

TESIS DOCTORAL
2019/20

Supporting the Statistical Analysis of
Variability Models by Processing Binary

Decision Diagrams

Sergio Bra Gutiérrez

PROGRAMA DE DOCTORADO EN INGENIERÍA
DE SISTEMAS Y CONTROL
Rubén Heradio Gil
David Fernández Amorós

Acknowledgements

I want to give thanks to my family and my partner Anabel for their moral support and
the economical effort made that allows me to grow.

To Rubén and David, for each advice, suggestion and for encouraging me during all
these years.

i

Contents

Acknowledgements i

List of Figures iv

List of Tables v

List of Algorithms vii

Resumen 1

Abstract 2

1 Introduction 3
1.1 Scope of this Thesis . 7
1.2 Aims of the Thesis . 7
1.3 Research Questions . 8
1.4 Hypotheses . 8
1.5 Methodology . 8
1.6 Personal Motivation . 8
1.7 Thesis Outline . 9
1.8 Main Contributions . 10

2 Related Work 12
2.1 Software Product Lines and Variability Models 13
2.2 Binary Decision Diagrams and SAT-Solvers 15

2.2.1 CUDD . 17
2.2.2 BuDDy . 18

2.3 Synthesis of Binary Decision Diagrams . 18
2.4 Core and Dead Features . 19
2.5 Feature Probabilities . 22
2.6 Product Distribution . 26
2.7 Uniform Random Sampling . 29

3 Functional Programming on BDDs to Support the Statistical Reason-
ing on Variability Models 31
3.1 Traverse . 31
3.2 The rbdd Package . 32

3.2.1 Architecture . 33
3.2.2 API of rbdd . 34

3.2.2.1 Initialization and finalization 36
3.2.2.2 Setting logical formulas functions 38
3.2.2.3 Ordering . 43

ii

Contents

3.2.2.4 I/O operations . 44
3.2.2.5 Applying functions to BDDs 45
3.2.2.6 Debugging functions . 52
3.2.2.7 Customizing the environment of the BDD 56
3.2.2.8 Algorithms implementation 57

3.2.3 Installation an Usage of the rbdd Package 61
3.3 Core and Dead Features . 64
3.4 Feature Probabilities . 65
3.5 Product Distribution . 69
3.6 Uniform Random Sampling . 72

4 Experimental Validation 74
4.1 Designed Benchmark . 74
4.2 Analysis of the Results . 76

4.2.1 Core and Dead Features . 77
4.2.2 Feature Probabilities . 78
4.2.3 Product Distribution . 80
4.2.4 Uniform Random Sampling . 82

4.3 Final Comments about the Experimental Validation 85

5 Conclusions and Future Work 86
5.1 Conclusions . 86
5.2 Future Work . 88

References 90

List of Acronyms 99

iii

List of Figures

1.1 Example of dynamic calculation of features . 4
1.2 JHipster feature model . 6

2.1 Main milestones on Computer Science and Computational Logic 12
2.2 Example of a feature model . 14
2.3 Structure of a BDD . 16
2.4 Comparison of BDD ordering algorithms . 16
2.5 Implementation of the AND function with CUDD 17
2.6 BDD representing the AND operation . 17
2.7 Implementation of the AND function with BuDDy 18
2.8 Different orderings applied to the same expression 19
2.9 Different ordering applied to the same expression 26

3.1 Implementation of the Gibbs Sampler with Rcpp 34
3.2 Architecture of the designed library . 35
3.3 Lifecycle of a BDD . 35
3.4 Example of a CNF file . 39
3.5 Example of a SPLOT file . 39
3.6 Example of usage of the rbdd package . 63

4.1 Size, in terms of the number of variables and clauses, of the benchmark models 75
4.2 BDDs by number of nodes . 75
4.3 Core and dead runtimes . 78
4.4 Variable probabilities of the variability models 79
4.5 Variable probabilities runtimes . 80
4.6 SAT assignments’ distribution . 81
4.7 SAT assignments’ distribution runtimes . 83
4.8 Goodness-of-fit p-values. The histogram includes all models 84
4.9 Uniform Random Sampling runtimes . 85

5.1 Example of a Kconfig configuration model representation using the igraph

package . 89

iv

List of Tables

2.1 Correspondence between feature relationships and propositional formulas . . . 14

3.1 bdd manager init command . 37
3.2 bdd manager quit command . 38
3.3 bdd manager reset command . 38
3.4 bdd new variable command . 40
3.5 bdd parse boolstr command . 41
3.6 bdd parse cnf command . 42
3.7 bdd parse splot command . 43
3.8 bdd order command . 44
3.9 bdd write command . 45
3.10 bdd read command . 45
3.11 bdd identical command . 47
3.12 bdd restrict command . 48
3.13 bdd traverse command . 49
3.14 bdd traverse root node command . 50
3.15 bdd traverse is node zero command . 50
3.16 bdd traverse is node one command . 51
3.17 bdd traverse get level command . 51
3.18 bdd traverse get var at pos command . 52
3.19 bdd traverse get children command . 52
3.20 bdd info variable number command . 53
3.21 bdd info node number command . 53
3.22 bdd info variables command . 54
3.23 bdd info boolstr command . 54
3.24 bdd print command . 55
3.25 bdd manager is initialized command . 55
3.26 bdd info manager library command . 56
3.27 bdd set cache ratio command . 56
3.28 bdd set max node num command . 57
3.29 bdd get core dead command . 58
3.30 bdd get var probabilities command . 59
3.31 bdd get sat distribution command . 60
3.32 bdd get uniform random sampling command 61

4.1 Statistical information about the benchmark 75
4.2 Variability models included in the benchmark 76
4.3 Comparison between hardware and software execution 77
4.4 Core and dead execution results . 77
4.5 Variable probabilities execution times . 79
4.6 SAT assignments’ distribution execution times 82
4.7 Most expensive operations of the Product Distribution algorithm in R 82

v

List of Tables

4.8 Uniform Random Sampling execution times . 84

5.1 Advantages and disadvantages of using BDDs 86

vi

List of Algorithms

1 get core and dead features . 20
2 does it reach the 1-terminal? . 21
3 update reduced vertices . 22
4 get feature probabilities . 23
5 get node pr . 24
6 get joint pr . 25
7 product distribution . 27
8 get prod dist . 28
9 uniform sampling . 29
10 Bryant’s traverse design . 32
11 core and dead . 64
12 update core dead . 65
13 get var probabilities . 66
14 comp level jump . 67
15 up products . 68
16 get sat distribution . 69
17 make combinations . 70
18 dist combine . 71
19 uniform random sampling . 72
20 get probabilities . 72
21 gen random . 73

vii

Resumen

Cuando uno de los principales objetivos de la Ingenieŕıa de Software es el ahorro en
costes y tiempo, las ĺıneas de productos de software juegan un papel fundamental. En este
campo, la clave reside en la identificación de componentes reutilizables o caracteŕısticas
que puedan ser aplicados en futuros proyectos.

La necesidad de proveer soluciones que se adapten a problemas espećıficos, satisfaciendo
una amplia variedad de requerimientos no funcionales, como la eficiencia en tiempo de eje-
cución, consumo de memoria del dispositivo en el que se ejecuta determinada aplicación,
requisitos a nivel de seguridad, etc. ha supuesto una ardua labor de investigación. La
personalización se logra a través de un proceso de configuración donde se seleccionan las
caracteŕısticas deseadas. El espacio está restringido para evitar incompatibilidades en-
tre caracteŕısticas, garantizando que se satisfagan las dependencias definidas entre ellas.
Hay muchas preguntas interesantes acerca de este espacio restringido: ¿Están todas las
configuraciones libres de error? ¿Hay código muerto que no pueda ser ejecutado por las
restricciones entre las caracteŕısticas? ¿Cuál es rango de reutilización de componentes?
¿Cuál es el tamaño t́ıpico de un producto final en términos de sus componentes? Etc.

El tamaño del espacio de configuración potencialmente puede ser 2n para n carac-
teŕısticas. Aśı, procesar el conjunto completo de soluciones es imposible excepto para los
casos más triviales. Después de eliminar las configuraciones no válidas que no satisfacen
las restricciones entre caracteŕısticas, el espacio resultante se reduce sustancialmente. Sin
embargo, normalmente sigue siendo demasiado grande como para poder trabajar con él.

Una estrategia para abordar estas dificultades es seleccionar una muestra representa-
tiva del espacio y, una vez que los cálculos se han realizado, extrapolar las conclusiones
al conjunto completo. En este punto, el problema reside en la obtención de una muestra
aleatoria fiable para evitar interpretaciones erróneas.

Esta tesis presenta un conjunto de algoritmos que permiten (i) trabajar con la totalidad
de la población de configuraciones válidas usando una estructura Booleana altamente op-
timizada conocida como Diagrama de Decisión Binario, y (ii) generar muestras aleatorias
a partir del espacio de configuración. Además, se aporta una completa infraestructura en
dos lenguajes de programación (C++ y R) con la que incorporar nuevos algoritmos sobre
Diagramas de Decisión Binarios sin apenas esfuerzo.

Finalmente, esta tesis muestra la validación emṕırica de nuestros algoritmos y marco
de trabajo a través de una prueba de rendimiento compuesta de modelos de variabilidad
reales, cuyo número de caracteŕısticas va desde 45 a 17 365.

Palabras clave: Ĺıneas de productos de software, Modelos de caracteŕısticas, Diagramas
de decisión binarios, Funciones Booleanas.

1

Abstract

When one of the main aims of the Software Engineering is saving costs and time, the
software product lines play an essential role. In this field, the key lies in identifying
reusable components or features that can be applied in future projects.

Much research is being done to provide customizable solutions that match specific prob-
lems and thus satisfy a variety of non-functional requirements, such as runtime efficiency,
computer memory consumption, security level, etc. Customization is often accomplished
through a configuration process where the desired features are selected. The space of pos-
sible configurations is usually constrained to avoid features incompatibilities, and guaran-
teeing that feature inter-dependencies are satisfied. There are many questions of interest
inside this restricted space: Are all configurations free of errors? Is there any dead code
that cannot be activated because of the inter-feature constraints? What is the component
reusability range? What is the typical size of a final product in terms of components? Etc.

The configuration space may potentially be 2n for n features. Hence, processing the
complete set of solutions is impossible except for the most trivial cases. After removing
the invalid configurations that do not satisfy the inter-feature constraints, the solution
space is reduced substantially. Nevertheless, it is usually still large enough to be suitable
to work with it.

One strategy to address these difficulties is selecting a representative sample of the space
and, once the computation is done, extrapolating the conclusions to the whole problem.
At this point, the problem turns into the way of obtaining a reliable random sample to
avoid wrong interpretations.

This thesis presents a set of algorithms that support both (i) working with the whole
population of valid configurations by using a highly-optimized Boolean structure known
as Binary Decision Diagrams, and (ii) generating random samples from the configuration
space. Moreover, a whole infrastructure in two programming languages (C++ and R) is
provided to incorporate new algorithms on Binary Decision Diagrams effortlessly.

Finally, this thesis reports the empirical validation of our algorithms and framework on
a benchmark composed of real variability models, whose number of features ranges from
45 to 17 365.

Keywords: Software product lines, Feature models, Binary decision diagrams, Boolean
functions.

2

Chapter 1

Introduction

A great variety of research areas and business models are based on combining features
to provide successful solutions adapted to fulfill specific demands. The following situation
could be imagined to illustrate this statement: when someone is willing to buy a car, one
of the possible alternatives is checking the options and conditions that the manufacturers
offer [1]. At some point in the inquiry, some choices have to be made to define the set of
cars that could fit with the needs and distinctive features that the person is looking for.
The factors that the customer has to decide about go from basic aspects as the engine
(petrol, diesel, electric, Liquefied Petroleum Gas (LPG), etc.), transmission (manual or
automatic), number of doors and seats, to esthetic qualities such as the color and type
of paint, trim, wheels, lights and a growing amount of extras related to security, comfort,
driving and connectivity.

The huge amount of possible combinations can easily overwhelm indecisive people, or
complicate the task of finding the relation of valid products, so it is crucial to simplify
the process of adding and rejecting combinations according to the choices made. This
is viable because each feature has dependencies with a set of features that have to be
included in the solution when it is chosen, or items that are automatically rejected due to
incompatibility issues with the selected one. As models can have thousands of features,
it is important to be able to implement this mechanism in an efficient way to obtain the
simplification in a reasonable execution time.

Figure 1.1 shows an example based on the Ford car configurator [2]. As not all the cars
have the same features available, every time an item is selected, further options will be
calculated according to the previous decisions. In Figure 1.1a a Mustang 5.0 has been
selected, and, in this case, there are two possible transmission options: manual or auto-
matic. However, if a Mustang Bullitt is chosen (Figure 1.1b), there is only the manual
transmission model, so the configurator is smart enough to take into account that restric-
tion and thus it simplifies the interaction with the customer.

This behaviour is comparable with the design phases of products like smartphones,
home automation devices, industry equipment and is also applicable to other scientific
fields like medicine [3]. In short, any industrial or research development that implies a
series of combinations of features with the aim of obtaining the set of valid results that
satisfies certain conditions is a candidate to benefit from this procedure [4].

3

(a) A model with two options of transmission

(b) A model with one transmission option

Figure 1.1: Example of dynamic calculation of features

4

In Software Engineering, the strategy of dividing a design problem into features, to an-
alyze their interdependencies and subsequently trying to find out relations between these
elements is more and more common. Kang et al. [5] define a feature as a “prominent
or distinctive user-visible aspect, quality, or characteristic of a software system”. This
concept is essential for the Software Product Line (SPL) engineering paradigm, which
efficiently enables the development of families of software systems that share a common
set of assets.

The usage of feature models to represent all the products of a SPL in terms of its fea-
tures, is very common. This representation was introduced by Kang et al. [5] as part
of Feature-Oriented Domain Analysis (FODA). In particular, it is useful to determine
reusable software components with a reduction of specification, development and testing
tasks, saving costs and improving the time to market, two of the most coveted factors
when a project comes to start.

Another example from the SPL domain is Busybox [6], a tool that provides some GNU’s
Not Unix (GNU) utilities in a light executable. To implement all its functionality in a
compact format, it allows a custom selection of its 613 features, and these features and
their interrelationships are defined making use a specific language called Kconfig1.

The totality of the configuration space goes up to ≈ 3.4 · 10184 combinations, but only
7.428 · 10146 of them lead to a valid configuration due to the restrictions between features.
Despite the fact that it is a small percentage of the total amount of possibilities (just a
2.185 · 10−36 %), it is still a really large number, and unmanageable to test all the config-
urations.

As an additional example, JHipster [7] is a development platform that generates, de-
velops and deploys web applications and microservices. It only has 45 features, and the
feature model is depicted in Figure 1.22 (Halin et al. [8]). It encompasses 245 ≈ 3.5 · 1013

potential configurations, but barely 26 000 of them result on valid solutions. Testing this
number of configurations could appear as a reasonable task, but it really has a high com-
putational cost: ∼ 182 days of CPU time and 5.2 TB of disk space are needed for finishing
this work [8].

Based on these figures, it turns as a critical research field finding a mechanism to obtain
a representative sample of configurations. The idea is testing determinated behaviours on
a set of a manageable size, and to extrapolate the conclusions to the absolute space of the
problem. Through this thesis, some algorithms are proposed and evaluated to handle this
kind of problems and extracting relevant conclusions in a reliable way.

These algorithms combine different areas of Mathematics, such as Probability and Com-
binatorics in order to calculate indicators like the probability of a feature to be included in
a valid product or the number of products that contains a certain amount of features. An-
alyzing this information can help simplifying the problem of testing configuration spaces
with huge dimensions and taking important design decisions in order to improve the model.

1https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
2https://github.com/xdevroey/jhipster-dataset/blob/master/v3.6.1/featuremodel/FM-3.6.

1.png

5

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://github.com/xdevroey/jhipster-dataset/blob/master/v3.6.1/featuremodel/FM-3.6.1.png
https://github.com/xdevroey/jhipster-dataset/blob/master/v3.6.1/featuremodel/FM-3.6.1.png

Constraints: (values in italic are literals)

Hibernate2ndLvlCache 6= Hibernate2ndLvlCacheFalse ⇒ Database = SQL, Development 6= DevelopmentFalse ⇒ Database = SQL, Database = SQL ⇒ Development 6=

DevelopmentFalse, Production 6= ProductionFalse ⇒ Database = SQL, Database = SQL ⇒ Production 6= ProductionFalse, ElasticSearch ⇒ Database = SQL, Protractor ⇒

TestingFrameworks, Gatling ⇒ TestingFrameworks, Cucumber ⇒ TestingFrameworks, Server 6= ServerFalse ⇒ Generator = Server, Generator = Server ⇒ Server 6= ServerFalse, Application 6=

ApplicationFalse ⇒ Generator = Application, Generator = Application ⇒ Application 6= ApplicationFalse, H2 6= H2False ⇒ Development = H2, Development = H2 ⇒ H2 6=

H2False, (Authentication = OAuth2∧ !SocialLogin ∧ Server 6= MicroserviceApplication) ⇒ (Database = SQL ∨ Database = MongoDB), SocialLogin ⇒ ((Authentication =

HTTPSession ∨ Authentication = JWT) ∧ (Server = ServerApp ∨ Application = Monolithic) ∧ (Database = SQL ∨ Database = MongoDB)), Server = UaaServer ⇒ Authentication =

Uaa, Production = Oracle ⇒ (H2 6= H2False∨Development = Oracle12c), (Authentication 6= OAuth2∧ !SocialLogin∧Server 6= MicroserviceApplication) ⇒ (Database 6= DatabaseFalse), Server 6=

ServerFalse ⇒ !Protractor, Production = MySQL ⇒ (H2 6= H2False ∨ Development = MySqlDev), (Server = MicroserviceApplication ∨ Application = MicroserviceGateway) ⇒

(Authentication = JWT ∨Authentication = Uaa), Application = Monolithic ⇒ (Authentication = JWT ∨Authentication = HTTPSession ∨Authentication = OAuth2), Production = MariaDB ⇒

(H2 6= H2False ∨ Development = MariaDBDev), Production = PostgreSQL ⇒ (H2 6= H2False ∨ Development = PostgreSQLDev), (Server 6= ServerFalse ∨ Application 6= ApplicationFalse) ⇒

(BackEnd 6= BackEndFalse ∧ Authentication 6= AuthenticationFalse), (SpringWebSockets ∨ ClusteredSession) ⇒ Application 6= ApplicationFalse, Generator = Client ⇒

!Gatling∧ !Cucumber ∧ BackEnd = BackEndFalse ∧ Authentication = AuthenticationFalse, Libsass ⇒ (Application 6= ApplicationFalse ∨ Generator = Client)

Figure 1.2: JHipster feature model

6

1.1. Scope of this Thesis

To work with these algorithms, feature models are encoded as Boolean expressions, so
the valid configurations of each model are the set of solutions that satisfy those formulas.
Obviously, representing expressions that could lead to unmanageable configuration spaces
like the exposed previously requires some specific data structures capable of working with
that kind of information. Amongst the possible alternatives, Binary Decision Diagrams
(BDDs) have been chosen because of their adaptability to represent a diversity of models
that fits with the needs brought up in this thesis and, more importantly, in a very efficient
way.

1.1 Scope of this Thesis

This research will discuss the suitability of a specific structure in order to encode ex-
pressions that represent feature models. To understand the theoretical framework where
the investigation is located appropriately, a broad explanation of the context is provided.

The validity of the proposed solution will be demonstrated with a large enough set of
models, varied in terms of size and constitution. All of them represent configurations,
schemas and patterns of real feature models, because if the intended approach is proved
as an acceptable alternative, it will be applied to diagrams of a similiar nature.

The intention of the investigation is the ratification of the aptitude of certain theories
and algorithms to identify how well a feature model is built and other characteristics of
the diagram.

1.2 Aims of the Thesis

Keeping in mind the situation described, the following goals have been defined:

• To provide a tool to manage structures able to represent feature models.

• To implement the algorithms analyzed in the work using the designed utility.

• To make a comparison between different versions of the implementations and dis-
cussing which version fits the best for diverse scenarios.

The designed tool will be explained with detail, but its guidelines have been:

• Easy to use. It must allow the simple use of its basic operations, and provide
more advanced options for those cases not covered with the default settings and
parameters.

• Extensible. If it is required to add any functionality, it should be achieved without
a great investment of time.

• Well documented. The operations provided by the utility must provide a full
explanation of its usage and functionality, and complete it with examples that illus-
trates the behaviour.

7

1.3. Research Questions

1.3 Research Questions

The current research is conceived to analyze the result of the application of some opera-
tions available in the literature, in order to obtain valuable information about models and
its structure. Furthermore, our work hypothesis, which was validated in this thesis, is that
most operations of interests on configuration models follow a common structure that can
be generalized. Encoding this structure into a programming language, new algorithms can
be effortlessly implemented on a high abstraction level. On the basis that the algorithms
are studied in depth, providing theoretical basis and results that support these principles,
the following research questions has been considered:

• RQ1: Can the designed tool provide results that allow to figure out how well a
model is built?

• RQ2: How relevant is the implementation of the algorithms when they are executed
over real models?

1.4 Hypotheses

Concerning RQ1, it is expected that with the contemplated implementation of the al-
gorithms, the results obtained can lead to interpretations of how is the model represented
in a given model.

Regarding RQ2, depending on the kind of programming language chosen to implement
the functions, and the framework selected to execute the operations, the efficiency should
vary. Similar performance is to be expected across small models, but as the size of the
diagrams grows, the difference between the times needed to obtain the solutions should
increase in favor of the most appropriate implementation.

