Fourier transform also presents it, so H(u, v) =

Hr(u2 + v2), and developing (4.25), we have

F [c(g(x, y))] = ejauejbv

·Z(u cos θ − v sin θ, u sin θ + v cos θ)Hr(u2 + v2),

which is the same as (4.24) and proves (4.23).
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(a) (b)

(c) (d)

Figure 4.3: Radial function sequence and generated LR images. Two low resolution
frames (a) and (b), (c) a cubic spline interpolation and (d) the sampled function (4.21)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Super-resolved images for experiment one: (a) Shift&Add, PSNR=18.75 dB,
(b) l2 with Tikhonov regularization, PSNR=20.48 dB, (c) l1 with bilateral TV, PSNR=18.01
dB, (d) Zomet method with Tikhonov regularization, PSNR=18.37 dB, (e) Delaunay
based method from Lertrattanapanich and Bose (2002), PSNR=21.16 dB, and (f) our
method, PSNR=21.37 dB.
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(a) (b)

(c) (d)

Figure 4.5: Chart sequence and generated LR images. (a) The original image for exper-
iment 1, (b) a half resolution version, (c) a noisy and blurry LR image generated from
(a), and (d) its cubic spline interpolation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Super-resolved images for experiment two with SR factor 2: (a) Shift&Add,
PSNR=18.80 dB, (b) l2 with Tikhonov regularization, PSNR=18.80 dB, (c) l1 with bilateral
TV, PSNR=18.64 dB, (d) Zomet method with Tikhonov regularization, PSNR=18.79 dB,
(e) Delaunay based method by Lertrattanapanich and Bose (2002), PSNR=18.54 dB, and
(f) our method, PSNR=19.04 dB.
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(a)

(b)

Figure 4.7: Super-resolved images for experiment two with SR factor 4: (a) l2 with
Tikhonov regularization, PSNR=20.26 dB, and (b) our method, PSNR=20.35 dB.
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(a) (b)

(c)

Figure 4.8: Mobile phone sequence and generated HR image. (a) LR frame from a
sequence taken with a mobile phone, (b) cubic spline interpolation of (a), and (c) SR
frame obtained with our method.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.9: Zoom of area of the experiment three sequence with different SR meth-
ods. (a) Cubic spline interpolation of one of the LR frames, (b) Shift&Add, (c) l2 with
Tikhonov regularization, (d) l1 with bilateral TV, (e) Zomet method with Tikhonov regu-
larization, (f) Delaunay based method by Lertrattanapanich and Bose (2002) and (g) our
method.
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(a)

(b)

(c)

Figure 4.10: Clock sequence and generated HR image. (a) LR frame from the sequence
used in experiment two, (b) cubic spline interpolation of (a), and (c) SR frame obtained
with our method.



104 CHAPTER 4. INTERPOLATION: OPT. PROJ. ON FUNCTIONAL SPACES

(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.11: Zoom of area of the experiment four sequence with different SR meth-
ods. (a) Cubic spline interpolation of one of the LR frames, (b) Shift&Add, (c) l2 with
Tikhonov regularization, (d) l1 with bilateral TV, (e) Zomet method with Tikhonov regu-
larization, (f) Delaunay based method by Lertrattanapanich and Bose (2002) and (g) our
method.
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(a) (b)

(c) (d)

(e)

Figure 4.12: Input images for experiment five and super-resolved image. (a) and (b) LR
frames from a video taken with a low-end digital camera, (c) cubic spline interpolation
of (a), (d) SR frame obtained with our method, and (e) a detail of the 3 images.
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Chapter 5
Non-Stationary Noise Removal and

Deblurring

5.1 Introduction

In this chapter, we will treat specific restoration techniques for super-resolution. Restora-

tion is understood as noise removal and deblurring. In SR, the objective is to achieve

this task jointly with interpolation on the HR grid using all the available information,

that is, using all the frames that we have.

