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RESUMEN

La variación espacial y temporal del contenido de humedad de las plantas (humedad 
del combustible vivo; HCV) es un factor crítico en el desarrollo de los incendios 
forestales. La HCV condiciona la inflamabilidad de los ecosistemas al determinar 
la cantidad de biomasa vegetal (el combustible) susceptible de arder y su grado de 
conectividad espacial. A pesar de la importancia que supone monitorear la HCV para 
anticipar las amenazas asociadas a los incendios forestales, todavía existen importantes 
lagunas de conocimiento a la hora de estimar sus variaciones temporales y espaciales, 
sobre todo considerando las condiciones derivadas del calentamiento global. Por lo 
tanto, el objetivo principal de esta tesis doctoral es incrementar el realismo biológico 
de las estimaciones de la HCV, para evaluar con mayor precisión los efectos del 
cambio climático sobre la incidencia de incendios forestales. Para lograrlo, primero he 
simulado cómo afecta la variación estacional de la HCV al desarrollo de los incendios. 
A continuación, he desarrollado un modelo semi-mecanicista que considera los rasgos 
fisiológicos clave para estimar con precisión la HCV a nivel de especie. Luego, he 
aplicado el modelo desarrollado para pronosticar las tendencias de la HCV bajo las 
condiciones del cambio climático, evaluando los posibles aumentos en la incidencia 
de incendios forestales. Finalmente, he estimado hasta qué punto los aumentos en 
la incidencia de incendios forestales comprometen el potencial de las estrategias de 
reforestación a gran escala para mitigar el cambio climático a través del secuestro de 
carbono.

 Los resultados de las simulaciones han permitido observar como las disminuciones 
en la HCV favorecen el desarrollo de incendios extremos, y, por lo tanto, no 
considerar la HCV a la hora de simular el comportamiento del fuego puede conducir 
a subestimar los riesgos asociados a los incendios forestales. El desarrollo del modelo 
semi-mecanicista para estimar la HCV a nivel de especie ha permitido observar que 
la inclusión de características fisiológicas de las plantas aumenta el realismo biológico 
y las capacidades predictivas de las estimaciones. El uso del modelo desarrollado para 
pronosticar las dinámicas de la HCV ha permitido proyectar aumentos significativos 
en la duración de las temporadas de incendios en amplias zonas forestales de la 
España peninsular. Estos aumentos han resultado ser inversamente proporcionales al 
gradiente de productividad de los ecosistemas. Finalmente, los aumentos que hemos 
proyectado en la incidencia de incendios forestales reducen la ya limitada capacidad 
de las reforestaciones para compensar las emisiones de CO2. Los resultados indican 
que la capacidad de secuestro de carbono mediante programas de reforestación a gran 
escala está sobreestimada. En general, concluimos que podemos estar al borde de un 
drástico aumento en la incidencia de grandes incendios forestales a medida que las 
condiciones del cambio climático inducen bajos valores de la HCV durante periodos 
más frecuentes e intensos. Por lo tanto, es necesario seguir profundizando en el analisis 
de las dinámicas de la HCV con una perspectiva basada en procesos fisiológicos, que 
permita mejorar la anticipación y reducción de los impactos asociados a los incendios 
forestales en las próximas décadas.
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ABSTRACT

Spatial and temporal variation in the moisture content of  leaves, twigs, and small 
diameter branches (live fuel moisture content; LFMC) is a critical driver of  the 
patterns of  wildfire activity. LFMC conditions ecosystem flammability by affecting the 
availability of  plant biomass (fuels) to fire and also the degree of  spatial connectivity 
of  dry patches. However, despite the crucial role of  understanding LFMC dynamics 
for anticipating wildfire danger, there are still significant knowledge gaps regarding 
the estimation of  temporal and spatial variations, particularly under ongoing global 
warming. The main purpose of  this PhD Thesis is to improve current and future 
assessments of  LFMC by adding more biological realism in LFMC estimations. To 
this end, I first simulated how seasonal variation in LFMC affects fire behavior. 
Secondly, I developed a semi-mechanistic model that considers key physiological 
traits to estimate species-specific LFMC dynamics. Then, I applied this model to 
forecast LFMC trends under climate change conditions assessing potential wildfire 
danger increases, including also estimates of  dead fuel moisture content (DFMC). 
Finally, using a key driver of  both LFMC and DFMC, I estimated how projected 
increases in fire danger under global warming may compromise the potential of  
reforestation strategies to mitigate climate change through carbon sequestration.

Simulation results indicated that LFMC declines increase the likelihood of  
extreme fire behavior and, therefore, disregarding LFMC from fire modeling would 
lead to wildfire risk underpredictions. The development of  a new semi-mechanistic 
model to infer LFMC, considering plant physiological traits, significantly increased 
predictive capabilities. The application of  this approach to forecast LFMC 
dynamics allows to project significant increases in the fire season over large parts 
of  peninsular Spain, in a manner that was inversely proportional to the gradient 
in productivity. Finally, projected increases in future wildfire risks reduce the 
limited potential of  reforestation strategies to offset anthropogenic CO2 emissions, 
highlighting that, previous estimates on the potential carbon removal by plantations 
have been greatly overestimated. Overall, I conclude that we may be at the brink of  
a dramatical increase in the incidence of  large wildfires, as fuel dry-down processes 
induced by climate change become more frequent and intense. The process-based 
understanding of  LFMC dynamics proposed here may serve to anticipate critical 
transitions in forest flammability and consequently improve our preparedness for 
increased wildfire impacts in the coming decades.

Keywords: Fuel Moisture, Fire Danger, Fire Modeling, Plant Hydraulics, Climate Change, 
Pyrophysiology.
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Introduction

INTRODUCTION

I.1 Background

Wildfires have played a major role in shaping the structure and function of  
terrestrial ecosystems for the last 420 million years, following land plant expansion 
(Glasspool et al., 2006). Wildfires affect the Earth system by altering the energy 
balance, the evolution of  physiological traits and the oxygen cycle, among other 
processes (Resco de Dios, 2020). Thus, wildfires should be considered a key part of  
the environment, and sustainable wildfire management should aim to reduce risks 
to life and property while maintaining ecological functions, instead of  attempting 
to eliminate all fires in ecosystems that are naturally fire-prone. A crucial aspect for 
achieving this objective relies on understanding the drivers of  fire activity, from 
local to landscape scales. Wildfire activity is driven by four environmental triggers 
that need to occur simultaneously (Fig. I.1; Boer et al., 2017; Bradstock, 2010). First, 
an accumulation of  live and dead plant material with spatial continuity for fire 
propagation across the landscape is required. Then, this accumulated biomass (fuel) 
must dry out to become available to the fire. Once those conditions are met, the 
landscape is in a flammable state, and fires will readily start with an ignition. Finally, 
wildfires may reach major spread rates depending on the fire weather conditions, 
which are a combination of  meteorological variables as wind, air temperature, 
precipitation, and relative humidity.

These four triggers operate at different timescales. On the one hand, while 
vegetation growth and the consequent accumulation of  live and dead plant material 
take years to decades, the dry-down of  these fuels varies seasonally, taking from 
weeks to days. On the other hand, ignitions are instantaneous and the meteorological 
conditions conducting to a fire weather show high variability at short timescales 
(Boer et al., 2017). This PhD Thesis is focused on improving the modeling of  fuel 
dry-down processes trough the inclusion of  plant physiological mechanisms, with 
the aim of  providing more accurate assessments of  future wildfire risks.

Fuel
build-up

Fuel
dry-down

Critically 
flammable 
landscape

Ignition Fire start
Fire

weather
Major 

landscape
fire(1) (2) (3) (4)

Yes YesYesYes

No fire Minor fire runNo fireNo fire

Long timescales
(decades to years)

Medium timescales
(weeks to days)

Short timescales
(days to hours)

No NoNoNo

Figure. I.1: Wildfire drivers. Wildfire activity is drive by four environmental conditions. 
Modified from Boer et al., 2017.
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I.2 Wildfire Modeling and Fuel Moisture

Despite wildfires being a natural component of  many terrestrial ecosystems, 
they have become a threat to civil protection, public health, and national security 
in many different countries worldwide (Borchers-Arriagada et al., 2021; Duane et 
al., 2021; Karavani et al., 2018; McDonald, 2020; Resco de Dios & Nolan, 2021; 
Tedim et al., 2020). In this sense and following the advances in computational 
power in the last decades, fire behavior models have been developed to assist in 
wildfire management and prevention strategies. These models, implemented as 
software programs, mathematically describe the physical and chemical processes 
of  wildfires to make quantitative evaluations of  their onset and spread across the 
landscape (Sullivan, 2009a, 2009b, 2009c). Thus, fire behavior models play a crucial 
role in assisting fire extinction interventions, determining the locations where fire 
prevention actions will be more critical, and understanding the seasonal variation 
of  fire activity and its drivers.

 Modeling fire behavior characteristics and its effects involves describing fuel 
properties, meteorological conditions, and topographic features as inputs variables 
for model calculations (Andrews, 2018). Among fuel properties, fuel moisture 
(FM), defined as the water content per unit of  dry weight, plays a crucial role in 
fire behavior because high moisture content values can significantly reduce fire 
ignition and propagation (Rothermel, 1983). Moreover, by determining the effective 
heat released when fuel burns, FM determines crucial fire attributes such as rate 
of  spread, flame dimensions and fuel consumption (Anderson, 1970; McArthur, 
1966). Therefore, monitoring and forecasting FM dynamics is a crucial aspect for 
understanding wildfire activity, and FM is a main input variable in almost all fire 
behavior models (Matthews, 2014).

The moisture contents of  live and dead fuels are considered separately, as 
each fuel type shows its own temporal dynamics (Pimont et al., 2019). Dead fuels 
such as leaves, bark, twigs, fallen limbs, and logs, are classified according to the 
thickness of  their particles (<6 mm, 6-25 mm, 25-75 mm and >75 mm), since it 
determines the time lag needed to reach equilibrium with environmental humidity 
(1 h, 10 h, 100 h and 1000 h). Fine dead fuels (<25 mm) moisture content responds 
rapidly to atmospheric condition changes, transitioning from non-flammable to 
flammable states within hours, and thus causing a major impact over fire behavior 
(Resco de Dios, 2020). The effect of  dead fuel moisture content (DFMC) on 
the behavior of  surface fires has been well documented for decades (Anderson 
& Rothermel, 1965) and its estimation and monitorization has been largely 
addressed from different perspectives (Matthews, 2014; Viney, 1991). In contrast, 
there are significant knowledge gaps regarding the estimation and forecast of  live 
fuel moisture dynamics.
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I.3 Live Fuel Moisture Content

The term live fuels basically refer to plants’ live foliage and small twigs. Fires 
across plant canopies propagate primarily through particles with a thickness smaller 
than 3 mm, and this is what constitutes the pool of  live fuels. DFMC is a critical 
driver for the ignition and propagation of  surface fires. Live fuel moisture content 
(LFMC) is equally important to determine fire spread across shrubs in surface fires. 
Furthermore, the probability and spread of  high intensity crown fires are conditioned 
by LFMC (Van Wagner, 1977). The transition of  fire from surface to crown fuel 
layers enables major landscape wildfire events in which fire intensity and severity 
increase dramatically, precluding extinction activities and causing severe ecological 
and socioeconomic impacts (Alexander & Cruz, 2016). Although the influence of  
LFMC on crown fire propagation has been questioned (Alexander & Cruz, 2013), 
several studies support that LFMC strongly affects fire activity at landscape scales 
(Dennison & Moritz, 2009; Nolan et al., 2016; Pimont et al., 2019; Ruffault et al., 
2018a). However, estimating and forecasting LFMC dynamics still poses significant 
difficulties.

LFMC exhibits temporal and spatial variations within and among plant species due 
to differences in anatomical and physiological traits that interact with environmental 
conditions across the soil-plant-atmosphere continuum (Resco de Dios, 2020, Kane 
et al., 2023, Griebel et al., 2023). While LFMC values in tree species remain nearly 
constant throughout the year, shrubs and herbs often show large seasonal variations 
(Martin-StPaul et al., 2018; Nolan et al., 2018; Pellizzaro et al., 2007a; Yebra et al., 
2019). Nolan et al. (2018) proposed three major physiological processes to potentially 
explain the observed interspecific variability in LFMC temporal dynamics. One of  
them is access to water resources, which depends on root systems. Species with 
deeper root systems can access water resources from lower soil layers, buffering 
short-term fluctuations in shallow layers, and they therefore show a nearly constant 
LFMC throughout the year. In contrast, species with shallow root systems can only 
reach water resources from superficial soil layers, and thus display major seasonal 
LFMC variability. Other physiological mechanisms proposed to explain interspecific 
differences in LFMC dynamics rely on stomatal regulation processes, which affect 
leaf  water potential, and osmotic and elastic adjustments, which affect turgor loss 
points and water storage capacities. Additionally, anatomical changes derived for 
instance from leaf  phenology may also alter seasonal LFMC dynamics.

All these physiological processes can be considered to estimate LFMC dynamics 
through trait-based plant hydraulic models, but these mechanistic approaches are not 
used for managing wildfire danger as its development started only recently (Balaguer-
Romano et al., 2022; Ruffault et al., 2022). However, the use of  this mechanistic 
perspective to infer LFMC dynamics may potentially solve some of  the limitations 
of  current approaches as meteorological drought indices or remote sensing products. 
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Although drought indices were not developed to model fuel moisture, they are 
nonetheless used to predict LFMC through empirical relationships (Pellizzaro et al., 
2007b; Viegas et al., 2001). The most popular ones are derived from fire weather and 
fire danger rating systems, such as the Drought Code (DC; Van Wagner, 1987) or 
the Keetch-Byram Drought Index (KBDI; Keetch & Byram, 1968). As these indices 
are based on daily weather data, which can be easily derived from meteorological 
datasets at locations of  interest, they have been widely used to provide historical 
and projected estimations of  LFMC dynamics. However, the use of  drought indices 
to estimate species specific LFMC induces large spatial uncertainties as LFMC 
dynamics is species-dependent and drought indices cannot consider the physiological 
mechanisms involved in plant responses to water scarcity conditions (Ruffault et 
al., 2018b). In contrast, LFMC values can be estimated through remote sensing 
approaches, as vegetation reflectance varies with water content. Thus, remotely 
sensed data are used for monitoring past and current LFMC dynamics over large 
areas at fine spatial and temporal resolutions (Yebra et al., 2013; Yebra et al., 2018). 
However, these approaches also show limitations as remotely sensed data require 
calibration and validation and they do not allow forecasting of  future fuel moisture 
conditions.

Forecasting fuel moisture dynamics is crucial to anticipate future wildfire risks 
derived from climate change impacts. Global warming is expected to increase water 
scarcity, enhancing the frequency and intensity of  droughts and fuel drying events 
(IPCC, 2021). Consequently, fire season duration and fire danger may increase as fuel 
moisture declines below critical dryness thresholds for longer periods. Furthermore, 
forested ecosystems with vast amounts of  biomass that are currently fire-free due 
to high moisture content, may dry out and start experiencing large wildfire events 
in the coming decades (Resco de Dios et al., 2021). In this context, it is important 
to understand the potential buffering effects derived from physiological mechanism 
that enhance plant species’ resilience over climate aridity increases. Several attempts 
to estimate future fuel moisture dynamics and its effects on wildfire danger have 
been conducted based on drought indices, concluding that increased temperature 
and decreased precipitation would lead to global fire risk increases (Abatzoglou et 
al., 2019; Dupuy et al., 2020; Ellis et al., 2022; Jones et al., 2022; Rigo et al., 2017). 
However, these studies do not consider to what extent can plant traits buffer climate 
change effects as physiological adjustments driving LFMC dynamics are ignored. 
Further research is needed in this sense to accurately estimate live fuel moisture 
dynamics under climate change conditions to assess future wildfire risks.

One of  the main risks associated with wildfires is the potential impact over 
the global carbon cycle, through the release into the atmosphere of  huge carbon 
amounts currently stored in forests (Anderegg et al., 2020). Wildfire climate impacts 
do not only entail carbon emissions, as carbon sequestration potential is also reduced 
following forest cover losses. As photosynthetic carbon sequestration produces a 
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cooling effect by lowering atmospheric CO2 concentration, the conservation of  
forest ecosystems is highlighted as a priority to face global warming (IPCC, 2021). 
In this sense, forest restoration is often proposed as a strategy for climate change 
mitigation (Bastin et al., 2019). However, it remains uncertain to which extent climate 
change mitigation can be achieved through reforestation due to poor quantification 
of  associated biogeophysical effects and future changes in wildfire risk. As fuel dry-
down increases under global warming, accurate global assessments should be carried 
out to understand whether reforestation efforts to mitigate climate change are safe 
from projected wildfire danger increases.

The main purpose of  this PhD Thesis is to shed some light into current knowledge 
gaps related to the effect of  LFMC dynamics on fire behavior, the estimation of  
temporal and spatial LFMC variations, the forecasting of  future LFMC trends under 
climate change conditions, and the potential feedbacks of  changes in fuel moisture 
and fire danger on the potential of  forest restoration actions proposed to mitigate 
climate change. To achieve it, first, I evaluated the influence of  seasonal LFMC 
variations on large wildfire events through a simulation study. Second, I developed 
a semi-mechanistic model that considers key physiological traits to estimate species-
specific LFMC dynamics overcoming the limitations of  current approaches. Then, I 
applied this new approach to forecast future fuel moisture trends under climate change 
projections, taking into account plant physiological traits, in order to anticipate future 
changes in wildfire danger. Finally, I estimated to which extent projected changes in 
future wildfire danger would compromise the capacity of  reforested lands to offset 
anthropogenic carbon emissions.

I.4 Structure of  the PhD Thesis

The hypotheses and objectives of  the PhD Thesis are presented in Chapter II. The 
main research of  the thesis is described in the following four chapters, presented as 
scientific articles. In Chapter III, a simulation study is conducted to evaluate the effect 
of  seasonal LFMC variations on the incidence of  crown fire events in Mediterranean 
pinewoods. Chapter IV introduces a novel approach to estimate and forecast LFMC 
dynamics at species level. Chapter V assesses future wildfire risks by projecting Spain 
forests fuel moisture dynamics through the 21st century using the novel modeling 
approach developed in Chapter IV. Chapter VI spatially assess how increasing vapor 
pressure deficit, a key driver of  fuel moisture and fire activity, could endanger the 
potential contribution of  forest restoration activities to offset anthropogenic CO2 
emissions. Each chapter includes an introduction to the subject, a description of  the 
methodology, a presentation of  the results, a discussion of  the results and the main 
conclusions. Chapter VII presents a general discussion of  the principal achievements 
of  the PhD Thesis. Finally, Chapter VIII summarizes the main research highlights. 
Bibliographic citations are provided, in separate sections, at the end of  each chapter.
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HYPOTHESES & OBJECTIVES

II.1 Hypotheses

H0.1: Live fuel moisture content (LFMC) variation affects fire behavior.

H0.2: Including plant physiological traits in LFMC modeling improves the 
estimation of  species-specific temporal and spatial patterns.

H0.3: Climate change is going to increase fuel-drying events, lengthening fire 
seasons, and enhancing wildfire danger throughout the 21st century.

H0.4: Future wildfire activity would reduce the potential of  large-scale 
reforestation strategies to mitigate climate change.

II.2 Objectives

Ob.1: Simulate the potential effects of  Aleppo pine needle senescence on fire 
behavior, focusing on whether LFMC declines increase the incidence of  crown fires 
development. Additionally, evaluate LFMC effects on fire behavior compared to the 
effect of  other wildfire drivers, such as wind speed and DFMC.

Ob.2: Develop a semi-mechanistic model to infer species-specific LFMC 
dynamics and evaluate its capabilities by comparing the model estimations with 
field observed values. Then, compare this degree of  agreement with estimations 
obtained under widely used approaches as meteorological drought indices and 
remote sensed data. 

Ob.3: Apply semi-mechanistic models, using climate projections to forecast fuel 
moisture dynamics in peninsular Spain’s forests. Analyze subsequent changes in 
fire season length by assessing the number of  days per year with values below fuel 
dryness thresholds.

Ob.4: Assess the climate change mitigation potential of  forest restoration by 
estimating global net carbon sequestration. Then, quantify the extent to which 
projected future wildfire danger could compromise this climate change mitigation 
potential.
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INTERACTIONS BETWEEN LFMC DYNAMICS 
AND WILDFIRES

ABSTRACT

In this chapter, I evaluate the interaction between LFMC seasonal variation and 
wildfire danger by simulating the effect of  Aleppo pine needle senescence process 
on the incidence of  crown fire development. First, I introduce Aleppo pine needle 
senescence process as well as the different crown fire types, the variables affecting 
surface fires transition to crown fires and how these events are modelled. Then, I 
describe the methodology established to simulate fire behavior considering needle 
senescence seasonal effects over fuel moisture and structure in different Aleppo 
pine stands. Finally, I present and discuss the results arguing the effect of  needle 
senescence over fire behavior relative to the effect of  other wildfire drivers, such as 
wind speed and DFMC.

The research activities related in this chapter were published in the journal Forests in 2020 
under the title: “Needle Senescence Needle senescence affects fire behaviour in Aleppo pine (Pinus 
halepensis mill.) stands: A simulation study” with Rubén Díaz-Sierra, Javier Madrigal, Jordi 
Voltas and Victor Resco de Dios as co-authors. https://doi.org/10.3390/f11101054
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III.1 Introduction

Pine-dominated ecosystems are one of  the major landscape types in the 
Mediterranean Basin, where they cover 25 % of  the forest surface (Barbero et al., 
1998). One of  the most abundant and widespread pine species in the Mediterranean 
Basin is Pinus halepensis Mill. (Aleppo pine), which covers 6.8 Mha, at low altitudes 
(<500 m) and near the coastline (Mauri et al., 2016). Aleppo pine is a fire-embracer 
species meaning that it depends, at least partly, on fire for seed release from 
serotinous cones and consequent regeneration (Keeley, 2012; Resco de Dios et 
al., 2018). Post-fire regeneration often results in dense thickets that show a high 
accumulation of  ladder fuels leading to vertical fuel continuity (Palmero-Iniesta et 
al., 2017). P. halepensis shows a low degree of  self-pruning and thus, these forests 
are particularly prone to crown fires. Therefore, approximately one-third of  the 
total annual burned area in the Mediterranean Basin occurs in P. halepensis stands 
(Quézel, 2000). There are different types of  crown fires, ranging from individual 
tree torching, active crown fires and, under exceptional circumstance, independent 
crown fires that become decoupled from surface fuels may also occur (Van Wagner, 
1977). Wildfire in P. halepensis stands often show potential for developing active 
crown fires beyond extinction capacity (Cruz & Alexander, 2017). The high rate 
of  spread and intensity of  crown fires in P. halepensis stands, combined with long 
range spotting are characteristics that pose a serious threat to life and property 
(Dimitrakopoulos et al., 2007).

In order to understand potential wildfire behavior, mathematical models have 
been developed to account for the various interacting processes that drive fire 
behavior (Hoffman et al., 2016). In North America and Europe, different models 
that link Rothermel (1991, 1972) surface and crown fire rate of  spread predictions 
with Van Wagner (1977, 1993) crown fire transition and propagation criteria have 
often been used (Alexander & Cruz, 2016), including BehavePlus (Andrews, 2014), 
FlamMap (Finney, 2006) or NEXUS (Scott & Reinhardt, 2001). In these semi-
empirical approaches, the onset of  a crown fire is defined by the transition of  a 
wildfire from surface to canopy fuels. This transition occurs when the surface fire 
intensity attains or exceeds a certain critical surface intensity (I0) which, in turn, is 
determined by the interaction between live fuel moisture content (LFMC) and the 
canopy base height (CBH; Van Wagner, 1977):

I0 = (0.01 CBH (460 + 25.9 LFMC))1.5                                                        (III.1)

After the transition from the surface to the canopy layer, a certain canopy bulk 
density (CBD) is needed to develop and maintain a solid flame front. If  this CBD 
is not reached, the crown fire will passively torch isolated trees (or groups of  trees), 
but it will not spread across the canopy (Scott & Reinhardt, 2001). Consequently, for 
active crown fire development, a critical minimum spread rate (R0) which depends 



33

Interactions between LFMC dynamics and wildfires

on CBD, is needed to maintain continuous crowning (Rothermel, 1991):    

R0= 3/CBD                                                                                                (III.2)

Characterization of  the fuel structure and its relevance for fire behavior has been a 
topic of  much research (Keane, 2015). Variations in live fuel moisture are often taken 
into account, although some discussions are still active on its role in fire propagation 
(Alexander & Cruz, 2013). However, an aspect that has seldom been considered is the 
role of  pre-programmed needle senescence, despite its potential to increase crown 
fire intensity and severity (Nolan et al., 2020; Resco de Dios, 2020). Needle lifespan 
in P. halepensis is approximately three years, and three-years-old needles typically 
become dry and senesce towards the end of  June or start of  July (Fig. III.1A). This is 
immediately before the peak of  the fire season in the Western Mediterranean basin, 
which often occurs in the first half  of  July (López-Santalla & López-Garcia, 2019; Fig. 
III.1B). Consequently, pre-programmed needle senescence (a developmental process 
that allows nutrient recycling in old leaves before shedding) potentially leads to one-
third of  the canopy (that is, all 3 years-old leaves) being dry right before the peak fire 
season (Karavani et al., 2018). Some studies have addressed the role of  LFMC on fire 
propagation (Alexander & Cruz, 2013). Others have addressed how canopy drying, 
following bark beetle attacks for instance, impacts fire behavior (Jenkins et al., 2012; 
Reiner, 2017; Talucci & Krawchuk, 2019). However, the effects of  partial canopy 
drying after needle senescence on crown flammability have not been quantified so far 
(Karavani et al., 2018; Nolan et al., 2020; Resco de Dios, 2020).