1.5 Methodology

To develop the research, the usual methodology in the scientic field has been followed:

i. Wording of hypotheses.

ii. Collection of observations.

iii. Contrast between the hypotheses and the observations.

iv. Readjustment of the initial hypotheses in the light of the obtained results.

1.6 Personal Motivation

This thesis is conceived as a continuation of a previous work undertaken in an M.Sc.
degree on the Software and Systems Engineering Group of the Superior Technical School
of Cumputer Engineering of the Universidad Nacional de Educación a Distancia (UNED).

The possibilities of the work started in that project, warrant the expansion of the pro-
posed architecture, and verifying its validity when it is applied over real models.

8

1.7. Thesis Outline

1.7 Thesis Outline

The thesis is structured in three blocks. The first of them attemps to contextualize
the framework where the research is located. In this part, key concepts are defined and
discussed, supported by the specialized literature.

Next, the second part is focussed on the implementation issues of the problem to tackle.
The design decisions and construction details are broadly justified and explained in-depth.

The last block addresses the answer to the research questions through the confronta-
tion of the theoretical expectations with the results obtained after the application of the
algorithms and implementation object of the study.

Finally, a brief explanation of each chapter of the thesis is given below.

Chapter 2: Related Work

In this chapter, core concepts such as Boolean logic, SPLs, feature models, BDDs and
SAT-solvers are introduced. In addition, the reasons why BDDs are chosen as the dia-
grams to represent feature models are explained and some details about their lifecycle are
presented.

The last sections of this chapter discuss some algorithms present in the literature from a
theoretical point of view, regarding the benefits of their application over the BDDs when
they are used to represent feature models.

Chapter 3: Functional Programming on BDDs to Support the
Statistical Reasoning on Variability Models

This chapter presents the architecture of the BDD library proposed in this thesis as well
as some details of its operations and usage.

Moreover, an alternative implementation of the algorithms discussed in the previous
chapter is provided in order to show the usefulness of our library.

Chapter 4: Experimental Validation

This chapter reports the results obtained when a benchmark is applied to the aforemen-
tioned algorithms. To this end, the library developed provides two ways of implementing
these algorithms: a direct call to a C++ function that represents each procedure, and an
alternative encoding the corresponding version on R through the functions available by
the package.

In light of these results, a comparison between both versions is made, considering which
of them satisfies the problems they are expected to solve for different use cases.

Chapter 5: Conclusions and Future Work

This chapter summarizes the primary conclusions of this thesis, the connection between
the theoretical expectations of solution proposed and the evidences of the validation when

9

1.8. Main Contributions

it is applied to real models. Finally, some lines are suggested to widen the work started
in this thesis.

1.8 Main Contributions

After the time invested researching and studying the related literature, the contribu-
tion to this field of knowledge, besides this thesis, has been an open-source library and
an article, “Using Extended Logical Primitives for Efficient BDD Building”, published in
Mathematics [9], a journal ranked in the Q1 Journal Citation Report (JCR).

The rbdd library is an R package that allows the management of BDDs, as well as
the application of all the functions needed to encode Boolean expressions making use of
these structures. The Application Programming Interface (API) of this package follows
an R-like style, to be as natural as possible to the community of programmers, and easy
to extend if some new features are required.

Among the full set of instructions available in the library, there are functions related to
the lifecycle of the BDDs, different options to load models supporting the most extended
formats, debugging facilities, and some interesting algorithms and operations related to
this kind of diagrams, that will be thoroughly explained in further chapters of the thesis.

As it will be explained in Section 2.2, the order of the make up that compound these
diagrams is a key factor to achieve a successfully implementation of feature models. For
these reason, the package provides the most common ordering algorithms to modify the
structure, just as the possibility of applying different heuristics when the BDD is being
built.

rbdd is available in a public repository3 and it has been well documented with the aim of
explaining the available functions and providing examples and, additionally, of simplifying
the adaption of the package to extend its default functionality. The code has embedded
all its dependencies, that are compiled automatically when the package is built, making
the package compatible with most operating systems and architectures.

Working with rbdd on real models, we realized that feature models with extensive use
of alternative constraints had a very negative impact on BDD sizes. As rbdd implemented
in R, the statistical analysis of the results helped us to work out the problem is. We
published our solution in the journal article referenced at the beginning of the section [9],
which explores a way to synthesize BDDs more efficiently based on the technique of the
identification of XOR groups in the Boolean expressions with the aim of simplifying the
process of building the structure. The translation from an XOR-group of a feature model
to its equivalent in propositional logic can lead to large formulas, with a great impact in
the time required to form the diagram.

That paper [9] proposes an extension of the BDD engine to build the XOR-groups and
its application over feature models and Kconfig configuration systems. Analyzing the ob-
tained results, the theoretical expected benefits of this procedure have been confirmed,
with a reduction of the time required to build the BDD up to orders of magnitude for real
models.

3https://github.com/braguti/rbdd

10

https://github.com/braguti/rbdd

1.8. Main Contributions

Along this thesis, one of the points to which more attention has been paid is the effi-
ciency when it comes to build a BDD that represents a real model (usually with a great
amount of features) and to execute algorithms traversing the nodes that make up the
diagram. For this reason, any technique that allows to speed up this process is taken into
account, because this improvement could be one of the crucial factors that allow that the
proposed alternative in this thesis to represent feature models be finally considered as a
feasible possibility.

11

Chapter 2

Related Work

Although the study of logic was introduced by the ancient Greeks as part of Philosophy
and Maths [10], it was not until the second half of the twentieth century when it turned
into a fundamental knowledge in the technical science field with the born of the Compu-
tational Logic [11]. Before that, in the first half of that century, the fundamental pillars
about which this area would be supported were founded. The first mainframe computers
appeared, based on vacuum tubes first, and on transistors later, over the decades from
1930s to 1950s [12]. Other electronic instrumental appeared, such as electric calculators
based on relay tchnology [13] or first integrated circuits [14]. The applications of this
new field of knowledge have grown over time, covering major areas of research such as Ar-
tificial Intelligence (AI) [15], Software Engineering [16] or Formal Verification [17] [18] [19].

Computational Logic is the usage of hardware and software utilities to establish facts
in a logical formalism [20]. Figure 2.1 represents some of the most important milestones
reached on Computer Science that, among other things, would set up the basis of Com-
putational Logic. The Boolean algebra was introduced by George Boole [21], and its
importance lies in its application on switching circuits, as Shannon observed in 1938 [22].
Other important contributions were the Turing Machine, capable of assigning values to
symbols following a series of defined rules, or the invention of the transistor, the magnetic
core memory and the integrated circuit, basic elements that established the modern Com-
puter Science.

1854

George Boole introduced
Boolean algebra

1936
Alan Turing invented
the Turing machine

1948

John Bardeen invented
the transistor

1949
An Wang developed the
magnetic core memory

1970
J. A. Robinson introduced
the term “Computation

Logic”

1964

Gordon Moore and
Robert Noyce designed
the integrated circuit

Figure 2.1: Main milestones on Computer Science and Computational Logic

12

2.1. Software Product Lines and Variability Models

In the early 1970’s Alain Colmerauer, Philippe Roussel and Robert Kowalski conceived
Prolog [23] [24]. That was the first application of logic resolution to represent and execute
computer programs, being the origin of logic programming [25] [26].

Focussing on the Software Engineering research area, the Software Engineering Body of
Knowledge (SWEBOK) (Bourque et al. [27]) quoted its definition from the ISO/IEC/IEEE
Systems and Software Engineering Vocabulary (SEVOCAB) as “the application of a sys-
tematic, disciplined, quantifiable approach to the development, operation, and mainte-
nance of software, that is, the application of engineering software” [28]. This description
provides a framework in which well structured processes and procedures can be established
and applied on the design and development of software, following the strategy that fits
the best with the problem to deal with.

Software Engineering is a wide concept, so it is usually divided into fields known
as Knowledge Areas (KAs). However, there is not an only structuring of the matter,
each standard defining its customized parts. Serve as an example the SWEBOK (Table
I.1.) [27], that defines 15 KAs, or the Project Management Body of Knowledge (PM-
BOK) [29], which makes 10 divisions. Despite these differences, the most popular alter-
natives cover the needs of the involved actors along the software lifecycle.

2.1 Software Product Lines and Variability Models

Among all the different ramifications in that Software Engineering is divided, the present
work is focussed on the SPLs. According to Clements et al. [30], “a SPL is a set of
software-intensive systems sharing a common, managed set of features that satisfies needs
of a particular market segment or mission and that are developed from a common set of
core assets in a prescribed way”.

SPLs are particularly useful for that organizations or tasks in which the resource short-
age is pointed out as a critical factor for inclining the resolution of the projects to the suc-
cess or the failure. The Software Engineering Institute of the Carnegie Mellon University
notes in its Software Product Lines Collection [31] that the main benefits for organizations
which follow a skillfully product line implementation include:

• Improved productivity.

• Increased quality.

• Decreased cost.

• Reduced time to market.

• Ability to move into new markets quickly.

The basis of Software Product Line Engineering (SPLE) is the explicit modeling of the
commonalities and differences between product variants (Beuche et al. [32]). There are
different possibilities in order to represent that information, e.g., Feature Models or Do-
main Specific Languages (DSLs) [33].

The Institute of Electrical and Electronics Engineers (IEEE) defines a feature as “a
distinguishing characteristic of a software item (e.g., performance, portability or function-
ality)” [34]. The way of representing these features to approach to the optimal solution

13

2.1. Software Product Lines and Variability Models

for the code reusability is by the feature models and its visual notation through fea-
ture diagrams. A feature diagram is a hierarchically ordered set of features, where each
parent-child relationship is one from those described in Table 2.1 [35]. Figure 2.2 (Ar-
caini et al. [35], Section II.A) depicts a feature model representing the characteristics of
a mobile phone. According to the figure’s legend, each relationship between features can
be transformed into a logical operation [36], and the conversion to propositional logic is
shown in Table 2.1 [37] [38]. This is a key factor to be chosen as the representation of
SPLs, because having the problem described as a logic formula, allows the application of
different operations and algorithms to order the variables and simplify the problem.

Mobile Phone

Calls GPS Screen

Basic Colour High resolution Camera MP3

Media

Mandatory

Optional

Alternative

Or

Requires

Excludes

Figure 2.2: Example of a feature model

Table 2.1: Correspondence between feature relationships and propositional formulas

Relationship Propositional Logic Mapping

P

C
P ↔ C

P

C
C → P

P

C1 C2 C3

P ↔ (C1 ∨ C2 ∨ . . . ∨ Cn)

P

C1 C2 C3

C1 ↔ (¬C2 ∧ . . . ∧ ¬Cn ∧ P)) ∧
C2 ↔ (¬C1 ∧ . . . ∧ ¬Cn ∧ P)) ∧ . . . ∧
Cn ↔ (¬C1 ∧ ¬C2 ∧ . . . ∧ ¬Cn−1 ∧ P))

P C P → C

P C ¬(P ∧ C)

14

2.2. Binary Decision Diagrams and SAT-Solvers

Variability management comes into play at the search of variability between multiple
applications [39] [40] [41]. Management of variability in a product line means that all the
differences between products must be defined, represented, exploited, implemented and
evolved throughout the lifecycle of the SPLE [39].

There are different alternatives for representing feature models having in mind the vari-
ability management. One of the most extended is the FODA method, that consists in
the development of domain products widely applicable within a domain. It is reached
abstracting away those factors exclusive to an application and including them as a part of
the domain knowledge. The output of the method is a set of domain products that evolve
through applications, not being considered ends unto themselves [5]. Nowadays, one of the
most popular alternatives to this method is the Czarnecki-Eisenecker’s notation [42] [43].

There is a lot of research work in the sphere of the variability modeling [44]. Jansen et
al. [45] propose a methodology to define features at the first stages of the product’s lifecy-
cle (requirement level), defining a formal notation for expressing features and applying it
to composition problems. A similar solution can be studied in the proposal of Hendrickson
et al. [46].

2.2 Binary Decision Diagrams and SAT-Solvers

Traditionally, Boolean functions have been represented making use of different tech-
niques, propositional logic being the most broadly used [47] because of its simplicity and
flexibility. However, from the perspective of efficiency, there are better alternatives such
as BDDs or Negation Normal Forms (NNFs) [48].

BDDs were introduced by Lee [49] and Akers [50], but it was Bryant [51] who demon-
strated to the community their potential as data structures representing Boolean functions.
They have been chosen as the structure to represent feature models for some strategic rea-
sons. First of all, their ability to obtainresults more eficiently than other solutions, has
been broadly demonstrated, as several academic works reveal [52] [53] [54]. Another im-
portant characteristic of BDDs is the possibility of applying different algorithms across
the diagram, in order to get relevant information about the diagram and its features, as
will be explained later in this chapter.

A BDD is a rooted, directed, acyclic graph, where each node has two child nodes (deci-
sion nodes), called high and low child, and there are two terminal nodes: 1-terminal and
0-terminal. It is common to use the BDD term to refer to Reduced Ordered Binary Deci-
sion Diagrams (ROBDDs), which are BDDs to which reduction and ordering operations
have been applied. Reduction implies merging the isomorphic subgraphs of the complete
graph and suppressing nodes whose children are isomorphic. Ordering operation modifies
the structure until all the variables are represented in the same order on all paths, start-
ing from the root node [55] [56]. Figure 2.3 [38] shows an example of how a BDD looks like.

The ordering applied to the graph has a dramatic impact in terms of efficiency, because
it determines the size of the BDD (in addition to the proper logical function represented
by the graph). Such is the case that the number of nodes of a BDD can fluctuate from a
linear relation at the best scenario to exponential at the worst one. Figure 2.4 represents
the increment of the number of nodes of a BDD when logical expressions are added to
the diagram. If non-optimal ordering is applied to the BDD, the number of nodes grows

15

2.2. Binary Decision Diagrams and SAT-Solvers

x1

x2 x2

x3 x3

x4 x4

0 1

Decision nodes

Terminal nodes

High child

Low child

Figure 2.3: Structure of a BDD

until reaching unmanageables numbers, not being useful for practical purposes. However,
when an ordering algorithm is employed, the size of the graph keeps small enough to work
with. In the referenced example, the chosen ordering methods are sifting and random, but
any other could be applied. The problem of getting the optimal ordering is not trivial. In
fact, it is a NP-complete problem [57]. In practice, heuristics are used in order to have
convenient execution times.

Figure 2.4: Comparison of BDD ordering algorithms

The boolean SATisfiability problem (SAT) is the problem of determining the existence
of a solution that satisfies a given function. Boolean expressions are compounded by vari-
ables and logic operators (AND ∧, OR ∨, NOT ¬). A formula is satisfiable if there is a
boolean asignment of the variables which satisfies the formula.

The SAT problem is an NP-complete problem, as demonstrated in Cook’s theorem [58],

16

2.2. Binary Decision Diagrams and SAT-Solvers

and there is not a known algorithm that can reach the satisfiability of the Boolean func-
tion on a polynomial time. However, there are some restricted versions of the problem
that allow a better performance to find a solution for a given formula. One example is
the 2-satisfiability (2-SAT) problem, a version of SAT where the constraints consist of
two variables each, expressed in Conjunctive Normal Form (CNF) [59]. In addition, there
are some operations that can be solved in a satisfactory time, and considering SPL and
variability models, checking product validity is one of them [60].

BDDs are a good option to implement Boolean functions and test the satisfiability of
a formula [61]. There are some engines developed to manage BDDs, assign Boolean ex-
pressions and apply ordering algorithms. In the subsequent subsections are going to be
reviewed two of them: CUDD and BuDDy.

2.2.1 CUDD

The CUDD package [62] [63] provides functions for the manipulation of BDDs, Algebraic
Decision Diagrams (ADDs) and Zero-suppressed Binary Decision Diagrams (ZBDDs). It
is written in C, and provides a C++ wrapper.

Its main advantage is its efficiency considering memory usage and performing logical
operations between BDDs. In addition, its API is simple, and with a reduced set of in-
structions most logical operations can be carried out. Figure 2.5 shows a program that
executes the AND Boolean function, and the BDD represented is depicted in Figure 2.6.

1 int main (int argc , char *argv []) {

2 DdManager *manager = Cudd_Init(0, 0, CUDD_UNIQUE_SLOTS , CUDD_CACHE_SLOTS , 0);

3 DdNode *bdd , *x1, *x2;

4 x1 = Cudd_bddNewVar(gbm);

5 x2 = Cudd_bddNewVar(gbm);

6 bdd = Cudd_bddAnd(manager , x1 , x2);

7 Cudd_Ref(bdd);

8 Cudd_Quit(manager);

9 return 0;

10 }

Figure 2.5: Implementation of the AND function with CUDD

x1

x2

01

High child

Low child

Figure 2.6: BDD representing the AND operation

17

2.3. Synthesis of Binary Decision Diagrams

In order to perform complementation operations, it implements complement arcs. Al-
though they could simplify certain operations, these arcs add complexity because they
modify the least significant bit of the else branch pointer of each node, making a bit
harder working with pointers.

2.2.2 BuDDy

BuDDy [64] is another popular package developed in C created to check finite finite
state machines, that allows programmers to manage the complete lifecycle of BDDs. This
library stands out for its efficiency in resolving vectorized BDD operations, dynamic vari-
able reordering and garbage collection [65]. Its interface is analogous than the API of
CUDD, so most of the possible operations with BDDs could be done either one, equally.

To demonstrate the similarities between both packages, Figure 2.7 shows the implemen-
tation of the AND operation. If it is compared with Figure 2.5, the equivalence between
both versions could be verified. They have the initialization of the BDD manager, the set
of the logic values to the variables, the AND operation and the storage of the result in
another variable and the free up of the memory used by the variables and the manager.

1 int main (int argc , char *argv []) {

2 bdd x,y,z;

3 bdd_init (1000, 100);

4 bdd_setvarnum (5);

5 x = bdd_ithvar (0);

6 y = bdd_ithvar (1);

7 z = bdd_addref(bdd_apply(x, y, bddop_and));

8 bdd_delref(z);

9 bdd_done ();

10 return 0;

11 }

Figure 2.7: Implementation of the AND function with BuDDy

Unlike CUDD, BuDDy does not support other types of structures such us ADDs or
ZBDDs. In addition, the number of available dynamic ordering algorithms is lower than
the provided by CUDD1.

2.3 Synthesis of Binary Decision Diagrams

The process of building a BDD implies some actions in order to get a structure repre-
senting a Boolean function as efficient as possible. Otherwise, when the size of the diagram
is large enough, working with the BDD would result unmanageable due to the required
time to make the computations and, especially, its memory requisites.

The first step is the creation of the manager, that is, the entity which will handle the
lifecycle of the BDD, the main settings, the control of the memory and resources, etc. At
this point, and depending on the selected library, some additional parameters could be
informed, such as the initial number of nodes or the size of the cache, in order to make an
initial memory management and improve the performance of the program.

1BuDDy offers 7 heuristics, compared to the 18 implemented in CUDD.

18

2.4. Core and Dead Features

Next, Boolean variables could be added to the BDD, and moreover, the logical oper-
ations between them. In most cases, the variables and clauses must be assigned to the
diagram one by one, sequentially. As this is not practical in real programs, because the
BDDs that represent feature models have thousands of relationships, Boolean functions
are usually represented following standard formats, like CNF or Software Product Lines
Online Tools (SPLOT) [66], to be processed before loading this information to the BDD.

As explained before, ordering the BDD is crucial to be able to operate with the struc-
ture. For this reason, when the diagram is built, the final step is applying an optimal
reordering. It could be reached making use of heuristics [67], that changing the order
of the variables in the BDD comes to a simplification of the model [68]. However, as
previously mentioned, looking for the optimal ordering is not a simple task. Figure 2.8
depicts the same Boolean function, (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ (x3 ∧ y3), with a good variable
ordering (Figure 2.8a) and a bad ordering (Figure 2.8b) [68]. Even in this simple example
the importance of ordering these structures could be seen, and extrapolating to a real-life
model with thousand times the size of the shown BDD, can be understood that ordering
turns into a key concept to study about.

x1

x3

y1

0 1

x2

y2

y3

High child

Low child

(a) Good variable ordering

x1

x2 x2

x3 x3

0 1

x3x3

y1 y1 y1 y1

y2 y2

y3

(b) Bad variable ordering

Figure 2.8: Different orderings applied to the same expression

2.4 Core and Dead Features

In real feature models, features seldom have the same importance in the overall diagram.
Some features are implied in the most demanded possibilities, or are dependencies of other
important features. Moreover, there are features that are present in all the possible combi-
nations that produce a valid model, and they are called core features, whereas the ones that
are not included in any of the combinations are the dead features. The importance of this

19

2.4. Core and Dead Features

topic in the SPL is exposed in Pérez Morago et al. [69] and its referenced literature [60] [70].

The criteria to determine if a feature is core or dead is broadly demonstrated by Pérez
Morago et al. [69], and it is based on the fact that only the valid products are interesting,
that is, the paths from the root to the 1-terminal node. The implications of this affirma-
tion could be summarized on the following points ([69], Section IV-B):

1. If the 1-terminal could be reached from both high child and low child of the nodes
labelled with the feature analyzed means that it is included in some valid products,
but not in all of them, so it is not core nor dead feature.

2. If the 1-terminal is reached by the high child, but not by the low child of the nodes
labelled with the feature, all the valid products include the feature, so it is core.

3. If the 1-terminal is reached by the low child, but not by the high child of the nodes
labelled with the feature, all the paths that reach the 1-terminal node go across a
low edge, so they represent non valid models, therefore the feature is dead.

