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A B S T R A C T

This thesis deals with the statistical modelling of in-game player behaviour.
More generally, it lies within the framework of building a scientific body of
knowledge around human affairs.

Video games allow for the display of many interesting traits concerning
human behaviour within a controlled setup. They are nowadays played
online, and each action of every player recorded, generating incredibly
rich and detailed datasets. Therefore, in-game player activity is an ideal
playground to put hypothesis concerning human behaviour at large to test.

Part of this work is concerned with the social character of games and
how this affects decisions players are constantly making as they play. Bor-
rowing methodology and tools from statistical physics, a formal theoretical
approach is proposed as a framework to qualitatively understand the pro-
cesses at play and provide insights into how player and choice interaction
affect the average outcome of decision-making processes.

A more significant part of this work follows a data-driven mindset,
covering several statistical and machine learning algorithms applied to
the predictive modelling of different quantities of interest in the game.
Player engagement and purchasing behaviour are the main focus, to which
player conversion (from non-paying user to paying user), player attrition
or churn, and purchase churn (when paying users cease to purchase) are
used as proxies. They are extensively studied at different scales (or levels
of aggregation) in the game. Results at different scales are relevant for
different purposes, and can be used to complement and enhance each
other, as will be discussed. Individual player behavioural predictions for
the phenomena of interest are generated using decision forests, survival
ensembles, and deep learning, and their performance compared. Several
time series models are explored to predict group behaviour. The use of these
predictions in player profiling is also discussed, as is a machine learning
item recommendation system.

The research presented here has immediate practical applications. Un-
derstanding how players behave and why allows studios to design more
engaging games and provides tools to optimise game planning. It opens the
door to personalisation, as games can be developed and planned to cater to
individual player tastes. From a more fundamental and ambitious perspec-
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tive, this work intends to be a small contribution to laying the foundations
of a mathematical understanding of human behaviour and societies.
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R E S U M E N

El objeto de esta tesis es la modelación estadística del comportamiento de
los jugadores de videojuegos (dentro del juego). De manera más general,
se inscribe en el marco de la construcción de un cuerpo científico de
conocimientos sobre la actividad humana.

En los videojuegos se dan muchos rasgos interesantes del comportamien-
to humano dentro de una configuración controlada. Hoy en día se juegan
en línea y se registra cada acción de cada jugador, lo que genera conjuntos
de datos increíblemente ricos y detallados. El estudio de la actividad de
los jugadores es, por lo tanto, una buena forma de poner a prueba algunas
hipótesis sobre el comportamiento humano en general.

Parte de este trabajo analiza como el carácter social de muchos juegos
afecta las decisiones que los jugadores toman constantemente mientras
juegan. Tomando prestada metodología y herramientas de la física estadís-
tica, se propone un enfoque teórico formal como marco para comprender
cualitativamente los procesos que intervenienen. Es posible así proporcionar
información sobre cómo las interacciones, tanto entre jugadores como entre
distinas decisiones, afecta al resultado colectivo de estos procesos de toma
de decisiones.

Una parte más significativa de este trabajo se centra en el análisis y
modelación a partir de datos. Se analiza la validez de distintos algoritmos
estadísticos y de aprendizaje automático para predecir variables de interés
en el juego. El nivel de actividad e implicación del jugador, así como las
transacciones económicas que realiza dentro del juego, son el centro de este
estudio. Éste se lleva a cabo a través de la modelación de la conversión (que
ocurre cuando usuarios deciden gastar dinero -real o virtual- dentro del jue-
go), el abandono del juego y el cese en el gasto. Estas cantidades se analizan
en todo detalle a diferentes escalas (o niveles de agregación) en el juego. Los
resultados a diferentes escalas son relevantes para diferentes propósitos y
se complemetan y enriquecen entre sí. Las predicciones de comportamiento
de los jugadores individuales para los fenómenos de interés se generan
utilizando bosques de decisión, colectividades de modelos de supervivencia
y aprendizaje profundo. Para predecir comportaminetos a nivel de grupo
se emplean distintos modelos de series temporales. También se analiza el
uso de estas predicciones en la creación de perfiles de jugadores, al igual
que un sistema de recomendación de objetos.
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Los resultados aquí descritos tienen una aplicación práctica directa, ya
que para los estudios de videojuegos es de gran utilidad comprender el
comportamiento y las motivaciones de sus jugadores. Esto les permite
diseñar juegos más atractivos y optimizar la planificación de los juegos ya
comercializados. Señala además el camino hacia una mayor personalización
del contenido ofrecido, ya que distintos elementos del mismo juego se
pueden adaptar para satisfacer los gustos individuales de los jugadores.
Desde una perspectiva más fundamental y ambiciosa, este trabajo preten-
de ser una pequeña contribución al estudio ciéntifico y matemático del
comportamiento y las sociedades humanas.

Las principales contribuciones originales de esta tesis se resumen a
continuación. En la lista de publicaciones 6 se pueden consultar los detalles
de dónde y cuando ha aparecido el contenido con anterioridad.

Contenido publicado previamente como primera autora:

1. En el capítulo 4 se describe un marco en el que modelos de espacio de
estados se usan para predecir conversión, abandono y cese de gasto
en el juego, y que permite cuantificar el efecto, tanto de elementos de
la planificación del juego (eventos dentro del juego, promociones. . . ),
como de otros externos (festivos, lanzamiento de nuevos juegos de la
competencia. . . ) [73].

2. El capítulo 7 hace uso de predicciones, para cada jugador, en días,
horas de juego, progresión en el juego y gasto total hasta el abandono
para elaborar perfiles de jugadores y comprender mejor elementos de
la dinámica del juego [72].

3. El capítulo 9 es un estudio, mediante el uso de modelos y herra-
mientas de física estadística, del comportamiento colectivo respecto a
procesos de toma de decisiones interdependientes en videojuegos con
interacciones sociales [74].

Contenido publicado previamente como segunda o tercera autora:

1. En el capítulo 6 (sección 6.1) se predice el potencial de los jugadores
para convertirse en usuarios de pago, así como los días, el tiempo de
juego y el nivel en que la conversión tendrá lugar, utilizando modelos
de supervivencia [133].

2. En los capítulos 5 (sección 5.3) y 6 (sección 6.4) se analiza el impacto
de diferentes perfiles de abandono y cese de gasto en el desempeño
de modelos de clasificación binaria y modelos de supervivencia para
la predicción de abandono y cese de gasto [132].
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3. El capítulo 6 (sección 6.5) evalúa el uso de perceptrones multicapa
y de redes neuronales convolucionales para predecir el gasto total
esperado de cada jugador [51].

Trabajo no publicado con anterioridad al que la autora contribuyó:

1. En el capítulo 8 se describe un sistema de recomendación de objetos
para videojuegos con una dimensionalidad elevada (gran número de
objetos entre los que elegir). Dicho sistema utiliza una combinación
de métodos de agrupación, colectividades de árboles extremadamente
randomizados y filtrado colaborativo. Tan sólo se describe la meto-
dología, no se presentan resultados concretos, ya que no es posible
publicar con los datos empleados en su desarrollo.

2. En el capítulo 9 sección 9.5 se presenta el estudio de comportamiento
colectivo en procesos de toma de decisiones interdependientes para el
caso en que las poblaciones son heterogéneas en sus preferencias. Este
trabajó no se ha publicado con anterioridad pero sí fue presentado en
dos congresos.
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164 days ago, have played over 178 hours since and
reached level 151. They are expected to play roughly
230 days more, reach level 190 after having played
a total of more than 600 hours before quitting the
game. Elaboration using data from AoI. The images
have previously appeared in [224]. 119

Figure 5.2 Kaplan–Meier estimates of the survival probability
as a function of time since first login (a) and game
level (b) for non-PUs (purple), PUs (pink) and VIP
players (green). Elaboration using data from AoI.The
images have previously appeared in [224]. 121

Figure 5.3 Kaplan–Meier estimates of the survival probability
for VIP players as a function of time since first login
(a), game level (b) and playtime (c). Elaboration
using data from AoI. 122

Figure 5.4 Example of a possible conditional inference tree. The
four terminal nodes are shown together with their
corresponding Kaplan-Meier survival estimates for
each group of n players. Elaboration using data
from AoI. The images have previously appeared
in [224]. 123

Figure 5.5 Validation plots for the conditional inference sur-
vival model lifetime predictions for PUs. Plots show
predicted vs observed values (plot (a)) and mean-
difference plots (plot (b)). Elaboration using data
from AoI. The images have previously appeared
in [224]. 125

Figure 5.6 Validation plots for the conditional inference sur-
vival model level predictions for PUs. Plots show
predicted vs observed values (plots (a)) and mean-
difference plot (plot (b)). Elaboration using data
from AoI. The images have previously appeared
in [224]. 126
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Figure 5.7 Validation plots for the conditional inference sur-
vival model playtime predictions for PUs. Plots
show predicted vs observed values (plot (a)) and
mean-difference plot (plot (b)). Elaboration using
data from AoI. The images have previously appeared
in [224]. 127

Figure 5.8 Kaplan–Meier estimates of the survival probabil-
ity as a function of time since first login (a), game
level (b) and cumulative playtime (c) for VIP play-
ers. Curves are stratified by churner type: normal,
zombie, resurrected and purchase resurrected players.
Shaded areas represent 95% confidence intervals.
Elaboration using data from AoI. The images have
previously appeared in [132]. 128

Figure 5.9 Prediction error curves for PU churn as a function
of lifetime. The different lines represent model runs
excluding zombies (red), resurrected (green) or pur-
chase resurrected (purple) players (plot (a)) and com-
binations thereof (plot (b)) from the training sample.
Combinations represented in plot (b) are: (i) resur-
rected and purchase resurrected (pink), (ii) zombies
and purchase resurrected (brown), (iii) zombies and
resurrected (green), and zombies, resurrected and
purchase resurrected (blue). Elaboration using data
from AoI. The images have previously appeared
in [132]. 131

Figure 5.10 Prediction error curves for PU churn as a function
of level. The different lines represent model runs
excluding zombies (red), resurrected (green) or pur-
chase resurrected (purple) players (plot (a)) and com-
binations thereof (plot (b)) from the training sample.
Combinations represented in plot (b) are: (i) resur-
rected and purchase resurrected (pink), (ii) zombies
and purchase resurrected (brown), (iii) zombies and
resurrected (green), and zombies, resurrected and
purchase resurrected (blue). Elaboration using data
from AoI. The images have previously appeared
in [132]. 132
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Figure 5.11 Prediction error curves for PU churn as a function of
playtime. The different lines represent model runs
excluding zombies (red), resurrected (green) or pur-
chase resurrected (purple) players (plot (a)) and com-
binations thereof (plot (b)) from the training sample.
Combinations represented in plot (b) are: (i) resur-
rected and purchase resurrected (pink), (ii) zombies
and purchase resurrected (brown), (iii) zombies and
resurrected (green), and zombies, resurrected and
purchase resurrected (blue). Own elaboration using
data from AoI. The images have previously appeared
in [132]. 133

Figure 6.1 Plot showing schematically how churn and becom-
ing PU can be considered competing risks. Ten play-
ers are tracked for 30 days of lifetime. Players may
become PUs (circles) or churn (triangles) at some
point. It is also possible that none of this events
is observed within the observation period (crosses).
They could however happen later on, so these are in
fact illustrating the censored character of the dataset.
The image has previously appeared in [133]. 137

Figure 6.2 Probability of being a PU as a function of lifetime (a),
in-game progression (b) and accumulated playtime
(c) for all players except one-time comers (as given
by the inverse of the Kaplan – Meier estimates). The
shaded area represents the 95% confidence interval.
Elaboration using data from AoI. The images have
previously appeared in [133]. 139

Figure 6.3 Probability of beeping a PU as a function of life-
time (a), in-game progression (b) and accumulated
playtime (c) for PUs (as given by the inverse of the
Kaplan – Meier estimates). The shaded area repre-
sents the 95% confidence interval. Own elaboration
using data from AoI. The images have previously
appeared in [133]. 140
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Figure 6.4 Validation plots for the conversion predictions of the
Cox regression. Plots show predicted vs observed
values for conversion times in lifetime (plot (a)),
game level (plot (b)) and playtime (plot (c)). Pre-
dictions correspond to the median survival values.
Elaboration using data from AoI. The images have
previously appeared in [133]. 141

Figure 6.5 Validation plots for the conversion predictions of
the random survival forest. Plots show predicted
vs observed values for conversion times in lifetime
(plot (a)), game level (plot (b)) and playtime (plot
(c)). Predictions correspond to the median survival
values. Elaboration using data from AoI. The images
have previously appeared in [133]. 142

Figure 6.6 Validation plots for the conversion predictions of the
conditional inference survival model. Plots show
predicted vs observed values for conversion times in
lifetime (plot (a)), game level (plot (b)) and playtime
(plot (c)). Predictions correspond to the median sur-
vival values. Elaboration using data from AoI. The
images have previously appeared in [133]. 143

Figure 6.7 Log-log scatter plots of predicted vs observed val-
ues for conversion times in lifetime (plot (a)), game
level (plots (b)) and playtime (plot (c)) using a Cox
regression. Predictions correspond to the median
survival values. The logarithm transformation pro-
vides a close-up look at the spread of the data points
(cf. Figure 6.4). Elaboration using data from AoI. The
images have previously appeared in [133]. 144

Figure 6.8 Log-log scatter plots of predicted vs observed values
for conversion times in lifetime (plot (a)), game level
(plot (b)) and playtime (plot (c)) using a random sur-
vival forest. Predictions correspond to the median
survival values. The logarithm transformation pro-
vides a close-up look at the spread of the data points
(cf. Figure 6.5). Elaboration using data from AoI. The
images have previously appeared in [133]. 146
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Figure 6.9 Log-log scatter plots of predicted vs observed values
for conversion times in lifetime (plot (a)), game level
(plot (b)) and playtime (plot (c)) using a conditional
inference survival model. Predictions correspond to
the median survival values. The logarithm trans-
formation provides a close-up look at the spread of
the data points (cf. Figure 6.6). Elaboration using
data from AoI. The images have previously appeared
in [133]. 147

Figure 6.10 Kaplan–Meier estimates of purchase survival prob-
ability as a function of time since first login (a),
game level (b) and accumulated playtime (c) for VIP
players. Shaded areas represent 95% confidence in-
tervals. Elaboration using data from AoI. 152

Figure 6.11 Kaplan–Meier estimates of purchase survival prob-
ability as a function of time since first login (a),
game level (b) and cumulative playtime (c) VIP play-
ers. Curves are stratified by churner type: normal
(blue), zombie (red), resurrected (green) and purchase
resurrected (purple) players. Shaded areas represent
95% confidence intervals. Elaboration using data
from AoI. The images have previously appeared
in [132]. 154

Figure 6.12 Prediction error curves for AoI purchase churn as
a function of lifetime. The different lines repre-
sent model runs excluding zombies (red), resur-
rected (green) or purchase resurrected (purple) play-
ers (plot (a)) and combinations thereof (plot (b))
from the training sample. Combinations represented
in plot (b) are: (i) resurrected and purchase res-
urrected (pink), (ii) zombies and purchase resur-
rected (brown), (iii) zombies and resurrected (green),
and zombies, resurrected and purchase resurrected
(blue). Elaboration using data from AoI. The images
have previously appeared in [132]. 156
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Figure 6.13 Prediction error curves purchase churn as a function
of game level. The different lines represent model
runs excluding zombies (red), resurrected (green)
or purchase resurrected (purple) players (plot (a))
and combinations thereof (plot (b)) from the train-
ing sample. Combinations represented in plot (b)
are: (i) resurrected and purchase resurrected (pink),
(ii) zombies and purchase resurrected (brown), (iii)
zombies and resurrected (green), and zombies, resur-
rected and purchase resurrected (blue). Elaboration
using data from AoI. The images have previously
appeared in [132]. 157

Figure 6.14 Prediction error curves purchase churn as a function
of playtime. The different lines represent model
runs excluding zombies (red), resurrected (green)
or purchase resurrected (purple) players (plot (a))
and combinations thereof (plot (b)) from the train-
ing sample. Combinations represented in plot (b)
are: (i) resurrected and purchase resurrected (pink),
(ii) zombies and purchase resurrected (brown), (iii)
zombies and resurrected (green), and zombies, resur-
rected and purchase resurrected (blue). Elaboration
using data from AoI. The images have previously
appeared in [132]. 158

Figure 6.15 Purchasing patterns per player for a sample paying
users for the training period and the evaluation pe-
riod (test part). Elaboration using data from AoI.
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Figure 6.16 Box plot of the average purchase value per number
of repeated purchases per all paying users. Elabora-
tion using data from AoI. The image has previously
appeared in [51]. 163
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to model LTV. The image has previously appeared
in [51]. 164

Figure 7.1 Schematic representation of the LSTM architecture
used to predict VIP player LTV and classify them
into low, medium or high expected LTV groups. 172
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Figure 7.2 Schematic representation of the classification fol-
lowed to assign each player and variable (i.e. each
survival curve) to one of the various lifespan groups
(short, medium, long and loyal). 173

Figure 7.3 Survival curves for VIP players in terms of life-
time (days since first login; (a)), in-game progression
(game level reached; (b)) and accumulated playtime
(hours played; (c)). Colours distinguish the various
lifespan groups (short, medium, long and loyal) for the
corresponding variable. Own elaboration using AoI
predictions. The images have previously appeared
in [72]. 174

Figure 7.4 Histograms of the predicted lifetime (days since first
login; (a)), in-game progression (game level reached;
(b)), playtime (hours played; (c)) and LTV (outlay
in local currency; (d)) for VIP players. Players are
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using AoI predictions. The images have previously
appeared in [72]. 175

Figure 7.5 Playtime (in hours) versus lifetime (in days) predic-
tions (median survival values) for all VIP players
non-loyal in both variables. Colour represents group-
ing in terms of predicted LTV (top) and game level
(bottom). The area of the circles is proportional in
both cases to the expected LTV. Own elaboration
using AoI predictions. The top image has previously
appeared in [72]. 177

Figure 7.6 Game progression (in level) versus playtime (in hours)
predictions (median survival values) for all VIP play-
ers non loyal in both variables. Colour represents
grouping in terms of predicted LTV (top) and life-
time (bottom). The area of the circles is proportional
to the expected LTV. Own elaboration using AoI pre-
dictions. The bottom image has previously appeared
in [72]. 179
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Figure 7.7 Game progression (in level) versus playtime (in hours)
predictions (median survival values) for all VIP play-
ers non loyal in all variables modelled using survival
models (lifetime, level and playtime). Colour repre-
sents grouping in terms of predicted lifetime. The
area of the circles is proportional to the expected life-
time. Own elaboration using AoI predictions. 180

Figure 7.8 Normalised game level versus playtime predictions
for all AoI VIP players non-loyal in level or lifetime.
Positive (negative) values therefore correspond to
players with predictions above (below) the average.
The normalised predicted lifetime is shown as a
colour scale, with larger than the mean values de-
picted in red shades, and smaller ones in blue. The
area of the circles is proportional to the expected
LTV. 182

Figure 7.9 Zoom into two areas of figure 7.8. Normalised game
level versus playtime predictions for all VIP players
non-loyal in level or lifetime, and with both predic-
tions below average (top), or above average (bot-
tom). The normalised predicted lifetime is shown as
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tional to the expected LTV. Own elaboration using
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Figure 7.10 Game progression (in level) versus LTV (in local
currency) predictions for all VIP players non-loyal
in level or lifetime. Colour represents grouping in
terms of predicted playtime. The area of the cir-
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Figure 7.11 Histograms of predicted lifetime (days since first
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(outlay in local currency; (c)) for VIP players loyal
with respect to level and non-loyal in terms of play-
time. Colours represent different groups for the
corresponding variable. Own elaboration using AoI
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in [72]. 187
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Figure 7.12 Playtime (in hours) versus lifetime (in days) pre-
dicted values for all VIP players non-loyal in both
variables and loyal in terms of level. Colour repre-
sents grouping in terms of expected LTV and the
area of the circles is also proportional to LTV. Own
elaboration using AoI predictions. The image has
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Figure 9.1 Dependence on temperature of the numerically cal-
culated average magnetisation in the strong coupling
regime: Js = 1, Jt = 0.6 , k = ±0.8 (KBTc = 1.62).
Different solutions are plotted for temperatures be-
tween 0.01 and 2 every 0.01 (KBT). Magnetisation is
plotted in light green for s and light blue for t using
asps (×) for saddle point solutions and crosses (+)
for maxima of f . Own elaboration using numerically
computed solutions to the equations of state. The
image has previously appeared in [71]. 213

Figure 9.2 Dependence on temperature of the numerically cal-
culated average magnetisation for the weak coupling
regime: Js = 1, Jt = 0.6 , k = ±0.15 (KBTb = 0.55,
KBTc = 1.05). Different solutions are plotted for
temperatures between 0.01 and 1.5 every 0.01 (KBT).
Magnetisation is plotted in green for s and blue for
t. Dark points are used for stable solutions and
lighter asp (×, for saddle points) or cross (+, for
maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equa-
tions of state. The image has previously appeared
in [71]. 215
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Figure 9.3 Dependence on inter-coupling of the numerically
calculated average magnetisation for Js = 1, Jt = 0.6
, KBT = 1.2 (kc = ±0.35). Degenerate case (limit-
ing value between both coupling regimes) for |k| =√

Js Jt = 0.77. Different solutions are plotted for k
between -1.2 and 1.2 every 0.01. Magnetisation is
plotted in green for s and blue for t. Dark points
are used for stable solutions and lighter asp (×, for
saddle points) or cross (+, for maxima) for non sta-
ble solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image has previously appeared in [71]. 216

Figure 9.4 Dependence on inter-coupling of the numerically
calculated average magnetisation for Js = 1, Jt = 0.6
, KBT = 0.4 (kc = ±0.35). Degenerate case (limit-
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Js Jt = 0.77. Different solutions are plotted for k
between -0.9 and 0.9 every 0.01. Magnetisation is
plotted in green for s and blue for t. Dark points
are used for stable solutions and lighter asp (×, for
saddle points) or cross (+, for maxima) for non sta-
ble solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image has previously appeared in [71]. 218