Figure III.1: Needle senescence and fire behavior. A: Needle senescence in P. halepensis 
affecting the old leaves cohort (3-years-old) typically occurs between the end of  June or July 
and it drastically modifies the moisture of  the canopy. Photo by Carles Arteaga. B: Temporal 
pattern of  long-term average (1968–2015) burned area (black, all fires; red, crown fires) in the 
Pinus halepensis forests of  the Mediterranean regions of  Spain. (Data: Estadística General de 
Incendios Forestal provided by the Ministry of  Agriculture, Fishing, and Food).
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Temporal and spatial coincidence of  low LFMC and high CBD creates optimal 
conditions to increase the probability of  crown fire occurrence as well as their 
intensity and severity. High-intensity crown fires burn canopies by convection, leading 
to widespread defoliation and consequently plant death. Preprogrammed old needle 
senescence may thus enhance Aleppo pine mortality rates after wildfires, if  it does 
affect intensity fire behavior (Resco de Dios, 2020). However, this effect only lasts 
for a few weeks, until leaf  dropping (Nolan et al., 2020). After shedding of  senesced 
needles, the probability of  crown fire activity declines as weighted LFMC increases 
and CBD decreases. Consequently, surface fires may become more intense after 
needle shedding due to an increase in surface fuel loads, but surface fires seldom reach 
intensities beyond extinction capacity. It is currently unknown why the brunt of  the 
fire season occurs in early July in the Western Mediterranean Basin (Resco de Dios, 
2020). During this time, LFMC in Mediterranean trees, shrubs and grasses is near its 
seasonal maximum (Nolan et al., 2018) and fires occurring in late August, under much 
lower LFMC, often burn at lower intensity (Resco de Dios, 2020). Aleppo pine needle 
senescence could thus offer at least a partial explanation to such conundrum.

In this chapter, I seek to quantify the potential effects of  needle senescence on fire 
behavior in P. halepensis stands. To achieve it, I simulated four scenarios that recreate 
the major annual physiological and structural changes in relation to needle senescence 
(that is, before, during and after leaf  senescence, and later in the year after the onset 
of  litter decomposition in the autumn). Each of  the four simulations was ran for two 
highly contrasting P. halepensis fuel structures (representatives of  very high and very 
low crown fire likelihood) that are dominant in Valencia (E-Spain), one of  the most 
fire-prone regions in Mediterranean Spain. The main goal was to test the potential 
effects of  needle senescence on crown and surface fire behavior in contrasting 
stand types, and also to establish its dependence and interactions with wind speed 
and dead fuel moisture content (DFMC), two well-known drivers of  fire behavior. 
More specifically, in this chaptert I wanted to test: i) whether needle senescence 
increases the likelihood of  transition from surface to crown fire; ii) whether once the 
transition to crown fire has occurred, the likelihood to develop an active crown fire 
increases with needle senescence in widely contrasting stand structures; iii) whether 
needle senescence increases mortality rates after wildfire activity; and iv) what is the 
importance of  the effect of  needle senescence on crown fire likelihood relative to 
wind speed and DFMC.

III.2 Materials and Methods 

III.2.1 Senescence scenarios
Aleppo pine presents a tetracyclic annual shoot elongation process. Once 

senescence is active (end of  June-beginning of  July) needles have developed two 
thirds of  the total annual elongation in current year shoots (Hover et al., 2017). 
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Thus, considering a three-year needle life span, pre-programmed senescence leads 
to 1/3.6th, or 28 %, of  the dried canopy (or dead mass fraction, fd) if  all 3 years old 
needles senesce at once. Four phenological scenarios were created to simulate annual 
canopy physiological and structural changes caused by needle senescence. The first 
one, scenario-A (Table III.1), represents spring leaf  sprout. At this time there is 
an increase in canopy bulk density, canopy cover and live fuel moisture content. 
Scenario-B (Table III.1) represents the time of  needle senescence, when about 28 % 
of  the canopy is composed of  dead matter at the beginning of  July. To introduce 
these changes in LFMC, canopy live matter moisture (Ml) and canopy dead matter 
moisture (Md) were weighed (Mw) considering fd as in Rossa & Fernandes, (2018):

 LFMC = Mw = fd Md + (1-fd) Ml                                                                  (III.3)  

Scenario-C simulates the time when needles have been shed, which reduce 
canopy bulk density. The reduction of  dry needles in the crown increases weighted 
live fuel moisture content but needle shedding increases surface fine fuel loads. 
Finally, scenario-D (Table III.1) corresponds to autumn and winter periods when 
surface fine fuel loads decrease due to litter decomposition.

III.2.2 Stand structures and fuel features
Forest structure and fuel loads play a critical role in fire behavior and crown fire 

susceptibility. Fuel structure data were obtained from the fuel models developed by 
the Fire Service in Valencia, Spain (Generalitat Valenciana, 2020). The Valencian 
fuel model catalogue adapts the models from Scott and Burgan (2005) to E-Spain 
conditions. Models SH-9 (shrubland from now on; Tables III.1, III.2) and TU-3 
(forest from now on; Tables III.1, III.2) were used. Model SH-9 is referred as a shrub 
fuel type, in the sense that it is short stature vegetation, but noting that it has two 
separate fuel layers (canopy fuels begin at 1 m above ground). It represents stands 
with a low proportion of  large trees, extremely high tree density and horizontal 
fuel continuity. In contrast, TU-3 is a forest fuel type representing stands with two 
separated layers, high proportion of  large trees, moderate tree density and moderate 
to low vertical and horizontal fuel continuity. Both models are considered as 
dynamic fuels, thus live herbaceous fuels become dead depending on their moisture 
content (Scott & Burgan, 2005). For initial model simulations, DFMC for scenarios 
A, B and C were established according to the lowest moisture values recorded after 
heat wave periods (Boer et al., 2017; Jervis & Rein, 2016). As scenario-D represents 
autumn, DFMC values are higher due to more benign conditions. Ml was obtained 
from (Soriano-Sanchez & Quilez-Moraga, 2017) and Md from (Jervis & Rein, 2016). 
Additionally, in order to understand the effect of  leaf  senescence relative to other 
drivers of  fire behavior, a sensitivity analysis on how different values of  1-h DFMC 
(fine dead fuels moisture content) affected fire behavior was conducted. Canopy 
bulk density, canopy height and canopy base height were established according to 
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(Mitsopoulos & Dimitrakopoulos, 2007). Changes in canopy bulk density were 
established considering a reduction of  28 % among scenarios before and after 
senescence, as previously argued. Canopy base height values were considered stable 
among scenarios because the differences in height between 3 and 2 years-old needles 
are negligible (<10 cm) for the purpose of  these simulations.

III.2.3 Fire behavior modeling
Wildland fire behavior simulation was done using BehavePlus6 (Andrews, 2014) and 

crown fire was calculated using Scott & Reinhardt (Scott & Reinhardt, 2001) as input 
option. The input values used in each stand type and each scenario are detailed in 
Tables III.1 and III.2. Slope steepness was set to 0 % and 10 m open wind speed was 
established in a range from 0 to 30 km/h. Data analyses was carried out using R (R 
Development Core Team, 2021). Assessment of  fire severity were performed using 
the lethal thresholds (LD) developed by (Resco de Dios, 2020). Thus, a crown fraction 
burned (CFB) between 0.4-0.8 eliminates 50 % of  the population (LD50), and CFB 
higher than 0.8-0.9 completely eliminates the population (LD100). When CFB remains 
below 0.4 CFB mortality is negligible (LD0; Resco de Dios, 2020).

Table III.1: Parameter values for each scenario. A, before senescence; B, during 
senescence; C, after shedding; D, in autumn. In Forest (TU-3) and Shrub (SH-9) fuel types.

B C D
35 35 35 35

8 8 8 8
1.5 1.5 1.5 1.5

0.15 0.15 0.1 0.1
2.5 2.5 3 2.5

6 5 5 9
7 6 6 10
8 7 7 11

105 74 100 100
B C D

100 100 100 100
5 5 5 5
1 1 1 1

0.22 0.22 0.15 0.15
10 10 10.7 10

6 5 5 9
7 6 6 10
8 7 7 11

105 74 100 100

Shrub (SH-9) A

Forest (TU-3) A
Canopy Cover (%)
Canopy Height (m)
Canopy Base Height (m)
Canopy Bulk Density (kg/m3)
Fine Fuel Load (t/ha)
1-h DFMC (%)
10-h DFMC (%)
100-h DFMC (%)
LFMC (%)

10-h DFMC (%)
100-h DFMC (%)
LFMC (%)

Canopy Cover (%)
Canopy Height (m)
Canopy Base Height (m)
Canopy Bulk Density (kg/m3)
Fine Fuel Load (t/ha)
1-h DFMC (%)



37

Interactions between LFMC dynamics and wildfires

III.2.4 Dead mass fraction sensitivity analysis 
A sensitivity analysis to assess how a varying proportion of  fd affected the 

transition ratio from a surface to crown layer was also conducted. This is important 
because, assuming that the biomass of  each cohort is constant, the previously 
estimated 28 % of   fd would constitute a maximum potential value: needle senescence 
may start earlier in the year such that different values of  fd may occur when the fire 
season starts. Surface fire intensity was established from the mean surface intensity 
across scenarios with an intermediate wind speed of  15 km/h.

III.3 Results

The results showed that maximum fire intensity and severity occurred in scenario-B 
under all wind speeds and fuel types (Table III.3). Fire intensity and severity values 
were higher in the shrub than in the forest fuel model. The highest estimated value 
of  fire rate of  spread (ROS) in scenario-B for the forest fuel type was 14.6 m/min 
at a wind speed of  30 km/h. This value was between 2 and 3 times higher than the 
peak ROS in the other scenarios (Fig. III.2.A). In the shrub fuel type, the highest ROS 
was 17.7 m/min, a value that was also reached in scenario-B with a wind speed of  30 
km/h. ROS in scenario-B in the shrub fuel type was at least 1.4 times higher than in 
other scenarios (Fig. III.3.A). The highest fire line intensity reached in scenario-B was 
5,924 kW/m in the forest stand and 17,179 kW/m in the shrub stand. Peak fire line 
intensity in scenario-B was 2-3 times higher in the forest fuel type and 1.5 times higher 
in the shrub fuel type compared to other scenarios (Table III.3). The highest flame 

Fuel Parameters Fuel Model TU-3 Fuel Model SH-9

1-h Dead Fuel Load (t/ha) 2.5 10
10-h Dead Fuel Load (t/ha) 0.3 5.5
100-h Dead Fuel Load (t/ha) 0.5 0
Live Herbaceous Fuel Load (t/ha) 1.5 3.5
Live Woody Fuel Load (t/ha) 2.5 16
1-h SAV Ratio (cm2/cm3) 59.1 24.6
Live Herbaceous SAV Ratio (cm2/cm3) 52.5 59.1
Live Woody SAV Ratio (cm2/cm3) 45.9 49.2
Fuel Bed Depth (cm) 40 134
Dead Fuel Moisture of Extinction (%) 30 40
Dead Fuel Heat Content (KJ/kg) 18,622.3 18,622.3
Live Fuel Heat Content (KJ/kg) 18,622.3 18,622.3

 Table III.2: Parameter values for each fuel model. Forest (TU-3) and Shrub (SH-9).
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length occurred in scenario-B and took values of  8.7 m in the forest stand and 17.7 
m in the shrub stand. Flame length remained between 2-3.3 m for the forest stand 
and between 10.1-14.4 m in the shrub stand in the other three scenarios (Table III.3).

The transition from surface to crown fire in the forest stand occurred with wind 
speeds higher than 11 km/h in scenario-B. For scenarios A, C and D, the wind 
speed thresholds necessary for crown fire development were 25, 18 and 26 km/h 
respectively. However, it is important to note that there were only transitions to 
passive crown fire development, not to active crown fires, in the forest fuel model 
TU-3. In the shrub fuel model SH-9, passive crown fires developed under all wind 
speed conditions. Active crown fire only developed in scenario-B when wind speeds 
were larger than 25 km/h.

Regarding fire severity, crown fraction burned (CFB) values were always higher 
in scenario-B for both fuel types and under all wind speed conditions (Figs. III.2.B 
and III.3.B). The relative effect of  fuel type on CFB was higher in the forest stand 
than in the shrub stand since maximum CFB was 6 times larger in scenario-B (0.81) 
than in scenario-D (0.13). Importantly, the effect on CFB varied markedly with 
the moisture content of  1-h DFMC. For instance, in the forest, a CBD leading to 
(LD100) in the scenario-B occurred either under a wind speed of  25 km/h and a 1-h 
DFMC of  4 % or with a wind speed of  30 km/h and 1-h DFMC of  10 %. LD50 
was similarly reached with wind speeds above 15 km/h under minimum 1-h DFMC 
(4 %). In the remaining forest scenarios (scenarios A, C and D), increasing wind 
speed and lowering 1-h DFMC led to increases in CFB, but they always remained 
below LD50.

In shrublands (Fig. III.3.B), at least some crown damage was recorded in all 
scenarios under any wind speed and 1-h DFMC conditions. CFB values ranged 
from 1 in scenario-B to 0.65 in scenario-D under the highest wind speed, indicating 
important differences depending on fuel phenology. Regarding lethal thresholds 
(LD), LD50 was reached in scenario-B, under a wind speed of  12 km/h when 1-h 
DFMC was at 12 %, or under 8km/h when 1-h DFMC was at 4 %. Further increases 
in wind speed in this scenario would lead to LD100. In the other scenarios, LD50 was 
recorded under an intermediate wind speed of  20 km/h and under critical wind 
speed conditions (30 km/h), LD100 also occurred in scenario A.

Finally, the sensitivity analysis on the effect of  a varying  fd on the transition 
ratio was only performed in forest stands as critical transition to crown fires always 
occurred in the shrub fuel under any wind speed. Simulations indicated that the 
critical surface intensity to crown fire transition under a wind speed of  15 km/h 
occurred with a minimum fraction of  0.17 of  the canopies composed of  dead foliar 
fuels (Fig. III.4).



39

Interactions between LFMC dynamics and wildfires

FOREST (TU-3)  Wind Speed (km/h) A B C D
0 0.3 0.5 0.4 0.3

10 0.9 1.2 1.1 0.9
20 1.7 5.1 2.6 1.7
30 5.8 14.6 6.9 3.9
0 48 74 69 45

10 130 200 183 121
20 259 1384 462 240
30 1,393 5,924 1,585 653
0 0.5 0.6 0.5 0.4

10 0.7 0.9 0.9 0.7
20 1 3.3 1.6 1
30 3.3 8.7 3.6 2
0 0 0 0 0

10 0 0 0 0
20 0 0.35 0.06 0
30 0.3 0.81 0.32 0.13

SHRUB (SH-9)  Wind Speed (km/h) A B C D
0 0.7 1 0.8 0.7

10 2.1 3.1 2.2 1.8
20 5.7 8.6 5.5 4.4
30 12.6 17.7 11.6 9.1
0 560 765 586 490

10 1,752 2,615 1,679 1,330
20 5,208 8,228 4,510 3,402
30 12,562 17,179 10,074 7,372
0 1.8 2.2 1.9 1.7

10 3.9 5.1 3.8 3.2
20 8 10.9 7.3 6
30 14.4 17.7 12.4 10.1
0 0.13 0.19 0.1 0.08

10 0.34 0.44 0.27 0.23
20 0.63 0.79 0.49 0.43
30 0.95 1 0.75 0.65

Rate of Spread (m/min)

Crown Fraction Burned

Rate of Spread (m/min)

Fire Line Intensity (kW/m)

Crown Fraction Burned

Flame Length (m)

Fire Line Intensity (KW/m)

Flame Length (m)

Table III.3: Simulation results. Simulated Rate of  Spread (m/min), Fire Line Intensity 
(kW/m), Flame Length (m) and Crown Fraction Burned for each scenario (A, B, C, D) un-
der four 10 m open wind speeds (0, 10, 20, 30 km/h).
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Figure III.2: Forest simulation results. A: Rate of  Spread (m/min) in each scenario as 
a function of  10-m open wind speed in forest stands (TU-3 fuel model type). Dotted lines 
refer to surface fires, solid lines to passive crown fires. B: Crown Fraction Burned values as a 
function of  10-m open wind speed (km/h) and 1-h DFMC (%) for each scenario.
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Figure III.3: Shrub simulation results. A: Rate of  spread (m/min) in each scenario as 
a function of  10 m open wind speed in the shrub stand (SH-9 model type). Solid lines to 
passive crown fires and dot-dash lines to active crown fires. B: Crown Fraction Burned as a 
function of  10 m open wind speed (km/h) and 1-h DFMC (%) for each scenario.
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III.4 Discussion

This chapter results suggest that Aleppo pine needle senescence significantly 
affects potential crown fire behavior. Simulations showed important differences 
in wildfire intensity and severity due to the physiological and structural changes 
caused by needle drying and shedding. However, the effect of  needle senescence 
on fire behavior differed depending on fuel type and its interaction with wind 
speeds and DFMC. In other words, needle senescence by itself  does not lead to 
active crown fire, but its presence lowers the critical wind speeds and 1-h DFMC 
values necessary to reach such transition point.

We can observe stronger crown fire activity under scenario-B in both stand 
types (Figs. III.2 and III.3). This scenario represents the process of  needle 
senescence leading to a few-weeks period typically occurring towards the end 
of  June or beginning of  July (Karavani et al., 2018) during which about one 
third of  pine stand canopy is composed of  dry needles (Fig. III.1A). Spatial 
and temporal coincidence of  low foliar moisture content and high canopy bulk 
density favors the development of  more intense and severe crown fires at lower 

100 90 80 70 60 50

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Weighted Foliar Fuel Moisture (%)

Mass Fraction of Dead Foliar Fuels

Tr
an

si
tio

n 
R

at
io

Figure III.4: Sensitivity analysis. Sensitivity analysis on the effects of  a varying mass 
fraction of  dead foliar fuels ( fd) and associated weighted foliar moisture on the Transition 
Ratio from a surface fire to the canopy layer on forest stands. Fire transition occurs when the 
transition ratio between the surface fire intensity (250 kW/m) and critical surface intensity 
(I0, equation III.1) becomes equal or higher than 1.
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wind speed conditions, particularly for the shrub fuel type, where active crown 
fires may develop only under needle senescence. These results indicate that 
needle senescence could be a contributing factor to increasing fire intensity in 
Aleppo pine stands. Consequently, this mechanism could partly explain why the 
peak in burned area observed in the Western Mediterranean basin, where fires 
predominantly affect P. halepensis, occurs in early July (Fig. III.1B).

We can also observe that the relative effect of  needle senescence was more 
noticeable in the forest fuel model than in the shrub fuel model. This is likely 
due to the fact that baseline flammability in shrublands is already very high: this 
fuel type presents a lower canopy base height which reduces, to some extent, 
the dependence of  critical transitions to crown fire on LFMC (Equation 
III.1). Increasing canopy flammability in the shrubland stand would thus have, 
comparatively speaking, a smaller relative effect for extreme fire behavior than 
on the forest stand. In fact, crown fires would develop under any wind speed 
and canopy moisture in shrublands (Fig. III.3A). However, needle senescence 
did increase the probability of  active crown fires. That is, the development of  
active fires in the shrubland stand only occurred under canopy senescence. 
These differences observed between fire behavior in shrub and forest stands are 
consistent with other studies (Alvarez et al., 2012; Keeley et al., 2005; Palmero-
Iniesta et al., 2017).

Needle senescence may influence crown fire behavior in, at least, two ways: 
affecting LFMC and CBD. In the forest stand simulation, the wind speed necessary 
for crown fire development decreased from 25 km/h to 10 km/h between scenarios 
A and B (Fig. III.1.A) because of  decreasing LFMC from 105 % to 74 % (Table 
III.1). A lower LFMC reduces the influx of  energy required to start the ignition, 
because a smaller amount of  water needs to be evaporated. Needle senescence 
may thus enhance crown fire development, by reducing LFMC and hence the 
critical surface intensity threshold value at which surface fires become crown fires. 
Furthermore, as we can observed in the sensitivity analysis (Fig. III.4), the critical 
surface intensity to cause the transition from a surface fire to the canopy layer 
occurred as the dead foliar fractions increased over 17 %. It is important to point 
out that the actual role of  LFMC in affecting the fire rate of  spread is currently 
being discussed. Some authors argue that the role of  LFMC is exaggerated in 
fire behavior models because the high convective and radiative fluxes produced 
by the flame are several orders of  magnitude higher than the energy required to 
dry the fuel, which would render LFMC inconsequent (Alexander & Cruz, 2013). 
However, other studies consider that the effect of  LFMC as a driver of  fire spread 
has actually been underestimated (Pimont et al., 2019; Rossa & Fernandes, 2018). 
Furthermore, empirical evidence across many biomes support that increases in 
burnt area occur under decreasing LFMC (Dennison et al., 2008; Luo et al., 2019; 
Nolan et al., 2016; Pimont et al., 2019).
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The effect of  needle senescence on fire behavior was dependent on DFMC. 
As figures III.2.B and III.3.B showed, senescence effects interact with variation in 
DFMC such that critical CFB values were reached in the senescence scenarios under 
low DFMC values. As previously stated, fire behavior is more affected, in relative 
terms, by the structural and physiological effects caused by needle senescence in forest 
stands compared to shrublands. Simulations showed that lethal thresholds varied 
from LD0 which indicates negligible mortality in all forest scenarios, to LD100 which 
represents the death of  the entire population in scenario-B under a wind speed of  30 
km/h (Table III.3). These changes in tree mortality rates among scenarios were also 
noticeable in shrublands, where simulations showed that LD100 occurred in scenario-B 
after wind speeds as low as 21 km/h under low DFMC values. In the other shrubland 
scenarios, LD100 only occurred in scenario-A under a critical wind speed condition of  
30 km/h. Therefore, while needle senescence is, by itself, not enough to reach critical 
fire severity thresholds, it lowers the need for critical wind speeds and DFMC values 
necessary to reach LD50 or LD100.

The main problem that arises from this study is the way in which the effects of  
needle senescence on LFMC were inputted into the model. A weighted average of  
LFMC was used whereas, in reality, senesced leaves may form a layer of  fuel that 
is effectively independent from LFMC. Future research should focus on building 
more realistic models to describe LFMC temporal and spatial dynamics. I conducted 
additional simulations considering only the CBD of  dead canopy fuels, but the 
resulting CBD (0.05 kg/m3 for forests and 0.07 kg/m3 for shrublands) was not high 
enough to produce canopy fires (data not shown). Another problem with this study 
lies on the limitations of  fire behavior modeling. Considering the complex dynamics 
behind wildland fires processes, fire models are very simplified, and this could lead 
to misleading predictions. Furthermore, considering climate change, it is difficult to 
predict extreme fire conditions accurately. There is some anecdotal evidence that 
needle senescence enhances crown flammability (M. Castellnou pers. comm.), but 
further work should confirm experimentally that needle senescence does enhance 
canopy flammability. 

An important yet unresolved aspect is whether needle senescence serves an 
evolutionary role. It has been reported that pre-programmed needle senescence in 
the oldest cohort, at least in some temperate and boreal conifers, increases as new 
leaves develop (Kimmins, 2004). This would be a mechanism to recycle nutrients 
from old leaves into new, developing leaves. In this case, needle senescence co-occurs 
with the flush of  current-year growth, and it could thus serve to support new needle 
growth. However, needle senescence also occurs as summer drought stress is starting 
to be important. Consequently, needle senescence could also serve as a water-saving 
mechanism that decreases transpirational area, at the expense of  a transient increase 
in flammability (Karavani et al., 2018). However, as climate change intensifies summer 
drought and wildfire activity, needle senescence could turn maladaptive by enhancing 
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crown fire likelihood. Further efforts towards quantifying the phenology of  needle 
senescence and understanding its underlying drivers should be at the forefront of  
research efforts.

The results shown that not considering needle senescence can lead to misleading 
predictions on fire risk, potentially misestimating wildfire behavior in Aleppo pine 
stands and this could potentially lead to the application of  suboptimal forest and 
fire management activities. While simulations are routinely performed in order to 
decide forest management and fire prevention operations, these simulations could 
incorporate the role of  needle senescence because it significantly lowers the threshold 
for catastrophic fire behavior. To date, needle senescence effects may be underrated 
in fire behavior simulations due to the relatively short period that it represents each 
year. However, they occur at a critical time of  the year and, as such, its cascading 
effects on fire behavior may be rather important, as it is anticipated in this work. An 
increased probability of  extreme events has been forecasted for the next decades as 
a result of  global change. According to predictions, fire seasons may be longer and 
drier, thereby producing more intense and severe wildfires (Resco de Dios, 2020). 
Changes in fire regimes represent a challenge to fire prone species and ecosystems. 
Aleppo pine post-fire regeneration strategy can be hard-pressed if  wildfires return 
intervals become shorter than the time needed for trees to reach sexual maturity or 
to produce enough serotinous cones (Pausas, 2010). Also, extremely high wildfire 
intensity can damage serotinous seeds causing the decline of  seedling recruitment and 
leading to populations collapse (Karavani et al., 2018). We can thus expect important 
changes in ecosystem structure in the coming decades, which would have important 
interactions with changes in the fire regime. Furthermore, it would be relevant to 
simulate Aleppo pine-woods responses to predicted future climate conditions for the 
different scenarios tested in this study. A better understanding of  pyrophysiology 
should therefore be at the forefront of  our research.

III.5 Conclusions

• LFMC dynamics significantly affect wildfire danger, as the physiological changes 
that occur following needle senescence increase the probability of  more intense and 
severe crown fires development.

• LFMC variation favors extreme fire behavior when environmental conditions 
(e.g., high wind speed) and DFMC are also at critical levels.

