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Abstract

Propositional Knowledge: Acquisition and
Application to Syntactic and Semantic Parsing

Interpretation of natural language is one of the central challenges for the development
of an artificial intelligence. In general, interpretation requires to build a context of
entailed implicit information (from hearer and speaker background knowledge) that
permits to recover the original communicative intention. Natural language processing
tasks are concrete realizations of our human ability to comprehend and use language,
thus in the long term we will need to provide full interpretation capabilities to machines,
starting with the development of methods to acquire and use background knowledge.

We explore the use of propositions as background knowledge and its utility for language
interpretation. Propositions encode knowledge in the form of assertions using natural
language, and provide a straightforward way of expressing knowledge without domain
restrictions. Propositional knowledge can be derived directly from meaning representa-
tions that, in turn, can be obtained directly from text, and therefore, knowledge and
representations can be easily connected to perform the textual inferences required for
language interpretation.

In this thesis, we propose the automatic acquisition of propositional knowledge from
large corpora whose documents are represented as graphs. The frequencies of occurrence
permit to express a sense of plausibility. The resulting proposition store supposes
a middle ground between meaning representations and structured knowledge bases.
This opens new research lines that we address in this work. One the one hand, the
connection of the meaning representation with the proposition stores so that they
can play the role of the background knowledge that enables an inference. On the
other hand, the mapping between proposition stores and structured knowledge bases.
We explore these research lines with two specific tasks related to natural language
understanding: syntactic and semantic parsing.

Specifically for syntactic parsing, we address the problem of appositive correction.
Appositives are grammatical dependencies that are often used to express that an
instance belongs to a semantic class. We use propositional knowledge to measure the
semantic compatibility between entities and entity types with semantic classes. Then
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we use this information to disambiguate cases where there are several grammatical
valid candidates to govern an apposition.

Regarding semantic parsing, we build a lexicon that permits to map natural language
utterances in the form of propositions with linked data relations, and show how to use
this resource in a question answering system. In addition, we propose a method to
evaluate grounding and the effect that the lexicon has in the task, independently from
the processes of training or querying.

Using propositional knowledge for textual inference represents a new paradigm for
language interpretation. The goal is to validate this paradigm and to explore from it
the main areas involved: meaning representation, knowledge acquisition and textual
inferences. Results show that proposition stores are a general purpose resource that
permit to address different tasks related to language interpretation, opening new and
promising research avenues.

Keywords: Propositional Knowledge, Language Interpretation, Syntactic Parsing,
Semantic Parsing



Resumen (Spanish Abstract)

Conocimiento Proposicional: Adquisición y
Aplicación en Análisis Sintáctico y Semántico.

La interpretación de lenguaje natural es uno de los retos centrales en el desarrollo de
la inteligencia artificial. En general, la interpretación requiere construir un contexto
de información implícita e implicada (a partir del conocimiento antecedente del emisor
y el oyente) que permite recuperar la intención comunicativa del emisor. Las tareas de
procesamiento de lenguaje natural son realizaciones concretas de nuestra habilidad
humana para comprender y usar lenguaje, y por lo tanto a largo plazo tendremos que
proveer capacidades completas de interpretación a las máquinas, empezando con el
desarrollo de métodos para adquirir y usar conocimiento antecedente.

En concreto, exploramos el uso de proposiciones como conocimiento antecedente y su
utilidad para la interpretación del lenguaje. Las proposiciones codifican conocimiento
en forma de aserciones utilizando lenguaje natural, y proporcionan una manera directa
de expresar conocimiento sin restricciones de dominio. El conocimiento proposicional
puede ser derivado directamente desde representaciones semánticas del texto, que a
su vez pueden ser obtenidas automáticamente a partir de texto. De esta manera, se
abre la posibilidad de conectar de manera directa la representación de un texto con el
conocimiento necesario para su interpretación.

En esta tesis, proponemos la adquisición automática de conocimiento proposicional
desde grandes corpus cuyos documentos son representados como grafos. Las frecuencias
de ocurrencia permiten expresar un sentido de plausibilidad. El almacén de proposi-
ciones resultante supone un término medio entre representaciones semánticas y bases
de conocimiento estructuradas. Esto abre nuevas líneas de investigación que abordamos
en este trabajo. Por una parte, la conexión entre la representación semántica y los
almacenes de proposiciones de manera que estos jueguen el papel del conocimiento
antecedente que habilita una inferencia. Por otra parte, la correspondencia (mapping)
entre los almacenes de proposiciones y las bases de conocimiento estructurado. Explo-
ramos estas líneas de investigación con sendas tareas específicas relacionadas con la
comprensión del lenguaje: el análisis sintáctico y el análisis semántico.

Específicamente para análisis sintáctico, abordamos el problema de la corrección de
aposiciones. Las aposiciones son estructuras gramaticales que se usan frecuentemente
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para expresar que una instancia pertenece a una clase semántica. Usamos conocimiento
proposicional para medir la compatibilidad semántica entre entidades y tipos de
entidad con clases semánticas. Posteriormente empleamos esta información para
desambiguar casos donde hay varios candidatos gramaticalmente válidos para gobernar
una aposición.

Respecto al análisis semántico, construimos un diccionario que permite enlazar expre-
siones en lenguaje natural en forma de proposiciones con relaciones de una base de
datos estructurada, y mostramos cómo utilizar este recurso en un sistema de búsqueda
de respuestas (Question Answering). Adicionalmente, proponemos un método para
evaluar el proceso de enlazado (grounding) y el efecto en la tarea que tiene el diccionario
obtenido, independientemente del proceso de entrenamiento y cableado de consultas.

El uso de conocimiento proposicional en inferencias textuales representa un nuevo
paradigma para la interpretación del lenguaje. El objetivo es validar este paradigma y
explorar desde él las principales áreas involucradas: representación semántica de los
textos, adquisición de conocimiento antecedente y habilitación de inferencias textuales.
Los resultados obtenidos muestran que los almacenes de proposiciones son un recurso
general que permite abordar tareas muy dispares relacionadas con la interpretación
del lenguaje, abriendo así nuevas y prometedoras líneas de investigación.

Palabras Clave: Conocimiento Proposicional, Interpretación del Lenguaje, Análi-
sis sintáctico, Análisis Semántico
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Coñecemento Proposicional: Adquisición e
Aplicación en Análise Sintáctica e Semántica.

A interpretación da linguaxe natural é un dos retos centrais no desenvolvemento da
intelixencia artificial. En xeral, a interpretación require construír un contexto de
información implícita e implicada (a partir do coñecemento antecedente do emisor
e o oínte) que permite recuperar a intención comunicativa do emisor. As tarefas
de procesamento da linguaxe natural son realizacións concretas da nosa habilidade
humana para comprender e usar linguaxe, e polo tanto a longo prazo teremos que prover
capacidades completas de interpretación ás máquinas, comezando co desenvolvemento
de métodos para adquirir e usar coñecemento antecedente.

En concreto, exploramos o uso de proposicións como coñecemento antecedente e a súa
utilidade para a interpretación da linguaxe. As proposicións codifican coñecemento en
forma de asercións empregando linguaxe natural, e proporcionan unha maneira directa
de expresar coñecemento sen restricións de dominio. O coñecemento proposicional
pode ser derivado directamente dende representacións semánticas do texto, que á súa
vez poden ser obtidas automaticamente a partir de texto. Desta maneira, ábrese a
posibilidade de conectar de maneira directa a representación dun texto co coñecemento
necesario para a súa interpretación.

Nesta tese, propoñemos a adquisición automática de coñecemento proposicional dende
grandes corpus cuxos documentos son representados como grafos. As frecuencias de
ocorrencia permiten expresar un sentido de plausibilidade. O almacén de proposicións
resultante supón un termo medio entre representacións semánticas de texto e bases
de coñecemento estruturadas. Isto abre novas liñas de investigación que abordamos
neste traballo. Por unha parte, a conexión entre a representación semántica dos textos
e os almacéns de proposicións de maneira que estes xoguen o papel de coñecemento
antecedente que habilita unha inferencia. Por outra parte, a correspondencia (mapping)
entre os almacéns de proposicións e as bases de coñecemento estruturado. Exploramos
estas liñas de investigación con sendas tarefas específicas relacionadas coa comprensión
da linguaxe: a análise sintáctica e a análise semántica.

Especificamente para análise sintáctica, abordamos o problema da corrección de
aposicións. As aposicións son estruturas gramaticais que se empregan frecuentemente
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para expresar que unha instancia pertence a unha clase semántica. Empregamos
coñecemento proposicional para medir a compatibilidade semántica entre entidades e
tipos de entidade con clases semánticas. Posteriormente empregamos esta información
para desambiguar casos onde hai varios candidatos gramaticalmente válidos para
gobernar unha aposición.

Respecto á análise semántica, construímos un dicionario que permite enlazar expresións
en linguaxe natural en forma de proposicións con relacións dunha base de datos
estruturada, e mostramos como empregar este recurso nun sistema de procura de
respostas (Question Answering). Adicionalmente, propomos un método para avaliar
o proceso de enlazado (grounding) e o efecto na tarefa que ten o dicionario obtido,
illadamente do propio proceso de adestramento e cableado de consultas.

O uso de coñecemento proposicional en inferencias textuais representa un novo
paradigma para a interpretación da languaxe. O obxectivo é validar este paradigma
e explorar a partir del as principais áreas involucradas: representación semántica de
textos, adquisición de coñecemento antecedente e habilitación de inferencias textuais.
Os resultados obtidos mostran que os almacéns de proposicións son un recurso xeral
que permite abordar tarefas moi dispares relacionadas coa interpretación da linguaxe,
abrindo así novas e prometedoras liñas de investigación.

Palabras Clave: Coñecemento Proposicional, Interpretación da linguaxe, Análise
Sintáctico, Análise Semántico
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Introduction

The problem of intelligence seemed
hopelessly profound. I can’t
remember considering anything else
worth doing.

Marvin Minsky
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2 1. Introduction

1.1 Motivation

Language is basic for human cognitive abilities, and, in fact, sometimes intelligence
has been reduced to the ability to comprehend and create language. Such vision
was popularized by the Turing Test (Turing, 1950), which states that a machine is
intelligent when its answers to a human interrogator cannot be distinguished from
human responses. One crucial capability of such a machine is to perform language
interpretation.

Early work on Natural Language Processing (NLP) (Schank and Abelson, 1977; Hobbs
et al., 1988) was really ambitious and aspired to replicate human ability to interpret
language, a task often known as Natural Language Understanding (NLU). At that
point, the goal was unreachable, partially due to the limitations on computation
and data. Then, the focus shifted to practical, simplified problems where ad hoc
solutions, typically statistic based approaches, are able to obtain satisfactory results,
even sometimes to the point to consider these problems as solved. Still, these techniques
are far from full language interpretation. We follow the idea that NLP techniques
are now mature to retake the original goal of NLU (Etzioni et al., 2006; Manning,
2016), since it is the most promising option to finally cope with complex language
problems.

In order to explain what we understand by language interpretation in practice, let’s
consider a simple example of a pair of sentences extracted from the Winogard Schemas
(Levesque et al., 2011):

(1.1) The city council refused the demonstrators a permit because they feared
violence.

(1.2) The city council refused the demonstrators a permit because they advocated
violence.

Sentences 1.1 and 1.2 are ambiguous since there is a case of pronominal anaphora where
the pronoun they could refer either to the city council or to the demonstrators. Although
both sentences could be syntactically equivalent, in the sense that they can be described
with the same syntactic structure, typically a human would assign the pronoun they to
a different entity on each case. Due to its past experiences, a human reckons as more
plausible that city councils fear violence and that demonstrators advocate violence
rather than their counterparts. Thus, the interpretation of the sentence requires to
resolve the ambiguity using our previous knowledge of the world.

Again, consider the following pair of sentences:

(1.3) David supports the team of his wife, Julia.

(1.4) David supports the team of his wife, The Vikings.
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Both sentences 1.3 and 1.4 have identical surface structure. However, determining
the syntactic structure requires to resolve the coreferences between the two parts of
the sentences. As in the previous example, people use their previous knowledge to
realize that most probably Julia is best identified as a wife, whereas The Vikings are
described as team.

Consider a third example:

(1.5) Stolen Van Goghs back on display after years in criminal underworld.

Sentence 1.5 has the same lecture for most of the readers. However, achieving the
proper interpretation requires to resolve the metonymy where the name Van Goghs
is actually meaning Van Gogh’s paintings, although other alternatives such as Van
Gogh’s sculptures are possible. Unlike the previous example, the disambiguation does
not require to choose between two options, but to retrieve a missing relevant piece of
information that is not stated in the text.

In every case, the interpretation is based on knowledge about the target of the
interpretation. For instance, Table 1.1 shows the kind of knowledge that would be
useful for each example. An utterance is judged with a probability, which is a measure
of its plausibility, that is, how well that option fits with our previous beliefs. In
this work, we refer to this kind of knowledge as background knowledge. For our
purpose, background knowledge is open-domain, general-purpose knowledge expressed
in a machine readable format. In practice, systems depend on the availability and
precision of the background knowledge to interpret language.

Utterance Probability
city council fear violence ↑
city council advocate violence ↓
demonstrators fear violence ↓
demonstrators advocate violence ↑

Julia is a wife ↑
Julia is a team ↓
The Vikings are a wife ↓
The Vikings are a team ↑

Van Gogh has paintings ↑
Van Gogh has sculptures ↓

Table 1.1: Background Knowledge Base. An utterance is associated with a probability as
a measure of its plausibility.

In our view, language interpretation requires to contextualize a meaning representation
with respect to its relevant background knowledge. As in the examples, a background
knowledge can be used for instance to choose a plausible interpretation in an ambiguous
sentence or to recover a missing piece of information.
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The first challenge that we tackle is how to represent knowledge so it can be connected
with language. In our previous examples, we show how assertions with an assessment
of confidence can be used to interpret sentences. We use the term propositional
knowledge to refer to this knowledge in the form of assertions (propositions).

Early approaches tried to encode knowledge into a static ontology or any other kind
of structured knowledge. However a large portion of knowledge cannot be represented
with a predefined logical model or ontology, and therefore its use for general purpose
language interpretation is limited. Alternatively, propositions permit to encode any
knowledge since they use natural language as vocabulary.

In addition, propositions can be acquired directly from text for three main reasons.
Firstly, there are plenty of available textual data, specially on the Web. Secondly, tools
and methods for NLP, and specifically syntactic parsers, are more refined, mature and
efficient, and finally, the computational power is bigger and cheaper. Our aim then is
to automatically derive propositional knowledge from large textual resources so that
the frequencies of occurrence in text can give a sense of plausibility.

Our second challenge is to structure language so it can be connected to knowledge.
We need to define a structure that can be handled by computers and that can
represent information conveyed by text. This structure is usually denominated semantic
representation or meaning representation (Schubert, 2015; Oepen et al., 2014). We
use the latter term in this thesis. In numerically specifiable and finite state problems,
such as chess, the necessary knowledge can be easily encoded in a machine in a set of
formal rules. In contrast, natural language is not finite, and therefore it is impossible
to describe all the domain knowledge with rules. In this dissertation we propose and
explore a graph-based representation derived directly from linguistic processing
tools.

Our third challenge is to define a way to connect language and knowledge to enable
the textual inferences required for language interpretation. A mayor difficulty
that limits language interpretation come from the semantic gap between meaning
representations and background knowledge. However, these research areas are often
tackled in isolation, and the synergies are lost. We believe that this distance must be
minimized in order to be able to mutually improve each other.

The graph-based representation opens the possibility of directly extract propositional
knowledge, reducing the gap between meaning representations and background knowl-
edge. The result is that meaning representations and background knowledge share
the same vocabulary, and therefore the connection to perform textual inferences is
enabled. We address two specific tasks that require textual inferences: syntactic and
semantic parsing. We choose these tasks because, although they are typically tackled
using statistical approaches, they require some sort of understanding to be properly
solved.
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Summing up, this thesis studies a new paradigm that uses propositional knowl-
edge as a middle ground between meaning representations and structured
knowledge. Figure 1.1 compares the traditional approach to acquire and link knowl-
edge with text and our approach based on propositional knowledge stores. In previous
approaches, the interaction between documents and knowledge bases were limited to
be used in one direction to populate the knowledge base and in the opposite direction
to tag specific concepts in the text with an entity linking process. Our proposal is to
use propositional knowledge to reduce the gap between meaning representations and
knowledge bases, facilitating the interaction between each other.

Structured 
Knowledge 

Base

Document
Meaning

Representation

Ontology Population

Entity Linking

Structured 
Knowledge 

Base

Document
Meaning

Representation

Document
Meaning

Representation

Document
Meaning

Representation

Proposition
Store

Traditional Approach

Proposal

Figure 1.1: Comparison between traditional approaches and our proposal. Our proposal
depicts the intended relation between proposition stores, meaning representations and
structured knowledge bases.

In this thesis we validate this paradigm by showing how to acquire propositional
knowledge and exploring its connection with meaning representations and structured
knowledge bases. We explore this connection in two tasks related to syntactic and
semantic parsing as two samples of the new research opportunities that this paradigm
opens. In the first case, propositional knowledge is used to drive the disambiguation
of the syntactic structures that involve appositions. In the second case, we explore
the mapping from propositions to linked data properties in the context of Question
Answering.
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1.2 General Hypotheses

In the previous section we have motivated the area of propositional knowledge acquisi-
tion, and the general utility towards NLU. In this section we define the scope of the
thesis by considering three main work hypotheses:

Research Hypothesis 1: Propositional knowledge can be used to represent and
store background knowledge.
Propositions encode predicate-argument structures that can capture open-domain
knowledge. Propositions are manipulable by computers, and enable general purpose
inferences. Gather a large number of propositions through the representation of large
collections of text yields a background knowledge base that mimics common sense.

Obviously, to improve the background knowledge base would facilitate the inference
process. The problem is that it is not trivial to measure how good a knowledge base
is. For a specific purpose knowledge base, the default evaluation consist in to measure
the performance in the specific task for what it was designed. As this is an extrinsic
evaluation, it is not completely independent, as it relies on the ability of the system
to harness the knowledge base for the task. For general purpose knowledge bases the
evaluation is even harder, because the type and the number of tasks for evaluation
is not defined. Even if an independent evaluation is unfeasible, it is still desirable to
improve the background knowledge base through an adequate acquisition phase. This
is the base for the next hypothesis.

Research Hypothesis 2: A graph based representation is useful to encode documents
for proposition extraction.
A prerequisite to acquire propositional knowledge is to encode text in a meaning
representation. Even if an intrinsically evaluation of the knowledge base is infeasible,
we define some properties for the meaning representation that reasonably can improve
the acquisition of propositions.

These properties are: (1) Capture the relations present on the original text, including
long distance relations; (2) relations can be morphosintactic, semantic or temporal;
and (3) favour that sentences with identical meaning have the same representation,
disregarding syntactic realizations. Graph are a flexible meaning representation close
to language that can encode open domain text. Compared with other representations,
graphs can produce sophisticated features, such as clustering different mentions of
named entities and connecting long-distance relations. Moreover, graphs can be
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enriched with semantic information in order to acquire novel propositions. Summing
up, graphs enable to acquire more propositional knowledge while at the same time
reducing the sparsity.

Research Hypothesis 3: Propositional knowledge can serve as basis to perform
textual inference.
A proposition store can be used as a background knowledge base that enable textual
inferences related to language interpretation tasks. Previously we have discussed that
the utility of a knowledge base is dependent on the task where it is applied. In this
case, we aim to adapt a general purpose knowledge base to two different tasks.

Specifically, syntactic and semantic parsing are knowledge-dependent tasks that require
to interpret language to be solved and can benefit of propositional knowledge. Re-
garding syntactic parsing, we develop a method to improve the apposition dependence
detection in cases where there are several grammatically correct candidates to act as
governor. We consider the semantic compatibility of both parts of the apposition using
propositional knowledge as evidence to show its potential to interpret language.

Then, we study how to ground propositional knowledge into relations and types of
a linked data database with a twofold goal. First, we provide a method to build a
lexicon that maps natural language into logic forms to be used to feed a question
answering system. And second, we enable a standalone evaluation of such lexicon.

1.3 Objectives

In previous sections we have discussed the context of this research project and stated
the main hypotheses that drive our research. In this section we state our specific
objectives to check whether the hypotheses hold.

The main goal of this thesis is to study the utility of background knowledge in the
context of language interpretation. Specifically, we aim to explore the feasibility
and limitations of automatic propositional knowledge acquisition and its
use for textual inference. We develop an end-to-end approach that covers knowledge
representation, knowledge acquisition and inference, and studies the relations among
these steps.

We pursue this research goal through the following set of specific objectives:

Objective 1: Build a conceptual model of the meaning of a sentence though deep
processing of text. Represent documents in a meaning representation that expresses the
information contained on plain text. In particular, explore a graph-based representation
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that is capable of representing documents at document level and includes syntactic,
semantic and temporal relations.

• Objective 1.1: Design and implement a methodology to represent documents
as semantically enriched morphosyntactic graphs.

• Objective 1.2: Build a collection of document represented as graphs as a
resource for feature extraction and proposition extraction.

• Objective 1.3: Study the generation of new features.

• Objective 1.4: Extrinsic evaluation in relation extraction.

Objective 2: Automatically acquire knowledge from the graph-based representation.
Extract knowledge into propositions, which are predicate-argument structures that
express open relations.

• Objective 2.1: Design and implement a methodology to automatically extract
propositions from the graph-based representation.

• Objective 2.2: Build a proposition store from the collection of graphs.

• Objective 2.3: Demonstrate the application to named entity disambiguation.

There are many open research questions about the use of propositional knowledge and
the inferences that can be performed with it. The following objectives correspond to
the tasks that we tackle.

Objective 3: Improve apposition dependency detection using knowledge about seman-
tic classes. Measure the semantic compatibility between the two sides of an apposition
in order to decide the most suitable governor.

• Objective 3.1: Define the problem of apposition correction and classify the
errors that parsers commit.

• Objective 3.2: Build a gold standard with conflicting cases of apposition
detection and manually annotate the correct relation.

• Objective 3.3: Design and implement a method for apposition correction based
on background knowledge.

• Objective 3.4: Evaluate the apposition correction method in the gold standard
and compare to parsers in the state of the art.

Objective 4: Analyse the impact of the mapping from utterances into semantic
relations for semantic parsing over linked data. Align propositions to linked data
properties to feed a semantic parser.

• Objective 4.1: Design and implement a methodology to map from propositions
into linked data properties.
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• Objective 4.2: Study the contribution of knowledge acquisition on closing the
gap between natural language and linked data relations. Isolate the evaluation
of the knowledge acquisition from other typical steps in semantic parsing such
as training and querying. Evaluate which syntactic structures should be aligned
and what is the impact of each one.

• Objective 4.3: Study whether external linguistic resources are useful to reduce
the lexical gap in the context of mapping propositions to linked data relations.

1.4 Research Questions

We enunciate a set of research questions for each objective. The resolution of the
objectives provides evidence to response the questions.

• Graph-based Representation.

Our first objective is to create a compact representation at document level
that aggregates morphosyntactic and semantic information. Regarding this
representation:

– Research Question 1.1: What are the steps to build a graph-based repre-
sentation from text at the whole document level using off-the-shelf tools?

– Research Question 1.2: What kind of lexical, syntactic and semantic
relations can be expressed by these graphs?

– Research Question 1.3: What other features do the representation pro-
vide?

– Research Question 1.4: What features of a information extraction clas-
sifier are affected by the graph representation?

– Research Question 1.5: Which is the performance of a classifier trained
with those features in a task of automatic relation extraction?

– Research Question 1.6: In the same task, once the graphs are generated,
what is the effect of the new semantic information?

• Propositional Knowledge Acquisition.

Our second objective is to automatically acquire a propositional knowledge base
derived automatically from the graphical representation of documents.

– Research Question 2.1: Is it feasible to build knowledge bases from
documents represented as graphs? What does this kind of representations
provide?
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– Research Question 2.2: What problems arise from an automatically
generation of propositional knowledge bases?

• Improving Parsing with Automatically Acquired Semantic Classes.
Our next objective is to use the extracted knowledge to perform textual in-
ference, specifically to improve parsing in appositive dependencies. We tackle
the problem of grammatical ambiguity when there are several candidates to
govern an apposition with a named entity as a dependent. We assume that the
common noun with higher semantic compatibility with the named entity is the
best choice to govern the apposition. In this context, we formulate the next
research questions:

– Research Question 3.1: What kind of errors do parsers commit on
appositions because of the missing semantic information?

– Research Question 3.2: Is it possible to overcome these errors considering
information captured previously from text collections? What evidence can it
provide to characterize the named entity?

– Research Question 3.3: What is the most effective way to measure the
semantic compatibility between the candidate classes and the named entity?

– Research Question 3.4: What configuration of evidence and measures
achieves the best results?

• Grounding Proposition Stores for Question Answering over Linked
Data. Question Answering, and specifically semantic parsing, typically requires
a lexicon that maps natural language into semantic representations such as
the entities and properties of linked data. The goal is to study whether a
Grounded Proposition Store (GPS) built by aligning propositions with linked
data properties can contribute to close the lexical gap between natural language
and linked data labels.

In the context of a Semantic Parser trained using raw text for distant supervision:

– Research Question 4.1: What are the methodological steps to build a
GPS?

– Research Question 4.2: What is the impact of the GPS when used to
feed a semantic parser for question answering?

– Research Question 4.3: What linguistic phenomena (syntactic-semantic
relations) should be considered in the knowledge acquisition step?

– Research Question 4.4: Are external linguistic resources useful for en-
riching the GPS?
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1.5 Research Methodology

This section states the research methodology we followed in order to achieve our
research goals. It is composed of eleven principal steps:

1. Review of the state of the art: We review the literature in order to highlight the
research opportunities in the context of knowledge acquisition and inference. We
study the partial problems involved, and how they are related.

2. Develop a graph based representation using deep language processing techniques
such as POS tagging, coreference resolution, dependency parsing and temporal
analysis.

• Cluster different mentions of a named entity across a document.

• Normalize predicates through the simplification of syntactic relations.

• Include implicit semantic information of the text.

• Analyse the contribution of the graph based representation in the KBP2011
Temporal Slot Filling Task by comparing a system trained using features
from a standard dependency parsing and features extracted from the graph-
based representation.

3. Use the previously defined representation to obtain a large collection of documents
represented as graphs. Represent corpora both from general domain and specific
domain.

4. Define and implement a automatic knowledge acquisition methodology to extract
knowledge into propositions.

• Use the graph representation to extract propositions at document level.

• Extract propositions using both syntactic and semantic patterns.

• Include information about named entities and semantic classes.

5. Build and evaluate a Proposition Store. Use the acquisition methodology to
compile a large knowledge base of propositions from the collection of graphs.

• Asses plausibility of propositions based on probabilistic estimation.

• Report results in several different large corpora.

• Validate the utility of the Proposition Store in a named entity disambigua-
tion task by harnessing propositions as evidence for testing the One Sense
Per Collocation hypothesis.

6. Improving Parsing with Automatically Acquired Semantic Classes.
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• Build a gold standard of appositive dependencies. Identify and analyze a
set of sentences with ambiguous apposition dependencies and classify the
types of errors that parsers commit.

• Develop a method for appositive correction based on background knowledge,
specifically in class-instance relations.

• Study different metrics to measure the semantic compatibility and evaluate
the results.

7. Semantic parsing task: Grounding Proposition Stores for Question Answering
over Linked Data.

• Study the contribution of knowledge acquisition on closing the gap between
natural language and database predicates.

• Evaluate quantitatively which syntactic structures are useful for alignment
purposes.

• Enable a standalone evaluation of the knowledge acquisition step in the
semantic parsing task, abstracting away the impact of training and querying.

• Improve the alignment through WordNet as a source for external linguistic
knowledge.

8. Perform an extensive analysis of the results, and draw global conclusions.

9. Propose a new set of research lines consistent with the conclusions of the thesis.

10. Report the advances in the research in national and international conferences
and journals.

11. Write this dissertation summarizing the research conducted, the final contribu-
tions to the community and the conclusions obtained.

1.6 Outline

This thesis is composed by seven chapters. In the following lines we provide a summary
of the contents of each chapter:

Chapter 1: Introduction.

We motivate our study of the acquisition and application of propositional knowledge
and define the scope of the thesis through a set of hypotheses, objectives and research
questions.

Chapter 2: Background and Related Work.
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Language interpretation poses many challenges, among them, there are three key areas:
Meaning representation, knowledge acquisition and textual inference. In this chapter
we discuss some of the most relevant work in these areas and identify some unsolved
problems.

Chapter 3: Graph Based Representation of Text.

In this chapter we explain the characteristics of the representation that we use as
the basis for the knowledge acquisition. This is a representation at document level,
obtained from plain text to a graph representation through deep text processing
techniques. We also measure the contribution of using this representation for feature
generation in an information extraction task.

Chapter 4: Automatic Capture of Propositional Knowledge.

This chapter is devoted to general-purpose knowledge acquisition. Our approach
extracts propositions at document level from large corpora of documents represented
with the previously presented graph based representation. These propositions express
background knowledge that are the base for further textual inferences.

Chapter 5: Improving Parsing with Automatically Acquired Semantic
Classes.

In this chapter we define our method to exploit semantic class knowledge to improve
parsing on appositive structures. To do so, we select the grammatical option that
is semantically more compatible. We define a set of measures of compatibility and
evaluate its performance.

Chapter 6: Grounding Proposition Stores for Question Answering over
Linked Data.

We show how grounding propositions within a distant supervision framework can
improve the performance of question answering: Our approach converts utterances
into graphs, which in turn are used to extract propositions. The propositions are
aligned with Freebase labels using distant supervision through entity linking. The
output is used to feed a semantic parser for question answering over linked data.

Chapter 7: Conclusions and Future Work.

In this chapter we state the main conclusions obtained and we discuss some interesting
lines of research.

Additionally, we include the following appendices with complementary information:

Appendix A: Publications of the Author.

This appendix shows the complete list of papers related to the development of this
thesis.

Appendix B: Graph-based Representation Example.
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This appendix provide an example of a document represented using the graph based
representation considering the two possible outputs, Dot and pseudo-JSON.

Appendix C: Proposition Store Examples.

This appendix shows the most frequent propositions of each Proposition Store.

Appendix D: List of Acronyms.

This appendix details the acronyms used in this thesis.



2
Background and Related Work

Language interpretation poses many challenges, among them, there are three key areas:
Meaning representation, knowledge acquisition and textual inference. In this chapter
we discuss some of the most relevant work in these areas and identify some unsolved
problems.

I Could Care Less. https://xkcd.com/1576/
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2.1 Introduction

Interpretation of natural language is one of the central challenges for the development
of an artificial intelligence. In general, interpretation requires to build a context of
entailed implicit information (from hearer and speaker background knowledge) that
permit to recover the original communicative intention. For example, if we know that
books are usually written by adults, we can (probably) discard that a children’s book
is a a book written by children and then infer that it is a book written for children.
Interpretation has been extensively studied, but so far it remains as an unsolved
problem. As a result, interpretation is often simulated with simplified tasks such as
mapping text to a queryable database or an ontology, or to solve problems such as
lexical ambiguities or selectional preferences.

A key point for interpretation is the availability of the background knowledge. Typically,
background knowledge is simulated using manually built resources, and hence their
scalability is limited and coverage are far from what is needed for NLU. Several works
point to automatically acquired knowledge, and specifically knowledge acquired from
textual sources, as a promising method to build resources of general purpose knowledge.
We explore the core problem of acquiring background knowledge directly from previous
readings of large amounts of text, in a way that it can be used for the textual inferences
that language interpretation requires. Coming back to our initial definition, the goal
is “to build the context that permit to recover the original communicative intention”.
In our view, there are three main issues that have to be tackled in order to perform
interpretation: meaning representation, knowledge acquisition and textual inference.

Firstly, natural language has to be represented in a computer-operable form, which is
the problem of meaning representation. That is, computers require a manipulable
structured format that can encode the meaning conveyed by a text, plus a method to
transform natural language into such a format.

Secondly, interpretation capabilities depend on the background knowledge available.
Thus, a pre-requisite to natural language understanding is knowledge acquisition.
In order to be used, knowledge has to be stored. As meaning representations, knowledge
representations are computer oriented formats. However, a meaning representation
aims to encode the information conveyed by a text, while the aim of a knowledge
representation is to efficiently store large amounts of information abstracting away
linguistic realizations, while providing reasoning capabilities over the stored information.
Specifically, we want to study forms of knowledge distilled from raw text that are
represented and stored in structures close to natural language. Our hypothesis is that
this is the way to reduce the gap between meaning representation and knowledge
bases.
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The last issue is to perform textual inference to recover missing information given
the meaning representation and the available knowledge.

Each of these three challenges, meaning representation, knowledge acquisition and
textual inference, influence the outcome of the interpretation. As a result, often specific
solutions are tailored for concrete tasks obviating the general problem of language
interpretation.

Although the three steps are heavily related, these three research areas have been
addressed by separate research communities leading to partial models of interpretation:
Most meaning representation approaches are based on linguistic models, but usually
there is a lack about how to connect them to background knowledge bases. In most
cases, efforts barely surpass entity linking. However, the meaning representation
imposes a limit on what semantics can be mapped from natural language to the
knowledge representation.

Knowledge acquisition processes define the type and scale of the knowledge extracted.
Popular approaches are based on predefined data models that permit to store facts and
beliefs. The relationship to natural language is artificial and some kind of mapping
learning is required, that usually yields a partial acquisition.

Finally the inference step is affected both for the meaning representation and for the
knowledge stored. The larger the gap between both representations the more limited
inferences we can expect.

In this chapter, we discuss previous works on how to automatically build and use a
knowledge base for language interpretation. It is structured in the following sections:
First, Section 2.2 summarizes the end goal of language interpretation and reviews the
approaches that simultaneously address meaning representation and its connection to
background knowledge. Then, we study the problem of representation from different
perspectives in Section 2.3. In Section 2.4 we explore recent approaches to the
knowledge acquisition problem. Section 2.5 is devoted to the use of textual inference.
Finally, in Section 2.6 we show our conclusions and justify the need of a joint proposal
to address the three problems simultaneously.