As it is exposed by Pérez Morago et al. [69], Algorithm 1 obtains the core and dead
features of a given BDD representing a variability model. It is based on updating two
arrays in order to store if the children of each node reach the 1-terminal.

Algorithm 1 get core and dead features

Input: bdd: array,
var ordering: array

Output: list with all the core features,
list with all the dead features

var: core features, dead features: list,
i: int,
through high array, through low array: array[0..n− 1] of boolean,
it reaches the 1 terminal array: array[0..m− 1] of boolean

1: begin
2: core features← []
3: dead features← []
4: through high array ← [false, false, . . . , false]
5: through low array ← [false, false, . . . , false]
6: it reaches the 1 terminal array ← [false, false, . . . , false]
7: does it reach the 1− terminal?(length(bdd)− 1, through high array,
8: through low array, it reaches the 1 terminal array)
9: for i← 0 to length(var ordering) step 1 do

10: if through high array[i] ∧ ¬through low array[i] then
11: core features.insert(var ordering[i])
12: else if ¬through high array[i] ∧ through low array[i] then
13: dead features.insert(var ordering[i])
14: end if
15: end for
16: return core features, dead features
17: end

20

2.4. Core and Dead Features

These arrays are computed with Algorithm 2. This procedure is based in Bryant’s tra-
verse function (Section 3.1) to perform operations recursively on the nodes of the BDD.
For each node, the algorithm checks if the 1-terminal node is reached.

Algorithm 2 does it reach the 1-terminal?

Input: v: index of a node in the bdd (i.e., 0..m− 1),
through high array, through low array: array[0..n− 1] of boolean,
it reaches the 1 terminal array: array[0..m− 1] of boolean

Output: true if v can reach the 1−terminal. Otherwise, it returns false
Global: through high array and through low array: array (by reference)

1: begin
2: if ¬bdd[v].mark then
3: bdd[v].mark ← true
4: // does v reach the 1-terminal through high?

5: if bdd[v].high == 1 then // 1-terminal is reached

6: through high array[bdd[v].index]← true
7: it reaches the 1 terminal array[v]← true
8: update reduced nodes(v, “high”, through high array, through low array)
9: else if bdd[v].high 6= 0 then // keep searching

10: it reaches the 1 terminal array[v]←
11: does it reach the 1− terminal?(bdd[v].high, through high array,
12: through low array, it reaches the 1 terminal array)
13: if it reaches the 1 terminal array[v] then
14: through high array[bdd[v].index]← true
15: update reduced nodes(v, “high”, through high array, through low array)
16: end if
17: end if
18: // does v reach the 1-terminal through low?

19: if bdd[v].low == 1 then // the 1-terminal is reached

20: through low array[bdd[v].index]← true
21: it reaches the 1 terminal array[v]← true
22: update reduced nodes(v, “low”, through high array, through low array)
23: else if bdd[v].low 6= 0 then // keep searching

24: it reaches the 1 terminal array[v]←
25: does it reach the 1− terminal?(bdd[v].low, through high array,
26: through low array, it reaches the 1 terminal array)
27: if it reaches the 1 terminal array[v] then
28: through low array[bdd[v].index]← true
29: update reduced nodes(v, “low”, through high array, through low array)
30: end if
31: end if
32: end if
33: return it reaches the 1 terminal array[v]
34: end

If the high terminal node is reached, Algorithm 3 is called. It updates the two auxiliary
arrays, through high array and through low array, considering those nodes that could
be suppressed from the BDD as part of the reduction process.

Once the arrays have been populated with the right values, core and dead features are

21

2.5. Feature Probabilities

Algorithm 3 update reduced vertices

Input: v: 0..m− 1,
direction: string ∈ “high”, “low”,
through high array, through low array: array[0..n− 1] of boolean

Output: through high array and through low array (by reference)
var: i: int

1: begin
2: if direction == “high” then
3: for i← bdd[v].index+ 1 to bdd[bdd[v].high].index− 1 step 1 do
4: through high array[i]← true
5: through low array[i]← true
6: end for
7: else // direction == ‘‘low’’

8: for i← bdd[v].index+ 1 to bdd[bdd[v].low].index− 1 step 1 do
9: through high array[i]← true

10: through low array[i]← true
11: end for
12: end if
13: end

identified according to two principles:

1. A feature f is core if and only if the high child reachs the 1-terminal and the low
child does not reach it.

2. A feature f is dead if and only if the high child does not reach the 1-terminal and
the low child does it.

2.5 Feature Probabilities

As it has been pointed out previously, variability models are comprised of a certain
number of features, fact that defines the size and characteristics of the BDD designed to
represent them. The importance of knowing the probability of a feature to be selected
is emphasized in Heradio et al. [71], and it includes decisions such as if a feature f1 is
selected, which other features must be selected or rejected due to their interdependencies?
Moreover, what could be the size of the product if a feature f2 is selected or not? These
are key questions, and obtaining a satisfactory answer could lead to a successful product
design or to the need for a reconsideration of the variability model.

Knowing the features’ probability of a variability model can help to make an accurate
idea of how a model is, i.e., understanding the range of the number of features needed to
obtain valid models and, linking with the previous section, what percentage of the total
amount of features are core and dead.

Algorithm 4 obtains the ratio of valid products that includes each feature [71]. This al-
gorithm mixes the node probability and the joint probabilities in what is called conditional
probability, p(Φ | n). It is the probability of a feature of being included in a result knowing

22

2.5. Feature Probabilities

that another parameter is effectively satisfied, and its value is obtained as is defined by
Equation (2.1):

p(Φ | n) =

0 if nHI = n0

1 if nHI = n1

p(Φ, nHI) + p(Φ, nHI)

2 ∗ p(nHI)
otherwise

(2.1)

being n0 and n1 the terminal nodes. This formula applies analogously for the low path,
nLO.

Algorithm 4 get feature probabilities

Input: bdd: array of nodes,
var: list of variables of the BDD

Output: array of probabilities

1: begin
2: p(bdd root)← 1/2
3: p(ni)← 0 for all nodes ni except the BDD root
4: get node pr(bdd root)

5: p(xj , Φ)← 0 for all variables xj
6: get joint pr(bdd root)

7: p(Φ)← p(n1)
8: for each xj do

9: p(xj |Φ)← p(xj , Φ)
p(Φ)

10: end for
11: return p
12: end

The probabilities p(n) and p(n) for a node n are defined as the number of paths that
go from the root to the terminal nodes by traversing n through its high and low outgo-
ing edges, respectively, divided by the total amount of paths (Heradio et al. [71], Section
III.B). The implementation of this definition can be found in Algorithm 5 and, combined
with the Bryant’s traverse method, returns the relation between each node of the BDD
and its probability to be present in a valid product.

Similarly to the concept of node probability, joint probability must be calculated to
obtain the desired probability of each feature to be present in a valid product. This joint
probability, p(x, Φ), is the number of combinations where both x and Φ are valid di-
vided by the total number of combinations. The procedure to calculate it is represented
in Algorithm 6 and, again, this algorithm relies in the Bryant’s recursive method to visit
each node and compute the result in the entirety of the BDD, making sure each node it
is visited just once, avoiding misleading conclusions.

23

2.5. Feature Probabilities

Algorithm 5 get node pr

Input: n: node of the BDD
Output: array of node probabilities (by reference)

1: begin
2: mark(n)← mark(n)
3: if n is non− terminal then
4: // explore low

5: if nLO is terminal then
6: p(nLO)← p(nLO) + p(n)
7: else
8: p(nLO)← p(nLO) + p(n)

2
9: end if

10: if mark(n) 6= mark(nLO) then
11: get node pr(nLO)
12: end if

13: // explore high

14: if nHI is terminal then
15: p(nHI)← p(nHI) + p(n)
16: else
17: p(nHI)← p(nHI) + p(n)

2
18: end if
19: if mark(n) 6= mark(nHI) then
20: get node pr(nHI)
21: end if
22: end if
23: end

24

2.5. Feature Probabilities

Algorithm 6 get joint pr

Input: n: node of the BDD
Output: array of joint probabilities (by reference)
Global:var: list of variables of the BDD (by reference)

1: begin
2: mark(n)← mark(n)
3: if n is non− terminal then
4: // explore low

5: if nLO == n0 then
6: p(Φ|n)← 0
7: else if nLO == n1 then
8: p(Φ|n)← 1
9: else

10: if mark(n) 6= mark(nLO) then
11: get joint pr(nLO)
12: end if
13: p(Φ|n)← p(Φ, nLO∨nLO)

2p(nLO)
14: end if
15: p(n,Φ)← p(Φ|n)p(n)

16: // explore high

17: if nHI == n0 then
18: p(Φ|n)← 0
19: else if nHI == n1 then
20: p(Φ|n)← 1
21: else
22: if mark(n) 6= mark(nHI) then
23: get joint pr(nHI)
24: end if
25: p(Φ|n)← p(Φ, nHI∨nHI)

2p(nHI)
26: end if
27: p(n, Φ)← p(Φ|n)p(n)

28: // combine both low and high

29: p(Φ, n ∨ n)← p(Φ, n) + p(Φ, n)
30: p(var(n), Φ)← p(var(n)) + p(n, Φ)

31: // add joint probabilities of the removed nodes

32: for each xj between var(n) and var(nHI) do

33: p(xj , Φ)← p(xj , Φ) + p(n, Φ)
2

34: end for
35: for each xj between var(n) and var(nLO) do

36: p(xj , Φ)← p(xj , Φ) + p(n, Φ)
2

37: end for
38: end if
39: end

25

2.6. Product Distribution

2.6 Product Distribution

Another important indicator of how a variability model is built is what is denominated
as product distribution (Heradio et al. [71], Section III.C). It is defined as the amount of
products that have a certain number of features, and analyzing this distribution can lead
to some relevant conclusions. There are models in which almost the totality of valid prod-
ucts can be reached selecting a minimal number of features, or models whose distribution
reveals that a very high percentage of features is necessary to get a relevant number of
satisfying solutions.

With the aim of illustrating this behaviour, serve as example Figure 2.9. The plots
depicted in Figure 2.9a and Figure 2.9b represent the product distribution of the Dell-
SPLOT [72] and EmbToolkit [73] models, respectively. The first model has 118 variables,
while the second has 2331 (Table 4.5). It shows that in the case of the DellSPLOT model,
the majority of the products are obtained making use of just a range of 14-23 features.
However, the EmbToolkit model needs near of 800 features in order to get a significant
number of valid results.

(a) DellSPLOT product distribution

(b) EmbToolkit product distribution

Figure 2.9: Different ordering applied to the same expression

Algorithm 7 shows the method suggested by Heradio et al. [71] that returns a list with
the product distribution of a given BDD. It starts by initializing that list with the cases
of n0, that represents no products at all, and n1, that is, a single product with no fea-
tures. Starting from these base cases, the algorithm calls the auxiliary function described
in Algorithm 8 making recursive iterations over the different nodes. For achieving this
behaviour, similarly the other algorithms discussed in this work, it takes advantage of the
traverse method designed by Bryant.

26

2.6. Product Distribution

Algorithm 7 product distribution

Input: bdd: array of nodes
Output: array with the product distribution
Global: var: list of variables of the BDD

1: begin
2: dist(n0)← [] // no products

3: dist(n1)← [1] // one product with no features

4: get prod dist(bdd root)
5: return dist(bdd root)
6: end

The basis of this algorithm can be summarized in the three observations pointed to by
the authors of the algorithm:

1. Including new features into all products is achieved by shifting the dist vector to the
right.

2. Combining dist vectors is accomplished by adding them.

3. Removed nodes require taking into account both previous observations, and blending
them by means of combinatorial numbers.

A mathematical proof can be found in Heradio et al. [71], Section III.C

27

2.6. Product Distribution

Algorithm 8 get prod dist

Input: n: node of the BDD,
var: list of variables of the BDD (by reference)

Output: array of distribution (by reference)
var: removedNodes: int,

lowDist: vector of int,
highDist: vector of int

1: begin
2: mark(n)← mark(n)
3: if n is non− terminal then
4: // traverse

5: if mark(n) 6= mark(nLO) then
6: get prod dist(nLO)
7: end if
8: // compute lowDist to account for the removed nodes through low

9: removedNodes← var(nLO)− var(n)− 1
10: let lowDist be a vector with removedNodes + length of dist(nLO) zeros
11: for i← 0 to removedNodes step 1 do
12: for j ← 0 to length of dist(nLO)− 1 step 1 do
13: lowDist[i+ j]← lowDist[i+ j] + dist(nLO)[j] ·

(
removedNodes

i

)
14: end for
15: end for
16: // traverse

17: if mark(n) 6= mark(nHI) then
18: get prod dist(nHI)
19: end if
20: // compute highDist to account for the removed nodes through high

21: removedNodes← var(nHI)− var(n)− 1
22: let highDist be a vector with removedNodes + length of dist(nHI) zeros
23: for i← 0 to removedNodes step 1 do
24: for j ← 0 to length of dist(nLO)− 1 step 1 do
25: highDist[i+ j]← highDist[i+ j] + dist(nHI)[j] ·

(
removedNodes

i

)
26: end for
27: end for

28: // combine low and high distributions

29: if lowDist is longer than highDist then
30: distLength← length of dist(nLO)
31: else
32: distLength← length of dist(nHI) + 1
33: end if
34: let dist(n) be a vector of length distLength filled with zeros
35: for i← 0 to length of lowDist step 1 do
36: dist(n)[i]← lowDist[i]
37: end for
38: for i← 0 to length of highDist step 1 do
39: dist(n)[i+ 1]← dist(n)[i+ 1] + highDist[i]
40: end for
41: end if
42: end

28

2.7. Uniform Random Sampling

2.7 Uniform Random Sampling

In the area of testing, an important barrier that has to be faced when a certain set
of configurations of a variability model must be checked, is the fact that the number of
variables grows exponentially as new features are added to the diagram. A good strategy
to deal with this behaviour is to sample some interesting configurations before testing over
the whole structure [74].

Currently, there are samplers that offer acceptable results [75] [76], but there is not an
optimal solution. Some of the existing options produce solutions with a poor performance,
and the faster samples generate distributions that are not guaranteed to be uniform (Plazar
et al., Section II.B [74]).

The algorithm proposed for obtaining the sample is exposed in Algorithm 9, and it
consists in a calculation of the probability of each feature to be present in a valid product
(analogous to the procedure explained in Section 2.5), and the application of a custom
method to select the presence of the features randomly, but taking into account the prob-
abilities of being selected obtained previously.

Algorithm 9 uniform sampling

Input: bdd: the BDD
Output: array of boolean that indicates the presence of each feature
var: probabilities: array of numeric

1: begin
2: probabilities← get node pr(bdd root)
3: apply custom random function making use of the probabilities array
4: return result of the previous execution
5: end

In the literature, a great variety of alternatives to generate a random sample can be
found, applying it to different reasearch topics. Muñoz et al. [77] make use of Uniform
Random Sampling (URS) into Bit-Blasted Propositional Formula (BBPF), and Oh et
al. [78] employ a technique to locate sub-optimal products in colossal spaces2.

In Section 7.1.4 of [80], Knuth showed how to accomplish uniform random sampling
by subsequently partitioning the SAT solution space on variable assignments, and then
counting the number of solutions of the resulting parts. Conceptually, the procedure
works as follows: first, the number of solutions #SAT(ϕ) of the input formula ϕ with v
variables x1, x2, . . . , xv is computed. Then, the number of solutions where x1 is true is
counted : #SAT(ϕ ∧ x1). Therefore, x1 follows a Bernoulli distribution with probabil-

ity p1 = #SAT(ϕ∧x1)
#SAT(ϕ) , and accordingly, its random assignment is generated. For instance,

imagine that x1 is assigned to false. Then, x2 would follow a Bernoulli distribution with
probability p2 = #SAT(ϕ∧x̄1∧x2)

#SAT(ϕ∧x̄1) , and it would be randomly assigned. The procedure ad-
vances until the last variable xv is assigned, and thus the random solution is completed.

The original algorithm by Knuth is specified on BDDs very efficiently, as the probabili-
ties required for all the possible SAT solutions are computed just once with a single BDD

2Here, the authors use the term colossal to refer to those random samplings with � 1060 search spaces.
For further information can be consulted Batory et al. [79].

29

2.7. Uniform Random Sampling

traversal, and then reused every time a solution is generated. Nevertheless, Knuth’s algo-
rithm can be easily adapted to SAT technology. In particular, Spur3 [81] and Smarch4 [82]
rely on a #SAT-solver named sharpSAT [83].

3https://github.com/ZaydH/spur
4https://github.com/jeho-oh/Kclause_Smarch

30

https://github.com/ZaydH/spur
https://github.com/jeho-oh/Kclause_Smarch

Chapter 3

Functional Programming on BDDs
to Support the Statistical
Reasoning on Variability Models

Once a formal contextualization of the framework in which the current work is estab-
lished has been done, a broad explanation of the technical aspects of the proposed solution
it is given in this chapter. Some design decisions have been made throughout the entire
project lifecycle, involving technologies, architecture issues and implementation matters,
according to achieve the objectives defined as much as possible with regard to reaching
satisfying results in reasonable thresholds.

Since BDDs were chosen as the structure to deal with the boolean expressions which
represent variability models, some options were considered in order to handle the informa-
tion stored efficiently and provide the solutions in an exploitable way for a further analysis.
In this sense, it is necessary to be able to operate statistically with the results provided by
the different algorithms and functions, so those languages and technologies that did not
fit with this requirement could be automatically rejected.

3.1 Traverse

The algorithms object of study in this work have something in common: they make
use of an implementation of the traverse function designed by Bryant [51]. Algorithm 10
shows Bryant’s design of the traversing method. It works with the vertex structure, as a
representation of a node, and which definition is defined as follows:

type vertex = record

low: vertex

high: vertex

index: 1..n+1

val: (0,1,X)

id: integer

mark: boolean

end

where low and high are pointers to the low and high branches of the vertex, index is the
level of the node in the BDD, val is used to difference between terminal and non-terminal
nodes, id is a unique identifier of the vertex and mark is a flag to indicate if the vertex

31

3.2. The rbdd Package

has been visited in another iteration of the algorithm.

Algorithm 10 Bryant’s traverse design

Input: v: the vertex (by reference)

1: begin
2: v.mark ← not v.mark
3: apply logic to v
4: if v.index ≤ n ∧ v is non-terminal then
5: if v.mark 6= v.low.mark then
6: traverse(v.low)
7: end if
8: if v.mark 6= v.high.mark then
9: traverse(v.high)

10: end if
11: end if
12: end

The function has to be invoked with the vertex that represents the root node of the
BDD as argument, and it iterates recursively over its children. In every iteration, the
vertex currently visited is flagged to prevent the execution of the function more than once
for each node. Over each iteration custom logic can be applied to the BDD, fact that is
leveraged to execute the proposed algorithms in the current work.

As Bryant dissects in [51] (Section 4.1), the performance of the algorithm is dependent
on the size of the BDD, so if the logic applied to each vertex requires constant time, the
complexity of the traverse algorithm is O(| G |) (G represents the graph defined by the
BDD).

Being able to use this algorithm is one of the key reasons to select BDDs as the struc-
tures for representing logic functions among other alternatives. It is easily implementable
and it allows to apply custom logic over varied nature BDDs on a uniform way.

Due to its flexibility at being adapted to solve custom problems, it is recurrent to
make use of traverse procedure in different fields such as Searching Algorithms (Jensen et
al. [84]), Number Theory (Fefferman et al. [85]) or Testing (Miczo [86]).

3.2 The rbdd Package

The developed library, that has been called rbdd, has well-defined objectives, such as
the management of the lifecycle of the BDDs, by virtue of associating logical expressions
to the diagrams and executing custom algorithms over the models. Furthermore, the com-
puted results have to be presented in a mode that allows their statistical analysis.

After evaluating the plausible alternatives, finally R was chosen, because it “provides
an environment for statistical computing and graphics” [87], something fundamental to
accomplish the goals of the project. Its power resides in the ability to compute statistical
functions along large data sets faster than other possibilities, because of being conceived

32

3.2. The rbdd Package

for that specific purpose.

3.2.1 Architecture

R supplies an ideal environment to obtain information about the execution of the algo-
rithms proposed, making comparatives and taking advantage of its graphical techniques
to extract the desired conclusions. Moreover, the platform allows to extends its capabili-
ties through additional packages, and in the same way, to develop packages implementing
custom functions that cover certain needs not included in the base distribution.

After searching for a package that provides the functionality to work with BDDs in
the Comprehensive R Archive Network (CRAN), and verifying that there is not a library
that allows to manage this kind of diagrams from the R environment, it was decided to
implement a custom package so the required operations can be achieved as it is needed to
accomplish the proposed objectives.

However, due to the nature of R of specific purpose language, there is the need to extend
its abilities combining it with another more generalist language, as could be C++. In this
sense, some functions that could be hard to implement in R, are easily developed in C++,
getting reasonable behaviour results. Thus, making use of both technologies, the benefits
of each one can be applied to the final model and obtaining a balanced solutions which
allows working with BDDs and design algorithms under a reliable environment.

The way to link R and C++ and, more importantly, to do it as transparent as possible
to the users is using an existing R package, called Rcpp [88]. This library gives to the
developers a manageable alternative to make C++ functions available from the R side, in
an R-like syntax and without a perceptible loss of performance [89].

Rcpp provides dynamic casting between R data types to C++ objects and vice versa
by means of the functions Rcpp::as<T>(obj) and Rcpp::wrap(obj), respectively [90].
Furthermore, other non-primitive data types such as vectors, lists and matrices, and even
custom classes can be passed through both languages because of the usage of the R inter-
nal pointers (SEXP) [91]. This is a key factor to accomplish the implementation of the
BDDs management library and the exposure of the functions to the R side. In addition,
the cxxfunction instruction provides a mechanism to call a C++ function from the R side,
establishing the data types conversion automatically.