Specific denoising procedures for SR are not numerous. The reason for this is that

usually denoising is achieved jointly with data fusion and deblurring. As explained

in section 2.3, the standard approach for SR is to consider it as an estimation problem

where the original signal is embedded in noise. Solving equation (2.9) or (2.10) means

solving an ML or MAP problem. Its solution will be optimal for Gaussian white noise

when the norm is l2 or optimal for biexponentially distributed white noise for norm

l1. When the SR problem is posed differently and the protection against noise is not

very strong, specific denoising algorithms have been proposed, as the simple averaging

performed after interpolation in Lertrattanapanich and Bose (2002).

In any case, the denoising in SR has usually assumed stationary noise, while in

many real cases this is not enough. Non-stationary noise, like salt and pepper noise,

or outliers due to, for instance, registration error, may appear. The techniques that deal

with this kind of noise for image sequences are called robust super-resolution. In Zomet

et al. (2001), a method that substituted the mean gradient among the LR images used in

107
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iterative solutions of (2.9) by a median gradient calculated also using the LR images was

proposed. Another approach to robust SR was proposed in Farsiu et al. (2004b), where

instead of using the l2 norm in (2.9), the more robust to outliers l1 norm is employed. In

this chapter we will propose an alternative approach based on the median filter and the

results will be compared with those of the mentioned methods.

Deblurring is also usually performed jointly with denoising and data fusion. A

specific method for deblurring separated from SR but using data from all LR frames

is proposed in Farsiu et al. (2004b), where an iterative deblurring of the images is per-

formed using as regularization a bilateral Total Variation prior. This algorithm weighted

the contribution to the error to be minimized of each sample in the non-deblurred HR

image using the number of LR samples that were used to calculate it. When no spe-

cific SR algorithm is used for deblurring, common methods as a Wiener filter or Lucy-

Richardson deconvolution are used. In this chapter, we will compare the performance

of these methods plus data fusion with integrated SR methods.

The rest of the chapter is organized as follows. In section 5.2 we will introduce

a median filter for SR data, while in section 5.3 we will review different deblurring

methods that can be applied after SR data fusion. In sections 5.4 and 5.5 experiments

with simulated and real data are performed for robust SR methods and for deblurring

methods for SR respectively. Finally, in section 5.6 we expose our conclusions.

5.2 Median Filter for Irregular Samples

A median filter applied to N samples first orders the samples in increasing order and

then selects the sample in the middle as output, if N is odd. For even N we will select

the two samples in the middle and its mean will be selected as output.

When applied to images, the pixels that surround a given pixel are selected and the

median filter is applied to them. The selected area is usually rectangular and centered

in the output sample coordinates. In some filters, the selected pixels are the center pixel

and the pixels that are up, down, left and right of it, five in total. In any case the

rectangular grid of the image limits the shape of the area of the selected pixels, which

introduces an anisotropy that can produce artifacts in the filter output.

In super-resolution, it makes sense to apply a median filter not in the resampled
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R=
0.8

5

Figure 5.1: Median filter for irregular samples. Samples for three different images are
represented. The point in the center of the circle is substituted by the median of all
points in the circle, including itself. In the figure, the radius of the circle is equal to 0.85
LR pixels.

image, but directly in the LR samples, as the available information is much greater

at that moment. The early erasing of non-stationary noise will also help to obtain a

better resampled image, as most methods, including the projection method proposed in

chapter 4, suppose stationary noise. In this way, we can handle both types of noise easily.

We propose a median filter for irregular samples, as those coming from the registered

LR images in SR, that will have as output locations the same irregular positions as the

input samples. To obtain the selected input pixels for a given location, we will simply

draw a circumference around that location and all the samples inside that circumference

will be the input to the median filter. Note that this area is more regular than that of

median filters applied to pixels in a grid, where the area has normally square shape. In

Fig. 5.1 we can see an example where there are three registered LR images. The pixels

from each image have a different shape to differentiate among them. The output of the

median filter for the location at the center of the circumference in the figure will be the

median of the seven LR pixels present in the drawn circle.

