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Abstract

Human similarity judgments between concepts underlie most of cognitive capabil-
ities, such as categorization, memory, decision-making and reasoning. Thus, the
proposal for concept similarity models to estimate the degree of similarity between
word and concept pairs has been a very active line of research with many applica-
tions in the fields of cognitive sciences, artificial intelligence, Information Retrieval
(IR) and genomics, among others. The most successful approach to estimate human
similarity judgements is set by the family of ontology-based semantic similarity meas-
ures based on WordNet for general domain applications, or MeSH and SNOMED
for biomedical applications, as well as the Gene Ontology (GO) for genomics. The
advent of the Semantic Web has encouraged the emergence of a novel family of IR
models and semantic search systems based on ontologies. In this latter scenario, the
ontologies have also been extensively used as semantic conceptual spaces with the
aim of indexing and representing large collections of documents and other types of
semantically-annotated information.

This thesis introduces two new families of ontology-based semantic similarity
measures and Information Content (IC) models based on WordNet together with
the largest experimental surveys reported in the literature. Our experiments are
based on our software implementation of most methods reported in the literature.
In addition, this thesis introduces several significant contributions into the reprodu-
cibility of word similarity benchmarks, ontology-based semantic similarity measures
and IC models as follows: (1) a new and effi cient representation model for tax-
onomies, called PosetHERep, which is an adaptation of the half-edge data structure
commonly used to represent discrete manifolds and planar graphs; (2) a new Java
software library called the Half-Edge Semantic Measures Library (HESML) based
on PosetHERep, which implements most ontology-based semantic similarity meas-
ures and IC models reported in the literature; (3) a set of reproducible experiments
on word similarity based on HESML and ReproZip with the aim of exactly reprodu-
cing the experimental surveys in all our previous works; (4) a replication framework
and dataset, called WNSimRep v1, whose aim is to assist in the exact replication
of most methods reported in the literature; and finally, (5) a set of scalability and
performance benchmarks for semantic measure libraries.

Our novel family of ontology-based semantic similarity measures is based on two
previously unconsidered notions as follows: a generalization of the classic Jiang-
Conrath (J&C) distance to any type of taxonomy which is based on an IC-based
weighted graph derived from the conditional probabilities between child and parent
concepts, and a non-linear normalization function that converts the ontology-based
semantic distances into similarity functions. Likewise, our new family of intrinsic
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viii ABSTRACT

and corpus-based IC models is based on two previously unconsidered notions as
follows: the preservation of the probabilistic structure of the taxonomy associated
to the conditional probabilities between child and parent concepts, and the explicit
consideration of a cognitive similarity notion in the definition of the IC model.
Our new IC-based similarity measures outperform the state-of-the-art measures

in a statistically significant manner, whilst our new family of IC models obtains
rivaling results as regards the state-of-the-art methods and sets an open framework
for the derivation of novel intrinsic IC models based on alternative methods for the
estimation of the conditional probability between child and parent concepts. On the
other hand, PosetHERep proposes a memory-effi cient representation for taxonomies
which linearly scales with the size of the taxonomy and provides an effi cient im-
plementation of most taxonomy-based algorithms used by the semantic measures
and IC models, whilst HESML provides an open framework to aid research into the
area by providing a simpler and more effi cient software architecture than the cur-
rent software libraries. HESML outperforms the state-of-the-art semantic measure
libraries by several orders of magnitude and shows that it is possible to improving
their performance and scalability significantly without caching using PosetHERep.
Our large experimental surveys, including most similarity measures and IC mod-
els based on WordNet reported in the literature, also led us to be on the lookout
for several reproducibility problems in the replication of methods and experiments
previously reported in the literature, as well as the discovery of contradictory res-
ults. Likewise, our experimental surveys allow us to refute two common beliefs held
among the research community: (1) a wrong belief about the outperformance of
intrinsic IC models over those based on a corpus that is refuted by our results, and
(2) another wrong belief about the overall outperformance of the classic IC-based
similarity measures on the family of path-based semantic measures, which is refuted
by our conclusion that only a small set of similarity measures based on recent hy-
brid IC-based measures obtain a statistically significant higher Spearman correlation
value than the family of path-based similarity measures. This latter fact explains
some unexpected results in information retrieval applications based on similarity
measures in which several authors point out that there is no a statistically signific-
ant difference between the performance obtained by the families of classic semantic
similarity measures based on IC models and other classic measures based on the
length of the shortest path between concepts when the Spearman correlation metric
is used.

Keywords: ontology-based semantic similarity measures, intrinsic and corpus-
based Information Content models, WordNet-based semantic similarity measures,
ontology-based IR models, HESML, PosetHERep, semantic measures library, repro-
ducible experiments on word similarity, WNSimRep v1 dataset, ReproZip, replica-
tion datasets for ontology-based semantic similarity models



Resumen

Los juicios de semejanza entre conceptos subyacen tras la mayoría de capacidades
cognitivas, tales como la categorización, la memoria, la toma de decisiones y el
razonamiento. Por lo tanto, la propuesta de modelos de semejanza conceptual para
estimar el grado de semejanza entre pares de palabras y conceptos ha sido una
línea muy activa de investigación, con muchas aplicaciones en los campos de las
ciencias cognitivas, la inteligencia artificial, la recuperación de la información (RI)
y la genómica, entre otros. El enfoque de mayor éxito para estimar juicios de
semejanza es definido por la familia de medidas de semejanza semántica basadas en
ontologías para dominios generales de aplicación basados en WordNet, o MeSH y
SNOMED para aplicaciones biomédicas, así como la Ontología Génica (GO) para
genómica. El advenimiento de la Web Semántica ha motivado la aparición de una
nueva familia de modelos de recuperación de la información y sistemas de búsqueda
semántica basados en ontologías. En este último escenario, las ontologías han sido
extensivamente utilizadas como espacios conceptuales con el propósito de indexar y
representar grandes colecciones de documentos y otros tipos de información anotada
semánticamente.

Esta tesis presenta dos nuevas familias de medidas de semejanza semántica ba-
sadas en ontologías y modelos de contenido de la información basados en WordNet,
junto con los mayores estudios experimentales publicados. Nuestros experimentos
se basan en nuestra propia implementación de la mayoría de métodos publicados.
Adicionalmente, esta tesis presenta algunas contribuciones significativas en la re-
producibilidad de estudios experimentales de semejanza entre palabras, medidas de
semejanza semántica basadas en ontologías y modelos de contenido de la informa-
ción, tales como: (1) un nuevo y eficiente modelo de representación para taxonomías,
denominado PosetHERep, el cual es una adaptación de la estructura de datos ‘half-
edge’, utilizada comunmente para representar variedades discretas y grafos planos;
(2) una nueva biblioteca de software en Java, denominada Half-Edge Semantic Meas-
ures Library (HESML), basada en PosetHERep, la cual implementa la mayoría de
medidas de semejanza semántica basadas en ontologías y modelos de contenido de la
información reportados en la literatura; (3) un conjunto de experimentos reprodu-
cibles de semejanza entre palabras basados en HESML y ReproZip, con el propósito
de reproducir de manera exacta los experimentos publicados en todos nuestros tra-
bajos anteriores; (4) un marco y conjunto de datos de replicación, denominado
WNSimRep v1, cuyo objetivo es ayudar en la replicación exacta de la mayoría de
métodos publicados; y por último, (5) un conjunto de estudios experimentales de
rendimiento y escalabilidad para librerías de medidas semánticas.

Nuestra nueva familia de medidas de semejanza basadas en ontologías está ba-
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x RESUMEN

sada en dos nociones no consideradas con anterioridad: una generalización de la
distancia clásica de Jiang-Conrath a cualquier tipo de taxonomía, la cual se basa
en un grafo pesado basado en un modelo de contenido de la información derivado
de las probabilidades condicionales entre conceptos padres e hijos, y una función de
normalización no lineal que convierte las medidas de distancia semántica basadas en
ontologías en funciones de semejanza. Asimismo, nuestra nueva familia de modelos
de contenido de la información de tipo intrínseco y basados en corpus se basa en
dos nociones no consideradas previamente: la preservación de la estructura probabi-
lística de la taxonomía asociada a las probabilidades condicionales entre conceptos
padre e hijos, y la consideración explícita de una noción de semejanza cognitiva en
la definición del modelo de contenido de la información.

Nuestras nuevas medidas de semejanza basadas en modelos de contenido de la in-
formación superan de manera estadísticamente significativa a las medidas estado del
arte, mientras que nuestra nueva familia de modelos de contenido de la información
obtiene resultados comparables con respecto a los métodos estado del arte y define un
marco abierto para la derivación de nuevos modelos intrínsecos de contenido de la in-
formación basados en métodos alternativos para la estimación de las probabilidades
condicionales entre conceptos padre e hijos. Por otra parte, PosetHERep propone
un modelo eficiente de representación para taxonomías respecto al uso de memoria,
el cual escala linealmente con el tamaño de la taxonomía y ofrece una implementa-
ción eficiente de la mayoría de algoritmos basados en taxonomías que son empleados
por las medidas semánticas y los modelos de contenido de la información, mientras
que HESML ofrece un marco abierto para ayudar en la investigación en el área ofre-
ciendo una arquitectura de software más sencilla y eficiente que las bibliotecas de
software actuales. HESML supera a las bibliotecas de medidas semánticas actuales
por varios órdenes de magnitud y prueba que es posible mejorar significativamente
su rendimiento y escalabilidad sin utilizar almacenamiento auxiliar mediate el uso
de PosetHERep. Nuestros grandes estudios comparativos, incluyendo la mayoría de
medidas de semejanza y modelos de contenido de la información publicados, también
nos conducen a alertar sobre algunos problemas de reproducibilidad en la replica-
ción de métodos y experimentos publicados previamente, así como al descubrimiento
de resultados contradictorios. Asimismo, nuestros estudios experimentales nos per-
miten refutar dos creencias comunes mantenidas entre la comunidad científica: (1)
una creencia errónea sobre la ventaja de rendimiento de los modelos de contenido
de la información de tipo intrínseco sobre los basados en corpus que es refutada
por nuestros resultados, y (2) otra creencia errónea sobre la ventaja global de las
medidas clásicas de semejanza basadas en modelos de contenido de la información
sobre la familia de medidas semánticas basadas en caminos, la cual es refutada por
nuestra conclusión de que sólo un pequeño conjunto de medidas híbridas recientes
de semejanza basadas en modelos de contenido de la información obtiene una corre-
lación de Spearman de manera estadísticamente significativa mayor que la familia
de medidas de semejanza basadas en caminos. Este último hecho explica algunos
resultados inesperados en aplicaciones de recuperación de la información basadas en
medidas de semejanza en las cuales algunos autores señalan que no existe una dife-
rencia estadísticamente significativa entre el rendimiento obtenido por las familias de
medidas de semejanza clásicas basadas en modelos de contenido de la información y
otras medidas clásicas basadas en la longitud del camino más corto entre conceptos
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cuando se emplea la métrica de correlación de Spearman.

Palabras clave: ontology-based semantic similarity measures, intrinsic and
corpus-based Information Content models, WordNet-based semantic similarity meas-
ures, ontology-based IR models, HESML, PosetHERep, semantic measures library,
reproducible experiments on word similarity, WNSimRep v1 dataset, ReproZip, rep-
lication datasets for ontology-based semantic similarity models
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Chapter 1

Introduction

Human similarity judgments between concepts underlie most cognitive capabilities,
such as categorization, memory, decision-making and reasoning. Thus, the proposal
for concept similarity models to estimate the degree of similarity between word
and concept pairs has been a very active line of research in the fields of cognitive
sciences [138, 117], artificial intelligence and Information Retrieval (IR) [119]. The
semantic similarity measures estimate the degree of similarity between concepts by
considering only ‘is-a’relationships, whilst the semantic relatedness measures also
consider any type of co-occurrence relationship. For instance, a wheel is closely
related to a car because the wheels are part of any car; however, a wheel is neither
a car nor derives from another common close concept such as a vehicle, thus their
degree of similarity is low. Whilst hand-coded taxonomies, such as WordNet and
other sources of knowledge, can be effi ciently and realiably used to retrieve the ‘is-a’
relationships between concepts and words, the co-occurrence relationships required
by the semantic relatedness measures need to be retrieved from a large corpus.
An ontology-based semantic similarity measure is a binary concept-valued func-

tion sim : C × C → R defined on a single-root taxonomy of concepts (C,≤C) ,
which returns an estimation of the degree of similarity between concepts as per-
ceived by a human being. The ontology-based similarity measures have become
both a very active area of research, and a key component in many applications. For
instance, in the fields of Natural Language Processing (NLP) and IR, ontology-based
semantic similarity measures have been used in Word Sense Disambiguation (WSD)
methods [106], text similarity measures [94], spelling error detection [17], sentence
similarity models [104, 71, 46], paraphrase detection [39], unified sense disambigu-
ation methods for different types of structured sources of knowledge [82], document
clustering [27], ontology alignment [26], document [86] and query anonymization
[11], clustering of nominal information [10, 9], chemical entity identification [43],
interoperability between agent-based systems [34], and ontology-based Information
Retrieval (IR) models such as that proposed by Lastra-Díaz [58] to solve the lack of
an intrinsic semantic distance in vector ontology-based IR models [19]. In the field
of bioengineering, ontology-based semantic similarity measures have been proposed
for synonym recognition [20] and biomedical text mining [12, 110, 127]. However,
since the pioneering work of Lord et al. [80], the proposal of similarity measures for
genomics and proteomics based on Gene Ontology (GO) [6] have attracted a lot of
attention, as detailed in a recent survey into the topic by Mazandu et al. [88]. Many

3
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GO-based semantic similarity measures have been proposed for protein functional
similarity by several authors [25, 24, 113, 145], giving rise to its applications in pro-
tein classification and protein-protein interactions [142, 44], gene proritization [131]
and many others reported in [88, p.2].
Given a taxonomy of concepts defined by the triplet C = ((C,≤C) ,Γ), where

Γ ∈ C is the supreme element called the root, an Information Content model is a
function IC : C → R+ ∪ {0}, which represents an estimation of the information
content for every concept, defined by IC (ci) = −log2 (p (ci)), p (ci) being the occur-
rence probability of each concept ci ∈ C. Each IC model must satisfy two further
properties: (1) nullity in the root, such that IC (Γ) = 0, and (2) growing monoton-
icity from the root to the leaf concepts, such that ∀ci ≤C cj ⇒ IC (ci) ≥ IC (cj).
Once the IC-based similarity measure is chosen, the IC model is mainly responsible
for the definition of the notion of similarity and distance between concepts.
Current ontology-based semantic similarity measures can be categorized into four

subfamilies as shown in table 1.1. First, edge-counting measures, the so-called path-
based measures, whose core idea is the use of the length of the shortest path between
concepts as an estimation of their degree of similarity, such as the pioneering work
of Rada et al. [119]. Second, the family of IC-based similarity measures, whose core
idea is the use of an Information Content (IC) model, such as the pioneering work
of Resnik [121], and the subsequent measures introduced by Jiang and Conrath [53]
and Lin [78]. Third, the familiy of feature-based similarity measures, whose core
idea is the use of set-theory operators between the feature sets of the concepts,
such as the pioneering work of Tversky [138]. And fourth, other similarity measures
that cannot be directly categorized into any previous family, which are based on
similarity graphs derived from WordNet [136], novel contributions of the hyponym
set [45], or aggregations of other measures [87]. In turn, the more recent IC-based
similarity measures can be divided into four subgroups: (1) a first group made up of
the aforementioned three classic IC-based similarity measures by Resnik [121], Jiang
and Conrath [53] and Lin [78]; (2) a second group defined by those measures that
make up an IC model with any function based on the length of the shortest path
between concepts, such as the pioneering work of Li et al. [75], and other subsequent
works such as [147], [91], [40] and [60]; (3) a third group of IC-based measures based
on the reformulation of different approaches, such as the IC-based reformulations of
the Tversky measure by Pirró [114], and the IC-based reformulation of most edge-
counting methods introduced by Sánchez and Batet [127]; and finally, (4) a fourth
group of IC-based measures based on a monotone transformation of any classic IC-
based similarity measure, such as the exponential-like scaling of the Lin measure
introduced by Meng and Gu [89], the reciprocal similarity measure of the Jiang-
Conrath distance introduced by Garla and Brandt [42], another exponential-like
normalization of the Jiang-Conrath distance introduced by Lastra-Díaz and García-
Serrano [60], and the monotone transformation of the Lin measure called FaITH
introduced by Pirró and Euzenat [115].
On the other hand, the ontologies have found one of their most significant ap-

plications in the development of semantic search systems for the Semantic Web or
any other type of semantically annotated corpus. It has encouraged the proposal of
ontology-based IR models, such as the pioneering work introduced by Castells et al.
[19], which are closely connected with the ontology-based semantic measures as the



1.1. ONTOLOGIES VERSUS CORPUS 5

latter can be used as metrics of any conceptual space derived from a base ontology.

Path-based
measures


Rada et al. [119], Wu and Palmer [143]
Leacock and Chodorow [70], Hirst and St-Onge [52]
Pedersen et al. [110], Al-Mubaid and Nguyen [3]

IC-based
measures



Classic IC-based
measures


Resnik [121]
Jiang and Conrath [53]
Lin [78]

Hybrid (path-based)
IC-based measures


Li et al. [75]
Zhou et al. [146]
Meng et al. [91]
Gao et al. [40]
Lastra-Díaz and García-Serrano [60] (coswJ&C)

Reformulations of
other types of measure

{
Pirró [114]
Sánchez and Batet [127]

Monotone
transformations
of classic IC-based
measures


Pirró and Euzenat [115]
Meng and Gu [89]
Garla and Brandt [42]
Lastra-Díaz and García-Serrano [60] (cosJ&C)

Feature-based
measures


Tversky [138]
Batet et al. [12]
Sánchez et al. [130]

Other types
of measure


- Taxonomical features (hyponym sets): Hadj Taieb et al. [45]
- Aggregation of different of measures: Martinez-Gil [87]
- Asymmetrically weighted graphs based on WordNet: Stanchev [136]
- IC-based reformulation based on LOD: Meymandpour and Davis [93]
- IC-based reformulation on Wikipedia: Jiang et al. [54]

Table 1.1: Categorization of the main ontology-based semantic similarity measures
based on WordNet, and two other measures based on Wikipedia and Linked Open
Data (LOD) respectively.

1.1 Ontologies versus corpus

There are currently two main approaches used to estimate human similarity judge-
ments which can be roughly categorized into two families: ontology-based semantic
similarity measures and corpus-based ones. Most of corpus-based similarity meas-
ures are based on the distributional hypothesis [50], which states that words in
similar contexts tend to share similar meanings. Thus, distributional measures usu-
ally define the meanings of the word as a function of their context and the type of
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co-occurrence relationships that needs to be captured. For example, the contexts
of the word could be small n-gram windows, or larger contexts such as sentences,
paragraphs or documents. Despite there being different methods to represent the
word meanings (contexts), such as sets, vectors, probability distributions, and graph
nodes, the most popular representations rely on vector space models (VSM) [137,
§2.2]. However, the mainstream of research in the current family of corpus-based se-
mantic similarity measures is the use of word embeddings, such as those introduced
by Mikolov et al. [95] and Pennington et al. [111].
The main advantage of the ontology-based similarity measures is that the logic

relationships between concepts, especially the “is-a”relationships, are hand-coded
within the ontologies. A second advantage of these measures is that they are defined
by closed formulas that only require a taxonomy to be evaluated. Therefore, they
can be easily implemented, although their computational cost depends on the size
of the ontology and the complexity of the algorithms required. In contrast, a seri-
ous drawback of the ontology-based measures in open domain applications, like the
Web, is their limited lexical coverage, and the cost of creating and updating wide
coverage ontologies. On the other hand, the corpus-based measures mainly rely on
the distributional hypothesis, and compute the degree of similarity using an indir-
ect approach that relies on the statistical co-occurrence between word contexts. In
addition to the “is-a”relationships, co-occurring words can encode other types of se-
mantic relationships. Therefore, the corpus-based measures “can confuse similarity
with relatedness”[74, §1]. Moreover, “it is commonly considered that distributional
measures can only be used to capture semantic relatedness”[49, §2.5.2], and “they
have traditionally performed poorly when compared to WordNet-based measures”
[97, p.1] in the similarity assessment task. Another drawback of corpus-based meas-
ures is that they are commonly based on a pipeline of NLP and IR algorithms, as
well as external services and resources, resulting in a high computational cost and
replication complexity. For instance, a recent paper by Fares et al. [36] details a
lot of reproducibility problems in the setup and training of current state-of-the-art
word embeddings which encourage the development of a public repository of pre-
processed corpora and pre-trained vectors with the aim of making the evaluation
and comparison of methods easier. In addition, the corpus-based measures exhibit
the classic problems related to corpus statistics, such as the diffi culty in obtaining
a well-balanced corpus for all words and their senses. In summary, ontology-based
similarity measures are effi cient, robust and easy to implement, whilst corpus-based
measures offer a broader lexical coverage at the expense of a higher computational
complexity and many reproducibility diffi culties.

1.2 Definition of the research problem

This thesis introduces a compendium of my research tackling the problem of propos-
ing and evaluating new state-of-the-art methods, software tools and reproducibility
resources in the family of ontology-based semantic similarity measures based on
WordNet, as well as the application of the previous methods and resources in the
proposal and evaluation of a new ontology-based Information Retrieval (IR) model
for semantic search.
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The research in this thesis is divided into two main lines of research which are
grouped in workpackages as follows. WP1 tackles the following research problems:
(1) the proposal and evaluation of a new family of ontology-based semantic similarity
measures based on IC models; (2) the proposal, evaluation and refinement of a new
family of intrinsic and corpus-based IC models; (3) the proposal and evaluation of
an effi cient and scalable representation model for taxonomies together with a new
software library of semantic measures based on it; (4) the proposal and evaluation of
a new replication framework and dataset for the exact replication of ontology-based
semantic similarity measures and IC models based on WordNet; (5) the proposal
and evaluation of a set of reproducible experiments into word similarity based on
ReproZip [22] and our new semantic measures library. And finally, WP2 tackles the
problem of proposing and evaluating a new ontology-based Information Retrieval
(IR) model based on our family of Intrinsical Ontology Spaces introduced by Lastra-
Díaz [58].
Our two main lines of research are closely related because the ontology-based

semantic similarity and distance measures can be used as the metrics for any con-
ceptual space derived from a base ontology, which follows that they are amenable
to being used in the definition of semantic aware IR models. For instance, Rada
et al. [119] introduce the first path-based semantic distance based on ontologies in
their pioneering work, as well as an ontology-based IR model for the biomedical
domain which uses an ontology-based semantic distance for the first time to com-
pare the concept-based representation of a user query with the representation of
the indexed documents. Thus, almost three decades ago, the seminal work of Rada
et al. [119] highlighted the close connection between ontology-based semantic dis-
tance and semantic information retrieval models. Surprisingly, the pioneering ideas
of Rada et al. [119] linking IR models and semantic distances have gone unnoticed
for almost three decades until I rediscovered them in my previous MSc thesis [58].
The works of Rada et al. [119] and Tversky [138] are broadly known and cited as the
pioneering work of the subfamilies of path-based and feature-based semantic sim-
ilarity measures based on ontologies; however, the research community in the field
of IR overlooked the aforementioned connection between ontology-based semantic
similarity measures and IR models.

1.3 Structure of this thesis

This thesis is structured in three parts as follows. Part I is the main body of this
thesis by compendium, whilst part II introduces the full-text of all of the publica-
tions derived from this thesis, and finally part III introduces our software libraries
and datasets. In addition to the Mendeley datasets, this latter part also includes the
full-text of a report detailing our WNSimRep v1 replication dataset. In turn, part
I is structured as follows. Chapter 2 introduces a summary of the main motivation,
hypotheses, research problems and objectives tackled by each publication derived
from this thesis. Chapter 3 details the theoretical foundations and domain know-
ledges of this thesis together with our research methodology. Chapter 4 introduces
our main conclusions and forthcoming activities. Finally, chapter 5 enumerates our
scientific contributions, both research articles and software libraries and datasets,
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whilst chapter 6 shows a summary table detailing the quality metrics of our main
publications.



Chapter 2

Hypotheses and Objectives

This chapter introduces a summary of the main motivation, hypotheses, research
problems and objectives tackled by each publication derived from this thesis. The
chapter is structured in five different sections, each one matching our main publica-
tions. In turn, each section is structured in two other subsections in which we detail
our main motivation and hypotheses, as well as the reseach problems and objectives
tackled in each publication.

The research tasks of this thesis have been divided into two lines of research,
called workpackages, herein WP1 and WP2. The aim of our first workpackage
(WP1) is the proposal and evaluation of novel ontology-based semantic similarity
measures and information content (IC) models, together with software libraries,
resources and datasets for their replication. On the other hand, WP2 focuses the
proposal and evaluation of novel ontology-based information retrieval (IR) models.
WP1 research is detailed in sections 2.1 to 2.4, whilst WP2 research is detailed in
section 2.5.

2.1 A new family of semantic similarity measures

This section introduces a summary of our research carried-out with the aim of pro-
posing a new family of ontology-based semantic similarity measures based on Infor-
mation Content (IC) models, together with a large experimental survey based on
our software implementation of most previous methods reported in the literature.

The research detailed herein matches the content introduced by Lastra-Díaz
and García-Serrano [60]. However, one of the new IC-based semantic distances
introduced in [60], called weigthed Jiang-Conratgh distance, is also disclosed as part
of our patent application [65, par. 0001]. In addition, the software implementation
of all methods replicated and evaluated in our experiments has been made publicly
available as part of our novel HESML software library introduced by Lastra-Díaz
et al. [68], as well as a set of reproducible experiments provided as supplementary
material which allows all of the experiments in our aforementioned paper to be
reproduced exactly.

9
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2.1.1 Main motivation and hypothesis

The main motivation for this research is the identification of two drawbacks in the
semantic distance introduced by Jiang and Conrath [53]. Firstly, Jiang and Conrath
show in their aforementioned paper that their classic semantic distance is equivalent
to the length of the shortest path between concepts on a weighted graph derived
from the taxonomy, in which the edge weights are set to the IC values of the con-
ditional probabilities between child and parent concepts. However, this relationship
has not been explored before in the definition of any ontology-based semantic sim-
ilarity measure, whilst Orum and Joslyn [105] show that the classic Jiang-Conrath
(J&C) semantic distance is only a metric on tree-like taxonomies, thus rebutting
the common belief and the original statements made by their authors. Second, we
observe an underlying assumption in the literature as regards the conversion of any
ontology-based semantic distance, such as the J&C distance, into a similarity meas-
ure. In most cases, the J&C distance is converted into a similarity function through
a linear mapping, despite this relationship being unknown and probably non-linear.
Thus, our two main hypotheses detailed below are as follows:

Hypothesis 1 (weighted Jiang-Conrath distance) A new semantic distance
defined as the length of the shortest path between concepts in a weighted taxonomy
whose edge weights are set to the IC value of the conditional probability between
its child and parent concepts, or the difference in absolute value of their IC values,
could improve the estimation of the human similarity judgements between words and
concepts obtained by the current state-of-the-art similarity measures.

Hypothesis 2 (non-linear normalization) A new semantic similarity measure
defined as a proper non-linear normalization of the classic Jiang-Conrath distance,
or our new weighted Jiang-Conrath distance, could improve the estimation of the
human similarity judgements between words and concepts obtained by their non-
normalized versions.

2.1.2 Research problem and objectives

In order to bridge the gap detailed in the previous section and evaluating our two
main hypotheses 1 and 2, this research tackles the problem of designing a new family
of ontology-based semantic similarity measures based on a non-linear normalization
and the generalization of the classic Jiang-Conrath distance to non tree-like tax-
onomies. Our novel family of similarity measures is based on the definition for the
first time of an IC-based weighted taxonomy. The main objectives of the research
detailed herein are as follows:

1. To propose a novel family of ontology-based semantic similarity measures
based on the Information Content theory.

2. To reconsider some previous conclusions on the outperformance of the intrinsic
IC model over the corpus-based ones, which rely on the results reported by
Patwardhan and Pedersen [107], Pedersen [109] and Pirró [114]. These latter
works are the primary sources that prove that the state-of-the-art intrinsic
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IC models outperform the corpus-based ones in the WordNet-based similarity
tasks. The comparison and conclusions in other subsequent works, such as
Sánchez et al. [130] and Yuan et al. [144], rely on these primary sources.

3. To replicate the methods and state-of-the-art results introduced by Gao et al.
[40], which question the conclusions of the research community on the outper-
formance of the intrinsic IC models over the corpus-based ones.

4. To carry-out a large and up-to-date experimental survey for most of the simil-
arity measures on WordNet, which are based on our own software implement-
ation of most IC models and similarity measures reported in the literature.

5. To replicate most previous methods reported in the literature with the aim of
confirming or rebutting their results.

6. To check the reproducibily of previous methods reported in the literature, as
well as warning on the irreproducibility of others.

7. To evaluate a family of corpus-based IC models derived from some unexplored
WordNet-based frequency files included in the Pedersen [108] dataset.

8. To carry-out an experimental study on the impact of the WordNet version on
the performance of the similarity measures.

9. To study the performance of the similarity measures based on WordNet on two
versions of the RG65 dataset, the classic one Rubenstein and Goodenough [125]
and the recent replication carried-out by Pirró [114].

10. To carry-out the most complete and largest experimental survey of intrinsic
and corpus-based IC-based similarity measures based on WordNet with the
aim of providing a broad view of the state of the art of the problem.

2.2 A new family of IC models

This section introduces a summary of our research carried-out with the aim of pro-
posing a new family of intrinsic and corpus-based IC models for the estimation of
human similarity judgements between word and concepts, which is based on the pre-
servation of the probabilistic structure of the taxonomy, encoded by the conditional
probability between child and parent concepts.
The research detailed in this section matches the content introduced by Lastra-

Díaz and García-Serrano [59]. However, the core ideas of our family of intrinsic
IC models and three intrinsic IC models called CondProbUniform, CondProbHypo
and CondProbLeaves are also disclosed as part of our patent application [65, par.
0001], in which the three latter IC models are called IC-JointProbUniform, IC-
JointProbHypo and IC-JointPrbLeaves. Like the research introduced in section 2.1,
the software implementation of all IC models and similarity measures replicated and
evaluated in our experiments has been made publicly available as part of our novel
HESML software library introduced by Lastra-Díaz et al. [68], as well as a set of
reproducible experiments provided as supplementary material which allows all of
experiments in our aforementioned paper to be reproduced exactly.
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2.2.1 Main motivation and hypothesis

The main motivation for this research is our observation that the conditional probab-
ility functions encode some structure axioms that should be satisfied by any intrinsic
or corpus-based IC model, but the IC models in the literature do not consider them,
with the exception of the work of Sebti and Barfroush [133].
A second motivation for our research is a first attempt at integrating some ideas

in cognitive psychology into the IC models. Gärdenfors [41, section 2.8] introduces
a conceptual space model based on a Voronoi diagram, with the aim of explaining a
number of plausible production mechanisms for the vagueness of concepts and their
categorical perception. However, Gärdenfors does not provide a specific metric for
this space and the whole family of intrinsic IC models, which is precisely the aim
of this paper. In addition, Gärdenfors [41, p. 46] points out that the mechanisms
that explain the vagueness notion, also explain another phenomenon in the cognitive
perception of categories which can be defined as follows: the instance of a concept is
more quickly perceived as belonging to another category, when the distance from the
prototype of the category increases. We argue that this latter idea can be formulated
through the definition of the cognitive similarity function as a non-linear function
of sigmoid type over the underlying metric of the conceptual space.
Our two main hypotheses detailed below follow directly from our two main afore-

mentioned motivations.

Hypothesis 3 (well-founded IC models) A new family of intrinsic and corpus-
based IC models based on the explicit encoding of the structure axioms derived from
the conditional probabilities could improve the performance obtained by current state-
of-the-art IC models in semantic similarity tasks, moreover to provide a better un-
derstanding of the problem.

Hypothesis 4 (cognitive conceptual distance) A new family of intrinsic and
corpus-based IC models based on the explicit encoding of a non-linear cognitive dis-
tance between parent and child concepts could improve the performance obtained by
current state-of-the-art IC models in semantic similarity tasks.

2.2.2 Research problem and objectives

In order to bridge the gap detailed in previous section and evaluating our two main
hypotheses 3 and 4, this research tackles the problem of designing a new family of
IC models for ontology-based semantic similarity measures which is based on the
explicit encoding of the structure axioms derived from the conditional probabilities
by design, as well as sharing a common computational and algebraic structure. The
main objectives of the research detailed herein are as follows:

1. To introduce a new family of intrinsic and corpus-based IC models based on
the explicit encoding of the structure axioms derived from the conditional
probabilities with the aim of preserving the probabilistic structure of the tax-
onomy.

2. To propose a general computational and algebraic framework for the design
and derivation of new intrinsic IC models based on different methods for the
estimation of the conditional probability between child and parent concepts.
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3. To propose and evaluate a method to integrate a cognitive similarity notion
within the IC model based on the notion of non-linear cognitive distance
between the concepts detailed above.

4. To carry-out a large experimental survey of IC models and IC-based semantic
similarity measures based on WordNet 3.0 and our own software implementa-
tion with the aim of replicating most methods and results previously reported
in the literature, including the five most significant datasets.

5. To introduce a new comparison between intrinsic and corpus-based IC models
with the aim of confirming some previous conclusions on the outperformance
of the intrinsic IC models over the corpus-based obtained by Lastra-Díaz and
García-Serrano [60].

6. To propose a new baseline for the evaluation of novel intrinsic IC models based
on two corpus-based IC models derived from an unexplored WordNet-based
frequency file.

2.3 A refinement of our family of IC models

This section introduces a summary of our research carried-out with the aim of solving
two drawbacks found in our recent family of well-founded of IC models detailed
by Lastra-Díaz and García-Serrano [59], which matches the content introduced by
Lastra-Díaz and García-Serrano [61].
The research detailed herein also includes the largest and most conclusive ex-

perimental survey into ontology-based semantic similarity measures and IC models
reported in the literature. Like the research introduced by Lastra-Díaz and García-
Serrano [60] and Lastra-Díaz and García-Serrano [59], the software implementation
of all IC models and similarity measures replicated and evaluated in our experiments
has been made publicly available as part of our novel HESML software library intro-
duced by Lastra-Díaz et al. [68], as well as a set of reproducible experiments provided
as supplementary material which allows all of the experiments in our aforementioned
paper to be reproduced exactly.

2.3.1 Main motivation and hypothesis

Our first motivation is the finding of two drawbacks in the main computation al-
gorithm of our family of well-founded IC models introduced by Lastra-Díaz and
García-Serrano [59]. First, the two intrinsic and cognitive IC models called Con-
dProbLogistic and CondProbCosine do not satisfy the axiom that constrains the
sum of probabilities on the leaf nodes to be 1. It is a consequence of the non-
linear transformations applied to the conditional probabilities of these two mod-
els, a fact that was already pointed out in our aforementioned work. Second, in
some unlikely cases, the ontologies with multiple inheritance could prevent the IC
model from satisfying the growing monotonicity axiom in concepts with multiple par-
ents. This latest fact means that for some concept pairs ci, cj ∈ C, the constraint
ci ≤C cj ⇒ IC (ci) ≥ IC (cj) could be violated. In appendix B of our aforemen-
tioned work, which is provided as supplementary material, we show that the main
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recovery algorithm of our family of well-founded IC models is a suffi cient condition
for the sum of probabilities over the leaf nodes to be 1, what follows the underlying
probability space is well-defined. However, if the taxonomy exhibits multiple inher-
itance, the probabilities p (ci) computed by the aforementioned algorithm 1 could
be higher than the probability of any direct parent in some nodes with multiple
parents, thus, leading to a violation of the aforementioned growing monotonicity
axiom. Thus, our main hypothesis is as follows:

Hypothesis 5 (Fixing of two structural inconsistencies) The solution to the
two aforementioned structural drawbacks of the main computation algorithm of our
family of well-founded IC models could lead us to an improvement in their per-
formance, in addition to fixing an algebraic inconsistency that moves the family of
well-founded IC models away from their original design principles.

The second motivation for the research introduced by Lastra-Díaz and García-
Serrano [61] is the lack of an updated and exhaustive evaluation of ontology-based
similarity measures and IC models in WordNet, as well as the lack of an exhaustive
pairwise statistical significance analysis between them. In the literature, we find
some out-of-date similarity benchmarks such as that reported by Budanitsky and
Hirst [16] and Budanitsky and Hirst [17], and others, more recent but not as ex-
haustive, such as Hadj Taieb et al. [45]. The largest and most recent word similarity
benchmarks based on WordNet are introduced by Lastra-Díaz and García-Serrano
[59] and Lastra-Díaz and García-Serrano [60]. However, not all of the hybrid IC-
based similarity measures evaluated in the latest work have been previously evalu-
ated with many IC models considered herein and the datasets introduced by Miller
and Charles [96], Agirre et al. [2] and Hill et al. [51]. In addition, most ontology-
based semantic similarity measures have never been compared through a statistical
significance analysis.
Finally, our final motivation is the replication of previous methods and exper-

iments. Most works introducing similarity measures or IC models during the last
decade have only implemented or evaluated classic IC-based similarity measures,
such as the Resnik, Lin and Jiang-Conrath measures, avoiding the replication of IC
models and similarity measures introduced by other researchers. Some works have
not included all the details of their methods, or the experimental setup to obtain the
published results, thus, preventing their reproducibility. Most works have copied the
results published by others. This latest fact has prevented the valuable confirma-
tion of previous methods and results reported in the literature, which is an essential
feature of science. This replication problem is especially significant in the current
state of the problem, in which there is no convincing winner within the family of
intrinsic IC-based similarity measures and the performance margin is very narrow,
as concluded in our aforementioned works [59] and [60].

2.3.2 Research problem and objectives

In order to bridge the gap detailed in the previous section and evaluating our main
hypothesis 5, as well as providing a conclusive image of the current state of the
problem, in the light of the results reported by Lastra-Díaz and García-Serrano
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[60] and Lastra-Díaz and García-Serrano [59], this research tackles the problem of
designing and evaluating a refinement of the main algorithm of our family of well-
founded IC models and providing a larger evaluation of IC models and ontology-
based similarity measures than those available in the literature. Thus, the main
objectives of the research detailed herein are as follows:

1. To introduce a refinement of our family of well-founded IC models introduced
by Lastra-Díaz and García-Serrano [59] with the aim of fixing the two struc-
tural drawbacks stated in our previous section.

2. To introduce the largest and most complete evaluation of IC models and
ontology-based semantic similarity measures based on WordNet, which will
be based on our software implementation of all methods evaluated in our ex-
periments. The survey will include the most recently available datasets on
word similarity based on WordNet, as well as a detailed statistical significance
analysis using the Pearson and Spearman correlation metrics.

3. To replicate most ontology-based semantic similarity measures and IC models
based on WordNet from the pioneering works of Rada et al. [119] and Seco
et al. [134].

4. To provide a new and more conclusive image of the current state of the art
in the family of ontology-based semantic similarity measures and IC models
based on WordNet.

2.4 Effi cient and scalable reproducibility resources

This section introduces a summary of our research into new software tools, resources
and datasets for the reproducibility of methods and experiments in the family of
ontology-based semantic similarity measures and IC models based on WordNet and
their applications. The research detailed herein matches the content introduced
by Lastra-Díaz et al. [68] and five Mendeley datasets provided as supplementary
material as follows:

1. Our main article on the topic [68], which introduces our new representation
model for taxonomies, called PosetHERep, and our HESML software library of
ontology-based semantic similarity measures and IC models, are among other
significant contributions for the reproducibility in the area.

2. Two different versions (V1R1 and V1R2) of our HESML software library which
are publicly available at [62] and [63].

3. A set of reproducible experiments of word similarity based on ReproZip [22]
available at [67].

4. A replication framework and dataset to reproduce ontology-based semantic
similarity measures and IC models, called WNSimRep v1, which is available
at [66].
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5. A set of scalability and performance benchmarks among the state-of-the-art
semantic measures libraries available at [64].

Our work introduced by Lastra-Díaz et al. [68] is a reproducible paper which
provides a detailed protocol together with the full set of resources detailed above
with the aim of allowing the exact replication of all methods and results introduced
in our series of works on ontology-base semantic similarity measures and IC models.
The reproducibility of the aforementioned paper is certified by three independent
reviewers listed as co-authors.

2.4.1 Main motivation and hypothesis

The two main motivations for our research into the reproducibility of methods and
experiments into ontology-based semantic similarity measures and IC models are the
three drawbacks in the current semantic measures libraries detailed in paragraph
below, and the lack of a set of self-contained and easily reproducible experiments
into ontology-based semantic similarity measures and IC models based on WordNet.
Another significant motivation, also related to the reproducibility, is the lack of a
gold standard to assist in the exact replication of ontology-based semantic similarity
measures and IC models.
Our first motivation is the discovery of several scalability and performance draw-

backs in the current state-of-the-art semantic measures libraries. We argue that
these aforementioned drawbacks are derived from the use of naive graph represent-
ation models which do not capture the intrinsic structure of the taxonomies being
represented. As a consequence of this latter fact, all topological algorithms based
on naive representation models demand a high computational cost which degrades
their performance. In turn, in order to solve the performance problem of their graph-
based algorithms, the current semantic measures libraries adopt a caching strategy,
storing the ancestor and descendant sets of all vertices within the taxonomy, among
other topological queries in memory or relational databases. This latter caching
strategy significantly increases the memory usage and leads to a scalability prob-
lem as regards the size of the taxonomy, in addition to impacting the performance
because of the further memory allocation and dynamic resizing of the caching data
structures, or the interrogation of external relational databases. A second motiva-
tion is related to several software architecture issues that lead to practical diffi culties
for the functional extension of current software libraries, whilst a third motivation
is the lack of software implementations for the most recent ontology-based similar-
ity measures and intrinsic IC models developed during the last decade. This latter
fact prevents the publication of exhaustive experimental surveys comparing the new
proposed methods with most recent methods reported in the literature, because of
the effort and diffi culty in replicating previous methods and experiments. Thus, the
three aforementioned drawbacks lead us to present our main hypothesis and research
questions as follows:

Hypothesis 6 (Intrinsic representation model for taxonomies) A new rep-
resentation model for taxonomies which properly encodes their intrinsic structure,
together with a new software library based on it, should bridge the aforementioned
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gap of scalability and performance of the current state-of-the-art semantic measures
libraries.

Research question 1 Is a new intrinsic representation model for taxonomies able
to improve significantly the scalability and performance of the current state-of-the-art
semantic measures libraries?.

Research question 2 Is it possible to improve significantly the scalability and per-
formance of the state-of-the-art semantic measures libraries without using any cach-
ing strategy?.

A fourth motivation of this research is the lack of a set of self-contained and
easily reproducible experiments that allow the research community to be able to
replicate methods and results reported in the literature exactly, even without the
need for software coding. The lack of reproducible experiments, together with the
aforementioned lack of software libraries covering the most recent methods, and the
diffi culties in replicating methods and experiments exactly have contributed, with
few exceptions, to improveable reproducibility practices in the area.
And finally, our final motivation is the lack of a gold standard to assist in the ex-

act replication of ontology-based similarity measures and IC models. Most ontology-
based similarity measures and intrinsic IC models require the computation of dif-
ferent taxonomical features, such as node depths, hyponym sets, node subsumers,
the Least Common Subsumer (LCS), and subsumed leaves, among others. WordNet
is a taxonomy with multiple inheritance, thus, some of these features are ambigu-
ously defined, or their computation could be prone to errors. For example, the node
depth can be defined as the shortest ascending path length from the node to the
root, or the longest ascending path length as defined by Hadj Taieb et al. [45, eq.
40, p. 251]. Different definitions of depth also lead us to different values for the
LCS concepts. On the other hand, the computation of the hyponym set, subsumed
leaves and subsumer set requires a careful counting process to avoid node repeti-
tions, as has already been pointed by Seco et al. [134, section 3]. Another potential
source of error is the ambiguity in the definition and notation of some IC models and
similarity measures. For example, Zhou et al. [147, table 1, p. 258] define the root
depth as 1, whilst the standard convention in graph theory is 0. Most authors define
the hyponym set as the descendant node set without including the base node itself.
However, in [45], the hyponym set also includes the base concept. In addition, we
find works that do not detail the IC models used in their experiments, or how these
IC models were built [40, section 4]. Finally, many recent hybrid-type measures also
require the computation of the length of the shortest path between concepts. These
sources of ambiguity and diffi culty demand a lot of attention to the fine details for
replicating most IC models and similarity measures in the literature. In a recent
work [60], we find some contradictory results and diffi culties in replicating previous
methods and experiments reported in the literature. These reproducibility problems
were confirmed in another subsequent work, such as [59], whilst new contradictory
results are reported by Lastra-Díaz and García-Serrano [61, section 6.10]. Several
replication problems were solved with the kind support of most authors. However,
we were not able to confirm all previous results, whilst others could not be repro-
duced through lack of information. As we have explained above, many taxonomical
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features are ambiguously defined or prone to errors. Thus, all the aforementioned
facts lead us to conclude that the exact replication of ontology-based similarity
measures and IC models is a hard task, and not exempt from risk. Therefore, it
follows that it is urgent and desirable to set of a gold standard for this taxonomical
information in order to support the exact replication of the methods reported in the
literature.

2.4.2 Research problems and objectives

In order to bridge the gap detailed in the previous section as well as evaluating our
main hypothesis 6 and answering our two research questions 1 and 2, this research
tackles the problem of designing a scalable and effi cient representation model for
taxonomies and a new semantic measures library based on the former, as well as
the lack of self-contained reproducible experiments on WordNet-based similarity,
tools and resources to assist in the exact replication of methods and experiments
previously reported in the literature. Thus, the main objectives of the research
detailed herein are as follows:

1. To propose and evaluate a new scalable and effi cient representation model for
taxonomies, called PosetHERep, which is an adaptation of the half-edge data
structure commonly used to represent discrete manifolds and planar graphs in
computational geometry.

2. To propose and evaluate a new Java software library calledHalf-Edge Semantic
Measures Library (HESML) based on PosetHERep, which implements most
ontology-based semantic similarity measures and Information Content (IC)
models reported in the literature.

3. To introduce a set of reproducible experiments on word similarity based on
HESML and ReproZip for the first time with the aim of reproducing the ex-
perimental surveys reported in [60, 59, 61] exactly, which are provided as
supplementary material at [67]. ReproZip is a virtualization tool introduced
by Chirigati et al. [22], whose aim is to warrant the exact replication of ex-
perimental results onto a different system from that originally used in their
creation. Reprozip captures all the program dependencies and is able to re-
produce the packaged experiments on any host platform, regardless of the
hardware and software configuration used in their creation. Thus, ReproZip
warrants the reproduction of the experiments introduced herein in the long
term.

4. To propose a replication framework and dataset calledWNSimRep v1, for the
first time, which is provided as supplementary material at [66], and whose aim
is to assist in the exact replication of most methods reported in the literature.

5. And finally, to propose a set of scalability and performance benchmarks, for
the first time, to evaluate and compare the current state-of-the-art semantic
measures libraries available at [64].
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2.5 Evaluation of our new IR model

In my previous MSc thesis [58], I propose a novel structure-preserving ontology-
based IR model, called Intrinsic Ontological Spaces, with the aim of solving several
drawbacks of the current family of ontology-based IRmodels detailed in section 2.5.1.
My aforementioned thesis was defended privately with the aim of submitting our
patent application [65] before it was made publicly available. However, we submit
our patent application without evaluating our aforementioned IR model. For this
reason, we set it as the main aim of our second line of research.
This section introduces a summary of our research carried-out with the aim of

proposing and evaluating a new ontology-based IR model based on the presever-
vation of a set of intrinsic semantic and geometric structures implictly encoded by
any base ontology used as indexing semantic space. The research introduced in
this section matches the content of our patent application [65], which is based on
our preliminary ideas in [58]. However, this latter patent application also discloses
and protects part of our new family of semantic similarity measures introduced in
[60], as well as the core ideas behind our new family of well-founded intrinsic and
corpus-based IC models introduced in [59].
The classic Vector Space Model (VSM) introduced by Salton et al. [126] is known

as "bag of words", because every document is represented by a vector whose coordin-
ates are defined as a function of the term occurrence frequency within a document.
The set of terms used to represent every document is called the vocabulary of the
model, and it defines the base vectors of the model. In most of cases, the cosine
function is used as a similarity measure between a query vector and the vectors
representing the indexed documents. Because of its simplicity, the VSM model has
been adopted in many natural language processing (NLP) applications, such as: in-
formation retrieval (IR), document categorization (TC) and clustering, web mining
and automatic text summarization (TS) among others.
Despite the vector space models having mainly been used to represent text docu-

ments, these models have been extended and successfully applied to represent other
types of information units, such as words, phrases and sentences, as is reflected in
several reviews by Erk [33], Clark [23] and Turney and Pantel [137]. A word or
phrase space is a vector space where the vectors represent these information units
instead of documents, and the space metric encodes the semantic similarity between
information unit pairs. The word spaces are based on the distributional hypothesis
[7], which sets that words in similar contexts have similar meanings. In these models,
the vectors representing every word are built as a function of the term’s frequency
in the context of one word within a document, so that these models allow some
semantic relationships and statistics to be encoded, such as the term co-occurrence,
the synonymy and the meronymy among others.
The main drawback of the classic VSM model is its lack of meaning, as pointed

out by Metzler [92, p. 3]. Most current academic information retrieval models use
a standard “bag of words”VSM model with meaningless terms, which prevents the
retrieval of documents using queries based on non-explicit terms mentioned in the
corpus. On the other hand, the same situation occurs in other related problems
where the same meaningless version of the VSM model is used, for instance, in text
categorization as noted by Sebastiani [132] and Lewis et al. [73].
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The advent of the semantic web has encouraged the following change of paradigm
among the IR research community: the IR models have moved from a model based
on meaningless terms to a model based on references to concepts or their instances.
This new paradigm has converted the conceptual models and the knowledge bases
in their core components, thus, ontology languages such as OWL have become the
favorite representation to encode this knowledge and to store the references to the
indexed data. Nowadays, the use of ontologies is omnipresent in all kinds of semantic
retrieval tasks in the context of the semantic web [29], as well as in other application
contexts such as bioinformatics [113]. Motivated by the lack of meaning in previous
IR models, some novel conceptual IR models have been proposed during the last
decade, whose main example is the family of ontology-based IR models pioneered
by the work of Castells et al. [19], although their origin can be traced back to Rada
et al. [119].
An ontology-based IR model is any sort of information retrieval model which

uses an ontology-based conceptual representation for the content of any sort of
information unit, whose main goal is its indexing, retrieval and ranking as regards
to a user query. The family of ontology-based IR models can be divided into three
groups as follows: (1) the vector ontology-based IR models, such as those introduced
by Vallet et al. [140], Fang et al. [35], Castells et al. [19], Mustafa et al. [100], Dragoni
et al. [30] and Egozi et al. [31], whose main feature is the use of some adaptation of
the standard VSM model to manage concepts instead of meaningless terms; (2) the
ontology-based metric space IR models, whose pioneering works are introduced by
Rada et al. [119] and subsequently by Lastra-Díaz [58]; and finally, (3) the query-
expansion ontology-based IR models, such as those disclosed in patents by Cheslow
[21] and Lin et al. [77].
The main features of the family of vector ontology-based IR models, also called

adapted-VSM models, are as follows: (1) the use of a conceptual representation
for documents and queries based on an ontology; (2) the retrieval of relevant doc-
uments through any ontology query language; (3) any sort of vector space for the
representation of references to concepts and instances, based on a set of orthogonal
base vectors defined by the classes and individuals of the ontology; (4) any sort of
adaptation of standard term-frequency weights for the definition of coordinates; (5)
the use of cosine function as a ranking method to sort the relevant documents, and
finally, (6) a multivector representation and ranking combining different types of
features, such as concepts, keywords or ontological features.

2.5.1 Main motivation and hypothesis

Castells et al. [19] and other works in the current family of ontology-based IR mod-
els have shown the potential benefits derived from the use of conceptual models
as regards their counterpart models based on meaningless terms. However, a care-
fully study of the underlying assumptions behind most of these conceptual models
reveals that there is significant room for improvement in terms of ranking qual-
ity, as well as in the precision and recall measures if these underlying aspects were
tackled. The main motivation behind most adaptations of classic vector IR models
for concept-based semantic search systems has been the definition of a semantic
weighting method with the aim of comparing semantically annotated documents.
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However, these aforementioned adapted IR models have been using the vector space
model (VSM) as a black-box without considering several underlying assumptions of
this latter IR model and its consequences.
The main motivation for the research introduced herein is to bridge the gap

defined by the main drawbacks of the family of vector ontology-based IR models as
detailed below:

1. Orthogonality condition. The base vectors of any VSM model are mutually
orthogonal, which means that the similarity cosine function between the dif-
ferent base vectors is zero. Thus, two vectors associated with two documents
can get a zero, or very low similarity value, when they do not share references
to the same concept instances, despite these instances being able to share a
common ancestor concept in the taxonomy.

2. Cardinality mismatch. Most ontology-based IR models do not include refer-
ences to classes as sets of objects, and others are mixing references to classes
and instances (individuals) at the same representation level. The main idea
behind most adaptations of the VSM models to manage the ontology infor-
mation is to make a mapping from individuals and/or classes to base vectors
of the representation vector space. In this way, these IR models are assigning
two different and opposite meanings to the same base vector, in one case the
base vector represents the occurrence of one object (individuals), whilst in the
opposite case, a base vector is representing a collection of objects (classes).
These inconsistencies can be summarized as a cardinality mismatch in the
adapted VSM models, and the nature of the objects represented by the model.

3. Statistical fingerprint versus semantic distances. The metric used to compare
documents by most ontology-based IR models is based on the Euclidean angle
between normalized vectors (cosine score). The vectors encode the statistical
fingerprint of the indexed documents (i.e. the statistical co-occurrence rela-
tionships between different concepts in a document), but this metric lacks a
meaning in the sense that they are not encoding any semantic distance between
concepts, as is done by very well established ontology-based semantic simil-
arity and distance measures. The only exception to this problem is the IR
model proposed by Rada et al. [119] which defines a Boolean semantic model,
in which the documents are represented by sets of concepts, but the concepts
are annotated in binary form without using any semantic weighting method.

4. Populated ontologies are not directly indexed. Many vector ontology-based IR
models need to retrieve the related documents with the instances and concepts
in the query before ranking them. Thus, the populated ontology is not indexed
directly else it needs to be searched using any ontology-based query language,
such as SPARQL or any other.

5. Lack of a semantic weighting. The weights in adapted VSM models are stat-
istical values, not related to the real semantic weight of the concept/instance
in the document.
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6. Continuity problems of some proposed metrics on sets, such as the metric in-
troduced by Rada et al. [119] with the aim of computing the distance between
documents. In this latter article, the authors report some continuity prob-
lems around close documents. We argue that the source of this discontinuity
problem is that the distance function between documents proposed by Rada
et al. [119] does not satisfy the coincidence axiom of a metric, thus it is not a
well-defined metric on sets.

The aforementioned drawbacks detail a set of intrinsic semantic and geometric
structures which are inconsistently encoded in the semantic spaces defined by the
current family of vector ontology-based IR models. Thus, our main hypothesis for
the research introduced herein is as follows:

Hypothesis 7 (Structure-preserving IR model) A novel ontology-based IR
model which preserves all semantic and geometric structures intrinsically encoded
by the base ontology used to index the information could improve the performance of
the state-of-the-art IR models in terms of document ranking, precision and recall.

2.5.2 Research problem and objectives

In order to bridge the gap detailed in the previous section and by evaluating our
main hypothesis 7, this research tackles the problem of designing and evaluating
a new structure-preserving ontology-based IR model, called Intrinsic Ontological
Spaces, for the indexing and retrieval of semantically annotated data, such as text
documents, web pages, or any sort of information that can be represented as a set
of semantic annotations (individuals and classes) in any sort of base ontology. The
proposed IR model bridges the gap of modelling inconsistencies in current methods
through the integration of the intrinsic structure of any populated ontology in the
definition of the representation space itself. The main objectives of the research
detailed herein are as follows:

1. To propose a new ontology-based IR model, called Intrinsic Ontological Spaces,
which is based on the preservation of all semantic and geometric structures in-
trinsically encoded by the base ontology as intrinsic properties of the resulting
semantic space.

2. To evaluate the new ontology-based IR model in an information retrieval task.

3. To evaluate and compare the performance of the new ontology-based IR model
with the state-of-the-art methods in the family of vector ontology-based IR
models.

2.5.3 Evaluation problems leading to abandoning this task

The building of benchmarks and datasets for the evaluation of semantic search sys-
tems has been identified as an urgent need and a line of research in itself. For
instance, Fernández et al. [37] introduce a benchmark for the evaluation of semantic
search systems based on a TREC dataset, which has been subsequently abandoned.
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Another known problem is that most large IR datasets only provide the ranking
scores for the set of relevant documents asociated to the user queries, instead of
providing the scores for the entire corpus. Likewise, Uren et al. [139] surveys the
evaluation efforts of a semantic search system and propose “the development of ex-
tensible evaluation benchmarks and the use of logging parameters for evaluating
individual components of search systems”as main working directions, whilst Elbed-
weihy et al. [32, abstract] point out that “the evaluation of Semantic Web search
systems has largely been developed in isolation from mainstream IR evaluation with
a far less unified approach to the design of evaluation activities. This has led to slow
progress and low interest when compared to other established evaluation series, such
as TREC for IR or OAEI for Ontology Matching”. In this latter paper, the authors
also identify the weaknesses of the current semantic search evaluation and “high-
light the future need for a more comprehensive evaluation framework that addresses
current limitations”.
A first review of the literature led us to be aware of the diffi culties for the eval-

uation of our new ontology-based IR model. These aforementioned diffi culties were
confirmed by one expert in the area, Dr. Miriam Fernández, research fellow at The
Open University. Miriam Fernández1 introduces the pioneering work in the modern
family of vector ontology-based IR models in [19], which is the main contribution
of her PhD thesis [38]. She has been involved in development of semantic search
systems based on ontologies since the very beginning of the Semantic Web, her being
one of its most active researchers. In a series of personal communications and one
working meeting with her, she told us that the experiments reported by Castells
et al. [19] cannot currently be reproduced because many of the software compon-
ents required are not currently available. On the other hand, she gave us her wise
and timely advice on the current evaluation diffi culties of the family ontology-based
Information Retrieval (IR) models derived from the lack of well-defined benchmark
and datasets for the evaluation of semantic search systems. Likewise, she warned us
on the reproducibility problems in this line of research. Thus, we decided to suspend
our research activity in this line of research with the aim of focusing on our first line
of research into ontology-based semantic similarity measures. However, two recent
works on text document similarity, introduced by Benedetti et al. [14] and Ni et al.
[101], use the LP50 dataset in the evaluation of their methods. Thus, the experi-
mental setup used by these latter works provide us the possibility of evaluating our
new ontology-based IR model proposed in a document similarity task, instead of a
semantic search task. For this reason, we plan to resume the research detailed in
this section in the mid term.

1http://kmi.open.ac.uk/people/member/miriam-fernandez
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Chapter 3

Theoretical Foundations and
Methodology

This chapter briefly introduces the theoretical foundations of this thesis, which cover
several well-established mathematical theories, such as the theories of graphs, lat-
tices, partially ordered sets (posets) and probability spaces, as well as other theories
in cognitive psychology such as the theory of categorization compiled by Margolis
and Laurence [84], prototype theory [124], exemplar theory [103] and the theory of
geometric conceptual spaces introduced by Gärdenfors [41].
The rest of the chapter is structured as follows. Section 3.1 details the theoretical

foundations and closely related lines of research of this thesis, whilst section 3.2
introduces our research methodology.

3.1 Theoretical foundations

Our first line of research (WP1) belongs to the family of ontology-based semantic
similarity measures, and more specifically to those based on Information Content
(IC) theory. This aforementioned family of semantic measures has been the object of
study in many different fields. For instance, in the field of information retrieval, Rada
et al. [119] introduce a similarity measure between concepts defined as the length of
the shortest path between concepts in a taxonomy for a document retrieval system.
In the field of knowledge engineering, Cross and Hu [26] review the use of semantic
similarity measures on the ontology alignment (OA), whilst Tversky [138] proposed
a feature-based semantic similarity measure in the field of cognitive psychology,
and Mazandu et al. [88] review most semantic similarity measures based on Gene
Ontology [6] which have been proposed and evaluated in many different tasks in
genomics.
The main aim of the family of ontology-based semantic similarity measures is

to estimate the human similarity judgments between word and concepts, whose
nature and representation are two of the oldest research problems in philosophy
and cognitive psychology [83]. Thus, from a cognitive point of view, our research is
related to broadly accepted theories in cognitive psychology, such as the theory of
categorization, prototype theory and exemplar theory. The theory of categorization
is introduced by Rosch and Mervis [123], Rosch et al. [124] and Rosch [122]. In her
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pioneering series of works, Eleanor Rosch introduces her classic theory of prototypes
in contraposition to the Classic Theory of Concepts in philosophy which defines a
concept as a closed set of features. For a detailed analysis of the work of Rosch, we
refer the reader to the survey by Peraita Adrados and Labra [112], as well as the
critical review of Lakoff [57].
The Classic Theory of concepts comes from a very old tradition in philosophical

logic which can be traced back to Socrates and Plato. It argues that most concepts
can be defined as closed sets of features which can be verified in a deterministic
way. This latter notion means that given any concept defined as a feature set and
an unknown individual, it is always possible to find a well-defined criteria, or logic
predicate, which could be used to confirm unambiguously the verification of each
feature by the individual under study, and thus its belonging to the examinated
category. Margolis [83] and Laurence and Margolis [69] introduce a critical analysis
of the Classic Theory of Concepts and review the evolution of the Theory of Cat-
egorization from this classic view to the most modern approaches proposed by the
Theory of Prototypes of Rosch and Mervis [123] and its direct evolution known as
the Theory of Exemplars introduced by Nosofsky [102, 103] and revised by Smith
and Medin [135]. The theory of exemplars argues that the human beings use a par-
ticular instance of a category, the so called ‘exemplar’, as base for the comparison
and ranking of the degree of belonging of any unknown instance to the examinated
category. On the other hand, in the theory of prototypes every category is represen-
ted by an abstract average instance which is used as base exemplar with the aim of
setting the degree of belonging of any unknown instance to the examinated category.
There is a large corpus of literature on the theory of categorization in the field of
cognitive psychology; however, for an introductory reading or in-depth review of the
topic, we refer the reader to the collection of works edited by Margolis and Laurence
[84] and the more recent book by Margolis and Laurence [85]. Finally, another line
of research in cognitive sciences that is closely related to our research, in fact it
was a source of inspiration for a couple of IC models introduced by Lastra-Díaz
and García-Serrano [59], is the theory of geometric conceptual spaces introduced by
Gärdenfors [41].
Most recent research into cognitive sciences has followed a parallel line to the

work in the fields of IR and NLP, but it has been more focused on the definition of
theoretical models capable of explaining several non-metric phenomena in the human
similarity judgments described by Tversky [138] and Pothos et al. [116], such as: (1)
asymmetry or non-commutativity, (2) context dependency and (3) the conjunction
fallacy. The most recent cognitive similarity model is introduced by Pothos et al.
[117] and Pothos and Trueblood [118], being inspired by a quantum probability ap-
proach for cognition proposed by Busemeyer and Bruza [18], whose non-commutative
nature allows the representation of different non-metric phenomena. However, the
quantum probability similarity model has not yet been experimentally evaluated.
Other significant contributions to the categorization and prototype theory in the
same family of cognitive quantum models are those proposed by Aerts et al. [1].
From a mathematical modeling point of view, the similarity measures are func-

tions defined on taxonomies, or ontologies, which derive from similarity or distance
functions defined on these formal structures. Thus, our research is based on many
well-founded algebraic theories as follows: the theory of probability spaces [5]; the
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theory of metric spaces as detailed in the encyclopedia of the field by Deza and Deza
[28]; the closely related theories of partially ordered sets and lattices as proposed by
Birkhoff [15], and presented by Lidl and Pilz [76, cp. 1]; valuation metrics on posets
such as those reviewed by Monjardet [98] and for semilattices by Ramana Murty and
Engelbert [120]; classic set theory; functional analysis, and vector spaces. In addi-
tion, our research is inspired by the modern geometric structuralist approach based
on the study of the intrinsic properties and invariants of all elements in any math-
ematical model, which can be traced back to the famous and influential Erlangen
program introduced by Klein [55].
Finally, our second line of research belongs to the family of ontology-based infor-

mation retrieval (IR) models, thus, our research is framed in the field of information
retrieval. This line of research shares the same mathematical theories that support
our first line of research, and moreover, it is also based on the theory of indexing
and information retrieval models, which combines many notions of geometry and
statistics, such as vector spaces, machine learning and data mining.

3.2 Research methodology

Our research methodology is defined by the workflow shown in figure 3.1 and detailed
in steps 1 to 14 below:

1. Definition of our main research problem.

2. Comprehensive review of the literature on the studied problem as well as other
related problems and applications.

3. Synthesis and categorization of the literature based on features such as: strategy
and tactics used, functional structure, mathematical models used, application
domain, specific problem or motivation, experimental setup, etc.

4. Identification of the gap to be bridged, such as: drawbacks, inconsistencies
in the formulation of the models and methods, underlying assumptions, un-
explored notions and strategies, formulation of novel hypothesis, refutation of
previous conclusions, and study from a novel point of view and disciplines.

5. Proposal of novel methods and hypotheses to bridge the previously identified
gap. Correlation and generation of ideas based on analogies and personal
intuitions. Inquiry into related ideas in other fields of research, disciplines and
related problems.

6. Designing or replication of experiments to evaluate our novel hypotheses and
proposals.

7. Implementation of the experiments to evaluate our methods and hypotheses.

8. Replication and reproduction of related methods with the aim of comparing
our results with the state of the art.
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Figure 3.1: Research methodology adopted in this thesis. We place a special em-
phasis in the replications of previous methods and results, as well as their confirm-
ation and refutation.

9. Verification and contrasting of our results, as well as the results obtained in
the replication of other methods and those reported in the literature. Personal
communication with the authors whenever it is necessary to clarify any issue
for its precise replication and reproduction of their methods and results.

10. Critical discussion of the results and their consequences. Contrast of our
results as regards previous methods and results reported in the literature.
Confirmation and refutation of previous methods and results reported in the
literature based on our own experimentation.

11. Identification of drawbacks and limitations in our novel proposals.

12. Formulation of new hypotheses and forthcoming activities. Identification of
potential applications of our methods and results in other related problems or
fields of application.

13. Publication and dissemination of our results.

14. Selection of a new research problem from our backlog of new hypotheses, ideas
and forthcoming activities and start of a new iteration of our research meth-
odology.



Chapter 4

Conclusions and Future Work

This chapter introduces a summary of the main conclusions derived from the research
carried-out in our first line of research into ontology-based semantic similarity meas-
ures and IC models based on WordNet (WP1). On the other hand, we abandoned
our second line of research (WP2) in our first academic year, as mentioned in section
2.5.3, because of the lack of well-defined benchmarks and datasets for the evaluation
of ontology-based IR models. Thus, we will not introduce any conclusions about our
research into WP2 herein, beyond confirming the evaluation problems in the field
of semantic search.

4.1 Main conclusions

The main conclusions derived from the research introduced by Lastra-Díaz and
García-Serrano [60] are as follows:

1.1 We introduce one IC-based semantic distance [60, equation 7] and three new
IC-based similarity measures [60, equations 8, 11 and 12] based on a generaliz-
ation and normalization of the classic Jiang-Conrath distance, which outper-
form the state-of-the-art methods in the RG65 dataset as shown in [60, table 4].
Thus, we positively confirm our hypothesis 1. Our family of weighted Jiang-
Conrath similarity measures is subsequently confirmed in a more conclusive
manner as the new state of the art of the problem in the largest experimental
survey of the field reported in [61, table 12], including their evaluation and
comparison on the five most significant datasets and a very detailed statistical
significance analysis based on the Spearman correlation metric.

1.2 Our cosJ&C similarity measure, which is a non-linear normalization of the
classic Jiang-Conrath similarity measure, in combination with any IC model
obtains a higher Pearson correlation value in all word similarity benchmarks
than J&C similarity measure (see columns corresponding to both measures
in tables 5 to 8 [60]). Likewise, our coswJ&C similarity measure, which is
a non-linear normalization of our weighted Jiang-Conrath (wJ&C ) similarity
measure, in combination with any IC model obtains a higher Pearson correl-
ation value in all word similarity benchmarks than wJ&C similarity measure
(see columns corresponding to both measures in tables 5 to 8 [60]). Thus, we
positively confirm our hypothesis 2.
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1.3 We introduce an up-to-date experimental survey [60, tables 4-8], whose aim
is the uniform comparison based on our own software implementation of the
most recent and relevant similarity measures based on WordNet, especially the
families of IC-based similarity measures and intrinsic IC models.

1.4 We introduce an experimental comparison between the intrinsic and corpus-
based IC models [60, tables 6-7] that allows some previous conclusions on the
outperformance of the intrinsic IC models on the corpus-based to be refuted.

1.5 We confirm that the state-of-the-art into similarity measures is lead by the
family of IC-based semantic similarity measures [60, table 4], specifically by
our new cosine-normalized measures and the Meng and Gu [89] similarity
measure.