2.2 Language Interpretation

According to the Cambridge Dictionary, interpretation can be defined as:

“to decide what the intended meaning of something is.”

Specifically considering language interpretation, Hobbs (Hobbs et al., 1993) gives
another definition:
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“The process of interpreting sentences in discourse can be viewed as the
process of providing the best explanation of why the sentences would be
true”

Interpretation, an ability that humans perform effortlessly, has been a challenge for
computers from the beginning of the artificial intelligence. Since a full interpretation
system is still deemed as out of reach, interpretation has been tackled by computers
differently from humans, mainly by addressing on particular sub-problems.

For instance, we mention the Turing Test at the beginning of this thesis as the
prototypical task for showing human intelligence in machines. In the Turing test, a
computer pretends to be a human through a natural language dialog with human judges.
However, the test does not systematically address some of the fundamental challenges
of NLU such as the ability to recognize textual entailment, to summarize text or to
understand complex meaning relations, and it is often deceived with techniques that
do not aim to comprehend language, and instead they rely on statistical techniques to
search in an answer space.

To avoid these shortcuts, in the past years some more modern tests have been proposed
to demonstrate NLU through synthetic datasets, primarily in question answering since
evaluation is simpler than in other heavy-knowledge dependent tasks like summarization
or textual entailment, specially when answers are drawn from a close space (i.e. true-
false or multiple choice scenarios). Each test focus on different subproblems, and
therefore require a special set of skills to be solved.

The Winograd Schemas (Levesque et al., 2012) present a simple statement and a binary
choice question, as in the example, “‘The city councilmen refused the demonstrators a
permit because they feared violence. Question: Who feared violence? Answer 1: The
city councilmen. Answer 2: The demonstrators”. This task aims to evaluate the ability
of the systems to retrieve relevant common sense knowledge.

Both QA4MRE (Peñas et al., 2011) and MCTest (Richardson et al., 2013) provide
a short paragraph where a system have to find an answer for a question. This task
requires both knowledge on how to read the text and also common sense knowledge.

In the bAbI tasks (Weston et al., 2015), the goal is to require episodic memory that
captures the long-term structure within a sequence. Each question is associated with
a set of statements that describe a series of events. Then, a system must connect
the pieces of information among the statements in order to retrieve the answer. This
is related to general dialogue systems, which, despite being a long-term goal of AI,
remain out of the state of the art because current systems are not able to reason
over a given story, that is, to iteratively receive statements in natural language and
find coherent answers. Consider the following example extracted form (Weston et al.,
2014):

Prior to any question, a system is feed with a story composed by several actions:
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• Joe went to the kitchen.

• Fred went to the kitchen.

• Joe picked up the milk.

• Joe travelled to the office.

• Joe left the milk.

• Joe went to the bathroom.

The story must be comprehended in order to response to some queries:

• Where is the milk now?

• A: office

• Where is Joe?

• A: bathroom

• Where was Joe before the office?

• A: kitchen

In the following sections we review full proposals for language interpretation. First,
we go back to the eighties and nineties to find classic interpretation theories, and then
we review rising efforts in the stream of Open Information Extraction that are able
to generate Background Knowledge Bases directly from the linguistic processing of
texts.

2.2.1 Conceptual Dependency Theory

The Conceptual Dependency Theory (CDT) (Schank, 1972) is an early theory about
NLU that stated that sentences with the same meaning should be represented equally,
and this representation should contain all the information contained in a sentence,
both explicit and implicit. The model encodes meaning using a predefined set of
primitives, which represent possible actions in the world; a set of states, which act as
preconditions and results of the actions; and dependencies, that are used to connect
primitives with each another and with actors, objects or other kinds of arguments.

For instance, a PTRANS is a primitive that describes the transfer of location of an object.
PTRANS has four slots that denote what kind of objects can participate on the action:
ACTOR, the concept that realizes the transfer; OBJECT, the object transferred; FROM,
the location where the transfer begins; and TO, the location where the transfer ends.
The inference rules use the primitives to make explicit the implicit information. For
example, the PTRANS primitive can be used to infer that the object that participates
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in the transfer was initially in the FROM location and after the transfer is in the TO
location.

Although the first claim was that these elements were enough to produce a canonical
form of natural language sentences, this theory was deemed as insufficient soon after
since the set of primitives was really small (from 10 to 12 primitives) to represent the
amount of knowledge that can be expressed with natural language. However, it still a
challenging task to map natural language even to this small set of actions.

This theory is further refined with the concepts of scripts, goals and plans (Schank and
Abelson, 1977) that model not only the contents of the sentences, but the stereotypical
sequence of events that are often described by sentences. These underlying models
are used to infer missing information from a sentence based on the expected intention
of the writer. A complete review of the development of CDT and associated theories
until early 90’s is provided in (Lytinen, 1992).

2.2.2 Meaning Text Theory

A different approximation to interpretation is Meaning-Text Theory (MTT) (Mel’cuk
and Polguère, 1987). MTT is a linguistic framework that states that language is
structured in four layers, phonetics, morphology, syntax and semantics, and the
process of understanding involves the mapping from the lower layer, phonetics, to
the top layer, semantics. Conversely, language generation would imply a top-bottom
mapping. The relation between layers is similar to a translation. With this idea, it
provides a methodology to interpret language step by step in increasing complexity.
So far, the translation from phonetics to syntax is largely solved, and many research
efforts point to translate syntax into semantics. However, unlike scene construction,
MTT focus on single sentences and does not address the meaning of a complete text.

MTT uses different meaning representations to encode the knowledge of each layer. The
semantic representation (SemR) uses a graph representation that relates predications
with arguments with directed edges. Moreover, a predication can act as an argument
of another predication, and an argument can act as argument of many predications.
The syntax is divided in two main levels, deep syntactic representation and surface
syntactic representation, the first is used to represent the universal dependencies
between lexemes and the second to encode the particularities of each language.
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2.2.3 Discourse Representation Theory

Discourse Representation Theory (DRT) (Kamp, 1988; Kamp and Reyle, 1993) is
a theory that views interpretation as the process of constructing a picture in which
new elements are incorporated as they appear on the text. DRT is closely related
to File Change Semantics (Heim, 1983). DRT defines discourse representation struc-
tures (DRS), which are cognitive models that are built incrementally with both the
information contained in the sentences plus the relation between sentences itself. This
theory is capable to tackle problems such as the resolution of anaphora, the model of
verbal tense, and quantification of variables. Unlike MTT and other interpretation
conceptions, DRT does not concern about information truthness, and focus on the
added information that each new sentence conveys.

DRS are typically represented using first order logic. A DRS contains two types
of information: information about discourse referents and information about the
properties of these referents and how they are related. A discourse referent is an entity
that takes part on the discourse and that can be refereed to with different anaphoric
expressions. DRSs may be connected using DRS languages, which are operators similar
to first order logic such as negation (¬), disjunction (∨) and implication ( =⇒ ).

The main implementation of the DRT is the Boxer parser (Curran et al., 2007), which
departs from combinatory categorical grammars parsers to generate a discourse repre-
sentation structure. Other notable DRT based parsers are (Baldridge and Lascarides,
2005; Lin et al., 2014).

2.2.4 Interpretation as Abduction

In Hobbs words, “Abduction is inference to the best explanation”. Abduction refers
to the process of adding new information based on the most plausible explanation
for some known facts. Human use abductive inferences to connect sentences to their
previous background knowledge in order to build a coherent meaning.

Abduction is appealing for discourse interpretation over other inference mechanisms
such as deduction because humans naturally omit information that listeners are
supposed to know. Therefore, in order to build language interpretation systems, these
should be able to retrieve this missing information. Typically, sentences are represented
using first order logic with two main goals. On the one hand, redundancies can be
merged by matching variables, and on the other hand, new predicates can be created
where an assumption is necessary.
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Utterance Logical Form Denotation
one plus two 1 + 2 3
Who is the wife of Obama Obama - married_to Michelle Obama
Move the red brick to the right move(red brick - right) move(red brick - right)

Table 2.1: Examples of semantic parsing.

Discourse interpretation through abduction was a popular topic during the 80s and
90s (Charniak and Goldman, 1989; Hobbs et al., 1993). Specifically, the Tacitus
Project (Hobbs et al., 1988, 1993) aim to build a large knowledge base of commonsense
and show how abduction can be used to resolve cases of syntactic ambiguity such as
interpretation of nominal compounds and metonymy resolution.

Recent work (Ovchinnikova et al., 2014b) builds a framework to process discourse for
similar tasks, including resolution of syntactic and semantic ambiguity, interpretation
of nominal compounds and reference resolution for the final goal of recognizing textual
entailment. Abduction is currently a popular research topic with many examples of
notable reasoners for many tasks such as interpretation of metaphors (Ovchinnikova
et al., 2014a), solving lexical ambiguities (Blythe et al., 2011) or plan recognition
(Kate and Mooney, 2009; Singla and Mooney, 2011)

2.2.5 Semantic Parsing

Semantic parsing can be described as the task of mapping input utterances u into logical
forms l. In most semantic parsers, especially those devoted to question answering,
logical forms are executed to obtain a denotation d. For example, the utterance
u = one plus two can be mapped into the logical form l = 1 + 2 and further executed
to obtain the denotation d = 3. There are several kinds of semantic parsers depending
on the type of action that the system has to produce. For example, given the utterance
move the red brick to the right the system has to produce the executable action
move(red brick, right). Table 2.1 show some examples of utterances, logical forms and
denotations for different semantic parsers.

Semantic parsing can be seen as a translation from natural language into a logical
form (Liang, 2015). This idea has two practical implications: First, expressions, like
entities, are symbols that only have a meaning in the concrete context of the parser.
The importance of this property lies in that semantic parsing is independent on the
execution. The second practical implication is that the final meaning of an utterance is
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composed by the union of its subexpressions, that is, it is compositional. This property
allows us to express a vast amount of meaning by composing simple and small units.

There are two main subproblems involved: Data representation and grounding. Data
representation refers to choosing a meaning representation, which is often solved
through intermediate representations, i.e. combinatory categorical grammar (Zettle-
moyer and Collins, 2005; Kwiatkowski et al., 2013), synchronous context-free grammars
(Wong and Mooney, 2007), dependency based compositional semantics (Liang et al.,
2013; Berant et al., 2013; Berant and Liang, 2014) or latent representations (Berant
et al., 2013; Kwiatkowski et al., 2013). Although it is an interesting research topic, to
the best of our knowledge there is not an in-depth comparison. In any case, choosing a
good representation depends on the type of inference (i.e. grounding) that the system
is performing.

Grounding refers to the process of mapping the meaning representation to the target
vocabulary. The more structured the target vocabulary is, the easier the grounding.
However, less structured target vocabulary can represent larger amounts of knowledge,
at the cost of being less exploitable by automatic systems.

Traditionally, semantic parsing models are trained by aligning hand-labeled logical
forms with the target ontology (Zelle and Mooney, 1996; Zettlemoyer and Collins,
2005). However, building a large corpus of manually annotated utterances is expensive,
and up to this point this procedure is not applicable for open domain systems that
aim to accept utterances with high variability. There are two main focus on semantic
parsing development. First, semantic parsers typically depend on large amounts of
annotated data. Recent research propose different methods to reduce supervision;
sentences aligned with system behaviour (Chen and Mooney, 2011), using paraphrases
(Berant and Liang, 2014; Fader et al., 2013b), question-answer pairs (Berant et al.,
2013) and align databases with text (Reddy et al., 2014). On the other hand, there is
interest on scaling semantic parsers up to web size.

There are two main uses for semantic parsing. First, it can be used as a method to
generate a canonical meaning representation from natural language. Even though
dependency parsing represents a great advance for many NLP tasks, the algorithms of
parsing heavily rely on the syntactic tree structure to be efficient. This structure is
not compatible with a more semantic view of the representation. Semantic parsers
tackle this issue, transforming text into graphs where a node can be an argument
for many predicates. This task is also very related with semantic role labeling, as
it usually involves some sort of argument identification and labeling for verbal and
nominal predicates. However, this task also deals with other semantic phenomena,
such as negation, possessives and comparatives.

The second main use of semantic parsing is Question Answering (QA). Although it can
be solved using other methods such as information extraction, one popular approach
of QA is to interpret a question, that is, an utterance by obtaining a logical form
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that expresses the semantics embedded. The logical form can be transformed into a
database query, that is further executed into a structured knowledge base in order to
retrieve an answer. The main motivation is that users without training on database
management are able to find information by expressing their needs with their own
language.

Traditional QA uses ever-growing knowledge bases (Kwiatkowski et al., 2013; Berant
et al., 2013; Fader et al., 2013b, 2014; Berant and Liang, 2014) in which a logical form
extracted from the question may be executed to retrieve an answer.

Attention models and memory networks have shown to be promising options in task
that require to simulate episodic memory (Weston et al., 2014; Sukhbaatar et al., 2015;
Kumar et al., 2015). Although these models are powerful, they still scale worse than
other simple machine learning algorithms.

A new interesting line of research aims to solve questions both in images and in text
using the same learning method (Andreas et al., 2016).

Currently semantic parsing is attracting the attention of the research community as it
can be seen in many tasks such as the SemEval 2014 Task 8: Broad-Coverage Semantic
Dependency Parsing i, the Question Answering over Linked Data series ii or the ACL
2014 Workshop on semantic parsingiii.

2.3 Meaning Representation

Machines require to manipulate the semantics of a sentence through a formal repre-
sentation. The process of translating natural language into a representation is known
as semantic analysis. The notation of the representation is known as meaning
representation, and the framework that specifies the syntax and semantics of a
meaning representation is the meaning representation language.

A meaning representation is required to process semantically the input utterances,
specially when it involves the use of background knowledge that is not present in the
input. Therefore, choosing a representation is important because it has an impact on
which semantics can be captured and what kind of inferences can be done.

A representation is useful for a task as long as it provides the right computational
properties needed. However, it is desirable to build representations that are reusable
across different tasks. Although it may be subjective which are these properties, from
a human point of view it should be easy to distinguish which representations actually

ihttp://alt.qcri.org/semeval2014/task8/
iihttp://qald.sebastianwalter.org/

iiihttp://sp14.ws/

http://alt.qcri.org/semeval2014/task8/
http://qald.sebastianwalter.org/
http://sp14.ws/
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encode the meaning of the text. We discuss some of the properties that we aim to
capture in our representation. An extensive explanation of the desiderata of a more
generic broad-coverage semantic representation is included in (Schubert, 2015).

Hobbs (1985) argues that a representation language has to be defined according two
criteria:

1. The notation should be as close to natural language as possible. This criterion
refers to the ability of a language to encode every fact. Therefore, according
exclusively with this criterion, natural language would be the ideal choice.

2. The notation should be syntactically simple. The representation should simplify
the manipulation of the facts extracted. Unfortunately, natural language is in
disadvantage against other structured representations like ontologies.

In the following sections we describe some of the most popular meaning representations:
Logic-based representations, syntactic representations, semantic roles and frames,
abstract meaning representations and distributional representations.

2.3.1 Logic Based Representation

As a meaning representation, logic formalisms are based in the reasoning with logical
forms. A logical form is an expression defined in a fully specified, unambiguous artificial
language. Logical forms are one of the most popular meaning representations, and
often these terms are used as synonyms.

Logic formalisms aim to provide a general purpose meaning representation that can
be expressed without any particular tie to the domain. This property makes logic
formalisms more expressive that formalisms tied to predefined models.

First Order Logic (FOL) is perhaps the most representative case of logic formalism.
In FOL, logic forms are composed by terms, that denote objects of the domain. Forms
can be divided in constants, functions and variables. A constant is a specific object in
the world, such as a proper noun (e.g. Madrid). A function represent a concept in the
world, for example those denoted by genitives (e.g. LocatedIn(Madrid)). Functions
are equivalent to unary predicates. Variables are references to anonymous objects.
Variables are the key for inference purposes.

A predicate is a relation that involves several terms (e.g. CapitalOf(Madrid, Spain)).
Predicates can be connected using logic connectives, i.e and (∧), or (∨) and not (¬).
Finally, quantifiers can be used to denote that a variable refer to a particular object
or to every object in a collection, that is, the existential quantifier ∃ and the universal
quantifier ∀. For example ∃xCapitalOf(x, Spain) denotes that there is an entity that
is the capital of Spain. FOL provides a sound computational basis for inference.
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Different versions of logic formalisms have been extensively used in NLU, such as
the mentioned FOL (Bird et al., 2009), lambda calculus (Carpenter, 1997), natural
logics (MacCartney and Manning, 2009; Moss, 2010), montague grammar (Montague,
1970), diagrammatic languages (Kamp and Reyle, 1993), robot controller languages
(Matuszek et al., 2013) and database query languages (Zelle and Mooney, 1996).

Perhaps one of the most salient variation of FOL was ontological promiscuity (Hobbs,
1985). This meaning representation aimed to be simple as well as general. To
do so, Hobbs dispensed with three constraints that in his opinion made previous
representations such as semantic networks unable to capture some aspects of language
while at the same time being able to perform inference. These constraints regard
ontological structure, syntactic constraints and efficient inference. He proposed a flat
logical notation with an ontologically promiscuous semantics. In his own example,
“A boy wanted to build a boat quickly” can be represented through a conjunction of
atomic quantified predicates:

(∃e1, e2, e3, x, y)Past(e1) ∧ want′(e1, x, e2)
∧ quick′(e1, e3) ∧ build′(e3, x, y) ∧ boy(x) ∧ boat(y)

(2.1)

Which means, e1 occurred in the past, e1 is the event of x wanting e2, e2 is the event
of e3 being quick, and e3 is the event of building y, and x is a boy and y is a boat.

Note the reification process. The same utterance could be interpreted as:

(∃x, y)Past(quick(build(boy(x), boat(y))) (2.2)

The logical form 2.2 is a nested version of logical form 2.1. The method to translate a
nested logical form into a flat form is to reify the nested expressions, that is, to create
a event that denotes each of the predicates of the logical form, in this example, e1, e2

and e3.

Some authors depart from dependency trees to generate reified logic forms (Agerri
and Peñas, 2010). There are many meaning representations inspired in ontological
promiscuity (Mollá, 2001; Ovchinnikova et al., 2014b).

2.3.2 Syntactic Representation

A syntactic representation models sentences considering the relations of its linguistic
units. Strictly, syntactic representations are not meaning representations. However,
syntax and semantics are close (See Meaning-text theory in Section 2.2), and we
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describe syntactic parsing here as a common method to structure raw text. In fact,
current syntactic dependency representations, such as Stanford’s CoreNLP) are very
close to a meaning representation.

Syntax is defined as “The arrangement of words and phrases to create well-formed
sentences in a language”. Syntax plays an important role on defining the meaning of a
sentence, and a syntactic parsing, which is the task of label text with the syntactic
elements, is often used as a preprocessing tool for NLP tasks. We discuss here two main
notions of syntactic parsing, constituency and dependency parsing. Both constituency
and dependency parsing can be defined by grammars. A grammar is defined by a
lexicon, which are the symbols of the domain, and a set of rules, which define the way
that symbols can be combined. Symbols are divided in terminal symbols, i.e. words in
the language, and nonterminals, which express generalizations of terminals and are
particular to the grammar, for instance, verbal phrases and noun phrases.

Constituency parsing groups words into constituents, which are linguistic elements
that behave as a single phrase. Relations between constituents are unlabelled. The
traditional approach to perform constituency parsing is grammar-driven, that is, first a
grammar is defined and then the problem is how to map a text with that grammar.

However, predefined grammars lack of the generalization capabilities that natural
language requires. Most of the parsers build a probabilistic grammar from a Treebank,
a corpora of annotated sentences. For English, the most used Treebank is the Penn
Treebank (Marcus et al., 1993). Context Free Grammars (Booth and Thompson, 1973;
Baker, 1979) are early examples of probabilistic grammars. The two main approaches
for statistical parsing are the head-driven phrase structure grammar (Pollard, 1994)
with salient examples as the Collings parser (Collins, 2003), the Charniak parser
(Charniak and Johnson, 2005), the Stanford parser (Klein and Manning, 2003; De
Marneffe et al., 2006); and the Lexical Functional Grammar (Kaplan and Bresnan,
1982). More recently, these techniques were combined with neural networks to further
improve the results as in (Socher et al., 2013).

In dependency parsing, every word is a lexical item, and it is linked to other words with
a directed labelled relation called dependencies. The result is a sentence is represented
as a directed tree in which nodes are words, edges are dependency tags and there is
an additional special node as the unique root.

Dependency parsing has been tackled in several CoNLL shared tasks (Buchholz and
Marsi, 2006; Nilsson et al., 2007). As with constituency parsing, the focus has switched
from pre-specified grammars to probabilistic data-driven grammars. This process is
called inductive dependency parsing (Nivre, 2005). Some of the salient models used
include transition-based dependency parsing (Nivre, 2004), graph-based dependency
parsing (McDonald and Nivre, 2007) and neural networks (Chen and Manning, 2014).

Traditional parsers provide their output in one of the three main sets of dependency
types: the ConLL dependency parsing shared tasks (Buchholz and Marsi, 2006;
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Nilsson et al., 2007), Stanford dependency labels (De Marneffe and Manning, 2008)
or unlabelled dependencies. Recently, the Stanford Universal Dependencies (Nivre
et al., 2016; Schuster and Manning, 2016) was released with the goal of providing a
normalized set of dependency relations across languages.

Some examples of popular available dependency parsers are: Minipar (Lin, 2003)
(extended) Stanford Parser (De Marneffe et al., 2006), MaltParser (Nivre et al., 2006),
Ensemble Parser (Surdeanu and Manning, 2010) or FANSE parser (Tratz and Hovy,
2011).

Syntactic parsing has been extensively used for all types of NLP tasks such as summa-
rization, question answering and textual entailment.

2.3.3 Semantic Roles and Frames

A important drawback of syntactic parsers is that they do not represent the full
meaning of a sentence. Different syntactic realizations of a sentence, for instance active
and passive voice, may convey the same meaning, but the syntactic dependencies
retrieved are not equivalent. Consider the following sentences:

(2.3) They cancelled the meeting.

(2.4) The meeting was cancelled.

A syntactic analysis would indicate that the meeting is the direct object in sentence
2.3 and the passive subject of the sentence 2.3. The semantic role of a constituent
is the role that it plays on a sentence regardless of the syntactic realization. These
constituents are the phrases that point the agent (who), the patient (whom), place
(where), cause (why), time (when) and others. In both examples, the meeting plays
the same semantic role, which is being the patient of the event cancel.

The number and type of semantic roles depend on the specific predicate. Although
there are some common types of roles that are shared across many predicates, such as
subject and object, it is difficult to define a set of semantic roles that covers all the
possibilities.

PropBank (Palmer et al., 2005) is a corpus manually annotated with numbered
semantic roles. The argument Arg0 denotes the prototypical agent, and Arg1 denotes
a prototypical patient or a theme. Subsequent arguments denote semantic roles such
as location, extend and cause. The specific meaning of each argument depends on the
predicate, which is verb sense draw from WordNet. That is, even is the same labels
are used for all verbs, the interpretation of the meaning of the label is verb-specific.
For some tasks, choosing verbs as predicates poses a problem because synonyms are
not grouped. Consider the following sentence:
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(2.5) The meeting was called off.

In this case, the meaning and the semantic roles are equivalent to sentences 2.3 and
2.4. However, the predicate is different, thus the meaning is represented differently.

A frame is conceptual structure that represents a prototypical situation or event. A
frame is characterized with several frame elements, which are frame-specific roles. For
instance, the frame Transportation contains the frame elements Movers, Means and
Path. Besides, frames can be arranged hierarchically, e.g. Driving can be a subframe
of Transportation.

The drawback is that frames have to be defined by hand some verbs may not be
represented by any frame, and, depending on the granularity, related verbs can be
grouped under the same frame, losing some meaning nuances.

Both FrameNet and PropBank have been extensively used for NLP tasks such as
question answering (Shen and Lapata, 2007; Kaisser and Webber, 2007) or word
sense disambiguation (Chen and Palmer, 2009; O’Hara and Wiebe, 2009). Together
with VerbNet and WordNet, they have been interlinked through the project SemLink
(Palmer, 2009) as they provide complementary information.

The tasks of automatically tag a sentence with its frames and semantic roles is called
Semantic Role Labelling (SRL). Traditional SRL uses syntactic trees as a base, often
aligned with annotated text (Gildea and Jurafsky, 2002; Hacioglu et al., 2004). These
methods generally are divided in two steps, first identify the arguments to be labelled
and then tag these arguments. The tendency now is to move to unsupervised SRL
or Semantic Role Induction to spread the annotation across different languages and
domains (Swier and Stevenson, 2004; Lang and Lapata, 2014). It is a key process for
many NLP applications, and therefore there is a long research tradition. A complete
overview of the field is presented in (Palmer et al., 2010).

SRL is closely related to predicate-argument identification(McCord et al., 2012), where
roles are substituted by arguments that lack of a specific semantic as agent or patient,
and instead they perform a different undefined action depending on the predicate.

2.3.4 Abstract Meaning Representation

Abstract Meaning Representation (AMR) (Banarescu et al., 2012) is an specification
of a semantic representation that captures “who is doing what to whom” in a single
simple data structure. Ideally, sentences with the same meaning lead to identical AMR.
It abstracts a limited amount of morphological and syntactic variability in order to
facilitate the annotation, thus it is feasible to create a large AMR bank. Although an
older version of AMR was available since late 90’s (Langkilde and Knight, 1998), the
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redefinition of the standard by Banarescu et al. plus the availability of new tools and
annotated resources explain the popularity of AMR. The main advantage compared
to previous formal semantic is that AMR agglutinates annotation for named entities,
coreference, semantic relations, discourse connectives and temporal entities.

In AMR each sentence is represented as a tree in which edges represent relations and
leaves represent concepts. Relations use the PropBank lexicon when available, and
stemmed forms if not. Named entities are linked to Wikipedia when possible, and
measurable entities such as date and quantities are normalized. Coreference entities are
merged in a single leave. However, AMR do not consider coreference across different
sentences. Unlike dependency parsers, it does not annotate the individual words in a
sentence.

The main motivation of AMR is to unify several strands of research on semantic
representation. It includes semantic role labelling, named entity recognition, coreference
resolution, temporal annotation and discourse connectives.

Currently there is a strong interest in developing tools related to AMR, that took shape
into the Abstract Meaning Representation Parsing and Generation SemEval Taskiv

(May, 2016), which result in many ARM parsers (Artzi et al., 2015; Pust et al., 2015;
Peng et al., 2015; Vanderwende et al., 2015; Wang et al., 2015; Flanigan et al., 2014)
and AMR-annotated corpora (Banarescu et al., 2013; Vanderwende et al., 2015).

2.3.5 Distributional Representation

Distributional representation is based on the distributional semantics hypothesis
enunciated by Harris (1954): semantically similar words occur in similar contexts. A
distributional representation assign a meaning to each linguistic structure, typically a
word, but in some cases can be a multi-word or a phrase. The meaning is encoded in
a high dimensional vector that is based on a statistical analysis of the text, and the
semantic similarity is measured as a distance between vectors.

The expressiveness and the precision of the model grows with the amount of data for
training. This property, which was a major drawback in the early years of NLP, makes
ideal the actual situation with the availability of large textual datasets.

The basic distributed model is bag-of-words. In this model, a text is represented as
a vector with the frequencies of each of its words. This approach is computationally
very cheap and allows expressing a brief notion of context. However, this model is
very limited, as it loses many semantics encoded on the original text structure.

ivhttp://alt.qcri.org/semeval2017/task9/

http://alt.qcri.org/semeval2017/task9/
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Recently, distributed representations are the starting point to build more compressed
and powerful vectorial representations due to neural network based approaches like
Word2Vec (Mikolov et al., 2013b) and GloVe (Pennington et al., 2014). These tech-
niques produce word embeddings from large unannotated corpora in an efficient,
scalable way. Unlike bag-of-words, the resulting vector is several orders of magnitude
smaller than the vocabulary of the domain, while at the same time semantic relations
are captured in a more powerful way. Word embeddings have been used extensively in
subsequent NLP tasks such as speech recognition (Bengio and Heigold, 2014), machine
translation (Mikolov et al., 2013a), syntactic parsing (Dyer et al., 2015) and others.

The main drawback of these vectorial representations is that they are not easily
interpretable by humans, and therefore it is hard to translate distributed representation
outputs into natural language. Furthermore, they still only work at the lexical level.

2.4 Knowledge Acquisition

Language interpretation requires general knowledge of the world that we denote this
representation as background knowledge. Background knowledge is described with
a formal language, known as knowledge representation, in order to be effectively
manipulated by machines.

A Knowledge Base (KB) is a kind of database that is used for store and manage
knowledge, where manage means the capacity to organize and serve that knowledge.
A KB contains information that describes a domain, employing for it a representation
vocabulary, which is known as representation language.

We focus on computer-oriented databases. They contain information organized for
Knowledge Based Systems (KBS) that solve complex problems using artificial intelli-
gence techniques. Encyclopaedic resources such as Wikipedia fall outside this category,
although they provide an efficient access to the users that search for texts, usually
formative, as manuals and articles. These resources are written in natural language,
and therefore intelligent systems cannot use them easily.

Building a KB has been a long time research line since, due to the nature of language
interpretation, KBs are required to be very large. Natural language is extensive and
can be used to express information about any domain, and at the same time it is
precise since it is able to represent specific concepts. However, background knowledge
is far from matching both the extension and the precision of natural language to be
useful for interpretation.

Roughly, there are three main approaches for knowledge acquisition: Use knowledge
engineers to curate data manually (Lenat, 1995; Friedland et al., 2004; Gunning et al.,
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2010); build a KB by crow-sourcing, employing less trained people, even volunteers, to
curate data (Stork, 1999); and finally acquire knowledge automatically (Banko et al.,
2007; Ferrucci et al., 2010). We can find also any combination of these approaches.
Generally speaking, these methods go from small KBs with high quality data to larger
databases with more noise.

So far, the first two methods are considered insufficient to build a background KB
since these methods are unable to scale up. Currently, the most promising technique
is to automatically gather knowledge, and much of the ongoing effort aims to scale up
the process. The rationale behind is that, given enough data, noise would be irrelevant
compared to the amount of interesting facts. Textual resources, specially the Web, are
currently wide and accessible and are often used for knowledge acquisition. Most of
the information available is presented in natural language, and therefore knowledge
acquisition from text is potentially the best chance to obtain the most complete KB.
Recently, there have been some attempts to automatically acquire knowledge in the
context of language interpretation, known as machine reading (Etzioni et al., 2006) or
learning by reading (Mulkar et al., 2007).

In the following sections we study the most notable approaches to build knowledge
bases considering manually curated databases and four kinds of automatic knowl-
edge acquisition systems: information extraction, knowledge base population, open
information extraction and propositional knowledge acquisition.

2.4.1 Manually Curated Databases and Linked Data

Roughly, manual annotation efforts aim to define and populate an ontology. The
concept of ontology has been used with different meanings. For our purpose, an
ontology can be seen as a predefined graphical structure to arrange data of a domain.
Typically it involves the definition of instances, classes and relations. An instance is
an element of the domain, and a class is a category of these elements. For instance,
Peter may be an instance of the class Person. Classes represent the nodes of the
graph, and can be arranged in a hierarchical structure. For instance, Person can be a
subset of Mammal. Relations compose the edges of the graphs, and define the way that
two or more instances relate among them. For example, the relation married_to can
relate the instances Peter and Mery. Relations can impose constraints on the allowed
classes, for example, married_to could accept only instances of the class Person as
arguments. Classes are often tagged with properties, which are common characteristics
of the instances of the class. For example, the class Birds could have the property
can_fly. Ontologies are defined according to an ontology language that states the
syntax to represent the knowledge. Common ontology languages include OWL, RDF
and RDFS.
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A main advantage of ontologies is that it is possible to group related knowledge, making
easy to acquire, index and query large amounts of structured knowledge. As ontologies
are pre-specified models, they are often tied to a specific task, and perform well on it.
However, they are not enough for NLU, because large portions of knowledge do not fit
on the model.

First attempts to collect data on ontologies used expert annotators and focused on small
domains. Around the middle 80’s there were several efforts towards compiling a large
common sense KB using human annotators. Most notably, the CYC project (Lenat,
1995) is one of the biggest efforts to encode common sense by hand. The initial idea
was to store all the knowledge in 400 sample articles, plus all the implicit background
knowledge needed to comprehend them. This project has been running for the past 30
years, and at this point it is distributed through three different platforms, OpenCyc,
EnterpriseCyc and ResearchCyc. ResearchCyc 1.1v, the latest version available, has
over 500.000 concepts, 5 million assertions and more than 26.000 relations.

CYC proved to be useful for many tasks such as question answering (Curtis et al., 2005;
Lenat et al., 2010) and word sense disambiguation (Curtis et al., 2006), as manual
annotations provide accurate data with almost no noise. However, generate a manual
KB is very expensive, and therefore they are not updated or the updates are slow and
difficult. Eventually, it was clear that it was infeasible to encode enough knowledge to
simulate common sense with manual approaches. Besides, ontologies are too rigid to
represent the real world.

The acquisition problem found an alternative approach on the Semantic Web and
more specifically on its realization through Linked Data. Linked Data is a framework
for publishing structured data in format that is manipulable by machines, while at
the same time is generic and flexible. The popularity of Linked Data propitiated
that many organizations built several large resources, and because of the design, it
is possible to integrate data from different repositories. The fact that the data can
be integrated from datasets of different domains improve the capabilities of the end
systems.