Figure 9.5 Dependence on the intra-coupling Jt of the numeri-
cally calculated average magnetisation at low tem-
perature (Js = 1, k = ±0.3 , KBT = 1.5, Jc

t = 1.32).
Degenerate case (limiting value between both cou-
pling regimes) for Jt =

k2

Js
= 0.09. Different solutions

are plotted for Jt between 0 and 3 every 0.01. Mag-
netisation is plotted in green for s and blue for t.
Dark points are used for stable solutions and lighter
asps (×) for saddle points, non stable solutions. Own
elaboration using numerically computed solutions
to the equations of state. The image has previously
appeared in [71]. 220
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Figure 9.6 Dependence on the intra-coupling Jt of the numeri-
cally calculated average magnetisation at low tem-
perature (Js = 1, k = ±0.3 , KBT = 0.4, Jc

t = 0.55).
Degenerate case (limiting value between both cou-
pling regimes) for Jt = k2

Js
= 0.09. Different so-

lutions are plotted for Jt between 0 and 1.5 every
0.01. Magnetisation is plotted in green for s and blue
for t. Dark points are used for stable solutions and
lighter asp (×, for saddle points) or cross (+, for
maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equa-
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in [71]. 221

Figure 9.7 Plots of the function l(KBT) = Js Jt
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KBT + 1 against temperature (KBT). Js = 1,
Jt = 0.6 and different values of inter-coupling are
considered. In (a) k = 0.8 and l has one root. In (b)
k = 0.15 and l has two roots. In (c) k = 0.05 and l
has three roots. Own elaboration. The image has
previously appeared in [71]. 225

Figure 9.8 Dependence on temperature of the numerically cal-
culated average magnetisation for Js = 1, Jt = 0.6
,k = ±0.8 (KBTc = 1.28). Different solutions are
plotted for temperatures between 0.01 and 1.8 every
0.01 (KBT). Magnetisation is plotted in green for s
and blue for t. Dark points are used for stable so-
lutions and lighter asps (×) for saddle point, non
stable solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image has previously appeared in [71]. 228
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Figure 9.9 Dependence on temperature of the numerically cal-
culated average magnetisation for Js = 1, Jt = 0.6
,k = ±0.15 (KBTc = 1.03, KBTb = 0.50 and KBTb′ =
0.13). Different solutions are plotted for tempera-
tures between 0.01 and 1.5 every 0.01 (KBT). Mag-
netisation is plotted in green for s and blue for
t. Dark points are used for stable solutions and
lighter asp (×, for saddle points) or cross (+, for
maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equa-
tions of state. The image has previously appeared
in [71]. 230

Figure 9.10 Dependence on the inter-coupling k of the numeri-
cally calculated average magnetisation at high tem-
perature for Js = 1, Jt = 0.6 and KBT = 1.2 (kc =
±0.58). Different solutions are plotted for k between
-2 and 2 every 0.01. Magnetisation is plotted in green
for s and blue for t. Dark points are used for stable
solutions and lighter asps (×) for saddle point, non
stable solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image has previously appeared in [71]. 231

Figure 9.11 Dependence on the inter-coupling k of the numeri-
cally calculated average magnetisation at low tem-
perature Js = 1, Jt = 0.6 and KBT = 0.4 (kc =
±0.19). Different solutions are plotted for k between
-0.8 and 0.8 every 0.01. Magnetisation is plotted in
green for s and blue for t. Dark points are used
for stable solutions and lighter asp (×, for saddle
points) or cross (+, for maxima) for non stable solu-
tions. Own elaboration using numerically computed
solutions to the equations of state. The image has
previously appeared in [71]. 232
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Figure 9.12 Dependence on the intra-coupling Jt of the numer-
ically calculated average magnetisation for Js = 1,
k = 0.3 , KBT = 1.5 (Jc

t = 1.39). Different solutions
are plotted for Jt between 0 and 3 every 0.01. Mag-
netisation is plotted in green for s and blue for t.
Dark points are used for stable solutions and lighter
asps (×) for saddle point, non stable solutions. Own
elaboration using numerically computed solutions
to the equations of state. The image has previously
appeared in [71]. 233

Figure 9.13 Dependence on the intra-coupling Jt of the numer-
ically calculated average magnetisation for Js = 1,
k = 0.3 and KBT = 0.4 (Jc

t = 1.22). Different so-
lutions are plotted for Jt between 0 and 1.5 every
0.01. Magnetisation is plotted in green for s and blue
for t. Dark points are used for stable solutions and
lighter asp (×, for saddle points) or cross (+, for
maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equa-
tions of state. The image has previously appeared
in [71]. 234

Figure 9.14 Jt − β−1 cross-section for the non-local (a) and local
(b) models for Js = 1 and k = 0.3. Own elaboration
using numerically computed solutions to the equa-
tions of state. The images have previously appeared
in [71, 74]. 240

Figure 9.15 k− β−1 cross-section for the non-local (a) and local
(b) models for Js = 1 and Jt = 0.6. Own elaboration
using numerically computed solutions to the equa-
tions of state. The images have previously appeared
in [71, 74]. 242

Figure 9.16 Jt − k cross-section for the non-local (a) and local (b)
models at high temperature for Js = 1 and β−1 =
1.5. Own elaboration using numerically computed
solutions to the equations of state. The images have
previously appeared in [71, 74]. 244
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Figure 9.17 Jt − k cross-section for the non-local (a) and local (b)
models at low temperature for Js = 1 and β−1 =
0.4. Own elaboration using numerically computed
solutions to the equations of state. The images have
previously appeared in [71, 74]. 245

Figure 9.18 Phase diagram hw − pw vs jw section for low uncou-
pled constant surplus Su. Dark green is used for
the region where µw > 0.5 (high demand), and dark
yellow for those where µw < 0.5 (low demand), with
the segment dividing both where it is exactly 0.5
plotted as a dashed-dotted line. The blue region cor-
responds to a region where two possible solutions
exist, one of each. A phase transition between both
regimes takes place at the dashed lines δwU and δwL .
For all regions µu = 0. Own elaboration. 253

Figure 9.19 Phase diagram hw − pw vs jw section for high un-
coupled constant surplus Su for positive interdepen-
dence K = 0.5. Dark green is used for the region
where µw > 0.5 (high demand), and dark yellow for
those where µw < 0.5 (low demand), with the seg-
ment dividing both where it is exactly 0.5 plotted as
a dashed-dotted line. The blue region corresponds
to a region where two possible solutions exist, one
of each. A phase transition between both regimes
takes place at the dashed lines δwU and δwL . For all
regions µu = 1. Own elaboration. 255

Figure 9.20 Phase diagram hw− pw vs jw section for high uncou-
pled constant surplus Su for negative interdepen-
dence K = −0.5. Dark green is used for the region
where µw > 0.5 (high demand), and dark yellow for
those where µw < 0.5 (low demand), with the seg-
ment dividing both where it is exactly 0.5 plotted as
a dashed-dotted line. The blue region corresponds
to a region where two possible solutions exist, one
of each. A phase transition between both regimes
takes place at the dashed lines δwU and δwL . For all
regions µu = 1. Own elaboration. 256
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Figure 9.21 Numerically computed phase diagram hw − pw vs
jw section for intermediate uncoupled constant sur-
plus Su and positive interdependence K = 2.5. Dark
green asps (x) are used to represent µw > 0.5 (high
demand), and dark yellow stars (*) for µw < 0.5 (low
demand), and blue crosses (+) to two solutions, one
of each. For all regions µu = µw. Own elabora-
tion. 258

Figure 9.22 Numerically computed phase diagram hw− pw vs jw
section for intermediate uncoupled constant surplus
Su and negative interdependence K = −2.5. Dark
green asps (x) are used to represent µw > 0.5 (high
demand), and dark yellow stars (*) for µw < 0.5 (low
demand), and blue crosses (+) to two solutions, one
of each. Behaviour of µu is not contemplated in this
plot. Own elaboration. 259

Figure 9.23 Phase diagram hw − pw vs jw section: multiple so-
lution region for different values of K for interme-
diate uncoupled constant surplus. Own elabora-
tion. 260

Figure 9.24 Phase diagram Hu − Pu vs Ju section for positive
interdependence K = 2.5. Dark green is used for
the region where µu = 1 (full demand, correspond-
ing to large uncoupled constant surplus), and dark
yellow for those where µu = 0 (no demand, corre-
sponding to low uncoupled constant surplus). The
white region corresponds to the intermediate un-
coupled constant surplus region, where µu = µw.
Behaviour of µw is not contemplated in this plot.
Own elaboration. 261

Figure 10.1 Schematic representation on how conversion and
churn can (and should) be studied at different scales
in the game. 268

Figure 10.2 Schematic representation on how the study of con-
version and churn at one scale can be used to com-
plement and enrich the others. 269
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Figure A.1 Dependence on temperature of the numerically cal-
culated average magnetization’s (s, t) for different
values of the inter-coupling k for the non-local model.
Js = 1 and Jt = 0.6 for all plots. (a) k = 0.05, (b)
k = 0.1, (c) k = 0.2, (d) k = 0.5, (e) k = 0.6, (f)
k = 0.75, (g) k = 0.8, (h) k = 0.9 and (i) k = 1. In all
cases, different solutions are plotted for temperatures
between 0.01 and 2 every 0.05 (KBT). Magnetization
are plotted in green for s and blue for t. Dark points
are used for stable solutions and lighter asp (×, for
saddle points) or cross (+, for maxima) for non sta-
ble solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image had already appeared in [71]. 274

Figure A.2 Dependence on temperature of the numerically cal-
culated average magnetization (s, t) for different val-
ues of the inter-coupling Jt for the non-local model.
Js = 1 and k = ±0.3 for all plots. (a) Jt = 0.05, (b)
Jt = 0.1, (c) Jt = 0.2, (d) Jt = 0.5, (e) Jt = 0.6, (f)
Jt = 0.8, (g) Jt = 0.9, (h) Jt = 1.2 and (i) Jt = 1.5. In
all cases, different solutions are plotted for tempera-
tures between 0.01 and 2 every 0.05 (KBT). Magneti-
zation are plotted in green for s and blue for t. Dark
points are used for stable solutions and lighter asp
(×, for saddle points) or cross (+, for maxima) for
non stable solutions. Own elaboration using numer-
ically computed solutions to the equations of state.
The image had already appeared in [71]. 275
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Figure A.3 Dependence on inter-coupling of the numerically
calculated average magnetization (s, t) for different
values of the temperature for the non-local model.
Js = 1 and Jt = 0.6 for all plots. (a) KBT = 1.81,
(b) KBT = 1.41, (c) KBT = 1.11, (d) KBT = 0.81,
(e) KBT = 0.51, (f) KBT = 0.46, (g) KBT = 0.41, (h)
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1
I N T R O D U C T I O N

If you can’t give me poetry, can’t you give me poetical
science?

— Ada Lovelace

This thesis deals with player activity in video games. The context is that
of understanding human behaviour and social dynamics with a scientific
approach, in what is sometimes referred to as sociophysics. Player behaviour
is indeed human behaviour, and a particularly useful and interesting ex-
ample to study, as will be discussed. Besides, the sort of analysis presented
here have immediate practical applications: the statistical modelling results
that will be described can be used to develop more engaging games, in the
interest of both studios and players.

The content of this thesis can be broadly divided into two categories.
Most of its chapters dwell on analysing and predicting player behaviour
quantitatively. That is, within a data driven mindset, the results of applying
different statistical and machine learning (ML) models to video game datasets
are described, and their possible uses discussed in detail.

The last part of this thesis however, has a fundamentally different ap-
proach. Instead of data, simplified models of reality and the processes at
play are the starting point. The tools of statistical mechanics are then put
to use, with the goal of qualitatively (rather than quantitatively) under-
standing the mechanisms giving rise to interesting collective properties. It
focuses on the role of player and choice interactions in decision making
processes, and could therefore fit into what can be labelled statistical physics
of choice or opinion dynamics.

Statistical mechanics is not only a theory of matter, but also a framework
and a set of tools that can be used to study the aggregate characteristics
of systems made up of many smaller constituents. It is particularly useful
to study properties emerging through interaction. After it was developed
and successfully used to understand the microscopic origins of the thermo-
dynamic theory, and to bring further insights into the behaviour of gases,
liquids and solids, it has found applications in diverse foreign fields, ranging
from biophysics to neuroscience. This is now a field of research on its own,
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the study of complex systems. It provides too, as will be discussed, a very
useful framework in which to study human groups.

The quest to build a more scientific body of knowledge for the social
sciences -albeit not new- is increasingly popular in the literature, and
has gained a lot of momentum in the last couple of decades, with the
surge of increasingly rich datasets and computational capacity. This has
enabled the development, on the one hand, of ever more sophisticated
and effective ML algorithms to extract the relevant information from the
available data; and on the other, the possibility to run complex simulations
in an attempt to understand the essential characteristics giving rise to the
observed properties.

This chapter briefly introduces the general themes running through this
work. In section 1.1 the case for a more physics like body of knowledge for
the social sciences is made, and its history and state of the art succinctly
presented. The specific dataset that will be used repeatedly throughout
this thesis presented in section 1.2. This introductory chapter finishes with
an outline of the thesis content, highlighting which parts are original
contributions, in section 1.3.

1.1 statistical modelling of human behaviour

This work intends to make the case for, and take another step towards,
what can be denominated as physics of society or socioeconomic physics, in
particular in regards to human behavioural science.

From an epistemological point of view, this is mainly a matter of method-
ology and approach, being tantamount to using the scientific method. This
entails building a formalised body of knowledge about reality, and most
critically, its empirical nature, in that any theory developed should be able
to make predictions that can to be confronted with the observed reality, in
order to either verify or falsify its hypotheses.

The scientific method is the backbone of all scientific disciplines, including
many approaches (particularly quantitative) within the social sciences. The
use of the word physics does by no mean intend to discredit these, or claim
any exclusive ownership over the methodology. It rather refers to the more
or less direct application of models and tools from statistical mechanics and
condensed matter physics to understand human systems.

The key lies in the paradigmatic revolution underwent by physics from a
deterministic and mechanistic view to an statistical mechanical one during the
first half of the 20th century. Uncertainty has a central place in statistical
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mechanical theories, and the tools and methods developed by physicists to
study matter within this approach are specifically designed to deal with
systems about which there is incomplete knowledge.

After succeeding in providing first principle explanations of the laws of
thermodynamics for idealised systems, the statistical mechanical framework
was then used to further delve into the nature of matter. Effective models
for different phenomena of interest were built, in an attempt to understand
non-ideal systems and explain their properties. The mathematical tools
available were refined, polished and expanded, as the theoretical under-
standing underpinning them grew. The study of phase transitions and
critical phenomena became a subject of its own. Applications and interrela-
tions with other theoretical disciplines were found, and are being explored
to this day, ranging from information theory, game theory, and nonlinear
dynamics and chaos, to graph theory and geometry and topology.

In parallel, the development and widespread use of computers, the contin-
ued increase in cheap computing power, and the consequent improvement
of algorithms (in particular of Monte Carlo methods), made available a
different set of tools to study the same type of problems: computer simu-
lations. Hypotheses in the model’s definitions could be relaxed, and their
properties still studied methodically and precisely, even for systems that
had previously been intractable.

It was soon obvious that the tools and methodologies developed could
be used to study problems not pertaining matter. By the beginning of this
century, the study of complex systems was a well established discipline,
outreaching non physical fields such as graph theory, behavioural and
evolutionary biology, neuroscience, genetics, and, in precisely what concerns
this work, social sciences and human behaviour.

In short, statistical physics therefore provides the tools that allow for
a mathematical characterisation and exploration of human systems, with
properties that can then be rigorously deducted, and the level of abstraction
necessary to build a consistent body of knowledge around these systems.
It provides a way of building theoretical models of human behaviour, from
something resembling first principles (or basic assumptions on how the
system under study operates). As with all physical models of reality, these
will involve hypotheses, idealisations and simplifications depending on the
intended use of the model. As with all physical theories of reality, their
validity will lie ultimately in how accurately they are able to describe and
predict observations of the phenomenon modelled.
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The analysis of the available observations regarding human and social
behaviour is therefore the other critical part to this approach. Carrying out
actual experiments to put the hypotheses of social dynamics models to test
is normally very difficult or outright impossible, both due to practical via-
bility issues and ethical concerns. The study of collected data consequently
plays the role of the experimental counterpart of the statistical mechanical
theoretical models in sociophysics. Note that building models using data
has been a traditional approach in the quantitative social sciences.

This area of research has also undergone an explosive growth, both
in the literature and its practical applications. The digital transformation
human life has undergone is responsible for the production of enormous
amounts of data pertaining virtually all aspects of the human experience.
The computer revolution already described, not only provides the means to
store, process and analyse this data, it also promotes the appearance of
new and increasingly rich datasets to study, as smaller and more powerful
devices acquire a role in an increasing number of human activities. From
our training progress, to with whom, how often and in what language and
register we communicate, to how we choose to present ourselves (or not) in
personal and professional networks, to how we go about our (online) dating
lives, our shopping lists, or our mobility patterns, digital datasets contain a
wealth of information about human behaviour that can be unlocked with
the correct tools.

Statistical and machine learning, and their brighter cousin artificial in-
telligence (AI), constitute arguably the field that has experienced a more
drastic growth during the 21st century, both in terms of research produced,
and its impact in everyday life applications. They provide ways to uncover
patterns, trends and correlations in the datasets, beyond the descriptive
analysis and hypothesis testing afforded by classical statistics. As in the
case of the statistical mechanical tools, ML has also been used with a lot
of success in fields unrelated to human behaviour and organisation. From
image recognition and neuroscience, to weather prediction, and even the-
oretical physics, ML is being of extraordinary help in solving problems
formerly inaccessible through classical numerical methods, even with the
most powerful computers available.

Data science can be defined as the quest to extract knowledge from the
data, be that through the use of frequentist or bayesian statistics, or of
statistical machine learning algorithms. It can be used in a utilitarian and
functional manner, to describe, predict or classify for particular datasets in
practical setups. It can also contribute to conceptually better understand
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basic general properties of the systems under study, which should match
the basic assumptions for the theoretical models described above. In this
sense, it can be rightfully considered the empirical branch of sociophysics when
applied to human related datasets.

The borders between the theoretical and empirical arms of any discipline
are typically rather diffuse, as they share the end goal of describing the
observed reality as accurately as possible, and should feedback into each
other. Good empirical science makes use of all the theoretical knowledge
available. Good theoretical science looks for models having the latest ex-
perimental results on mind. This is also the case with the formal and data
driven approaches to modelling human behaviour that have been described.
Data models can not only get inspired by statistical mechanical methods
-such as the use of mean field theory, for example-, some allow for or
require assumptions about the underlying dynamics of the system under
study. Theoretical models should try to reproduce meaningful correlations
discovered through data science, and help shed light on the causation lying
at their origin. In other words, data science uncovers what is happening,
while the statistical mechanical formal approach is more interested in the
why.

The idea is to find interesting properties in the data, to then build models
of reality that will recreate some of the characteristics observed, to then
check their predictions against real data again. Then go back from data
to models, modifying the initial hypotheses to make their predictions
increasingly close to reality. The mathematical characterisation of the system
gives the formalised body of knowledge, while the data driven approach
the empirical nature, that are the pillars of the scientific method.

In fact, the close links between machine learning, information theory
and statistical mechanics have been clear for decades. Statistical physics
can be used to theoretically analyse the performance of machine learning
algorithms. As has been described above, ML is already being used to solve
problems in theoretical physics, including statistical physics, such as the
automatic detection of phases of matter. A paradigmatic example can be
found in neural networks (NNs). Statistical physics provides very apt tools
for the formal study of artificial neural networks (ANNs). These can in turn be
used to solve ML problems, and are able to learn very non linear relations
in datasets. Particularly so when considering many layers, referred to as
deep learning (DL), which has been critical to the success of ML methods
in areas such as natural language processing or computer vision (among
many others). Not only can ANNs be studied using statistical mechanical
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tools, Boltzmann machines (a type of stochastic recurrent neural network)
for example, are a direct application to ML of a Sherrington-Kirkpatrick
model (a stochastic Ising model first formulated to describe spin glasses).

Without leaving the realm of statistical physics, the combined data science-
statistical mechanical approach proposed can be illustrated using black
body as an analogy to any particular human behavioural process. Thermal
radiation was first described by Wien’s distribution law for short wave-
lengths (large frequencies) and by Rayleigh-Jeans law for long wavelengths
(small frequencies). Although they both involve certain classical physics
and thermodynamic principles in their deduction, they can be rightfully
said to be empirical laws, in that they were found in an attempt to describe
experimental results. They both failed to be universal enough as to work
for all the spectrum, but provided accurate predictions for a large range of
frequencies. These would be equivalent to some data science based results,
which could be using some assumption on the governing dynamics of the
system, and which would be producing relatively accurate predictions at
least under certain conditions. The black body problem was finally solved
by Planck’s law in 1900, which was derived heuristically by assuming the
oscillations were quantified, in what can be considered the kick-off of both
statistical mechanics and quantum physics. This would be equivalent to
finding which key mechanism(s) in the theoretical modelling is giving rise
to the data driven results obtained.

Of course, the talk here about first principles in relation to human be-
haviour, does not intend to convey that someone’s actions can be predicted
exactly, or that people inexorably follow some rules, as is the case of thermal
radiation in the example given above. Humans are not atoms or photons.
What is argued here, is that it is sometimes useful to approach the study
of their behaviour as if, in some sense, they behaved as such. Specially in
what concerns aggregated or averaged properties, many of the complicated
details are irrelevant to some processes. As in the ideal gas, where the shape
of its molecules might be irrelevant, and the velocity at which each one is
moving impossible to determine. Their temperature will still be related to
their average speed, and the temperature to the pressure, volume and the
number of molecules, following the same relation for all gases.