1.6 The use of any hybrid IC-based semantic similarity measure based on the
length of the shortest path is refuted because they demand a higher computa-
tional cost than other IC-based measures, but they do not show a statistically
significant difference as regards these latter ones using the Pearson correlation
metric. This conclusion can be drawn by comparing the Pearson correlation
values obtained by our coswJ&C and Zhou et al. [147] similarity measures
with those obtained by our cosJ&C similarity measure, as shown in [60, table
4].

1.7 Despite the corpus-based IC models evaluated herein obtaining rivaling results
as regards the state-of-the-art intrinsic IC models, we confirm that the intrinsic
IC models slightly outperform the former ones [60, tables 6-7]. However, the
difference between the corpus-based IC models and the intrinsic ones is smaller
than that reported in the literature, which was based on corpus-based IC
models built with the Resnik method on other WordNet-based frequency files.

1.8 We confirm that there is no significant difference in the performance of the
ontology-based semantic similarity measures in different versions of WordNet
[60, table 4].

1.9 We warn of the finding of several reproducibility problems in the replication of
several methods and experimental results previously reported in the literature,
as well as the discovery of contradictory results [60, section 5.4]. Thus, we in-
vite to the research community to replicate previous methods and experiments
in their future research.

The main conclusions derived from the research introduced by Lastra-Díaz and
García-Serrano [59] are as follows:

2.1 We introduce five new intrinsic IC models and one new corpus-based IC model
based on the preservation of the probabilistic structure [59, table 3], and the
integration of a notion of cognitive similarity inspired by cognitive evidence.

2.2 We show that the proposed approach defines an open framework for the de-
velopment of new intrinsic IC models based on alternative forms of estimating
the conditional probabilities between concepts [59, section 4.2].
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2.3 Most of our new intrinsic IC models rival the state-of-the-art models, with the
exception of the naive CondProbUniform model [59, table 4-5].

2.4 We show that the integration of the probabilistic structure in the IC models
is helpful in getting results rivalling the state-of-the-art IC models, but it is
not enough to outperform the state of the art by itself [59, table 4]. Thus,
our hypothesis 3 is not positively confirmed. However, we expect that the
encoding of the structure axioms into the IC models contributes to a better
understanding of the problem, as well as the start of a line of research into
conditional probability estimation.

2.5 On the other hand, the results of the CondProbCosine and CondProbLogistic
model confirm that the encoding of cognitive similarity notions within the IC
models and measures is a line of research that is worth exploring [59, fig. 2].
However, our hypothesis 4 is not positively confirmed.

2.6 We show that there is no a statiscally significant difference between most
intrinsic IC models and IC-based similarity measures and the baselines of the
experiments [59, figs. 2-3].

2.7 Despite the IC model introduced by Seco et al. [134] obtaining the highest
overall average correlation values [59, table 5], the statistical evidence shows
that the IC model introduced by Sánchez and Batet [128] obtains a significant
statistical outperformance over the baseline and the rest of the IC models [59,
fig. 2], this latter model being the IC model that best generalizes any IC-based
similarity measure. The Sánchez and Batet [128] IC model is the only capable
of statistically outperforming the corpus-based IC model defined as baseline
[59, fig. 2].

2.8 We show that our cosJ&C semantic similarity measure introduced in [60]
obtains the best overall results [59, table 6], obtaining a statistically significant
outperformance over the rest of the IC models and measures in comparison
with the baseline [59, fig. 3]. However, a more in-depth confidence interval
analysis between the similarity measures introduced by Pirró and Euzenat
[115] (FaITH), Meng and Gu [89] and Lastra-Díaz and García-Serrano [60]
(cosJ&C) confirms that there is no a statistically significant difference between
them.

2.9 The lack of a statistically significant difference between most intrinsic IC mod-
els and the corpus-based IC modelResnikic−treebank−add1 defined as the baseline
[59, fig. 2] allows the following conclusions to be extracted: (1) this fact refutes
a previous belief about the outperformance of the intrinsic IC models over the
corpus-based ones, confirming the same finding in our aforementioned work
[60], and (2) this fact confirms the achievements of the family of intrinsic IC
models, which offers a practical alternative to the corpus-based models without
a significant reduction in performance.

2.10 Among the set of rivaling state-of-the-art intrinsic IC models we have those
introduced by Seco et al. [134], Yuan et al. [144], Meng et al. [90], Sánchez
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and Batet [128], Sánchez et al. [129], Harispe et al. [48], CondProbCosine,
CondProbHypo, and CondProbLeaves [59, fig. 2].

2.11 The statistical significance of the results confirms that most of the IC models
offer similar results, and the problem is still open [59, fig. 2].

The main conclusions derived from the research introduced by Lastra-Díaz and
García-Serrano [61] are as follows:

3.1 We introduce a refinement of our recent family of well-founded Information
Content models introduced in [59], eight new intrinsic IC models and one new
corpus-based IC model [61, section 4] together with a very detailed experi-
mental survey into WordNet based on our software implementation of most
methods reported in the literature [61, section 5-6].

3.2 We show that the proposed refinement improves the performance of our fam-
ily of well-founded IC models, and six of our new IC models obtain rivaling
results as regard the state-of-the-art intrinsic IC models [61, table 10], making
the new CondProbRefHyponyms and CondProbRefCosine IC models our best
performing IC models.

3.3 We show that most refined IC models proposed in [61, section 4] outperform
in a statistically significant manner their non-refined counterpart IC models.
Thus, our hypothesis 5 is positively confirmed. Looking at table 13 in [61],
we see that the new IC models CondProbRefUniform, CondProbRefLeaves,
CondProbRefCosine and CondProbRefCorpus, obtain a statistically signific-
ant higher average Spearman correlation than their corresponding non-refined
IC models CondProbUniform, CondProbLeaves, CondProbCosine and Cond-
ProbCorpus. However, the CondProbRefHyponyms and CondProbRefLogistic
IC models are not able to obtain a statistically significant higher performance
than their corresponding models CondProbHyponyms and CondProbLogistic.

3.4 The intrinsic IC models introduced by Sánchez et al. [129] and Seco et al. [134]
set the state of the art for the family of intrinsic IC models in a statistically
significant manner in conbination with our coswJ&C similarity measure pro-
posed in [60] and those introduced by Zhou et al. [147] (see tables 12 and 14
[61]).

3.5 The intrinsic IC models introduced by Seco et al. [134], Sánchez et al. [129] and
Yuan et al. [144] are the only ones that statistically outperfom the best per-
forming corpus-based IC model used as baseline (see table 10 and first column
in table 13 [61]). However, we show that there is no statistically significant
difference between most intrinsic IC models and the corpus-based Resnik IC
model defined as baseline (see first column in table 13 [61]). Therefore, the
aforementioned set of intrinsic IC models can be considered as a practical al-
ternative to the corpus-based ones, and they should be selected in accordance
with the IC-based similarity measure used.
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3.6 The detailed experiment survey carried-out herein allows a very significant
conclusion to be drawn: despite the research effort made during the last dec-
ade, the IC model introduced by Seco et al. [134] is still, on average, the state
of the art (see first row in table 10 [61]).

3.7 The new state-of-the-art in intrinsic IC models and intrinsic IC-based simil-
arity measures is set out in a statistically significant manner by the Sánchez
et al. [129] IC model in combination with our coswJ&C similarity measure
[60], and the Seco et al. [134] IC model in combination with the Zhou et al.
[147] similarity measure (see first two rows in table 12 and table 14 [61]). The
statistical significance of data is based on the Spearman correlation metric, and
this latter conclusion allows our hypothesis 1, as well as the conclusions intro-
duced by Lastra-Díaz and García-Serrano [60] as regards our novel family of
IC-based similarity measures, to be positively confirmed in a more conclusive
manner.

3.8 The set of classic IC-based similarity measures, defined by the Resnik, Lin
and Jiang-Conrath measures, have also been definitively outperformed in a
statistically significant manner by a small set of IC-based similarity measures
developed during the last decade, among which we find the similarity measures
introduced by Zhou et al. [147] and our coswJ&C similarity measure intro-
duced in [60] (see table 12 and the columns corresponding to the Resnik, Lin
and Jiang-Conrath measures in table 14 [61]).

3.9 In addition, the classic Jiang-Conrath similarity measure and its two monotone
transformations, our cosJ&C measure and the similarity measure introduced
by Garla and Brandt [42], statistically outperform the Resnik and Lin simil-
arity measures, whilst our cosJ&C similarity measure obtains a statistically
significant higher average Pearson correlation value than the J&C similarity
measure (see table 12 in [61] and figure 2 in [59]). However, we show that there
is no a statistically significant difference between the two aforementioned pairs
of outperforming IC-based similarity measures [61, table 14].

3.10 Despite our coswJ&C similarity measure and the Zhou et al. [147] measure
setting the state of the art of the problem, their computational cost prevent
their practical use in comparison with other measures [61, table 9], such as
our cosJ&C similarity measure [60] and the Hadj Taieb et al. [45] measure.
However, there is no a statiscally significant difference between the two latter
aforementioned measures [61, table 14]. Thus, the cosJ&C and Hadj Taieb
et al. [45] measures are, statistically speaking, the best option from the afore-
mentioned set of similarity measures with a practical computational cost.

3.11 We show that the state of the art in the family of ontology-based similarity
measures and concept similarity models is led by the family of IC-based meas-
ures, more specifically by our coswJ&C similarity measure and the Zhou et al.
[147] measure, both derived from the Jiang-Conrath similarity measure.

3.12 Finally, we have made another significant finding. Contrary to the common
belief among the research community, only a small set of state-of-the-art hy-
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brid IC-based similarity measures derived from the J&C measure obtain a
statistically significant higher average Spearman correlation value than the
family of path-based similarity measures (see columns corresponding to the
path-based measures in table 14 [61]), a fact that explains some unexpected
results in applications based on similarity measures reported in the literature,
such as that reported by Alonso and Contreras [4, section 8].

The main conclusions derived from the research introduced by Lastra-Díaz et al.
[68] are as follows:

4.1 We introduce a new and linearly scalable representation model for large tax-
onomies, called PosetHERep, and the HESML V1R2 [63] semantic measures
library based on the former [68, section 3].

4.2 Most HESML V1R2 algorithms exhibit linear complexity (see tables 20 and 21,
and figure 3 [68]), thus they are linearly scalable as predicted by our theoretical
analysis.

4.3 We show in a statistically significant manner that HESML V1R2 is the most
effi cient and scalable publicly available software library of ontology-based sim-
ilarity measures and intrinsic IC models based on WordNet, outperforming
SML [48] and WNetSS [13] by several orders of magnitude in most bench-
marks (see tables 19 to 21 and figure 3 [68]).

4.4 There is no a statistically significant difference in the performance of HESML
and SML in the evaluation of a classic IC-based similarity measure based on
WordNet (see p-value in table 19 [68]), unlike the evaluation of any path-based
semantic similarity measure in which HESML is much more effi cient (see last
two columns in table 20 and figure 3.i [68]).

4.5 The performance of SML in the evaluation of path-based semantic similarity
prevents its usage in the evaluation of this type of measures on large taxonom-
ies as WordNet (see average running times for medium-size taxonomies in last
column of table 20 [68]).

4.6 We show that PosetHERep and HESML, conversely to common belief, are able
to improve the performance and scalability of the state-of-the-art semantic
measures libraries significantly without caching using a proper intrinsic rep-
resentation model for taxonomies. HESML significantly outperforms SML in
those methods in which SML uses caching, such as the retrieval of the LCA
[68, fig. 3.f] and MICA vertexes [68, fig. 3.g], and the set of subsumed leaves
of a vertex [68, fig. 3.h].

4.7 The performance of WNetSS is more than three orders of magnitude lower
than HESML and SML because of its caching strategy based on a relational
database [68, table 19].

4.8 The overall outperformance of HESML on SML proves our main hypothesis
6 and answers our two main research questions 1 and 2 positively. Thus, our
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results allow the following conclusions to be drawn: (1) a new intrinsic repres-
entation model for taxonomies like that proposed by PosetHERep is able to
improve the performance and scalability of the state-of-the-art semantic meas-
ures libraries significantly; and (2) it is possible to improve the performance
and scalability of the state-of-the-art semantic measures libraries significantly
without using any caching strategy by using the PosetHERep model.

4.9 We introduce a set of reproducible experiments based on ReproZip [68, sec-
tion 4], publicly available at [67], and HESML, which allow our experimental
surveys introduced in [60, 59, 61] to be reproduced exactly.

4.10 We introduce, for the first time, a replication framework and dataset called
WNSimRep v1 [68, section 5] which is publicly available at [66].

4.11 We introduce, for the first time, a benchmark of semantic measures librar-
ies, publicly available at [64], which allows the benchmark introduced by [68,
section 6] to be reproduced exactly.

Finally, table 4.1 shows a summary on the confirmation of the main hypotheses
and research questions studied by this thesis.

4.2 Future work

As forthcoming activities, we plan to continue our work in three complementary
directions as follows:

1. Functional extension of our HESML software library. We plan to extend
HESML in order to support Wikidata [141] and non “is-a” relationships in
the short term, whilst in the mid term, we expect to support the Gene On-
tology (GO), MeSH and SNOMED-CT ontologies. In addition, we plan to
include further ontology-based similarity measures and IC models reported in
the literature, as well as the possibility of importing word embedding files with
the aim of allowing the experimental comparison of state-of-the-art ontology-
based and corpus-based similarity measures and methods. Finally, we plan
to extend HESML in the mid- and long-term with the aim of exploring its
scalability and performance in graph mining of very large graphs (billions of
nodes) based on a single computer. Our current intuition is that an extended
version of HESML for general graphs could be able to compete with state-of-
the-art centralized graph mining libraries such as GraphChi [56], TurboGraph
[47] and MMAP [79], as well as other distributed graph mining libraries such
as PREGEL [81] which are evaluated by Batarfi et al. [8].

2. Evaluation of our ontology-based IR models introduced in [58] and disclosed in
[65]. As we mentioned in section 2.5, we decided to suspend this line of research
because of the well-known lack of well-defined datasets and benchmarks for the
evaluation of ontology-based information retrieval models, as well as the huge
diffi culties for their construction. However, two recent works on text document
similarity introduced by Benedetti et al. [14] and Ni et al. [101] have used
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Id Hypothesis Results
H1 A new semantic distance defined as the length of the shortest path

between concepts in a weighted taxonomy whose edge weights are set to
the IC value of the conditional probability between its child and parent
concepts, or the difference in absolute value of their IC values, could im-
prove the estimation of the human similarity judgements between words
and concepts obtained by the current state-of-the-art similarity meas-
ures.

Positively
confirmed

H2 A new semantic similarity measure defined as a proper non-linear nor-
malization of the classic Jiang-Conrath distance, or our new weighted
Jiang-Conrath distance, could improve the estimation of the human sim-
ilarity judgements between words and concepts obtained by their non-
normalized versions.

Positively
confirmed

H3 A new family of intrinsic and corpus-based IC models based on the
explicit encoding of the structure axioms derived from the conditional
probabilities could improve the performance obtained by current state-
of-the-art IC models in semantic similarity tasks, especially to provide
a better understanding of the problem.

Rivaling
results, not
confirmed

H4 A new family of intrinsic and corpus-based IC models based on the
explicit encoding of a non-linear cognitive distance between parent and
child concepts could improve the performance obtained by current state-
of-the-art IC models in semantic similarity tasks.

Rivaling
results, not
confirmed

H5 The solution to the two aforementioned structural drawbacks of the
main computation algorithm of our family of well-founded IC models
could lead us to an improvement in their performance, in addition to
fixing an algebraic inconsistency that moves the family of well-founded
IC models away from their original design principles.

Positively
confirmed

H6 A new representation model for taxonomies which properly encodes their
intrinsic structure, together with a new software library based on it,
should bridge the aforementioned gap of scalability and performance of
the current state-of-the-art semantic measures libraries.

Positively
confirmed

Q1 Is a new intrinsic representation model for taxonomies able to improve
the scalability and performance of the current state-of-the-art semantic
measures libraries significantly?

Positively
answered

Q2 Is it possible to improve the scalability and performance of the state-of-
the-art semantic measures libraries without using any caching strategy
significantly?

Positively
answered

H7 A novel ontology-based IR model which preserves all semantic and geo-
metric structures intrinsically encoded by the base ontology used to in-
dex the information could improve the performance of the state-of-the-
art IR models in terms of document ranking, precision and recall.

Not
answered

Table 4.1: Results obtained for the main hypotheses and research questions studied
by this thesis.
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the LP50 dataset in the evaluation of their methods. The LP50 dataset is
introduced by Lee et al. [72], and it is made up of 50 text documents together
with all the human similarity judgements between each pair of documents
which allows standard Pearson and Spearman correlation metrics to be used
to evaluate the quality of the document similarity measures proposed. Thus,
we think that this well-defined document similarity task could be used in
order to evaluate our ontology-based IR models, instead of other classic IR
tasks based in queries and sets of relevant documents, such as those proposed
at TREC conferences.

3. Exploration of different applications in genomics. Mazandu et al. [88] in-
troduce a recent survey on the family of ontology-based semantic similarity
measures based on Gene Ontology (GO) [6] and its multiple applications in
genomics. Thus, we plan to explore this line of research in the long term, once
HESML supports the GO ontology.
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Chapter 5

Scientific contributions

This chapter sets out all contributions derived directly from this thesis, which are
divided into five types as follows: (1) peer-reviewed articles, (2) technical reports,
(3) patent applications, (4) software libraries and (5) replication datasets and bench-
marks.

5.1 Peer-reviewed articles

1. Lastra-Díaz, J. J., & García-Serrano, A. (2015). A novel family of IC-based
similarity measures with a detailed experimental survey on WordNet. Engin-
eering Applications of Artificial Intelligence Journal, 46, 140—153.
http://dx.doi.org/10.1016/j.engappai.2015.09.006

2. Lastra-Díaz, J. J., & García-Serrano, A. (2015). A new family of information
content models with an experimental survey on WordNet. Knowledge-Based
Systems, 89, 509—526.
http://dx.doi.org/10.1016/j.knosys.2015.08.019

3. Lastra-Díaz, J. J., García-Serrano, A., Batet, M., Fernández, M., & Chirigati,
F. (2017). HESML: a scalable ontology-based semantic similarity measures
library with a set of reproducible experiments and a replication dataset. In-
formation Systems, 66, 97—118.
http://dx.doi.org/10.1016/j.is.2017.02.002

5.2 Technical reports

1. Lastra-Díaz, J. J., & García-Serrano, A. (2016). A refinement of the well-
founded Information Content models with a very detailed experimental sur-
vey on WordNet (No. TR-2016-01). NLP and IR Research Group. ETSI
Informática. Universidad Nacional de Educación a Distancia (UNED).
[61]
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5.3 Patent applications

1. Lastra Díaz, J. J., & García Serrano, A. (2016). System and method for
the indexing and retrieval of semantically annotated data using an ontology-
based information retrieval model. United States Patent and Trademark Offi ce
(USPTO) Application, US2016/0179945 A1.

5.4 Software libraries

1. Lastra-Díaz, J. J., & García-Serrano, A. (2016). HESML V1R2 Java software
library of ontology-based semantic similarity measures and information content
models. Mendeley Data, v2.
http://dx.doi.org/10.17632/t87s78dg78.2

2. Lastra-Díaz, J. J., & García-Serrano, A. (2016). HESML V1R1 Java software
library of ontology-based semantic similarity measures and information content
models. Mendeley Data v1.
http://dx.doi.org/10.17632/t87s78dg78.1

5.5 Replication datasets and benchmarks

1. Lastra-Díaz, J. J., & García-Serrano, A. (2016). WNSimRep: a framework
and replication dataset for ontology-based semantic similarity measures and
information content models. Mendeley Data v1.
http://dx.doi.org/10.17632/mpr2m8pycs.1

2. Lastra-Díaz, J. J., & García-Serrano, A. (2016). WordNet-based word similar-
ity reproducible experiments based on HESML V1R1 and ReproZip. Mendeley
Data, v1.
http://dx.doi.org/10.17632/65pxgskhz9.1

3. Lastra-Díaz, J. J., & García-Serrano, A. (2016, November). HESML_vs_SML:
scalability and performance benchmarks between the HESML V1R2 and SML
0.9 sematic measures libraries. Mendeley Data, v1.
http://dx.doi.org/10.17632/5hg3z85wf4.1

http://dx.doi.org/10.17632/t87s78dg78.2
http://dx.doi.org/10.17632/t87s78dg78.1
http://dx.doi.org/10.17632/mpr2m8pycs.1
http://dx.doi.org/10.17632/65pxgskhz9.1
http://dx.doi.org/10.17632/5hg3z85wf4.1


Chapter 6

Impact factor of the publications

Table 6.1 shows the JCR quartile and 2-year Impact Factor (IF) of our three main
publications corresponding to the JCR-2015 and JCR-2016 rankings, as shown in
figures 6.1 and 6.2 respectively.
The JCR-2016 ranking has been recently published by Thomson at Web of Sci-

ence (WoS) InCites portal; however, it was not available in the Web of Knowledge
(WoK) JCR analytics tool in the time of preparation of this manuscript.

2-year IF
Reference Journal 2015 2016 Quartile
Lastra-Díaz and
García-Serrano
[60]

Engineering Applications of
Artificial Intelligence

2.368 2.894 Q1

Lastra-Díaz and
García-Serrano
[59]

Knowledge-Based Systems 3.325 4.529 Q1

Lastra-Díaz et al.
[68]

Information Systems 1.832 2.777 Q1

Overall Impact Factor 7.525 10.2

Table 6.1: 2-year JCR impact factors of the three main publications derived from
this thesis. All of the above journals are edited by Elsevier.
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Figure 6.1: JCR-2015 Impact Factor and Quartile of our three main publications
(source: WoK-FECYT)

Figure 6.2: JCR-2016 impact factor of our three main publications (source: WoS
InCites)
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This paper introduces a novel family of ontology-based similarity measures based on the Information
Content (IC) theory, a detailed state of the art, a large experimental survey into ontology-based similarity
measures on WordNet, and a new comparison between intrinsic and corpus-based IC models. Our
experiments are based on our implementation of a large set of similarity measures, intrinsic and corpus-
based IC models, which are evaluated on two known datasets and three different WordNet versions. The
new measures are called weighted Jiang–Conrath distance (wJ&Cdist) and similarity (wJ&Csim), cosine-
normalized Jiang–Conrath similarity (cosJ&Csim) and cosine-normalized weighted Jiang–Conrath similarity
(coswJ&Csim). Two of our similarity measures outperform the state-of-the-art measures on the RG65
dataset, and one of them obtains the third overall score on all the datasets and evaluated WordNet
versions. The cosine-normalized similarity measures are a non-linear normalization of the classic Jiang–
Conrath (J&C) distance and the new wJ&C distance. On the other hand, the wJ&C distance is a general-
ization of the classic J&C distance which is based on the length of the shortest path between concepts
within an IC-based weighted graph. Our measures are based on two not previously considered notions:
(1) a generalization of the classic J&C distance to any type of taxonomy, based on an IC-based weighted
graph derived from the conditional probabilities between child and parent concepts, and (2) a non-linear
normalization function that converts the ontology-based semantic distances into similarity functions.
Finally, the corpus-based IC models based on the Resnik method obtain rivaling results as regards the
state-of-the-art intrinsic IC models, when they are used with some unexplored WordNet-based fre-
quency files. Therefore, this latter fact allows us to reconsider some previous conclusions about the
outperformance of the intrinsic IC models over the corpus-based ones.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction and positioning

The ontology-based similarity measures have found many
applications in natural language processing (NLP), information
retrieval (IR), and bioengineering. For example, in IR the aim is to
retrieve resources that are semantically related to a user query
both defined as concept sets. In this context, the word-to-word
similarity measures can be extended to compute the distance
between bags of concepts, or weighted concepts and individuals,
thus, they are a key component in estimating the closeness
between a user query and the relevant info to be retrieved. This
approach is followed in Lastra-Díaz (2014), where we introduce a
novel ontology-based IR model called Intrinsic Ontological Spaces,
which is based on a metric space defined by the wJ&Cdistance
íaz),
introduced herein and disclosed in Lastra-Díaz and García-Serrano
(2014). In Chan et al. (2011), the authors introduce a concept-
based IR model for biomedical documents based on an ontology-
based vector model, in which the document weights are computed
using a non-linear function of a truncated version of the length of
the shortest path between concepts. Next, we describe other
applications of the ontology-based similarity measures. In Sánchez
et al. (2015), the authors introduce the notion of semantic variance
(SV) as a means of evaluating the quality of any ontology, which is
defined as the variance of the semantic distance function, as
defined in Batet et al. (2011), between each concept and the root.
In Yan et al. (2014), the authors introduce an ontology-based
inventive problem solving method which is based on a short-text
similarity measure derived from the measure in Lin (1998). In
Patwardhan et al. (2003), the authors introduce a word sense
disambiguation (WSD) method based on the distributional
hypothesis and the use of ontology-based similarity measures to
select the closest evocated concept between a disambiguated
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word and its neighboring words. In Mihalcea et al. (2006), the
authors propose a text similarity measure based on the combi-
nation of an IDF weighting scheme with any ontology-based
similarity measure, which is evaluated in a paraphrase detection
(PD) task. In Cross and Hu (2011), the authors review the use of
semantic similarity measures on the ontology alignment (OA)
problem and introduce a semantic alignment quality measure
based on the difference between the similarity measure between
the concepts in the base ontology and their image in the target
ontology. In Fiorini et al. (2015), the authors propose a semantic
indexing method for biomedical documents based on similarity
measures. In Couto and Pinto (2013) and Pesquita et al. (2009), the
authors survey other applications of ontology-based similarity
measures in bioengineering, such as the prediction of protein
functions.

A semantic similarity measure is a binary function that given
two input words computes their degree of similarity as perceived
by a human being. Unlike the semantic relatedness between
words, which includes other semantic co-occurrence relationships
such as “part-of” or selectional preferences, the similarity mea-
sures are constrained to “is-a” relationships. The similarity mea-
sures can be roughly categorized into two families: ontology-based
and corpus-based. An ontology-based semantic similarity measure
is a binary function sim : C � C-R that approximates as much as
possible the degree of similarity as perceived by a human being. In
the latter expression, C is a concept set belonging to a taxonomy
C¼ C; rC ;Γð Þ, which is defined by a partially ordered set C; rCð Þ
and an overall supreme element ΓAC called the root. A word is
represented by a set of concepts within a base ontology, and the
similarity between words is defined as the highest similarity value
of the Cartesian product between both concept sets. On the other
hand, most of corpus-based similarity measures are based on the
distributional hypothesis Harris (1981), which states that words in
similar contexts tend to share similar meanings. Most of dis-
tributional measures define the word meanings as a function of
their context and the type of co-occurrence relationships that
needs to be captured. For example, the word contexts could be
small n-gram windows, or larger contexts such as sentences,
paragraphs or documents. Despite there being different methods
to represent the word meanings (contexts), such as sets, vectors,
probability distributions, and graph nodes, the most popular
representations rely on vector space models (VSM) (Turney and
Pantel, 2010, Section 2.2). For example, in Gabrilovich and Mar-
kovitch (2007) the authors introduce a semantic relatedness
method to compute word and document similarity, called ESA,
which represents the meaning of a word or text as a weighted
vector of Wikipedia concepts (articles), whose weights are defined
by the cosine score between the input text vector and each
Wikipedia base vector.

1.1. Ontology-based similarity measures versus corpus-based

The main advantage of the ontology-based measures is that the
logic relationships between concepts, especially the “is-a” rela-
tionships, are hand-coded within the ontologies. A second
advantage of these measures is that they are defined by closed
formulas that only require a taxonomy to be evaluated. Therefore,
they can be easily implemented, although their computational cost
depends on the size of the ontology and the complexity of the
required algorithms. In contrast, a serious drawback of the
ontology-based measures in open domain applications, like the
Web, is their limited lexical coverage, and the cost of creating and
updating wide coverage ontologies. On the other hand, the corpus-
based measures mainly rely on the distributional hypothesis, and
compute the degree of similarity using an indirect approach that
relies on the statistical co-occurrence between word contexts. In
addition to the “is-a” relationships, co-occurring words can encode
other types of semantic relationships. Therefore, the corpus-based
measures “can confuse similarity with relatedness” (Li et al., 2015,
Section1). Moreover, “it is commonly considered that distribu-
tional measures can only be used to capture semantic relatedness”
(Harispe et al., 2015, Section 2.5.2) and ”they have traditionally
performed poorly when compared to WordNet-based measures”
(Mohammad and Hirst, 2012, p1) in the similarity assessment task.
Another drawback of the corpus-based measures is that they are
commonly based on a pipeline of NLP and IR algorithms. According
to the complexity of the measure, it could require syntactic pattern
extraction, POS tagging, WSD and further methods, as well as
external services and resources, leading them to a high compu-
tational cost and replication complexity. In addition, the corpus-
based measures exhibit the classic problems related to the corpus
statistics, such as the difficulty in obtaining a well-balanced corpus
for all words and their senses. On the other hand, the main
advantage of the corpus-based measures is that they offer a
broader lexical coverage. In summary, the ontology-based simi-
larity measures are efficient, robust and easy to implement, whilst
the corpus-based measures offer a broader lexical coverage.

The mainstream of the research in corpus-based similarity
measures is the proposal for hybrid concept-based distributional
measures, which integrate KBs or explicit “is-a” semantic net-
works to bridge the lack of well-defined semantic knowledge. For
example, in Patwardhan and Pedersen (2006) the authors intro-
duce a similarity and relatedness measure which relies on the
gloss vector overlapping between the extended WordNet gloss
vectors of two input concepts. In Mohammad and Hirst (2006) the
authors propose a hybrid distributional measure which relies on
the cosine function and the concept-based conditional prob-
abilities for the words derived from the Roget's thesaurus. In
Alvarez and Lim (2007), the authors introduce another hybrid
distributional similarity measure that relies on the product of two
taxonomical WordNet-based functions with a gloss overlapping
factor, which are defined on a WordNet subgraph that includes “is-
a” and “part-of” relationships. Finally, in Li et al. (2013) and Li et al.
(2015), the authors introduce a hybrid distributional measure
whose core idea is that the similarity computation relies on truly
“is-a” relationships, unlike traditional corpus-based measures. The
Li et al. (2015) measure is based on a general-purpose “is-a”
semantic network derived from a large web-based corpus. The
semantic network is defined by a set of triplets
c; e; P ej cð Þ; P cjeð Þð Þð Þ, where c is a hypernym of e. The words are
categorized as concepts or entities depending on their hypernym
hyponym ratio. The context of the concepts is defined as a vector
whose weights are the conditional probabilities P ej cð Þ of their
subsumed entities, whilst the entity vectors are defined in the
opposite way. The similarity is defined as the cosine function
between concept vectors, or entity vectors. The underlying idea of
the Li et al. method is to use the overlap between the extension
sets (subsumed entities) of the concepts as an estimation of their
similarity.

1.2. Focusing on ontology-based similarity measures

The recent progress in concept-based distributional measures
has proven that this approach offers a good tradeoff between
precision and lexical coverage, especially for general-purpose
domains such as the Web. However, these measures require the
semantic annotation of a large corpus with a good coverage of all
the concepts required, which is not always possible. In addition,
some of these large corpuses could be not publicly available. On
the other hand, we prove herein that the ontology-based similarity
measures even exhibit some margin of improvement with a low
computational cost that deserves to be studied. In addition, there
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are some specialized applications, like the protein function pre-
diction problem in bioengineering, in which it is essential to
provide precise conceptual models which cannot easily be
extracted from a large corpus, or it is not a practical solution in
these fields. Finally, both lines of research are complementary and
closely related, and they can mutually benefit from their respective
advances. For example, the semantic network used in Li et al.
(2015) could use any WordNet-based ontology-based similarity
measure if its concepts were mapped onto synsets. For these
reasons, we focus our research effort herein on the proposal of
new ontology-based similarity measures, more specifically those
in the family of IC-based measures.

The taxonomy-based similarity estimation is a very old pro-
blem, which has been researched since the nineteen seventies in
different fields, ranging from cognitive psychology Tversky (1977),
to information retrieval Rada et al. (1989). Most of works cate-
gorize the different ontology-based semantic measures into three
families, although there are also hybrid approaches. The main
families of ontology-based similarity measures are as follows: (1)
edge-counting measures, whose pioneering work has been
carried-out by Rada et al. (1989), (2) IC-based measures, whose
main references are the classic works of Resnik (1995), Jiang and
Conrath (1997) and Lin (1998), (3) the feature-based measures,
whose pioneering work has been carried-out by Tversky (1977),
Sánchez et al. (2012) being the most recent, and (4) other intrinsic
measures, such as Li et al. (2003) and Hadj Taieb et al. (2014b).

The development of novel intrinsic IC-based similarity mea-
sures is divided into two sub-problems: (1) the proposal of new
IC-based similarity measures, as in our work, and (2) the devel-
opment of new intrinsic IC models. The main drawbacks of the
corpus-based IC models are the difficulty in getting a well-
balanced and disambiguated corpus, the strong dependence on
the training corpus, and the effort required for building the corpus
and estimating the IC models. This fact has given rise to the
development of the family of intrinsic IC models pioneered in the
work of Seco et al. (2004), whose core idea is the computation of
IC values using only the information encoded in the same
ontology.

The state of the art in ontology-based semantic similarities and
distances is currently defined by the intrinsic IC-based measures,
which are defined by the combination of one intrinsic IC model
with any IC-based measure. This statement is endorsed by several
WordNet-based benchmarks reported in the literature, such as
Budanitsky and Hirst (2006), Sánchez et al. (2011), Pirró (2009,
fig.10), Hadj Taieb et al. (2014b) and the results reported herein. In
a work in the field of bioengineering by Garla and Brandt (2012),
the authors also prove experimentally that the intrinsic IC models
outperform the corpus-based ones. However, we prove herein that
the margin of performance between the intrinsic and corpus-
based IC models is much smaller than the research community
thought.

1.3. Main motivation

In Jiang and Conrath (1997), the authors prove that their
semantic distance is equivalent to the shortest path between
concepts over a weighted graph derived from the taxonomy, in
which the edge weights are the IC values of the conditional
probabilities between child and parent concepts. Nevertheless,
this relationship has not been explored before, as it is herein. One
drawback of the classic J&C distance, proven in Orum and Joslyn
(2009), is that it is only a metric on tree-like taxonomies. Our work
in Lastra-Díaz (2014) introduces a new ontology-based IR model
based on a semantic metric space, and encouraged by this
research, we introduce the weighted Jiang–Conrath distance which
bridges the gap related to the drawback of the aforementioned J&C
distance. On the other hand, we also observe an underlying
assumption in the literature as regards the conversion of any
ontology-based distance, such as the J&C distance, into a similarity
measure. In most cases, the J&C distance is converted into a
similarity function through a linear mapping, such as the simJ&C

function shown in Table 2, despite this relationship being
unknown and probably non-linear.

1.4. Definition of the problem and contributions

The main aim of this paper is to introduce a novel family of
ontology-based similarity measures based on the Information
Content theory to bridge the three gaps described in the paragraph
above. These measures are called the weighted Jiang–Conrath dis-
tance (wJ&Cdist), the weighted Jiang–Conrath similarity (wJ&Csim),
the cosine-normalized Jiang–Conrath similarity (cosJ&Csim) and the
cosine-normalized weighted Jiang–Conrath similarity (coswJ&Csim).
The new measures are based on a generalization of the Jiang–
Conrath distance to any type of taxonomy through a weighted
graph defined by the IC value of the edge-based conditional
probabilities, and a normalization function that defines a non-
linear mapping between the ontology-based semantic distances
and its similarity value. Our main hypothesis is that integration of
these two unexplored notions in the definition of the IC-based
measures should lead us to improving the performance of the
current IC-based similarity measures.

A second aim of this work is to reconsider some previous
conclusions on the outperformance of the intrinsic IC model over
the corpus-based ones, which rely on the results in Patwardhan
and Pedersen (2006), Pedersen (2010) and Pirró (2009). These
latter works are the primary sources that prove that the state-of-
the-art intrinsic IC models outperform the corpus-based ones in
the WordNet-based similarity tasks. The comparison and conclu-
sions in other subsequent works, such as Sánchez et al. (2012) and
Yuan et al. (2013), rely on these primary sources. However, the
outperformance of the intrinsic IC models on the corpus-based
models will be reconsidered in the light of the results obtained
herein. This research is encouraged by the recent outstanding
results of Gao et al. (2015), which question the conclusions of the
research community on the outperformance of the intrinsic IC
models over the corpus-based ones. The results reported by Gao
et al. for their new hybrid IC-based similarity measure are based
on a corpus-based IC model, which contradict to some degree our
intuition and the mainstream of research led by the intrinsic IC-
based similarity measures. This fact led us to the evaluation of all
the IC-based similarity measures with a family of corpus-based IC
models derived from some unexplored WordNet-based frequency
files in Pedersen (2008). We prove herein that these corpus-based
IC models obtain rivaling results as regards the state-of-the-art
intrinsic IC models. Therefore, this latter fact allows us to recon-
sider the previous conclusions on the outperformance of the
intrinsic IC models over the corpus-based ones. Despite the
intrinsic IC models slightly outperforming the corpus-based
models, we prove that the margin of performance between them
is much smaller than the research community first thought.

This work also has other significant aims as follows. First, we
carried-out a large and up-to-date experimental survey for most of
the similarity measures on WordNet, which is based on our own
implementation of most IC models and similarity measures
reported in the literature. Second, our experiments allow the
replication and validation of some previous approaches, as well as
warning about the irreproducibility of others. Third, we carried-
out an experimental study on the influence of the WordNet ver-
sion on the similarity measures. Fourth, we study the performance
of the similarity measures on two versions of the RG65 dataset, the
classic one and the recent replication carried-out in Pirró (2009).



Table 1
State-of-the-art non IC-based similarity measures evaluated in our experiments.

Measure Non IC-based similarity measures definition

Li et al. (2003) simLi_s3 c1; c2ð Þ ¼ e�αnlen , αn ¼ 0:25
Li et al. (2003) simLi_s4 c1; c2ð Þ ¼ e�αnlene

βnd�e�βnd

eβndþe�βnd
; αn ¼ 0:2 βn ¼ 0:6

d¼ depth LCA c1 ; c2ð Þð Þ

Sánchez et al. (2012) disS&B c1 ; c2ð Þ ¼ log 2 1þ jϕ c1ð Þ⧹ϕ c2ð Þj þ jϕ c2ð Þ⧹ϕ c1ð Þj
jϕ c1ð Þ⧹ϕ c2ð Þj þ jϕ c2ð Þ⧹ϕ c1ð Þj þ jϕ c1ð Þ \ ϕ c2ð Þj

� �
ϕðaÞ ¼ cAC∣arcf g

Hadj Taieb et al. (2014a, b) simTaieb_1 c1; c2ð Þ ¼ jTermDepth c1; c2ð Þj � TermHypo c1 ; c2ð Þ

TermDepth c1 ; c2ð Þ ¼ 2� depth c1; c2ð Þ
depth c1ð Þþdepth c2ð Þ

TermHypo c1 ; c2ð Þ ¼ 2� SpecHypo c1; c2ð Þ
SpecHypo c1; c2ð ÞþSpecHypo c1; c2ð Þ

SpecHypo c1; c2ð Þ ¼ 1� log HypoValueðcÞð Þ
log HypoValue rootð Þð Þ

HypoValueðcÞ ¼
X

c0 AHypoIncðcÞ
P depth c0ð Þð Þ

P depth c0ð Þð Þ ¼ j c0AC jdepth c0ð Þ ¼ depthðcÞ� �j
jC j

depthðcÞ ¼ length of the longest ascending pathc-root

HypoIncðcÞ ¼ c0AC j c0rc
� �

Hadj Taieb et al. (2014a, b) simTaieb_2 c1; c2ð Þ ¼ jTermDepth c1; c2ð Þ�Λ w1 ;w2ð Þj
� TermHypo c1; c2ð Þ

Λ w1 ;w2ð Þ ¼max jSynset w1ð Þj ; jSynset w2ð Þj� �
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Fifth, our experimental survey of intrinsic and corpus-based IC-
based similarity measures on WordNet is probably the most
complete and up to date, providing a broad view of the state of the
art of the problem. In our experiments, we evaluate and compare
17 similarity measures, 6 intrinsic IC models, 8 corpus-based IC
models, 3 WordNet versions, and two datasets with similarity
human judgments.

Despite our work belonging to the family of IC-based similarity
measures, the two weighted similarity measures can be categor-
ized in the subfamily of hybrid IC-based measures, whose main
feature is the integration within the IC-based models and the
measuring of features based on the length of the shortest path
between concepts. Among the works in this family of hybrid IC-
based measures we can cite the pioneering work of Li et al. (2003),
as well as the works of Zhou et al. (2008b), Meng et al. (2014),
Lastra-Díaz (2014) and Gao et al. (2015). In addition, our normal-
ized measures are closely related to the non-linear scaling of the
Lin similarity introduced in Meng and Gu (2012), although in our
case, the non-linear normalization is encouraged by the unknown
relationship between ontology-based distances and similarity
measures.

The cosJ&C and coswJ&C similarity measures outperform the
state-of-the-art measures on the RG65 dataset, while cosJ&C
obtains the third overall score in our experiments. The corpus-
based IC models derived from the classic Resnik method and the
Pedersen dataset obtain rivaling results as regards the state-of-
the-art intrinsic IC models. This latter fact allows us to review
some previous conclusions in the corpus-based versus intrinsic IC
models debate. According to our experimental results, the simi-
larity measures with the best overall performance are the mea-
sures proposed in Hadj Taieb et al. (2014b) and Meng and Gu
(2012), together with the cosJ&C and coswJ&C measures. It is
interesting to note that our measures and the measure proposed in
Meng and Gu (2012) are non-linear normalizations of the classic
Jiang–Conrath distance and the Lin similarity measure. Therefore,
we prove that a proper normalization of some classic IC-based
measures is enough to outperform the state-of-the-art methods at
a low computational cost. This last fact allows the use of any
hybrid IC-based measure to be refuted, because their performance
does not justify their high computational cost. We confirm that
there are no significant differences in the performance of the
similarity measures in different WordNet versions. Finally, this
work alerts us to the problem of the reproducibility of similarity
measures, a problem that is also highlighted in Fokkens et al.
(2013).

The rest of the paper is structured as follows. In Section 2, we
review the literature on ontology-based similarity measures and
Information Content models. Section 3 introduces the new family
of IC-based semantic measures. In Section 4, we describe the
evaluation methodology and the results obtained. Section 5 is
devoted to our discussion. Finally, we summarize our conclusions
and future work.
2. Ontology-based similarity measures and IC models

The literature on ontology-based semantic similarity measures
and distances is very extensive, thus, we only focus on the mea-
sures that are evaluated in this work. First, we review the non IC-
based similarity measures. Next, the rest of the section is devoted
to review the family of IC-based measures and models, in which
our work is framed. For a broader and recent survey on semantic
similarity measures, we refer the reader to the recent book of
Harispe et al. (2015). Further surveys can be found in Saruladha
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et al. (2010), and Sánchez et al. (2012), as well as other surveys
focused in bioengineering, such as Pesquita et al. (2009), Cross
et al. (2013), Gan et al. (2013), and Harispe et al. (2014).

Modern research in the area starts with the work in Rada et al.
(1989). In this work, the authors propose to use the length of the
shortest path between concepts as a measurement of distance.
Their work opens up the family of edge-counting semantic mea-
sures, and introduces the main hypothesis underlying all the
subsequent ontology-based semantic distances: the conceptual
distance as a metrics hypothesis. This hypothesis states, following
previous psychological studies, that the conceptual distance, or
similarity, between concepts in a semantic network, is propor-
tional to the length of the path that links them. The ideas of Rada
et al. are followed by other works, such as Wu and Palmer (1994),
Leacock and Chodorow (1998) and Hirst and St-Onge (1998),
which also propose similarity measures based on features derived
from the length of shortest path between concepts.

In Tversky (1977), the authors introduce the first feature-based
semantic similarity measure, which is defined by a weighted var-
iant for the complement of the symmetric difference between the
feature set of two concepts. With a perspective from set theory,
the meaning of the Tversky measure is clear and well-founded.
However, the feature sets associated to each concept cannot be
derived directly from an ontology, which is a serious drawback for
its practical implementation. With the aim of bridging the gap in
the Tversky measure, in Sánchez et al. (2012), the authors intro-
duce a feature-based dissimilarity measure shown in Table 1,
which is based on the use of the common ancestors between
concepts as a measure of their degree of similarity. The core idea
behind the Sánchez et al. measure is that the ratio of overlap
between common ancestors could be interpreted as an estimation
of the ratio of common features between concepts, according to
the Tversky model.

In Hadj Taieb et al. (2014b), the authors introduce two simi-
larity measures as shown in Table 1. Although these measures are
not based on an IC model, they are inspired and closely related to
Table 2
State-of-the-art IC-based similarity measures evaluated herein.

Measure IC-based similarity mea

Resnik (1995) simResnik c1 ; c2ð Þ ¼ IC MICð
J&C (1997) dJ&C c1; c2ð Þ ¼ IC c1ð Þþ ICð

simJ&C c1 ; c2ð Þ ¼ 1�1
2dJ&C

Lin (1998)
simLin c1 ; c2ð Þ ¼ 2IC MICAð

IC c1ð Þþ
Li et al. (2003) simLi_s9 c1; c2ð Þ ¼ simLi_s4ð

IC ¼MICA c1; c2ð Þ; see

in Table 1
Zhou et al. (2008a, b)

simZh c1 ; c2ð Þ ¼ 1�kn
lo

0BB@
P&S (2008)

simP&S c1 ; c2ð Þ ¼
3IC Mð
� IC cð
1

8><>:
Meng and Gu (2012) simMeng c1 ; c2ð Þ ¼ esimLin c1ð

Meng et al. (2014)

simMeng2014 c1; c2ð Þ ¼ sim
Gao et al. (2015) simGao c1 ; c2ð Þ ¼ e�αL c1 ;c2ð

L c1 ; c2ð Þ ¼wt c1 ; c2ð Þnlen

wt ¼
1þ IC MICA c1ðð
IC MICA c1 ; cðð

�
2β

8><>:
the Seco et al. IC model. The core idea behind their approach is a
new method of evaluating the contribution of the hyponym set of
each concept to the similarity function, which relies on the use of
the depth distribution on the taxonomy as a measure of the con-
cept probabilities.

2.1. Similarity measures based on information content

The main drawback of the measures in the edge-counting
family, called the uniform weighting premise, is that they impli-
citly assume that every edge has the same relevance in the com-
putation of the overall length of the path, without considering its
depth or probability of occurrence. With the aim of bridging this
gap, Resnik introduces a new semantic similarity based on an
Information Content (IC) model in his pioneering work Resnik
(1995). The basic hypothesis behind all the IC-based similarity
measures is that the more abstract concepts should have a lower
information content than the more specific ones, and the higher
the conditional probability between any concept and its parent,
the shorter its distance. The IC measure for every concept ciAC is
the negative logarithm of its occurrence probability p cið Þ, as
defined in Eq. (1). Resnik defines the similarity measure between
two concepts as the IC value of the most informative common
ancestor (MICA), as shown in Table 2.

IC cið Þ ¼ � log 2 p cið Þð Þ ð1Þ
One drawback of the Resnik similarity measure is that it only
considers the IC value of the lowest ancestor concept, not the
information along the path between concepts. With the aim of
bridging this gap, in Jiang and Conrath (1997) the authors intro-
duce the IC-based semantic distance shown in Table 2, whilst Lin
introduces in Lin (1998) the similarity measure shown in same
table. The J&C distance considers the two paths linking the eval-
uated concepts with their lowest common ancestor, and its defi-
nition is closely related to the metrics on lattices. In Orum and
Joslyn (2009) the authors have proven that the J&C distance is only
sures definition

A c1 ; c2ð ÞÞ
c2Þ�2IC MICA c1; c2ð Þð Þ
c1 ; c2ð Þ
c1; c2ð ÞÞ
IC c2ð Þ
c1; c2Þn

eλnIC �e� λnIC

eλnIC þe� λnIC ; λ
n ¼ 0:4

simLi_s4

log len c1 ; c2ð Þþ1ð Þ
g 2nmax

cAT
depthðcÞ� ��1

� �
1CCA�1

2 1�kð ÞdJ&C c1 ; c2ð Þ kn ¼ 1
2 by default

ICA c1 ; c2ð ÞÞ
1Þ� IC c2ð Þ if c1ac2

if c1 ¼ c2
;c2 Þ �1¼ e2IC MICA c1 ;c2ð Þð Þ=IC c1ð Þþ IC c2ð Þ �1

Lin c1; c2ð Þ
1�e�knlen c1 ;c2ð Þ

e�knlen c1 ;c2ð Þ

� �
, kn ¼ 0:08

Þ ; αn ¼ 0:15 and βn ¼ 2:05
c1; c2ð Þ
; c2ÞÞ
2ÞÞ

�β

; IC MICA c1 ; c2ð Þð ÞZ1

;14 IC MICA c1; c2ð Þð ÞZ0
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a metric on tree-like taxonomies, gap that is bridged by the new
measure called the weighted Jiang–Conrath distance (wJ&Cdist).

In Li et al. (2003), the authors introduce a family of ten different
parametric similarity measures whose core idea is the breaking
down of the overall similarity function into a combination of
functions, where each base function relies on a different tax-
onomical feature. The taxonomical features used are the length of
the shortest path between concepts, the depth of the lowest
common ancestor, and the IC value of the MICA concept, as
defined by Resnik. The IC-based measures introduced in this work
include the first supervised and hybrid IC-based similarity mea-
sures reported in the literature. Unlike previous works, and the
research carried-out herein, they compute the shortest path length
and depth including the ”is-a” and ” has-a” links, thus, their results
are not directly comparable to other methods, with the exception
of the work of Pirró and Euzenat (2010). The Li et al. measures are
defined by a set of free parameters which are trained on the RG65
\MC28 complementary subset, and evaluated on the MC28 dataset.
For the IC-based measures they use the corpus-based IC model
introduced in Resnik (1999). The main drawback of these mea-
sures is the need to tune the free parameters, as well as their
influence in the results, which makes their configuration and
generalization difficult. For the sake of completeness in our
experimental comparison herein, we have implemented and
evaluated the best three measures reported in Li et al. (2003),
which are shown in Tables 1 and 2. These measures have not been
evaluated on the RG65 dataset before, therefore, we also include
herein their evaluation for first time, as well as the evaluation of
their best IC-based measure, called strategy 9, with most intrinsic
IC models. The measure called strategy 9 is, to our knowledge, the
first hybrid IC-based measure reported in the literature, according
to the aforementioned definition of this family.

In Pirró and Seco (2008), the authors introduce an IC-based
similarity measure based on a reformulation of the Tversky mea-
sure in terms of the information content theory, which you can see
in Table 2. They obtain good results and find a good connection
between the feature-based and IC-based theories of similarity. In
Pirró (2009), the author extends his previous paper with that of
Seco. In the latter work, Pirró proves that a set of similarity mea-
sures based on the Seco et al. intrinsic IC model outperforms the
same measures based on a corpus-based IC model derived from
the Resnik method and the Brown corpus.

In Zhou et al. (2008b), the authors introduce the IC-based
similarity measure shown in Table 2. This measure is defined by a
linear combination of the classic J&C distance and a normalized
value of the shortest path length between concepts.

In Meng and Gu (2012), the authors introduce the IC-based
semantic similarity measure shown in Table 2, which is a non-
linear transformation of the classic Lin measure, and is closely
related to our work. In another recent work Meng et al. (2014), the
authors introduce another variant of the Lin measure that is
shown in Table 2. In this case, the similarity measure is a hybrid
measure that combines the Lin IC-based measure with a power
factor based on the shortest path length between concepts.

In Gao et al. (2015), the authors introduce three new similarity
measures, among which we have the hybrid IC-based measure
shown in Table 2. This similarity measure combines the Resnik
measure with the simLi_s3 similarity function based on the length
of the shortest path between concepts. The authors omit the IC
model used in their experiments, however in a series of personal
communications, they clarify that they used a corpus-based IC
model based on the Resnik method that is also used in Patwardhan
and Pedersen (2006). This fact encourages our evaluation of the
corpus-based IC models provided in Pedersen (2008). The simi-
larity measure shown in Table 2, called strategy 3, is a reformula-
tion of the measure of Li et al. (2003), where the length factor
integrates an IC-based weight. This work is encouraged by the
problem of parameter tuning in Li et al. (2003), where up to three
parameters are used, which do not generalize well to other IC
models and datasets. However, the proposed measure also
requires two tuning parameters as in the work of Li et al. We
implemented and evaluated the Gao et al. measure with most of
the state-of-the-art intrinsic IC models in the literature, and the
corpus-based IC models introduced herein. We obtained lower
correlation values than those reported by the authors for similar
conditions. In order to replicate exactly their results, the use of the
same IC model used in their experiments would be necessary.

2.2. Intrinsic and corpus-based IC models

All the IC-based similarity measures require an IC model to be
computed. An IC model is a concept-valued function that assigns
an information content value to each ontology node. The draw-
backs already described for the corpus-based IC models have
encouraged the development of intrinsic IC models, whose pio-
neering work is the intrinsic IC model of Seco et al. (2004). Other
intrinsic IC models reported in the literature are the works in Zhou
et al. (2008a), Sebti and Barfroush (2008), Sánchez et al. (2011),
Sánchez and Batet (2012), Yuan et al. (2013), Meng et al. (2012),
and Hadj Taieb et al. (2014a). In Table 3, we show the intrinsic IC
models that are evaluated in our experiments.

In Pedersen (2013), the author explains how to apply the
Resnik method, introduced in Resnik (1999), to compute an IC
model using his WordNet-based frequency files Pedersen (2008).
Pedersen uses this method to build the corpus-based IC models in
Patwardhan and Pedersen (2006) and Pedersen (2010). Pirró also
confirms that a corpus-based IC model based on the Resnik
method and the Brown Corpus is used in Pirró (2009). In order to
make a comparison between intrinsic and corpus-based and IC
models, we implemented the Resnik method to build some
corpus-based IC models with some unexplored frequency files in
the Pedersen dataset. In the light of the results obtained herein,
we propose to use these corpus-based IC models as a new baseline
for the evaluation of IC-based similarity measures and IC models.

The dataset in Pedersen (2008) includes a family of WordNet-
based frequency files derived from the British National Corpus, the
Brown corpus, the SemCor and SemCorRaw corpus, the Penn
Treebank and the complete works of Shakespeare. Within this
family of files, we find a subset with the suffix “add1” . These files
start the count for any concept to 1 to guarantee that there are no
concepts with zero frequency. We have used these unexplored
files to build all the corpus-based IC models herein, obtaining the
higher correlation values reported in the literature for any corpus-
based IC model evaluated on WordNet. These results rival the
state-of-the-art intrinsic IC models, which led us to refute the
previous conclusions founded in the experiments of Pedersen and
Pirró.

f : C-N ð2Þ

f cið Þ ¼ TF cið Þþ IF cið Þ ¼ TF cið Þþ
X

8 cj j ci ALA cjð Þ
f cj
� � ð3Þ

bp cið Þ ¼ f cið Þ
N

¼ f cið Þ
f Γð Þ ð4Þ

In Resnik (1999), the author introduces the most broadly
accepted corpus-based IC model for the evaluation of semantic
similarity tasks. Resnik proposes a method to compute an IC
model that is based on the estimation of the concept probabilities
through the frequency counting of concept occurrences in a
training corpus. Each occurrence in the corpus of a word contained
in WordNet is counted as an occurrence of all its subsumer



Table 3
State-of-the-art intrinsic IC models evaluated in this work.

IC models Definition

Seco et al. (2004)
ICSecoðcÞ ¼ 1� log jHypoðcÞj þ1ð Þ

log max_nodesð Þ
Zhou et al. (2008a, b)

ICZhouðcÞ ¼ k 1� log jHypoðcÞj þ1ð Þ
log max_nodesð Þ

� 	
þ 1�kð Þ log depthðcÞð Þ

log depthmax

� � ; kn ¼ 1
2ðdefaultÞ

Sánchez et al. (2011)

ICS'anchez2011 ðcÞ ¼ � log 2

jLeavesðcÞj
j subsumersðcÞj þ1

maxLeavesþ1

0BB@
1CCA

Sánchez et al. (2012) ICSanchez2012ðcÞ ¼ � log 2
commonnessðcÞ

commonness rootð Þ

� �
commonnessðcÞ ¼ 1

jSubsmersðcÞj ; c leaf

commonnessðcÞ ¼ P
commonnessðlÞ; c not leaf

8><>:
8 lj lis leaf andloc

Meng et al. (2012)

ICMeng ðcÞ ¼
log depthðcÞð Þ
log depthmax

� � � 1�
log 1þ

P
aAHypo cð Þ

1
depth að Þ

� �
log Nodemaxð Þ

0BB@
1CCA

Yuan et al. (2013) ICYuanðcÞ ¼ f depthðcÞ 1� f leavesðcÞ
� �þ f hyperðcÞ

f depthðcÞ ¼
log depthðcÞð Þ
log depthmax

� �
f leavesðcÞ ¼

log j LeavesðcÞj þ1ð Þ
log Leavesmaxþ1ð Þ

f hyperðcÞ ¼
log ðjHyperðcj þ1Þ

log Nodemaxð Þ

8>>>>>>>><>>>>>>>>:
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concepts. In Pedersen (2013, p. 34), the author describes the
Resnik frequency counting method used to build the WordNet-
based frequency files dataset, Pedersen (2008), as well as the
corpus-based IC models evaluated in his paper series on similarity
measures on WordNet. Following the notation of Pedersen, each
concept frequency f cið Þ in Eq. (2) is defined as the sum of the term-
frequency (TF) occurrences of the concept ci, plus the inherited
frequency (IF) of each subsumed child concept. The estimated
probability bp cið Þ of each taxonomic concept ciAC is defined in Eq.
(4), where N is the total number of occurrences of any noun within
the corpus and its value matches the frequency of the root concept
Γ. Finally, the IC values are computed using Eq. (1). The frequency
counting proposed by Resnik does not take into account the word
senses, although Resnik suggest that a sense-tagged corpus could
be used to improve this issue. In another work, Pedersen (2010),
the authors prove that the IC models derived from a non-sense-
tagged corpus perform better than the sense-tagged ones.
3. The new IC-based similarity measures

In this section, we introduce a new ontology-based distance,
defined in Eq. (7), and three new IC-based similarity measures,
defined in Eqs. (8), (11) and (12) below. These measures are based
on two different unexplored notions: (1) a generalization of the
Jiang–Conrath distance, and (2) a non-linear normalization for the
conversion of ontology-based semantic distances into similarity
measures.

The normalization function is based on the computation of the
maximum distance on the taxonomy, and a cosine-based scaling
function φc that provides an exponential-like mapping for mod-
elling the distance-to-similarity transformation. Despite that
herein we only consider some variants of the Jiang–Conrath dis-
tance; our normalization function could be used with other
semantic distances. The normalization proposed herein is closely
related to the scaled variant of the Lin measure that is introduced
in Meng and Gu (2012). However, our scaling function φc is dif-
ferent, and our main motivation is a first try at modelling the
unknown relationships between ontology-based distances and
similarity measures; a problem that has not been studied before.

Any taxonomy on a set of concepts C is defined formally by a
C¼ C; rC ;Γð Þ triplet, where C; rCð Þ is a partially ordered set, and
ΓAC is a distinguished element called the root concept, such that
8ciAC-cirCΓ. Every taxonomy C¼ C; rC ;Γð Þ induces a graph
G¼ E;Vð Þ in the usual manner, where every concept ciAC is a
vertex of the graph, and there is an edge between each concept ci
and its direct parents, also called the lowest ancestors of ci, and
denoted as LA cið Þ.
dJ&C c1; c2ð Þ ¼ IC c1ð Þþ IC c2ð Þ�2IC MICA c1; c2ð Þð Þ ð5Þ

In Jiang and Conrath (1997), the authors prove that their
semantic distance dJ&C c1; c2ð Þ, as defined in Eq. (5), is equivalent to
the shortest path between concepts c1 and c2 on a weighted graph
derived from the taxonomy, whose edge weights are defined in the
following equation:

w : E-R ð6Þ

w eij
� �¼ � log 2 p ci j cj

� �� �¼ IC cið Þ� IC cj
� �

E¼ ci; cj
� �� C � C j cjALA cið Þ� �

Despite Jiang and Conrath claiming that their distance is a metric
on any type of taxonomy, in Orum and Joslyn (2009), the authors
prove that it is only true for tree-like taxonomies. Indeed, Eq. (6) is
only satisfied on tree-like taxonomies, discarding any taxonomy
with a multiple inheritance, such as WordNet. In order to define a
well-founded metric on any type of taxonomy, we propose the
weighted Jiang–Conrath distance, as defined in Eq. (7), together
with its similarity function simwJ&C c1; c2ð Þ defined in Eq. (8). The
dwJ&C c1; c2ð Þ is defined as the weighted shortest path between
concepts, which can be computed by any known method, such as
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the Djikstra algorithm. The distance function dwJ&C c1; c2ð Þ matches
exactly the classic Jiang–Conrath distance on a tree-like taxonomy
regardless of the underlying IC model. This latter fact is a theorem
that can be proven and it only depends on the structure on the
taxonomy, not the IC model.

dwJ&C c1; c2ð Þ ¼ min
8αAPaths c1 ;c2ð Þ

X
eij Aα

w eij
� �8<:

9=; ð7Þ

simwJ&C c1; c2ð Þ ¼ 1�dwJ&C c1; c2ð Þ
2

ð8Þ

The edge weights w eij
� �

above are defined in two different ways in
Eq. (9), according to the availability of estimated values for the
conditional probabilities p ci j cj

� �
. Whenever the p ci j cj

� �
function is

known, the weights are defined as the IC value of the conditional
probabilities. Otherwise, the weights are defined as the absolute
difference of node-based IC values, which allows the integration of
any IC model reported in the literature.

w : E-R ð9Þ

w eij
� �¼ � log 2 p ci j cj

� �� �
if p ci j cj

� �
are known

j IC cið Þ� IC cj
� �j otherwise

(

The new weighted Jiang–Conrath distance matches the classic
Jiang–Conrath on tree-like taxonomies, however, it is slightly dif-
ferent on taxonomies with a multiple inheritance. The computa-
tion of the dwJ&C function requires the implementation of any
shortest path algorithm, our preferred method being a version of
the classic Djikstra algorithm based on a min-priority queue (Chen
et al., 2007).

In order to model the unknown relationship between the
ontology-based distances and similarities, we propose the φc

function defined in the following equation:

φc : 0;1½ � �R- 0;1½ � �R

φc xð Þ ¼ 1� cos
π
2
x

� 	
ð10Þ

Finally, we propose two new normalized similarity measures as
follows. First, the cosine-normalized weighted J&C similarity, which
is derived from the new dwJ&C c1; c2ð Þ distance and is denoted by
simcoswJ&C in Eq. (11). Second, the cosine-normalized J&C similarity,
which is derived from the classic dJ&C distance and is denoted by
simcosJ&C in Eq. (12).

Both similarity functions are obtained through the composition
of their respective base distance with the non-linear function φc.
Before the distance-to-similarity conversion given by the φc

function, both distances are normalized by the maximum distance
between the root concept Γ and any leaf concept within the tax-
onomy, whose value is defined by maxdJ&C in Eq. (13). By doing
some algebra and recalling that IC Γð Þ is equal to 0, we can see in
Eq. (14) that maxdJ&C is equal to the maximum IC value within the
set of leaf concepts.

simcoswJ&C c1; c2ð Þ ¼φc○ 1�dwJ&C c1; c2ð Þ
2nmaxdJ&C

 !

¼ 1� cos
π
2

1�dwJ&C c1; c2ð Þ
2nmaxdJ&C

 ! !
ð11Þ

simcosJ&C c1; c2ð Þ ¼φc○ 1�dJ&C c1; c2ð Þ
2nmaxdJ&C

 !

¼ 1� cos
π
2

1�dJ&C c1; c2ð Þ
2nmaxdJ&C

 ! !
ð12Þ
maxdJ&C
¼ max

cALeaves Cð Þ
dJ&C Γ; cð Þ� � ð13Þ

¼ max
cALeaves Cð Þ

ICðcÞ� � ð14Þ
4. Evaluation

The goals of the experimental work described in this section
are as follows: (1) the experimental evaluation and comparison of
the new IC-based similarity measures with most of similarity
measures, intrinsic and corpus-based IC models reported in the
literature, (2) the replication of previously reported methods and
results, (3) an experimental study into the influence of the
WordNet version on the similarity measures, (4) a comparison
between intrinsic and corpus-based IC models, (5) a study of the
performance of the similarity measures on two versions of the
RG65 dataset, (6) the refutation of some previous conclusions on
the performance of corpus-based IC models versus the intrinsic IC
models, and (7) a new confirmation of the achievements of the
family of intrinsic IC models.

4.1. Similarity measures and IC-based models evaluated

In order to compare our new similarity measures defined in
Eqs. (8), (11) and (12), with the state-of-the-art measures, we
implemented all the similarity measures shown in Tables 1 and 2,
as well as all the intrinsic IC models shown in Table 3. For all the IC
models and similarity measures implemented herein, we consider
the depth as the length of shortest ascending path from each
concept to the root node, with the exception of the Hadj Taieb
et al. measures, where they explicitly define it as the longest
ascending path length. For the Zhou et al. IC model and measure,
the authors define the depth starting at 1 for the root concept. Our
primary aims lead us to implementing all methods evaluated
herein, but the readers working on applications could use the SML
library (Harispe et al., 2014).

In addition to the intrinsic IC models in Table 3, we also
implemented a set of corpus-based IC models based on the family
of “add1” WordNet-based frequency files of Pedersen (2008) and
the Resnik method aforementioned. We show the comparison
results in Tables 6 and 7, which is the largest experimental survey
between intrinsic and corpus-based IC models reported in the
literature.

4.2. Experimental setup

For the experiments, we use the noun database of WordNet 2.1,
3.0 and 3.1 versions Miller (1995), together with the classic RG65
dataset introduced in Rubenstein and Goodenough (1965), and a
recent replication of it, called P&Sfull and introduced in Pirró
(2009). The RG65 dataset is made up of 65 word pairs together
with their similarity human judgments in the range (0, 4). In order
to manage the polysemy in WordNet, we evaluate the similarity
measure for the Cartesian product of the synsets of the input word
pair, and we choose the higher similarity result, as done in other
works in the field, such as Sánchez et al. (2012, Section 3.4). As an
evaluation metric, we use the standard Pearson correlation factor,
as defined in the following equation:

r¼
Pn

i ¼ 1 Xi�X
� �

Yi�Y
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 Xi�X
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 Yi�Y
� �2q ð15Þ



Table 4
Best Pearson correlation value for all the similarity measures evaluated on the RG65 and P&Sfull datasets, using different versions of WordNet.

WordNet versions WordNet 2.1 WordNet 3.0 WordNet 3.1 Overall score (avg. correlation)

Measures\Datasets RG65 P&Sfull RG65 P&Sfull RG65 P&Sfull RG65 P&Sfull Overall

Taieb sim1 (2014) 0.8673 0.9074 0.8670 0.9068 0.8670 0.9067 0.8671 0.9070 0.8870
Meng and Gu (2012) 0.8680 0.9067 0.8675 0.9061 0.8675 0.9061 0.8677 0.9063 0.8870
cosJ&C (this work) 0.8701 0.8942 0.8752 08996 0.8751 0.8996 0.8735 0.8978 0.8856
Taieb sim2 (2014) 0.8614 0.9066 0.8597 0.9050 0.8600 0.9052 0.8604 0.9056 0.8830
Zhou et al. (2008a, b) 0.8681 0.8905 0.8728 0.8949 0.8708 0.8940 0.8706 0.8931 0.8818
coswJ&C (this work) 0.8763 0.8843 0.8770 0.8875 0.8746 0.8843 0.8760 0.8854 0.8807
Gao et al. (2015) 0.8676 0.8926 0.8709 0.8920 0.8682 0.8919 0.8689 0.8922 0.8805
Lin (1998) 0.8638 0.8915 0.8621 0.8948 0.8621 0.8948 0.8627 0.8937 0.8782
Pirró and Seco (2008) 0.8596 0.8903 0.8622 0.8970 0.8622 0.8970 0.8613 0.8948 0.8780
Li et al. strat9 (2003) 0.8613 0.8895 0.8617 0.8897 0.8615 0.8897 0.8615 0.8896 0.8756
Li et al. strat3 (2003) 0.8633 0.8863 0.8625 0.8853 0.8594 0.8840 0.8617 0.8852 0.8735
Li et al. strat4 (2003) 0.8580 0.8779 0.8598 0.8787 0.8598 0.8787 0.8592 0.8784 0.8688
Jiang and Conrath (1997) 0.8566 0.8701 0.8619 0.8825 0.8619 0.8781 0.8601 0.8769 0.8685
Resnik (1995) 0.8418 0.8826 0.8409 0.8829 0.8409 0.8829 0.8412 0.8828 0.8620
Sánchez et al. (2012) 0.8545 0.8780 0.8477 0.8703 0.8477 0.8703 0.8500 0.8729 0.8614
wJ&C (this work) 0.8555 0.8515 0.8618 0.8697 0.8606 0.8602 0.8593 0.8604 0.8599
Meng et al. (2014) 0.8463 0.8351 0.8486 0.8374 0.8486 0.8374 0.8478 0.8367 0.8423
Best column value 0.8763 0.9074 0.8770 0.9068 0.8751 0.9067 0.8760 0.9070 0.8870

Table 5
Correlation values for the IC-based similarity measures evaluated on the RG65 and Pirró datasets with WordNet 2.1.