Figure 3.1 [92] shows an example of how the Rcpp library works. That code imple-
ments the Gibbs Sampler [93], a Monte Carlo Markov Chain (MCMC) algorithm that
aproximates a sequence of observations from a specified multivariable probability distri-
bution [94]. It encodes the following Gibbs sampler for a bivariate distribution (Equa-
tion (3.1)):

f(x, y) = k ∗ x2 ∗ e−x∗y2−y2+2y−4x (3.1)

and the conditional distributions are (Equation (3.2) and Equation (3.3)):

33

3.2. The rbdd Package

f(x|y) = x2 ∗ e−x∗(4+y2) ## a Gamma density kernel (3.2)

f(x|y) = e−1∗(x+1)∗y2− 2∗y
x+1 ## a Gaussian kernel (3.3)

1 gibbscode <- ’

2 using namespace Rcpp;

3 // n and thin are SEXPs which the Rcpp::as function maps to C++ vars

4 int N = as<int >(n);

5 int thn = as<int >(thin);

6 int i,j;

7 NumericMatrix mat(N, 2);

8 RNGScope scope; // Initialize Random number generator

9 double x=0, y=0;

10

11 for (i=0; i<N; i++) {

12 for (j=0; j<thn; j++) {

13 x = ::Rf_rgamma (3.0 ,1.0/(y*y+4));

14 y = ::Rf_rnorm (1.0/(x+1) ,1.0/sqrt(2*x+2));

15 }

16 mat(i,0) = x;

17 mat(i,1) = y;

18 }

19

20 return mat; // Return to R

21 ’

22 # Compile and Load

23 RcppGibbs <- cxxfunction(signature(n="int", thin = "int"),

24 gibbscode , plugin="Rcpp")

Figure 3.1: Implementation of the Gibbs Sampler with Rcpp

As has been explained in the previous chapter, the libraries selected to handle the BDDs
have been CUDD and BuDDy. With the purpose of making the solution adaptable to be
extended with other managers, the C++ code has been designed as a wrapper. This ar-
chitecture has an additional advantage, since it gives an API independent of the selected
manager and provides a transparent environment. Figure 3.2 depicts the overall architec-
ture designed, and the relations between the different actors could be examined. The user
interacts with the wrapper’s exposed methods through the Rcpp facility, and depending
on the considered choice, the wrapper will call to the pertinent BDD manager functions
and returning back the result of the computations.

3.2.2 API of rbdd

The implemented methods of the rbdd package that are available from the R side can
be organized according to their goals, being organized into the categories described in the
subsequent subsections. Figure 3.3 represents the main phases of the lifecycle of a BDD,
in order to clarify the stage which the instructions apply to.

To easily identify the instructions provided by the rbdd library, all the methods start
by the bdd prefix, followed by a descriptive word(s) of the functionality implemented by
them.

34

3.2. The rbdd Package

BuDDy

CUDD

Function1 C++

Function2 C++

FunctionN C++

C++ Facade

Wrapper

Rcpp

rbdd

Figure 3.2: Architecture of the designed library

Initialization

Addition of
variables and

clauses

Application
of ordering
algorithm

Application
of custom
functions

Finalization

Figure 3.3: Lifecycle of a BDD

35

3.2. The rbdd Package

3.2.2.1 Initialization and finalization

These operations manage the main stages of the BDD lifecycle: its initialization and
what it involves: setting up auxiliary structures, memory mananagement configuration,
etc. (Table 3.1), and its finalization (Table 3.2), freeing the required resources by the dia-
gram. There is also a function that resets the manager, what means a complete return of
the manager structures to their initial states (Table 3.3).

CUDD works with an entity denominated manager [95], that is the element that assigns
the resources for each BDD, keeps the relation of variables created, and all the other pro-
cesses needed to perform the tasks related to the diagrams. These operations act directly
over this entity, creating or destroying it, just as setting an initial configuration. On the
other hand, BuDDy implements a similar concept, but in this library is called package
but, in general terms, it represents an analogous concept [96].

36

3.2. The rbdd Package

Table 3.1: bdd manager init command

bdd manager init(library, node num, cache size, bdd name)

This function creates an instance of the BDD manager. The user can choose the BDD
manager library to work with, and its possible values are “buddy” and “cudd”.

Also, the number of nodes and the size of the cache can be provided. If BuDDy is selected
as manager, these values are set as 1000, and if the manager selected is CUDD, both values
are 32 767.

Arguments:

library: (Optional) The library to use in order to implement the BDD operations.
The possible values of this argument are “buddy” or “cudd”. Any other value prompts
an error message. If this value is omitted, “cudd” manager will be chosen.

node num: (Optional) Number of nodes availables to allocate variables in the BDD.
If BuDDy is selected as BDD manager, the default value is 1000 and for CUDD its value
is 32 767.

cache size: (Optional) Size of the cache of the factory, it improves the speed of
the operations when instructions are executed repeatedly. The default value is 1000 for
BuDDy and 32 767 for CUDD.

bdd name: (Optional) Name of the BDD. It can contain letters, numbers and un-
derscore.

Returned value:

N/A.

Examples:

bdd manager init()

bdd manager init(‘‘buddy’’)

bdd manager init(‘‘cudd’’)

bdd manager init(‘‘buddy’’, 2000)

bdd manager init(‘‘cudd’’, 2000)

bdd manager init(‘‘buddy’’, 2000, 5000)

bdd manager init(‘‘cudd’’, 2000, 5000)

bdd manager init(‘‘buddy’’, 2000, 5000, ‘‘bdd 1’’)

37

3.2. The rbdd Package

Table 3.2: bdd manager quit command

bdd manager quit(bdd name)

This command finishes a BDD, liberating the memory space that it was using.

Arguments:

bdd name: (Optional) Name of the BDD.

Returned value:

N/A.

Examples:

bdd manager quit()

bdd manager quit(‘‘bdd 1’’)

Table 3.3: bdd manager reset command

bdd manager reset(bdd name)

It ends the BDD factory and starts it again with the same BDD manager that was chosen
in the bdd manager init command and the same parameters.

Arguments:

bdd name: (Optional) Name of the BDD.

Returned value:

N/A.

Examples:

bdd manager reset()

bdd manager reset(‘‘bdd 1’’)

3.2.2.2 Setting logical formulas functions

Once the BDD has been set up, it is time to populated it with a Boolean expression. To
allow this task, rbdd provides different ways. For small BDDs, probably for testing pur-
poses, the variables and clauses can be added manually, but that method is not practical
in real models. In those cases, the BDD can be build passing the information through an
input file. The ways available for adding items to the diagram are:

• Adding variables individually (Table 3.4).

• Inserting Boolean formulas manually, with the command exposed by Table 3.5.

• Declaring the logical expression in a Center of Discrete Mathematics and Theo-
retical Computer Science (DIMACS) CNF file [97] (Table 3.6). An example of a
DIMACS CNF file is provided in Figure 3.4. Basically, it is composed by optional

38

3.2. The rbdd Package

comment lines, a problem line where the number of variables and clauses that the
BDD contains is defined, and the clauses that define the logical operations between
variables. The expression encoded in the referenced example is equivalent to the
formula (x3 ∨ x2) ∧ (x1 ∨ ¬x2).

• Informing the BDD in SPLOT format [66] [98], as is shown in Table 3.7. This
method expects an eXtensible Markup Language (XML) file as input, Figure 3.5 can
be consulted as a reference of a valid example, but basically it defines two blocks, the
feature tree with the hierarchical relationship between the variables, and the clauses
section, with the Boolean operators between the previous defined variables.

1 c example.cnf

2 c

3 p cnf 3 2

4 3 2 0

5 1 -2 0

Figure 3.4: Example of a CNF file

1 <feature_model name="FeatureIDE model">

2 <feature_tree >

3 :r F_1

4 :m F_2

5 :m F_3

6 :m F_4

7 :g [1,*]

8 : F_5

9 : F_6

10 :o F_7

11 :o F_8

12 </feature_tree >

13 <constraints >

14 C1:~F_1 or F_2

15 C2:~F_3 or F_4 or F_8

16 C3:~F_5 or ~F_6 or ~F_7

17 </constraints >

18 </feature_model >

Figure 3.5: Example of a SPLOT file

39

3.2. The rbdd Package

Table 3.4: bdd new variable command

bdd new variable(variable name, var type, bdd name)

This command creates a new variable to be used for the BDD manager.

Arguments:

variable name: The name of the variable. It can only contain letters and numbers.

var type: (Optional) Type of the variable. The possible values are “boolean” and
“tristate”. The default value is “boolean”.

bdd name: (Optional) Name of the BDD.

Returned value:

Index of the variable created. It returns −1 in case of error.

Examples:

bdd new variable(‘‘x’’)

bdd new variable(‘‘x1’’, ‘‘boolean’’)

bdd new variable(‘‘x2’’, ‘‘tristate’’)

bdd new variable(‘‘x3’’, ‘‘boolean’’, ‘‘bdd 1’’)

40

3.2. The rbdd Package

Table 3.5: bdd parse boolstr command

bdd parse boolstr(expression, bdd name)

This instruction is used to populate a BDD after evaluating a logical expression.

Arguments:

expression: The expression to evaluate.

If the variables used do not exist in the factory, the method will create them. It also allows
the use of parenthesis “()” to indicate the priority of the operations.

The logical operators implemented are:

• and (“x and y”)

• or (“x or y”)

• not (“not x”)

• xor (“xor(x y)”)

• if then (“if x then y”)

• if then else (“if x then y else z”)

• implies (“x - > y”)

• equal (“x = y”)

bdd name: (Optional) Name of the BDD.

Returned value:

It returns 0 if the expression is parsed successfully, or −1 if something went wrong.

Examples:

bdd parse boolstr(‘‘x and y or (not z and x)’’)

bdd parse boolstr(‘‘x and y or (not z and x)’’, ‘‘bdd 1’’)

41

3.2. The rbdd Package

Table 3.6: bdd parse cnf command

bdd parse cnf(file, bdd name, score, window, reorder, min nodes, line length,
dyn comp)

This function allows the user to inform a BDD defined in CNF.

Arguments:

file: The BDD defined in CNF.

bdd name: (Optional) Name of the BDD.

score: (Optional) The scoring algorithm. Possible values are “none”, “perm”, “sift-
ing”, “force”, “forceblocks”, “random”, “other” and “file”. The default value is “none”.

window: (Optional) The window size when the scoring algorithm selected is “perm”.
The default value is 1.

reorder: (Optional) The reorder algorithm to apply to the constraints. The pos-
sible values are “minspan”, “minimax”, “remember” and “none”. The default value is
“minspan”.

min nodes: (Optional) Parameter to indicate the mininum number of nodes that
may exist to apply a reordering method. The default value is 100 000.

line length: (Optional) Parameter to format the output. The default value is 27.

dyn comp: (Optional) Flag to indicate if the algorithm has to calculate the connected
variables and it reorders each component individually. The default value is TRUE.

Returned value:

It returns 0 if it creates the BDD successfully, −1 otherwise.

Examples:

bdd parse cnf(‘‘cnfFile.cnf’’)

bdd parse cnf(‘‘cnfFile.cnf’’, ‘‘bdd 1’’)

bdd parse cnf(‘‘cnfFile.cnf’’, ‘‘bdd 1’’, ‘‘sifting’’)

bdd parse cnf(‘‘cnfFile.cnf’’, ‘‘bdd 1’’, ‘‘perm’’, 5)

bdd parse cnf(‘‘cnfFile.cnf’’, ‘‘bdd 1’’, ‘‘force’’, ‘‘minimax’’)

bdd parse cnf(‘‘cnfFile.cnf’’, ‘‘bdd 1’’, ‘‘other’’, ‘‘remember’’,

120000)

bdd parse cnf(‘‘cnfFile.cnf’’, ‘‘bdd 1’’, ‘‘sifting’’, ‘‘none’’,

100000, 30)

bdd parse cnf(‘‘cnfFile.cnf’’, ‘‘bdd 1’’, ‘‘sifting’’, ‘‘none’’,

100000, 30, FALSE)

42

3.2. The rbdd Package

Table 3.7: bdd parse splot command

bdd parse splot(file, bdd name, score, window, reorder, min nodes,
line length, dyn comp)

This function allows the user to inform a BDD defined in SPLOT format, in a XML file.

Arguments:

file: The BDD defined in SPLOT format.

bdd name: (Optional) Name of the BDD.

score: (Optional) The scoring algorithm. Possible values are “none”, “perm”, “sift-
ing”, “force”, “forceblocks”, “random”, “other” and “file”. The default value is “none”.

window: (Optional) The window size when the scoring algorithm selected is “perm”.
The default value is 1.

reorder: (Optional) The reorder algorithm to apply to the constraints. The pos-
sible values are “minspan”, “minimax”, “remember” and “none”. The default value is
“minspan”.

min nodes: (Optional) Parameter to indicate the mininum number of nodes that
may exist to apply a reordering method. The default value is 100 000.

line length: (Optional) Parameter to format the output. The default value is 27.

dyn comp: (Optional) Flag to indicate if the algorithm has to calculate the connected
variables and it reorders each component individually. The default value is TRUE.

Returned value:

It returns 0 if it creates the BDD successfully, −1 otherwise.

Examples:

bdd parse splot(‘‘splotFile.xml’’)

bdd parse splot(‘‘splotFile.xml’’, ‘‘bdd 1’’)

bdd parse splot(‘‘splotFile.xml’’, ‘‘bdd 1’’, ‘‘sifting’’)

bdd parse splot(‘‘splotFile.xml’’, ‘‘bdd 1’’, ‘‘perm’’, 5)

bdd parse splot(‘‘splotFile.xml’’, ‘‘bdd 1’’, ‘‘force’’, ‘‘minimax’’)

bdd parse splot(‘‘splotFile.xml’’, ‘‘bdd 1’’, ‘‘other’’, ‘‘remember’’,

120000)

bdd parse splot(‘‘splotFile.xml’’, ‘‘bdd 1’’, ‘‘sifting’’, ‘‘none’’,

100000, 30)

bdd parse splot(‘‘splotFile.xml’’, ‘‘bdd 1’’, ‘‘sifting’’, ‘‘none’’,

100000, 30, FALSE)

3.2.2.3 Ordering

It has been explained the criticality of the ordering issue in BDDs. For this reason, it
appears as an imperative necessity to provide to the developed package the mechanism

43

3.2. The rbdd Package

to afford this functionality. Despite the different managers do not implement the same
algorithms, both include the most common alternatives, and these are the set of possible
options that can be chosen when the command is used. Table 3.8 shows the details of the
function that allows to apply a reordering algorithm the diagram.

Table 3.8: bdd order command

bdd order(reorder method, bdd name)

This instruction allows to reorder the BDD depending on the method specified on the
input parameter (if it is informed).

Arguments:

reorder method: (Optional) The method for reordering the BDD. Possible values
are “none”, “window2”, “window3”, “sift” and “random”. The default value is “sift”.

bdd name: (Optional) Name of the BDD.

Returned value:

N/A.

Examples:

bdd order()

bdd order(‘‘window2’’)

bdd order(‘‘window2’’, ‘‘bdd 1’’)

3.2.2.4 I/O operations

When it is required to work with a defined benchmark where the BDDs are always
the same, can be useful exporting and importing methods to save and load the existing
structures, saving time when it would be necessary to recover them again.

For that purpose a function to save a created BDD to a file has been designed (Table 3.9)
and another to recover it when it has been previously exported (Table 3.10). CUDD uses
the DDDMP package [99] for its I/O instructions, while BuDDy implements itself that
functionality.

44

3.2. The rbdd Package

Table 3.9: bdd write command

bdd write(file name, bdd name)

Instruction to save a BDD to a file. If BuDDy is chosen as BDD manager, the output
extension is “.buddy”. If CUDD is the manager, the extension will be “.dddmp”.

The file is saved in the current R’s working directory.

Arguments:

file name: The name of the output file.

bdd name: (Optional) Name of the BDD.

Returned value:

N/A.

Examples:

bdd write(‘‘model 1’’)

bdd write(‘‘model 1’’, ‘‘bdd 1’’)

Table 3.10: bdd read command

bdd read(file name, bdd name)

Instruction to read a BDD from a file. If a name of BDD is provided, the content of the
file will be load on a BDD with that name.

Arguments:

file name: The name of the input file. The file must end in “.buddy” to store a
BuDDy BDD or in “.dddmp” to store a CUDD BDD.

bdd name: (Optional) Name of the BDD.

Returned value:

N/A.

Examples:

bdd read(‘‘buddyBDD.buddy’’)

bdd read(‘‘cuddBDD.dddmp’’)

bdd read(‘‘cuddBDD.dddmp’’, ‘‘bdd 1’’)

3.2.2.5 Applying functions to BDDs

The rbdd package has included some essential BDD functions. The interest of providing
these methods on the library lies in their frequent use when this kind of diagram is chosen
to represent Boolean expressions. These useful functions include:

• Comparison between BDDs (Table 3.11).

45

3.2. The rbdd Package

• Restriction [100] [101] [102]. This operation fixes a variable to a constant value, pro-
viding the possible solutions of the BDD considering that condition. The definition
of this function is shown in Table 3.12.

• Traverse. rbdd includes a custom implementation of Bryant’s traverse method (Ta-
ble 3.13), allowing the execution of functions defined on the R side over the BDD
nodes. Morover, this instruction entails the addition of some auxiliary functions,
for obtaining information about the BDD of the node visited in each iteration on
execution time:

– Getting a pointer to the root node of the BDD (Table 3.14).

– Checking if a node is the 0-terminal (Table 3.15).

– Checking if a node is the 1-terminal (Table 3.16).

– Getting the level of a node (Table 3.17).

– Returning the variable in a given position of the diagram (Table 3.18).

– Obtaining the children of a given node of the diagram (Table 3.19).

46

3.2. The rbdd Package

Table 3.11: bdd identical command

bdd identical(name bdd 1, name bdd 2)

This function compares two BDDs. The BDDs could be BDDs created with the
bdd manager init and populated with the bdd read or the bdd parse commands, expres-
sions which involve BDDs or in the case of the second expression, the logical constants
“true” and “false”.

The logic operations allowed between BDDs are:

• ! (“!bdd 1”)

• && (“bdd 1 && bdd 2”)

• || (“bdd 1 || bdd 2”)

• != (“bdd 1 != bdd 2”)

• == (“bdd 1 == bdd 2”)

• < (“bdd 1 < bdd 2”)

• > (“bdd 1 > bdd 2”)

Arguments:

name bdd 1: The name of the first BDD.

name bdd 2: The name of the second BDD.

Returned value:

The result of comparing the BDDs.

Examples:

bdd identical(‘‘bdd 1’’, ‘‘bdd 2’’)

bdd identical(‘‘!bdd 1 && bdd 2’’, ‘‘bdd 3’’)

bdd identical(‘‘!bdd 1’’, ‘‘true’’)

bdd identical(‘‘!bdd 1’’, ‘‘false’’)

47

3.2. The rbdd Package

Table 3.12: bdd restrict command

bdd restrict(restriction, restriction name, expression, positive form,
bdd name)

This command creates a new variable to be used for the BDD factory. It restricts the
value of a variable.

Arguments:

restriction: Name of the variable to restrict in the expression.

restriction name: The name of the variable. It can only contain letters and num-
bers.

expression: Index of the expression to apply the restriction. Only required when
the BDD manager is BuDDy.

positive form: (Optional) Indicates if the value to restrict is in its positive or
negative form.

bdd name: (Optional) Name of the BDD.

Returned value:

Index of the variable created. It returns −1 in case of error.

Examples:

bdd restrict(‘‘x’’, ‘‘bdd 1’’)

48

3.2. The rbdd Package

Table 3.13: bdd traverse command

bdd traverse(value zero, value one, function to apply, return node,
num threads, bdd name, trace)

Function that executes a R function across the BDD following the traverse algorithm. The
R function must contain 5 or 6 input args, being this condition checked (and the existence
of function in the R global environment) on execution time.

Arguments:

value zero: The value(s) of the negative path.

value one: The value(s) of the positive path.

function to apply: Name of the function to apply to the BDD.

return name: (Optional) Indicates if the node pointer is returned. The default value
is FALSE.

num threads: (Optional) The number of threads to execute the method on multi-
threading mode. The default value is 1.

bdd name: (Optional) Name of the BDD.

trace: (Optional) If it is TRUE, it prints the results of intermediate steps of the
traverse algorithm. The default value is FALSE.

Returned value:

The result of applying the traverse algorithm to the BDD.

Examples:

bdd traverse(0, 1, ‘‘Rfunction’’)

bdd traverse(c(0), c(1), ‘‘Rfunction’’, 2)

bdd traverse(c(0, 5, 4), c(1, 0, 9), ‘‘Rfunction’’)

bdd traverse(c(0, 4, 5, 1, 12), c(2, 5, 0, 3, 1), ‘‘Rfunction’’, 4,

‘‘bdd 1’’)

bdd traverse(c(0, 4, 5, 1, 12), c(2, 5, 0, 3, 1), ‘‘Rfunction’’, 4,

‘‘bdd 1’’, TRUE)

49

3.2. The rbdd Package

Table 3.14: bdd traverse root node command

bdd traverse root node(bdd name)

Function that gets the traverse root node of the BDD.

Arguments:

bdd name: (Optional) Name of the BDD.

Returned value:

The pointer to the root node.

Examples:

bdd traverse()

bdd traverse(‘‘bdd 1’’)

Table 3.15: bdd traverse is node zero command

bdd traverse is node zero(node, bdd name)

Function that checks if the given node is the 0-terminal node.