The black body example intends only to illustrate the methodology fol-
lowed. This includes idealised models of a real phenomenon (the theoretical
black body is a a perfect absorber and emitter and is in perfect thermody-
namic equilibrium). Experimental efforts in order to observe data in real
systems close enough to the theoretical assumptions (experiments measur-
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ing thermal radiation), and in finding equations that could reproduce the
results (leading to Wien’s and Rayleigh-Jeans laws before the phenomenon
was correctly understood), are also key. Finally, theoretical efforts in arriving
at this empirical equations from the physical knowledge readily available,
with some additional hypotheses, closes the loop (in this example, Planck’s
law).

The study of problems concerning human behaviour using the scientific
method will involve far cruder idealisations (such as humans as rational
agents making choices to maximise some abstraction). The experimental
efforts in this case can correspond to actual experiments (as carried out
with small groups in certain behavioural science labs), or more frequently
the careful curation and analysis of data related to the problem under study
(for example, measures of the actual choices humans are making). Statistical
or machine learning models can in some sense play the role of the empirical
laws. Ideally, there will be constant feedback loops between the data-driven
and conceptual approaches which would refine the understanding of the
phenomenon under study, even if it remains imperfect.

All this will be applied in this work in the context of video games, with
the data-driven results for a particular title (Age of Ishtaria, described in sec-
tion 1.2) used to illustrate the quantitative approach. Video games present
a particularly good example to study for three reasons. First, most video
games are nowadays played online. Every action every player makes is
recorded, generating extremely rich high quality datasets that constitute an
ideal playground to analyse human behaviour from a data driven point of
view. Second, games can in many aspects mimic life, and they definitely en-
gage different human features concerning skills, psyche, thinking processes
and decision making. In this sense, they can also be used to shed light on
general human behavioural problems, and to study human traits of interest
such as strategic thinking, association, competition or confrontation. Last
but not least, understanding how players behave and why, can be used to
develop better games, which is in the interest of both video game studios
and users.

Section 1.1.1 gives a brief historical perspective of scientific approaches
to the understanding of human affairs. Section 1.1.2 gives an overview of
some theoretical approaches to problems of the social sciences, while 1.1.3
gives a similar survey for data driven studies. Note that in some (the best)
cases works comprise (at least partially) both theoretical and data oriented
elements, and thus the assigning to one or the other sections is sometimes
somewhat artificial. In both cases they intend to be illustrative of interesting
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ongoing research, but they are by no means comprehensive or thorough
accounts.

1.1.1 Brief historical perspective

The enterprise of building a scientific body of knowledge concerned with
human matters is everything but new. The purpose of this section is to
illustrate (rather than to give a detailed account) this long lived ongoing
pursuit through some interesting examples, as well as to highlight the
interrelation between the development of social and natural sciences that
existed, and is rarely acknowledged. More comprehensive pictures can be
found in [12, 13, 112], on which what follows is largely based.

Note that, throughout this thesis, the word science is used as synonym of
modern western science, as it emerged from what is sometimes referred to
as the scientific revolution during the European enlightenment. The history
narrated here is thus focused in what happened in the western world. This
does not necessarily mean that a shared approach towards knowledge about
human affairs and the natural world did not exist too in other cultures,
and of course a lot could be learned from analysing these too. These have
regrettably disappeared, or are understudied and accounts on them not
easily accessible.

As when discussing natural sciences, much can be said about a rigorous
approach to the study of human society by the classical Greek. As the
knowledge they gathered was then lost and obscured for many centuries to
come, the starting point of this narrative will be the 17th century and the
beginning of the Age of Enlightenment.

Thomas Hobbes (1588-1679) can be credited for the conceptual origin of
a physics of society. He was the first to talk about something like natural
first principles for the individuals composing society, and attempted to
deduce the best form of government using these in De cive (On the citizen,
1642) and Leviathan (1651). It comes as no surprise that Hobbes had close
links to Francis Bacon (he served as his secretary), and to the circle of
French mechanistic philosophers -included Marin Mersenne (1558-1655) and
Pierre Gassendi (1592-1655), colleagues of Descartes-, or that he travelled to
Florence to meet Galileo.

The data driven approach origin was contemporary to the conceptual one
and can be attributed to one of Hobbes disciples: William Petty (1623-1687).
This founding member of the Royal Society was probably the first to suggest
that the study of the fundamental laws (in a physical Newtonian sense)
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that govern human systems (and which he named political arithmetic) had
necessarily to entail quantitative measures. This led to the first collections
of demographic data (births and deaths). By the end of the 18th century,
it had become very popular to look for trends in these type of datasets,
activity that by then already received the name of statistics. This new field
was however not considered to have any connections to mathematics.

The first mathematical characterisations of human problems also had
to wait until the 18th century, that saw the birth of the theoretical approach
described in this work. Under D’Alambert’s influence, the French mathe-
matician Marie Jean Antoine Nicolas de Caritat de Condorcet (1743-1794)
started to apply probability theory to voting. He arrived at interesting
results, still relevant today. Condorcet’s jury theorem states that the prob-
ability that the majority votes the correct decision will improve with the
voting group’s size, whenever each of its members are more likely than
not to make the correct choice. In Condorcet’s paradox, he showed that
majority preference becomes intransitive with three or more options. Both
results were collected in his Essai sur l´application de l´analyse a la probabilité
des décisions rendues à la pluralité des voix (Essay on the Application of Analysis
to the Probability of Majority Decisions, 1785). Other known thinkers of the
18th century which showed interest in a scientific approach to the study of
human affairs were Baron de Montesquieu, David Hume, François Quesnay
and Adam Smith.

The story became particularly exciting in the 19th century, when data and
maths were put together to analyse human systems, yielding what can be
described as the first physical (or physics like) theories of human behaviour. The
French mathematician and astronomer Pierre-Simon Laplace (1749-1827)
and his pupil Siméon Denis Poisson (1781-1840), had used the Gaussian
curve to fit astronomical measurement errors, in connection to probability
theory. It was then found that it could fit social and demographic data
too, both by Laplace himself, and by the also French mathematician Joseph
Fourier (1768-1830), who was at the time director of the Bureau de Statistique
of the Département de la Seine. The Belgian astronomer Adolphe Quetelet
(1796-1874) was then to develop his social mechanics framework, after visiting
the Royal Observatory, and becoming greatly impressed by Laplace’s work.
It consisted of an statistics based approach to analyse social processes that
had an impact, among others, in Jeremy Bentham, John Stuart Mill or Karl
Marx.

Auguste Comte (1798-1857), considered by many the father of sociology,
was the first to coin the term social physics. He begun by applying his



10 introduction

epistemological perspective of positivism to mathematics and the natural
sciences (physics, chemistry and biology). He then moved to the social
sciences, and used the social physics label (which was later also used by
Quetelet) for what was after to become known as sociology. His follower
Henry Thomas Buckle (1821-1862), who was a great admirer of Quetelet’s
work, was the first to make the case for a science of history in History of
Civilisation in England, where a large number of regularities in demographic
data are compiled.

An unexpected twist in the plot came when the influence between the
study of humans and the physical world was reversed. The work on de-
mographic data by Laplace, Quetelet, Buckle an others was to inspire
physicists such as James Clerk Maxwell (1831−1879) and Ludwig Boltz-
mann (1844−1906), two of the fathers of statistical physics. They were
studying the new field of thermodynamics, which appeared after the in-
dustrial revolution, with the goal of increasing engine efficiency. They both
explicitly mentioned the analogy between molecules in a gas and groups
of humans. Laplace eloquently acknowledged this when he wrote ”those
uniformities which we observe in our experiments with quantities of matter con-
taining millions of millions of molecules are uniformities of the same kind as those
explained by Laplace and wondered at by Buckle arising from the slumping together
of multitudes of causes each of which is by no means uniform with the others”.
He was the first to use the same Gaussian curve for the velocities of the
molecules in a gas, developing the kinetic theory of gases, which began the
statistical mechanical revolution in physics.

During most of the 20th century, the social and the natural sciences
developed independently. Physics was transformed by statistical mechanics,
quantum mechanics, and the theories of special and general relativity. This
brought about a unified quantum theory for all forces except gravity, an
explanation of chemistry out of physical first principles, and an incredibly
detailed picture of the constituents of matter down to subatomic (and
subnuclear) level.

There were meanwhile also interesting things going on in the social
sciences. The sociologist Vilfredo Pareto (1848–1923) introduced power laws
to explain wealth distribution in 1897. George Kingsley Zipf (1902–1950) was
a Northamerican linguist and philologist who studied statistical regularities
in different languages. He later went on to collect data of diverse origins
(demographic datasets, travel statistics, marriage date, war casualties. . . ),
and to show how power laws could also be used to explain them. By the
middle of the century, there was also already a well formulated neoclassical
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microeconomic theory in terms of rational agents maximising their expected
utility.

In the last decades of the 20th century, as has already been discussed,
statistical mechanics started being used more and more frequently to study
problems in foreign fields, giving rise to the study of complex systems as
a discipline. Basic learning neural networks and other machine learning
algorithms had been around for the whole of the second half of the century,
with the psychologist Frank Rosenblatt’s (1928–1971) introduction of the
perceptron in 1957. The 1980s saw the birth of what can be called statistical
physics of machine learning, with the pioneering work of John Hopfield (born
1933) -who introduced the Hopfield network-, Leslie Gabriel Valiant (born
1949) -and his theory of the learnable-, and Elizabeth Jane Gardner (1957-
1988) -shifting the focus to the dynamics of the connections rather than the
units themselves. Simultaneously, quantitative social science researchers
were finding analogies between some of their problem formulations and
statistical mechanics. Meanwhile some physicists such as Serge Galam were
beginning to use statistical mechanical frameworks to study some social
systems.

The 21st century has seen an explosion of both machine learning ap-
plications, and of physics like research about social systems, as access
to computational capacity and interesting datasets continues to grow. By
2010, with the arrival of deep learning, the huge potential of ANNs was
out of question, and began to be routinely exploited. Sections 1.1.2 and
1.1.3 present a collection of current lines of research (more theoretical and
more data driven respectively) that can fall under the umbrella term of
sociophysics, to illustrate the state of the art.

1.1.2 Theoretical approaches: related works

This section gives an overview of some related active areas of research
analysing human affairs from a complex systems point of view, in what
can be referred to as statistical physics of human behaviour. It deals with
works in which the focus is in building theoretical models of the system
under study, rather than in their quantitative predictive modelling. For a
similar overview of data driven approaches see section 1.1.3. The distinction
is of course sometimes artificial, as many could fit both categories. Discrete
choice theory will not be considered in this section, as it will be discussed
in much more detail in chapter 2 section 2.10. The collection of references is
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by no means extensive, and it intends only to illustrate interesting research
going on.

General overviews of statistical physics like approaches to the modelling
of human behaviour are given in [14, 266]. Surveys on different social dy-
namics models can be found in [46] and [188]. A review of the application of
concepts and tools from statistical physics to social and political behaviour
can be found in [112], and an exploration of various agent simulation mod-
els of political landscapes and election results is presented in [175]. The use
of evolutionary game theory to model human behaviour is described in
detail in [118]. In [13], Ball gives a detailed non technical account of what
was the state of the art in 2004.

Within the social sciences, economics is the discipline where formal
and quantitative approaches encountered less suspicion, and more rapidly
became a respected mainstream branch of research. From Adam Smith’s
market theory in the 18th century to our days, classical economic theory
has remained captive of the idea of a market in equilibrium and Gaussian
statistics. Interestingly, the known discrepancies with observed data (in par-
ticular in regards to the fat tails of many relevant fluctuation distributions),
have meant no obstacle for the widespread belief in its postulates, or their
role in supporting certain policies in the real world. The introduction of
statistical mechanical frameworks has enriched classical microeconomic
theory, particularly through the introduction of interactions. Although still
far from providing a complete a well rounded understanding of economic
processes, it has definitely shed light on the origin of some of the discrep-
ancies between real data and predictions of the conventional approaches.
Surveys in econophysics, as this approach is sometimes referred to, can be
found in [41, 94, 185, 186, 262, 264].

Opinion dynamics is the study of how opinions spread, and is intimately
related to discrete choice theory. The object under study is the same, but
the spotlight here is on the dynamic evolution of the system (rather than its
states of statistical equilibrium). A comprehensive review of basic opinion
dynamic models can be found in [46], while [260] is a relatively recent
survey. The simplest possible model is probably the voter model, which
is equivalent to zero temperature Glauber dynamics in one dimensional
lattices, or to random walkers that coalesce upon encounter.The majority rule
model is another popular simple approach introduced by Galam. Together
with threshold dynamics, it has been used to explain the Trump phenomenon
in [113]. Galam models of opinion dynamics [111] are studied in the case of
asymmetric contrarians (agents that tend to contradict rather than follow
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the prevalent choice in the discussion group) in [114]. Social impact theory
refers to another collection of opinion dynamic models [146].

Continuous bounded confidence models [182], introduced simultaneously
by Deffuant [70] and by Krause and Hegselman [140], are used in [289] to
understand the emergence and development of normalised (i.e., adopted by
a relatively large part of the population) extremist views. The use of CODA
(continuous opinions and observed discrete actions) models to understand
the emergence of extremist individuals in networks of different topologies
is addressed in [189], finding the presence of these will be pretty ubiquitous,
although it can be controlled in certain types of networks, in particular by
allowing individuals to change their position in the network.

Echo chambers, fake news spread, and polarisation, are analysed using a
mean field approach in [190], and in complex networks in [18] (which repro-
duces qualitatively empirical observations of debates observed in Twitter).
A model of information diffusion in social media taking with a compet-
ing large number of items of varying quality is presented in [214]. In [45]
a continuous-time Markov process is used to model collective decision-
making, when individuals can change their opinions to increase their own
fitness value, but also due to social interactions. This is (as will be clear in
chapter 2 section 2.10), a very close framework to the one that will be used
in chapter 9 to study interdependent choices in video games, within the
context of discrete choice theory.

Axelrod’s model vector version of opinion dynamics type models that can
be used to explain dissemination, acquisition and disappearance of cultural
traits in different communities [7, 47]. Other models of social diffusion are
based on epidemic dynamics. Examples range from the turn of the century
works by Campbell and Ormerod with regards to the spread of crime [43]
or the prevalence of marriage [218], to the more recent [115] which models
the emergence of radicalisation, highlighting the role of social integration
in preventing it.

Cooperation and group growth have also been subject to a lot of interest.
An already classical paper is [9], in which cooperation is explained in terms
of evolutionary game theory. The interaction of cooperators and free-riders,
and their impact in the growth of the communities they belong to, was
studied in [184]. In [187], social systems are a living evolutionary ensemble,
with individuals that have different strategies and can choose to cooperate
with others and form groups based on common interests. The mathematical
framework employed to study such systems borrows tools from game and
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kinetic theory. Urban gentrification is studied using the Schelling model
in [219, 220].

A modelling framework in which the power laws (Zipf’s, Heaps’ and
Taylor’s laws), ubiquitous in many human related datasets, emerge natu-
rally, is described in [277]. Power accretion in social systems was studied
in [240] using agent simulations, showing that taxation can be used to
prevent the naturally appearing growing inequality, and that the roughness
and Shannon entropy of the power distributions can be used as useful
complements to more traditional measures of inequality such as the Gini
index or the Lorenz curve.

Other interesting works regarding human activities are concerned with
crowd and traffic dynamics [141, 142], in which a very similar picture as
the van der Waals theory of solids appear, with different phases depending
on the mobility or flow of the agents.

1.1.3 Data driven approaches: related works

Along the lines of section 1.1.2, with the focus now on data driven research,
this section outlines some current hot topics under exploration. This section
covers the use of statistical and machine learning models that systematically
look for correlations in the data (excluding the methodologies that will be
used in this thesis, including deep learning, as these will be described in
more detail in chapter 2 and are therefore not covered here). It covers, too,
the use of models that could have very well been included in the previous
section (section 1.1.2). As was discussed there, the distinction can be rather
artificial (particularly for well rounded research). The criterion used to
include works here has been simply to have a strong focus in explaining
readily available or collected data).

Again here, the works cited are chosen with the intention of giving an
idea of interesting interfaces between the qualitative approaches described
in 1.1.2 and real data, and is by no means complete. A general overview
of statistical learning theory discussing generalisation in the context of
algorithmic approaches to function estimation can be found in [282]. A
detailed discussion on data preparation is [231].

An interesting early example is [11], and agent modelling approach to
business growth, which is used to correctly fit the data of both company
size and growth rate of about twenty million US firms in 1997. This scal-
ing behaviour in the growth of companies had been previously observed
in [263]. Also remarkable in its simplicity while accurately explaining ob-
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served results is [26], in which a simple Sznajd model (in which opinion is
modelled as a spin chain) is used to explain voting outcome regularities.
Another interesting example from last century is the landscape model de-
vised by Axelrod and Bennet to explain alliance formation as an energy
minimisation problem [8, 10]. They used it to (almost) accurately predict
company alliances in regards to Unix standardisation in the 1980s, and
political alliances in Europe prior to the Second World War.

The analysis of social network data has been the protagonist of very
diverse analysis. In [162] data from three billion Facebook users and their
opinions on vaccines considered. Mass-action modelling was used to suc-
cessfully reproduce the evolution of pro- and anti-vaccination clusters. In [5]
twitter messages are used to evaluate the appeal of extremism in the US,
finding that text-based psychological indicators support the existence of
psychological differences between left- and right-wing activists (moral foun-
dation hypothesis), and extremist users distinguishing themselves from the
rest in four of the five big personality traits (openness, conscientiousness,
extraversion, agreeableness and neuroticism).

In [122] the propagation of conspiracy theories is considered, using the
9/11 terrorist attack as an example. Their spread evolution is modelled
using information theory and entropy, analysing online comments to related
news or blog posts, and showing that the evolution of entropy measures
too the degree of penetration of the conspiracy theory.

The understanding of urbanism has also received a lot of interest, with [205]
being a very recent example, which proposes a maximum entropy, non-
linear, generative model of cities, and uses it to predict the evolution of
French towns. Gentrification during the last decades is studied for New
York, London and Tokyo in [281]

Remarkably, [280] presents a first principles approach to understand
the birth and evolution of social networks, and is then used to account
for the structure of mentions between Twitter users, co-authorship of the
American Physical Society and mobile-phone-call network (see [212, 213]
for introductory reviews on complex network theory and applications).

1.2 age of ishtaria

Data analysed throughout this thesis comes from the game Age of Ishtaria
(AoI), which is a Japanese mobile role-playing card freemium game de-
veloped by Silicon Studio and available worldwide. This game’s data is
explored in the papers with original work contributing to this thesis [51,
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72, 73, 132, 133, 224], as well as in previous work [28, 52, 131, 167, 224, 225,
239].

The game was launched on September 25, 2014. It is still currently avail-
able for download, but data only until May 9, 2017 was available, i.e.,
nearly the first two years of the game’s life can be studied with the dataset
available. Only data for Japanese players was considered.

As will be clear from chapter 3 onward, most of the work in this thesis
bases in characterising players by when and how long they play, how
they progress (level-up) throughout the game, and when and how much
they spend, which can be further summarised into giving, for each player
at any given moment in time, how many days have gone by since their
first login into the game (lifetime days), how long they have played in
total since (accumulated playtime), total in-game progression since (level)
and total expenditure since. The possibility of missing or noisy values in
these variables in basically negligible: even if there was some technical
problem preventing the recording of some of the actions, any single action
recorded is enough to know the player has connected. Players will typically
complain if level-ups or purchases are not recorded (and thus not effective),
so these are reduced to the minimum too. Playtime variable allows for
more noise than the others, but is still kept to the minimum. Session length
is computed ideally as the difference between login and logoff time. It
happens often however, that users do not bother to log off. Therefore, if
after any action there is a period of more than 5 minutes of inactivity, the
session is considered to have finished after that action. Similarly, if there is
no session active through a log in, but the player logs any action, then that
action marks too the beginning of a new session.

In the period available for study there were a total of 2107166 players,
with 33194 still considered active at the end of period (more details on
what is meant bu active player can be found in chapter 3 section 3.2).
Of those 33194 did at least one in-app purchase. While there are peaks
of nearly fifty thousand Daily active users (DAU), i.e., of different users
playing on a given day, typical values are normally in the range of ten to
twenty thousand. Periods with higher values are believed to have been
do to aggressive new user acquisition campaigns. Although it is known
that there were both marketing or new user acquisition campaigns (i.e.,
outside the game to get people to try it and hopefully continue playing)
and promotion campaigns (discounts or the like offered to players inside
the game to promote spending) often throughout the period considered, no
additional information (dates, duration, details . . . ) is available. In chapter
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4 time series modelling techniques are applied to try and discover when
these campaigns were taking place.

Information about in-game events that took place during the period under
study is available. For each event, the start and end date, together with the
event type and a measure of the impact (in playtime and/or purchases)
that particular event was expected to have are available. The latter is an
integer between 0 and 4 (both included), with 0 representing no noticeable
impact expected and 4 the highest possible effect. Though numerical, this
characteristic is better understood as a categorical qualitative measure of
the expected outcome. Every event falls into one of the following categories
or event types: Adveniment, Battle Arena, Battle Event, Call to Arms, Duel
Arena, Gacha, Gift Event, Giant Break, Item Collection, Mission Event,
Mission Bingo, Poll Event, Raid Battle, Raid Boss and Raid Event. Gacha is
a type of game monetization strategy very popular in Asia, in which the
player pays a fixed amount of money for an item that is different every time
an assigned by chance. Being in fact more of a gamble than a purchase,
they are very strongly regulated. The equivalent in Europe and America
are loot boxes, that started being introduced and becoming popular much
later than in Asia, and where regulations are also starting to pick on.

Plots of the daily time series of non-PUs, PUs and churned players can
be found in figure 4.1, and of the transitions between these groups in 4.2.
See chapter 4 for more details.