State-of-the-art IC-based similarity measures New measures (this work)

Pearson correlation values for the IC-based similarity measures on the RG65 dataset and WordNet 2.1

Intrinsic IC models Resnik Lin J&C Li_s9 Zhou P&S Meng12 Meng14 Gao wJ&C cosJ&C coswJ & C

Seco et al. (2004) 0.8323 0.8562 0.8456 0.8240 0.8681 0.8543 0.8564 0.8463 0.7992 0.8424 0.8568 0.8558
Zhou et al. (2008a, b) 0.8117 0.8293 0.8256 0.8429 0.8561 0.8316 0.8552 0.7737 0.7992 0.8296 0.8534 0.8562
Sánchez et al. (2011) 0.8418 0.8516 0.8522 0.8568 0.8548 0.8022 0.8648 0.8118 0.8676 0.8524 0.8681 0.8763
Sánchez et al. (2012) 0.8354 0.8573 0.8423 0.8613 0.8456 0.8232 0.8569 0.8452 0.8675 0.8418 0.8535 0.8544
Meng et al. (2012) 0.8289 0.8621 0.8566 0.8277 0.8645 0.8577 0.8671 0.8277 0.7992 0.8555 0.8701 0.8715
Yuan et al. (2013) 0.8274 0.8638 0.8479 0.8224 0.8625 0.8596 0.8680 0.8257 0.7992 0.8432 0.8615 0.8593
Best column value 0.8418 0.8638 0.8566 0.8613 0.8681 0.8596 0.8680 0.8463 0.8676 0.8555 0.8701 0.8763

Intrinsic IC models Pearson correlation values for the IC-based measures on the P&Sfull dataset and WordNet 2.1

Seco et al. (2004) 0.8795 0.8908 0.8701 0.8839 0.8905 0.8903 0.9008 0.8351 0.8587 0.8515 0.8904 0.8753
Zhou et al. (2008a, b) 0.8401 0.8458 0.8350 0.8895 0.8712 0.8556 0.8823 0.7475 0.8587 0.8197 0.8708 0.8542
Sánchez et al. (2011) 0.8751 0.8731 0.8685 0.8799 0.8716 0.7988 0.8955 0.7914 0.8843 0.8475 0.8942 0.8843
Sánchez et al. (2012) 0.8826 0.8915 0.8667 0.8883 0.8701 0.8314 0.9012 0.8336 0.8926 0.8511 0.8859 0.8731
Meng et al. (2012) 0.8679 0.8879 0.8675 0.8813 0.8803 0.8884 0.9029 0.8101 0.8587 0.8495 0.8893 0.8738
Yuan et al. (2013) 0.8686 0.8915 0.8600 0.8769 0.8783 0.8875 0.9067 0.8069 0.8587 0.8437 0.8813 0.8675
Best column value 0.8826 0.8915 0.8701 0.8895 0.8905 0.8903 0.9067 0.8351 0.8926 0.8515 0.8942 0.8843
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4.3. Results

In Table 4, we show a summary of the best correlation values
obtained for the similarity measures evaluated in the RG65 and
P&Sfull datasets, using the latest three versions of WordNet. The
overall score is the average value of the correlation values
obtained by each measure in each combination of dataset and
WordNet versions. The measures are sorted according to their
score value shown in last column. The only difference between
both datasets are the human judgments, however, we confirm that
their joint correlation value is 0.972, as reported in Pirró (2009). In
each column, the best correlation value is shown in bold. In
Tables 5 and 8 we show the complete results for the evaluation of
all the IC-based similarity measures in WordNet versions 2.1 and
3.1. In Table 6 we show the complete results for the IC-based
similarity measures evaluated on the RG65 dataset and WordNet
3.0, including a set of corpus-based IC models, while in Table 7 we
do the same in the P&Sfull dataset .
5. Discussion

Our new IC-based similarity measures called coswJ&C and
cosJ&C obtain the highest correlation values in the classic RG65
dataset and all the WordNet versions. The first intrinsic Hadj Taieb
et al. similarity measure obtains the higher correlation values in
the P&Sfull dataset and all the WordNet versions. Finally, the Hadj
Taieb et al. measure and Meng et al. (2012) IC-based similarity
measure obtain the best overall scores when the correlation values
are averaged over all the datasets and WordNet versions.

These results confirm that the state of the art on the problem is
lead by the family of IC-based similarity measures on WordNet,
although all the IC-based similarity measures show a strong
dependence between their performance and the IC models used.
Two of our novel measures and the Meng et al. (2012) measure are
non-linear normalizations of the classic IC-based similarity mea-
sures introduced by Lin and Jiang–Conrath, whilst the intrinsic
similarity measure introduced by Hadj taieb et al. is inspired by



Table 6
Correlation values for the IC-based similarity measures evaluated on the RG65 dataset with WordNet 3.0, using intrinsic and corpus-based IC models.

State-of-the-art IC-based similarity measures New measures (this work)

Pearson correlation values for the IC-based similarity measures on the RG65 dataset and WordNet 3.0

Intrinsic IC models Resnik Lin J&C Li_s9 Zhou P&S Meng12 Meng14 Gao wJ&C cosJ&C coswJ&C

Seco et al. (2004) 0.8326 0.8609 0.8546 0.8241 0.8728 0.8622 0.8596 0.8486 0.7992 0.8520 0.8642 0.8634
Zhou et al. (2008a, b) 0.8080 0.8259 0.8286 0.8438 0.8574 0.8334 0.8539 0.7749 0.7992 0.8337 0.8558 0.8610
Sánchez et al. (2011) 0.8409 0.8530 0.8619 0.8586 0.8639 0.8105 0.8663 0.8147 0.8682 0.8526 0.8752 0.8770
Sánchez et al. (2012) 0.8355 0.8616 0.8508 0.8615 0.8535 0.8332 0.8600 0.8475 0.8678 0.8504 0.8606 0.8614
Meng et al. (2012) 0.8260 0.8608 0.8598 0.8282 0.8638 0.8586 0.8670 0.8285 0.7992 0.8613 0.8723 0.8747
Yuan et al. (2013) 0.8243 0.8621 0.8505 0.8231 0.8629 0.8607 0.8675 0.8273 0.7992 0.8474 0.8632 0.8624
Best column value 0.8409 0.8621 0.8619 0.8615 0.8728 0.8622 0.8675 0.8486 0.8682 0.8613 0.8752 0.8770

Corpus-based IC models Pearson correlation values for the IC-based similarity measures on the RG65 dataset and WordNet 3.0

ic-bnc-resnik-add1 0.8281 0.8543 0.8609 0.8603 0.8633 0.8311 0.8591 0.8377 0.8673 0.8587 0.8644 0.8644
ic-brown-resnik-add1 0.8293 0.8519 0.8531 0.8559 0.8559 0.8268 0.8555 0.8389 0.8659 0.8514 0.8581 0.8597
ic-semcor-add1 0.8257 0.8506 0.8551 0.8605 0.8577 0.8279 0.8522 0.8402 0.8660 0.8539 0.8590 0.8605
ic-semcorraw-add1 0.8363 0.8569 0.8595 0.8608 0.8620 0.8342 0.8581 0.8432 0.8680 0.8618 0.8658 0.8700
ic-semcorraw-resnik-add1 0.8345 0.8564 0.8560 0.8602 0.8590 0.8301 0.8581 0.8417 0.8665 0.8551 0.8622 0.8640
ic-shaks-resnink-add1 0.8223 0.8502 0.8528 0.8596 0.8551 0.8185 0.8549 0.8366 0.8640 0.8582 0.8638 0.8703
ic-treebank-add1 0.8345 0.8589 0.8561 0.8617 0.8582 0.8335 0.8609 0.8434 0.8709 0.8579 0.8653 0.8703
ic-treebank-resnik-add1 0.8331 0.8542 0.8536 0.8603 0.8564 0.8259 0.8589 0.8392 0.8673 0.8539 0.8618 0.8661
Best column value 0.8363 0.8589 0.8609 0.8617 0.8633 0.8342 0.8609 0.8434 0.8709 0.8618 0.8658 0.8703
Overall best value 0.8409 0.8621 0.8619 0.8617 0.8728 0.8622 0.8675 0.8486 0.8709 0.8618 0.8752 0.8770

Table 7
Correlation values for the IC-based similarity measures evaluated on the P&Sfull dataset with WordNet 3.0, using intrinsic and corpus-based IC models.

State-of-the-art IC-based similarity measures New measures (this work)

Pearson correlation values for the IC-based similarity measures on the P&Sfull dataset and WordNet 3.0

Intrinsic IC models Resnik Lin J&C Li_s9 Zhou P&S Meng12 Meng14 Gao wJ&C cosJ&C coswJ&C

Seco et al. (2004) 0.8799 0.8945 0.8781 0.8839 0.8949 0.8970 0.9031 0.8374 0.8585 0.8601 0.8966 0.8819
Zhou et al. (2008a, b) 0.8357 0.8420 0.8372 0.8897 0.8725 0.8563 0.8806 0.7488 0.8585 0.8247 0.8726 0.8593
Sánchez et al. (2011) 0.8740 0.8738 0.8762 0.8807 0.8789 0.8051 0.8964 0.7943 0.8844 0.8483 0.8996 0.8850
Sánchez et al. (2012) 0.8829 0.8948 0.8742 0.8877 0.8771 0.8398 0.9035 0.8350 0.8920 0.8587 0.8918 0.8790
Meng et al. (2012) 0.8645 0.8863 0.8715 0.8813 0.8805 0.8897 0.9025 0.8106 0.8585 0.8550 0.8917 0.8765
Yuan et al. (2013) 0.8655 0.8896 0.8641 0.8774 0.8796 0.8891 0.9061 0.8085 0.8585 0.8491 0.8840 0.8713
Best value 0.8829 0.8948 0.8781 0.8897 0.8949 0.8970 0.9061 0.8374 0.8920 0.8601 0.8996 0.8850

Corpus-based IC models Pearson correlation values for the IC-based similarity measures on the P&Sfull dataset and WordNet 3.0

ic-bnc-resnik-add1 0.8632 0.8821 0.8809 0.8853 0.8839 0.8291 0.8961 0.8230 0.8887 0.8629 0.8891 0.8734
ic-brown-resnik-add1 0.8673 0.8812 0.8749 0.8857 0.8783 0.8277 0.8942 0.8253 0.8888 0.8565 0.8873 0.8729
ic-semcor-add1 0.8692 0.8812 0.8746 0.8869 0.8779 0.8288 0.8927 0.8274 0.8900 0.8579 0.8875 0.8744
ic-semcorraw-add1 0.8792 0.8876 0.8825 0.8857 0.8855 0.8370 0.8983 0.8292 0.8899 0.8697 0.8968 0.8869
ic-semcorraw-resnik-add1 0.8772 0.8878 0.8805 0.8859 0.8839 0.8348 0.8991 0.8288 0.8897 0.8629 0.8946 0.8809
ic-shaks-resnink-add1 0.8620 0.8818 0.8784 0.8861 0.8809 0.8239 0.8961 0.8252 0.8879 0.8669 0.8966 0.8875
ic-treebank-add1 0.8736 0.8877 0.8749 0.8857 0.8778 0.8328 0.8988 0.8286 0.8909 0.8620 0.8922 0.8826
ic-treebank-resnik-add1 0.8704 0.8835 0.8736 0.8855 0.8770 0.8265 0.8973 0.8257 0.8893 0.8553 0.8901 0.8762
Best column value 0.8792 0.8878 0.8825 0.8869 0.8855 0.8370 0.8991 0.8292 0.8909 0.8697 0.8968 0.8875
Overall best value 0.8829 0.8948 0.8825 0.8897 0.8949 0.8970 0.9061 0.8374 0.8920 0.8697 0.8996 0.8875
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the intrinsic Seco et al. IC model. Our results also prove that the
classic Jiang–Conrath distance had not been properly exploited.

The correlation values reported by the hybrid IC-based mea-
sures do not justify their high computational cost. This conclusion
applies to our weighted Jiang–Conrath measures (coswJ&C and
wJ&C) and the similarity measures introduced in Li et al. (2003),
Zhou et al. (2008b), Meng et al. (2014) and Gao et al. (2015). Our
experimental results refute the practical use of any similarity
measure based on features derived from the shortest path mea-
sures on a taxonomy. Therefore, we discard the use of these types
of similarity measure in any practical application unless they are
able to obtain correlation values much higher than less expensive
approaches, such as the cosJ&C similarity measure, and the Meng
et al. (2012) and Hadj Taieb et al. (2014a) measures.

In practice, there is no convincing winner from among the
state-of-the-art similarity measures on WordNet and the problem
is still open. Despite the new coswJ&C similarity measure and the
Hadj Taieb et al. (2014a) measure obtaining the best results in the
RG65 and P&Sfull datasets, all the evaluated measures, with the
exception of the Meng et al. (2014) measure, obtain rivaling
average correlation values of between 0.8599 and 0.8870. From
this fact it follows that the performance for all the similarity
measures evaluated herein is similar, thus, there is no convincing
winner. This fact also endorses our previous conclusion as regards
the hybrid IC-based measures.



Table 8
Correlation values for the IC-based similarity measures evaluated on the RG65 and Pirró datasets with WordNet 3.1.

State-of-the-art IC-based similarity measures New measures (this work)

Pearson correlation values for the IC-based similarity measures on the RG65 dataset and WordNet 3.1

Intrinsic IC models Resnik Lin J&C Li_s9 Zhou P&S Meng12 Meng14 Gao wJ&C cosJ&C coswJ&C

Seco et al. (2004) 0.8326 0.8609 0.8546 0.8241 0.8708 0.8622 0.8596 0.8486 0.7988 0.8521 0.8642 0.8635
Zhou et al. (2008a, b) 0.8081 0.8260 0.8286 0.8438 0.8569 0.8334 0.8539 0.7749 0.7988 0.8273 0.8558 0.8566
Sánchez et al. (2011) 0.8409 0.8530 0.8619 0.8586 0.8638 0.8105 0.8663 0.8147 0.8682 0.8481 0.8751 0.8746
Sánchez et al. (2012) 0.8355 0.8616 0.8508 0.8615 0.8533 0.8332 0.8600 0.8475 0.8676 0.8505 0.8606 0.8615
Meng et al. (2012) 0.8260 0.8608 0.8598 0.8282 0.8631 0.8586 0.8670 0.8285 0.7988 0.8606 0.8723 0.8742
Yuan et al. (2013) 0.8243 0.8621 0.8505 0.8231 0.8616 0.8607 0.8675 0.8273 0.7988 0.8474 0.8632 0.8624
Best column value 0.8409 0.8621 0.8619 0.8615 0.8708 0.8622 0.8675 0.8486 0.8682 0.8606 0.8751 0.8746

Intrinsic IC models Pearson correlation values for the IC-based similarity measures on the P&Sfull dataset and WordNet 3.1

Seco et al. (2004) 0.8799 0.8945 0.8781 0.8839 0.8940 0.8970 0.9032 0.8374 0.8583 0.8602 0.8966 0.8820
Zhou et al. (2008a, b) 0.8357 0.8420 0.8372 0.8897 0.8727 0.8563 0.8806 0.7488 0.8583 0.8231 0.8726 0.8585
Sánchez et al. (2011) 0.8740 0.8738 0.8762 0.8807 0.8788 0.8051 0.8964 0.7943 0.8844 0.8474 0.8996 0.8843
Sánchez et al. (2012) 0.8829 0.8948 0.8742 0.8877 0.8770 0.8398 0.9035 0.8351 0.8919 0.8588 0.8918 0.8791
Meng et al. (2012) 0.8646 0.8863 0.8715 0.8813 0.8804 0.8897 0.9025 0.8106 0.8583 0.8546 0.8917 0.8763
Yuan et al. (2013) 0.8655 0.8896 0.8641 0.8774 0.8792 0.8891 0.9061 0.8086 0.8583 0.8491 0.8840 0.8714
Best column value 0.8829 0.8948 0.8781 0.8897 0.8940 0.8970 0.9061 0.8374 0.8919 0.8602 0.8996 0.8843
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5.1. Impact of the Wordnet version and datasets

We conclude that there are no significant differences in the
correlation values obtained for the same measures in different
WordNet versions. Looking at Table 4, we can see that in WordNet
3.0 and 3.1 the results are almost identical on both datasets,
although between WordNet versions 2.1 and 3.x we can see a
small difference of up to 0.060 for some measures.

Comparing the correlation values obtained by each measure on
both datasets, we see a clear positive bias of 0.03 (3%) for the
correlation values on the P&Sfull dataset. We note that the P&Sfull
dataset shows a correlation value of 0.972 with regards to the
RG65 dataset, thus, we can expect, as is shown, a similar difference
between the correlation values obtained from both datasets. The
bias for the P&Sfull dataset is consistent for all the measures,
although the percentage increase is not uniformly distributed in all
the measures.
5.2. Intrinsic IC models versus corpus-based

Looking at Tables 6 and 7, we observe that the corpus-based IC
models based on the Resnik method obtain rivaling results as
regards the state-of-the-art intrinsic IC models. This conclusion
refutes the accepted belief as to the clear superiority of the
intrinsic IC models, as reported in Pirró (2009, Fig. 10) and Sánchez
et al. (2012).

The results reported by Sánchez et al. are based on the
benchmarks in Patwardhan and Pedersen (2006) and Pedersen
(2010), which do not include the family of “add1” WordNet-based
frequency files provided in Pedersen (2008). Despite this fact, we
confirm that the state-of-the-art intrinsic IC models outperform
the corpus-based ones, but with a much smaller margin. In prac-
tice, the corpus-based IC models evaluated herein obtain similar
results, and we propose to select some of them as baseline for any
future benchmark of IC-based similarity measures in WordNet.

These novel conclusions give rise to interesting questions as
regards the relationship between the intrinsic and corpus-based IC
models. From our point of view, we are now in a better position to
evaluate the performance of the intrinsic IC models and under-
stand the knowledge that they are producing. If an intrinsic IC
model is able to mimic a corpus-based IC model, it means that in
some way, we would expect to find some relationship between the
structure of the taxonomy, and the underlying corpus statistics.

5.3. Validation of previous methods

Our experiments confirm the results reported for the similarity
measures introduced in Pirró and Seco (2008), Zhou et al. (2008b),
Sánchez et al. (2012) and Hadj Taieb et al. (2014b,p. 256). Some of
our implementation details and results were validated with the
kind support of David Sánchez and Mohamed Hadj Taieb. The
results reported in Li et al. (2003) cannot be compared directly
because the parameter tuning and experimental conditions are
different, however, the Li et al. measure obtains correlation values
in the same range as the state of the art.

5.4. Contradictory results

On the other hand, we have found some contradictory results
related to the results reported in Meng and Gu (2012), Meng et al.
(2014), Hadj Taieb et al. (2014b) and Gao et al. (2015). In Meng and
Gu (2012), the authors report a correlation value of 0.8804 in the
RG65 dataset when their measure is combined with the intrinsic
Seco et al. IC model. However, in Hadj Taieb et al. (2014b,p. 256)
the authors report a value of 0.85 on WordNet 3.0, while herein,
we report a correlation value of 0.8596. Therefore, we endorse the
experimental results of Hadj Taieb et al. (2014b), in which the
authors conclude that the Meng et al. (2012) measure performs
better within the family of IC-based measures. In Meng et al.
(2014), the same authors report a correlation value of 0.8817 with
the Seco et al. IC model, however, in our experiments and herein,
we obtain a correlation value of 0.8486. Indeed, the two results
reported by Meng et al. are the highest correlation values reported
in the literature for any intrinsic IC-based similarity measure in the
RG65 dataset, however, we have not been able to confirm them.
Finally, in a personal communication, the authors of Hadj Taieb
et al. (2014b,p. 256) report a correlation value of 0.8784 for their
similarity measure with adjustment factor (simTaieb_2) on the RG65
dataset and WordNet 3.0, however, herein we obtain a value of
0.8597. These contradictory results confirm the difficulties in
reproducing some previous approaches in the literature, a problem
that is also noted in Fokkens et al. (2013). We invite the research
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community to reproduce these previous approaches, as well as the
results reported herein.

5.5. Warning about some reproducibility problems

Unlike the measures introduced in Meng and Gu (2012) and
Meng et al. (2014), which are clearly described in their papers, the
measure called strategy 3 in Gao et al. (2015) cannot be replicated
exactly, because the authors omit the details on the IC model used
in their experiments. In a series of personal communications, Jian-
Bo Gao clarifies that they used the same corpus-based IC model as
that used by Pedersen in Patwardhan and Pedersen (2006), how-
ever, he does not say which IC file was used, and he did not pro-
vide us with their IC model files to be able replicate their experi-
ments exactly. Herein, we have evaluated the strategy 3 measure
in Gao et al. (2015) with a large set of corpus-based IC models built
from the dataset published in Pedersen (2008), and we have not
obtained the same results.

We think that these contradictory results could be derived from
some minor implementation differences, and it represents a good
opportunity to work on the reproducibility problems in the area.
As you can see in Table 4, the performance margin for all the
methods is very narrow, due to the huge complexity of the
underlying cognitive problem, and that the state of the problem
has given rise to an asymptotic behavior within the range
(0.87, 0.88).

The reproducibility of intrinsic IC models and similarity mea-
sures is a difficult problem, which has been eluded in many works
where the authors cite and take valid results obtained by others.
The implementation of similarity measures requires sensitive
graph-based algorithms to compute all types of taxonomical fea-
tures, which are not unambiguously defined in taxonomies with a
multiple inheritance such as WordNet. For example, the depth of a
concept could be defined as the longest or shortest ascending path
from any node to the root node. With the exception of the work in
Hadj Taieb et al. (2014b, Section 4.1), most authors do not clarify
this issue. The same argument is valid for the definition of the
lowest concept subsumer (LCS), also called lowest common
ancestor (LCA), which is only well defined for IC-based similarity
measures through the introduction of the most informative com-
mon ancestor (MICA) notion.

In Fokkens et al. (2013), the authors also warn about the
reproduction problems in the evaluation of the semantic similarity
measures, and the need to validate previous methods and
experiments, claims which we also make in this work. Most recent
works in the area cite results in previous works, without repli-
cating them. The replication of previous methods is complex, it
requires a considerable effort for the implementation and recovery
of missing details, and it is not exempt from risk. However, the
reproducibility of the published results is an essential feature of
science, and we can learn so much from this process. Therefore,
we invite the research community to replicate the methods and
experiments introduced in this work, with the aim of validating
previously reported results.
6. Conclusions and future work

First, we have introduced one IC-based semantic distance and
three new IC-based similarity measures based on a generalization
and normalization of the classic Jiang–Conrath distance, which
outperform the state-of-the-art methods in the RG65 dataset.
Second, we introduce an up-to-date experimental survey, whose
aim is the uniform comparison of the most recent and relevant
similarity measures on WordNet, especially the families of IC-
based similarity measures and intrinsic IC models. In addition, we
introduce an experimental comparison between the intrinsic and
corpus-based IC model that allows some previous conclusions to
be refuted.

We confirm that the state-of-the-art on similarity measures is
lead by the family of IC-based measures, specifically by our new
cosine-normalized measures and the Meng et al. (2012) similarity
measure. This latter statement is also endorsed by the best Hadj
Taieb et al. measure, because despite it not being based on an IC
model, this measure is inspired by and closely related to the Seco
et al. IC model. Our experimental results allow the use of any
hybrid IC-based measure to be refuted due to their high compu-
tational cost for a similar performance.

Despite of the corpus-based IC models evaluated herein
obtaining rivaling results as regards the state-of-the-art intrinsic
IC models, we confirm that the intrinsic IC models slightly out-
perform the former ones. However, the difference between the
corpus-based IC models and the intrinsic ones is smaller than that
reported in the literature, which was based on corpus-based IC
models built with the Resnik method on other WordNet-based
frequency files.

Finally, we confirm that there is no significant difference in the
performance of the similarity measures in different WordNet
versions. We also subscribe to the warning made in Fokkens et al.
(2013) on the reproducibility problems related to the similarity
measures in WordNet, and we also invite to the research com-
munity to replicate previous approaches and experiments in their
future research.

As forthcoming activities, we would like to study the rela-
tionship between the corpus-based IC models evaluated herein
and the intrinsic IC models. We would also like to study the
integration of ontology-based similarity measures with concept-
based distributional methods. Another interesting line of research
is the proposal and promotion of an open framework for the exact
reproducibility of the similarity measures and benchmarks
reported in the literature.
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This paper introduces a new family of intrinsic and corpus-based Information Content (IC) models for
ontology-based similarity measures based on the IC theory, a detailed state of the art, an experimental
survey of IC models and IC-based similarity measures on WordNet, and a comparison between intrinsic
and corpus-based IC models. The family of IC models is made up of five intrinsic IC models, called
CondProbHypo, CondProbUniform, CondProbLeaves, CondProbLogistic, and CondProbCosine, and one
corpus-based IC model called CondProbCorpus which completes the family. The proposed IC models rely
on two previously unconsidered notions: (1) the preservation of the probabilistic structure of the taxon-
omy associated to the conditional probabilities between child and parent concepts, and (2) the explicit
consideration of a cognitive similarity notion in the definition of the IC model. The family of IC models
defines a new method for the proposal of new intrinsic IC models based on the exploration of other alter-
natives for the intrinsic estimation of the conditional probabilities between child and parent concepts.
Our work is inspired by an unexplored relationship between the Jiang–Conrath distance and a shortest
path on an IC-based weighted graph, derived from the conditional probabilities between concepts, as well
as certain cognitive evidence about the perception distance between concepts. The new IC models obtain
results comparable to the state of the art and satisfy a set of well-founded structure axioms. In addition,
we prove that most of intrinsic IC models and IC-based similarity measures do not show a significant sta-
tistical difference as regards a baseline corpus-based IC model and the Jiang–Conrath similarity, with the
exception of the overall outperformance shown by the Sánchez et al. (2012) IC model and the cosJ&C sim-
ilarity measure, which has recently been introduced by the authors.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The ontology-based similarity measures have found many
applications in the fields of natural language processing (NLP),
information retrieval (IR), and bioengineering. Many semantic
tasks require the evaluation of the degree of similarity between
words and concepts, as perceived by a human being. For instance,
in Lastra-Díaz [24], we introduce an ontology-based IR model,
called Intrinsic Ontological Spaces, which is based on a metric space
defined by a generalization of the Jiang–Conrath distance to popu-
lated ontologies, in which an ontology-based semantic distance,
called the weighted Jiang–Conrath distance, is used to define a met-
ric space of weighted mentions to classes and individuals. In
Mihalcea et al. [34], the authors propose a text similarity measure
based on the combination of an IDF weighting scheme with any
ontology-based similarity measure. In Patwardhan et al. [37], the
authors introduce a word sense disambiguation (WSD) method
based on the distributional hypothesis and the use of ontology-
based similarity measures to select the closest evocated concept
between a disambiguated word and its neighboring words. The
ontology-based similarity measures have also been applied to the
ontology alignment (OA) problem Zong et al. [65]. For instance,
in Cross and Hu [8], the authors review the use of semantic similar-
ity measures on the ontology alignment (OA) problem and intro-
duce a semantic alignment quality measure based on the
difference between the similarity functions defined at the input
and on target ontologies. In another work Wang et al. [59], the
authors introduce a tree mapping algorithm defined as an optimal
search problem based on a binary tree-valued similarity measure
derived from three ontology-based similarity measures. In the the-
ory of inventive problems Yan et al. [61], the authors propose a
method to solve the inventive problem based on the definition of
a short text similarity measure as the maximum of the pairwise
Lin similarity measure between concept sets. In the field of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.08.019&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2015.08.019
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http://dx.doi.org/10.1016/j.knosys.2015.08.019
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bioengineering Sánchez and Batet [50], the authors propose a
reformulation of some known ontology-based similarity measures,
which relies on the length of shortest path between concepts in
terms of an IC model. In Couto and Pinto [7] and Pesquita et al.
[42], the authors survey other applications of ontology-based
semantic similarity measures in bioengineering, such as the pre-
diction of protein functions.

From an abstract standpoint, any comparison of concepts
requires the evocation of a common conceptual model where the
comparison takes place. Much cognitive evidence suggests that
human beings organize knowledge in a hierarchical manner,
through a categorization process of the reality. It is a known fact
that the similarity notion is mainly encoded by the ‘‘is-a” relation-
ships within a taxonomy. Any taxonomy on a set of concepts C is
defined formally by a triplet C ¼ C;6C ;Cð Þ, where C;6Cð Þ is a par-
tially ordered set, and C 2 C is a distinguished supreme element
called the root, such that 8ci 2 C ! ci6CC. In this way, the
ontology-based semantic similarity problem can be formulated
as follows: given a taxonomy of concepts C ¼ C;6C ;Cð Þ and two
input words evocating two sets of concepts in C, find a binary func-
tion sim : C � C ! R, that approximates, as well as possible the
degree of similarity as perceived by a human being. In this work,
we focus in the study of ontology-based similarity measures and
IC models defined on a single taxonomy, which is based solely on
”is-a” relationships, despite other works, such as Li et al. [29] and
Pirró and Euzenat [44], also consider ‘‘part-of” relationships.

In some applications, the availability of a single ontology to
compute similarity measures could be a serious drawback, espe-
cially for applications requiring vocabularies and concepts from
different technical domains. This latter problem has given rise to
the proposal of methods for the estimation of semantic similarity
measures combining multiple ontologies, such as the method for
feature-based measures proposed in Solé-Ribalta et al. [57], as well
as the method for IC-based similarity measures proposed in Batet
et al. [4]. This latter work is especially relevant to our work due
Table 1
State-of-the-art ontology-based similarity measures evaluated in our experiments.

Reference

Resnik [47]
Jiang and Conrath [23]

Lin [30]

Pirró and Seco [45]

Pirró and Euzenat [44]

Meng and Gu [31]

Lastra-Díaz and García-Serrano [26]

Reference

Hadj Taieb et al. [15]
to its direct application to the IC models and similarity measures
studied herein.

The taxonomy-based similarity estimation is a very old prob-
lem, which has been researched since the nineteen-seventies in
different fields, ranging from cognitive psychology Tversky [58],
to information retrieval Rada et al. [46]. Most of works categorize
the different ontology-based semantic measures into three fami-
lies, although there are also hybrid approaches, as follows: (1)
edge-counting measures, whose pioneering work has been carried
out by Rada et al. [46], (2) IC-based measures, whose main refer-
ences are Resnik [47], Jiang and Conrath [23] and Lin [30], and
the (3) feature-based measures, whose pioneering work has been
carried out by Tversky [58], and the most recent one is Sánchez
et al. [53].

The state of the art in ontology-based semantic similarities and
distances is defined by the family of intrinsic IC-based measures,
which are defined by the combination of one intrinsic IC model
with any IC-based measure. This statement is endorsed by several
WordNet-based benchmarks in the literature, such as Budanitsky
and Hirst [6], Sánchez et al. [52], Pirró [43], Hadj Taieb et al. [15]
and Lastra-Díaz and García-Serrano [26]. Despite there being some
relevant non IC-based similarity measures in the literature, such as
the feature-based measure proposed in Sánchez et al. [53], and the
hyponym-based approach proposed in Hadj Taieb et al. [15], the
mainstream is still the proposal of new intrinsic IC-based models
and measures, such as the works in Pirró and Euzenat [44], Meng
et al. [33], Gao et al. [12], and Lastra-Díaz and García-Serrano [26].

The IC-based similarity measures need a concept-valued func-
tion, called the IC model, which defines the IC value for each con-
cept within the ontology. Given a taxonomy of concepts
C ¼ C;6C ;Cð Þ, an information content model is a concept-valued
function IC : C ! Rþ [ 0f g, which represents an estimation of the
information content for every concept ci 2 C, defined by
IC cið Þ ¼ �log2 p cið Þð Þ, where p cið Þ is the occurrence probability of
the concept ci. Once the IC-based measure is chosen, the IC model
Definition of the IC-based similarity measures

simResnik c1; c2ð Þ ¼ IC MICA c1; c2ð Þð Þ
dJ&C c1; c2ð Þ ¼ IC c1ð Þ þ IC c2ð Þ � 2IC MICA c1; c2ð Þð Þ
simJ&C c1; c2ð Þ ¼ 1� 1

2 dJC c1; c2ð Þ
simLin c1; c2ð Þ ¼ 2IC MICA c1 ;c2ð Þð Þ

IC c1ð ÞþIC c2ð Þ

simP&S c1; c2ð Þ ¼
3IC MICA c1; c2ð Þð Þ
�IC c1ð Þ � IC c2ð Þ; if c1 – c2

1; if c1 ¼ c2

8<:
simFaITH c1; c2ð Þ ¼ IC MICA c1 ;c2ð Þð Þ

IC c1ð ÞþIC c2ð Þ�IC MICA c1 ;c2ð Þð Þ

simMeng c1; c2ð Þ ¼ esimLin c1 ;c2ð Þ � 1 ¼ e
2IC MICA c1 ;c2ð Þð Þ
IC c1ð ÞþIC c2ð Þ � 1

simcosJ&C c1; c2ð Þ ¼ 1� cos p
2 1� dJ&C c1 ;c2ð Þ

2�maxdJ&C

� �� �
maxdJ&C

¼ maxc2Leaves Cð Þ IC cð Þf g
Definition of the non IC-based similarity measures

simTaieb c1; c2ð Þ ¼ TermDepth c1; c2ð Þj j�
TermHypo c1; c2ð Þ

TermDepth c1; c2ð Þ ¼ 2� depth c1; c2ð Þ
depth c1ð Þ þ depth c2ð Þ

TermHypo c1; c2ð Þ ¼ 2� SpecHypo c1; c2ð Þ
SpecHypo c1; c2ð Þ þ SpecHypo c1; c2ð Þ

SpecHypo c1; c2ð Þ ¼ 1� log HypoValue cð Þð Þ
log HypoValue rootð Þð Þ

HypoValue cð Þ ¼
X

c02HypoInc cð ÞP depth c0ð Þð Þ

P depth c0ð Þð Þ ¼ c0 2 Cjdepth c0ð Þ ¼ depth cð Þf gj j
Cj j

depth cð Þ ¼ length of the longest ascending path to root
HypoInc cð Þ ¼ c0 2 C j c0 6 cf g
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is the mainly responsible for the definition of the notion of similar-
ity and distance between concepts. Therefore, each IC model
defines the underlying semantic metric of the base taxonomy,
when it is interpreted as a metric space. Another application of
the IC models is the definition of semantic relatedness measures.
For instance, in Pirró and Euzenat [44], the authors introduce an
extended IC model which integrates ‘‘part-of” relationships. Then,
the extended IC model is combined with the simFaITH similarity
measure shown in Table 1 to define a relatedness measure.

The IC models are categorized into two main groups according
to the information source used in their computation: (a) corpus-
based IC models, such as that proposed in Resnik [48], and (b)
intrinsic IC models, which are based on the information encoded
into the ontology structure. The main drawback of the corpus-
based IC models is the difficulty of getting a well-balanced and dis-
ambiguated corpus for most conceptual models. This latter fact has
encouraged the development of intrinsic IC models, such as the
pioneering work in [56], whose core hypothesis is that the IC val-
ues can be estimated directly from the structure of the taxonomy.
Thus, the development of new intrinsic IC-based measures is
divided into two closely related problems: (1) the proposal of
new intrinsic IC models, as in our work, and (2) the proposal of
new IC-based similarity measures.
1.1. Main motivation and hypothesis

The main motivation for this work is our observation that the
conditional probability functions encode some structure axioms
that should be verified by any IC model, but the IC models in the
literature do not consider them, with the exception of the work
of Sebti and Barfroush [55]. Our main hypothesis is that the explicit
encoding of these structure axioms in the IC models should lead us
to improve the performance of the IC models in semantic similarity
tasks, and to a better understanding of the problem.

A second motivation for our work is a first try at integrating
some ideas in cognitive psychology into the IC models. In [13,
section 2.8], Gärdenfors introduces a conceptual space model
based on a Voronoi diagram, with the aim of explaining a number
of plausible production mechanisms for the vagueness of concepts
and their categorical perception. However, Gärdenfors does not
provide a specific metric for this space, which is precisely the
aim of this paper, and the whole family of intrinsic IC models. In
[13, p.46], the author notes that the mechanisms that explain the
vagueness notion, also explain another phenomenon in the cogni-
tive perception of categories which can be defined as follows: the
instance of a concept is more quickly perceived as belonging to another
category, when the distance from the prototype of the category
increases. This last idea can be formulated through the definition
of the cognitive similarity function as a non-linear function of sigmoid
type over the underlying metric of the conceptual space, which led
us to the core idea behind the cognitive IC models called
CondProbLogistic and CondProbCosine.
1.2. Definition of the problem and contributions

The main aim of this paper is to introduce a new family of
intrinsic and corpus-based IC models that share a common compu-
tational and algebraic structure. The family includes five intrinsic
IC models, called CondProbHypo, CondProbUniform, CondProbLeaves,
CondProbLogistic and CondProbCosine, and one corpus-based IC
model that completes the family, called CondProbCorpus. The pro-
posed IC models are based on two previously unconsidered
notions: (1) the preservation of the probabilistic structure of the
taxonomy, encoded by the edge-based conditional probability,
and (2) the explicit modeling of a cognitive similarity notion within
the IC model. Our work belongs to the family of intrinsic IC models
for IC-based semantic measures, and it is inspired by an unex-
plored relationship between the Jiang–Conrath distance and the
length of the shortest path between concepts on an IC-based
weighted graph, as well as some remarks from Gärdenfors on the
perception distance between concepts.

In addition, the work includes other significant contributions.
First, we carried-out a large benchmark of IC-based models and
similarity measures on WordNet 3.0, which is based on our own
code implementation in order to replicate previous methods and
results reported in the literature. The experiments include the five
most relevant datasets, thirteen intrinsic IC models, four corpus-
based IC models, the eight best IC-based similarity measures
reported in Lastra-Díaz and García-Serrano [26], and one intrinsic
non IC-based measure introduced in Hadj Taieb et al. [15]. Third,
we introduce a new comparison between intrinsic and corpus-
based IC models that allows some previous conclusions on the out-
performance of the intrinsic IC models over the corpus-based to be
refuted. This latter finding confirms a similar finding in our afore-
mentioned work in a more conclusive manner, in which we prove
that ‘‘the margin of performance between the intrinsic and corpus-
based IC models is much smaller than the research community first
thought”. Fourth, encouraged by the latter finding we propose a
new baseline for IC models defined by two corpus-based IC models
based on an unexplored WordNet-based frequency file, and the
Resnik and CondProbCorpus IC models.

The rest of the paper is structured as follows. In Section 2, we
review the literature on ontology-based similarity measures, espe-
cially those evaluated in this study. Section 3 is devoted to review-
ing the literature on intrinsic IC models. Section 4 introduces the
new family of IC models. In Section 5, we describe the evaluation
methodology and the results obtained. Section 6 introduces our
discussion of the results. Finally, we present our conclusions and
future work.

2. Ontology-based similarity and distance measures

The literature on ontology-based semantic similarity measures
and distances is very extensive. Herein, we focus in the family of
IC-based measures and models, in which our work is framed. For
a broader and recent survey, we refer the reader to the book of
Harispe et al. [18], and our state of the art in Lastra-Díaz and
García-Serrano [26]. Other general surveys can be found in
Saruladha et al. [54] and Sánchez et al. [53], whilst in the field of
bioengineering, we find the works in Pesquita et al. [42], Hsieh
et al. [22], Cross et al. [9], and Harispe et al. [19].

Modern research into the area starts with the work in Rada et al.
[46]. In this work, the authors propose to use the length of the
shortest path between concepts on an ontology as a distance mea-
surement between them. Their core hypothesis is that the concep-
tual distance, or similarity, between concepts in a semantic
network, is proportional to the length of the path that links them.
Other subsequent works propose different similarity measures
based on the integration of the length of the shortest path, such
as Lee et al. [28], Wu and Palmer [60], Leacock and Chodorow
[27] and Hirst and St-Onge [21].

The main drawback of the measures in the edge-counting fam-
ily above, called the uniform weighting premise herein, is that they
implicitly assume that every edge has the same relevance in the
computation of the overall length of the path, without considering
the depth or occurrence probability of the concepts. In Resnik [47],
the author proposes a new semantic similarity based on an Infor-
mation Content (IC) measure, whose main motivation is to remove
the uniform weighting premise of the edge-counting measures. The
basic hypothesis behind all the IC-based similarity measures is that
the more abstract concepts should have lower information content



Table 2
State-of-the-art Information Content models evaluated in this work.

IC models Definition

Resnik [48] ICResnik ¼ �log2 bp cið Þ� �
; bp cið Þ ¼ f cið Þ

N ¼ f cið Þ
f Cð Þ

f cið Þ ¼ TF cið Þ þ IF cið Þ ¼ TF cið Þ þP
8cj jci2LA cjð Þf cj

� �
Seco et al. ICSeco cð Þ ¼ 1� log Hypo cð Þj jþ1ð Þ

log max nodesð Þ
Zhou et al. ICZhou cð Þ ¼ k 1� log Hypo cð Þj jþ1ð Þ

log max nodesð Þ
� �

þ 1� kð Þ log depth cð Þð Þ
log depthmaxð Þ ; k

� ¼ 1
2 ðdefaultÞ

Sebti and Barfroush ICSebti cð Þ ¼ �log2 pð Þ, p identical to CondProbUniform
Sánchez et al. [52]

ICS�anchez2011 cð Þ ¼ �log2
Leaves cð Þj j

subsumers cð Þj jþ1
maxLeavesþ1

� �
Sánchez et al. [53] ICS�anchez2012 cð Þ ¼ �log2

commonness cð Þ
commonness rootð Þ

� �
commonness cð Þ ¼ 1

Subsmers cð Þj j ; c leaf
commonness cð Þ ¼ P

commonness lð Þ
8ljl is leaf and l<c

; c not leaf

8<:
Harispe

ICHarispe cð Þ ¼ �log2
Leaves cð Þj jþ1
Subsmers cð Þj j

maxLeaves

� �
Meng et al.

ICMeng cð Þ ¼ log depth cð Þð Þ
log depthmaxð Þ � 1�

log 1þ
P

a2Hypo cð Þ
1

depth að Þ

� �
log Nodemaxð Þ

0@ 1A
Yuan et al. ICYuan cð Þ ¼ f depth cð Þ 1� f leaves cð Þð Þ þ f hyper cð Þ

f depth cð Þ ¼ log depth cð Þð Þ
log depthmaxð Þ

f leaves cð Þ ¼ log Leaves cð Þj jþ1ð Þ
log Leavesmaxþ1ð Þ

f hyper cð Þ ¼ log Hyper cð Þj jþ1ð Þ
log Nodemaxð Þ

8>><>>:
Hadj Taieb et al. IC cð Þ ¼ P

a2HyperInc cð ÞScore að Þ
� �

� AvgDepth cð Þ
AvgDepth cð Þ ¼ 1

HyperInc cð Þj j �
P

c02HyperInc cð Þdepth c0ð Þ
Score cð Þ ¼ P

c02DirectHyper cð Þ
depth c0ð Þ

HypoInc c0ð Þj j
� �

� HypoInc cð Þj j
HypoInc cð Þ ¼ a 2 C j a 6 cf g
HyperInc cð Þ ¼ a 2 C j c 6 af g
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than the more specific ones, and the higher the conditional proba-
bility between any concept and its parent, the lower its distance.
According to Resnik, the IC measure for every concept ci 2 C is
the negative logarithm of its occurrence probability p cið Þ, as
defined in Eq. (1). Resnik defines the similarity measure between
two concepts as the IC value of the most informative common
ancestor (MICA), as shown in Table 1.

IC cið Þ ¼ �log2 p cið Þð Þ ð1Þ
One drawback of the Resnik similarity measure is that it only

considers the IC value of the lowest common ancestor concept,
not the information along the path between concepts. With the
aim of bridging this gap, in Jiang and Conrath [23] the authors
introduce the IC-based semantic distance denoted by dJ&C in
Table 1, whose similarity version, denoted simJ&C , is defined by a
negative linear transformation. With the same aim, in Lin [30]
the author introduces the similarity measure denoted by simLin in
Table 1, which could be interpreted as an IC-based formulation
of the set-based Dice coefficient.

In Tversky [58], the authors introduce the first feature-based
semantic similarity measure, which is defined by a weighted vari-
ant for the complement of the symmetric difference between the
feature set of two concepts. Despite the meaning of the Tversly
measure is clear and well-founded, this measure can only be used
whether the feature sets for all the concepts within a taxonomy are
known, which is a strong limitation for its practical use. With the
aim to bridge the gap in the Tversky measure, in Sánchez et al.
[53] the authors introduce a feature-based similarity measure
based on set theory operations between the ancestor sets of the
concepts to be compared. From other standpoint, in Pirró and Seco
[45] the authors propose an IC-based reformulation of the Tversky
similarity measure that you can see in Table 1. One drawback of
the latter measure is that ‘‘it treats the similarity between identical
concepts as a special case and can give as output negative values”
[45, p. 619]. In order to overcome this drawback, in Pirró and Euze-
nat [44], the authors introduce another reformulation of the Tver-
sky similarity measure, called FaITH, which is shown in Table 1.

In Meng and Gu [31], the authors introduce the IC-based
semantic similarity shown in Table 1, which is defined by a
exponential-like transformation of the classic Lin measure.

In Lastra-Díaz and García-Serrano [26], we introduce a new
family of IC-based similarity measures derived from the Jiang–
Conrath distance, which is based on the observation that the con-
version of the Jiang–Conrath distance into a similarity measure is
an unknown and likely not linear transformation. To bridge this
gap, we propose the similarity measure called cosine-normalized
Jiang–Conrath (cosJ&C) that is shown in Table 1. The cosJ&C mea-
sure is based on the normalization of the Jiang–Conrath distance
through a normalized exponential-like function. In this latter work,
we also introduce two hybrid IC-based similarity measures called
weighted J&C and cosine-normalized weighted J&C similarity mea-
sures. These latter measures rely on the computation of the length
of the shortest path between concepts on a weighted taxonomy,
whose edge weights are defined as the information content of
the conditional probabilities between child and parent concepts.
In our aforementioned work, we carried-out a benchmark with
17 ontology-based similarity measures based on a common code
implementation, the winner measures being the cosJ&C similarity,
the simTaieb c1; c2ð Þ similarity measure proposed in Hadj Taieb et al.
[15], and the Meng and Gu [31] measure shown in Table 1. In these
benchmarks, we evaluated most of hybrid IC-based similarity mea-
sures reported in the literature, such as the pioneering work in Li
et al. [29], the measures proposed in Zhou et al. [64], Meng et al.
[33] and Gao et al. [12], and our two aforementioned measures
called wJ&Csim and coswJ&Csim. Despite most of hybrid IC-based
measures obtained rivaling results as regards the state of the art,
they did not outperform the cosJ&C similarity measure, or the
Meng and Gu [31] and Hadj Taieb et al. measures. The hybrid
coswJ&C similarity measure obtains the highest correlation values
in the Rubenstein and Goodenough (RG65) dataset, however, this
measure, as well as the rest of hybrid measures, did not obtain con-
vincing results that justify their high computational cost. For this
reason, we refute the practical use of any current hybrid IC-based
measures, unless they are able to outperform other less complex
measures convincingly, thus, we discard these hybrid IC-based
measures from the experiments herein.

In Hadj Taieb et al. [15] the authors introduce the intrinsic sim-
ilarity shown in Table 1, which is based on a new way of comput-
ing the contribution of the hyponym set of a concept. Despite this
measure not being based on an IC model, it is closely related to the
Seco et al. IC model and obtains state-of-the-art results in our
aforementioned work. Thus, in order to offer a complete image of
the state of the art in ontology-based similarity measures, we
include the Hadj Taieb et al. measure in our benchmarks.
3. Related work on information content models

In Resnik [48], the author introduces the most broadly accepted
corpus-based IC model for the evaluation of semantic similarity
tasks, which is shown in Table 2. The Resnik method is based on
the estimation of the concept probabilities through the frequency
counting of concept occurrences in a training corpus. Each occur-
rence in the corpus of a word contained in WordNet is counted as
an occurrence of all its subsumed concepts. In [41, p.34], Pedersen
describes the Resnik frequency counting method used to build the
WordNet-based frequency files used in our experiments, Pedersen
[39], as well as the corpus-based IC models evaluated in his
paper series on similarity measures in WordNet. Following the
notation of Pedersen to define the ICResnik model, each concept
frequency f cið Þ is defined as the sum of the term-frequency (TF)
occurrences of the concept ci, plus the inherited frequency (IF) of
each subsumed child concept. The estimated probability bp cið Þ of
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each taxonomic concept ci 2 C is defined as the ratio of the concept
frequency to the root frequency, where N is the total number of
occurrences of any noun within the corpus and its value matches
the frequency of the root concept C. This frequency counting does
not take into account the word senses, although Resnik suggests
that a sense-tagged corpus could be used to improve this issue.
In another work Pedersen [40], the authors prove that the IC mod-
els derived from a non sense-tagged corpus perform better than
the sense-tagged ones. Like most IC models, the Resnik method
does not satisfy the axioms for a well-founded IC model described
in Section 4, encouraging the proposal of the CondProbCorpus IC
model in order to complete the proposed family herein.

Encouraged by the drawbacks in the aforementioned corpus-
based IC models, in Seco et al. [56] the authors introduce the first
known intrinsic IC model in the literature. The core idea of the
intrinsic IC models is the computation of the IC values using solely
taxonomical features, such as: the density of the descendant or
ancestor nodes (hyponym set/hypernym set), the subsumed leaf
nodes, or the node depth among others. During the last decade,
the development of intrinsic IC models has become one of the
mainstreams of research in the area. Among the main intrinsic IC
models proposed in the literature, we find the works in Zhou
et al. [63], Sebti and Barfroush [55], Sánchez et al. [52], Sánchez
and Batet [51], Yuan et al. [62], Harispe et al. [17] and Hadj Taieb
et al. [14]. In Table 2, we summarize the definition of the state-
of-the-art intrinsic IC models implemented in our experiments.

The Seco et al. IC model is based on the idea that the informa-
tion content is inversely proportional to the number of hyponyms
of a concept. Looking at the expression for ICSeco in Table 2, we can
appreciate that the model is carrying out some type of estimation
of the concept probabilities, such as the ratio of the logarithms of
hyponyms and the total number of concepts. The Seco et al. IC
model assumes, in an underlying way, a uniform occurrence prob-
ability for every concept when it is measuring the set of hyponyms.
This method does not satisfy the structure axioms introduced
herein, moreover the IC values in the leaf concepts are artificially
forced to 1. However, this IC model is closely related to the Con-
dProbHypo model, in which we use the hyponym ratio between
parent and children concepts to estimate their conditional proba-
bilities. In addition, we can prove, taking the limits on the number
of total concepts, that the CondProbHypo model could be inter-
preted as a normalization of the Seco et al. IC model that satisfies
the probabilistic structure axioms introduced in Section 4.1, when
the base ontology is tree-like. Specifically, this normalization is
responsible for the better result of CondProbHypo on some similar-
ity measures closely related to the conditional probability notion,
such as the Jiang–Conrath distance.

In Zhou et al. [63], the authors note that the Seco et al. IC model
does not consider the depth of the concepts, thus, two concepts
with an equal number of hyponyms, but very different depths,
can produce similar IC values. This fact contradicts the expected
behavior of the lowest depth concepts, where we expect, according
to the IC hypothesis, that the more abstract ones demonstrate a
lower information content. Encouraged by this drawback, Zhou
et al. introduce an intrinsic IC model, denoted herein as ICZhou,
which is based on a linear combination of the Seco et al. IC model
with an estimation of the information content based on the depth
of the concepts on the taxonomy. Like the IC model in Seco et al.
[56], the Zhou et al. IC model does not consider the structure
axioms related to the conditional probabilities.

In Sebti and Barfroush [55], the authors introduce a naive intrin-
sic IC model which assigns uniform conditional probabilities
between each concept and its children, then the probabilities and
IC values of the taxonomynodes are recovered by applying the same
iterative algorithm that we use in our IC models. Although the
authors do not explain how to compute the model for ontologies
with multiple inheritance as we have done, it is obvious that they
must be aware of this case. Their IC model matches the simplest
model of our family, called CondProbUniform, thus, we consider this
model as our direct predecessor. Unlike this work, they do not pro-
pose a general structure-preservation framework as introduced
herein.Despitedevelopingour ICmodels in an independentmanner,
we consider the Sebti et al. IC model as the first well-founded IC
model based on the notion of conditional probability, according to
the general framework of well-founded IC models proposed herein.

In Blanchard et al. [5], the authors introduce a collection of
intrinsic IC models based on different hypotheses to estimate the
concept probabilities. Two of their methods are related to our
CondProbUniform and CondProbLeaves IC models, however, like
other models, they do not consider the structure axioms defined
in our family of well-founded IC models. In order to evaluate their
models, the authors compute the correlation between each ICmodel
and one corpus-based IC model. The paper only reports the correla-
tion values for two intrinsic ICmodels based on the node depths and
subsumed leaves ratio, reporting respectively an approximated cor-
relation values of 0.3 and 0.5 in WordNet. The comparison method
introduced by the authors is very appropriate for evaluating directly
the fitting quality of the intrinsic IC models as regards the corpus-
based ones, in order to estimate how well an intrinsic IC model
approximates a corpus-basedmodel. Indeed, in the light of the find-
ings in Lastra-Díaz and García-Serrano [26] and this work, we have
considered folowing a similar approach into a future deeper study
between intrinsic and corpus-based IC models. Despite the pro-
posed ICmodels deserving to be evaluated, thework does not report
any result based on any standard similarity benchmark on the fam-
ily of IC-based measures, such as we do herein. Therefore, we have
discarded to evaluate them in our experiments due to the impossi-
bility of replicating and comparing their results.

In Sánchez et al. [52], the authors argue that the hyponym set of
a concept includes many abstract concepts which rarely occur in
any corpus, which follows that the use of the hyponyms set, such
as that in Seco et al. [56], is not appropiate to estimate the IC val-
ues. Encouraged by their observation, Sánchez et al. propose an IC
model based on a ratio of leaves and subsumers of a concept with
regard to the total number of concepts. The use of leaves count
makes the model less dependent of the number of inner (abstract)
concepts of any taxonomy. Despite the argument against the hypo-
nyms being plausible, and well-founded, we do not think that it is
completely true in daily language. Like the other aforementioned
models, this model does not verify the structure axioms introduced
in this work.

In addition to the arguments of Sánchez et al. [52] endorsing the
use of the leaves as features to compute the IC model, we provide
here other significant argument to endorse this idea, which is
closely connected with the same structuralist design-principles
followed herein. The canonical definition of a discrete probability
space in any taxonomy, such as that introduced in Section 4.1,
starts with the assignment of a probability function based on a par-
tition of the entire sample space defined by the leaf concepts.
Therefore, the true probability of any subset of the sample space
is simply the sum of the probabilities of its subsumed leaf con-
cepts. From this point of view, we would expect that the leaf-
based IC model, called CondProbLeaves, or the Sánchez et al. [52]
model, would have a clear advantage over the rest of methods.

Following the ideas of Sánchez et al. [52], Harispe introduced a
minor variant of this model, as shown in Table 2. The new IC model
is called Harispe2012 in the implementation code of the Semantic
Measures Library Harispe et al. [17]. Despite this IC model has
not published in the literature, we have implemented it in our
experiments for the sake of completeness.

In Sánchez and Batet [51], the authors introduce an intrinsic IC
model based on a notion called commonness, which derives from a
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different use of the leaves and subsumer sets associated to any
concept. Their model tries to capture the occurrence probability
of each leaf, such that the leaves with lower occurrence probability
have a lower information content. The probability of every leaf
concept is approximated by the inverse of the number of subsumer
concepts. This model does not consider the structure axioms intro-
duced herein.

In Meng et al. [32], the authors introduce the intrinsic IC model
shown in Table 2, which is based on the following taxonomic fea-
tures: (1) the depth of the concept, (2) the depth of the hyponyms
of the concept, and (3) the number of hyponyms. The model is
defined by the product of two different estimations of the IC value.
The first one matches the depth ratio introduced in Zhou et al. [63],
while the second one is similar in structure to the hyponym-based
Seco et al. model, but unlike the number of hyponyms, Meng et al.
use the inverse of the depth values associated to the hyponyms.
The motivation of this work follows the ideas behind the use of
the hyponyms and depth features in Zhou et al. [63], but Meng
et al. also consider some new cases: (1) two concepts with the same
number of leaves, but a different number of hyponyms should have
a different IC value, and (2) two concepts with the same number of
hyponyms, but at different depths, should also have different IC val-
ues. The core idea of this work is to take into account the depth of
each hyponym in its contribution to the IC estimation. Unlike the
Zhou et al. model, which uses a linear combination of IC estimation
factors, this IC model combines two independent estimations of the
IC values through a product. Finally, this model is the first one to
introduce the inverse of depth as a taxonomic feature for the impli-
cit estimation of the occurrence probability for each concept.

In Yuan et al. [62], the authors introduce an intrinsic IC model
which could be categorized, together with the models of Zhou
et al. [63] and Meng et al. [32], in a subfamily of intrinsic IC models
that combines taxonomic features introduced in other models, or
new variants, using linear combinations or products of them. This
model combines three independent factors in a closed formula,
from among which we have the depth ratio introduced in Zhou
et al. [63] and also used in Meng et al. [32], as well as two new ratio
factors based on leaves and hypernyms. We note that the parame-
ters of the logarithm in the formulas in Table 2 includes the sum of
a 1 factor because the leavesðcÞ and hypoðcÞ functions do not count
the input concept.

Finally, in Hadj Taieb et al. [14], the authors introduce another
intrinsic IC model shown in Table 2, whose formulation relies on
a new method of evaluating the contribution of the hyponym set.
The model is based on the product of the average depth ratio of
the concept with regard to the number of hyponyms, and a
weighted linear combination of the average depth of the concepts
in the hyponym sets. The core contribution of the model is the def-
inition and use of the average depth for the hyponym sets.

In summary, the review of the state of the art shows that a broad
set of taxonomic features has been successfully proposed to com-
pute the IC models. However, most of intrinsic IC models neither
consider the structure axioms derived from the conditional proba-
bility, nor the cognitive similarity that we introduce in this work.

4. The family of well-founded IC models

In this section, we introduce the new family of well-founded IC
models based on the conditional probability notion between child
and parent concepts. The new IC models are based on the estima-
tion of the conditional probabilities between child and parent con-
cepts, which are edge-valued functions. Therefore, the proposed
method for the design of new IC models is edge-based, unlike most
previous models in the literature that use some type of node-based
computational method, with the exception of Sebti and Barfroush
[55]. Despite only proposing three different methods for the intrin-
sic estimation of the conditional probabilities herein, we define an
open framework for the design of new IC models based on the pro-
posal of alternative methods for their estimation. Second, we intro-
duce the use of two cognitive-based scaling functions (sigmoid and
exponential) as a means of encoding a notion of cognitive similar-
ity, as suggested by Gärdenfors in [13, Section 2.8], according to
some results obtained in cognitive psychology.

4.1. Preliminary concepts and notation

For the sake of clarity, we use the lowercase letter p to denote a
concept-valued probability function in a set of concepts C. On the
other hand, the uppercase P is reserved to denote a probability
measure, which is a set-valued function in the power set of the
sample space. Finally, the conditional probability functions
between concepts are denoted in lowercase by p cijcj

� �
.

All the IC models proposed herein share the same computa-
tional structure, defined by the following three steps: (1) estima-
tion of the edge-based conditional probabilities p cijcj

� �
, (2)

recovery of the concept-valued probability density function p cið Þ,
and (3) computation of the node-based IC values using the stan-
dard definition IC cið Þ ¼ �log2 p cið Þð Þ. The only difference between
the IC models is the method used to estimate the conditional prob-
abilities. We call the new IC models well-founded because they are
designed from first principles in order to satisfy the structural rela-
tionships of a discrete probability space and an information con-
tent model defined on this space.

In Jiang and Conrath [23], the authors prove that their semantic
distance dJ&C c1; c2ð Þ is equivalent to the length of the shortest path
between concepts c1 and c2 over a weighted graph derived from
the taxonomy, and the edge weights are defined by (2). Despite
the authors claiming that their distance is a metric on any type
of taxonomy, in Orum and Joslyn [36] the authors prove that it is
only true for the tree-like taxonomies, not for general taxonomies
with multiple inheritance.

Every taxonomy C ¼ C;6C ;Cð Þ induces a graph G ¼ E;Vð Þ in the
usualmanner,where every concept is a vertex of the graph, itmeans
V ¼ C, and there is an edge between each concept ci and its direct
parents, also called the lowest ancestors of ci and denoted as
LA cið Þ. The IC-based weighting function (2) allows us to introduce
a shift of paradigm for the definition of the ICmodels, wemove from
a node-based IC computation model to an edge-based model.

w : E ! R

w eij
� � ¼ �log2 p cijcj

� �� � ¼ IC cið Þ � IC cj
� �

E ¼ ci; cj
� � � C � C j cj 2 LA cið Þ� 	 ð2Þ

Formally, a probability space is a triplet X;F ; Pð Þ, where X is a
non-empty set, called the space of outcomes or samples, F is a
r-algebra that defines the collection of all possible events, where
every event is defined as a subset of X, and finally, P : F ! R is a
probability measure. The formal definitions of the probability mea-
sures and probability spaces can be consulted in [2, Section 1.2].

Definition 1 (Probability measure). Given any non-empty set X
and a collection F of subsets on X, such that F is a r-algebra, then
a set-valued function P : F ! R is a probability measure if it
satisfies the following axioms:
1. 0 6 P Að Þ 6 1;8A 2 F .
2. P Xð Þ ¼ 1; P £ð Þ ¼ 0.
3. If A ¼ A1;A2; . . . ;Anf g is a family of disjoint subsets of F , such

that 8Ai;Aj 2 A ) Ai \ Aj ¼ £, then:[� � X

P

i2IAi ¼
i2IP Aið Þ



Table 3
Family of well-founded intrinsic and corpus-based IC models proposed in this work.
For all the IC models, P(ci) is recovered using the probability recovery Algorithm 1.

IC models Definition

CondProbHypo ICCPHypo cið Þ ¼ �log2 pHypo cið Þ
� �

pHypo cijcj
� � ¼ Hypo cið Þj jþ1P

8ck jcj2LA ckð Þ Hypo ckð Þj jþ1ð Þ

CondProbUniform ICCPUni cið Þ ¼ �log2 pUniform cið Þ
� �

pUniform cijcj
� � ¼ 1

children cjð Þj j
CondProbLeaves ICCPLea cið Þ ¼ �log2 pLeaves cið Þð Þ

pLeaves cijcj
� � ¼ Leaves cið Þj jþ1P

8ck jcj2LA ckð Þ Leaves ckð Þj jþ1ð Þ

CondProbCorpus ICCondProbCorpus cið Þ ¼ �log2 p cið Þð Þ
p cið Þ ¼ 1; ci ¼ CP

8cj2LA cið Þp cj
� �

pcorpus cijcj
� �

; ci – C



pcorpus cijcj

� � ¼ max 1;f cið Þf gP
8ck jcj2LA ckð Þmax 1;f ckð Þf g

CondProbLogistic ICCPLog cið Þ ¼ �log2 pLog cið Þ
� �

pLog cijcj
� � ¼ ul � pHypo cijcj

� �
ul x : kð Þ ¼ 1

1þe
�k x�1

2ð Þ ; k
� ¼ 8

CondProbCosine ICCPCos cið Þ ¼ �log2 pCos cið Þð Þ
pCos cijcj

� � ¼ uc � pHypo cijcj
� �

uc xð Þ ¼ 1� cos p
2 x
� �
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If the space X is a countable set, and F is the power set of the
sample space X, denoted as 2X, the triplet X;F ; Pð Þ is called a dis-
crete probability space [2, Section 4.2]. In our case, the space of
samples X is discrete and is defined by the root concept C, such
that X :¼ C, and the set F is only the power set of the root concept
C. Here, we are defining the root concept C as the universal set of
the taxonomy, which follows that C :¼ C. We note that in the last
statement we are abusing the notation, because C is used to
denote the root element of C and the sample space X at the same
time.

We recall that the power set 2X of any set X is a complete lat-
tice when the inclusion relation # between subsets in X is used
as an order relation. This fact is closely related to the relationship
between the Jiang–Conrath distance and some types of metrics on
lattices, such as we note in Lastra-Díaz [24], and is detailed in a
work on the metric properties of the Jiang–Conrath distance
Orum and Joslyn [36].

Given a taxonomy C ¼ C;6C ;Cð Þ, where LC ¼ ck 2 C j 9= ci – ck;f
ci6Cckg is the set of leaves of the taxonomy, we can define a
discrete probability space C;F ; Pð Þ on C in the canonical manner
as follows: (1) we define the root concept C as the universal
sample space, (2) we define the set of leaf concepts LC � C as the
partition of disjoint sets of the sample space, such that C :¼ LC by
definition, (3) we define F as the power set on C, such that ci
# cj () ci 6Ccj, and finally, (4) we define a set-valued function
P : F ! 0;1½ � using a normalized leaf-valued function p ckð Þ.

The triplet C;F ; Pð Þ, as defined above, is a well-founded discrete
probability space, a fact that we formalize in Proposition 1, whose
formal proof is omitted through lack of space. In order to get a
well-founded probability space on any taxonomy, and derive the
new family of intrinsic IC models from it. Below we provide a
method to define any well-founded IC model based solely on the
estimation of the conditional probabilities, which constitutes the
core idea of this work.

Definition 2 (well-founded IC model). Given a taxonomy of con-
cepts C ¼ C;6C ;Cð Þ, and an IC model defined by the function
IC : C ! Rþ [ 0f g, we call it a well-founded IC model if it can be
written as IC cð Þ ¼ �log2 p cð Þð Þ where p cð Þ is a concept-valued
function defined by (4), and the functions p cijcj

� �
are the condi-

tional probabilities between any child concept ci and its parent
concepts cj, which satisfy the edge-based property in (3).
(1) Edge-based axiom. The sum of conditional probabilities
p cijcj
� �

of the children nodes ci on any parent cj node must
be equal to 1, as defined in Eq. (3), where LA cið Þ denotes
the set of lowest ancestors (direct parents) of any concept ci.
X

8ci jcj2LA cið Þp cijcj
� � ¼ 1 ð3Þ

Node-based axiom. The probability p cið Þ for each node ci must
(2)
be equal to the integration of the probabilities throughout
the graph, starting from the root node, as defined in Eq. (4).
p : C ! 0;1½ � � R

p cið Þ ¼
1; ci ¼ CP

8cj2LA cið Þp cj
� �

p cijcj
� �

; ci – C

(
ð4Þ

Leaf-based axiom. The probabilities of the leaf concepts sum
(3)
1.
X

ck2LC
p ckð Þ ¼ 1 ð5Þ
The axioms (1) and (2) above allow us to define a family of
well-founded intrinsic IC models based on the estimation of the
conditional probabilities p cijcj
� �

for each edge of the taxonomy,
such as is shown in Table 3. In Proposition 1, we show that given
a taxonomy C;6C ;Cð Þ, the leaf-based axiom (3) is a sufficient
condition to get a well-founded probability space. In addition, we
show in Proposition 2 that axioms (1) and (2) of a well-founded
IC model are sufficient conditions to build a leaf-valued function
p : LC � C ! 0;1½ � that satisfies the IC model axiom (3). Thus, this
last proposition proves that any well-founded IC model induces a
well-founded probability space on any base taxonomy, and the
whole system is supported by the structures derived from the
conditional probabilities. We omit all the proofs herein by lack
of space.

Proposition 1. Be a taxonomy C ¼ C;6C ;Cð Þ defined by a partially
ordered set C;6Cð Þ with a distinguished supreme element C, called the
root, and LC the set of leaves in C. If a set-valued positive function P is
defined from the leaf-valued function p as follows:
(1) P : 2C ! 0;1½ �
P Að Þ ¼ P

ck2LC\Ap ckð Þ

(2)
p : LC � C ! 0;1½ �P

ck2LC p ckð Þ ¼ 1

then the following facts are satisfied: (1) P is a probability mea-

sure, and (2) the triplet C;2C; P
� �

is a probability space.

Proposition 2. Let a taxonomy C ¼ C;6C ;Cð Þ and LC be the set of
leaves in C. Given a concept-valued function p defined by

p : C ! 0;1½ �

p cið Þ ¼
1; if ci ¼ CP

8cj2LAC cið Þp cijcj
� �

p cj
� �

; otherwise

(
then P LCð Þ ¼ 1, as given below:

P LCð Þ ¼
X

ck2LC
p ckð Þ ¼ 1
4.2. Construction of the well-founded IC models

In this section, we introduce three new intrinsic IC models
based on different methods to estimate the conditional probabili-
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ties, called CondProbHypo, CondProbUniform andCondProbLeaves,
which are disclosed in Lastra-Díaz and García-Serrano [25]. In
addition, we introduce two additional intrinsic IC models, called
CondProbLogistic and CondProbCosine, which rely on the composi-
tion of the hyponym-based conditional probability estimation with
two different cognitive-based similarity non-linear functions.
Finally, with the aim of bridging the same structure gap observed
in the corpus-based Resnik IC model, we introduce the
CondProbCorpus IC model to complete the family of well-founded
IC models.