Linked Data is based in several standard Web technologies: Linked Data uses Uniform
Resource Identifiers (URIs) (Masinter et al., 2005) to assign a unique identifier to
entities or concepts in the world. URIs achieve two goals; first, they enable to
decentralise the creation of global names, so every domain can create their own
identifiers, and second, URI’s provide a way to access to the referenced item using
the HyperText Transfer Protocol (HTTP) (Fielding et al., 1999). Also, Linked Data
uses the Resource Description Framework (RDF) (Lassila and Swick, 1999) to define
a model to represent information in the form of a triple, which is composed by a
subject, a predicate and an object. It can be seen as a graphical representation with
directed arcs. The subject of a triple is an URI that identifies the described resource.

vhttp://www.cyc.com/platform/researchcyc/

http://www.cyc.com/platform/researchcyc/


2.4. Knowledge Acquisition 35

Objects can be URI’s or literal values such as strings, dates or numbers. The predicate
indicates the relation that exists between subject and object, and it is also identified
by an URI. Predicates have to be predefined, and therefore a domain has a limited
number of predicates. RDF can be implemented using several different syntax, or
serializations, including RDF/XML, Turtle, RDFa or RDF/JSON.

Linked Data databases are devoted to many topics, for example, FOAF (Brickley and
Miller, 2012) is a database of people, Geonames (Wick and Vatant, 2012) contains
data of locations, Linked Movie DataBase (Hassanzadeh and Consens, 2009) contains
information about films, and many others (See Figure 2.1). Several Intelligent systems
use linked data for tasks like domain modelling, customization, data integration,
improved search and others in different domains such as arts, education and e-learning,
e-government, financial, geographical. Specifically for language interpretation, some
linguistic resources have been transformed into Linked Data databases: ConceptNet
(Liu and Singh, 2004), VerbNet (Schuler, 2005), WordNet (Miller, 1995), SenticNet
(Cambria et al., 2014), FrameNet (Baker et al., 1998) and Probase (Wu et al., 2012).
Storing factual knowledge we can find DBpedia (Auer et al., 2007), Freebase (Bollacker
et al., 2008), WikiTaxonomy (Ponzetto and Strube, 2007), Web Tables (Cafarella et al.,
2008) or Wikidata (Vrandečić and Krötzsch, 2014). Some of these databases combine
curated data with information extracted automatically, specially in the case of factual
knowledge databases.

Figure 2.1: LOD Cloud Diagram as of September 2011 by Anja Jentzsch - Own work.
Licensed under CC BY-SA 3.0 via Commons
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There is a large amount of related open source tools built by the community to create
and manage ontologies. For example, one popular tool for storing and serving RDF
data is The OpenLink Virtuoso server vi. Apache Marmotta vii is an open source
framework to publish and build custom ontologies.

Ontologies and linked data databases are widely used in research, however, their manual
scaling is limited and therefore, some automated paradigms have arisen for ontology
population. The following sections show the two main paradigms to automatically
extract knowledge tied to a predefined schema. They are micro and macro-reading.

2.4.2 Micro-reading and Information Extraction

Information Extraction (IE) is the task of acquiring structured information from
either natural language or semi-structured language. We use the term Micro-reading
as coined in (Mitchell et al., 2009) to define the traditional IE approach where a
single document is considered ant the goal is to distil all the information included and
structure the resulting knowledge in a pre-defined ontology.

Information extraction was first studied in the Message Understanding Conference
(MUC) (Beth, 1995; Grishman and Sundheim, 1996; Chinchor, 1998) and continued
with the program Automatic Content Extraction (ACE) (Maynard et al., 2003) until
2008. These were the first quantitative evaluation of systems of this kind, and they were
a major factor for the advance of the state of the art in automatic text processing.

Relation extraction is a subproblem of IE that consists on identify labelled semantic
relations between entities. For example, in the sentence John is married to Mary, we
can extract that there is a relation between two persons, and this relation is labelled
as spouse.

More formally, a relation is an ordered tagged pair r(e1, e2), where r is the relation
name, or label, e1 is the target entity (i.e. the entity about we are querying) and
e2 is the value, the entity that holds the relation with the target entity. A relation
instance is a single assignment of entities and relation. In the past example, the
relation instance would be spouse(John,Mary).

Relation extraction is very popular, and it has many small competitions related. As an
example, the DDI Extraction 2011 challengeviii is a Spanish competition that focuses
in the biological relation extraction.

Some KBs were developed with information extraction techniques. Some of them are
built extracting information from semi-structured text, such as Wikipedia infoboxes.
vihttp://www.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF

viihttp://marmotta.apache.org/
viiihttp://labda.inf.uc3m.es/DDIExtraction2011/

http://www.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF
http://marmotta.apache.org/
http://labda.inf.uc3m.es/DDIExtraction2011/


2.4. Knowledge Acquisition 37

These KBs have a precision around 95%. Some examples of these KBs are Yago
(Suchanek et al., 2007), Kylin/KOG (Wu and Weld, 2007), and DBpedia (Auer et al.,
2007). More recently, Wikidata (Vrandečić and Krötzsch, 2014) arose as a hybrid
approach that assemble user and computer contributions in order to get the best
of both worlds. Despite the good precision, these approaches depend on sources of
semi-structured text, which is not as rich and abundant as natural language.

Regarding information extraction directly from text, most salient systems use boot-
straping or other semi-supervised techniques. Bootstraping systems start with a set of
seed patterns that are used to collect a set of instances from the document collection.
Then, it will search other matches of these instances in different sentences that will
be used to define new patterns. This process is executed iteratively to increase the
recall of the system. However, each iteration introduces more errors, decreasing the
precision. DIPRE (Brin, 1999) and SnowBall (Agichtein and Gravano, 2000) are some
examples of iterative knowledge methods.

2.4.3 Macro-reading and Knowledge Base Population

Macro-reading (Mitchell et al., 2009) also relies on a pre-defined ontology to drive
the extraction, and the task is actually to populate it, hence the name Knowledge
Base Population (KBP). Macro-reading appeared as a solution to the decreasing
performance of bootstraping systems. Macro-reading aims to extract information at
the collection level, instead of at document level. The main idea is that it is not
important to extract every piece of information from a single document, but that the
salient facts are (probably) stated many times on a corpus with different rewordings,
thus making easier the extraction task. This new perspective enabled the idea of
coupling the identification of more than one relation at the same time, ensuring that
the coupling of two relations is consistent with the ontology makes much more robust
the ontology population.

As a result there was a shift of paradigm for knowledge acquisition. On parallel, from
2009, the Text Analysis Conference (TAC) took over the ACE in the evaluation of
information extraction and proposed the Knowledge Base Population task (McNamee
and Dang, 2009) was proposed in this conference. It may be seen as a combination
between information extraction and question answering, where the task is harder
because the information must be gathered across different documents. Most salient
systems such as CUNY (Artiles et al., 2011) and Stanford (Surdeanu et al., 2011)
use standard NLP tools such as tokenization, segmentation, named entity detection,
coreference resolution and syntactic dependency parsing.

ReadTheWeb (Mitchell et al., 2009) is the first system based on the macro-Reading
paradigm. Never Ending Language Learning (NELL) (Carlson et al., 2010) is a related
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system. It learns extractors for a set of predefined relations through distant supervision.
To do so, it uses a bootstrapping approach, it learns extraction patterns from extraction
instances, and then runs the new patterns to extract new instances. As in the case
of micro-reading, bootstraping methods tend to degrade after few iterations, so it is
common to use different heuristics to reduce the noise.

As with micro-reading, the use of a pre-defined schema facilitates the inference process,
but limits the expressiveness and therefore macro-reading is still unable to represent all
the knowledge required for language interpretation. In the following sections we review
the major paradigms within the unsupervised acquisition systems: open information
extraction and propositional knowledge.

2.4.4 Open Information Extraction

The Open Information Extraction (OIE) paradigm aims to extract relations from
natural language in Web size scale. OIE supposes a new point of view over the
traditional information extraction. Whereas information extraction generally learns an
extractor for each target relation from labelled training examples, OIE aims to extract
and cluster different phrases that express arbitrary relations. The main advantage
of this paradigm is that it is completely unsupervised, as it is independent of any
dictionary of relations or instances.

However it has some important drawbacks: often the knowledge extracted is incomplete
and noisy. Therefore it is necessary to filter and validate the obtained data, complete
missing data and deal with uncertainty in some degree. Structured KB capture
knowledge in a pre-specified model and rely on ad hoc reasoning procedures that
are simple, but provide precise inferences, whereas OIE uses propositions encoded
with natural language to express facts about the world at the expenses of being less
precise.

Generally, OIE systems extract tuples Arg1, predicate, Arg2 in four steps:

1. Label a set of sentences using heuristics or distant supervision.

2. Learn a relation phrase extractor using some probabilistic model based on
sequences, for instance, naïve Bayes, conditional random fields or Markov logic
networks.

3. Identify two arguments connected by words in the path between them that
express the relation.

4. Some systems do an assessment of the instances in base of the redundancy found.

5. Some systems try to cluster language variations of the same arguments and
relational phrases.
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To avoid using lexical features, the extractors are trained using POS and NP-chunk
features from examples heuristically generated from the Penn Treebank.

DIRT (Lin and Pantel, 2001a) (Discovering Inference Rules from Text) automatically
identifies rules of inference from paths in dependency trees. Basically, a dependency
parser is applied to a text collection, and then, the different paths between the
arguments are gathered and finally the similarity between different paths is calculated.
DIRT has been used for textual entailment (Marsi et al., 2007) among others.

KnowItAll (Etzioni et al., 2004, 2005) can be considered the predecessor of the Open
Information Extraction paradigm. It starts from a set of predefined relations, manually
introduced by the user. Then it is able to extract information without labelled
training examples using syntactic patterns. After the extraction phase, it refines the
instances obtained using pointwise mutual information on information gathered on
search engines. This system only uses a part of speech tagger and dispense with named
entity recognizers or dependency parsers. However, it relies on several search engine
queries. As a result, it is not scalable and depends on search engines.

TextRunner (Banko et al., 2007) can be considered the first Open Information Extrac-
tion system. The relation phrase extractor uses a Naive Bayes model with unlexicalized
POS and NP-chunk features. The examples for the training are generated through
heuristics from the Penn Treebank. In the labelling phase, TextRunner uses a parser
to label a small set of training examples, restricted by three heuristics: there is a
dependency chains between the arguments shorter than certain threshold, the paths
between the arguments does not contain any sentence boundaries and the arguments
are not just a pronoun. These examples are used to generate features to train a Naive
Bayes classifier. Some examples of features include number of tokens in the relation,
number of stopwords and part of speech tags. Then, the system makes a single pass
over its corpus to identify entities and tag words with the part of speech. Each entity
that is a suitable candidate is introduced in the classifier to label it as trustworthy or
not. Finally, the tuples extracted are normalized and aggregated to assign a probability
for each one. The experiments reported use a corpus of 9 million web pages, and claim
to extract a total of 60.5 million tuples.

As stated in (Etzioni et al., 2011), the main drawbacks of this approach are the
incoherent extractions and uninformative extractions. Incoherent extractions are
relations that are not meaningful because the extractor chose the wrong words to
describe it. Uninformative extractions are cases where the tuple, besides being
informative, misses critical information.

Resolver (Yates and Etzioni, 2007) is an extension of TextRunner. Its goal is to merge
different syntactical variances of the same meaning. To do so, they use the data
collected by TextRunner and iteratively use cluster algorithms to merge clusters of
co-referential names.
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WOE (Wu and Weld, 2010) is another system that extracts its features from Wikipedia.
They run the general schema where they start with a set of seeds, and then retrieve
many examples through bootstrapping, to finally learn a set of patterns.

ReVerb (Etzioni et al., 2011) addresses the problem of incoherent and uninformative
extractions. To do so, it uses shallow NLP to tag the words with its part of speech,
and then apply a set of simple syntactic and semantic constraints defined by regular
expressions. These techniques provided a significant advance compared to TextRunner
and WOE.

OLLIE (Mausam et al., 2012) addresses two important flaws in the previous OIE
systems. First, it deals with relations not mediated by verbs, mainly those that occur
in nominal compounds. Second, it takes into account the context of the sentences
to avoid extracting relations that are not asserted as factual. To do so, they start
with the popular approach of starting with a set of seeds, in their case, 110.000 tuples
and then build a bootstrapping set searching for these seeds in a Web corpus. Once
they retrieve a set of sentences, they apply the Malt Dependency Parser (Nivre et al.,
2006) and learn a set of syntactic and semantic patterns that encode different ways of
expressing the relations. This process is called syntactic scope expansion. Then they
apply what they call the context analysis component. This component detects when a
sentence does not assert a fact, but only states a conditional truth or an attribution.

A conditional truth is a case where the sentence states that something is true if some
condition happens. OLLIE uses the dependence relations to extract the condition
and annotate it in an additional field. In the attribution case, OLLIE adds an extra
field that indicates who said, suggested, believes, hopes or doubts the information
extracted. To do so they train a classifier to assign a confidence to each extraction
using a different training set of 1000 instances.

One of the most recent systems of OIE is CSD-IE (Bast and Haussmann, 2013). The
main idea behind this system is to extract facts that semantically “belong together”.
This property is illustrated through an example: Ruth Gabriel, daughter of the actress
and writer Ana Maria Bueno, was born in San Fernando. In this sentence, they aim to
identify that the sentence contains two entities, each one with its own semantic classes
and relations. Identify, for example, that Ruth Gabriel is a writer would be an error,
even if those words are in a close context. They denote the process of identify the
context of each entity as contextual sentence decomposition. This process is similar to
the techniques used in (Mausam et al., 2012).
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2.4.5 Propositional Knowledge Acquisition

In contrast with relational knowledge, propositional knowledge is not limited to extract
binary relations. Instead, it is structured in propositions, which are a realizations of
a predicate and its arguments.

Human languages express semantics through predicate-argument structures. A
predicate-argument structure denotes the relation between the words that compose a
sentence. In order to mimic the human way to represent knowledge, it is desirable
that a meaning representation capture semantics with the same structure.

Propositional knowledge is the branch of research that connects this idea with proposi-
tional logic. In propositional knowledge, a predicate-argument structure found in text
is captured in a tuple that is used as a proposition. The tuple contains the predicate
and the arguments expressed in natural language. For instance, the sentence “John
sell a book” expresses a predicate with the verb sell and a pair of arguments sell and
a book that act as subject and object, respectively, and produce a proposition encoded
in the tuple {John - sell - book}. These propositions can be used as pieces of
knowledge that represent ground truth (or at least evidence towards trueness) and
that provide a higher level of abstraction than syntactic trees. The main idea is that
proposition stores provide evidence about how the world can be, that is, what is
commonplace in the discourse domain.

Therefore, providing text annotated with syntactic dependencies, it is straightforward
to extract propositions. This makes ideal the actual scenario where dependency parsers
are able to process large amounts of text. The results are large proposition stores that
encode meaning without domain restrictions.

This approach is more general, as it allows expressing n-ary relations by default. Also,
it provides a more fine-grained representation, where a relation is not limited by
an extracted tag, but it can be any word read in the text. The main drawback of
propositions is their sparsity, as semantically similar propositions cannot be clustered
without further processing.

Schubert (Schubert, 2002) argues that text contain background knowledge in form of
assertions that can be exploited by processing large quantities of text. In this way, the
focus is in finding redundancies rather than in refining the intra-document analysis.
The goal is to extract general relationships from texts, instead of predetermined kinds
of facts. For achieve this, they use information about the phrase structure and also
compositional interpretive rules. With these tools, they build a large lexical semantics
KB.

DART (Discovery and Aggregation of Relations in Text)(Clark and Harrison, 2009) is
a work based on the previous idea that tries to exploit the redundancy of instances
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acquired from patterns in a corpora. In this project, they obtain world knowledge in a
semi-formal notation. They have a database with 23 million propositions. The main
contributions ahead Schubert’s work are the kind of tuples extracted, the amount
of data collected and a way to evaluate the results. Their method uses a hand-built
parser called SAPIR, which extracts the phrase structure, and then extracts tuples
from the parse tree. To test that Dart database was useful, it was used in a parsing
test and in recognizing textual entailment.

Prismatic (Ferrucci et al., 2010) is also a KB extracted from large datasets. However
the technique employs a more complex knowledge representation, as it is based on
frames instead on binary relations or triplets. Besides using a dependency parser,
it also uses a coreference resolver and an entity recognizer. The question answering
system Watson uses Prismatic as one of the KB.

Peñas and Hovy (2010) suggest to differentiate classes and instances of those classes,
and how to use them together with propositions to make explicit the implicit or missed
information in the text. To test this system, they do a comparison with DART and
TextRunner, and they find that they add new capabilities as management of instances,
discovering new relations and being able to fit the KB to a specified domain. They also
show that restrict the source collection to a single domain produces better results.

These kind of specific, large sources of knowledge have the potential to help many
issues related to natural language understanding. However, how to use propositional
knowledge is a research line on an early stage of development. Still, propositional
knowledge has shown to be useful for NLP tasks such as textual entailment (Clark
and Harrison, 2009), semantic enrichment (Peñas and Hovy, 2010; Peñas and Hovy,
2010) and question answering (Fan et al., 2012).

2.5 Textual Inferences

Despite the great effort in compile large knowledge databases, there are still many open
research questions on how to take advantage of the information extracted, specifically,
which tasks can be targeted and how can this knowledge be used.

Inference can be defined as the ability of a system to automatically combine meaning
representation of the inputs with background knowledge. This capability includes
the ability to generate new knowledge, or recover relevant missing background knowl-
edge. In our case, we focus on textual inferences, since we limit both the meaning
representations and the background knowledge to textual utterances and their inter-
pretation. Roughly speaking, there are three kinds of inferences, deductive, inductive
and abductive.
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Deductive inference produce new information using some rules that ensure that the
new information is true. Deductive inferences are often used in predicate logic, for
example, given that cats are a mammals and mammals are animals, we can infer that
cats are animals.

Inductive inference create a new explanatory general rule from a set of particular
examples. For example, given that seagulls, magpies and pigeons are birds, we all
of them can fly, we can infer that birds can fly. Unlike deductive inference, the new
information is not guaranteed to be true, so typically inductive inference generates
new rules with an associated probability.

Abductive inference finds the most plausible fact that imply an utterance. For
example, if we know that the grass is wet, we can assume that it is raining with certain
probability, although other explanations may be possible. Abductive inference can
also use information of the world to modify the strength of the beliefs.

Deductive inferences are highly valuable because they ensure that the new knowledge
is true. However, often they are not applicable to real tasks. Due to the ambiguous
nature of language, most of the information inferred is abductive, that is, in ambiguous
sentences the most plausible meaning is the one that we assume as correct, even when
there are several other interpretations.

Many tasks related to language interpretation are heavily knowledge dependent. For
example, those tasks which include inferring implicit information contained in the text.
Here we provide some examples:

• Ellipses: Enjoy [reading] the book.

• Metonymy: They are drinking [the wine in] a bottle of wine.

• Compound nominals: The bite of a malaria [carrying] mosquito.

• Metaphor: Michael is [as strong as] a beast.

• Lexical ambiguity: Ana put all her money in the [financial] bank.

• Intensional adjectives: The former [and no longer] president has been travelling
for eight weeks.

All these linguistic phenomena have been studied mostly independently, but, ultimately,
they require to retrieve relevant knowledge in order to be interpreted. Although
addressing them is out of the scope of this dissertation, we claim that our proposal is
a first step towards a single generic methodology for interpretation that can tackle
this problems using proposition stores. In the following sections we take a look to the
most salient cases and other language interpretation tasks.
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2.5.1 Type Coercion

A precise definition of type coercion is provided by (Pustejovsky, 1991): “Type coercion
is a semantic operation that converts an argument to the type that is expected by a
function, where it would otherwise result in a type error”

Recently it has been redefined as a task (Pustejovsky et al., 2010), where type coercion
is the task of characterizing the type of compositional operation that exist between a
predicate and the argument that it selects. Specifically, the goal is to identify whether
the type that a verb select is satisfied directly by the argument, or the argument must
change type to satisfy the verb typing.

This definition is based in that, when a predicate takes an argument, this argument
may fit in that role only through an adjustment or coercion that makes it belong to
the type that the predicate expects.

For example, the ellipsis enjoy the book actually means enjoy reading the book. Broadly
speaking, type coercion would be to identify the accepted argument of enjoy would
be an event like reading instead of an object like book, thus tagging the change as
event-for-object.

A recent example of a work that address this issue is (Roberts and Harabagiu, 2011).

2.5.2 Logical Metonymy

According to the Oxford Dictionary, metonymy is the substitution of the name of an
attribute or adjunct for that of the thing meant, for example suit for business executive,
or the turf for horse racing.

This process is very frequently used by humans to optimize their communication, as it
provides a fast way to translate concepts from a sender to a receiver. However, this
use implies that systems are not able to retrieve the full meaning of a sentence. To do
so, they have to convert the concept stated on the text for the original meaning.

From the point of view of natural language processing, a logical metonymy occurs
when a logical argument (i.e. subpart) of a semantic type that is selected by some
function denotes the semantic type itself (Pustejovsky, 1991).

In fact, metonymy is a process very related to type coercion. Regarding the example
used before enjoy the book, one can understand that being readable is part of the
semantics of the book, thus inferring that the natural way of enjoy a book is to read
it.
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Several approaches have been proposed to solve this issue (Fass, 1991; Utiyama et al.,
2000; Lapata et al., 2003; Lapata and Lascarides, 2003).

2.5.3 Interpretation of Noun Compounds

Noun compounds are sequences of two or more nouns that act as a single noun
(Downing, 1977). The semantic relation between its components is implicit, and this
information may be important for understanding the context. For example, malaria
mosquito can be interpreted as malaria carrying mosquito

The use of noun compounds is very frequent. However, a large portion of compounds
have few repetitions. Therefore hand made-approaches, like dictionaries or ontologies,
are unfeasible for interpretation.

There are two main approaches to model noun compounds: Semantic similarity and
paraphrasing.

Systems that use semantic similarity try to describe noun compounds with statis-
tical models trained with features mostly extracted from the context. For exam-
ple,(Moldovan et al., 2004) define a set of semantic relations, including temporal, topic
and location, and then try to classify unseen noun compounds into one of them. To do
so, they use different learning models, including semantic scattering, decision trees
and naive Bayes, using features based on the semantic classes of the nouns.

On the other hand, paraphrasing systems try to find words, mainly verbs and preposi-
tions that can help to make explicit the implicit relations between the nouns (Nakov
and Hearst, 2006, 2008; Peñas and Ovchinnikova, 2012). This task has recently grown
in popularity which is shown in several SemEval tasks (Girju et al., 2007; Hendrickx
et al., 2009; Butnariu et al., 2009; Jurgens et al., 2012; Hendrickx et al., 2013).

2.5.4 Implicit Semantic Role Labelling

Semantic Role Labelling systems deal with the problem of tagging the arguments of a
predicate (See complete description in Section 2.3 ). However, this approach is limited
in cases where the arguments are implicit in the sentence, specially in cases where
they appear in a long distance context. As a result, predicates obtained with these
systems are incomplete, and eventually can produce noisy predicates.

Implicit Semantic Role Labelling, also known as null-instantiation resolution, aims to
recover these predicates. Whereas it has a long standing problem (Palmer et al., 1986),
the popularity of this task has been rising recently partially due to subsequent tasks
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proposed at SemEval-2010 (Ruppenhofer et al., 2010) and SemEval-2013 (Kolomiyets
et al., 2013), plus the availability of new knowledge resources.

However, this is a very hard challenge, and systems reported very low F1 measures
(F1=0.0014) (Chen et al., 2010). Still, some recent work achieved significant advances
(Laparra and Rigau, 2013).

2.5.5 Paraphrase Detection and Textual Entailment

The process where speakers reword a sentence with different syntactic and lexical
variations is called paraphrasing. This phenomenon results in big difficulties for
machines to assert that two phrases mean the same, that is, they are semantically
equivalent. When this relation is not bidirectional, but unidirectional, this is called
textual entailment. Between 2006 and 2013, this task was extensively studied in
the Recognizing Textual Entailment Challenge (Dagan et al., 2006; Dzikovska et al.,
2013), that defines it as: “Given two text fragments called ’Text’ and ’Hypothesis’,
Textual Entailment Recognition is the task of determining whether the meaning of the
Hypothesis is entailed (can be inferred) from the Text”

There is a long tradition of research in textual entailment. One newer approach,
Paralex (Fader et al., 2013a) tries to take advantage of KBs to associate natural
language patterns to database concepts, solving the problem of linking input strings
with entities, relations and question patterns.

2.6 Conclusions

In this chapter we have reviewed three important areas for language interpretation:
meaning representation, knowledge acquisition and textual inference. Although all
these three topics have seen a large boost in the past years there is still a long way
until machines are able to understand language, in part, because these areas remain
as separate fields of research, but also because most of the development is devoted to
specific sub-problems.

Typically, meaning representations are built from documents, and then are connected
with structured knowledge bases (ontologies) by two means: either the meaning
representation is enriched with information from the knowledge base, generally through
entity linking, or the meaning representation is used to populate the knowledge base.
These processes are very limited for the purposes of language interpretation. Meaning



2.6. Conclusions 47

representations and knowledge representations should be closer in order to be able to
mutually enrich each other.

At this point, manual approaches to acquire commonsense knowledge are considered
insufficient and difficult to apply to language interpretation because they are very
distant to actual realizations of text. The current trend is to automatically acquire
knowledge from large amounts of text. Open Information Extraction arises as a
paradigm that aims to acquire knowledge by representing concepts and relations
through simple representations close to natural language, typically subject-relation-
object triples. This information is found in ever-increasing text corpora, and gathered
in background knowledge bases or proposition stores. These resources have shown
to be useful in different applications such as question answering (Fader et al., 2014),
textual entailment (Christensen et al., 2013), summarization (Soderland and Mausam,
2014), and others (Mausam, 2016).

Proposition stores suppose a middle ground between meaning representations and
structured knowledge bases. Since propositions are acquired from meaning representa-
tions, their vocabulary is closer to natural language, while at the same time they are
able to represent a different kind of knowledge than predefined ontologies. However,
there are many open research questions on how to acquire and use this knowledge and
how the different components relate to each other.

Regarding meaning representations for acquisition purposes, currently there are several
semantic formalisms that are used to encode the contents of a text. Among them,
graphs representations stand out as popular approach. Graph representations can
be seen as an evolution from dependency parsers, where the aim is to build a tree
with the syntactic dependencies of the elements of a sentence. By definition, trees are
limited because every node is connected with a single parent and to the root node by
exactly one directed path. This constraint is useful for a dependency analysis, but
not for a semantic analysis, where nodes can act as arguments for many relations,
therefore having more than one parent.

Besides, graphs provide extra useful capabilities, such as the availability of well known
algorithms to traverse them or search for patterns. Besides, their modular structure
makes easy to add extra information.

One specific realization of a graph representation is Abstract Meaning Representation,
which captures who is doing what to whom in a sentence. However, still there is not an
AMR parser with a comparable performance to standard dependency parsers. Many
other graph representations have been proposed to improve document representation,
but most of them are built at sentence level, thus they lack of cohesion between the
elements on distant contexts.

As we have said, we focus on propositional knowledge acquisition. Current proposition
extraction systems such as (Clark and Harrison, 2009; Fader et al., 2011; Gordon
and Schubert, 2012) ignore some specific information in favour of acquiring general
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background knowledge. On the one hand, they do not address which named entities
participate as an argument of a proposition. On the other hand, they do not generalize
entities into their semantic classes and how such semantic classes participate in the
propositions. Besides, the acquisition of propositions is limited to sentence-level.

To the best of our knowledge, there is no effort to gather propositions from an
agglutinative semantic representation such as AMR. Besides, AMR parsers themselves
are not appropriate for proposition extraction, in part for the computational cost,
but also because AMR parses sentences instead of documents, thus missing some
interesting cross-sentence information.

In order to perform textual inference, it is necessary to find a suitable knowledge
representation that is able to encode as much knowledge as possible while at the same
time is able to be manipulated by a machine. Often a knowledge representations
reaches a solution that satisfies one requisite at the expense of the other. Roughly,
highly structured representations are easy to understand, and they enable simple but
powerful inferences, such as property propagation in ontologies. However, every piece
of information that does not fit in the general schema is lost. For domains like web-size
knowledge extraction, or common sense knowledge, build such a detailed schema has
not been accomplished even when investing large amounts of effort. In addition, simple
inferences often lack of the necessary granularity to deal with language interpretation.
On the other hand, looser representations (such as natural language) can express
more knowledge, however, automatic systems struggle to handle them to perform
inference. As a result, the field has seen a shift from early heavily structured meaning
representations into representations closer to natural language.

Summarizing, it seems reasonable to think that the way to make meaning representation,
knowledge acquisition and textual inference converge is finding a way to express
knowledge in a natural way, closer to meaning representations but also enabling
textual inferences.

This thesis proposes a new paradigm that covers these three aspects and study how
they influence each other. Figure 2.2 locates the four research areas related to using
propositional knowledge for language interpretation that we explore.

1. First, we study how to map documents into a meaning representation for acqui-
sition purposes.

2. Second, we study how to build a proposition store from the meaning representa-
tion. The last two challenges are devoted to study how propositional knowledge
can be used to perform textual inference.

3. Third, we study how a proposition store can be used to improve the meaning
representation, specifically, how can be used to improve syntactic parsing.
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4. Finally, we study how can we bridge the gap between propositional knowledge
and structured knowledge bases, more precisely, how to map propositions into
linked data properties.

Structured 
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Base

Document
Meaning
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Document
Meaning

Representation

Document
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Figure 2.2: Proposal to use propositional knowledge as middle ground to relate meaning
representations and structured knowledge bases. (1) Transforming a plain document into
a meaning representation. (2) Extracting propositional knowledge from meaning represen-
tations. (3) Using propositional knowledge to correct a meaning representation. (4) Map
propositional knowledge into structured knowledge.

Regarding the meaning representation study, we explore graphs, which are a compro-
mise solution according to Hobbs criteria and are feasible to build from a standard
dependency parsing making use of coreference links. In Chapter 3 we propose a graph
based representation that aims to encode the semantic at document-level while at the
same time simplifying and standardizing the dependencies so that classifiers could use
new features that capture context that might be distant on text.

In (Peñas and Hovy, 2010) a Background Knowledge Base is created where named
entities and classes are considered, but the acquisition is limited to a small domain
and propositions are extracted at sentence-level. In Chapter 4 we extend this work in
three directions: first, we extract propositions from documents represented as graphs;
second, we increase the number of patterns captured by the propositions; and finally
we increase the number and size of the processed corpora.

We illustrate the usage of the Proposition Stores in two different tasks that are
knowledge intensive: syntactic and semantic parsing. For syntactic parsing, we
focus on appositives, which are highly ambiguous dependencies where parsers commit
mistakes due to the lack of semantic information. Appositives are useful for textual
acquisition because they often convey a instance-class relation, but still there is a lack
of dedicated literature, specially in comparison with other ambiguous structures such
as PP-attachments. In Chapter 5 we study what kind of errors arise when parsing
appositives and show how can be corrected using automatically acquired knowledge.
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In the semantic parsing task, typically systems build a lexicon, that is, a dictionary
where textual occurrences and canonical logical forms are related with an associated
probability. There are many possibilities to build such a lexicon automatically, i.e.
observation of system behaviour (Chen and Mooney, 2011), conversations (Artzi
and Zettlemoyer, 2011), schema matching (Cai and Yates, 2013), questions (Poon,
2013) and especially question-answer pairs (Kwiatkowski et al., 2013; Berant et al.,
2013; Berant and Liang, 2014; Fader et al., 2013b, 2014). A comparison between the
aligning methods is difficult because it requires an evaluation on an extrinsic task that
involves several components. In Chapter 6 we study the contribution of the knowledge
acquisition on closing the gap between natural language and database predicates in a
question answering over linked data task.
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Graph Based Representation of

Text
In this chapter we explain the characteristics of the representation that we use as the
basis for the knowledge acquisition. This is a representation at document level, obtained
from plain text to a graph representation through deep text processing techniques. We
also measure the contribution of using this representation for feature generation in an
information extraction task.

Our feeling is that an effective
characterization of knowledge can
result in a real understanding system
in the not too distant future.

Roger Schank and Robert Abelson,
1975
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3.1 Introduction

Traditionally, semantics were expressed either on conceptual models such as ontologies
or frames, with a limited expressive power, or in logic frameworks such as first order
logic, which are more expressive but present scalability problems as well as being hard
to be created from text (Martin and Jurafsky, 2000).

In the current stage of NLP there is an ongoing effort to design a general purpose
meaning representation able to capture as much semantics as possible directly from
an open domain text (Oepen et al., 2014; Koller, 2015). Ideally, a sizable corpus of
this meaning representation would be useful in subsequent NLP tasks such as textual
entailment, question answering, machine translation and others.

The challenge of generating automatically this representation is still unsolved. The
first approach is to define an annotation schema, use it to annotate a large enough
corpora, and use them to learn how to map natural language into it. The most recent
and salient effort of the community to create a general purpose meaning representation
in this line is Abstract Meaning Representation (Banarescu et al., 2012). AMR is
a set of guidelines to annotate English sentences with their logical meanings, with
the final purpose of creating a Treebank that can be used to work in statistical NLU.
Although recently some AMR parsers have been published (Artzi et al., 2015; Pust
et al., 2015; Peng et al., 2015; Vanderwende et al., 2015; Wang et al., 2015; Flanigan
et al., 2014), these are on early stages of development and their performance is still
far from syntactic parsers.

On the other hand, a meaning representation can be built from plain text by intensive
use of linguistic processing tools. Traditionally, deep processing techniques such as
syntactic parsing and coreference resolution were considered computationally too
expensive to be applied to large corpora. However, current methods are more mature
and optimized, while at the same time computational power is much cheaper, so this
task becomes possible.

Our goal is to generate a document-level conceptual representation derived directly
from text that captures as much semantics as we can in a machine-readable format.
We build this representation by combining existing language processing tools with our
own semantic enrichment processes. Let’s consider the following example:

(3.1) David’s wife, Julia, is celebrating her birthday. She was born in September 1979.

