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Abstract. Falls are a major health problem among the elderly. The consequenc-
es of a fall can be minimized by an early detection. In this sense, there is an 
emerging trend towards the development of agent systems based on mobile 
phones for fall detection. But when a mobile phone-based fall detector is used 
in a real-world scenario, the specific features of the phone can affect the per-
formance of the system. This study aims to clarify the impact of two features: 
the accelerometer sampling frequency and the way the mobile phone is carried. 
In this experimental study, 5 participants have simulated different falls and ac-
tivities of daily living. Using these data, the study shows that the sampling fre-
quency affects the performance of the detection. In the same way, when a fall 
detector intended to be attached at the body is carried in an external accessory, 
the performance of the system decreases. 
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1 Introduction 

Falls in the elderly are a common cause of mortality, morbidity, reduced functioning, 
and premature nursing home admissions [1]. Among many other factors, the severity 
of a fall depends on the amount of time the elder remains lying on the floor after fall-
ing [2]. Therefore, a quick detection and assistance is needed. 

The evolution of mobile phones to integrated systems with computing power, 
communication resources and embedded sensors opens the door to new innovative 
research in fields such as ambient intelligence [3]. Modern mobile phones have the 
potential to act as intelligent agents [4].  In particular, the design of agent systems 
based on mobile phones for automatic fall detection is an emerging research area. The 
first system appeared in 2009: Sposaro et al. [5] presented a detector for the Android 
operating system that is available for download from the Google Play store. Since 
then, the number of mobile phone-based detectors has increased dramatically, each 
time with more features and enhanced algorithms. The system of Dai et al. [6] can be 
considered the first relevant work in this field. Following this trend, Lee et al. [7] 
compared the motion signals acquired by the built-in accelerometer of the phone to 
those recorded by an independent body-mounted accelerometer, showing better re-



sults in the latter. Albert et al. [8] propose a system not only to detect a fall but also to 
automatically classify the type. In this sense, Martin et al. [9][10] describe a multi-
agent system capable of detecting falls through the sensors embedded in a mobile 
phone. Other authors have also worked in this direction [11,12]. 

In all of these studies, the signals from the built-in accelerometer of the phones are 
used for fall detection. However, it should be noted that there is high variability with-
in mobile phone models. When mobile phone-based fall detectors are used in real-
world scenarios, there is a risk that the performance is affected by the specific device 
features. This risk is greater for sensor-dependent applications such as fall detectors. 
In this experimental study, we aim not only to identify some of these features but also 
to quantify them.  

The rest of this paper is structured as follows: Section 2 examines the contributions 
of this work, section 3 describes the methodology used in the experiments, section 4 
introduces the detection algorithm, section 5 explains the influence of the accelerome-
ter sampling frequency, section 6 explores the idea of wearing the phones in hand-
bags, and section 7 draws some initial conclusions and outlines areas that can be re-
searched further. 

2 Contributions 

This study aims to clarify the impact on mobile phone-based fall detection of some 
factors that can compromise its performance in a real-world scenario. We put the 
focus on two: 

• Accelerometer sampling frequency: The built-in accelerometer of the phones sam-
ples at different frequencies depending on the model in question. This study exam-
ines the degradation of the detection as the sampling frequency decreases. This is 
an important aspect when selecting the suitable smart phone for a real-world appli-
cation. 

• The way the mobile phone is carried: All previous research placed the mobile 
phone in a standardized position of the subject’s body (waist, thigh, trunk, back, 
wrist, etc.). However, users may wish to carry the mobile phones in external acces-
sories like handbags. To the best of our knowledge, this is the first study that ex-
amines the effect on fall detection of wearing the phone externally. 

3 Subjects and methods 

Mobile phone-based fall detectors use the acceleration signals from the built-in accel-
erometers of the phones. Then, these signals can be classified as falls or activities of 
daily living (ADL). Therefore, to measure the performance of a detector, it is neces-
sary to acquire acceleration data from both falls and ADL. 