As can be easily seen, the radius of the circumference is an important design param-

eter. There is a trade-off between noise removal and smoothing: for a big radius, we will

remove more outliers, but we also will make the output much smoother. In the other

hand, a too small radius will make the final HR image sharper, but could also leave

artifacts in it due to outliers.
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5.3 Multi-Frame Deblurring

Deblurring is performed jointly with denoising and data fusion in many super-resolution

approaches, but not in those that pose SR as an interpolation problem. Obviously, that

includes the method that we propose in chapter 4. Also, all SR-as-interpolation methods

cited in section 2.4.2 require a separate deblurring step. Among the most significative

methods that require a final deblurring stage are Nguyen and Milanfar (2000), Ler-

trattanapanich and Bose (2002), and Pham et al. (2006). The model we will use for

deblurring is

r(x, y) = h(x, y) ∗ z(x, y) + n(x, y), (5.1)

where z(x, y) is the signal we want to estimate, r(x, y) is the result of the SR interpolation

step, h(x, y) is the impulse response of a linear time-invariant (LTI) system, and n(x, y)

is some unknown additive noise, independent of z(x, y).

When we suppose that we know the PSF, we can use a Wiener filter (see, for instance,

Gonzalez and Woods (2007) or Pajares and de la Cruz (2008)) or the Lucy-Richardson

algorithm (Richardson, 1972; Lucy, 1974) for deconvolution. In Farsiu et al. (2004b) a

specific method for deblurring after interpolation with known PSF for SR is discussed.

We will describe all these methods below. These will be also the methods that we will

use for deblurring in the experiments performed in this chapter.

For the Wiener filter, we want to find an impulse response g(x, y) such that

ẑ(x, y) = g(x, y) ∗ r(x, y),

where ẑ(x, y) is an estimate of z(x, y) that minimizes the mean square error. The g(x, y)

that provides this estimate is the impulse response of the Wiener filter and its frequency

response is calculated as

G(u, w) =
1

H(u, v)
|H(u, v)|2

|H(u, v)|2 + N(u,v)
Z(u,v)

=
1

H(u, v)
|H(u, v)|2

|H(u, v)|2 + 1
SNR(u,v)

.

Here, 1
H(u,v) is the inverse of the original system, and SNR(u, v) = Z(u,v)

N(u,v) is the signal-to-

noise ratio. When there is zero noise (i.e. infinite signal-to-noise), the term inside the

square brackets equals 1, which means that the Wiener filter is simply the inverse of the
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system, as we might expect. However, as the noise at certain frequencies increases, the

signal-to-noise ratio decreases, so the term inside the square brackets also drops. This

means that the Wiener filter attenuates frequencies dependent on their signal-to-noise

ratio.

The Lucy-Richardson algorithm, also known as Lucy-Richardson deconvolution, is

an iterative procedure for recovering a latent image that has been blurred by a known

point spread function.

We will discretize (5.1) to describe this algorithm. Pixels in the observed image can

be represented in terms of the point spread function and the latent image as

r[i, j] = ∑
m,n

h[i−m, j− n] · z[m, n].

The statistics are performed under the assumption that the samples z[i, j] are Poisson

distributed, which is appropriate for photon noise in the data (Shepp and Vardi, 1982).

The basic idea is to calculate the most likely z[i, j] given the observed r[i, j] and

known h[i, j]. This leads to an equation for z[i, j] which can be solved iteratively accord-

ing to

z[i, j](t+1) = z[i, j](t) ∑
m,n

r[m, n]
c[m, n]

· h[m− i, n− j],

where

c[i, j] = ∑
m,n

h[i−m, j− n] · z[m, n](t).

It has been shown empirically (Shepp and Vardi, 1982) that if this iteration converges, it

converges to the maximum likelihood solution for z[i, j].

In problems where the point spread function h[i, j] is dependent on one or more

unknown parameters, the Richardson-Lucy algorithm cannot be used. A later and more

general class of algorithms, the expectation-maximization algorithms can however be

applied to this type of problem.

The method described in Farsiu et al. (2004b) uses the additional data available when

we have multiple frames for deblurring. The expression

ẑ = arg min
z

(
‖A(Hz− r)‖p

lp
+ λΩ(z)

)

formulates the minimization criterion for obtaining ẑ from r. In this case we have trans-
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formed z and r to vectors formed by its samples, as in (2.10). Also as in chapter 1, H

is a matrix that performs the LTI blurring, whereas lp is the chosen norm and λΩ(z)

is a regularization term depending on z, being Ω the regularization function and λ the

regularization constant.