A syntactic dependency parser would produce two parse trees, one for each sentence.
Each word become a node in the tree and these words are related by syntactic
dependencies. However, relations implied by the text, such as Julia being born in
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September are not represented. We want to map the basic parse tree into a more
meaningful representation that relates all the elements present on the text. Figure
3.1 illustrates the expected graph for the example. It shows a compact representation
where all the coreferent mentions of the entity Julia are clustered, and as a result it is
directly related to the events bear and celebrate.

David
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Temporal expression
Event
Entity
Syntactic dependence
Temporal relation
Semantic dependence

includeshasClass

arg1

has

arg1
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wife September

celebrate Julia

birthday
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Figure 3.1: Graph-based representation intended of the example document “David’s wife,
Julia, is celebrating her birthday. She was born in September 1979.” .

Moreover, consider the following examples

(3.2) Julia is David’s wife. She is celebrating her birthday. Julia was born in
September 1979.

(3.3) David has a wife, Julia, who was born in September 1979. Julia is celebrating
her birthday.

Sentences 3.2 and 3.3 are basically semantically equivalent to 3.1. However, their
syntactic parse trees are different. We aim to avoid different syntactic realizations
in order to produce similar graphical representations for sentences with the same
meaning.

Therefore, the research questions tackled in this chapter are:

• Research Question 1.1: What are the steps to build a graph-based representa-
tion from text at the whole document level using off-the-shelf tools?

• Research Question 1.2: What kind of lexical, syntactic and semantic infor-
mation can be expressed by these graphs?

• Research Question 1.3: What other features do the representation provide?

• Research Question 1.4: What features of an information extraction classifier
are affected by the graph representation?
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• Research Question 1.5: Which is the performance of a classifier trained with
those features in a task of automatic relation extraction?

• Research Question 1.6: In the same task, once the graphs are generated, what
is the effect of the new semantic information?

Parts of this chapter have been published in (Cabaleiro and Peñas, 2012), (Garrido
et al., 2011) and (Garrido et al., 2012). In particular, research questions 1.5 and 1.6
were addressed in a joint work led by Guillermo Garrido.

This chapter is divided into the following sections: First, in Section 3.2 we motivate
the need of a graph-based representation and explain the elements of the graphs. Then,
in Section 3.3 we propose a methodology to build the representation and in Section
3.4 we show the results of applying the methodology to diverse textual collections.
Section 3.5 shows an extrinsic evaluation of the graph-based representation in the
Temporal Slot Filling task. Finally in Section 3.6 we summarize the conclusions of
this chapter.

3.2 Graph Based Representation at Document Level

In order to interpret language, computers have to replicate the human ability to build
conceptual models of the meaning of the text. Semantic analysis, which is building
such a model from plain text, has been a long standing research line, and a central
problem in artificial intelligence.

The Meaning Text Theory (Mel’cuk and Polguère, 1987) proposes that interpretation
is a mapping from subsequent layers of representation: phonetic representation, mor-
phological representation, syntactic representation and semantic representation. Given
that syntactic parsing is a very developed research field, it seems natural to try to
map from syntactic tree parsers into meaning representations.

Trees are useful for syntactic parsing because they can be efficiently derived from
grammars. However, they impose hard constraints as being rooted and acyclic, which
are problematic for meaning representations. In general, a semantic representation do
not require a root node, and more importantly, elements of the semantic representation
should be allowed to participate as arguments of an unbounded number of predicates.

For these reasons, a more general graph based representation is more convenient to
represent meaning. Crucially, graphs can be enriched with linguistic information
that is not expressed in the text but it is useful or even necessary for language
interpretation. Besides, graphs are a well known mathematical formalism, easy to
traverse by automatic means. They also can alleviate the problems caused by distant
context in text by relating far items in text with direct syntactic or semantic edges.
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Some graph representations have been proposed for document representation (Ba-
narescu et al., 2012; Martins and Almeida, 2014). The intuition is that these represen-
tations are capable of capturing the relations of the elements present in the original
text. However, they often are built at sentence-level, so they lack of cohesion between
the elements on distant contexts. Our hypothesis is that a graph representation at
document level will provide a better solution at least in some cases.

Therefore, the main goal of this chapter is to study the generation of a representation
able to express the whole structure of one document in a simplified, condensed way,
capturing lexical, syntactic and semantic relations.

We show in the next chapters that graphs provide a suitable framework to search for
syntactic-semantic patterns for knowledge acquisition purposes.

As a subproduct of this work, we feed information extraction systems with this
representation instead of just plain text in order to use new features that allow
classifiers to capture context that might be distant in text.

3.2.1 Initial Representation

In order to build such graph-based representation, we take a bottom-up approximation.
Following Ferrucci et al. (2010) we denominate deep processing of text to those
techniques that are commonly used to transform a plain text to a representation which
includes structured syntactic and semantic features in a machine readable format that
allow further inference. It can be seen as finding a computational representation closer
to a logical representation.

Roughly, there are two general ways to process text: shallow processing and deep
processing. Shallow processing, i.e. statistic approaches based on bag-of-words, are
popular methods to characterize text. Shallow processing can be fast and computation-
ally cheap, but the result is a vector representation that can only express the surface
semantics of sentences.

In contrast with shallow processing, deep linguistic processing provides a rich, expres-
sive, and structured representation that captures long-distance dependencies (Baldwin
et al., 2007). The major drawback of deep linguistic processing is the high computa-
tional effort that it takes, specially for syntactic parsing. As a result, many processes
cannot be applied to large text corpora. However, recent advances in processing tech-
niques, such as dependency analysis in linear time, make affordable deep processing of
text with the current resources.

In our case, we use off-the-shelf tools to perform deep processing of text to structure
documents into a graph-based representation that we denominate initial represen-
tation.
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Formally, each document D is represented by a graph, GD = (N,E), comprising a set
of nodes N and a set of directed edges E.

3.2.1.1 Nodes

A node n ∈ N represents a unit of information, generally a word, except in two cases:
a multi-word named entity or a verb with its auxiliaries.

Every node is tagged with a descriptor. A descriptor is a representative string. For
the nodes that are not entities the string is composed by the lemmas of the words in
the node. Otherwise we choose the string just as it is found on the text. Nodes are
divided in the next types:

• Regular Nodes: Every node without an special class is considered a regular
node. A node contains the following set of attributes: Words, lemmas and
morphosyntactic tags. These attributes are included in every type of node.

• Events: Events are verbs or nouns that describe an action or a process. Besides
the regular attributes, events are also annotated with time, aspect and polarity.
A detailed explanation of the events can be found in (Saurí et al., 2005).

• Temporal Expressions: Used to identify words or multi-words that refer to a
concrete moment or to a temporal period. It has a normalized temporal value
according to the TimeX3 standard.

• Named Entities: Entities recognized in text. Annotated with entity type, for
example organization, location, person, etc.

3.2.1.2 Edges

An edge e ∈ E is a directed relation between nodes, that is e = (n1, n2 ∈ NxN : n1 6=
n2). An edge can represent three types of relations:

• Syntactic: Syntactic edges represent a syntactic dependence between two nodes.
The labels of these edges correspond to the Stanford dependencies tags (De Marn-
effe and Manning, 2008).

• Coreference: A coreference edge indicates that two nodes are mentions of the
same discourse referent.

• Temporal: Temporal edges represent a temporal relation between an event and a
temporal expression. Temporal relations belong to the next types: before, after,
within, throughout, beginning and ending.
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3.2.2 Enriched Representation

The enriched representation aims to convert the initial representation (i.e the
syntactic tree) into a semantic graph representation. To do so we take advantage of
coreference, the linguistic relation that is established between two or more expressions
that refer to the same entity. We use the term discourse referent coined by (Karttunen,
1968) to refer to the set of all of these expressions for an entity. We denote the process
of creating a discourse referent by grouping the mentions as collapsing. This procedure
is similar to file cards used by (Heim, 1983) or baskets in (Recasens, 2010).

Collapsing creates a big graph with many different grammatical relations between its
components. This would produce features with high sparsity, which is not desirable for
automatic learning techniques or for knowledge extraction. Our solution is to simplify
the morphosyntactic relations with a naïve semantic role labeling. We normalize
different expressions that are semantically equal. We consider grammatical voice,
genitives expressed in different ways, nominal compounds, etc. Section 3.3.2 details
the normalization process.

Besides, collapsing provokes the merging of nodes tagged with different attributes.
These attributes can reinforce an evidence or supply with extra data. However,
occasionally contradictory data can be grouped. The criteria to solve inconsistencies
is detailed in Section 3.3.2.

We transform the graph by defining a set of operations that are executed when some
prerequisites are met. Under these circumstances, and taking into account the nature
of the graphs that do not have a beginning or an ending by definition, the standard
procedural/object-oriented computation conveys two main problems:

First, the control flow is not linear. Depending on each document and graph, different
operations would be executed and in different order. To code every possible control
flow in procedural programming is a waste of effort and makes the code very redundant,
making it difficult to maintain. Second, adding new operations is expensive, because
they have to be included directly on the code. Besides, a sideline effect is that coding
is more difficult to understand, because each operation is not coded independently. To
solve these problems we opt to use declarative programming.

Formally, graphs with initial representation GD = (N,E) are transformed to create
enriched representation graphs EGD = (R,A), characterized by a set of nodes that
we denominate discourse referents R and a set of edges that we denominate enriched
edges A. The next sections describes these elements:
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3.2.2.1 Discourse Referents

A discourse referent r ∈ R is built when a set of nodes n0, . . . , nk ∈ N are related by
coreferences, thus creating a new set of discourse referents R. Discourse referents are
in fact the new nodes of the graph in the enriched representation.

Discourse referents keep the types of the original nodes: Regular discourse referents,
events, temporal expressions and named entities. Discourse referents also keep the
attributes of their nodes (i.e. the nodes collapsed into the same discourse referent).
However, collapsing may arise some inconsistencies, that we detail in Section 3.3.2.

3.2.2.2 Enriched Edges

Besides the types of edges of the initial representation, we add extra edges with
semantic information. As a result, we get three types of edges:

• Syntactic: Syntactic dependencies simplified through syntactic patterns. We add
the tags arg0, arg1 and arg2, which roughly correspond to subject, direct object
and indirect object, but considering the different voices, subordinate clauses, etc.

• Temporal: Same edges that are in the initial representation

• Semantic: Indicates that there is a semantic relation between two nodes. We
distinguish between three subspecified semantic tags: is, has and hasClass.
These tags aim to group every dependence that denotes a copulative relation,
a genitive relation that expresses a notion of possession or an instance-class
relation, respectively.

3.3 Methodology

In this section we describe the methodology to build the graph-based representation
from a plain text. We divide the process into two steps, which yield the two different
representations: the initial representation and the enriched representation. These
representations are used as source to obtain features for an information extraction
classifier. Their contribution is measured in Section 3.5.

Figure 3.2 shows the steps to produce the initial and the collapsed representation from
a plain text. The left side represent the processes to create the initial representation,
which is an aggregation of text processing tools. Then, the right side corresponds to
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the enriched representation, which refines the initial representation, mainly by adding
extra semantic information and normalizing syntactic relations. Next sections details
these processes.

Document 
collection

Enriched 
Representation

1. Tokenization

Initial 
Representation

2. Morphosyntactic Analysis

3. Dependency Parsing

4. Named Entity Recognition

5. Coreference Resolution

6. Extraction of Temporal Expressions

7. Event Recognition

8. Temporal Linking

1. Collapsing Nodes

2. Naïve Semantic Role Labeling

3. Semantic Class Detection

4. Genitive Normalization

5. Copulative Normalization

6. Ensure Consistency

7. Attribute Collapsing

Figure 3.2: Methodology for the tranformation from a plain text into the initial and the
enriched representations.

3.3.1 Initial Representation Generation

In order to build the initial representation, we depart from a syntactic dependency
tree whose nodes are annotated with morphological information, and with edges
annotated with syntactic information, coreferences and temporal relations. Specifically,
we perform the deep text processing methods:

1. Tokenization: A tokenizer first divides documents into sentences, evaluating if
a sentence ending character such as ’.’ is acting as a delimiter. Then, it splits
sentences into tokens. In English, a token roughly corresponds to a word with
some exceptions regarding punctuation. We use the Stanford Tokenizer i.

ihttp://nlp.stanford.edu/software/tokenizer.shtml

http://nlp.stanford.edu/software/tokenizer.shtml


60 3. Graph Based Representation of Text

2. Morphosyntactic analysis: This step performs part of speech tagging and lemma-
tization. Part of speech tagging, or POS tagging, is one of the most common and
studied text enriching processes. POS taggers assign a grammatical descriptor
to each word in a sentence (Voutilainen, 2003).

In many cases, POS taggers also provide inflectional and lexico-semantic informa-
tion, such as the distinction between common and proper nouns, or verb tenses.
However, in most languages each word can play different roles depending on the
semantics of the sentence. Moreover, POS tagging is language dependent, so it
is common to train language-specific POS taggers.

There are two common approaches to develop POS taggers, one is rule-based,
where some hand-defined or automatically acquired rules are used to tag words,
and the other is stochastic, where statistical techniques are used. The latter
achieves the best results, with reports over 97% accuracy (Toutanova et al., 2003;
Shen et al., 2007; Hajič et al., 2009).

A lemmatizer extracts the lemma for a word. This is the canonical form of a
word, which is the particular form that, chosen by convention, represents the
lexeme. It is useful because it allows grouping all the different inflected forms of
a word under the same representation.

In some occasions, it is important to disambiguate the word according to the
context, and in this case the task is not trivial because it requires understanding
the context that surrounds the word.

For both steps we use the Stanford Log-linear Part-Of-Speech Tagger (Toutanova
et al., 2003).

3. Dependency parsing: A dependency parser structures a sentence into a de-
pendency tree. In a dependency tree, nodes represent tokens, and are related
through directed labelled edges that represent syntactic dependencies. We use
the Stanford PCFG Parser (Klein and Manning, 2003). Dependency parsing
and more generally syntactic parsing is discussed in detail in Chapter 2.3.2. The
dependency labels are described in (De Marneffe et al., 2006).

4. Named entity recognition: Named Entity Recognition (NER) is, as defined at
the Sixth Message Understanding Conference (Grishman and Sundheim, 1996),
the task to identify the names of all the people, organizations and geographic
locations in a text. In this context, to identify is equivalent to determine the
words that belong to the entity and label such words with the category, or named
entity type. This is frequently extended to a few other types such as times,
currencies and percentage expressions, but it is possible to find systems that
distinguish between many more categories (Sekine and Nobata, 2004). Besides,
named entities are tagged with the named entity type. NER is mostly considered
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as a solved task and most recent research is centered around specific domains or
topics such as Twitter (Derczynski et al., 2015).

There are two main approaches to solve this task, handcrafted rule-based algo-
rithms and machine-learning approaches. The latter achieve better results, and
are commonly used, for example in (Finkel et al., 2005; Ratinov and Roth, 2009).

We use the Stanford Named Entity Recognizer (Finkel et al., 2005).

5. Coreference resolution: Coreference relations occur between different mentions
that refer to the same real world entity. These mentions can be written with
different linguistic expressions, so relate them is not a trivial process.

However, knowing that two mentions refer to the same entity is important to
correctly comprehend a text. This makes coreference resolution a very wide
research field, but despite all efforts, the performance of the coreference resolvers
in the state of the art is around 60%-70% F1 measure (Clark and Manning,
2015).

In the first place, most of the coreference research tries to apply heuristic
approaches, but from the 90s most of the systems use machine learning techniques
(Raghunathan et al., 2010; Lee et al., 2011a). Recently, Lee et al. (2013) showed
how a constrained set of rules could achieve the state of the art.

We use the Stanford Multi-pass Sieve Coreference Resolution (Raghunathan
et al., 2010).

6. Extraction of temporal expressions: Temporal expressions are lexical elements
used to denote temporal semantics such a date or an interval. In order to auto-
matically map temporal expressions into meaning representation it is necessary
to determine the temporal expression meaning. This process is not trivial as tem-
poral expressions may be ambiguous, and the same temporal expression can be
conveyed by different lexical expressions. Moreover, some temporal expressions
require require a reference time to be computed (i.e. today, tomorrow, yesterday,
next month, etc.).

In order to perform this task some systems were developed to locate and normalize
temporal expressions. We use the TempEx tagger (Mani and Wilson, 2000),
GUTime tagger (Verhagen et al., 2005) or SUTime (Chang and Manning, 2012).
All of them are rule-based systems.

The most accepted standard for temporal representation is TIMEX3, contained
within the TimeML language (Pustejovsky et al., 2003). The previous mentioned
systems use this standard.

7. Event recognition: Event recognition is a close field of named entity recognition.
In this case, the goal is to find events in the text, which consists in states,
actions and processes together with their properties. It is a very important
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task, especially for question-answering systems, as events are frequently a key
part of the input question, and in general for tasks related to natural language
understanding.

Traditional event recognition systems use a pre-defined set of relation patterns
(Brill et al., 2002; Hovy et al., 2002), but there are some other approaches that
combine linguistic and statistic knowledge to improve the results (Saurí et al.,
2005; Bethard and Martin, 2006). For our representation we use Evita (Saurí
et al., 2005).

8. Temporal linking: In many NLP tasks it is important to know which events occur
after or before a concrete date (or other event). Here we denominate Temporal
linking to the task of relate events to temporal expressions and infer the relative
order of the events that appear in the text.

Unlike other systems discussed here, there is not much research on this area. Some
of the most notable systems rely on hand-written rules, and their performance is
not as good as desirable. The Tarsqi Toolkit (Verhagen and Pustejovsky, 2008)
includes some tools to perform temporal linking, for example GUTenLINK (Mani
et al., 2003) anchors events to time expressions and S2T creates temporal links
from modal relations in the text. We use these tools in the representation.

These tools are grouped in two NLP frameworks. Steps 1-5 use the Stanford CoreNLP
package (Manning et al., 2014), while steps 6-8 apply the Tarsqi Toolkit (Verhagen
et al., 2005). In order to ensure consistency, we manually fed the Tarsqi Toolkit with
the tokenization produced by the Stanford CoreNLP. Moreover, we limit the length of
the documents to 10000 characters to avoid memory problems. After these processes,
we obtain a syntactic tree annotated with extra temporal information.

3.3.2 Enriched Representation Generation

As we have explained in Section 3.2.2.2, the standard procedural computation is
not desirable for graphs processing. Therefore, we opt for declarative programming.
In declarative programming, only the initial state is given (i.e. the graph) and the
operations are defined with a set of rules. We use JESSii, a Java rule engine. Due to
processing requisites (e.g. compute direct objects before indirect objects), we define
priorities in the rules. In JESS, this concept is denoted as salience, being -1 the lowest
priority and 1 the highest.

We follow the next steps:

iihttp://www.jessrules.com

http://www.jessrules.com
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1. Collapsing nodes: First we group all nodes related by coreference dependencies
into a discourse referent. We refer to this process as collapsing. Given an initial
graph GD = (N,E), the goal is to generate a enriched graph EGD = (R,A). A
discourse referent r ⊂ {n0, . . . , nk ∈ N : k ≥ 1} is composed by a set of nodes
n0, . . . , nk related by coreference dependencies. Given a second discourse referent
r′ ⊂ {n′

0, . . . , n
′
k′ ∈ N}, we tie both referents with an enriched edge a′(r, r′) if

any of their nodes were tied, that is: ∃e(ni, n
′
i′)→ ∃a′(r, r′)

2. Naïve semantic role labeling: Then we group syntactic dependencies into three
new dependencies, arg0, arg1 and arg2 that correspond to subject, direct object
and indirect object. Table 3.1 shows the rules used. These rules target active
and passive subjects and objects, plus clausal complements. The objective is to
normalize the syntactic dependencies so that sentences with the same meaning
yield the same representation.

Naïve semantic role labeling - arg0, arg1 and arg2
Input Output Salience
V → nsubj → N V → arg0→ N 0
V → xsubj → N V → arg0→ N 0
V → csubj → N V → arg0→ N 0
V → agent→ N V → arg0→ N 0
V → nsubjpass → N1, V →
arg1→ N2

V → arg2 → N1, V → arg1 →
N2

-1

V → nsubjpass→ N V → arg1→ N 0
V → dobj → N V → arg1→ N 0
V → iobj → N V → arg2→ N 0
N → partmod→ V V → arg1→ N 0
V → xcomp→ N V → arg1→ N 0
V → ccomp→ N V → arg1→ N 0
V → xcomp→ N1, V → arg1→
N2

V → arg2 → N1, V → arg1 →
N2

-1

V → ccomp → N1, V → arg1 →
N2

V → arg2 → N1, V → arg1 →
N2

-1

Table 3.1: Patterns used to perform naïve semantic role labeling. Each entry corresponds
to a dependency governor− dependency− dependent. Ni corresponds to a noun and ne(N)
denotes that N is a named entity and V is a verb. Salience refers to the priority of the rule,
being -1 the lowest priority and 1 the highest.

3. Semantic class detection: We add edges that denote a semantic class-instance
relation between common nouns and named entities. This semantic relation
is denoted as hasClass, and is produced through a set of patterns that detect
lexical structures with genitives, nominal compounds and appositives. Table
3.2 shows the full list of rules that drive the transformation. These patterns
target linguistic phenomena such as appositives, abbreviations, and nominal
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compounds that often are used to express that an entity belongs to a semantic
class, similar to (Hearst, 1992).

Semantic class detection - hasClass
Input Output Salience
ne(N1), N1 → nn→ N2 N1 → hasClass→ N2 0
ne(N1), N1 → appos→ N2 N1 → hasClass→ N2 0
ne(N1), N1 → abbrev → N2 N1 → hasClass→ N2 0
ne(N2), N1 → appos→ N2 N2 → hasClass→ N1 0
ne(N2), N1 → abbrev → N2 N2 → hasClass→ N1 0
ne(N1), N1 → nsubj → N2 N1 → hasClass→ N2 0
ne(N2), N1 → prep_such_as →
N2

N2 → hasClass→ N1 0

ne(N2), N1 → prep_like→ N2 N2 → hasClass→ N1 0

Table 3.2: Patterns used to perform semantic class detection. Each entry corresponds to a
dependency governor − dependency − dependent. Ni corresponds to a noun and NE(N)
denotes that N is a named entity. Salience refers to the priority of the rule, being -1 the
lowest priority and 1 the highest.

4. Genitive normalization: Our next step is to normalize genitive relations. Our
purpose is to select genitives that denote some notion of possession. Table 3.3
shows the patterns that we use to transform structures like nominal compounds
and straight possessives into the semantic relation has.

Genitive Normalization - has
Input Output Salience
ne(N2), N1 → nn→ N2 N1 → has→ N2 0
ne(N2), N1 → poss→ N2 N2 → has→ N1 0
N1 → poss→ N2 N2 → has→ N1 -1
ne(N2), N1 → prep_of → N2 N2 → has→ N1 0
ne(N2), N1 → nsubj → N2 N2 → has→ N1 0

Table 3.3: Patterns used to normalize genitives. Each entry corresponds to a dependency
governor − dependency − dependent. Ni corresponds to a noun and ne(N) denotes that
N is a named entity. Salience refers to the priority of the rule, being -1 the lowest priority
and 1 the highest.

5. Copulative normalization: Copulas are used in language to link subjects and
predicates. For our purpose, copulatives are an intermediate node that does
not convey a strong meaning, and result in extra distance for other nodes that
should be closer in the representation. Therefore we simplify the relations that
involve a copulative by transforming these nodes into relations. Table 3.4 shows
the relevant rule.
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Copulative Normalization - is
Input Output Salience
N1 → nsubj → N2, N1 → cop →
N3

N2 → is→ N1 0

Table 3.4: Pattern used to normalize copulatives. Each entry corresponds to a dependency
governor − dependency − dependent. Ni corresponds to a noun. Salience refers to the
priority of the rule, being -1 the lowest priority and 1 the highest.

6. Ensure consistency: The process of collapsing may produce some errors. Table
3.5 shows the rules that we have designed to correct four kind of mistakes. First,
we consider inappropriate coreferences, such as the ones between and entity and
its semantic class. Second, we consider a problem where an entity was incorrectly
attached to a temporal expression, instead of the relevant event. Third, we
correct instances where a noun is related to another noun through its semantic
class, instead of directly by the noun. Finally, we correct cases where a nominal
compound involving several common nouns and a named entity would only assign
the closest noun as semantic class of the named entity.

7. Attribute collapsing: Collapsing may cause that one referent contains several
annotations of the same type. We denote as attribute collapsing to the process
of choosing the final attributes of the discourse referents.

We pick the representative named entity type and descriptor for the discourse
referents. With descriptors, the objective is to find the string that better
characterizes the node. To do so, we take the longest string of every original
node. In the future, it would be a better idea to create a knowledge base with
every coocurrence of the descriptors, and from it to select the right one, similar
to disambiguation systems.

Regarding the morphosyntactic tag, we assign to every named entity the value
N and to every event V, while for the rest of the words we maintain the same
of the original node. This is a simple approximation that takes advantage of
the fact that named entities and events are the nodes that can have coreference
relations. With this decision we seek to normalize the nodes that usually contain
the most important information.

In some cases, due to the collapsing a discourse referent can possess more than
one attribute of one type. In these cases, we opt for the next solutions:

• Regular Discourse Referents: Like regular nodes, regular discourse referents
are defined exclusively with the attributes that are common to every dis-
course referent. These attributes are slightly different from the ones of the
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nodes. Discourse referents retain descriptors and morphosyntactic tags, but
lose lemmas and words.

• Events: If several events collapse in a single discourse referent we keep all
the attributes, i.e. time, aspect and polarity.

• Temporal Expressions: When several temporal expressions coincide on a
discourse referent, we store all the attributes.

• Named Entities: Often, several named entities with contradictory types are
grouped in a discourse referent. In these cases, we retain only the most

Coreference
Input Output Salience
N1 → rcmod → N2, N2 →
argX → N3, N3 = wh∗, that

N1 → coreference → N3, N2 →
argX → N3

0

N1 → hasClass → N2, N3 →
coreference→ N2

N1 → hasClass→ N2 1

N1 → hasClass → N2, N2 →
coreference→ N3

N1 → hasClass→ N2 1

N1 → is → N2, N3 →
coreference→ N2

N1 → is→ N2 1

N1 → is → N2, N2 →
coreference→ N3

N1 → is→ N2 1

Temporal expressions
Input Output Salience
V → X → N , N → Y → DATE V → X → N , V → Y → DATE 0

Semantic class governor
Input Output Salience
N1 → hasClass → N2, N3 →
X → N2

N1 → hasClass → N2, N3 →
X → N1

-1

hasClass
Input Output Salience
ne(N1), N1 → nn → N2, N1 →
nn→ N3

N1 → nn→ N2, N2 → nn→ N3 1

Table 3.5: Patterns used to ensure the consistency of the enriched graphs. Each entry
corresponds to a dependency governor − dependency − dependent. Ni corresponds to a
common name, ne(N) denotes that N is a named entity and V is a verb. X and Y refer
to any kind of dependency. Salience refers to the priority of the rule, being -1 the lowest
priority and 1 the highest.
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frequent types. As with the descriptors, this process could be improved by
storing every coocurrence in a database and using it as a feedback for the
type assignment. Persons can be also tagged with gender and age.

3.4 Application to Textual Collections

This section details the sources of documents for applying the representation method,
the output format intended and the resulting graphs obtained.

3.4.1 Datasets

We applied our graph-based representation to texts from diverse corpora, both in
size and in domain. The following list details the used corpora ordered by number of
documents.

• AIDS: A collection of 28,863 articles of the medical domain of AIDS.

• NYTFootball: A collection of 33,886 New York Times articles about US football.

• Webtext: The English subset of 1 million documents of the TAC 2012 KBP
Source Corpus Additions Web Documents (LDC2012E23). This is a collection
of web documents extracted from the GALE web corpus and added to the TAC
KBP Source Corpus in 2012.

• KBP: The TAC 2012 KBP Source Corpus (LDC2012E22) is a collection of about
1.7 million documents established at the KBP 2010. It is composed by newswire
documents, web documents, and a small subset of other documents all written
in English.

• WebClue09: We create a corpus of 4.2 million documents that contain single
sentences in English with two or more links to entities. We explain the purpose of
this corpus in Chapter 6. The WebClue09 Dataset (Callan et al., 2009) contains
about 100 million web pages in ten languages, with about 50% of the documents
written in English. Web pages were collected in 2009 as a part of the Lemur
Project. We use the Freebase Annotation extension provided by Google where
named entities are linked to their Freebase id (Gabrilovich et al., 2013).

• Gigaword: The English Gigaword Fifth Edition (Parker et al., 2011) is a collection
of newswire text data in English that includes four sources of news: The Agence
France Presse English Service, The Associated Press Worldstream English Service,
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The New York Times Newswire Service and The Xinhua News Agency English
Service. In total it contains near 10 million documents.

3.4.2 Results

We produce two different outputs. The first output is a JSON-like representation,
where we annotate the relevant attributes for each node and relation. We have used
this representation for the relation extraction task (see Section 3.5).

For the second output we use DOTiii, a standard graph description language. It is
compatible with many tools for graph visualization such as Graphviziv, Canvizv or
Gephivi.

Table 3.6 reports the number of documents processed for each corpus, both for the
initial and the enriched representation.

Corpus Documents Graphs %
AIDS 28,863 26,065 90.31
NYTFootball 33,886 32,746 96.64
Webtext 996,960 831,400 83.39
KBP 1,774,494 1,754,248 98.86
WebClue09 4,256,350 4,255,644 99.98
Gigaword 9,876,086 4,745,191 48.05
Total 16,966,639 11,645,294 68.64

Table 3.6: Number of documents of each corpus and number of documents converted into
graphs.

As a matter of example, Figure 3.3 shows the transformation from the initial represen-
tation to the enriched representation for the running example. As it can be seen, the
enriched version is a more compact meaning representation for the initial input.

iiihttp://www.graphviz.org/doc/info/lang.html
ivhttp://www.graphviz.org/
vhttp://code.google.com/p/canviz/

vihttps://gephi.org/

http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/
http://code.google.com/p/canviz/
https://gephi.org/
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Figure 3.3: Transformation from initial representation, GD, to enriched representation,
GC , for the example document: “David’s wife, Julia, is celebrating her birthday. She was
born in September 1979".

3.5 Extrinsic Evaluation on Information Extraction

This chapter describes how we took advantage of the graphical representation for the
Temporal Slot Filling task in the TAC Knowledge Base Population evaluation.

3.5.1 The Temporal Slot Filling Task

The main objective of the transformation of the documents in graphs is to improve the
performance of the systems that actually use the representation. To test this goal, we
perform an extrinsic evaluation in the 2011 Slot Filling task of the Knowledge Base
Population track (Ji et al., 2011).
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The Slot Filling task is composed by two subtasks: Regular Slot Filling (RSF) and
Temporal Slot Filling (TSF). The goal of RSF is, given a set of entities and a set
of slots, extract from a corpus of millions of documents the correct values for each
combination of entity and slot. This is, for a set of queries composed by the pair
(entity, attribute) the systems have to answer with a tuple (entity, attribute, value).
For instance, for the query (Barack Obama, spouse) the answer should be (Barack
Obama, spouse, Michelle Obama).

The correct answer to a slot may consist in a list of values. Only the right values are
scored, and the redundant answers are ignored.

Entities are divided in two categories, person and organization. Each category has its
own set of slots (See Table 3.7).

Person Organization
per:alternate_names org:alternate_names
per:date_of_birth org:political/religious_affiliation
per:age org:top_members/employees
per:country_of_birth org:number_of_employees/members
per:stateorprovince_of_birth org:members
per:city_of_birth org:member_of
per:origin org:subsidiaries
per:date_of_death org:parents
per:country_of_death org:founded_by
per:stateorprovince_of_death org:founded
per:city_of_death org:dissolved
per:cause_of_death org:country_of_headquarters
per:stateorprovinces_of_residence org:city_of_headquarters
per:cities_of_residence org:shareholders
per:schools_attended org:website
per:title
per:member_of
per:employee_of
per:religion
per:spouse
per:children
per:parents
per:siblings
per:other_familiy
per:charges

Table 3.7: Slot names for the two entity types in the RSF task
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The organizers distribute a knowledge database built from the Wikipedia Infoboxes.
It contains noisy information about entities, values and relations, useful to train the
systems. Moreover The TAC 2012 KBP Source Corpus, a 1.7 million documents
collection, is provided as solutions search space. It contains documents from different
sources, such as newswire, web and others.

The TSF adds the temporal component. In this subtask, the tuples (entity, relation,
value) have to be anchored in temporal interval. A fuzzy temporal interval is defined
as a tuple of four values (t1, t2, t3, t4), that denote that the slot started in a point
between t1 and t2, and it ended between t3 and t4. If the value of t1 or t3 is not defined
it means that the value is −∞, while for t2 or t4 is +∞.

Furthermore, the number of target slots is reduced for this subtask. Table 3.8 shows
the TSF slots.

Person Organization
per:spouse org:top_employees/members
per:title
per:employee_of
per:member_of
per:cities_of_residence
per:stateorprovinces_of_residence
per:countries_of_residence

Table 3.8: Slot names for the two entity types in the TSF task

The organization provides with training data annotated with temporal anchors, and
also intermediate local information regarding temporal constraints. This information
consists on a temporal expression located on a document and the temporal relation
(See Table 3.9) between the slot value and the temporal expression.

3.5.2 Experimental Design

In order to answer our research questions we participated in the RSF and TSF tasks
(Garrido et al., 2011). We used a single multi-class classifier and a battery of binary
classifiers for each task respectively. Regardless, in each task we follow the next
steps:

1. First we retrieve the relevant documents given for the given queries, up to 100
documents per query.

2. Then, we transform the documents into the initial and enriched representation
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3. Within the graphs, we search for the node or nodes that match the query entity.