Arguments:

node: Index of the node to check.

bdd name: (Optional) Name of the BDD.

Returned value:

Result of the query.

Examples:

bdd traverse is node zero(0)

bdd traverse is node zero(0, ‘‘bdd 1’’)

50

3.2. The rbdd Package

Table 3.16: bdd traverse is node one command

bdd traverse is node one(node, bdd name)

Function that checks if the given node is the 1-terminal node.

Arguments:

node: Index of the node to check.

bdd name: (Optional) Name of the BDD.

Returned value:

Result of the query.

Examples:

bdd traverse is node one(0)

bdd traverse is node one(0, ‘‘bdd 1’’)

Table 3.17: bdd traverse get level command

bdd traverse get level(node, bdd name)

Function that returns the level in the BDD of a node.

Arguments:

node: Index of the node to compute its level.

bdd name: (Optional) Name of the BDD.

Returned value:

Level of the node.

Examples:

bdd traverse get level(0)

bdd traverse get level(0, ‘‘bdd 1’’)

51

3.2. The rbdd Package

Table 3.18: bdd traverse get var at pos command

bdd traverse get var at pos(pos, bdd name)

Function that returns the var which is in a given position.

Arguments:

pos: Position to be consulted.

bdd name: (Optional) Name of the BDD.

Returned value:

Variable that is in the position.

Examples:

bdd traverse get var at pos(0)

bdd traverse get var at pos(0, ‘‘bdd 1’’)

Table 3.19: bdd traverse get children command

bdd traverse get children(ndoe, bdd name)

Function that obtains the children of a node.

Arguments:

node: Index of the node.

bdd name: (Optional) Name of the BDD.

Returned value:

Children of the node.

Examples:

bdd traverse get children(0)

bdd traverse get children(0, ‘‘bdd 1’’)

3.2.2.6 Debugging functions

Something usual when working with BDDs is checking some parameters of the diagram
when it is built, such as the number of variables (Table 3.20) and nodes (Table 3.21) that
compound it, to have a good measure of how it grows when new variables and clauses are
added, or how it changes when different ordering algorithms are applied. Furthermore,
printing functions are provided to obtain the value of the variables (Table 3.22) and clauses
(Table 3.23) associated to the structure or even the solution of the Boolean expression that
represents the whole BDD (Table 3.24).

Some operations at manager level have been added too. Thus, it is possible to consult
if the manager has been initialized (Table 3.25) or the BDD library selected when the

52

3.2. The rbdd Package

manager has been created (Table 3.26).

Table 3.20: bdd info variable number command

bdd info variable number(bdd name)

Function that gets the number of variables of a BDD.

Arguments:

bdd name: (Optional) Name of the BDD.

Returned value:

Number of variables associated to a BDD.

Examples:

bdd info variable number()

bdd info variable number(‘‘bdd 1’’)

Table 3.21: bdd info node number command

bdd info node number(bdd name)

Function that gets the number of nodes of a BDD.

Arguments:

bdd name: (Optional) Name of the BDD.

Returned value:

Number of active nodes associated to a BDD.

Examples:

bdd info node number()

bdd info node number(‘‘bdd 1’’)

53

3.2. The rbdd Package

Table 3.22: bdd info variables command

bdd info variables(xverbose, bdd name)

This function prints a table showing the index and the content of the variables created
and returns a list with the variable list.

Arguments:

xverbose: (Optional) Flag to print the variables in the terminal. The default value
is TRUE.

bdd name: (Optional) Name of the BDD.

Returned value:

List containing the variables of the BDD.

Examples:

bdd info variables()

bdd info variables(‘‘bdd 1’’)

bdd info variables(FALSE, ‘‘bdd 1’’)

Table 3.23: bdd info boolstr command

bdd info boolstr(expression, bdd name)

With this command the content of an expression is printed.

Arguments:

expression: The index of the expression to print.

bdd name: (Optional) Name of the BDD.

Returned value:

N/A.

Examples:

bdd info boolstr(2)

bdd info boolstr(1, ‘‘bdd 1’’)

54

3.2. The rbdd Package

Table 3.24: bdd print command

bdd print(bdd name)

This instruction prints the solution of a BDD.

Arguments:

bdd name: (Optional) Name of the BDD.

Returned value:

N/A.

Examples:

bdd print()

bdd print(‘‘bdd 1’’)

Table 3.25: bdd manager is initialized command

bdd manager is initialized(bdd name)

This instruction allows to the user to know if the BDD manager has been initialized.

Arguments:

bdd name: (Optional) Name of the BDD.

Returned value:

TRUE if the factory is initialized and FALSE if it is not.

Examples:

bdd manager is initialized()

bdd manager is initialized(‘‘bdd 1’’)

55

3.2. The rbdd Package

Table 3.26: bdd info manager library command

bdd info manager library(bdd name)

This instruction returns the name of the BDD manager chosen.

Arguments:

bdd name: (Optional) Name of the BDD.

Returned value:

N/A.

Examples:

bdd info manager library()

bdd info manager library(‘‘bdd 1’’)

3.2.2.7 Customizing the environment of the BDD

At the time of the creation of a BDD, parameters as the cache ratio or the number of
nodes can be passed as argument. However, it is possible that when the BDD increased in
size those values could not be enough to contain the entire diagram. For this reasson, the
instructions described in Table 3.27 and Table 3.28 have been included in rbdd, in order
to allow increasing the size of the cache and the maximum number of nodes suitable in
the structure, respectivelly.

Table 3.27: bdd set cache ratio command

bdd set cache ratio(cache ratio, bdd name)

This instruction allows to increase the cache ratio of the BDD.

Arguments:

cache ratio: The increase to apply at the current cache ratio, used in order to
improve the speed of the execution of the operations storing them in a temporary memory.

bdd name: (Optional) Name of the BDD.

Returned value:

N/A.

Examples:

bdd set cache ratio(10)

bdd set cache ratio(10, ‘‘bdd 1’’)

56

3.2. The rbdd Package

Table 3.28: bdd set max node num command

bdd set max node num(size, bdd name)

With this command the user can modify the maximum number of nodes of the created
BDD.

Arguments:

size: The maximum number of nodes to set to the BDD factory, meaning the
number of nodes that can be allocated in the structure.

bdd name: (Optional) Name of the BDD.

Returned value:

N/A.

Examples:

bdd set max node num(100)

bdd set max node num(100, ‘‘bdd 1’’)

3.2.2.8 Algorithms implementation

Finally, an implementation of the algorithms studied in the previous chapter has been
added to the rbdd package. These functions have been added because it has been con-
sidered that the information obtained is very relevant when BDDs are used to represent
feature models in the field of SPLs. These algorithms are:

• Core and Dead (Table 3.29).

• Feature Probability (Table 3.30).

• Product Distribution (Table 3.31).

• Uniform Random Sampling (Table 3.32).

57

3.2. The rbdd Package

Table 3.29: bdd get core dead command

bdd get core dead(num threads, trace, fast, bdd name, restriction)

Function which applies the core and dead algorithm across the BDD following the traverse
algorithm.

Arguments:

num threads: (Optional) The number of threads to execute the method on multi-
threading mode. The default value is 1.

trace: (Optional) If it is TRUE, it prints the results of intermediate steps of the
traverse algorithm. The default value is FALSE.

fast: (Optional) Flag that indicates if the algorithm must be run in fast mode. The
default value is FALSE.

bdd name: (Optional) Name of the BDD.

restriction: (Optional) Restriction BDD to apply the algorithm.

Returned value:

The list with the core and dead features of the BDD.

Examples:

bdd get core dead()

bdd get core dead(1)

bdd get core dead(1, TRUE)

bdd get core dead(1, TRUE, TRUE)

bdd get core dead(1, TRUE, TRUE, ‘‘bdd 1’’)

bdd get core dead(1, TRUE, TRUE, ‘‘bdd 1’’, ‘‘restriction’’)

58

3.2. The rbdd Package

Table 3.30: bdd get var probabilities command

bdd get var probabilities(num threads, trace, fast, bdd name, restriction)

Function which applies the variables probability algorithm across the BDD following the
traverse algorithm.

Arguments:

num threads: (Optional) The number of threads to execute the method on multi-
threading mode. The default value is 1.

trace: (Optional) If it is TRUE, it prints the results of intermediate steps of the
traverse algorithm. The default value is FALSE.

fast: (Optional) Flag that indicates if the algorithm must be run in fast mode. The
default value is FALSE.

bdd name: (Optional) Name of the BDD.

restriction: (Optional) Restriction BDD to apply the algorithm.

Returned value:

The list with the probability of each variable of the BDD.

Examples:

bdd get var probabilities()

bdd get var probabilities(1)

bdd get var probabilities(1, TRUE)

bdd get var probabilities(1, TRUE, TRUE)

bdd get var probabilities(1, TRUE, TRUE, ‘‘bdd 1’’)

bdd get var probabilities(1, TRUE, TRUE, ‘‘bdd 1’’, ‘‘restriction’’)

59

3.2. The rbdd Package

Table 3.31: bdd get sat distribution command

bdd get sat distribution(num threads, trace, fast, bdd name, restriction)

Function which applies the SAT distribution algorithm across the BDD following the
traverse algorithm.

Arguments:

num threads: (Optional) The number of threads to execute the method on multi-
threading mode. The default value is 1.

trace: (Optional) If it is TRUE, it prints the results of intermediate steps of the
traverse algorithm. The default value is FALSE.

fast: (Optional) Flag that indicates if the algorithm must be run in fast mode. The
default value is FALSE.

bdd name: (Optional) Name of the BDD.

restriction: (Optional) Restriction BDD to apply the algorithm.

Returned value:

The list with the distribution of each variable of the BDD.

Examples:

bdd get sat distribution()

bdd get sat distribution(1)

bdd get sat distribution(1, TRUE)

bdd get sat distribution(1, TRUE, TRUE)

bdd get sat distribution(1, TRUE, TRUE, ‘‘bdd 1’’)

bdd get sat distribution(1, TRUE, TRUE, ‘‘bdd 1’’, ‘‘restriction’’)

60

3.2. The rbdd Package

Table 3.32: bdd get uniform random sampling command

bdd get uniform random sampling(num threads, trace, fast, bdd name, re-
striction)

Function which applies the URS algorithm across the BDD following the traverse algo-
rithm.

Arguments:

num threads: (Optional) The number of threads to execute the method on multi-
threading mode. The default value is 1.

trace: (Optional) If it is TRUE, it prints the results of intermediate steps of the
traverse algorithm. The default value is FALSE.

fast: (Optional) Flag that indicates if the algorithm must be run in fast mode. The
default value is FALSE.

bdd name: (Optional) Name of the BDD.

restriction: (Optional) Restriction BDD to apply the algorithm.

Returned value:

The list with the URS algorithm applied to the BDD.

Examples:

bdd get uniform random sampling()

bdd get uniform random sampling(1)

bdd get uniform random sampling(1, TRUE)

bdd get uniform random sampling(1, TRUE, TRUE)

bdd get uniform random sampling(1, TRUE, TRUE, ‘‘bdd 1’’)

bdd get uniform random sampling(1, TRUE, TRUE, ‘‘bdd 1’’,

‘‘restriction’’)

3.2.3 Installation an Usage of the rbdd Package

As any other R package, rbdd can be installed and loaded as follows from the R envi-
ronment:

R> install.packages(‘‘rbdd’’)

R> library(rbdd)

To work with multiple-precision numbers, the library has defined the packages gmp [103]
and Rmpfr [104] as dependencies, so they must be present for a correct installation. To
install the package from the source code, it can be compiled with the command

$ R CMD INSTALL --build rbdd

The source code not only contains the files that implements the wrapper in what consists
the library, but also the code of the C libraries that manage the BDDs, BuDDy and CUDD

61

3.2. The rbdd Package

taht is also compiled qhen the library is installed. It allows to generate shared libraries
according to the operating system and architecture where the package is being installed,
making possible to execute it in most environments without compatibility problems.

The package and its functions are documented, and this information can be checked
using the help command:

R> help(rbdd)

R> help(bdd manager init)

Consider Figure 3.6 as an example of real usage of the rbdd library. It can be observed
how some of the provided functions are utilized, in this case, for obtaining the list of
core and dead features of a BDD representing a feature model, in this case the diagram
that models the axTLS embedded Secure Sockets Layer (SSL) project [105]. The library
is loaded in line 2, and the function called in the traverse method, updateCoreDead, is
defined in line 7. Then, main function is implemented in line 38, and the first operation it
process is the load of the BDD by file, through the bdd read method, in line 40. To initilize
the structures that are going to store the flags to indicate if a feature is core or dead, it is
necessary to know how many variables has the BDD, so the bdd info variable number is
called (line 41). At this moment, the traverse call can be done to get what of the features
are core or dead, informing the name of function to execute in each node and the initial
values of the high and low paths (line 45). Finally, when the traverse method ends and the
list are fully updated with the definitive values, the BDD manager can be close releasing
the resources taken for the computations and storing the diagram. This is achieved with
the command bdd manager quit, in line 46.

The execution from R of this code would be done with the instruction

R> getCoreDead(‘‘axTLS.dddmp’’)

where “axTLS.dddmp” represents a file storing a BDD, in this case in the format of the
CUDD manager. This command would produce the following output:

R> getCoreDead(‘‘axTLS.dddmp’’)

$core

[1] 1

$dead

NULL

what represents that there is a core feature (the feature with index 1), and there is not
dead features1.

1This result concurs with the expected behaviour for the axTLS feature model, see Table 4.4.

62

3.2. The rbdd Package

1 # Loads the rbdd library

2 library(rbdd)

3

4 # Flag to show the trace in the traverse method

5 enableTrace <- FALSE

6

7 updateCoreDead <- function(plevel , tlevel , elevel , tr , er) {

8 i <- plevel + 1

9 while (i < tlevel) {

10 core[[i + 1]] <<- 0

11 dead[[i + 1]] <<- 0

12 i <- i + 1

13 }

14

15 i <- plevel + 1

16 while (i < elevel) {

17 core[[i + 1]] <<- 0

18 dead[[i + 1]] <<- 0

19 i <- i + 1

20 }

21

22 if (tr == TRUE && er == TRUE) { # Both are true

23 core[[plevel + 1]] <<- 0

24 dead[[plevel + 1]] <<- 0

25 }

26

27 if (tr == TRUE && er == FALSE) {

28 dead[[plevel + 1]] <<- 0

29 }

30

31 if (tr == FALSE && er == TRUE) {

32 core[[plevel + 1]] <<- 0

33 }

34

35 return(TRUE) # This is not the zero node.

36 }

37

38 getCoreDead <- function(bdd_file) {

39 # Creates and initializes the BDD manager from file

40 bdd_read(bdd_file)

41 numVariables <- bdd_info_variable_number ()

42 core <<- as.list(as.numeric(rep(1, length(numVariables))))

43 dead <<- as.list(as.numeric(rep(1, length(numVariables))))

44

45 bdd_traverse(FALSE , TRUE , "updateCoreDead", trace = enableTrace)

46 bdd_manager_quit()

47

48 realCore <- c()

49 realDead <- c()

50

51 for (i in 1: length(core)) {

52 if (core[[i]] == 1) {

53 realCore [[length(realCore) + 1]] <- i

54 }

55

56 if (dead[[i]] == 1) {

57 realDead [[length(realDead) + 1]] <- i

58 }

59 }

60

61 res <- list(core = realCore , dead = realDead)

62

63 return(res)

64 }

Figure 3.6: Example of usage of the rbdd package

63

3.3. Core and Dead Features

3.3 Core and Dead Features

Given a Boolean formula representing a variability model, modeled in a BDD, Algo-
rithm 11 gives the complete list of core and dead features. Despite it will be explained in
the next chapter (Section 3.1), a function called traverse is introduced. It is an implemen-
tation of the method defined by Bryant [51] and detailed in Algorithm 10. Simplifying, it
is an efficient way to apply an algorithm recursively to the BDD, monitoring if a node has
been visited, i.e., if the function has been already executed in that node and its children
nodes.

Algorithm 11 core and dead

Input: bdd: the BDD
Output: list with the name of the core features,

list with the name of the dead features
Global: core traverse: list [0..size of variables− 1] of int,

dead traverse: list [0..size of variables− 1] of int

1: begin
2: initialize core traverse and dead traverse list elems to 1
3: variables← the variable list of the bdd
4: traverse(bdd, false, true, update core dead)
5: core and dead← lists of string
6: for i← 0 to size of variables step 1 do
7: if core traverse[i] then
8: push variables[i] in core
9: end if

10: if dead traverse[i] then
11: push variables[i] in dead
12: end if
13: end for
14: return core and dead
15: end

This algorithm invokes the traverse function, in order to execute Algorithm 12 in every
node of the BDD, that is the function that checks if the current node represents a core or
a dead feature. After getting the lists of variables, they are iterated to get the name of
the variables, making easier visualization tasks.

The output of the execution are two lists, with the entirety of core and dead features,
and they could be useful to reduce the complexity of the real models, dismissing those
variables because they are not relevant for building valid configurations. This is feasible
because the fact that if core features are present in all the valid models, and dead features
never take part on them, there is no reason to include these variables in the set of combi-
nations.

64

3.4. Feature Probabilities

Algorithm 12 update core dead

Input: plevel: int,
tlevel: int,
elevel: int,
tr: boolean (by reference),
er: boolean (by reference)

Output: boolean to indicate if the node is different to zero
Global: core traverse: list [0..size of variables− 1] of int,

dead traverse: list [0..size of variables− 1] of int

1: begin
2: for i← plevel + 1 to tlevel − 1 step 1 do
3: core traverse[i]← 0
4: dead traverse[i]← 0
5: end for
6: for i← plevel + 1 to elevel − 1 step 1 do
7: core traverse[i]← 0
8: dead traverse[i]← 0
9: end for

10: if tr ∧ er then
11: core traverse[plevel]← 0
12: dead traverse[plevel]← 0
13: end if
14: if tr∧ !er then
15: dead traverse[plevel]← 0
16: end if
17: if !tr ∧ er then
18: core traverse[plevel]← 0
19: end if
20: return true
21: end

3.4 Feature Probabilities

Algorithm 13 shows the proposed procedure to get the percentage of valid products that
includes each feature and it is based on the work of Heradio et al. [71], Section III.B. To
design the algorithm, two key concepts have been considered: the node probability, p(n),
that is the number of possible paths that go from the root node of the BDD to a terminal
node passing through n divided by the total amount of paths, and the joint probabilities,
p(n,Φ) the number of paths from the root to a terminal node where two conditions are
satisfied divided by the number of possible combinations.

The algorithm first computes the variations between levels of each node and its high
and low children, in order to know what is the maximum level difference. Algorithm 14
implements that functionality, iterating over each node being called through the Bryant’s
traverse function, ensuring that every node it is visited once. The result of this algorithm
is used further as a helper structure to simplify the complexity of the arithmethic opera-
tions utilized to determine the number of viable products associated with every node of
the BDD.

Next, the number of products in which each feature is present is computed by Algo-

65

3.4. Feature Probabilities

Algorithm 13 get var probabilities

Input: bdd: the BDD
Output: list of mult. prec. float with the feature probabilities
Global: level jump: set of int

1: begin
2: traverse(bdd, −1, 0, comp level jump)
3: push 0 in level jump
4: r zero and r one← list of mult. prec. int
5: push 0 twice in r zero
6: push 1 twice in r one
7: rec res← traverse(bdd r zero, r one, up products)
8: i← 1
9: res← list [0..size of rec res − 3] of mult. prec. int

10: while i < size of rec res− 2 do
11: push rec res[i]/rec res[0] in res
12: end while
13: return res
14: end

rithm 15. It considers the possible products traversing each children and stores then in
the resulting list.

Finally, probabilities of each feature are obtained dividing the number of valid products
in which every feature is present by the total number of products. The structures defined
in the algorithm are designed to work with multiple-precision numbers, in order to keep as
decimal precision as possible. Thus, the information remains unaltered and its statistical
exploitation could redound to highly precise conclusions.

66

3.4. Feature Probabilities

Algorithm 14 comp level jump

Input: plevel: int,
tlevel: int,
elevel: int,
tr: int (by reference),
er: int (by reference)

Output: the maximum difference between node levels
Global: level jump: set of int

1: begin
2: max← −1
3: if tr > max then
4: max← tr
5: end if
6: if er > max then
7: max← er
8: end if
9: if tr 6= −1 then

10: if level jump does not contain (tlevel − plevel − 1) then
11: push tlevel − plevel − 1 in level jump
12: end if
13: if tlevel − plevel − 1 > max then
14: max← tlevel − plevel − 1
15: end if
16: end if
17: if er 6= −1 then
18: if level jump does not contain (elevel − plevel − 1) then
19: push elevel − plevel − 1 in level jump
20: end if
21: if elevel − plevel − 1 > max then
22: max← elevel − plevel − 1
23: end if
24: end if
25: if max == −1 then
26: max← 0
27: end if
28: return max
29: end

67

3.4. Feature Probabilities

Algorithm 15 up products

Input: plevel: int,
tlevel: int,
elevel: int,
tr: list of mult. prec. int (by reference),
er: list of mult. prec. int (by reference)

Output: list of mult. prec. int
Global: level jump: set of int

1: begin
2: then part and else part← 0
3: res t and res e← list of mult. prec. int
4: if tr[0] 6= 0 then
5: then part← tr[0] ∗ 2level jump[tlevel−plevel−1]

6: push then part twice in res t
7: for i← plevel + 1 to tlevel − 1 step 1 do
8: push then part/2 in res t
9: end for

10: for i← 1 to size of tr step 1 do
11: push tr[i] ∗ temp then in res t
12: end for
13: end if
14: if er[0] 6= 0 then
15: else part← er[0] ∗ 2level jump[elevel−plevel−1]

16: push else part in res e
17: push 0 in res e
18: for i← plevel + 1 to elevel − 1 step 1 do
19: push else part in res e
20: end for
21: for i← 1 to size of er step 1 do
22: push er[i] ∗ temp else in res e
23: end for
24: end if
25: if then part 6= 0 ∧ else part 6= 0 then
26: push then part+ else part in res
27: i← 1
28: while i <= size of res t− 1 do
29: push res t[i] + res e[i] in res
30: i← i+ 1
31: end while
32: return res
33: end if
34: if then part == 0 then
35: return res e
36: end if
37: return res t
38: end

68

3.5. Product Distribution

3.5 Product Distribution

The algorithm proposed to obtain the product distribution is shown in Algorithm 16.
The first step is the computation of the maximum level difference between a node and its
children and it is reached with the function defined by Algorithm 14.