Matrix A is a diagonal matrix with diagonal values equal to the square root of the

number of measurements that contributed to make each element of r (in the square case

is the identity matrix). So, the undefined pixels of r have no effect on the HR estimate

ẑ. On the other hand, those pixels of r which have been produced from numerous

measurements, have a stronger effect in the estimation of the HR frame ẑ. The main

contribution of this method is that we partially use the extra information that the fact

of having multiple frames gives us. This is done in the weighting performed by the

elements in the diagonal of matrix A.

5.4 Performance Analysis of Robust Noise Removal Methods

In this section we will compare the proposed median filter for irregular samples with

different robust super-resolution methods. We will apply our filter and then use the

projection method proposed in chapter 4 for resampling in a rectangular grid. We will

make experiments with synthetic and real data. The methods we will compare with are:

• The plain projective method proposed in the thesis.

• The robust SR method proposed in Farsiu et al. (2004b), which is based on using

the l1 norm in equation (2.9).

• The robust SR method proposed in Zomet et al. (2001), which is based on using

the median of the gradient of the LR images to estimate the gradient used for

calculating the next estimation when solving iteratively eq. (2.9).

The first experiment will use the same data set used in chapter 4. This data set

was generated using a capture of a chart usually employed to measure the resolution

of cameras, as in chapter 4, but generating just 10 low resolution images instead of 20.

Firstly, the original image is blurred with a Gaussian kernel with variance σ2 = 1 and

then the LR images are generated using random shifts and downsampling the original

by four. Finally, white Gaussian noise is added to the LR images until achieving a PSNR

of 17 dB. To introduce outliers, we will add errors in the registering step for two of the
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(a) (b) (c)

Figure 5.2: (a) An example difference image when there is no registration error, (b)
difference image for error (1, 1)T, and (c) difference image for error (−1, 0.5)T.

images. The vector errors are (1, 1)T and (−1, 0.5)T, measured in LR pixels. We can see

the effect of these errors in the difference images with regard to the reference image of

Fig. 5.2.

The results of applying the different methods to these data are shown in table 5.1

and in Fig. 5.3. The table shows the parameters needed for the different methods, which

are tuned to maximize the PSNR when compared to the original image, and the final

PSNR. The proposed method achieves the greatest PSNR. Besides this quantitative da-

tum, we can also compare the visual appearance of the output of the different methods

in Fig. 5.3. It is clearly seen that the only method that completely erases the influence

of the outliers is the median filter for irregular samples plus projection method. The

other robust methods obtain good results when compared to the projection method, but

many outliers still remain.

Table 5.1: Parameter Values and Results for Robust SR Experiment One

Experiment One λ β Iterations R PSNR (dB)
Projection — — — — 16.90

l1 with bilateral TV 0.005 20 50 — 17.30
Zomet with bilateral TV 0.0005 20 50 — 17.33

Robust Projection — — — 0.35 18.68

Table 5.2: Parameter Values and Results for Robust SR Experiment Two

Experiment One λ β Iterations R
Projection — — — —

l1 with bilateral TV 0.01 5 50 —
Zomet with bilateral TV 0.0001 1 50 —

Robust Projection — — — 0.25
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(a) (b)

(c) (d)

Figure 5.3: Images produced by robust methods for resolution chart. (a) Our original
projective method, (b) l1 norm method with bilateral TV regularization, (c) the me-
dian gradient method of Zomet with bilateral TV regularization, and (d) the projective
method with a previous median filter applied.
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(a) (b)

(c) (d)

Figure 5.4: Images produced by robust methods for clock sequence. (a) Our original
projective method, (b) l1 norm method with bilateral TV regularization, (c) the me-
dian gradient method of Zomet with bilateral TV regularization, and (d) the projective
method with a previous median filter applied.

The second experiment has been made using real data, in particular the clock se-

quence also used in chapter 4. We have used 20 LR images as well, but instead of

applying an SR factor of two, we have multiplied by four the resolution to avoid the

influence of aliasing in the HR image for methods without prefilter. We have tuned the

different parameters to obtain the best visual results. The used parameters can be seen

in table 5.2.