All quantitative plots of chapters 3 to 7 use the AoI dataset.

1.3 contribution and outline of this thesis

This thesis deals with in-game player behaviour, with the dataset for AoI
described in 1.2 as experimental observations. Most of it is concerned with a
practical understanding of what is going on from the studios point of view,
i.e., in exploiting the data collected from players to make predictions on
how relevant quantities in the game are going to evolve, or how individual
players are going to behave.

Although other problems such as that of item recommendation (see
chapter 8) will be tackled , most content revolves around two key features,
particularly in free2play games: whether users are playing or not, and
whether they are spending or not. These are investigated through what is
referred to throughout the text as churn (associated to active users that quit
the game), player conversion (meaning players that are not spending begin
doing so), and purchase churn (when the opposite happens, and purchasing
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players stop spending). These can be studied at individual or aggregated
level, and determine the degree of success in freemium games.

The last chapter before the conclusions (chapter 9) describes a theoretical
framework in which to study the qualitative collective outcome of, either
players of two types making choices under social influence (which has
different intensity within than without the group), or a single group of
players simultaneously deciding on two related matters, also with certain
pressure to conform to their peers. The focus is in investigating a formal
setup that can be applied to many different problems concerning video
games (particularly very social ones), and different examples will be given.
It will be stressed however, that the case of two simultaneous interrelated
choices can be used to qualitatively understand precisely the active/non-
active and paying/non-paying nature of the user which is thoroughly
investigated quantitatively for AoI throughout the first part of the thesis.

The thesis is organised as follows. All models and methodologies to be
used will be briefly presented in chapter 2 for later reference. Chapter 3

introduces some basic definitions and methods to divide players into active
or not, and active spenders or not, which will be used throughout the thesis.
Chapter 4 then analyses conversion, churn and purchase churn at very
aggregated levels using a time series approach. The interest then turns to
individual player churn in chapter 5, and to individual conversion and pur-
chase churn in chapter 6, which also introduces methods to predict the total
expenditure in the game players will have. The use of the predictions from
the previous chapters to group players in meaningful ways is presented in
chapter 7, and an item recommendation system in chapter 8. The use of
statistical physics to draw qualitative conclusions on collective outcomes of
interdependent decision processes (of particular interest to study playing
or not, and purchasing or not) is then discussed in chapter 9. The thesis
closes with some general conclusions in chapter 10.

Chapters 4 to 9 contain original content and are designed to be somewhat
self contained. They all begin with some introductory paragraphs describing
the problem to be addressed, the organisation of the chapter, and how
much of it and to what extent is an original contribution of this thesis.
They all finish with a summary of the more relevant results presented and
concluding remarks when pertinent.



2
M O D E L S A N D T O O L S

Meine Methoden sind wirklich Methoden des
Arbeitens und Denkens; deshalb haben sie sich überall
anonym eingeschlichen.

— Emmy Noether

This section will provide a review of the different models and tools
used in this work to understand and predict player behaviour. Only the
fundamental aspects required for a correct understanding of the following
chapters will be presented, together with references in which the interested
reader can find more details.

2.1 state space models

State Space Models (SSM) refers to a broad category of time series models
in which an stochastic dynamic process is characterised by two equations:
the state transition equation that describes the evolution of the so called
latent state (unobservable directly), and the observation model, which is also
probabilistic in nature, and establishes the relation between the observations
and the latent state [33, 39, 136, 255]. One of the earliest examples studied
in depth, and still in wide use today in numerous fields is the Kalman Filter
(KF) [164].

Every SSM is therefore determined by the equations p(lt|lt−1) (state
transition) and p(zt|lt) (observation model), where lt ∈ IRL is the latent
state at time t and zt ∈ IR the observed state at time t. In particular, any
linear SSM can be expressed as:

lt = Ttlt−1 + ct + Rtηt (2.1)

zt = Dtlt + dt + εt (2.2)

where Tt is the transition matrix, ct the latent state intercept, Rt the selection
matrix, Dt the design matrix and dt the observation intercept. The terms ηt
and εt represent random innovations that are typically considered to be
normally distributed, i.e,
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ηt = N (0, Σs
t) (2.3)

εt = N (0, Σo
t ) (2.4)

where Σs
t is the state covariance matrix and Σo

t is the observation covariance
matrix.

When two latent states l1,t and l2,t satisfy:

zt = D1l1,t + D2l2,t (2.5)

l1,t = T1l1,t−1 + η1,t (2.6)

l2,t = T2l2,t−1 + η2,t (2.7)

their governing equations 2.5 can be rewritten as:

zt = (D1D2)

(
l1,t

l2,t

)
+ εt (2.8)(

l1,t

l2,t

)
=

(
T1 0

0 T2

)(
z1,t−1

z2,t−2

)
+

(
η1,t

η2,t

)
(2.9)

I.e., when the time series of observations can be related to a linear
combination of two latent states with linear states transition equations,
the resulting model is also a linear SSM. Hence, any two linear SSMs can
be combined to form a new one. This will be relevant in our case, as in
chapter 4, the performance of two classical time series models (that can be
expressed as SSMs as will be seen in the next subsections) will be compared.
In both cases, the stochastic time series modelling is combined with a linear
regression to explanatory variables (which can also be expressed as an SSM
as will be soon described).

A lot of different filters and smoothers can be formulated as linear
SSMs [33, 39, 136, 255]. The next three subsections describe how this is
the case for the three instances of big model families that will be used in
this thesis (in chapter 4 to be specific): linear regression, autoregressive
integrated moving average and structural time series models.

2.1.1 Linear regression

A regression to time varying exogenous explanatory variables zt = ∑i βixi
t

is a simple way to try an model the deterministic behaviour of a time series
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zt, with xi
t for i = 1, . . . , n the n explanatory variables (sometimes referred

to as covariates or regressors), and βi their corresponding parameters to be
estimated. This simple model can also be expressed as an SSM by setting
Tt = dt = Rt = 0 and ct = ∑i βixi

t in equations 2.1. See chapter 3 in [159] for
a detailed explanation and discussion of applications of linear regression in
statistical learning.

To perform forecasts, besides the parameters estimated using the historic
values available (trainig dataset), the projected values of the explanatory
values xi

t into the future are needed. Predictions can then be carried out
by simply multiplying each covariate times its associated paramter and
summing the result.

2.1.2 Autoregressive integrated moving average (ARIMA)

The best known expression for an Autoregressive Moving Average (ARMA)
process is [33]:

zt = α + φ1zt−1 + φ2zt−2 + . . . + φpzt−p + (2.10)

θ1εt−1 + θ2εt−2 + . . . + θqεt−q + εt (2.11)

εt = N (0, σ2) (2.12)

where φ1, . . . φp the autoregressive parameters, θ1, . . . θq the moving average
parameters and α the model’s intercept. This is an stochastic time series
model in which each observation has a weighted dependence on the pre-
vious p observations (and the process is said to have autoregressive (AR)
polynomial of order p) and on the previous q noise realisations (moving
average (MA) polynomial of order q). The parsimonious nature of these
models arises because even with a relatively small number of parameters
(low p and q), each time step can be made to depend on a large (virtually
infinite) number of the previous values of the observation time series.

An ARMA model can be expressed in SSM formulation (equation 2.1)
yielding [39]:

yt = (1, 0, . . . , 0)lt (2.13)

lt =


φ1 1 0 . . . 0

φ2 0 1 0 . . .
...

...
...

...

φr 0 0 . . . 0

 lt−1 +


1

θ1
...

θr

 (2.14)
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where r = max(p, q + 1), θi = 0 for q < i ≤ r and φi = 0 for p < i ≤ r, and
lT
t = (yt, yt−1, . . . yt−p).

ARMA models are easily extended into Autoregressive Integrated Moving
Average (ARIMA) models by allowing the observation time series zt to be
differenced (i.e., subtracting to each observation the value of the previous
time step). An ARIMA model of order (p, d, q) is thus one with AR
polynomial of order p, MA polynomial of order q, and d differences taken
in the original series, typically in order to make it stationary and/or reduce
its variance. This concept can be extended to differences and polynomials
of lag different than one, yielding seasonal ARIMAs or SARIMA.

Once the parameters of the ARIMA have been estimated using the train-
ing dataset, forecasting can be performed recursively for consecutive times
into the future by applying equation 2.10, first to the last real observed
values, then to the previously predicted ones.

The combination with a linear regression to covariates to account for
some deterministic behaviour is sometimes referred to as SARIMAX mod-
elling. If the series modelled is not transformed, the resulting model in the
explanatory variables is additive, in that the parameter estimated for each
covariate can be understood as the increase (or decrease if negative) in the
modelled time series for each unit of increment in the covariate. If the series
is log-transformed, the model is then multiplicative, and the parameters
are better understood as elasticities, i.e., proportionality constants between
relative increments in the explained and explanatory series. Residuals is the
name given to the unexplained part of the time series after adjusting the
model corresponding to the random noise in the equations, i.e., they should
be normally distributed with mean zero.

2.1.3 Unobserved components or structural time series

Unobserved Components (UC) or Structural Time Series models are SSMs where
the observation is explicitly expressed in terms of a trend, cycle and/or
seasonal dependency (each of which can be stochastic or deterministic in
nature) [138, 139]:

zt = µt + γt + ct + εt (2.15)

where µt is the trend component, γt is the seasonal component, ct the cyclic
component and εt a random shock εt ∼ N (0, σ2).

The trend component is given by:
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µt+1 = µt + νt + ηt+1 (2.16)

νt+1 = νt + ζt+1 (2.17)

where ηt and ζt represent white noise (normally distributed with zero
mean) with variances parameters to be estimated. Depending on which
elements of these equations are zero, the trend term is referred to as
local linear (stochastic) trend (no null terms), smooth trend (ηt = 0), local
(stochastic) level and deterministic trend (ζt = 0), deterministic trend
(ηt = ζt = 0), local (stochastic) level (νt = ζt = 0) or constant term
(νt = ζt = ηt = 0). Note the local level model is simply a random walk. It
will appear repeatedly in chapter 4.

The seasonal part (or parts) can be expressed as:

γt = −
s−1

∑
j=1

γt−j + wt (2.18)

where wt is random noise with zero mean and variance estimated as an
additional parameter. It captures a fixed seasonality of the time series (for
example s = 7 for behaviour repeating itself each week for a daily time
series).

The cyclic term captures repeated behaviour over longer unspecified
periods of time:

ct+1 = ctcosλc + c∗t sinλc + ut (2.19)

c∗t+1 = −ctsinλc + c∗t cosλc + u∗t (2.20)

where ut is also normally distributed with mean zero and estimated vari-
ance. The cyclic frequency λ is also estimated as a parameter.

As for the ARIMA models, once all parameters have been estimated,
forecasts can be performed recursively into the future.

ARIMA and UC models are closely related and equivalencies can be
found among them. UC models allow for more randomness (through the
possibility of including more than one noise term), hence normally both
parameter spaces are not identical even for equivalent models (in that for
example some only versions with constraints between the noise terms of
the UC side will be able to be expressed as an ARIMA). This is normally
expressed using the term reduced, and the ARIMA of order (0, 1, 1) is, for
example, the reduced model of a local level UC model.
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2.2 statistical tests and estimators

This section compiles the different classical statistical tests and estimators
used in chapter 4 of this thesis.

2.2.1 Augmented Dickey-Fuller test

The augmented Dickey-Fuller (ADF) test is a hypothesis testing used to eval-
uate stationarity of a time series after removing autocorrelation, and is
described in [56]. The null hypothesis is here that the series is correctly
characterised by a unit root, i.e., that γ = 0 for:

∆yt = α + βt + γyt−1 + δ1∆yt−1 + . . . + δp−1∆yt−p−1 + εt (2.21)

with α, β, γ and δi constants, and p the lag of the AR process. The alternative
hypothesis states that γ < 0. The critical values are found using a Dickey-
Fuller distribution, to which the relevant statistic, computed as the average
γ divided by its standard deviation, can be compared.

2.2.2 Ljung-Box test

The Ljung-Box test is a hypothesis testing used to evaluate independence
of a time series, and is described in [181]. The null hypothesis is here that
any observed correlations are as result of sampling. If the null hypothesis
holds, the statistic Q needs to be greater than the chi-squared distribution
with h degrees of freedom, where h is the lag under test, Q is given by the
expression

Q = n(n + 2)
h

∑
k=1

ρ2
k

n− k
(2.22)

and n is the sample size.

2.2.3 Jarque-Bera test

The Jarque-Bera test is a hypothesis testing used to evaluate normality of a
time series, and is described in [160]. The null hypothesis is here that the
skewness and kurtosis of the sample matches, i.e. zero skewness and zero
excess kurtosis. In this case, the statistic JB is close to zero and follows a
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chi-squared distribution with two degrees of freedom asymptotically, with
JB given by

JB =
n
6
(S2 +

1
4
(K− 3)2) (2.23)

n the sample size, and S and K its skewness and kurtosis, i.e. its third and
fourth order central moments, respectively.

2.2.4 Akaike information criterion

The Akaike information criterion (AIC) is an estimator of in-sample prediction
error and is described in [3]. It is given by

AIC = 2k− 2 ln(max{L}) (2.24)

where k is the number of estimated parameters, L is the likelihood function
of the model, and max{L} denotes its maximum value. This estimator is
linked to goodness of fit but also to the number of degrees of freedom,
penalising the introduction of additional parameters. It gives no information
in absolute terms, but can be very useful for model selection, favouring
those model definitions with lower AIC values.

2.2.5 Bayesian information criterion

The bayesian information criterion (BIC) is described in [249], and is another
estimator of goodness of fit, very closely related to the AIC described
in section 2.2.4. AS the AIC, it also discourages overfitting by penalising
additional parameters. It is given by the expression

BIC = k ln(n)− 2 ln(max{L}) (2.25)

where n is the sample size, k the number of estimated parameters, L is
the likelihood function of the model, and max{L} denotes its maximum
value. As was the case for the AIC, lower values are linked to better model
definitions in terms of information theory.

2.2.6 Hannan-Quinn information criterion

The Hannan-Quinn information criterion (HQIC) is an additional model se-
lection index in the lines of the AIC (see section 2.2.4) and BIC (see section
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2.2.5), and is described in [137]. Lower values are more desirable, and it is
computes as

HQC = −2max{ln(L)}+ 2k ln(ln(n)) (2.26)

where n is the sample size, k the number of estimated parameters, L is the
likelihood function of the model, and max{ln(L)} denotes maximum value
of the log-likelihood.

2.2.7 Parameter significance and z-scores

Standard scores or z-scores describe where a given score is in relation to
the mean, measured in standard deviations, i.e. z = x−µ

σ , where µ is the
mean of the population and σ its standard deviation. Standardising the
estimated parameters for a model can be an aid in the interpretation of the
relative contribution of each of them. The significance of each z− score can
be evaluated through hypothesis testing, with the null hypothesis being
that there is no correlation between the covariate and the variable being
modelled. Z-test is the analogue of the Student’s t-test when using z-scores,
and the associated p-values give the probabilities of the observed data being
compatible with the null hypothesis. This means the lower the p-value, the
less likely it is that the modelled variable would be as observed, if it was
uncorrelated to the regressor. Hence, it can be used to assess parameter
significance. More details can be found in [172].

2.3 decision trees and forests

Classification and regression trees (CART) were introduced in [36]. They are
predictive modelling technique in which the labelled training dataset is
recursively split in two at the tree’s nodes. Each node uses the values of one
of the features for the partitioning, and the idea is to automatically find
patterns of differences in the modelled variable that are explained in terms
of differences in the features. The final nodes are populated by individuals
with the same value of the target variable (in classification, or very close in
regression). This makes possible to give a probabilistic prediction outside
of the training set, depending on the values of the features. See for example
chapter 8 in [159] for a general discussion of tree-based methods in statistical
learning.

Ensemble learning refers to the use of a collection of learning algorithms
(as opposed to a single one) to tackle a classification or regression problem.
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Typically different instances of the same model are used, involving differ-
ent parameters or selections of the training dataset. They usually improve
model performance by removing biases, and provide generally more robust
solutions. Additionally, they are trivially parallelizable, so while they do re-
quire additional computation capacity, they can be efficiently implemented
(or as efficiently as the original algorithm). An ensemble of decision trees is
sometimes referred to as forest.

When they are used for binary classification, a good verification metric is
given by the area under the receiver operating characteristic curve (AUC) which
is briefly described in section 2.9.

2.3.1 Random forest

Random forests were first introduced by Breiman in [35] and are probably
the better known and more widely used ensemble tree technique. Each
tree is trained using a bootstrap sample of the total set. Selection of the
split variable and point are done in the same step. The selection of splitting
variable at each node is done at random (hence the name). The split point is
then chosen as that maximising the Gini impurity measure [36] (or a similar
splitting criteria) which can be expressed as

IG(p)
J

∑
i=1

(pi ∑
k 6=i

pk) = 1−
J

∑
i=1

p2
i (2.27)

for J the number of classes and pi the fraction of entities belonging to class i.
These models tend to be biased as they favour variables with many possible
splitting points. They have been extensively used for virtually all types of
classifications and regressions, with some uncommon examples ranging
from remote sensing [23] to gene expression [75].

2.3.2 Conditional inference forests

Conditional inference trees are described in [147], which describes how the
use of conditional inference procedures in the recursive partitioning can
solve the selection bias (towards covariates with many split points) problem,
without negatively impacting overall model performance. The significance
of the association between target variable and features is assessed using a
chi-squared distribution, and a criterion is given to stop the process also
based in sound hypothesis testing.
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2.3.3 Extremely randomised trees

A extremely randomised tree (ERT) is another variation of a decision tree
introduced in [117], featuring strong randomisation in the choice of both
the covariate to use for the partitioning, and the split point, at each node.
With appropriate parameter tuning, ensembles of ERTs do not degrade
performance, while being significantly more efficient computationally. This
makes them particularly useful for very large datasets.

2.3.4 Gradient boosting

Gradient boosting, of which XGboost [55] is a particular implementation, is a
technique that can be used with decision trees. It was first introduced by
Friedman [101, 102] and in Mason et al. [191, 192], and combines boosting (a
bias and variance reduction meta-algorithm) and gradient descent (method
to iteratively compute the local minimum of a function). The idea is to find
a function of the covariates F(x) as close to the target variable y as possible,
i.e., of finding the minimum of a loss function L(y, F(x)) using gradient
descent. Decision trees (or other weak learners) are used at each iteration to
fit the pseudo-residuals (partial derivatives of the loss function with respect
to the covariate function).

2.4 survival analysis

Survival Analysis [58] is a general framework to study time-to-event regres-
sion problems. These methodologies were originally devised within the
medical and biological fields, where the event of interest was death or organ
failure [150], hence the name. These kind of problems are characteristically
censored, i.e., data is incomplete or partially labelled. Some survival models
are also able to handle competing risks [230], i.e., situations where there are
other events which could impede the observation, or alter the probability
of the event of interest under study.

Survival models yield a survival probability curve for each individual, i.e.,
the probability at each time point (past and future), of the individual still
being alive (probability of the event of interest not having taken place). From
these, a single time prediction can be computed if it is needed. Typically,
the prediction of survival time is given by the median of the survival
probability curve, i.e., the event of interest or death is considered to happen
when survival probability drops below 0,5.
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The hazard function h(t) is defined as the ratio between the probability
density function P(t) to the survival function S(t)

h(t) =
P(t)
S(t)

(2.28)

with different survival models accounting for different ways of defining
and/or computing the survival function S(t).

Survival model validation is often performed through error curves that
highlight the dependence of the error with the value itself of the variable,
and taking into account the probabilistic nature of the predictions. The
integrated Brier score (IBS), briefly described in section 2.9, summarises the
information of the whole curve in a single score ans is thus a convenient
metric.

2.4.1 Cox regression

The Cox proportional hazards model or Cox regression [63, 64] is a semi para-
metric survival approach that assumes the relationship between covariates
and hazard to be multiplicative

h(t|Xi) = h0(t)eβXi(t) (2.29)

with the survival function then expressed as:

S(t|Xi) = e−h0(t)eβXi(t) (2.30)

where Xi is the matrix with all the covariates corresponding to individual i.
The likelihood function can be expressed in terms of the conditional

hazards in equation 2.29, and its maximum computed numerically using
the Newton-Raphson algorithm. The hazard function is not assumed to
follow any particular distribution, but there is still a fixed relationship
between the target variable and the covariates. Another inconvenient is that
this method does not scale well to be very large datasets, although this is at
least partially fixed by the regularised Cox regression [202]. Cox regression is
typically used as a baseline for any survival methodology proposed.

2.4.2 Random survival forest

Random survival forests are the survival extension of the random forest algo-
rithm defined in section 2.3.1, and is described in detail in [157]. It is a fully
non-parametric approach that uses tree-based Nelson-Aalen estimators:
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Hn(t, Xi) =
∫ t

0

Tn(dt, Xi)

Qn(t, Xi)
(2.31)

where Xi is the matrix with all the covariates corresponding to individual
i. Tn gives the number of uncensored events, and Qn the total number of
individuals at risk. The survival function can then be expressed as

S(t|Xi) = e−
1
N ∑N

n=1 Hn(t,Xi) (2.32)

where N is the number of ensemble members.
Random survival forests allow for the introduction of competing risks [156],

i.e., of events (different form the event of interest) that can affect the proba-
bility of observing the outcome. For example, when survival analysis is used
to predict time to PU conversion (chapter 6 section 6.1), churn can be added
as a competing factor (to lack of interest in purchasing). This amounts to
understanding a non occurring phenomenon (a player not becoming PU) as
being due to either not having interest or means to purchase or to having
already quitted the game. Each node then becomes event specific, and for
each event:

Hn(t, Xi) =
∫ t

0

Tnj(dt, Xi)

Qn(t, Xi)
=

m(t)

∑
k=1

dnj(tk, Xi)

Qn(tk, Xi)
(2.33)

where m(t) = maxk : tk ≤ t and dnj(tk)0 ∑M
i=1 I(Ti = tk, δi0j) is the number

of type-j events at time tk for all individuals i, with I being the correspond-
ing event indicator, and dn = ∑j δjn(tk) the total number of events taking
place at tk.