Algorithm 16 get sat distribution

Input: bdd: the BDD
Output: list of mult. prec. int with the variable distribution

1: begin
2: max jump← traverse(bdd, −1, 0, comp level jump)
3: make combinations(max jump)
4: d zero and d one← list [1] of mult. prec. int
5: push 0 in d zero
6: push 1 in d one
7: return traverse(bdd, d zero, d one, dist combine)
8: end

After obtaining this value, it is utilized to calculate a 2-dimension list containing the
set of combinatorial numbers,

(
n
m

)
, where n goes from 1 to that maximum level computed

previously, and m goes from 1 to n. The procedure to calculate that list in an efficient
way is described in Algorithm 17 and the generated structure is used in the calculation
of the distribution. Again, multiple-precision arithmetic is selected to represent the num-
bers, because in real BDDs the amount of products can exceed the limit easily that native
data types support and would imply a considerable loss of precision that could affect the
conclusions extracted from the analysis of the results.

Once the combinatorial numbers have been obtained and stored to reduce the compu-
tational effort, the distribution can be calculated. Again, the traverse function is useful
to iterate over the BDD recursively, applying Algorithm 18 in each node. This algorithm
computes the different combination of nodes for each path (low and high), because this is
how the addition of features is represented mathematically (Heradio et al., Observations
in Section III.C [71]).

Each iteration in this function modifies the structure where the distribution of the
products is stored, so the list returned in the last execution contains the definitive compu-
tations. To study the distributions, it is usually to represent the figures in density plots,
as the one presented in Figure 2.9 and Figure 4.6.

69

3.5. Product Distribution

Algorithm 17 make combinations

Input: n: int
Global: combinations: list [0..n+ 1] of lists of mult. prec. int

1: begin
2: last row ← list of mult. prec. list
3: push 1 in last row
4: push last row in combinations
5: clear last row
6: push 1 twice in last row
7: push last row in combinations
8: x← 2
9: while x <= n do

10: current← list of mult. prec. int
11: last num← 0
12: k ← 0
13: while k < x/2 + 1 do
14: if k < (x− 1)/2 + 1 then
15: trav ← combinations[x− 1][k]
16: else
17: trav ← combinations[x− 1][x− 1− k]
18: end if
19: push last num+ trav in current
20: last num← trav
21: k ← k + 1
22: end while
23: push current in combinations
24: x← x+ 1
25: end while
26: end

70

3.5. Product Distribution

Algorithm 18 dist combine

Input: plevel: int,
tlevel: int,
elevel: int,
tr: list of mult. prec. int (by reference),
er: list of mult. prec. int (by reference)

Output: list [0..elevel − plevel + size of er] of mult. prec. int
Global: combinations: list [0..n+ 1] of lists of mult. prec. int

1: begin
2: initialize info dist to 0
3: if size of er 6= 1 ∨ er[0] 6= 0 then
4: for a← 0 to elevel − plevel + size of er − 1 step 1 do
5: for b← 0 to elevel − plevel − 1 step 1 do
6: if a− b >= 0 ∧ a− b < size of er then
7: if b < (elevel − plevel − 1)/2 + 1 then
8: dist← combinations[elevel − plevel − 1][b]
9: else

10: dist← combinations[elevel − plevel − 1][elevel − plevel − 1− b]
11: end if
12: dist← dist ∗ er[a− b]
13: dist← dist+ info dist[a]
14: push dist in info dist
15: end if
16: end for
17: end for
18: end if
19: if size of tr 6= 1 ∨ tr[0] 6= 0 then
20: for a← 1 to tlevel − plevel + size of tr − 1 step 1 do
21: for b← 0 to tlevel − plevel − 1 step 1 do
22: if a− b >= 0 ∧ a− b− 1 < size of tr then
23: if b < (tlevel − plevel − 1)/2 + 1 then
24: dist← combinations[tlevel − plevel − 1][b]
25: else
26: dist← combinations[tlevel − plevel − 1][tlevel − plevel − 1− b]
27: end if
28: dist← dist ∗ tr[a− b− 1]
29: dist← dist+ info dist[a]
30: push dist in info dist
31: end if
32: end for
33: end for
34: end if
35: return info dist
36: end

71

3.6. Uniform Random Sampling

3.6 Uniform Random Sampling

The proposed alternative for generating these samples is reflected in Algorithm 19. It
reads the variables associated with the BDD and obtains a list of Boolean indicators to
determine if the variable that takes up each position is present or not in the sample con-
figuration.

Algorithm 19 uniform random sampling

Input: bdd: the BDD
Output: list [0..number variables bdd] of boolean
Global: probabilities: map [0..number variables bdd] of nodes, mult. prec. float

1: begin
2: create map of probabilities
3: traverse(bdd, 0, 1, get probabilities)
4: return gen random(bdd)
5: end

It calls the auxiliary function defined in Algorithm 20, relying on the Bryant’s traverse
procedure [51], to calculate the probability of each variable to be present in the sample.
This probability is defined as is indicated in Equation (3.4):

2tlevel−plevel−1 ∗ tr
2tlevel−plevel−1 ∗ tr + 2elevel−plevel−1 ∗ er

(3.4)

where plevel is the level of the node analyzed in the current iteration, tlevel is the level
of the high child, elevel is the level of the low child, tr is the result processed by the high
path, and er is the result obtained by the low path.

Algorithm 20 get probabilities

Input: plevel: int,
tlevel: int,
elevel: int,
tr: mult. prec. int (by reference),
er: mult. prec. int (by reference),
node: current node of the bdd

Output: mult. prec. int
Global: probabilities: map [0..number variables bdd] of nodes, mult. prec. float

1: begin
2: then part← 2tlevel−plevel−1 ∗ tr
3: else part← 2elevel−plevel−1 ∗ er
4: probabilities[node]← then part/(then part+ else part)
5: return then part+ else part
6: end

Finally, once the probabilities have been obtained, Algorithm 21 goes through the BDD
nodes. To guarantee that all the variables have a value assigned, it first generates a
Boolean flag and is assigned to the list that is going to be returned as the result of the

72

3.6. Uniform Random Sampling

algorithm. Then, it visits each node of the high path from the root node of the diagram
and it updates the presence of the variables in the final result depending on a new random
value and the probabilities computed before of this variable to be selected. When the
entirety of the BDD has been visited, the solution is returned, containing the relation of
variables and if they are chosen as a uniform random sample.

Algorithm 21 gen random

Input: bdd: the BDD
Output: list [0..number variables bdd] of boolean
Global: probabilities: map [0..number variables bdd] of nodes, mult. prec. float

1: begin
2: exemplar ← list [0..number of variables of bdd] of boolean
3: initialize elems of exemplar to false
4: initialize trav to bdd root node
5: initialize one to constant 1
6: initialize zero to constant 0
7: if trav == zero then
8: return exemplar
9: end if

10: pos← 1
11: index← level of trav
12: for i← 0 to index− 1 step 1 do
13: random← generate random number
14: rand num← random/maximum value of random numbers
15: exemplar[node in pos]← rand num < 0.5
16: pos← pos+ 1
17: end for
18: while trav 6= one do
19: random← generate random number
20: rand num← random/maximum value of random numbers
21: if rand num <= probabilities[trav] then
22: trav ← then branch of trav
23: exemplar[node in pos]← true
24: pos← pos+ 1
25: else
26: exemplar[node in pos]← false
27: pos← pos+ 1
28: trav ← else branch of trav
29: end if
30: for i← index+ 1 to level of trav step i do
31: random← generate random number
32: rand num← random/maximum value of random numbers
33: exemplar[node in pos]← rand num < 0.5
34: pos← pos+ 1
35: end for
36: index← level of trav
37: end while
38: return exemplar
39: end

73

Chapter 4

Experimental Validation

To test the usefulness and performance of the functional programming extension for
BDDs this work proposes, a complete benchmark has been designed. The aim of the test
is to prove the validity of the traverse algorithm implementations not only in terms of
precision of the results but also in the reasonableness of execution time. When the size
of the BDD increases, a bad design of the algorithm can lead to extremely high latency,
giving as a result an unmanageable approach when working under real conditions.

The main purpose of this validation is, firstly, checking if the algorithms satisfy the min-
imum required conditions to consider them as a valid alternative to other known solutions
and, additionally, to get an accurate comparison between both implementations, R and
C++, in order to know in which conditions it is appropriate to utilize each one of them.

The benchmark has been executed in a 4 cores i7-6700HQ 2.60 GHz with 16 GB of
RAM, 1 TB of disk and it has been run under Ubuntu 18.04.3 LTS [106], over a 64 bits
architecture. The version of the R environment used to compile the library and to execute
the benchmark has been the 3.6.2 [107].

4.1 Designed Benchmark

To elaborate the intended benchmark, a broad set of BDDs representing variability
models and SAT problems coming from different domains (e.g., circuits) has been se-
lected. These models have been gathered from previous works in the fields such as the
studies of Heradio et al. [71] and Plazar et al. [74].

The BDDs in the bechmark are characterized in terms of their number of nodes of the
BDDs, clauses, and variables. The graph depicted in Figure 4.1 shows the relation between
the number of clauses and variables of the BDDs. The chosen sample goes from very small
diagrams with barely a couple of dozens of nodes, to the biggest with about three and a
half million, as it is represented in Figure 4.2.

Table 4.1 summarizes the descriptive statistics regarding the number of nodes of the
benchmark models to help to understand how diverse is the set of BDDs selected, some-
thing essential to get representative values and reach a valid result in the current work. The
satisfaction degree of the benchmark can be measured by paying attention to the diversity
of the elements, varying on a significant scale on the size of the components of the diagram.

74

4.1. Designed Benchmark

 107.sk_3_90
110.sk_3_88 19.sk_3_48

 35.sk_3_52 77.sk_3_44
84.sk_4_77

LargeAutomotive

0

50000

100000

150000

200000

250000

300000

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

11
00

0
12

00
0

13
00

0
14

00
0

15
00

0
16

00
0

17
00

0
18

00
0

19
00

0

#Variables

#C
la

us
es

Figure 4.1: Size, in terms of the number of variables and clauses, of the benchmark
models

0

25

50

75

100

125

150

0

50
00

00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

35
00

00
0

#BDD nodes

#M
od

el
s

Figure 4.2: BDDs by number of nodes

Table 4.1: Statistical information about the benchmark

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

27 2546 12 319 190 756 58 880 3 498 303

75

4.2. Analysis of the Results

Among the full group of diagrams, it is important to analyze a specific subset of them
made up of those representing variability models. Table 4.2 shows the information of the
variability models included in the benchmark. In the manner of the complete set of BDDs,
the selection of variability models is as wide as possible, including a spread spectrum in
terms of the main characteristics of these kinds of diagrams, such as the number of vari-
ables, clauses and nodes.

Table 4.2: Variability models included in the benchmark

Model #Variables #Clauses #BDD nodes

JHipster 45 104 113

axTLS 64 96 116

Fiasco 113 4717 229

DellSPLOT 118 2181 2144

uClibc 298 903 2935

ToyBox 544 1020 703

BusyBox 613 530 1475

EmbToolkit 2331 6437 606 522

LargeAutomotive 17 365 321 897 30 432

4.2 Analysis of the Results

In order to validate the implementation of the selected algorithms, the explained bench-
mark has been run over the versions developed in R and C++. The expected result is that
the performance in C++ should be better than the R implementation, because C++ is an
imperative language [108], closer to the machine code, and where the programmer needs
to manage the computer memory manually. In contrast, R is a functional language, more
abstract than C++, that manages the computer memory automatically [109].

To reach a reasonable accuracy in the results, the usage of an external library to pro-
vide multiple-precision arithmetic has been required. By default, both C++ and R have
a limitation on the range of numbers that can be represented by their core numeric data
types1, so for really big BDDs, in the order of thousands of nodes, that would be a real re-
striction. The library used for that purpose has been the GNU Multiple Precision (GMP)
arithmetic library, in its version for C++ [110] and R [103]. Basically, the R version is a
wrapper of the C++ one, adapting the interface to its framework, which adds latency in
the operations, making them slower than when the original library is used in C++ directly.

The usage of this library has a cost on the performance of the algorithm resolution
because of handling the arithmetic operations by the software utility, instead of solving
it by the hardware, as happens when the base integer or float data types are used. Ta-
ble 4.3 represents a comparison of the execution time and the loss of precision between
using primitive types and the GMP library in C++ when some arithmetic operations are
made (additions, subtractions, multiplications and divisions, where the magnitude of the
initial numbers is indicated in the scale column). The execution time in the case of the

1Up to 18 446 744 073 709 551 615 and 2 147 483 647, respectively.

76

4.2. Analysis of the Results

C++ primitive data types remains stable and lower than when the GMP is used, but that
is because it is always working with smaller numbers, with the consequent loss of precision
in the results computed.

Table 4.3: Comparison between hardware and software execution

Scale
Primitive types GMP library

Execution
time (ns)

Loss
precision

Execution
time (ns)

Loss
precision

106 167 0 18 236 0

109 254 1019 26 997 0

1012 164 1024 28 401 0

1015 184 1030 29 222 0

1018 187 1037 31 579 0

1021 171 1041 33 881 0

4.2.1 Core and Dead Features

The algorithm designed to obtain the core and dead features is the only one of the
presented in this work that does not depend on the use of arithmetic operations with large
precision (it can be checked on Algorithm 11), so the execution time is the lowest com-
pared with the other functions. Table 4.4 shows the execution times when the algorithm
is applied to the variability models included in the benchmark. The number of core and
dead features has been included because it helps to get a rough idea of how well is the ex-
pression represented by the BDD built, as it is deeply explained in Pérez Morago et al. [69].

Table 4.4: Core and dead execution results

Model #BDD
nodes

#Core
Features

#Dead
Features

C++ time
(seconds)

R time
(seconds)

JHipster 113 7 0 0.001992941 0.032933

axTLS 116 1 0 0.0009958744 0.03294683

Fiasco 229 0 39 ∼ 0 0.06248498

DellSPLOT 2144 1 0 0.02493596 0.158576

uClibc 2935 0 19 0.031914 0.25033

ToyBox 703 4 365 0.008975983 0.10176492

BusyBox 1475 5 20 0.01595712 0.1496

EmbToolkit 606 522 59 619 6.576404 99.29467

LargeAutomotive 30 432 1686 6 0.4757569 32.83624

Figure 4.3 depicts the linear regression model of the runtimes of both implementations
of the Core and Dead algorithm for the whole benchmark. It is clear the linear relation
between the number of nodes of the BDD and the execution time. The ratio between the
C++ version and the R implementation is 1:10, so that indicates whenever the number of
nodes increases, the R version gets worse, but it is still spending an acceptable time to

77

4.2. Analysis of the Results

obtain the solution for the largest diagrams.

time = -1.602e-02 + 1.108e-05 nodes

time = 4.409e-01 + 1.048e-04 nodes

0

50

100

150

200

250

300

350

0

50
00

00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

35
00

00
0

#BDD nodes

T
im

e
(s

ec
on

ds
)

Method C++ R

Figure 4.3: Core and dead runtimes

4.2.2 Feature Probabilities

Coming back to the subject of the analysis of the variability models included in the
benchmark, Algorithm 13 allows getting the probability of each feature to be selected,
which is an important property when a large model has to be managed.

The result of the execution of the algorithm in each variability model is represented
in Figure 4.4. It shows how some of the models have several features that will never be
included in a product (those that have a great number of features with a 0 probability
of being selected). Keeping this information in mind can lead to reduce the complexity
of the diagram, considering only the effective features and reducing the magnitude of the
problem.

Paying attention to the runtimes of the implementations of the algorithm, the differ-
ences are insignificant for those diagrams with a low density of nodes, getting the solution
in a very reasonable time for both implementations. However, when the size of the BDD
increases, that difference grows dramatically depending on the language, reaching the
R execution time up to 16 times slower than the C++ alternative. Table 4.5 exemplifies
the runtimes of the algorithm when it is executed in the C++ and R versions, and the
nodes of the BDD, making it easy to relate the evolution of the times exposed with the
size of the structures.

Comparing these times with the ones obtained in the execution of the dead and core
algorithm, the main difference resides in the fact of making use of the multiple-precision

78

4.2. Analysis of the Results

0.
00

0.
25

0.
50

0.
75

1.
00

Feature probability of being included in
a valid product

F
ea

tu
re

s'
de

ns
ity

JHipster

0.
00

0.
25

0.
50

0.
75

1.
00

Feature probability of being included in
a valid product

F
ea

tu
re

s'
de

ns
ity

axTLS

0.
00

0.
25

0.
50

0.
75

1.
00

Feature probability of being included in
a valid product

F
ea

tu
re

s'
de

ns
ity

Fiasco

0.
00

0.
25

0.
50

0.
75

1.
00

Feature probability of being included in
a valid product

F
ea

tu
re

s'
de

ns
ity

DellSPLOT

0.
00

0.
25

0.
50

0.
75

1.
00

Feature probability of being included in
a valid product

F
ea

tu
re

s'
de

ns
ity

uClibc

0.
00

0.
25

0.
50

0.
75

1.
00

Feature probability of being included in
a valid product

F
ea

tu
re

s'
de

ns
ity

ToyBox

0.
00

0.
25

0.
50

0.
75

1.
00

Feature probability of being included in
a valid product

F
ea

tu
re

s'
de

ns
ity

BusyBox

0.
00

0.
25

0.
50

0.
75

1.
00

Feature probability of being included in
a valid product

F
ea

tu
re

s'
de

ns
ity

EmbToolkit

0.
00

0.
25

0.
50

0.
75

1.
00

Feature probability of being included in
a valid product

F
ea

tu
re

s'
de

ns
ity

LargeAutomotive

Figure 4.4: Variable probabilities of the variability models

Table 4.5: Variable probabilities execution times

Model #BDD
nodes

C++ time
(seconds)

R time
(seconds)

JHipster 113 0.27145 0.403857

axTLS 116 0.26861 0.481344

Fiasco 229 0.2811849 0.7436872

DellSPLOT 2144 0.2536831 2.186338

uClibc 2935 0.760865 6.939845

ToyBox 703 0.5129941 2.957633

BusyBox 1475 0.6535871 6.123531

EmbToolkit 606 522 451.5049 7641.154

LargeAutomotive 30 432 472.8244 4680.473

79

4.2. Analysis of the Results

arithmetic operations. For the extreme cases, additions, multiplications and divisions are
made over increasing integers as long as the number of nodes grows. As a result, the final
iterations operates with really large numbers (on the order of 10180), which comes from
an important computational cost.

Furthermore, the gap between the times according to the technology can be explained
if the different memory management, data structures and the GMP library behaviour for
both environments is kept in mind.

To finish the study of the results of the feature probabilities algorithm, the general
performance of the function is depicted in Figure 4.5, where the conclusion that can be
inferred for the whole benchmark is consistent with the previous analysis of the BDDs rep-
resenting only variability models. Times for small diagrams are similar for the C++ and
R methods, but when it is needed to work with larger structures, the runtime of the R im-
plementation grows until not enough manageable thresholds.

time = 5.241 + 1.416e-04 nodes

time = 6.767e+01 + 2.433e-03 nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

50
00

00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

35
00

00
0

#BDD nodes

T
im

e
(s

ec
on

ds
)

Method C++ R

Figure 4.5: Variable probabilities runtimes

4.2.3 Product Distribution

The SAT assignments distribution, as it has been explained previously, gives a clear
image of the main structure of the BDD and the relationship between the features that
compound it. Regarding the variability models that concern the current work, the results
of applying Algorithm 16 are shown in Figure 4.6.

In light of the normal distributions obtained with these models, some facts can be de-
duced. As a generalized comment, it could be proposed that it is not usual to get products

80

4.2. Analysis of the Results

15 20 25

#Features

P
ro
du
ct
s'

de
ns
ity

JHipster

10 20 30 40

#Features

P
ro
du
ct
s'

de
ns
ity

axTLS

10 20 30

#Features

P
ro
du
ct
s'

de
ns
ity

Fiasco

14 16 18 20 22

#Features

P
ro
du
ct
s'

de
ns
ity

DellSPLOT

80 10
0

12
0

#Features

P
ro
du
ct
s'

de
ns
ity

uClibc

60 80 10
0

#Features

P
ro
du
ct
s'

de
ns
ity

ToyBox

25
0

27
5

30
0

32
5

35
0

#Features

P
ro
du
ct
s'

de
ns
ity

BusyBox

70
0

75
0

80
0

85
0

90
0

#Features

P
ro
du
ct
s'

de
ns
ity

EmbToolkit

41
00

41
50

42
00

42
50

43
00

43
50

#Features

P
ro
du
ct
s'

de
ns
ity

LargeAutomotive

Figure 4.6: SAT assignments’ distribution

with an extreme number of features, that is, with very few features or close to the total
number of them. Instead of this, the behaviour of that kind of models is that the majority
of the possible products are situated, to a greater or lesser extent, in an intermediate
rank. Even more, nearly 100% of the potential products can be obtained with a number
of features that fluctuate around 5%-20% of the total amount of the included features in
the model. An extreme case is the model represented by LargeAutomotive, because it
concentrates most of the possible products in a range of only 1% of the total number of
features that it consists of.