• Disregarding LFMC from fire modeling attempts would lead to fire behavior 
underpredictions.

• Future research should focus on building more realistic models that describe 
LFMC temporal and spatial dynamics.
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MODELING LFMC DYNAMICS 

ABSTRACT

In this chapter, I develop a semi-mechanistic model to estimate species-specific 
LFMC daily variations by considering key physiological traits. After introducing 
why spatial and temporal LFMC dynamics estimations are required and how 
these estimations are currently achieved, I explain the limitations of  widely used 
approaches and how to overcome them. Then, I provide a detailed description of  
how species-specific physiological traits differences are considered in the developed 
approach, which is based on a water balance model that estimates predawn leaf  
water potential (Ψpd). After calibrating and validating the model, results showed that 
the developed approach has a better goodness of  fit between the estimated and field 
observed values than widely used meteorological drought indices or remote sensed 
data. Finally, I discuss the results regarding model performance across different 
plant functional types and its applicability within large-scale fire danger forecast 
systems.

The research activities related in this chapter were published in the journal Agricultural 
and Forest Meteorology in 2022 under the title: “A semi-mechanistic model for predicting daily 
variations in species-level live fuel moisture content” with Rubén Díaz-Sierra, Miquel de Cáceres, 
Àngel Cunill-Camprubí, Rachael Nolan, Matthias M. Boer, Jordi Voltas and Victor Resco de 
Dios as co-authors. https://doi.org/10.1016/j.agrformet.2022.109022
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IV.1 Introduction

A key aspect for fire prevention and management actions is understanding 
temporal and spatial moisture content variations of  both, dead and live fuels. 
Wildfires can only occur once critical fuel dryness thresholds are crossed (Jurdao 
et al., 2012; Luo et al., 2019; Nolan et al., 2016). Therefore, estimate fuel moisture 
dynamics provides a better knowledge of  where and when live and dead fuels are in 
a critically dry state in order to anticipate large wildfire events (Moreno-Gutierrez 
et al., 2011).

Wildfire activity depends on the interplay between biomass loads and connectivity 
along with the availability of  such biomass to burn, which is strongly determined 
by moisture content (Boer et al., 2021). While dead fuel moisture content (DFMC) 
variations have been far researched (Mathews, 2014), there are significant knowledge 
gaps regarding live fuel moisture content (LFMC) variations that can be addressed 
from a plant physiology perspective. LFMC, the water content in live foliage and 
small twigs on a dry mass basis, critically affects forest ignitability and likelihood of  
fire spread (Balaguer-Romano et al., 2020; Gabriel et al., 2021; Pimont et al., 2019; 
Rossa, 2017). This is because the water content of  live tissues acts as a heat sink, 
consequently reducing the intensity of  fire and its rate of  spread (Rothermel, 1983).

Many fire management agencies routinely monitor LFMC directly through 
time-consuming and expensive field inventories or indirectly through remote 
sensing products or meteorological drought indices. Remotely-sensing approaches, 
which include spectral vegetation indices and radiative transfer models, allow the 
monitoring of  LFMC over large areas at fine spatial and temporal resolutions (Yebra 
et al., 2013). Drought indices, such as the Drought Code (DC) from the Canadian 
Forest Fire Weather Index (Van Wagner, 1987), are based on daily air temperature 
and precipitation data and are designed to conceptually represent water dynamics 
in soil reservoirs. Common limitations to both indirect approaches are that they 
provide incomplete information on interspecific differences, at least without a 
priori calibrations, and that forecasting relies on empirical methods. Furthermore, 
a number of  studies have cast doubt on the reliability of  DC as an actual proxy of  
LFMC, at least in some plant functional types in the Mediterranean basin (Ruffault 
et al., 2018; Soler-Martin et al., 2017).

The degree of  variation in LFMC within a fire season varies markedly across 
life-forms, at least in Mediterranean environments (Resco de Dios, 2020). This 
variation arises from differences in physiological and anatomical characteristics 
controlling LFMC such as stomatal control, the degree of  sclerophylly, or rooting 
depth (Sánchez-Martínez et al., 2020). Empirical studies have often observed how 
seasonal variation in LFMC is largest in seeding shrubs, intermediate in resprouting 
shrubs and lowest in trees (Nolan et al., 2018; Pellizzaro et al., 2007; Viegas et al., 
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2001). Seeding shrubs often have shallow root systems which cannot reach deeper 
water sources (Nolan et al., 2018), high resistance to embolism (Pausas et al., 2016) 
and poor stomatal controls (Resco de Dios, 2020), which jointly lead to the lowest 
LFMC values during drought periods and the largest seasonal variation. Resprouting 
shrub species often have deeper roots and lower drought tolerance than seeders, 
leading to intermediate variation in LFMC (Resco de Dios, 2020). Tree species 
often have the deepest rooting systems and strong stomatal controls, which buffers 
against short term fluctuations in shallow water levels and, consequently, they often 
display nearly constant LFMC throughout the fire season (Nolan et al., 2018; Viegas 
et al., 2001).

Nolan et al. (2020) demonstrated that inter-species variation in LFMC could in 
principle be modelled as a function of  predawn leaf  water potential (Ψpd), given 
information on pressure-volume relationships. This approach can be further 
simplified and LFMC may be modelled from Ψpd using solely a linear regression 
when plants are operating below the turgor loss point, which is the most critical 
from the perspective of  fire occurrence (Nolan et al., 2018). In a case study using 
six species from a Mediterranean forest, the prediction of  LFMC from Ψpd showed 
an overall goodness of  fit that was better than that from existing drought indices 
(Nolan et al., 2018). To scale up from local to larger areas, LFMC estimations would 
require predictions of  Ψpd which, in turn, is strongly related to rhizosphere soil 
water potential (Ψsoil). That is, Ψpd overnight equilibrates with Ψsoil in the absence 
of  nocturnal transpiration or significant disruptions in the soil-plant-atmosphere 
continuum (Ritchie & Hinckley, 1975). However, to our knowledge, no study has 
yet attempted large scale LFMC modeling by coupling a soil water balance model 
with a physiological model.

MEDFATE is a forest ecosystem model designed to simulate soil and plant 
water balances in forest stands with heterogeneous structure and composition (De 
Cáceres et al., 2015, 2021). Aboveground stand structure is represented by total 
height, leaf  area index and crown ratio of  a set plant cohort. In MEDFATE, a 
plant cohort represents a set of  plants that belong to the same species with similar 
structural characteristics, including root distribution, which is specified using the 
depths corresponding to cumulative 50 % and 95 % of  fine roots. Soil is represented 
using a set of  vertical layers with different depths and physical properties. Finally, 
the model requires daily weather data as inputs to simulate plant hydraulics and 
transpiration at subdaily time steps (De Cáceres et al., 2015).

In this chapter, I seek to develop a novel approach for forecasting daily variations 
in LFMC across Mediterranean species by merging soil and plant water potential 
simulations from MEDFATE (De Cáceres et al., 2015, 2021) with previously 
developed Ψpd-LFMC based models (Nolan et al., 2018). More specifically, I seek 
to model LFMC variation across species grouped in three functional types (seeding 
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shrubs, resprouting shrubs and trees) from Ψpd values, and compare the results 
with current approaches such as the Drought Code and remotely sensed vegetation 
indices. To this end, I used the Spanish subset of  a global LFMC database (Yebra 
et al., 2019) for calibration and validation. The ultimate goal is to develop an 
approach that can be used within operational settings. Considering the usual trade-
off  between the degree of  biological realism that is incorporated into a model and 
how applicable and easy to use the model will be, I seek to merge simplicity with 
biological realism to enhance applicability by making some simplifying assumptions 
on the biological differences across species.

IV.2 Materials and Methods

IV.2.1 Globe-LFMC database
Globe-LFMC is a global database of  live fuel moisture content measured from 

1,383 sampling sites in 11 countries (Yebra et al., 2019). Each individual record 
represents an in situ destructive measurement of  LFMC. All sites within Spain with 
species specific records were selected resulting in 40 sampling sites containing 2,511 
individual records with observed LFMC. Data includes 37 species from 21 different 
genera covering a sampling period of  20 years from 1996 to 2017 (Methods S.IV.1, 
Table S.IV.1). Sampling sites selection cover many of  the contrasting climates and 
ecoregions of  peninsular Spain (Fig. IV.1). Mean annual air temperature varied from 
10.9 to 17.8 ºC and mean annual precipitation from 243 to 1,345 mm across the 
selected sampling sites (Fig. IV.1.B-C, Table S.IV.1). Vegetation types and ecoregions 
ranged from xeric sclerophyll or Mediterranean pine forests to the more mesic 
Cantabrian mixed forests, dominated by temperate deciduous broad-leaf  species  (Fig. 
IV.1.A).

Figure IV.1: Sampling sites. Globe-LFMC sampling sites in Spain. a) Ecoregions, b) 
mean annual precipitation and c) mean annual air temperature. Black circles indicate the 
location of  the study sites. Meteorological gradients from (Chazarra-Bernabé et al., 2018). 
Ecoregion delimitations were obtained from WWF (Dinerstein et al., 2017) and they indicate 
Cantabrian mixed Forests (1); Pyrenees conifer and mixed forests (2); Northwest Iberian 
Montane Forests (3); Northeast Spain Mediterranean forests (4); Iberian conifer forests (5); 
Iberian sclerophyllous and semi-deciduous forests (6); Southwest Iberian Mediterranean 
sclerophyllous and mixed forests (7); Southeast Iberian shrubs and woodlands (8).
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IV.2.2 MEDFATE
MEDFATE (version 2.2.3) is a process-based soil-vegetation-atmosphere 

transfer model implemented in an R package, which uses soil, vegetation, and 
meteorological data to estimate moisture dynamics (De Cáceres et al., 2021; Table 
S.IV.2). The model is based on the BILJOU and SIERRA water balance models 
(Granier et al., 1999; Mouillot et al., 2001) and estimates, at a daily time steps, the 
soil water content as a function of  soil properties, stand structure and daily climatic 
variables. Thus, daily changes in soil water content are calculated as the difference 
between precipitation, the water input, and canopy interception, plant transpiration, 
bare soil evaporation, surface runoff  and deep drainage (De Cáceres et al., 2021, 
2015). Also, the model estimates daily plant transpiration and photosynthesis rates. 
Based on Sperry et al. (2017), stomatal regulation of  gas exchange is simulated at 
sub-daily steps involving detailed calculations of  hydraulics, leaf  energy balance and 
photosynthesis.

The soil was divided into four layers (0-10 cm, 10-20 cm, 20-60 cm, and 60-
100 cm deep). When a given soil layer is filled, water percolates to the next layer 
below, except in the deepest layer where water is lost from the profile via deep 
drainage. Soil data inputs are bulk density, the percentage of  clay, sand, organic 
matter, and rock fragment content, which were derived from the Soil Grids System at 
250 m resolution (Hengl et al., 2017). A previous sensitivity analysis has shown that 
modelled transpiration is more sensitive to meteorological or vegetation inputs such 
as annual rainfall and leaf  area index (LAI) than to soil inputs such as soil depth 
of  layers or soil texture variation from clayey soils to sandy soils (De Cáceres et al., 
2015).

Vegetation data inputs are species identity, tree density, shrub cover, plant height, 
tree diameter at breast height and plant rooting depth. All data except rooting depth 
were obtained from the nearest plot which includes the target species from the 
Third National Forest Inventory of  Spain (Alberdi et al., 2016), following the same 
approach as in previous publications (De Cáceres et al., 2021). MEDFATE requires 
the rooting depth where the cumulative 50 % (Z50) and 95 % (Z95) of  fine roots 
occur. Previous studies have incorporated species-specific differences from a model 
assuming that vegetation is at eco-hydrological equilibrium (Cabon et al., 2018). 
However, to simplify model parameterization and diminish computational demands, 
it was assumed that Z50 and Z95 occurred at 10 cm and 20 cm for seeding shrubs 
(R-), at 20 cm and 75 cm for resprouting shrubs (R+) and at 20 cm and 100 cm 
for trees (Tr), respectively. These depths were chosen as they are consistent with 
previously defined soil depths and with our assumptions that seeding shrubs (R-) 
have shallow root systems that can only access shallow water resources; that tree 
(Tr) species have the deepest rooting systems and are able to extract water from 
superficial and also from deep layers; and that resprouting shrubs (R+) have an 
intermediate root distribution. MEDFATE also includes a set of  species-specific 
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plant traits covering plant size, shrub, and tree allometric coefficients to predict 
biomass fuel loading, phenology and anatomy characteristics, tissue moisture, 
light extinction, transpiration, and photosynthesis (De Cáceres et al., 2021). The 
default values for each species were applied with the aim of  using a parsimonious 
parameterization to enhance the potential application of  the model.

Temperature, precipitation, and wind speed were obtained for each sampling 
site (in a 0.1º x 0.1º grid) from the ERA-5 Land reanalysis dataset (Hersbach et al., 
2020), which provides hourly estimates of  climate variables from the Copernicus 
Climate Change Service. Daily meteorological variables of  relative humidity, 
incoming solar radiation, and potential evapotranspiration were then obtained 
using the meteoland R package (De Cáceres et al., 2018). Relative humidity was 
estimated assuming that dew point temperature equals the minimum temperature, 
and potential solar radiation was estimated from latitude, slope, and aspect. 
Incoming solar radiation was then obtained following Thornton & Running 
(1999). Input data were then used to predict daily species-specific Ψpd values and 
simulations were ran with a one-year spin-up period to avoid interferences from 
initial conditions.

IV.2.3 Model calibration and validation
The Globe-LFMC database was divided into a calibration and a validation 

dataset. The calibration dataset was obtained by randomly sampling among 
sites and species using 34 % of  the total dataset, that is, 852 data points. After 
obtaining Ψpd from MEDFATE, its relationship with LFMC was calibrated 
based on a linear regression where, following Nolan et al., 2018, Ψpd had been 
logarithmically transformed. A single relationship between LFMC and Ψpd was 
used for all species in the entire dataset, instead of  using separate relationships 
for each species, in order to increase model simplicity within operational settings 
and considering that not all the species present in the dataset had enough 
measurements for independent calibration. The validation dataset, containing the 
remaining 1,659 data points (representing 66% of  the total), was used to validate 
the LFMC predictions. Model validation was performed by a linear regression 
between observed and predicted LFMC calculating the adjusted R-squared (R2) 
to measure the goodness of  fit of  our predictions, as well as the intercept (β0) and 
the slope (β1), and their 95 % confidence interval, to test for model prediction 
biases. The root mean square error (RMSE) and the mean absolute error (MAE) 
were also estimated to quantify the accuracy of  the predictions, and the mean 
biased error (MBE; Jolliff  et al., 2009) to assess to which extent the estimations 
underpredict or overpredict observed data.
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IV.2.4 Drought Indices and Spectral Vegetation Indices
The goodness of  fit of  the developed approach was compared with estimations 

from existing drought indices and spectral vegetation indices using the same Globe-
LFMC database validation dataset. Drought Code (DC) values were obtained using 
the Canadian Forest Fire Danger Rating System, as implemented in the cffdrs R 
package (Wang et al., 2017), using the same meteorological data sources as those 
previously described for MEDFATE, and also leaving a one-year spin-up period to 
avoid interference from initial conditions.

Following Marino et al. (2020), nine spectral indices (Table S.IV.3) were calculated 
to infer LFMC using data from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) MCD43A4 Collection 6 reflectance product produced acquired daily 
tiles at 500 m resolution. Data was downloaded from the NASA Land Processes 
Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/). Then, 
it was extracted, for each sampling date and site, the values of  each MODIS band 
as a simple pixel extraction which corresponded with the sampling site area. The 
spectral indices were regressed against observed LFMC to select the index with 
the highest adjusted R2 in subsequent analyses (Enhanced Vegetation Index (EVI), 
R2=0.33, Fig. S.IV.1). As EVI values included all the species present in the sampling 
site area, it was calculated the equivalent water thickness (EWT) from individual 
LFMC values to enhance comparability. EWT, which is a measure of  water content 
per unit surface area of  the vegetation (Sow et al., 2013), was calculated following 
Chakroun et al. (2015):

                                    (IV.1)

where LFMC is the observed foliar moisture content recorded in the Globe-
LFMC database, Pw is the density of  pure water (1000 kg m−3) and SLA is the 
specific leaf  area. Species-specific SLA values were obtained from the MEDFATE 
plant traits set. The EWT values of  N species contained in each study site for each 
sampling date were calculated by applying equation (IV.1) for i species. Finally, as 
vegetation index signals saturate in the upper ranges, EVI values were logarithmically 
transformed before regression against EWT. 

IV.2.5 Statistical analysis 
To assess for significant differences across the approaches used for calibration, 

an encompassing test of  Davidson & Mackinnon (1993) was used with the lmtest R 
package (Zeileis & Hothorn, 2002).  To compare two non-nested models, the test 
fits a third encompassing model which contains all regressors from both models. 
Then, the encomptest() function performs a Wald test for comparing each models 
against the encompassing model. If  there are significant differences between each 
linear model against the encompassing model, the test indicates that both linear 
models are significantly different.
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IV.3 Results

The dataset allowed for model testing and calibration under a wide range of  LFMC 
values, which varied across functional groups as expected. That is, LFMC variation 
was largest in seeding shrubs (45-145 %, 5 and 95 % percentiles, respectively), and 
intermediate in resprouting shrubs (60-120 %). Average variations in trees (75-140 %) 
were larger than in shrubs due to physiological differences between Pinus and Quercus, 
although seasonal variations within each genus were smaller than those obtained for 
seeders and resprouters. Across all species and years, the average seasonal values 
varied between 125 % in spring to 80 % in summer.

IV.3.1 Calibration, validation, and comparison of  MEDFATE, DC and EVI
Using the calibration dataset, predicted Ψpd (logarithmically transformed) and 

DC values were regressed against observed LFMC while EVI (logarithmically 
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Figure IV.2: Models’ performance. Observed LFMC against predicted values from 
MEDFATELFMC (A-D) and Drought Code (DCLFMC; F-I), and Equivalent Water Thickness 
against Enhanced Vegetation Index (EVIEWT; J-M) for all the data (A, F, J) or separately across 
functional types of  seeding shrubs (R-; B, G, K) in blue, resprouting shrubs (R+; C, H, L) in 
purple and trees (Tr; D, I, M) in green. The line and the R2 indicate the results of  least squares 
fitting.
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transformed) values were regressed against the equivalent water thickness (EWT) 
(Fig. S.IV.2). The encompassing test of  Davidson & MacKinnon showed significant 
differences (p < 0.001) in the predictions of  LFMC based on MEDFATE and on 
DC, against the encompassing model which contains all regressors from both models. 
The model showed significantly better fit than DC (Fig. S.IV.2).  EVI could not be 
included in this analysis as the response variables were different (LFMC vs EWT). 
Then, the equations derived from these linear regressions were subsequently applied 
to Ψpd DC and EVI values obtained for the validation dataset. LFMC predictions 
using our approach (MEDFATELFMC) showed a substantial improvement over those 
based on the drought index (DCLFMC) and the spectral vegetation (EVIEWT) index 
(Table IV.1, Fig. IV.2).

IV.3.2 MEDFATELFMC   features
Despite the improvement of  MEDFATELFMC over DCLFMC and EVIEWT it is worth 

noting that the developed approach tended towards underprediction, particularly in 
the upper range of  LFMC values (Fig. IV.2, Table IV.1). The slope of  the observed 
vs predicted regression was 1.4 and the MBE was -8.8 %, indicating this tendency 
towards underprediction. The developed approach showed better goodness of  fit for 
seeding shrubs (R2 = 0.6, MAE = 21 %) than for trees (R2 = 0.5, MAE = 23 %) or 
resprouting shrubs (R2 = 0.4, MAE = 21 %). Also, MBE was lower for seeding shrubs 
(-5 %) than for resprouters (-13 %) or trees (-16 %; Table IV.1). Predictions of  LFMC 
from MEDFATELFMC realistically captured the differences in temporal patterns of  
moisture content (Fig. S.IV.3), across genus (Table IV.2) and species (exemplified in 
Fig. IV.3).
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Figure IV.3: MEDFATELFMC performance. Observed (black dashed line) and 
MEDFATELFMC predicted (colour continuous line) LFMC seasonal dynamics across 
functional types, including a seeder (R-, Genista scorpius) in blue, a resprouting shrub (R+, 
Quercus coccifera) in purple and a tree (Tr, Quercus ilex) in green, in a representative sampling 
location (AraCin12). Error bars indicate standard error.
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n R 2 β0 β1 RMSE MAE MBE
Cistus (R-) 483 0.7 -5.3 (±3.5) 1.1 (±0.0) 20.7 16.1 -5.4

Lavandula (R-) 33 0.5 -149.6 (±50.6) 3.0 (±0.6) 68.4 52.9 -34.2
Salvia (R-) 473 0.6 -43.2 (±5.3) 1.5 (±0.1) 30.1 24 -5.6

Thymus (R-) 47 0.7 -251.2 (±31.3) 3.9 (±0.4) 41.8 33.6 4.9
Ulex (R-) 46 0.5 -19.4 (±23.1) 1.1 (±0.3) 24.2 20.5 10.7

Arbutus (R+) 29 0.5 -24.3 (±37.9) 1.7 (±0.3) 62.1 50.5 -49.1
Buxus (R+) 53 0.4 53.4 (±12.5) 0.5 (±0.1) 13.2 11.3 -4.3
Erica (R+) 43 0.3 4.5 (±18.1) 0.9 (±0.2) 21.2 17.6 3.4

Genista (R+) 30 0.6 -71.1 (±22.7) 1.7 (±0.3) 22.8 19.4 11.8
Pinus (Tr) 121 0.5 64.4 (±16.9) 0.4 (±0.2) 20.5 16.8 -7.2

Quercus (Tr) 347 0.6 -28.2 (±7.9) 1.5 (±0.1) 36.4 23.1 -17.5

Table IV.2: MEDFATELFMC performance. Goodness of  fit statistics for each genus LFMC 
predicted with MEDFATELFMC. Sample size (n), adjusted R-squared (R2), intercept (β0) and 
slope (β1), with each standard error in brackets, from regressing observed against predicted 
LFMC for all the data, and also separately for each functional type and each genus (when n > 
20). The root mean squared error (RMSE), mean absolute error (MAE), and mean bias error 
(MBE).

R 2 β 0 β 1 RMSE MAE MBE
MEDFATE LFMC 0.5 -25.4 (±3.1) 1.4 (±0.0) 31.1 22.3 -8.8

R- 0.6 -28.9 (±3.4) 1.4 (±0.0) 28.7 21.5 -4.8
R+ 0.4 -22.1 (±12.1) 1.4 (±0.1) 32.4 21.4 -12.9
Tr 0.5 -22.7 (±7.7) 1.4 (±0.1) 34.7 22.7 -15.8

DC LFMC 0.3 -6.2 (±3.7) 1.1 (±0.0) 33.6 24.3 -3.4
R- 0.5 -46.7 (±4.3) 1.5 (±0.0) 31.3 23.4 -4.6
R+ 0.07 49.5 (±5.9) 0.4 (±0.1) 31.2 22.5 6.5
Tr 0.09 44.2 (±11.1) 0.7 (±0.1) 41.6 29.5 -14.6

  EVI EWT 0.1 -0.001(±0.0) 1.0 (±0.0) 0.005 0.003 -0.0002
R- 0.1 0.001 (±0.0) 0.7 (±0.0) 0.002 0.001 0.0004
R+ 0.2 -0.001 (±0.0) 0.9 (±0.1) 0.004 0.003 0.0004
Tr 0.03 -0.004 (±0.0) 0.9 (±0.4) 0.01 0.008 -0.0002

Table IV.1: Models performance. Goodness of  fit statistics for the three approaches used 
in this study: MEDFATELFMC, Drought Code (DCLFMC) used to predict LFMC, and Enhanced 
Vegetation Index (EVIEWT) used to predict EWT, for each functional type (R-, seeding shrubs; 
R+, resprouting shrubs; Tr, trees). The adjusted R-squared (R2), the intercept (β0), and the 
slope (β1), with each standard error in brackets, were calculated from the regression between 
observed and predicted LFMC, along with the root mean square error (RMSE), mean absolute 
error (MAE) and mean biased error (MBE).
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The performance of  the MEDFATELFMC model generally increased when 
examining variations at the genus level. The best goodness of  fit was observed 
across seeding genera like Cistus (R2 = 0.7, MAE = 16 %), Thymus (R2 = 0.7, MAE = 
34 %), Salvia (R2 = 0.6, MAE = 24 %), Lavandula (R2 = 0.5, MAE = 53 %) and Ulex 
(R2  = 0.5, MAE = 20 %). A higher β1 for Thymus (3.9) and Lavandula (3.0) indicates 
a stronger underprediction of  the model, but the slope remained between 1.1-1.5 
for the other seeder shrubs. LFMC predictions for the two tree genera showed an 
R2 =0.6 (Quercus) and R2 =0.5 (Pinus) and MAE between 37 % (Quercus) and 17 % 
(Pinus). For resprouting shrubs, a larger variation in goodness of  fit was observed, 
as the coefficient of  correlation ranged from R2 = 0.3 in Erica (MAE = 18 %), to 
R2 = 0.5 in Arbutus (MAE = 50 %), R2 = 0.5 in Buxus (MAE = 11 %) and R2 = 0.6 
in Genista (MAE = 20 %).

IV.4 Discussion

In this chapter I developed, calibrated, and validated a novel approach to 
predict daily values of  LFMC across different species after modeling Ψpd using a 
plant-soil water balance model. The approach keeps a compromise between being 
mechanistic and operational, as it makes a series of  simplifying assumptions on 
the rooting depth parameters which drive, among others plant traits, inter-specific 
and seasonal differences. Importantly, the novel approach was able to realistically 
capture seasonal variations (Fig. S.IV.3) in LFMC across individuals belonging to 
different species (Fig. IV.3), genus (Table IV.2) and functional types (Fig. IV.2), and, 
overall, it had a higher predictive ability than approaches based on remotely sensed 
spectral vegetation indices or drought indices (Table IV.1, Fig. IV.2).