4. Finally, each of the nodes at 10 or less length from the node is a candidate to be
the slot value. With this information we produce an unlabelled example (entity
node, value node, document), which is processed to the classifier to label it as
either positive for any of the slot type or with the negative label.

Furthermore, the classifier takes advantage of the representation to extract the features
to characterize each example. Table 3.10 shows the features used in RSF. X stands
both for entity and value.

TSF uses three extra features detailed in Table 3.11. These are Verb features, which
are generated from the verbs, V , identified in the path between entity and value.
Features provided by our representation are underlined.

We submitted two different runs to evaluate the performance of the enrichment
and collapsing. Both follow the process described, but the first one uses the initial
representation, whereas the second uses the enriched representation.

3.5.3 Results

Table 3.12 shows the results of the Regular Slot Filling Task, compared with the
manual annotation (LDC) and the top teams in the competition. Our system clearly
underperforms compared with the other systems. These results were expected as many

Relation Role of temporal expression Example
Beginning the start time for the slot value Rob joined GE in 1999
Ending the end time for the slot value Rob left GE in 1999
Beg_and_end the slot value is true exactly for the

specified time
Rob was named linguist of
the month for June 1999

Within the slot value is true for at least some
portion of the specified time

Rob worked for GE in 1999

Throughout the slot value is true for all of the
specified time

Rob commuted to work from
his home in Denver for all of
the 1999

Before_start a moment before the start time for
the slot value

In 1999, before Rob joined
GE, . . .

After_end a moment after the end time for the
slot value

By 1999 Rob had already
left GE

Table 3.9: Temporal relations in the TSF training data
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Feature family Feature name Description
Syntactic depen-
dency

path path between entity and value in the sentence [rep-
resented with the unigrams and bigrams of depen-
dency labels, POS tags and NE tags]

Placeholders X-annotation NE annotations for the sentence fragment X
X-pos Part-of-speech annotations for the sentence frag-

ment X
Lexical context X-gov Governor of X in the dependency path

X-mod Modifiers of X in the dependency path
Properties X-has_age X is a NE, and we have identified it has an age

attribute.
X-has_class-C X is a NE, and we have identified it has a class C.
X-has_property-P X is a NE, and it has a property P
X-has-Y X is a NE, and it is in a relationship to-have with

another NE, Y
X-is-Y X is a NE, and it is in a relationship to-be with

another NE, Y
X-gender-G X is a NE, and it has gender G

Table 3.10: Features included in the model for RSF. The underline denotes a unique
feature extracted from the representation.

teams have mature systems whereas our system is in an early stage of development.
However, it is notable how results improve using the enriched representation.

Table 3.13 shows the general results of the Temporal Slot Filling Task. It can be
observed that the performance of the system is similar to other systems on the state
of the art, and achieving the highest precision among all the participants. Moreover,
despite the low recall, the system gets the third best F1 measure.

This implies that the graphical representation is a promising chance in the task of

Feature family Feature name Description
Properties of the
verb V

V-tense Tense of the verb V in the path.

V-aspect Aspect of the verb V in the path.
V-polarity Polarity (positive or negative) of the verb V in the

path.

Table 3.11: Features included in the model for TSF. The underline denotes a unique
feature extracted from the representation.
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LDC Top-1 Team Top-2 Team Median Team Initial Enriched
Precision 0.8618 0.3502 0.4917 0.1031 0.0259 0.0343
Recall 0.7259 0.2550 0.1259 0.1650 0.0455 0.0529
F1 0.7880 0.2951 0.2005 0.1269 0.0330 0.0416

Table 3.12: Regular Slot Filling task results

automatic relation extraction, because, despite being in the first steps of development,
it allows to compete with the systems on the state of the art.

System Precision Recall F1
BLENDER2 0.1789 0.3030 0.2250
BLENDER1 0.1796 0.2942 0.2231
BLENDER3 0.1744 0.2976 0.2199
IIRG1 0.2457 0.1194 0.1607
Initial 0.2996 0.0703 0.1139
Enriched 0.2596 0.0609 0.0986
Stanford 12 0.0233 0.1680 0.0409
Stanford 11 0.0238 0.1453 0.0408
USFD20112 0.0152 0.0070 0.0096
USFD20113 0.0079 0.0014 0.0024

Table 3.13: Final results on the Temporal Slot Filling task

The system is made by several components pipelined: Information retrieval, document
representation, semisupervised learning, relation extraction and in the case of TSF,
temporal anchoring. This kind of system is very sensitive to error propagation, and
therefore is interesting to study precision and recall taking into account the maximum
bound imposed by the information retrieval component.

Table 3.14 shows the results in the Temporal Slot Filling task until the relation
extraction phase. It contains the precision and recall taking into account the number
of tuples (entity, attribute, value) successfully obtained.

Representation Initial Enriched
Recall 0.08 0.08
Precision 0.42 0.45
F1 0.14 0.14

Table 3.14: Temporal Slot Filling task results until the relation extraction phase
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Data shows that both precision and recall obtain very similar results in both types of
representations, being slightly better in the enriched graphs case.

A manual inspection of the results shows that the generated graphs contain many
mistakes. After the participation in the task we have identified many programming
mistakes that possibly worsen the results, especially in the enriched representation.
However, the enriched graphs represent a slight improvement against the initial
graphs.

3.6 Conclusions

In this chapter we presented a method to transform documents into a document level
representation consisting in semantically enriched morphosyntactic graphs. We have
performed an extrinsic evaluation in the regular and temporal slot filling task. This
representation is designed to facilitate future downstream NLP tasks such as feature
extraction, knowledge acquisition.

We use simple techniques in every step because our goal force us to group heterogeneous
information. Still, the representation supposes a promising start and provides a large
margin for improvement.

Moreover, since the representation system is based on interchangeable external tools,
we have a flexible and modular application that facilitates future changes.

Regarding our research questions:

1. Research Question 1.1: What are the steps to build a graph-based representa-
tion from text at the whole document level using off-the-shelf tools?

In this chapter we have shown how to build a graph-based representation com-
bining existing language processing tools with our own semantic enrichment
processes. First we build the initial representation, which corresponds to a
syntactic tree for each sentence in the document, annotated with extra infor-
mation such as POS, named entity types, temporal relations and coreference.
Then, we build the enriched representation using a declarative procedure that
on the one hand collapses nodes into discourse referents taking advantage of the
coreference relations and on the other hand refines the resulting graphs with a
rule-based system that employs four types of rules: naïve semantic role labelling,
semantic class detection, genitive normalization, copulative normalization, ensure
consistency and attribute collapsing.

2. Research Question 1.2: What kind of lexical, syntactic and semantic infor-
mation can be expressed by these graphs?
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The graph-based representation contains standard lexical information such as the
words lemma, POS and named entity type, events annotated with tense, aspect
and polarity and temporal relations between entities and temporal expressions.
Discourse referents also include a representative descriptor. Moreover graphs
encode syntactic information condensed in the arg0, arg1 and arg2 relations, that
express a notion of subject, direct object and indirect object respectively. We add
extra semantic information including semantic class-instance relations hasClass
and genitive (possessive) has and copulative relations is. These relations are
obtained by identifying and tagging dependencies that convey the same semantics.

3. Research Question 1.3: What other features do the representation provide?

The main unique features are provided by the extra semantic information.
Specifically, we have used in RSF the following unique features: X-has_age,
X-has_class-C, X-has_property-P, X-has-Y, X-is-Y and X-gender-G. In TSF we
also added the following features related to event detection; V-tense, V-aspect
and V-polarity.

4. Research Question 1.4: What features of an information extraction classifier
are affected by the graph representation?

The collapsed representation enables the propagation of information across the
graph. For instance, pronouns participating as arguments of a predicate may be
replaced by a named entity related by a coreference relation, and, as a result, path
features are shortened. The naïve role labelling and the genitive/copulative/class-
instance normalization aim to group dependencies whose semantics are equivalent,
thus features extracted should be less sparse and therefore learning should be
easier.

5. Research Question 1.5: Which is the performance of a classifier trained with
those features in a task of automatic relation extraction?

Slot filling is a challenge out of the scope of this work. We only run a preliminary
system to compare the effect of both representations. Results show that the
graph-based representation is promising for feature extraction for classifiers in
the automatic relation extraction task. The many opportunities of improvement
of the representation leads us to think that future versions can achieve better
results.

6. Research Question 1.6: In the same task, once the graphs are generated, what
is the effect of the new semantic information?

We have got slightly better results using the enriched graphs. With these data we
can say that the enrichment phase is useful for the automatic relation extraction
task, as the balance between the gain of collapsing the graphs and the loss of
the added errors introduced by the process is positive.
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Automatic Capture of

Propositional Knowledge
This chapter is devoted to general-purpose knowledge acquisition. Our approach extracts
propositions at document level from large corpora of documents represented with the
previously presented graph based representation. These propositions express background
knowledge that are the base for further textual inferences.

If knowledge can create problems, it
is not through ignorance that we can
solve them

Isaac Asimov
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4.1 Knowledge Capture

Achieving human intelligence in machines would require the acquisition of human-levels
of knowledge. In other words, we need to provide large amounts of knowledge to
machines as a prerequisite for enabling understanding. Presumably it involves several
types of knowledge, such as factual knowledge (e.g. Barack Obama is married with
Michelle Obama), procedural knowledge (a cooking recipe) or mathematical knowledge
(a+ b = b+ a) among a large list. In our case, we are concerned with background
knowledge, the knowledge that any ordinary person is expected to know. In order to
be useful for machines, this knowledge has to be fine-grained and extensive which makes
it hard to obtain. This problem is known as the acquisition bottleneck, and it has been
a long term problem in the AI field. Specifically, we focus on the knowledge needed
to guide systems for NLP tasks. For example, we want to know that a quarterback
throwing a pass is an assertion more probable than a quarterback swimming fast, and
study how this background knowledge is valuable in NLP task such as dependency
parsing, word sense disambiguation or question answering.

Current computational capabilities plus the explosion of the textual resources in the
Web have advocated researchers to tackle this task with automatic techniques that
aim to extract knowledge from large sources of text. Classical approaches are based on
Information Extraction (IE), where knowledge is tailed to a pre-specified template or
ontology. However pre-specifying the target relations poses two main problems: first,
develop an IE system requires a significant effort to learn the mapping to the target
relations and the patterns to extract them; and second, IE is too coarse to be able
to capture the full complexity of natural language. Both problems get worse as the
target domain grows.

Addressing this issue, Banko et al. (2007) introduced Open Information Extraction
(OIE) as a paradigm for knowledge acquisition. It uses surface patterns to extract an
unbounded number of relations which are further refined with a probabilistic model.
Even with the subsequent improvements over the original work, OIE is still limited:
most of the OIE systems only extract verb-based relations, obviating other relations
like nominal, possessive and copulative. However, for our purposes, the main drawback
of OIE is that it is generally good acquiring facts (e.g. <Steve Walsh - throw -
pass>) but not powerful enough to generalize this knowledge (e.g. “C - throw - pass”
where C is a probability distribution for entity classes.).

In turn, proposition extraction aims to acquire general knowledge following the
ideas of (Schubert, 2002), who hypothesized:

“[there is] a largely untapped source of general knowledge in texts, lying
at a level beneath the explicit assertional content. This knowledge consists
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of relationships implied to be possible in the world, or, under certain
conditions, implied to be normal or commonplace in the world.”

Using his own example, the sentence “He entered the house through the open door”
suggests that it is possible for males to enter in houses, that houses have doors that can
be opened, and so on. This knowledge should be useful for tasks related to language
interpretation.

Some examples of salient propositions extraction systems include (Clark and Harrison,
2009; Fader et al., 2011; Gordon and Schubert, 2012). Instead of binary relations,
these systems aim to extract predicate structures with a variable number of arguments.
Although proposition extraction is devoted to extract background knowledge, these
systems do not generalize neither entities into their semantic classes nor how such
semantic classes participate in the propositions. Besides, they limit the acquisition
of propositions to sentence-level. This implies that information available in the text
as a result of coreference resolution or pronominal anaphora is excluded from the
propositions. Peñas and Hovy (2010) create a Background Knowledge Base where
named entities and classes are considered. However, the acquisition is limited to a
small domain and propositions are extracted at sentence-level. We extend this work in
three directions: first, we extract propositions from documents represented as graphs;
second, we increase the number of patterns that capture propositions; and finally we
increase the number and size of the processed corpora.

In this context, we formulate the following research questions:

• Research Question 2.1: Is it feasible to build knowledge bases from documents
represented as graphs? What does this kind of representations provide?

• Research Question 2.2: What problems arise from an automatically generation
of propositional knowledge bases?

The application to Named Entity Disambiguation has been published in (Barrena
et al., 2014).

This chapter is structured as follows. Section 4.2 presents our method to build a
proposition store, with the particularities of semantic classes and typed propositions
explained in Sections 4.3 and 4.4 respectively. Section 4.5 shows the methodology and
implementation details. The resulting proposition stores are presented in Section 4.6.
We evaluate a subset of the proposition stores in a named entity disambiguation task
in Section 4.7 and we finish showing the conclusions in Section 4.8.
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4.2 Proposition Stores

For our purposes, a proposition is identified as a tuple of words that fit in a predefined
syntactic pattern or structure commonly use to express assertions, i.e. predicate
structures. Each tuple describes an occurrence in the world, i.e. the corpus. From a
propositional logic point of view, it can be seen as a statement that is either true or
false.

The first step for proposition extraction is to annotate text with the syntactic de-
pendencies. Previous systems use dependency parsers SAPIR (Clark and Harrison,
2009) or Stanford Parser (Peñas and Hovy, 2010). In our case, we use the enriched
graph-based representation presented in Chapter 3.

Our graphs provide several advantages. Since the dependencies are normalized, a
simple set of patterns can extract most of the information conveyed in the text. At
the same time, some sentences with the same meaning produce the same propositions,
even if they are syntactically different, for example, active-passive voice. Thus,
Proposition Stores contain less noise by having less variability of propositions and
higher frequencies. The next advantage is that some implicit relations such as the
ones conveyed by semantic classes or genitives are explicitly represented. For example,
the apposition present in the sentence “David supports the team of his wife, Julia” is
directly expressed as <Julia - hasClass - wife>. Finally, since the named entity
information is propagated through coreferences, patterns can capture information
beyond the limits of a sentence.

Propositions are acquired through syntactic patterns that cover three types of linguistic
realizations: dependencies between nouns (noun-noun compounds and possessives), de-
pendencies between nouns and verbs (predicate-argument structures) and prepositions
with two nouns as arguments. Thus, the main types of propositions are governed by:

• Verb (V): A verb is used to denote the relation between arguments. In order
to reduce sparseness in the aggregation step, we use the lemma instead of the
inflected form of the verb and we dispense with auxiliaries.

We assume that sentences are constituted by predicates and their arguments,
where a predicate expresses the relations between the arguments. We consider
three types of arguments, subjects, objects and complements. For simplicity,
indirect objects are included as complements.

• Preposition (P): A preposition can act as a relation between two nouns.
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• Genitives (has): Grammatical relation that marks a noun as modifier of an-
other noun. Genitives have many semantic interpretations, including possessor-
possessee (John’s house), temporal (yesterday’s party), part-hole (John’s leg)
and kinship (John’s brother).

• Semantic class (hasClass): Denotes a relation between a semantic class and an
entity.

Note that the has and hasClass relations are represented with an edge in the graph
based representation.

Arguments are divided in the following types:

• Noun (N): Since we aim to retrieve both general knowledge and specific knowledge
about instances, we allow arguments to be named entities, common nouns or
pronouns (i.e. <Steve Walsh - throw - pass>, <player - throw - pass>
and <he - throw - pass>, respectively). Pronouns include personal pronouns,
possessive pronouns and interrogative pronouns. Note that collapsed nodes may
have several realizations for an entity. This is particularly common in named
entities grouped with pronouns. For our propositions, we select a canonical
descriptor of the node, according to the rules described in Section 3.3.2.

• Preposition (P): A combination of preposition and noun PN denotes a complement
of a proposition. For simplicity, an indirect object is denoted also with PN, but
in this case the preposition is omitted.

• Semantic Class (C): A semantic class is a noun that acts as a category of a
named entity. We explain the semantic class acquisition in Section 4.3.

We denote a proposition with a concatenation of its elements. For example, a NVNPN
proposition is an instantiation of <Subject - Verb - Object - Preposition - Comple-
ment>. For readability, we attach the preposition to the verb in the form <Sub-
ject - Verb:Preposition - Object - Complement>. For example, the sentence “John
write a book about science” yields the proposition <John - write:about - book -
science>. Table 4.1 shows the patterns that we consider. The most notable differ-
ences compared with previous work (Clark and Harrison, 2009; Peñas and Hovy, 2010)
are the addition of the genitive relations and the omission of relations that involve
quantifiers, adjectives or adverbs.

The aim is to select highly productive patterns to acquire a large number of propositions.
However, we do not pretend to obtain every proposition expressed in the collection.
What is important is to acquire a representative and sufficient number of propositions
to evaluate the plausibility of new text occurrences.

Consequently, some patterns target partial information on purpose, for example, in the
sentence the quarterback throws a ball, we can capture the proposition <quarterback
- throws>, obviating some information in the process.
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Pattern Example Proposition
NV As DNA replicates mistakes in the replication occur. <DNA - replicate>
NVN Four Rooms was released by Miramax in December,

1995.
<Miramax - release - Four Rooms>

NVPN An opportunity has arisen for a payroll clerk to
join this legal firm.

<opportunity - arise:for -
clerk>

VNPN Research is undertaken on leading-edge manage-
ment issues through membership surveys.

<research - undertaken:on -
issue>

NVNPN Don Knotts won five Emmys as Barney Fife. <Don Knotts - win:as - Emmys -
Barney Five>

NPN Frank Welker was the voice of Megatron. <voice - of - Megatron>
NHasN It is the policy of the Department to continue to

ensure so far as is reasonably practicable.
<Department - has - policy>

Table 4.1: Syntactic patterns used to extract propositions from the graphical representation.
NVNPN is equivalent to Subject - Verb - Direct Object - Preposition - Complement

Also, in sentences with a coordinate structure (e.g. several subjects or complements), we
acquire every possible combination of the arguments. For example, the sentence John
and Mary visit the zoo and the museum produces the propositions <John - visit
- zoo>, <John - visit - museum>, <Mary - visit - zoo> and <Mary - visit -
museum>.

4.3 Semantic Class Propositions

Semantic classes are a popular topic of research in natural language. Determining that
wife is a class of person, whereas Spanish is a class of either person, organization or
location, is a very valuable knowledge for many tasks, including information extraction,
question answering and many others.

There are multiple ontologies or dictionaries with information about semantic classes
that can be used as background knowledge, either created by hand as WordNet (Miller,
1995) or in semi-supervised ways, such as DBPedia (Auer et al., 2007). However,
manual and semi-supervised databases have important drawbacks: For many tasks
its coverage is insufficient, especially for open classes. Moreover either they are static
or their mechanism to include new knowledge is limited, and often the granularity
provided is inappropriate for some purposes.

Unsupervised semantic class acquisition methods address these problems. The task is
known as semantic class learning, semantic class induction or hyponym acquisition
(Lin and Pantel, 2001b). The most popular approach is to process the text with a
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syntactic parser and select one or more surface patterns to extract a set of semantic
classes (Hearst, 1992; Kozareva et al., 2008). These results are augmented with
bootstrapping techniques that produce new patterns from the initial set of semantic
classes. This iterative process is very productive, but the quality of the new semantic
classes is reduced as the number of iterations rise. This problem is known as semantic
drift.

Our work is closer to Probase (Wu et al., 2012), in which the initial patterns are
fixed and the aim is to apply the method to a large number of documents so that
relations between classes and instances are extracted with an associated frequency that
is representative of how common is the relation in the world. For example, the instance
Obama is frequently associated with the semantic classes president or democrat. We
also see a long tail of classes associated with instances with less frequency. For example,
Obama is related to a lesser degree to semantic classes like husband or citizen. As with
the other propositions, some errors arise, for example we retrieve examples like Obama
related to the class daughter. Unlike Probase, we dispense with a post-processing
to refine the results. As we use well-known high-precision patterns, we expect that
mistakes have low frequency and thus have low impact for textual inference purposes.

The graph based representation enables a straightforward semantic class proposition
extraction considering the NhasClassN relation. This relation is generated using
syntactic patterns that consider appositives, copula verbs and other patterns, similar
to Hearst (1992) (See Table 4.2).

Syntactic pattern Example
NE nn NN spokesman Baba Mohammed
NE appos NN Umaru Yar, member of ...
NN appos NE ... capital, Abuja
NN such_as NE spokesmen such as Phillip Umeadi
NN like NE a ruler like Olusegun Obasanjo
NE be NN Hamas is a group

Table 4.2: Patterns for the assignment of semantic classes. Each entry belongs to a tuple
governor − dependency − dependant where NN is a common name and NE is a named
entity.

Instead of looking for the relation NhasClassN, we retrieve every entity even if it is not
related with a semantic class. The purpose is to be able to estimate the probability of
an entity acting as a specific class with respect to the frequency of the entity. Moreover,
the tuples that we store are different. In this case, we force the first argument to be
a named entity, and the second is a common noun that denotes the semantic class.
Entities are stored with its entity type (i.e. person, organization, location, etc.), in
order to gather information about the relation between entity types and classes. For
example, a person is more likely to have classes as teacher, player or mother, whereas
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organizations would have classes such as company, holding or library. We also store
information about the entity gender. We use the information contained on discourse
referents that merge a named entity and a gender pronoun (i.e. he, she, his, hers).

4.4 Typed Propositions

Selectional preference is a long standing topic in NLP (Katz and Fodor, 1963; Zapirain
et al., 2013) that evaluates the plausibility of an argument for a linguistic element.
For example, in semantic role labelling it is necessary to evaluate how appropriate is
an entity to fit a role in a verb. That is, we want to know that the object of the verb
drive is probably a vehicle. This knowledge is valuable in other tasks such as relation
extraction, where it is desirable to know if an argument can be accepted as a part
of a relation. For example, we may discard any subject of the relation married_to
that is not a person. However, selectional preferences are more complex for ambiguous
elements, for example, it is possible to drive a company or to drive sheep. This
knowledge is useful in tasks such as the mentioned semantic role labelling and relation
extraction but also to others like question answering or word sense disambiguation.

Early efforts on selectional preferences were based on hand-made lexical resources such
as WordNet (Resnik, 1997), as with semantic classes, but these methods lack of the
necessary scalability to deal with open domains. The trend has evolved to the use of
distributional similarity based on text collections (Agirre and Martinez, 2001; Zapirain
et al., 2013).

We produce typed propositions as propositions with arguments tagged as semantic
classes. In this case, the argument is replaced with the semantic class. Table 4.3 shows
the patterns that we consider to extract typed propositions, which are analogous to
propositions.

Typed propositions have been studied in other articles (Anaya-Sánchez and Peñas,
2015; Anaya-Sánchez et al., 2015), however, the evaluation is out of the scope of this
thesis.

4.5 System Overview

In this section we show the steps that our method follows to build a Proposition Store
from a corpus of documents. First we describe the methodology and then we show the
details of the implementation, together with the datasets used.
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Pattern Example Proposition
CV Kristen Anderson, a third year student won the

annual award . . .
<student - win>

CVC Manchester United and Chelsea will watch Parma
defender Matteo Ferrari.

<ORGANIZATION - watch -
defender>

CVPC Wright & Teague will donate 15m to WaterAid. <jeweller - donate:to -
ORGANIZATION>

VCPC Vincent Van Gogh was born in Groot-Zundert,
Netherlands, son of a small town preacher.

<son - born:in - LOCATION>

CVCPC Investigative food journalist Joanna Blythman has
made her name with her hard-hitting articles and
books about the UK food industry..

<journalist - make:with - name -
article>

CPrepC . . . with goals from captain Michael Ballack. <goals - from - captain>
CHasC Huw Lewis, the editor of Jesus Life, the magazine

of the Jesus Fellowship.
<magazine - has - editor>

Table 4.3: Syntactic patterns used to extract typed propositions from the graphical
representation. CVCPC is equivalent to Subject Class - Verb - Direct Object Class -
Preposition - Complement Class

4.5.1 Methodology and Implementation

Our process is divided in the next steps:

1. Process a large number of documents using the representation proposed in
Chapter 3. First we use the graph representation shown in Chapter 2. Summing
up, we start from the documents parsed with Stanford Parser (Klein and Manning,
2003). We also use other features of The Stanford CoreNLP package: POS
tagger (Toutanova and Manning, 2000), named entity recognizer (Finkel et al.,
2005) and the coreference resolution system (Lee et al., 2011a). Then we follow
the next steps: (1) Collapse coreferents into single nodes, (2) Perform a naive
semantic role labelling that labels subjects, direct objects and complements with
arg0, arg1 and arg2, respectively, (3) Replace the genitive dependencies for
the lexical relation has, and (4) Normalize lexical relations that denote that a
named entity belongs to a semantic class into the relation hasClass.

2. Generate a set of propositions from the graphs applying syntactic patterns to a
dependency tree. Once the graphs are generated, we use a Java application to
apply a set of patterns (See Table 4.2). The output of this step is a set of Tab
Separated Values (TSV) files with the following fields:

• Pattern: Indicates what the type of the pattern is, i.e. NVN, NVNPN, etc.

• Document ID: Identifier of the document where the instance was found.
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• Number of sentence: Number of the sentence where the relation takes place.

• Relation: Lemma of the relation.

• Argument [0-2]: Descriptor of the argument.

• Argument type [0-2] : Indicates the syntactic type of the argument, i.e. noun,
pronoun, named entity.

The number of arguments ranges from one to three depending on the syntactic
pattern.

3. Generate a set of semantic class propositions searching for named entities on
the graph. The output of this step is a new TSV file with instances with the
following fields:

• Document ID: Identifier of the document where the instance was found.

• Number of sentence: Number of the sentence where the relation takes place.

• Named entity: Named entity descriptor.

• Named entity type: Named entity type, i.e. person, organization or location.

• Semantic class: Semantic class gathered through the patterns.

• Gender : If the discourse referent contains a gender pronoun, a gender is
assigned.

4. Generate a set of typed propositions applying the same syntactic patterns for
named entities on the graph, but considering only propositions with at least one
argument tagged with a semantic class. The output of this step is a new TSV
file with instances with the following fields:

• Pattern: Indicates what the type of the pattern is, i.e. CVC, CVCPC, etc.

• Document ID: Identifier of the document where the instance was found.

• Number of sentence: Number of the sentence where the relation takes place.

• Relation: Lemma of the relation.

• Argument class [0-2]: Semantic class of the argument.

• Argument class type [0-2] : Indicates the named entity type of the semantic
class argument, i.e. person, organization or location.

If an argument is not tagged with a semantic class, the output is the regular
Argument and Argument Type fields.
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5. After obtaining the TSV files, we aggregate the information for each pattern
to obtain the frequency of each proposition. We use a bash script to get the
frequency of each instance deleting the fields pattern, Document Id and Number
of sentence.

4.5.2 Datasets

We acquire knowledge from the enriched graph-based representation introduced in
Chapter 3. We have already presented the corpora in Section 3.4.1, but we repeat here
the details for completeness.

• AIDS: A collection of 28,863 articles of the medical domain of AIDS.

• NYTFootball: A collection of 33,886 New York Times articles about US football.

• Webtext: The English subset of 1 million documents of the TAC 2012 KBP
Source Corpus Additions Web Documents (LDC2012E23). This is a collection
of web documents extracted from the GALE web corpus and added to the TAC
KBP Source Corpus in 2012.

• KBP: The TAC 2012 KBP Source Corpus (LDC2012E22) is a collection of about
1.7 million documents established at the KBP 2010. It is composed by newswire
documents, web documents, and a small subset of other documents all written
in English.

• WebClue09: We create a corpus of 4.2 million documents that contain single
sentences in English with two or more links to entities. We explain the purpose of
this corpus in Chapter 6. The WebClue09 Dataset (Callan et al., 2009) contains
about 100 million web pages in ten languages, with about 50% of the documents
written in English. Web pages were collected in 2009 as a part of the Lemur
Project. We use the Freebase Annotation extension provided by Google where
named entities are linked to their Freebase id (Gabrilovich et al., 2013).

• Gigaword: The English Gigaword Fifth Edition (Parker et al., 2011) is a collection
of newswire text data in English that includes four sources of news: The Agence
France Presse English Service, The Associated Press Worldstream English Service,
The New York Times Newswire Service and The Xinhua News Agency English
Service. In total it contains near 10 million documents.
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4.6 Results

Table 4.4 shows the number of graphs with at least one proposition extracted for each
collection. The percentage of graphs with a proposition exceeds 90% in every case.

Corpus Documents Graphs Graphs with propositions %
AIDS 28.863 26.065 25.973 99,65
NYTFootball 33.886 32.746 32.686 99,82
Webtext 996.960 831.400 812.995 97,79
KBP 1.774.494 1.754.248 1.740.822 99,23
WebClue09 4.256.350 4.255.644 4.145.891 97,42
Gigaword 9.876.086 5.002.263 4.655.503 93,07
Total 16.966.639 11.902.366 11.413.870 95,90

Table 4.4: Number of documents and graphs of each corpus and number and percentage
of graphs with at least one proposition extracted.

Table 4.5 shows the number of propositions extracted for each corpus. In total, we
have acquired more than 1,970 million propositions. In the following sections we divide
the number of propositions considering each kind of propositions.

Corpus Propositions
AIDS 8,687,584
NYTFootball 10,873,176
Webtext 141,566,456
KBP 295,738,283
ClueWeb09 37,773,752
Gigaword 1,475,436,907
Total 1,970,076,158

Table 4.5: Number of propositions extracted for each corpus.

4.6.1 Proposition Stores

Table 4.6 shows the number of propositions extracted for each corpus. In the table we
can see that shorter patterns produce more individual propositions. However, when
considering unique propositions, the NVN pattern is able to retrieve more instances.



4.6. Results 89

AIDS NYTFootball Webtext KBP ClueWeb09 Gigaword
propositions unique propositions unique propositions unique propositions unique propositions unique propositions unique

NV 1.429.273 133.260 1.990.118 694.886 30.865.746 5.374.721 49.087.949 8.907.098 4.492.388 1.447.928 226.490.338 21.945.736
NVN 1.208.118 788.291 1.581.382 1.208.375 23.267.475 10.622.106 42.508.591 22.338.885 3.702.372 2.106.088 201.618.591 60.009.481
NVPN 735.142 527.952 996.914 831.946 11.860.626 6.294.845 24.492.137 15.283.352 3.176.616 1.857.689 120.855.433 41.402.859
VNPN 936.374 675.659 917.302 726.169 12.405.735 5.894.365 28.132.157 16.376.826 3.117.574 1.835.158 142.390.867 44.562.936
NVNPN 459.753 396.734 607.293 530.584 6.741.477 3.738.542 16.125.089 11.259.073 1.920.314 1.196.582 82.533.488 31.860.039
NprepN 840.079 526.696 764.332 429.014 11.002.842 3.560.957 19.602.862 6.830.806 2.859.793 1.289.597 128.114.040 19.831.749
NhasN 711.559 466.021 944.705 455.403 10.947.547 3.301.547 24.876.439 7.703.324 3.765.882 1.453.837 121.598.897 19.099.810
Total 6.320.298 3.514.613 7.802.046 4.876.377 107.091.448 38.787.083 204.825.224 88.699.364 23.034.939 11.186.879 1.023.601.654 238.712.610

Table 4.6: Number of propositions extracted for each corpus and unique propositions.

Entities entities unique classes unique
AIDS 1,773,853 370,578 86,634 73,515
NYTFootball 2014 1,735,772 229,331 171,743 92,321
Webtext 2013 29,989,974 3,203,632 1,114,575 545,412
KBP 2013 66,494,985 5,834,629 4,021,686 1,688,716
ClueWeb09 13,592,358 1,028,352 739,889 325,189
Gigaword 358,156,581 11,599,521 21,564,363 4,381,156
Total 471,743,523 - 27,698,890 -

Table 4.7: Number of entities and semantic classes extracted for each corpus.

4.6.2 Semantic Class Propositions

Table 4.7 shows the number of entities found for each collection, plus the number of
entities with a semantic class associated.

4.6.3 Typed Propositions

Table 4.8 shows the number of typed propositions acquired for each corpus. As it
is expected, the number of propositions is much lower than compared to non-typed
propositions. Moreover it is noticeable the high sparsity of the typed propositions, as
about 50% of them are only found once.
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AIDS NYTFootball Webtext KBP ClueWeb09 Gigaword
propositions unique propositions unique propositions unique propositions unique propositions unique propositions unique

CV 185.311 4.804 498.182 105.777 1.055.662 288.547 6.407.258 894.363 234.784 77.825 33.974.969 1.832.466
CVC 69.688 53.904 209.765 141.082 1.006.070 530.859 6.637.594 3.084.098 172.993 89.570 14.684.552 4.267.753
CVPC 60.095 48.569 194.722 148.317 563.241 328.234 3.213.074 2.073.667 132.979 75.048 11.893.351 4.074.101
VCPC 29.306 24.964 64.893 50.718 290.553 158.738 1.233.779 801.845 89.218 49.357 4.729.912 1.651.196
CVCPC 22.976 20.773 80.797 67.283 419.249 251.801 2.585.425 1.870.099 60.148 35.849 5.627.100 2.290.145
CprepC 23.569 18.964 52.670 34.457 342.268 161.821 818.607 403.789 99.768 47.294 4.821.879 1.471.828
ChasC 202.488 86.114 234.329 84.972 807.991 333.808 3.522.337 1.131.420 356.565 80.021 17.946.909 3.149.261
Total 593.433 258.092 1.335.358 632.606 4.485.034 2.053.808 24.418.074 10.259.281 1.146.455 454.964 93.678.672 18.736.750

Table 4.8: Number of typed propositions extracted for each corpus and unique propositions.