The results are shown in figures 5.4 and 5.5. The l1 method and the Zomet method

exhibit many artifacts in the edges of the images. The image obtained with the projective

method is a bit noisy, as can be seen in the white figures at the left part of the image

located in the line in the middle of the clock. The robust method that combines a

median filter and our projective method erases all artifacts and is also less noisy than

the image obtained just projecting. The price to pay is a bit more blurry image: this can

be appreciated in the letters at the right of the image when we compare with Fig. 5.5a.

5.5 Performance Analysis of Deblurring Methods

In this section we perform two experiments comparing the l2 norm method that jointly

interpolates and deblurs the HR image proposed in Farsiu et al. (2004b) with the de-

blurring methods exposed in section 5.3.
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(a) (b)

(c) (d)

Figure 5.5: Detail of images from robust methods for clock sequence. (a) Our original
projective method, (b) l1 norm method with bilateral TV regularization, (c) the me-
dian gradient method of Zomet with bilateral TV regularization, and (d) the projective
method with a previous median filter applied.

The first experiment uses the chart sequence already employed in previous sections.

In this case we have generated 20 low resolution images. Firstly, the original image is

blurred with a Gaussian kernel with width parameter σ2 = 1 and then the LR images

are generated using random shifts and downsampling the original by four. Finally,

white Gaussian noise is added to the LR images until achieving a PSNR of 17 dB. This

corresponds to a variance σ2 = 0.01, which we need to know for the Wiener filter. We

have tuned the parameters for the different methods to maximize the PSNR in the final

image. These parameters and the obtained PSNR can be seen in table 5.3. The best

PSNR is achieved when applying the projection method and then the Lucy-Richardson

algorithm. This demonstrates that solving separately the tasks needed to obtain SR

does not necessarily lead to poorer results than a joint approach where all tasks are

solved together, as the PSNR for the l2 method that jointly resamples and deblurs is

smaller than projection plus Lucy-Richardson deconvolution. Projection plus l1 norm

deconvolution with bilateral TV regularization also outperforms the l2 norm method.

Figure 5.6 shows the images obtained by the different methods. Visually all images are

similar, but the one resulting from the Wiener filter, which is a bit blurry.
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(a) (b)

(c) (d)

Figure 5.6: Images produced deblurring the chart sequence. (a) Deblurring and re-
sampling performed jointly using the l2 norm, (b) projection method plus Wiener de-
convolution, (c) projection method plus Lucy-Richardson algorithm, and (d) projection
method plus l1 norm deconvolution with bilateral TV regularization.
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Table 5.3: Parameter Values and Results for SR Deblurring Methods Experiment One

Experiment One λ β Iterations PSNR (dB)
l2 with bilateral TV 0.01 4 20 21.63
Projection + Wiener — — — 21.50

Projection + Lucy-Richardson — — 5 22.05
Projection + l1 deconvolution with BTV 0.01 4 50 22.02

The second experiment uses the same set of real data as the second experiment

carried out with the robust methods. We have used 20 LR images as well, but instead

of applying an SR factor of two, we have multiplied by four the resolution to avoid the

influence of aliasing in the HR image for methods without prefilter. We have tuned

the different parameters to obtain the best visual results. The used parameters can

be seen in table 5.4. We have also supposed a known PSF with Gaussian shape and

width parameter σ2 = 1. We have sampled this PSF in a 5x5 pixels grid to perform the

deblurring. In the case of the Wiener filter, a noise of variance σ2 = 0.01 gave us the best

visual results.

In figures 5.7 and 5.8 we can see the results. The best contrast is obtained again

by the Lucy-Richardson algorithm, compared to the image obtained using the l2 norm.

The Wiener filtered image is a bit blurry, which can be seen in the letters that appear in

the image, and the image with l1 deconvolution shows some artifacts due to excessive

regularization that appear as homogeneous areas in parts of the image.

Table 5.4: Parameter Values and Results for SR Deblurring Methods Experiment Two

Experiment Two λ β Iterations
l2 with bilateral TV 0.2 2 20
Projection + Wiener — — —

Projection + Lucy-Richardson — — 3
Projection + l1 deconvolution with BTV 0.05 2 50

5.6 Conclusions

In this chapter we have studied specific techniques for deblurring and denoising in SR.