The MEDFATELFMC model was able to realistically capture the temporal patterns 
of  variation in LFMC across functional types. Following expectations, species with 
shallower root systems, such as seeding shrubs, showed faster LFMC reductions 
during the summer dry period (Fig. IV.3). On the other hand, tree species with 
deeper root systems were less responsive to seasonal dryness, showing relatively little 
seasonal variation in LFMC, consistent with their larger dependence on deep soil 
water pools. Finally, resprouting shrub species show an intermediate dependence 
on shallow and deep-water pools between seeding shrubs and tree species, resulting 
in an intermediate level of  seasonal LFMC variation (Nolan et al., 2018).

We can observe a better performance for modeling LFMC in seeding shrubs and 
trees than for resprouting shrubs. This may be due to a lack of  temporal continuity 
in resprouting shrub records at most sampling sites, as there were only two sites 
with more than three consecutive weekly measurements. Temporal discontinuity in 
the data can in turn decrease model performance due to poor data quality (Quan et 
al., 2021). Another possibility for a poorer model performance in resprouters could 
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be the smaller temporal variation in LFMC records. At any rate, this method for 
predicting LFMC in resprouters presents a significant improvement over existing 
commonly used approaches based on optical remote sensing and drought indices 
(Fig. IV.2).

It is likely that LFMC predictions from the developed approach could be 
improved further by a more realistic description of  the factors creating temporal 
variation as well as differences across species. Further studies using the model may 
derive LFMC from Ψpd as presented here (Fig. S.IV.2), but they are encouraged to 
develop their own calibration, particularly if  dealing with very different vegetation 
types. Also, it is important that future studies consider the possibility of  using 
species-specific pressure-volume curves to obtain LFMC estimates from Ψpd (Nolan 
et al., 2020) to understand whether better predictions may be obtained.

LFMC depends on water content relative to dry mass (Pimont et al., 2019), 
consequently, the incorporation of  processes affecting dry mass may lead to further 
improvements (Jolly et al., 2014). Seasonal changes in specific leaf  area, for instance, 
may alter maximum LFMC (Nolan et al., 2020). Similarly, differences in specific leaf  
area across species are likely to alter the relationship between LFMC and Ψpd. That is, 
at a given water potential (or water content), we can expect higher LFMC in species 
with larger specific leaf  area because dry matter content will be lower. A more 
realistic description of  rooting depth may also be achieved by coupling species-
specific root depth models (Cabon et al., 2018). However, I chose not to incorporate 
these variables in the current study because I sought to develop a relatively simple 
model that could be easily regionalized to work at national scales within operational 
settings. Further research could address to which extent model predictions could be 
improved by incorporating phenological as well as inter-specific differences in dry 
mass and rooting depth.

We can observe that DC provided reliable LFMC predictions for seeding shrubs, 
but not for trees or resprouting shrubs species (Fig. IV.2). In the case of  EVI, 
always showed a poor relationship with EWT. LFMC varies over longer time-scales 
than the period between two consecutive MODIS measurements (Pellizzaro et al., 
2007; Resco de Dios et al., 2021; Viegas et al., 2001). The slight temporal mismatch 
between LFMC and MODIS measurements is thus unlikely to significantly affect 
the results. The goal was to develop a species-specific model, and, to that end, 
our approach showed a superior performance, allowing, for example, to model 
understory and overstory species separately, while remotely sensed models typically 
provide an integrated estimate. It is likely that EVI computed from remotely sensed 
imagery with higher spatial (i.e., Sentinel 3), will show a stronger relationship with 
species-specific LFMC values than the one shown here, but as it is an empirical 
approach, predictive capabilities would continue to be limited. However, I used 
MODIS instead as it has a longer coverage for model validation and overlap with 
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the Globe-LFMC data set. It is worth noting that recent developments in the field 
of  remote sensed Vegetation Optical Depth to detect vegetation response to water 
stress also allow for enhanced realism in LFMC predictions (Rao et al., 2020). 
Understanding the potential for high resolution satellites remote sensed Vegetation 
Optical Depth approaches in monitoring species-specific variations in LFMC is 
another topic for future development.

Despite the large amount of  input data required to run MEDFATE simulations 
(Table S.IV.1), much of  the complexities of  state variables and parameters can be 
hidden from the user in practical operational tools. The developed approach can 
be implemented within large scale fire danger forecast systems and may pave the 
way for a new generation of  process-based models that are used for operational 
purposes within fire prevention scenarios.

IV.5 Conclusions

• The developed semi-mechanistic approach allows the estimation of  species-
specific LFMC seasonal changes and the forecast of  future flammability conditions.

• Estimations showed better agreement with observed LFMC dynamics than 
commonly used drought indices or remote sensing vegetation indices, not only in 
general terms, but also by species functional types and genus.

• The approach can be implemented within large-scale fire danger forecast 
systems and may pave the way for a new generation of  process-based models for 
operational purposes within fire prevention scenarios.

• The approach can be applied to improve estimations of  climate change impacts 
on live fuel moisture dynamics as it considers plant physiological capabilities to 
adjust the moisture status.
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FUEL MOISTURE DYNAMICS UNDER 
CLIMATE CHANGE

ABSTRACT

In this chapter, I use semi-mechanistic models to forecast fuel moisture 
dynamics during the 21st century under different projected greenhouse gas 
emission scenarios (RCP4.5 and RCP8.5). First, I introduce why the use of  semi-
mechanistic approaches improves future fuel moisture dynamics estimations under 
climate change conditions and how future climate is simulated. Then, I describe 
the methodologies followed to establish study sites, to obtain climate projections, 
to apply the semi-mechanistic models and to analyze the data. Results show that 
both live and dead fuels moisture content are expected to decline in the coming 
decades, increasing the annual frequency of  days with fuel moisture values below 
wildfire occurrence thresholds and thus lengthening fire seasons. Finally, I discuss 
the implications of  fuel moisture declines on future wildfire danger.
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V.1. Introduction

Water scarcity is projected to increase in Europe, amongst other parts of  
the world, as a result of  climate change (IPCC, 2021). In ecosystems where 
plant biomass (i.e., fuel) is abundant enough to sustain a fire, fire activity is 
primarily constrained by fuel availability which is determined by the frequency 
and duration of  hot and dry weather periods (Boer et al., 2021). Consequently, 
climate change may increase the duration of  the fire season as well as fire 
activity in many European regions, including currently fire-free zones like the 
Pyrenees or the Alps, as fuel moisture declines below critical dryness thresholds 
for longer periods (Carnicer et al., 2022; Jolly et al., 2015; Resco de Dios et al., 
2021).

Many studies assessing future changes in wildfire danger are primarily based 
on fire weather indices as they can easily incorporate climate projections (Rigo 
et al., 2017; Dupuy et al., 2020; Ellis et al., 2022; Gannon & Steinberg, 2021). 
But, while fire weather indices can reasonably assess future changes in DFMC 
(Mathews, 2014), they make simplifying assumptions about how LFMC will 
change under a warming climate. That is, they usually infer LFMC from changes 
in weather conditions and, consequently, they ignore species-level physiological 
capabilities to adjust the moisture status of  live tissues as well as soil effects. 
Furthermore, previous work has indicated that fire weather indices are not 
reliable proxies for LFMC, particularly for resprouting shrubs and tree species 
from the Mediterranean region (Balaguer-Romano et al., 2022; Ruffault et al., 
2018). Inferring potential changes in fire activity based only on fire weather may 
thus exaggerate future fire danger as physiological adjustments driving LFMC 
dynamics are ignored. One of  the key factors that may delay or prevent critical 
dryness transitions in live fuels is increasing atmospheric CO2 concentrations. 
Stomatal aperture often responds negatively to increasing CO2 concentrations 
(Wullschleger et al., 2002), and that may serve as a water conserving mechanism 
that enhances water use efficiency and thus LFMC. Otherwise, future drier 
conditions may also change the proportion of  live and dead fuels, due to 
mortality increases derived from drought-induced cavitation (McDowell et al., 
2022). There is a wide variety of  physiological adjustments that interact with 
environmental conditions and, understanding future variations in LFMC thus 
requires mechanistic modeling.

Climate shapes global fire distribution as it constrains the amount and timing 
of  plant available water which, in turn, drives biomass production and fuel 
dryness, the main conditions for wildfire occurrence (Boer et al., 2021). In other 
words, fire activity varies unimodally across productivity/aridity gradients, 
reaching peak values at intermediate productivity levels and decreasing towards 
extremes. This is because arid ecosystems may not have biomass loads high 
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enough to sustain a fire, and because very mesic ecosystems may be too wet 
to sustain fires (Pausas & Ribeiro, 2013). Climate change is expected to shift 
this fire maximum towards more productive ecosystems as climate aridity 
increases the frequency and intensity of  droughts and fuel drying events in 
those productive ecosystems. Thus, forested ecosystems that are currently fire-
free, with vast amounts of  biomass that are not available to burn due to high 
moisture content, may dry below critical thresholds and start experiencing large 
wildfires in the coming decades (Ellis et al., 2022; Resco de Dios et al., 2021), 
potentially switching those mesic forest from a net carbon sink to a net carbon 
source (Anderegg et al., 2020). Whether this switch is likely to occur, depends, 
first of  all, on the extent to which increasing climate aridity affects fuel moisture 
dynamics. But current Land Surface Models and Fire-enabled Dynamic Global 
Vegetation Models (Hantson et al., 2016; Rabin et al., 2017; Teckentrup et al., 
2019) cannot yet fully account all relevant climate-vegetation-fire interactions.

General Climate Models (GCMs), which represent the major climate 
system components and their interactions (Taylor et al., 2012) together with 
Representative Concentration Pathways (RCPs), which describe different future 
greenhouse gas emission scenarios (Moss et al., 2010), are the main tools to 
simulate future climates (Rodriguez & Gutierrez, 2018). Several projections of  
climate change impacts on future wildfire hazard have been conducted using 
different GCM and RCP, concluding that increased temperature and decreased 
precipitation would lead to global increases in fire risk and longer fire seasons 
(Abatzoglou et al., 2019; An et al., 2015; Fargeon et al., 2020; Gao et al., 2021; 
Jones et al., 2022; Varela et al., 2019). Projected increases in the incidence of  
severe fire weather and its proxies for live and dead fuel moisture, together with 
existing empirical relationships between LFMC and climate, indicate that fuel 
moisture is likely to decline below critical thresholds for longer periods of  time 
during later decades of  the 21st century (Dupuy et al., 2020; Ellis et al., 2022; Ma 
et al., 2021; Mathews et al., 2011; Vilar et al., 2021). Even relatively minimum fuel 
moisture decreases can have disproportionally consequences as the relationship 
between fuel moisture and fire size is exponential. Proportionally small 
decreases of  fuel moisture led to larger proportions of  extreme wildfires that 
causes vast increases in the area burned (Resco de Dios et al., 2022). Besides the 
importance of  the correctly characterization of  fuel moisture dynamics under 
climate change, no study has so far provided future LFMC estimates using 
physiologically-based models for a wide range of  species and sites distributed 
across broad climatic and productivity gradients.

 In this chapter, I sought to test the general hypothesis that climate 
change will cause increasing fuel dryness, and consequently increasing fire 
season length, across Spain’s forests regions during the 21st century. I also 
hypothesize that climate change effects over fuel dryness will depend on 
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vegetation productivity, and that enhanced water use efficiency derived from 
increased CO2 effects will not fully compensate for changes in temperature and 
precipitation. Four different GCM projections during the 21st century under 
different RCPs (RCP4.5 and RCP8.5) were used as inputs for a physiologically-
based LFMC model (Balaguer-Romano et al., 2022) and a semi-mechanistic 
DFMC model (Resco de Dios et al., 2015). Then I address LFMC and DFMC 
dynamics analyzing subsequent changes in fire season length by assessing the 
number of  days per year with values below fuel dryness thresholds. Then I 
study how changes in fuel moisture and fire season length vary across gradients 
of  net primary productivity (NPP), to assess whether changes in the potential 
fire season will be amplified or reduced across productivity gradients. Finally, I 
analyze CO2 effects on LFMC dynamics to test the hypothesis that increasing 
CO2 concentrations will enhance the water-use efficiency of  the vegetation, 
thus counteracting the negative effects of  the increases in water stress due to 
more frequent and intense drought events under global warming. Overall, this 
represents the first effort to quantify changes in fuel moisture under climate 
change over broad climate and productivity gradients using process-based 
models. 

V.2 Materials and Methods

V.2.1 Study sites
Live and dead fuel moisture content variation was assessed across many of  

the contrasting climates and ecoregions of  peninsular Spain (Fig. V.1). Study 
site locations correspond with plots from the Third National Forest Inventory 
of  Spain (Alberdi et al., 2016) and they are monospecific stands of  six broadleaf  
species (Fagus sylvatica L., Quercus ilex L., Quercus suber L., Quercus robur L., Quercus 
pyrenaica Willd. or Quercus faginea Lam) and of  six conifer species (Pinus halepensis 
Mill., Pinus nigra Arnold., Pinus sylvestris L., Pinus pinea L., Pinus pinaster Ait. or 
Pinus uncinata Ramond.), selecting three plots per species which result in 36 
study sites (Table S.V.1, Fig. S.V.1). Across the study sites, mean annual air 
temperature varied from 10 to 18 ºC (Fig. V.1.A, Table S.V.1) and mean annual 
precipitation from 375 to 2200 mm (Fig. V.1.B, Table S.V.1). Vegetation types 
and ecoregions ranged from xeric sclerophyll or Mediterranean pine forests to 
the more mesic Cantabrian forests, dominated by temperate deciduous broad-
leaf  species, or high mountain conifer forests (Fig. V.1.C). MODIS product 
(MOD17A3HGF, Running & Zhao, 2019) with a spatial resolution of  500 m 
was used to estimate average annual net primary productivity (kg C m-2) between 
2010-2020. Long term average annual productivity of  study sites ranged from 
3,870 to 15,031 kg C m-2, showing a strong south-north productivity gradient 
(Fig. V.1.D, Table S.V.1).
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V.2.2 Climate projections
Daily precipitation and daily maximum and minimum air temperature 

projections from 2010 to 2100 were obtained from the Euro-CORDEX adjusted 
grid at 0.11º resolution (Kotlarski et al., 2014). Four different Global Climate 
Models (GCM) coupled within Regional Climate Models (RCM) were selected 
maximizing model spread for relevant variables and avoiding duplications in 
order to reduce model predictions biases (Table S.V.2, Rodríguez & Gutiérrez, 
2018). The selected GCMs have been evaluated over western Europe and 

Figure V.1: Study sites. Study site locations (black dots) and main bioclimatic properties: 
A) mean annual air temperature (ºC), B) mean annual precipitation (mm), C) ecoregions, D) 
mean annual net primary productivity (kg C m-2) between 2010 and 2020. Ecoregion deli-
mitations were obtained from WWF (Dinerstein et al., 2017) and they indicate Cantabrian 
mixed Forests (1); Pyrenees conifer and mixed forests (2); Northwest Iberian Montane Fo-
rests (3); Northeast Spain Mediterranean forests (4); Iberian conifer forests (5); Iberian scle-
rophyllous and semi-deciduous forests (6); Southwest Iberian Mediterranean sclerophyllous 
and mixed forests (7); Southeast Iberian shrubs and woodlands (8). Meteorological data is 
from Chazarra-Bernabé et al. (2018) and mean annual net primary productivity values are 
from Running & Zhao (2019).
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exhibit significant differences in predictions of  summer temperature and 
precipitation (Table S.V.2, McSweeney et al., 2015). Both medium and high 
greenhouse gas emission scenarios (RCPs 4.5 and 8.5) were considered 
for each GCM. Projections bias corrections was performed using standard 
methods based on daily mean bias for temperature and quantile mapping for 
precipitation (Ruffault et al., 2014). Data from the Spanish Meteorological 
Agency (AEMET) from 2010 to 2020 were used as reference observational data 
for GCM projection bias corrections and all analyses were performed using the 
R package meteoland (De Cáceres et al., 2018). GCM climate projection across 
all study sites showed that, from 2010 to 2100, mean annual temperature is 
expected to increase by 1.5 ºC under RCP4.5 and by 4 ºC under RCP8.5, while 
mean annual precipitation is expected to decrease by 100 mm under RCP4.5 
and by 150 mm under RCP8.5 (Fig. S.V.2). Relative humidity, incoming solar 
radiation, and potential evapotranspiration were daily predicted using meteoland 
(De Cáceres et al., 2018). Relative humidity was estimated assuming that dew 
point temperature equals the minimum temperature. Potential solar radiation 
was estimated from latitude, slope and aspect and incoming solar radiation was 
then obtained following Thornton & Running (1999). Projections of  annual 
atmospheric CO2 concentrations were obtained for each RCP scenario from 
Meinshausen et al. (2011).

V.2.3 LFMC modeling
Daily variations in species-level LFMC were estimated applying the approach 

developed in Chapter IV. The approach predicts daily plant transpiration and 
photosynthesis rates. Stomatal regulation of  gas exchange is simulated at sub-
daily steps involving detailed calculations of  hydraulics, leaf  energy balance 
and photosynthesis based on Sperry et al., (2017). This approach is based on 
MEDFATE which predicts the trajectory of  stomatal responses to changes 
in environment across time by considering that at any given instant the 
stomatal aperture adjusts to maximize the instantaneous difference between 
photosynthetic gain and hydraulic cost. 

Soil and vegetation data were imputed following Chapter IV protocols. In 
short, the soil was divided into four layers (0-10 cm, 10-20 cm, 20-60 cm, and 
60-100 cm deep), and data inputs regarding bulk density, the percentage of  clay, 
sand, organic matter, and rock fragment content were extracted for plot locations 
from the Soil Grids System at 250 m resolution (Hengl et al., 2017). Vegetation 
data inputs were species identity, tree density, shrub cover, plant height, tree 
diameter at breast height and plant rooting depth. All data except rooting depth 
were obtained for the selected plots from the Third National Forest Inventory 
of  Spain (Alberdi et al., 2016). Rooting depth, classified as the depth at which 
cumulative 50 % (Z50) and 95 % (Z95) of  fine roots occur, which was set at 
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20 cm and 100 cm for tree species and at 10 cm and 20 cm for shrub species as 
previously discussed (Balaguer-Romano et al., 2022). MEDFATE also includes 
a set of  species-specific plant traits covering plant size, plant phenology and 
anatomy characteristics, and shrub and tree allometric coefficients to predict 
plant biomass loading, foliage and small twigs tissue moisture, light extinction, 
transpiration, and photosynthesis (De Cáceres et al., 2021). Default package 
values (ver. 2.7.3) were used for each selected species. Following Chapter IV, 
soil and vegetation data inputs were used along with meteorological projections 
to predict daily species-specific Ψpd values and corresponding daily LFMC for 
all study sites. To do this equation (V.1) was applied:

          LFMC =  91.87 - 31.12 log10(-Ψpd)                                 (V.1)

Finally, a second round of  simulations was run for each species (Table S1), 
considering a stable atmospheric CO2 concentration of  386 ppm (2000-2020 
mean) in order to quantify the potential mitigatory effect of  CO2 on LFMC 
dynamics.

V.2.4 DFMC modeling
Daily minimum DFMC was predicted from vapor pressure deficit (VPD) 

values in each study site applying the equation (V.2) derived from the semi-
mechanistic model developed by Resco de Dios et al. (2015):

            DFMC = DFMC0 + DFMC1 e
(-mVPD)                                  (V.2)

where DFMC0 and DFMC1 represent the minimum and maximum moisture 
content values, respectively, and m is the rate of  change in DFMC with VPD. 
Values for DFMC0 (6.79), DFMC1 (27.43) and m (1.05) were obtained from 
(Nolan et al., 2016a), and the Resco et al. (2015) DFMC model that has been 
previously used and validated in Spain (Resco de Dios et al., 2022). Daily VPD 
values were estimated using the plantecophys R package (Duursma, 2015) from 
daily minimum relative humidity and daily maximum air temperature previously 
obtained from meteorological projections, which leads to the lowest DFMC 
daily value (Resco de Dios et al., 2015).

V.2.5 Data Analyses
Live and dead fuel moisture content values were analysed over three decadal 

time periods, ranging from 2010 to 2020, from 2040 to 2050 and from 2090 to 
2100. To analyse fuel moisture content dynamics, LFMC and DFMC summer 
mean (from June 21st to September 21st) were estimated for each year, as this 
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period concentrate the bulk of  the fire activity in peninsular Spain (Resco de 
Dios et al., 2022). To account for a potential lengthening of  the fire season under 
global warming, the fire season length was estimated as the total number of  days 
per year (d yr-1) when moisture content values fell below wildfire occurrence 
thresholds. LFMC typically ranges between 40-150 % during the fire season 
for key woody plant species in peninsular Spain (Balaguer-Romano et al., 2022; 
Nolan et al., 2018) while DFMC variation ranges between 4-30 % (Mathews, 
2014; Nolan et al., 2016b). Previous publications were followed to establish 
the minimum, critical and extreme threshold values of  fuel moisture content 
associated with fire activity in the Mediterranean and temperate broadleaf  and 
mixed forest ecoregions at 120, 100 and 80 % for LFMC and at 12, 10 and 8 
% for DFMC, respectively (Boer et al., 2017; Ellis et al., 2022; Ma et al., 2021; 
Nolan et al., 2016b; Resco de Dios et al., 2022). The minimum fuel moisture 
threshold is defined as the level associated with the onset of  wildfire occurrence 
(Boer et al., 2017; Ellis et al., 2022), while fuel moisture levels below the critical 
thresholds set the stage for vigorous fire spread (Ellis et al., 2022; Nolan et al., 
2016b; Resco de Dios et al., 2022). Lastly, the extreme fuel moisture threshold is 
defined as the level at which large wildfire events exhibiting exponential growth 
of  the burned area is observed (Ma et al., 2021; Nolan et al., 2016b).

To assess LFMC and DFMC responses to climate change conditions, linear 
mixed-effects models were fitted with the lme4 R package (Bates et al., 2015). 
The fitted models had a double factorial structure with Period and RCP as fixed 
factors and Site and Year as random effects, with Year being a replicate for Period. 
The response variables were fuel moisture values (%) and fire season length (d 
yr-1). LFMC critical threshold values were squared root transformed in order to 
meet model assumptions. Results for LFMC extreme fuel moisture threshold 
data are not shown as the fitted model did not meet normality assumptions. 
Then moisture content dynamics and fire season lengths were correlated with 
each study sites mean annual net primary productivity (NPP) to assess whether 
changes in fuel moisture and in the potential fire season length will be amplified 
or reduced across productivity gradients. Finally, to test for CO2 effects on 
LFMC and fire season length, it was performed a dependent samples sign test 
from the R package BSDA (Arnholt, 2022). A non-parametric test was used as 
linear models fitted with constant and increasing CO2 databases values did not 
meet normality assumptions. In this way, it was assessed whether median LFMC 
(%) and fire season length (d yr-1) values estimated under constant or increasing 
atmospheric CO2 concentrations were significantly different.
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V.3 Results 

V.3.1 Fuel moisture dynamics
Summer mean moisture content ranged from 62 to 135 % in the case of  

live fuels and from 7 to 15 % in the case of  dead fuels, with a mean LFMC 
of  114 % and a mean DFMC of  9 % across all study sites and throughout all 
time periods while considering both RCP scenarios. Declines in LFMC and in 
DFMC were projected in the three decadal periods, from 2010-2020 (1st period) 
to 2040-2050 (2nd period) and from 2010-2020 to 2090-2100 (3rd period) under 
both RCP scenarios.

There was a significant effect of  RCP, Period, and their interactions on LFMC 
variation (Table S.V.3). Bonferroni corrected post hoc comparisons (Table 
S.V.4.1) revealed that, under the moderate greenhouse gas emission scenario 
(RCP4.5, Fig. V.2a-c-e), there were only significant differences between the 1st 
and 3rd decadal periods (p < 0.001) where summer mean LFMC across all sites 
was predicted to decline from 116 % (Fig. V.2.A) to 113 % (Fig. V.2.E). The 
trends of  declining mean summer LFMC were more pronounced under high 
greenhouse emission scenario (RCP8.5, Fig. V.2.B-D-F), where differences 
between periods were always significant. Projections showed a mean decline 
from 116 % in 2010-2020 (Fig. V.2.B) to 112 % for 2040-2050 (Fig. V.2.D) and 
to 106 % for 2090-2100 (Fig. V.2.F). Regarding RCP comparisons (Fig. S.V.3, 
Table S.V.4.1), there were non-significant differences between predicted mean 
summer LFMC during the 1st period for both RCPs, and between RCP4.5 for 
the 3rd period and RCP8.5 for the 2nd period. The rest of  pairwise comparisons 
involving RCP and Period were significantly different (Fig. V.2, Fig. S.V.3, Table 
S.V.4.1). Finally, the effect of  the random Site factor indicated significant and 
widespread variability across sites (Table S.V.4.2).