As we have already outlined in Section 4.1, the computation of
our IC models is carried-out in three steps: (1) estimation of the
conditional probabilities p cijcj

� �
, (2) recovery of the probability

p cið Þ from the taxonomy structure and the p cijcj
� �

values, and (3)
computation of the IC values using Eq. (1). From axiom 2 we can
derive a direct algorithm for step (2), as defined below. Algorithm
1 works on any type of taxonomy, and satisfies the structure
axioms 2 and 3 in definition 2, whenever the conditional
probabilities p cijcj

� �
satisfy axiom 1, as is proven in proposition

2. This algorithm is graphically explained for tree-like taxonomies
in Sebti and Barfroush [55], although the authors do not follow a
generalized and formal structure-preserving approach, as we
do herein.

Algorithm 1 (Probability and IC recovery). This algorithm takes as
inputs: (1) a taxonomy C ¼ C;6C ;Cð Þ, and (2) a set of conditional
probabilities p cijcj

� �
for each edge within taxonomy. Then the

algorithm computes the probability and IC value for each concept
ci 2 C as follows: (1) the probability computation method must
build a total ordering of the concept in the taxonomy, which is
defined by an ordered list of concepts, such that every concept is in
a subsequent position to every one of its parent concepts; (2) the
method assigns a value of ‘‘1” to the probability of the root concept
C; (3) the algorithm traverses the concept nodes according to the
previously built total ordering, then it computes the probability
p cið Þ of every child concept as the sum on each parent of the
product of the parent probability through the conditional proba-
bilities p cijcj

� �
, as defined by formula (4 ) in Definition 2 above; and

finally (4) using the probabilities p cið Þ, we compute the IC values as
IC cið Þ ¼ �log2 p cið Þð Þ.

In Table 3, we summarize the six new IC models proposed
herein. The first four IC models correspond to four different meth-
ods of estimating the conditional probabilities p cijcj

� �
between any

concept ci and its parent concepts cj 2 LA cið Þ. The models CondProb-
Hypo, CondProbUniform, CondProbLeaves and CondProbCorpus sat-
isfy the structure axioms introduced in the previous section, and
all them share the same computational and algebraic structure.
However, the first three models are intrinsic and the last one relies
on corpus statistics. These models are computed in three steps as
follows: (1) computation of the conditional probabilities p cijcj

� �
,

(2) recovery of the probabilities p cið Þ from p cijcj
� �

using Algorithm
1, and (3) computation of the IC values using Eq. (1). For the formu-
las in Table 3, Hypo cið Þ and Leaves cið Þ denote respectively the set of
subsumed concepts and leaf concepts for any concept ci 2 C, with-
out including the base concept ci.

In Table 3, the CondProbLogistic and CondProbCosine IC models
represent two cognitive-based IC models, whose kernel functions
are shown in Fig. 1. We consider the conditional probabilities as
a linear measure of the degree of cognitive similarity between
the children and parent concepts in the taxonomy, because it is
the right place to integrate this notion of cognitive similarity
within the new IC models. Following the cognitive ideas suggested
in [13, Section 2.8], we define the cognitive similarity functions ul

and uc in the equations (6) and (7).
ul=uc : 0;1½ � � R ! 0;1½ � � R

ul x : kð Þ ¼ 1

1þ e�k x�1
2ð Þ ð6Þ

uc xð Þ ¼ 1� cos
p
2
x

� �
ð7Þ

Both functions, ul and uc , are combined with the CondProbHypo
model, because it obtains the best results from among the non-
cognitive models. Unlike the other non-cognitive IC models, these
models are computed in four steps: (1) the computation of the con-
ditional probabilities pHypo cijcj

� �
, (2) the computation of the cogni-

tive conditional probabilities pLog cijcj
� �

, or pCos cijcj
� �

, (3) the
recovery of the probabilities p cið Þ from pLog cijcj

� �
, or pCos cijcj

� �
using

the recovery algorithm 1, and (4) the computation of the IC values
using Eq. (1).

The function ul is a translated logistic function whose sigmoid
shape is defined by the constant k, as shown in Fig. 1. According
to our experiments, our preferred default value is k ¼ 8. On the
other hand, the uc corresponds to a scaling and translation of the
cosine function to obtain a normalized exponential-like function.
The sigmoid function ul is explicitly modeling the notion of cogni-
tive similarity suggested by Gärdenfors, it is an instance of a con-
cept being more quickly perceived as belonging to another
category, as the distance from the prototype of the category
increases.

Inspired by the successful exponential-type scaling defined in
the similarity measure of Meng and Gu [31], we wanted to study
a normalized exponential-shape function to compare its results
with the sigmoid function ul. For this reason, we defined the
cosine-based function uc shown in Fig. 1, which only matches
the cognitive similarity criterion for the low range of the function,
not the top part.

The final cognitive IC models generated by the CondProbLogistic
and CondProbCosinemodels are encoding a cognitive similarity, not
a classic information content measure, although their genesis and
derivation follow the IC approach. We also note that the functions
pLog cijcj

� �
and pCos cijcj

� �
do not satisfy the edge-based axiom 1 and

the leaves-based axiom 3, thus, despite the functions pLog cið Þ and
pCos cið Þ being computed using the probability recovery Algorithm
1, these functions do not allow formal probability measures to be
derived, according to the construction for well-founded IC models
introduced in the last section. This latter fact could look contradic-
tory to the structure-preserving spirit that this work defends, how-
ever, this approach has allowed us to find the place to integrate the
notion of cognitive similarity into our family of IC models. This
possibility, together with the cognitive similarity notion, has led
us to create two IC models that rival the state-of-the-art IC models.
These encouraging results show that it is a new line of research
that deserves to be explored.

5. Evaluation

The goals of the experiments described in this section are as fol-
lows: (1) the experimental evaluation of the proposed IC models
and their comparison with the state-of-the-art methods, (2) a
new and conclusive experimental study on the state of the art in
ontology-based similarity measures, (3) the replication of previ-
ously reported methods and results, (4) a new comparison
between intrinsic and corpus-based IC models, (5) a study into
the impact of the IC models on the IC-based similarity measures,
(6) a new confirmation of the findings in [26] related to some pre-
vious conclusions on the refuted outperformance of the intrinsic IC
models over the corpus-based ones, and (7) a new confirmation of
the achievements of the family of intrinsic IC models and IC-based
similarity measures.
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Fig. 1. Cognitive similarity functions used in CondProbLogistic and CondProbCosine.
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5.1. Information content models and similarity evaluated measures

In order to compare the new family of IC models in Table 3 with
the state-of-the-art models, we implemented all the intrinsic IC
models shown in Table 2, as well as all the IC-based similarity mea-
sures shown in Table 1. In addition, we implemented the simTaieb

measure shown in Table 1 to obtain a complete image of the state
of the art in ontology-based similarity measures. For the simTaieb

measure, the depth is defined by the authors as the longest ascend-
ing path length, whilst the rest of measures and IC models consider
the depth as the length of shortest ascending path from each con-
cept to the root. For the Zhou et al. IC model, the authors define the
depth starting at 1 for the root concept. Our interest in the replica-
tion of previous methods and results lead us to implement all IC
models and similarity measures evaluated herein. However, we
refer the readers working on applications to the SML library,
Harispe et al. [17]. In the context of our research, we developed a
new data structure for large ontologies that overcome the SML
library in computation time and memory use, which we plan to
introduce in a future publication.

To the best of our knowledge, we evaluate all the intrinsic IC
models reported in the literature, except those introduced in
Blanchard et al. [5]. We recall that the Sebti et al. IC model is iden-
tical to the CondProbUniform IC model. Likewise, we evaluate the
most relevant ontology-based similarity measures in WordNet in
accordance with to our recent benchmarks in Lastra-Díaz and
García-Serrano [26]. Therefore, the experiments herein, together
with our aforementioned work, are the largest experimental sur-
vey of IC-based models and ontology-based similarity measures
reported up to date.

In order to compare the intrinsic and corpus-based IC models,
we used two unexplored Wordnet-based frequency files from the
family of ‘‘add1” frequency files in Pedersen [39]. These files are
as follows: (1) ‘‘ic-semcorraw-add1.dat”, and (2) ‘‘ic-treebank-ad
d1.dat”. The frequency files are based on WordNet 3.0 and the
Resnik method, as described in [41, p.34]. The selected files encode
the corpus-based IC models obtaining the best performance in the
benchmarks in our aforementioned work, and we use them to
build four IC models based on the Resnik method and the new
CondProbCorpus IC model.

5.2. Experimental setup

For the experiments, we use the noun database of Wordnet 3.0
and five known word similarity benchmarks: (1) the RG65 dataset
made up of 65 word pairs Rubenstein and Goodenough [49]; (2)
the MC28 dataset introduced in Miller and Charles [35], which is
made up of a subset of 28 word pairs in the RG65 dataset; (3)
the Agirre203 dataset introduced in Agirre et al. [1], which is made
up of 203 word pairs and it is a subset of the WordSim-353 data-
set; (4) a recent replication of the RG65 dataset called P&Sfull,
which is introduced in Pirró [43]; and (5) the SimLex-999 dataset
introduced in Hill et al. [20], which is the largest and most recent
word similarity benchmark in the literature. All the datasets are
defined by a collection of word pairs contained in the noun data-
base of Wordnet, together with a human judgement of its degree
of similarity.

Some preprocessing was necessary for the Agirre203 and
SimLex-999 datasets to carry out the experiments. For the
Agirre203 dataset, it was necessary to remove two word pairs con-
taining verbs not present in the noun database of Wordnet 3.0,
such as the pairs (drink,eat) and (stock,live). In addition, it was also
necessary to change the term ‘‘media” for ‘‘medium”, and
‘‘children” for ‘‘child”, because these terms do not appear directly
in noun database. For this reason, we only used 201 nouns instead
of 203, thus, this subset is called hereafter Agirre201. In the case of
SimLex-999, it contains 666 nouns, but the word ‘‘August” is not
included as synset in WordNet 3.0, thus, we only used 665 nouns
from the SimLex-999 dataset, and this subset is called hereafter
SimLex665.

5.3. Evaluation metrics

As evaluation metrics, we use the Pearson correlation factor,
denoted by r in Eq. (8), and the Spearman rank correlation factor
denoted by q in Eq. (9). The Pearson correlation is invariant as
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regard any scaling, translation and rotation of the data, that is any
Euclidean similarity. On the other hand, the Spearman correlation
factor is rank invariant, what means that it holds the same value
for any monotone data transformation. From their invariance prop-
erties, it follows that the Pearson correlation encodes the differ-
ences in the ratios between different data components Xi and Yi,
whilst the Spearman correlation encodes the differences in the rel-
ative ranking between data components. The Pearson correlation
compares data vectors in the n-dimensional Euclidean space,
whilst the Spearman correlation compares the ranking of the data
components, thus, a Pearson correlation of 1 implies a Spearman
correlation of 1, but not the opposite.

r ¼
Pn

i¼1 Xi � X
� �

Yi � Y
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Xi � X
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Yi � Y
� �2q ð8Þ

q ¼ 1� 6
Pn

i¼1d
2
i

n n2 � 1ð Þ ; di ¼ xi � yið Þ ð9Þ

Given n samples of two independent random variables X and Y,
the Pearson correlation computes a value that matches the normal-
ized dot product between the two vectors representing the sam-
ples of each random variable. In Eq. (8), Xi are the correlation
values reported by any measure for each word pair, and the Yi val-
ues correspond to the human judgements. In Eq. (9), xi and yi are
respectively the ranking position of the Xi and Yi values, with the
following special case: if some data values share the same rank,
their rank is set to the average value that they would have if their
rank were different.

The evaluation methodology is based on the performance of the
IC models in some word similarity tasks, thus, the evaluation is
task-oriented. In contrast, the approach followed in Blanchard
et al. [5] measures the fitting quality of the intrinsic IC models with
regards to the corpus-based ones. The Blanchard et al. evaluation
method uses the correlation between IC models as a quality mea-
sure of the underlying function approximation problem, approach
that we plan to explore in greater detail in a forthcoming study
into this problem. The overall performance of the IC-based similar-
ity measures combined with all the IC models is used to define the
performance of the IC models, as well as the performance of the
similarity measures.

5.4. Polysemic words

In Wordnet, every word has multiple meanings, also called
synsets, where every meaning defines a particular concept. For this
reason, we follow the same approach as the rest of works in the
area [53, Section 3.4]. Given two input words, we evaluate the sim-
ilarity for the Cartesian product of their synset sets, then, we
choose the higher similarity result. This approach follows the idea
that any human being uses to select the closest meanings from
among word pairs to evaluate their degree of similarity. However,
another possible approach could be to select the average of the
pairwise similarity values for the synset sets.

5.5. Results

In Tables 4–6 we introduce the summary tables with the overall
results for the IC models and the similarity measures, whilst the
detailed results per dataset are shown in Tables 7–11 in the
appendix.

In Table 4 we show the best result obtained for each IC model
with any similarity measure on each dataset and the overall aver-
age correlation over all the datasets, regardless of the IC-based
similarity measure that produces the best value. The table is
ordered according to the average Pearson correlation values. On
the other hand, Table 5 shows the average correlation values for
each pair (IC model, IC measure) on all the datasets evaluated,
which represent the cell-based average of the Tables 7–11. Table 5
allows to the overall performance of each pair (IC model, IC mea-
sure) to be evaluated, as well as studying the impact of the IC mod-
els on the different measures. In Table 6, we show a summary with
the best results obtained for each similarity measure on each data-
set, regardless of the IC models.

In order to evaluate the statistical significance of the data, we
prefer confidence intervals over the p-value method. For a brief
comparison of both contrast hypothesis methods, we refer the
reader to the tutorial in du Prel et al. [10]. Figs. 2 and 3 show the
confidence intervals for the difference mean between the IC mod-
els and IC measures as regards to their baselines. In both cases, the
null hypothesis is that the difference mean is 0, thus, both models
perform equally. Any IC model or similarity measure will only have
a statistically significant difference over the baseline if its interval
does not include the zero level line. Fig. 2 shows the confidence
intervals for the difference mean of the average Pearson correlation
values in Table 5 between each IC model and the baseline defined
by the Resniktrb IC model. For each IC model (row), we define a ran-
dom variable by subtracting the IC model baseline, thus, we are
studying the randomness of the IC models as regard the similarity
measures. In Fig. 2, we have omited the representation of the
CondProbUniform and Hadj Taieb et al. IC models, because these
models obtain significant statistical lower results than the base-
line. Following the same approach, Fig. 3 shows the confidence
intervals for the difference mean of the average Pearson correlation
values in Table 5 between each IC-based similarity measure and
the baseline defined by the J&C similarity, when their values are
compared for each IC model.
6. Discussion

Table 4 shows that if we solely consider the best results of each
IC model on each dataset, the corpus-based Resnikic�treebank�add1

obtains the highest average Pearson correlation value from among
all the IC models evaluated herein. Analyzing the results on each
dataset, we conclude the following: (1) the Resnikic�treebank�add1 IC
model combined with the J&C similarity measure obtains the high-
est Pearson correlation on the MC28 dataset, (2) the Yuan et al. IC
model obtains the highest Pearson correlation on the Agirre201,
P&Sfull and SimLex-665 datasets when it is combined with the
FaITH and cosJ&C similarity measures, and (3) the Sánchez et al.
[52] IC model obtains the highest Pearson correlation on the
RG65 dataset with the cosJ&C similarity measure.

On the other hand, the data in Table 5 show that the Seco et al.
IC model obtains the higher average overall performance regard-
less of the IC-based similarity measure used. The Yuan et al., Meng
et al. and Sánchez et al. [53] IC models follow the Seco et al. model
in the ranking. Most of the CondProb IC models obtain rivaling
results in the middle, and the CondProbLogistic IC models perform
slightly worse. The CondProbUniform and Hadj Taieb et al. IC mod-
els obtain the lowest statistical significant results, thus, these IC
models are not shown in Fig. 2 and they should be discarded in
future studies.
6.1. The statistical significance of the results

Despite the Seco et al. IC model obtaining the highest average
performance, a detailed analysis of the level of significance of the
data in Table 5 reveals other conclusions. The confidence intervals
in Fig. 2 show that there is no a significant statistical difference
between the Resnikic�treebank�add1 IC model (baseline) and the follow-
ing IC models: Seco et al., Yuan et al., Meng et al.,
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Resnikic�semcorraw�add1, Sánchez et al. [52], Harispe, CondProbCosine,
CondProbHypo, and Zhou. This latter fact proves that these intrinsic
IC models perform at least as well as the best corpus-based IC
model evaluated in our aforementioned work and herein.

On the other hand, Fig. 2 also shows that Sánchez et al. [53] is
the only IC model that obtains a statistically significant higher per-
formance than the baseline, regardless of the IC-based similarity
measure used. Therefore, the Sánchez et al. [53] IC model is a con-
vincing winner according to the overall average performance and
the statistical evidence obtained, regardless of the selected
IC-based similarity measure. This finding implies that in a blind
scenario, Sánchez et al. [53] should be the preferred IC model.

Other IC models exhibit a statistically significant lower perfor-
mance than baselines, such as: CondProbLeaves, CondProbCorpus,
CondProbLogistic, CondProbUniform and Hadj Taieb et al. IC models.
Despite expecting good results for the CondProbLeaves IC model
through its close relationship with the definition of a probability
space, the available statistical evidence refutes this hypothesis.
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6.2. Intrinsic versus corpus-based IC models

The statistical evidence proves that a set of intrinsic IC models is
a practical alternative to the best performing corpus-based IC mod-
els. However, the same evidence allows some previous conclusions
on the outperformance of the intrinsic IC models over the corpus-
based to be refuted, a finding that we also report in Lastra-Díaz and
García-Serrano [26]. Some recent comparisons between intrinsic
and corpus-based IC models, such as Sánchez et al. [53] and Yuan
et al. [62], are based on the results reported in Patwardhan and
Pedersen [38], Pedersen [40] and Pirró [43] for some corpus-
based IC models derived from a different set of Wordnet-based fre-
quency files that are used herein. The outperformance of the
Resnikic�treebank�add1 IC model in Table 4, and the statistical evidence
shown in Fig. 2, conclusively confirm that most of state-of-the-art
IC models do not outperform the corpus-based models. This fact
led us to propose the Resnikic�treebank�add1 and Resnikic�semcorraw�add1

IC models as baselines for any future study into the family of IC
models and similarity measures.
6.3. Impact on the similarity measures

In Table 6, we can see that the cosJ&C similarity measure
obtains the highest Pearson correlation results in the RG65 and
SimLex665 datasets. In addition, this measure obtains the high-
est overall average Pearson and Spearman correlation values
over all the datasets, followed by the FaITH, Meng and Gu [31]
and Hadj Taieb et al. similarity measures. These results confirm
and extend the conclusions in our previous aforementioned
work.

In addition, the results in Table 5 and Fig. 3 show that the
cosJ&C measure is the only IC-based similarity measure that
obtains a statistically significant higher performance than the
baseline defined by the J&C similarity measure. Therefore, the
cosJ&C similarity measure obtains a statistically significant outper-
formance over the rest of state-of-the-art measures evaluated
herein, and its overall performance also overcomes the Hadj Taieb
et al. measure.

Despite the cosJ&C being a convincing winner according to the
overall performance and the baseline defined by the J&C measure,
it does not obtain statistically significant higher results when
directly compared with the FaITH and Meng et al. [32] measures
through a confidence interval analysis. We carried-out several con-
fidence intervals to analyze changing the baseline that we do not
show herein through lack of space. If the Lin measure is used as
baseline, the FaITH and Meng et al. [32] similarity measures obtain
a statistical significant higher performance than the Lin measure,
but the cosJ&C does not. Using a pairwise similar confidence inter-
val analysis to compare the performance of the FaITH, Meng et al.
[32] and cosJ&C similarity measures we did not find statistically
significant differences between them. In addition, in all the pair-
wise comparisons between the latter measures, the rest of the
measures obtain a statistically significant lower performance than
these three measures, except the Lin measure which does not exhi-
bit a statistically significant difference as regard the cosJ&C
measure.

In summary, the cosJ&C measure obtains the best overall
performance, but it is not statistically different from the FaITH
and Meng et al. [32] similarity measures, thus, these three
measures are the winners in the family of IC-based similarity
measures. However, the problem is still open. One advantage
of the FaITH and Meng et al. measure over the cosJ&C measure
is that the former ones exhibit a lower standard deviation (vari-
ance) as regard the IC models, as is shown in the last row of
Table 5.
Looking at any result table in the appendix, we can appreciate
that the Meng and Gu [31] and cosJ&C similarity measures always
obtain the same Spearman correlation value as the Lin and Jiang–
Conrath similarity measures for any IC model. This fact follows
from that the Meng and Gu [31] and cosJ&C similarity measures
are non-linear monotone transformations from the former ones,
thus, the Spearman correlation does not change. The
exponential-like transformations used by both measures con-
tribute to improving the Pearson correlation value, however, the
rank correlation remains invariant as was expected.

Looking at Table 5, we can appreciate that all the IC-based sim-
ilarity measures exhibit strong performance dependence as regard
the IC models. We can find the best IC model in bold within the col-
umn associated with each measure. On average, the best combina-
tions of IC measures and models are as follows: (1) the Resnik
measure and the Sánchez et al. [52] IC model, (2) the Lin measure
and the Yuan et al. IC model, (3) the J&C measure and the Seco et al.
IC model, (4) the P&S measure and the Seco et al. IC model, (5) the
FaITH measure and the Yuan et al. IC model, (6) the Meng and Gu
[31] measure and the Yuan et al. IC model, and (7) the cosJ&C mea-
sure and the Sánchez et al. [52] IC model.

In addition, the dependence on the IC models extends to the
datasets, because the best performing IC model for each measure
can change from one dataset to another. For instance, the cosJ&C
obtains the highest Pearson correlation on the RG65 dataset with
the Sánchez et al. IC model, however, on the SimLex665 dataset
the best one is the Yuan et al. IC model. In the same way, the FaITH
measure obtains its best results on the Agirre201, P&Sfull and
SimLex-665 datasets with the Yuan et al. IC model, however, on
the MC28 and RG65 datasets it obtains its best results with the
Sánchez et al. [52] and Zhou et al. IC models.
6.4. New state-of-the-art results

The Pearson and Spearman correlation values shown in Table 6
set the highest correlation values reported in the literature for the
evaluation of the family of ontology-based similarity measures
based on the same code implementation. The cosJ&C measure
obtains the highest Pearson correlation values on the RG65 and
SimLex665 dataset, whilst the Jiang–Conrath does the same on
the MC28 dataset, the FaITH on the P&Sfull dataset, and the Hadj
Taieb et al. on the Agirre201 dataset. The cosJ&C similarity measure
obtains Pearson and Spearman correlation values of 0.6106/0.6027
in the SimLex-665 (nouns) dataset. These results exceed the
0.599/0.591 values obtained by the best corpus-based method
(UMBC introduced in Han et al. [16]) in a recent benchmark of
corpus-based similarity measures [3, Table 1]. Therefore, the
results obtained by the cosJ&C similarity measure are the highest
Pearson and Spearman correlation values reported in the literature
for any type of similarity measure on the noun database of
SimLex-665.
6.5. Contradictory results

We confirm a contradictory result reported in Lastra-Díaz and
García-Serrano [26]. In Meng and Gu [31], the authors report a
Pearson correlation value of 0.8804 in the RG65 dataset for the
intrinsic Seco et al. IC model, whilst we obtain 0.8596 herein,
and other authors report 0.85 in [15, p. 256]. We subscribe to the
warning about the reproducibility problems in the family of
ontology-based similarity measures that is made in Fokkens et al.
[11] and our aforementioned work. Thus, we invite to the research
community to validate these contradictory results, as well as the
rest of results reported herein.



Table 4
Best results for each IC model and dataset: Pearson (r) and Spearman (q) correlation coefficients, and averaged overall scores. The row are ordered according to the average
Pearson correlation. Bold values represent the best score within each column.

Best results per dataset RG65 MC28 Agirre202 P&Sfull SimLex665 Avg. overall scores

IC models r q r q r q r q r q r q both

Resnikic�treebank�add1 [48] 0.8653 0.7831 0.8809 0.8882 0.6913 0.6461 0.9003 0.7783 0.5955 0.5810 0.7867 0.7353 0.7610
Yuan et al. [62] 0.8675 0.8206 0.8407 0.8274 0.7061 0.6656 0.9082 0.8199 0.6106 0.6027 0.7866 0.7473 0.7669
Seco et al. [56] 0.8642 0.8012 0.8557 0.8727 0.6969 0.6643 0.9042 0.7919 0.6048 0.5901 0.7852 0.7441 0.7646
Sánchez et al. [52] 0.8752 0.8034 0.8595 0.8492 0.6946 0.6576 0.9025 0.8003 0.5941 0.5906 0.7852 0.7402 0.7627
Meng et al. [32] 0.8723 0.8166 0.8393 0.8296 0.7039 0.6581 0.9057 0.8127 0.6010 0.5957 0.7844 0.7426 0.7635
Harispe (2012) 0.8589 0.7977 0.8575 0.8697 0.6960 0.6539 0.9003 0.7904 0.6056 0.5918 0.7836 0.7407 0.7622
Resnikic�semcorraw�add1 [48] 0.8658 0.7922 0.8621 0.8712 0.6955 0.6505 0.8997 0.7835 0.5930 0.5782 0.7832 0.7351 0.7592
Sánchez et al. [51] 0.8616 0.7911 0.8507 0.8551 0.6973 0.6590 0.9042 0.7854 0.5995 0.5850 0.7827 0.7351 0.7589
CondProbCosine 0.8634 0.7896 0.8562 0.8606 0.6902 0.6524 0.9015 0.7834 0.5964 0.5828 0.7815 0.7337 0.7576
CondProbHypo 0.8658 0.8017 0.8552 0.8554 0.6874 0.6466 0.9015 0.7910 0.5940 0.5806 0.7808 0.7350 0.7579
CondProbLeaves 0.8635 0.7877 0.8511 0.8389 0.6891 0.6478 0.9008 0.7808 0.5934 0.5799 0.7796 0.7270 0.7533
CPCorpusic�treebank�add1 0.8633 0.7722 0.8678 0.8502 0.6807 0.6364 0.8987 0.7691 0.5863 0.5735 0.7794 0.7203 0.7498
CPCorpusic�semcorraw�add1 0.8647 0.7916 0.8504 0.8247 0.6792 0.6389 0.8979 0.7813 0.5843 0.5712 0.7753 0.7216 0.7484
Zhou et al. [63] 0.8589 0.8051 0.8403 0.8244 0.6848 0.6591 0.8905 0.7999 0.5985 0.5945 0.7746 0.7366 0.7556
CondProbLogistick8 0.8692 0.7993 0.8142 0.8034 0.6809 0.6460 0.9064 0.7921 0.5972 0.5791 0.7736 0.7240 0.7488
CondProbLogistick10 0.8689 0.7993 0.8109 0.8012 0.6784 0.6461 0.9067 0.7903 0.5964 0.5772 0.7722 0.7228 0.7475
CondProbLogistick12 0.8689 0.7948 0.8104 0.8023 0.6761 0.6444 0.9065 0.7915 0.5954 0.5763 0.7715 0.7219 0.7467
CondProbUniform 0.8425 0.7786 0.8039 0.7749 0.6516 0.6325 0.8644 0.7852 0.5416 0.5506 0.7408 0.7044 0.7226
Hadj Taieb et al. [15] 0.7933 0.7417 0.6899 0.6961 0.6490 0.6175 0.8167 0.7463 0.4921 0.4833 0.6882 0.6570 0.6726

Best values per dataset 0.8752 0.8206 0.8809 0.8882 0.7061 0.6656 0.9082 0.8199 0.6106 0.6027 0.7867 0.7473 0.7669

Table 5
Average on all the datasets of the Pearson (r) and Spearman (q) correlations for each pair (IC model, IC measure). Bold values represent the best score within each column.

Avg. values Resnik Lin J&C P&S FaITH (P&E) Meng et al. cosJ&C (L&G) Average

IC models r q r q r q r q r q r q r q r

Seco (2004) 0.7385 0.6987 0.7731 0.7323 0.7705 0.7375 0.7784 0.7423 0.7743 0.7323 0.7758 0.7323 0.7790 0.7375 0.7699
Yuan (2013) 0.7372 0.6997 0.7744 0.7284 0.7613 0.7363 0.7745 .7402 0.7826 0.7284 0.7830 0.7284 0.7736 0.7363 0.7695
Meng (2012) 0.7367 0.6961 0.7704 0.7204 0.7632 0.7387 0.7708 0.7317 0.7794 0.7204 0.7790 0.7204 0.7758 0.7387 0.7679
Sánchez (2012) 0.7424 0.6957 0.7727 0.7264 0.7668 0.7281 0.7408 0.7148 0.7735 0.7264 0.7753 0.7264 0.7752 0.7281 0.7638

Resnikð1999Þscrð2008Þ
0.7449 0.7031 0.7672 0.7254 0.7669 0.7270 0.7402 0.7060 0.7707 0.7254 0.7718 0.7254 0.7732 0.7270 0.7621

Resnikð1999Þtrbð2008Þ
0.7416 0.7005 0.7690 0.7219 0.7632 0.7303 0.7404 0.7008 0.7736 0.7219 0.7742 0.7219 0.7718 0.7303 0.7620

Sánchez (2011) 0.7459 0.7008 0.7612 0.7266 0.7681 0.7402 0.7174 0.6804 0.7780 0.7266 0.7752 0.7266 0.7811 0.7402 0.7610
Harispe (2012) 0.7302 0.6980 0.7735 0.7333 0.7599 0.7297 0.7455 0.7191 0.7711 0.7333 0.7739 0.7333 0.7674 0.7297 0.7602
CPCosine 0.7340 0.6923 0.7687 0.7229 0.7676 0.7300 0.7344 0.7124 0.7694 0.7229 0.7712 0.7229 0.7750 0.7300 0.7601
CPHypo 0.7330 0.6897 0.7673 0.7202 0.7659 0.7350 0.7332 0.7128 0.7688 0.7202 0.7705 0.7202 0.7739 0.7350 0.7589
CProbLeaves 0.7326 0.6882 0.7670 0.7198 0.7641 0.7262 0.7314 0.7080 0.7691 0.7198 0.7705 0.7198 0.7726 0.7262 0.7582
CPCorpusscr 0.7387 0.6971 0.7613 0.7116 0.7589 0.7179 0.7280 0.6950 0.7643 0.7116 0.7657 0.7116 0.7658 0.7179 0.7547
CPCorpustrb 0.7353 0.6893 0.7630 0.7076 0.7553 0.7134 0.7288 0.6858 0.7675 0.7076 0.7681 0.7076 0.7641 0.7134 0.7546
Zhou (2008) 0.7236 0.6974 0.7418 0.7250 0.7411 0.7353 0.7497 0.7267 0.7734 0.7250 0.7676 0.7250 0.7645 0.7353 0.7517
CPLogk8 0.7142 0.6938 0.7659 0.7178 0.7296 0.7189 0.7125 0.6888 0.7714 0.7178 0.7727 0.7178 0.7477 0.7189 0.7449
CPLogk10 0.7098 0.6882 0.7657 0.7137 0.7284 0.7178 0.7125 0.6877 0.7698 0.7136 0.7715 0.7137 0.7461 0.7178 0.7434
CPLogk12 0.7059 0.6866 0.7651 0.7148 0.7265 0.7149 0.7116 0.6917 0.7684 0.7148 0.7704 0.7148 0.7440 0.7149 0.7417
CProbUnif 0.6135 0.6166 0.7031 0.6987 0.6376 0.6818 0.6037 0.6063 0.7362 0.6987 0.7297 0.6987 0.6557 0.6817 0.6685
Hadj Taieb (2014) 0.4233 0.5364 0.6765 0.6570 0.3267 0.4627 0.4196 0.5164 0.6882 0.6570 0.6857 0.6570 0.3278 0.4627 0.5068

Best values 0.7459 0.7031 0.7744 0.7333 0.7705 0.7402 0.7784 0.7423 0.7826 0.7333 0.7830 0.7333 0.7811 0.7402

Standard dev 0.0753 0.0400 0.0255 0.0168 0.1018 0.0618 0.0802 0.0520 0.0210 0.0169 0.0221 0.0168 0.1033 0.0618

Table 6
Best results for each measure and dataset: Pearson (r) and Spearman (q) correlation coefficients, and averaged overall scores. Bold values represent the best score within each
column.

Best results RG65 MC28 Agirre202 P&Sfull SimLex665 Avg. overall scores

IC-based measures r q r q r q r q r q r q both

cosJ&C [26] 0.8752 0.8166 0.8710 0.8882 0.6904 0.6612 0.8996 0.8127 0.6106 0.6027 0.7893 0.7563 0.7728
FaITH [44] 0.8683 0.7977 0.8344 0.8403 0.7061 0.6652 0.9082 0.7936 0.6063 0.5918 0.7847 0.7377 0.7612
Meng-Gu [31] 0.8692 0.7977 0.8361 0.8403 0.7040 0.6652 0.9064 0.7936 0.6062 0.5918 0.7844 0.7377 0.7611
Hadj Taieb et al. [15] 0.8670 0.7972 0.8248 0.8077 0.7123 0.6633 0.9068 0.7973 0.6093 0.5960 0.7840 0.7323 0.7582
Jiang–Conrath (1997) 0.8619 0.8166 0.8809 0.8882 0.6724 0.6612 0.8825 0.8127 0.6027 0.6027 0.7801 0.7563 0.7682
Lin [30] 0.8689 0.7977 0.8393 0.8403 0.6870 0.6652 0.8953 0.7936 0.6045 0.5918 0.7790 0.7377 0.7584
Pirró-Seco [45] 0.8622 0.8206 0.8466 0.8678 0.6890 0.6656 0.8970 0.8199 0.5981 0.5869 0.7786 0.7522 0.7654
Resnik [47] 0.8409 0.7833 0.8202 0.8296 0.6760 0.6481 0.8829 0.7800 0.5506 0.5346 0.7541 0.7151 0.7346

Best values per dataset 0.8752 0.8206 0.8809 0.8882 0.7123 0.6656 0.9082 0.8199 0.6106 0.6027 0.7893 0.7563 0.7728
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7. Conclusions and future work

We have introduced five new intrinsic IC models and one new
corpus-based IC model based on the preservation of the probabilis-
tic structure, and the integration of a notion of cognitive similarity
inspired by cognitive evidence. The proposed approach defines an
open framework for the development of new intrinsic IC models
based on alternative forms of estimating the conditional probabil-
ities between concepts.

Most of new intrinsic IC models rival the state-of-the-art mod-
els, with the exception of the naive CondProbUniform model. The
integration of the probabilistic structure in the IC models has pro-
ven to be helpful in getting results rivaling the state-of-the-art IC
models, but it has not been enough to exceed the state of the art
by itself. Nevertheless, we expect that the encoding of the structure
axioms into the IC models contributes to a better understanding of
the problem, as well as the start of a line of research in conditional
probability estimation. On the other hand, the results of the
CondProbCosine and CondProbLogistic model confirm that the
encoding of cognitive similarity notions within the IC models and
measures is a line of research that deserves to be explored.

We have proved that most intrinsic IC models and IC-based
similarity measures do not exhibit significant statistical differences
as regard the baselines of the experiments. Despite the Seco et al.
IC model obtaining the highest overall average correlation values,
the statistical evidence proves that the Sánchez et al. [53] IC model
obtains a significant statistical outperformance over the baseline
and the rest of the IC models, this latter model being the IC model
that best generalizes any IC-based similarity measure. We prove
that the cosJ&C similarity measure obtains the best overall results,
obtaining a significant statistical outperformance over the rest of
the IC models and measures in comparison with the baseline.
However, a deeper confidence interval analysis between the FaITH,
Meng and Gu [31] and cosJ&C similarity measures confirm that
there is no a statistically significant difference between them.

The lack of a statistically significant difference between most
intrinsic IC models and the corpus-based IC model
Resnikic�treebank�add1 defined as the baseline allows the following
conclusions to be extracted: (1) this fact refutes a previous belief
about the outperformance of the intrinsic IC models over the
corpus-based ones, confirming the same finding in our aforemen-
tioned work, and (2) this fact confirms the achievements of the
family of intrinsic IC models, which offers a practical alternative
to the corpus-based models without a significant reduction in per-
formance. Among the set of rivaling state-of-the-art intrinsic IC
models we have the Seco et al., Yuan et al., Meng et al., Sánchez
et al. [52], Harispe, CondProbCosine, CondProbHypo, and Zhou IC
models. The statistical significance of the results confirms that
most of the IC models offer similar results, and the problem is still
open.

As forthcoming activities, we would like to carry-out an in-
depth study into the relationship between the corpus-based IC
models evaluated herein and the intrinsic IC models. We plan to
study the fitting quality of the intrinsic IC models based on a direct
comparison between IC models using a well-defined metric on
function spaces, or some correlation measure, such as that pro-
posed in Blanchard et al. [5]. In addition, we would also like to
evaluate the intrinsic IC models introduced in this latter work.
Acknowledgements

Despite deciding to develop our own software library to imple-
ment all the IC-based models and measures evaluated in this work,
we would like to express our gratitude to Sébastien Harispe, who
provided us the source code of the SML library, offering his total



Ta
bl
e
10

Pe
ar
so

n
(r
)
an

d
Sp

ea
rm

an
( q

)
co

rr
el
at
io
n
co

ef
fi
ci
en

ts
fo
r
al
l
th
e
IC

m
od

el
s
an

d
m
ea

su
re
s
in

th
e
P&

S F
ul
l
da

ta
se
t
us

in
g
W

or
dn

et
3.
0.

Bo
ld

va
lu
es

re
pr
es
en

t
th
e
be

st
ov

er
al
l
sc
or
es

in
da

ta
se
t.

P&
S f

ul
l
da

ta
se
t

R
es
n
ik

Li
n

J&
C

P&
S

Fa
IT
H

(P
&
E)

M
en

g
et

al
.

co
sJ
&
C
(L
&
G
)

B
es
t
ro
w

va
lu
es

IC
m
od

el
s

r
q

r
q

r
q

r
q

r
q

r
q

r
q

r
q

Se
co

(2
00

4)
0.
87

99
0.
77

35
0.
89

45
0.
79

11
0.
87

81
0.
77

68
0.
89

70
0.
79

19
0.
90

42
0.
79

11
0.
90

31
0.
79

11
0.
89

66
0.
77

68
0.
90

42
0.
79

19
Zh

ou
(2
00

8)
0.
83

57
0.
77

20
0.
84

20
0.
78

67
0.
83

72
0.
79

99
0.
85

63
0.
79

38
0.
89

05
0.
78

67
0.
88

06
0.
78

67
0.
87

26
0.
79

99
0.
89

05
0.
79

99
Sá

n
ch

ez
(2
01

1)
0.
87

40
0.
77

32
0.
87

38
0.
79

36
0.
87

62
0.
80

03
0.
80

51
0.
75

73
0.
90

25
0.
79

36
0.
89

64
0.
79

36
0.
89

96
0.
80

03
0.
90

25
0.
80

03
H
ar
is
pe

(2
01

2)
0.
86

99
0.
75

17
0.
89

33
0.
79

04
0.
86

86
0.
77

41
0.
84

11
0.
76

80
0.
90

01
0.
79

04
0.
90

03
0.
79

04
0.
88

34
0.
77

41
0.
90

03
0.
79

04
Sá

n
ch

ez
(2
01

2)
0.
88

29
0.
77

27
0.
89

48
0.
78

54
0.
87

42
0.
76

52
0.
83

98
0.
76

81
0.
90

42
0.
78

54
0.
90

35
0.
78

54
0.
89

18
0.
76

52
0.
90

42
0.
78

54
M
en

g
(2
01

2)
0.
86

45
0.
75

43
0.
88

63
0.
77

76
0.
87

15
0.
81

27
0.
88

97
0.
81

22
0.
90

57
0.
77

76
0.
90

25
0.
77

76
0.
89

17
0.
81

27
0.
90

57
0.
81

27
Y
u
an

(2
01

3)
0.
86

55
0.
77

59
0.
88

96
0.
79

05
0.
86

41
0.
79

57
0.
88

91
0.
81

99
0.
90

82
0.
79

05
0.
90

61
00

.7
90

5
0.
88

40
0.
79

57
0.
90

82
0.
81

99
H
ad

j
Ta

ie
b
(2
01

4)
0.
49

15
0.
61

40
0.
79

62
0.
74

63
0.
42

61
0.
60

94
0.
46

60
0.
61

07
0.
81

67
0.
74

63
0.
81

25
0.
74

63
0.
42

72
0.
60

94
0.
81

67
0.
74

63

R
es
n
ik

ð1
99

9Þ
sc
rð2

00
8Þ

0.
87

92
0.
78

00
0.
88

76
0.
78

35
0.
88

25
0.
76

53
0.
83

70
0.
76

04
0.
89

97
0.
78

35
0.
89

83
0.
78

35
0.
89

68
0.
76

53
0.
89

97
0.
78

35

R
es
n
ik

ð1
99

9Þ
tr
bð
20

08
Þ

0.
87

36
0.
77

83
0.
88

77
0.
76

60
0.
87

49
0.
77

17
0.
83

28
0.
74

22
0.
90

03
0.
76

60
0.
89

88
0.
76

60
0.
89

22
0.
77

17
0.
90

03
0.
77

83

N
ew

IC
m
od

el
s

IC
m
od

el
s
in
tr
od

u
ce
d
in

th
is

w
or
k.

(s
cr

=
ic
-s
em

co
rr
aw

-a
dd

1,
tr
b
=
ic
-t
re
eb

an
k-
ad

d1
)

C
on

dP
ro
bH

yp
o

0.
87

25
0.
74

61
0.
89

03
0.
78

24
0.
87

83
0.
79

10
0.
83

25
0.
77

90
0.
90

15
0.
78

24
0.
90

02
0.
78

24
0.
89

63
0.
79

10
0.
90

15
0.
79

10
C
on

dP
ro
bU

n
if
or
m

0.
70

77
0.
69

97
0.
80

42
0.
78

52
0.
72

04
0.
76

84
0.
66

02
0.
69

05
0.
86

44
0.
78

52
0.
84

98
0.
78

52
0.
74

78
0.
76

84
0.
86

44
0.
78

52
C
on

dP
ro
bL

ea
ve

s
0.
87

15
0.
74

57
0.
88

87
0.
78

08
0.
87

48
0.
77

66
0.
82

97
0.
76

89
0.
90

08
0.
78

08
0.
89

92
0.
78

08
0.
89

30
0.
77

66
0.
90

08
0.
78

08
C
on

dP
ro
bL

og
k8

0.
84

19
0.
77

83
0.
89

28
0.
79

21
0.
83

15
0.
78

80
0.
80

61
0.
76

30
0.
90

64
0.
79

21
0.
90

56
0.
79

21
0.
86

32
0.
78

80
0.
90

64
0.
79

21
C
on

dP
ro
bL

og
k1

0
0.
83

98
0.
77

93
0.
89

46
0.
79

03
0.
83

02
0.
78

84
0.
80

69
0.
76

22
0.
90

67
0.
79

03
0.
90

63
0.
79

03
0.
86

14
0.
78

84
0.
90

67
0.
79

03
C
on

dP
ro
bL

og
k1

2
0.
83

73
0.
77

89
0.
89

53
0.
79

15
0.
82

78
0.
78

31
0.
80

61
0.
76

57
0.
90

65
0.
79

15
0.
90

64
0.
79

15
0.
85

91
0.
78

31
0.
90

65
0.
79

15
C
on

dP
ro
bC

os
in
e

0.
87

57
0.
76

89
0.
89

15
0.
78

34
0.
87

78
0.
77

10
0.
83

18
0.
76

64
0.
90

15
0.
78

34
0.
90

05
0.
78

34
0.
89

43
0.
77

10
0.
90

15
0.
78

34
C
PC

or
pu

s s
cr
(2
0
0
8
)

0.
87

15
0.
77

40
0.
88

43
0.
77

30
0.
87

79
0.
78

13
0.
82

53
0.
75

69
0.
89

79
0.
77

30
0.
89

61
0.
77

30
0.
89

37
0.
78

13
0.
89

79
0.
78

13
C
PC

or
pu

s t
rb
(2
0
0
8
)

0.
86

49
0.
76

91
0.
88

40
0.
75

72
0.
87

11
0.
76

15
0.
82

03
0.
72

91
0.
89

87
0.
75

72
0.
89

64
0.
75

72
0.
88

92
0.
76

15
0.
89

87
0.
76

91

B
es
t
by

m
ea

su
re

0.
88

29
0.
78

00
0.
89

53
0.
79

36
0.
88

25
0.
81

27
0.
89

70
0.
81

99
0.
90

82
0.
79

36
0.
90

64
0.
79

36
0.
89

96
0.
81

27
0.
90

82
0.
81

99

Ta
bl
e
11

Pe
ar
so

n
(r
)
an

d
Sp

ea
rm

an
( q

)
co

rr
el
at
io
n
co

ef
fi
ci
en

ts
fo
r
al
l
th
e
IC

m
od

el
s
an

d
m
ea

su
re
s
in

th
e
Si
m
Le

x-
66

5
da

ta
se
t
us

in
g
W

or
dn

et
3.
0.

Bo
ld

va
lu
es

re
pr
es
en

t
th
e
be

st
ov

er
al
l
sc
or
es

in
da

ta
se
t.

Si
m
Le

x6
65

R
es
n
ik

Li
n

J&
C

P&
S

Fa
IT
H

(P
&
E)

M
en

g
et

al
.

co
sJ
&
C
(L
&
G
)

B
es
t
ro
w

va
lu
es

IC
m
od

el
s

r
q

r
q

r
q

r
q

r
q

r
q

r
q

r
q

Se
co

(2
00

4)
0.
53

39
0.
52

10
0.
60

10
0.
58

88
0.
59

18
0.
59

01
0.
59

75
0.
58

62
0.
60

46
0.
58

88
0.
60

48
0.
58

88
0.
60

13
0.
59

01
0.
60

48
0.
59

01
Zh

ou
(2
00

8)
0.
51

10
0.
50

26
0.
57

78
0.
58

41
0.
58

25
0.
59

45
0.
58

03
0.
57

67
0.
59

85
0.
58

41
0.
59

45
0.
58

41
0.
59

73
0.
59

45
0.
59

85
0.
59

45
Sá

n
ch

ez
(2
01

1)
0.
53

64
0.
52

48
0.
57

91
0.
58

03
0.
58

38
0.
59

06
0.
53

18
0.
52

04
0.
59

04
0.
58

03
0.
58

83
0.
58

03
0.
59

41
0.
59

06
0.
59

41
0.
59

06
H
ar
is
pe

(2
01

2)
0.
53

10
0.
51

92
0.
60

45
0.
59

18
0.
57

75
0.
57

35
0.
56

34
0.
56

17
0.
60

39
0.
59

18
0.
60

56
0.
59

18
0.
58

44
0.
57

35
0.
60

56
0.
59

18
Sá

n
ch

ez
(2
01

2)
0.
53

54
0.
52

32
0.
59

64
0.
58

50
0.
58

61
0.
58

35
0.
55

32
0.
54

76
0.
59

91
0.
58

50
0.
59

95
0.
58

50
0.
59

45
0.
58

35
0.
59

95
0.
58

50
M
en

g
(2
01

2)
0.
49

72
0.
48

96
0.
58

41
0.
57

67
0.
59

39
0.
59

57
0.
58

63
0.
57

14
0.
58

87
0.
57

67
0.
58

84
0.
57

67
0.
60

10
0.
59

57
0.
60

10
0.
59

57
Y
u
an

(2
01

3)
0.
51

20
0.
50

30
0.
60

04
0.
59

03
0.
60

27
0.
60

27
0.
59

81
0.
58

69
0.
60

63
0.
59

03
0.
60

62
0.
59

03
0.
61

06
0.
60

27
0.
61

06
0.
60

27
H
ad

j
Ta

ie
b
(2
01

4)
0.
20

33
0.
30

04
0.
48

49
0.
48

33
0.
21

54
0.
32

56
0.
32

37
0.
42

43
0.
49

21
0.
48

33
0.
48

96
0.
48

33
0.
21

77
0.
32

56
0.
49

21
0.
48

33

R
es
n
ik

ð1
99

9Þ
sc
rð2

00
8Þ

0.
55

06
0.
53

46
0.
58

88
0.
57

82
0.
57

68
0.
57

36
0.
55

07
0.
54

08
0.
59

30
0.
57

82
0.
59

26
0.
57

82
0.
58

32
0.
57

36
0.
59

30
0.
57

82

R
es
n
ik

ð1
99

9Þ
tr
bð
20

08
Þ

0.
53

55
0.
52

10
0.
59

35
0.
58

10
0.
56

92
0.
57

00
0.
54

89
0.
54

50
0.
59

48
0.
58

10
0.
59

55
0.
58

10
0.
57

81
0.
57

00
0.
59

55
0.
58

10

N
ew

IC
m
od

el
s

IC
m
od

el
s
in
tr
od

u
ce
d
in

th
is

w
or
k.

(s
cr

=
ic
-s
em

co
rr
aw

-a
dd

1,
tr
b
=
ic
-t
re
eb

an
k-
ad

d1
)

C
on

dP
ro
bH

yp
o

0.
52

23
0.
50

67
0.
59

10
0.
57

99
0.
58

11
0.
58

06
0.
54

68
0.
53

91
0.
59

32
0.
57

98
0.
59

40
0.
57

99
0.
58

96
0.
58

06
0.
59

40
0.
58

06
C
on

dP
ro
bU

n
if
or
m

0.
36

32
0.
36

49
0.
52

45
0.
52

23
0.
53

66
0.
55

06
0.
46

93
0.
46

20
0.
51

86
0.
52

20
0.
52

60
0.
52

23
0.
54

16
0.
55

06
0.
54

16
0.
55

06
C
on

dP
ro
bL

ea
ve

s
0.
52

04
0.
50

43
0.
59

04
0.
57

97
0.
58

08
0.
57

99
0.
54

57
0.
53

92
0.
59

27
0.
57

96
0.
59

34
0.
57

97
0.
58

97
0.
57

99
0.
59

34
0.
57

99
C
on

dP
ro
bL

og
k8

0.
50

68
0.
49

25
0.
59

26
0.
57

91
0.
56

79
0.
57

38
0.
54

41
0.
53

58
0.
59

66
0.
57

90
0.
59

72
0.
57

91
0.
57

78
0.
57

38
0.
59

72
0.
57

91
C
on

dP
ro
bL

og
k1

0
0.
50

65
0.
49

61
0.
59

27
0.
57

72
0.
56

32
0.
56

96
0.
54

31
0.
53

58
0.
59

55
0.
57

71
0.
59

64
0.
57

72
0.
57

27
0.
56

96
0.
59

64
0.
57

72
C
on

dP
ro
bL

og
k1

2
0.
50

54
0.
49

45
0.
59

23
0.
57

63
0.
55

91
0.
56

53
0.
54

16
0.
53

61
0.
59

42
0.
57

63
0.
59

54
0.
57

63
0.
56

84
0.
56

53
0.
59

54
0.
57

63
C
on

dP
ro
bC

os
in
e

0.
52

74
0.
51

50
0.
59

34
0.
58

21
0.
58

41
0.
58

28
0.
54

90
0.
54

13
0.
59

59
0.
58

21
0.
59

64
0.
58

21
0.
59

20
0.
58

27
0.
59

64
0.
58

28
C
PC

or
pu

s s
cr
(2
0
0
8
)

0.
54

04
0.
52

21
0.
58

16
0.
57

12
0.
56

75
0.
56

40
0.
54

34
0.
53

17
0.
58

37
0.
57

12
0.
58

43
0.
57

12
0.
57

31
0.
56

40
0.
58

43
0.
57

12
C
PC

or
pu

s t
rb
(2
0
0
8
)

0.
52

71
0.
50

85
0.
58

56
0.
57

35
0.
55

64
0.
55

78
0.
54

04
0.
53

35
0.
58

44
0.
57

35
0.
58

63
0.
57

35
0.
56

42
0.
55

78
0.
58

63
0.
57

35

B
es
t
by

m
ea

su
re

0.
55

06
0.
53

46
0.
60

45
0.
59

18
0.
60

27
0.
60

27
0.
59

81
0.
58

69
0.
60

63
0.
59

18
0.
60

62
0.
59

18
0.
61

06
0.
60

27
0.
61

06
0.
60

27

524 J.J. Lastra-Díaz, A. García-Serrano / Knowledge-Based Systems 89 (2015) 509–526



J.J. Lastra-Díaz, A. García-Serrano / Knowledge-Based Systems 89 (2015) 509–526 525
support. Mohamed Hadj Taieb kindly offered us his total support to
replicate their similarity measure exactly. Ted Pedersen kindly
answered all our questions and provided us with the
WordNet-based frequency files used to build all the corpus-based
IC models used in our experiments. Giuseppe Pirró and Rajendra
Banjade kindly answered all our questions to clarify the corpus-
based IC models used in their experiments. Alexis Moreno-Pulido
helped us to find some old papers. Mark Hallett reviewed the eng-
lish translation. Finally, we would like to thank the anonymous
reviewers whose comments have improved the quality of the
paper. To all of them, we would like to express our most sincere
gratitude. This work has been partially supported by the Spanish
VOXPOPULI(TIN2013-47090-C3-1-P) Project.
Appendix: experimental results

Tables 4–11.
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Abstract

This brief notes provide the proofs of the two propositions supporting the
axiomatic approach followed into the definition of the well-founded IC models
described in the accompaying paper Lastra-Díaz and García-Serrano (2015).
In order to make easier the reading of these notes, we have reproduced herein
the whole section 4.1 titled “Preliminary concepts and notation”, including the
proof of both propositions.

Key words: Semantic similarity, Intrinsic Information Content model,
Ontology-based semantic similarity measures and distances, IC-based measures

1. Preliminary concepts and notation

For the sake of clarity, we use the lowercase letter p to denote a concept-
valued probability function in a set of concepts C. On the other hand, the
uppercase P is reserved to denote a probability measure, which is a set-valued
function in the power set of the sample space. Finally, the conditional proba-
bility functions between concepts are denoted in lowercase by p (ci|cj).
All the IC models proposed herein share the same computational structure,

defined by the following three steps: (1) estimation of the edge-based condi-
tional probabilities p (ci|cj), (2) recovery of the concept-valued probability den-
sity function p (ci), and (3) computation of the node-based IC values using the
standard definition IC (ci) = −log2 (p (ci)). The only difference between the IC
models is the method used to estimate the conditional probabilities. We call the
new IC models well-founded because they are designed from first principles in
order to satisfy the structural relationships of a discrete probability space and
an Information Content model defined on this space.
In Jiang and Conrath (1997), the authors prove that their semantic distance

dJ&C (c1, c2) is equivalent to the length of the shortest path between concepts c1
and c2 over a weighted graph derived from the taxonomy, and the edge weights

1 jlastra@invi.uned.es (corresponding author)
2agarcia@lsi.uned.es
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are defined by (1). Despite the authors claiming that their distance is a metric
on any type of taxonomy, nowadays, in Orum and Joslyn (2009) the authors
prove that it is only true for the tree-like taxonomies, not for general taxonomies
with multiple inheritance.
Every taxonomy C = (C,≤C ,Γ) induces a graph G = (E, V ) in the usual

manner, where every concept is a vertex of the graph, it means V = C, and
there is an edge between each concept ci and its direct parents, also called the
lowest ancestors of ci and denoted as LA (ci). The IC-based weighting function
(1) allows us to introduce a shift of paradigm for the definition of the IC models,
we move from a node-based IC computation model to an edge-based model.

w : E → R (1)

w (eij) = −log2 (p (ci|cj)) = IC (ci)− IC (cj)

E = {(ci, cj) ⊂ C × C | cj ∈ LA (ci)}

Formally, a probability space is a triplet (Ω,F , P ), where Ω is a non-empty
set, called the space of outcomes or samples, F is a σ-algebra that defines the
collection of all possible events, where every event is defined as a subset of
Ω, and finally, P : F →R is a probability measure. The formal definitions of
the probability measures and probability spaces can be consulted in (Ash and
Doléans-Dade, 2000, §1.2).

Definition 1 (Probability measure). Given any non-empty set Ω and a col-
lection F of subsets on Ω, such that F is a σ-algebra, then a set-valued function
P : F →R is a probability measure if it satisfies the following axioms:

1. 0 ≤ P (A) ≤ 1, ∀A ∈ F .
2. P (Ω) = 1, P (∅) = 0.
3. If A = {A1, A2, . . . , An} is a family of disjoint subsets of F , such that
∀Ai, Aj ∈ A =⇒ Ai ∩Aj = ∅, then:

P

(⋃
i∈I
Ai

)
=
∑
i∈I
P (Ai)

If the space Ω is a countable set, and F is the power set of the sample space
Ω, denoted as 2Ω, the triplet (Ω,F , P ) is called a discrete probability space (Ash
and Doléans-Dade, 2000, §4.2). In our case, the space of samples Ω is discrete
and is defined by the root concept Γ, such that Ω := Γ, and the set F is only
the power set of the root concept Γ. Here, we are defining the root concept Γ
as the universal set of the taxonomy, which follows that Γ := C. We note that
in the last statement we are abusing the notation, because Γ is used to denote
the root element of C and the sample space Ω at the same time.

We recall that the power set 2Ω of any set Ω is a complete lattice when the
inclusion relation ⊆ between subsets in Ω is used as an order relation. This fact
is closely related to the relationship between the Jiang-Conrath distance and
some types of metrics on lattices, such as we note in Lastra-Díaz (2014), and is
detailed in a work on the metric properties of the Jiang-Conrath distance Orum
and Joslyn (2009).
Given a taxonomy C = (C,≤C ,Γ), where LC = {ck ∈ C | @ci 6= ck, ci ≤C ck}

is the set of leaves of the taxonomy, we can define a discrete probability space
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(Γ,F , P ) on C in the canonical manner as follows: (1) we define the root con-
cept Γ as the universal sample space, (2) we define the set of leaf concepts LC
⊂ C as the partition of disjoint sets of the sample space, such that Γ := LC
by definition, (3) we define F as the power set on C, such that ci ⊆ cj ⇐⇒ ci
≤C cj , and finally, (4) we define a set-valued function P : F → [0, 1] using a
normalized leaf-valued function p (ck).

The triplet (Γ,F , P ), as defined above, is a well-founded discrete probability
space, a fact that we formalize in proposition 3, whose formal proof is omitted
through lack of space. In order to get a well-founded probability space on any
taxonomy, and derive the new family of intrinsic IC models from it. Below
we provide a method to define any well-founded IC model based solely on the
estimation of the conditional probabilities, which constitutes the core idea of
this work.

Definition 2 (well-founded IC model). Given a taxonomy of concepts C =
(C,≤C ,Γ), and an IC model defined by the function IC : C → R+∪{0}, we call
it a well-founded IC model if it can be written as IC (c) = −log2 (p (c)) where
p (c) is a concept-valued function defined by (3), and the functions p (ci|cj) are
the conditional probabilities between any child concept ci and its parent concepts
cj, which satisfy the edge-based property in (2).

(1) Edge-based axiom. The sum of conditional probabilities p (ci|cj) of the
children nodes ci on any parent cj node must be equal to 1, as defined
in equation (2), where LA (ci) denotes the set of lowest ancestors (direct
parents) of any concept ci.

∑
∀ci|cj∈LA(ci)

p (ci|cj) = 1 (2)

(2) Node-based axiom. The probability p (ci) for each node ci must be equal
to the integration of the probabilities throughout the graph, starting from
the root node, as defined in equation (3).

p : C → [0, 1] ⊂ R

p (ci) =

{
1 , ci = Γ∑

∀cj∈LA(ci)

p (cj) p (ci|cj) , ci 6= Γ (3)

(3) Leaf-based axiom. The probabilities of the leaf concepts sum 1.

∑
ck∈LC

p (ck) = 1 (4)

The axioms (1) and (2) above allow us to define a family of well-founded
intrinsic IC models based on the estimation of the conditional probabilities
p (ci|cj) for each edge of the taxonomy, such as is shown in table ??. In propo-
sition 3, we show that given a taxonomy (C,≤C ,Γ), the leaf-based axiom (3) is
a suffi cient condition to get a well-founded probability space. In addition, we
show in proposition 4 that axioms (1) and (2) of a well-founded IC model are
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suffi cient conditions to build a leaf-valued function p : LC ⊂ C → [0, 1] that
satisfies the IC model axiom (3). Thus, this last proposition proves that any
well-founded IC model induces a well-founded probability space on any base
taxonomy, and the whole system is supported by the structures derived from
the conditional probabilities. We omit all the proofs herein by lack of space.

Proposition 3. Be a taxonomy C = (C,≤C ,Γ) defined by a partially ordered
set (C,≤C) with a distinguished supreme element Γ, called the root, and LC
the set of leaves in C. If a set-valued positive function P is defined from the
leaf-valued function p as follows:

(1)
P : 2Γ → [0, 1]

P (A) =
∑

ck∈LC∩A
p (ck)

(2)
p : LC ⊂ C → [0, 1]∑
ck∈LC

p (ck) = 1

then the following facts are satisfied: (1) P is a probability measure, and (2)
the triplet

(
Γ, 2Γ, P

)
is a probability space.

Proof.
If P is a probability measure then the triplet

(
Γ, 2Γ, P

)
is a probability space,

because any power set on a discrete set is a σ-algebra. Thus we only need to
prove that P is a probability measure.
Axiom1. Because ∀ci ∈ C, p (ci|cj) ≥ 0 → p (ci) ≥ 0, what follows that

∀A ∈ 2Γ, P (A) ≥ 0.
Axiom 2. By hypothesis, P (Γ) =

∑
ck∈LC∩Γ

p (ck) =
∑

ck∈LC
p (ck) = 1

and P (∅) =
∑

ck∈LC∩∅
p (ck) = 0.

Axiom 3. Now, we prove the countable additivity property.
(1) Given any taxonomy (C,≤C ,Γ), we can define a hierarchy of sets using

the order relation ≤C , such that ci ≤C ck =⇒ ci ⊆ ck, Γ being the universal
set for the inclusion relation ⊆, such that ∀ci ∈ C → ci ⊆ Γ.

(2) From (1) it follows that the leaves set LC = {ck ∈ C | @ci 6= ck, ci ≤C ck}
is a collection of pairwise disjoint sets.
(3) For LC be a family of disjoint sets is not enough to be partition of Γ.

Now, we must prove that LC covers Γ. By definition ∀ck ∈ LC is satisfied that
ck ≤C Γ, so it follows that LC ⊆ Γ. By other hand, we observe that for all
the subsets A ⊆ Γ there is always an element ck ∈ LC , such that ck ∈ A, thus
∀A ∈ 2Γ → A ∩ LC 6= ∅, so it follows that Γ ⊆ LC . Therefore, we prove that
Γ = LC , which proves that LC is a partition of Γ.

(4) Because LC is a partition of Γ, every set A ∈ 2Γ can be written as a
finite union of elements in LC , such that A = {ck ∈ LC}k∈I .

(5) Be c1, c2 ∈ C two disjoint sets, such that c1 ∩ c2 = ∅. Then we have

P (c1 ∪ c2) =
∑

ck∈LC∩(c1∪c2)

p (ck) (5)

(6) From c1∩c2 = ∅ so it follows that LC∩(c1 ∪ c2) = (LC ∩ c1)∪(LC ∩ c2) ,
equation (5) above takes the form below.
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P (c1 ∪ c2) =
∑

ck∈(LC∩c1)∪(LC∩c2)

p (ck) (6)

P (c1 ∪ c2) =
∑

ck∈(LC∩c1)

p (ck) +
∑

ck∈(LC∩c2)

p (ck) (7)

P (c1 ∪ c2) = P (c1) + P (c2) (8)

(7) Finally, by hypothesis c1, c2 ∈ C are any arbitrary pair of disjoint sets,
thus, given an arbitrary family A = {A1, A2, . . . , An} of pairwise disjoint subsets
of Γ, using equation (8) above, we get the result below which proves the axiom
3 of a probability measure.

P

(⋃
i∈I
Ai

)
=
∑
i∈I
P (Ai)

Proposition 4. Be a taxonomy C = (C,≤C ,Γ) and LC the set of leaves in C.
Given a concept-valued function p defined by

p : C → [0, 1]

p (ci) =

{
1 , if ci = Γ∑

∀cj∈LAC(ci)

p (ci|cj) p (cj) , otherwise

then P (LC) = 1, as given below:

P (LC) =
∑

ck∈LC
p (ck) = 1

Proof. Our proof strategy is based on the definition of a bottom-up induction
process, such that in each induction step all the leaf nodes are removed.
First, we will define two paired sequences of objects: (1) a sequence of or-

dered sets:
(
C0,≤C0

)
,
(
C1,≤C1

)
, . . . , (Cn,≤Cn) , and (2) a sequence of prob-

ability measures: P 0, P 1, . . . , Pn.
The t-esim element of this sequence is grouped into a complex object called

kernel and denoted by Kt = ((Ct,≤Ct) , P t) .
Next, we shall define an induction process such that the value of P (LC) is

preserved for each step, it means that P (LC) = P 0 (LC0) = P 1 (LC1) = . . . =
P t (LCt) = . . . = Pn (LCn) = P (Γ) = 1.
For each iteration, the kernel Kt induces a probability space on the reduced

taxonomy, according to the construction defined in the proposition 3.
Induction step 0: The initial kernel K0 is defined by the two items below:

(
C0,≤C0

)
= (C,≤C)

P 0 (A) : 2C
0 → [0, 1]

P 0 (A) =
∑

ck∈LC0∩A
p (ck)

In step 0, we have that LC = LC0 , thus, P (LC) = P 0 (LC0), such as we
want.
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Induction step t-esim: for each iteration step, we remove the leaf nodes
from Kt, resulting in a new kernel Kt+1 defined below. Note that we are
defining the order relation set ≤Ct+1as a correspondence over the Cartesian
product (Ct − LCt)

2.
(
Ct+1,≤Ct+1

)
=
(
Ct − LCt ,≤Ct+1=

{
(ci, cj) ∈ (Ct − LCt)

2 | ci ≤Ct cj

})
P t+1 (A) : 2C

t+1 → [0, 1]
P t+1 (A) =

∑
ck∈LCt+1∩A

p (ck)

Next, we will prove that P 0 (LC0) = P 1 (LC1) and by induction, the iteration
step above can be repeated n times until the resulting concept set be the root,
it means Cn = Γ, thus, proving in this way that Pn (LCn) = P (Γ) = 1 , and
thus P 0 (LC0) = 1, such as we wanted to prove.
Using the premise for the function p (ci), we can express P 0 (LC0) as defined

in equation (10). The term LACt (ck) denotes the lowest ancestor set (parents)
in t-esim iteration for any concept ck ∈ Ct within the ordered set (Ct,≤Ct).

P 0 (LC0) =
∑

ck∈LC0

p (ck) (9)

=
∑

ck∈LC0

 ∑
∀cj∈LAC0 (ck)

p (ck|cj) p (cj)

 (10)

Now, we can reverse the sumation order in equation (10) to obtain the
equation (11). Then, the sum runs over the union of all the LAC0 (ck) sets, but⋃
ck∈LC0

LAC0 (ck) = LC1 , therefore we obtain the equation (12).

P 0 (LC0) =
∑

∀cj∈
⋃

ck∈LC0
LAC0 (ck)

 ∑
ck∈LC0

p (ck|cj) p (cj)

 (11)

P 0 (LC0) =
∑

cj∈LC1

 ∑
ck∈LC0

p (ck|cj) p (cj)

 (12)

In equation (12), the inner sum runs over the leaf nodes LC0 for a fixed
parent node cj ∈ LC1 . Note that ∀cj /∈ LAC0 (ck)⇒ p (ck|cj) = 0, what follows
that the right inner sum over ck ∈ LC0 is equal to p (cj), because p (cj) can be
factorized from the inner product in equation (12), as shown in equation (13)
below.

P 0 (LC0) =
∑

cj∈LC1

p (cj)

 ∑
ck∈LC0

p (ck|cj)


︸ ︷︷ ︸

1

 =
∑

cj∈LC1

p (cj) = P 1 (LC1)

(13)
Finally, the sum of the conditional probabilities p (ck|cj) in equation (13) is

equal to 1 by definition. Therefore, we prove that P 0 (LC0) = P 1 (LC1) , what
follows that for each induction step P 0 (LC0) is preserved and by induction
P 0 (LC0) = P (Γ) = 1, as we wanted to prove.
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Abstract

In a recent paper, we introduce a new family of Information Content (IC) models based on the
estimation of the conditional probability between child and parent concepts. This work is encouraged by
the �nding of two drawbacks in the computational method of our aforementioned family of IC models, as
well as other two gaps in the literature. First gap is that two of our cognitive IC models do not satisfy
the axiom that constrains the sum of probabilities on the leaf nodes to be 1, whilst some ontologies
with multiple inheritance could prevent the IC model satisfying the growing monotonicity axiom in
concepts with multiple parents. Second gap is the lack of a complete and updated experimental survey
including a pairwise statistical signi�cance analysis between most IC models and ontology-based similarity
measures. Finally a third gap is the lack of replication and con�rmation of previous methods and results
in most works. The latest two gaps are especially signi�cant in the current state of the problem, in
which there is no convincing winner within the family of intrinsic IC-based similarity measures and the
performance margin is very narrow. In order to bridge the aforementioned gaps, this paper introduces
the following contributions: (1) a re�nement of our recent family of well-founded Information Content
(IC) models; (2) eight new intrinsic IC models and one new corpus-based IC model; and (3) a very
detailed experimental survey of ontology-based similarity measures and Information Content (IC) models
on WordNet, including the evaluation and statistical signi�cance analysis on the �ve most signi�cant
datasets of most ontology-based similarity measures and all WordNet-based IC models reported in the
literature, with the only exception of the IC models recently introduced by Harispe et al. (2015a) and
Ben Aouicha et al. (2016b). The evaluation is entirely based on a Java software library called HESML
which has been developed by the authors in order to replicate all methods evaluated herein. The new
IC models obtain rivaling results as regard the state-of-the-art methods and improve our previous mod-
els, whilst the experimental survey allows a detailed and conclusive image of the state of the problem to
be drawn by setting the new state of the art and quantifying the main achievements of the last three decades.