A novel robust denoising method for SR is proposed. The term “robust” refers to its

capability of handling non-stationary noise as the one that appears when outliers are

present or for salt and pepper noise. This method is based on a median filter that is

applied to an irregular sampling that usually appears in SR. Its performance is checked



5.6. CONCLUSIONS 119

(a)

(b)

(c)

(d)

Figure 5.7: Images produced deblurring the clock sequence. (a) Deblurring and re-
sampling performed jointly using the l2 norm, (b) projection method plus Wiener de-
convolution, (c) projection method plus Lucy-Richardson algorithm, and (d) projection
method plus l1 norm deconvolution with bilateral TV regularization.
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(a)

(b)

(c)

(d)

Figure 5.8: Detail of images produced deblurring the clock sequence. (a) Deblurring and
resampling performed jointly using the l2 norm, (b) projection method plus Wiener de-
convolution, (c) projection method plus Lucy-Richardson algorithm, and (d) projection
method plus l1 norm deconvolution with bilateral TV regularization.
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against other robust methods for SR, outperforming them in the experiments that have

been carried out.

We have also studied deblurring methods for SR. We have compared in the experi-

ments the joint resampling and deblurring that is performed in most SR methods with a

separated approach that uses our projective method plus classical deconvolution meth-

ods or a deconvolution-after-resampling method that takes advantage of multi-frame

data. We have shown that the separated approach is able to outperform the joint ap-

proach even when there is no danger of aliasing artifacts in the HR image.
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Chapter 6
Conclusions and Future Work

6.1 Conclusions

We will summarize in this chapter the contributions of our work to the SR problem and

the conclusions that can be drawn from them. We have followed throughout this disser-

tation a stage-based approach where all super-resolution tasks are solved separately but

using all the available information at a given time. We have shown that this approach

does not necessarily lead to poorer results than an SR as a whole approach and that it

has important advantages. These advantages are:

• The solution to each stage can be tailored more easily to the posed problem. For

instance, it is difficult to apply a prefiltering scheme to avoid aliasing in the recon-

structed image if we have to make this jointly with deblurring.

• Performance can be much better than in joint approaches, where the degrees of

freedom are many more and the complexity of the problem grows exponentially

with them.

• Joint SR methods can be optimal for a given HR size to be reconstructed, but we

can have the paradoxical situation in which the registration parameters for a given

HR size are different from those for another reconstruction size. We have avoided

this in the proposed registration method.

In the next sections we will break down the contributions to different SR stages made

in this research.

123
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6.1.1 Multi-Frame Registration

As we have already stated, one of the main problems for practical super-resolution is

the precision in the registration. In chapter 3 we have proposed a new multi-frame

registration method that outperforms plain optical flow registration and also competing

approaches. The main novelty of this method resides on the per-pixel weighting that is

made when calculating the registration penalty function. This makes it work with any

motion model. In the performed experiments, we have shown a remarkable increase for

registration precision under translations and under rigid motion (rotations plus trans-

lations). It is also demonstrated that other multi-frame registration methods cannot

handle properly motion models different from simple shifts, whereas ours is able to do

so. We have also shown the positive effects this registration method has in the visual

aspect of the HR image, when applied to an SR problem. An important characteristic

of the proposed method is that with 4 to 5 images in the sequence we can obtain a very

significant improvement in the registration accuracy.

6.1.2 Fusion of Data Using Projections on Functional Spaces

The main contribution of chapter 4 is the discovery of flaws in the usually linear model

assumed in most popular SR methods. We show that this model implicitly assumes

a band-limited reconstructed image. This assumption is not always true, as we prove

with different experiments. This leads to aliasing artifacts in the HR image. To avoid

this problem, we have proposed a method that employs standard sampling theory, with

a prefiltering step that erases aliasing in the reconstructed image. This is equivalent

to orthogonally project the image to the desired basis. To be able to do this projection

we first transform the sampling points to a continuous function through a Delaunay

triangulation. Although we could use any base for the projection, we chose B-splines

because of their compact support and their closed expression as piecewise polynomials.

The proposed method has also the important advantage of being non-iterative, which

makes it scale well. It also removes all noise in the high frequency part of the spectrum,

being effective against different types of noise, provided that the noise is stationary.