DFMC analyses also showed significant effects of  Period, RCP and their 
interaction on DFMC variation (Table S.V.5). Bonferroni corrected post hoc 
comparisons revealed that all pairwise differences between periods in both RCP 
scenarios were significant (Fig. S.V.4, Table S.V.6.1). Summer mean DFMC levels 
across the study sites (Fig. V.3) predicted under RCP4.5 showed a decline from 
10 % in 2010-2020 (Fig. V.3.A) to 9.5 % in 2040-2050 (Fig. V.3.C), and to 9 % in 
2090-2100 (Fig. V.3.E). Under RCP8.5, predicted mean summer values showed 
a mean decline from 10 % in 2010-2020 (Fig. V.3.B) to 9.25 % in 2040-2050 
(Fig. V.3.D), and to 8.5 % in 2090-2100 (Fig. V.3.F). Differences in predicted 
mean summer DFMC values across all sites between both RCPs for the 2nd 
periods were not significant, but DFMC was significantly lower in RCP8.5 than 
in RCP4.5 in the rest of  pairwise comparisons across periods (Fig. S.V.4, Table 
S.V.6.1). Again, the effect of  the random Site factor indicated significant and 
widespread variability across sites (Table S.V.6.2).
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Figure V.2: LFMC projections. Projected changes in LFMC across Spain for three 
decadal time periods under RCP4.5 and RCP8.5. Summer mean LFMC values of  each 
study site for the period 2010-2020 for both RCP 4.5 (A) and 8.5 (B). Differences in 
summer mean LFMC between 2040-2050 and 2010-2020 for RCP 4.5 (C) and 8.5 (D). 
Differences in summer mean LFMC between 2090-2100 and 2010-2020 for RCP 4.5 
(E) and 8.5 (F). Asterisks after the subplot letter indicate significant LFMC differences 
between 2010-2020 and future periods.
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Figure V.3: DFMC projections. Projected changes in DFMC across Spain for three 
decadal time periods under RCP4.5 and RCP8.5. Summer mean DFMC values of  each 
study site for the period 2010-2020 for both RCP 4.5 (A) and 8.5 (B). Differences in 
summer mean DFMC between 2040-2050 and 2010-2020 for RCP 4.5 (C) and 8.5 (D). 
Differences in summer mean DFMC between 2090-2100 and 2010-2020 for RCP 4.5 
(E) and 8.5 (F). Asterisks after the subplot letter indicate significant DFMC differences 
between 2010-2020 and future periods. 
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Figure V.4: Fire season length. Fire season length represented by the number of  days per 
year (d yr-1) with LFMC (a) and DFMC (b) values below wildfire occurrence thresholds (mini-
mum: 120-12 %, critical: 100-10 % and extreme: 80-8 % for LFMC-DFMC, respectively) un-
der scenarios RCP4.5 and RCP8.5. Each bar represents a year within each period (2010-2020, 
2040-2050 and 2090-2100). Black dots represent mean values for each period. Mean values for 
the extreme LFMC threshold of  80 % were not represented as the fitted model does not meet 
normality assumptions.

V.3.2 Fire season length
Fire season length was calculated from the total number of  days per year (d yr-1) with 

predicted LFMC and DFMC values below empirical wildfire occurrence thresholds. 
For 2010-2020, it was recorded a mean fire season length of  112, 32 and 2 days with 
LFMC values below the minimum (120 % LFMC), the critical (100 % LFMC) and the 
extreme (80 % LFMC) thresholds, respectively. Regarding DFMC, mean fire season 
length varied between 112, 70 and 16 days depending on whether the fire season was 
defined from values below the minimum (12 % DFMC), the critical (10 % DFMC) or 
the extreme (8 % DFMC) thresholds. Predicted fire season lengths as defined by live 
and dead moisture content thresholds showed an increasing trend for the 21st century 
in all study sites for both emission scenarios RCP4.5 and RCP8.5 (Fig. V.4, Table V.1). 
There was a significant effect of  RCP, Period, and their interaction on LFMC variation 
for minimum and critical thresholds (Table S.V.7 and S.V.8) and on DFMC variation 
for all three thresholds (Table S.V.9-11). From 2010-2020 to 2090-2100 fire season 
length regarding minimum and critical LFMC thresholds was predicted to increase on 
average by 15 and 8 d yr-1 under RCP4.5 and by 50 and 30 d yr-1 under RCP8.5. Across 
the same periods, fire season length regarding minimum, critical and extreme DFMC 
thresholds was predicted to increase by 20, 17, 15 d yr-1 under RCP4.5 and by 46, 40, 
33 d yr-1 under RCP8.5.
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V.3.3 Changes across productivity gradients
The effects of  climate change on LFMC depended on site productivity, with 

the decline in summer mean LFMC being more marked at the least productive 
sites. A negative relationship (p = 0.007, R2 = 0.2) was recorded comparing current 
summer mean LFMC with predicted levels at the end of  the 21st century (ΔLFMC, 
Fig. V.5.A,C), as ΔLFMC changed from -10 to -2 % from the least to the most 
productive site under RCP8.5. The slope of  the relationship was significantly 
higher (p = 0.001) in conifer forests, meaning that the future decrease in summer 
mean LFMC could be less marked at broadleaf  forests locations. Under RCP4.5, 
the change in summer mean LFMC with productivity was only marginally 
significant (p = 0.057) for conifer forests, where the ΔLFMC change across the 
productivity gradient was from -3 to -1 %. Predicted fire season lengthening 
was also significantly less in places with higher productivity (Fig. V.5.B,D). The 
increase in fire season length (defined from days under the minimum LFMC 
threshold of  120 %) with productivity under RCP8.5 ranged from 100 to 7 d yr-1 
from the least to the most productive site, and the slope of  the relationship was 
more negative in broadleaf  forests (from 80 to 7 d yr-1) than in conifer forests 
(ranging from 95 to 38 d yr-1). The same trends were observed under RCP4.5, but 
less pronounced. The change in fire season length with productivity ranged to 22 
to 0 d yr-1, again only significant in conifer forests and with lower slope estimates. 
Finally, correlations between variation in mean summer DFMC and productivity 
were not significant.

Period RCP4.5 RCP8.5 RCP4.5 RCP8.5

2010-2020 112 | 32 | 2 110 | 27 | 2 112 | 70 | 16 112 | 70 | 16

2040-2050 117 | 35 | - 123 | 39 | - 124 | 79 | 23 124 | 79 | 23

2090-2100 127 | 40 | - 160 | 57 | - 132 | 87 | 31 158 | 110 | 49

LFMC DFMC

Table V.1: Fire season length. Fire season length represented by the number of  days 
per year (d yr-1) with LFMC and DFMC values below wildfire occurrence thresholds (mi-
nimum: 120-12 % | critical: 100-10 % | extreme: 80-8 % for LFMC-DFMC, respectively) 
under scenarios RCP4.5 and RCP8.5. Values for the extreme LFMC threshold of  80 % 
were not represented as the fitted model does not meet normality assumptions.
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V.3.4 CO2 effects
Results of  the dependent samples sign test showed that median LFMC values 

predicted under an increasing atmospheric CO2 concentration were significantly 
greater (p < 0.001) than median LFMC values predicted under a constant [CO2]. 
Comparing summer median LFMC, it was observed that predicted values 
were higher under increasing atmospheric [CO2] (114 %) than under a constant 
atmospheric [CO2] (113 %). Median values differences between constant and 
increasing atmospheric [CO2] predictions were greater for RCP8.5 (1.5 %) than 
for RCP4.5 (0.75 %). LFMC levels under RCP4.5, from 2010-2020 to 2090-2100, 
were predicted to decline about 4 % under increasing atmospheric [CO2], and by 
about 5 % under stable atmospheric [CO2]. Under RCP8.5, predicted declines in 
summer mean LFMC were larger for the same periods, with a LFMC decline of  
10 % under increasing atmospheric [CO2], and a decline of  13 % under constant 
atmospheric [CO2] conditions. Predicted fire seasons lengthening was approximately 
10 d yr-1 lower in simulations conducted under increasing atmospheric [CO2]. Thus, 
predicted lengthening under RCP8.5 between 2020 to 2100, was 55 and 39 d yr-1 for 
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Figure V.5 Productivity gradients. The effects of  climate change on fuel moisture de-
pend on site productivity (2010-2020 mean annual net primary productivity in Kg C m-2). 
Correlations between changes in LFMC (ΔLFMC) between 2090-2100 and 2010-2020 and 
changes in fire season length (minimum threshold of  LFMC < 120 %) as a function of  
mean annual net primary productivity under RCP4.5 (A, B) and RCP8.5 (C, D). R2 and 
p-values represent the results of  linear fitting for all species and separately for conifer forests 
(blue) and broadleaf  forests (orange).
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minimum and critical fuel moisture thresholds under increasing atmospheric [CO2], 
while under constant [CO2] conditions lengthening was 66 and 47 d yr-1 for the same 
RCP, period, and thresholds (Table S.V.12).

V.4 Discussion

In this chapter LFMC and DFMC dynamics were estimated throughout the 21st 
century by applying semi-mechanistic models for medium and high greenhouse 
gas emission scenarios (RCPs 4.5 and 8.5). I found that seasonal mean LFMC and 
DFMC are projected to experience generalized declining trends in the coming 
decades, with increasing annual frequencies of  fuel moisture content dropping 
below wildfire occurrence thresholds and consequently a lengthening of  the fire 
season. Under middle of  the road emission scenarios (RCP4.5), summer mean 
LFMC and DFMC values are expected to decrease by 3 % and 1 % respectively, 
extending annual fire season length by 20 days per year between 2020-2100. Under 
high emissions scenario (RCP8.5), summer mean LFMC and DFMC values are 
expected to decrease by 10 % and 1.5 % respectively, causing the annual fire season 
length to increase by 50 days at the end of  the 21st century compared with current 
fire season.

Despite predicted declines in summer mean LFMC and DFMC (-10 and -1.5 
% respectively) are relatively small, it is important to consider that relationships 
between fuel moisture and burned area are exponential. Longer periods with low 
fuel moisture values increase the connectivity of  available fuels at landscape scales 
by affecting wet local areas, as valley bottoms, that could act as natural fire breaks 
(Resco de Dios et al., 2022). Thus, considering that current fuel moisture values in 
large European areas are already close to the limit of  wildfire occurrence thresholds 
(Carnicer et al., 2022; Resco de Dios et al., 2021), even minimum decreases in fuel 
moisture can lead to large wildfire events that exponentially increase the burned 
area (Nolan et al., 2016).

DFMC showed proportionally steeper declining trends during the remainder 
of  the 21st century than LFMC. More study sites were found with fuel moisture 
values below wildfire occurrence thresholds for DFMC (Fig. V.3) than for 
LFMC (Fig. V.2) and DFMC projections showed more days per year with values 
below critical and extreme threshold (70 and 16 d yr-1 respectively) than LFMC 
(32 and 2 d yr-1). Furthermore, CO2 mitigation effects did not impact DFMC, 
as it only affects physiological plant regulation (Wullschleger et al., 2002). This 
misalignment between live and dead fuels moisture declines could modify fire 
regimes by affecting fire behavior and fire spread. DFMC mostly affects the 
spread of  low intensity surface fires and LFMC affect the onset and propagation 
of  high intensity crown fires (Scott & Reinhardt, 2001). Thus, while generalized 
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DFMC declines may increase surface fires activity, relatively higher LFMC values 
may restrict the transition to crown fires acting as switch for the occurrence of  
large wildfire events (Krawchuk & Moritz, 2011).

We can observe a productivity gradient effect over the predicted fuel moisture 
trends with the largest declines at the least productive sites (Fig. V.5). But, despite low 
productivity southern study sites recorded the minimum moisture content values 
(Fig. V.3, V.4), high productivity northern sites of  Spain, where fire is currently 
rare due to high fuel moisture (Resco de Dios et al., 2021), showed significant 
increases in the fire season length. Furthermore, it is in northern study sites where 
the greater DFMC declines were recorded (Fig. V.3E, F). Northern Spain climatic 
conditions favor the development of  forests dominated by temperate deciduous 
broad-leaf  species (Fig. V.1C). These ecosystems are highly productive and hold 
high amounts of  biomass (Fig. V.1D) resulting in vast amounts of  fuel loads 
accumulated in forests, being the major Spain’s forest carbon sinks (Alberdi et al., 
2016). Several decades of  land abandonment have promoted the encroachment 
of  forest into former pastures and croplands increasing fuel accumulation and 
forest continuity at the expense of  the traditional managed landscapes mosaics 
(Gelabert et al., 2022). These vast amounts of  forest fuels have formed fuel arrays 
of  high vertical and horizontal continuity in relatively humid environments, 
where fire activity is currently limited by high fuel moisture content. In these 
regions, declines in fuel moisture are predicted to develop in the coming decades, 
setting the stage for high intensity/severity crown fires with potential to escalate 
to megafires that go well beyond extinction capacities (Linley et al., 2022; Resco 
de Dios, 2020), threatening the major Spain’s carbon sinks (Anderegg et al., 2020).

We can observe that simulations conducted with increasing atmospheric CO2 
concentrations showed significantly higher LFMC values compared to estimations 
conducted with stable CO2 concentrations. Under RCP 8.5, the CO2 mitigation 
effect causes an average increase of  3 % in summer mean LFMC values, which 
is not enough to compensate for a net LFMC decline of  10 % expected by 
the end of  the century as a result of  increasing temperature and decreasing 
precipitation. Also, fire season lengthening was 10 d yr-1 lower under increasing 
CO2 concentration scenarios, but again not enough to overcome a net increase of  
50 d yr-1 predicted as a result of  climate change alone. Our model of  CO2 effects 
over LFMC only accounted for water savings through stomatal conductance, and 
it did not include negative LFMC feedbacks through, for instance, increasing leaf  
area index which would increase transpiration and, hence, soil water depletion 
(McDowell et al., 2022). Thus, results present a “best-case scenario” on CO2 
ameliorating projected decline of  summer mean LFMC. 

This is the first study to apply semi-mechanistic process-based models 
to quantify future trends in fuel moisture under climate change considering 
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productivity gradients. Although the fire season lengthening trends found in 
this study are consistent with previous studies for the Mediterranean region 
(Abatzoglou et al., 2019; Dupuy et al., 2020; Ellis et al., 2022; Jones et al., 2022; 
Rigo et al., 2017), it is important to consider that these studies are based on 
weather indices such as the Canadian Fire Weather Index (FWI; Van Wagner, 
1987). Weather indices ignore species-level physiological capabilities to adjust the 
moisture status of  live fuels, which would explain the less pronounced fire season 
lengthening here reported compared to previous studies (i.e., Jones et al., 2022 
predicted a fire season lengthening of  60 d yr-1 from 2020 to 2100 under RCP8.5 
conditions while this research report a lengthening of  50 d yr-1). Further studies 
should assess how physiological plant responses to climate change conditions 
(e.g., vulnerability to cavitation) will increase the proportion of  dead particles in 
tree canopies, which will increase crown fire risk because of  the lower moisture of  
standing material that may serve as ladder fuels (Van Wagner, 1977).

Overall, this analyses projects generalized declines in fuel moisture through 
Spanin’s forests which are going to lengthen fire seasons from the present 
through to the end of  the century. Although the most pronounced declines in fuel 
moisture are projected to occur in the least productive environments, significant 
increases in the fire season length were also projected in the most productive 
environments that are currently largely fire-free, where an increase in fire activity 
would pose a threat to major Spain’s carbon sinks. Finally, results indicate that the 
CO2 mitigations effect on plant water relations and LFMC (via increases in water-
use-efficiency) is not enough to offset climate change driven declines in seasonal 
LFMC levels.

V.5 Conclusions

• Fuel moisture is projected to experience generalized declining trends in the 
coming decades, leading to longer fire seasons.

• The use of  semi-mechanistic approaches to infer future live fuel moisture 
dynamics allows the consideration of  physiological traits that enhance plant species 
resilience over climate change impacts.

• Possible mitigation effects derived from plant physiological traits are not 
enough to offset climate change driven LFMC declines.

• Significant increases in the fire season length in the most productive 
environments that are currently fire-free would pose a threat to major Spain’s 
carbon sinks. 
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CLIMATE CHANGE MITIGATION 
AND WILDFIRES

ABSTRACT

In this Chapter I estimate to which extent projected future wildfire activity 
would compromise the capacity of  large-scale reforestation strategies to offset 
anthropogenic carbon emissions. First, I introduce why forest restoration is 
considered a strategy with potential to mitigate climate change and what its limitations 
are. Then, I describe how the net carbon sequestration resulting from a potential 
reforestation is simulated and how future wildfire activity is inferred through climate 
change projections. Results show that there is room to reforest 311.5 Mha for which 
simulations predict climate-benefits that would reach a cumulative carbon stock of  
22.4 Gt C until 2100. However, the estimated carbon sequestration potential of  
this reforestation effort is less than 3 % of  the accumulated anthropogenic CO2 
emissions. Furthermore, projected generalized wildfire activity increases threaten 
the 40 % of  potential carbon stocks. This suggests that the climatic benefits of  
forest restoration have been largely exaggerated because of  lack of  consideration 
of  indirect effects, as changes in surface albedo or fire danger.
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VI.1. Introduction

Large scale reforestation has been proposed to mitigate global warming 
as photosynthetic carbon sequestration produces a cooling effect by lowering 
atmospheric CO2 concentration (IPCC, 2021). Bastin et al. (2019) modeled the 
global tree restoration potential and claimed that reforestation and afforestation 
provide one of  the most effective strategies for climate change mitigation, 
estimating that a global area of  1700 Mha could be restored sequestering 205 Gt 
C over the forest’s lifetime. The claim by Bastin et al. prompted others to point out 
significant limitations of  large-scale tree plantings that reduce potential mitigation 
effects (Friedlingstein et al., 2019; Lewis et al., 2019; Skidmore et al., 2019; Veldman 
et al., 2019). First, afforestation in naturally low tree cover ecosystems such as 
grasslands, savannahs, and tundra should not be considered, as it is likely to result 
in detrimental effects derived from water cycle alterations and biodiversity losses 
with no clear carbon sequestration gains (Friedlingstein et al., 2019; Veldman et 
al., 2019). Second, reforestation of  areas that were once covered by forests may 
increase carbon uptake and reduce atmospheric CO2 concentrations with a climate 
cooling effect, but this climate change mitigation potential could be reduced by 
biogeophysical effects derived from changes in surface albedo (Rohatyn et al., 2022). 
Reforested land surfaces are less reflective than most other land cover types and 
thus absorb more solar energy, creating local warming effects that, in some cases, 
can offset the cooling effects of  enhanced carbon sequestration (Betts, 2000; Li et 
al., 2015). Lastly, climate-driven risks to reforested lands should also be quantified, 
as future drought or wildfire disturbances could cause reforested areas to potentially 
switch from carbon sinks to carbon sources (Anderegg et al., 2020). However, the 
climatic impacts of  decreasing surface albedo and increasing wildfire risk have not 
yet been quantified at a global scale.

Tree plantations are one of  the most flammable vegetation types nowadays. 
Increasing tree cover in areas where trees are currently sparse inherently increases 
fuel loads and, consequently, the likelihood of  high intensity fires. Additionally, 
global warming is projected to increase the frequency and intensity of  droughts 
in many forest regions worldwide (IPCC, 2021). Droughts cause live and dead 
plant biomass (fuel) to dry out and increasing forest flammability (Nolan et al., 
2020). Consequently, climate change is expected to increase fire activity and the 
duration of  fire seasons as the moisture content of  wildfire fuels declines below 
critical thresholds more frequently and for longer periods (Jones et al., 2022). Even 
forested ecosystems that are currently fire-free due to prevailing high fuel moisture 
contents may dry out periodically and start experiencing large wildfire events in 
the coming decades (Resco de Dios et al., 2021). Large scale reforestation projects 
should, therefore, consider feedbacks between increasing fuel loads and decreasing 
fuel moisture dynamics in a warming world, in order to assess potential wildfire 
risks associated with carbon sinks in the near future.
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The magnitude of  climate change mitigation achievable through forest 
restoration remains uncertain, as related benefits depend on the balance between 
the climate effects of  enhanced carbon sequestration and the climate effects 
of  changes in surface albedo (Rohatyn et al., 2023). Furthermore, since forest 
restoration is a long-term approach, projections of  future fire risks should also be 
considered to avoid reforestation in areas that are expected to be prone to large 
wildfire events in the coming decades. In this chapter, I sought to re-assess the net 
climate change mitigation potential of  forest restoration by (i) simulating global net 
carbon sequestration, including effects of  changes in albedo, derived from potential 
reforestation actions, and (ii) quantifying wildfire incidence in these reforested areas, 
assessing the extent to which future wildfire danger could compromise net carbon 
sequestration and the climate change mitigation potential of  reforested lands.

VI.2 Materials and Methods

VI.2.1 Potential reforestation areas identification 
Target reforestation area selection englobed all potential tree restoration locations 

mapped as 1-km grid cells by Bastin et al. (2019) occurring within forest biomes and 
projected to have the potential to support a tree cover equal to or higher than 30 %. 
Target locations were limited to forest biomes (Dinerstein et al., 2017) in order to 
avoid negative effects derived from reforestation actions in non-forested ecosystems 
(Friedlingstein et al., 2019; Veldman et al., 2019). Reforestation area selection was 
limited to grid cells projected to have the potential to support a tree cover equal to 
or higher than 30 % in order to ensure the selection of  realistic targets regarding 
tree restoration programs that seek to increase carbon sequestration. All layers used 
in this study were re-sampled at a resolution of  0.01º (~1 km2). All data analysis 
and preparation were performed using the R packages terra and sf (Pebesma, 2018; 
R Development Core Team, 2021). Layers, products, and datasets used in this study 
are described and referenced in Table S.VI.1.

VI.2.2 Carbon balance estimation
Following Rohatyn et al. (2021, 2022), the overall carbon balance that would 

result from reforestation of  each selected potential forest restoration area was 
simulated taking into account cooling effects derived from carbon sequestration 
and climatic effects derived from changes in surface albedo. Thus, the net equivalent 
carbon stock change (NESC, t C ha-1) derived from potential reforestation actions 
was estimated as the difference between net sequestration potential (ΔSP) and the 
emissions equivalent of  shortwave forcing (EESF): 

 NESC = ΔSP – EESF                                                                                           (VI.1)
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Net sequestration potential (ΔSP, t C ha-1) refers to forest carbon stock changes 
that would result from reforestation actions. ΔSP was simulated over a forest lifetime 
period of  80 years (from 2020 to 2100) in order to assess potential contributions to 
offset anthropogenic CO2 emissions accumulated over the same period. ΔSP was 
simulated in each target location grid cell as the difference between the cumulative 
annual net ecosystem productivity (NEP) of  the potential post-reforestation 
ecosystem and the current pre-reforestation ecosystem as follows:

                                                           (VI.2)

Global multiyear average gridded NEP values were obtained from the Fluxcom 
database (Jung et al., 2020). NEP values of  potential post-reforestation ecosystems 
were predicted through an inverse distance weighted (IDW) interpolation of  the 
existing nearest forest NEP values. Nearest forests were identified by selecting 
locations that, in 2020, showed a tree cover of  at least 30 % in the MODIS product 
MOD44B (Dimiceli et al., 2015). Then, it was applied the approach defined in 
Besnard et al. (2018), which considers forest age effects over cumulative NEP in 
post-reforestation ecosystems. Regarding the current pre-reforestation ecosystem, 
it was assumed that carbon gain was equal to that in the current vegetation NEP 
and that it remained constant throughout the 80 years simulated period. Finally, 
target locations where current pre-reforestation ecosystems sequester more carbon 
than potential post-reforestation ecosystems (ΔSP < 0) were excluded. 

The emission equivalent of  shortwave forcing (EESF) refers to the carbon 
emissions that would be needed to equal radiative forcing climatic effects derived 
from changes in surface albedo after reforestation actions. EESF (t C ha-1) was 
simulated in each target location grid cell using the radiative forcing of  the carbon 
equation (3):

                    (VI.3)                      
        
where C0 is a reference atmospheric CO2 concentration (410 ppm), RE 

represents the net change in Earth’s radiative forcing due to changes in greenhouse 
gases concentration (5.35 W m-2), AE is the Earth surface area (5.1 ∙ 1014 m2), k is 
a factor to convert ppm to kg C (2.13 ∙ 1012) and ζ is the airborne fraction of  total 
anthropogenic CO2 emissions (0.44).          (W m-2) refers to the annual average 
change in radiative forcing at the top of  the atmosphere as a result of  the change 
in surface albedo. Following Rohatyn et al. (2021, 2022),              was calculated as 
in Bright et al. (2015):

                                     (VI..4)
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𝑡𝑡𝑡𝑡=80
𝑡𝑡𝑡𝑡=1  -  ∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡,pre

𝑡𝑡𝑡𝑡=80
𝑡𝑡𝑡𝑡=1  
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where R↓
SW is surface shortwave radiation in W m-2, ΔαS represents changes in 

surface albedo after reforestation actions (ΔαS = αS,post- αS,pre) and T↑
SW is an upward 

atmospheric parameter (0.85). Thus           was calculated from monthly (m) 
values and then summed over the year (t) to provide an annual mean value for 
each target location grid cell (i). R↓

SW  multiyear average monthly mean layers were 
obtained from EUMETSAT CLARA-A products (Karlsson et al., 2017). Current 
pre-reforestation surface albedo values were obtained from MODIS albedo look-
up maps (LUMs) multiyear average monthly mean layers (Gao et al., 2014). Finally, 
potential post-reforestation surface albedo values were estimated using a moving 
window method applying a 100x100 km search window to the albedo values of  the 
previously identified existing nearest forest.