2.4.3 Conditional inference survival ensembles

Conditional inference survival ensembles are the survival extension of condi-
tional inference forests introduced in section 2.3.2. They have many similar-
ities to the random survival forest described in 2.4.2, but use conditional
inference trees [147] as base learners. The splitting is performed in two
steps. First the variable more correlated with the output is chosen as split
variable, then the optimal splitting point is computed based on two-sample
linear statistics. They use weighted Kaplan-Meier estimates [149], and have
survival function of the form
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S(t|Xi) = ∏
(

1− ∑N
n=1 Tn(dt, Xi)

∑N
n=1 Qn(t, Xi)

)
(2.34)

where Xi is the matrix with all the covariates corresponding to individual i,
Tn the number of uncensored events, and Qn the total number of individuals
at risk.

2.5 lifetime value probabilistic models

Lifetime customer value (LTV) (also referred to sometimes as customer lifetime
value, CLV) can be defined as the estimation of the total amount of revenue
that will be generated by a customer or user. It is of particular interest
in non-contractual, continuous (in that purchases can be made at any
time) business relations, where there is typically a very large variability
between the income generated by different users. This is exactly the setting
of free-to-play games, where players do not need to pay to play, but are
free to purchase for in-game items or privileges (such as playing ad free),
generating in many cases most of the game’s revenue.

Traditional models aimed at giving LTV predictions basically assume that
each customer (player in this case) will continue with identical purchasing
patterns as have been displayed in the past (until they churn), in what
are sometimes called "buy till you die" or "buy till you defect" (BTYD)
models [247]. The more widespread probabilistic models used to this effect
fall into the RFM category [89], acronym for recency, frequency and mone-
tary value, as predictions for each individual are based only on when the
last time they purchased was, how often they have purchased in the past,
and how large their purchases have been. They operate under the general
assumption that an individual is more likely to purchase again, the more
recently, frequently and with larger value they have purchased in the past.

2.5.1 Pareto/NBD

The most popular of these models, often used as benchmark for any LTV
estimation method proposed, is the so called Pareto/NBD model. The name
refers to the two parametric distributions combined in generating the
predictions. The Pareto distribution models the drop-out or churn process,
and is used to classify customers into those that are still active and those
that are not. NBD stands for Negative Binomial Distribution, which is how
the purchasing frequency is parameterised [88, 89]. These models can also
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include an additional submodel (parametric distribution) to predict the
amount that will be spent per transaction, with a gamma-gamma model
being a typical choice [89]. A simpler approach such as simply taking the
average past value can also be used. Other possibilities that have been
explored in the literature include the use of cohorts [174] or of logistic
regressions [193].

Using a Pareto distribution for the drop-out rate is equivalent to con-
sidering that player lifetimes are exponentially distributes, with each user
having their own churn or dropout rate. These dropout rates should vary
independently across the total player population following a Gamma dis-
tribution. The continuous mixture of the exponential distributions of all
players generates the Pareto one.

The use of NBD as an stochastic model for repeated purchases was first
introduced in [82] in the context of consumer good purchases (in which
the drop-out models in this case the possibility of brand switching). It rests
under the assumption that purchases for each customer are independent
and Poisson distributed with constant mean, and that this individual mean
purchasing rate across the customer population follows, as was the case for
the individual dropout rates, a Gamma distribution [83]. In this case, the
NBD results from the continuous mixture of Poisson distributions for all
customers.

The Gamma distribution (that models both player churn rate and pur-
chasing frequency heterogeneity) in its shape and scale parameter parame-
terisation has probability density function:

f (x; k, θ) =
xk−1e−

x
θ

θkΓ(k)
(2.35)

where k is the shape parameter, θ the scale parameter, and Γ(K) the
gamma function evaluated at k. The maximum likelihood function of the
Pareto/NBD model can therefore be written in terms of the four parameters
(two scale and two shape) of the two gamma functions characterising both
processes (churn and purchase frequency) across the population. These pa-
rameters will be estimated using the RFM data available: only three pieces
of information from each player are needed: the length of the observed
period, the number of transactions in that period, and the time of their
last purchase. Once the parameters have been estimated (maximising the
maximum likelihood function), LTV predictions for each player (conditional
on their transaction history) can be produced.
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2.5.2 Other parametric models

Other parametric models use the same approach as the Pareto/NBD model,
i.e., parameterising both the drop out probability and the number of pur-
chases and combining both distributions, substituting the Pareto and neg-
ative binomial distributions by others, in an attempt to either make the
estimation of parameters more efficient, and/or to improve accuracy.

Replacing the Pareto distribution by a beta-geometric (BG) one, for ex-
ample, simplifies dramatically the computations needed, while typically
displaying similar performance to the Pareto benchmark [90]. It does not
only improve computation efficiency, but is also much simpler to imple-
ment and makes the parameter search more robust. The only conceptual
difference with respect to using the Pareto distribution is in that players
are assumed to churn immediately after their last purchase (the Pareto
allows for this to happen at any moment between the last purchase and the
observation time). It does however rely partially in flawed logic, as players
who only have purchased once will always be considered as active. This
is solved using Markov-Bernouilli Geometric (MBG) distribution, which
allows for zero repeat purchasers [16].

Not long after the NBD was first proposed to describe repeat purchase
behaviour, and even if it was shown to successfully represent purchasing
histograms in many empirical cases studied, observations appeared where
the interpurchasing times appeared to be more regular than those Poisson
distributed [134, 143, 176]. One alternative is replacing the Poisson’s expo-
nential on the individual interpurchasing times by a Gamma distribution
with parameter a positive integer, the so called Erlang distribution [49,
143]. This is normally referred to in the marketing literature as the CNBD
(condensed negative binomial distribution) purchasing model. Its dynamics
are explored from a theoretical point of view in [248]. The varying degrees
of regularity across costumers can be accounted for by using a mixture
of Gamma distributions instead of the NBD, in what is normally referred
to as Pareto/GGG models [228]. Another alternative explored has been
the log-normal [176]. See [290] for a statistic on purchase regularity across
consumers, that can be computed with only two interpurchase times per
user.
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2.6 deep learning

Deep learning [178] refers to the family of ML models that make use of
deep neural networks (DNN) and representation learning. Artificial Neural
Networks (ANN) are systems inspired in biological neural networks, made
up by connected artificial neurons that can process and transmit signals
downstream (input(s) to output(s)). Neurons can have a state and an associ-
ated weight that is updated during the learning process. The particularity
of ANNs is that they learn from examples without instructions on how to
do this. In this sense, they are black box devices: they predict the output
given the inputs, without any detail on how they have arrived to that result.
The deep in the DNN simply refers to architectures where there have many
layers of neurons between the input and output layers. Representation
learning refers to systems that do not require manual feature engineering,
as they are themselves capable of detecting or selecting the information
needed from the raw data.

The concept of ANNs goes back to the seminal work of McCulloch
and Pitts in 1943 [194], with multilayer perceptron being introduced by
Ivakhnenko and Lapa in 1967 [158]. After several spikes of popularity, the
deep learning revolution started at the beginning of the 2010s, when the
computational capacity, data availability, and sophistication of the archi-
tectures and learning algorithms (backpropagation, . . . ) allowed for one
breakthrough after the other. DNNs can currently match and outperform
human experts in many tasks in which this was unimaginable a decade ago
(image classification, board and video game playing, . . . ), and are known
to provide the best ML solutions (in terms of accuracy, albeit not of explain-
ability), with extraordinary performance, to a huge range of problems, from
speech [130] and image recognition [87], to natural language processing,
drug design, fraud detection and even classification of particle physics
experiment results [57], genomics [297] or electronic health records [232].

In predictive analytics for video games, deep learning has been used
successfully to tackle a variety of problems. See for example Kim et al. [168]
for a churn prediction example, or Guitart et al. for in-game event simula-
tion for AoI [131]. In Sifa et al. [257] deep multilayer perceptron (DMLP)
networks were used to predict expenditure in the game within the next
year.



2.6 deep learning 35

2.6.1 Multilayer perceptron

The deep multilayer perceptron (DMLP) is a class of feedforward network
with layers made up of neurons with nonlinear activation functions. It is
perhaps the simpler of DNNs. All neurons in each layer are connected to
all neurons in the previous and next layer, starting with the input layer,
going through several hidden layers, and resulting in the output layer, as
is shown schematically in figure 2.1. The learning process is carried out in
multiple iterations that receive the name of epochs, in which the gradient
descent algorithm is used to update the weights between nodes in order to
minimise the cost function (for example, the root mean square error). See
for example [24] or [246] for more details.

Figure 2.1: The structure of the multilayer perceptron network. Source: comput-
ersciencewiki.org

2.6.2 Convolutional neural network

A convolutional neural network (CNN) is a DNN architecture based on the
animal visual cortex, and is a regularised version of the DMLP. they are
typically formed by several convolutional layers, followed by pooling [245]
and several fully connected layers, as shown schematically in figure 2.2. In
the convolutional layers, filters or kernels are applied locally (to several ad-
joining inputs), generating successive abstracted feature maps. This means
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that each neuron is connected only to a local region of the previous layer
(instead of all neurons in the previous layer as is the case of the DMLP).
This is what makes them particularly well suited to learn from inputs where
this local connectivity is crucial, such as in image processing or time series
data. They also need substantially less (or none at all) feature engineering

See for example [177, 179, 269, 279] for more details. Examples of their
application to time series problems [177] include, for example, human
activity identification from sensor data [299], system components useful
remaining useful life estimation [241], or stock price prediction [278] or
energy consumption [268, 304].

Figure 2.2: The structure of the convolutional neural network.

2.6.3 Long-short term memory

A Long-short term memory (LSTM) network is a DNN-like architecture par-
ticularly well suited to deal with sequential data, and was introduced by
Hochreiter and Schmidhuber in [144] (which has become the most cited
DL research paper of the 20th century with over 26k citations). They are
a type of recurrent neural network (RNN) designed to deal with long range
dependencies in time series data. The information flow in the LSTM is
controlled by its three gates. The input gate controls the new information
getting it, the output gate the output activation, while the forget gate reg-
ulates which new information arriving is kept and which is discarded.
This fixes, or at least minimises, the problem with exploding or vanishing
gradients that can easily appear in simple RNN through backpropagation.
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LSTMs are the cornerstone of natural language processing (NLP) [300], and
everything language related. They have been successfully used for language
translation and transcription [15, 173, 180, 296]. They can also be used to
tackle basically any problem traditionally approached with classical time
series forecasting, from traffic flow [298] or human trajectories [4], to stock
prices [234]. See [254] for a detailed and pedagogical presentation of its
fundamentals.

2.6.4 Weight initialisation

An adequate weight initialisation of weights is key to effective learning
with NNs. Zero initial weights (no initialisation) can lead to very large or
small loss gradients that could hinder convergence. Random initialisation
can present similar problems, as too large or too small weights will prevent
the NN from learning well. A method widely used today, which is also
the method of choice in this thesis, was introduced in [120] by Glorot and
Bengio. It is typically referred to as Xavier initialisation, and basically con-
sists in sampling the initial weights from a uniform distribution bounded
between ±

√
(6)/

√
(ni + ni+1), with ni and ni+1 the incoming and outgo-

ing connections to the layer respectively. This choice makes the variance
relatively stable across all layers and through the successive activation and
backpropagation.

2.6.5 Training algorithms

There are many approaches to learning the optimal weights for the NN,
most of them based in gradient descent [237]. The method used both in
chapter 6 section 6.5 and in chapter 7 is adaptive stochastic gradient descent
optimisation (Adam), as described in [169]. This method works well with
large datasets and parameter spaces, is computationally efficient, with
relatively low memory requirements, and its readily available for used in
the deep learning framework used (see section 2.11).

2.7 clustering methods

Clustering algorithms aim at grouping objects according to their similarity.
To decide on the similarity of the objects or items considered, they need
to be defined using a set of properties or characteristics, that can be both
numerical and categorical. These span the dimension space in which the
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items live, and where a distance measure can be defined and used to look
which objects are closer and which ones lay far apart. Clustering methods
are an example of unsupervised learning, as there is no labelled data, and
the algorithms used need to look for the structures in the data that make
more sense.

Common distance measures used include the Euclidean distance, the
Manhattan distance, the Hamming distance or the Levenshtein distance. The
distance used in all cases throughout this work was Gower’s distance [126],
as it allows to use dichotomous (or binary), qualitative and quantitative (in
the terminology used in the original paper, the three types are encompassed
by numerical or categorical). It is defined as:

Sij =
∑r

k=1 sijkwk

∑r
k=i δijkwk

(2.36)

where Sij is the similarity coefficient between items i and j, sijk a score that
quantifies the similarity of items i and j with regards to characteristic k
(of which there are r), δijk is either 1 (when items i and j can be compared
using characteristic k) or 0 (otherwise), and wk ≥ 0 the weight given to the
k characteristic (which is zero if and only if the the k property can not be
compared for items i and j).

The following subsections briefly describe four algorithms that are used
in this thesis: k-means, k-medoids, DBSCAN and HDBSCAN. The first two
are centroid base methods, in that items are associated to cluster depending
of their distance to a point of the dimension space that is the centre of that
cluster. The last two methods are density based, in that clusters are defined
depending on the local density of items in the dimension space. Each type
of algorithm comes with its set of advantages and disadvantages that will
be briefly discussed below, and the best choice is normally very problem
dependent. A general detailed introduction to the subject of clustering
can be found in [165], which also presents the centroid based methods.
Clustering methodologies are also discussed in chapter 10 of [159].

2.7.1 K-means

The centroid around items or elements are clustered is the mean of the
cluster. K-means proceeds by minimising the total squared error. Some of
its weakness are that the it is unable to identify clusters of different shapes
(it uses only the distance to a fixed point), and that the number of clusters
needs to be identified beforehand. The latter can be of critical importance in
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that, as all items are assigned to one of the clusters, it is unable to identify
outliers, and can sometime detect spurious (unstable) clusters.

2.7.2 K-medoids

K-medoids works in a very similar way to K-means, but instead of clustering
around the cluster average, it uses as centroid the element belonging to the
cluster that is closest to the average. While more robust that k-means to
outliers and noise, it still suffers from most of the same weakness. namely,
it can not detect clusters with shapes not tending to be spherical, and the
number of cluster needs to be predetermined (or the algorithm ran for
many different number of clusters and then the optimal according to some
validation metric selected).

2.7.3 DBSCAN

Density based spatial clustering of applications with noise (DBSCAN) [86] is a
density based algorithm, which means that it scans the dimension space to
look for areas where the density of items is greater, instead of looking only
to the distance of items to a centroid. It can thus detect clusters of any shape
and identify outliers, and the optimal number of clusters is found in the
process instead of having to be given beforehand. It does however need two
parameters to be manually fixed to run the algorithm: the neighbourhood
radius (in which to look for items close enough to be considered as belonging
to the same cluster), and the minimum number of items to be considered
as defining a cluster.

2.7.4 HDBSCAN

HDBSCAN [44] is the hierarchical version of DBSCAN (the H stands for
hierarchical), and has all of its advantages and in addition only one param-
eter needs to be fixed before running the algorithm: the minimum number
of items in a cluster.

2.8 collaborative filtering

Collaborative filtering (CF) is a broad term referring to a collection of recom-
mendation algorithms. It was designed for systems were users can give
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feedback on which content they like and which they do not (i.e., ratings),
and then generate recommendations using only this user-rating matrix.
This avoids then the need of building user or content features, which makes
the method particularly well suited for cases with a lot of users and or
possible recommendations. They can also be adapted to be used with im-
plicit feedback, i.e., when there are no explicit ratings, some characteristic
relating users and content (e.g. number of purchases, views, clicks...) can
be used to define some implicit rating to build the user-rating matrix. CF
algorithms basically aim at filling the blanks in the user-rating matrix, thus
predicting how much each user would like items they have not rated/for
which there is no implicit metric defined. See [267] for a classical review,
and [54] for a more recent one.

The following subsections describe three of the most widely used CF
algorithms: item-item nearest neighbour models, latent factor models and
bayesian personalised ranking.

2.8.1 Item-item nearest neighbour models

In the spirit of clustering methods, an item-item similarity matrix is com-
puted, where each item is represented by the collection (vector) of ratings
from the different users. For this, a distance metric in the item space needs
to be defined in terms of the (implicit or explicit) ratings, with cosine (co-
sine of the angle between the two item vectors), term frequency-inverse
document frequency (TF-IDF, the frequency of occurrence of a rating scaled
using how often it appears across users) or BM25 (another ranking method
that uses the scaled occurrence rate, also taking into account the number of
ratings associated to each user) being typical choices. This matrix is then
used to both find items close to each given item, and find players with
similar responses to the similar items, and then use this information to
predict user’s missing responses using weighted computations. Nearest
neighbour methods make it very easy to give the reasoning under every rec-
ommendation, but have no flexibility to introduce a measure of confidence
of implicit preferences assumed.

2.8.2 Latent factors models (matrix factorisation)

This algorithm performs matrix factorisation to express the response matrix
as a product of a user and item matrix. If there are n users and m items,
the response or rating matrix is nxm. The user matrix will then be nxk
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and the item kxm, with k the number of latent (unobserved) factors that
are assumed to govern the preference of users for items. This number is a
modelling choice and breaks the original space of the problem into two of
much smaller dimension that can be used to compute missing scores. Matrix
factorisation is often carried out using the singular value decomposition
(SVD) or the alternating least squares (ALS) methods. See [151, 272] for
more details.

Matrix factorisation approaches have many advantages and they can be
used directly over implicit feedback data. Overfitting is easy to avoid by
selecting an adequate regularisation model, in which parameters are often
learn by stochastic gradient descent. Compared to nearest neighbouring
methods, the impact of missing data is smaller and they produce better
results. It is on top of all that very fast, as it does not require estimating
many parameters and does not involve lengthy computations, rendering it
practical for many large scale applications. Its main disadvantage is that
optimisation is carried out regarding only one item.

2.8.3 Bayesian personalised ranking

This method focuses on item-item ranking to output a personalised item
ranking for each user. Optimisation is done for each user, and it can also
deal adequately with missing values. It however always assume that a user
will always prefer an item for which there already is a (positive) response
than all those with no previous history (non-observed items), which is
a very strong limitation depending on the intended use of the system.
See [233] for details.

2.9 validation metrics

Different metrics can be more or less useful depending on the context
when trying to assess goodness of fit for estimations and predictions. For
regression problems, given N entities of interest (players in all cases in this
thesis), each with predicted or estimated value pi, and observed or real
value oi:

• Mentions to percentage error in this work refer to the group deviation
defined as:

%error = ∑N
i=1(pi − oi)

Nomax
(2.37)
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• The mean absolute error (MAE) is defined as:

MAE =
∑N

i=1 |pi − oi|
N

(2.38)

I.e., it is the average value of all absolute errors.

• The root mean squared error (RMSE) is defined as:

RMSE =

√
∑N

i=1(pi − oi)

N
(2.39)

It does thus give an idea of the spread of the errors and is scale-
dependent.

• The root mean squared logarithmic error (RMSLE) is

RMSLE =

√
∑N

i=1(log(pi + 1)− log(oi + 1))
N

(2.40)

It is also scale-dependent, but does not over penalise large differences
when both observation and prediction are huge. It also penalises
more under predicted values than over predicted ones (in that for
y = log(x) there are larger ∆ys corresponding to the same ∆ys for
smaller x value)

• The normalised root mean squared error (MRMSE) is

NRMSE =
RMSE

omax − omin
(2.41)

It is more appropriate than RMSE to compare datasets at difference
scales.

• The symmetric mean absolute percentage error (SMAPE) is

SMAPE =
100%

N
∑N

i=1 |pi − oi|
(|pi|+ |oi|)/2

(2.42)

This accuracy measure is based on relative errors. It is invariant under
linear rescaling and is not sensitive to outliers.
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See [154] for an interesting discussion on some of these metrics.
For binary classification problems, the receiver operating characteristic curve

(ROC) area under the curve (AUC) is a good metric to compare model
performance [34]. The ROC curve is a plot of the true positive rate against
the false positive rate for different thresholds. It thus contains information
about both sensitivity and specificity. It can be used to decide upon the best
threshold, and to compare performance of different models with respect to
the aforementioned thresholds. To summarise goodness of classification in
a single statistic, the area is generally a good option. See for example [34,
93] for more details.

The Brier score (BS) [37] is used in probabilistic forecasting to measure
accuracy, and is normally defined as:

BS =
1
N

N

∑
i=1

(pi − oi)
2 (2.43)

where pi is here the probability predicted for the entity (player) i, and oi
the observed binary value (0 if the event does not happen, 1 if it does).
As in the metrics described above, N is the number of entities of interest
(players in this case). In the case of survival models, one can define a BS at
each time step. The integrated Brier score (IBS) will then give an summary
statistic reflecting the overall accuracy in the probabilistic predictions across
all times and can be written as

IBS =
1

max{ti}

∫ max{ti}

0
BS(t)dt (2.44)

where BS(t) is the (time dependent) Brier score, and max{ti} the final time
step considered. See for example [128, 203] for more details.

2.10 discrete choices and the ising model

The name of discrete choice theory, and the rigorous and systematic devel-
opment of a consistent framework for its study, can probably be rightly
attributed to economists such as Blume, Brock and Durlauf in the last
decade of the 20th century, who already noted its links to some statistical
physics models when taking social interactions into account [31, 38, 79].
The choice making process is described by agents or individuals whose
decision making process is aimed at maximising their payoffs, as charac-
terised by a certain utility function. Similar setups as those used in this
work however had already been introduced earlier on by Föllmer [97] and
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Granovetter [129], and the Ising model had also already been explicitly pro-
posed in similar contexts by some physicists [42, 107, 109]. Work previous
to the aforementioned, such as that of the pioneer in statistical modelling
and Nobel prize award winner McFadden [195, 196], typically did not take
social interactions into consideration. There are some remarkable excep-
tions, such as the seminal paper by the too Nobel Laureate Schelling on
racial segregation [242] (analysed from a statistical physics point of view
in [67, 116, 170]) among other of his work [243, 244]. Worth noting are
also Becker’s contributions [21, 22] as one of the first authors to explicitly
introduce these concepts to the study of sociology.