4.7 Application to Named Entity Disambiguation

The One Sense Per Discourse and the One Sense Per Collocation hypotheses are useful
rules of thumb for word sense disambiguation. One Sense Per Discourse (OSPD)
(Gale et al., 1992) refers to the tendency of each polysemous word to adopt only one
specific meaning in every mention on a discourse. OSPD has been tested across several
collections (Gale et al., 1992; Krovetz, 1998). One Sense Per Collocation (OSPC)
(Yarowsky, 1993) states that a word act with the same sense when occurring in the
same collocate, whether the collocate is positional or syntactic. This hypothesis is
estimated to hold in around 70% of the cases (Martinez and Agirre, 2000).

In (Barrena et al., 2014) the goal is to study if these hypothesis hold for named entities
and if this information can be used in a Named-Entity Disambiguation (NED) system.
In a NED task, the aim is to map an entity mention in context into a specific canonical
entity in a knowledge base.

This task requires a dataset with annotated entities. This is relatively straightforward
for OSPD, since there are several corpora for entity recognition and disambiguation
such as AIDA (Hoffart et al., 2011). However, there is not such a resource annotated
with collocations and disambiguated named entities.

To build the new corpus, we first identify a total of 138 string mentions, which are
ambiguous entities. Then, for each string mention we select at random a proposition
in the KB collection where the string mention is related to an argument. For instance,
we select the proposition <ABC - has - radio>. Then, we manually disambiguate
five random occurrences of each proposition. This process was performed by a single
person and later reviewed by the rest of the authors. The dataset, among others
produced for the same paper, are publicly availablei.

Due to the limited number of mentions filling the desired properties, the result is 61
mention-collocation pairs with a total of 279 occurrences. From these pairs, only 1

ihttp://ixa2.si.ehu.es/OEPDC

http://ixa2.si.ehu.es/OEPDC
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corresponds to an ambiguous mention, which means that OSPC holds for 98.4% of
the cases.

4.8 Conclusions

In this chapter we have presented our method for propositional knowledge acquisition.
This method can be framed into the proposition extraction trend. Specifically, we start
from a graph based representation that includes syntactic and semantic dependencies
and we search for syntactic patterns to obtain propositions, semantic class propositions
and typed propositions.

Our design choices are orientated to acquire a large amount of propositions so we can
have evidence for textual plausibility. With this goal on mind, we admit as arguments
named entities, common nouns and pronouns, and we apply a large set of patterns.
Some of our extractions can be incorrect or incomplete by themselves because they do
not capture the full context of the sentence, or because they contain pronouns which
are a less representative form of their coreferent. However, this problems are minor
considering that the high amount of evidence collected across big corpora minimizes
the effect of the incorrect extractions.

We have applied our method to several corpora, both of general and specific domains.
The result is a proposition store that considers the frequency of the propositions, which
enables the assignment of a confidence to the knowledge and thus allows a probabilistic
model of diverse problems related to language. We have acquired more than 1,970
million propositions from more than 11 million graphs. Graphs are automatically
built from documents that belong to six different corpora. Propositions are divided
into three kinds of propositions, regular propositions, semantic class propositions and
typed propositions. In the following chapters we show how propositions can be used
to perform textual inference, specifically in tasks related to language interpretation.

Regarding our research questions:

• Research Question 2.1: Is it feasible to build knowledge bases from documents
represented as graphs? What does this kind of representations provide?

The graph-based representation directly affects to the extraction of propositions.
A long-distance dependence successfully captured becomes an interesting propo-
sition acquired. Besides, other features included such as temporal and semantic
relations allow extracting newer and unique propositions.

• Research Question 2.2: What problems arise from an automatically generation
of propositional knowledge bases?
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Propositional knowledge bases rely on several steps, each one of them introduces
some limitations in the acquisition. The conceptual representation of text greatly
influences the extracted propositions. In our case we have chosen to use syntactic
patterns to extract semantic class knowledge. These syntactic patterns, although
being very productive, impose a limit on the relations that can be extracted.
Moreover, we rely on hand-made patterns.



5
Improving Parsing with

Automatically Acquired
Semantic Classes

In this chapter we define our method to exploit semantic class knowledge to improve
parsing on appositive structures. To do so, we select the grammatical option that
is semantically more compatible. We define a set of measures of compatibility and
evaluate its performance.

A mistake is to commit a
misunderstanding.

Bob Dylan
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5.1 Introduction

Information extraction systems typically preprocess text through a syntactic parser.
However this step is an important bottleneck because parser errors are hard to solve
or even identify at the extraction phase.

We can see in literature that parsers achieve overall performances over 90%, but it is
well known that their performance drop in highly ambiguous dependencies such as PP
attachments (Olteanu and Moldovan, 2005) or long distance dependencies (Bender
et al., 2011).

Here we focus on appositions, which are grammatical constructions with two con-
tiguous noun phrases where one defines or modifies the other. They are one of the
most useful and productive dependence given by parsers because they are frequently
used to denote the semantic class of a particular instance (Meyer, 1992). We develop
a method to improve the apposition dependence detection that impact the retrieval of
instance-class relations.

Consider the following example:

David supports the team of his wife, Julia.i

Dependency parsers often determine that there is an apposition between the common
noun wife and the named entity Julia, leading to interpret that Julia belongs to the
class wife. People would accept this interpretation using their background knowledge
where Julia is a common name for a female person. Now consider the following example
with exactly the same syntactic structure:

David supports the team of his wife, The Vikings.

Here it is not possible to determine the scope of the apposition without semantic
information. However we know that The Vikings is not an usual name for a wife,
whereas in the close context there is a different candidate, the common noun team,
which is semantically more compatible. Thus, we want parsers to reproduce this
behaviour and link The Vikings and team. Figure 5.1 illustrates the problem with
an example that shows the original output given by a state of the art parser and
the intended result. In the original output, the parser determines that there is an
apposition that relates Diskin and agency. However, the correct interpretation of the
sentence is to assign the apposition to the common noun that refers to the named
entity, in this case, chief.

Given this scenario, we formulate the next research questions:

iWe denote in bold the named entity and underline the candidate common nouns.
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Figure 5.1: Correction from the typical parser output to the expected behaviour. Images
generated with the Brat Tool.

• Research Question 3.1: What kind of errors do parsers commit on appositions
because of the missing semantic information?

• Research Question 3.1: Is it possible to overcome these errors considering
information captured previously from text collections? What evidence can it
provide to characterize the named entity?

• Research Question 3.1: What is the most effective way to measure the se-
mantic compatibility between the candidates and the named entity?

• Research Question 3.1: What configuration of evidence and measures achieves
the best results?

To answer these questions we have parsed a large text corpus with two objectives:
first to have a base to acquire background knowledge, and second, to get a sample of
appositions where we compare the behaviour of two different dependency parsers in
the state of the art.

The research conducted in this chapter has been published in (Cabaleiro and Peñas,
2013) and (Cabaleiro and Peñas, 2015).

This chapter is structured as follows. In Section 5.2 we define the scope of our study
and check the source of errors in parsing. In particular we focus on cases where there
are many candidates to govern an apposition. Our hypothesis is that these errors
can be overcome by considering some background knowledge automatically extracted
from large text collections. In Section 5.3 we explore how to gather this knowledge.
We assume that the most semantically compatible candidate is the correct one. To
measure this compatibility we study different configurations to combine the available
evidence in Section 5.4, and show the results on Section 5.5. In Section 5.6 we discuss
related work, and finally we provide some conclusions in Section 5.7.
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5.2 Parsing Appositives: Building a Gold Standard

Our goal is to study appositions where dependency parsers have a chance to make a
mistake selecting a governor because there are several grammatically correct candidates.
In particular, we focus on cases where errors come from not taking into account the
semantic compatibility between the two parts involved.

One structure where these errors can be found is a phrase where one side of the
apposition is a named entity, and the other one has two or more common nouns that
can be the nucleus of the noun phrase, and therefore a semantic class of the named
entity. We refer to those common nouns as candidates.

We search for this structure in a large collection of textual data belonging to the TAC
KBP task (Ji et al., 2011), composed by around 1.5 million documents that belong to
different categories including newswire, blogs and phone calls transcriptions. We parse
the collection with The Stanford Parser (Klein and Manning, 2003).

In this collection we obtain a total of 41,285,844 sentences, with 691,394 apposition
dependencies, where 240,392 (34.7%) have more than one candidate.

We took a sample of 300 sentences to build a gold standard for evaluation. The
following subsections show the qualitative analysis of this gold standard. According to
the semantic compatibility between candidate classes an instances, we can distinguish
the following cases:

5.2.1 One Valid Candidate

In the simplest case, such as the examples in the introduction, the common noun that
acts as nucleus of the first noun phrase should be the governor of the apposition and
it is more suitable than the other. Consider the next sentence:

. . . the leader of its largest rebel group, Manuel Marulanda, . . .

We target these cases as the ones to solve. Ideally, background knowledge should be
able to discriminate suitable candidates. For example, a person as Manuel Marulanda
is more frequently a leader than a group.
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5.2.2 Several Valid Candidates

However, sometimes there are multiple common nouns that are valid candidates to be
the governor of the relation. This occurs when either there is an implicit or explicit
conjunction. An example of explicit conjunction would be:

. . . a prominent Jewish writer and Holocaust survivor, Ralph Giordano . . .

What we assume is that there are different simultaneous classes of the named entity.
In some cases it could be interesting to add an apposition for each of the candidates.

An implicit conjunction occurs when there are noun compounds where common nouns
act as modifiers, like in the next examples:

. . . by the IOC ’s chief Beijing organiser, Hein Verbruggen, . . .

In these cases, we perform a linguistic test where we check if the nouns are a semantic
class of the named entity. Following the example, we check if Hein Verbruggen belongs
to the classes chief and organiser. As it happens, we say that both candidates are
valid ii.

In other cases the noun phrase includes a subordinated sentence that also has a
common noun candidate to govern the apposition, for example:

Another passenger who gave only his surname, Chen . . .

5.2.3 Undecidable Candidates

In some sentences there are two classes referred to two different entities, but some
extra-linguistic knowledge is needed to decide how they are related. For example:

. . . at least one brother of another defendant, Ali Dayeh Ali.

In the previous example there are two classes, brother and defendant, that refer to two
different entities, Ali Dayeh Ali and an unknown entity. Without external knowledge
it cannot be decided if Ali Dayeh Ali belongs to the class brother or to the class
defendant.

iiRecall that the first noun of a noun-noun compound should not be a candidate. Even so, our
method is robust enough to consider these candidates
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5.2.4 No-apposition Case

In the manual inspection we have found multiple examples where the parser detects
an incorrect apposition relation. To correct these errors is a line of work by itself, but
here we limit ourselves to show what cases we have found. These are: Conjunction
between two sentences, wrong apposition relation between a noun phrase and a verbal
phrase, structures that denote the relation location-region, enumerations and nonsense
text.

5.2.5 Summing up

We have shown how parsers depend on semantic knowledge to solve apposition de-
pendencies with several grammatical alternatives. We have classified the sentences
according to the semantic compatibility of the candidates and the named entity. Table
5.1 shows the number and percentage of appositions in each case.

In general, there are two main sources of errors in apposition parsing: When actually
there is no apposition and the parser makes a bad choice of the dependency type, and
when there are several candidates to govern the apposition and the parser makes a bad
identification of the governor of the apposition. We tackle the latter, which include
cases with one valid candidate, several valid candidates and undecidable candidates.
These cases represent the 78.6% of the appositions of the sample.

We compose a Gold Standard with these appositions where we annotate the right
apposition dependence. When there are several valid candidates, or it is undecidable
which candidate is valid, we consider all valid choices as correct. Even if this cases
are easier to solve, we include them to maintain generalization (i.e. there are cases
with several valid candidates but at the same time another one that it is not). For our
experimentation, we ignore the non-apposition cases. The result is a Gold Standard of
236 appositions.

One valid candidate 212 (70.6%)
Several valid candidates 22 (7.3%)
Undecidable candidates 2 (0.6%)
Total 236 (78.6%)

No apposition 64 (21.3%)

Table 5.1: Classes of appositions.
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5.3 Background Knowledge Acquisition

In the previous section we saw that there are appositions with several candidates and
the parser has to choose among them. We assume that the correct candidate is the
most semantically compatible with the named entity. In this section we explain how
we gather evidence to get a measure for this compatibility. Our hypothesis is that
we can get it from large sources of text following the Open Information Extraction
paradigm (Banko et al., 2007).

The goal in this phase is to extract relations between classes and instances with an
associated probability. To acquire this information we use a graphical document
representation Gd generated from a document d in the set of documents D.

Each document d is processed with Stanford CoreNLP (see Section 2) to obtain
part-of-speech annotations (Toutanova and Manning, 2000), named entities (Finkel
et al., 2005), syntactic dependencies (Klein and Manning, 2003) and coreferences (Lee
et al., 2011b).

Graphs Gd are defined by a set of nodes Vd and set of edges Ed. A node v ∈ Vd contains
lexical information about words and multiwords. Edges e ∈ Ed are typed syntactic
dependencies obtained by the parser. Finally, coreferences are used to collapse different
mentions of the same entity into a single node.

We obtain a set of classes from the graphs using very simple hand-crafted patterns
based on syntactic dependencies where a common noun is a class for a named entity.
Named entities have an entity type associated (person, organization or location) given
by the named entity recognizer. When we find a match, we assign the common noun as
semantic class of the named entity and we get an instance NE− Class− Type. Table
5.2 details the patterns and provides with some examples of instances collected.

Syntactic pattern Example
NE nn NN spokesman Baba Mohammed
NE appos NN Umaru Yar, member of ...
NN appos NE ... capital, Abuja
NN such_as NE spokesmen such as Phillip Umeadi
NN like NE a ruler like Olusegun Obasanjo
NE be NN Hamas is a group

Table 5.2: Patterns for the assignment of semantic classes. Each entry belongs to a tuple
governor − dependency − dependant where NN is a common name and NE is a named
entity.



5.3. Background Knowledge Acquisition 101

We do not pretend to obtain all the relations instance-class expressed in the collection
with these patterns, but to acquire a representative and sufficient number of classes
to evaluate their compatibility with named entities. We found a total of 4,410,293
instances.

After obtaining the semantic class assignments, we aggregate the information from
all the collection to obtain the frequencies of named entities, classes and types. As a
matter of example, Table 5.3 contains some tuples extracted with the associated joint
probability.

NE name Class NE type Frequency p(ne, c, t)
Baba Mohammed spokesman person 17 3.8E-6
Umaru Yar member person 20 4.5E-6
Abuja capital location 356 8.1E-5
Phillip Umeadi spokesman person 13 2.9E-6
Olusegun Obasanjo ruler person 57 1.2E-5
Hamas group organization 1159 0.0002

Table 5.3: Sample of relations instance-class obtained.

To measure the semantic compatibility we use the joint probability between the classes
and entity names, and also between classes and entity types (see Section 5.5.2). To
get them we use a maximum likelihood estimator and marginalize:

p(c, ne) =
∑

t

p(ne, c, t) (5.1)

p(c, t) =
∑
ne

p(ne, c, t) (5.2)

Where c is the candidate, ne the entity name and t is the entity type. Table 5.4 shows
a sample of some of the higher probabilities obtained.

Class NE type p(c, t) Class NE name p(c, ne)
spokesman person 0.031 president-elect Barack Obama 0.001
president person 0.023 spokesman Sean McCormack 0.001
capital location 0.009 president Mahmud Abbas 0.0009
group organization 0.007 spokeswoman Dana Perino 0.0006
company organization 0.006 mainland China 0.0003

Table 5.4: Probabilities of Class and NE type and Class and NE name.

Algorithm 1 sums up the process of acquiring the background knowledge. D =
{d0, . . . , dn} is document collection, P = {p0, . . . , p6} is the set of patterns and
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KB = {t0, . . . , tm} is the knowledge base extracted. Gd is the graph of the document d,
and it is defined by a set of nodes Vd = {v0, . . . , vn} and a set of edges Ed = {e0, . . . , em}.
Cd represent the set of coreferences between pairs of nodes.

Algorithm 1 Knowledge base acquisition
Require: D = {d0, . . . , dn}, P = {p0, . . . , p6}
Ensure: KB = {t0, . . . , tm} where ti = 〈ne name, class, ne type, frequency 〉
for each d ∈ D do
//transform d into Gd:
< Vd, Ed, Cd >← parse(d)
//collapse co-referent nodes
for each coreference (vi, vj) ∈ Cd do
for each edge (vj, vk) ∈ Ed do
Ed ← Ed ∪ {< vi, vk >}
Ed ← Ed \ {< vj, vk >}

Vd ← Vd \ {vj}
//apply extraction patterns
for each p ∈ P do
t← match(Gd, p)
KB = KB ∪ {t}

5.4 Experiment Design

In this section we explain our approach to identify and select the candidates to govern
an apposition relation. We define the following variables in our method:

S = {s0, . . . , sn} represents the set of sentences, each one of them is composed by
several candidates Csi

= {c0, . . . , sm}; Esi
= {ne, t} is the named entity with annotated

evidence. Finally F = {f1, . . . , f8} denotes the set of configurations. We explain them
and their use in more detail in the following sections.

5.4.1 Method

We gather sentences si that contain an appositive dependence formed by two noun
phrases that fulfil two premises. The first one is that the first noun phrase must have
more than one common noun. Each one is a candidate to be the governor of the
apposition dependence Csi

= {c0, . . . , sm}.

We use as working example the sentence: “the chief of the Shin Bet security agency, Yu-
val Diskin”. In this sentence, the candidates are: c0 =agency, c1 =chief, c2 =security.
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The second premise is that the nucleus of the second noun phrase has to be a named
entity. The named entity is the dependent part of the apposition. It is defined by two
aspects, the entity name ne, which is the proper string that forms the named entity,
and its entity type t (person, organization or location). We will refer to these values
as evidence (E). Following our example, E = {ne =Yuval Diskin, t =person}.

Once we have candidates to govern an apposition relation, we select the most suitable
by measuring their semantic compatibility with the named entity.

5.4.2 Measures

We use three measures of compatibility: normalized pointwise mutual information
between candidate and evidence npwmi(ci, E); conditioned probability of the class
given the evidence p(ci|E); and smoothed conditioned probability pJM(ci|E).

The formula that describes the normalized pointwise mutual information we use is:

npmi(x; y) = pmi(x; y)
− log p(x, y) (5.3)

pmi(x; y) = log
p(x, y)
p(x)p(y) (5.4)

p(x, y) is the probability estimated in the previous phase, and p(x) and p(y) is the
result of marginalization. Normalized pointwise information scales the results to the
range (−1, 1), where -1 is the value where there are not joint observations and 1 is the
value where the observations are always together.

In the third measure we introduce a smoothing factor to deal with data sparsity,
as we expect to find cases with no evidence, i.e., entities that do not co-occur with
some semantic classes. We use the Jelinek-Mercer algorithm with a default value of
α = 0.99.

pJM(e|c) = αp(e|c) + (1− α)p(e) (5.5)

When npwmi(e; c) = −1 for each candidate c0, . . . , cn we say that we have no evidence.
We deal in the same way with p(c|e) = 0 and pJM (c|e) = 0. In these cases, we consider
that our method fails.

5.4.3 Baselines

Our baselines are the results obtained in this Gold Standard by two parsers on the
state of the art, the Stanford Parser (Klein and Manning, 2003) and the Fanse Parser
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(Tratz and Hovy, 2011).

Stanford Parser has 191 (80.9%) correct appositions over the 236 instances in the Gold
Standard, whereas Fanse Parser only reaches 70.7%. Stanford Parser has better results,
but still there is a margin of improvement of 19.1%. We estimate that in the whole
collection there are around 30.000 mistakes that can be overcome with our method.

5.4.4 Configurations

In order to evaluate the contribution of each evidence and each measure, we define a
configuration as a pair of measure and evidence. Table 5.5 shows the configurations
considered.

Entity Name (ne) Entity Type (t) Both (We assume conditional independence ne⊥t|c )
f1: npwmi(ne; c) f4: npwmi(t; c)
f2: p(c|ne) f5: p(c|t) f7: p(c|ne, t) ∝ p(ne|c) ∗ p(t|c) ∗ p(c)
f3: pJM(c|ne) f6: pJM(c|t) f8: pJM(c|ne, t) ∝ pJM(ne|c) ∗ pJM(t|c) ∗ p(c)

Table 5.5: Configurations with evidence and measures.

For each configuration f we will select the candidate that maximizes the compatibility
score between a candidate c and a entity E with entity name ne and type t. More
formally, given the set of candidates C = {c0, . . . , cn}, and the evidence E = {ne, t}
we select the best candidate cf such as:

cf = arg max
c∈C

f(c, E) (5.6)

5.5 Results

Our method always returns the highest scored apposition. Given the gold standard,
this decision can be just right or wrong. Thus, we evaluate the experiments using
accuracy, i.e., the proportion of correct appositions.

Figure 5.2 represents the results obtained for each configuration. Dotted lines show the
two baseline systems. Five configurations outperform baseline systems significantlyiii.
But more interestingly, we find some regularities in the effect of the evidence and
measures considered:

iiiWe apply the McNemar’s test with p-value < 0.0001 in each case
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Figure 5.2: Percentage of correct appositions according to each configuration.

5.5.1 Evidence

We can see how, when considering the same measure, combining both evidence
performs better than the use of entity types alone, which in turn performs better
than considering only the entity name. This confirms the intuition that entity types
are useful to generalize entity names, but combining both is even better to measure
semantic compatibility.

As it is expected, there are many cases with no evidence for the entity name. This
fact explains the low performance of npwmi(ne, c), p(c|ne, t) and p(c|ne) when they
are used without smoothing.

5.5.2 Measures

With respect to the measures, it is noticeable how conditional probability outperforms
normalized pointwise mutual information regardless the evidence considered.

Smoothing is useful in cases where there is no evidence, because it will favour the
most probable candidate classes. For example, if we take into account the entity name,
there are 64 instances with no evidence in the sample. Smoothing these cases helps to
push the results from 68.1% to 88%.

However, when considering the entity type as evidence, smoothing is not useful because
in the sample considered there are no instances without evidence. Thus, the results
remain equal.

Considering both entity name and entity type, smoothing it is also very useful. It
allows to consider 59 instances that previously had no evidence and classify them
better than the baseline, improving the results from 69.4% to 91.4%.
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5.5.3 Best Configuration

The best performance is reached using both sources of evidence (entity name and
entity type) in a smoothed conditional probability (Configuration 8: pJM(c|ne, t)).
With this configuration results rise from 80.9% accuracy in the baseline to 91.4%,
which represents a relative improvement of 12.9% with respect to the parser.

5.5.4 Examples

Table 5.6 shows the results of our working example. In this case every evidence and
measure considered chooses the correct candidate. As we said, Yuval Diskin is the
entity name and its entity type is person. Candidates are agency, chief and security.
Both Stanford parser and Fanse parser have chosen agency in the first place, but the
correct candidate is chief.

f1 = f2 = f3 = f4 = f5 = f6 = f7 = f8 =
npwmi(ne; c) p(c|ne) pJM(c|ne) npwmi(t; c) p(c|t) pJM(c|t) p(c|ne, t) pJM(c|ne, t)

c0 =agency 0.13 0.02 0.02 -0.22 4.2E-4 4.5E-4 5.5E-8 5.8E-8
c1 =chief 0.28 0.33 0.32 0.09 0.01 0.01 8.9E-6 8.8E-6
c2 =security -1 0 1.4E-6 -0.25 1.1E-4 1.1E-4 0 2.0E-11

Table 5.6: Example of apposition corrected. . . . the chief of the Shin Bet security agency,
Yuval Diskin, . . .

For the sake of completeness Table 5.7 shows the relevant input probabilities used to
calculate all configurations in our running example.

ne p(ne) t p(t) c p(c) p(c, ne) p(c, t)
agency 0.0033 6.8E-7 2.7E-4

Yuval Diskin 2.8E-5 person 0.64 chief 0.0117 9.2E-6 0.011
security 0.0001 0 7.3E-5

Table 5.7: Relevant frequencies for the working example.

Table 5.8 shows one case where our method worsens the baselines. In this case, Virginia
Casey is the entity name and its entity type is person. Candidates are daughter and
cousin. Both Stanford parser and Fanse parser have chosen cousin in the first place,
and it is the correct candidate.

The reason of the failure is that we have gather more evidence of persons being daughter
than cousin, and we have no evidence of the name Virginia Casey with these classes.
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f1 = f2 = f3 = f4 = f5 = f6 = f7 = f8 =
npwmi(ne; c) p(c|ne) pJM(c|ne) npwmi(t; c) p(c|t) pJM(c|t) p(c|ne, t) pJM(c|ne, t)

c0 =daughter -1 0 2.7E-5 0.06 0.003 0.003 0 5.7E-12
c1 =cousin -1 0 4.9E-6 0.05 7.2E-4 7.2E-4 0 1.0E-12

Table 5.8: Example of apposition incorrectly changed. . . . daughter Kim Boyer and Boyer’s
cousin, Virginia Casey . . .

5.6 Related Work

The relation between syntactic ambiguity and semantic analysis, and also their appli-
cation to syntactic disambiguation is a research field that has received attention for
many years (Church and Patil, 1982; Resnik, 1993).

More recently, (Ciaramita, 2007) shows how to use semantic features in a syntactic
parser to improve its performance. To do so, they tag the named entities with a
named entity recognizer and consider the entity types as parts of speech. In (Agirre
et al., 2008, 2011) the focus is in using WordNet (Miller, 1995) to generalize related
words. For example, take the class tool instead of its instances scissors or knife, to
improve syntactic parsers. Instead of WordNet, we use class-instance relations directly
gathered from a reference collection, expecting that its coverage and granularity would
be better adjusted to the topics and domains involved, and permitting also to calculate
prior probabilities. Unlike them, our scope is not to build a parser with new features,
but to test our hypothesis about the usefulness of semantic classes on the parsing of
appositives.

Our approach is similar to other unsupervised methods for semantic class acquisition,
also known as semantic class learning or semantic class induction (Lin and Pantel,
2001b). Many other authors have processed text with a morphosyntactic parser and
then selected one or more surface patterns to extract a set of candidate semantic
classes, that in turn are refined (Hearst, 1992; Kozareva et al., 2008).

In a different direction, (Schubert, 2002) argues that text contains general knowledge
in form of assertions and they may be exploited after aggregating big amounts of data,
like in KNEXT (Schubert, 2002), TextRunner (Yates et al., 2007) or DART (Clark
and Harrison, 2009).

We use both ideas going one step beyond by combining induced classes with named
entity types. In this way we find evidence of, for example, that classes spokesman and
leader are related with more frequency with entities of type person, whereas group and
company are classes that relate to organization.
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Regarding appositions, although they are a really useful source of semantic knowledge,
most of the research has been done in the context of coreference resolution (Soon
et al., 2001; Ng and Cardie, 2002) or textual entailment (Roth and Sammons, 2007).
Recently some efforts have been done in apposition extraction (Favre and Hakkani-Tür,
2009; Radford and Curran, 2013). In (Radford and Curran, 2013) they also use as a
feature the semantic compatibility in appositions between named entities and nouns.
To do so, they generalize the noun to a named entity type using WordNet. However,
besides the dependence on WordNet, they do not address the problem of choosing
between different candidates. Our approach allows to use the countings gathered from
the text collection to solve this issue.

5.7 Conclusions

In this chapter we have studied how semantic classes can be used to solve structural
ambiguities in apposition dependencies.

To do so we have answered the following research questions

• Research Question 3.1: What kind of errors do parsers commit on appositions
because of the missing semantic information?

Parsers fail when they lack of the semantic information to choose between
several grammatically correct candidates. We have estimated that these cases
represent the 78.6% of errors on apposition parsing, and have categorized them
on three classes: appositions with one valid candidate (70.6%), with several valid
candidates (7.3%) or with undecidable candidates (0.6%). We have focus on
solving these three cases.

The remaining 21.3% errors correspond to bad choices of the dependency type.

• Research Question 3.2: Is it possible to overcome these errors considering
information captured previously from text collections? What evidence can it
provide to characterize the named entity?

We have used automatically acquired semantic classes as background knowledge
to measure the semantic compatibility of candidates and named entities. This
knowledge was divided in two different evidence, one relating semantic classes
with entity names and other relating semantic classes with entity types.

The results obtained reinforce our hypothesis that considering semantic com-
patibility between the two parts of the apposition can help to overcome parsing
errors.
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• Research Question 3.3: What is the most effective way to measure the se-
mantic compatibility between the candidates and the named entity?

We have used two different evidence (entity name and entity type) and three differ-
ent measures (normalized pointwise mutual information, conditional probabilities
and smoothed conditional probabilities).

Using the entity name as evidence alone does not improve the results, since many
names could be missing in the reference collection. On the other hand, the main
problem of taking entity type alone as evidence is that some classes are very
dominant (chief, business), and tend to be overassigned. According with the
results, it is more effective to combine both entity name and entity type to get
an accurate measure of semantic compatibility.

• Research Question 3.4: What configuration of evidence and measures achieves
the best results?

Regarding the configurations tested, the best results are obtained when combining
both sources of evidence (relation between semantic classes and entity names, and
relation between semantic classes and entity types) with smoothed conditioned
probabilities. We reach a 91.4% accuracy which is a 12.9% of relative improvement
with respect to the best baseline (80.9%), which corresponds to the Stanford
Parser.





6
Grounding Proposition Stores
for Question Answering over

Linked Data
We show how grounding propositions within a distant supervision framework can
improve the performance of question answering: Our approach converts utterances into
graphs, which in turn are used to extract propositions. The propositions are aligned
with Freebase labels using distant supervision through entity linking. The output is
used to feed a semantic parser for question answering over linked data.

Any sufficiently advanced technology
is indistinguishable from magic.

Arthur C. Clarke
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6.1 Introduction

Linked Data (LD) refers to a set of best practices for publishing and connecting
structured data on the Web (Bizer et al., 2009). It establishes the bases for the Web of
Data, an effort from the community of web users to create large amounts structured,
machine-friendly knowledge, preserving the structure and semantics of the relations
between elements. Although there are plenty of linked data databases (e.g. Freebase
(Bollacker et al., 2008), DBPedia (Auer et al., 2007) or Yago2 (Hoffart et al., 2013)),
common web users lack of the necessary know-how to use them.

Question Answering (QA) can be viewed as one human friendly method for accessing
linked data since it alleviates the need to learn query languages such as SPARQL. QA
systems typically employ semantic parsing to map natural language into a predicate-
argument meaning representation. The map can easily be translated into knowledge
base query languages.

We define grounding as the procedure for expressing natural language in terms of the
target knowledge base language. More specifically, the task is to map an unbounded
number of expressions (natural language) into a small set of entities and properties
(linked data). For example the constructions What does John do for a living?, What is
John’s profession?, and Who is John? are be mapped to the same property {John -
Profession - X}.

Grounding provides two key benefits. On the one hand, it alleviates the problem
of logic form annotation by providing data for indirect supervision (Poon, 2013).
Secondly, if the logic forms share the same vocabulary with the target knowledge base
the querying step becomes trivial.

Semantic Parsing methods require a lexicon to enable the mapping between text
and the labels of the knowledge base. A lexicon captures and ranks the candidate
mappings between predicates in natural language and properties in the linked data
database. For instance, solving the previous example would require an entry living →
profession. However building these lexicons is not trivial and the contribution to the
full system remains unmeasured because the final score is given by the complete system
and involves other processes, e.g. choosing the appropriate entry of the lexicon.

Recent work proposes a method to build a lexicon by acquiring knowledge from large
text corpora (Reddy et al., 2014). This process relies on distant supervision to build a
lexicon that then is used to feed a semantic parser. Our goal is to study the contribution
of this process of knowledge acquisition on closing the gap between natural language
and linked data properties. Specifically, it is unclear which syntactic structures should
be aligned and what is the impact of each one.
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We use our methods of graph-based representation introduced in Chapter 3 and the
acquisition method presented in Chapter 4 to transform natural language utterances
into logic forms composed by a set of propositions, which are triples with the form
<argument 1 - predicate - argument 2>. A propositions is mapped into a linked
data triple {argument 1 - property - argument 2} to build a grounded proposi-
tion, which is a proposition expressed with the linked data vocabulary. We build a
lexicon that we denote Grounded Proposition Store (henceforth, GPS) by grounding a
large number of propositions automatically extracted from text. Finally, we combine
the GPS with the method proposed in (Reddy et al., 2014) to create a scenario where
grounding can be evaluated in isolation to study how different grounding configurations
affect semantic parsing. Figure 6.1 shows how the utterance “Carrie Fisher is the
actress who played Princess Leia” is transformed to a logic form composed by two
propositions and then grounded into linked data properties. We explain this process
and some related concepts in Section 6.4.

Carrie Fisher is the actress who played Princess Leia

arg0hasClass
actress /m/01tnbn(Fisher) play /m/0ddqw (Leia)

arg1

Utterance

Graphical

Representation

Logic Form

Grounded

Propositions

argument 1 /m/01tnbn /m/01tnbn

predicate hasClass play

argument 2 actress /m/0ddqw

Semantic class proposition Predicate proposition

argument 1 /m/01tnbn /m/01tnbn

property rdf-syntax-ns#type performance.actor.character

argument 2 film.actor /m/0ddqw

Grounding

Figure 6.1: Example of acquisition of a grounded proposition. For simplicity, we represent
the property performance.actor.character as a single triplet. In Freebase, this property
is expressed with two triplets related by an intermediate entity.

We structure our research around the following research questions. In the context of a
Semantic Parser trained using raw text for distant supervision:

• Research Question 4.1: What are the methodological steps to build a GPS?

• Research Question 4.2: What is the impact of the GPS when used to feed a
semantic parser for question answering?

• Research Question 4.3: What linguistic phenomena (syntactic-semantic rela-
tions) should be considered in the knowledge acquisition step?

• Research Question 4.4: Are external linguistic resources useful for enriching
the GPS?