In terms of performance of the algorithm for both versions, Table 4.6 reflects a compar-
ative analysis, where the conclusions are concordant with those extracted for the Feature
probabilities algorithm. In this case, the differences between C++ and R are even more
pronounced, because the magnitude of the numbers and the amount and complexity of
the multiple-precision operations are greater. The management of the data structures is
another important factor in this case, especially for those diagrams with more than 1000
nodes, because the read and write operation in large lists, maps or vectors have an ad-

81

4.2. Analysis of the Results

ditional penalty in terms of latency. In Table 4.7 the operations that take more time to
be completed in the R version for the LargeAutomotive variability model are represented,
with the average time and the reference to the respective line of the algorithm presented
in Section 2.6.

Table 4.6: SAT assignments’ distribution execution times

Model #BDD
nodes

C++ time
(seconds)

R time
(seconds)

JHipster 113 0.228837 0.3736188

axTLS 116 0.209224 0.476455

Fiasco 229 0.2655621 0.7029588

DellSPLOT 2144 0.183919 2.615166

uClibc 2935 0.7653599 11.63289

ToyBox 703 0.3842249 3.791659

BusyBox 1475 0.8007441 13.7684

EmbToolkit 606 522 612.1206 21 331.26

LargeAutomotive 30 432 326.815 7748.536

Table 4.7: Most expensive operations of the Product Distribution algorithm in R

Operation Average time (seconds) Algorithm line

Multiplication mult. prec. int 4337.240 540 1 12 and 28

Addition mult. prec. int 1544.730 256 13 and 29

Storage mult. prec. int 287.5610877 14 and 30

If the runtimes of the whole benchmark are analyzed, the resulting trend is analogous
to the one obtained for the other algorithms, as Figure 4.9 shows. This is the expected
behaviour, because the specific demand for the execution of this algorithm is proportioned
for the two versions, so the regression model should be compensated.

4.2.4 Uniform Random Sampling

For the study of the results of this algorithm, the concept of goodness-of-fit will be in-
troduced. The objective of this technique is to “examine how well a sample of data agrees
with a given distribution as its population” [111]. The goodness-of-fit of a sample can be
tested by comparing each feature’s theoretical probability ft with its empirical proportion
fe obtained from the sample. This can be done with the chi-squared statistic defined by
Equation (4.1):

X2 =
∑

∀ non−dead feature i

(fti − fei)
2

fti
(4.1)

Note that dead features have fti = 0, and thus they are omitted to guarantee that
X2 is a finite number. In fact, checking the empirical frequency of dead features would

82

4.2. Analysis of the Results

time = 5.276 + 1.396e-04 nodes

time = 1.440e+02 + 4.192e-03 nodes

0

2500

5000

7500

10000

12500

15000

17500

20000

0

50
00

00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

35
00

00
0

#BDD nodes

T
im

e
(s

ec
on

ds
)

Method C++ R

Figure 4.7: SAT assignments’ distribution runtimes

be unnecessary because Knuth’s algorithm [112] ensures that all generated products are
valid, and so they do not include any dead feature. X2 has approximately the χ2 null
distribution with the number of non-dead features minus one degrees of freedom in large
samples, and thus the correspondent p-value can be calculated. If the p-value is greater
than a threshold α, then evidence supports that the sample comes from the population (α
is usually set to 0.05).

To determine the size of the sample, Cohen (Chapter 7) [113] defines the effect size
w as “the degree to which the phenomenon is present in the population” or “the degree
to which the null hypothesis is false” (w = 0.1 (small), w = 0.3 (medium), w = 0.5 (large)).

Cohen also proposes several power tables in Section 7.3 of [113] that summarizes the
dependencies among Power (β), Significance level (1-α), Effect size (w), and Sample size
(N). Having three of those parameters, the fourth one can be inferred. Table 4.8 and
Figure 4.8 show the goodness-of-fit for β = 0.05, α = 0.05, w = 0.3. For all the variability
models the result obtained is near 1, which indicates the sampling implementation gener-
ates a result that agrees successfully with the distribution of the sample.

The runtimes reflect again the connection between the number of nodes of the BDD
(its size) and the time needed to finish the computations. In this case, the times are
closest to the ones obtained in the execution of the Core and Dead algorithm, because the
mathematical operations are similar for both methods.

The same conclusion can be extrapolated for the entire benchmark, as demonstrates Fig-
ure 4.9, where the same tendency than for variability models is reproduced. The reason
for the latency of this function is it only needs to make use of less arithmetical operations

83

4.2. Analysis of the Results

Table 4.8: Uniform Random Sampling execution times

Model #BDD
nodes

#Cases
per
sample

Goodness-
of-fit
p-value

C++ time for
a single case
(seconds)

R time for
a single case
(seconds)

JHipster 113 427 0.919374 0.001994848 0.088763

axTLS 116 521 0.927117 0.00199604 0.09474707

Fiasco 229 556 0.994418 ∼ 0 0.2613189

DellSPLOT 2144 672 0.999713 0.02895284 1.590778

uClibc 2935 979 ∼ 1 0.03593993 2.339773

ToyBox 703 798 ∼ 1 0.009006977 0.5475621

BusyBox 1475 1370 ∼ 1 0.01994705 1.170869

EmbToolkit 606 522 2220 ∼ 1 7.338366 430.4086

LargeAutomotive 30 432 6591 ∼ 1 0.404907 21.94691

0

50

100

150

0.
00

0.
25

0.
50

0.
75

1.
00

p-value

F
re
qu
en
cy

Figure 4.8: Goodness-of-fit p-values. The histogram includes all models

with numbers smaller than the required in other algorithms like the ones to obtain the
feature probability or the SAT distribution.

84

4.3. Final Comments about the Experimental Validation

time = -3.733e-02 + 1.243e-05 nodes

time = -3.722 + 7.433e-04 nodes

0

500

1000

1500

2000

2500

3000

0

50
00

00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

35
00

00
0

#BDD nodes

T
im

e
(s

ec
on

ds
)

Method C++ R

Figure 4.9: Uniform Random Sampling runtimes

4.3 Final Comments about the Experimental Validation

As a summary, and once the results have been evaluated, some general considerations
can be made. Paying attention to the size of the diagram, the version chosen is not relevant
when the BDD is small. However, as the number of nodes of the BDD grows, it becomes
a critical factor. The C++ implementation is always faster because of some well-known
reason, such as the dependency with the GMP library, the size of the data structures and
the magnitude of the numbers.

The main reason to keep both versions, in spite of the differences in the performance of
the operations, it is that R, due to its functional programming nature, supports writing
algorithm prototypes much faster than C++. Moreover, there are circumstances where it
could be more interesting to make use of this implementation, because the execution time
it is not so important than the information given by R.

Finally, all the algorithms studied in this work utilize Bryant’s traverse function [51],
which is also included in the R library developed. It means that if someday there is the
need of build new algorithms which are based in that function, it could be done in R with
the current version of the wrapper, while to include the equivalent in C++ and the exposure
of the function from the library, new developments and compilations must be done.

85

Chapter 5

Conclusions and Future Work

When BDDs are selected to represent a Boolean formula and that structure, in turn, de-
picts a variability model, some observations must be considered. Firstly, due to its nature,
BDDs are a good option to encode logical expressions as a compressed representation of
relations between nodes. In addition, it is easy to subsequently extend the diagram adding
variables and clauses dynamically and, once it is built, Bryant’s traverse function allows
running custom functions in the nodes of the diagram. This feature has been demon-
strated completely fundamental working with BDDs. On the other hand, the size of the
diagram may grow exponentially if the right ordering algorithm is not applied. Another
factor to study is the BDD manager that can be used for the purpose, because obtaining
efficient implementations of the diagrams is complex and dependent on the library chosen.
Regarding the previous points, the memory needed to store the information of the nodes
that compound the diagram varies depending on the manager selected, and can be higher
than other options of representing Boolean expressions. Table 5.1 summarizes the main
advantages and disadvantages of the utilization of BDDs to reach the objectives defined
in this work.

Table 5.1: Advantages and disadvantages of using BDDs

Advantages Disadvantages

Suitable for logic expressions Extremely sensitive on the ordering

Dynamic construction of the diagram Complex efficient implementations

Bryant’s traverse function Potentially high memory cost

5.1 Conclusions

After the application of a benchmark composed of a sufficiently large number of real
feature models to the designed library, it has been demonstrated that rbdd is capable of
managing the lifecycle of a BDD successfully. rbdd provides methods to create the BDD
manager and build all the auxiliary structures efficiently, exposing initialization and final-
ization features, wrapping the load and save functions of the BuDDy and CUDD libraries,
and implementing custom CNF, SPLOT and Boolean parsers to include new variables and
clauses, and applying heuristic techniques for ordering those variables [67].

The rbdd package has been designed to be as adaptable as possible, so if according to
new requirements, additional functionalities or BDD managers are needed, it can be done

86

5.1. Conclusions

easily. The wrapper in which the architecture is based provides a flexible environment
that allows the addition of new libraries without involving changes in the defined API, as
long as those updates do not imply modifications on the signature of the operations.

The usage of this package has been proved as a valid tool to implement successfully
a variety of algorithms to analyze configurable software system models. The results ob-
tained after the execution of the operations over the proposed benchmark concur with the
anticipated from the theoretical basis and the related work.

As it was expected, among the two available implementations of the algorithms, the best
results are obtained when the execution is done using the C++ option, that is, utilizing
the specific method exposed by rbdd. That makes sense because, as it has been explained
previously, C++ is a general purpose programming language, with a more efficient man-
agement of the memory, the data structures and custom functions. However, R provides
a good environment to explore the information statistically, which helps engineers and
designers of the variability models to analyze how well is the diagram built, and under
what conditions the model should be improved.

In addition, the fact of having in rbdd a version of Bryant’s traverse algorithm gives the
opportunity of implementing other functions that could be interesting for SPL engineers
(or professionals of any other field that work with BDDs), thus covering new needs that
might appear on the market. Making use of this function can lead to new designs without
evolving the package, just encoding the functionality in R using the methods explained
for operating with BDDs.

Considering the execution times, and the performance of applying the functions over the
largest models present in the benchmark, it is revealed that the C++ implementation of the
algorithms can reach the solutions of the problems on a reasonable time, while the R ver-
sion efficiency worsens when the size of the diagram reaches medium-large values. This is
mainly because of the handling of big numbers and their application on multiple-precision
arithmetic, and the access and updating of large lists, despite of the improving process
that the code has been gone through. Therefore, for large and complicated configuration
models, the rbdd R version is more suitable for implementing algorithm prototypes that
later, once they are validated, should be encoded into C++ to achieve their full potential.

With regard to other operations of the lifecycle of the BDDs, as creating the structure,
populating the diagram with clauses and variables, consulting information such as the
number of nodes or variables that compound the BDD, etc., there is not a real difference
in terms of efficiency with the usage of the libraries directly in C or C++. The development
of these operations in rbdd has not implied much more encoding than the appropriate call
to the respective BDD manager library function, and for the most complex cases, the exe-
cution of parsers and the management of some intermediate data structure, but regardless
without a relevant deterioration of the performance.

Finally, the usefulness of the results calculated with the library has been highlighted,
with the capability to representing them into graphs and plots facilitating a deeper anal-
ysis of them. This depiction of the datasets allows understanding an information, that
otherwise, in largest models (hundreds of thousands of nodes), could not be possible to
afford through other alternatives.

87

5.2. Future Work

5.2 Future Work

In the near future, we hope this work helps to obtain efficient and maintainable algo-
rithms on BDDs. An example could be the analysis of multistate systems, proposed by
Xing et al. [114], but the specific literature is plenty of candidates to be encoded with the
designed tool.

The plots reported in Chapter 4 were been created a posteriori, once the functions re-
turned a dataset with the solution of the problem. An option to enrich the rbdd package
could be adding the automated generation of those types of plots when the execution of
the algorithms is over.

Another point to improve, as it has been discussed previously, is the performance of
the algorithms when they are implemented in R. The adaptation of the code to utilize
some functions such as those belonging to the apply family [115], that allow executing
functions over array margins. Some other advanced data structures could be taken into ac-
count to replace the standard lists and vectors included in the core environment of R [116].

The current version of the package allows the management of BDDs making use of two
libraries: BuDDy and CUDD. There are other options for creating and working with these
diagrams [117], such as CacBDD [118], Sylvan [119] or the BDD library developed by the
Carnegie Mellon University [120].

Currently, when rbdd prints a BDD through the bdd print function, it just returns the
set of valid solutions that satisfies the Boolean expression contained in the diagram, but
this is not the only way to depict a BDD. It could be returned as its graph representation,
retrieving a visual model of the relationships between the nodes or features of the dia-
gram. Figure 5.1 shows an example of the igraph package [121] [122] [123] to generate the
diagram corresponding to the EmbToolkit configuration model [71]. Furthermore, igraph
supports various analysis of interest for SPLs, such as identifying relevant features that
have high centrality, or detecting inter-feature dependency topological patterns (e.g., the
rich-club connectivity).

88

5.2. Future Work

Figure 5.1: Example of a Kconfig configuration model representation using the igraph

package

89

References

[1] C. Thörn and K. Sandkuhl, “Feature Modelling: Managing Variability in Complex
Systems,” in Complex Systems in Knowledge-based Environments: Theory, Models
and Applications (A. Tolk, ed.), vol. 168 of Studies in Computational Intelligence,
ch. 6, pp. 129 – 162, Springer Berlin Heidelberg, 2009.

[2] “Ford configurator.” https://www.ford.co.uk/cars?bnpShowroom=on. Checked:
22/05/2020.

[3] M. Z. Nezhad, D. Zhu, X. Li, K. Yang, and P. Levy, “Safs: A deep feature selec-
tion approach for precision medicine,” in 2016 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), (Shenzhen, China), pp. 501 – 506, 2016.

[4] K. Athanasopoulos, G. Theodoridis, C. Darisaplis, and I. Stamelos, “Towards a
Software System for Facilitating the Reuse of Business Processes,” in Reuse in the
Big Data Era: 18th International Conference on Software and Systems Reuse, ICSR
2019, Cincinnati, OH, USA, June 26 - 28, 2019, Proceedings (X. Peng, A. Ampat-
zoglou, and T. Bhowmik, eds.), vol. 11602 of Lecture Notes in Computer Science,
ch. 3, pp. 34 – 46, Cincinnati, USA: Springer International Publishing, 2019.

[5] K. C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,” Techni-
cal report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie-Mellon
University, November 1990.

[6] “Busybox.” https://busybox.net/. Checked: 22/05/2020.

[7] “JHipster.” https://www.jhipster.tech/. Checked: 22/05/2020.

[8] A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin, and B. Baudry, “Test
them all, is it worth it? Assessing configuration sampling on the JHipster Web
development stack,” Empirical Softwere Engineering, vol. 24, no. 2, pp. 674 – 717,
2019.

[9] D. F. Amoros, S. Bra, E. Aranda-Escolástico, and R. Heradio, “Using Extended
Logical Primitives for Efficient BDD Building,” Mathematics, vol. 8, no. 8, pp. 1 –
17, 2020.

[10] G. O’Regan, “A Short History of Logic,” in Concise Guide to Formal Methods: The-
ory, Fundamentals and Industry Applications, Undergraduate Topics in Computer
Science, ch. 5, pp. 93 – 108, Springer International Publishing, 2017.

[11] J. H. Siekmann, “Introduction - computational Logic,” in Computational Logic
(D. M. Gabbay, J. H. Siekmann, and J. Woods, eds.), vol. 9 of Handbook of the
History of Logic, ch. 1, pp. 15 – 30, North-Holland, 2014.

90

https://www.ford.co.uk/cars?bnpShowroom=on
https://busybox.net/
https://www.jhipster.tech/

References

[12] A. McGee, “Stating the Field: Institutions and Outcomes in Computer History,”
IEEE Annals of the History of Computing, vol. 34, pp. 104, 102 – 103, January
2012.

[13] “History of CASIO’s Electronic Calculator Business.” https://www.casio-intl.

com/asia/en/calc/history/. Checked: 09/04/2020.

[14] C. Lécuyer, D. C. Brock, and J. Last, “Fairchild semiconductor, silicon technology,
and military computing,” in Makers of the Microchip: A Documentary History of
Fairchild Semiconductor, The MIT Press, ch. 1, pp. 9 – 44, MIT Press, 2010.

[15] K.-S. Fu, “Learning control systems - Review and outlook,” IEEE Transactions on
Automatic Control, vol. 15, pp. 210 – 221, April 1970.

[16] F. L. Bauer, L. Bolliet, and H. J. Helms, “Software Engineering,” (Garmisch, Ger-
many), NATO Science Committee, Scientific Affairs Division, October 1968.

[17] E. Seligman, T. Schubert, and M. V. A. K. Kumar, “Formal verification: From
dreams to reality,” in Formal Verification. An Essential Toolkit for Modern VLSI
Design (E. Seligman, T. Schubert, and M. V. A. K. Kumar, eds.), ch. 1, pp. 1 – 22,
Boston: Morgan Kaufmann, 2015.

[18] E. Seligman, T. Schubert, and M. V. A. K. Kumar, “Basic formal verification al-
gorithms,” in Formal Verification. An Essential Toolkit for Modern VLSI Design
(E. Seligman, T. Schubert, and M. V. A. K. Kumar, eds.), ch. 2, pp. 23 – 47,
Boston: Morgan Kaufmann, 2015.

[19] C. Meinel and Thorsten Theobald, “Requirements on Data Structures in Formal
Circuit Verification,” in Algorithms and Data Structures in VLSI Design, ch. 5,
pp. 77 – 86, Berlin: Springer-Verlag, 1988.

[20] L. C. Paulson, “A Brief History of Formal Logic,” in Computational Logic: Its
Origins and Applications, vol. 474, pp. 3 – 5, December 2017.

[21] G. Boole, “First Principles,” in The Mathematical Analysis of Logic, ch. 2, pp. 14 –
18, Philosophical Library, 1847.

[22] C. E. Shannon, “A symbolic analysis of relay and switching circuits,” Transactions
of the American Institute of Electrical Engineers, vol. 57, no. 12, pp. 713 – 723, 1938.

[23] L. Sterling and E. Y. Shapiro, “Pure Prolog,” in The Art of Prolog: Advanced
Programming Techniques, Logic programming, ch. 6, pp. 119 – 128, MIT Press,
1994.

[24] I. Bratko, “An Overview of Prolog,” in Prolog Programming for Artificial Intelli-
gence, International computer science series, ch. 1, pp. 3 – 26, Addison Wesley,
2001.

[25] R. Kowalski, “Computational Logic,” in ESPRIT ’90 - Proceedings of the An-
nual ESPRIT Conference Brussels (Commission of the European Communities
Directorate-General for Telecommunications, ed.), pp. 768 – 769, Springer Nether-
lands, 1990.

[26] R. Kowalski, “The logic of abductive logic programming,” in Computational Logic
and Human Thinking: How to Be Artificially Intelligent, ch. A6, pp. 280 – 295,
Cambridge University Press, 2011.

91

https://www.casio-intl.com/asia/en/calc/history/
https://www.casio-intl.com/asia/en/calc/history/

References

[27] P. Bourque and R. E. Fairley, “Introduction to the Guide,” in Guide to the Software
Engineering Body of Knowledge, Version 3.0, pp. xxxi – xxxiii, IEEE Computer
Society, 2014.

[28] “IEEE Standard Glossary of Software Engineering Terminology,” (Washington, DC),
Institute of Electronical and Electronics Engineers Computer Society, 1990.

[29] Project Manager Institute, “The Role of the Project Manager,” in A Guide to the
Project Manager Body of Knowledge. PMBOK Guide R©, ch. 3, Project Manager
Institute, 6th ed., 2017.

[30] P. C. Clements and L. M. Northrop, “Basic Ideas and Terms,” in Software Product
Lines: Practices and Patterns, ch. 1, pp. 5 – 15, Adison-Wesley Proffesional, 2001.

[31] Software Engineering Institute - Carnegie Mellon University, “Software Product
Lines Collection.” https://resources.sei.cmu.edu/library/asset-view.cfm?

assetid=513819. Checked: 14/03/2020.

[32] D. Bouche and M. Dalgarno, “Software Product Line Engineering with Feature
Models,” in Methods & Tools (F. Martinig, ed.), vol. 14, (Vevey, Switzerland), pp. 9
– 17, Martinig & Associates, 2006.

[33] K. Czarnecki and U. Eisenecker, “Analysis and Design Methods and Techniques,”
in Generative Programming: Methods, Tools and Applications, pp. 17 – 59, Adison-
Wesley, 2000.

[34] Institute of Electrical and Electronics Engineers, 829-2008 - IEEE Standard for
Software and System Test Documentation. 2008.

[35] P. Arcaini, A. Gargantini, and P. Vavassori, “Generating Tests for Detecting Faults
in Feature Models,” 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation, ICST 2015 - Proceedings, pp. 1 – 10, May 2015. Graz,
Austria.

[36] K. Czarnecki and A. Wasowski, “Feature Diagrams and Logics: There and Back
Again,” in 11th International Software Product Line Conference (SPLC 2007), (Ky-
oto, Japan), pp. 23 – 34, September 2007.