Although these approaches have been explored earlier and more ex-
tensively in the field of economics, it was in the context of the study of
some sociological problems that the effect of these interactions was first
introduced. This basically amounts to considering a social term in each
individual’s utility, by which it is also dependent on the perceived choices
from other individuals. This is sometimes referred to in the literature as
social utility with externalities or interdependence. Both terms are used dif-
ferently in this section and in chapter 9, where the term interdependence
makes reference to relations between different choices for each individual,
or between the same choice in different groups, and externalities to factors
unrelated to social or choice interaction.

The deep relation between some models of condensed matter and some
formulations of discrete choice theory with social interactions is hardly sur-
prising upon some reflection. It were actually the social scientists building
the framework that first noted these similarities and exploited the tools of
statistical physics to study their problems of interest [31, 38, 79], as will
be outlined in next section 2.10.1. But it is in any case straight forward to
use models of ferromagnetism to mimic individuals with a tendency to
align their opinions (spins), with some of the earliest works in this sense
having been contributed by the physical community [42, 107, 109]. Not only
is it interesting to think what the social sciences models associated to well
known models of condensed matter could be (and the wealth of knowledge
ready available about them put to use immediately). The tools of statistical
physics, designed to understand how the macroscopic (or collective in the
socioeconomic context) characteristics emerge from the interactions of the
micro constituents of the system (individual players in our particular case),
can be applied to choice theory problems with no equivalence to a con-
densed matter model. An example of many such applications can be found
in [208], where the maximum entropy principle is invoked in the discussion
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of which functions are well suited to formally study market organisation in
a non interaction framework, and arguing in favour of the logistic one.

The direct relation with Ising type models, and the discrete choice frame-
work discussed in this section, is specifically designed to deal with binary
choices, i.e., decisions for which there are only two possibilities. A lot of in-
teresting problems obviously do not fall into this category, both in the realm
of general social sciences (which party to vote, which brand of a particular
product to buy, which degree to study at university, what type of transport
to use, how many children to have, in which city or neighbourhood to
live. . . ), and in that of video games that is our specific object of interest (in
which of the events that is going on to take part, which item to purchase,
which of several actions to take, which of several opponents to face . . . ). The
tools of statistical mechanics are suitable too to study these problems, and
there are in fact models form condensed matter physics which could mimic
several discrete choices (such as the Heisenberg [199] or Potts model [294]).
They are however technically much more convoluted. As will be described
with more detail in chapter 9, the aim of using these models in this thesis is
that of acquiring qualitative insights about choice making in social video
games (or social contexts generally speaking), so focusing on binary choices
seems a good place to start. Further more, many interesting problems are
indeed binary in nature, and many of the non binary can be reframed as
such and still provide many interesting insights about the original problem.
Again, examples abound in the social sciences: whether to vote or abstain,
what to vote for in a no/yes referendum, whether to buy a certain product
or not, whether to go to university or not, whether to use public transport
or not, whether to have children or not, whether to live in urban or rural
areas. . . , and more generally speaking, whether to believe or not in any
particular precept, or to adopt or not any particular lifestyle trait. In the
video game realm there are also countless examples of great interest, from
whether to purchase any particular item, take part in any particular event,
face any particular opponent, take any particular action. . . , to the even
more basic choices, decisive for the success of any game, and that will
be studied quantitatively in detail throughout this thesis, of whether to
continue playing or not, and whether to purchase in a free2play game or
not.

Indeed, the discrete choice theory framework has been used to study a
wide variety of problems in the social and economic sciences, such as that
of demand [124, 125, 188, 201, 287, 288], election results [26, 98], crime [119],
fashion [209], musical choices [32], rumours [105] or political opinions [107,
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201, 271]. It basically consists in treating individuals as agents whose
decision making process is always aimed at maximising and individual
utility function, that can have both a deterministic and an stochastic part.
Although they do typically assume rational behaviour (which has proofed
to be questionable when trying to understand certain human behavioural
patterns), in that all agents are making choices in their best interest, there is
room in both the utility definition and possible stochastic (uncertain) nature
of the model to capture at least some of this apparent irrationality. Outside
the realm of decision theory in a strict sense, similar setups have been used
to study other socioeconomic questions which could also be relevant in the
study of in-game behaviour. These include social learning, public goods
games and resource allocation, and hierarchical structures and coalition
formation among others [31, 46, 97, 111, 123, 170, 184, 188, 208, 217, 287].
Another particularly interesting related approach is the use of a diluted
Blume-Capel model of 3-state sites, defined on different complex network
topologies, to understand cooperation and organisation [95].

In this section the relationship between socioeconomic utility scenarios
and statistical mechanical formulations as they were first discovered in the
discrete choice theory framework are outlined in subsection 2.10.1. The very
well known behaviour of the simplest model to be used when considering
social interactions, the Ising model, is summarised and formulated in terms
of choices in video games in subsection 2.10.2. Similarly, the consequences
of using an extension of the Ising model that includes randomness in
the individual preferences, the random field Ising model (RFIM) is briefly
described in subsection 2.10.3.

2.10.1 The socioeconomic utility scenario and statistical mechanics

Consider a group of N individuals or agents, and let us consider the binary
choice si = ±1 they need to make, where i denotes the individual making
the choice. The binary choice problem then consists in defining a utility
function Vi, that each individual will attempt to minimise through their
decision making. Very generally, this could be any function depending on
the choice of the given individual si, its belief or knowledge of the rest of
the group’s choices ~s: Ei(~s), their personal preferences, characteristics or
circumstances hi, and a random shock εi(si) that can depend both on the
individual and the particular choice they make. Considering this random
noise to be additive yields an individual utility that can be expressed as:
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V(si, hi, Ei(~s), εi(si)) = U(si, hi, Ei(~s)) + εi(si) (2.45)

where U will be denoted the deterministic utility and εi(si) as the random
utility.

Following Durlauf, Brock and Blume [31, 38, 79], further additive assump-
tions allow to rewrite as the utility as:

V(si, hi, Ei(~s), εi(si)) = u(si, hi) + S(si, Ei(~s)) + εi(si) (2.46)

Here u is the so called private deterministic utility, which will be considered
in what follows to be given by u(si, hi) = hisi, and εi(si) is the private random
utility. The individual preference hi gives the deterministic difference in
payoffs in absence of social interactions, and is sometimes referred to
as idiosyncratic willingness to adopt (IWA)1. The social deterministic utility S
considered in [31, 38, 79] can be expressed as:

S(si, Ei(~s)) = Ei

(
∑
j 6=i

Jij

2
(si − sj)

2

)
(2.47)

where Jij ≥ 0 is the strength of the coupling to individual j choice, i.e., the
desire of the agent i to align its opinion to that of j.

The problem to be solved can be thus expressed as:

maxsi∈{−1,1} hisi + Ei

(
∑
j 6=i

Jij

2
(si − sj)

2

)
+ εi(si) (2.48)

As will be soon discussed, this can be interpreted as a ferromagnetism
model where the first term is equivalent to an external field, the second to
spin interactions, and the last one is random noise.

Now, assuming a logistic distribution for the difference of the random
payoff terms εi(−1)− εi(1)

P(εi(−1)− εi(1) ≤ z) =
1

1 + e−βiz
(2.49)

where βi > 0, and taking into account that s2
i = 1 the social utility term can

be rewritten:

1 In demand contexts, it is sometimes useful to express the IWA as hi = bi − p, where p is the
price of the item or product, and bi the idiosyncratic willingness to pay (IWP) of individual i. This
allows for the study of the demand curves or dependence of the demand with the price [124,
125, 251, 287].
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S(si, Jij, Ei(sj)) = ∑
j 6=i

Jij(siEi(sj)− 1) (2.50)

the probability of each individual’s choice conditioned to its own prefer-
ences and its perceptions of the rest can be expressed as

P(si|hi, Ei(sj) ∀j 6= i) = P(V(si = 1) > P(V(si = −1))) (2.51)

= e(βihisi+∑j 6=i βi JijsiEi(sj)) (2.52)

The expectation value of the choice of the system s = 1
N ∑i si can be

computed as the possible values 1 and -1 multiplied by their respective
probabilities, which can be computed using equation 2.51. The expected
value of each individual’s choice is thus

< si >= tanh

(
βi

(
hisi + ∑

j 6=i
JijsiEi(sj)

))
(2.53)

yielding a set of N equations that characterise the system. This is equivalent
to the Curie-Weiss model’s equation of state

s = tanh(β(h + J0s)) (2.54)

after setting β to be constant over all agents by redefining the rest of the
parameters, whenever Ei(sj) = s, Jij =

J0
N and hi = h for all agents. That

is, the system of N individuals making a binary choice, when each of
them is equally influenced by all other members of the group, and where
all members of the group have identical preferences, and their subjective
expectations for the rest match the mathematical expectation (what is
sometimes referred to as rational expectations in the social sciences literature),
is completely equivalent to the mean field Ising model of ferromagnetism.
The spin is then analogous to the binary choice, J0 their total interaction,
the identical preference or deterministic private utility is an external field
h (which will be referred to as IWA or opinion field), and the expected
choice is equivalent to the physical system’s magnetisation. In this setting,
maximising total utility is equivalent to minimising free energy, and the
individual utility V is analogous to each particle’s energy with changed
sign. Private random utility is deeply related to the temperature. Using a
constant β = 1

KBT is equivalent to studying the Ising model in statistical
equilibrium, i.e., to using the canonical ensemble. The use of this approach



2.10 discrete choices and the ising model 49

is thus not really intended to study the dynamics of any such system
(unless this is varying slowly from a state of thermodynamical equilibrium
to another). Dynamical approaches to discrete choice making, sometimes
referred to as opinion dynamics, exist and are of a lot of interest (see for
example [26, 98, 105, 184, 209, 251, 265, 270, 271, 274, 287, 288, 295], or [46,
111] for reviews).

The system is represented by the mean field model because of the de-
scribed rational expectations assumption and because there is identical
interaction with all other members. As in the study of magnetisation, this
is equivalent to making each individual interact with the average choice,
i.e., with their accurate perception of how the group is divided between
both options. This is certainly the case for many problems concerning video
games in which players virtually interact and are thus exposed to the pur-
chasing and playing decisions of their peers. The mean field approximation
is well suited for the study of many interesting discrete choice theory prob-
lems where a tendency to mimic a general trend wants to be modelled,
with the advantage of been analytically tractable.It has thus been profusely
used in this context [32, 38, 79, 80, 104, 107, 109, 111, 124, 125, 208, 209,
217, 251]. There are many interesting works exploring what happens when
these conditions are relaxed, be that in regards to the rational expectations
themselves [60, 119, 217, 251], the use of non identical couplings [79, 85,
287], or through interaction with some local neighbourhood [26, 38, 79, 97,
98, 119, 123, 201, 265, 270, 271, 288], the use of dynamic ones [111, 274], or
of interactions in a complex network [26, 123, 295]. This work is limited
to the mean choice approximation only. It should however, as shown by
ferromagnetism models, give a reasonable approximation in many cases
where this does not hold (at least far enough from critical regions).

The less realistic approximation certainly appears to be that of constant
IWA or constant external field, as it allows no room to encode the preference
heterogeneity present in any group. Examples of non constant IWAs can
be found in [38, 60, 104, 111, 124, 251]. While some randomness will be
introduced in section 9.5 of chapter 9 (as an extension to interdependent
choices of [124]), most of the discrete choice related results in this thesis
refer to the homogeneous population case described by constant h, and a
lot of it to the h = 0 case. It is an interesting starting point, particularly
when studying two interdependent choices, as it allows to identify the
regions of the parameter space where social and/or choice interaction can
make a difference. In regards to the zero field case, this describes the case
where individuals do not have any particular preference, and any payoff
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is related to social gains. They could be loosely understood as describing
fashions or traditions. In video game contexts, they can however be useful
to understand situations in which the number of players opting for one
particular option (taking part or not in an event for example), is indeed
what provides most (if not all) of the attractiveness to other players. This
situation can be described as corresponding to homogeneous (all agents have
equal IWA and social utility term) unbiased (in that they do not have a
favourite option outside what social interaction dictates) populations.

It is worth mentioning that the reasoning above holds for populations of
any size. It is indeed an statistical model, so computed expectation values
will be more accurate the larger the population is, but in no moment did
the thermodynamic limit play a role in the deductions of this section. In the
study that will follow for interdependent choices in chapter 9, however, the
large population limit will be used, and thus finite size effects not consider
(see [104, 109, 111] for a study of finite size effects in similar setups).

2.10.2 The Ising model

This section compiles well known results of the Ising model in mean field
approximation, solved exactly in the 1930s, and discusses its implications
when used to study binary choices. Results presented in this section were
published during the first half of the 20th century and can be found in many
statistical physics textbooks. More details can be found, for example, in [19],
while [40] provides a historical review. Work pointing out its implications
when used to study problems in the social sciences context, which will also
be summarised in this section, include [38, 79, 80, 104, 107, 109, 209].

The Hamiltonian of a single infinite range Ising model with constant
external field for N particles with si ± 1 is

H = − 1
N

∑
(i,j)

Jijsisj

−∑
i

hisi = −
1

2N

(
J0 ∑

i 6=j
sisj

)
− h ∑

i
si (2.55)

where the sums on i are over all N agents, sums on (i, j) over all possible
N(N−1)

2 different pairs of agents (1 ≤ i < j ≤ N) and sums on i 6= j over
all pairs (1 ≤ i ≤ N, 1 ≤ j ≤ N, i 6= j). The spin si represent agent i choice
(si = +1, decide in favour; si = −1, decide against), Jij is the spin coupling
(or that between agent i’s decision and agent j’s decision), and hi = h a
constant external field. We will be considering identical coupling between
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all individuals (Jij = J0 for all i, j). Note that this Hamiltonian is extensive
(both terms scale as ∼ N).

As has been discussed in the previous section 2.10, this is equivalent to
considering homogeneous populations, in that all individuals are therefore
subject to identical opinion fields, and are subject to social interactions of
the same sign and strength with the same agents (all the rest). Heterogeneity
can be introduced in both the coupling and/or the field through the use of
random fields and/or spin glass models, that have also been extensively
studied in the physical literature [29, 59, 121, 200, 222, 301].

In the mean field approximation equation 2.55 takes the form:

H ≈ 1
2

Js2 −
(

1
N

Js + h
)

∑
i

si (2.56)

where s = 1
N ∑N

i=1 si is the average magnetisation or choice, and J =

∑j( 6=i) Jij = (N − 1)J0. In the thermodynamic limit this yields

H ≈ N
2

J0s2 − (J0s + h)∑
i

si (2.57)

To compute the model’s partition function in the canonical ensemble,
the 2N possible spin configurations is weighted with the corresponding
Boltzmann distribution

Z = Tre−βH = e−
β
2 Js2

(
2 cosh

(
β(

J
N

s + h)
))N

(2.58)

The free energy can therefore be written as

F =
1
2

Js2 − Nβ ln
(

2 cosh
(

β(
J
N

s + h)
))

(2.59)

and the free energy density of the system

f =
1

2N
Js2 − 1

β
ln
(

2 cosh
(

β(
J
N

s + h
))

(2.60)

which in the thermodynamic limit can be expressed as

f =
1
2

J0s2 − 1
β

ln (2 cosh (β (J0s + h))) (2.61)

The order parameter of this system is the average choice (or magnetisa-
tion) s. In the paramagnetic or unpolarized phase s = 0 and there is no order
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or choice alignment in the group. Note that we are discussing statistical
equilibrium, so individuals can change their opinions, but on average half
of the population will be deciding against and half in favour. In the only
other possible phase, the ferromagnetic or polarised phase2, s = ±m with
0 < m ≤ 1. In this case the individuals to align their choices, and order
emerges.

Minimising the free energy yields the equation of state (first arrived at by
Bragg and William in 1934):

s = tanh[β(J0s + h)] (2.62)

for J0 6= 0. At high temperatures (β→ 0) the system will be in paramagnetic
(no prevalence of a particular option) even in the presence of large fields or
preferences h. For T = 0 however, β → ∞ and the whole population will
align their choices (s = ±1). For all other temperatures the system can only
be in paramagnetic state if h = 0.

There is a continuous second order phase transition that can be studied
by linearized the equation of state 2.62 for h = 0 and s << 1

s = βJ0s + O(s3) (2.63)

yielding therefore Tc =
J0
kB

(for constant J0) or J0c =
T
kB

(for constant T) as
critical values for h = 0. For J0β < 1 the only stable state is paramagnetic,
which becomes unstable (a local maximum of the free energy) for J0β < 1,
where two physically equivalent (equally probable) with finite spontaneous
magnetisation or choice alignment (of same absolute value and opposing
sign) are the equilibrium states. Magnetisation is plotted J0β in black for
the h = 0 case in figure 2.3 (both plots).

Now let us consider the h 6= 0 case. For J0β < 1 the minimum of the
free energy 2.60 moves from s = 0 to a finite value of absolute value
0 < m ≤ 1 with sign that of the h (ferromagnetic phase). Here there is no
phase transition in strict sense, but rather a continuous change through the
values of the average choice when varying h, with s = 0 corresponding to
h = 0. Figure 2.4 plot (a) shows how the magnetisation or average choice
varies with h for J0β < 1.

For J0β < 1 but low enough absolute values of h, the equation of state
2.62 has now three critical points, two of them local minima of the free
energy with a local maximum in between. The multiple equilibria regime

2 For the case of negative coupling J, which will not be considered here, it would be anti-
ferromagnetic phase.
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Figure 2.3: Average magnetisation is plotted against βJ0 for (a) Different negative
values of h (b) Different positive values of h. Black line h = 0, yellow
h = 0.01, orange h = 0.1 and red h = 1. Dashed lines represent non
stable critical points. Own elaboration. The image has previously
appeared in [71].
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Figure 2.4: Average magnetisation is drawn against h for (a) J0 < kBT and (b)
J0 > kBT at a fixed finite temperature and coupling. (c) Shows (b)
removing metastable or spurious solutions. Own elaboration. The
image has previously appeared in [71].
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is not broken (for weak IWA) but rather shifted, and while both local
minima have still opposing s signs, they are now not symmetric and have
different absolute values. Unlike in the h = 0 case however, these states
are not physically equivalent. Only one of them is the absolute minimum
of the free energy 2.60 (that with s aligned with h) and thus the actual
ground state of the system, while the other is a so called metastable state.
This means that a system at finite temperature (that allows for fluctuations)
will always eventually end up in the ground state, which is the attractor
for a larger region of the s− h plane. Depending however, on where the
system was prior to the onset of the field, and the relative magnitude of
this and the temperature, the system could end up in a metastable state
for a relatively long time, so their existence can actually be very relevant.
The dependence of a system’s state on its previous history is known as
hysteresis. This implies that, in this situation, changing in the system can
not be undone by reversing the process. For large enough values of the
field h however, there is only one possible state, always ferromagnetic, with
magnetisation of the same sign as the field, and higher absolute value than
that of the h = 0 case. This situation is depicted in figure 2.4 plot (b), while
plot (c) shows the same relation removing spurious solutions (metastable
states that will eventually decay to the ground state depicted).

Bellow the critical temperature, the average magnetisation or choice can
be considered to made up by some due to the action of the field or IWA
h, and some spontaneous magnetisation (spontaneous choice alignment in the
decision context) emerging from the interactions

s0 = lim
h→0+

s(h, T) = tanh(βJ0m0) (2.64)

which behaves identically as the total magnetisation when h = 0 and
becomes negligible at high enough temperatures (statistical fluctuations are
too large for significant alignment to occur) or fields (that then dominate
the choice alignment).

Figure 2.3 shows the dependence of the magnetisation s with J0β for
different values of positive (a) and negative (b) fields, and illustrates the
previous discussion. For h = 0 the system is either in paramagnetic state or
in one of the two equally probable ferromagnetic states. For large enough
fields there is only one solution, with magnetisation of the same sign as the
field, an absolute value larger the lower the temperature is. For low enough
values of h there are tow possible states, but in this case one of them is
metastable.
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The phase diagram of the mean field Ising model is therefore as follows.
The parameter space is three dimensional h, J0, KBT. For h = 0, the (J0, KBT)
cross section has a second order phase transition across the line J0 = KBT.
For KBT > J0 the system is in paramagnetic state, and for KBT < J0 in
ferromagnetic states with two physically equivalent possible states with
different sign and same absolute value of the average magnetisation. Moving
to the h 6= 0 sections, the system is always in ferromagnetic state with a
single magnetisation ground state of the same sign as the field, although
for sections of low enough h there is an additional metastable state. When
looking at the other two sections h− KBT and h− J0 are also ferromagnetic
except for a paramagnetic segment for h = 0 delimited by the critical point
J0 = KBT. Across this segment, there is a first order phase transition in
h as the magnetisation changes abruptly. Above the critical temperature
however, the change is smooth and there is no phase transition.

The key features of the Ising model from an statistical physics point of
view, i.e., those emerging from the interactions between the constituents, are
the existence of both first and second order transitions, and of metastability
and hysteresis. These have profound implications when discussing the
binary choices under social influence equivalent:

• Microeconomic specification of the model that may not uniquely determine
its macroeconomic properties, as there is more than one possible collec-
tive state for weak enough private deterministic utilities (although
only equally probable and thus stable for zero private deterministic
utilities). If using this approach to study demand, this means that
there can be both a high and low demand possible states associated
to the same price.

• Regions where social utility counts and regions where it does not. There
are distinct phases depending on the parameter values. In some only
private deterministic utility rules the outcome, while in others social
influence (spontaneous magnetisation) can have a decisive impact the
decision making process.