Since this is an experimental study, these data have been collected from 5 young 
volunteers (mean age 27.6, SD 8.5, 3 males, 2 females). All participants performed 4 
different simulated falls: forward, backward, lateral left and lateral right. Fall types 



were selected to fit into the broader categories of typical fall events of older people 
[13,14]. They were completed on a soft mattress. The methodology of the simulations 
was the following: firstly, researchers gave oral information on the experiment includ-
ing the preventive measures that should be adopted to avoid any risk, secondly a writ-
ten consent was obtained from each participant; thirdly researches performed a practi-
cal demonstration of each fall type, fourthly subjects were required to be as natural as 
possible, using, if desired, common strategies to minimize the fall impact such as 
flexing their knees or putting their hands. Each fall type was repeated 4 times. 

Subjects were also requested to simulate the most common types of ADL (table 1). 
Each ADL was repeated 3 times. 

During the experiments, participants wore a mobile phone in both their pockets 
(left and right) and in two handbags. Thus a total of 64 fall records and 180 ADL 
records were collected from each participant. Half of them were acquired from the 
pockets and the other half from the handbags. After each simulation, the acceleration 
data were downloaded wirelessly from the mobile phones to a PC. The sampling fre-
quency was 50 Hz. Each record contained a 6 second width time window around the 
highest peak of the acceleration magnitude. 

Table 1. List of common ADL performed by the 5 volunteers 

Most common types of Activities of Daily Living 
Sitting down on a soft chair Getting up from a soft chair 
Sitting down on a hard chair Taking the lift (two floors, up) 

Picking up something from the floor Squatting and tying shoelaces 
Lying down on a bed Getting out of bed 

Jogging Walking 
Walking downstairs Walking upstairs 
Getting into the car Getting out of the car 

Jump to pick something  

4 Fall detection algorithm 

A low-complexity algorithm has been selected for fall detection. This algorithm has 
been tested with the data from the falls and ADL (section 3). It considers both an 
upper and a lower threshold. If the maximum value of the acceleration within a che-
cking time window of 1 second around the peak, is higher than the upper threshold, 
the pattern recognition is triggered to check the minimum value. If this value is less 
than the lower threshold, a fall detection is reported [5]. 

This algorithm has been used to measure the impact on its performance of the two 
mentioned factors: the acceleration sampling frequency (section 5) and the way users 
carry the phones (section 6). 



5 Frequency-dependent detection 

The present section quantifies the effect on performance of the reduction of the ac-
celerometer sampling frequency. The fall and ADL records from the pockets, initially 
sampled at 50 Hz, have been resampled to lower frequencies (50/4 Hz, 50/8 Hz, 50/16 
Hz, 50/25 Hz). A total of 5 datasets have been obtained, one set for each frequency. 

The performance of the detector is measured using ROC curve. A ROC curve plots 
the true-positive rate of detection, TPR, against the corresponding false-positive rate 
of error, FPR [15]. The formulae to calculate both rates are the following:  

 𝑇𝑃𝑅 = !"
!"!!"

 (1) 

 𝐹𝑃𝑅 = !"
!"!!"

 (2) 

where TP is the number of falls labelled as falls, FN is the number of falls labelled 
as ADL, FP is the number of ADL labelled as falls and TN is the number of ADL 
labelled as ADL. 

 
Fig. 1. Representation of ROC curves corresponding to the threshold based algorithm using 
different data sets: 50 Hz (blue circles), 50/4 Hz (red triangles down), 50/8 Hz (green squares), 
50/16 Hz (magenta stars), 50/25 Hz (yellow triangles up) 

A ROC curve of the algorithm of section 4 has been obtained for each one of the 5 
datasets. Each set has been randomly divided in two equal parts: one for training and 
the other for testing. For each one of the 5 datasets, we have selected a set of 
threshold pairs from its training set in the following way. One of the thresholds is kept 
fixed while varying the other. In this way a ROC curve can be plotted. For several 
values of the fixed threshold, several ROC curves are obtained, whose envelope is 
taken as the final ROC. In other words, for a given FPR, the thresholds are adjusted to 
get the maximum TPR. Using these optimal thresholds, the ROC curve of each data-
set (50, 50/4, 50/8, 50/16, 50/25) has been obtained with its testing set. The 5 curves 
are represented in figure 1. 