Keywords: Intrinsic Information Content models, ontology-based semantic similarity measures, IC-
based similarity measures, word similarity benchmark, semantic similarity, concept similarity model,
experimental survey.

1 Introduction

The human similarity judgments between concepts un-
derlie most of cognitive capabilities, such as categoriza-
tion, memory, decision-making, and reasoning, as well as
the use and discovery of anologies among others. For this
reason, this problem has a lot of applications in Arti�-
cial Intelligence (AI) and many other related �elds. The
main research problem studied herein is the proposal of
new Information Content (IC) models for ontology-based
semantic similarity measures with the aim of estimating
the degree of similarity between words as perceived by a
human being. However, because of that the common ap-

proach to compute word similarity measures is to select
the highest pairwise similarity value between the concept
sets evoked by each word, our main research problem is
closely related to the proposal of concept similarity mod-
els, whose aim is to estimate the degree of similarity
between concepts instead of words. A concept similar-
ity model is a function sim : C � C ! R de�ned on a
set of concepts which estimates the degree of similarity
between concepts as perceived by a human being. The
research into concept similarity models, so called in a
broad sense as the human similarity judgment problem
in cognitive sciences, has given rise to di¤erent strategies
to tackle the problem of which the ontology-based simi-

Cite this work as: Lastra-Díaz, J. J., and García-Serrano, A. (2016). A re�nement of the well-founded Information
Content models with a very detailed experimental survey on WordNet. Technical Report TR-2016-01. NLP and IR
Research Group. ETSI Informática. Universidad Nacional de Educación a Distancia (UNED).
http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-refinement
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larity measures have proven to be the most successful of
them.
The research into ontology-based semantic similarity

measures is an old problem in AI and other related �elds,
such as cognitive psychology Tversky (1977), Natural
Language Processing (NLP) and Information Retrieval
(IR), Rada et al. (1989). A plethora of ontology-based
similarity measures have been proposed in the litera-
ture, giving rise to a large set of applications in the
�elds of NLP, IR, bioengineering and genomics. For in-
stance, Lastra-Díaz (2014) introduces an ontology-based
IR model disclosed by Lastra Díaz and García Serrano
(2014) which is based on the weighted Jiang-Conrath
(J&C) distance introduced and evaluated in Lastra-Díaz
and García-Serrano (2015b). Patwardhan et al. (2003)
introduce a Word Sense Disambiguation (WSD) method
based on the distributional hypothesis and the use of
ontology-based similarity measures in order to select the
closest evocated concept between a disambiguated word
and its neighboring words. Mihalcea et al. (2006) pro-
pose a text similarity measure based on the combina-
tion of an Inverse Document Frequency (IDF) weight-
ing scheme with any ontology-based similarity measure,
which is evaluated in a Paraphrase Detection (PD) task,
whilst Fernando and Stevenson (2008) propose a para-
phrase detection method based on a quadratic form be-
tween Boolean occurrence vectors whose matrix is de-
�ned by any ontology-based similarity measure between
words. In document clustering, Song et al. (2009) pro-
pose a genetic algorithm for text clustering based on a
Li et al. (2003) similarity measure, whilst Dagher and
Fung (2013) introduce a document clustering method
based on a VSM model and a WordNet-based term ex-
pansion based on the Jiang and Conrath (1997) distance.
Liu et al. (2009) introduce a method for the discov-
ery of relevant WDSL-speci�ed web services based on
a WDSL similarity metric de�ned by the dot product
between the provider and query vectors, whose weights
are derived from the Li et al. (2003) similarity mea-
sure. Martínez et al. (2010) introduce a document
anonymization method based on ontology-based similar-
ity measures. Cross and Hu (2011) introduce a seman-
tic alignment quality measure for the Ontology Align-
ment (OA) problem which relies on the di¤erence be-
tween the similarity measure between the concepts in
the base ontology and their image in the target ontol-
ogy; and Pirró and Talia (2010) introduce an ontology
mapping method based on a reformulation of the Jiang
and Conrath (J&C) distance and the Seco et al. (2004)
IC model, whilst Jeong et al. (2008) propose a framework
for XML-schema matching based on ontology-based sim-
ilarity measures. In Oliva et al. (2011), Lee (2011) and
Hadj Taieb et al. (2015), the authors introduce di¤er-
ent methods for sentence similarity based on ontology-
based similarity measures. Other works use similarity
measures for the extraction of domain ontologies from
the Internet like Wang and Zhou (2009), or from text
corpora like Meijer et al. (2014). Montani et al. (2015)
propose an ontology-based process similarity metric for
process mining that relies on the Wu and Palmer (1994)
similarity measure. In the �eld of bioengineering, Couto

et al. (2007) introduce a reformulation of three classic
IC-based similarity measures with the aim of computing
similarity measures based on the Gene Ontology (GO),
whilst Chaves-González and Martínez-Gil (2013) intro-
duce a similarity-based evolutionary method for syn-
onym recognition in the biomedical domain. Other spe-
ci�c similarity measures have been studied for biomed-
ical text mining, such as Pedersen et al. (2007) and
Sánchez and Batet (2011), as well as other genomics ap-
plications, such as protein function prediction Pesquita
et al. (2009), Couto and Pinto (2013) and pathway pre-
diction Chiang et al. (2008).

1.1 The context of our research

An ontology-based semantic similarity measure is a bi-
nary concept-valued function sim : C � C ! R de�ned
on a single-root taxonomy of concepts (C;�C) which re-
turns the degree of similarity between concepts as per-
ceived by a human being. Modern research into the
problem starts with the pioneering works by Tversky
(1977) and Rada et al. (1989) in the �elds of cognitive
psychology and IR respectively. Tversky (1977) intro-
duce a feature-based similarity measure which requires
a representation of the concepts as feature sets, whilst
Rada et al. (1989) introduce a semantic distance de�ned
as the length of the shortest path between concepts in a
taxonomy. The main drawback of the Rada et al. (1989)
measure, as well as other similarity measures which use
the length of the shortest path between concepts, is that
all the edges in the taxonomy contribute to the over-
all distance with the same weight, the so-called uni-
form weighting problem. In order to bridge this latter
gap, Resnik (1995) introduces the �rst similarity mea-
sure based on an Information Content (IC) model de-
rived from corpus statistics, as well as the �rst method
to compute an IC model, such as those proposed herein.
Every IC-based similarity measure needs a comple-

mentary concept-valued function, called the Information
Content (IC) model. Given a taxonomy of concepts de-
�ned by a triplet C = ((C;�C) ;�) where � 2 C is the
supreme element called the root, an Information Con-
tent model is a function IC : C ! R+ [ f0g, which
represents an estimation of the information content for
every concept, de�ned by IC (ci) = �log2 (p (ci)), p (ci)
being the occurrence probability of each concept ci 2 C.
Every IC model must satisfy two further properties: (1)
nullity in the root, such that IC (�) = 0, and (2) grow-
ing monotonicity from the root to the leaf concepts, such
that 8ci �C cj ) IC (ci) � IC (cj). Once the IC-based
measure is chosen, the IC model is mainly responsible
for the de�nition of the notion of similarity and distance
between concepts. Other works, such as Pirró and Eu-
zenat (2010), have also proposed intrinsic IC models for
semantic relatedness measures which rely on the whole
set of semantic relationships encoded into an ontology.
The �rst known IC model is based on corpus statistics,

which was introduced by Resnik (1995) and detailed in
Resnik (1999). The main drawback of the corpus-based
IC models is the di¢ culty in getting a well-balanced and
disambiguated corpus for the estimation of the concept
probabilities. To bridge this gap, Seco et al. (2004) intro-
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duced the �rst intrinsic IC model in the literature, whose
core hypothesis is that the IC models can be directly
computed from intrinsic taxonomical features. There-
fore, the development of new intrinsic IC-based similar-
ity measures is divided into two subproblems: (1) the
proposal of new intrinsic IC models, as in our work,
and (2) the proposal of new IC-based similarity mea-
sures. In another recent work Lastra-Díaz and García-
Serrano (2015a), we introduce a new family of intrin-
sic and corpus-based IC models called well-founded IC
models, which is based on the proposal of di¤erent meth-
ods for the estimation of the conditional probabilities
between child and parent concepts within a taxonomy.
The main idea behind the new family of well-founded IC
models is that any IC model should satisfy a set of ax-
ioms that algebraically link the conditional probabilities,
probability function and IC model in order to de�ne a
well-founded probability space.

1.2 Motivation and hypotheses

The �rst motivation is the �nding of two drawbacks in
the algorithm to compute the family of well-founded IC
models introduced in Lastra-Díaz and García-Serrano
(2015a). First, the two intrinsic and cognitive IC mod-
els called CondProbLogistic and CondProbCosine do not
satisfy the axiom that constrains the sum of probabili-
ties on the leaf nodes to be 1. It is a consequence of
the non-linear transformations applied to the conditional
probabilities of these two models, a fact that was already
mentioned in our aforementioned work. Second, in some
cases, the ontologies with multiple inheritance could pre-
vent the IC model satisfying the growing monotonicity
axiom in concepts with multiple parents. This latest fact
means that for some concept pairs ci; cj 2 C, the con-
straint ci �C cj ) IC (ci) � IC (cj) could be violated.
In appendix B of our aforementioned work, we prove that
the recovery algorithm based on the recursive formula in
equation (3) is a su¢ cient condition for the sum of prob-
abilities over the leaf nodes to be 1, what follows the
underlying probability space is well-de�ned. However, if
the taxonomy exhibits multiple inheritance, the proba-
bilities p (ci) derived from equation (3) could be higher
than the probability of any direct parent in some nodes
with multiple parents, thus, leading to a violation of the
aforementioned growing monotonicity axiom. Our main
hypothesis is that the solution to these two drawbacks
could lead us to an improvement in the performance of
the family of well-founded IC models, in addition to �x-
ing an algebraic inconsistency that moves the family of
well-founded IC model away from their original design
principles.
Second motivation of this work is the lack of an up-

dated and exhaustive evaluation of ontology-based sim-
ilarity measures and IC models in WordNet, as well as
the lack of an exhaustive pairwise statistical signi�cance
analysis between them. In the literature, we �nd some
out-of-date similarity benchmarks such as that reported
by Budanitsky and Hirst (2001) and Budanitsky and
Hirst (2006), and others, more recent but not exhaus-
tive, such as Hadj Taieb et al. (2014b). The largest and
most recent word similarity benchmarks in WordNet are

introduced by Lastra-Díaz and García-Serrano (2015a)
and Lastra-Díaz and García-Serrano (2015b). However,
not all of the hybrid IC-based similarity measures eval-
uated in the latest work have been previously evaluated
with many IC models considered herein and the datasets
introduced by Miller and Charles (1991), Agirre et al.
(2009) and Hill et al. (2015). In addition, most ontology-
based similarity measures have never been compared
through a statistical signi�cance analysis. Therefore,
in the light of the results reported by Lastra-Díaz and
García-Serrano (2015a), and in order to provide a con-
clusive image of the current state of the problem, we
introduce herein a new and larger evaluation of IC mod-
els and ontology-based similarity measures than those
available in the literature. This new evaluation is based
on the most recently available datasets and our own soft-
ware implementation of all the IC models and similarity
measures evaluated herein, covering most developments
from the pioneering works of Rada et al. (1989) and Seco
et al. (2004).
Finally, the last motivation is the replication of previ-

ous methods and experiments. Most works introduc-
ing similarity measures or IC models during the last
decade have only implemented or evaluated classic IC-
based similarity measures, such as the Resnik, Lin and
Jiang-Conrath measures, avoiding the replication of IC
models and similarity measures introduced by other re-
searchers. Some works have not included all the details
of their methods, or the experimental setup to obtain the
published results, thus, preventing their reproducibil-
ity. Most works have copied results published by others.
This latest fact has prevented the valuable con�rmation
of previous methods and results reported in the litera-
ture, which is an essential feature of science. Pedersen
(2008a), and subsequently Fokkens et al. (2013), warn
of the need to reproduce and validate previous methods
and results reported in the literature, a suggestion that
we subscribe to in our aforementioned works, where we
also warn of �nding some contradictory results. This
replication problem is especially signi�cant in the cur-
rent state of the problem, in which there is no con-
vincing winner within the family of intrinsic IC-based
similarity measures and the performance margin is very
narrow, as concluded in our aforementioned works. In
addition, Pedersen (2008a) also warns of the need of re-
leasing the software developed for the evaluation of new
methods and experiments reported in the literature with
the aim of allowing their reproducibility. Following the
suggestions from Pedersen, we introduce our new soft-
ware library of ontology-based semantic similarity mea-
sures and IC models together with a set of reproducible
experiments in a forthcoming paper, Lastra-Díaz and
García-Serrano (2016).
The proposed re�nements close the algebraic and algo-

rithmic de�nition of the family of well-founded IC mod-
els, giving rise to research into further IC models within
this family.
For the experimental survey, our main hypotheses are

as follows:

H1. A group of recent IC-based similarity measures out-
perform the path-based similarity measures, as well
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as the classic IC-based measures, but there is no
statistically signi�cant di¤erence between them.

H2. There is no statistically signi�cant di¤erence in
performance between most intrinsic IC models and
the best performing corpus-based IC model de�ned
as baseline, which is derived from the �ic-treebank-
add1.dat��le in the Pedersen (2008b) dataset.

H3. A small set of the best performing intrinsic IC mod-
els outperform the best performing corpus-based IC
model de�ned as baseline.

H4. The classic IC-based similarity measures proposed
by Resnik, Jiang and Conrath, and Lin have been
de�nitively outperformed by a small set of state-of-
the-art IC-based similarity measures.

H5. The practical use of the current hybrid IC-based
similarity measures that are based on the length of
the shortest path is prevented by their high compu-
tational cost in comparison with the other methods
with a similar performance.

H6. Most IC-based similarity measures perform better
with a speci�c IC model.

H7. The state-of-the-art IC-based similarity measures
outperform the best corpus-based similarity mea-
sures in the SimLex665 dataset.

H8. The proposed re�nement into the computation
method of the well-founded IC models could lead
us to an improvement in their performance.

1.3 Research problem and contributions

The main aims of this paper are as follows. First, the
proposal of a re�nement into the four-step algorithm
used to compute the family of well-founded IC models
with the aim of eliminating the aforementioned draw-
backs of the computational method introduced in our
previous work, Lastra-Díaz and García-Serrano (2015a).
Second, the proposal of eight new intrinsic IC models
and one new corpus-based IC model in the new frame-
work of our family of well-founded IC models. And third,
the introduction of a new and very detailed experimen-
tal survey of IC models and ontology-based similarity
measures on WordNet with a complete detailed statisti-
cal signi�cance analysis between IC models and similar-
ity measures, including the evaluation of most ontology-
based similarity measures since the work of Rada et al.
(1989) and all WordNet-based IC models reported in
the literature, with the only exception of the IC mod-
els recently introduced by Harispe et al. (2015a) and
Ben Aouicha et al. (2016b).
The re�nement of the well-founded IC models allows

a new family of IC models to be derived from the pre-
vious models introduced by Lastra-Díaz and García-
Serrano (2015a), as well as three new strategies to
compute the conditional probabilities. The new intrin-
sic IC models are called CondProbRefHyponyms, Cond-
ProbRefUniform, CondProbRefLeaves, CondProbRefLo-
gistic, CondProbRefCosine, CondProbRefLogisticLeaves,

CondProbRefCosineLeaves and CondProbRefLeavesSub-
sumersRatio, whilst the new corpus-based IC model is
called CondProbRefCorpus. The CondProbRefLeaves-
SubsumersRatio IC model is a reformulation of the
Sánchez et al. (2011) IC model in the framework de�ned
by our family of IC models.
The new experimental survey includes most of the in-

trinsic and corpus-based IC models evaluated in Lastra-
Díaz and García-Serrano (2015a), as well as the nine new
IC models introduced herein, one of the unexplored in-
trinsic IC models introduced by Blanchard et al. (2008),
and most ontology-based similarity measures since the
work by Rada et al. (1989). The word similarity bench-
marks introduced herein include the �ve most signi�-
cant datasets on the problem, as well as a very de-
tailed pairwise statistical signi�cance analysis between
the IC models and ontology-based similarity measures.
The benchmarks reported herein are, to the best of our
knowledge, the largest experimental survey on intrinsic
IC models and ontology-based similarity measures on
WordNet reported in the literature, which is based on
a same code implementation. We exactly reproduce the
same experiments from Lastra-Díaz and García-Serrano
(2015a), but with a much larger set of IC models and
ontology-based similarity measures. Our experiments
include a set of the hybrid IC-based similarity measures
based on the length of the shortest path between con-
cepts which were evaluated in Lastra-Díaz and García-
Serrano (2015b) and subsequently discarded because of
their high computational cost. The experimental sur-
vey includes 22 ontology-based similarity measures, 22
intrinsic IC models, and 3 corpus-based IC models.
The rest of the paper is structured as follows. Section

2 reviews the literature on concept similarity models.
Section 3 summarizes the factual state of the art of the
problem, whilst section 3.1 reviews the literature on in-
trinsic IC models. Section 4 introduces the proposed
re�nement in the well-founded IC models, as well as the
new IC models derived from it. Section 5 describes the
evaluation methodology and the results obtained. Sec-
tion 6 introduces an in-depth discussion of the results.
Last section presents our conclusions and future work.
Finally, appendix groups the summary data tables and
all raw data tables resulting from the evaluation.

2 Concept similarity models

This section makes a comparison between the concept
and word similarity models proposed in the literature
which we categorize as ontology-based and corpus-based
similarity measures, and the most recent concept sim-
ilarity models proposed in cognitive psychology. First,
we compare the main strategies adopted to tackle the
problem, and �nally, we review the literature on corpus-
based and ontology-based similarity measures.

2.1 Comparison of strategies

In the �elds of NLP and IR, we �nd two di¤erent types of
similarity models to estimate the degree of similarity be-
tween words: (1) ontology-based similarity measures as
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Reference De�nition of the non IC-based similarity measures

Rada et al. (1989)

simRada (c1; c2) = 1� 1
2dRada (c1; c2)

dRada (c1; c2) = len (c1; c2) = min
8�2Paths(c1;c2)

( P
eij2�

1

)
Wu and Palmer (1994) simW&P (c1; c2) =

2�depth(LCA(c1;c2))
len(c1;LCA(c1;c2))+len(c2;LCA(c1;c2))+2�depth(LCA(c1;c2))

Leacock and Chodorow (1998) simL&C (c1; c2) = �log
�
1+len(c1;c2)
2�maxdepth

�
Li et al. (2003) simLi_s3 (c1; c2) = e

���len(c1;c2); �� = 0:25

Li et al. (2003)
simLi_s4 (c1; c2)= e

���len(c1;c2) � e��d�e���d
e��d+e���d

, ��= 0:2 ��= 0:6
d = depth (LCA (c1; c2))

Al-Mubaid and Nguyen (2009) dMubaid (c1; c2)= log (1 + len (c1; c2) � (depthmax� depth (LCS (c1; c2))))
Pedersen et al. (2007) simPath (c1; c2) =

1
1+len(c1;c2)

Sánchez et al. (2012)
disS&B (c1; c2)= log2

�
1 + j�(c1)n�(c2)j+j�(c2)n�(c1)j

j�(c1)n�(c2)j+j�(c2)n�(c1)j+j�(c1)\�(c2)j

�
� (a)= fc 2 C j a � cg

Hadj Taieb et al. (2014b)

simTaieb_1 (c1; c2)= jTermDepth (c1; c2)j �TermHypo (c1; c2)
TermDepth (c1; c2) =

2�depth(c1;c2)
depth(c1)+depth(c2)

TermHypo (c1; c2) =
2�SpecHypo(c1;c2)

SpecHypo(c1;c2)+SpecHypo(c1;c2)

SpecHypo (c1; c2)= 1�
log(HypoV alue(c))

log(HypoV alue(root))

HypoV alue (c)=
P

c02HypoInc(c)
P (depth (c0))

P (depth (c0))=
jfc02C j depth(c0)=depth(c)gj

jCj
depth (c)=length of the longest ascending path c! root
HypoInc (c)= fc0 2 C j c0 � cg

Table 1: State-of-the-art non IC-based similarity measures evaluated in our experiments.

in our work, and (2) corpus-based similarity and related-
ness measures. The ontology-based similarity measures
are based on the de�nition of binary concept-valued simi-
larity functions on �is-a�taxonomies, which have proven
in Lastra-Díaz and García-Serrano (2015a) to be the
best approximation to similarity human judgments on
the noun subset of the SimLex dataset Hill et al. (2015),
as being e¢ cient, robust and easy to implement. How-
ever, the main drawback of the ontology-based similarity
measures is the limited coverage of the ontologies and the
cost and di¢ culties of building them. Other drawback
of the ontology-based methods is the requirement of a
single taxonomy that includes all the words to be com-
pared, although this problem has given rise to the pro-
posal of methods for the estimation of semantic similar-
ity measures combining multiple ontologies, such as the
general-purpose method introduced by Al-Mubaid and
Nguyen (2009), the method for feature-based measures
proposed by Solé-Ribalta et al. (2014) and the method
for IC-based similarity measures proposed by Batet et al.
(2014). On the other hand, the corpus-based similarity
and relatedness measures mainly rely on the distribu-
tional hypothesis, and they are commonly based on the
statistical co-occurrence between word contexts in large
corpora, as a means of estimating the degree of simi-
larity between words. The corpus-based measures �can
confuse similarity with relatedness�(Li et al., 2015, §1).
In addition, �it is commonly considered that distribu-
tional measures can only be used to capture semantic
relatedness� (Harispe et al., 2015b, §2.5.2), and �they
have traditionally performed poorly when compared to
WordNet-based measures�(Mohammad and Hirst, 2012,
p.1). This latter fact is con�rmed by the recent compar-

isons between ontology-based and corpus-based similar-
ity measures reported by (Banjade et al., 2015, Table 1)
and Le and Fokkens (2015), as well as our benchmarks
in (Lastra-Díaz and García-Serrano, 2015a, §6.4). It is
worth to note that the ontology-based similarity mea-
sures use an explicitly de�ned concept similarity model
with the aim of estimating the degree of similarity be-
tween words whose speci�c meaning (evocated concept)
is unknown, whilst the corpus-based measures use the
occurrence of the words in a speci�c context, whose
meaning (concept) is implicitly de�ned by the context.
Finally, the research into the similarity judgments

problem in cognitive psychology derives from the pio-
neering work of Tversky (1977). The research into the
�eld of IR has focused on the proposal of a plethora
of symmetric and contextless similarity measures guided
by experimental evaluation. On the contrary, the re-
search into cognitive sciences has followed a parallel line
more focused on the de�nition of theoretical models ca-
pable of explaining several non-metric phenomena in
the human similarity judgments described by Tversky
(1977) and Pothos et al. (2015), such as: (1) asymme-
try or non-commutativity, (2) context dependency and
(3) the conjunction fallacy. The most recent cognitive
similarity model is introduced by Pothos et al. (2013)
and Pothos and Trueblood (2015), being inspired by a
quantum probability approach for cognition proposed by
Busemeyer and Bruza (2012), whose non-commutative
nature allows the representation of di¤erent non-metric
phenomena. However, the quantum probability similar-
ity model has not yet been experimentally evaluated.
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2.2 Corpus-based measures

Many corpus-based similarity or relatedness mea-
sures are based on concept-based resources, such as
Wikipedia. For instance, Strube and Ponzetto (2006) in-
troduce WikiRelate, a method for computing the seman-
tic relatedness between words based on a graph derived
from Wikipedia. WikiRelate extracts the Wikipedia
pages associated to each input word and builds a tax-
onomy of categories by merging the categories that the
pages belong to. Finally, WikiRelate uses standard path-
based and IC-based similarity measures on the recovered
taxonomy in order to compute the relatedness measure
between words. We can interpret WikiRelate as a two-
stage method based on the combination of a taxonomy
recovering method, such as the method recently pro-
posed by Ben Aouicha et al. (2016a), with any stan-
dard ontology-based similarity measure. Gabrilovich
and Markovitch (2007) introduce a semantic relatedness
method for word and documents, called ESA, which rep-
resents the meaning of a word or text as a weighted vec-
tor of Wikipedia concepts (articles); whilst Agirre et al.
(2009) introduce several distributional relatedness mea-
sures based on a vector space model trained on a large
Web corpus, which favourably compare with a large set
of ontology-based similarity measures on WordNet.
On the other hand, another very active line of re-

search in corpus-based similarity measures is the pro-
posal for hybrid concept-based distributional measures,
which integrate knowledge bases (KBs) or explicit �is-a�
semantic networks in order to overcome the lack of well-
de�ned semantic knowledge. For instance, Patwardhan
and Pedersen (2006) introduce a similarity and related-
ness measure which relies on the gloss vector overlapping
between the extended WordNet gloss vectors of two in-
put concepts. Mohammad and Hirst (2006) introduce a
hybrid distributional measure which relies on the cosine
function and the concept-based conditional probabilities
for the words derived from the Roget�s thesaurus. Al-
varez and Lim (2007) propose a hybrid distributional
similarity measure that relies on the product of two tax-
onomical WordNet-based functions with a gloss overlap-
ping factor by using �is-a� and �part-of� relationships,
whilst Li et al. (2015) introduce another hybrid distri-
butional measure whose core idea is that the similarity
computation relies on truly �is-a� relationships, which
are derived from a very large web corpus by using an
automatic method based on syntactic rules.
Other family of relatedness measures are based on

randow walks on weighted graphs derived from di¤erent
knowledges sources, such as Wikipedia and WordNet.
For instance, Hughes and Ramage (2007) propose a se-
mantic relatedness measure between word pairs which is
based on a random walk using Personalized PageRank
on a weighted graph derived from WordNet and corpus
statistics, whilst Yeh et al. (2009) extend their previous
work on semantic relatedness measures based on random
walks to Wikipedia, and Ramage et al. (2009) propose a
corpus-based measure based on a random walk on Word-
Net with the aim of estimating the semantic similarity
between text fragments. Finally, Yazdani and Popescu-
Belis (2013) propose a method for estimating the se-

mantic relatedness between concepts based on a random
walk approach on a Wikipedia concept network with two
link types: the hypertext links between Wikipedia arti-
cles (concepts), and the lexical similarity between them
de�ned by the cosine score between the vectors repre-
senting each article.
Another growing research trend on corpus-based se-

mantic similarity and relatedness measures is the de-
velopment of word embeddings, such as those proposed
by Mikolov et al. (2013), Pennington et al. (2014) and
Suzuki and Nagata (2015), whose core idea is the learn-
ing of a vector representation (embedding) for large vo-
cabularies, such that the Euclidean distance between
word vectors re�ects their semantic similarity. Most
word embeddings use a large corpora in their learn-
ing process, thus, they are a subfamily of the corpus-
based methods. The word embedding methods com-
monly use complex machine learning algorithms, which
are time-consuming and hard to reproduce. However,
once the vector representations are computed, their eval-
uation mainly depends on the dimensionality of the vec-
tor space, thus, they can be very e¢ cient for large vo-
cabularies and low dimensionality.

2.3 Ontology-based similarity measures

In two recent works, Lastra-Díaz and García-Serrano
(2015b) and Lastra-Díaz and García-Serrano (2015a), we
provide a very detailed review of the current ontology-
based semantic measures, thus, we only provide herein a
categorization in order to introduce the similarity mea-
sures that will be evaluated in our experiments. For a
more in-depth review of the topic, we refer the reader
to our aforementioned works, especially the former, and
the recent book by Harispe et al. (2015b).
We categorize the current ontology-based semantic

measures into four subfamilies as follows: (1) edge-
counting similarity measures, the so called path-based
measures, whose core idea is the use of the length of
the shortest path between concepts as an estimation of
their degree of similarity, such as the pioneering work of
Rada et al. (1989) and the subsequent works of Wu and
Palmer (1994), Leacock and Chodorow (1998), Hirst and
St-Onge (1998), Pedersen et al. (2007) and Al-Mubaid
and Nguyen (2009); (2) IC-based similarity measures
whose core idea is the use of an Information Content (IC)
model, such as the pioneering work of Resnik (1995), and
the measures proposed by Jiang and Conrath (1997) and
Lin (1998); (3) feature-based measures, whose core idea
is the use of set-theory operators between the feature sets
of the concepts, such as the pioneering work of Tversky
(1977), and more recently Sánchez et al. (2012), whose
core idea is the use of the overlapping of ancestor sets as
an estimation of the overlapping between the unknown
feature sets of the concepts; and �nally, (4) other similar-
ity measures that cannot be directly categorized into any
previous family, which are based on taxonomical features
derived from set-theory operators Batet et al. (2011), or
novel contributions of the hyponym set Hadj Taieb et al.
(2014b). Out of our previous categorization, it was also
worth mentioning some proposals of aggregated similar-
ity measures, such as Martinez-Gil (2016), whose key
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Classic IC-based similarity measures
Resnik (1995) simResnik (c1; c2) = IC (MICA (c1; c2))

Jiang and Conrath (1997)
dJ&C (c1; c2) = IC (c1) + IC (c2)� 2IC (MICA (c1; c2))
simJ&C (c1; c2) = 1� 1

2dJ&C (c1; c2)

Lin (1998) simLin (c1; c2) =
2IC(MICA(c1;c2))
IC(c1)+IC(c2)

IC-based reformulations of the Tversky similarity measure

Pirró and Seco (2008) simP&S (c1; c2)=

8<: 3IC (MICA (c1; c2))
�IC (c1)� IC (c2)

, if c1 6= c2
1 , if c1= c2

Monotone transformations of classic IC-based similarity measures

Pirró and Euzenat (2010) simFaITH (c1; c2) =
IC(MICA(c1;c2))

IC(c1)+IC(c2)�IC(MICA(c1;c2))

Meng and Gu (2012) simMeng (c1; c2) = e
simLin(c1;c2) � 1 = e

2IC(MICA(c1;c2))

IC(c1)+IC(c2) � 1
Garla and Brandt (2012) simpath_IC (c1; c2) =

1
1+dJ&C(c1;c2)

Lastra-Díaz and García-Serrano (2015b)
simcosJ&C (c1; c2) = 1� cos

�
�
2

�
1� dJ&C(c1;c2)

2�maxdJ&C

��
maxdJ&C = max

c2Leaves(C)
fIC (c)g

Hybrid IC-based similarity measures based on the shortest path length

Li et al. (2003) simLi_s9 (c1; c2) = simLi_s4 (c1; c2) � e
��IC�e���IC
e��IC+e���IC

, �� = 0:4
IC =MICA (c1; c2)

Zhou et al. (2008b) simZh (c1; c2)= 1� k�

0@ log(len(c1;c2)+1)

log

�
2�max

c2T
fdepth(c)g�1

�
1A

� 1
2 (1� k)� dJ&C (c1; c2) k� = 1

2 by default

Meng et al. (2014) simMeng2014 (c1; c2) = simLin (c1; c2)

�
1�e�k�len(c1;c2)

e�k�len(c1;c2)

�
; k� = 0:08

Gao et al. (2015)

simGao (c1; c2) = e
��L(c1;c2) ; �� = 0:15 and �� = 2:05

L (c1; c2) = wt (c1; c2) � len (c1; c2)

wt =

( �
1+IC(MICA(c1;c2))
IC(MICA(c1;c2))

��
; IC (MICA (c1; c2))� 1

2� ; 1 > IC (MICA (c1; c2)) � 0

Lastra-Díaz and García-Serrano (2015b)

simcoswJ&C (c1; c2) = 1� cos
�
�
2

�
1� dwJ&C(c1;c2)

2�maxdJ&C

��
dwJ&C (c1; c2) = min

8�2Paths(c1;c2)

( P
eij2�

w (eij)

)
w (eij) =

�
�log2 (p (cijcj)) , if p (cijcj) are known
jIC (ci)� IC (cj)j , otherwise

Table 2: De�nition of the state-of-the-art IC-based similarity measures evaluated in our experiments.

feature is the merging of multiple ontology-based sim-
ilarity measures in order to produce a �nal similarity
judgement.
In addition to the four subfamilies of ontology-based

similarity measures aforementioned above, we categorize
the family of IC-based similarity measures into the fol-
lowing four subgroups, as shown in table 2: (1) the �rst
group of classic IC-based measures made up of the simi-
larity measures introduced by Resnik (1995), Jiang and
Conrath (1997) and Lin (1998); (2) a second group that
we call hybrid or path-based IC-based similarity mea-
sures, which is de�ned by those measures that make up
an IC model with any function based on the length of
the shortest path between concepts, such as the pioneer-
ing work of Li et al. (2003), and other subsequent works
such as Zhou et al. (2008a), Meng et al. (2014), Gao
et al. (2015), and the two weighted IC-based similarity
measures introduced by Lastra-Díaz and García-Serrano

(2015b); (3) a third group that is based on any reformu-
lation strategy between di¤erent approaches, such as the
IC-based reformulations of the Tversky measure in Pirró
(2009) and Pirró and Euzenat (2010), as well as the IC-
based reformulation of most edge-counting methods in-
troduced by Sánchez and Batet (2011); and �nally, (4) a
fourth group that is based on a monotone transformation
of any classic IC-based similarity measure, such as the
exponential-like scaling of the Lin (1998) measure intro-
duced by Meng and Gu (2012), the reciprocal of the J&C
distance introduced by Garla and Brandt (2012), and
another cosine-based normalization of the J&C distance
introduced by Lastra-Díaz and García-Serrano (2015b).
In addition, we show herein that the FaITH similarity
measure introduced by Pirró and Euzenat (2010) is also
a monotone transformation of the Lin (1998) similarity
measure, despite its initial design being based on a refor-
mulation of the Tversky (1977) measure. Table 3 shows
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Rada et al. (1989) similarity measure and its monotone transformations

Rada et al. (1989)

simRada (c1; c2) = 1� 1
2dRada (c1; c2)

dRada (c1; c2) = len (c1; c2) = min
8�2Paths(c1;c2)

( P
eij2�

1

)

Leacock and Chodorow (1998)

simL&C (c1; c2) = �log
�
1+len(c1;c2)
2�maxdepth

�
Factorization:
simL&C (c1; c2) = ' (x) � simRada (c1; c2)

' (x) = �log
�

3�2x
2�maxdepth

�
Li et al. (2003)

simLi_s3 (c1; c2) = e
���len(c1;c2); �� = 0:25

Factorization:
simLi_s3 (c1; c2) = ' (x) � simRada (c1; c2)

' (x) = e2��(x�1)
��=0:25�! '� (x) = e

(x�1)
2

Pedersen et al. (2007)

simPath (c1; c2) =
1

1+len(c1;c2)

Factorization:
simPath (c1; c2) = ' (x) � simRada (c1; c2)
' (x) = 1

3�2x

Lin (1997) similarity measure and its monotone transformations

Lin (1998) simLin (c1; c2) =
2IC(MICA(c1;c2))
IC(c1)+IC(c2)

Pirró and Euzenat (2010)

simFaITH (c1; c2) =
IC(MICA(c1;c2))

IC(c1)+IC(c2)�IC(MICA(c1;c2))

Factorization:
simFaITH (c1; c2) = ' (x) � simLin (c1; c2)
' (x) = x

2�x

Meng and Gu (2012)

simMeng (c1; c2) = e
simLin(c1;c2) � 1

Factorization:
simMeng (c1; c2) = ' (x) � simLin (c1; c2)
' (x) = ex � 1

Jiang and Conrath (1997) similarity measure and its monotone transformations

Jiang and Conrath (1997)
dJ&C (c1; c2) = IC (c1) + IC (c2)� 2IC (MICA (c1; c2))
simJ&C (c1; c2) = 1� 1

2dJ&C (c1; c2)

Garla and Brandt (2012)

simpath_IC (c1; c2) =
1

1+dJ&C(c1;c2)

Factorization:
simpath_IC (c1; c2) = ' (x) � simJ&C (c1; c2)
' (x) = 3� 2x

Lastra-Díaz and García-Serrano (2015b)

simcosJ&C (c1; c2) = 1� cos
�
�
2

�
1� dJ&C(c1;c2)

2�maxdJ&C

��
maxdJ&C = max

c2Leaves(C)
fIC (c)g

Factorization:
simcosJ&C (c1; c2) = ' (x) � � (t) � simJ&C (c1; c2)
' (x) = 1� cos

�
�
2x
�

� (t) = 1� 1�t
maxdJ&C

, normalization function

Table 3: Equivalence classes of similarity measures induced by any monotone transformation from any classic similarity
measure.

8



the monotonicity relationships between most IC-based
similarity measures which have been experimentally con-
�rmed in our evaluation. For the sake of completeness of
our experimental survey, we also evaluate herein all non
IC-based similarity measures shown in table 1, despite
the present work is focused on new IC models and their
evaluation with the state-of-the-art IC-based similarity
measures shown in table 2.
Finally, Stanchev (2014) introduces a similarity graph

from WordNet with the aim of computing the similarity
between words. In addition to the taxonomical struc-
ture from WordNet, the graph uses the de�nition and
examples of use of the WordNet concepts as evidence
on the relationships between concepts. The similarity
graph is de�ned by a collection of oriented edges with
asymmetric weights, in which the weights between par-
ent and child concepts encode the probability that a user
interested in the source node of an edge is also interested
in the concept associated to the destination node. The
similarity measure is de�ned as the product of the edge
weights throughout the path between the word nodes.
Despite some weights being de�ned in an arbitrary way,
the method obtains outstanding results in the Miller and
Charles (1991) dataset, and introduces for the �rst time
an asymmetrical path-based method founded on prob-
ability theory. We note that the similarity measure in-
troduced by Stanchev is closely related to our weighted
J&C distance, denoted by dwJ&C in table 2, as our
measure matches the logarithm of the product of condi-
tional probabilities between the word nodes. However,
the basic form of the dwJ&C distance does not inte-
grate the word nodes into the WordNet taxonomy and
the weights are symmetric, the edge weights being the
logarithm of the conditional probabilities.

2.4 Summary and positioning

In summary, the ontology-based similarity measures are
e¢ cient, easy to implement and more accurate than
the corpus-based methods, whilst the corpus-based mea-
sures o¤er a broader lexical coverage at the expense
of a high complexity and computational cost, as well
as the di¢ culties to obtain well-balanced learning cor-
pus. However, the corpus-based relatedness measures
based on word embeddings combine the broad coverage
of the corpus-based methods with an e¢ cient evaluation
method in operation mode. On the other hand, unlike
the theoretical models developed in cognitive psychol-
ogy which have not yet evaluated, the ontology-based
similarity measures have been successfully evaluated in
many human similarity benchmarks, and they have con-
tributed to the development of a large set of applications.
For these reasons, we are focusing our research e¤ort on
the development of new IC models and ontology-based
similarity measures.

3 State of the art

This section summarizes the current factual state of the
art on ontology-based similarity measures and IC models
and review the related work on IC models.

The state of the art in ontology-based similarity mea-
sures is de�ned by the family of intrinsic IC-based mea-
sures, which are de�ned by the combination of one spe-
ci�c IC-based similarity measure with any intrinsic IC
model. More speci�cally, our cosine-normalized Jiang-
Conrath (cosJ&C ) similarity measure is currently the
best performing ontology-based similarity measure ac-
cording to the evaluation on the �ve most signi�cant
datasets reported in (Lastra-Díaz and García-Serrano,
2015a, table 6). However, in this latest work we did
not evaluate other hybrid IC-based measures that ob-
tained state-of-the-art results in Lastra-Díaz and García-
Serrano (2015b), such as our hybrid measure coswJ&C
and the Zhou et al. (2008b) similarity measure. Like-
wise, the cosJ&C similarity measure is the only mea-
sure that obtains a statistically signi�cant higher per-
formance than the baseline, (Lastra-Díaz and García-
Serrano, 2015a, �g.3). However, we also prove that
there is no statistically signi�cant di¤erence between
the cosJ&C similarity measure and those introduced by
Meng and Gu (2012) and Pirró and Euzenat (2010).
The outperformance of the IC-based similarity mea-

sures is supported by several recent WordNet-based
benchmarks, such as Lastra-Díaz and García-Serrano
(2015a), Lastra-Díaz and García-Serrano (2015b) and
Hadj Taieb et al. (2014b), as well as other older ones,
such as Budanitsky and Hirst (2006), Pirró (2009) and
Sánchez et al. (2011). Another benchmark in bioengi-
neering introduced by Garla and Brandt (2012) also con-
�rms the outperformance of an intrinsic IC-based sim-
ilarity measure derived from the reciprocal of the J&C
distance. Likewise, McInnes and Pedersen (2013) prove
the outperformance of the classic IC-based similarity
measures over the path-based measures and gloss-based
relatedness measures in a WSD benchmark in bioengi-
neering, but it is also proven that there is no a statis-
tically signi�cant di¤erence between a corpus-based IC
model and the intrinsic IC model introduced by Sánchez
et al. (2011). This latest conclusion on the debate be-
tween intrinsic and corpus-based IC models is endorsed
in a more conclusive manner by the recent benchmarks
in our aforementioned works.
In our aforementioned works, we conclusively prove

several signi�cant facts on the state of the art of IC mod-
els as follows. First, contrary to what the research com-
munity thought, most corpus-based IC models derived
from the unexplored �*.add1�set of WordNet-based fre-
quency �les in Pedersen (2008b) rival the state-of-the-art
intrinsic IC models, (Lastra-Díaz and García-Serrano,
2015b, table 6). Second, the best performing IC model
on average is the Seco et al. (2004) IC model, (Lastra-
Díaz and García-Serrano, 2015a, table 5). Third, there is
no a statistical signi�cant di¤erence between most state-
of-the-art intrinsic IC models, as well as between most
intrinsic IC models and the baseline IC model de�ned by
a corpus-based IC model derived from the �ic-treebank-
add1.dat� �le in the aforementioned Pedersen dataset,
(Lastra-Díaz and García-Serrano, 2015a, �g.2). And �-
nally, the Sánchez and Batet (2012) IC model is the
only one that obtains a statistically signi�cant higher
performance than the corpus-based IC model de�ned as
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IC models De�nition

Resnik (1999)
ICResnik= �log2 (bp (ci)) , bp (ci)= f(ci)

N = f(ci)
f(�)

f (ci)= TF (ci)+IF (ci)= TF (ci)+
P

8cj j ci2LA(cj)
f (cj)

Seco et al. (2004) ICSeco (c)= 1� log(jHypo(c)j+1)
log(max_nodes)

Zhou et al. (2008a) ICZhou (c) = k
�
1� log(jHypo(c)j+1)

log(max_nodes)

�
+ (1� k) log(depth(c))

log(depthmax)
; k� = 1

2

Blanchard et al. (2008)
ICg (ci)= �log2

�
jSubsumedLeaves(ci)j

maxLeaves

�
SubsumedLeaves (ci)= fcj 2 C j cj �C ci ^ cj is leaf g

Sánchez et al. (2011)
ICS�anchez2011 (ci)= �log2

 jLeaves(ci)j
jsubsumers(ci)j

+1

maxLeaves+1

!
�
Leaves (ci)= fcj 2 C j (cj �C ci ^ cj 6= ci) ^ cj is leafg
subsumers (ci)= fcj 2 C j ci �C cjg

Sánchez and Batet (2012) ICS�anchez2012 (c)= �log2
�

commonness(c)
commonness(root)

�8<: commonness (c)= 1
jSubsmers(c)j ; c leaf

commonness (c)=
P
commonness (l)

8l j l is leaf and l<c
; c not leaf

Meng et al. (2012) ICMeng (c)=
log(depth(c))
log(depthmax)

�(1�
log

 
1+

P
a2Hypo(c)

1
depth(a)

!
log(Nodemax)

)

Yuan et al. (2013) ICY uan (c)= fdepth (c) (1� fleaves (c))+fhyper (c)8><>:
fdepth (c)=

log(depth(c))
log(depthmax)

fleaves (c)=
log(jLeaves(c)j+1)
log(Leavesmax+1)

fhyper (c)=
log(jHyper(c)j+1)
log(Nodemax)

Hadj Taieb et al. (2014a) ICTaieb (c)=

 P
a2HyperInc(c)

Score (a)

!
�AvgDepth (c)

AvgDepth (c)= 1
jHyperInc(c)j�

P
c02HyperInc(c)

depth (c0)

Score (c)=

 P
c02DirectHyper(c)

depth(c0)
jHypoInc(c0)j

!
� jHypoInc (c)j

HypoInc (c)= fa 2 C j a � cg HyperInc (c)= fa 2 C j c � ag

Adhikari et al. (2015)

ICAdhikari (c) =
log(depth(c)+1)
log(depthmax+1) �

�
1� log

�
jLeaves(c)�nmih(c)j

Leavesmax

jsubsmers0(c)j + 1

��

�

0B@1� log

 
1+

P
a2Hypo(c)

1
depth(a)

!
log(Nodemax)

1CA subsmers0 (c)= subsmers (c)[fcg

Table 4: State-of-the-art Information Content models evaluated in our experiments.

baseline, (Lastra-Díaz and García-Serrano, 2015a, �g.2).
In order to overcome the lexical coverage limitation

associated to the ontologies, we argue that at least two
strategies could be explored. The �rst strategy is the
ontology population based on WordNet by using any
automatic WordNet-based semantic annotation method,
such as that explored by San�lippo et al. (2005). A sec-
ond strategy is the automatic assembly of broad coverage
�is-a�taxonomies from a large corpus such as Wikipedia,
as is recently proposed and evaluated by Ben Aouicha
et al. (2016a).
Finally, despite the plethora of ontology-based similar-

ity measures and IC models available in the literature,
the selection of a speci�c similarity measure for a partic-
ular application is still an open problem. For instance,
a recent benchmark in a biomedical ontology-based IR
task by Alonso and Contreras (2016) proves that there
is no a statistically signi�cant di¤erence in performance
between the intrinsic IC measure in (Garla and Brandt,

2012, eq. (13)) and the similarity measure introduced
by Pedersen et al. (2007). This latter fact questions the
extrapolation of the results and conclusions obtained in
classic word similarity benchmarks to speci�c similarity-
based applications. Thus, in order to improve our un-
derstanding of the problem, we suggest that the evalua-
tion methodology of ontology-based similarity measures
should be reconsidered by de�ning new task-oriented
benchmarks and larger datasets. In this latter line of re-
search, Jurgens et al. (2015) introduce a new similarity
evaluation method called Cross-Level Semantic Similar-
ity (CLSS), whose aim is to measure the contribution of
the degree of similarity between small language units to
the semantic similarity between larger linguistic units.
Precisely, Pilehvar and Navigli (2015) propose an uni-
�ed method to compute the semantic similarity between
items from multiple linguistic levels. On the other hand,
Saif et al. (2014) have carried out a study on the im-
pact of the incompleteness of some linguistic resources
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Well-founded IC models De�nition
CondProbHypo ICCPHypo (ci)= �log2 (pHypo (ci))

pHypo (cijcj)= jHypo(ci)j+1P
8ck j cj2LA(ck)

(jHypo(ck)j+1)

CondProbUniform ICCPUni (ci)= �log2 (pUniform (ci))
pUniform (cijcj)= 1

jchildren(cj)j
CondProbLeaves ICCPLea (ci)= �log2 (pLeaves (ci))

pLeaves (cijcj)= jLeaves(ci)j+1P
8ck j cj2LA(ck)

(jLeaves(ck)j+1)

CondProbLogistic

ICCPLog (ci)= �log2 (pLog (ci))
pLog (cijcj)= 'l (x) � pHypo (cijcj)
'l (x : k)=

1

1+e
�k(x� 1

2 )
; k�= 8

CondProbCosine
ICCPCos (ci)= �log2 (pCos (ci))
pCos (cijcj)= 'c (x) � pHypo (cijcj)
'c (x)= 1� cos

�
�
2x
�

CondProbCorpus

ICCPCorpus (ci)= �log2 (p (ci))

p (ci)=

(
1 , ci= �P

8cj2LA(ci)
p (cj) pcorpus (cijcj) , ci 6= �

pcorpus (cijcj)= maxf1;f(ci)gP
8ck j cj2LA(ck)

maxf1;f(ck)g

Table 5: Our current family of well-founded IC models introduced by Lastra-Díaz and García-Serrano (2015a) and
evaluated in this work. Hypo(ci) and Leaves(ci) denote respectively the set of subsumed concepts and leaf concepts
for any concept ci 2 C, without including the base concept ci.

in Arabic, such as WordNet and Wikipedia, and into
the performance of the ontology-based and gloss-based
similarity measures. This latter work shows degradation
of the performance from most ontology-based similarity
measures, which call our attention to the problems of
extrapolating the results based on English benchmarks
and resources. Another interesting issue is the avail-
ability of a large word similarity benchmark based on
WordNet that would also include instances of concepts
and multiple-word terms, in the spirit of the TR9856
dataset introduced by Levy et al. (2015).
In summary, the mainstream of research into ontology-

based similarity measures is still the proposal of new in-
trinsic IC models and IC-based measures, such as that
proposed by Pirró and Euzenat (2010), Meng et al.
(2014), Gao et al. (2015) and our aforementioned works.
However, we also �nd in the literature some new corpus-
based IC models such as that introduced by Harispe
et al. (2015a), and some relevant non IC-based mea-
sures such as that proposed by Sánchez et al. (2012) and
Hadj Taieb et al. (2014b). In addition, there are several
strategies that could be explored in order to overcome
the lexical coverage limitation of the ontologies, and the
selection of a speci�c similarity measure for a particular
application is still an open problem.

3.1 Related work on IC models

In another recent work by Lastra-Díaz and García-
Serrano (2015a), we provide an in-depth review of the
state of the art in IC models. For this reason, this section
only provides a summary of the literature on IC mod-
els, including a review of the latest IC models published
after our aforementioned work.
In Resnik (1995) and subsequently Resnik (1999), the

author introduces the �rst IC model reported in the
literature. The Resnik IC model relies on a frequency
counting method of the occurrences of a concept and its
subsumed concepts into a corpus, that is also described
in detail by (Pedersen, 2013, p.34), who uses the Resnik
method to build the WordNet-based frequency �les used
in our experiments, Pedersen (2008b). The Resnik fre-
quency counting method does not take the word senses
into account; however, Pedersen (2010) proves that the
IC models derived from a non sense-tagged corpus per-
form better than the sense-tagged ones. In order to
overcome the drawbacks of the corpus-based IC mod-
els, Seco et al. (2004) introduce the �rst intrinsic IC
model reported in the literature, whose core idea is that
the IC models can be computed using only taxonomi-
cal features, such as the hyponym set ratio. During the
last decade, the development of intrinsic IC models has
become one of the mainstreams of research in the area.
Among the main intrinsic IC models proposed in the lit-
erature, we �nd the works in Zhou et al. (2008a), Sebti
and Barfroush (2008), Blanchard et al. (2008), Sánchez
et al. (2011), Sánchez and Batet (2012), Yuan et al.
(2013), and Hadj Taieb et al. (2014a), as shown in table
4, as well as the IC models introduced by Lastra-Díaz
and García-Serrano (2015a) that are shown in table 5.
Finally, we have four recent works on IC models

introduced by Adhikari et al. (2015), Harispe et al.
(2015a), Aouicha and Taieb (2015) and Ben Aouicha
et al. (2016b). First, Harispe et al. (2015a) introduce
a family of corpus-based IC models based on the Belief
function theoretical framework which is encouraged by
the observation that the occurrences of a concept not
only impact the IC value of the more general ancestor
concepts, the so-called ancestors, but should also im-
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pact the IC value of the more speci�c concepts, the so-
called descendants. Harispe et al. (2015a) propose three
di¤erent corpus-based IC models based on an adapta-
tion of the classic belief and plausibility functions in the
Demster-Shafer theory (DST), and the pignistic func-
tion. Second, Adhikari et al. (2015) introduce a new
intrinsic IC model which is encouraged by the lack of
integration in the previous IC models of a large com-
bination of taxonomical features in order to distinguish
several structural di¤erences between concepts not con-
sidered before. The Adhikari et al. (2015) IC model
integrates the relative depth, hyponym structure, sub-
sumed leaves count and subsumer set count. Aouicha
and Taieb (2015) introduce a new intrinsic IC model
speci�cally designed for the MeSH biomedical ontology
which has not been evaluated in WordNet. And �nally,
Ben Aouicha et al. (2016b) introduce a new intrinsic IC
model on WordNet which is based on a new quati�cation
of the ancestor set of each base concept. has not been
included in our experiments. Tables 4 and 5 show the
set of IC models that is implemented and evaluated in
our experiments. This latest set of IC models, together
with the recent IC models proposed by Harispe et al.
(2015a) and Aouicha and Taieb (2015), represent, to the
best of our knowledge, all the intrinsic and corpus-based
IC models reported in the literature. On the other hand,
Blanchard et al. (2008) ICg is evaluated herein for the
�rst time in a word similarity benchmark.

4 The proposed re�nement

In Lastra-Díaz and García-Serrano (2015a), we propose
a general framework to design IC models based on di¤er-
ent methods for the estimation of the conditional prob-
ability between child and parent concepts, and we in-
troduce a new family of IC models based on it, the so-
called well-founded IC models shown in table 5. Our IC
models are computed into four steps: (a) estimation of
the conditional probabilities p (cijcj); (b) building of a
total ordering of the concept set; (c) recovery of the con-
cept probabilities p (ci) by using the recursive formula in
equation (3); and (d) recovery of the IC values from the
concept probabilities p (ci).
In order to eliminate the two drawbacks detailed in

section 1.2, we introduce two re�nements into the fam-
ily of well-founded IC models and derive nine new IC
models. First, in order to solve the problem related to
the two cognitive IC models, we de�ne a subsequent nor-
malization step in the recovery of the concept probabil-
ities in step (c) above, such that the overall sum of the
probability on the leaf concepts is always 1 for these
cases. Second, in order to warrant that the IC mod-
els satisfy the growing monotonicity axiom, such that
8ci �C cj ) IC (ci) � IC (cj), we de�ne a new method
for recovering the �nal concept probabilities based on the
de�nition of the probability p (ci) as the sum of the prob-
abilities of the leaf concepts subsumed by the concept
ci, instead of the direct value returned by the recursive
formula in equation (3). Thus, we de�ne a subsequent
subsumed probability recovery step in the probability re-
covery step (d) above. We note that this new de�nition

of the concept probabilities as the probability of their
subsumed leaves matches the axiomatic construction of
a discrete probability space, as introduced by Lastra-
Díaz and García-Serrano (2015a), or any book on the
subject, such as Ash and Doléans-Dade (2000). The new
method to compute the �nal probabilities p (ci) from the
conditional probabilities p (cijcj) matches the previous
method in our aforementioned work whenever the tax-
onomy is tree-like, but it produces a slightly di¤erent
probability function on taxonomies with multiple inher-
itance. This latest re�nement is a su¢ cient condition
to satisfy the growing monotonicity axiom regardless of
the conditional probability model or the type of base
taxonomy.

Re�nement 1. In order to satisfy the growing
monotonicity axiom regardless of the type of tax-
onomy, we introduce the following changes into the
algorithm used to build the well-founded IC mod-
els. First, we introduce the growing monotonicity
axiom as a further axiom into the de�nition of a
well-founded IC model. And second, in order to
satisfy the new axiom (4) the concept probability
is de�ned as the sum of the probability of its sub-
sumed leaves, instead of the direct value obtained
from the recursive formula in equation (3), as was
done in our aforementioned work.

Re�nement 2. In order to warrant that the sum of
leaf concept probabilities is 1 for any cognitive IC
model, such as the CondProbLogistic and Cond-
ProbCosine introduced in Lastra-Díaz and García-
Serrano (2015a), it is necessary to normalize the
overall sum of leaf probabilities to 1.

All new IC models share the same algebraic and com-
putational structure, being computed into six steps: (1)
estimation of the conditional probabilities; (2) building
of a total ordering of the concepts within the taxonomy;
(3) recovery of the concept probabilities p (ci) by using
the recursive formula in equation (3); (4) unit normal-
ization of the probability of the leaf nodes only for the
IC models based on non-linear transformations of the
conditional probability; (5) computation of each concept
probability p (ci) as the overall sum of the probability of
its subsumed leaves; and �nally, (6) computation of the
IC values from the concept probabilities. In this way,
the new steps (4) and (5) above eliminate the two afore-
mentioned drawbacks, but the four remaining steps are
identical to the original algorithm 1 in our previous work.
The two re�nements above lead us to the reformu-

lation of the algorithm 1 to build the well-founded IC
models introduced by Lastra-Díaz and García-Serrano
(2015a). The previous algorithm 1 is substituted by
the new algorithm to build the well-founded IC mod-
els, which is summarized in table 6. Unlike the previous
algorithm 1, the new algorithm only uses the iterative
top-down procedure de�ned by the recursive formula in
equation (3) in order to compute the probability of the
leaf nodes, not the probability of each concept as was
done in our aforementioned work. We recall that the
probability recovery algorithm de�ned by the top-down
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formula in equation (3) warrants that the overall sum
of the leaf probabilities is 1 if the conditional probabil-
ities p (cijcj) are well-de�ned and satisfy the constraint
in equation (1). This latter fact is formalized into the
proposition 2 below.
The New Algorithm in table 6 works on any type of

taxonomy, and satis�es all the structure axioms in de�-
nition 1. The algorithm includes the two modi�cations
proposed above in order to eliminate the two drawbacks
found in our previous method. Thus, the proposed algo-
rithm completely closes the algebraic and computational
de�nition of the family of well-founded IC models, and
it should be used in the design of any new intrinsic IC
model.

De�nition 1 (re�ned well-founded IC model)
Given a taxonomy of concepts C = (C;�C ;�), and an
IC model de�ned by the function IC : C ! R+ [ f0g,
we call it a re�ned well-founded IC model if it can
be written as IC (c) = �log2 (p (c)) where p (c) is a
concept-valued function as de�ned in equation (4), and
the functions p (cijcj) are the conditional probabilities
between any child concept ci and its parent concepts
cj, which satisfy the edge-based property as de�ned in
equation (1).

(1) Edge-based axiom. The sum of conditional probabil-
ities p (cijcj) of the children nodes ci on any parent
cj node must be equal to 1, as de�ned in equation
(1), where LA (ci) denotes the set of lowest ances-
tors (direct parents) of any concept ci.

X
8cijcj2LA(ci)

p (cijcj) = 1 (1)

(2) Leaf node probability axiom. The overall probability
of the leaf concepts sums 1, as de�ned in equation
(2), and they are computed using the iterative top-
down algorithm de�ned by equation (3).

P
ck2LC

p (ck) = 1 (2)

p : C ! [0; 1] � R

p (ci) =

(
1 , ci = �P

8cj2LA(ci)
p (cj) p (cijcj) , ci 6= � (3)

(3) Probability node axiom. The probability p (ci)
for each concept ci 2 C must be equal
to the sum of the probability of each sub-
sumed leaf concept ck 2 Leaves (ci) =
fck 2 C j ck �C ci ^ ck is a leaf conceptg, as de-
�ned in equation (4).

p (ci) =
P

ck2Leaves(ci)
p (ck) (4)

(4) Monotonicity. 8ci; cj 2 C, ci �C cj ) IC (ci) �
IC (cj)

The axioms (1), (2) and (3) above allow us to de�ne a
new family of well-founded intrinsic IC models based on
the estimation of the conditional probabilities p (cijcj)
for each edge of the taxonomy, as shown in table 7. The
axiom (3) is a su¢ cient condition for the satisfaction of
the axiom (4), thus, the new re�ned IC models satisfy
the monotonicity axiom by design. We call the new fam-
ily as re�ned well-founded IC models in order to distin-
guish it from our previous IC models, and to emphasize
the use of the new algorithm in table 6. In proposition
1, we show that given a taxonomy (C;�C ;�), the de�n-
ition of the concept probabilities according to axiom (3)
is a su¢ cient condition to get a well-founded probability
space, which moreover matches the standard axiomatic
construction of any discrete probability space. In addi-
tion, we show in proposition 2 that axioms (1) and (2) of
a well-founded IC model are su¢ cient conditions to build
a leaf-valued function p : LC � C ! [0; 1] that satis�es
axiom (2) above and the second premise of proposition
1. Thus, proposition 2 proves that any well-founded IC
model induces a well-founded probability space on any
base taxonomy, and the whole system is supported by
the structures derived from the conditional probabili-
ties. The proofs of both propositions are included in
appendix B of Lastra-Díaz and García-Serrano (2015a).

Proposition 1 Be a taxonomy C =(C;�C ;�) de�ned
by a partially ordered set (C;�C) with a distinguished
supreme element �, called the root, and LC the set of
leaves in C. If a set-valued positive function P is de�ned
from the leaf-valued function p as follows:

(1)
P : 2� ! [0; 1]

P (A) =
P

ck2LC\A
p (ck)

(2)
p : LC � C ! [0; 1]P
ck2LC

p (ck) = 1

then the following facts are satis�ed: (1) P is a prob-
ability measure, and (2) the triplet

�
�; 2�; P

�
is a prob-

ability space.

Proposition 2 Let a taxonomy C =(C;�C ;�) and LC
be the set of leaves in C. Given a concept-valued function
p de�ned by

p : C ! [0; 1]

p (ci) =

(
1 , if ci = �P

8cj2LAC(ci)

p (cijcj) p (cj) , otherwise

then P (LC) = 1, as given below:

P (LC) =
P

ck2LC
p (ck) = 1

4.1 The new family of IC models

This section introduces eight new intrinsic IC models
called CondProbRefHyponyms, CondProbRefUni-
form, CondProbRefLeaves, CondProbRefLogistic,
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New probability and IC recovery algorithm

Input: a rooted taxonomy C = (C;�C ;�)

Output
(1) p (cijcj) for each child and parent concepts.
(2) p : C ! [0; 1]� R
(3) IC : C � C ! R+[f0g

1: Compute the conditional probabilities p (cijcj).
2: Build a queue Q with a total ordering of the taxonomy

(C;�C ;�), such that every concept is in a subsequent position
to every one of its parent concepts
Remark: top-down computation of the leaf node probabilities

3: foreach ci 2 Q

4: p (ci)=

(
1 , if ci = �P

8cj2LAC(ci)

p (cijcj) p (cj) , otherwise

5: end foreach
Remark: normalization of the overall leaf node probability (only
if the p (cijcj) values do not satisfy axiom 1)

6: overallLeavesProb =
P

ck2Leaves(�)
p (ck)

7: foreach ci 2 Leaves (�)
8: p (ci)=

p(ci)
overallLeavesProb

9: end foreach
Remark: bottom-up computation of the node probababilities
Remark: for the computation of the probability of each node,
Leaves (ci) denotes the set of subsumed leaf concepts inclusive
ci.

10: foreach ci 2 Q
11: p (ci)=

P
ck2Leaves(ci)

p (ck)

12: IC (ci)= �log2p (ci)
13: end foreach

Table 6: New algortihm for the computation of the re�ned well-founded IC models.

CondProbRefCosine, CondProbLogisticLeaves, Cond-
ProbRefCosineLeaves and CondProbRefLeavesSub-
sumersRatio, and a new corpus-based IC model called
CondProbRefCorpus. From the latter list, the �rst
�ve intrinsic IC models and the CondProbRefCorpus
IC model are derived from the corresponding IC
models introduced by Lastra-Díaz and García-Serrano
(2015a) by using the new algorithm to compute the
probability and IC values detailed in table 6. On
the other hand, the new intrinsic IC models called
CondProbLogisticLeaves, CondProbRefCosineLeaves
and CondProbRefLeavesSubsumersRatio are based
on three new methods to estimate the conditional
probabilities p (cijcj). The CondProbLogisticLeaves
and, CondProbRefCosineLeaves IC models combine the
conditional probability function pLeaves (cijcj) with two
di¤erent cognitive-based non-linear similarity functions
previously introduced in our aforementioned work.
Because of the good performance exhibited by the

Sánchez et al. (2011) IC model in combination with our
coswJ&C similarity measure, we propose the CondPro-
bRefLeavesSubsumersRatio IC model which is a refor-
mulation of the Sánchez et al. (2011) IC model based
on the general framework proposed by the family of IC
models introduced herein. This new IC model is based
on the fact that the di¤erence in IC values between child
and parent concepts in a tree-like taxonomy matches the

logarithm of the conditional probability p (cijcj). This
latest observation inspired the family of IC-based simi-
larity measures introduced by Lastra-Díaz and García-
Serrano (2015b), and from it follows that the Sánchez
et al. (2011) IC model can be reformulated as the ratio
between child and parent concepts of the function � (x)
in table 7. The function � (x) is called Sánchez-Batet-
Isern estimator, because � (x) can be interpreted as a
taxonomical estimator of the concept probabilities. Pre-
cisely, the CondProbRefLeavesSubsumersRatio IC model
de�nes a well-de�ned probability space from the kernel
function of the Sánchez et al. (2011) IC model, and this
same strategy could be used in order to reformulate other
IC models, or taxonomy-based conditional probability
estimators, in the general framework proposed by our
family of IC models.
Table 7 shows the de�nition of the new family of IC

models. For the formulas in table 7, Hypo (ci) and
Leaves (ci) denote respectively the set of subsumed con-
cepts and subsumed leaf concepts for any concept ci 2 C,
without including the base concept ci. Unlike our pre-
vious work, each concept probability denoted by p� (ci)
is de�ned as the sum of the probability of the subsumed
leaf nodes in equation (4), instead of the value directly
obtained from the top-down formula in equation (3).
The probability values p (ci) of the non-leaf concepts
that are obtained from the top-down formula in equa-
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New IC models in this work De�nition
CondProbRefHyponym ICCPRefHypo (ci)= �log2

�
p�Hypo (ci)

�
pHypo (cijcj) = jHypo(ci)j+1P

8ck j cj2LA(ck)
(jHypo(ck)j+1)

CondProbRefUniform ICCPRefUni (ci) = �log2
�
p�Uniform (ci)

�
pUniform (cijcj) = 1

jchildren(cj)j
CondProbRefLeaves ICCPRefLea (ci) = �log2 (p�Leaves (ci))

pLeaves (cijcj) = jLeaves(ci)j+1P
8ck j cj2LA(ck)

(jLeaves(ck)j+1)

CondProbRefLogistic

ICCPRefLog (ci) = �log2
�
p�Log (ci)

�
pLog (cijcj) = 'l (x) � pHypo (cijcj)
'l (x : k) =

1

1+e
�k(x� 1

2 )
; k� = 8

CondProbRefCosine
ICCPRefCos (ci) = �log2 (p�Cos (ci))
pCos (cijcj) = 'c (x) � pHypo (cijcj)
'c (x) = 1� cos

�
�
2x
�

CondProbRefCorpus
ICCPRefCorpus (ci)= �log2 (p� (ci))
pcorpus (cijcj)= maxf1;f(ci)gP

8ck j cj2LA(ck)
maxf1;f(ck)g

CondProbRefLogisticLeaves

ICCPRefLogLeaves (ci) = �log2
�
p�LogLeaves (ci)

�
pLogLeaves (cijcj) = 'l (x) � pLeaves (cijcj)

'l (x : k) =
1

1+e
�k(x� 1

2 )
; k� = 8

CondProbRefCosineLeaves
ICCPRefCos (ci) = �log2 (p�CosLeaves (ci))
pCosLeaves (cijcj) = 'c (x) � pLeaves (cijcj)
'c (x) = 1� cos

�
�
2x
�

CondProbRefLeavesSubsumersRatio ICCPRefLeaSubRat (ci)= �log2 (p�LeaSubRat (ci))

pLeaSubRat (cijcj) =
�(ci)
�(cj)P

8ck j cj2LA(ck)

�(ci)
�(cj)

� (c) = jLeaves(c)j
jsubsumers(c)j + 1

Table 7: New set of IC models proposed into the family of well-founded IC models. Unlike our previous work, each
concept probability denoted by p�(ci) is de�ned as the sum of the probability of the subsumed leaf nodes, instead of
the value directly obtained from the recursive formula in equation (3). The new IC models are computed using the
new algorithm detailed in Table 5. Hypo(ci) and Leaves(ci) denote respectively the set of subsumed concepts and
leaf concepts for any concept ci 2 C, without including the base concept ci.

tion (3) are only temporary values whose aim is to obtain
the estimated probability value of each leaf concept. The
new IC models are computed using the new algorithm
detailed in table 6. The CondProbRefLogistic, CondPro-
bRefCosine, CondProbLogisticLeaves and CondProbRe-
fCosineLeaves IC models do not satisfy the edge-based
axiom de�ned by equation (1) in de�nition 1 because
of they integrate a non-linear monotone transformation
in their de�nition that prevents it, thus, the weights of
the taxonomy used with the coswJ&C similarity mea-
sure in table 2 are set to jIC (ci)� IC (cj)j instead of
�log2 (p (cijcj)).