This chapter is structured as follows: In Section 6.2 we motivate the choice of distant
supervision using raw text for QA over LD. Section 6.3 details the architecture of the
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semantic parser, Section 6.4 studies the grounding step and presents our approach
to build a GPS. In Section 6.5 we evaluate the effect of GPS in QA over LD and we
present the results in Section 6.6. We finish with some conclusions in Section 6.7.

6.2 Semantic Parsing over Linked Data

Early works on semantic parsing for question answering were done on domains with
controlled language and small predefined domains such as baseball (Green et al., 1961)
and geography (Zelle and Mooney, 1996). However, these approaches cannot be scaled
to general-domain knowledge bases.

As semantic parsers scaled to answer a wider range of queries, several problems arise.
Firstly, systems have to deal with the lexical variability of the utterances, a problem
that grows as domains become less restricted. Secondly, knowledge bases become
bigger and richer, so the potential to give wrong answers increases.

Finally, dealing with the variability of knowledge bases also introduces additional
challenges since semantic parsers have to adapt to different structures and vocabularies.
Currently, many efforts point to linked data databases like DBPedia or Freebase as a
source of general domain knowledge. The main reason is that they are a compromise
solution between the high quality data that provide the hand-labelled databases and
the extension of the automatically generated databases. Linked data databases are
often structured in triples that denote relations between two entities, which are named
properties. Properties are labelled with a name close to natural language. For example,
an instance of the database may be {John - profession - teacher}, although these
labels are arbitrary and, in fact, properties are defined extensively by their members.

Early approaches were too dependent on hand-labelled logic forms (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Hakimov et al., 2015), and hence were unable to
scale up. More recent work aims to alleviate the supervision problem by using forms
of distant supervision, i.e. observation of system behaviour (Chen and Mooney, 2011),
conversations from dialog systems (Artzi and Zettlemoyer, 2011), schema matching
(Cai and Yates, 2013), questions (Poon, 2013) and question-answer pairs (Kwiatkowski
et al., 2013; Berant et al., 2013; Berant and Liang, 2014; Fader et al., 2013b, 2014).

GraphParser (Reddy et al., 2014) is a method for distant supervision that hypothesizes
that a natural language predicate found in a text expresses a Freebase property. The
idea is to identify pairs of entities connected through a predicate in a large document
collection and look for the Freebase properties that connect both entities. For example,
given the sentence s = Cameron is the director of Titanic one of the properties in
Freebase between e1 = Cameron and e2 = Titanic is r = film.directed_by. Thus,
we assume that {e1 - r - e2} corresponds to the natural language expression s.
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Distant supervision provides a noisy method to learn weights for each predicate-
property pairs. For this purpose, the starting point is to take as prior the frequencies
observed in a large text collection to build a lexicon and use it to feed the learning
process.

GraphParser tackles this task by pairing reified logic forms derived from a Combinatory
Categorial Grammar (CCG) parser (Clark and Curran, 2004) with Freebase properties.
Each logic form corresponds in turn to a predicate-argument relation. Instead, we show
how to obtain similar logic forms from a standard dependency parser. Dependency
trees are transformed into graphs, which are then used to extract propositions. Then,
propositions are aligned with Freebase to produce a new lexicon.

This setting allows us to measure the effect that different configurations of our Proposi-
tions Stores produce on semantic parsing when they are grounded to build the lexicon
the system requires.

6.3 System Architecture

In this section we revise the architecture of the Question Answering system. The
system is divided in three main layers: Text Processing, Learning and Inference. Figure
6.2 illustrates the architecture diagram.

Linked 
Data 

database

Document 
collection

Questions
(test set)

Inference

Text Processing

Input

Learning

Entity Linking

Text Analysis and Representation

Generation of Logical Forms

Question 
Analysis

Grounding

Training

Mapping

Query Composition

Answer Retrieval

Figure 6.2: Architecture of the Question Answering system.
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6.3.1 Text Processing

The purpose of text processing is to structure each document into a machine-friendly
representation. This includes both sentences from the document collection and ques-
tions for the test. Questions are further analysed to extract the focus. The main tasks
are the following:

1. Entity Linking: The entity linking component maps natural language entities
to their canonical form in the linked data database, which is often done with a
software tuned for the target database.

For our experimentation we use the ClueWeb09 Corpus (Callan et al., 2009),
which is already automatically tagged with Freebase entities (Gabrilovich et al.,
2013). This is an automatic process whose authors estimate that has between
80-85% precision and 70-85% recall.

Performance on this step has a double impact: On the one hand, unlinked entities
are lost for the grounding step. This is a small problem, because the goal of
the grounding step is to collect a wide sample of linguistic phenomena, not to
ground every entity. On the other hand, mistakes on this phase introduce noise
on the system, which we cannot detect on posterior steps.

2. Text Analysis and Representation: In this step, the system takes a sentence
annotated with entities and produces a structured representation. It is expected
that the structured representation is closer to the meaning of the sentence, and
therefore mapping it to a property should be easier. GraphParser uses in this
step a CCG parser. In our case, we rely on the graph-based representation
presented in Chapter 3.

3. Generation of Logic Forms: This step is devoted to flatten the graphical repre-
sentation into a set of propositions. In GraphParser, this step is equivalent to
generate a set of predicates denoted as ungrounded graphs. In our approach we
obtain neo-davidsonian reified logic forms from the graph-based representation,
and from them we select predicate structures in the form of propositions as in
Chapter 4. Section 6.4 gives more details about this processing.

4. Question Analysis: In question analysis, the main goal is to find the question
focus, which is the part of the question that, if replaced by the answer, makes
the question a single statement. For example, in the question Who is the director
of Titanic?, the focus is given by Who, as it can be replaced by David Cameron
to produce the affirmative statement David Cameron is the director of Titanic.

Moreover, special operators like count and argmax are created by searching for
special keywords like How many and most respectively.
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6.3.2 Learning

The learning layer creates a model that evaluates a proposition to produce the most
probable grounded proposition.

1. Grounding: In Grounding we take the pre-processed documents in order to build
the GPS. In GraphParser, this step corresponds to the building of the alignment
lexicon. We explain this step in detail in Section 6.4.

2. Training: We use the Maximum Weighted Graph (MWG) of GraphParser to
replace each new proposition with the highest weighted grounded proposition
given by the GPS.

The default configuration of GraphParser for training is far more complex. It
uses a Structured Perceptron that employs several kinds of features from the
alignment between logic forms and properties. Features weights are tuned using
denotation as a form of distant supervision. In GraphParser, training pushes the
results from 36.5% to 39.3%.

6.3.3 Inference

The inference layer applies the model generated in the learning layer to the questions
of the test set in order to generate an answer. Our configuration follows (Reddy et al.,
2014). This process is subdivided in three components: Mapping, Query Composition
and Answer Retrieval.

1. Mapping: Mapping is devoted to adapt the vocabulary and structure of the logic
forms of the text processing step into the logic forms grounded on Freebase (As
previously presented in Figure 6.1). It uses the model created in the learning
step to decide which the most promising grounded proposition is.

2. Query Composition: The query composition step combines the information given
by question analysis with the logic forms in order to create an executable SPARQL
query. As grounded propositions are expressed with Freebase vocabulary, the
composition is straightforward. Besides, it adds extra metadata about prefixes,
domains and optional language filters.

3. Answer Retrieval: The last step is to retrieve the answer given the SPARQL
query. We use Virtuosoi as an open source, free-available server to allocate the
database and enable querying.

ihttp://virtuoso.openlinksw.com/

http://virtuoso.openlinksw.com/
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6.4 Grounding

Despite the need of a full QA system, our goal is to get insights on the effects of
the grounding step in overall system performance. The challenge is to build a map
between natural language utterances and the properties in a linked data database and
measure the effect on the QA task.

In our case, we turn natural language utterances into propositions in the acquisition
step and then we build a map from propositions to properties, which is the Grounded
Proposition Store. The generation of GPSs is divided into three steps: Proposition
Store Building, Proposition Store Grounding and Lexical Expansion.

6.4.1 Proposition Store Building

As presented in Chapters 3 and 4 Sentences are processed with Stanford CoreNLP
(Klein and Manning, 2003) to obtain dependency trees which are also annotated
with part-of-speech and coreferences (Lee et al., 2011a). We collapse multi-words
nodes such as named entities into single nodes. Coreferences are also used to replace
pronouns with the correspondent named entity. We depart from the Stanford syntactic
dependencies (De Marneffe et al., 2006), and then we perform a naive semantic role
labelling to normalize subjects, direct objects, indirect objects, copulatives, genitives
and class-instance relations with a new set of semantic dependencies (See Table 6.1).
This is an automatic process that relies on a predefined set of patterns. As a matter
of example, we show some patterns in Table 6.2. We aim for two advantages: First it
allows us to define a simple set of patterns to extract propositions, and second, this
normalization reduces the sparsity of the extraction.

Role Semantic dependency
Subject subject
Direct object dobject
Indirect object iobject
Copulative is
Genitive has
Semantic class hasClass
Prepositions prep

Table 6.1: Semantic dependencies introduced by the semantic role labelling.
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Input Output
ne(N1), N1 −→ nn −→ N2 N1 −→ hasClass −→ N2
ne(N2), N1 −→ poss −→ N2 N2 −→ has −→ N1
V −→ subj −→ N V −→ subject −→ N
V −→ agent −→ N V −→ subject −→ N
N1 −→ nsubj −→ N2 N1 −→ is −→ N2

Table 6.2: Examples of patterns for naive semantic role labelling. N represent nouns and
V are verbs. ne(N) means that the noun N is a named entity.

Then, we extract a set of propositions applying patterns based on semantic dependencies.
A proposition is composed by a predicate with two arguments, and is denoted as
<arg1 - predicate - arg2>. We distinguish two kinds of propositions: Semantic
class propositions, where the predicate denotes a type relationship (See Table 6.3),
and predicate propositions, where the predicate denotes any other relationship (See
Table 6.4).

Pattern Example Proposition
NhasClassN Beatty scored a double-win by casting

Madonna as chanteuse Breathless Ma-
honey.

<Madonna - hasClass -
chanteuse>

NisN War of the Worlds is a movie with Tom
Cruise.

<War of the Worlds - is
- movie>

Table 6.3: Syntactic patterns used to extract semantic classes from the graphical represen-
tation.

6.4.2 Proposition Store Grounding

We ground propositions in the following manner:

1. Select sentences with two or more entities present in Freebase.

2. Extract the set of propositions from the sentence that involve the entities present
in Freebase.

3. Retrieve all possible types and properties from Freebase that link the entities
found.

4. Pair propositions and retrieved properties to build the mapping lexicon. Semantic
classes are mapped to types, and predicate propositions are mapped to properties.
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Pattern Example Proposition
NhasClassN+NPN Robby Benson, a surprising choice for

The Beast, is excellent.
<Robby Benson -
choice:for - The Beast>

NisN+NPN War of the Worlds is a movie with Tom
Cruise.

<War of the Worlds
- movie:with - Tom
Cruise>

NhasN Likewise, Jackman’s Drover is a sur-
prising bore.

<Jackman - has -
Drover>

NhasN+NPN Main Hoon Na is a Bollywood’s film of
2004 starring Shahrukh and Sushmita
Sen.

<Main Hoon - film:of -
2004>

NPN Frank Welker was the voice of Megatron. <voice - voice:of -
Megatron>

NNV Nichols and Koenig played Uhura and
Chekhov, respectively.

<Nichols - play -
Koening>

NVN Four Rooms was released by Miramax
in December, 1995.

<Miramax - release -
Four Rooms>

NVPN Don Knotts won five Emmys as Barney
Fife.

<Don Knotts - win -
Barney Five>

VNN The Incredible Hulk also starring Liv
Tyler, Tim Roth and William Hurt.

<Liv Tyler - star - Tim
Roth>

VNPN Tarantino is scheduled to begin shooting
Death Proof in Austin in August.

<Death Proof - shoot:in
- Austin>

VPNPN Under Berg, Hancock was filmed in Los
Angeles.

<Los Angeles -
film:in:under - Berg>

Table 6.4: Syntactic patterns used to extract propositions from the graphical representation.
NVNPN is equivalent to Subject - Verb - Direct Object -Indirect Object

5. Compute the join probability of each pairing between a predicate r with a
property p as a way to rank the most probable properties for a given predicate.
The joint probability is calculated as:

p(r, p) =
∑

(arg1,arg2)∈ARG

p(p | arg1, arg2) · p(arg1, arg2 | r) · p(r) (6.1)

where p(p | arg1, arg2) is estimated as 1
|P |arg1,arg2

being |P |arg1,arg2 the number
of properties retrieved for a pair of arguments arg1 and arg2 that belong to the
set of all arguments ARG, p(arg1, arg2 | r) is estimated as #r(arg1,arg2)

#r
where

#r(arg1, arg2) corresponds to the number of times where a proposition <arg1 -
r - arg2> is derived from the corpus and #r is the number of times that the
predicate r is derived from the corpus, and p(r) is estimated as #r

|R| where |R| is
the total number of propositions.

The result is a GPS with a total of 3,416 semantic classes aligned to an average of
40.52 types, plus 10,799 predicates aligned to an average of 3.82 properties. Tables
6.5 and 6.6 show some of the most frequent pairs extracted for semantic classes and
predicates respectively.
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Semantic class Type p(r, p)

president
organization.organization_founder 5.96E-4
business.board_member 4.23E-4
people.person 3.43E-4

son
people.person 6.63E-4
people.deceased_person 2.84E-4
people.family_member 5.20E-5

founder
organization.organization_founder 1.68E-3
business.board_member 1.54E-4
people.person 1.37E-4

Table 6.5: Highest probability pairings between semantic classes and types in Freebase.

Predicate Property Argument 1 Property Argument 2 p(r, p)

bear
person.place_of_birth.1 person.place_of_birth.2 0.014
place_lived.person place_lived.location 0.008
person.nationality.1 person.nationality.2 0.006

has
person.nationality.1 person.nationality.2 0.005
employment_tenure.person employment_tenure.company 0.004
organization.geographic_scope.1 organization.geographic_scope.2 0.001

die:in
deceased_person.place_of_death.1 deceased_person.place_of_death.2 0.007
deceased_person.date_of_death.1 deceased_person.date_of_death.2 0.001
person.date_of_birth.1 person.date_of_birth.2 0.001

Table 6.6: Higher probability pairings between predicates and properties. We removed the
domains of the properties for readability.

6.4.3 Lexical Expansion

Alignment through examples is very sensitive to lexical variability. For instance, we may
not find the verb film in a proposition like <Cameron - film - Titanic>. However,
if instead we have found the verb direct like in <Cameron - direct - Titanic> we
could easily expand our lexicon by replacing the verb direct with the related verb
film. We explore the use of synonyms in WordNet (Miller, 1995), a hand-made
lexical database. Lexical expansion through external resources has proven to be
useful in Semantic Parsing both with WordNet (Walter et al., 2012) and other sources
(Kwiatkowski et al., 2013).

The lexical expansion process takes a predicate paired with the properties and obtains
every synonym given by WordNet. Then, the final weight of each predicate is divided
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among the number of synonyms retrieved. We compute the joint probability of each
pairing between a synonym s with a property p, that is:

p(s, p) =
∑

r

p(s, r, p) =
∑

r

p(s | r, p) · p(r, p) (6.2)

where p(s | r, p) is estimated as 1
|S|r being |S|r the number of synonyms retrieved for

the predicate r and p(r, p) is calculated as in Equation 6.1.

The resulting expanded GPS extends the predicates up to 72,130, with an average of
5.42 properties paired.

6.4.4 Working example

We illustrate the full process through a working example. Consider the sentence
Spurlock is the creator of the film Supersize Me. Our method is decomposed in the
following steps:

1. Proposition Store Building

a) Select a sentence s: The working example is selected because it contains
two Freebase entities, Spurlock and Supersize Me. Entities are annotated
with their Freebase id, which is m.035sc2 and m.022prxf respectively.

b) Transform the sentence into a graph gs: Figure 6.3 shows the resulting
graph.

DESC: creator 

POS: NN 

DESC: Supersize Me 

NER: Misc 

POS: NNP 

ID: m.022prxf 

DESC: Spurlock 

NER: Person 

POS: NNP 

ID: m.035sc2 

Spurlock is 

the creator of 

the film 

Supersize 

Me. 

prep_of 

is 

nn DESC: film 

POS: NN 

Regular node 
Entity 
Syntactic dependence 
Semantic dependence 

Figure 6.3: Graph extracted from the sentence Spurlock is the creator of the film Supersize
Me.
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c) Extract propositions <arg1-r-arg2>: We flatten the graph representation
applying syntactic patterns to extract propositions, composed by a predicate
r and a pair of arguments arg1, arg2. Table 6.7 shows the patterns found
in the working example and the resulting propositions.

Pattern Proposition
NPN <creator - of - m.022prxf>
NisN <m.035sc2 - is -creator>
NisN+NPN <m.035sc2 - creator:of - m.022prxf>

Table 6.7: Propositions extracted from the sentence Spurlock is the creator of the film
Supersize Me. Note that entities are replaced with their Freebase id.

2. Grounding Proposition Stores

a) Ground propositions: A grounded proposition {arg1 - p - arg2} is built
by replacing the original predicate r of a proposition with a property p. We
search for the properties Parg1,arg2 = p0, . . . , pn that connect the entities
arg1, arg2 in Freebase.

b) Build final lexicon: Compute the probability p(r, p). Tables 6.8 and 6.9 show
the result of p(”creator”, p) for semantic class propositions and predicate
propositions, respectively

Semantic Class Type p(r, p)

creator

organization.organization_founder 3.45E-5
business.board_member 7.30E-6
people.person 6.68E-6
film.writer 5.90E-6
film.director 4.30E-6
. . .

Table 6.8: Relevant probabilities for the semantic class creator. Probabilities are obtained
after processing the whole collection.

Predicate Property Argument 1 Property Argument 2 p(r, p)

creator

film.written_by.1 film.written_by.2 9.06E-6
organization.founders.1 organization.founders.2 7.77E-6
employment_tenure.person employment_tenure.company 7.77E-6
film.directed_by.1 film.directed_by.2 6.47E-6
. . .

Table 6.9: Relevant probabilities for a proposition with the predicate creator. We removed
the domains of the properties for readability. Probabilities are obtained after processing the
whole collection.
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3. Lexical Expansion

a) Create new pairs: Search in WordNet for synonyms of a predicate. For
example, for the predicate create we find the synonyms make and produce.
Properties that would be paired with the original predicate are paired with
the synonyms Sr = {s0 = make, s1 = produce}.

b) Compute the probability p(s, p). For instance, computing the probability
p(”creator”, p) require to add up the probabilities of each pair (r, p) whose
predicate r yields ”make” as synonym.

6.5 Experiment Design

In this section we explain the semantic parsing task and the datasets that we have
used both for the creation of the GPS and for testing them for the task of semantic
parsing.

Formally, our goal is to learn a function to map an utterance u to a query q over
a database D. The database is defined by a schema that contains properties p ∈
P and entities e ∈ E. Both properties and entities are human-readable strings
like film.directed_by or David_Cameron. The database contains a set of triples
{e1 − p− e2}. For each utterance (natural language question) the system gets set of
SPARQL queries Qu = q0 . . . qn. Each query executed over the database obtains a set
of answers Aq = a0, . . . , am.

6.5.1 Implementation

We take advantage of (Reddy et al., 2014) evaluation module to evaluate our approach
against the test collections. We use the Maximum Weighted Graph (MWG) config-
uration, a baseline that replaces each predicate with the highest weighted property
without any further training. With the goal of measuring the contribution of each
syntactic pattern, we perform an ablation test where we remove one by one a syntactic
pattern in the GPS building process and compare the resulting GPS with the full
building process. Moreover, we experiment with the expansion of propositions using
WordNet and perform an additional ablation test on the expanded GPS. Then, we try
to maximise our results by removing the harmful patterns, and finally, we perform a
comparison with a state of the art system.
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6.5.2 Evaluation Measures

Following (Kwiatkowski et al., 2013; Berant et al., 2013; Reddy et al., 2014) and many
others, the system is evaluated using precision, recall and F1-measure.

Precision = number of correct system answers
number of system answers (6.3)

Recall = number of correct system answers
number of questions (6.4)

These measures consider only the first answer of the ranking. An answer of a query is
correct if contains exactly the same responses that the gold standard. Partial answers
are considered mistakes. Results are ranked according to the F1-measure.

6.5.3 Dataset

Our dataset is a subset of WebQuestions (Berant et al., 2013) as defined in (Reddy
et al., 2014). The scope is reduced to three domains: film, business and people. The
final dataset is composed by 200 questions devoted for development and 570 questions
for testing. Note that, with the MWG configuration, the development dataset is not
used.

6.6 Results

We compare the effect of our lexicon against having no lexicon at all to highlight how
determinant is the grounding step. With a GPS, results are pushed 25.3 points with
respect to the empty lexicon, showing the high impact that knowledge acquisition has
in the task (Table 6.10). We also show that the baseline proposed in GraphParser
is already informed. MWG uses the default lexicon of GraphParser to ground logic
forms without any training. Compared with the empty lexicon, results are pushed 28.7
points, which indicates that the lexicon contributes with a 78.6% of the total result of
MWG. When compared to our regular GPS, the contribution is similar, with a 76.4%
of the total result.

Ablation Test: Table 6.11 shows the results of the ablation test, divided between
regular and expanded system. The GPS row corresponds to the full system, while the
remaining rows correspond to individual ablations where a single proposition type is
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Prec Rec F1 difference
Empty lexicon 8.40 7.30 7.80
GPS 35.74 30.95 33.14 +25.34 (76.46%)
GraphParser - MWG 39,4 34,0 36,5 +28.70 (78.63%)

Table 6.10: Comparison between an empty lexicon, the regular GPS and GraphParser’s
baseline.

removed. We observe that in both cases the F1-measure of the full system is close
to the highest result. Moreover, the difference between these systems and most of
ablations is small, a range of [-0,31,+0,16] in the regular case and [-0,35,+0,12] for
the expanded case. The VNPN, NVN y NVPN patterns are the exception, with
higher loses, up to 12.64 points. This means that these structures are essential to
acquire knowledge in the context of linked data, as they gather information that is
unavailable for other patterns. Considering individual ablations, the best result for
the regular case is to ignore hasClass+NPN structures and for the expanded case the
best results are obtained by ignoring NNV or VNN structures in the construction of
the proposition stores. These results show that these patterns introduce more noise
than useful information.

Regular Expanded
Prec Rec F1 Prec Rec F1

GPS 35.74 30.95 33.14 38.08 32.99 35.38
-NNV 35.82 31.02 33.22 (+0.08) 38.20 33.10 35.50 (+0.12)
-VNN 35.68 30.89 33.09 (-0.05) 38.16 33.06 35.46 (+0.08)
-NPN 35.46 30.7 32.88 (-0.26) 38.08 32.98 35.38 (0.00)
-NisN 35.48 30.71 32.90 (-0.24) 38.06 32.97 35.36 (-0.02)
-NhasClassN+NPN 35.90 31.10 33.30 (+0.16) 38.04 32.94 35.34 (-0.04)
-NhasN+NPN 35.82 31.02 33.22 (+0.08) 38.04 32.94 35.34 (-0.04)
-NhasN 35.82 31.02 33.22 (+0.08) 38.02 32.93 35.32 (-0.06)
-VPNPN 35.74 30.94 33.14 (0.00) 37.84 32.77 35.15 (-0.23)
-NisN+NPN 35.67 30.46 32.83 (-0.31) 37.8 32.74 35.11 (-0.27)
-NhasClassN 35.48 30.71 32.89 (-0.25) 37.96 33.39 35.03 (-0.35)
-VNPN 28.58 24.69 26.48 (-6.66) 30.92 26.76 28.72 (-6.66)
-NVN 26.74 23.14 24.74 (-8.40) 27.54 23.84 25.54 (-9.84)
-NVPN 23.48 20.38 21.78 (-11.36) 25.10 20.97 22.74 (-12.64)

Table 6.11: Experimental results for the ablation test. We report the difference between
the ablation and the GPS with and without expansion.

Lexical Expansion: Table 6.12 shows that the expanded GPS consistently outper-
form the regular GPS both in the full system and in every ablation, with a contribution
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of 0.8% in the worst case and 2.5% in the best. This confirms that GPS can be
effectively expanded using WordNet synonyms in order to reduce the lexical gap, and
points out that external resources can be a good complement to distant-supervised
methods to acquire knowledge. In other words, the more knowledge we inject into the
system the better performance it shows.

Regular Expanded Difference
GPS 33.14 35.38 +2.24
-NPN 32.88 32.98 +2.50
-NisN 32.90 32.97 +2.46
-VNN 33.09 33.06 +2.37
-NNV 33.22 33.10 +2.28
-NisN+NPN 32.83 32.74 +2.28
-VNPN 26.48 26.76 +2.24
-NhasClassN 32.89 33.39 +2.14
-NhasN+NPN 33.22 32.94 +2.12
-NhasN 33.22 32.93 +2.10
-NhasClassN+NPN 33.30 32.94 +2.04
-VPNPN 33.14 32.77 +2.01
-NVPN 21.78 20.97 +0.96
-NVN 24.74 23.84 +0.80

Table 6.12: Comparison between F1 measure for the Regular and Expanded GPS.

Best Configuration: Table 6.13 shows the results of the configurations that remove
harmful patterns, which are NhasClassN+NPN, NhasN, NhasN+NPN and NNV for
the regular configuration and NNV and VNN for the expansion. Results indicate
that these patterns can be omitted with a further small boost on the results. More
significant, we can achieve the same performance with less patterns, which in turn
means less computational cost of building the lexicons.

Regular Expanded
Prec Rec F1 Prec Rec F1

GPS 35.74 30.95 33.14 38.08 32.99 35.38
(1) 35.86 31.06 33.26 (+0.12) 38.22 33.12 35.52 (+0.14)
(2) 35.86 31.06 33.26 (+0.12) 38.18 33.08 35.48 (+0.1)

Table 6.13: Experimental results removing the harmful ablations. (1) Corresponds to
NNV and VNN patterns which are harmful for the expanded GPS and (2) corresponds to
NhasClassN+NPN, NhasN, NhasN+NPN and NNV, which are harmful for the regular GPS.

Comparative Evaluation: We compare our salient configurations with Graph-
Parser’s baseline (MWG) and system with training (GraphParser). Table 6.14 shows
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how we achieve similar results, which is promising considering that we limited the
acquisition to the sentences used in GraphParser. Our representation relies on syn-
tactic parsing and syntactic rules to process sentences, which is faster than the CCG
parser, so there is potential to increase the acquisition by using a larger document
collection. Note that GraphParser’s default and baseline configuration have 2.8 points
of difference, which represents a 7.6% of relative improvement. Again, this highlights
the importance of the grounding.

Prec Rec F1
GraphParser 41,9 37,0 39,3
GraphParser - MWG 39,4 34,0 36,5
GPS expanded-(1) 38,22 33,12 35,52
GPS expanded 38,08 32,99 35,38
GPS 35,74 30,95 33,14

Table 6.14: Comparison between GraphParser and the regular and expanded GPS, plus
our best system which is the NNV and VNN ablation of the expanded system (1). MWG
refers to GraphParser’s baseline configuration where there is no training.

6.7 Conclusions

Question Answering systems in the state of the art are evaluated as a monolithic system
that involves acquisition, learning and querying without measuring the contribution
of each component. However, such a system level comparison does not provide any
insight into the real contribution of each component, and, in particular, the effect of
the amount of knowledge digested in the final result.

We show here that the main component is the lexicon itself (the GPS in our case),
so we need better ways of creating and evaluating this resource before addressing the
learning and querying steps in deeper and more sophisticated settings.

We have presented both the methodology to generate a GPS linked to a particular
knowledge base, and a study evaluating the effect in QA performance that different
natural language structures produce when they are considered to build the GPS.

For this reason, we evaluated the construction and grounding of the lexicon (GPS
in our case) per se, without additional training or wiring to the SPARQL queries
generation. This additional evaluation, such as done in (Kwiatkowski et al., 2013;
Berant et al., 2013; Reddy et al., 2014), is out of the scope of this work. Different
methods for training and querying must be evaluated once the GPS is fixed, so we can
learn about the effect of different techniques.
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We summarize our conclusions to the following research questions:

• Research Question 4.1: What are the methodological steps to build a GPS?

We have developed a method to map propositions into Freebase properties using
distant supervision that helps in solving both lexical and structural gaps by
finding multiple grammatical structures and lexical realizations of the same
query.

Our method is divided in three steps: (1) Build a proposition store. To do so,
we select relevant sentences, transform them into graphs from which we extract
propositions. (2) Ground each proposition by pairing them with KB properties
considering linked entities, and (3) Compute the global weights of each pairing.

We consider an optional step, (4) Perform a lexical expansion by creating new
pairs and re-evaluate the weights of the lexicon entries.

• Research Question 4.2: What is the impact of the GPS when used to feed a
semantic parser for question answering?

Building and grounding the proposition stores is key to the final performance
of the semantic parser. A system with an empty alignment lexicon achieves a
7.80% of F1-measure. In baseline systems with lexicon but without training, our
experiments show that the lexicon contributes with near 80% of the results, and
training only accounts for 7.6% of relative improvement.

• Research Question 4.3: What linguistic phenomena (syntactic-semantic rela-
tions) should be considered in the knowledge acquisition step?

We have analysed different linguistic structures that can be included in the GPS
and what is the contribution on the final result. For this setting, NVN, NVPN
and VNPN patterns have a significant effect in the performance. Our results
suggest that extensive coverage of every possible syntactic pattern is not as useful
as it may be intuitive. Conversely, systems can dispense with some patterns and
reduce the computational cost of building the alignment.

• Research Question 4.4: Are external linguistic resources useful for enriching
the GPS?

We have shown how to enrich the lexicon using linguistic information from
external resources, helping to bridge the lexical gap between utterances and
database queries. Enrichment consistently pushes the results in every case, in a
range from 0.8% to 2.50% of absolute improvement.
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Conclusions and Future Work

In this chapter we state the main conclusions obtained and we discuss some interesting
lines of research.

I see my path, but I don’t know where
it leads. Not knowing where I’m
going is what inspires me to travel it.

Rosalía de Castro
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7.1 Research Hypotheses

In this dissertation we have studied the fundamental problem of knowledge acquisition
in the form of propositions and its uses for language interpretation. Typically, NLP
tasks are addressed as independent problems and tackled with specific purpose systems.
We argue that, since NLP tasks are specific realizations of our human ability to
comprehend and use language, in the long term we will need to provide this behaviour
to machines through the definition of methods to acquire and use general purpose
background knowledge.

This thesis explores a new paradigm where propositional knowledge is used as a solution
to bring closer meaning representations and knowledge bases. We have structured our
exploration around the following research hypotheses:

Research Hypothesis 1: Propositional knowledge can be used to represent and
store background knowledge.
Propositions encode predicate-argument structures that can capture open-domain
knowledge. Propositions are manipulable by computers, and enable general purpose
inferences. Gather a large number of propositions through the representation of large
collections of text yields a background knowledge base that mimics common sense.

In literature we can see that recently open information extraction and specifically
propositions have arose as a promising method to capture open domain knowledge.
Although there is some work that uses propositional knowledge for specific interpre-
tation tasks, there is a lack of work connecting propositional knowledge acquisition
with generic natural language understanding, particularly, as a source of background
knowledge.

In this dissertation we have presented a method for automatic propositional knowledge
acquisition, and also we have built several proposition stores, both from specific
and general domain corpora. These resources have been used for two different NLU
reliant tasks, syntactic and semantic parsing. Specifically, we have used propositional
knowledge to provide evidence to categorize entities and named entity types on semantic
classes and to provide a notion of plausibility in predicate-argument relations.
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Research Hypothesis 2: A graph-based representation is useful to encode documents
for proposition extraction.
A prerequisite to acquire propositional knowledge is to encode text in a meaning
representation. Even if an intrinsically evaluation of the knowledge base is infeasible,
we define some properties for the meaning representation that reasonably can improve
the proposition acquisition.

We discussed that graphs convey a set of properties that are desirable to represent
meaning, such as the ability to relate context that may be distant on text. Although
there are plenty of meaning representations based on graphs, to the best of our
knowledge this is the first attempt to use one to automatically extract propositional
knowledge.

We have defined a methodology to automatically build a graph-based representation
from text that aims to express the semantics of a sentence in a condensed, simplified
way. We have built a large repository of documents represented as text, and used
this resource to perform automatic extraction of propositions through syntactic and
semantic patterns. Besides, the representation has been used for feature extraction in
a relation extraction task.

The graph based representation conveys additional benefits, such as being easily read-
able by people. For instance, it is easy for a human to detect semantic inconsistencies,
such as incorrect dependencies. As a matter of example, the task of correction of
appositive dependencies arose from the manual inspection of a graph.

A limitation of our method is that it does not encode meaning across consecutive
sentences as in discourse representation theory.

Research Hypothesis 3: Propositional knowledge can serve as basis to perform
textual inference.
A proposition store can be used as a background knowledge base that enable textual
inferences related to language interpretation tasks. Previously we have discussed that
the utility of a knowledge base is dependent on the task where it is applied. In this
case, we aim to adapt a general purpose knowledge base to two different tasks.

Natural Language Processing tasks are often modelled as statistical data driven tasks
that may yield satisfactory results, but still do not solve the task in the sense that
these systems do not comprehend and resolve the problem as a human would do, and
therefore a human judgement would ever be preferred.

We argue that there is a need to provide a mechanism to the computers to reason
based on knowledge, as opposite to raw text statistics. In this line, we believe that
proposition are a promising method to represent knowledge in a manner that it can be
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used perform textual inference, because propositions suppose a compromise solution
between raw statistics and strict logical semantics.

Our proposition stores were conceived without specific purposes, still they have been
used for multiple language interpretation tasks, including semantic and syntactic
parsing, named entity disambiguation, building signature models and interpretation of
eventive propositions.