VI.2.3 Wildfire risk estimation
Wildfire danger was estimated in each target location grid cell based on the annual 

frequency of  days exceeding vapor pressure deficit (VPD) thresholds associated 
with a 50 % probability of  fire incidence (fire-days). Each subcontinental forest 
biome type’s VPD thresholds (Table S.VI.2) were obtained from Clarke et al. (2022), 
as they showed a probability of  73 % to correctly predict a wildfire event on a fire-
day. Current (2001-2020) daily maximum VPD values were computed from daily 
maximum temperature and dew point temperature data obtained from the ERA5 
dataset (Hersbach et al., 2020). Future (2081-2100) daily maximum VPD values were 
computed from daily maximum air temperature and relative humidity data obtained 
from the CMIP5 dataset (Taylor et al., 2012) selecting three global climate models 
(Table S.VI.3) under greenhouse gas emission scenarios RCP4.5 and RCP8.5. Global 
climate models were selected through an objectively designed ensemble following 
McSweeney et al. (2015) global evaluation of  CMIP5 models. Therefore, the three 
global climate models were selected: i) considering data availability for RCP 4.5 and 
8.5 scenarios and for the specific humidity, air temperature and surface pressure 
variables required to calculate VPD; ii) ensuring the ability to span projected 
future seasonal and regional changes in climate; and iii) avoiding models of  the 
same model family to ensure projections independence and prevent projections 
biases duplications. These selected models capture a wide range in the variability 
of  humidity and temperature across the different GCMs, as justified in Clarke et 
al. (2022). Current VPD data was used to bias correct future VPD data following a 
quantile mapping approach (Cannon et al., 2015). Then, average annual frequency 
of  days exceeding VPD thresholds was estimated in both periods to finally account 
for the annual fire-days frequency increases from 2020 (Fig. S.VI.1) to 2100 (Fig. 
S.VI.2 and S.VI.3) in potential forest restoration areas, projected by each global 
climate model under RCP4.5 and RCP8.5 greenhouse gas emission scenarios.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅Δ𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
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VI.2.4 Climate change mitigation
To assess the climate change mitigation potential of  reforestation, it was quantified 

the proportion of  the cumulative anthropogenic CO2 emissions that could be offset 
by the associated carbon sequestration after accounting for biogeophysical and 
wildfire feedbacks. CO2 emissions data from 2020 to 2100 under RCP4.5 (stabilization 
scenario) and RCP8.5 (rising scenario) were obtained from the RCP Database (Version 
2.0).

VI.2.5 Data analysis
Results description regarding fire-days incidence and fire-days increasing factor 

distribution over reforestation areas and potential carbon stocks across forest biome 
types was focused on the global climate model CNRM-CM5 projections under the 
high emission scenario (RCP8.5). This is because CNRM-CM5 showed a more 
moderate level of  fire-days frequency increases (Clarke et al., 2022) and, consequently, 
our results represent a “best-case” scenario. RCP8.5 was chosen as it represents a 
“business as usual” scenario. Analyses were focused on future wildfire threats over 
potential carbon stocks by considering the mitigation potential of  carbon sinks in 
where future fire-days frequency is going to increase less than 50 %. This is because 
increases greater than a 50 % would imply a significant increase of  fire occurrence, 
with potential implications for global burned area (Resco de Dios et al., 2022).

VI.3 Results 

VI.3.1 Reforestation climatic effects
In total, 470.6 Mha previously identified by Bastin et al. (2019) as having 

reforestation potential were selected within current global forest biomes. Simulations 
estimations showed that reforestation of  these areas results in a cumulative net carbon 
sequestration potential (ΔSP) of  28.3 Gt C from 2020 to 2100 (Fig. S.VI.1.A). But 
warming effects derived from changes in surface albedo were estimated to reduce 
potential climate change mitigation due to an emission equivalent of  10.4 Gt C 
resulting from shortwave forcing (EESF; Fig. S.VI.1.B). Thus, the net equivalent 
carbon stock change (NESC) derived from reforesting selected locations would result 
in a cooling effect equivalent to the sequestration of  17.9 Gt C (Table VI.1). Major 
concentrations of  potential reforestation areas where simulations estimated a cooling 
effect (NESC > 0; blue colors) are located in North-East United States and North-
East Asia along with significant concentrations in Madagascar, Scandinavia, and 
Iceland (Fig. VI.1). By excluding reforestation actions in areas where the simulations 
estimated net warming effects (NESC < 0), it was identified a “smart reforestation” 
scenario comprising 311.5 Mha that increases global carbon sequestration efficiency 
to 22.4 Gt C, nearly doubling climate change mitigation potential as measured by 
average NESC per hectare (Table VI.1).
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ΔSP EESF NESC Average NESC
(Gt C) (Gt C) (Gt C) (t C ha-1)

Total 470.6 28.3 10.4 17.9 38.1
Smart 311.5 27.7 5.3 22.4 71.9

Reforestation Surface (Mha)

Table VI.1: Reforestation climatic effects. The first column indicates the accumulated 
surface (Mha) of  the selected forest restoration areas located within current forest biomes. 
Next columns indicate the summed carbon sequestration potential (ΔSP), the emissions 
equivalent of  shortwave forcing (EESF), and the net equivalent carbon stock change (NESC 
= ΔSP – EESF, Gt C) simulated from the reforestation of  target locations during a period 
of  80 years. The last column represents average NESC values in tons of  carbon per hectare. 
Simulation results are presented for two cases: i) considering all reforestation opportunities 
(Total) and ii) only considering reforestation areas where simulations estimated a cooling 
effect (Smart, NESC > 0).

Figure VI.1: Reforestation climatic effects. Net equivalent carbon stock change 
(NESC) simulated from potential reforestation actions. NESC (t C ha-1) was estimated as 
the difference between net sequestration potential (ΔSP) and the emissions equivalent of  
shortwave forcing (EESF) derived from changes in surface albedo over an 80-year period. 
Gray background represents the current extension of  forest biomes (Dinerstein et al., 2017). 
Blue colors represent potential reforestation areas where simulations estimated a cooling 
effect (low: 0 > NESC < 50; high: NESC > 50). Yellow and red colors represent potential 
reforestation areas where simulations estimated a warming effect (low: 0 < NESC > -50; 
high: NESC < -50).
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VI.3.2 Wildfire danger projections
Modeling of  current wildfire incidence over smart reforestation areas (NESC 

> 0) resulted in a global mean frequency of  60 fire-days per year (Fig. S.VI.1 and 
S.VI.5). All global climate models projected generalized fire-days frequency increases 
across target locations under both emission scenarios (Table VI.2). Projections 
showed that, by the end of  the century, annual fire-days frequency incidence would 
increase more than a 50 % in one third of  total smart reforestation areas (Fig. VI.2. 
A), which contain 40 % of  global potential carbon stocks (8.9 Gt C, Fig. S.VI.4). 
However, wildfire projections showed large spatial differences across forest biome 
types. Maximum and minimum values in the annual number of  fire-days were 
observed over smart reforestation areas within temperate forests and boreal forests, 
respectively (Fig. VI.2. B). Meanwhile, the largest increases in wildfire activity were 
projected in the smart reforestation areas located within tropical and mediterranean 
forests (Fig. VI.2.A, Fig.S.VI.6).

VI.3.3 Climate change mitigation potential
Quantifications of  the anthropogenic CO2 emissions accumulated until 2100 that 

could be offset by the associated carbon sequestration derived from reforestation 
actions are detailed in Table VI.3. CO2 emissions from 2020 to 2100 under 
RCP4.5 (stabilization scenario) and RCP8.5 (rising scenario) lead to a projected 
accumulation of  737 and 2008 Gt C by 2100, respectively. The carbon sequestration 
from 2020 to 2100 over all reforestation areas could compensate between 2.5 % of  
CO2 emissions under RCP4.5, and less than 1 % under RCP8.5. When considering 
only potential carbon stocks derived from reforestation areas where simulations 
estimated a net cooling effect (NESC > 0; smart reforestation areas), the climate 
change mitigation potential increases slightly to 3 % under RCP4.5, and to 1.1 % 
under RCP8.5. But projections of  future wildfire risks reduce the percentage of  

Table VI.2: Fire-Days. Mean annual fire-days frequency in 2100, mean fire-days increases 
from 2020 to 2100 (ΔFire-Days) and mean Fire-Days increasing factor (Fire-Days IF) 
projected in each global climate model (GCM) under both representative concentration 
pathway scenario (RCPs) 4.5 and 8.5.

GCM RCP 2100 Fire-Days (d yr-1) ΔFire-Days (d yr-1) Fire-Days IF
4.5 72 12 1.4
8.5 82 22 1.7
4.5 86 26 2.1
8.5 110 50 2.9
4.5 75 15 1.9
8.5 92 32 2.5

CNRM-CM5

ACCESS1-0

GFDL-CM3
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accumulated CO2 emissions potentially mitigable by a smart reforestation scenario 
to an interval between 2.3-1.5 % under RCP4.5 and to 0.6-0.3 % under RCP 8.5.
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Figure VI.2: Fire-days projections. Projected fire-days incidence over smart reforestation 
areas across forest biome types. Distribution of  global forest biome types (Dinerstein et 
al., 2017): all forest biome types in black, boreal forests in blue, temperate forests in dark-
green, tropical forests in light-green and mediterranean forests in orange. (A) Empirical 
distribution function of  the 2020-2100 increasing factor in the annual frequency of  fire-
days over the surface fraction of  smart reforestation areas (311.5 Mha). Vertical black line 
shows an increasing factor of  1.5, representing a 50 % increase in the annual frequency of  
fire-days. (B) Empirical distribution function of  the fire-days incidence (d yr-1) in 2100. (C) 
Distribution of  the smart reforestation surface area (Mha), and net equivalent carbon stock 
change (NESC; Gt C), over each continent and forest biomes type. The shaded space within 
each column represents the summed surface area and carbon uptake of  the target locations 
where projected fire-days frequency increases are less than 50 %.
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Total Smart CNRM-CM5 ACESS1-0 GFDL-CM3
RCP 4.5 737 2.5 3 2.3 1.5 1.9
RCP 8.5 2008 0.9 1.1 0.6 0.3 0.5

Emissions 
scenario

Accumulated CO2 

emissions 2020-
2100 (Gt C)

Proportion (%) of accumulated CO2 emissions potentially mitigable by 
reforestation 

Table VI.3: Climate change mitigation potential. Accumulated CO2 emissions from 
2020 to 2100 under RCP4.5 (stabilization scenario) and RCP8.5 (rising scenario) and the 
proportion (%) of  accumulated emissions that could be potentially mitigated by reforesting 
target locations. Five reforestation scenarios are shown: i) considering all tree restoration 
opportunities (Total); ii) only considering reforestation areas where simulations predicted 
a cooling effect (Smart, NESC > 0); and only considering smart reforestation locations 
where fire-days incidence increase less than a 50 % under different global climate model 
projections: iii) CNRM-CM5, iv) ACCESS1-0 and v) GFDL-CM3 (surface and carbon 
stocks data in Table S.VI.4). 

VI.4 Discussion
In this chapter, I have provided an accurate global spatial distribution and 

quantification of  potential carbon sinks derived from reforestation actions where 
simulations predicted cooling effects through carbon sequestration. I identified 311.5 
Mha where simulations predict climate-benefits that would reach a cumulative carbon 
stock of  22.4 Gt C until 2100. However, proportional potential contribution to offset 
anthropogenic CO2 emissions during the same time does not exceed 3 % under any 
combination of  reforestation and greenhouse gas emission scenarios. Furthermore, 
despite we can observe spatial differences across forests biome types, generalized 
increases in wildfire activity threaten 40 % of  the potential global carbon stock, halving 
a limited potential to mitigate climate change by reforestation. The results revealed 
continental-scale differences in the spatial distribution of  smart reforestation areas, the 
associated carbon uptake, and the projected increases in wildfire activity (Fig. VI.2.C). 
While there are many potential reasons to justify forest restoration, this study focused 
on current programs that seek to increase carbon sequestration. In this sense, African 
and American tropical forests showed the highest carbon sequestration efficiency, 
concentrating large potential carbon stocks in relatively few smart reforestation areas 
(Fig. VI.2.C), probably due to the elevated productivity rates observed in tropical 
ecosystems (Huston & Wolverton, 2009). But projected wildfire risks showed the 
highest fire-days frequency increases in the tropical forests (Fig. VI.2.A), indicating 
the need to consider that reforested areas within this biome can potentially switch 
from carbon sinks to carbon sources reversing climatic-benefits effects in the near 
future. The boreal and temperate forests of  America also concentrate great potential 
carbon stocks. However, while wildfire risk increases are less pronounced in temperate 
reforestation areas, reforestation in the boreal region of  North American may become 
largely threatened by wildfire activity by the end of  the century. In contrast, boreal 
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Asian and European forests showed few reforestation areas recording fire danger 
increases. But the large restoration surface with relatively low associated potential 
carbon stocks within Asian boreal forests suggests a limited carbon sequestration 
efficiency in these reforestation areas. The temperate Asian and European forests 
as well as the tropical Asian forests contain relatively lower reforestation areas and 
associated carbon stocks amounts, but also recorded lower wildfire activity increases, 
suggesting that reforestation actions would result in long-term climate benefits effects 
within this continental forest biomes. Finally, global mediterranean forests showed the 
lowest concentration of  smart reforestation areas along with high fire-days frequency 
increases (Fig. VI.2.A) indicating that future wildfire danger would largely compromise 
reforestation actions within this biome globally.  Although projections of  future fire 
incidence showed high fire-days increasing factor values in both, mediterranean and 
tropical forest biomes (Fig. S.VI.6), future wildfire risk increases in tropical forests is 
of  particular concern (Clarke et al., 2022). This is because tropical forests store vast 
amounts of  biomass, and the current constrain over fire activity imposed by high 
fuel moisture values may ease under global warming (Boer et al., 2021). Therefore, 
projected increases in the frequency of  fire-days over tropical forests would raise the 
likelihood of  large wildfire events that would threaten major potential carbon stocks 
compared to the other forest biomes. Overall, we can observe a limited proportional 
contribution to offset anthropogenic CO2 emissions by reforestation. Result analyses 
showed that the amount of  CO2 offset by tree restoration (22.4 Gt C) would delay 
climate change impacts by two years, under current emission rates of  11 Gt C per 
year. This suggests that the climatic benefits of  forest restoration have been largely 
exaggerated because of  lack of  consideration of  indirect effects as changes in surface 
albedo or fire danger increases. After accounting for these detrimental effects, results 
indicate that reforestation is thus not an effective solution to curb CO2 emissions, 
stressing the need to consider greenhouse gas emissions reduction at the forefront of  
global warming mitigation strategies.

VI.5 Conclusions

• The consideration of  indirect effects derived from reforestation actions allowed 
to identify 311.5 Mha where simulations predict climate-benefits that would reach a 
cumulative carbon stock of  22.4 Gt C until 2100.

• Proportional potential contribution to offset anthropogenic CO2 emissions until 
2100 does not exceed 3 % under any combination of  reforestation and greenhouse gas 
emission scenarios.

• Projected generalized increases in wildfire activity threaten 40 % of  the potential 
global carbon stock, halving the limited potential to mitigate climate change by 
reforestation.

• Results indicate that reforestation is not an effective solution to curb CO2 emissions.
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VII.1 Discussion

In this PhD Thesis, I have: i) simulated the interactions between seasonal LFMC 
variations and wildfire activity; ii) developed a semi-mechanistic model to infer 
species-specific LFMC dynamics; iii) projected future fuel moisture content and 
wildfire danger under climate change conditions; and iv) assessed future wildfire 
danger effects on large-scale reforestation potential to mitigate climate change. 
In Chapter III, simulation studies showed that LFMC variations driven by Pinus 
halepensis needle senescence enhanced the development of  more intense and severe 
crown fires. Thus, I assessed the role of  LFMC variation as a contributing factor 
that promotes extreme fire behavior under different environmental conditions. 
In Chapter IV, in order to overcome the limitations of  current LFMC estimates, 
I developed, calibrated, and validated a semi-mechanistic model that provides 
species-specific estimations. By considering crucial physiological traits across the 
soil-plant-atmosphere continuum, the developed model provided estimations that 
showed better agreement with observed data than estimations from widely used 
approaches. In Chapter V, I applied the developed model under different global 
climate projections to quantify the effects of  global warming on fuel dry-down and 
its impacts on future fire danger in Spain’s forests. The results showed a widespread 
fire season lengthening, indicating that projected fuel dry-down processes would 
enable large wildfire events at landscape scales in the coming decades. In Chapter 
VI, I simulated global net carbon sequestration derived from potential reforestation 
actions quantifying future wildfire incidence in these reforested areas. The results 
suggest that the climatic benefits of  large-scale forest restoration strategies have 
been largely exaggerated because of  a lack of  consideration of  indirect effects as 
changes in surface albedo or fire danger increases.

Fuel moisture effects on wildfire activity has been extensively analyzed since the 
onset of  fire modeling, proving its role as a major driver of  critical fire behavior 
aspects such as fire rate of  spread, flame dimensions and fuel consumption 
(McArthur, 1966; Anderson, 1970; Rothermel, 1983). However, traditional fire 
behavior models only consider the effect of  DFMC or do not distinguish between 
live and dead fuels, as the specific LFMC influence over fire behavior has been 
more controversial (Pimont et al., 2019). Alexander & Cruz (2013) state that, 
despite laboratory experiments showing significant relationships, there is limited 
field evidence linking fire rate of  spread and LFMC, indicating that the effect of  
LFMC might be inconsequential under high-intensity fire conditions. However, 
Rossa & Fernandez (2018) suggest that the lack of  field evidence supporting the 
effect of  LFMC on fire rate of  spread was due to statistical analysis difficulties. 
Furthermore, Pimont et al. (2019) reanalyzed the mismatch between laboratory 
and field experiments, concluding that the effect of  LFMC on fire rate of  spread 
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in field studies was stronger than previously reported. Nevertheless, despite these 
discussions on how LFMC affects fire propagation, its interaction with wildfire 
activity has been largely recognized, associating LFMC declining trends with 
increases in burned area (Nolan et al., 2016, Resco de Dios et al., 2022) and with the 
occurrence of  large wildfire events (Martin-StPaul et al., 2018). The simulation study 
conducted in this PhD Thesis indicates that the physiological changes associated 
with needle senescence increase the probability of  more intense and severe crown 
fire development (Figs. III.2-III.4). Therefore, the results support the consideration 
of  LFMC as a contributing factor that, along with other environmental conditions, 
significantly affects wildfire danger and thus, disregarding LFMC in fire modeling 
attempts would lead to underpredictions of  fire behavior. In this sense, estimating 
and forecasting temporal and spatial LFMC variations is crucial to anticipate future 
wildfire risks and to achieve fuel and fire management strategies.

The lack of  consideration of  LFMC in traditional fire behavior models can also 
be attributed to the difficulties in obtaining accurate spatial and temporal estimations 
(Jolly & Jhonson, 2018). While the use of  meteorological drought indices fails to 
estimate spatial LFMC variations, as these approaches cannot consider species-
specific dynamics, remote sensing approaches fail to estimate temporal LFMC 
variations, as these proxies cannot forecast future conditions. The semi-mechanistic 
model developed in this PhD Thesis allowed to overcome the limitations of  these 
commonly used approaches by providing more accurate LFMC variation estimations 
(Fig. IV.2, IV.3). The use of  the water balance model MEDFATE (De Caceres et al., 
2015, 2021) allowed to incorporate species-specific plant physiological traits, along 
to site-specific vegetation, meteorological and edaphic data, providing a precise 
estimation of  temporal and spatial predawn leaf  water potential (Ψpd) variations. It is 
important to highlight that by estimating LFMC as a function of  Ψpd, I incorporated 
drought-related plant traits into a fuel moisture modeling approach, bridging the 
gap between drought and fire research literature (Nolan et al., 2020). The inclusion 
of  physiological traits in fuel moisture modeling usually entails the development of  
complex mechanistic models that are seldom applied within operational contexts 
due to the difficulties of  obtaining all input variable data or to computation times 
needed (Resco de Dios, 2020). However, the new approach has been developed 
using a relatively simple parametrization, and much of  the complexities of  state 
variables and parameters can be hidden from the user in practical operational tools 
within fire prevention scenarios. The results support that the inclusion of  crucial 
plant physiological traits in LFMC modeling approaches increases the biological 
realism of  the estimations, enhancing temporal and spatial predictive capabilities.

A main advantage of  using semi-mechanistic approaches to infer the dynamics of  
LFMC is the capacity to estimate future values, which depends on the physiological 
adjustments that live plants can face against climate change conditions. The future 
values projected in this PhD Thesis showed widespread fuel moisture decreases 
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that would lengthen fire seasons and enhance wildfire activity throughout the 21st 
century. However, the use of  semi-mechanistic approaches allowed to observe 
proportionally steeper moisture content declining trends in dead fuels than in live 
fuels (Fig. V.2-V4). These observed differences would not arise if  future moisture 
content dynamics of  both fuel types were projected by applying commonly used 
meteorological drought indices. Therefore, the results support the use of  semi-
mechanistic approaches to forecast fuel moisture dynamics, as it improves predictive 
capabilities and allows a better anticipation of  future wildfire risks derived from 
climate change. The projected misalignment between live and dead fuels moisture 
declines highlights the potential role of  LFMC as a switch for large wildfire events 
in the near future, as it would enable ecosystems flammability through available 
fuels connectivity from local to landscape scales. The projected fire danger increases 
in high-productive ecosystems (Fig. V.5) would entail huge carbon emissions into 
the atmosphere, potentially resulting in positive feedbacks with global warming.

In this sense, large-scale reforestation has been proposed to mitigate climate 
change through carbon sequestration (Bastin et al., 2019). However, the proportional 
contribution to offset anthropogenic CO2 emissions through tree planting strategies 
remains uncertain as adverse effects are less considered. The carbon offset 
quantifications assessed in this PhD Thesis suggest that the climatic benefits of  
large-scale forest restoration strategies have been largely exaggerated because of  a 
lack of  consideration of  indirect effects as changes in surface albedo or fire danger 
increases (Tables VI.1-VI.3). By considering biogeophysical effects derived from 
changes in surface albedo, I was able to assess adverse climate-warming effects that 
reduce climate-cooling benefits derived from carbon sequestration in reforestation 
(Table VI.1). I also limited potential reforestation areas to forest ecosystems in order 
to avoid detrimental effects associated with the afforestation of  naturally low tree 
cover ecosystems. Thus, the consideration of  large-scale tree planting limitations 
previously highlighted by several authors (Friedlingstein et al., 2019; Lewis et al., 
2019; Skidmore et al., 2019; Veldman et al., 2019), allowed to estimate reforestation 
net climate-benefits in a more accurate way that largely reduces the potential global 
carbon stock amount and the associated anthropogenic CO2 emissions mitigation 
(Table VI.3). Projected generalized wildfire activity increases over this potential 
carbon stocks reduced even more the limited potential to mitigate climate change 
by reforestation (Table VI.3). Therefore, the results support that it is crucial to 
consider future changes in fuel moisture and fire danger to correctly evaluate large-
scale reforestation programs that seek to increase carbon sequestration in order to 
avoid adverse effects, such as the switch of  reforested areas from carbon sinks to 
carbon sources in the near future (Anderegg et al., 2020).

Overall, this PhD Thesis research, together with fire research literature, indicate 
that we may be on the brink of  a dramatically increase in the incidence of  large 
wildfire events. In the last decades, rural land abandonment (Gelabert et al., 2022) 
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together with fire suppression strategies (Stephens et al., 2018) have promoted 
the increase of  forest lands, that accumulate huge fuel loads with large vertical 
and horizontal spatial connectivity (Resco de Dios et al., 2021). As drought events 
become more frequent and intense due to climate change conditions (IPCC, 2021), 
competition for water resources would increase in these densely forested areas, 
resulting in widespread fuel moisture content declines. Therefore, even forested 
ecosystems that are currently fire-free due to prevailing high fuel moisture contents 
may dry out periodically and start experiencing large wildfire events at landscape 
scales in the coming decades (Resco de Dios et al., 2021). The development of  
large wildfire events implies widespread consequences, beyond ecosystem effects. 
Projected increases in fire activity near major population centers would have 
substantial impacts on human health, as these populations would experience 
increased exposure to wildfire smoke (Clarke et al., 2022). Furthermore, large wildfire 
events in high-productivity ecosystems entail the emission of  huge carbon stocks 
into the atmosphere with unknown effects on the global carbon cycle (Anderegg et 
al., 2020).

 Future research efforts should focus on the inclusion of  plant phenology 
effects over physiological and anatomical traits, such as specific leaf  area (SLA), 
to continue improving the biological realism of  process-based models (Griebel al., 
2023). The combination of  biophysical and satellite-based models, along with short 
time-scale forecasts of  environmental variables, shows great potential to obtain 
near-real-time LFMC estimations, paving the way for the development of  an early 
fire warning system. Moreover, these near-real-time LFMC estimations could be 
coupled to fine-scale fire behavior models to enable mechanistic evaluations of  
the interactions between physiological and heat transfer processes (Dickman et 
al., 2023). Wildfire danger projections should continue to provide future wildfire 
risk assessments to anticipate ecosystem effects, threats to human populations and 
carbon sink losses. Large-scale reforestation programs that seek to increase carbon 
sequestration to mitigate climate change should consider future changes in fuel 
moisture and fire danger that may compromise the stated objectives. Finally, the 
extent to which fuel management can mitigate the growing impacts of  large wildfire 
events driven by increases in water scarcity should be analyzed.
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CONCLUSIONS

 • LFMC is a contributing factor that, along with other environmental 
conditions, significantly affects fire behavior. Thus, disregarding LFMC in fire 
modeling attempts would lead to underpredictions of  wildfire danger.

 • Including crucial plant physiological traits in LFMC modeling strategies 
increases the biological realism of  its estimations, enhancing the prediction of  
temporal and spatial variations.

 • Estimated fuel moisture declines are projected to length fire seasons, 
enhancing wildfire danger throughout the 21st century. The use of  semi-mechanistic 
approaches to forecast LFMC dynamics allows the consideration of  plant species 
capabilities to buffer climate change impacts, providing more accurate future 
wildfire risk assessments.