5 Evaluation

The goals of the experiments described in this section
are as follows: (1) the experimental evaluation of the
proposed IC models and their comparison with the state-
of-the-art methods; (2) a new experimental study onto
the state of the art in ontology-based similarity mea-
sures; (3) a detailed statistical signi�cance analysis of
the similarity measures and IC models; (4) the replica-

tion of previously reported methods and results; (5) a
new comparison between intrinsic and corpus-based IC
models; (6) a study into the impact of the IC models on
the IC-based similarity measures; (7) a comparison of
the computational cost of the ontology-based similarity
measures; (8) a new con�rmation of the �ndings in our
previous aforementioned works on the refuted outperfor-
mance of the intrinsic IC models over the corpus-based
ones; and (9) a new con�rmation of the achievements of
the family of intrinsic IC models and IC-based similarity
measures.

5.1 Methods evaluated herein

In order to compare the new family of IC models in table
7 with the state-of-the-art IC models, as well as provid-
ing a conclusive image of the state of the art of the prob-
lem, we implemented and evaluated all the IC models in
tables 4, 5 and 7, as well as all the IC-based similarity
measures in table 2 and the remaining ontology-based
similarity measures shown in table 1. One IC model in-
troduced by Blanchard et al. (2008) is evaluated herein
for the �rst time. To the best of our knowledge, we
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evaluate herein all WordNet-based intrinsic IC models
reported in the literature, with the only exception of the
IC model very recently introduced by Ben Aouicha et al.
(2016b). Therefore, the experiments reported herein are
the largest experimental survey of intrinsic IC models
and ontology-based similarity measures reported up to
date, which are based on a same code implementation.
For all the similarity measures and IC models, the

depth is de�ned as the length of the shortest ascending
path from each concept to the root. For the Zhou et
al. IC model, the authors de�ne the depth starting at
1 for the root concept. All methods have been imple-
mented in a Java software library called HESML, which
has been developed by the authors in order to replicate
all methods evaluated herein. HESML was also used
in our two aforementioned works on IC-based similarity
measures and IC models, and it is going to be introduced
and released in another forthcoming paper, Lastra-Díaz
and García-Serrano (2016), together with a set of re-
producible experiments and a replication dataset called
WNSimRep v1.
In order to compare the intrinsic and corpus-based

IC models, we use as baseline a corpus-based Resnik IC
model based on the Wordnet-based frequency �le called
�ic-treebank-add1.dat� included in Pedersen (2008b),
which was also used as a baseline in Lastra-Díaz and
García-Serrano (2015a), having been the best perform-
ing corpus-based IC model in Lastra-Díaz and García-
Serrano (2015b).

5.2 Experimental setup

We follow the same experimental setup de�ned by
Lastra-Díaz and García-Serrano (2015a), including the
same preprocessing steps, evaluation metrics, baselines,
management of polysemic words and reporting of the
results. In addition, we include for the �rst time a de-
tailed pairwise statistical signi�cance analysis between
each pair of IC models and IC-based measures. We use
the noun database of Wordnet 3.0, Miller (1995), and the
�ve most signi�cant word similarity benchmarks shown
in table 8. For each word pair, we select the highest
similarity value between the pairwise comparison of the
sets of concepts evoked by each word.
Some preprocessing was necessary for the Agirre203

and SimLex-999 datasets to carry out the experiments.
For the Agirre203 dataset, it was necessary to remove
two word pairs containing verbs not present in the noun
database of Wordnet 3.0, such as the pairs (drink,eat)
and (stock,live). In addition, it was also necessary to
change the term �media�for �medium�, and �children�
for �child�, because these terms do not appear directly
in noun database. For this reason, we only used 201
nouns instead of 203, thus, this subset is called here-
after Agirre201. In the case of SimLex-999, it contains
666 nouns, but the word �august� is not included as
synset in WordNet 3.0, thus, we only used 665 nouns
from the SimLex-999 dataset, and this subset is called
hereafter SimLex665. Finally, the MC30 dataset in-
troduced by Miller and Charles (1991) is made up by
30 noun pairs; however, two word pairs are commonly

Reference Acronym #wp Description
Rubenstein
and Good-
enough
(1965)

RG65 65 65 noun pairs ranging a
similarity between 0 and
4.

Miller and
Charles
(1991)

MC28 28 Subset of RG65

Agirre
et al.
(2009)

Agirre201 201 Pure similarity subset of
Finkelstein et al. (2002)
with similarity in the
range 0 to 10.

Pirró
(2009)

P&Sfull 65 Modern replication of
RG65

Hill et al.
(2015)

SimLex665 665 Noun subset of SimLex-
999 with similarity in the
range 0 to 10.

Table 8: Word similarity benchmarks used in our exper-
iments

ommited because of they were not included in previ-
ous versions of WordNet. For this reason, we use the
MC28 dataset as de�ned at (Resnik, 1995, table 3) and
(Li et al., 2003, p.875), together with the original hu-
man similarity judgements introduced by Rubenstein
and Goodenough (1965). The datasets corresponding to
the similarity benchmarks shown in table 8 are included
in the HESML distribution.

5.3 Evaluation metrics

As evaluation metrics, we use the Pearson correlation
factor, denoted by r in equation (5), and the Spearman
rank correlation factor, denoted by � in equation (6).
For a detailed review of the latter metrics, we refer the
reader to (Lastra-Díaz and García-Serrano, 2015a, §5.3).

r =

Xn

i=1

�
Xi �X

� �
Yi � Y

�qXn

i=1

�
Xi �X

�2qXn

i=1

�
Yi � Y

�2 (5)

� = 1�
6
Xn

i=1
d2i

n (n2 � 1) ; di = (xi � yi) (6)

In order to compare the performance of the IC mod-
els, we use the average Pearson and Spearman correla-
tion values for each pair (IC model, IC-based similarity
measure) on all datasets. The statistical signi�cance of
the results is evaluated by using the p-values resulting
from the t-student test for the di¤erence mean between
the Spearman correlation values reported by each pair
of IC models or IC-based similarity measures. The p-
values are computed by using a one-sided t-student dis-
tribution on two paired sample sets. For the p-values
between IC models, we use the vectors of the average
Spearman correlation values over each IC-based similar-
ity measure (rows in table 11) as a paired sample set,
whilst for the similarity measures we use the vectors of
Spearman correlation values of each similarity measure
over all datasets (rows in table 12). Our null hypothesis,
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denoted by H0, is that the di¤erence in the average per-
formance between the compared IC models or IC-based
measures is 0, whilst the alternative hypothesis, denoted
by H1, is that their average performance is di¤erent. For
a 5% level of signi�cance, it means that if the p-value is
greater than 0.05, we must accept the null hypothesis,
otherwise we can reject H0 with an error probability of
less than the p-value.
The Spearman rank correlation metric can represent

better the use of the similarity measures in most rank-
based selection tasks in NLP and IR, because it �pro-
vides an evaluation metric that is independent of these
data-dependent transformations �, (Agirre et al., 2009,
§6). In addition, most similarity measures are monotone
transformations from previous measures. Therefore, a
statistical signi�cance analysis based on the Spearman
correlation shows the intrinsic di¤erences and similari-
ties between methods in a more conclusive manner than
an analysis based on the Pearson correlation. Likewise,
in order to compare the IC-based similarity measures, we
selected for each measure its best performing IC model
according to the average Spearman correlation values
shown in table 11.

5.4 Results obtained

Table 9 below shows the computational cost of each sim-
ilarity measure on the MC28 dataset. The remaining
data tables are included in the appendix next to the
bibliography. Tables 10 and 11 show in each cell the av-
erage Pearson and Spearman correlation values respec-
tively obtained in the evaluation of each IC model with
any IC-based similarity measure on all datasets. Ta-
ble 12 shows the Pearson and Spearman correlation val-
ues obtained by each ontology-based similarity measure
on all datasets. In order to make the interpretation of
the resulting p-values easier, tables 13 and 14 show a
summary of the statistical signi�cance analysis between
the IC models and ontology-based similarity measures,
whilst the raw p-values are shown in tables 25 and 26.
Each row in tables 13 and 14 shows an �x�whenever the
method in the row header obtains a statistically signif-
icant higher performance than the method in the col-
umn header. Thus, the rows show the methods that
are outperformed by each method on the left, whilst the
columns show the methods that outperform each method
at the top. Finally, tables 15 to 24 in the appendix show
all raw data tables for the cross-evaluation of the IC
models and IC-based similarity measures on all datasets.

6 Discussion

6.1 Comparison of the IC models

Looking at tables 10 and 11, the following conclusions
can be drawn: (1) the Seco et al. (2004) IC model obtains
the highest average Pearson and Spearman correlation
values on all datasets and IC-based similarity measures,
as it is the best performing IC model on average; (2)
a large set of IC models made up of the models intro-
duced by Seco et al. (2004), Blanchard et al. (2008),

Similarity measure Overall
(msec)

Avg
(msec)

Ratio

Sánchez et al. (2012) 480 17.14 0.66
Pirró and Seco (2008) 696 24.86 0.96
Pirró and Euzenat (2010) 703 25.11 0.97
Garla and Brandt (2012) 715 25.54 0.98
Meng and Gu (2012) 716 25.57 0.99
Jiang and Conrath (1997) 722 25.79 0.99
Resnik (1995) (baseline) 726 25.93 1.00
Lin (1998) 728 26.00 1.00
Lastra-Díaz and García-
Serrano (2015b), cosJ&C

735 26.25 1.01

Hadj Taieb et al. (2014b) 774 27.64 1.07
Al-Mubaid and Nguyen
(2009)

38016 1357.71 52.36

Wu and Palmer (1994) 42514 1518.36 58.56
Gao et al. (2015) 44343 1583.68 61.08
Li et al. (2003), strategy 9 45201 1614.32 62.26
Meng et al. (2014) 48499 1732.11 66.80
Zhou et al. (2008b) 50343 1797.96 69.34
Pedersen et al. (2007) 53504 1910.86 73.70
Leacock and Chodorow
(1998)

53921 1925.75 74.27

Li et al. (2003), strategy 4 54278 1938.50 74.76
Li et al. (2003), strategy 3 54607 1950.25 75.22
Rada et al. (1989) 56172 2006.14 77.37
Lastra-Díaz and García-
Serrano (2015b), coswJ&C

172490 6160.36 237.59

Table 9: Overall running time and average time per word
pair for each similarity measure in the MC28 dataset
with the following PC setup: Windows 8.1 x64, Java
1.8, Intel Core i7-5570 @ 2.40 GHz, 8 Gb RAM. The
rows are arranged in ascending order according to the
running time reported for each similarity measure. All
the similarity measures have been implemented and eval-
uated within a same software library developed by the
authors. The last row shows the running time ratio as
regard the baseline de�ned by the Resnik measure.

Sánchez et al. (2011), Sánchez et al. (2012), Meng et al.
(2012), Yuan et al. (2013) and Adhikari et al. (2015) ob-
tain on average a higher Pearson and Spearman corre-
lation values than the corpus-based IC model de�ned as
baseline; (3) the new IC models called CondProbRefHy-
ponyms and CondProbRefCosine obtain on average a
higher Pearson and Spearman correlation values respec-
tively than the baseline IC model, and the Zhou et al.
(2008a) IC model also obtains on average a higher Spear-
man correlation value than the baseline IC model; (4)
most of our family of well-founded IC models and the
Hadj Taieb et al. (2014a) IC model obtain on average
a lower Pearson and Spearman correlation values than
the baseline IC model; and (5) the Hadj Taieb et al.
(2014a) IC model obtains on average the lowest Pearson
and Spearman correlation values among all IC models,
and its average performance is much lower than the re-
maining IC models.
Tables 15 to 24 allow the following conclusions to be

drawn: (1) the Sánchez et al. (2011) IC model obtains
the highest Pearson correlation value with our coswJ&C
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similarity measure in the RG65 dataset; (2) the Resnik
IC model obtains the highest Pearson correlation value
with the J&C similarity measure in the MC28 dataset;
(3) our new CondProbRefUniform IC model obtains the
highest Pearson correlation value with the FaITH sim-
ilarity measure in the Agirre201 dataset; (4) the Yuan
et al. (2013) IC model obtains the highest Pearson cor-
relation value with the FaITH measure in the P&Sfull
dataset; and (5) the Seco et al. (2004) IC model obtains
the highest Pearson correlation value with the Zhou et al.
(2008b) similarity measure in the SimLex665 dataset.
In addition, an analysis of the raw Spearman corre-
lation values on all datasets allows the following con-
clusions to be drawn: (6) the Meng et al. (2012) IC
model obtains the highest Spearman correlation value
with our coswJ&C measure in the RG65 dataset; (7)
the Resnik IC model obtains the highest Spearman cor-
relation value with our coswJ&C measure in the MC28
dataset; (8) our new CondProbRefUniform IC model ob-
tains the highest Spearman correlation value with the
Lin (1998), FaITH and Meng and Gu (2012) similarity
measures in the Agirre201 dataset; (9) the Sánchez et al.
(2011) IC model obtains the highest Spearman correla-
tion value with our coswJ&C similarity measure in the
P&Sfull dataset; and (10) the Yuan et al. (2013) IC
model obtains the highest Spearman correlation value
with the Zhou et al. (2008b) similarity measure in the
SimLex665 dataset.

6.2 The statistical signi�cance of the
IC models

Table 13 allows the following conclusions to be drawn.
First, the Seco et al. (2004) IC model obtains a statis-
tically signi�cant higher average Spearman correlation
value than the remaining IC models with the only ex-
ception of the Sánchez et al. (2011) IC model. Second,
Seco et al. (2004) and Sánchez et al. (2011) are the only
IC models that are not outperformed in a statiscally sig-
ni�cant manner by another IC model. Third, the Seco
et al. (2004), Sánchez et al. (2011) and Yuan et al. (2013)
IC models obtain a statistically signi�cant higher aver-
age Spearman correlation value than the baseline de�ned
by the corpus-based Resnik IC model, thus, this small
set of state-of-the-art intrinsic IC models outperform the
best performing corpus-based IC model, con�rming the
H3 hypothesis positively. Fourth, the Hadj Taieb et al.
(2014a) IC model obtains a statistically signi�cant lower
average Spearman correlation than all of the IC mod-
els. Fifth, most of our intrinsic IC models obtain a
statistically signi�cant lower average Spearman correla-
tion than the rest of the IC models, with the exception
of the CondProbHyponyms, CondProbCosine, CondPro-
bRefHyponyms, CondProbRefLeaves and CondProbRef-
Cosine IC models. Sixth, the Zhou et al. (2008a), Meng
et al. (2012) and Yuan et al. (2013) IC models only
obtains a statistically signi�cant lower average Spear-
man correlation than the Seco et al. (2004) IC model,
whilst the Adhikari et al. (2015) IC model is only out-
performed by another two IC models. Thus, the Zhou
et al. (2008a), Meng et al. (2012), Yuan et al. (2013) and

Adhikari et al. (2015) IC models follow the Seco et al.
(2004) and Sánchez et al. (2011) IC models in terms of
performance in the average Spearman correlation. How-
ever, looking at table 10, we see that the performance
measured by the Pearson correlation of the Zhou et al.
(2008a) IC model is much lower than the remaining IC
models. And seventh, among the twenty-�ve IC models
analyzed, the Resnik IC model de�ned as baseline ob-
tains a statistically signi�cant higher average Spearman
correlation than other ten models, and it is statistically
outperformed by only three intrinsic IC models, thus,
there is no a statistically signi�cant di¤erence between
most instrinsic IC models and the baseline, a fact that
con�rms the hypothesis H2 positively.
Finally, the hypothesis H8 behind the re�nement and

the new IC models introduced in this work is posi-
tively con�rmed by the data obtained in our exper-
iments. Looking at table 13, we see that the new
IC models CondProbRefUniform, CondProbRefLeaves,
CondProbRefCosine and CondProbRefCorpus, obtain a
statistically signi�cant higher average Spearman corre-
lation than their corresponding non-re�ned IC models
CondProbUniform, CondProbLeaves, CondProbCosine
and CondProbCorpus. However, the CondProbRefHy-
ponyms and CondProbRefLogistic IC models are not
able to obtain a statistically signi�cant higher perfor-
mance than their corresponding models CondProbHy-
ponyms and CondProbLogistic.

6.3 Comparison of the similarity
measures

Table 12 shows that our coswJ&C similarity measure
combined with the Sánchez et al. (2011) IC model ob-
tains the highest Spearman correlation values in all
datasets, with the only exception of SimLex665, the
highest Pearson correlation values in the RG65 (0.8870)
and MC28 (0.8710) datasets, as well as the highest over-
all average combined Pearson and Spearman correlation
values (0.7708) shown in the last column and the high-
est overall average Spearman correlation value (0.7579).
We point out that the highest Pearson correlation value
(0.8809) in the MC28 dataset is obtained by the J&C
similarity measure with the Resnik IC model, as shown
in table 17, whilst the Seco et al. (2004) IC model is
used for the overall comparison in table 12, because this
latter IC model is the best performing IC model for the
J&C measure in terms of the Spearman correlation.
Table 12 also shows that the Zhou et al. (2008b) simi-

larity measure obtains the highest Pearson (0.6237) and
Spearman (0.6101) correlation values in the SimLex665
dataset and the highest overall average Pearson correla-
tion value (0.7859). In addition, the Zhou et al. (2008b)
measure obtains the second best overall performance.
The Hadj Taieb et al. (2014b) similarity measure ob-
tains the highest Pearson correlation value (0.7123) in
the Agirre201 dataset. The FaITH similarity measure in-
troduced by Pirró and Euzenat (2010) obtains the high-
est Pearson correlation value (0.9082) in the P&Sfull
dataset when it is combined with the Yuan et al. (2013)
model.
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Table 12 shows that a small set of similarity mea-
sures obtain a higher overall performance than the base-
line de�ned by J&C measure, as well as the Resnik and
Lin similarity measures. This small set of outperforming
measures is made up of our coswJ&C and cosJ&C sim-
ilarity measures and the measures introduced by Zhou
et al. (2008b), Pirró and Seco (2008), Hadj Taieb et al.
(2014b) and Gao et al. (2015). In addition, a large set of
ontology-based similarity measures obtain a higher aver-
age Pearson correlation value than the baseline de�ned
by the J&C similarity measure.
The coswJ&C similarity measure, in combination

with the Sánchez et al. (2011) IC model, obtains the
best overall performance de�ned by the average of the
Pearson and Spearman correlation values, as shown in
last column of table 12. In addition, the coswJ&C
similarity measure outperforms the remaining measures
in the Spearman correlation metric. Looking at ta-
ble 18, we can see another very meaningful and unex-
pected fact: the coswJ&C similarity measure obtains
the highest Spearman correlation value in the MC28
dataset with all the IC models, excluding the Hadj Taieb
et al. (2014a) IC model. We attribute the good perfor-
mance of the coswJ&C similarity measure in the Spear-
man metric to the novel method for computing the dis-
tance between concepts that is de�ned by our distance
diswJ&C introduced in Lastra-Díaz (2014) and Lastra-
Díaz and García-Serrano (2015b), which de�nes an IC-
based weighted graph as a generalization of the clas-
sic Jiang-Conrath distance. On the other hand, this
diswJ&C measure requires the computation of the length
of the shortest path on a non-uniform and real-valued
weighted graph using the Dijkstra algorithm, whose
computation time is longer than for the case in which
only the edge count is required, as happens for the rest
of the hybrid IC-based similarity measures shown in ta-
ble 2. For this reason, the coswJ&C measure reports the
highest computational cost in table 9, which is roughly
three times greater than most hybrid IC-based similarity
measures.
The data in table 9 allows the hypothesis H5 and

the following conclusion introduced in Lastra-Díaz and
García-Serrano (2015b) to be con�rmed: despite the
coswJ&C and Zhou et al. (2008b) similarity measures
outperforming the remaining similarity measures on av-
erage, the computational cost and the performance of
these measures, as well as the remaining hybrid IC-based
similarity measures, prevent their use in practical appli-
cations. Thus, a practical option is to use our cosJ&C
similarity measure, which obtains the third best overall
performance, despite there being no statistical signi�-
cant di¤erence between it and the measures introduced
by Pirró and Seco (2008) and Hadj Taieb et al. (2014b).
Indeed, the general conclusion that we advance here is
that the performance margin between the state-of-the-
art ontology-based similarity measures is very narrow.
An interesting point is that the three similarity mea-

sures on top of table 12 are derived from the Jiang-
Conrath distance. The coswJ&C similarity measure
is a generalization of the Jiang-Conrath measure based
on an IC-based weighted graph, whilst the Zhou et al.

(2008b) similarity measure is a linear combination of it
with the Leacock and Chodorow (1998) similarity mea-
sure. On the other hand, the cosJ&C similarity mea-
sures is a monotone transformation of the Jiang-Conrath
distance. Thus, the measurement strategy introduced by
Jiang and Conrath (1997) leads the state of the art of
the problem.

6.4 The statistical signi�cance of the
similarity measures

Table 14 allows the following conclusions to be drawn:
(1), our coswJ&C similarity measure and the measure
introduced by Zhou et al. (2008b) obtain a statistically
signi�cant higher average Spearman correlation value
than the baseline de�ned by the J&C measure, and
they are the only measures that outperform the base-
line; (2) our coswJ&C similarity measure, and the mea-
sures introduced by Zhou et al. (2008b) and Meng et al.
(2014), are the only measures that are not outperformed
by other measures in a statistically signi�cant manner;
(3) the Zhou et al. (2008b) similarity measure obtains
a statistically signi�cant higher average Spearman cor-
relation value than all of the measures, with the only
exception of the coswJ&C and Meng et al. (2014) simi-
larity measures; (4) the Wu and Palmer (1994) similarity
measure obtains a statistically signi�cant lower average
Spearman correlation value than all of the remaining
measures; (5) our coswJ&C similarity measure and the
measure introduced by Zhou et al. (2008b) obtain a sta-
tistically signi�cant higher average Spearman correlation
value than all of the classic IC-based measures, whilst
our cosJ&C measure and the Garla and Brandt (2012)
measure statistically outperform the Resnik and Lin sim-
ilarity measures; and �nally, (6) the Rada et al. (1989)
similarity measure and all measures derived from it, such
as the measures introduced by Leacock and Chodorow
(1998) and Pedersen et al. (2007), together with the
Al-Mubaid and Nguyen (2009) measure, are only out-
performed in a statistically signi�cant manner by our
coswJ&C similarity measure, and the measures intro-
duced by Zhou et al. (2008b) and Meng et al. (2014).
In summary, conclusions (1) and (2) above prove hy-

pothesis H1 on the outperformance of the path-based
similarity measures by a group of state-of-the-art IC-
based similarity measures. Conclusion (5) above proves
the hypothesis H4 on the outperformance of the classic
IC-based similarity measures by a small set of state-of-
the-art methods. On the other hand, the conclusion (6)
above is very signi�cant because it proves for the �rst
time that only this small set of state-of-the-art IC-based
similarity measures have been able to obtain a statis-
tically signi�cant higher average Spearman correlation
value than the family of path-based similarity measures.
If we reproduce the statistical signi�cance analysis in ta-
ble 14 using the average Pearson correlation as sample
set, we could see that most IC-based similarity measures
obtain a statistically signi�cant higher average Pearson
correlation than the path-based measures, a fact that
endorses the common belief that the path-based similar-
ity measures have been de�nitively outperformed by the
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family of IC-based similarity measures. However, the
results shown in table 14 reopen the debate. We argue
that the lack of a statistically signi�cant di¤erence be-
tween the Garla and Brandt (2012) and Pedersen et al.
(2007) similarity measures, and thus any other measure
derived from Rada et al. (1989), is mainly responsible
for the lack of a statistically signi�cant di¤erence in per-
formance reported by Alonso and Contreras (2016) for
the use of the two aforementioned measures in a bio-
medical IR task. The latter facts endorse our idea that
research into the area should focus on the improvement
in the performance based on the Spearman rank corre-
lation, because this latter metric could predict the ex-
pected performance in applications based on similarity
measures better.
We note other signi�cant fact. Our coswJ&C sim-

ilarity measure, and the measures introduced by Zhou
et al. (2008b) and Meng et al. (2014), are all hybrid IC-
based similarity measures that integrate an IC model
with any path-based feature. Among the latter afore-
mentioned measures, the coswJ&C similarity measure is
the only one that de�nes a real IC-based weighted graph,
whilst the other two measures integrate a pure edge-
counting measure in their formulas. Our experimental
results and the signi�cance analysis show that the IC-
based weighted distance on a taxonomy, as proposed by
the coswJ&C similarity measure, is currently the best
approach for maximizing the Spearman rank correla-
tion value, thus, this type of taxonomical feature should
be explored in future developments into ontology-based
similarity measures, despite its high computational cost.

6.5 Impact of the IC models on the
similarity measures

The last four rows in tables 10 and 11 show a set of sta-
tistics considering the Pearson and Spearman correlation
values reported by each similarity measure (column) as a
random variable evaluated on all IC models. These sta-
tistics allow the following conclusions to be drawn: (1)
most IC-based similarity measures exhibit a moderate
standard deviation in the Pearson and Spearman corre-
lation values as regard the set of IC models; (2) most
IC-based similarity measures in table 11 exhibit a peak
ratio greater than 1.0 times their standard deviation, a
fact that supports our H6 hypothesis which states that
most IC-based similarity measures perform better with
a speci�c IC model; and (3) the standard deviation of
the Spearman correlation of the IC-based similarity mea-
sures as regards the IC models is statistically signi�cant
lower than the standard deviation of the Pearson corre-
lation, a fact that is supported by a p-value of 0.0073
between both random sets. This latter fact means that
the performance of the IC-based similarity measures as
a function of the IC models is more stable in terms of
the Spearman rank correlation than the Pearson metric.
We conclude that every similarity measure should be

used with its best performing IC model in any practical
application. However, there is no strong evidence con-
�rming that the outperformance of a similarity measure
in any word similarity benchmark can be extrapolated to

other applications (see our discussion in section 3). Our
most signi�cant conclusion as regards the IC models is
as follows: the two best performing and preferred IC
models by most IC-based similarity measures, and thus,
the most practical IC models, are those introduced by
Sánchez et al. (2011) and Seco et al. (2004).

6.6 New state-of-the-art results

The new state-of-the-art in intrinsic IC models and in-
trinsic IC-based similarity measures is set by the Sánchez
et al. (2011) IC model in combination with our coswJ&C
similarity measure, and the Seco et al. (2004) IC model
in combination with the Zhou et al. (2008b) similar-
ity measure. Likewise, these two latter intrinsic IC-
based similarity measures obtain a statistically signi�-
cant higher performance than the remaining methods.
Thus, the four aforementioned methods are convincing
winners among the families of IC models and ontology-
based similarity measures. The coswJ&C similarity
measure obtains the highest average Spearman corre-
lation value and the highest overall averaged Pearson-
Spearman correlation value on all datasets, as well as
the highest Spearman correlation value in four of the
�ve datasets evaluated, and the highest Pearson corre-
lation values in the RG65 and MC28 datasets. On the
other hand, the Zhou et al. (2008b) similarity measure
obtains the highest average Pearson correlation value on
all datasets and the highest Spearman correlation value
in the SimLex665 dataset.
The set of classic IC-based similarity measures, de-

�ned by the Resnik, Lin and Jiang-Conrath measures,
have also been de�nitively outperformed in a statistically
signi�cant manner by a small set of IC-based similarity
measures developed during the last decade, among which
we �nd the similarity measures introduced by Zhou
et al. (2008b) and the coswJ&C measure introduced
by Lastra-Díaz and García-Serrano (2015b). In addi-
tion, the J&C similarity measure and its two monotone
transformations, our cosJ&C measure and the Garla
and Brandt (2012) similarity measure, obtain a statis-
tically signi�cant higher average Spearman correlation
than the Resnik and Lin similarity measures, and the
cosJ&C obtains a statistically signi�cant average Pear-
son correlation value than the J&C similarity measure.
However, we also prove that there is no a statistically sig-
ni�cant di¤erence between the two aforementioned pairs
of outperforming IC-based similarity measures.
According to the results obtained, the two similar-

ity measures with the best overall performance are
the two hybrid IC-based similarity measures de�ned by
the coswJ&C introduced by Lastra-Díaz and García-
Serrano (2015b) and the Zhou et al. (2008b) measure.
However, their computational cost prevents their prac-
tical use in comparison with other measures, such as the
cosJ&C introduced by Lastra-Díaz and García-Serrano
(2015b) and the Hadj Taieb et al. (2014b) measure.
There is no statistically signi�cant di¤erence between
these two latter measures. The cosJ&C measure ob-
tains a higher Spearman correlation on average than the
Hadj Taieb et al. (2014b) measure, whilst the Hadj Taieb
et al. (2014b) measure obtains a higher Pearson cor-
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relation on average than the previous one. Thus, the
cosJ&C and Hadj Taieb et al. (2014b) measures are,
statistically speaking, the best option from the afore-
mentioned set of similarity measures with a practical
computational cost.

6.7 Monotone transformations.

The Spearman rank correlation value is invariant to
monotone transformations from any similarity measure,
thus, its exhaustive evaluation for all the similarity mea-
sures and IC models has con�rmed that a lot of similarity
measures are monotone transformations of other classic
measures, as well as the �ndings of other unknown cases.
For instance, the Spearman correlation metric reported
by the FaITH similarity measure introduced by Pirró
and Euzenat (2010) reveals that it is a monotone trans-
formation of the Lin measure like the measure intro-
duced by Meng and Gu (2012). Indeed, there are many
cases like these. For instance, the similarity measure in-
troduced by Leacock and Chodorow (1998), the simPath

measure of Pedersen et al. (2007), and the simLi_s3 mea-
sure of Li et al. (2003), all which are monotone trans-
formations of the Rada et al. (1989) measure, whilst the
simpath_IC measure of Garla and Brandt (2012) and
the simcosJ&C measure introduced by Lastra-Díaz and
García-Serrano (2015b) are monotone transformations
of the J&C similarity measure as de�ned in table 2.
We con�rmed experimentally that in all of the afore-
mentioned cases, the transformed measures preserve the
Spearman correlation values obtained by their respec-
tive base measures, di¤ering only in their Pearson cor-
relation values. Table 3 shows a factorization of the lat-
ter similarity measures that proves the aforementioned
monotonicity relationships.
As a consequence of the aforementioned monotonic-

ity relationships, there is a reduced number of di¤erent
strategies to estimate the degree of similarity using an
ontology-based similarity measure, despite many simi-
larity measures having been proposed in the literature.
We argue that the monotonicity relationships between a
large set of similarity measures are the main cause be-
hind the lack of a statistically signi�cant di¤erence be-
tween most of the similarity measures evaluated herein.
Thus, the research community should explore either new
measurement methods or new similarity models in order
to bring about signi�cant progress in the state of the
problem. On the other hand, the results obtained by the
measures introduced by Meng and Gu (2012), Garla and
Brandt (2012), Pirró and Euzenat (2010) and Lastra-
Díaz and García-Serrano (2015b), prove that a proper
scaling and normalization of the similarity measures is a
good strategy to improve the Pearson correlation met-
ric slightly. Therefore, the research should focus on the
search for a signi�cant improvement in the Spearman
correlation metric, which is also closely related to the
measurement strategy and similarity model used.

6.8 Computational complexity

Table 9 compares the running time of each similarity
measure in the evaluation of the MC28 dataset. The

feature-based measure of Sánchez et al. (2012) obtains
the lowest running time, making it the fastest among all
of the measures. As we expected from an analysis of their
de�nitions, all non hybrid IC-based similarity measures
obtain a running time that is almost identical to that re-
ported by the Resnik measure de�ned as baseline. The
small di¤erences are only attributable to the activity of
the operating system during the experiments, because
these IC-based similarity measures share the same IC-
based factors. On the other hand, the hybrid IC-based
similarity measures exhibit a running time of between
52 and 237 times greater than the baseline, making our
coswJ&C similarity measure the slowest among all of
the measures. Thus, the computational complexity of
the hybrid IC-based measures is roughly two orders of
magnitude greater than the complexity of the remain-
ing IC-based similarity measures. Despite all hybrid IC-
based similarity measures using the same implementa-
tion of the Dijkstra algorithm in our software library,
our coswJ&C similarity measure requires the measure-
ment of the length of the shortest path between concepts
on a non-uniform and real-valued weighted graph, whilst
the rest of the hybrid IC-based similarity measures only
require the edge count to be obtained, thus, the Dijsktra
algorithm is much faster in this latter case.

6.9 Con�rming our hypotheses

The hypotheses H1, H2, H3, H4, H5, H6 and H8 in-
troduced in section 1.2 have been positively con�rmed
by the data obtained from our experiments, they having
been answered in the discussion above. Finally, hypoth-
esis H7 on the outperformance of the state-of-the-art
IC-based similarity measures on the best corpus-based
similarity measures in the SimLex666 dataset, is also
con�rmed by comparing the best Pearson and Spearman
correlation values obtained by most IC-based similarity
measures in tables 23 and 24, with the results for these
metrics reported for the best corpus-based method in
the SimLex dataset (Pearson=0.599, Spearman=0.591),
as reported in a recent benchmark by Banjade et al.
(2015).

6.10 Contradictory results

We obtained several contradictory results in our exper-
iments, con�rming the same �ndings reported in our
aforementioned works, as well as other new ones. For
instance, Meng and Gu (2012) and Meng et al. (2014)
report Pearson correlation values of 0.8804 and 0.8817
respectively with the Seco et al. (2004) IC model in the
RG65 dataset, whlist we obtained 0.8596 and 0.8486 re-
spectively. Gao et al. (2015) report a Pearson correla-
tion value of 0.885 for their similarity measure in the
RG65 dataset with an unknown corpus-based IC model,
whilst we obtained 0.87098 herein. Adhikari et al. (2015)
report the following Pearson correlation values of 0.86,
0.86 and 0.84 for their IC model in the MC30 dataset
with the Resnik, Lin and Jiang-Conrath similarity mea-
sure respectively, whilst we obtained 0.8211, 0.8410 and
0.8331 in the MC28 dataset. These facts con�rm the re-
producibility problems in the area. Thus, we invite the
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research community to reproduce the methods and ex-
periments reported in the literature in order to con�rm
or refute the results reported herein.

7 Conclusions and future work

We have introduced a re�nement of our recent family
of well-founded Information Content models, eight new
intrinsic IC models and one new corpus-based IC model
and a very detailed experimental survey on WordNet.
We have proven that the proposed re�nement improves
the performance of our family of well-founded IC models,
and six of our new IC models obtain rivaling results as
regard the state-of-the-art intrinsic IC models, making
the new CondProbRefHyponyms and CondProbRefCo-
sine IC models our best performing IC models.
The Seco et al. (2004) and Sánchez et al. (2011) IC

models set the state of the art for the IC models, and the
Seco et al. (2004), Sánchez et al. (2011) and Yuan et al.
(2013) IC models are the only intrinsic IC models that
statistically outperfom the best performing corpus-based
IC model used as baseline. However, we prove that there
is no statistically signi�cant di¤erence between most in-
trinsic IC models and the corpus-based Resnik IC model
de�ned as baseline. Therefore, the aforementioned set of
intrinsic IC models can be considered as a practical al-
ternative to the corpus-based ones, and they should be
selected in accordance with the IC-based similarity mea-
sure used. On the other hand, the detailed experiment
survey carried-out herein allows a very signi�cant con-
clusion to be drawn: despite the research e¤ort made
during the last decade, the Seco et al. (2004) IC model
is still the state of the art on average.
The new state-of-the-art in intrinsic IC models and in-

trinsic IC-based similarity measures is set by the Sánchez
et al. (2011) IC model in combination with our coswJ&C
similarity measure, and the Seco et al. (2004) IC model
in combination with the Zhou et al. (2008b) similarity
measure. The set of classic IC-based similarity measures,
de�ned by the Resnik, Lin and Jiang-Conrath measures,
have also been de�nitively outperformed in a statistically
signi�cant manner by a small set of IC-based similarity
measures developed during the last decade, among which
we �nd the similarity measures introduced by Zhou et al.
(2008b) and the coswJ&C introduced by Lastra-Díaz
and García-Serrano (2015b). In addition, the J&C sim-
ilarity measure and its two monotone transformations,
our cosJ&C measure and the Garla and Brandt (2012)
similarity measure, statistically outperform the Resnik
and Lin similarity measures, and the cosJ&C similarity
measure obtains a statistically signi�cant higher average
Pearson correlation value than the J&C similarity mea-
sure. However, we also prove that there is no a statis-
tically signi�cant di¤erence between the two aforemen-
tioned pairs of outperforming IC-based similarity mea-
sures.
Despite our coswJ&C similarity measure and the

Zhou et al. (2008b) measure setting the state of the art
of the problem, their computational cost prevent their
practical use in comparison with other measures, such
as the cosJ&C introduced by Lastra-Díaz and García-

Serrano (2015b) and the Hadj Taieb et al. (2014b) mea-
sure. There is no a statiscally signi�cant di¤erence be-
tween the two latter aforementioned measures. Thus,
the cosJ&C and Hadj Taieb et al. (2014b) measures are,
statistically speaking, the best option from the afore-
mentioned set of similarity measures with a practical
computational cost.
We have proven that the state of the art in ontology-

based similarity measures and concept similarity models
is led by the family of IC-based measures, more speci�-
cally by the measures derived from the Jiang-Conrath
similarity measure. In addition, we have made an-
other signi�cant �nding. Contrary to the common be-
lief among the research community, only a small set of
state-of-the-art hybrid IC-based similarity measures de-
rived from the J&C measure obtain a statistically sig-
ni�cant higher average Spearman correlation value than
the family of path-based similarity measures, a fact that
explains some unexpected results in applications based
on similarity measures reported in the literature, such
as that reported by Alonso and Contreras (2016).
Finally, as forthcoming activities, we are going to in-

troduce and releasing HESML in a forthcoming paper
Lastra-Díaz and García-Serrano (2016), which is a new
scalable Java software library of ontology-based semantic
similarity measures and IC models. In addition, HESML
will be released with a replication dataset called WN-
SimRep v1, as well as a set of reproducible experiments
which allow automatically reproducing all the results re-
ported in our two aforementioned works and herein. The
aforementioned forthcoming paper is part of a novel inni-
tiative on computational reproducibility recently intro-
duced by Chirigati et al. (2016), whose pioneering work
is introduced by Wolke et al. (2016) with the aim of aid-
ing the exact replication of several dynamic resource al-
location strategies in cloud data centers evaluated in an-
other companion paper Wolke et al. (2015). Our repro-
ducible experiments are based on ReproZip, which is a
virtualization tool introduced by Chirigati et al. (2013b)
and Chirigati et al. (2013a), whose aim is to warrant the
exact replication of experimental results onto a di¤erent
system from that originally used into their creation.
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9 Appendix

See summary tables 10, 11, 12, 13 and 14. All raw data
resulting from the evaluation is shown in tables 15 to 26
next the bibliography.
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mates the degree of similarity between concepts by considering

only ‘is-a’ relationships, whilst the semantic relatedness measures

also consider any type of co-occurrence relationship. For instance,

a wheel is closely related to a car because the wheels are part of

any car; however, a wheel neither is a car nor derives from an-

other common close concept as vehicle , thus their degree of simi-

larity is low. Whilst hand-coded taxonomies, such as WordNet and

other sources of knowledge, can be efficiently and reliably used to

retrieve the ‘is-a’ relationships between concepts and words, the

co-occurrence relationships required by the semantic relatedness

measures need to be retrieved from a large corpus. For this reason

[57, §1.1] , ontology-based semantic similarity measures exclusively

based on ‘is-a’ relationships are currently the best and most reli-

able strategy to estimate the degree of similarity between words

and concepts [58] , whilst the corpus-based similarity measures are

the best strategy for estimating their degree of relatedness [8] . 

An ontology-based semantic similarity measure is a binary

concept-valued function sim : C × C → R defined on a single-root

taxonomy of concepts ( C , ≤C ), which returns an estimation of the

degree of similarity between concepts as perceived by a human

being. The ontology-based similarity measures have become both

a very active research topic, and a key component in many appli-

cations. For instance, in the fields of Natural Language Processing

(NLP) and IR, ontology-based semantic similarity measures have

been used in Word Sense Disambiguation (WSD) methods [92] ,

text similarity measures [86] , spelling error detection [20] , sen-

tence similarity models [44,66,91] , paraphrase detection [36] , uni-

fied sense disambiguation methods for different types of struc-

tured sources of knowledge [73] , document clustering [31] , on-

tology alignment [30] , document [74] and query anonymization

[11] , clustering of nominal information [9,10] , chemical entity iden-

tification [40] , interoperability among agent-based systems [34] ,

and ontology-based Information Retrieval (IR) models [55,62] to

solve the lack of an intrinsic semantic distance in vector ontology-

based IR models [23] . In the field of bioengineering, ontology-

based similarity measures have been proposed for synonym recog-

nition [24] and biomedical text mining [14,98,112] . However, since

the pioneering work of Lord et al. [72] , the proposal of similar-

ity measures for genomics and proteomics based on the Gene On-

tology (GO) [5] have attracted a lot of attention, as detailed in a

recent survey on the topic [76] . Many GO-based semantic simi-

larity measures have been proposed for protein functional simi-

larity [28,29,101,132] , giving rise to applications in protein classifi-

cation and protein-protein interactions [41,129] , gene prioritization

[117] and many others reported in [76, p.2] . 

In [57] , Lastra-Díaz and García-Serrano introduce a new fam-

ily of similarity measures based on an Information Content (IC)

model, whose pioneering work is introduced by Resnik [108] . Their

new family of semantic similarity measures is based on two un-

explored notions: a non-linear normalization of the classic Jiang-

Conrath distance [52] , and a generalization of this latter distance

on non tree-like taxonomies defined as the length of the shortest

path within an IC-weighted taxonomy. One of the similarity mea-

sures introduced in [57] , called coswJ&Csim , obtains the best re-

sults on the RG65 dataset. In another subsequent work [56] , the

same aforementioned authors introduce a new family of intrinsic

and corpus-based IC models and a new algebraic framework for

their derivation, which is based on the estimation of the condi-

tional probabilities between child and parent concepts within a

taxonomy. This latter family of IC models is refined in another

subsequent paper [58] , which also sets out the new state of the

art and confirms the outperformance of the coswJ&Csim similarity

measure in a statistically significant manner among the family of

ontology-based semantic similarity measures based on WordNet. 

Given a taxonomy of concepts defined by the triplet C =
( ( C, ≤C ) , �) , where � ∈ C is the supreme element called the

root, an Information Content model is a function IC : C → R 

+ ∪ { 0 } ,
hich represents an estimation of the information content for ev-

ry concept, defined by IC ( c i ) = −log 2 ( p ( c i ) ) , p ( c i ) being the occur-

ence probability of each concept c i ∈ C . Each IC model must satisfy

wo further properties: (1) nullity in the root, such that IC ( �) = 0 ,

nd (2) growing monotonicity from the root to the leaf concepts,

uch that ∀ c i ≤C c j ⇒ IC ( c i ) ≥ IC ( c j ). Once the IC-based measure is

hosen, the IC model is mainly responsible for the definition of the

otion of similarity and distance between concepts. 

The main aim of this work is to introduce the PosetHERep repre-

entation model and make the Half-Edge Semantic Measures Library

HESML ) publicly available for the first time, together with a set of

eproducible experiments whose aims are the exact replication of

he three aforementioned experimental surveys [56–58] , as well as

he proposal for a self-contained experimental platform which can

e easily used for extensive experimentation, even with no soft-

are coding. In addition, this work also introduces a new repli-

ation framework and the WNSimRep v1 dataset for the first time

rovided as supplementary material in [63] , whose aim is to pro-

ide a gold standard to assist in the exact replication of ontology-

ased similarity measures and IC models. Finally, we have carried-

ut a series of experiments in order to evaluate the scalability and

erformance of HESML as regards the Semantic Measures Library

SML) [48] and WNetSS [15] , which sets out the current state of

he art. This work is part of a novel innitiative on computational

eproducibility recently introduced by Chirigati et al. [26] , whose

ioneering work is introduced by Wolke et al. [127] with the aim

f leading to the exact replication of several dynamic resource al-

ocation strategies in cloud data centers evaluated in a companion

aper [128] . 

.1. Main motivation and hypothesis 

The two main motivations of this work are three drawbacks

n the current semantic measures libraries, detailed below, and

he lack of a set of self-contained and easily reproducible exper-

ments into ontology-based semantic similarity measures and IC

odels based on WordNet. Another significant motivation, also re-

ated to the reproducibility, is the lack of a gold standard to assist

n the exact replication of ontology-based similarity measures and

C models. 

.1.1. On the current semantic measures libraries 

Our first motivation is the discovery of several scalability and

erformance drawbacks in the current state-of-the-art semantic

easures libraries. We argue that these aforementioned drawbacks

re derived from the use of naive graph representation models

hich do not capture the intrinsic structure of the taxonomies be-

ng represented. As a consequence of this latter fact, all topological

lgorithms based on naive representation models demand a high

omputational cost which degrades their performance. In turn, in

rder to solve the performance problem of their graph-based al-

orithms, the current semantic measures libraries adopt a caching

trategy, storing the ancestors and descendant sets of all vertexes

ithin the taxonomy, among other topological queries in mem-

ry. This latter caching strategy significantly increases the mem-

ry usage and leads to a scalability problem as regards the size

f the taxonomy, in addition to impacting the performance be-

ause of the further memory allocation and dynamic resizing of

he caching data structures, or the interrogation of external rela-

ional databases. 

Our main hypothesis is that a new representation model for tax-

nomies which properly encodes their intrinsic structure, together

ith a new software library based on it, should bridge the afore-

entioned gap of scalability and performance of the current se-

antic measures libraries. Thus, our main research questions are

s follows: (Q1) is a new intrinsic representation model for tax-

nomies able to improve significantly the performance and scala-
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ility of the state-of-the-art semantic measures libraries?, and (Q2)

s it possible to significantly improve the performance and scala-

ility of the state-of-the-art semantic measures libraries without

sing any caching strategy?. 

The current state-of-the-art libraries are based on caching for

ost topological queries and the delocalization of attributes from

heir base objects (vertexes and edges). For instance, SML repre-

ents the ontologies by graphs, in which each vertex and oriented

dge is defined by a URI key in a Java hash set. Thus, any fur-

her information associated to each vertex or edge needs to be

tored in any independent external data structure, an approach

hat we call delocalized attributes . In addition, SML uses hash sets

o store all pre-computed information and topological queries as-

ociated to each vertex as follows: its incoming and outcoming

dge sets, its ascendant and descendant sets, its minimum and

aximum depths, its subsumed leaves and its IC values, among

thers. Following the same delocalized approach , the edge weights

n SML are also stored in Java hash sets indexed by edge URIs. All

he aforementioned taxonomical features are computed during the

re-processing step, or the first time that they are requested, being

tored in their corresponding caching structures defined as hash

ets or tables. All topological queries, as well as the shortest path

lgorithm implemented by SML, are based on the traversal of the

ML graph model, as well as the cache information of the vertexes

nd their delocalized attributes. The cached taxonomical features

re represented in a distributed collection of hash maps and sets

ndexed by edge and vertex URI keys. In short, the entire topolog-

cal model of the SML is based on caching, hash maps and delo-

alized attributes from their base objects. One of the first conse-

uences of caching the vertex sets, as the ancestor or descendant

ets, is that it implies a non-linear increase in the use of memory.

n the other hand, the delocalized approach adds a performance

enalty because of the need to interrogate different hash maps in

rder to retrieve multiple attributes from the same underlying ob-

ect, in addition to an increase in the memory required derived

rom the internal searching and storing structures required by the

nderlying hash maps. Finally, all graph traversal algorithms, espe-

ially the shortest path computation, suffer a significant decrease

n performance derived from the lack of an efficient representa-

ion of the adjacency model. The SML algorithms needs to inter-

ogate the hash maps continuously by storing the incoming and

utcoming edge sets of each vertex in order to retrieve the ad-

acency information and traverse the graph. Thus, the traversing

ethod is especially time consuming in complex algorithms as the

hortest path computation. Another significant example of caching

s the approach adopted by the WNetSS semantic measures library

ntroduced recently by Aouicha et al. [15] . Unlike SML, which com-

utes the topological features on-the-fly by storing them in an in-

emory cache, WNetSS carries-out a time-consuming off-line pre-

rocessing of all WordNet-based topological information which is

tored in a MySQL server. This latter caching strategy based on

ySQL could be appropriate for supporting a large Web-based ex-

erimental platform, such as the SISR system proposed in [15] .

owever, it severely impacts the performance, scalability and ex-

ensibility of WNetSS. 

A second motivation is related to several software architecture

ssues that lead to practical difficulties for the functional exten-

ion of current software libraries. For instance, WordNet::Similarity

99] and WS4J [121] were designed before the emergence of the

ntrinsic IC models described in Section 2.1 , thus, these libraries

aintain in-memory tables with the concept frequency counts

hich are interrogated in order to compute the IC values required

n a similarity evaluation step; however, their data structures does

ot provide any proper abstraction layer or software architecture

o integrate new intrinsic IC models easily. On the other hand, SML

eparates the in-memory storage of the IC values and edge weights

rom the edge and nodes within the base taxonomy by defining

t  
wo Java abstract interfaces to integrate new weighting schemes

nd IC models as external data providers which are interrogated

n-the-fly. This latter software design decision looks fine from an

bstract point of view; however, it hinders the implementation of

eighted IC-based measures like the weighted J&C and coswJ&C

imilarity measures introduced by Lastra-Díaz and García-Serrano

57] , because the edge weights depend on the IC values of the

odes. 

A third motivation is the lack of software implementations for

he most recent ontology-based similarity measures and intrinsic

C models developed during the last decade. This latter fact pre-

ents the publication of exhaustive experimental surveys compar-

ng the new proposed methods with most recent methods reported

n the literature, because of the effort and difficulty in replicating

revious methods and experiments. 

.1.2. On the reproducibility in the area 

A fourth motivation of this work is the lack of a set of self-

ontained and easily reproducible experiments that allow the re-

earch community to be able to replicate methods and results re-

orted in the literature exactly, even without the need for soft-

are coding. The lack of reproducible experiments, together with

he aforementioned lack of software libraries covering the most re-

ent methods, and the difficulties in replicating methods and ex-

eriments exactly have contributed, with few exceptions, to im-

rovable reproducibility practices in the area. Many works intro-

ucing similarity measures or IC models during the last decade

ave only implemented or evaluated classic IC-based similarity

easures, such as the Resnik [108] , Lin [70] and Jiang-Conrath

52] measures, avoiding the replication of IC models and similarity

easures introduced by other researchers. Some works have not

ncluded all the details of their methods, or the experimental setup

o obtain the published results, thus, preventing their reproducibil-

ty. Most works have copied results published by others. This latter

act has prevented the invaluable confirmation of previously re-

orted methods and results, which is an essential feature of sci-

nce. Pedersen [94] , and subsequently Fokkens et al. [37] , warn of

he need to reproduce and validate previous methods and results

eported in the literature, a suggestion that we subscribe to in our

forementioned works [56–58] , where we also refuted some previ-

us conclusions and warn of finding some contradictory results. A

ecent study [6,33] on the perception of this reproducibility ‘crisis’

n science shows that the aforementioned reproducibility problems

n our area are not the exception but the rule. Precisely, this latter

act has encouraged the recent manifesto for reproducible science

90] , which we also subscribe. 

And finally, our last motivation is the lack of a gold standard

o assist in the exact replication of ontology-based similarity mea-

ures and IC models. Most ontology-based similarity measures and

ntrinsic IC models require the computation of different taxonomi-

al features, such as node depths, hyponym sets, node subsumers,

he Least Common Subsumer (LCS), and subsumed leaves, among

thers. WordNet is a taxonomy with multiple inheritance, thus,

ome of these features are ambiguously defined, or their compu-

ation could be prone to errors. For example, the node depth can

e defined as the length of the shortest ascending path from the

ode to the root, or the length of the longest ascending path as

efined by Taieb et al. [43] . Different definitions of depth also lead

s to different values for the LCS concepts. On the other hand, the

omputation of the hyponym set, subsumed leaves and subsumer

et requires a careful counting process to avoid node repetitions,

s is already noted in [119, §3] . Another potential source of error

s the ambiguity in the definition and notation of some IC mod-

ls and similarity measures. For example, Zhou et al. [134] define

he root depth as 1, whilst the standard convention in graph the-

ry is 0. Most authors define the hyponym set as the descendant

ode set without including the base node itself. However, in [43] ,

he hyponym set also includes the base concept. In addition, we
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find works that do not detail the IC models used in their exper-

iments, or how these IC models were built. Finally, many recent

hybrid-type measures also require the computation of the length

of the shortest path between concepts. These sources of ambigu-

ity and difficulty demand a lot of attention to the fine details for

replicating most IC models and similarity measures in the litera-

ture. In a recent work [57] , we find some contradictory results and

difficulties in replicating previous methods and experiments re-

ported in the literature. These reproducibility problems were con-

firmed in another subsequent work, such as [56] , whilst new con-

tradictory results are reported in [58] . Several replication prob-

lems were solved with the kind support of most authors. How-

ever, we were not able to confirm all previous results, whilst others

could not be reproduced through lack of information. As we have

explained above, many taxonomical features are ambiguously de-

fined or prone to errors. Thus, all the aforementioned facts lead us

to conclude that the exact replication of ontology-based similarity

measures and IC models is a hard task, and not exempt from risk.

Therefore, it follows that it is urgent and desirable to set off a gold

standard for this taxonomical information in order to support the

exact replication of the methods reported in the literature. 

1.2. Definition of the problem and contributions 

This work tackles the problem of designing a scalable and effi-

cient new representation model for taxonomies and a new seman-

tic measures library based on the former, as well as the lack of

self-contained reproducible experiments on WordNet-based simi-

larity, tools and resources to assist in the exact replication of meth-

ods and experiments previously reported in the literature. In or-

der to bridge the aforementioned gap, the main contributions of

this work are as follows: (1) a new and efficient representation

model for taxonomies, called PosetHERep , which is an adaptation of

the half-edge data structure commonly used to represent discrete

manifolds and planar graphs in computational geometry; (2) a new

Java software library called Half-Edge Semantic Measures Library

( HESML) based on PosetHERep , which implements most ontology-

based semantic similarity measures and Information Content (IC)

models reported in the literature; (3) a set of reproducible experi-

ments on word similarity based on HESML and ReproZip [27] with

the aim of exactly reproducing the experimental surveys reported

in [56–58] ; (4) a replication framework and dataset, called WN-

SimRep v1 , which is provided as supplementary material at [63] ,

and whose aim is to assist the exact replication of most methods

reported in the literature; and finally, (5) the definition and evalu-

ation of a set of scalability and performance benchmarks to com-

pare the state-of-the-art semantic measures libraries. 

The rest of the paper is structured as follows. Section 2 intro-

duces the related work. Section 3 introduces the HESML software

library and the PosetHERep representation model for taxonomies.

Section 4 introduces a set of reproducible experiments as a com-

panion work to the aforementioned works introduced by Lastra-

Díaz and García-Serrano [56–58] . Section 5 briefly introduces the

WNSimRep v1 dataset, which is detailed and made publicly avail-

able in [63] as complementary material. Section 6 introduces a se-

ries of benchmarks between HESML and two state-of-the-art se-

mantic measures libraries with the aim of evaluating and compar-

ing their scalability and performance. Section 7 introduces our dis-

cussion of the experimental results. Section 8 introduces our con-

clusions and future work, whilst Section 9 introduces the revision

comments made by the reviewers. Finally, Appendix A details the

resources and datasets included in the HESML V1R2 distribution. 

2. Related work 

This section is divided into four subsections according to

the categorization of the related work detailed as follows.
ection 2.1 categorizes the family of ontology-based similarity

easures. Section 2.2 introduces the IC models which have been

mplemented in HESML. Section 2.3 introduces the main software

ibraries of ontology-based semantic similarity measures on Word-

et reported in the literature. And finally, Section 2.4 introduces

ome potential applications in information systems. We only intro-

uce herein a categorization of the methods reported in the lit-

rature, mainly those implemented in HESML. However, for an in-

epth review of the latter topics, we refer the reader to the reviews

y Lastra-Díaz and García-Serrano on IC-based similarity measures

57] and IC models [56,58] , as well as the short review by Batet

nd Sánchez [12] and the book by Harispe et al. [49] . 

.1. Ontology-based semantic similarity measures 

Table 1 shows our categorization of the current ontology-based

emantic similarity measures into four subfamilies as follows.

irst, edge-counting measures, the so-called path-based measures,

hose core idea is the use of the length of the shortest path be-

ween concepts as an estimation of their degree of similarity, such

s the pioneering work of Rada et al. [107] . Second, the family

f IC-based similarity measures, whose core idea is the use of an

nformation Content (IC) model, such as the pioneering work of

esnik [108] , and the subsequent measures introduced by Jiang

nd Conrath [52] and Lin [70] . Third, the familiy of feature-based

imilarity measures, whose core idea is the use of set-theory op-

rators between the feature sets of the concepts, such as the pi-

neering work of Tversky [124] . And fourth, other similarity mea-

ures that cannot be directly categorized into any previous fam-

ly, which are based on similarity graphs derived from WordNet

122] , novel contributions of the hyponym set [43] , or aggregations

f other measures [75] . 

In turn, the more recent IC-based measures can be divided into

our subgroups: (1) a first group made up by the aforementioned

hree classic IC-based similarity measures by Resnik [108] , Jiang

nd Conrath [52] , and Lin [70] ; (2) a second group defined by those

easures that make up an IC model with any function based on

he length of the shortest path between concepts, such as the pio-

eering work of Li et al. [69] , and other subsequent works shown

n Table 1 ; (3) a third group of IC-based measures based on the

eformulation of different approaches, such as the IC-based refor-

ulations of the Tversky measure by Pirró and Seco [103] , and

he IC-based reformulation of most edge-counting methods intro-

uced by Sánchez et al. [112] ; and finally, (4) a fourth group of IC-

ased measures based on a monotone transformation of any classic

C-based similarity measure, such as the exponential-like scaling

f the Lin measure introduced by Meng and Gu [81] , the recip-

ocal similarity measure of the Jiang-Conrath distance introduced

y Garla and Brandt [39] , another exponential-like normalization

f the Jiang-Conrath distance introduced by Lastra-Díaz and Garcí

-Serrano [57] , and the monotone transformation of the Lin mea-

ure called FaITH introduced by Pirró and Euzenat [104] . Table 2

hows a summary of the ontology-based semantic similarity mea-

ures implemented by the main publicly available semantic mea-

ures libraries. 

Finally, we mention five significant further lines of research

nto ontology-based similarity measures. Stanchev [122] introduces

n asymmetric similarity weighted graph derived from WordNet,

hilst Martínez-Gil [75] proposes an aggregated similarity mea-

ure based on a combination of multiple ontology-based similarity

easures and Van Miltenburg [125] proposes a method to com-

ute the semantic similarity between adjectives based on the use

f the similarity between their sets of derivational source names in

ordNet. More recently, Meymandpour et al. [85] propose several

emantic similarity measures for Linked Open Data (LOD) based

n IC models, whilst Batet and Sánchez [13] propose a semantic
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Table 1 

Categorization of the main ontology-based semantic similarity measures based on WordNet reported in the literature and implemented in 

HESML, excepting those measures with an asterisk ( ∗). The categorization above excludes most GO-based semantic similarity measures, which 

are in-depth analyzed in a recent survey by Mazandu et al. [76] . 

Path-based measures 

{ 

Rada et al. [107] , Wu & Palmer [130] 

Leacock & Chodorow [65] , Hirst & St-Onge [51] ∗
Pedersen et al. [98] , Al-Mubaid & NGuyen [3] 

IC-based measures 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

Classic IC-based measures 

{ 

Resnik [108] 

Jiang & Conrath [52] 

Lin [70] 

Hybrid (path-based) IC-based measures 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

Li et al. [69] 

Zhou et al. [133] 

Meng et al. [83] 

Gao et al. [38] 

Lastra-Díaz & García-Serrano ( coswJ & C ) [57] 

Reformulations of other types of measure 

{
Pirró & Seco [103] 

Sánchez et al. [112] ∗

Monotone transformations of classic IC-based measures 

⎧ ⎪ ⎨ 

⎪ ⎩ 

Pirró & Euzenat [104] 

Meng & Gu [81] 

Garla & Brandt [39] 

Lastra-Díaz & García-Serrano ( cosJ & C ) [57] 

Feature-based measures 

{ 

Tversky [124] 

Batet et al. [14] 

Sánchez et al. [115] 

Other types of measure 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

- Taxonomical features (hyponym sets): Taieb et al. [43] 

- Aggregation of different of measures: Martínez-Gil [75] ∗
- Asymmetrically weighted graphs based on WordNet: Stanchev [122] ∗
- IC-based reformulation on LinkedOpenData (LOD): Meymandpour et al. [85] ∗
- IC-based reformulation on Wikipedia: Jiang et al. [53] ∗
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elatedness measure based on the combination of highly-accurate

ntology-based semantic similarity measures with a resemblance

easure derived from corpus statistics. 

.2. Information Content models 

The first known IC model is based on corpus statistics and was

ntroduced by Resnik [108] , and subsequently detailed in [109] .

he main drawback of the corpus-based IC models is the diffi-

ulty in getting a well-balanced and disambiguated corpus for the

stimation of the concept probabilities. To bridge this gap, Seco

t al. [119] introduce the first intrinsic IC model in the literature,

hose core hypothesis is that the IC models can be directly com-

uted from intrinsic taxonomical features. Thus, the development

f new intrinsic IC-based similarity measures is divided into two

ubproblems: (1) the proposal of new intrinsic IC models, and (2)

he proposal for new IC-based similarity measures. During the last

ecade, the development of intrinsic IC models has become one of

he mainstreams of research in the area. Among the main intrin-

ic and corpus-based IC models proposed in the literature, we find

he proposals by Zhou et al. [133] , Sebti and Barfroush [118] , Blan-

hard et al. [18] , Sánchez et al. [113,114] , Meng et al. [82] , Yuan

t al. [131] , Hadj Taieb et al. [42] , Lastra-Díaz and García-Serrano

56,58] , Adhikari et al. [1] , Aouicha et al. [4,16] , and Harispe et al.

46] . 

Finally, in another recent work, Jiang et al. [53] introduce a

ew intrinsic IC model based on the Wikipedia category structure

hich has obtained outstanding results in several word-similarity

enchmarks. Table 3 shows a summary of the IC models imple-

ented by the current semantic measures libraries. 
.3. Ontology-based semantic measures libraries 

The main publicly available software libraries focusing on the

mplementation of ontology-based similarity measures based on

ordNet are WordNet::Similarity (WNSim) [99] and WS4J [121] ,

hose development is more stable, and the Semantic Measures Li-

rary (SML) [47] and the recent WNetSS [15] which are active on-

oing projects. 

The pioneering WNSim library was developed in Perl by Ped-

rsen et al. [99] , and subsequently migrated to Java by Tedeki

hima, under the name of WS4J [121] . WS4J includes, like its par-

nt library, the most significant path-based similarity measures,

he three aforementioned classic IC-based measures and several

orpus-based IC models [95] . However, WNSim and WS4J do not

nclude most ontology-based similarity measures developed during

he last decade, nor any intrinsic IC model. WNSim has been used

n a series of papers on word similarity by Patwardhan and Peder-

en [93,96] , and it has been extended in order to support the UMLS

iomedical ontology, thus becoming an independent Perl software

ibrary called UMLS::Similarity [78] , which is used in a WSD eval-

ation by McInnes et al. [77] . On the other hand, Harispe et al.

47] introduce the aforementioned SML library, which is the largest

emantic measures library. SML is an ongoing project whose v0.9

ersion implements most classic path-based and IC-based similar-

ty measures as well as several intrinsic IC models; however, it

oes not include most ontology-based similarity measures and in-

rinsic IC models developed during the last decade, as shown in

ables 2 and 3 . However, SML includes direct support to import

WL and other significant biomedical ontologies such as GO, MeSH

nd SNOMED-CT. In addition, SML includes several most significant

roupwise and pairwise GO-based semantic similarity measures, as
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Table 2 

Ontology-based semantic similarity measures implemented by the main publicly available software 

libraries based on WordNet. 

Gloss-based similarity measures WNSim WS4J SML WNetSS HESML 

Banerjee and Pedersen (2003) [7] X X 

Patwardhan and Pedersen (2006) [93] X X 

Path-based and taxonomy-based measures WNSim SML SML WNetSS HESML 

Rada et al (1989) [107] X X X X X 

Wu and Palmer (1994) [130] X X X X X 

Hirst and St. Onge (1998) [51] X X 

Leacock and Chodorow (1998) [65] X X X X 

Stojanovic et al. (2001) [123] X 

Pekar and Staab (2002) [100] X 

Li et al (2003) [69] , strategy 3 X X 

Li et al (2003) [69] , strategy 4 X 

Liu et al. (2007) [71] X 

Pedersen et al (2007) [98] X 

Al-Mubaid and NGuyen (2009) [3] X X 

Kyogoku et al. (2011) [54] X 

Hao et al. (2011) [45] X 

Hadj Taieb et al (2014) [43] , sim1 X X 

Hadj Taieb et al (2014) [43] , sim2 X X 

IC-based similarity measures WNSim WS4J SML WNetSS HESML 

Resnik (1995) [108] X X X X X 

Jiang and Conrath (1997) [52] X X X X X 

Lin (1998) [70] X X X X X 

Li et al (2003) strategy 9 [69] X 

Schlicker et al. [116] (GO-based) X 

Zhou et al (2008) [134] X X 

Pirró and Seco (2008) [105] X X 

Pirró and Euzenat (2010) [104] , FaITH X 

Garla and Brandt (2012) [39] X 

Meng and Gu (2012) [81] X X 

Meng et al (2014) [83] X 

Gao et al (2015) [38] , strategy 3 X X 

Lastra and García (2015) [57] , weighted J&C X 

Lastra and García (2015) [57] , cos J&C X 

Lastra and García (2015) [57] , cosw J&C X 

Feature-based similarity measures WNSim WS4J SML WNetSS HESML 

Tversky (1977) [124] X 

Rodríguez and Egenhofer (2003) [110] X 

Petrakis et al. (2006) [102] X 

Sánchez et al (2012) [115] X 
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well as a well-supported website and community forum. Thus, SML

is currently the most complete and versatile software library re-

ported in the literature. However, there are many other libraries

and tools exclusively focused on Gene Ontology (GO), as detailed

by Mazandu et al. [76] , which should be considered in this specific

domain. In addition to the aforementioned Tables 2 and 3 , which

summarize the methods implemented by the software libraries an-

alyzed herein, Table 4 compares the programming languages and

ontologies supported by them. 

Finally, we have the WNetSS semantic measures library intro-

duced recently by Aouicha et al. [15] , which is based on an off-

line pre-processing and caching in a MySQL server of WordNet, as

well as all WordNet-based topological features and implemented IC

models. As we mentioned previously in Section 1.1.1 , the caching

strategy used by WNetSS severely impacts its performance and

scalability. In addition, WNetSS exhibits two other significant ex-

tensibility drawbacks which prevent its use for researching and

prototyping of new methods, as follows: (1) the current distribu-

tion of WNetSS does not include its source files, thus, their archi-

tecture, representation model for taxonomies and implementation

details are missing; and (2) the current WNetSS version does not

allow any type of functional extension, such as including a new

taxonomy parser, as well as a new semantic similarity library or

IC model. Finally, despite one of the main motivations of WNetSS

being to provide a software implementation for the most recent
 t  
ethods, looking at Tables 2 and 3 , you can see that WNetSS

15] neither implements nor cites many recent similarity measures

nd IC models reported in the literature. 

.4. Potential applications in Information Systems 

Another interesting field of application of the family of

ntology-based similarity measures is the problem of business pro-

ess modeling as detailed below. A very old problem in business

rocess management is the construction and analysis of concept

aps that model business processes. Mendling et al. [80] study

he current practices in the activity labeling of business processes,

hilst Dijkman et al. [32] propose a similarity metric between

usiness process models based on an ad-hoc semantic similarity

etric between words in the node labels and attributes, as well

s the structural similarity encoded by the concept map topol-

gy. Likewise, Leopold et al. [68] propose an automatic refactor-

ng method of activity labels in business process modeling based

n the automatic recognition of labeling styles, and Leopold et al.

67] propose the inference of suitable names for business process

odels automatically. Finally, Montani and Leonardi [89] introduce

 framework for the retrieval and clustering of process models

ased on a semantic and structural distance between models. It is

lear that a notion of semantic similarity between components of

he models underlies most tasks on process modeling in the latter
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Table 3 

Intrinsic and corpus-based IC models implemented by the main publicly available software libraries 

based on WordNet. The above list represents, to the best of our knowledge, all IC models reported 

in the literature. ( ∗) The Aouicha et al. [16] IC model is implemented in HESML; however, this latter 

IC model has not yet been evaluated because several missing details need to be clarified by the 

authors, as described in HESML source code [60] . 