In each of these tasks we have built a different model of knowledge from the proposi-
tions. Crucially, propositions are flexible in two senses: Firstly, propositions encode
knowledge in a meaning representation very close to language, and therefore their
expressivity is higher than other knowledge representations that are more structured,
such as ontologies. Secondly, tasks may require a subset of the total knowledge, and
propositions allow to select only the relevant information. For instance, we discarded
the predicate-argument propositions to improve syntactic parsing and only used seman-
tic class propositions. For grounding, we have selected propositions whose arguments
are named entities, specifically, those that can be linked to the knowledge base. This
capability is useful to reduce the search space.

7.2 Conclusions

The focus of this thesis is to study the acquisition of propositional knowledge by
automatic means, and to show how it can be used as a source of background knowledge
in two knowledge intensive tasks, syntactic and semantic parsing.

We began this dissertation dividing the problem of using knowledge for language
interpretation in three main challenges: meaning representation, knowledge acquisition
itself and textual inference. We address these challenges in four objectives: the first
objective is related to meaning representation, the second objective is related to
knowledge acquisition and the last two objectives are related to tasks that involve
textual inference. In the following lines we summarize our objectives and the outcomes
achieved.

Objective 1: Build a conceptual model of the meaning of a sentence though deep
processing of text. Represent documents in a meaning representation that expresses the
information contained on plain text. In particular, explore a graph-based representation
that is capable of representing documents at document level and includes syntactic,
semantic and temporal relations.

The first problem for language interpretation is to choose a meaning representation
for encoding knowledge from text and define a way to transform text into such
representation. Semantic graphs are a promising structure to encode semantics since
they allow that elements of the semantic representation participate as arguments of an
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unbounded number of parents, without taking into consideration how far these elements
may be on the text. We have developed a method to transform plain text documents
into a semantically enriched morphosyntactic graphs by combining off-the-shelve tools
for deep linguistic processing and our own method for semantic enrichment. We have
evaluated the graph-based representation in both regular and temporal slot filling
tasks.

• Objective 1.1: Design and implement a methodology to represent documents
as semantically enriched morphosyntactic graphs.

Our methodology transforms documents into graphs in two steps that produce
two representations, the initial and the enriched representation. In the first
step, we combine off-the-shelve text processing tools to build a dependency tree
annotated with extra information such as POS tags, lemmas, named entities
types, coreferences, temporal expressions, event recognition and temporal links.
The second step uses a manually defined set of rules to collapse discourse referents
related by coreference, refine the resulting graphs to ensure consistency, add
extra semantic information and normalize syntactic relations. The result is
a enriched representation where information is simplified and condensed for
knowledge acquisition purposes.

• Objective 1.2: Build a collection of document represented as graphs as a
resource for feature extraction and proposition extraction.

We have applied our graph-based representation to seven corpora with different
characteristics, both in size and in domain. In total, we have produced more than
11 million enriched graphs that were used for proposition extraction. Specifically
we have used The TAC 2012 KBP Source Corpus for feature extraction for the
regular and the temporal slot filling tasks.

• Objective 1.3: Study the generation of new features.

Compared with regular dependency parsers, path features are modified because
of the graph representation. The naïve role labelling and the normalization aim
to simplify the paths extracted, thus learning should be easier. We have used a
set of unique features that correspond to the new semantic relations extracted,
and specifically for temporal slot filling, we have used the features related to
verb tense, aspect and polarity.

• Objective 1.4: Extrinsic evaluation in relation extraction.

We have participated in the 2011 Slot Filling task of the Knowledge Base
Population track. Results show slightly better results using the enriched graphs,
so we conclude that the balance between the gain of collapsing the graphs and
the loss of the added errors introduced by the process is positive.
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Objective 2: Automatically acquire knowledge from the graph-based representation.
Extract knowledge into propositions, which are predicate-argument structures that
express open relations.

The second problem for language interpretation is to automatically distil knowledge
to be used as background knowledge. This problem requires to define a knowledge
acquisition method that, given a large corpus mapped into a meaning representation,
produces a target knowledge representation. In order to be used as source of back-
ground knowledge, this knowledge has to be massive, and include general domain
information.

• Objective 2.1: Design and implement a methodology to automatically extract
propositions from the graph-based representation.

Our method uses large collections of documents represented as graphs to au-
tomatically extract propositions using syntactic and semantic patterns. The
graph-based representation fulfils two goals. First, it is appropriate for being
used to structure large amounts of documents, and second, it affects to the
extraction of the propositions by facilitating the acquisition of long-distance
dependencies and adding extra information such as named entity types and
semantic relations. Structuring knowledge into propositions is desirable because,
like human language, propositions express semantics through predicate-argument
structures, and at the same time, propositions enable textual inferences.

• Objective 2.2: Build a proposition store from the collection of graphs.

We have used six corpora represented with the enriched graph-based represen-
tation to acquire propositions from more than 11 million documents into three
kinds of proposition stores, regular propositions, semantic class propositions
and typed propositions. In total, we have acquired more than 1,970 million
propositions.

• Objective 2.3: Demonstrate the application to named entity disambiguation.

The One Sense Per Collocation hypothesis states that a word acts with the same
sense when occurring in the same collocate, whether the collocate is positional
or syntactic. Although this hypothesis has been empirically tested for word
sense disambiguation, it was not clear if it holds on the more restricted task
of named entity disambiguation. We have used our method for propositional
knowledge acquisition to create a corpus of propositions with disambiguated
named entities that represent collocations of ambiguous entities. This corpus has
been used to demonstrate that One sense per proposition also holds for named
entity disambiguation.

Objective 3: Improve apposition dependency detection using knowledge about seman-
tic classes. Measure the semantic compatibility between the two sides of an apposition
in order to decide the most suitable governor.
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Appositives are syntactic dependencies that are often used to describe a class-instance
relation between two noun phrases. Appositive detection is not trivial because depen-
dencies can relate terms that are far on the text, and parsers fail to choose when there
are several grammatically correct candidates if they lack of the semantic information
needed. From a NLU perspective, solving the ambiguity is crucial to perform a correct
interpretation of the sentence, and we show how to correct the output of a stan-
dard dependency parser by using propositional knowledge as a source of background
knowledge.

• Objective 3.1: Define the problem of apposition correction and classify the
errors that parsers commit.

In order to perform apposition correction, we consider the output of a standard
dependency parser where an apposition is detected and the sentence fulfil two
premises: First, the first noun phrase has more than one common noun, and
second, the nucleus of the second noun phrase is a named entity. Every noun
in the first phrase is considered a candidate to govern the apposition, and the
task is to decide which candidate is better. We have estimated that 78.6% of
errors on apposition parsing are due of the lack of semantic information, and
have categorized them on three classes: appositions with one valid candidate
(70.6%), with several valid candidates (7.3%) or with undecidable candidates
(0.6%). We have focus on solving these three cases.

• Objective 3.2: Build a gold standard with conflicting cases of apposition
detection and manually annotate the correct relation.

We have built a gold standard with 300 sentences that were annotated with
one apposition by a dependency parser and had at least two nouns candidates
to govern the apposition. We have discarded 64 sentences since there was no
apposition, and the remaining 236 sentences were manually annotated with the
correct governor.

• Objective 3.3: Design and implement a method for apposition correction based
on background knowledge.

Since appositives are often used to denote class-instance relation, we measure the
semantic compatibility between candidates and named entities to decide which
candidate is better. Semantic class propositions provides two different kinds
of evidence, the compatibility between semantic classes and entity names, and
the compatibility between semantic classes and entity types. We combine the
evidence with three different measures (normalized pointwise mutual information,
conditional probabilities and smoothed conditional probabilities) to define 8
configurations that evaluate the compatibility considering an evidence and a
measure.
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• Objective 3.4: Evaluate the apposition correction method in the gold standard
and compare to parsers in the state of the art.

Our method yields the best results when combining both sources of evidence (re-
lation between semantic classes and entity names, and relation between semantic
classes and entity types) with smoothed conditioned probabilities. We reach a
91.4% accuracy which is a 12.9% of relative improvement with respect to the
best baseline (80.9%), which corresponds to the Stanford Parser.

Objective 4: Analyse the impact of the mapping from utterances into semantic
relations for semantic parsing over linked data. Align propositions to linked data
properties to feed a semantic parser.

Semantic parsing can be seen as a particular flavour of language interpretation, in the
sense that natural language has to be mapped into a formal meaning representation.
Mapping propositions into a structured knowledge base such as linked data databases
can be seen as a way to bridge the gap between Open Information Extraction and
structured ontologies. We study how this mapping can be used in Question Answering
systems and what is the relative importance of this step compared with the rest of the
system.

• Objective 4.1: Design and implement a methodology to map from propositions
into linked data properties.

We have developed a method to map propositions into Freebase properties using
distant supervision that helps in solving both lexical and structural gaps by
finding multiple grammatical structures and lexical realizations of the same
query.

Our method is divided in three steps: (1) Build a proposition store. To do so,
we select relevant sentences, transform them into graphs from which we extract
propositions. (2) Ground each proposition by pairing them with KB properties
considering linked entities, and (3) Compute the global weights of each pairing.
We consider an optional step: (4) Perform a lexical expansion by creating new
pairs and re-evaluate the weights of the lexicon entries.

• Objective 4.2: Study the contribution of knowledge acquisition on closing the
gap between natural language and linked data relations. Isolate the evaluation
of the knowledge acquisition from other typical steps in semantic parsing such
as training and querying. Evaluate which syntactic structures should be aligned
and what is the impact of each one.

Building and grounding the proposition stores is key to the final performance
of the semantic parser. A system with an empty alignment lexicon achieves a
7.80% of F1-measure. In baseline systems with lexicon but without training, our
experiments show that the lexicon contributes with near 80% of the results, and
training only accounts for 7.6% of relative improvement.



7.3. Looking Forward 139

We study the contribution of thirteen extraction patterns to the final results by
performing and ablation test. The result show that most patterns are useful,
and that removing the harmful patterns can provide a small boost on the results
while reducing the cost the acquisition step.

• Objective 4.3: Study whether external linguistic resources are useful to reduce
the lexical gap in the context of mapping propositions to linked data relations.

We have shown how to enrich the lexicon using linguistic information from an
external resource (i.e. WordNet), helping to bridge the lexical gap between
utterances and database queries. Enrichment consistently pushes the results in
every case, in a range from 0.8% to 2.50% of absolute improvement.

7.3 Looking Forward

The use of propositional knowledge for textual inferences is still an open research field,
with many research opportunities in all the areas involved. In this thesis we have
shown how to acquire and use propositions in syntactic and in semantic parsing, and
develop completely unrelated methods for each case. In the following sections we point
to some specific future avenues divided by the area of study.

7.3.1 Meaning Representation

The graph-based representation presents many opportunities for improvement. First,
we can take advantage of the information that is hidden on the text, but that people
recover effortlessly (Peñas and Ovchinnikova, 2012). Authors do not include information
that they assume that their readers know, because its inclusion would mean an extra
importance. The problem is that automatic systems cannot recover this information
because they lack of the background knowledge necessary and the inference capabilities
to use it.

One way to do it is to use type coercion to substitute general syntactic edges of struc-
tures that tend to contain this information, such as genitives or nominal compounds,
for other edges more specific that point to the nature of the relation between the
components could help to improve the information extraction systems.

Other opportunity of improvement is to include a system of event coreference
(Humphreys et al., 1997; Hasler et al., 2006), and perform a collapsing to the one of the
nominal compounds. This technique aims to improve the cohesion of the information
with the goal of providing a better base for proposition extraction.
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As we explained in the Chapter 5, we have used semantics to solve structural ambiguities
after using syntactic dependencies to build the semantic representation. This is a
recursive problem: the more we improve the syntactic correction, the better semantic
representation. Once we get the new apposition dependencies for a large corpus, we
can repeat the process of knowledge acquisition, creating a bootstrap method that
iteratively improves the dependence analysis and semantic class acquisition. This
process could be further refined if the process of correction is extended to other relations
that depend on semantic compatibility, such as coreference resolution.

In this line, we could aim to correct dependencies in standard repositories of syntactic
trees. For example, we could rebank the Penn Treebank corpus (Marcus et al., 1993),
focusing on long distant relations, and establish a new standard for syntactic parsing
evaluation.

7.3.2 Knowledge Acquisition

Regarding our method for knowledge acquisition, we initially propose an acquisition
based on our graph representation. Another approach would be to swap this represen-
tation for another recent meaning representation. Specifically, it would be interesting
to see what kind of propositions can be gathered using automatically generated AMR
graphs. Theoretically, AMR would produce cleaner propositions, however since the
AMR parsers are still under development, if the AMR generation is noisy, those
mistakes would be carried to the propositions.

Another line of research is related to the estimation of the frequencies of the propositions.
So far, we have explored the uses of a simple aggregation of occurrences, but it is
interesting to study whether a more sophisticated probabilistic model can be useful
for language interpretation or at least for specific NLP tasks.

7.3.3 Textual Inference

Address all textual inferences is a work out of the scope of this dissertation. However,
we think Proposition Stores could be the base for general methods able to support
many different textual inferences at the same time such as coreference, metonymy
and type coercion. Possibly, the most interesting research line is to find a method
that unifies the textual inference step for several tasks. For instance, a method whose
output can be used to improve syntactic and semantic parsing at the same time. In
this line, the most promising methods are related to end-to-end deep learning methods
such as neural networks (Collobert et al., 2011; Zhang and LeCun, 2015).
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In the case of our method for appositive correction could benefit from adding extra
semantic information. For example, we could characterize entities with gender or age,
to get more accurate measures of semantic compatibility. For example:

David meets a friend of his wife, Peter.

Knowing that wife is a class used with females and Peter is usually a male name leads
us to consider the link between friend and Peter more appropriate.

Although this work focuses on appositive dependencies, it would be interesting to study
whether this technique could be extrapolated to solve other dependency types, such as
abbreviations and copulative verbs, or even other relations such as coreferences.

Finally, we could aim to include this method as a feature of a dependency parser. The
main issue to study is how to add the semantic information without hurting the parser
efficiency.

We can also aim to scale up the semantic parsing system. One option would be to
generalize the GPS using bigger knowledge bases, which now are small because entities
are required to be linked to Freebase. The hypothesis of one sense per proposition
defined in (Barrena et al., 2014) could help to automate entity linking.

We leave also for future work refining the distant supervision process. For example,
we could follow a similar approach as Surdeanu et al. (2012), that try to reduce the
noise by jointly modelling instances and labels for relation extraction. This would be
equivalent to our problem, where we could model utterances and labels at the same
time.

Finally, it would be interesting to study how to improve GPS using distributed repre-
sentations at word level like Word2Vec (Mikolov et al., 2013b) or GloVe (Pennington
et al., 2014), at relation level (Lewis and Steedman, 2013; Ji and Eisenstein, 2015), or
embeddings for QA (Zhou et al., 2015, 2016). Whereas they have proven to be useful
for training (Kumar et al., 2015; Li and Clark, 2015), to the best of our knowledge
there is not any effort to enrich the acquisition step.

7.4 Contributions

As a result of this work we have obtained several useful contributions for the research
community:

1. A new paradigm that relates meaning representations and structured
knowledge bases trough propositional knowledge: A new proposal on
how to acquire and use propositional knowledge for language interpretation
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purposes. This paradigm opens new research lines, some of them are explored in
this thesis.

2. A method to turn plain text into a graph-based representation: A
method that uses free distributed tools to develop two different representations,
the initial representation and the enriched representation.

3. A procedure for automatic proposition extraction from graphs: A
method that finds syntactic and semantic patterns to find and extract propositions
in the graph-based representation.

4. Several collections of documents represented as graphs: We have trans-
formed into graphs documents from 6 different corpora, variable both in size
and in domain. In total, we have built more than 11.5 million graphs. We have
implemented two different outputs, DOT and pseudo-JSON.

5. Several proposition stores extracted from graphs: Proposition stores
with knowledge about predicate argument relations, semantic classes and typed
propositions with more than 1,970 million instances.

6. A gold standard for apposition parsing: 236 sentences with multiple can-
didates to govern an apposition and a manual disambiguation.

7. A study of cases of ambiguous appositive relations: A classification of
sentences with multiple candidates to govern an apposition according to the
semantic compatibility of the candidates to governor and the dependent part.

8. An unsupervised method for the correction of appositive dependen-
cies: This method finds grammatical ambiguous cases where there are two or
more candidates to be the governor of an apposition. Then, it chooses the best
candidate according to the semantic compatibility with the dependent part.
We have compared several sources of evidence, different semantic compatibility
measures and its combinations, concluding which is the best approach.

9. A distant supervised method for mapping propositions to linked data
properties: This method pairs propositions with KB relations considering
linked entities, and can be improved performing a lexical expansion using external
linguistic resources.

10. A study of the relevance of syntactic and semantic structures on the
task of building a mapping to linked data properties: We study which
syntactic and semantic structures should be aligned to database relations and
what is the impact of each one when building a lexicon for semantic parsing.

11. A methodology to evaluate the grounding step in semantic parsing:
A method that enables the evaluation of the grounding step in isolation, without
any influence of training or querying.
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B
Graph-based Representation

Example

In Chapter 3 we have presented our methodology to transform plain text documents
into a graph based meaning representation. As a matter of example, Figure B.1 shows
the initial representation graph of the document “URGENT Denmark to withdraw all
troops from Iraq in August. Denmark will withdraw all of its 460 troops stationed
in Iraq in August, Danish Prime Minister Anders Fogh Rasmussen announced on
Wednesday.”. Black nodes are regular nodes, green nodes correspond to entities, blue
nodes correspond to events and red nodes correspond to temporal expressions.

Figure B.2 shows the resulting graph after the collapsing and enrichment. Note that
the coreference relations no longer exists, and some nodes are grouped. The result is a
more compact representation.

Finally, Listing B.1 shows the pseudo-JSON file. The file is structured in two parts,
nodes and edges. A node is composed by an identifier and a set of properties, and an
edge is composed by a pair of identifiers of nodes and a label.
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Figure B.1: Initial representation of the document “URGENT Denmark to withdraw all troops from Iraq in August. Denmark will withdraw
all of its 460 troops stationed in Iraq in August, Danish Prime Minister Anders Fogh Rasmussen announced on Wednesday.” Output formatted
as a dot file. Printed with Graphviz.
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Denmark[NNP,Denmark]_1_2
NER: LOCATION  DESCRIPTOR: Denmark

POS: N 
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NER: LOCATION  DESCRIPTOR: Iraq  POS: N 
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460[CD,460]_7_2
 NER: NUMBER  DESCRIPTOR: 460  POS: N 

Danish[JJ,danish]_15_2
NER: LOCATION  DESCRIPTOR: danish

POS: N 

Minister[NNP,Minister]_17_2
NER: TITLE  DESCRIPTOR: Minister

POS: N 

Anders[NNP,Anders]_18_2 Fogh[NNP,Fogh]_19_2 Rasmussen[NNP,Rasmussen]_20_2
NER: PERSON  DESCRIPTOR: Anders Fogh Rasmussen  POS: N 

amodnn

Prime[NNP,Prime]_16_2
DESCRIPTOR: Prime

POS: NNP 

nn

announced[VBD,announce]_21_2
DESCRIPTOR: announce  POS: V  TENSE: PAST  ASPECT: NONE  POLARITY: POS 

INCLUDES

to[TO,to]_3_1 withdraw[VB,withdraw]_4_1
DESCRIPTOR: withdraw

POS: V  TENSE: INFINITIVE  ASPECT: NONE  POLARITY: POS 

arg0

prep_from prep_in

troops[NNS,troops]_6_1
DESCRIPTOR: troops  POS: NNS 

arg1

all[DT,all]_5_1
DESCRIPTOR: all  POS: DT 

det

will[MD,will]_2_2 withdraw[VB,withdraw]_3_2
DESCRIPTOR: withdraw

POS: V  TENSE: FUTURE  ASPECT: NONE  POLARITY: POS 

arg0
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POS: DT 

arg1
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POS: PRP$ 
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DESCRIPTOR: station  POS: V  TENSE: PASTPART  ASPECT: NONE  POLARITY: POS 

prep_in prep_in

arg1

arg0

prep_on
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Figure B.2: Enriched representation of the document “URGENT Denmark to withdraw all troops from Iraq in August. Denmark will withdraw
all of its 460 troops stationed in Iraq in August, Danish Prime Minister Anders Fogh Rasmussen announced on Wednesday.” Output formatted
as a dot file. Printed with Graphviz.
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1 // Nodes
2 34 {" DESCRIPTOR ": " Denmark ", "NER": " LOCATION ", "POS": "N"

}
3 35 {" DESCRIPTOR ": "Iraq", "NER": " LOCATION ", "POS": "N"}
4 36 {" DESCRIPTOR ": "August", "NER": "DATE", "POS": "NNP"}
5 38 {" DESCRIPTOR ": "460", "NER": "NUMBER", "POS": "N"}
6 41 {" DESCRIPTOR ": "danish", "NER": " LOCATION ", "POS": "N"}
7 42 {" DESCRIPTOR ": " Minister ", "NER": "TITLE", "POS": "N"}
8 43 {" DESCRIPTOR ": "Anders Fogh Rasmussen ", "NER": "PERSON"

, "POS": "N"}
9 44 {" DESCRIPTOR ": " Wednesday ", "NER": "DATE", "POS": "NNP"

}
10 45 {" DESCRIPTOR ": "urgent", "POS": "JJ"}
11 46 {" DESCRIPTOR ": " withdraw ", "POS": "V", "ASPECT": "NONE"

, "TENSE": " INFINITIVE ", " POLARITY ": "POS"}
12 48 {" DESCRIPTOR ": "all", "POS": "DT"}
13 49 {" DESCRIPTOR ": "troops", "POS": "NNS"}
14 50 {" DESCRIPTOR ": "from", "POS": "IN"}
15 51 {" DESCRIPTOR ": "in", "POS": "IN"}
16 52 {" DESCRIPTOR ": ".", "POS": "."}
17 53 {" DESCRIPTOR ": " withdraw ", "POS": "V", "ASPECT": "NONE"

, "TENSE": "FUTURE", " POLARITY ": "POS"}
18 55 {" DESCRIPTOR ": "all", "POS": "DT"}
19 56 {" DESCRIPTOR ": "of", "POS": "IN"}
20 57 {" DESCRIPTOR ": "its", "POS": "PRP$"}
21 58 {" DESCRIPTOR ": "troops", "POS": "NNS"}
22 59 {" DESCRIPTOR ": " station ", "POS": "V", "ASPECT": "NONE",

"TENSE": " PASTPART ", " POLARITY ": "POS"}
23 60 {" DESCRIPTOR ": "in", "POS": "IN"}
24 61 {" DESCRIPTOR ": "in", "POS": "IN"}
25 62 {" DESCRIPTOR ": ",", "POS": ","}
26 63 {" DESCRIPTOR ": "Prime", "POS": "NNP"}
27 64 {" DESCRIPTOR ": " announce ", "POS": "V", "ASPECT": "NONE"

, "TENSE": "PAST", " POLARITY ": "POS"}
28 65 {" DESCRIPTOR ": "on", "POS": "IN"}
29 66 {" DESCRIPTOR ": ".", "POS": "."}
30

31 // Edges
32 46 49 {"type":"arg1"}
33 35 35 {"type":" coreference "}
34 36 36 {"type":" coreference "}
35 64 44 {"type":" prep_on "}
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36 34 45 {"type":"amod"}
37 59 58 {"type":"arg1"}
38 34 34 {"type":" coreference "}
39 53 55 {"type":"arg1"}
40 46 34 {"type":"arg0"}
41 57 58 {"type":"has"}
42 43 41 {"type":"amod"}
43 59 36 {"type":" prep_in "}
44 49 48 {"type":"det"}
45 36 44 {"type":"BEFORE"}
46 64 53 {"type":"arg1"}
47 53 34 {"type":"arg0"}
48 43 42 {"type":"nn"}
49 44 64 {"type":" INCLUDES "}
50 43 63 {"type":"nn"}
51 46 35 {"type":" prep_from "}
52 59 35 {"type":" prep_in "}
53 46 36 {"type":" prep_in "}
54 55 58 {"type":" prep_of "}
55 64 43 {"type":"arg0"}
56 58 38 {"type":"num"}

Listing B.1: Enriched representation of the document “URGENT Denmark to withdraw
all troops from Iraq in August. Denmark will withdraw all of its 460 troops stationed in
Iraq in August, Danish Prime Minister Anders Fogh Rasmussen announced on Wednesday.”
Output formatted as a pseudo-JSON file.
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Proposition Store Examples

In Chapter 4 we have presented our methodology to acquire propositional knowledge.
This appendix is devoted to show examples of the propositions acquired.

Consider again the example 1.1 presented in the introduction: The city council
refused the demonstrators a permit because they feared violence. We can search for the
propositions that involve the terms councils and demonstrators as arguments. Table
C.1 shows the relevant propositions obtained. Although it is not trivial, it may be
possible to infer that the most plausible interpretation is city councils fear violence, or
at least, that it is plausible that demonstrators advocate violence.

NVN
Frequency relation arg0 arg0 POS arg1 arg1 POS

279 adopt council NN resolution NN
272 hold council NN meeting NN
184 issue council NN statement NN
184 have council NN member NNS
168 have council NN power NN
767 chant demonstrator NNS slogan NNS
694 throw demonstrator NNS stone NNS
483 wave demonstrator NNS flag NNS
476 shout demonstrator NNS slogan NNS
372 carry demonstrator NNS banner NNS

Table C.1: Most frequent propositions considering council and demonstrator as arg0.

In addition, we can also search for the most popular arguments that fear violence, as
in Table C.2. Again, arguments such as authority or government are closer to city
councils than to demonstrators.



170 C. Proposition Store Examples

NVN
Frequency relation arg0 arg0 POS arg1 arg1 POS

24 fear police NNS violence NN
22 fear observer NNS violence NN
20 fear official NNS violence NN
16 fear authority NNS violence NN
10 fear government NN violence NN

Table C.2: Most frequent propositions considering the relation fear and violence as arg1.

Next, we present the most frequent propositions considering the three kinds of propo-
sitions: predicate-argument propositions, semantic class propositions and typed propo-
sitions.

The following tables show some of the most frequent propositions extracted considering
patterns NV (Table C.3), NVN (Table C.4), NVPN (Table C.5), VNPN (Table C.6),
NVNPN (Table C.7), NPrepN (Table C.8) and NhasN (Table C.9). Propositions
are extracted from the Gigaword Corpus, and reflect the journalistic language and
conventions used in the documents, such as the prevalence of terms associated with
news topics such as business and politics, i.e. company, index, official or troops.

NV
Frequency relation arg0 arg0 POS
855169 say official NNS
351247 say spokesman NN
285682 say report NN
269774 say statement NN
224334 say source NNS

Table C.3: Most frequent propositions extracted considering the NV pattern.

Table C.10 shows the most frequent entities, plus the most frequent entity-semantic
class pairs. Unsurprisingly, the most frequent entities are numbers and ordinals, with
the notable exception of the acronym U.S. as a location. On the contrary, when
considering association with semantic classes, locations and organizations are the most
frequent entities.

In the following tables we show some of the most frequent typed propositions extracted
considering patterns CV (Table C.11), CVC (Table C.12), CVPC (Table C.13), VCPC
(Table C.14), CVCPC (Table C.15), CPrepC (Table C.16) and ChasC (Table C.17).
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NVN
Frequency relation arg0 arg0 POS arg1 arg1 POS
21153 rise index NN point NNS
16928 fall index NN point NNS
16745 include city NNS municipality NNS
14029 gain index NN point NNS
13379 claim group NN responsibility NN

Table C.4: Most frequent propositions extracted considering the NVN pattern.

NVPN
Frequency relation arg0 arg0 POS arg2 arg2 POS
20274 close::at index NN point NNS
18603 contribute::to writer NNS report NN
18368 speak::on official NN condition NN
12826 say::in company NN statement NN
12334 say::on official NN condition NN

Table C.5: Most frequent propositions extracted considering the NVPN pattern.

VNPN
Frequency relation arg1 arg1 POS arg2 arg2 POS
12393 tell::after reporter NNS meeting NN
9956 claim::for responsibility NN attack NN
9680 speak::on official NN condition NN
8655 measure::on earthquake NN scale NN
7198 send::to troops NNS Iraq NNP

Table C.6: Most frequent propositions extracted considering the VNPN pattern.

NVNPN
Frequency relation arg0 arg0 POS arg1 arg1 POS arg2 arg2 POS

6002 change::on total NN hand NNS turnover NN
5995 get::by non-subscriber NNS information NN call VBG
4316 make::by non-client NNS purchase NNS call VBG
3347 include::from report NN feature NNS Boston Globe NNP
2841 decide::in bank NNS rate NNS yuan NN

Table C.7: Most frequent propositions extracted considering the NVNPN pattern.
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NPrepN
Frequency relation arg0 arg0 POS arg1 arg1 POS
157440 of condition NN anonymity NN
68186 of weapon NNS destruction NN
67163 of thousand NNS people NNS
61007 of number NN people NNS
60471 in years NNS prison NN

Table C.8: Most frequent propositions extracted considering the NPrepN pattern.

NHasN
Frequency relation arg0 arg0 POS arg1 arg1 POS
380789 has U.S. NNP dollar NNS
102760 has U.S. NNP official NNS
80972 has Bush NNP administration NN
72046 has U.S. NNP troops NNS
55250 has U.S. NNP government NN

Table C.9: Most frequent propositions extracted considering the NHasN pattern.

Semantic Class Propositions
Frequency entity entity type class
4711056 one NUMBER -
3296823 U.S. LOCATION -
2605854 two NUMBER -
2575269 first ORDINAL -
1865796 Tuesday DATE -
32012 Yasser Arafat PERSON leader
9089 Abuja LOCATION capital
9035 Kabul LOCATION capital
8614 Mahmud Abbas PERSON president
7826 Hamas ORGANIZATION group

Table C.10: Most popular entities and most popular entities with an associated semantic
class.
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CV
Frequency relation arg0 class arg0 NER
1017530 say spokesman C.PERSON
661099 say director C.PERSON
555246 say president C.PERSON
309868 say chairman C.PERSON
272474 say head C.PERSON

Table C.11: Most frequent typed propositions extracted considering the CV pattern.

CVC
Frequency relation arg0 class arg0 NER arg1 class arg1 NER
35090 tell spokesman C.PERSON reporter NNS
31710 tell spokesman C.PERSON ORGANIZATION NNP
15342 tell spokesman C.PERSON ORGANIZATION NN
9348 tell chief C.PERSON ORGANIZATION NNP
9182 tell leader C.PERSON reporter NNS

Table C.12: Most frequent typed propositions extracted considering the CVC pattern.

CVPC
Frequency relation arg0 class arg0 NER arg1 class arg1 NER
14911 contribute::to writer C.PERSON report NN
13943 say::in spokesman C.PERSON LOCATION NNP
5269 tell::in spokesman C.PERSON LOCATION NNP
3875 contribute::to correspondent C.PERSON report NN
3747 hold::with PERSON NNP counterpart C.PERSON

Table C.13: Most frequent typed propositions extracted considering the CVPC pattern.

VCPC
Frequency relation arg1 class arg1 NER arg2 class arg2 NER

3099 tell::in reporter NNS capital C.LOCATION
2634 base::in company C.ORGANIZATION LOCATION NNP
1865 base::in group C.ORGANIZATION LOCATION NNP
1201 tell::in conference NN capital C.LOCATION
1194 base::in firm C.ORGANIZATION LOCATION NNP

Table C.14: Most frequent typed propositions extracted considering the VCPC pattern.
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CVCPC
Frequency relation arg0 class arg0 NER arg1 class arg1 NER arg2 class arg2 NER

2994 tell::in spokesman C.PERSON reporter NNS LOCATION NNP
1451 tell::by spokesman C.PERSON ORGANIZATION NN telephone NN
1440 tell::in PERSON NNP reporter NNS capital C.LOCATION
872 tell::in leader C.PERSON reporter NNS LOCATION NNP
791 tell::in chief C.PERSON reporter NNS LOCATION NNP

Table C.15: Most frequent typed propositions extracted considering the CVCPC pattern.

CPrepC
Frequency relation arg0 class arg0 NER arg1 class arg1 NER
16442 on contact C.PERSON NUMBER NE
2771 on contact C.ORGANIZATION NUMBER NE
1846 at contact C.PERSON ORGANIZATION NE
1666 on call C.PERSON NUMBER NE
771 on telephone C.PERSON NUMBER NE

Table C.16: Most frequent typed propositions extracted considering the CPrepC pattern.

CHasC
Frequency relation arg0 class arg0 NER arg1 class arg1 NER
70186 has ORGANIZATION NNP director C.PERSON
66569 has ORGANIZATION NNP president C.PERSON
50323 has ORGANIZATION NNP chairman C.PERSON
32856 has LOCATION NNP capital C.LOCATION
28930 has ORGANIZATION NNP head C.PERSON

Table C.17: Most frequent typed propositions extracted considering the CHasC pattern.
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List of acronyms used in this thesis:

• ACE Automatic Content Extraction

• AMR Abstract Meaning Representation

• CDT Conceptual Dependency Theory

• DRT Discourse Representation Theory

• FOL First Order Logic

• GPS Grounded Proposition Store

• HTTP HyperText Transfer Protocol

• IE Information Extraction

• KB Knowledge Base

• KBP Knowledge Base Population

• KBS Knowledge Base System

• LD Linked Data

• MTT Meaning-Text Theory

• MWG Maximum Weighted Graph

• NED Named Entity Disambiguation

• NER Named Entity Recognition

• NLP Natural Language Processing

• NLU Natural Language Understanding

• OIE Open Information Extraction

• OSPC One Sense Per Collocation
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• OSPD One Sense Per Discourse

• POS Part of Speech

• QA Question Answering

• RDF Resource Description Framework

• RSF Regular Slot Filling

• SRL Semantic Role Labeling

• TAC Text Analysis Conference

• TSF Temporal Slot Filling

• URI Uniform Resource Identifiers
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