 • The climatic benefits of  forest restoration have been largely exaggerated 
because of  a lack of  consideration of  indirect effects as changes in surface albedo 
or fire danger increases. Thus, reforestation is not an effective solution to curb CO2 
emissions.
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SUPPLEMENTARY MATERIALS IV

Site LAT (º) LON (º) ALT (m) MAT (ºC) MAP (mm) n Period
AlbAlb5 38.30524105 -2.150574725 1025 12.6 359 7 2006
AlbAlb6 38.20498837 -2.308259286 1160 13.3 344 6 2006
AnCad7 36.75485307 -5.435622944 870 16.8 873 20 2001

AndCad8 36.76005833 -5.384229902 1050 16.6 1099 20 2001-2002
AraCin10 42.29367395 -0.907665838 720 12.9 788 28 2001-2002
AraCin11 42.28440656 -0.895820428 700 13.1 566 54 2001-2002
AraCin12 42.27758322 -1.017229674 620 13 824 48 2001-2002
AraCin9 42.40210458 -0.928257159 920 13.3 726 28 2001-2002

AraIbe13 41.25410987 -1.215673378 860 13.6 460 81 2001-2002
AraIbe14 41.19952912 -1.181320918 845 13.8 421 60 2001-2002
AraIbe15 41.25539174 -1.299152734 1050 13.6 567 40 2001-2002
AraIbe16 41.31144454 -1.44104871 1060 13.1 482 20 2001-2002
AraPre17 42.24581101 -0.339556662 810 11.1 1045 36 2001-2002
AraPre18 42.35121142 -0.225813742 1260 10.9 971 20 2001-2002
AraPre19 42.46231921 -0.354653363 900 11.2 955 42 2001-2002
AraPre20 42.42986001 -0.514043092 840 10.5 1003 22 2001-2002
CacMaj99 39.940332 -5.7746 265 16.2 751 49 2009-2016
CamPat29 40.87587603 -3.49668028 940 12.8 561 48 2001-2002
CamVil32 40.29218175 -4.317216074 610 15 486 48 2001-2002
CasAvi37 40.55690121 -4.665993166 1355 11 587 10 2001
CorCor40 38.09512436 -4.278865396 322 17.8 243 6 2006
GuaAlt44 40.89595683 -2.248819638 1210 12.7 584 9 2006
GuaAlt47 40.87070923 -2.223341931 995 11.8 477 6 2006

GuaGua54 41.04477795 -3.208403414 1105 12.8 397 4 2006
HuePar56 37.00830798 -6.468929879 15 18.9 733 3 2006
JaeJae59 37.73283292 -3.498868004 1660 14.3 336 6 2006
JaeJae60 37.75135031 -3.502057181 1320 15 560 6 2006
LugCas62 43.1995203 -7.476268092 400 11.7 1113 6 2006
LugCau63 42.60799748 -7.18125571 775 12.2 1345 6 2006
LugCau66 42.6483873 -7.223811437 1200 10.9 820 6 2006
LugMou68 43.39828193 -7.559647945 900 11.2 1180 6 2006
MurMor72 38.25827059 -1.782337964 400 17.3 384 6 2006

Poblet 41.343935 1.058036 720 15.3 545 42 2017
SevSev82 37.96375049 -5.60949183 660 16.8 247 7 2006
TolCab96 39.34049298 -4.44628958 670 15.6 479 743 1996-2006
TolCab97 39.34680141 -4.479155713 710 15.3 531 775 1996-2007
TolCab98 39.3393891 -4.500035995 705 14.9 549 165 1997-2007
ValAyo89 39.05332782 -0.953629752 765 15.6 485 6 2006
ValTer90 39.12094481 -0.966352054 1030 14.3 343 8 2006
ValTer91 39.11702302 -0.946687206 980 14.9 480 8 2006

Table S.IV.1. Location and climate of  sampling sites: Latitude and Longitude (º), Altitude 
(m), Mean Annual Temperature (ºC), Mean Annual Precipitation (mm), Number of  
observations (n) and Sampling period.
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Methods S.IV.1. Species list
Acer monspessulanum (L.), Arbutus unedo (L.), Buxus sempervirens (L.), Calluna vulgaris (L.), 

Cistus albidus (L.), Cistus clusii (Dunal.), Cistus ladanifer (L.), Cistus salviifolius (L.), Crataegus 
monogyna (Jacq.), Erica arborea (L.), Erica australis (L.), Erica ciliaris (Loefl.), Erica mackaiana 
(Bab.), Erinacea anthyllis (Link.), Genista scorpius (L.), Genista tridentata (L.), Juniperus communis 
(L.), Juniperus oxycedrus (L.), Juniperus phoenicea (L.), Juniperus thurifera (L.), Lavandula angustifolia 
(Mill), Lavandula latifolia (Medik), Lavandula stoechas (Lam.), Olea europea (L.), Phillyrea angustifolia 
(L.), Pinus halepensis (Mill.), Pinus nigra (Arnold.) , Pinus pinaster (Ait.), Pinus sylvestris (L.), Pistacia 
lentiscus (L.), Quercus coccifera (L.), Quercus faginea (Lam.), Quercus ilex (L.), Salvia rosmarinus (L.), 
Thymus mastichina (L.), Thymus vulgaris (L.), Ulex gallii (Planch.), Ulex parviflorus (Pourr.).

Alberdi, I., Sandoval, V., Condes, S., Cañellas, I., & Vallejo, R. (2016). The Spanish 
National Forest Inventory, a tool for the knowledge, management and conservation of  forest 
ecosystems. Ecosistemas, 25(3), 88–97. 

De Cáceres, M., Martin-StPaul, N., Turco, M., Cabon, A., & Granda, V. (2018). Estimating 
daily meteorological data and downscaling climate models over landscapes. Environmental 
Modelling and Software, 108, 186–196. 

Hengl, T., Jesus, J. M. De, Heuvelink, G. B. M., Ruiperez, M., Kilibarda, M., Blagoti, A., 
Shangguan, W., Wright, M. N., Geng, X., Bauer-marschallinger, B., Guevara, M. A., Vargas, 
R., Macmillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., 
& Kempen, B. (2017). SoilGrids250m : Global gridded soil information based on machine 
learning. PLoS ONE 12(2): e0169748. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, 
J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, 
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M. Thépaut, J. N. (2020). The ERA5 global 
reanalysis. Quarterly Journal of  the Royal Meteorological Society, 146(730), 1999–2049. 

INPUT Variable Source Reference
•         Clay (%)
•         Sand (%)
•         Organic matter (%) 
•         Bulk density (g/cm3)
•         Rock fragment content (%)
•         Species identity (Code)
•         Shrub cover (%)
•         Tree density (N)
•         Height (cm)
•         DBH (cm)
•         Temperature (ºC)
•         Precipitation (mm)
•         Wind speed (Km/h at 10m)
•         Relative humidity (%)
•         Incoming solar radiation (MJ/m2)
•         Potential evapotranspiration (mm)

Hersbach et al ., 2020

Meteorology Meteoland De Cáceres et al. , 2018

Hengl et al. , 2017

Alberdi et al. , 2016

Soil SoilGrids250 2.0

Vegetation
Third National 

Forest Inventory 
of Spain

Meteorology ERA5-Land

Table S.IV.2.  MEDFATE data inputs and sources
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Table S.IV.3. Spectral indices obtained from MODIS MCD43A4 data. Px is the reflectance 
in band x; NIR, near-infrared; SWIR, short wave infrared. Adapted from Merino et al. 2020.

Ceccato P, Flasse S, Gregoire JM. Designing a spectral index to estimate vegetation water 
content from remote sensing data: Part 2. Validation and applications. . Remote Sens. Environ. 
2002; 82: 198–207.

Gao BC. NDWI. A normalized difference water index for remote sensing of  vegetation 
liquid water from space. . Remote Sens. Environ. 1996; 58: 257–266.

Gitelson A, Kaufmam JY, Stark R, Rundquist D. Novel algorithms for remote estimation 
of  vegetation fraction. Remote Sens. Environ. 2002; 80: 76–87.

Hardisky MA, Klemas V, Smart RM. The influence of  soil salinity, growth form, and 
leaf  moisture on the spectral radiance of  Spartina alterniflora canopies. . Photogramm. Eng. 
Remote Sens. 1983; 49: 77–83.

Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of  the 
radiometric and biophysical performance of  the MODIS vegetation indices. Remote Sens. 
Environ. 2002; 83: 195–213.

Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988; 25: 
295–309.

Rouse JW, Jr., Haas RW, Schell JA, Deering DH, Harlan JC. Monitoring the Vernal 
Advancement and Retrogradation (Greenwave Effect) of  Natural Vegetation; Type III Final 
Report; NASA/GSFC: Greenbelt, MD, USA, , 1974.

Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. 
Remote Sens. Environ. 1979; 8: 127–150.

Index Equation Bands Reference 

Normalized Difference 
Vegetation Index 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝜌𝜌2 
𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜌𝜌𝜌𝜌1 

Rouse et al., 1974 

Global Vegetation 
Moisture Index 

𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁 =
(𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 0.1) − (𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 0.02)
(𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 0.1) + (𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 0.02) 

𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝜌𝜌2 

𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝜌𝜌6 

Ceccato et al., 2002 

Normalized Difference 
Infrared Index 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝜌𝜌2 

𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝜌𝜌6(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁6) 
𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝜌𝜌7(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁7) 

Hardisky et al., 1983 

Normalized Difference 
Water Index 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 − 𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1
𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 + 𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1

 𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 = 𝜌𝜌𝜌𝜌2 
𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 = 𝜌𝜌𝜌𝜌5 

Gao, 1996 

Soil Adjusted Vegetation 
Index 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (1 + 0.5)
𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 0.5
 𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝜌𝜌2 

𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜌𝜌𝜌𝜌1 
Huete, 1988 

Visible Atmospherically 
Resistant Index 

𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑉𝑉𝑉𝑉𝑁𝑁𝑁𝑁 =
𝜌𝜌𝜌𝜌𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔 − 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝜌𝜌𝜌𝜌𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔 + 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟
 𝜌𝜌𝜌𝜌𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔 = 𝜌𝜌𝜌𝜌4 

𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜌𝜌𝜌𝜌1 
𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 = 𝜌𝜌𝜌𝜌3 

Gitelson et al., 2002 

Enhanced Vegetation 
Index 

𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
2.5(𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 6(𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) − 7.5(𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟) + 1
 

𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝜌𝜌2 
𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜌𝜌𝜌𝜌1 

𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 = 𝜌𝜌𝜌𝜌3 

Huete et al., 2002 

Vegetation Index - Green 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔 =
𝜌𝜌𝜌𝜌𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔 − 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝜌𝜌𝜌𝜌𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔 + 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 𝜌𝜌𝜌𝜌𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔 = 𝜌𝜌𝜌𝜌4 
𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜌𝜌𝜌𝜌1 

Tucker, 1979 
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Modeling LFMC dynamics

Figure S.IV.1. Relationship between observed LFMC and nine spectral vegetation indices. 
Colours represent species functional types: seeding shrubs (R-) in blue, resprouting shrubs 
(R+) in purple, trees (Tr) in green and unknown species in grey. The line and R2 are the results 
of  linear fitting.

Figure S.IV.2. Model calibration relationships between observed LFMC (%) and 
logarithmically transformed predawn leaf  water potential (Ψpd) and drought code. Relationship 
between equivalent water thickness (EWT, g.cm-2) and logarithmically transformed enhanced 
vegetation index (EVI). 

Figure S.IV.3. Relationship between observed LFMC and predicted values from 
MEDFATELFMC across the different seasons.
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SUPPLEMENTARY MATERIALS V

Table SV.1. Location, IFN3 plot selection and target species for each sampling site. Latitude and 
Longitude (º), Altitude (m), Spanish region, plot ID, target species, mean annual temperature, 
mean annual precipitation, and net primary productivity. Sites followed by an asterisk (*) were 
used for a second simulation round considering stable CO2 atmospheric concentration across 
the century.

Fs01 43.05448 -5.54181 935 33.2006 Fagus sylvatica 10.5 1370 8190

Fs02* 43.24519 -1.59578 440 31.0051 Fagus sylvatica 14.1 2200 15031

Fs03 42.23615 -2.91516 1525 26.0339 Fagus sylvatica 10.3 861 8999

Ph01 41.73583 1.929772 370 8.1868 Pinus halepensis 13.5 659 7867

Ph02* 40.19882 -0.42705 720 12.0965 Pinus halepensis 14.5 853 8340

Ph03 38.19899 -1.46966 840 30.063 Pinus halepensis 17.9 374 5837

Pn01 42.17916 1.341125 660 25.1559 Pinus nigra 13.3 654 8764

Pn02 39.86943 -1.76057 1440 16.1831 Pinus nigra 12.4 536 7447

Pn03* 37.93838 -2.78377 1620 23.1713 Pinus nigra 11.7 654 3870

Pp01 43.06455 -8.81578 370 15.1673 Pinus pinaster 14.9 1652 12225

Pp02 40.28856 -6.41189 525 10.0534 Pinus pinaster 15.7 1072 6853

Pp03* 36.48957 -5.1993 1240 29.4033 Pinus pinaster 17.7 771 8483

Pa01 41.96588 3.156888 70 17.2492 Pinus pinea 15.1 660 11570

Pa02 41.50287 -4.71338 700 47.0366 Pinus pinea 12.3 523 7015

Pa03* 37.20728 -6.57598 40 21.2208 Pinus pinea 18.4 530 7289

Ps01 42.56004 -0.11294 1060 22.0614 Pinus sylvestris 11.2 1517 8778

Ps02* 41.02685 -3.7375 1800 28.0085 Pinus sylvestris 11.5 656 7627

Ps03 37.05512 -3.16871 2417 18.2431 Pinus sylvestris 12.9 428 4393

Pu01 42.66074 0.571909 1875 22.0833 Pinus uncinata 10.9 1143 8010

Pu02 42.76123 -0.23803 1660 22.3024 Pinus uncinata 10.3 1707 7317

Pu03* 42.57769 0.928493 2200 25.0308 Pinus uncinata 11.1 1082 4192

Qf01 37.9917 -6.05067 600 41.0133 Quercus faginea 11.6 402 6876

Qf02* 39.39359 -4.06839 800 45.1358 Quercus faginea 15.1 465 4071

Qf03 40.9406 -1.68137 1150 19.1085 Quercus faginea 16.3 646 4399

Qi01 41.33428 0.89669 680 43.056 Quercus ilex 15.8 447 4071

Qi02* 40.31915 -4.30646 700 28.1857 Quercus ilex 12.1 459 4399

Qi03 38.37293 -4.30506 605 13.1541 Quercus ilex 15.7 499 7919

Qp01* 42.91134 -4.45787 1300 34.0154 Quercus pyrenaica 10.2 1032 4524

Qp02 41.9079 -8.03542 615 32.1777 Quercus pyrenaica 13.4 997 5612

Qp03 40.89763 -6.67317 700 37.288 Quercus pyrenaica 14.6 646 8566

Qr01 42.6463 -8.02409 645 36.0697 Quercus robur 12.6 1161 9970

Qr02* 43.37458 -6.69172 550 33.0344 Quercus robur 12.8 1011 6803

Qr03 43.10066 -2.87711 310 48.2135 Quercus robur 13.8 1434 10201

Qs01 39.38873 -6.90989 430 6.0007 Quercus suber 15.9 493 10739

Qs02 38.28964 -5.08106 790 14.0367 Quercus suber 16.6 480 7299

Qs03* 36.46204 -5.45516 270 11.0786 Quercus suber 17.8 864 5642

MAT (ºC) MAP (mm) NPP (Kg C/m2)Site Lat (º) Long (º) Alt (m) Plot ID Species
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Fuel moisture dynamics under climate change

Table SV.2. Global Climate Models (GCM) and Regional Climate Models (RCM) couples 
selection and corresponding projected climatic changes in summer precipitation and 
temperature for Europe according to McSweeney et al. (2015).

Table SV.3. Analysis of  variance table for fixed effects in the linear mixed-effects model 
fitted with annual summer mean LFMC as response variable. Significant effects (P values) are 
represented with asterisks (*<0.05, **<0.01, ***<0.001).

Table SV.4-1. Pairwise differences between different Period (1: 2010-2020; 2: 2040-2050 
and 3: 2090-2100) and RCP (4.5 and 8.5) fixed factors combinations from the linear mixed-
effects model fitted with annual summer mean LFMC as response variable. Significant 
effects (P values) are represented with asterisks (*<0.05, **<0.01, ***<0.001).

GCM RCM Projected climatic changes for Europe

MPI-ESM-LR RCA4
High summer temperature increase, medium summer    precipitation 
decrease

High summer temperature increase, high summer precipitation 
decrease

Moderate summer temperature increase, medium summer 
precipitation increase

Moderate summer temperature increase, slight summer precipitation 
increase

CNRM-CM5 CCLM4-8-17

EC-EARTH RACMO22E

CM5A-MR WRF331F

Fixed effects Sum sq. Mean sq. Num df Den df F  value P value
Period 598.24 299.12 2 30 43.85 ***

RCP 1455.18 1455.18 1 2305 213.33 ***
Period x RCP 2286.32 1143.16 2 2305 167.59 ***

Period x RCP Estimate SE df t ratio P  value
Period1 RCP4.5 - Period2 RCP4.5 1.29 0.56 33.6 2.31 0.4
Period1 RCP4.5 - Period3 RCP4.5 2.75 0.56 33.6 4.92 ***
Period1 RCP4.5 - Period1 RCP8.5 -0.19 0.18 2305 -1.05 1
Period1 RCP4.5 - Period2 RCP8.5 1.88 0.56 33.6 3.36 *
Period1 RCP4.5 - Period3 RCP8.5 7.05 0.56 33.6 12.61 ***
Period2 RCP4.5 - Period3 RCP4.5 1.46 0.56 33.6 2.61 *
Period2 RCP4.5 - Period1 RCP8.5 -1.49 0.56 33.6 -2.66 *
Period2 RCP4.5 - Period2 RCP8.5 0.58 0.18 2305 3.1 *
Period2 RCP4.5 - Period3 RCP8.5 5.76 0.56 33.6 10.3 ***
Period3 RCP4.5 - Period1 RCP8.5 -2.95 0.56 33.6 -5.27 ***
Period3 RCP4.5 - Period2 RCP8.5 -0.87 0.56 33.6 -1.56 1
Period3 RCP4.5 - Period3 RCP8.5 4.3 0.18 2305 23.18 ***
Period1 RCP8.5 - Period2 RCP8.5 2.07 0.56 33.6 3.71 **
Period1 RCP8.5 - Period3 RCP8.5 7.25 0.56 33.6 12.96 ***
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Table S.V.4-2. ANOVA-like table for Site and Year (as a replicate of  Period) random-effects 
from the linear mixed-effects model fitted with annual summer mean LFMC as response 
variable. Significant effects (P values) are represented with asterisks (*<0.05, **<0.01, 
***<0.001).

Table S.V.5 Analysis of  variance table for fixed effects in the linear mixed-effects model 
fitted with annual summer mean DFMC as response variable. Significant effects (P values) 
are represented with asterisks (*<0.05, **<0.01, ***<0.001).

Table S.V.6.1. Pairwise differences between Period (1: 2010-2020; 2: 2040-2050 and 3: 2090-
2100) and RCP (4.5 and 8.5) from the linear mixed-effects model fitted with annual summer 
mean DFMC as response variable. Significant effects (P values) are represented with asterisks 
(*<0.05, **<0.01, ***<0.001).

N logLik AIC LRT df P value
none 9 -5825.6 11669
Site 8 -9318.2 18652 6985.2 1 ***
Year x Period 8 -6003.4 12023 355.6 1 ***

Fixed effects Sum sq. Mean sq. Num df Den df F value P value
Period 18.61 9.3 2 30 112.13 ***

RCP 29.93 29.93 1 2305 360.73 ***
Period x RCP 32.42 16.21 2 2305 195.35 ***

Period x RCP Estimate SE df t ratio P  value
Period1 RCP4.5 - Period2 RCP4.5 0.32 0.06 33.9 5.34 ***
Period1 RCP4.5 - Period3 RCP4.5 0.61 0.06 33.9 10.32 ***
Period1 RCP4.5 - Period1 RCP8.5 0.08 0.02 2305 3.94 ***
Period1 RCP4.5 - Period2 RCP8.5 0.36 0.06 33.9 6 ***
Period1 RCP4.5 - Period3 RCP8.5 1.17 0.06 33.9 19.65 ***
Period2 RCP4.5 - Period3 RCP4.5 0.3 0.06 33.9 4.98 ***
Period2 RCP4.5 - Period1 RCP8.5 -0.24 0.06 33.9 -3.99 **
Period2 RCP4.5 - Period2 RCP8.5 0.04 0.02 2305 1.9 0.87
Period2 RCP4.5 - Period3 RCP8.5 0.85 0.06 33.9 14.31 ***
Period3 RCP4.5 - Period1 RCP8.5 -0.53 0.06 33.9 -8.97 ***
Period3 RCP4.5 - Period2 RCP8.5 -0.26 0.06 33.9 -4.33 ***
Period3 RCP4.5 - Period3 RCP8.5 0.55 0.02 2305 27.06 ***
Period1 RCP8.5 - Period2 RCP8.5 0.28 0.06 33.9 4.64 ***
Period1 RCP8.5 - Period3 RCP8.5 1.09 0.06 33.9 18.29 ***
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Table S.V.6.2. ANOVA-like table for Site and Year random-effects from the linear mixed-
effects model fitted with annual summer mean DFMC as response variable. Significant 
effects (P values) are represented with asterisks (*<0.05, **<0.01, ***<0.001).

Table S.V.7. Analysis of  variance table for fixed effects in the linear mixed-effects model 
fitted with the number of  days per year when LFMC < 120 % as response variable. 
Significant effects (P values) are represented with asterisks (*<0.05, **<0.01, ***<0.001).

Table S.V.8. Analysis of  variance table for fixed effects in the linear mixed-effects model 
fitted with the number of  days per year when LFMC < 100 % (square root transformed) as 
response variable. Significant effects (P values) are represented with asterisks (*<0.05, **<0.01, 
***<0.001).

Table S.V.9. Analysis of  variance table for fixed effects in the linear mixed-effects model 
fitted with the number of  days per year when DFMC < 12 % as response variable. Significant 
effects (P values) are represented with asterisks (*<0.05, **<0.01, ***<0.001).

Table S.V.10. Analysis of  variance table for fixed effects in the linear mixed-effects model 
fitted with the number of  days per year when DFMC < 10 % as response variable. Significant 
effects (P values) are represented with asterisks (*<0.05, **<0.01, ***<0.001).

N logLik AIC LRT df P value
none 9 -599.1 1216.2
Site 8 -4060.3 8136.7 6922.5 1 ***
Year:Period 8 -761.3 1538.6 324.5 1 ***

Fixed effects Sum sq. Mean sq. Num df Den df F value
Period 65503 32752 2 57.4 ***

RCP 72057 72057 1 126.3 ***
Period x RCP 176413 88206 2 154.6 ***

Fixed effects Sum sq. Mean sq. Num df Den df F value
Period 247.1 123.5 2 40.9 ***

RCP 124.3 124.3 1 41.2 ***
Period x RCP 441.7 220.9 2 73.1 ***

Fixed effects Sum sq. Mean sq. Num df Den df F value
Period 29827 14914 2 161.9 ***

RCP 60445 60445 1 656.4 ***
Period x RCP 81852 40926 2 444.4 ***

Fixed effects Sum sq. Mean sq. Num df Den df F value
Period 36891 18445 2 203.5 ***

RCP 45513 45513 1 502.2 ***
Period x RCP 73092 36546 2 403.2 ***
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Table S.V.11. Analysis of  variance table for fixed effects in the linear mixed-effects model 
fitted with the number of  days per year when DFMC < 8 % as response variable. Significant 
effects (P values) are represented with asterisks (*<0.05, **<0.01, ***<0.001).

Table S.V.12.  Fire season lengthening median values (d yr-1) regarding minimum (<120%) 
and critical (<100%) LFMC thresholds for wildfire occurrence under increasing and 
constant atmospheric [CO2] conditions for both RCPs (4.5 and 8.5) and in all periods (2010-
2020, 2040-2050, 2090-2100).

Figure S.V.1. Study sites location. Northern sites overlap: Pu01 and Ps01. Southern sites 
overlap: Pp03

Fixed effects Sum sq. Mean sq. Num df Den df F value
Period 32631 16316 2 158.5 ***

RCP 27111 27111 1 263.4 ***
Period x RCP 37669 18835 2 182.9 ***

Minimum Critical Minimum Critical 
4.5 2010-2020 119 31 117 34
4.5 2040-2050 122 32 127 36
4.5 2090-2100 133 40 136 45
8.5 2010-2020 115 27 116 27
8.5 2040-2050 127 35 127 38
8.5 2090-2100 170 66 182 74
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Figure S.V.2. Mean annual temperature (ºC) and mean annual precipitation (mm) projections 
of  each Global Climate Model (GCM) for each greenhouse gas emission scenario (RCP4.5 
and RCP8.5).

Figure S.V.3. LFMC mean values across the three decadal periods (1: 2010-2020; 2: 2040-
2050 and 3: 2090-2100) in both RCP scenarios (4.5 in red and 8.5 in blue). Bars represent 
standard deviation (SD).

Figure S.V.4. DFMC mean values across the three decadal periods (1: 2010-2020; 2: 2040-
2050 and 3: 2090-2100) in both RCP scenarios (4.5 in red and 8.5 in blue). Bars represent 
standard deviation (SD).
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Table S.VI.1. Description and sources of  the layers, products and datasets used in this study.

Bastin, J. F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. 
M., & Crowther, T. W. (2019). The global tree restoration potential. Science, 364(6448), 76–79. 

Clarke, H., Nolan, R. H., De Dios, V. R., Bradstock, R., Griebel, A., Khanal, S., & Boer, 
M. M. (2022). Forest fire threatens global carbon sinks and population centres under rising 
atmospheric water demand. Nature Communications, 13(1), 1–10. 