It is also worth stressing the role played by the β = 1/KBT as some sort
of social permeability [107], in that it is the inverse socioeconomic temperature
T. The latter accounts for the possibility of statistical fluctuations, hence
codifying the uncertainty about individual choices. It is a measure of
how likely it is for an individual to make a choice in contradiction to
what their deterministic utility is dictating as providing a better payoff.
Depending on the intended use of the model and/or the system it is meant
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to represent, it can have several interpretations. It could simply reflect
the lack of knowledge about all details affecting the individual’s decision
process. It could have however a more transcendental meaning in terms of
free will or a fundamental impossibility in predicting individual choices. If
we consider all rational elements are included in the utility, then it measures,
in a very literal sense, the probability individuals have of making irrational
choices. It introduces randomness in the system (varying with time or
annealed disorder in condensed matter phrasing) even when couplings an
IWAs are constant. As the introduction of more and more randomness
tends to make the problems more difficult to formally understand, many of
the works considering heterogeneous private deterministic utilities (fixed in
time or quenched disorder in statistical physics language), do so fixing T = 0,
i.e., in the deterministic or purely rational case. These correspond to Nash
equilibria [210, 211] when describing socieconomic phenomena 3. This will
also be the case of section 9.5 chapter 9 in this thesis.

Note that while the KB will be explicitly written when it appears, the use
of dimensionless spin or decision variables si is equivalent to the natural
units choice h = KB = 1 in the ferromagnetic counterpart. As a result, in
the discrete choice model utility, the utility, social coupling and opinion
fields are expressed in the same units. For many problems of interest these
will be dimensionless, and the payoffs can be thought of as representing
abstract qualities such as happiness, well being, satisfaction or reputation.
For other problems, they will represent concrete surpluses or deficits, for
example in many in practically all systems studying demand. In the case
of video games, depending on the specific use, units such as experience
points, in-game lives, playtime, in-game (as well as real) currency. . . could
be of interest depending on the decision under study.

The metastable states have an interesting interpretation in binary choice
contexts. It represents a collective state that can persist (at least for a while)
in time due to individuals picking a choice that is actually not in their best
interest, and this due to social interactions with their peers and a previous
history where that choice was in fact the best option. Durlauf and Brock
used this to reconcile both typical explanations of social pathologies (say,
crime or school dropout prevalence), that of economic fundamentals (i.e.,
people for which crime is indeed the best option from a utility point of
view) and social norms (i.e., where the situation is so pervasive in their

3 The Nash equilibrium of a non-cooperative game (concept stemming from game theory) is the
solution in (static) equilibrium where all players are aware of the choice of strategy of the rest,
and no player has anything to gain from changing their own strategy
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environment that they continue to pick this option by imitation even if they
would be better off deciding against) [79].

In the context of video games it can similarly be used to understand
player behaviour. Imagine there are is an event in which players can decide
take part and face other players, and that in doing so they can in principle
earn higher rewards or progress more rapidly in the game than by not
taking part in it. In this situation, it is to be expected than more than
half of the players will be taking part in the event (and a larger fraction
the smaller the statistical fluctuations considered). Imagine this situation
changes slowly over the time, and the rewards associated tot taking part in
the event (be that in terms of in-game currency, experience points or other)
diminish until they are below than the payoff associated to playing without
participating in the event. While the difference is still not too large (i.e., for
weak IWA), it is possible that a large part of the players will still decide
to join the event and perpetuate this collectively reinforced option that is
now no longer in their best interest. Note that this social utility term can
mimic the tendency to imitate (a player decides if most people are choosing
this it must be better without analysing it properly), or can be due to a real
payoff (players need to face other players to earn rewards anyway, and so
participating may mean a greater variety of players of which to obtain these).
Even in the latter case (and even more so in the former) are the players
not choosing wisely. Even if due to the amount of players in the event the
rewards are higher for each individual than if they do not take part, if most
of them decided against (and thus socially reinforcing the option of not
participating), the rewards would be even higher. Note however that the
metastable character of this state anticipates that, eventually, enough players
will change their mind to make the situation collapse and the collective
outcome change drastically (first order phase transition).

2.10.3 The random field Ising model

As has been already noted, the introduction of randomness in the external
field (affecting the private utility term) or coupling (affecting the social
utility term), can be used to model the varying individual preferences and
interactions across the population. Models of ferromagnetism including
this type of randomness or quenched disorder have already been extensively
studied in physics [59, 121, 200, 222, 301].

In this section, the implications of using a Random Field Ising Model (RFIM)
instead of the conventional Ising model to study a choice making problem
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are outlined. It makes use explicitly of the socioeconomic rather than
the statistical physics formulation used in the previous section, following
Gordon et al. [124].

Consider the system made up by N individuals making a binary choice.
If agent i’s choice wi can take values 1 (codifying adoption) and 0 (non
adoption), and depends on their individual preference given by their IWA
Hi, and their propensity to imitate agent j Jij, their utility can be expressed
as:

Ui =

(
Hi − P + ∑

j∈ni

JijEi(wj)

)
wi + εi(wi) (2.65)

where ni is the individual’s neighbourhood (made up by the agents with
whom they are prone to align their choice), Ei(wj) represents their ex-
pectation on agent j’s choice, and εi(wi) is a random shock allowing for
uncertainty in the individual decision making process 4. The price P is
included in case the decision under study concerns a purchase (in which
case Hi is the IWP). If this is not the case it can be simply set to 0. If the dif-
ference of random shocks for the two options follow a logistic distribution
across the population:

P(εi(wi = 0)− εi(wi = 1) ≤ z) =
1

1 + e−βz (2.66)

the resulting system is equivalent to considering a RFIM.
Considering that the all individuals have rational expectations Ei(wj) =

wj, and that all players interact with all others with the same strength, is
equivalent to studying the RFIM in mean field approximation. IWAs are
considered to be independent identically distributed (iid) variables charac-
terising the population towards the decision making process. What follows
considers the zero temperature case only, i.e., the system is deterministic
and all agents completely rational. In this case, the utility of equation 2.65

can be written as

Ui = Siwi (2.67)

4 Note the use of a different notation from the previous section for the binary choice, that will be
maintained throughout this thesis, indicating the options here are codified as 0 or 1 (instead of
-1 and 1). This can be convenient as it very easily codifies non-adoption/adoption, making the
average choice identical to the fraction of adopters. Both notations are used in this sections to
facilitate comparisons to different previous works of which some of the content of this thesis
is an extension.
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where Si is the surplus individual i will gain from adopting, and Si =
Hi − P + Jµ for µ = 1

N ∑i wi the fraction of adopters and expected choice.
To maximise their utility, players will decide depending on the sign of their
surplus, and in the thermodynamic limit

µ = P(Hi − P + Jµ > 0) = P(Hi − H > S) (2.68)

where H is the average opinion field or IWB, and S = H − P + Jµ the
average surplus.

A useful normalisation of the parameters is given by dividing all of
them by the IWB’s standard deviation σ: j = J/σ, h = H/σ and p = P/σ,
which allow for the expression of all relevant population’s characteristics
(or the exogenous price) to be measured in terms of the typical scale of the
preference distribution.

As is discussed in detail in [124], based only on properties probability
distributions, it can be inferred that the demand is a decreasing function
with the prices. For smooth unimodal IWB distributions, there will be a
region (for large enough j) of the h− p-j phase diagram where a low and
high demand solution exist (these are in fact multiple Nash equilibria), i.e.,
demand curves can be multiple valued and non-monotonic. Outside this
region, there is a single well defined equilibrium, and a phase transition
takes place at its borders. For multimodal distributions, there will be several
multiple equilibria regions, with the possibility of more than two of these
to simultaneously exist.

2.11 software used

Analysis and predictions carried out with SSMs (chapter 4) were done with
the datetime, numpy [216], pandas [198] and statsmodels [250] libraries for
Python.

All survival analysis (used throughout chapters 5 and 6) predictions were
carried out using the pysurvival [99] and lifelines [69] python libraries.

Conditional inference ensembles were used for binary classification (chap-
ter 5 section 5.3 and chapter 6 section 6.4) using the cforest implementation
of the partykit R package [148].

LTV computations (chapter 6 section 6.5) using parametric models were
performed using the BTYDplus package for R [227], and with TensorFlow [1]
for Python when using deep neural network architectures.

Clustering (chapter 8) was performed using the pyclustering (for k-means
and k-medoids) [215] and hdbscan (for the HDBSCAN algorithm) [197].
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Gower’s distance used in the clustering was computed using the cluster
package in R. The CF was performed using the implicit python library [100].
The ERT ensembles and and XGBoost used in the same chapter were
used as implemented in the R packages extraTrees [258] and xgboost [55]
respectively.

Python libraries used to carry out the numerical analysis using the
Newton-Raphson algorithm in chapter 9 sections 9.2.3 and 9.3.3 can be
found in https://github.com/anafrio/matmetpy/rootAlgo.py.

All plots were produced using the matplotlib [152] library with python,
the ggplot2 [291] package for R, or gnuplot [292].



3
B A S I C P L AY E R P R O F I L I N G

Always remember that you are absolutely unique. Just
like everyone else.

— Margaret Mead

A common approach to the study of human behaviour in different con-
texts includes their grouping in a meaningful way, such that it facilitates
the understanding of the behaviour under study. It can be done in terms of
a single characteristic or combining multiple (with the help, for example,
of the clustering methods described in chapter 2 section 2.7), and using
demographic, geographic, behavioural and social variables, among others.
This process is sometimes referred to as profiling or segmentation. The termi-
nology comes from marketing studies, with mentions of the term market
segmentation appearing in the literature as early as 1956 [261], and where it
has continued to be an object of extensive study (see for example [20] for
an earlier review, or [127] for a more recent one). The definition of certain
groups of interest to better understand a particular problem is however
obviously ubiquitous in the social sciences as an approach.

In video games, the term usually used is that of player profiling or player
clustering. Note this generally refers to groups defined in terms of the in-
game player behaviour or characteristics, rather than those of the actual
physical player (although for some characteristics this is indistinguishable,
and for others there will obviously be interesting correlations between
both). In this chapter, a very basic segmentation is defined, that allows
for the classification of players depending on whether they are active or
not, and whether they are purchasing or not. It is in some sense more of
a compilation of basic terminology than an actual profiling, but as will be
seen, it is not as straight forward or exempt of subtleties as it may seem at
first. It can also be the starting point, in a top bottom approach, to building
a structure with different levels of segmentation complexity, by further
subdividing and combining the groups described in what follows.

Other interesting attempts at player profiling can be found in [17, 62,
77, 78, 239]. In chapter 7 the use of engagement predictions to generate
meaningful groupings is discussed, as was first proposed in [72]. The
concepts and categorizations described in this chapter are outlined in [132].

61
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Most of them, however, were more or less explicitly being used in previously
published work, so should not be considered as original contributions of
this thesis.

3.1 purchasing behaviour

The video game business model has changed very much in the last years,
with most titles being online and free-to-play, and most of the revenue
coming from in-app purchases. Typically, in these games, less than 5% of
the players will ever make a purchase (around 1,5% for AoI, see chapter 1

section 1.2 for more details). This makes one very important distinction that
will be made between players be that of whether they are paying users (PUs,
those that have made at least one purchase), or non paying users (non-PUs,
those that have never purchased in the game).

This of course does not mean that PUs are frequently purchasing. To
distinguish those that are actively spending the concept of purchase churn
will be introduced in section 3.4.

While in regards to AoI throughout this thesis, anything referring to
spending should be understood as actual purchases (in real money), the
same logic can be applied to virtual purchases (in virtual in-game currency).
Depending on the game, virtual currency can be purchased and/or earned
in the game. In some titles it will be essential for in-game progression, in
others it will only allow for certain customisation and quirks. In some role
type games, it very also be of utmost importance to understanding game
dynamics and player behaviour for many such games. There are however
no virtual sales in AoI, so no data on in-game virtual spending will be
analysed or modelled. Much to most of what will be mentioned throughout
this thesis in regards to purchasing engagement and behaviour, however,
can be directly applied to its virtual counterpart in games where such data
is relevant and available.

3.1.1 VIP players or whales

It is also interesting in many exercises to focus on the top spenders, which
receive the name of VIP players or whales. Not only are these of obvious
interest to studios, they literally are the group of players more invested
in the game, and thus can shed light on the behaviour of very engaged
players.
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In this work, a player becomes VIP after their accumulated expenditure
reaches a certain amount, that will be referred to as whale or VIP threshold.
This threshold will vary from game to game, and is computed using the
first two months of data, so that whales provide at least 50% of the revenue
in that period. This means there are approximately 6000 VIP players in the
studied dataset of AoI, i.e., they make around 20% of all PUs.

Figure 3.1 shows the estimated probability distribution (using kernel
density estimation [223, 235]) of the total sales. The x-axis represents the
total number of sales in yens (and is plotted using logarithmic scale),
with the area under each curve normalised to one. It is obvious that the
distributions are markedly different (although there is naturally some
overlap). As has been briefly described in chapter 2 section 2.5, and will be
discussed in detail together with several methods to predict it in chapter 6

section 6.5, LTV (lifetime value) refers to the total outlay of an individual
player throughout their complete history in the game. Figure 3.2 shows PUs
and whales as a function of their normalised LTV. Note that even within
whales, only a small fraction of them fall within the last decile. These players
are of course very relevant to the game’s revenue, but they are also those
that should be tracked carefully, as some could be displaying problematic
and/or addictive spending behaviour that should be addressed.

Figure 3.1: Probability density function from the kernel density estimation of to-
tal sales for paying users (in yellow) and whales (in blue). Elaboration
using data from AoI. The image has previously appeared in [51, 224].
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Figure 3.2: Histogram of the number of paying users and whales by normalised
LTV (lifetime value) between 0 and 1. Paying users are shown in
yellow and VIP players or whales in blue. Elaboration using data
from AoI. The image has previously appeared in [51, 224].

Note both PU and VIP definitions imply that players acquiring this status
will never loose it, regardless of whether their spending patterns change.
That is, until they quit the game.

3.2 active players and churn

If a player is defined as any individual account that has ever logged into the
game, probably the most important distinction or basic segmentation that
can be considered is whether the player is still active, or if they have already
quit the game or churned and are inactive (which will also be occasionally
referred to as dead players).

Churn is a topic of great importance when evaluating the success and
health of customer service focused businesses. A high retention rate (or low
churn) indicates that customer’s loyalty or satisfaction with the service is
high. It has been thus widely studied in very different contexts including
telecommunications [153, 206], retail banking [207], and of course, gam-
ing [28, 135, 167, 224, 225, 238]. In free-to-play games, acquiring new users
is typically more costly than retaining players [96], making the study of
churn and retention, and the understanding of its drivers, crucial.
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While for all services where the relation’s duration is set up contractually
the definition of churn is completely straight forward (see for example [206]),
that is not the case of gaming (and other commercial activities). Most players
stop playing and effectively quit the game without deleting their account.
Players are then considered to have churned after a period of inactivity.
Fixed time windows have been used for some particular cases [167], tagging
for example as churners all players that have not logged in during the
current month. Typically, however, the churn-defining inactivity period is
defined using a moving time window for each player. The latter approach,
which is more costly in terms of computation but normally more adequate,
is the one considered throughout this thesis, and in previous work such as
that described in [28, 224, 225, 238].

The duration of the inactivity period to be considered is in itself a very
interesting problem. It will vary greatly for different titles. While in, for
example, very casual games with typically short player lifespans, a few
days of inactivity will allow for a successful detection of real churn, in
role multiplayer games the period needs to be much larger for a correct
identification, typically of over a month. It will also depend on the particular
use of the segmentation and if it should favour early or accurate detection.
Obviously, the longer the inactivity period considered, the more accurate the
classification will be. But this also means that longer periods are required
to consider players churned, players that might very have effectively lost
any interest in playing again long before they are marked as inactive. This
inactivity period length, that will be referred to as churn definition, can
therefore be set more or less restrictively depending on the aim of the study.

Here it is done after analysing the percentage of false churners (percentage
of players that are considered to have churned but eventually go back to
playing) and the percentage of missed sales (percentage of the total sales made
by false churners after returning to the game), as is discussed in detail
in [132]. Figure 3.3 shows these two indicators (percentage of missed sales
in plot (a) and of false churners in plot (b)) for AoI, for varying lengths
of the churn definition using the first two months of data, considering all
PUs (red) and only VIP players (blue). The dashed lines mark the shortest
possible churn definition for each of these groups for which missed sales
remain below 1% and false churners below 5%, namely, 13 days for PUs
and 9 days for whales.

Obviously, the percentage of false churners will normally increase if
we consider longer periods than two months for its computation. Most
of the studies in this thesis however, deal with the use of modelling in
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production setups, where having a definition as soon as possible is of
utmost importance. It was however checked in this case, what the results of
extending the analysis to longer periods of up to 6 months would be, trying
also different starting dates across the available dataset. The increase in
percentage of false churners was not found to be significant, staying always
below 10% (when considering 13 days and 9 days for whales and PUs
respectively). This indicates a two month data sample for a game like AoI
is representative of the player’s churn behaviour, pointing at the validity
of our approach. In particular, figure 3.4 (a) plots the fraction of all real
churners captured for different lengths of the churn definition window
using all available data. Note that it just falls short of 90% for 9 days even
in this case.

Note how different groups of players can be characterised by their churn
definition (given the required thresholds for the two indicators considered).
Players who are typically more active and engaged in the game will have
shorter churn definitions. A relative short period of inactivity, that might
be typical for less active users, signals for them a genuine loss of interest in
the game.

Unless stated otherwise, the churn definition used throughout this thesis
for all AoI players will be of 9 days. This length is considered restrictive
enough, as it still keeps the percentage of false churners below 10% and of
missed sales below 1.5% when considering all PUs.

3.3 profiling churners

Players can be further profiled depending on their churn behaviour. It is
particularly interesting, as will become clear when dealing with individual
player predictions (see chapter 5 section 5.3 and chapter 6 section 6.4), to
characterise false churners. In particular, the following different groups will
be considered for some exercises:

• Resurrected players: These are a subset of the false churners. They are
players that have remained inactive for a very long period of time
(several times the churn definition window), but then go back to the
game at some point. They can actually be considered as having really
churned, only to recover their interest later on, hence the name. For
AoI the inactivity period considered is of 30 days.

• Zombies: Players that present such a disengaged behaviour and play
so sporadically that, regardless of whether they are on paper false
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churners, should not be considered as rightly active. Throughout this
thesis players will be considered zombies when they present less than
3 hours of accumulated playtime, no level-ups and no purchases in
the previous 30 days.

• Genuine false churners: False churners that are not resurrected or zom-
bies. These are players that in spite of having been inactive long
enough to meet the churn definition, can be considered as never really
having left the game, but rather, as having been mistakenly taken for
churners.

Note that in the analysis carried out in section 3.2, the indicator that
should be kept as low as possible is that of percentage of genuine false
churners (as opposed to the general percentage of (all) false churners).
Although the percentage of all false churners may become larger as the
period considered increases, it could be related to an increase only in
resurrected players. Further more, these are typically at the end of their
life cycle anyway. Although some resurrected players may really become
completely re-engaged an say, live a second life in the game, most recover
interest only momentarily before churning definitely (or becoming zombies)
soon after. They therefore do not contribute significantly to the increase of
the false churner rate in the long run.

3.4 genuine paying users and purchase churn

As was mentioned briefly in section 3.1, it is sometimes interesting to
distinguish players that are currently purchasing from the rest of PUs.
These players will be referred to as genuine paying users. As was the case
with login activity, the definition of who is an active spender is in itself
interesting.

A user becomes a PU by making a purchase. Analogous to (login) churn
discussed in section 3.2, a period without spending is defined such that
it renders PUs non-PUs again, process that will be referred to as purchase
churn. Similarly to the case of churn (or login churn to be precise), pur-
chase churn should be defined according to the game and object of the
classification in mind. In this work, and analogously to churn, it is set
analysing the percentage of false purchase churners (percentage of purchase
churners that purchase again) and percentage of missed sales to false purchase
churners (percentage of the total sales coming from false purchase churners
once they start purchasing again), as discussed in [132]. The latter is in this
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case arguably the most important indicator (as the focus is on purchasing
behaviour), and is shown in Figure 3.5. Percentage of missed sales is plotted
for varying lengths of purchase churn definition window, for VIP players
in blue and for all PUs is red. Dashed lines indicate the shortest possible
windows yielding missed sales below 1%, namely 60 days for whales and
70 days for all PUs.

The inactivity period required here is much larger than in the case of login
churn. It follows that a sample corresponding to a much larger period of
time (around 6 times longer) would be needed to determine it. It is however
impractical to wait that long if the definition is intended for operational
use. The purchase churn definition can be therefore set from the beginning
based on data previously collected for similar titles, or as rough multiple
of the churn definition determined with the first few months of data. It
can then be revisited later on if it is deemed convenient. Unless stated
otherwise, throughout this work the purchase churn definition used will be
of 50 days. While sometimes for convenience genuine PUs will be referred
to simply as PUs, it will always be stated clearly if the PU definition being
used is the general one (all players that have ever made a purchase) or the
more restrictive one (players that have made a purchase in the last purchase
churn definition -50 in the case of AoI- days).

Analogously to the resurrected players defined in section 3.3, purchase
resurrected players can be defined. In this work however, the window of no
spending considered is exactly that of purchase churn definition (50 days),
thus making all false purchase churners purchase resurrected players once
they start purchasing again.