Corpus-based IC models WNSim WS4J WNetSS WNetSS HESML 

Resnik corpus-based (1995) [108] [109] X X X X 

Lastra & García (2015) [56] , CPCorpus X 

Lastra & García (2016) [58] , CPRefCorpus X 

Intrinsic IC models WNSim WS4J SML WNetSS HESML 

Seco et al (2004) [119] X X X 

Blanchard et al (2008) [18] , IC g X 

Zhou et al (2008) [133] X X X 

Sebti and Barfroush (2008) [118] X X 

Sánchez et al (2011) [114] X X X 

Sánchez et al (2012) [113] X 

Meng et al (2012) [82] X X 

Harispe (2012) [47] X X 

Yuan et al (2013) [131] X 

Hadj Taieb et al (2014) [42] X X 

Adhikari et al (2015) [1] X 

Aouicha et al (2016) [4] X 

Aouicha et al (2016) [16] ∗ X X 

Harispe et al. (2016) [46] 

Intrinsic IC models for relatedness measures 

Seddiqui and Aono [120] 

Pirró and Euzenat [104] 

IC models introduced by Lastra-Díaz and García-Serrano (2015) [56] 

CondProbHyponyms X 

CondProbUniform X 

CondProbLeaves X 

CondProbCosine X 

CondProbLogistic X 

IC models introduced by Lastra-Díaz and García-Serrano (2016) [58] 

CondProbRefHyponyms X 

CondProbRefUniform X 

CondProbRefLeaves X 

CondProbRefCosine X 

CondProbRefLogistic X 

CondProbCosineLeaves X 

CondProbRefLogisticLeaves X 

CondProbRefLeavesSubsumerRatio X 

Table 4 

Further features of the main publicly available semantic software libraries based 

on WordNet. 

Features WNSim WS4J SML WNetSS HESML 

Programming language Perl Java Java Java Java 

Source files availability public public public no public 

Ongoing development no no yes yes yes 

Supported ontology file formats: own parser (own) / external parser 

WordNet own own own extJWNL own 

OWL own 

GO own 

MeSH own 

SNOMED own 

RDF triples files own 
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2 https://creativecommons.org/licenses/by- nc- sa/4.0/legalcode . 
3 https://wordnet.princeton.edu/wordnet/license/ . 
emantic-aware applications. Thus, we argue herein that many of

hese methods could potentially benefit from the use of ontology-

ased semantic similarity measures. 

. The HESML software library 

HESML V1R2 [60] is distributed as a Java class library ( HESML-

1R2.jar ) plus a test driver application ( HESMLclient.jar ), which

ave been developed using NetBeans 8.0.2 for Windows, although

t has been also compiled and evaluated on Linux-based platforms

sing the corresponding NetBeans versions. HESML V1R2 is freely
istributed for any non-commercial purpose under a Creative Com-

ons By-NC-SA-4.0 license 2 recognized by citing the present work,

hilst the commercial use of the similarity measures introduced

n [57] , as well as part of the intrinsic IC models introduced in

56] and [58] , is protected by a patent application [58] . HESML is

urrently being evaluated by Castellanos et al. [22] in a taxonomy

ecovering task from DBpedia based on Formal Concept Analysis

FCA) methods like the proposed ones in [21] . HESML V1R2 sig-

ificantly improves the performance of the HESML V1R1 version

59] which was released on September 7 2016 with the original

ubmission of this work. 

In order to make the experimental work with HESML easier,

s well as supporting the reproducible experiments detailed in

ection 4 , HESML is distributed as a self-contained development

nd testing platform including the set of complementary resources

hown in Table 22 in appendix, which includes three different

ordNet 3 versions, a WordNet-based frequency file dataset devel-

ped by Ted Pedersen [95] , and the five most significant word sim-

larity benchmarks. For this reason, any user of HESML must fulfill

he licensing terms of these third-party resources by recognizing

heir authorship accordingly. 

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://wordnet.princeton.edu/wordnet/license/
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Fig. 1. HESML architecture showing main objects and interfaces. The core HESML component is the half-edge taxonomy representation defined by the yellow entities. Red 

entities in the block entitled ‘Similarity measures & IC models’ represent the two interfaces that should be implemented to define new IC models and similarity measures. 

All the HESML objects are provided as Java interfaces, being instanced by factory objects not represented in the figure. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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HESML V1R2 currently supports the WordNet taxonomy, most

ontology-based similarity measures and all the IC models for con-

cept similarity reported in the literature with the only exception of

the IC models introduced by Harispe et al. [46] , although the lat-

ter IC model could be included in future versions. In addition to

the aforementioned IC models [46] , Seddiqui and Aono [120] and

Pirró and Euzenat [104] propose two further intrinsic IC models

not implemented by HESML which are based on the integration of

all types of taxonomical relationships, and thus especially designed

for semantic relatedness measures. In addition, we plan to provide

ongoing support for further ontologies such as Wikidata [126] and

the Gene Ontology (GO) [5] among others, as well as further simi-

larity and relatedness measures. On the other hand, the HESML ar-

chitecture allows further similarity measures, IC models and ontol-

ogy readers to be developed easily. We also urge potential users to

propose further functionality. In order to remain up to date on new

HESML versions, as well as asking for technical support, we invite

the readers to subscribe to the HESML forum detailed in Table 8 . 

3.1. Software Architecture 

The HESML software library is divided into four functional

blocks as follows: (1) PosetHERep model objects shown in yel-

low in Fig. 1 ; (2) abstract interfaces implemented by the IC mod-

els or weighting schemes ( ITaxonomyInfoConfigurator) and all the

taxonomy-based similarity measures ( ISimilarityMeasure ) shown in

red; (3) ontology readers shown in green; and (4) a family of au-

tomatized benchmarks shown in blue, which allow reproducible

experiments on ontology-based similarity measures, IC models and

word similarity benchmarks with different WordNet versions to be

easily implemented, as well as computing and saving the results

matrices with Pearson and Spearman correlation values. The au-

tomatized benchmarks allow the efficient and exact replication of

the experiments and data tables included in the aforementioned

works introduced by Lastra-Díaz and García-Serrano. These lat-

ter automatized benchmarks can be defined in an XML-based file

format, which allows the definition of large experimental surveys

without any software coding. All HESML objects are provided as

private classes by implementing a set of Java interfaces, thus, they

can only be instantiated by invoking the proper factory classes.
ll the similarity measures, IC models or weighting schemes are

nvoked with a reference to the base taxonomy object ( ITaxon-

my ) as an input argument, which provides a complete set of

ueries to retrieve all types of information and topological fea-

ures. The children, parent, subsumed leaves, ancestor and descen-

ant (hyponym) sets are computed on-the-fly, while the nodes and

dges hold the IC values and weights respectively. Any IC model

r weighting scheme is defined as an abstract taxonomy proces-

or whose main aim is to annotate the taxonomy with the proper

C values, edge-based weights, concept probabilities or edge-based

onditional probabilities. The node-based and edge-based data is

ubsequently retrieved by the ontology-based semantic similarity

easures in their evaluation. 

.2. The PosetHERep representation model for taxonomies 

PosetHERep is a new and linearly scalable representation model

or taxonomies which is introduced herein for the first time.

osetHERep is based on our adaptation of the well-known half-

dge representation in the field of computational geometry [19] ,

lso known as a double-connected edge list [17, § 2.2] , in order to

fficiently represent and interrogate large taxonomies. 

PosetHERep model is the core component of the HESML archi-

ecture, it being the mainly responsible for their performance and

calability. Fig. 2 shows the core idea behind the PosetHERep repre-

entation model: all the outcoming and incoming oriented edges

half-edges) from any vertex are connected in such a way that

heir connection induces a cyclic ordering on the set of adjacent

ertexes. Given any single or multiple-root taxonomy C = ( C, ≤C ) ,

e can define its associated graph G = ( V, E ) in the usual way, in

hich every concept c i ∈ C is mapped onto a vertex v i ∈ C and ev-

ry order relationship between a parent concept and their children

s mapped onto an oriented edge, hereinafter called as a half-edge.

he core component of the PosetHERep model is the neighbourhood

teration loop algorithm detailed in Table 5 and three half-edge-

alued functions as follows: (1) the Target function returns the ver-

ex which the oriented edge points, (2) the Next function returns

he next outcoming half-edge for each incoming half-edge to any

ase vertex, and (3) the Opposite function returns the opposite and

aired half-edge. PosetHERep is based on the following topological
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Fig. 2. PosetHERep : half-edge representation around the vertex (concept) with id = 

4. Every edge is split into two paired and opposite oriented (half) edges. Given the 

first outcoming half-edge he ab from any vertex a , the set of adjacent vertexes is 

recovered in linear time through a cyclic iteration, as described by Algorithm 1. 

Table 5 

Iteration loop from a base vertex in order to recover its adjacent 

vertexes. 

Algorithm 1 Neighbourhood iteration loop 

Input: a base vertex v 
Output: an ordered list adjVertexes of adjacent vertexes 

1: IVertexList adjVertexes ; 

2: IHalfEdge loop = v . f irst Out ComingEdge ;
3: do 

4: { 

5: adjVertexes . Add ( loop . Target ); 

6: loop = loop . Opposite . Next;
7: } while ( loop ! = v . f irst Out ComingEdge ); 
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onsistency axiom : all the incoming and outcoming half-edges of

ny vertex are connected in such a way that a full cycle of the

eighbourhood iteration loop returns the set of adjacency vertexes

n any taxonomy vertex. The HESML method that inserts the ver-

exes onto the taxonomy is mainly responsible for the verification

f the latter axiom. 

The PosetHERep model allows most topological queries to be an-

wered in linear time, providing a very efficient implementation

or all the graph-traversing algorithms, such as the computation

f the depth of the vertexes, ancestor and descendant sets, sub-

umed leaf sets, and the length of the shortest path between ver-

exes, among others. Given any taxonomy with an associated graph

 = ( V, E ) , it is easy to prove that the memory cost of its HESML

epresentation is O ( k 1 | V | + k 2 | E | ) , in which the constants k 1 and

 2 are defined by the memory size of the vertex and edge at-

ributes. Thus, in any large taxonomy with a small number of con-

epts with multiple parents we can assume | V | ≈ | E |, which proves

hat HESML linearly scales with the number of concepts in the tax-

nomy. 

Finally, in order to implement the PosetHERep representation

odel, you must define the behaviour and interface of the six

bjects shown in yellow in Fig. 1 (ITaxonomy, IVertex, IHalfEdge,

Edge, IVertexList, and IEdgeList), as well as the collection of eight

lgorithms introduced below. Because of the lack of space, we do

ot detail seven of these algorithms, thus, we refer the reader to

he source code implementing them. The eight algorithms run in

inear time as regards the size of the taxonomy, with the only ex-

eption being the shortest path algorithm 6. Apart from the out-

ut data structures filled by the algorithms detailed below, none

f them demands caching or other intensive-memory structures

or their implementation. For this reason, the aforementioned al-

orithms are computationally efficient and scalable. 
Algorithm 1. Neighbourhood iteration loop . Table 5 details this

algorithm, which encodes all the adjacency relationships

within the taxonomy. The current PosetHERep model only

supports ‘is-a’ relationships, because it only supports two

types of half-edges: ‘SubClassOf’ and ‘SuperClassOf’. For this

reason, the current HESML version is only able to represent

‘ìs-a’ taxonomies. However, the extension of the PosetHERep

model to manage any type of ontological relationship is

straightforward. Thus, we plan to extend its representation

capabilities in future versions to include any type of se-

mantic relationship between concepts within an ontology. In

addition, PosetHERep could be extended to represent many

other types of semantic graphs. We also call this algorithm

a vertex iteration loop , and it is extensively used by most al-

gorithms detailed in this section. Indeed, you can see this

piece of code in the software implementation of the afore-

mentioned methods in HESML. The iteration loop runs in

linear time, it being the time proportional to the number of

adjacent vertexes. 

Algorithm 2. Insertion of a vertex in the taxonomy. This algo-

rithm inserts a new vertex into the taxonomy, as detailed

in the source code of the Taxonomy.addVertex() function. The

method links the vertex to its parent vertexes in order to

satisfy the aforementioned topological consistency axiom .

Once the vertex has been inserted into the taxonomy, it can

be directly interrogated without any further inference pro-

cess, such as that required by other libraries like SML. The

method runs in linear time, it being the time proportional

to the number of adjacent vertexes. 

Algorithm 3. Retrieval of the ancestor set of a vertex. This al-

gorithm retrieves the ancestor set of any vertex within the

taxonomy without caching, as detailed in the source code of

the Vertex.getAncestors() function. The algorithm climbs up

the taxonomy by traversing the ‘SubClassOf’ oriented edges

in each local vertex iteration loop. The method runs in linear

time, it being the time proportional to the maximum depth

of the base vertex. 

Algorithm 4. Retrieval of the descendant set (hyponyms) of a ver-

tex. This algorithm retrieves the descendant set of any ver-

tex within the taxonomy without caching, as detailed in the

source code of the Vertex.getHyponyms() function. The algo-

rithm climbs down the taxonomy by traversing the ‘Super-

ClassOf’ oriented edges in each local vertex iteration loop.

The method runs in linear time, it being the time propor-

tional to the difference between the maximum depth of the

taxonomy and the base vertex. 

Algorithm 5. Retrieval of the set of subsumed leaves of a vertex.

This algorithm retrieves the set subsumed leaves by any ver-

tex within the taxonomy without caching, as detailed in the

source code of the Vertex.getSubsumedLeaves() function. The

algorithm is identical to the method for retrieving the de-

scendant set with the exception that this method only se-

lects the leaf vertexes, instead of all descendant vertexes. It

shares the same computational complexity as algorithm 4. 

Algorithm 6. Shortest path. This algorithm computes the length

of the shortest weighted or unweighted path between two

vertexes in the taxonomy, as detailed in the source code of

the Vertex.getShortestPathDistanceTo() function. The method 

is a classic Dijkstra algorithm based on a min-priority queue

[25,79] and the aforementioned PosetHERep vertex iteration

loop in order to efficiently traverse the graph. Despite our

implementation of the Dijkstra algorithm being very efficient

in comparison with other semantic measures libraries, it is

still a general-graph method approach with an exponential

time complexity. 
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example. 
Algorithm 7. Minimum depth computation. This algorithm com-

putes the minimum depth of the vertex, which is defined

as the length of the shortest ascending path from the ver-

tex to the root, as detailed in the source code of the Ver-

tex.computeMinDepth() function. The algorithm is divided

into two steps: (1) retrieval of the ancestor set, and (2) com-

putation of the shortest ascending path using a modified Di-

jkstra algorithm constrained to the ancestor set. The core

idea of speeding up this algorithm is to reduce the search

space for the shortest path algorithm to the ancestor set,

which is very efficiently retrieved using algorithm 3. The

method runs in linear time, it being the time proportional

to the maximum depth of the base vertex. 

Algorithm 8. Maximum depth computation. This algorithm com-

putes the maximum depth of the vertex, which is defined

as the length of the longest ascending path from the ver-

tex to the root, as detailed in the source code of the Ver-

tex.computeMaxDepth() function. This algorithm is identical

to the algorithm 7, but in this case it computes the longest

ascending path from the vertex to the root. 

3.3. Software Functionalities 

HESML V1R2 includes the implementation of all the ontology-

based similarity measures shown in Table 2 , all the IC models

shown in Table 3 , a set of automatized benchmarks and a reader of

WordNet databases. The set of IC models included in HESML rep-

resents most known intrinsic and corpus-based IC models based

on WordNet reported in the literature. The library includes its own

WordNet parser and in-memory database representation, it being

fully independent of any other software library. In addition, HESML

defines the AbstractBenchmark and WordnetSimBenchmark classes in

order to provide a family of automatized word similarity bench-

marks based on WordNet, as well as an input XML-based repro-

ducible experiment file format which allows all the reproducible

experiments detailed in Section 4 and the WNSimRep v1 dataset to

be easily replicated with no software coding. 

3.4. Impact 

In addition to providing a larger collection of ontology-based

similarity measures and intrinsic IC models than other publicly

available software libraries, HESML provides a more efficient and

scalable representation of taxonomies for the prototyping, develop-

ment and evaluation of ontology-based similarity measures. These

aforementioned features convert HESML into an open platform to

assist the research activities in the area, such as: (1) the develop-

ment of large experimental surveys, (2) the fast prototyping and

development of new methods and applications, (3) the replication

of previous methods and results reported in the literature such as

in this work, and (4) the dissemination and teaching of ontology-

based similarity measures and IC models. 

The functionality and software architecture of HESML allow the

efficient and practical evaluation of large word similarity bench-

marks such as SimLex [50] and ontology-based similarity measures

based on the length of the shortest path, whose implementation

in other software libraries requires a high computational cost that

prevents their evaluation in large experimental surveys [58] and

datasets. Thus, HESML is an essential tool for allowing the fast pro-

totyping and evaluation of new path-based similarity measures on

weighted taxonomies or other complex taxonomical features, such

as the measures introduced in [57] . 

Lastra-Díaz and García-Serrano are currently carrying-out a very

active research campaign into ontology-based similarity measures

and IC models based on HESML . Thus, it is expected that HESML

functionality will grow accordingly. Finally, because of the growing
nterest in the integration of ontology-based similarity measures in

any applications in the fields of NLP, IR, the Semantic Web and

ioengineering, especially genomics, we expect that HESML will be

elpful and interesting to a larger audience. 

.5. Illustrative examples of use 

The HESMLclient.java source code file includes a set of sam-

le functions in order to show the functionality of the li-

rary as shown in Table 6 , which are listed in the function

ampleExperiments() . All source files are well documented and ex-

ensively commented on, in addition to providing a Javadoc docu-

entation. Thus, we think that a careful reading of the source code

xamples, as well as the understanding of the software architec-

ure detailed in Fig. 1 and the extensibility procedures detailed in

ection 3.6 , should be enough to use HESML to its best advantage.

ext, we highlight two examples of use of HESML, whilst the next

ubsection explains how to extend the functionality of the library: 

• Reproducing previous methods and experiments . We refer the

reader to the sample functions in Table 6 . 
• Running large experimental surveys . In addition to checking the

aforementioned sample functions, we refer the reader to the

Section 4 in which a set of large reproducible experiments is

detailed. 

.6. Extending the library 

One of the main goals of HESML is to replicate previous meth-

ds, as well as facilitating the prototyping and development of new

ethods. The main extensibility axes of the library are the devel-

pment of new similarity measures and IC models, as well as fur-

her ontology parsers. We detail how to carry-out these function-

lity extensions as follows: 

• Developing and prototyping a new similarity measure. In or-

der to design a new ontology-based similarity measure, the

users must create and register a new class by implement-

ing the ISimilarityMeasure interface. The steps to create a new

similarity measure are as follows: (1) create a new mea-

sure class in the hesml/measures/impl namespace, which ex-

tends the SimilaritySemanticMeasure abstract class and imple-

ments the ISimilarityMeasure interface; (2) include a new type

of measure in the SimilarityMeasureType.java enumeration; and

(3) register the creation of the new measure in the getMea-

sure() method implemented by the factory class defined in the

hesml/measures/impl/MeasureFactory.java source file. 
• Developing and prototyping a new IC model. In order to de-

sign a new intrinsic/corpus-based IC model, the users must

create and register a new class implementing the ITaxono-

myInfoConfigurator interface. The steps to create a new in-

trinsic IC model are as follows: (1) create a new IC model

class in the hesml/configurators/icmodels namespace, which ex-

tends the AbstractICmodel class and implements the ITax-

onomyInfoConfigurator interface; (2) include a new intrin-

sic IC model type in the IntrinsicICModelType.java / Corpus-

BasedICModelType.java enumerations; and (3) register the cre-

ation of the new IC model either the getIntrinsicICmodel() or

getCorpusICmodel() methods implemented by the factory class

defined in the hesml/configurators/icmodels/IntrinsicICFactory.java

source file. 
• Developing a new taxonomy reader. Any taxonomy reader must

be able to read a taxonomy file and return an instance of an

ITaxonomy object. You can use the implementation of the Word-

Net reader in the taxonomyreaders/wordnet/impl namespace as
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Table 6 

Examples of use included in the HESMLclient.java source code file in order to show the functionality of HESML. 

HESMLClient method Description 

testAllSimilarityBenchmarks Runs different types of word similarity benchmarks. 

testMultipleICmodelsMultipleICmeasuresBenchmarks Runs a cross-evaluation of IC models and IC-based similarity measures. 

testSingleNonICbasedMeasure Runs the evaluation of a single non IC-based similarity measures. 

testSingleICSimMeasureMultipleICmodels Runs the evaluation of a single IC-based similarity measure with multiple intrinsic IC models. 

testSingleICSimMeasureSingleICmodel Runs the evaluation of a single IC-based similarity measure with single intrinsic IC models. 

testWordPairSimilarity Shows the computation of the similarity between two words by using the noun database of WordNet and 

any similarity measure. 

testSingleICmodelMultipleICbasedMeasures Runs the evaluation of a single intrinsic IC model with multiple IC-based similarity measures. 

testCorpusBasedSimilarityBenchmarks Runs the evaluation of multiple corpus-based IC models with multiple IC-based similarity measures. 

buildWNSimRepFiles Builds the WNSimRep v1 dataset. 

createTestTaxonomy This function shows how to create a tree-like taxonomy with the number of vertexes defined by the input 

parameter. Thus, it shows what should be done by any new ontology parser in order to populate a 

HESML taxonomy. 

Table 7 

Complementary Mendeley datasets published with the current work. 

Dataset Content description 

HESML V1R2 distribution package [60] Java source files and NetBeans projects. WordNet 2.1, 3.0 and 3.1 databases. Pedersen’s WordNet-based frequency files. 

Word similarity benchmarks enumerated in table 1. 

WordNet-based word similarity reproducible 

experiments [64] 

A ReproZip reproducible experiment file which allows the experimental surveys on WordNet-based word similarity 

introduced in [57] , [56] and [58] to be reproduced, as well as a Zip file with all the raw output files for an easy 

verification. 

WNSimRep v1 dataset [63] A framework and replication dataset for ontology-based semantic similarity measures and IC models. 

HESML_VS_SML [61] Set of benchmarks introduced herein which evaluate and compare HESML, SML and WNetSS. 

Table 8 

Summary of technical and legal information of the HESML software library. 

HESML source code data Description 

Current code version. V1R2 

Legal Code License. Creative Commons By-NC-SA 4.0 

Permanent code repository used for this version. http://dx.doi.org/10.17632/t87s78dg78.2 

GitHub repository https://github.com/jjlastra/HESML.git 

Software code languages and tools. Java 8, Java SE DevKit 8, NetBeans 8.0 or higher 

Compilation requirements and operating systems. Java SE Dev Kit 8, NetBeans 8.0 or higher and any Java-compliant operating system. 

Documentation and source code examples This work and the sample source code in the HESMLclient program. 

Community forum for questions. hesml + subscribe@googlegroups.com, hesml+unsubscribe@googlegroups.com 
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. The Reproducible Experiments 

The aim of this section is to introduce a set of detailed experi-

ental setups in order to exactly replicate the methods and exper-

ments introduced by Lastra-Díaz and García-Serrano in [56–58] ,

hose contributions were stated in the introduction. 

.1. Experimental setup and complementary datasets 

We follow the same experimental setup as that detailed in

56] and [58] , including the same datasets, preprocessing steps,

valuation metrics, baselines, management of polysemic words and

eporting of the results. All the experiments compute the Pear-

on and Spearman correlation metrics for a set of ontology-based

imilarity measures on each word similarity benchmark shown in

able 22 , as detailed in [56] . Table 7 details the four complemen-

ary Mendeley datasets which are distributed in the current work. 

.2. Obtaining and compiling HESML 

Table 8 shows the technical information required to obtain and

ompile the HESML source code and run the experiments detailed

n Table 11 . There are two different ways of obtaining the HESML

ource code: (1) by downloading the current version from the per-

anent Mendeley Data link [60] ; and finally, (2) by downloading

t from its GitHub repository detailed in Table 8 . 
Once the source code package has been downloaded or ex-

racted onto your hard drive, the project will have the following

older structure: 

1. HESML_Library . The root folder of the project. 

2. HESML_Library \ HESML . This folder is the main software library

folder containing the NetBeans project and HESML source code.

Below this folder you find the dist folder which contains the

HESML-V1R2.jar distribution file generated during the compila-

tion. 

3. HESML_Library \ HESMLclient . This folder contains the source code

of the HESMLclient console application. The main aim of the

HESMLclient.jar application is to provide a collection of sample

functions in order to show the HESML functionality, as well as

running the collection of reproducible experiments. 

4. HESML_Library \ PedersenICmodels . This folder contains the full

WordNet-InfoContent-3.0 collection of WordNet-based fre- 

quency files created by Ted Pedersen [95] . The file names de-

note the corpus used to build each file. The readme file details

the method used to build the frequency files, which is also de-

tailed in [97] . 

5. HESML_Library \ ReproducibleExperiments. This folder contains

three subfolders with the reproducible experiment files shown

in Table 11 , as well as a XML-schema file called WordNet-

BasedExperiments.xsd , which describes the syntax of all XML-

based experiment files ( ∗.exp), and the All_paper_tables.exp file

with the definition of all the reproducible experiments shown

in Table 11 . All files have been created with the XML Spy editor.

http://dx.doi.org/10.17632/t87s78dg78.2
https://github.com/jjlastra/HESML.git
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Table 9 

Configuration of the computers used to reproduce the accompanying set of reproducible experi- 

ments, and their running times on the main reproducibility experiments. 

Experimental platform Operating system CPU RAM 

Ubuntu-base (2011) Ubuntu MATE 16.04 LTS Intel Pentium B950 @ 2.10 GHz 4 Gb 

Windows-base (2015) Windows 8.1x64 Intel Core i7-5500U @ 2.40 GHz 8 Gb 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 

Running times for the main reproducible experiments. 

PC name EAAI_all_tables KBS_all_tables AI_all_tables 

Ubuntu-base 13491 min ≈ 9.37 days 38 s 16 days 

Windows-base — 25 s —
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In addition, this folder also contains the RawOutputFiles sub-

folder with all the raw output files shown in Table 11 , and the

Post-scripts folder containing the set of post-processing R scripts

detailed in Table 12 . 

6. HESML_Library \ WN_datasets . This folder contains a set of ‘ ∗.csv’

data files corresponding to the word similarity benchmarks

shown in Table 22 . 

7. HESML_Library \ WordNet-2.1 . This folder contains the database

files of WordNet 2.1. 

8. HESML_Library \ WordNet-3.0 . This folder contains the database

files of WordNet 3.0. 

9. HESML_Library \ WordNet-3.1 . This folder contains the database

files of WordNet 3.1. 

In order to compile HESML , you must follow the following

steps: 

1. Install Java 8, Java SE Dev Kit 8 and NetBeans 8.0.2 or higher in

your workstation. 

2. Launch NetBeans IDE and open the HESML and HESMLclient

projects contained in the root folder. NetBeans automatically

detects the presence of a nbproject subfolder with the project

files. 

3. Select HESML and HESMLclient projects in the project treeview

respectively. Then, invoke the ‘Clean and Build project (Shift +

F11)’ command in order to compile both projects. 

4.3. Running the experiments 

Table 11 shows the full collection of reproducible experiment

files, as well as the corresponding output files that will be gener-

ated in order to reproduce the results reported in [57] , [56] and

[58] respectively. 

There are two ways of running the accompanying repro-

ducible experiments: (1) by compiling HESML and running the

HESMLclient program with any input experiment file shown

in Table 11 , as detailed in Section 4.3.1 ; or (2) by running

the HESMLv1r1_reproducible_exps.rpz reproducible experiment file

[64] based on ReproZip, as detailed in Section 4.3.4 . The name of

the reproducible experiment files in Table 11 encodes the name

of each corresponding table of results that is obtained as output,

thus, the table of results that is reproduced. These experiment files

reproduce most results reported in [56–58] . However, there are

several summary tables in these aforementioned works that are

not directly reproduced from the raw output files, thus, the post-

processing of several output files is necessary to obtain these miss-

ing tables as detailed in Section 4.3.3 . 

4.3.1. Running the experiments with HESMLclient 

Once you have compiled the HESML and HESMLclient projects as

detailed in Section 4.2 , you are ready to run the reproducible ex-

periments as detailed below. The original HESMLclient source code

is defined to fetch the required input files from the folder structure

of HESML . Thus, you only need to follow the steps below: 

1. Open a Linux or Windows command prompt in the

HESML_Library \ HESMLclient directory. 

2. Run the following command using any reproducible experiment
file shown in Table 11 : b  
$prompt: > java -jar dist \ HESMLclient.jar .. \ ReproducibleExperi-

ents \ < anyfile.exp > . 

3. You must run the latter command for each experiment

file defined in the aforementioned tables. Optionally,

you can run all the experiments automatically by load-

ing any summary file in step 2 above as follows: (1)

EAAI_all_tables.exp, (2) KBS_all_tables.exp , (3) AI_all_tables.exp,

or (4) All_paper_tables.exp. This latter file contains all the

experiments shown in Table 11 . Table 10 shows the running

times for the latter reproducible experiments on the two

experimental platforms detailed in Table 9 . 

Finally, the WNSimRepv1 dataset [63] can be computed auto-

atically by running the command in step 4 below. The program

utomatically creates and stores all WNSimRepv1 data files in the

utput directory. If the output directory does not exist then it is

utomatically created. 

4. $prompt: > java -jar dist \ HESMLclient.jar -WNSimRepV1

< outputdir > 

.3.2. System requirements and performance evaluation 

The reproducible experiments detailed in the previous section

ave been reproduced by the authors in two different experimental

latforms shown in Table 9 , which are defined by an old low-end

aptop called Ubuntu-base and a more recent professional laptop

alled Windows-base . The Ubuntu-base workstation sets the mini-

al system requirements in order to reproduce the experiments

etailed in previous section, as well as the ReproZip package in-

roduced in Section 4.3.4 . Table 10 shows the running times for

he main reproducible experiments on the two experimental plat-

orms. 

.3.3. Processing of the result files 

The running of each experiment file in Table 11 produces one

r two comma-separated files ( ∗.csv) with the values separated by

 semicolon. The first column in Table 11 shows the number of

he table in which the output data computed by each reproducible

xperiment file ( ∗.exp) appears. All output files are saved in the

ame folder as their corresponding input experiment files. 

Many output files detailed in Table 11 need certain post-

rocessing in order to match the tables shown in the papers ex-

ctly. In order to automate this post-processing, we provide the set

f R scripts detailed in Table 12 . These scripts take the raw output

les generated by the experiments in Table 11 and produce the fi-

al assembled tables as shown in [56–58] , as well as Figs. 2 and 3

howing the interval significance analysis in [56] . The output files

hown in the second column in Table 12 are the only files requir-

ng post-processing, the remaining raw output files match the ta-

les shown in thee aforementioned works exactly. In order to run
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Table 11 

Collection of reproducible experiment files for the data tables reported in [57] , [56] and [58] . The first column shows the table corresponding to 

the data generated in the output file. The column entitled ‘Measures’ denotes the type of similarity measures evaluated by each experiment. Each 

reproducible experiment file is defined by a XML-based text file with extension (.exp), which can contain the definition of one or more reproducible 

experiments. Thus, some experiment files produce one output file whilst others produce two output files that must be merged in order to repro- 

duce the original data tables in the papers exactly. Because of the computational cost of the experiments reported in [58] , the experiment files 

corresponding to the latter work generate a single output file containing the Pearson and Spearman correlation metrics that appear separately in 

the aforementioned work. Thus, it is necessary to split and arrange the columns of the output data tables in order to reproduce the Pearson and 

Spearman metrics reported in [58] exactly. 

Tables WN Datasets IC models Measures Metrics Reproducible experiment file Output files 

Reproducible experiments for the results reported in [57] 

4 All All — Non IC Pearson EAAI_table4_nonICmeasures.exp EAAI_table4_nonICmeasures.csv 

5 2.1 RG65, P& S f ull intrinsic IC-based Pearson EAAI_table5_RG65_PS.exp EAAI_table5_RG65.csv 

EAAI_table5_PS.csv 

6 3.0 RG65 all IC-based Pearson EAAI_table6_RG65.csv EAAI_table6_RG65.csv 

7 3.0 P& S f ull all IC-based Pearson EAAI_table7_PS.csv EAAI_table7_PS.csv 

8 3.1 RG65, P& S f ull intrinsic IC-based Pearson EAAI_table8_RG65_PS.exp EAAI_table8_RG65.csv 

EAAI_table8_PS.csv 

All 3.0 All all all Pea/Spea EAAI_all_tables.exp All output files above 

Reproducible experiments for the results reported in [56] 

6 3.0 All — H. Taieb [43] Pea/Spea KBS_table6_Taieb.exp KBS_table6_Taieb.csv 

7 3.0 RG65 all IC-based Pea/Spea KBS_table7_RG65.csv KBS_table7_RG65.csv 

8 3.0 MC28 all IC-based Pea/Spea KBS_table8_MC28.exp KBS_table8_MC28.csv 

9 3.0 Agirre201 all IC-based Pea/Spea KBS_table9_Agirre201.exp KBS_table9_Agirre201.csv 

10 3.0 P& S f ull all IC-based Pea/Spea KBS_table10_PS.exp KBS_table10_PS.csv 

11 3.0 SimLex665 all IC-based Pea/Spea KBS_table11_SimLex665.exp KBS_table11_SimLex665.csv 

All 3.0 All all all Pea/Spea KBS_all_tables.exp All output files above 

Reproducible experiments for the results reported in [58] 

12 3.0 All best All Pea/Spea AI_table12.exp AI_table12.csv 

15,16 3.0 RG65 all IC-based Pea/Spea AI_table15_16_RG65.exp AI_table15_16_RG65.csv 

17,18 3.0 MC28 all IC-based Pea/Spea AI_table17_18_MC28.exp AI_table17_18_MC28.csv 

19,20 3.0 Agirre201 all IC-based Pea/Spea AI_table19_20_Agirre201.exp AI_table19_20_Agirre201.csv 

21,22 3.0 P& S f ull all IC-based Pea/Spea AI_table21_22 PS.exp AI_table21_22_PS.csv 

23,24 3.0 SimLex665 all IC-based Pea/Spea AI_table23_24_SimLex665.exp AI_table23_24_SimLex665.csv 

All 3.0 All all all Pea/Spea AI_all_tables.exp All output files above 
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Table 12 

Collection of R scripts in order to assemble several tables as shown in the 

three aforementioned works by Lastra-Díaz and García-Serrano, whose 

content is not directly obtained from the experimental raw output files. 

Load the script files in the same order below. 

R script file Post-processing output files and/or figures 

EAAI_final_tables.r EAAI_final_table_4.csv 

AI_final_tables.r AI_final_table_10.csv AI_final_table_11.csv 

AI_final_table_12.csv 

AI_final_table_15.csv AI_final_table_16.csv 

AI_final_table_17.csv AI_final_table_18.csv 

AI_final_table_19.csv AI_final_table_20.csv 

AI_final_table_21.csv AI_final_table_22.csv 

AI_final_table_23.csv AI_final_table_24.csv 

AI_final_table_25.csv AI_final_table_26.csv 

KBS_final_tables.r KBS_final_table_4.csv KBS_final_table_6.csv 

KBS_final_table_6.csv KBS_figure{2,3}.pdf 

w  

o  

r  

R  

i  

c  

t  

a  

M

 

F  

U  

d  
he scripts in Table 12 , you need to setup the well-known R statis-

ical program 

4 in your workstation. Once R is installed, you need

o install the ‘BioPhysConnectoR’ package, and follow the steps

elow: 

1. Launch the R program 

2. Select the menu option ‘ File- > Open script ’. Then, load any

R-script file contained in the HESML_Library \ Reproducible

Experiments \ Post-scripts folder. 

3. Edit the ‘inputDir’ variable at the beginning of the script in or-

der to match the directory containing the raw output files onto

your hard drive. 

4. Select the menu option ‘ Edit- > Run all ’. The final assembled ta-

bles will be saved in the input directory defined above, whilst

the figures will be shown within R and saved as independent

PDF files. 

.3.4. Running the ReproZip experiments 

ReproZip is a virtualization tool introduced by Chirigati et al.

27] , whose aim is to warrant the exact replication of experimen-

al results onto a different system from that originally used in

heir creation. Reprozip captures all the program dependencies and

s able to reproduce the packaged experiments on any host plat-

orm, regardless of the hardware and software configuration used

n their creation. Thus, ReproZip warrants the reproduction of the

xperiments introduced herein in the long term. 

The ReproZip program was used for recording and pack-

ging the running of the HESMLclient program with all

he reproducible experiments shown in Table 11 in the

ESMLv1r1_reproducible_exps.rpz file available at [64] . This Re-

roZip file was generated by running Reprozip on the Ubuntu-base
4 https://www.r-project.org/ . 

y  

b  

t  
orkstation, which was also used to run ReproUnzip based

n Docker as detailed below. In order to set up and run the

eproducible experiments introduced herein, you need to use

eproUnzip. ReproUnzip can be used with two different virtual-

zation platforms: (1) Vagrant + VirtualBox, or (2) Docker. For a

omparison of these two types of virtualization platform, we refer

he reader to the survey introduced by Merkel [84] , in which the

uthor introduces Docker and compares it with classic Virtual

achines (VM) such as VirtualBox. 

Our preferred ReproUnzip configuration is that based on Docker.

or instance, in order to setup ReproUnzip based on Docker for

buntu, you should follow the detailed steps shown in Table 13 ,

espite several steps possibly being unnecessary depending on

our starting configuration. Once ReproUnzip and Docker have

een successfully installed, Table 14 shows the detailed instruc-

ions to set up and run the reproducible experiments. Those read-

https://www.r-project.org/
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Table 13 

Detailed instructions on installing ReproUnzip with Docker for Ubuntu. 

Step Detailed setup instructions 

1 sudo apt-get update 

2 sudo apt-get install libffi-dev 

3 sudo apt-get install libssl-dev 

4 sudo apt-get install openssl 

5 sudo apt-get install openssh-server 

6 sudo apt-get install libsqlite3-dev 

7 sudo apt-get install python-dev 

8 sudo pip install reprouzip[all] 

9 Docker for Ubuntu setup: follow the detailed instructions at 

https://docs.docker.com/engine/installation/linux/ubuntulinux/ 

Table 14 

Detailed instructions on how to reproduce the packaged experiments once Reproun- 

zip has been installed. 

Step Detailed experiment setup and running instructions 

1 Setup the Reprounzip program onto any supported platform (Linux, 

Windows and MacOS) as detailed in the ReproZip setup page 

detailed in table. 

2 Download the HESMLv1r1 reproducible exps.rpz from its Mendeley 

repository [64] , as detailed in Table 8 . 

3 Open a command console in the directory containing the 

HESMLv1r1_reproducible_exps.rpz file and executes the two 

commands below: 

(1) reprounzip docker setup HESMLv1r1_reproducible_exps.rpz 

docker_folder 

(2) reprounzip docker run docker_folder 

Table 15 

The first instruction shows a list with the output files generated 

by the experiments, whilst the second instruction extracts all the 

output files from the container and downloads them to the cur- 

rent folder. 

Step Detailed instructions to recover the output files 

1 reprounzip showfiles docker_folder 

2 sudo reprounzip docker download –all docker_folder 

Table 16 

Tested software platforms for the reproducible experiments based on ReproZip. 

Platform ReproUnzip configuration Tested 

Ubuntu-base ReproUnzip based on Docker Yes 

Mac Pro (OS X El Capitan –

10.11.6) with 16 Gb RAM 

ReproUnzip based on Vagrant Yes 
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6 https://github.com/sharispe/slib . 
ers who prefer to use ReproUnzip with VirtualBox instead of

Docker can consult the ReproZip installation page. 5 

The running of the reproducible experiments based on Docker

for Ubuntu took around 16 days on the aforementioned Ubuntu-

base workstation. Once the running has finished, you should fol-

low the instructions shown in Table 15 to recover the output files

from the Docker container, as detailed in Table 11 . Finally, Table 16

summarizes the software platforms in which the reproducible ex-

periments [64] have been successfully reproduced. 

The old low-end Ubuntu-base workstation with only 4Gb RAM

is enough to successfully run the experiments detailed in Table 11 .

However, we suggest a high-end workstation in order to reduce

the overall running time. 

5. The WNSimRep v1 dataset 

WNSimRep v1 is a replication dataset defined by a collection of

intrinsic and corpus-based IC models based on WordNet 3.0, which

is enriched with the most common taxonomical features used in
5 https://reprozip.readthedocs.io/en/1.0.x/install.html . s
he computation of similarity measures and intrinsic IC models, as

ell as the similarity values reported by most similarity measures

n order to assist the replication of previously reported methods

nd experiments. The WNSimRep v1 dataset is part of the experi-

ental data reported in our three aforementioned works [56–58] ,

nd it was automatically generated using HESML as detailed in

ection 4.3.1 . 

Despite WNSimRep v1 being based on WordNet 3.0, the pro-

osed framework could be adapted and extended to any type

f base ontology, or intrinsic similarity measure. Because of the

ack of space, WNSimRep v1 is detailed in a complementary paper,

hich together with the dataset files, is publicly available at [63] .

NSimRep v1 includes three different types of data files: (1) node-

alued IC data files with taxonomical features, (2) edge-valued IC

ata files with the conditional probability between child and par-

nt concepts, and (3) synset-pair-valued data files with taxonomi-

al features and IC-based similarity measures for the synset pairs

erived from the classic RG65 benchmark introduced by [111] . The

ataset includes 22 intrinsic IC models, 8 corpus-based IC models

ased on the Resnik method, 8 corpus-based IC models based on

he well-founded CondProbCorpus IC model, and 8 corpus-based IC

odel based on the CondProbRefCorpus, which have been evaluated

ith 22 similarity measures. All the corpus-based IC models are

erived from the family of “∗add1.dat” WordNet-based frequency

les included in the Pedersen dataset [95] , which is a dataset of

orpus-based files created for a series of papers on similarity mea-

ures in WordNet, such as [93] and [96] . The dataset includes all

he IC models and similarity measures evaluated in the experi-

ental surveys carried-out in the three aforementioned works by

astra-Díaz and García-Serrano in [56–58] . 

. Evaluation of HESML 

The goals of the experiments described in this section are as

ollows: (1) the experimental evaluation of the PosetHERep repre-

entation model and HESML, as well as their comparison with the

tate-of-the-art semantic measures libraries called SML [48] and

NetSS [15] ; (2) a study of the impact of the size of the taxonomy

n the performance and scalability of the state-of-the-art semantic

easures libraries; and finally, (3) the confirmation or refutation

f our main hypothesis and research questions; Q1 and Q2 intro-

uced in Section 1.1 . 

.1. Experimental setup 

Our experiments compare the performance of the HESML V1R2

ibrary version available at [60] , with the SML 0.9 library version

hose source files are available at GitHub, 6 and the recent WNetSS

ibrary. 7 We used the compiled slib-dist-0.9-all-jar.jar file available

t the SML web site 8 for our experiments. As WNetSS is not dis-

ributed with its source files, we were not able to carry-out a side-

y-side detailed comparison of WNetSS with HESML and SML, as is

one between HESML and SML. Thus, we divided our benchmarks

nto two blocks: (1) a detailed side-by-side comparison between

ESML and SML based on the benchmarks detailed in Table 17 ;

nd (2) a WordNet-based similarity benchmark based on the Sim-

ex665 dataset in order to evaluate the three aforementioned li-

raries, which is implemented by the EvaluateWordNetSimilarity-

ataset functions in the complementary dataset [61] . 

In order to evaluate HESML and SML, we have carried out a

eries of benchmarks based on the creation and interrogation of
7 http://wnetss- api.smr- team.org/ . 
8 http://www.semantic- measures- library.org/sml/downloads/releases/sml/0.9/ 

lib- dist- 0.9- all- jar.jar . 

https://docs.docker.com/engine/installation/linux/ubuntulinux/
https://reprozip.readthedocs.io/en/1.0.x/install.html
https://github.com/sharispe/slib
http://wnetss-api.smr-team.org/
http://www.semantic-measures-library.org/sml/downloads/releases/sml/0.9/slib-dist-0.9-all-jar.jar
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Table 17 

Sequence of benchmarks implemented by the HSMLtests and SMLtests classes within the HESML_vs_SML_tests.jar program. The test functions carry-out the same operations 

on both software libraries, thus, their results can be compared directly. 

Benchmark Description 

overallCreation This test creates a tree-like taxonomy with a defined number of vertexes in which each vertex has a random number of children nodes (2 to 8), 

avgCreation ov eral l Creation 
# v ertexes 

AncDescLea This test matches the pre-processing made by the SML, and it consists of the computation of the ancestor and descendant sets of each vertex, 

and the overall leaf set. 

avgAncDesLea AncDescLea 
# v ertexes 

overallCaching This test measures the number of vertexes cached during the execution of the AncDescLea test (SML pre-processing). 

avgCaching ov eral l Caching 
# v ertexes 

avgShortestPath Average computation time of the shortest path (5 samples). 

allMinDepth Overall computation time of minimum depth for all vertexes. 

avgMinDepth al l MinDepth 
# v ertexes 

allMaxDepth Overall computation time of the maximum depth for all vertexes. 

avgMaxDepth al l MaxDepth 
# v ertexes 

avgLCA Average time to retrieve the LCA vertex (10,0 0 0 samples). 

avgMICA Average time to retrieve the MICA vertex (10,0 0 0 samples). 

avgSubLea Average time to retrieve the set of subsumed leaves (10,0 0 0 samples). 

a  

g  

b  

s  

m  

t  

p  

c  

o  

t  

a  

t  

t

6

 

a  

w  

l  

W  

l  

s  

g  

i  

fi  

f  

i  

w  

t  

b  

m  

t  

i  

o  

a

6

 

o  

m  

t  

m  

fl  

a  

o  

a  

m  

s  

t  

i  

b  

r  

H  

b  

a  

r  

t  

o

6

 

H  

t  

t  

m  

s  

h  

(  

t  

t  

v  

t  

e  

f  

p  

f  

g  

w  

v

 

u  

d  

t  

s  

a

7

 

s  
 sequence of randomly created tree-like taxonomies, whose size

rows from 20,0 0 0 to 1 million vertexes. The benchmarks have

een designed with the aim of evaluating a selection of the most

ignificant topological algorithms used by most ontology-based se-

antic similarity measures and IC models reported in the litera-

ure. Table 17 details the set of benchmarks defined to evaluate the

erformance of HESML and SML. Because of its high computational

ost, we limit the evaluation of the shortest path algorithm to tax-

nomies with up to 50,0 0 0 vertexes. On the other hand, in order

o evaluate and compare the performance of WNetSS with HESML

nd SML, we compare the running-time of the three libraries in

he evaluation of the Jiang-Conrath similarity measure [52] with

he Seco et al. IC model [119] in the SimLex665 dataset [50] . 

.2. Reproducing our benchmarks 

All benchmarks detailed in Table 17 are implemented on

 single Java console program called HESML_VS_SML_test.jar ,

hich is publicly available at [61] . The HESML_vs_SML program

inks directly with the HESML-V1R2.jar, slib-dist-0.9-all-jar.jar and

NetSS.jar files containing the latest publicly available software re-

eases of these libraries. The HESML_vs_SML dataset contains all

ource files and the NetBeans project used to create the entire pro-

ram, including the pre-compiled version with their dependencies

n the ‘dist’ subfolder. The HESML_VS_SML_test/src folder contains

ve files as follows: (1) HESML_vs_SML_test.java contains the main

unction; (2) HESMLtests.java contains the functions implement-

ng the aforementioned benchmarks on the HESML V1R2 library;

hilst (3) SMLtests.java contains the same functions as HESML-

ests.java , but implementing the benchmarks on the SML 0.9 li-

rary; and (4) the WNetSStests.java contains the function imple-

enting the WordNet-based similarity benchmark; and finally, (5)

he TestResults.java file implements a class with the aim of collect-

ng all output results in a structured way. In order to reproduce

ur benchmarks and see the results reported in Tables 20 and 21 ,

nd Fig. 3 , you should follow the steps detailed in [61] . 

.3. Evaluation metrics 

The metrics defined for the comparison of the results are the

verall and average running time of the operations, measured in

icroseconds ( μsecs ), milliseconds (msecs) or seconds (secs), and

he increase in memory derived from the caching process. The

easurement of the memory use of a Java program is highly in-

uenciated by the Java Virtual Machine (JVM) memory allocation

nd garbage collector policies. Thus, it is very difficult to carries

ut a set of measurements on memory use which is reliable, stable
nd reproducible. For this reason, the metric used for the caching

emory is defined by the exact number of vertexes which are

tored in the caching structures. Despite not being able to know

he exact caching memory allocated in runtime, we know that it

s a multiple of the number of cached vertexes, which is defined

y the memory size of each vertex (URIs in SML) and the memory

equired by the data structures used to stored them, typically Java

ashSets in SML. Finally, the statistical significance of the results

etween HESML and SML in the benchmarks detailed in Table 17 ,

s well as the results of the WordNet-based similarity benchmark

eported in Table 19 , is evaluated using the p-values resulting from

he t-student test for the difference mean between the two series

f average running times considered as two paired samples sets. 

.4. Results 

Tables 20 and 21 show the results of the benchmarks between

ESML and SML, whilst Fig. 3 shows a graphical comparison of

heir performance and Table 18 shows the p-values resulting from

he comparison of both series of benchmarks. SML runs out of

emory on the taxonomy with 1 million of vertexes. For this rea-

on, we only show the results up to 90 0,0 0 0 vertexes. On the other

and, HESML starts to run out of memory for the same Java heap

4Gb) on taxonomies with 10 million of vertexes or more, a fact

hat you could check by incrementing the size of the taxonomy in

he HESML_vs_SML main function. Finally, Table 18 shows the p-

alues of the benchmarks which are computed using a one-sided

-student distribution on two paired sample sets. Our null hypoth-

sis, denoted by H 0 , is that the difference mean in the average per-

ormance between HESML and SML is 0, whilst the alternative hy-

othesis, denoted by H 1 , is that their average performance is dif-

erent. For a 5% level of significance, it means that if the p-value is

reater than 0.05, we must accept the null hypothesis, otherwise

e can reject H 0 with an probability of error of less than the p-

alue. 

Table 19 shows the running-time in milliseconds for five eval-

ations of the Jiang-Conrath similarity measure in the SimLex665

ataset, together with the average running-time for each library on

he Windows-based workstation. We evaluate the WordNet-based

imilarity benchmark five times to allow a statistical significance

nalysis and produce a more robust estimation. 

. Discussion 

HESML V1R2 significantly outperforms SML 0.9 and sets the new

tate of the art of the problem. Looking at the Tables 20 and 21 ,
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Fig. 3. This figure shows the results obtained by HESML and SML in the series of benchmarks described in the experimental setup, whose values are tabulated in 

Tables 20 and 21 . The computation time is reported in microsecs ( μsecs), milliseconds (msecs) or seconds (secs), whilst the increase in memory resulting from the caching 

carried-out by the SML library is reported in figure(c) as the ratio of the number of cached vertexes as regards the overall number of vertexes, the so called ’taxonomy size’. 

Table 18 

P-values obtained by using a one-sided t-student distribution for the mean of the differences between two paired samples defined by the HESML and SML benchmark 

results and a significance level of 95%. The p-values above have been computed by running the figures_and_table18_Rscript.r script into the R statistical package, which is 

provided as complementary material. Any p-value less than 0.05 implies that HESML obtains a statistically significant lower value (running time or caching) than SML. 

Thus, HESML outperforms SML on this benchmark in a statistically significant manner. 

Avg Creation Avg AncDesLeaves Avg Caching ratio Avg Minimum Depth Avg Maximum Depth Avg LCA Avg MICA Avg Subsumed leaves Avg shortest path 

5.3e-10 4.2e-04 1.6e-18 1.2e-03 8.2e-04 2.3e-09 3.6e-04 6.6e-03 1.0e-02 
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and Fig. 3 , we conclude that HESML outperforms SML in all bench-

marks detailed in Table 17 . In addition, all p-values in Table 18 are

less than 0.05, thus, we conclude that HESML outperforms SML in

all benchmarks in a statistically significant manner. Thus, HESML

sets the new state of the art in the family of semantic measures

libraries in terms of performance and scalability. 

Most HESML V1R2 algorithms exhibit linear complexity, thus they

are linearly scalable. HESML obtains an almost constant average ra-

tio on most benchmarks, as shown in Tables 20 and 21 , and Fig. 3 ,

with the only exception being the shortest path algorithm. The

small variation in the average ratios in the aforementioned tables

could be attributed to the inherent variability of the time measure-
ent in Java. Thus, most benchmarks exhibit a linear complexity as

egards the size of the taxonomy, confirming our theoretical analy-

is on the scalability of most PosetHERep algorithms introduced in

ection 3.2 . The set of benchmarks with a constant average ratio,

nd thus linear complexity, is defined as follows: (1) the creation

f the taxonomy (vertex insertion); (2) the retrieval of the ancestor

nd descendant sets of the vertexes, and the overall leaf set (SML

re-processing); (3) the computation of the minimum and maxi-

um depths of the vertexes; (4) the retrieval of the LCA vertex;

5) the retrieval of the MICA vertex; and (6) the retrieval of the

ubsumed leaves of the vertexes. 
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Table 19 

Overall running time obtained by the semantic 

measures libraries in the evaluation of the Jiang- 

Conrath similarity measure with the Seco et al. IC 

model in the SimLex665 dataset. 

Library SML WNetSS HESML 

Run 1 (msecs) 156 177434 110 

Run 2 (msecs) 71 177224 89 

Run 3 (msecs) 45 177541 97 

Run 4 (msecs) 43 173151 85 

Run 5 (msecs) 41 179284 82 

Avg (msecs) 71.2 176926.8 92.6 

t-student p-value (SML, HESML) = 0.147 
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HESML V1R2 outperforms SML 0.9 including in the benchmarks

hat use caching. Unlike SML, HESML does not use caching to store

ny pre-computed set of vertexes. However, HESML significantly

utperforms SML in those methods in which SML uses caching,

uch as the retrieval of the LCA and MICA vertexes, and the set of

ubsumed leaves of a vertex. On the other hand, HESML makes ex-

ensive use of the PosetHeRep model and its algorithms in order to

etrieve these objects, outperforming their counterparts based on

aching. Thus, our results refute the common belief which states

he caching of the entire collection of ancestor and descendant

ets is the only solution to speed-up the computation of the afore-

entioned topological queries. In addition, our results prove that

he caching strategy does not only impact the scalability, because

f the unneeded and non-linear increment of the memory us-

ge, but also contributes to a low performance as consequence

f the continuous interrogations of large hash maps. Specifically,

able 21 shows an almost constant speed-up factor between the

verage running time for the LCA and MICA benchmarks of HESML

s regards SML, which we attribute to the aforementioned interro-

ations of the caching structures. In the best case, although SML

as able to obtain a similar performance to HESML in these tasks

fter a reengineering of its code, HESML will obtain a better or

imilar performance without caching. Table 20 shows that SML de-

ands a caching of 19.34 times the taxonomy size for a taxonomy

ize of 90 0,0 0 0 vertexes, and its caching growing rate is clearly

on-linear. 

Most SML algorithms exhibit a non-linear time complexity, whilst

ts best performing methods (LCA and MICA) demand a non-scalable

aching strategy. This latter conclusion follows directly from the re-

ults shown in Tables 20 and 21 , as well as the Fig. 3 , and our

iscussion in the previous paragraph. 

HESML outperforms most SML benchmarks by several orders of

agnitude. As shown in Tables 20 and 21 , the latter statement is

specially significant for large sizes of taxonomy in the following

enchmarks: (1) computation of the ancestor and descendant sets,

2) computation of the minimum and maximum depths, (3) com-

utation of the subsumed leaves, and (4) computation of the short-

st path between vertexes. SML only obtains good results, for the

omputation of the MICA and LCA vertexes because of the caching,

nd even in these two latter cases it is significantly outperformed

y HESML. Again, the main problem behind most SML algorithms

s its low degree of scalability as consequence of its representation

odel for taxonomies. 

The overall outperformance of HESML on SML proves our main

ypothesis and answers our two main research questions positively.

hus, our results allow the following conclusions to be drawn: (1)

 new intrinsic representation model for taxonomies as the pro-

osed by PosetHERep is able to improve significantly the perfor-

ance and scalability of the state-of-the-art semantic measures

ibraries; and (2) it is possible to significantly improve the per-

ormance and scalability of the state-of-the-art semantic mea-
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t  
ures libraries without using any caching strategy by using the

osetHERep model. Likewise, our results confirm our claims in mo-

ivation 1.1 in which we state that the caching is a consequence

f the use of non-intrinsic naive representation models for tax-

nomies. 

The low performance and scalability of the shortest path algorithm

n SML prevents its use in large WordNet-based benchmarks of path-

ased similarity measures. Looking at Table 20 , you can see that

ML requires more than 21 s to evaluate the length of the shortest

ath in a taxonomy with only 50,0 0 0 vertexes, it being approxi-

ately a half of the WordNet size. This latter fact is especially crit-

cal in any WordNet-based word similarity evaluation because the

imilarity is commonly defined as the maximum similarity in the

artesian product between word senses, thus, it could increase up

o two orders of magnitude the latter running time for any path-

ased similarity measure. On the other hand, looking at Fig. 3 .i,

ou can see the non-linear scaling of the method. 

SML obtains the lowest average running-time in the evaluation

f a classic IC-based similarity measure in a WordNet-based bench-

ark, although there is no a statistically significant difference as re-

ard HESML. Looking at Table 19 , you can see that SML obtains an

verage running-time of 71.2 ms, whilst HESML and WNetSS ob-

ain 92.6 and 176,926.8 ms respectively. However, the p-value for

he t-student test between SML and HESML is 0.147, thus, there

s no a statistically significant difference between these two lat-

er libraries. We attribute this slight advantage of SML on HESML

n the WordNet-based test to the WordNet indexing approach of

ESML. Despite HESML outperforming SML in the topological algo-

ithms used by the Jiang-Conrath similarity measure, the WordNet

ndexing and lookup in HESML is up to three times slower than its

quivalent in SML. This difference in the performance of the Word-

et indexing process between HESML and SML is a consequence of

he implementation of two further hashmap lookup operations in

ESML, which are not needed by the WordNet indexing approach

f SML. 

WNetSS obtains the lowest performance in the evaluation of the

ordNet-based similarity benchmark, obtaining an average running-

ime which is more than three orders of magnitude higher than

ESML and SML. Table 19 shows that the average running-time of

76,926.8 ms obtained by WNetSS is 2,485 and 1,911 times the av-

rage running-time obtained by SML and HESML respectively. This

atter fact confirms our statements in Section 1.1.1 on the impact

f a software architecture based on a relational database server on

he performance and scalability of WNetSS. 

Finally, PosetHERep could easily extended in a straightforward

ay to support any type of semantic relationship, in addition to

he ‘is-a’ taxonomical relationships. Thus, the PosetHERep model

ould be used as the main building block for large ontologies, and

ith a proper extension it could be adapted to efficiently manage

ther non-taxonomical semantic graphs. 

.1. The new state of the art 

Our previous discussion allows us to conclude that HESML is

he more efficient and scalable semantic measures library between

he three libraries evaluated herein. However, there is no a statis-

ically significant difference in the performance of HESML and SML

n the evaluation of non path-based similarity measures on Word-

et. Thus, SML also provides an efficient and practical solution

o evaluate IC-based similarity measures and IC models based on

ordNet, despite its performance prevents the evaluation of path-

ased similarity measures. On the other hand, WNSetSS exhibits

 poor performance as consequence of its RDBMS-based caching

pproach, moreover, it does not provide its source files which seri-

usly prevents its evaluation, extensibility and verification. Finally,

here would be interesting to carry out a comparison and verifica-
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ion of the detailed values reported by each library with the aim

f checking and validating their implementation. 

. Conclusions and future work 

We have introduced a new and linearly scalable representa-

ion model for large taxonomies, called PosetHERep, and the HESML

1R2 [60] semantic measures library based on the former. We have

roven in a statistically significant manner that HESML V1R2 is the

ost efficient and scalable publicly available software library of

ntology-based similarity measures and intrinsic IC models based

n WordNet. However, there is not a statistically significant differ-

nce in the performance of HESML and SML in the evaluation of

n IC-based similarity measure based on WordNet, unlike the eval-

ation of any path-based similarity measure in which HESML is

uch more efficient. On the other hand, PosetHERep and HESML

ave proven, conversely to common belief, that is possible to im-

rove significantly the performance and scalability of the state-of-

he-art semantic measures libraries without caching using a proper

ntrinsic representation model for taxonomies. The performance

f WNetSS is more than three orders of magnitude lower than

ESML and SML because of its caching strategy based on a rela-

ional database. 

In addition, we have introduced a set of reproducible experi-

ents based on ReproZip [64] and HESML , which corresponds to

he experimental surveys introduced by Lastra-Díaz and García-

errano in [57] , [56] and [58] , as well as the WNSimRep v1 repli-

ation framework and dataset [63] and a benchmark of semantic

easures libraries [61] . 

As forthcoming activities, we plan to extend HESML in order to

upport Wikidata [126] and non “is-a” relationships in the short

erm, whilst in the mid term, we expect to support the Gene On-

ology (GO), MeSH and SNOMED-CT ontologies. In addition, we

lan to include further ontology-based similarity measures and IC

odels reported in the literature, as well as the possibility of im-

orting word embedding files with the aim of allowing the exper-

mental comparison of state-of-the-art ontology-based and corpus-

ased similarity measures and methods. 

. Revision Comments 

This reproducibility paper presents a novel software library

HESML) that implements a plethora of ontology-based semantic

imilarity measures and information content models. The value of

uch library is indubitable, since it provides a benchmark to com-

are existing and potentially new approaches in the field. By using

nd evaluating the implemented measures and models, researchers

re able to thoroughly compare the available implementations and

ncover which are the measures that more accurately mimic hu-
Table 22 

Collection of resources distributed as supplementary material 

tribution package. 

Reference works Acronym 

This work and [60] HESML V1R

This work and [63] WNSimRep 

Miller [87] , Fellbaum [35] WordNet 2.1

Miller [87] , Fellbaum [35] WordNet 3.

Miller [87] , Fellbaum [35] WordNet 3.1

Rubenstein and Goodenough [111] RG65 

Miller and Charles [88] MC28 

Agirre et al. [2] Agirre201 

Pirró [103] P& S f ull 

Hill et al. [50] SimLex665 

Patwardhan and Pedersen [93] , Pedersen [96] WN-IC-3.0.t
an understanding. In addition, because the source code is pro-

ided, new models and measures can more easily be built on top

f the existing ones, facilitating the progress of the research on

imilarity measures. 

While reviewing this manuscript, a few issues around repro-

ucibility were brought into discussion. One issue was related

o post-processing: ideally, for reproducibility purposes, the post-

rocessing of output files should be as automatic as possible to fa-

ilitate the generation of the final results and figures of the paper.

valuating performance and scalability is also key to reproducibil-

ty, since this makes the library more appealing for readers and re-

earchers who will use it and perform experiments in potentially

ifferent com putational platforms. Last, not only the instructions

o run the library should be clear, but also the implemented mod-

les and functions should be well described to make the library

xtendable and more useful. The authors satisfactorily took all our

omments into account and significantly improved their artifact. It

s worth noting that an important outcome of this submission and

he reviews was the improvement in performance and scalability

f the library, which will greatly benefit every researcher working

n this area. 

We would like to thank the authors for providing such a valu-

ble artifact to the community, and for their great effort in mak-

ng sure that all the instructions for building and using the li-

rary are clear, and all the experimental results can be reproduced

ffortlessly. 
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ppendix A. Resources in the HESML distribution 

Table 22 details the resources and datasets included in the

ESML V1R2 distribution. 
of the present work and included the HESML V1R2 dis- 

Resource type Licensing type 

2 Java software library CC By-NC-SA 4.0 

v1 Replication dataset CC By-NC 3.0 

 Ontology-based lexicon Attribution 

0 Ontology-based lexicon Attribution 

 Ontology-based lexicon Attribution 

Word similarity benchmark Attribution 

Word similarity benchmark Attribution 

Word similarity benchmark Attribution 

Word similarity benchmark Attribution 

Word similarity benchmark Attribution 

ar WN-based frequency files Attribution 
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Contributor(s):  

Description of this data

HESML V1R2 is the second release of the Half-Edge Semantic Measures Library (HESML) [1], which
is a new, scalable and efficient Java software library of ontology-based semantic similarity measures
and Information Content (IC) models based on WordNet.

HESML V1R2 implements most ontology-based semantic similarity measures and Information
Content (IC) models based on WordNet reported in the literature. In addition, it provides a XML-
based input file format in order to specify the execution of reproducible experiments on WordNet-
based similarity, even with no software coding.

The V1R2 release significantly improves the performance of HESML V1R1. HESML is introduced
and detailed in a companion reproducibility paper [1] of the methods and experiments introduced
in [2,3,4].

The main features of HEMSL are as follows: (1) it is based on an efficient and linearly scalable
representation for taxonomies called PosetHERep introduced in [1], (2) its performance exhibits a
linear scalability as regards the size of the taxonomy, and (3) it does not use any caching strategy of
vertex sets.

HESML V1R2 is freely distributed for any non-commercial purpose under a CC By-NC-SA-4.0
license, subject to the citing of the main HESML paper [1] as attribution requirement. On other
hand, the commercial use of the similarity measures introduced in [2], as well as part of the intrinsic
IC models introduced in [3] and [4], is protected by a patent application [5]. In addition, any user of
HESML must fulfill other licensing terms described in [1] related to other resources distributed with
the library, such as WordNet and a dataset of corpus-based IC models, among others.

References:

[1] Lastra-Díaz, J. J., & García-Serrano, A. (2016). HESML: a scalable ontology-based semantic
similarity measures library with a set of reproducible experiments and a replication dataset. To
appear in Information Systems Journal.

[2] Lastra-Díaz, J. J., & García-Serrano, A. (2015). A novel family of IC-based similarity measures with
a detailed experimental survey on WordNet. Engineering Applications of Artificial Intelligence
Journal, 46, 140–153.

[3] Lastra-Díaz, J. J., & García-Serrano, A. (2015). A new family of information content models with
an experimental survey on WordNet. Knowledge-Based Systems, 89, 509–526.

[4] Lastra-Díaz, J. J., & García-Serrano, A. (2016). A refinement of the well-founded Information
Content models with a very detailed experimental survey on WordNet. Universidad Nacional de

Juan J. Lastra-Díaz, Ana Garcia-Serrano

https://www.mendeley.com/profiles/juan-j-lastra-diaz/
https://www.mendeley.com/profiles/ana-garcia-serrano3/
https://www.mendeley.com/
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Educación a Distancia (UNED).

[5] Lastra Díaz, J. J., & García Serrano, A. (2016). System and method for the indexing and retrieval of
semantically annotated data using an ontology-based information retrieval model. United States
Patent and Trademark Office (USPTO) Application, US2016/0179945 A1.

Experiment data files

Steps to reproduce

HESML V1R2 is distributed as a Java class library (HESML-V1R2.jar) plus a test driver application
(HESMLclient.jar), which have been developed using NetBeans 8.0.2 for Windows, although it has
been also compiled and evaluated on Linux-based platforms using the corresponding NetBeans
versions.

In order to compile HESML V1R2, you must follow the following steps:

(1) Download the ZIP file above containing the full distribution of HESML V1R2..

(2) Install Java 8, Java SE Dev Kit 8 and NetBeans 8.0.2 or higher in your workstation.

(3) Launch NetBeans IDE and open the HESML and HESMLclient projects contained in the root
folder. NetBeans automatically detects the presence of a nbproject subfolder with the project files.

(4) Select HESML and HESMLclient projects in the project treeview respectively. Then, invoke the
"Clean and Build project (Shift + F11)" command in order to compile both projects.

In order to remain up to date on new HESML versions, as well as asking for technical support, we
invite the readers to subscribe to the HESML forum by sending an email to the following address:

hesml+subscribe@googlegroups.com

For more information, we refer the reader to the paper below:

Lastra-Díaz, J. J., & García-Serrano, A. (2016). HESML: a scalable ontology-based semantic similarity
measures library with a set of reproducible experiments and a replication dataset. To appear in
Information Systems.

Related links

Download all files (1)

 HESML_Release_V1R2.zip

45 MB 

HESML V1R2 Java source files

ZIP

A novel family of IC-based similarity measures with a detailed experimental
survey on WordNet

doi:10.1016/j.engappai.2015.09.006

article is related to this dataset

A new family of information content models with an experimental survey on
WordNet

article is related to this dataset

https://data.mendeley.com/archiver/t87s78dg78?version=2
https://data.mendeley.com/datasets/t87s78dg78/2/files/19162058-ee86-4776-8135-0817651e093b
https://data.mendeley.com/datasets/t87s78dg78/2/files/19162058-ee86-4776-8135-0817651e093b/HESML_Release_V1R2.zip?dl=1
http://dx.doi.org/10.1016/j.engappai.2015.09.006
http://dx.doi.org/10.1016/j.engappai.2015.09.006
http://dx.doi.org/10.1016/j.knosys.2015.08.019
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HESML V1R1 Java software library of
ontology-based semantic similarity
measures and information content models
Published: 7 Sep 2016 |  Version 1 |  DOI: 10.17632/t87s78dg78.1

Contributor(s):  

Description of this data

HESML V1R1 is a new Java software library called Half-Edge Semantic Measures Library (HESML),
which implements most ontology-based semantic similarity measures and Information Content (IC)
models based on WordNet reported in the literature.

HESML is introduced and detailed in the paper by Lastra-Díaz, J. J., & García-Serrano, A. (2016).
HESML: a scalable ontology-based semantic similarity measures library with a set of reproducible
experiments and a replication dataset. Information Systems.

HESML is motivated by several drawbacks in the current state-of-the-art software libraries, as well
as the evaluation of the new methods introduced by the authors, together with the replication and
evaluation of most previously reported methods.