Another remarkable feature of the method is that is highly parallelizable once we have

the Delaunay triangulation.
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6.1.3 Super-Resolution Restoration

As we have already exposed, the projection method of chapter 4 is effective against

stationary noise, but not for non-stationary noise like salt and pepper noise or the one

provoked by the presence of outliers. In chapter 5 a non-linear filter for irregular samples

is presented. This filter applies the median operator, which has been widely used in

imaging for reducing non-linear noise, to the sampled within a circle drawn around a

certain sample. The result of the filter substitutes the value of the sample at the center

of the circle. We have proved that this simple filter that is applied to the samples before

starting the SR restoration is able to outperform all so-called robust SR methods against

which we have tested it.

Additionally, in chapter 5 we also apply standard deblurring methods to the images

obtained by the interpolation method of chapter 4. We prove that with this combination

we outperform standard SR methods that perform jointly data fusion and deblurring.

This result supports our supposition that states that a stage-based SR can outperform

the joint approach when proper methods that take advantage of all available information

at each stage are applied.

6.2 Future Work

The ways in which SR can be enhanced are multiple. Although there has already been a

lot of research in the field, SR is still an open problem. The applications to which it has

not been widely applied are many, because of the practical problems one finds when

the theory is applied.

Some interesting ideas that deserve to be considered for future research in SR are:

• The proposed multi-frame registration method is efficient, but not optimal. The

presence of unavoidable aliasing in the images to be registered increases the error

in the estimation of the movement parameters. A method that allows multi-frame

registering and removes the aliasing using all frames would be needed to achieve

optimal results.

• The projection method has proved to be effective with black and white images,

but an extension to color images would make it more useful. This should not be

done just applying the algorithm to the different color planes, but using the corre-
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lation among the different color channels as a priori knowledge. If the images are

mosaicked, the demosaicking should be done simultaneously with the projection.

• SR is of most interest for cases where the resolution of the imaging system is

low, the noise is high, or the quality is bad in general. An interesting area of

application for SR would be for cheap handsets like cheap photographic cameras

or mobile phones. The videos taken with these systems show many artifacts and

degradations of the image. The images are compressed with MJPEG, H.263 or

other standards, which introduces an additional challenge. SR of compressed

color video is, therefore, an interesting are for further research.

• The projection method could also be improved incorporating a priori knowledge

in the solution of the system. This knowledge is especially important when we

have just a few frames available. We could use bilateral TV or edge preserving

priors for this.

• Another interesting area of research in SR is the increase not only of spatial res-

olution, but also of temporal resolution. This means increasing or changing the

frames per second (fps) of a given video sequence. This has, for instance, applica-

tions to video rate conversions. We could think of an extension of the projection

method to address this problem. To do so, we would have to calculate intermedi-

ate motion vectors between two HR images to find the adequate position for the

sampling points in the new frame to be created.

• The proposed median filter for irregular samples is able to correct the presence of

outliers, but sometimes removes some of the detail in the images. An interesting

extension would be to make it adaptive to the shape of the filtered image. The

irregular nature of the samples makes this a challenging extension. Weighted

median filters, like those described in Yin et al. (1996), could be used for this task.

• Due to the imprecision inherent to registration (Pham et al., 2005a), it is very

difficult to register images to which a global motion model cannot be applied.

Thus, the application of SR to general video sequences that require a general

optical flow motion model for registration is currently impractical. This is an

almost completely unexplored area for investigation, although some efforts have

already been made (Baker and Kanade, 1999; Fransens et al., 2004; Protter et al.,

2008).
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• Another practical possible application of SR could be to images captured by

Unmanned Aerial Vehicles (UAV). Due to the nature of these vehicles they are

equipped with low resolution video systems to avoid overloading them and com-

promise their maneuverability.

• An idea that has not received much attention is to apply SR to sequences with

motion blur, a degradation that can easily appear in video sequences. This prob-

lem is very challenging as normally it happens not globally in the frames but for

objects that move inside the scene. Therefore, these objects must be tracked so we

can remove then the motion blur. This has a link with general optical flow SR, as

that would be the motion model that has to be employed. An early approach to

this problem can be found in Bascle et al. (1996).
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