Dimiceli, C., Carroll, M., Sohlberg, R., Kim, D. H., Kelly, M., & Townshend, J. R. G. (2015). 
MOD44B MODIS/Terra vegetation continuous fields yearly L3 global 250 m SIN grid V006. 
NASA EOSDIS Land Processes Distributed Active Archive Center.

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, 
N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, 
C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., Saleem, M. (2017). An Ecoregion-Based 
Approach to Protecting Half  the Terrestrial Realm. BioScience, 67(6), 534–545.

Gao, F., He, T., Wang, Z., Ghimire, B., Shuai, Y., Masek, J., Schaaf, C., & Williams, C. (2014). 
Multiscale climatological albedo look-up maps derived from moderate resolution imaging 
spectroradiometer BRDF/albedo products. Journal of  Applied Remote Sensing, 8(1), 083532. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, 
J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, 
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,  Thépaut, J. N. (2020). The ERA5 global 
reanalysis. Quarterly Journal of  the Royal Meteorological Society, 146(730), 1999–2049.

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, 
P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., S Goll, D., Haverd, V., 
Köhler, P., Ichii, K., K Jain, A., Liu, J., Lombardozzi, D.,  Reichstein, M. (2020). Scaling carbon 
fluxes from eddy covariance sites to globe: Synthesis and evaluation of  the FLUXCOM 
approach. Biogeosciences, 17(5), 1343–1365. 

Karlsson, K. G., Anttila, K., Trentmann, J., Stengel, M., Fokke Meirink, J., Devasthale, 
A., Hanschmann, T., Kothe, S., Jaäskelaïnen, E., Sedlar, J., Benas, N., Van Zadelhoff, G. J., 
Schlundt, C., Stein, Di., Finkensieper, S., Häkansson, N., & Hollmann, R. (2017). CLARA-A2: 
The second edition of  the CM SAF cloud and radiation data record from 34 years of  global 
AVHRR data. Atmospheric Chemistry and Physics, 17(9). 

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of  CMIP5 and the 
experiment design. Bulletin of  the American Meteorological Society, 93(4), 485–498.

Data description Use in this study Source
Tree restoration potential Potential reforestation areas identification Bastin et al.,  2019
Global biomes distribution Potential reforestation areas identification Dinerstrein et al.,  2017
Net ecosystem productivity (NEP) Net sequestration potential simulation Jung et al.,  2020
Tree cover distribution  Future NEP estimation Dimiceli et al.,  2015

Forest biomes VPD thresholds  Fire‐days incidence estimation Clarke et al.,  2022
Daily current VPD (2020) Current fire‐days incidence Hersbach et al.,  2020
Daily future VPD (2100) Future fire‐days incidence Taylor et al.,  2012

Incoming solar radiation  Emission equivalent of shortwave forcing simulation Karlsson et al.,  2017

Emission equivalent of shortwave forcing simulation Gao et al.,  2014Surface albedo
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Table S.VI.2. Forest biomes VPD thresholds. Median (minimum-maximum) VPD threshold 
at which the probability of  fire is 50% (VPDP = 50) for each forest biome type (Dinerstein et al., 
2017). Adapted from Clarke et al. (2022).

Table S.VI.3. Global Climate Models. CMIP5 dataset (Taylor et al., 2012) Global Climate 
Models (GCM) selection, references and corresponding projected changes in annual 
precipitation and temperature according to McSweeney et al., 2015.

Ackerley, D. & Dommenget, D. Atmosphere-only GCM (ACCESS1.0) simulations with 
prescribed land surface temperatures. (2016). Geoscientific Model Development 9(6), 2077-
2098.

Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S. M., Farneti, R., 
Gnanadesikan, A., Hurlin, W. J., Lee, H. C., Liang, Z., Palter, J. B., Samuels, B. L., Wittenberg, 
A. T., Wyman, B. L., Yin, J. J., & Zadeh, N. The GFDL CM3 Coupled Climate Model: 
Characteristics of  the Ocean and Sea Ice Simulations. (2011). Journal of  Climate 24(13), 3520-
3544

Voldoire, A., Sanchez-Gomez, E., Melia, D. S. Y., Decharme, B., Cassou, C., Senesi, S., 
Valcke, S., Beau, I., Alias, A., Chevallier, M., Deque, M., Deshayes, J., Douville, H., Fernandez, 
E., Madec, G., Maisonnave, E., Moine, M. P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, 
S., Alkama, R., Belamari, S., Braun, A., Coquart, L., & Chauvin, F. The CNRM-CM5.1 global 
climate model: description and basic evaluation. (2013). Climate Dynamics 40(9-10), 2091-
2121

Biome VPDP=50 (kPa)
Tropical and Subtropical Moist Broadleaf Forests 2.46 (1.58 – 3.49)
Tropical and Subtropical Dry Broadleaf Forests 3.05 (2.70 – 4.04)
Tropical and Subtropical Coniferous Forests 2.54 (1.46 – 3.65)
Mediterranean Forests, Woodlands, and Scrub 2.31 (1.44 – 4.35)
Temperate Broadleaf and Mixed Forests 1.30 (0.91 – 2.55)
Temperate Coniferous Forests 1.54 (0.90 – 2.04)
Boreal 1.11 (0.72 – 1.37)

GCM Reference Projected climatic changes

CNRM-CM5 Voldoire et al., 2013 Moderate annual temperature increases, slight annual precipitation 
increases

ACCESS1-0 Ackerley & Dommenget, 2016 High annual temperature increases, slight annual precipitation decreases

GFDL-CM3 Griffies et al., 2011 Extreme annual temperature increases, slight annual precipitation 
increases
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GCM RCP Surface (Mha) NESC (Gt C)
4.5 261.2 16.8
8.5 216.4 12.9
4.5 182.4 11.1
8.5 91 5.7
4.5 215.3 13.9
8.5 147.5 9.4

CNRM-CM5

ACCESS1-0

GFDL-CM3

Table S5. ΔFire-Days impacts over carbon balances. Relationship between reforestation 
surface (Mha) and the associated Net Equivalent Carbon Stock Change (NESC, Gt C) 
of  the smart reforestation areas (NESC > 0) that recorded less than a 50 % increase in 
the annual fire-days frequency from 2020 to 2100, projected by each global climate model 
(GCM) under both representative concentration pathway scenarios (RCPs) 4.5 and 8.5.

Figure SVI.2. Spatial distribution of  current (2020) annual fire-days frequency (d yr-1). Fire-
days indicate days exceeding vapor pressure deficit (VPD) thresholds associated with a 50 
% probability of  fire incidence.
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Figure SVI.1. Spatial distribution of  carbon balances (t C ha-1) simulated from reforestation 
actions over an 80-year period: (A) Net sequestration potential (ΔSP). (B) Emissions 
equivalent of  shortwave forcing (EESF). (C) Net equivalent carbon stock change (NESC = 
ΔSP – EESF). Gray background represents forest biomes extension (Dinerstein et al., 2017). 
While ΔSP and NESC represents carbon uptake, EESF represent carbon emissions and 
gradient colors are consequently inverted.
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Figure SVI.3. Empirical distribution function of  the fire-days incidence (d yr-1) in 2020 
over reforestation surface fraction. Colors represent global forest biome types (Dinerstein 
et al., 2017): all forest biome types in black, boreal forests in blue, temperate forests in dark-
green, tropical forests in light-green and mediterranean forests in orange.

Figure SVI.4. Net equivalent carbon stock change (NESC, Gt C) distribution over smart 
reforestation surface (Mha). Colors represent global forest biome types (Dinerstein et al., 
2017): all forest biome types in black, boreal forests in blue, temperate forests in dark-green, 
tropical forests in light-green and mediterranean forests in orange.
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Figure SVI.5. Fire-Days Increasing Factor distribution over net equivalent carbon stock 
change (NESC, Gt C). Colors represent global forest biome types (Dinerstein et al., 2017): all 
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Figure SVI.6. Fire-Days Increasing Factors distribution across forest biome types.
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Figure SVI.7. Spatial distribution of  future (2100) annual fire-days frequency (d yr-1) 
projected under greenhouse gas emissions scenario RCP 4.5 considering the global climate 
models: (A) CNRM-CM5; (B) ACCESS1-0; and (C) GFDL-CM3. Fire-days indicate days 
exceeding vapor pressure deficit (VPD) thresholds associated with a 50 % probability of  
fire incidence.
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Figure SVI.8. Spatial distribution of  future (2100) annual fire-days frequency (d yr-1) 
projected under greenhouse gas emissions scenario RCP 8.5 considering the global climate 
models: (A) CNRM-CM5; (B) ACCESS1-0; and (C) GFDL-CM3. Fire-days indicate days 
exceeding vapor pressure deficit (VPD) thresholds associated with a 50 % probability of  
fire incidence.
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Abstract: Research Highlights: Pre-programmed cell death in old Aleppo pine needles leads to low
moisture contents in the forest canopy in July, the time when fire activity nears its peak in the
Western Mediterranean Basin. Here, we show, for the first time, that such needle senescence may
increase fire behavior and thus is a potential mechanism explaining why the bulk of the annual
burned area in the region occurs in early summer. Background and Objectives: The brunt of the fire
season in the Western Mediterranean Basin occurs at the beginning of July, when live fuel moisture
content is near its maximum. Here, we test whether a potential explanation to this conundrum lies
in Aleppo pine needle senescence, a result of pre-programmed cell death in 3-years-old needles,
which typically occurs in the weeks preceding the peak in the burned area. Our objective was to
simulate the effects of needle senescence on fire behavior. Materials and Methods: We simulated the
effects of needle senescence on canopy moisture and structure. Fire behavior was simulated across
different phenological scenarios and for two highly contrasting Aleppo pine stand structures, a forest,
and a shrubland. Wildfire behavior simulations were done with BehavePlus6 across a wide range
of wind speeds and of dead fine surface fuel moistures. Results: The transition from surface to
passive crown fire occurred at lower wind speeds under simulated needle senescence in the forest
and in the shrubland. Transitions to active crown fire only occurred in the shrubland under needle
senescence. Maximum fire intensity and severity were always recorded in the needle senescence
scenario. Conclusions: Aleppo pine needle senescence may enhance the probability of crown fire
development at the onset of the fire season, and it could partly explain the concentration of fire
activity in early July in the Western Mediterranean Basin.

Keywords: fire behavior; crown fire; fire modeling; senescence; foliar moisture content; canopy
bulk density

Forests 2020, 11, 1054; doi:10.3390/f11101054 www.mdpi.com/journal/forests
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A B S T R A C T   

Live Fuel Moisture Content (LFMC) is one of the main factors affecting forest ignitability as it determines the 
availability of existing live fuel to burn. Currently, LFMC is monitored through spectral vegetation indices or 
inferred from meteorological drought indices. While useful, neither approach provides mechanistic insights into 
species-specific LFMC variation and they are limited in the ability to forecast LFMC under altered future climates. 
Here, we developed a semi-mechanistic model to predict daily variation in LFMC across woody species from 
different functional types by adjusting a soil water balance model which estimates predawn leaf water potential 
(Ψpd). Our overarching goal was to balance the trade-off between biological realism, which enhances model 
applicability, and parameterization complexity, which may limit its value within operational settings. After 
calibration, model predictions were validated against a dataset comprising 1659 LFMC observations across 
peninsular Spain, belonging to different functional types and from contrasting climates. The overall goodness of 
fit for our model (R2 = 0.5) was better than that obtained by an existing models based on drought indices (R2 =
0.3) or spectral vegetation indices (R2 = 0.1). We observed the best predictive performance for seeding shrubs 
(R2 = 0.6) followed by trees (R2 = 0.5) and resprouting shrubs (R2 = 0.4). Through its relatively simple 
parameterization, the approach developed here may pave the way for a new generation of process-based models 
that can be used for operational purposes within fire risk mitigation scenarios.   

1. Introduction 

Wildfires are a natural component of many terrestrial ecosystems, 
but they are becoming an increasing threat to civil protection, public 
health and national security worldwide (Borchers-Arriagada et al., 
2021; Duane et al., 2021; Karavani et al., 2018; McDonald, 2020; Resco 
de Dios and Nolan, 2021; Tedim et al., 2020). Sustainable wildfire 
management should not seek to eliminate all fires in ecosystems that are 
naturally fire-prone. Instead, the target for wildfire management lies in 

creating fuel structures, from local to landscape scales, that reduce the 
risk for life and property while maintaining ecological functions. In this 
context, a key aspect for fire prevention and management actions is 
understanding the temporal changes that occur in the moisture content 
of both, dead and live fuels. Wildfires can only occur once critical fuel 
dryness thresholds are crossed (Jurdao et al., 2012; Luo et al., 2019; 
Nolan et al., 2016), and management can significantly alter fuel growth 
and provide a better knowledge of where and when live and dead fuels 
are in a critically dry state for assessing the risk of large wildfires 

Abbreviations: LFMC, life fuel moisture content; Ψpd, predawn leaf water potential; Ψsoil, soil water potential; DC, Drought Code; EVI, Enhanced Vegetation Index. 
* Corresponding author at: Mathematical and Fluid Physics Department, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Madrid 

28040, Spain. 
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Needle Senescence Affects Fire Behavior in Aleppo Pine 
(Pinus halepensis Mill.) Stands: A Simulation Study

Rodrigo Balaguer-Romano 1,* ,Rubén Díaz-Sierra 1, Javier Madrigal 2, Jordi Voltas 3 and Víctor Resco de Dios 3,4

1Mathematical and Fluid Physics Department, Faculty of Sciences, UNED. 2 Department of Forest Dynamics and Management, INIA–CIFOR. 3 Department of Crop and Forest Sciences, 
Universitat Lleida. 4School of Life Science and Engineering, Southwest University of Science and Technology.* Correspondence: rodrigo.balaguer.romano@gmail.com

The brunt of the fire 
season in the Western 
Mediterranean Basin 

occurs at the beginning 
of July, when live fuel 

moisture content is 
near its maximum.

We have tested 
whether a potential 

explanation to this 
conundrum lies in 
Aleppo pine needle 
senescence, which 
typically occurs in July. 
Our objective was to 
simulate the effects of 
needle senescence on 
fire behavior.

INTRODUCTION

Changes in physiological and structural conditions following senescence enhance the probability of more 
intense and severe crown fires development and concentrate extreme tree mortality rates in senescence 

periods.

CONCLUSION

We simulated in BehavePlus6. four scenarios 
that recreated the major annual physiological 
and structural changes in relation to needle 

senescence. That is; A: representing spring leaf 
sprout; B: representing the time of needle 

senescence; C: after dry leaves shed and D: 
later in the year after the onset of litter 

decomposition in the autumn. Simulations were 
carried out in two contrasting stands types: 

Forest and Shrubs.

METHODS
Forest A B C D

Canopy Cover (%) 35 35 35 35

Canopy Height (m) 8 8 8 8

Canopy Base Height (m) 1.5 1.5 1.5 1.5

Canopy Bulk Density (kg/m3) 0.15 0.15 0.1 0.1

Fine Fuel Load (t/ha) 2.5 2.5 3 2.5

1-h Dead Surface Fuel Moisture (%) 6 5 5 9

Foliar Moisture Content (%) 105 74 100 100

Shrub A B C D
Canopy Cover (%) 100 100 100 100

Canopy Height (m) 5 5 5 5

Canopy Base Height (m) 1 1 1 1

Canopy Bulk Density (kg/m3) 0.22 0.22 0.15 0.15

Fine Fuel Load (t/ha) 10 10 10.7 10

1-h Dead Surface Fuel Moisture (%) 6 5 5 9

Foliar Moisture Content (%) 105 74 100 100

RESULTS

Balaguer-Romano, R.; Díaz-Sierra, R.; Madrigal, J.; Voltas, J.; Resco de Dios, V. Needle Senescence Affects Fire Behavior in Aleppo Pine (Pinus halepensis Mill.) 
Stands: A Simulation Study. Forests 2020, 11, 1054. https://doi.org/10.3390/f11101054

TThhee  11sstt  IInntteerrnnaattiioonnaall  EElleeccttrroonniicc  CCoonnffeerreennccee  oonn  FFoorreessttss.. FFoorreessttss  ffoorr  aa  BBeetttteerr  FFuuttuurree::  SSuussttaaiinnaabbiilliittyy,,  IInnnnoovvaattiioonn,,  IInntteerrddiisscciipplliinnaarriittyy..

A3. Poster format presentation of  Chapter III results in the 1st Electronic Conference 
on Forests.



LINKING FUEL MOISTURE WITH PLANT PHYSIOLOGY:
Coupling a water balance model with a LFMC model to predict 
species-specific LFMC values.

R. Balaguer-Romano 1,* ,R. Díaz-Sierra 1, J. Voltas 2 & V. Resco de Dios 2,3

In conclusion we have linked fuel moisture with plant physiology to estimate LFMC values in 
a way that allow to obtain species-specific values and make future predictions.

To predict species-specific 
LFMC, we couple Medfate (1), 
a water balance model which 
uses meteorological, edaphic 
and forest inventory data to 

predict soil moisture dynamics, 
with Nolan et al., (2) model 
which estimates LFMC from 
leaf water potential (Ψleaf). In all, we have analyzed more than 2500 LFMC data 

from 46 different species in 40 sites of the Iberian 
Peninsula.

METHODS Predicted LFMC values were 
calibrated and validated using 
field data from an independent 

LFMC data base (3). Finally, we 
estimate for the same study sites 
the drought code index (DC) and 

the normalized difference 
vegetation index (NDVI) with the 

aim of compare the predictive 
capabilities of the three 

approaches.  

RESULTS

MEDFATE DROUGHT CODE NDVI

1Mathematical and Fluid Physics Department, Faculty of Sciences, UNED. 2 Department of Crop and Forest Sciences,
Universitat Lleida. 3School of Life Science and Engineering, Southwest University of Science and Technology.

All: R2 = 0.5
Trees: R2 = 0.41

Seeders: R2 = 0.57
Resprouter: R2 = 0.3

All: R2 = 0.31
Trees: R2 = 0.09

Seeders: R2 = 0.5
Resprouter: R2 = 0.005

All: R2 = 0.28
Trees: R2 = 0.06

Seeders: R2 = 0.13
Resprouter: R2 = 0.03

1-Cáceres, M. De, Martínez-Vilalta, J., Coll, L., Llorens, P., Casals, P., Poyatos, R., Pausas, J. G., & Brotons, L. (2015). Coupling a water balance model with forest inventory data to predict drought stress: The 
role of forest structural changes vs. climate changes. Agricultural and Forest Meteorology, 213, 77–90.  2-Nolan, R. H., Hedo, J., Arteaga, C., Sugai, T., & Resco de Dios, V. (2018). Physiological drought 
responses improve predictions of live fuel moisture dynamics in a Mediterranean forest. Agricultural and Forest Meteorology, 263, 417–427. 3-Yebra, M., Scortechini, G., Badi, A. et al. (2019). Globe-

LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Sci Data 6, 305 

Live Fuel Moisture Content (LFMC) is a critical determinant of forest flammability and thus fire behavior and 
severity in many ecosystems. Considering the limitations of current approaches (satellite remote sensing and drought 

indices) to estimate LFMC, we seek to estimate LFMC in a way that allows to obtain species-specific values and 
make future predictions

INTRODUCTION

A4. Poster format presentation of  Chapter IV results in the 2nd Electronic 
Conference on Forests.



UUnn  mmooddeelloo  sseemmii--mmeeccaanniicciissttaa  ppaarraa  pprreeddeecciirr  llaass  vvaarriiaacciioonneess  ddiiaarriiaass  ddee  
llaa  hhuummeeddaadd  ddeell  ccoommbbuussttiibbllee  vviivvoo  aa  nniivveell  ddee  eessppeecciiee
RRooddrriiggoo  BBaallaagguueerr--RRoommaannoo  11

1 Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, 28040 Madrid, España.

2 CREAF, E08193 Bellaterra (Cerdanyola del Valles), Catalonia, España.

3 Department of Crop and Forest Sciences, ETSEA-Universitat de Lleida, 25198 Lleida, España.

RRuubbéénn  DDííaazz--SSiieerrrraa  11,,  MMiiqquueell  DDee  CCáácceerreess    22,,  JJoorrddii  VVoollttaass  33,,  VVííccttoorr  RReessccoo  ddee  DDiiooss  33..

IInnttrroodduucccciióónn..  Determinar la variación temporal de la humedad del combustible vivo (HCV) es un aspecto fundamental en la prevención y gestión de los incendios forestales. 
Teniendo en cuenta las limitación que presentan los métodos comúnmente utilizados para estimar la HCV (Drought Code e índices de vegetación espectral), en este estudio 
hemos desarrollado un método novedoso que permite modelizar diariamente el contenido de humedad de la vegetación obteniendo valores específicos a nivel de especie.

MMééttooddooss..  La HCV se estima aplicando una 

relación lineal con los valores diarios del 

potencial hídrico de las hojas al amanecer 

(Ψpd), modelizados para cada especie con el 

modelo de balance hídrico MEDFATE. Las 

especies se han clasificado en tres grupos 

funcionales: arbustos germinadores (R-), 

arbustos rebrotadores (R+) y árboles (Ar). El 

método ha sido calibrado y validado con 

valores de HCV medidos en campo por un 

estudio independiente.

RReessuullttaaddooss..  El método desarrollado (MEDFATEHCV) permite estimar las variaciones diarias de la HCV considerando distintos géneros (Tabla 1) y especies, obteniendo mayor 
calidad de ajuste con los datos observados, que las estimaciones realizadas con Drought Code (DCHCV) o con teledetección (EVIEAE), en todos los grupos funcionales (Figura 1). 

En la Figura 2 se representan las dinámicas anuales de la HCV observada (línea negra discontinua) y predicha con MEDFATE (línea color continua) en una localización 
representativa (flecha roja) compuesta por el arbusto germinador Genista scorpius (R-), el arbusto rebrotador Quercus coccifera (R+) y el árbol Quercus ilex (Ar).

CCoonncclluussiióónn..  El método desarrollado permite predecir diariamente el contenido de humedad de la vegetación obteniendo valores específicos a nivel de especie. 
Nuestras estimaciones se ajustan mejor con los valores observados que las obtenidas con Drought Code o los índices de vegetación espectral.

En total se han analizado 2512 datos de 37 

especies, tomados entre 1996 y 2017, en 

40 localizaciones con diferentes 

condiciones climáticas. Para evaluar la 

capacidad predictiva del método en 

términos comparativos, se ha estimado la 

HCV en las mismas localizaciones con 

Drought Code (DC) y el índice de vegetación 

Enhanced Vegetation Index (EVI), 

calculando para este último el espesor de 

agua equivalente (EAE).

Figura 1. Calidad del ajuste entre la HCV (%) observada y predicha en cada grupo 
funcional: Germinadores (R-) azul; Rebrotadores (R+)  morado; Árboles (Ar) verde. 

Figura 2. Dinámicas 
anuales de la HCV (%).

N R2 EAM

Cistus (R-) 483 0.7 16.1

Lavandula (R-) 33 0.5 52.9

Salvia (R-) 473 0.6 24.0

Thymus (R-) 47 0.7 33.6

Ulex (R-) 46 0.5 20.5

Arbutus (R+) 29 0.5 50.5

Buxus (R+) 53 0.4 11.3

Erica (R+) 43 0.3 17.6

Genista (R+) 30 0.6 19.4

Pinus (Ar) 121 0.5 16.8

Quercus (Ar) 347 0.6 23.1

Tabla 1. Géneros analizados, numero de repeticiones (N), 
coeficiente de determinación (R2) y error absoluto medio (EAM). 

doi.org/10.1016/j.agrformet.2022.109022

A5. Poster format presentation of  Chapter IV results in the 8th Spanish Forestry 
Congress.



Fuel moisture content dynamics under climate change 
in Spanish forests.
R. Balaguer-Romano 1,*, R. Díaz-Sierra 1 & V. Resco de Dios 2,3

1Mathematical and Fluid Physics Department, Faculty of Sciences, UNED. 2 Department of Crop and Forest Sciences, Universitat Lleida. 3School of Life
Science and Engineering, Southwest University of Science and Technology.

INTRODUCTION
Global warming is expected to increase water scarcity potentially enhancing the days with weather conditions conducive 
to wildfire spread. In order to asses how fuel moisture (FM) is going to be affected by increasing aridity,  we used semi-

mechanistic models to forecast changes in live and dead fuel moisture content (LFMC and DFMC) across the 21st century 
from medium and high greenhouse gas emission scenarios (RCP4.5 and 8.5).

METHODS
We assessed LFMC and DFMC across 36 study sites which corresponds with forest inventory plots, covering ecoregions 

(a), productivity (b), temperature (c) and precipitation (d) gradients. Future meteorological data was obtained from 
regional climate models of the Euro-CORDEX adjusted grid. To analyse FM dynamics we assessed changes on the fire 

season length as the number of days per year (d yr-1) when FM fell below wildfire occurrence thresholds. We established 
the minimum, critical and extreme threshold values at 120, 100 and 80 % for LFMC and at 12, 10 and 8 % for DFMC.

a) b) c) d)

RESULTS
From 2020 to 2100, under 

RCP4.5 conditions fire season 
length increased in

15, 8, 2 d yr-1 (a) and in 20, 17, 
15 d yr-1 (b) regarding 
minimum, critical and 

extreme LFMC and DFMC 
thresholds respectively. Under 
RCP 8.5 conditions fire season 
length increased in 50, 30, 5 d 
yr-1 (a) and in 46, 40, 33 d yr-1

(b) regarding minimum, 
critical and extreme LFMC and 
DFMC thresholds respectively.

CONCLUSION
We recorded generalized fuel moisture declining trends from nowadays to the end of the century that are going to 

increase the number of days per year with FM values below wildfire occurrence thresholds, lengthening fire seasons.

A6. Poster format presentation of  Chapter V results in the 3rd Electronic Conference 
on Forests.
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