HESML is based on a new and efficient poset representation, called PosetHERep, which is an
adaptation of the half-edge data structure commonly used to represent discrete manifolds and
planar graphs in computational geometry. HESML proposes a memory-efficient representation for
taxonomies which linearly scales with the taxonomy size and provides an efficient implementation
of a large set of topological queries and graph-based algorithms. Likewise, HESML provides an
open framework to aid research into the area by providing a simpler and more efficient software
architecture than the current software libraries.

Experiment data files

Steps to reproduce

(1) Download the ZIP file above containing the full distribution of HESML V1R1. 
(2) Follow the instructions in the paper below:

Lastra-Díaz, J. J., & García-Serrano, A. (2016). HESML: a scalable ontology-based semantic similarity
measures library with a set of reproducible experiments and a replication dataset. Information
Systems.

Juan J. Lastra-Díaz, Ana Garcia-Serrano

Download all files (1)

 HESML_Release_V1R1.zip

105 MB 

HESML V1R1 Java source code

ZIP

https://data.mendeley.com/datasets/t87s78dg78/
https://www.mendeley.com/profiles/juan-j-lastra-diaz/
https://www.mendeley.com/profiles/ana-garcia-serrano3/
https://data.mendeley.com/archiver/t87s78dg78?version=1
https://data.mendeley.com/datasets/t87s78dg78/1/files/309dcd41-665a-40ae-bbb9-3b4d8706c070
https://data.mendeley.com/datasets/t87s78dg78/1/files/309dcd41-665a-40ae-bbb9-3b4d8706c070/HESML_Release_V1R1.zip?dl=1
https://www.mendeley.com/
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WNSimRep: a framework and replication
dataset for ontology-based semantic
similarity measures and information
content models
Published: 8 Sep 2016 |  Version 1 |  DOI: 10.17632/mpr2m8pycs.1

Contributor(s):  

Description of this data

The WNSImRep v1 dataset is provided as supplementary material of the paper by Lastra-Díaz, J. J., &
García-Serrano, A. (2016). HESML: a scalable ontology-based semantic similarity measures library
with a set of reproducible experiments and a replication dataset. Information Systems.

In the aforementioned work, we introduce a scalable Java software library of ontology-based
semantic similarity measures and IC models, called HESML, and a set of reproducible experiments
on word similarity.

The WNSimRep v1 dataset is detailed in the enclosed file called
"appendixB_WNSimRep_dataset_LastraGarcia_v1.pdf".

This work introduces a framework whose aim is to allow the exact replication of most intrinsic
Information Content (IC) models and ontology-based similarity measures reported in the literature
by using the publicly available accompanying dataset, called the WNSimRep v1 dataset. This work
has been carried-out in the context of a large evaluation campaign of ontology-based semantic
similarity measures and IC models on WordNet based on HESML. Our work is encouraged by the
identification of several reproducibility problems in a series of recent experimental surveys carried-
out by the authors, together with the lack of a framework and gold standard to assist in the
replication of ontology-based similarity measures and IC models. To bridge this gap, we introduce
herein a replication framework defined by three different types of data file: (a) node-based data files
which contain an explicit representation of the WordNet taxonomy together with a specific IC model
and a collection of node-based taxonomical features, (b) edge-based data files which contain a
family of edge-valued IC models based on the conditional probability between child and parent
concepts, and (c) synset-pair-based data files which contain the synset pairs of the Rubenstein-
Goodenough word similarity benchmark, together with a collection of taxonomical features based
on synset pairs and all the ontology-based similarity measures evaluated on them. The framework is
implemented in the accompanying dataset which includes a collection of intrinsic and corpus-based
IC models based on WordNet 3.0, enriched with a broad set of taxonomical features used by most
intrinsic IC models and ontology-based similarity measures.

Experiment data files

Juan J. Lastra-Díaz, Ana Garcia-Serrano

Download all files (2)

 WNSimRepV1.zip

109 MB 

ZIP

https://www.mendeley.com/profiles/juan-j-lastra-diaz/
https://www.mendeley.com/profiles/ana-garcia-serrano3/
https://data.mendeley.com/archiver/mpr2m8pycs?version=1
https://data.mendeley.com/datasets/mpr2m8pycs/1/files/0dec5351-3b17-4f37-8178-0cb28ea5fee3
https://data.mendeley.com/datasets/mpr2m8pycs/1/files/0dec5351-3b17-4f37-8178-0cb28ea5fee3/WNSimRepV1.zip?dl=1
https://www.mendeley.com/
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Steps to reproduce

The WNSimRep v1 dataset has been created by using the HESML library introduced in the main
companion paper below:

[1] Lastra-Díaz, J. J., & García-Serrano, A. (2016). HESML: a scalable ontology-based semantic
similarity measures library with a set of reproducible experiments and a replication dataset.
Information Systems.

Thus, in order to reproduce the WNSimRep v1 dataset, you should follow the next steps:

(1) Obtain a copy of the paper [1] 
(2) Follow the instructions in the section on reproducible experiments.

Related links

The WNSimRep v1 dataset file contains a collection of comma separated files (*.csv) which
contain a rich set of taxonomical features and Information Content models based on WordNet
3.0 and the Rubenstein-Goodenough benchmark whose main aim is

 appendixB_WNSimRep_dataset_LastraGarcia.pdf

273 KB 

This paper introduces a detailed description of the WNSImRep v1 dataset and a framework
whose aim is to allow the exact replication of most intrinsic Information Content models and
ontology-based similarity measures reported in the literature.

PDF

A novel family of IC-based similarity measures with a detailed experimental
survey on WordNet

doi:10.1016/j.engappai.2015.09.006

article is related to this dataset

A new family of information content models with an experimental survey on
WordNet

doi:10.1016/j.knosys.2015.08.019

article is related to this dataset

http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-
refinement

article is related to this dataset

http://dx.doi.org/10.17632/t87s78dg78.1

dataset is related to this dataset

http://dx.doi.org/10.17632/65pxgskhz9.2

https://data.mendeley.com/datasets/mpr2m8pycs/1/files/b0a16135-e98b-4653-9dc9-26c16afa01c8
https://data.mendeley.com/datasets/mpr2m8pycs/1/files/b0a16135-e98b-4653-9dc9-26c16afa01c8/appendixB_WNSimRep_dataset_LastraGarcia.pdf?dl=1
http://dx.doi.org/10.1016/j.engappai.2015.09.006
http://dx.doi.org/10.1016/j.engappai.2015.09.006
http://dx.doi.org/10.1016/j.knosys.2015.08.019
http://dx.doi.org/10.1016/j.knosys.2015.08.019
http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-refinement
http://dx.doi.org/10.17632/t87s78dg78.1
http://dx.doi.org/10.17632/65pxgskhz9.2
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Abstract

This paper introduces a framework whose aim is to allow the exact replication of most intrinsic
Information Content (IC) models and ontology-based similarity measures reported in the literature by
using the publicly available accompanying dataset, called the WNSimRep v1 dataset. This work is a
companion paper provided as supplementary material of Lastra-Díaz and García-Serrano (2016b). In this
latter work, we introduce a scalable Java software library of ontology-based semantic similarity measures
and IC models, called HESML, and a set of reproducible experiments on word similarity. This work
has been carried-out in the context of a large evaluation campaign of ontology-based semantic similarity
measures and IC models on WordNet based on HESML. Our work is encouraged by the identification
of several reproducibility problems in a series of recent experimental surveys carried-out by the authors,
together with the lack of a framework and gold standard to assist in the replication of ontology-based
similarity measures and IC models. To bridge this gap, we introduce herein a replication framework
defined by three different types of data file: (a) node-based data files which contain an explicit repre-
sentation of the WordNet taxonomy together with a specific IC model and a collection of node-based
taxonomical features, (b) edge-based data files which contain a family of edge-valued IC models based
on the conditional probability between child and parent concepts, and (c) synset-pair-based data files
which contain the synset pairs of the Rubenstein and Goodenough (1965) word similarity benchmark,
together with a collection of taxonomical features based on synset pairs and all the ontology-based
similarity measures evaluated on them. The framework is implemented in the accompanying dataset
which includes a collection of intrinsic and corpus-based IC models based on WordNet 3.0, enriched with
a broad set of taxonomical features used by most intrinsic IC models and ontology-based similarity measures.

Keywords: WNSimRep v1 dataset, intrinsic Information Content models, corpus-based Information
Content models, ontology-based semantic similarity measures, IC-based similarity measures, replication
similarity measures and IC models, WordNet-based similarity benchmarks.

1 Introduction

An ontology-based semantic similarity measure is a bi-
nary concept-valued function sim : C × C → R defined
over a single-root taxonomy of concepts (C,≤C) which
returns the degree of similarity between concepts as per-
ceived by a human being. The current ontology-based
semantic measures can be categorized into four fami-
lies as follows: (1) edge-counting similarity measures,
so called path-based measures, such as the pioneering
work of Rada et al. (1989), whose core idea is the use
of the length of the shortest path between concepts as
an estimation of their degree of similarity; (2) IC-based
similarity measures whose core idea is the use of an In-
formation Content (IC) model, such as the pioneering
work of Resnik (1995); (3) feature-based similarity mea-

sures, whose core idea is the use of set-theory opera-
tors between the feature sets of the concepts, such as
the pioneering work of Tversky (1977), and more re-
cently Sánchez et al. (2012), whose core idea is the use
of the overlapping of ancestor sets as an estimation of
the overlapping between the unknown feature sets of the
concepts; (4) other similarity measures that cannot be
directly categorized into any previous family, which are
based on taxonomical features derived from set-theory
operators Batet et al. (2011), or novel contributions of
the hyponym set Hadj Taieb et al. (2014b).

Every IC-based similarity measure requires a com-
plementary concept-valued function to be evaluated,
which is called the Information Content (IC) model.
Given a taxonomy of concepts defined by a triplet
C = ((C,≤C) ,Γ), where Γ ∈ C is the supreme ele-

Cite this work as: Lastra-Díaz, Juan J. and García-Serrano, Ana (2016). WNSimRep: a framework and replication
dataset for ontology-based semantic similarity measures and information content models. Mendeley Data, v1.
http://dx.doi.org/10.17632/mpr2m8pycs.1
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Reference Definition of the non IC-based similarity measures

Rada et al. (1989)

simRada (c1, c2) = 1− 1
2dRada (c1, c2)

dRada (c1, c2) = len (c1, c2) = min
∀α∈Paths(c1,c2)

{ ∑
eij∈α

1

}
Wu and Palmer (1994) simW&P (c1, c2) = 2×depth(LCA(c1,c2))

len(c1,LCA(c1,c2))+len(c2,LCA(c1,c2))+2×depth(LCA(c1,c2))

Leacock and Chodorow (1998) simL&C (c1, c2) = −log
(

1+len(c1,c2)
2×maxdepth

)
Li et al. (2003) simLi_s3 (c1, c2) = e−α∗len(c1,c2), α∗ = 0.25

Li et al. (2003)
simLi_s4 (c1, c2) = e−α∗len(c1,c2) × eβ∗d−e−β∗d

eβ∗d+e−β∗d
, α∗= 0.2 β∗= 0.6

d = depth (LCA (c1, c2))
Al-Mubaid and Nguyen (2009) dMubaid (c1, c2) = log (1 + len (c1, c2) ∗ (depthmax− depth (LCS (c1, c2))))
Pedersen et al. (2007) simPath (c1, c2) = 1

1+len(c1,c2)

Sánchez et al. (2012)
disS&B (c1, c2) = log2

(
1 + |φ(c1)\φ(c2)|+|φ(c2)\φ(c1)|

|φ(c1)\φ(c2)|+|φ(c2)\φ(c1)|+|φ(c1)∩φ(c2)|

)
φ (a) = {c ∈ C | a ≤ c}

Hadj Taieb et al. (2014b)

simTaieb_1 (c1, c2) = |TermDepth (c1, c2)| ×TermHypo (c1, c2)

TermDepth (c1, c2) = 2×depth(c1,c2)
depth(c1)+depth(c2)

TermHypo (c1, c2) =
2×SpecHypo(c1,c2)

SpecHypo(c1,c2)+SpecHypo(c1,c2)

SpecHypo (c1, c2) = 1− log(HypoV alue(c))
log(HypoV alue(root))

HypoV alue (c) =
∑

c′∈HypoInc(c)
P (depth (c′))

P (depth (c′)) =
|{c′∈C | depth(c′)=depth(c)}|

|C|
depth (c) =length of the longest ascending path c→ root
HypoInc (c) = {c′ ∈ C | c′ ≤ c}

Table 1: State-of-the-art non IC-based similarity measures evaluated and reproduced in WNSimRep v1.

ment called the root, an Information Content model is
a function IC : C → R+ ∪ {0}, which represents an es-
timation of the information content for every concept,
defined by IC (ci) = −log2 (p (ci)), p (ci) being the oc-
currence probability of each concept ci ∈ C. Every IC
model must satisfy two further properties: (1) nullity
in the root, such that IC (Γ) = 0, and (2) growing
monotonicity from the root to the leaf concepts, such
that ∀ci ≤C cj ⇒ IC (ci) ≥ IC (cj). Once the IC-based
measure is chosen, the IC model is mainly responsible
for the definition of the notion of similarity and distance
between concepts. Other works, such as Pirró and Eu-
zenat (2010), have also proposed intrinsic IC models for
semantic relatedness measures which rely on the whole
set of semantic relationships encoded into an ontology.
The first known IC model is based on corpus statis-

tics and was introduced by Resnik (1995) and detailed in
Resnik (1999). The main drawback of the corpus-based
IC models is the diffi culty of getting a well-balanced and
disambiguated corpus for the estimation of the concept
probabilities. To bridge this gap, Seco et al. (2004) intro-
duce the first intrinsic IC model reported in the litera-
ture, whose core hypothesis is that the IC models can be
directly computed from intrinsic taxonomical features.

1.1 Main motivation

Most ontology-based similarity measures and intrinsic
IC models require the computation of different taxonom-
ical features, such as node depths, hyponym sets, node
subsumers, Least Common Subsumer (LCS), and sub-
sumed leaves, among others. WordNet is a taxonomy
with multiple inheritance, thus, some of these features

are not unambiguously defined, or their computation
could be prone to errors. For example, the node depth
can be defined as the shortest ascending path length
from the node to the root, or the longest ascending path
length as defined by Hadj Taieb et al. (2014b). Different
definitions of depth also lead us to different values for
the LCS concepts. On the other hand, the computation
of the hyponym set, subsumed leaves and subsumer set
requires a careful counting process to avoid node repeti-
tions, as is already noted in (Seco et al., 2004, §3) when
they say “As result of multiple inheritance in some of
WordNet’s concepts, caution must be taken so that each
distinct hyponym is considered only once”. Another po-
tential source of error is the ambiguity in the definition
and notation of some IC models and similarity measures.
For example, Zhou et al. (2008b) define the root depth
as 1, while the standard convention in graph theory is 0.
Most authors define the hyponym set as the descendant
node set without including the base node itself. How-
ever, in Hadj Taieb et al. (2014b), the hyponym set also
includes the base concept. In addition, we find works
that do not detail the IC models used in their experi-
ments, or how these IC models were built. Finally, many
recent hybrid-type measures also require the computa-
tion of the length of the shortest path between concepts.
These sources of ambiguity and diffi culty demand a lot
of attention to the fine details for replicating most IC
models and similarity measures in the literature.
The main motivation of this work is to bridge the lack

of a gold standard to assist in the exact replication of
ontology-based similarity measures and IC models. In a
recent work Lastra-Díaz and García-Serrano (2015b), we
find some contradictory results and diffi culties in repli-
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Reference Classic IC-based similarity measures
Resnik (1995) simResnik (c1, c2) = IC (MICA (c1, c2))

Jiang and Conrath (1997)
dJ&C (c1, c2) = IC (c1) + IC (c2)− 2IC (MICA (c1, c2))
simJ&C (c1, c2) = 1− 1

2dJ&C (c1, c2)

Lin (1998) simLin (c1, c2) = 2IC(MICA(c1,c2))
IC(c1)+IC(c2)

Reference IC-based reformulations of the Tversky similarity measure

Pirró and Seco (2008) simP&S (c1, c2) =

 3IC (MICA (c1, c2))
−IC (c1)− IC (c2)

, if c1 6= c2

1 , if c1= c2

Reference Monotone transformations of classic IC-based similarity measures

Pirró and Euzenat (2010) simFaITH (c1, c2) = IC(MICA(c1,c2))
IC(c1)+IC(c2)−IC(MICA(c1,c2))

Meng and Gu (2012) simMeng (c1, c2) = esimLin(c1,c2) − 1 = e
2IC(MICA(c1,c2))

IC(c1)+IC(c2) − 1
Garla and Brandt (2012) simpath_IC (c1, c2) = 1

1+dJ&C(c1,c2)

Lastra-Díaz and García-Serrano (2015b)
simcosJ&C (c1, c2) = 1− cos

(
π
2

(
1− dJ&C(c1,c2)

2∗maxdJ&C

))
maxdJ&C = max

c∈Leaves(C)
{IC (c)}

Reference Hybrid IC-based measures based on the shortest path length

Li et al. (2003) simLi_s9 (c1, c2) = simLi_s4 (c1, c2) ∗ eλ∗IC−e−λ∗IC
eλ∗IC+e−λ∗IC

, λ∗ = 0.4

IC = MICA (c1, c2)

Zhou et al. (2008b) simZh (c1, c2) = 1− k×

 log(len(c1,c2)+1)

log

(
2∗max

c∈T
{depth(c)}−1

)


− 1
2 (1− k)× dJ&C (c1, c2) k∗ = 1

2 by default

Meng et al. (2014) simMeng2014 (c1, c2) = simLin (c1, c2)

(
1−e−k∗len(c1,c2)

e−k∗len(c1,c2)

)
, k∗ = 0.08

Gao et al. (2015)

simGao (c1, c2) = e−αL(c1,c2) , α∗ = 0.15 and β∗ = 2.05
L (c1, c2) = wt (c1, c2) ∗ len (c1, c2)

wt =

{ (
1+IC(MICA(c1,c2))
IC(MICA(c1,c2))

)β
, IC (MICA (c1, c2))≥ 1

2β , 1 > IC (MICA (c1, c2)) ≥ 0

Lastra-Díaz and García-Serrano (2015b)

simcoswJ&C (c1, c2) = 1− cos
(
π
2

(
1− dwJ&C(c1,c2)

2∗maxdJ&C

))
dwJ&C (c1, c2) = min

∀α∈Paths(c1,c2)

{ ∑
eij∈α

w (eij)

}
w (eij) =

{
−log2 (p (ci|cj)) , if p (ci|cj) are known
|IC (ci)− IC (cj)| , otherwise

Table 2: Definition of the state-of-the-art IC-based similarity measures evaluated and reproduced in WNSimRep v1.
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cating previous methods and experiments reported in
the literature. These reproducibility problems were con-
firmed in another subsequent work, such as Lastra-Díaz
and García-Serrano (2015a), whilst new contradictory
results are reported by Lastra-Díaz and García-Serrano
(2016b). Several replication problems were solved with
the kind support of most authors. However, we were not
able to confirm all previous results, whilst others could
not be reproduced through lack of information. As we
have already explained, many taxonomical features are
ambiguously defined or prone to errors. Thus, all the
aforementioned facts lead us to conclude that the exact
replication of ontology-based similarity measures and IC
models is a hard task, and not exempt from risk. There-
fore, it follows that it is urgent and desirable to set of a
gold standard for this taxonomical information in order
to support the exact replication of the methods reported
in the literature.
Most works introducing similarity measures or IC

models during the last decade have only implemented or
evaluated classic IC-based similarity measures, such as
the Resnik, Lin and Jiang-Conrath measures, avoiding
the replication of IC models and similarity measures in-
troduced by other researchers. Some works have not in-
cluded all the details of their methods, or the experimen-
tal setup to obtain the published results, thus, prevent-
ing their reproducibility. Most works have copied results
published by others. This latter fact has prevented the
valuable confirmation of previous methods and results
reported in the literature, which is an essential feature
of science. Pedersen (2008a), and subsequently Fokkens
et al. (2013), warn of the need to reproduce and validate
previous methods and results reported in the literature,
a suggestion that we subscribe to in our aforementioned
works, where we also warn of finding some contradictory
results. This replication problem is especially significant
in the current state of the problem, in which there is no
convincing winner within the family of intrinsic IC-based
similarity measures and the performance margin is very
narrow, as concluded in our aforementioned works and
this work. In addition, Pedersen (2008a) also warns of
the need of releasing the software developed by the au-
thors of new methods and experiments reported in the
literature with the aim of allowing their reproducibil-
ity. Following the ideas from Pedersen, the main aim of
our main aforementioned companion paper is to intro-
duce and making publicly available our aforementioned
software library called HESML, together with a set of
reproducible experiments based on ReproZip, Chirigati
et al. (2013).

1.2 Research problem and contributions

First aim of this paper is to propose an open framework
to assist in the exact replication of most of the intrin-
sic and corpus-based IC models, intrinsic and IC-based
similarity measures, and similarity benchmarks reported
in the literature. A second aim is that any further tax-
onomical feature or taxonomy-based function used by
any intrinsic similarity measure or IC model can be rep-
resented, at least partially, within the proposed frame-
work. Our final aim for the replication framework de-

scribed herein is to encourage the publication of similar
datasets within the research community as a means of
improving the reproducibility of ontology-based seman-
tic similarity measures and IC models.
In order to reach the aforementioned aims, we in-

troduce herein a replication framework implemented as
a large accompanying dataset of intrinsic and corpus-
based Information Content (IC) models in WordNet 3.0.
The replication dataset is called WNSimRep v1 and it
is enriched with the most common taxonomical features
used in the computation of similarity measures and in-
trinsic IC models. Despite WNSimRep v1 is based on
WordNet 3.0, the proposed framework could be adapted
and extended to any type of base ontology, or intrinsic
similarity measure.
The main contribution of this work is the accompa-

nying replication dataset called WNSimRep v1 which
is publicly available at Lastra-Díaz and García-Serrano
(2016d). WNSimRep v1 includes three different types of
data files: (1) node-valued IC data files with taxonomi-
cal features, (2) edge-valued IC data files with the con-
ditional probability between child and parent concepts,
and (3) synset-pair-valued data files with taxonomical
features and IC-based similarity measures for the synset
pairs derived from the classic RG65 benchmark intro-
duced by Rubenstein and Goodenough (1965). The
dataset includes 22 intrinsic IC models, 8 corpus-based
IC models based on the Resnik method, 8 corpus-based
IC models based on the well-founded CondProbCorpus
IC model, and 8 corpus-based IC model based on the
CondProbRefCorpus, which have been evaluated with 22
similarity measures. In addition, the synset-pair-valued
data files include the similarity values for all ontology-
based similarity measures shown in tables 1 and 2. All
the corpus-based IC models are derived from the family
of “*add1.dat”WordNet-based frequency files included
in the Pedersen (2008b) dataset, which is a dataset of
corpus-based files created for a series of papers on sim-
ilarity measures in WordNet, such as Patwardhan and
Pedersen (2006) and Pedersen (2010). The dataset in-
cludes all the IC models and similarity measures eval-
uated in a series of word similarity benchmarks intro-
duced by the authors in Lastra-Díaz and García-Serrano
(2015b), Lastra-Díaz and García-Serrano (2015a) and
Lastra-Díaz and García-Serrano (2016a).
The rest of the work is structured as follows. Sec-

tion 2 introduces the ontology-based sematic similarity
measures and IC models that have been evaluated and
included in the WNSimRep v1 dataset. Section 3 intro-
duces our replication framework for similarity measures
and IC models in WordNet. Section 4 details the licens-
ing information of theWNSimRep v1 dataset. Finally,
we summarize our conclusions and future work.

2 Similarity measures and IC
models included

The family of classic ontology-based similarity measures
based on IC models is made up by the pioneering work
of Resnik (1995), and the subsequent similarity mea-
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Reference Definition of the IC model

Resnik (1999)
ICResnik= −log2 (p̂ (ci)) , p̂ (ci) = f(ci)

N = f(ci)
f(Γ)

f (ci) = TF (ci) +IF (ci) = TF (ci) +
∑

∀cj | ci∈LA(cj)

f (cj)

Seco et al. (2004) ICSeco (c) = 1− log(|Hypo(c)|+1)
log(max_nodes)

Zhou et al. (2008a)
ICZhou (c) = k

(
1− log(|Hypo(c)|+1)

log(max_nodes)

)
+ (1− k) log(depth(c))

log(depthmax) , k
∗ = 1

2 (default)

Blanchard et al. (2008)
ICg (ci) = −log2

(
|SubsumedLeaves(ci)|

maxLeaves

)
SubsumedLeaves (ci) = {cj ∈ C | cj ≤C ci ∧ cj is leaf }

Sánchez et al. (2011)
ICSánchez2011 (ci) = −log2

( |Leaves(ci)|
|subsumers(ci)|

+1

maxLeaves+1

)
Leaves (ci) = {cj ∈ C | (cj ≤C ci ∧ cj 6= ci) ∧ cj is leaf}
subsumers (ci) = {cj ∈ C | ci ≤C cj}

Sánchez and Batet (2012) ICSánchez2012 (c) = −log2

(
commonness(c)

commonness(root)

) commonness (c) = 1
|Subsmers(c)| , c leaf

commonness (c) =
∑
commonness (l)
∀l | l is leaf and l<c

, c not leaf

Meng et al. (2012) ICMeng (c) = log(depth(c))
log(depthmax)×

1−
log

(
1+

∑
a∈Hypo(c)

1
depth(a)

)
log(Nodemax)


Yuan et al. (2013) ICY uan (c) = fdepth (c) (1− fleaves (c)) +fhyper (c)

fdepth (c) = log(depth(c))
log(depthmax)

fleaves (c) = log(|Leaves(c)|+1)
log(Leavesmax+1)

fhyper (c) = log(|Hyper(c)|+1)
log(Nodemax)

Hadj Taieb et al. (2014a) ICTaieb (c) =

( ∑
a∈HyperInc(c)

Score (a)

)
×AvgDepth (c)

AvgDepth (c) = 1
|HyperInc(c)|×

∑
c′∈HyperInc(c)

depth (c′)

Score (c) =

( ∑
c′∈DirectHyper(c)

depth(c′)
|HypoInc(c′)|

)
× |HypoInc (c)|

HypoInc (c) = {a ∈ C | a ≤ c}
HyperInc (c) = {a ∈ C | c ≤ a}

Adhikari et al. (2015)

ICAdhikari (c) = log(depth(c)+1)
log(depthmax+1) ×

(
1− log

(
|Leaves(c)×nmih(c)|

Leavesmax

|subsmers′(c)| + 1

))

×

1−
log

(
1+

∑
a∈Hypo(c)

1
depth(a)

)
log(Nodemax)

 subsmers′ (c) = subsmers (c)∪{c}

Table 3: State-of-the-art Information Content models evaluated and reproduced in WNSimRep v1.
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sures proposed by Jiang and Conrath (1997) and Lin
(1998). In turn, the more recent IC-based similarity
measures can be divided into three subgroups as fol-
lows: (1) a first group of IC-based similarity measures
based on the reformulation strategies between different
approaches, such as the IC-based reformulations of the
Tversky measure in Pirró (2009) and Pirró and Euzenat
(2010), as well as the IC-based reformulation of most
edge-counting methods introduced by Sánchez and Batet
(2011); (2) a second group of IC-based similarity mea-
sures based on a monotone transformation of any classic
IC-based similarity measure, such as the exponential-like
transformations of the Lin (1998) measure introduced by
Meng and Gu (2012) and Pirró and Euzenat (2010), the
reciprocal of the Jiang-Conrath distance introduced by
Garla and Brandt (2012), and another cosine-based nor-
malization of the Jiang-Conrath distance introduced by
Lastra-Díaz and García-Serrano (2015b); and finally, (3)
a third group that we call hybrid or path-based IC-based
similarity measures, which is defined by those measures
that make up an IC model with any function based on
the length of the shortest path between concepts, such
as the pioneering work of Li et al. (2003), and other
subsequent works such as Zhou et al. (2008a), Meng
et al. (2014), Gao et al. (2015), and two weighted IC-
based similarity measures introduced by Lastra-Díaz and
García-Serrano (2015b). Tables 1 and 2 show the defi-
nition of the non IC-based similarity measures and IC-
based similarity measures that have been evaluated and
reproduced in WNSimRep v1 respectively.

On the other hand, since the pioneering work on in-
trinsic IC models of (Seco et al., 2004, §3), the devel-
opment of intrinsic IC models has become one of the
mainstreams of research in the area. Among the main
intrinsic IC models proposed in the literature, we find
the proposals by Zhou et al. (2008a), Sebti and Bar-
froush (2008), Blanchard et al. (2008), Sánchez et al.
(2011), Sánchez and Batet (2012), Yuan et al. (2013),
Hadj Taieb et al. (2014a), Lastra-Díaz and García-
Serrano (2015a), Adhikari et al. (2015) and Lastra-Díaz
and García-Serrano (2016a). Tables 3, 4 and 5 show
the definition of the state-of-the-art IC models eval-
uated and reproduced in the WNSimRep v1 dataset,
which includes the evaluation of all known intrinsic IC
models based on WordNet, with the only exception of
the IC models introduced by Harispe et al. (2015) and
Ben Aouicha et al. (2016).

For a detailed review of the aforementioned meth-
ods, we refer the reader to our two previous works on
IC-based similarity measures Lastra-Díaz and García-
Serrano (2015b) and IC models Lastra-Díaz and García-
Serrano (2015a), as well as the recent book by Harispe
et al. (2015).

The WNSimRep v1 dataset is automatically built us-
ing the HESML software library introduced in our main
paper, Lastra-Díaz and García-Serrano (2016b), which
is publicly available at Lastra-Díaz and García-Serrano
(2016c). HESML has been developed by the authors in
order to replicate all methods reported in the literature
and to solve several drawbacks in other publicly avail-
able software libraries, such as those introduced by Ped-

ersen et al. (2004) and Harispe et al. (2014). The auto-
matic method used to create theWNSimRep v1 dataset
is described in our aforementioned paper, and it could
be also used to generate similar datasets for other sim-
ilarity measures and IC models on any word similarity
benchmark.

IC model Definition of the IC model
CPHypo ICCPHypo (ci) = −log2 (pHypo (ci))

pHypo (ci|cj) = |Hypo(ci)|+1∑
∀ck | cj∈LA(ck)

(|Hypo(ck)|+1)

CPUnif ICCPUni (ci) = −log2 (pUniform (ci))
pUniform (ci|cj) = 1

|children(cj)|
CPLeaves ICCPLea (ci) = −log2 (pLeaves (ci))

pLeaves (ci|cj) = |Leaves(ci)|+1∑
∀ck | cj∈LA(ck)

(|Leaves(ck)|+1)

CPCorpus
ICCondProbCorpus (ci) = −log2 (p (ci))

pcorpus (ci|cj) = max{1,f(ci)}∑
∀ck | cj∈LA(ck)

max{1,f(ck)}

CPLog

ICCPLog (ci) = −log2 (pLog (ci))
pLog (ci|cj) = ϕl (x) ◦ pHypo (ci|cj)
ϕl (x : k) = 1

1+e
−k(x− 1

2 )
, k∗= 8

CPCosine
ICCPCos (ci) = −log2 (pCos (ci))
pCos (ci|cj) = ϕc (x) ◦ pHypo (ci|cj)
ϕc (x) = 1− cos

(
π
2x
)

Table 4: State-of-the-art IC models introduced by
Lastra-Díaz and García-Serrano (2015a) which are eval-
uated and reproduced in WNSimRep v1.

3 The replication framework

In this section, we introduce a framework which defines
the data that is needed to reproduce the most signif-
icant ontology-based similarity measures, as well as all
the known WordNet-based intrinsic and corpus-based IC
models with the only exception of the IC models intro-
duced by Harispe et al. (2015) and Ben Aouicha et al.
(2016). In order to replicate these mathematical mod-
els it is convenient to have a data collection that allows
the validation of any novel code implementation of the
models and measures, and the reproduction of the ex-
periments carried-out by the authors. Any researcher
or practitioner could use the data in the WNSimRep v1
dataset for the verification of the computation of any
taxonomical feature in their own code implementation.
The aim of the WNSimRep v1 dataset is to become a
gold standard for most taxonomical features involved
into the definition of most IC models and ontology-based
similarity measures reported in the literature. In addi-
tion, WNSimRep v1 provides the full data of most IC
models, as well as the similarity values reported by most
ontology-based similarity measures in the RG65 dataset.
Our final aim is that the authors of new methods re-
ported in the literature publish similar datasets in order
to encourage the exact replication of their methods and
experiments.
To achieve the aims of this work, we define three dif-

ferent types of data file for each base taxonomy and
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IC model. These files encode three types of function:
node-valued functions, edge-valued functions and binary
synset-valued functions. In this way, the framework for
each base taxonomy and IC model is defined as follows:
(1) a node-valued data file which contains an explicit
representation of the base taxonomy together with the
node-based IC values, plus a collection of node-valued
taxonomical features that should include all the features
required to replicate the target IC model or similarity
measure; (2) an edge-valued data file for the edge-based
IC models, such as our CondProb* and CondProbRef *
families, which contains the conditional probabilities for
each taxonomy edge, the edge-based IC values and the
edge-based weight whenever necessary; and (3) a synset-
valued data file for each intrinsic IC model in tables
3, 4 and 5, which includes a set of IC-based similarity
measures, and the most common taxonomical features
from among the synsets associated to the word pairs in-
cluded in the RG65 benchmark, such as the shortest path
length, lowest common subsumer (LCS) and most infor-
mative common ancestor (MICA). This latest data file
could be extended to include all pairwise distances be-
tween synsets in WordNet, however its computation time
would be excessive. In addition, theWNSimRep v1 also
includes a collection of synset-valued data files for every
non IC-based similarity measure in table 1. The aim is
to provide all the information necessary in the validation
process of any novel code implementation of these math-
ematical models, or the reproduction of experiments re-
ported in the literature. For the sake of completeness,
theWNSimRep v1 dataset includes the full collection of
corpus-based IC models based on the Resnik, CondProb-
Corpus and CondProbRefCorpus IC models with the
full set of “*add1.dat” WordNet-based frequency files
in the Pedersen (2008b) dataset, which were evaluated
by Lastra-Díaz and García-Serrano (2015b). Despite the
initial framework being proposed for WordNet 3.0 and
some known IC models and similarity measures, it can
be easily adapted to other similarity measures and base
ontologies.

Node-valued data files. Tables 6 and 7 show a list
of the intrinsic and corpus-based IC models contained in
WNSimRep v1. Every file in the dataset contains a ta-
ble in standard *.csv file format separated by semicolon,
which can be directly imported into MS Excel. For each
concept ci ∈ C within the noun database of WordNet
3.0, there is a row in the node-valued files containing the
following information: (1) synset ID, (2) synset words,
(3) synset ID of the parent nodes, (4) concept IC value,
(5) concept probability whenever it is computed by the
IC model, (6) depth defined as the shortest ascending
path length between the ci concept and the root con-
cept Γ, (7) longest depth defined as the longest ascend-
ing path length from ci to the root, (8) number of direct
child concepts (direct hyponyms), (9) number of par-
ent concepts (direct subsumers), (10) number of sub-
sumer concepts excluding the base ci concept, as de-
fined by |{cj ∈ C | ci <C cj}|, (11) number of hyponym
concepts excluding the base ci concept, as defined by
|{cj ∈ C | cj <C ci}|, and (12) number of leaf subsumed
concepts by the concept ci, without including it. This

collection of node-valued features could be extended as
necessary. For instance, the HypoV alue(ci) function de-
fined by Hadj Taieb et al (2014) could be included in the
files to assist in its replication.
Edge-valued data files. Table 8 shows the collec-

tion of edge-valued data files included in the accompa-
nying dataset. All the IC models within our CondProb*
and CondProbRef * families are based on the computa-
tion of the edge-based conditional probabilities p (ci|cj).
Thus, for each edge in the WordNet taxonomy there is
a row in the data files containing the following set of
attributes: (1) child synset ID, (2) parent synset ID, (3)
conditional probability, and (4) edge-based IC weight as
defined by IC (eij) = −log2 (p (ci|cj)).
Synset-valued data files. Table 10 shows the col-

lection of synset-valued data files included in the accom-
panying dataset. There is one file for each intrinsic IC
model shown in table 3. Each row in the data files de-
fines a collection of taxonomical features for each synset
pair associated with any word pair in the RG65 dataset.
The synset pairs correspond to the Cartesian product
between the synsets for each word, thus, the rows are
divided into blocks per word pair. Each row includes
the following attributes: (1) synset ID1, (2) synset ID2
(3) length of the shortest path between the synset pair,
(4) lowest common subsumer (LCS) between the synset
pair based on the minimum depth defined as the short-
est ascending path from any node to the root, (5) lowest
common subsumer (longest depth) between the synset
pair based on the maximum depth defined as the longest
ascending path from any node to the root, (6) most infor-
mative common ancestor (MICA), (7) MICA IC value,
and finally (8) the similarity value for each synset that
is returned by each similarity measure shown in table 2.

3.1 How can theWNSimRep dataset be
used?

The core idea of the framework is to provide enough in-
termediate data in order to assist the replication process
of any IC model or ontology-based similarity measure.
First, all the IC models in tables 3, 4 and 5 are explic-
itly represented in the node-valued data files, thus, any
user of the dataset can use these IC models without to
implement them by loading into memory the IC values
provided by the data files. Second, the WNSimRep v1
dataset can be used as a gold standard in the valida-
tion process of any independent implementation of an
intrinsic or corpus-based IC model. For instance, the
users can compare the IC values derived from their code
implementation with the IC values in the data files, as
well as all intermmediate taxonomical features involved
in their computation. Third, most of the IC models
and ontology-based similarity measures in tables 1, 2,
3, 4 and 5, can be directly computed using the node-
valued features included in the WNSimRep v1 dataset.
For instance, the Seco et al. (2004), Zhou et al. (2008a)
and CondProbHypo IC models use the |Hypo (c)| func-
tion which is defined by the field (11) within the node-
valued data files, thus, any researcher trying to replicate
these IC models can compare the Hypo (c) values re-
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IC model Definition of the IC model
CondProbRefHyponyms ICCPRefHypo (ci) = −log2

(
p∗Hypo (ci)

)
pHypo (ci|cj) = |Hypo(ci)|+1∑

∀ck | cj∈LA(ck)
(|Hypo(ck)|+1)

CondProbRefUniform ICCPRefUni (ci) = −log2

(
p∗Uniform (ci)

)
pUniform (ci|cj) = 1

|children(cj)|
CondProbRefLeaves ICCPRefLea (ci) = −log2 (p∗Leaves (ci))

pLeaves (ci|cj) = |Leaves(ci)|+1∑
∀ck | cj∈LA(ck)

(|Leaves(ck)|+1)

CondProbRefLogistic

ICCPRefLog (ci) = −log2

(
p∗Log (ci)

)
pLog (ci|cj) = ϕl (x) ◦ pHypo (ci|cj)
ϕl (x : k) = 1

1+e
−k(x− 1

2 )
, k∗ = 8

CondProbRefCosine
ICCPRefCos (ci) = −log2 (p∗Cos (ci))
pCos (ci|cj) = ϕc (x) ◦ pHypo (ci|cj)
ϕc (x) = 1− cos

(
π
2x
)

CondProbRefCorpus
ICCPRefCorpus (ci) = −log2 (p∗ (ci))

pcorpus (ci|cj) = max{1,f(ci)}∑
∀ck | cj∈LA(ck)

max{1,f(ck)}

CondProbRefLogisticLeaves

ICCPRefLogLeaves (ci) = −log2

(
p∗LogLeaves (ci)

)
pLogLeaves (ci|cj) = ϕl (x) ◦ pLeaves (ci|cj)

ϕl (x : k) = 1

1+e
−k(x− 1

2 )
, k∗ = 8

CondProbRefCosineLeaves
ICCPRefCos (ci) = −log2 (p∗CosLeaves (ci))
pCosLeaves (ci|cj) = ϕc (x) ◦ pLeaves (ci|cj)
ϕc (x) = 1− cos

(
π
2x
)

CondProbRefLeavesSubsumersRatio ICCPRefLeaSubRat (ci) = −log2 (p∗LeaSubRat (ci))

pLeaSubRat (ci|cj) =

σ(ci)
σ(cj)∑

∀ck | cj∈LA(ck)

σ(ci)
σ(cj)

σ (c) = |Leaves(c)|
|subsumers(c)| + 1

Table 5: State-of-the-art IC models introduced by Lastra-Díaz and García-Serrano (2016a) which are evaluated and
reproduced in WNSimRep v1..

ported by his code implementation with the values pro-
vided within the dataset files. Other possibility is to
compute the targeted IC model by defining the concept
IC values through a formula that uses any available tax-
onomical feature within the files. The max_nodes value
is obtained as |Hypo (Γ)| plus 1, using the field (11)
for the root concept. The depth function used in the
Zhou et al. IC model and measures correspond to the
depth function (field 6) plus 1, because the authors de-
fine the depth of the root node as 1. The Sánchez et
al. (2011) IC model uses the count of subsumed leaves
(field 12) and subsumer concepts (field 10), which can be
obtained from the node-valued data files. The Yuan et
al. IC model uses three different taxonomical features:
depth (field 6), subsumed leaves (field 12) and hyper-
nym set counting (subsumer set, field 10). On the other
hand, the Sánchez and Batet (2012) IC model requires
the computation of the commonness function, which is
not yet included in our dataset.

The edge-valued data files allow the exact replication
of all the well-founded IC models in tables 4 and 5.
For example, the conditional probabilities can be com-
puted using the node-valued |Hypo (c)| , |Leaves (c)| and
|children (c)| functions provided in the accompanying
node-valued data files, whose values can then be com-

pared with the conditional probabilities included in the
edge-valued data files.

Finally, the synset-based data files are especially
helpful in the replication of most similarity measures
and benchmarks, because they include the concept-to-
concept similarity values returned by the similarity mea-
sures in the RG65 dataset, thus, any researcher or prac-
titioner can compare the values returned by his code
implementation with the values provided by the dataset.
All the IC-based similarity measures in table 2 are al-
ready included in the synset-based data files, in which
you can obtain the similarity values for each synset pair
associated to any word pair in the RG65 dataset. The
synset-pair-valued data files include the shortest path
length, least common subsumer (LCS) using two depth
definitions, and the MICA node and MICA value for
each synset pair in the RG65 dataset. This information
allows the direct computation of all the similarity mea-
sures in tables 1 and 2, with the exception of the Hadj
Taieb et al. measure, which requires the HypoV alue (c)
function shown in table 1. However, this data could be
provided in a further data file. WNSimRep v1 is a first
try at assisting the research community in the replica-
tion of similarity measures and experiments, but it is
still open, and it could be updated in the future.
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4 Licensing information

TheWNSimRep v1 accompanying dataset is distributed
under a Creative Commons By-NC 3.0 license described
at creativecommons.org . It means that any user has the
right to use or to distribute freely theWNSimRep v1 for
any non commercial use. The users of the accompanying
dataset must recognize the authorship of the dataset by
citing the main research paper associated to the present
work, which is introduced by Lastra-Díaz and García-
Serrano (2016b).
Likewise, the WNSimRep v1 distributes an explicit

representation of the WordNet 3.0 taxonomy in their
node-valued data files, thus, the users of the dataset
must fulfill the licensing requirements of WordNet as are
described at wordnet.princeton.edu/wordnet/license/ ,
and they must also cite the WordNet papers introduced
by Miller (1995) and Fellbaum (1998), as described at
wordnet.princeton.edu/wordnet/citing-wordnet/ .
Finally,WNSimRep v1 also includes a series of corpus-

based IC models derived from a subset of the dataset
of Wordnet-based frequency files created by Pedersen
(2008b), as well as the original source files. Thus, the
users of theWNSimRep v1 dataset must recognize these
contributions by citing the papers involved in the de-
velopment of the aforementioned dataset introduced by
Patwardhan and Pedersen (2006) and Pedersen (2010).

5 Conclusions and future work

We have introduced an open framework and dataset to
assist in the exact replication of ontology-based similar-
ity measures, IC models and similarity benchmarks re-
ported in the literature. The dataset is publicly available
at Lastra-Díaz and García-Serrano (2016d) under a Cre-
ative Commons By-NC 3.0 license, and it contains all the
IC models and ontology-based similarity measures eval-
uated in our three previous aforementioned works. As
forthcoming activities, we plan to extend the dataset to
include more specific features considered in some sim-
ilarity measures and IC models. In addition, we are
carrying-out a comparison study between IC models us-
ing the WNSimRep v1 dataset.
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tional Conference on Cloud Computing and Big Data
(CloudCom-Asia 2013). IEEE Computer Society, pp.
141—146.

Zhou, Z., Wang, Y., Gu, J., 2008a. A new model of
information content for semantic similarity in Word-
Net. In: Proc .of the Second International Conference
on Future Generation Communication and Network-
ing Symposia (FGCNS’08). Vol. 3. IEEE, pp. 85—89.

Zhou, Z., Wang, Y., Gu, J., Nov. 2008b. New model of
semantic similarity measuring in WordNet. In: Proc.
of the 3rd International Conference on Intelligent Sys-
tem and Knowledge Engineering (ISKE 2008). Vol. 1.
IEEE, pp. 256—261.

7 Appendix: WNSimRep v1
dataset files.

Tables 6 to 11 show the current files included intheWN-
SimRep v1 dataset
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IC model reference Node-valued intrinsic IC model files
Seco et al. (2004) WNSimRep_ICmodel_Seco
Blanchard et al. (2008) WNSimRep_ICmodel_Blanchard
Zhou et al. (2008a) WNSimRep_ICmodel_Zhou
Sánchez et al. (2011) WNSimRep_ICmodel_Sanchez2011
Sánchez and Batet (2012) WNSimRep_ICmodel_Sanchez2012
Meng et al. (2012) WNSimRep_ICmodel_Meng
Yuan et al. (2013) WNSimRep_ICmodel_Yuan
Hadj Taieb et al. (2014a) WNSimRep_ICmodel_Hadj_Taieb
Adhikari et al. (2015) WNSimRep_ICmodel_Adhikari

WNSimRep_ICmodel_CondProbHyponyms
WNSimRep_ICmodel_CondProbUniform

Lastra-Díaz and García-Serrano (2015a) WNSimRep_ICmodel_CondProbLeaves
WNSimRep_ICmodel_CondProbLogistic
WNSimRep_ICmodel_CondProbCosine
WNSimRep_ICmodel_CondProbRefHyponyms
WNSimRep_ICmodel_CondProbRefUniform
WNSimRep_ICmodel_CondProbRefLeaves
WNSimRep_ICmodel_CondProbRefLogistic

Lastra-Díaz and García-Serrano (2016a) WNSimRep_ICmodel_CondProbRefCosine
WNSimRep_ICmodel_CondProbRefLogisticLeaves
WNSimRep_ICmodel_CondProbRefCosineLeaves
WNSimRep_ICmodel_CondProbRefLeavesSubsumersRatio

Table 6: Intrinsic IC model files included in the WNSimRep v1 dataset.

Node-valued files derived from the CondProbCorpus IC model, Lastra-Díaz and García-Serrano (2015a)
WNSimRep_ICmodel_CondProbCorpus_ic-bnc-resnik-add1
WNSimRep_ICmodel_CondProbCorpus_ic-brown-resnik-add1
WNSimRep_ICmodel_CondProbCorpus_ic-semcor-add1

CondProbCorpus WNSimRep_ICmodel_CondProbCorpus_ic-semcorraw-add1
WNSimRep_ICmodel_CondProbCorpus_ic-semcorraw-resnik-add1
WNSimRep_ICmodel_CondProbCorpus_ic-shaks-resnink-add1
WNSimRep_ICmodel_CondProbCorpus_ic-treebank-add1
WNSimRep_ICmodel_CondProbCorpus_ic-treebank-resnik-add1

Node-valued files derived from the Resnik IC model, Resnik (1999)
WNSimRep_ICmodel_ResnikMethod_ic-bnc-resnik-add1
WNSimRep_ICmodel_ResnikMethod_ic-brown-resnik-add1
WNSimRep_ICmodel_ResnikMethod_ic-semcor-add1

Resnik WNSimRep_ICmodel_ResnikMethod_ic-semcorraw-add1
WNSimRep_ICmodel_ResnikMethod_ic-semcorraw-resnik-add1
WNSimRep_ICmodel_ResnikMethod_ic-shaks-resnink-add1
WNSimRep_ICmodel_ResnikMethod_ic-treebank-add1
WNSimRep_ICmodel_ResnikMethod_ic-treebank-resnik-add1

Node-valued files derived from the CondRefProbCorpus IC model, Lastra-Díaz and García-Serrano (2016a)
WNSimRep_ICmodel_CondProbRefCorpus_ic-bnc-resnik-add1
WNSimRep_ICmodel_CondProbRefCorpus_ic-brown-resnik-add1
WNSimRep_ICmodel_CondProbRefCorpus_ic-semcor-add1

CondProbRefCorpus WNSimRep_ICmodel_CondProbRefCorpus_ic-semcorraw-add1
WNSimRep_ICmodel_CondProbRefCorpus_ic-semcorraw-resnik-add1
WNSimRep_ICmodel_CondProbRefCorpus_ic-shaks-resnink-add1
WNSimRep_ICmodel_CondProbvCorpus_ic-treebank-add1
WNSimRep_ICmodel_CondProbRefCorpus_ic-treebank-resnik-add1

Table 7: Corpus-based IC model files included in the WNSimRep v1 dataset. All the IC models have been computed
by using the WordNet-based frequency files included in Pedersen (2008b).

12



CondProbCorpus IC model files introduced by Lastra-Díaz and García-Serrano (2015a)
WNSimRep_EdgeInfo_CondProbCorpus_ic-bnc-resnik-add1
WNSimRep_EdgeInfo_CondProbCorpus_ic-brown-resnik-add1
WNSimRep_EdgeInfo_CondProbCorpus_ic-semcor-add1
WNSimRep_EdgeInfo_CondProbCorpus_ic-semcorraw-add1
WNSimRep_EdgeInfo_CondProbCorpus_ic-semcorraw-resnik-add1
WNSimRep_EdgeInfo_CondProbCorpus_ic-shaks-resnink-add1
WNSimRep_EdgeInfo_CondProbCorpus_ic-treebank-add1
WNSimRep_EdgeInfo_CondProbCorpus_ic-treebank-resnik-add1

CondProbRefCorpus IC model files introduced by Lastra-Díaz and García-Serrano (2016a)
WNSimRep_EdgeInfo_CondProbRefCorpus_ic-bnc-resnik-add1
WNSimRep_EdgeInfo_CondProbRefCorpus_ic-brown-resnik-add1
WNSimRep_EdgeInfo_CondProbRefCorpus_ic-semcor-add1
WNSimRep_EdgeInfo_CondProbRefCorpus_ic-semcorraw-add1
WNSimRep_EdgeInfo_CondProbRefCorpus_ic-semcorraw-resnik-add1
WNSimRep_EdgeInfo_CondProbRefCorpus_ic-shaks-resnink-add1
WNSimRep_EdgeInfo_CondProbRefCorpus_ic-treebank-add1
WNSimRep_EdgeInfo_CondProbRefCorpus_ic-treebank-resnik-add1

Table 8: Edge-valued corpus-based IC model files included in the accompanying dataset. Each file contains several
edge-valued features for each edge of the taxonomy.

Intrinsic IC model files.introduced by Lastra-Díaz and García-Serrano (2015a)
CondProbHyponyms WNSimRep_EdgeInfo_CondProbHyponyms
CondProbUniform WNSimRep_EdgeInfo_CondProbUniform
CondProbLeaves WNSimRep_EdgeInfo_CondProbLeaves
CondProbLogistic WNSimRep_EdgeInfo_CondProbLogistic
CondProbCosine WNSimRep_EdgeInfo_CondProbCosine

Intrinsic IC model files.introduced by Lastra-Díaz and García-Serrano (2016a)
CondProbRefHyponyms WNSimRep_EdgeInfo_CondProbRefHyponyms
CondProbRefUniform WNSimRep_EdgeInfo_CondProbRefUniform
CondProbRefLeaves WNSimRep_EdgeInfo_CondProbRefLeaves
CondProbRefLogistic WNSimRep_EdgeInfo_CondProbRefLogistic
CondProbRefCosine WNSimRep_EdgeInfo_CondProbRefCosine
CPRefLogisticLeaves WNSimRep_EdgeInfo_CondProbRefLogisticLeaves
CPRefCosineLeaves WNSimRep_EdgeInfo_CondProbRefCosineLeaves
CPRefLeaSubRatio WNSimRep_EdgeInfo_CondProbRefLeavesSubsumersRatio

Table 9: Edge-valued intrinsic IC model files included in the accompanying dataset. Each file contains several edge-
valued features for each edge of the taxonomy.
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IC model Synset pair-valued IC model files (RG65)
Seco et al. (2004) WNSimRep_SynsetPairs_Seco
Blanchard et al. (2008) WNSimRep_SynsetPairs_Blanchard
Zhou et al. (2008a) WNSimRep_SynsetPairs_Zhou
Sánchez et al. (2011) WNSimRep_SynsetPairs_Sanchez2011
Sánchez and Batet (2012) WNSimRep_SynsetPairs_Sanchez2012
Meng et al. (2012) WNSimRep_SynsetPairs_Meng
Yuan et al. (2013) WNSimRep_SynsetPairs_Yuan
Adhikari et al. (2015) WNSimRep_SynsetPairs_Adhikari
Hadj Taieb et al. (2014a) WNSimRep_SynsetPairs_HadjTaieb
Lastra-Díaz and García-Serrano (2015a) WNSimRep_SynsetPairs_CondProbHyponyms

WNSimRep_SynsetPairs_CondProbUniform
WNSimRep_SynsetPairs_CondProbLeaves
WNSimRep_SynsetPairs_CondProbLogistic
WNSimRep_SynsetPairs_CondProbCosine

Lastra-Díaz and García-Serrano (2016a) WNSimRep_SynsetPairs_CondProbRefHyponyms
WNSimRep_SynsetPairs_CondProbRefUniform
WNSimRep_SynsetPairs_CondProbRefLeaves
WNSimRep_SynsetPairs_CondProbRefLogistic
WNSimRep_SynsetPairs_CondProbRefCosine
WNSimRep_SynsetPairs_CondProbRefLogistic
WNSimRep_SynsetPairs_CondProbRefCosine
WNSimRep_SynsetPairs_CondProbRefLeavesSubsumersRatio

Table 10: Synset-valued data files based on the RG65 dataset and the intrinsic IC model files included in the
WNSimRep v1 dataset. Each file contains a set of taxonomical features and the degree of similarity between the two
synsets corresponding to each synset pair between two input words. The files contain the similarity values reported
by all IC-based similarity measures in table 2.

Similarity measures Synset pair-valued file (RG65)
Rada et al. (1989)
Wu and Palmer (1994)
Leacock and Chodorow (1998)
Li et al. (2003)
Li et al. (2003) WNSimRep_SynsetPairs_nonIC_based_measures
Al-Mubaid and Nguyen (2009)
Pedersen et al. (2007)
Sánchez et al. (2012)
Hadj Taieb et al. (2014b)

Table 11: Synset-valued data file based on the RG65 dataset that includes the similarity values reported by all the
non IC-based similarity measures shown in table 1. Every file contains a set of taxonomical features and the degree
of similarity between the two synsets corresponding to each synset pair between two input words.
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15/6/2017 Mendeley Data - WordNet-based word similarity reproducible experiments based on HESML V1R1 and ReproZip

https://data.mendeley.com/datasets/65pxgskhz9/1 1/3

WordNet-based word similarity
reproducible experiments based on
HESML V1R1 and ReproZip
Published: 8 Sep 2016 |  Version 1 |  DOI: 10.17632/65pxgskhz9.1

Contributor(s):  

Description of this data

This dataset is provided as supplementary material of the paper by Lastra-Díaz, J. J., & García-
Serrano, A. (2016). HESML: a scalable ontology-based semantic similarity measures library with a set
of reproducible experiments and a replication dataset. Information Systems.

This dataset contains a ReproZip reproducible experiment file, called
"HESMLv1r1_reproducible_exps.rpz", which allows the experimental surveys on word similarity on
WordNet introduced in the three papers below to be reproduced exactly.

[1] Lastra-Díaz, J. J., & García-Serrano, A. (2015). A novel family of IC-based similarity measures with
a detailed experimental survey on WordNet. Engineering Applications of Artificial Intelligence
Journal, 46, 140–153. http://dx.doi.org/10.1016/j.engappai.2015.09.006

[2] Lastra-Díaz, J. J., & García-Serrano, A. (2015). A new family of information content models with
an experimental survey on WordNet. Knowledge-Based Systems, 89, 509–526.
http://dx.doi.org/10.1016/j.knosys.2015.08.019

[3] Lastra-Díaz, J. J., & García-Serrano, A. (2016). A refinement of the well-founded Information
Content models with a very detailed experimental survey on WordNet (No. TR-2016-01). NLP and IR
Research Group. ETSI Informática. Universidad Nacional de Educación a Distancia (UNED). 
http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-refinement

Experiment data files

Juan J. Lastra-Díaz, Ana Garcia-Serrano

Download all files (2)

 RawOutputFiles.zip

49 KB 

This file contains the raw output files generated by the reproducible experiments in the
accompanying ReproZip file called "HESMLv1r1_reproducible_exps.rpz".

ZIP

 HESMLv1r1_reproducible_exps.rpz

56 MB 

This a ReproZip file which contains a set of reproducible experiments which allow the results
reported in the three aforementioned papers by Lastra-Díaz andGarcía-Serrano to be
reproduced by using ReproUnzip.

RPZ

https://www.mendeley.com/profiles/juan-j-lastra-diaz/
https://www.mendeley.com/profiles/ana-garcia-serrano3/
https://data.mendeley.com/archiver/65pxgskhz9?version=1
https://data.mendeley.com/datasets/65pxgskhz9/1/files/48b09ac7-3960-43f7-be5e-08842bd40fd7
https://data.mendeley.com/datasets/65pxgskhz9/1/files/48b09ac7-3960-43f7-be5e-08842bd40fd7/RawOutputFiles.zip?dl=1
https://data.mendeley.com/datasets/65pxgskhz9/1/files/14f42e9e-65b2-4273-bba9-e8f8fb6fd770
https://data.mendeley.com/datasets/65pxgskhz9/1/files/14f42e9e-65b2-4273-bba9-e8f8fb6fd770/HESMLv1r1_reproducible_exps.rpz?dl=1
https://www.mendeley.com/


15/6/2017 Mendeley Data - WordNet-based word similarity reproducible experiments based on HESML V1R1 and ReproZip

https://data.mendeley.com/datasets/65pxgskhz9/1 2/3

Steps to reproduce

In order to reproduce the experimetns contained in the HESMLv1r1_reproducible_exps.rpz file, you
should follow the detailed instructions in the main companion paper below.

Lastra-Díaz, J. J., & García-Serrano, A. (2016). HESML: a scalable ontology-based semantic similarity
measures library with a set of reproducible experiments and a replication dataset. Information
Systems.

Related links

This data is associated with the following peer reviewed publication:

HESML: A scalable ontology-based semantic similarity measures library with a set of
reproducible experiments and a replication dataset

A novel family of IC-based similarity measures with a detailed experimental
survey on WordNet

doi:10.1016/j.engappai.2015.09.006

article is related to this dataset

A new family of information content models with an experimental survey on
WordNet

doi:10.1016/j.knosys.2015.08.019

article is related to this dataset

http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-
refinement

article is related to this dataset

http://dx.doi.org/10.17632/t87s78dg78.1

dataset is related to this dataset

Associated article
peer reviewed

Cite this article

Published in:

Information Systems

http://dx.doi.org/10.1016/j.is.2017.02.002
http://dx.doi.org/10.1016/j.engappai.2015.09.006
http://dx.doi.org/10.1016/j.engappai.2015.09.006
http://dx.doi.org/10.1016/j.knosys.2015.08.019
http://dx.doi.org/10.1016/j.knosys.2015.08.019
http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-refinement
http://dx.doi.org/10.17632/t87s78dg78.1
https://data.mendeley.com/datasets/journals/03064379
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15/6/2017 Mendeley Data - HESML_vs_SML: scalability and performance benchmarks between the HESML V1R2 and SML 0.9 semantic measures l…

https://data.mendeley.com/datasets/5hg3z85wf4/1 1/6

HESML_vs_SML: scalability and
performance benchmarks between the
HESML V1R2 and SML 0.9 semantic
measures libraries
Published: 21 Dec 2016 |  Version 1 |  DOI: 10.17632/5hg3z85wf4.1

Contributor(s):  

Description of this data

This dataset introduces a companion reproducibility Java console program, called
HESML_vs_SML_test.jar, of the work introduced by Lastra-Díaz and García-Serrano [1]. This latter
work introduces the Half-Edge Semantic Measures Library (HESML), and carries-out an
experimental survey between HESML V1R2, the Semantic Measures Library (SML) 0.9 [2] and the
WNetSS [4] semantic measures libraries.

The HESML_vs_SML_test.jar program runs the set of performance and scalability benchmarks
detailed in [1] and generates the figures and tables of results reported in the aforementioned work,
which are also enclosed as complementary files of this dataset (see files below).

Licensing note:

The 'HESML_vs_SML_test.jar' program is based on the HESML V1R2 [3], SML 0.9 [2] and WNetSS
[4] semantic measures libraries, and it includes these libraries in its distribution, as well as WordNet
3.0 [6] and the SimLex665 [5] dataset. Thus, if you use this dataset, you should also cite the works
related to these resources.

References:

[1] Lastra-Díaz, J. J., and García-Serrano, A. (2016). HESML: a scalable ontology-based semantic
similarity measures library with a set of reproducible experiments and a replication dataset. To
appear in Information Systems Journal.

[2] Harispe, S., Ranwez, S., Janaqi, S., and Montmain, J. (2014). The Semantic Measures Library:
Assessing Semantic Similarity from Knowledge Representation Analysis. In E. Métais, M. Roche, &
M. Teisseire (Eds.), Proc. of the 19th International Conference on Applications of Natural Language
to Information Systems (NLDB 2014) (Vol. 8455, pp. 254–257). Montpelier, France: Springer.
http://dx.doi.org/10.1007/978-3-319-07983-7_37

[3] Lastra-Díaz, J. J., & García-Serrano, A. (2016). HESML V1R2 Java software library of ontology-
based semantic similarity measures and information content models. Mendeley Data, v2.
https://doi.org/10.17632/t87s78dg78.2

[4] Ben Aouicha, M., Taieb, M. A. H., and Ben Hamadou, A. (2016). SISR: System for integrating
semantic relatedness and similarity measures. Soft Computing, 1–25.
http://dx.doi.org/10.1007/s00500-016-2438-x

[5] Hill, F., Reichart, R., & Korhonen, A. (2015). SimLex-999: Evaluating Semantic Models with
(Genuine) Similarity Estimation. Computational Linguistics, 41(4), 665–695.

Juan J. Lastra-Diaz, Ana Garcia-Serrano

https://www.mendeley.com/profiles/juan-j-lastra-diaz/
https://www.mendeley.com/profiles/ana-garcia-serrano3/
https://www.mendeley.com/
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https://data.mendeley.com/datasets/5hg3z85wf4/1 2/6

http://dx.doi.org/10.1162/COLI_a_00237

[6] Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the ACM,
38(11), 39–41. http://dx.doi.org/10.1145/219717.219748

Experiment data files

Steps to reproduce

System requirements: a Java8-compliant workstation with at least 8 Gb RAM.

The HESML_vs_SML_test.zip file contains the source files and compiled versions of the
HESML_vs_SML_test.jar and all the aforementioned semantic measures libraries, thus, you only
need to run the program. However, in order to compile HESML_vs_SML_test from its source files,
you need to install NetBeans 8.0 or higher and the Java SDK 8.0.

Download all files (5)

 benchmarks_HESML_vs_SML.csv

3 KB 

Raw output file containing the results of the benchmarks. This file was generated by
HESML_vs_SML_test as output file on a Windows 10 workstation with 8 Gb RAM and an Intel
Core i7-5500U CPU @ 2.40 GHz.

CSV

 HESML_vs_SML.pdf

5 KB 

This figure shows the results of the main scalability benchmarks between HESML and SML. The
running times are averaged as regards the size of the taxonomy or the number of topological
queries used in each benchmark.

PDF

 final_results_SimLex665.csv

0.23 KB 

Raw output file containing the running times reported by the HESML V1R2, SML 0.9 and
WNetSS semantic measures libraries in the evaluation of the Jiang-Conrath similarity measure
with the Seco et al. IC model in the SimLex665 dataset.

CSV

 IS_HESML_figure3_and_table18.r

6 KB 

R script file withthe aim of reproducing the figure shown in the HESML_vs_SML.pdf file above
from the benchmarks_HESML_vs_SML.csv file above.

R

 HESML_vs_SML_test.zip

42 MB 

Java source files, executable and NetBeans project of the HESML_vs_SML_test program which
runs a set of benchmarks between the HESML V1R2, SML 0.9 and WNetSS semantic measures
libraries.

ZIP

https://data.mendeley.com/archiver/5hg3z85wf4?version=1
https://data.mendeley.com/datasets/5hg3z85wf4/1/files/389383ef-5af3-473f-a4f7-6ec0b2bdbe78
https://data.mendeley.com/datasets/5hg3z85wf4/1/files/389383ef-5af3-473f-a4f7-6ec0b2bdbe78/benchmarks_HESML_vs_SML.csv?dl=1
https://data.mendeley.com/datasets/5hg3z85wf4/1/files/d4dff679-8610-4a93-be44-ede481bd3ef1
https://data.mendeley.com/datasets/5hg3z85wf4/1/files/d4dff679-8610-4a93-be44-ede481bd3ef1/HESML_vs_SML.pdf?dl=1
https://data.mendeley.com/datasets/5hg3z85wf4/1/files/fdae778c-883c-4f3f-b462-b0f1c3f3ecfd
https://data.mendeley.com/datasets/5hg3z85wf4/1/files/fdae778c-883c-4f3f-b462-b0f1c3f3ecfd/final_results_SimLex665.csv?dl=1
https://data.mendeley.com/datasets/5hg3z85wf4/1/files/a9ce8e37-4aa4-48ac-9dee-98e76fe35d15
https://data.mendeley.com/datasets/5hg3z85wf4/1/files/a9ce8e37-4aa4-48ac-9dee-98e76fe35d15/IS_HESML_figure3_and_table18.r?dl=1
https://data.mendeley.com/datasets/5hg3z85wf4/1/files/65464c88-1297-46b1-b74a-b2b90a8fc7a2
https://data.mendeley.com/datasets/5hg3z85wf4/1/files/65464c88-1297-46b1-b74a-b2b90a8fc7a2/HESML_vs_SML_test.zip?dl=1


15/6/2017 Mendeley Data - HESML_vs_SML: scalability and performance benchmarks between the HESML V1R2 and SML 0.9 semantic measures l…

https://data.mendeley.com/datasets/5hg3z85wf4/1 3/6

Running of the benchmarks:

The first group of benchmarks evaluates the running-time and caching ratio in a side-by-side
comparison between the most significant topological algorithms implemented by HESML and SML.

(1) Download the HESML_VS_SML_test.zip file above and extract it onto your hard drive, then follow
the steps 2-4 below:

(2) Open a Linux or Windows command console in the main HESML_VS_SML_test directory and
run the following command:

$prompt:> java -Xms4096m -Xmx4096m -jar dist\HESML_VS_SML_test.jar <output_results.csv>

(3) Import the raw output file with LibreOffice or MS-Excel to obtain the data as shown in
benchmarks_HESML_vs_SML.csv file above

(4) Install and open the R statistics package, then follow the following steps: (a) select the "File->Open
script" menu and load the 'IS_HESML_figure3_and_table18.r' script file above; (b) edit the first two
lines of the script code in order to set the path of the input directory and the input
'output_results.csv' file generated in the step 2 above; and finally, (c) select the "Edit->Run all' menu
in order to generate the figure in the HESML_vs_SML.pdf file above.

The output csv file obtained in step 2 above will be identical to the complementary
'benchmarks_HESML_vs_SML.csv' file. However, it will show the running times on your
experimental platform.

The second benchmark evaluates the running time of HESML, SML and WNetSS in the evaluation of
the Jiang-Conrath similarity measure with the Seco et al. IC model in the SImLex665 dataset. In
order to reproduce the WordNet-based similarity benchmark reported in table 19 of [1] and the
'final_results-SimLex665.csv' file above, you should follow the steps 5-8 below:

(5) Install MySQL community edition in your workstation (demanded by WNetSS).

(6) Open a Linux or Windows command console in the HESML_VS_SML_test directory and run the
command below, which carries out the off-line pre-processing tasks of WNetSS in order to load
WordNet 3.0 and all its topological information in the MySQL server. This task could take a few
hours in a modern workstation.

$prompt:> java -Xms4096m -Xmx4096m -jar dist\HESML_VS_SML_test.jar -WNetSS_Setup
mySqlRootPassword

(7) From the same Linux or Windows command console run the following command:

$prompt:> java -Xms4096m -Xmx4096m -jar dist\HESML_VS_SML_test.jar -WNetSS
mySqlRootPassword <output_results.csv>

(8) Import the output file with LibreOffice or MS-Excel to obtain the data shown in the
final_results_SimLex665.csv file above.

Related links

http://dx.doi.org/10.17632/t87s78dg78.2

software is source of this dataset

The Semantic Measures Library: Assessing Semantic Similarity from
Knowledge Representation Analysis

http://dx.doi.org/10.17632/t87s78dg78.2
http://dx.doi.org/10.1007/978-3-319-07983-7_37
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