[37] R. Lopez-Herrejon and A. Egyed, “Detecting Inconsistencies in Multi-View Models
with Variability,” in ECMFA 2010: Modelling Foundations and Applications, (Paris,
France), pp. 217 – 232, June 2010.

[38] S. Bra, R. Heradio, and D. Fernández, “Extending the R programming language to
create and manage Boolean models encoded as BDDs,” Master’s thesis, Universidad
Nacional de Educación a Distancia, Madrid, Spain, June 2017.

[39] L. Chen and M. A. Babar, “Variability Management in Software Product Lines: An
Investigation of Contemporary Industrial Challenges,” in Software Product Lines:
Going Beyond (J. Bosch and J. Lee, eds.), (Berlin, Heidelberg), pp. 166 – 180,
Springer Berlin Heidelberg, 2010.

[40] A. Santos, K. Koskimies, and A. Lopes, “A Model-Driven Approach to Variability
Management in Product-Line Engineering.,” Nordic Journal of Computing, vol. 13,
pp. 196 – 213, January 2006.

92

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819

References

[41] K. C. Kang and H. Lee, “Variability Modeling,” in Systems and Software Variability
Management. Concepts, Tools and Experiences (R. Capilla, J. Bosch, and K. C.
Kang, eds.), ch. 2, pp. 25 – 42, Springer-Verlag Berlin Heidelberg, 2013.

[42] K. Czarnecki, Simon Helsen, and Ulrich Eisenecker, “Staged Configuration Using
Feature Models,” technical report, University of Waterloo and University of Applied
Sciences Kaiserlautern, 2004.

[43] M. Šipka, “Exploring the Commonality in Feature Modeling Notations,” technical
report, Slovak University of Technology, 2005.

[44] J. Shi, “Use of Constraint Solving for Testing Software Product Lines,” Computer
Science and Engineering: Theses, Dissertations, and Student Research, pp. 41 – 48,
December 2011.

[45] A. Jansen, R. Smedinga, J. van Gurp, and J. Bosch, “Feature-Based Product Deriva-
tion: Composing Features,” IEE Proceedings Software, vol. 151, pp. 187 – 197, Au-
gust 2004.

[46] S. A. Hendrickson and A. van der Hoek, “Modeling Product Line Architectures
through Change Sets and Relationships,” in 29th International Conference on Soft-
ware Engineering (ICSE’07), (Minneapolis, USA), pp. 189 – 198, 2007.

[47] M. Makkai, C. C. Chang, and H. J. Keisler, “Model Theory,” Journal of Symbolic
Logic, vol. 56, pp. 1096 – 1097, September 1991.

[48] A. Degtyarev and A. Voronkov, “The Inverse Method,” in Handbook of Automated
Reasoning (A. Robinson and A. Voronkov, eds.), Handbook of Automated Reason-
ing, ch. 4, pp. 179 – 272, Amsterdam: North-Holland, 2001.

[49] C. Y. Lee, “Representation of Switching Circuits by Binary-Decision Programs,”
The Bell System Technical Journal, vol. 38, pp. 985 – 999, July 1959.

[50] S. B. Akers, “Binary Decision Diagrams,” IEEE Transactions on Computers, vol. C-
27, pp. 509 – 516, June 1978.

[51] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” re-
search note, California Institute of Technology and Carnegie-Mellon University, Au-
gust 1986.

[52] S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision diagram with at-
tributed edges for efficient Boolean function manipulation,” in 27th ACM/IEEE
Design Automation Conference, (Orlando, USA), pp. 52 – 57, June 1990.

[53] Y. Mo, F. Zhong, H. Liu, Q. Yang, and G. Cui, “Efficient Ordering Heuristics
in Binary Decision Diagram-based Fault Tree Analysis,” Quality and Reliability
Engineering International, vol. 29, no. 3, pp. 307 – 315, 2013.

[54] L. Xing, “An Efficient Binary-Decision-Diagram-Based Approach for Network Reli-
ability and Sensitivity Analysis,” IEEE Transactions on Systems, Man, and Cyber-
netics - Part A: Systems and Humans, vol. 38, pp. 105 – 115, January 2008.

[55] H. R. Andersen, “An Introduction to Binary Decision Diagrams,” lecture notes,
Department of Information Technology, Technical University of Denmark, October
1997.

93

References

[56] R. E. Bryant, “Binary Decision Diagrams,” in Handbook of Model Checking (E. M.
Clarke, T. A. Henzinger, H. Veith, and R. Bloem, eds.), ch. 7, pp. 191 – 217, Cham:
Springer International Publishing, 2018.

[57] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs is NP-
complete,” IEEE Transactions on Computers, vol. 45, pp. 993 – 1002, September
1996.

[58] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC ’71, (New York,
NY, USA), pp. 151 – 158, Association for Computing Machinery, 1971.

[59] S. Prestwich, “CNF Encodings,” in Handbook of Satisfiability (A. Biere, M. Heule,
H. van Maaren, and T. Walsh, eds.), Frontiers in Artificial Intelligence and Appli-
cations, ch. 2, pp. 75 – 97, IOS Press, 2009.

[60] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of feature models
20 years later: A literature review,” Information systems, vol. 35, no. 6, pp. 615 –
636, 2010.

[61] S. Reda, R. Drechsler, and A. Orailoglu, “On the Relation between SAT and BDDs
for Equivalence Checking,” in Proceedings International Symposium on Quality Elec-
tronic Design, (San Jose, USA), pp. 394 – 399, March 2002.

[62] “CUDD Tutorials.” https://davidkebo.com/cudd. Checked: 18/03/2020.

[63] F. Somenzi, “CUDD: CU Decision Diagram Package Release 3.0.0,” research note,
Department of Electrical, Computer and Energy Engineering, University of Colorado
at Boulder, December 2015.

[64] “BuDDy: A BDD package.” http://buddy.sourceforge.net/manual/. Checked:
20/03/2020.

[65] T. van Dijk, E. M. Hahn, D. N. Jansen, Y. Li, T. Neele, M. Stoelinga, A. Turrini,
and L. Zhang, “A Comparative Study of BDD Packages for Probabilistic Symbolic
Model Checking,” research note, University of Twente, Formal Methods & Tools,
Enschede, The Netherlands, State Key Laboratory of Computer Science, Institute
of Software, CAS, Beijing, China and Radboud Universiteit, Model-Based System
Development, Nijmegen, The Netherlands, October 2015.

[66] M. Mendonça, M. Branco, and D. Cowan, “S.P.L.O.T.: Software Product Lines
Online Tools,” in Proceedings of the 24th ACM SIGPLAN Conference Companion
on Object Oriented Programming Systems Languages and Applications, OOPSLA
’09, (Orlando, Florida, USA), pp. 761 – 762, ACM, 2009.

[67] N. Narodytska and Toby Walsh, “Constraint and Variable Ordering Heuristics for
Compiling Configuration Problems,” International Joint Conference on Artificial
Intelligence, no. 7, pp. 149 – 154, 2006.

[68] P. Kissmann and J. Hoffmann, “BDD Ordering Heuristics for Classical Planning,”
research note, Saarland University, Saarbrücken, Germany, December 2014.

[69] H. Pérez Morago, R. Heradio, D. Fernández Amorós, R. Bean, and C. Cerrada, “Effi-
cient Identification of Core and Dead Features in Variability Models,” research note,
Department of Software Engineering and Computer Systems, Universidad Nacional
de Educación a Distancia, November 2015.

94

https://davidkebo.com/cudd
http://buddy.sourceforge.net/manual/

References

[70] R. Heradio-Gil, D. Fernandez-Amoros, J. A. Cerrada, and C. Cerrada, “Supporting
commonality-based analysis of software product lines,” IET software, vol. 5, no. 6,
pp. 496 – 509, 2011.

[71] R. Heradio, D. Fernandez-Amoros, C. Dorn, and A. Egyed, “Supporting the Statis-
tical Analysis of Variability Models,” in 41st ACM/IEEE International Conference
on Software Engineering (ICSE), (Montreal, Canada), May 2019.

[72] A. Nöhrer and A. Egyed, “C2O configurator: A tool for guided decision-making,”
Automated Software Engineering, vol. 20, pp. 265 – 296, June 2013.

[73] “EmbToolkit - Companion for your embedded system firmware.” https://www.

embtoolkit.org/. Checked: 04/04/2020.

[74] Q. Plazar, M. Acher, G. Perrouin, X. Devroey, and M. Cordy, “Uniform Sam-
pling of SAT Solutions for Configurable Systems: Are We There Yet?,” in 2019
12th IEEE Conference on Software Testing, Validation and Verification (ICST),
(Shaanxi, China), pp. 240 – 251, April 2019.

[75] S. Chakraborty, K. Meel, and M. Vardi, “A Scalable and Nearly Uniform Generator
of SAT Witnesses,” in Computer Aided Verification. CAV 2013 (N. Sharygina and
H. Veith, eds.), vol. 8044 of Lecture Notes in Computer Science, (Saint Petersburg,
Russia), pp. 608 – 623, April 2013.

[76] W. Wei, J. Erenrich, and B. Selman, “Towards Efficient Sampling: Exploiting Ran-
dom Walk Strategies,” AAAI’04: Proceedings of the 19th national conference on
Artifical intelligence, pp. 670 – 676, July 2004.

[77] D. J. Muñoz Guerra, J. Oh, M. Pinto, L. Fuentes, and D. Batory, “Uniform Ran-
dom Sampling Product Configurations of Feature Models That Have Numerical Fea-
tures,” in 23rd International Systems and Software Product Line Conference, (Paris,
France), pp. 1 – 13, September 2019.

[78] J. Oh, D. Batory, M. Myers, and N. Siegmund, “Finding Near-Optimal Configura-
tions in Product Lines by Random Sampling,” in 11th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, (Paderborn, Germany), pp. 61 – 71, August 2017.

[79] D. S. Batory, J. Oh, and M. Myers, “Percentile Calculations for Randomly Search-
ing Colossal Product Spaces,” research note, Department of Computer Science -
University of Austin, Texas, 2018.

[80] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise
Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Professional,
2009.

[81] D. Achlioptas, Z. S. Hammoudeh, and P. Theodoropoulos, “Fast Sampling of Per-
fectly Uniform Satisfying Assignments,” in 21st International Conference on Theory
and Applications of Satisfiability Testing (SAT), (Oxford, UK), pp. 135 – 147, 2018.

[82] J. Oh, P. Gazzillo, and D. Batory, “t-wise Coverage by Uniform Sampling,” in 23rd
International Systems and Software Product Line Conference (SPLC), (New York,
NY, USA), pp. 84 – 87, ACM, 2019.

[83] M. Thurley, “sharpSAT - Counting Models with Advanced Component Caching
and Implicit BCP,” in 9th International Conference on Theory and Applications of
Satisfiability Testing (SAT), (Seattle, WA, USA), pp. 424 – 429, 2006.

95

https://www.embtoolkit.org/
https://www.embtoolkit.org/

References

[84] R. M. Jensen, R. E. Bryant, and M. M. Veloso, “An Efficient BDD-Based A* Algo-
rithm,” technical report, Computer Science Department, Carnegie-Mellon Univer-
sity, January 2002.

[85] C. L. Fefferman and L. A. Seco, “Number Theory and Atomic Densities,” in Emerg-
ing Applications of Number Theory (D. Hejnar, J. Friedman, M. Gutzwiller, and
A. Odlyzko, eds.), vol. 109, ch. 8, pp. 205 – 218, New York: Springer, January 1999.

[86] A. Miczo, “Automatic Test Pattern Generation,” in Digital Logic Testing and Sim-
ulation, ch. 4, pp. 165 – 231, New Jersey: Wiley-Interscience, 2nd ed., 2003.

[87] “The R Project for Statistical Computing.” https://www.r-project.org/.
Checked: 12/01/2020.

[88] “CRAN - Package Rcpp.” https://cran.r-project.org/web/packages/Rcpp/.
Checked: 18/01/2020.

[89] D. Eddelbuettel, “C++ for R Programmers,” in Seamless R and C++ Integration
with Rcpp, ch. 13, pp. 195 – 205, New York: Springer, 2013.

[90] D. Eddelbuettel and R. François, “Rcpp Extending,” release notes, November 2019.

[91] “R Internals.” https://cran.r-project.org/doc/manuals/r-release/R-ints.

html. Checked: 25/01/2020.

[92] “Dirk Eddelbuettel - MCMC and faster Gibbs Sampling using Rcpp.” http://dirk.

eddelbuettel.com/blog/2011/07/14/. Checked: 13/04/2020.

[93] E. I. George, G. Casella, and E. I. George, “Explaining the Gibbs Sampler,” The
American Statistician, vol. 46, no. 3, pp. 167 – 174, 1992.

[94] B. A. Berg, “Markov Chain Monte Carlo,” in Markov Chain Monte Carlo Simula-
tions and Their Statistical Analysis: With Web-Based Fortran Code, ch. 3, pp. 128
– 195, World Scientific, 2004.

[95] “CUDD 3.0.0 - DdManager Struct Reference.” https://add-lib.scce.info/

assets/doxygen-cudd-documentation/structDdManager.html. Checked:
15/04/2020.

[96] “BuDDy - bdd init command.” http://buddy.sourceforge.net/manual/group_

_kernel_g77facd4e5f592e01bb64205a66aabaf3.html. Checked: 15/04/2020.

[97] Center of Discrete Mathematics and Theorical Computer Science (DIMACS), “Sat-
isfiability Suggested Format,” technical report, May 1993.

[98] “S.P.L.O.T..” http://www.splot-research.org/. Checked: 15/04/2020.

[99] “Tools - The DDDMP package.” http://fmgroup.polito.it/quer/research/

tool/tool.htm. Checked: 17/04/2020.

[100] Y. Hong, P. Beerel, J. Burch, and K. McMillan, “Sibling-substitution-based BDD
minimization using don’t cares,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 19, pp. 44 – 55, January 2000.

[101] Y. Hong, P. Beerel, J. Burch, and K. McMillan, “Safe BDD minimization using don’t
cares,” in DAC ’97: Proceedings of the 34th annual Design Automation Conference,
(Anaheim, USA), pp. 208 – 213, June 1997.

96

https://www.r-project.org/
https://cran.r-project.org/web/packages/Rcpp/
https://cran.r-project.org/doc/manuals/r-release/R-ints.html
https://cran.r-project.org/doc/manuals/r-release/R-ints.html
http://dirk.eddelbuettel.com/blog/2011/07/14/
http://dirk.eddelbuettel.com/blog/2011/07/14/
https://add-lib.scce.info/assets/doxygen-cudd-documentation/structDdManager.html
https://add-lib.scce.info/assets/doxygen-cudd-documentation/structDdManager.html
http://buddy.sourceforge.net/manual/group__kernel_g77facd4e5f592e01bb64205a66aabaf3.html
http://buddy.sourceforge.net/manual/group__kernel_g77facd4e5f592e01bb64205a66aabaf3.html
http://www.splot-research.org/
http://fmgroup.polito.it/quer/research/tool/tool.htm
http://fmgroup.polito.it/quer/research/tool/tool.htm

References

[102] W. A. Hunt and F. Somenzi, “Rabbit: A Tool for BDD-Based Verification of Real-
Time Systems,” in Computer Aided Verification: 15th International Conference,
CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, Lecture Notes in Com-
puter Science, (Boulder, Colorado, USA), pp. 122 – 125, Springer Berlin Heidelberg,
2003.

[103] “GMP: Multiple Precision Arithmetic.” https://cran.r-project.org/web/

packages/gmp/index.html. Checked: 30/12/2019.

[104] “R MPFR: Multiple Precision Floating-Point Reliable.” https://cran.r-project.

org/web/packages/Rmpfr/index.html. Checked: 18/04/2020.

[105] “axTLS Embedded SSL.” http://axtls.sourceforge.net/. Checked:
18/04/2020.

[106] “Ubuntu Release Notes.” https://wiki.ubuntu.com/BionicBeaver/

ReleaseNotes. Checked: 28/12/2019.

[107] “Changes in R 3.6.2.” https://cloud.r-project.org/. Checked: 28/12/2019.

[108] “Standard C++.” https://isocpp.org/. Checked: 30/12/2019.

[109] D. Dalpiaz, “Applied statistics with R,” technical report, University of Illinois, Oc-
tober 2019.

[110] “GMP Library.” https://gmplib.org/. Checked: 30/12/2019.

[111] R. B. D’Agostino, Goodness-of-Fit Techniques. CRC Press, 1986.

[112] D. E. Knuth, The Art of Computer Programming, vol. 2. Addison-Wesley Longman,
3rd ed., 1997.

[113] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Routledge, 1988.

[114] L. Xing and Y. S. Dai, “A New Decision-Diagram-Based Method for Efficient Anal-
ysis on Multistate Systems,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 6, no. 3, pp. 161 – 174, 2009.

[115] “RDocumentation - apply.” https://www.rdocumentation.org/packages/base/

versions/3.6.2/topics/apply. Checked: 02/05/2020.

[116] H. Wickham, Advanced R, Second Edition. Chapman & Hall/CRC The R Series,
CRC Press, 2019.

[117] T. van Dijk, E. Hahn, D. Jansen, Y. Li, T. Neele, M. Stoelinga, A. Turrini, and
L. Zhang, “A Comparative Study of BDD Packages for Probabilistic Symbolic Model
Checking,” vol. 9409, pp. 35 – 51, November 2015.

[118] G. Lv, K. Su, and Y. Xu, “CacBDD: a BDD Package with Dynamic Cache Man-
agement,” in Proceedings of the 25th International Conference on Computer Aided
Verification, vol. 8044, (Saint Petersburg, Russia), pp. 229 – 234, July 2013.

[119] T. van Dijk and J. van de Pol, “Sylvan: Multi-Core Decision Diagrams,” in Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems, (London, UK), pp. 677 – 691, 2015.

[120] “Carnegie Mellon - The BDD Library.” https://www.cs.cmu.edu/~modelcheck/

bdd.html. Checked: 02/05/2020.

97

https://cran.r-project.org/web/packages/gmp/index.html
https://cran.r-project.org/web/packages/gmp/index.html
https://cran.r-project.org/web/packages/Rmpfr/index.html
https://cran.r-project.org/web/packages/Rmpfr/index.html
http://axtls.sourceforge.net/
https://wiki.ubuntu.com/BionicBeaver/ReleaseNotes
https://wiki.ubuntu.com/BionicBeaver/ReleaseNotes
https://cloud.r-project.org/
https://isocpp.org/
https://gmplib.org/
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/apply
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/apply
https://www.cs.cmu.edu/~modelcheck/bdd.html
https://www.cs.cmu.edu/~modelcheck/bdd.html

References

[121] “igraph - The network analysis package.” https://igraph.org/. Checked:
02/05/2020.

[122] E. D. Kolaczyc and G. Csárdi, Statistical Analysis of Network Data with R. New
York: Springer, 2014.

[123] D. A. Luke, A User’s Guide to Network Analysis in R. New York: Springer, 2015.

98

https://igraph.org/

List of Acronyms

2-SAT 2-satisfiability.

ADD Algebraic Decision Diagram.

AI Artificial Intelligence.

API Application Programming Interface.

BBPF Bit-Blasted Propositional Formula.

BDD Binary Decision Diagram.

CNF Conjunctive Normal Form.

CRAN Comprehensive R Archive Network.

DIMACS Center of Discrete Mathematics and Theoretical Computer Science.

DSL Domain Specific Language.

FODA Feature-Oriented Domain Analysis.

GMP GNU Multiple Precision.

GNU GNU’s Not Unix.

IEEE Institute of Electrical and Electronics Engineers.

JCR Journal Citation Report.

KA Knowledge Area.

LPG Liquefied Petroleum Gas.

MCMC Monte Carlo Markov Chain.

NNF Negation Normal Form.

PMBOK Project Management Body of Knowledge.

ROBDD Reduced Ordered Binary Decision Diagram.

SAT boolean SATisfiability problem.

99

List of Acronyms

SEVOCAB ISO/IEC/IEEE Systems and Software Engineering Vocabulary.

SPL Software Product Line.

SPLE Software Product Line Engineering.

SPLOT Software Product Lines Online Tools.

SSL Secure Sockets Layer.

SWEBOK Software Engineering Body of Knowledge.

UNED Universidad Nacional de Educación a Distancia.

URS Uniform Random Sampling.

XML eXtensible Markup Language.

ZBDD Zero-suppressed Binary Decision Diagram.

100

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Resumen
	Abstract
	Introduction
	Scope of this Thesis
	Aims of the Thesis
	Research Questions
	Hypotheses
	Methodology
	Personal Motivation
	Thesis Outline
	Main Contributions

	Related Work
	Software Product Lines and Variability Models
	Binary Decision Diagrams and SAT-Solvers
	CUDD
	BuDDy

	Synthesis of Binary Decision Diagrams
	Core and Dead Features
	Feature Probabilities
	Product Distribution
	Uniform Random Sampling

	Functional Programming on BDDs to Support the Statistical Reasoning on Variability Models
	Traverse
	The rbdd Package
	Architecture
	API of rbdd
	Initialization and finalization
	Setting logical formulas functions
	Ordering
	I/O operations
	Applying functions to BDDs
	Debugging functions
	Customizing the environment of the BDD
	Algorithms implementation

	Installation an Usage of the rbdd Package

	Core and Dead Features
	Feature Probabilities
	Product Distribution
	Uniform Random Sampling

	Experimental Validation
	Designed Benchmark
	Analysis of the Results
	Core and Dead Features
	Feature Probabilities
	Product Distribution
	Uniform Random Sampling

	Final Comments about the Experimental Validation

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	List of Acronyms