Figure 1 clearly illustrates that the higher the sampling frequency the better the de-
tection. Table 2 shows the area under the ROC curve for each dataset. 

Table 2. Area under the ROC curve for each sampling frequency 

 50 Hz 50/4 Hz 50/8 Hz 50/16 Hz 50/25 Hz 
Area under 

the ROC curve 
0.8363 0.7908 0.7129 0.6590 0.6086 

 
According to the results of table 2, we can quantify the degradation in performance 

that occurs as the sampling frequency is varied. When the sampling frequency dimi-
nishes to 50/25 Hz, the area is decreased by 27% compared to the performance at 50 
Hz. This decrease is higher when the frequency is less than 12.5 Hz. 

6 External handbag 

Subjects may wish to carry the mobile phone not only in some parts of their bodies 
(waist, thigh, back, etc) [16-17], but also in external handbags. This study aims to 
quantify the loss in performance when a detector initially intended to be worn on the 
body is placed in a handbag. 

For this purpose, we have used the data from both pockets and handbags, obtained 
as described in section 3, and the low-complexity algorithm introduced in section 4. 
This algorithm has been trained with half of the data from the pockets (thigh), simula-
ting a body-worn detector. Then, it has been tested using either the other half of the 
data from the pockets or the data from the handbags. Figure 2 illustrates the ROC 
curve for each set of data. 

 
Fig. 2. ROC curves of the algorithm trained with the data from the pockets and tested with two 
different datasets: the rest of the data from the pockets (blue circles), the data from the hand-
bags (red squares) 



The performance of the algorithm is clearly worse when tested on the handbag data 
set compared to the performance on the pocket data set, the kind of data for which the 
detector was originally trained. Table 3 quantifies the difference by measuring the 
area under the ROC curves. It reaches 10%. 

Table 3. Area under the ROC curve for both, the pocket-tested and the handbag-tested system 

 Detector tested with data 
from the pockets 

Detector tested with data 
from the handbags 

Area under the ROC curve 0.8363 0.7559 

7 Discussion and conclusions 

This study has proven that the acceleration sampling frequency influences the perfor-
mance of a fall detector. The level of dependence is in part conditioned by the fall 
detection algorithm. As an example, a low-complexity algorithm has been used in this 
study. Other algorithms could have strengthened or weakened this dependence. This 
is not a minor problem in mobile phone-based fall detection. This implies that the 
same application can behave differently depending on the particular phone model in 
which it is run. Researches in this field must be very cautious when selecting the 
sampling frequency. Also, the features of the built-in accelerometers must be exa-
mined to ensure they can sample at the proper frequency.  

Unlike dedicated fall detectors, mobile phone-based systems not only detect falls 
but also perform many other tasks, for example, making calls, sending SMS, running 
other applications, etc. In a real-world scenario, subjects may wish to use these func-
tions as well as to carry the mobile phones in different places. In this way, handbags 
are proper accessories to keep these devices. This study investigates for the first time 
the effect of carrying the mobile phones in them. Results show that the performance 
of the system decreases when a traditional fall detector intended to be worn on the 
thigh is carried in a handbag. Therefore, studies in this field should consider using the 
phones as true “phones”. Otherwise, their performance may decrease in a real-world 
scenario, leading probably to their rejection. To be accepted by their potential users, 
fall detectors should meet their needs and this inevitably includes usability aspects. 

This study has still some limitations. For the analysis, we have considered a simple 
threshold-based fall detection algorithm. Further research should incoporate more 
sophisticated algorithms based on machine learning and investigate their performance 
when faced to real-world conditions. 

In conclusion, future studies in mobile phone-based fall detection should also 
consider the specific features of phones since they could compromise the performance 
in a real-world scenario. In this study, we have shown the impact of two factors: the 
sampling frequency and the way the device is carried. 
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