Figure 3.4 (b) shows the fraction of real purchase churners (PUs that
never purchase again) for increasing lengths of purchase churn definition
using all historic data and considering all PUs. A purchase churn definition
window of 50 days accounts for around 85% successful identification.
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(a)

(b)

Figure 3.3: Percentages of missed sales (a) and false churners (b) during the
first two months of data for VIP players (blue) and all paying users
(PUs, red). Dashed lines indicate churn definitions that make these
percentages fall below 1% and 5% respectively, yielding 9 days (for
VIP players) and 13 days (for PUs). Elaboration using data from AoI.
The image has previously appeared in [132].
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(a)

(b)

Figure 3.4: Fraction of all real login (a) and purchase (b) real churners for differ-
ent churn (a) and purchase churn (b) definitions using the complete
AoI dataset. I.e, fraction of all users that never logged into the game
again after a given number of consecutive days without login (a); and
fraction of PUs who never purchased again after a given number of
consecutive day with no spending (b). Elaboration using data from
AoI.
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Figure 3.5: Percentage of missed sales for VIP players (blue) and all paying users
(PUs, red). Dashed lines indicate churn definitions that make these
percentages fall below 1%, yielding 60 days (for VIP players) and 70

days (for PUs). Elaboration using data from AoI.





4
T I M E S E R I E S , C H U R N A N D C O N V E R S I O N

If you insist on learning something from every
statistical analysis, you will tend to learn something
stupid.

— Cassie Kozyrkov

Once the basic player categories defined in the previous chapter are
established (active non-PUs, active PUs and inactive players), it is interesting
to consider how their populations, and transitions between each group,
evolve. The object of this chapter is to apply State Space Models (SSMs,
see chapter 2 section 2.1) to understand and predict the evolution of the
probabilities of churn (separately for PUs and non-PUs), non-PU to PU
conversion (which is sometimes referred to in the literature simply as player
conversion), and purchase churn. No distinction is made between different
kinds of churners or spenders. Note that, importantly, players can transition
from being PUs again to non-PUs, so the more restrictive PU definition
(where a purchase in the previous 50 days is required) is in use. This means
that every mention to PUs throughout this chapter refers in fact to what
were described as genuine PUs in chapter 3 section 3.4.

In particular, an ARIMA (chapter 2 section 2.1.2) and an unobserved
component or structural time series (chapter 2 section 2.1.3) model approach
are considered. In both cases exogenous explanatory variables are also
taken into account. The combination of an stochastic evolution model with
a deterministic regression to explanatory variables1 is an attempt to also
understand the main drivers of the evolution of these series, as well as to
have a measure of their impact. All results presented in this chapter are
original contributions of this thesis, and were first published in [73].

Besides producing accurate daily forecasts of the transition probabilities,
and estimations of the impact of in-game and external events in these
transitions, following the methodology proposed in this chapter also allows
for the detection of critical missing information, as will be described in some
detail. It can therefore be used operationally, not only to improve resource
allocation and game planning, but also as an automatic monitoring system,

1 The terms exogenous or explanatory variables, regressors and covariates will be used indis-
tinctly throughout this chapter to refer to the dependent variables in this linear regression.

73
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to detect for example, buggy releases or server failures. It can also be used to
rate the success of any particular event or campaign as compared to the rest
of events or campaigns of a similar type, as will be discussed. Furthermore,
moving to more complex segmentation landscapes and applying, following
this approach with give a measure of how different in-game and external
events affect different kinds of players (in regards to skills, experience, type
or frequency of play, purchasing behaviour. . . ) differently. This could be of
invaluable help when defining game planning strategies suited specifically
to the targeted segment in mind.

Similar approaches could be used outside the realm of video games, as
the methodology is suited to study any system where there are users that
can be classified into different groups, and where understanding and/or
predicting transitions between different groups is of interest. The exact same
segmentation used here can be used for online platforms where purchases
are possible. It could also be applied, for example, to the study on how
events drive differently the interest (or lack thereof) of members of online
communities that only consume content versus those that also generate it,
and understand how the former may become part of the latter (and vice
versa).

The use of this approach does not need to be restricted to online groups
or interactions, although the automatic collection of data in these setups
make them particularly good candidates. It could be also used, for example,
to model the participation in extracurricular activities in a school.

Time series approaches have been used extensively to tackle all sorts of
predictions regarding social and economic processes, from demand [226,
252] or prices [2, 61, 204], to crime [53] or epidemics [302, 303]. Examples
can also be found outside the realm of human related time series, with
goals as varied as predicting weather [273], water quality [92], or population
growth [30, 84, 276]. There is however not much time series related literature
in regards to video games. Online traffic generated by online first person
shooter games was studied from a time series point of view in [65]. The total
daily sales and playtime in AoI and Grand Sphere (another title developed
by Silicon Studios) were predicted using different time series techniques
in [131], where the effect of in-game events was also taken into account.
Players were clustered according to their time series response to in-game
events using unsupervised learning in [239].

In section 4.1 the time series to be studied will be introduced. Section 4.2
is devoted to the explanatory variables that will be used in the modelling,
while section 4.3 describes in detail the methodology that was followed.
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The results are presented and discussed in section 4.4. The chapter ends
with a summary and conclusions in section 4.5.

4.1 populations and transitions

Figure 4.1 depicts the daily evolution of the populations of each of the basic
segments considered: non-PU (a), (genuine) PU (b) and churned players
(c). Note that these are not necessarily made up by players logging in on
that day (in fact, for the churned players one this is an impossibility). For
any given day, the sum of the three time series yields the total number
of accounts that have logged into the game at least once in its entire
history. Being this so, while the non-PU and PU time series will experiment
fluctuations (and only go to zero when the game disappears), the churned
players one will almost inevitably always grow.

Taking therefore into account the definitions for each segment given
in chapter 3, the daily churned or inactive players population time series
(figure 4.1 (c)) gives for each day, the number of players that have not
logged into the game in the previous 9 days. The number of users each
day that have played in the last 9 days, and have also made a purchase in
the previous 50 days make up the daily (genuine) PU population (figure
4.1 (b)). Finally, the daily non-PU population is made up by players who
logged into the game in the previous 9 days, but have not made a purchase
in the last 50 days (figure 4.1 (a)).

In figure 4.2 the time series plots making up the matrix of transitioning
number of players can be found. All transition time series plots are compiled
in this figure to provide the whole landscape of transitions at one glance.
Each column is then also plotted in a separate figure for clarity, in figures
4.3 (transitions to non-PU), 4.4 (transitions to PU) and 4.5 (transitions to
churned). The first row is concerned with players that were non-PUs the
previous day, the middle row with players that were PUs and the bottom
row with inactive players. The top row plots therefore depict the number
of non-PUs that remain non-PUs (a), become PUs (b), or churn (c). That is,
plot (a) (non-PUs to non-PUs) of the figure therefore shows, for each day,
players that have logged in in the previous 9 days and have not made a
purchase in the previous 50. Plot (b) (non-PUs to PUs) shows the number of
players that purchase on that day but had not for the previous 50 days, and
plot (c) (non-PUs to churned) is that of players that, without haven’t made
a purchase in the previous 50 days, logged in for the last time 10 days ago.
Similarly, plots in the middle row correspond to players that purchased for
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(a)

(b)

(c)

Figure 4.1: Daily population of non PU (a), genuine PU (b) and dead player time
series (c). Own elaboration using data from AoI.
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the last time 51 days ago and have played in the previous 9 days (PU to
non-PU, plot (d)); players that have made a purchase in the previous 50

days and connected at least once in the previous 9 (PU to PU, plot (e)); and
players that, having made a purchase in the previous 51 days, connected
10 days ago for the last time (PU to dead, plot (f)). Finally, the last row of
plots shows the number of players that, after remaining inactive for at least
10 days, logged in on that day but made no purchase (dead to non-PU,
plot (g)); those that, after remaining inactive for at least 10 days, not only
connected again but did at least one purchase (dead to PU, plot (h)); and
those that have not connected at least in the 10 previous days and remain
inactive (dead to dead, plot (i)).

With the information about daily populations and transitions the conver-
sion rates can be easily computed by dividing the daily transitions between
the population of the group of origin on the previous day. These are plotted
in figures 4.6 (conversion rates to non-PU), 4.7 (conversion rates to PU),
and 4.8 (churn rates). These can be understood as the daily probability of
a given player to transition from one group to another (or remain in the
same segment). This means the top row plots show the evolution of the
daily probability of a non-PU: not purchasing or churning (thus remaining
non-PU, figure 4.6 plot (a)); purchasing (thus becoming PU, figure 4.7 plot
(a)); and of having been inactive for 10 consecutive days (thus churning,
figure 4.8 plot (c)). Analogously, the middle row plots show the probability
of a PU having not purchased in the last 51 days while still having played
in the previous 9 (thus becoming non-PU, figure 4.6 plot (b)), of having
purchased in the previous 50 days (thus remaining PU, figure 4.7 plot (b))
and of not having logged in in the last 10 days (thus churning, figure 4.8
plot (b)). Finally, the bottom row shows plots of the evolution of the daily
probability of an already inactive player connecting again without making
any purchase (figure 4.6 plot (c)), playing again and purchasing (figure 4.7
plot (c)) and remaining inactive (figure 4.8 plot (c)). Note the addition of
the left and middle bottom series (inactive to PU or non-PU) is nothing but
the false churner probability. Although of interest in some contexts where
studios pick the strategy of trying to reengage long lost players, in this
work the back to life transitions were not modelled. They involve a small
amount of players and are anyway of less interest than the rest.

Figure 4.9 shows the daily time series of new non-PUs (a) and new PUs
(b). The former is the number of players logging in for the first time each
day, and not making any purchase on that first day of play. The latter the
number of players connecting to the game who had never played before,
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(a)

(b)

(c)

Figure 4.3: Daily transitions to non-PU, i.e., number of daily players in the transi-
tions: (a) non-PU→non-PU, (b) PU→non-PU, and (c) dead→non-PU.
PU here means genuine PU. Own elaboration using data from AoI.
The images have previously appeared in [73] (in black and white).
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(a)

(b)

(c)

Figure 4.4: Daily transitions to PU, i.e., number of daily players in the transitions:
(a) non-PU→PU, (b) PU→PU, and (c) dead→PU. PU here means
genuine PU. Own elaboration using data from AoI. The images have
previously appeared in [73] (in black and white).
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(a)

(b)

(c)

Figure 4.5: Daily transitions to dead (churned), i.e., number of daily players in
the transitions: (a) non-PU→dead, (b) PU→dead, and (c) dead→dead.
PU here means genuine PU. Own elaboration using data from AoI.
The images have previously appeared in [73] (in black and white).
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(a)

(b)

(c)

Figure 4.6: Daily transition rates to non-PU, i.e., number of daily players
in the transitions: (a) non-PU→non-PU, (b) PU→non-PU, and (c)
dead→non-PU. PU here means genuine PU. Own elaboration using
data from AoI.
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(a)

(b)

(c)

Figure 4.7: Daily transition rates to PU, i.e., number of daily players in the
transitions: (a) non-PU→PU, (b) PU→PU, and (c) dead→PU. PU here
means genuine PU. Own elaboration using data from AoI.
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(a)

(b)

(c)

Figure 4.8: Daily transition rates to dead (churned), i.e., number of daily play-
ers in the transitions: (a) non-PU→dead, (b) PU→dead, and (c)
dead→dead. PU here means genuine PU. Own elaboration using
data from AoI.
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(a)

(b)

Figure 4.9: Daily new non PU (top) and daily new PU (bottom) time series. Own
elaboration using data from AoI.

and making at least one purchase within that day. Note the non-PU series is
two orders of magnitude larger than the PU one. The sum of both was also
modelled in this exercise. As will be discussed, not only is it interesting
in itself, as new user acquisition is expensive and critical to game health,
but it is essential in the marketing campaign detection (and indirectly to
the promotion campaign identification, as these should have no noticeable
effect in this series), which was one of the main goals of this study, as will
soon be clear. As was to be expected, both the new daily PU and non-PU
series show high correlation: people are drawn to try the game, and then
some of them decide to make a purchase on that same day (while most
do not). The spikes and periods of much higher than usual values should
correspond with the most intense and successful marketing campaigns.

4.2 explanatory variables

Calendar effects, holidays and in-game planning information is used to
build covariates or explanatory regressors. As will be described in more de-
tail in section 4.3, the modelling procedure is also used to unveil marketing
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and promotion campaigns that took place, as well as other unknown events
with a significant impact in the transition probabilities. The modelling thus,
besides providing daily predictions for the transition rates, can be used to
classify in-game events and other campaigns, depending on whether they
impact or not, and with which sign and intensity, the different conversion
rates.

Regarding marketing (aimed at new user acquisition) and promotion
(aimed at generating player conversion and increasing spending among
PUs) campaigns, there was no prior information available except for the
fact that they had existed and been frequent, with significant impact.

With the in-game and external information readily available the following
covariates were built:

1. Day of week: Intends to capture the effect of each day of the week. A
variable per day of the week is used, which is 1 for days corresponding
to that day of the week and 0 otherwise.

2. Other calendar effects: Intend to capture the effect of some very particu-
lar days of the month or year. First day of month, last day of month,
first day of year, last day of year were built. Similarly as for day of the
week variables, the first day of the month regressor is 1 if the day is
first of the month and zero otherwise, and analogously for the rest of
calendar effects.

3. Holidays: Two variables were built to capture separately the effect of
Japanese school holidays and national holidays. These variables are
also 1 when the day belongs to the corresponding category and 0

otherwise. This implies the model will estimate the same effect for all
national holidays, that will be different of that of school holidays, but
where all the latter will also have the same impact.

4. In-game events: The events are grouped according to their event type
and event scale (described in chapter 1 section 1.2). For each of these
type-scale categories two variables are built: one to capture the effect
of having an event of that type-scale going on (1 when there is such
an event going on, 0 otherwise), and another to capture the additional
effect events typically have when they begin (1 if it is the first day of
such an event, 0 otherwise).

5. Number of in-game events: In an attempt to somehow capture non
linearities arising from the interaction of having more than an event
going on at the same type, two additional covariates are built: one
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which is the number of events going on on any given day, the other
the number of different events starting on any given day.

On top of these, as will be described in section 4.3.3, additional variables
are built in the process to try an reflect the effects of information which is
missing. These are referred to as interventions, and are exogenous variables
defined ad hoc in an attempt to uncover missing information, while making
the residuals more normal and/or reducing their variance.

In the case of the new user acquisition campaigns and promotions, as has
already been mentioned, although no dates or descriptions were available,
it was known that they have existed often, and that many were deemed
to be very successful. Some even have impacts visible in the series with
the naked eye. It would be therefore a bad modelling practice not to try
to account for them. The detection, and even assessment of the relative
success of these campaigns, was actually one of the main motivations of
this exercise. These will fall in one of three categories:

1. Marketing interventions: These should have a large positive effect in the
new user model, as they are basically new user acquisition campaigns.
They will typically also have a positive effect in the churn probabilities
(delayed by the churn definition, i.e. 9 days), particularly in non-PU
churn probability, as the campaign will get people interested in trying
the game that will not however find it interesting enough to continue
playing (and more so if they are not engaged enough in their initial try
to spend money in the game). They can also possibly have a (limited)
positive effect in the conversion to PU rate, if the campaign reaches
people that are already playing and somehow reengages them, or if
they are accompanied by promotions to try and get the new players
spending. In this case they could have too a positive effect in the
purchase churn probability after 50 days. Comparing the impacts in
the new user series (how good the campaign in making people try
the game were) and in the churn series (that indicates how good they
were at targeting the right audience), gives a way of evaluating the
success of these campaigns.

2. Promotion interventions: These should have a large positive impact
in the conversion to PU series, as they should capture the effect
of promotion campaigns in the game, targeted at people already
playing. They will thus also typically have an effect in purchase
churn with a 50 day delay. If the promotion does not work out well,
they could even have a limited effect on churn (imagine for example
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players being spammed with notifications that disengage them). They
should not have any impact in the new users series, as these are
promotions inside the game and only visible to players. Whenever
there was a simultaneous combination of marketing and promotion
campaign, this will be captured by a marketing type intervention (that
are allowed to have effect in conversion too as was described above).
The difference in impact in the conversion to PU and purchase churn
series can be used to detect campaigns that were particularly good
at generating long term conversion and/or encouraging players that
were already PUs to purchase.

3. Unknown interventions: Large effects in any of the series that do not
fit the promotion or marketing possibilities. These would include, for
example, server failures or buggy releases (with positive impact in
churn), changes in game dynamics (that reengage or disengage users),
new content releases. . .

4.3 methodology

One of the main goals of this exercise was to acquire qualitative knowledge
about the system dynamics and processes at play. For this, human expertise
to understand and interpret the results is needed. The guiding idea then,
is not that of defining a fully automatic way of carrying out this process.
Having however a well defined methodology, and a fixed procedure, will
limit and guide the human intervention needed, and will guarantee that
different humans will arrive at very close modelling results. It will also make
easier the transition to more complex segmentation landscapes, should there
be interest in doing so.

Particularly critical is this needed human expertise, as will soon be
obvious, when defining interventions. Once the model selection stage is
completed, and all missing information is uncovered, the resulting system
could be then left running in production. It could be designed to gener-
ate alarms when unusual effects (probably due to missing information)
appear, and to automatically produce forecasts (taking in-game planning
into account). Such a system would still require periodical maintenance
by someone knowledgeable with the models and the data, but human
intervention needed would be at that point much more limited. The initial
stage described in this paper is, although to some extent automatic, time
consuming, and requires a great deal of expert human intervention. A lot is
to be learned in this process nonetheless.
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For each of the five time series, two different SSM models were defined:
an ARIMA and an UC, both with the covariates described in 4.2. The
following five steps were then followed: (1) model selection; (2) selection
of significant exogenous variables; (3) intervention definition; (4) model
selection revisited; and (5) forecasting and verification. Each of these will
be described in detail in the following subsections.

4.3.1 Model selection

The first step is to decide which specific ARIMA and UC configurations
will be used for each time series as a starting point (this choice will be
revisited after selecting explanatory variables, see section 4.3.4). To begin
with, plots of the series and their differences (regular, weekly and monthly)
are examined, together with their correlograms (autocorrelation Function or
ACF and partial autocorrelation function or PACF). This includes examining
how all values are distributed (mean, variance, outliers. . . ). All available
historic data is considered. In the new user series case, in addition to the
original, the log-transformed time series is also considered, and actually
selected as it has a more stable variance. This is equivalent to using a
multiplicative model instead of an additive one. Using inspection of these
series and ADF stationarity tests (see section 2.2.1 in chapter 2) of the
time series, it is decided to model in the ARIMA case all series with a
regular difference. Although there is an obvious weekly seasonality in most
of the time series, taking a weekly difference yields higher variance and
anticorrelation. Original series (plus log-transformed in the new series case),
regular difference, ACF and PACF for all the modelled series are shown
in figures 4.10 (new users), 4.11 (non-PU to PU conversion rate), 4.12 (PU
churn), 4.13 (non-PU churn) and 4.14 (purchase churn).

The next decision, which is made independently for each time series
examined, is fixing the starting date for the period used in the training.
This is set by inspection, in a to some extent arbitrary way, by the human
expert analysing the series, in order to leave out the initial highly volatile
period every game experiences right after launch. Unless the object under
study is in itself behaviour or game dynamics immediately after launch,
this period is always better left out, as it is a unique phenomenon that will
not be repeated and will confuse (introduce noise in) the models.

In the case under study, as the period available is relatively long, includ-
ing this period does not have a significant impact in the modelling except
for the intervention definition. As the residuals will typically have very
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Figure 4.10: New users original series (top), log-transformed (second row), differ-
ence of the log-transformed (third row), ACF (bottom left) and PACF
(bottom right). Start of the training period is marked with a dashed
line and corresponds to October 10 2014. Non-significant correlation
area (95% confidence) is shaded in ACF and PACF. Own elaboration
using data from AoI. The images have previously appeared in [73]
(in black and white).
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Figure 4.11: Non-PU to Pu conversion original series (top), its regular difference
(middle), ACF (bottom left) and PACF (bottom right). Start of the
training period is marked with a dashed line and corresponds to
October 5 2014. Non-significant correlation area (95% confidence) is
shaded in ACF and PACF. Own elaboration using data from AoI.
The images have previously appeared in [73] (in black and white).
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Figure 4.12: Churning PU original series (top), its regular difference (middle),
ACF (bottom left) and PACF (bottom right). Start of the training
period is marked with a dashed line and corresponds to October 31

2014. Non-significant correlation area (95% confidence) is shaded in
ACF and PACF. Own elaboration using data from AoI. The images
have previously appeared in [73] (in black and white).
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Figure 4.13: Churning non PU original series (top), its regular difference (middle),
ACF (bottom left) and PACF (bottom right). Start of the training
period is marked with a dashed line and corresponds to October 31

2014. Non-significant correlation area (95% confidence) is shaded in
ACF and PACF. Own elaboration using data from AoI. The images
have previously appeared in [73] (in black and white).
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Figure 4.14: Purchase churn original series (top), its regular difference (middle),
ACF (bottom left) and PACF (bottom right). Start of the training
period is marked with a dashed line and corresponds to November 5

2014. Non-significant correlation area (95% confidence) is shaded in
ACF and PACF. Own elaboration using data from AoI. The images
have previously appeared in [73] (in black and white).
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large deviations in this period, it will mean extra work as more (meaning-
less) interventions need to be defined in the process (see section 4.3.3 to
understand the intervention definition process).

Setting different starting dates for the different series is not only heuristi-
cally justified. The series themselves start at different dates. In some cases
by definition, as for the churn and purchase churn series (that have a delay
of the churn and purchase churn, i.e 9 and 50 days, respectively). Others
due to the launch circumstances: in this case for example, in-app purchases
were not available for some time immediately after the launch. The selected
starting dates for the different time series are: October 10 for the new user
series, October 5 for the PU conversion rate, October 31 for both PU and
non-PU churn and November 5 for purchase churn. These are shown as
dashed lines in the time series plots in figures in figures 4.10 to 4.14.

Now, for the ARIMA the degrees of the AR and MA polynomials, both
regular and seasonal (weekly in this case), still need to be defined (up
to order 5 will be considered in all cases). For the UC, the use or not of
weekly and monthly seasonalities, of a cyclic term, and the type of level-
trend is also to be determined. As was described in section 2.1.3 (chapter
2), the types of level-trend that will be considered are: no trend, fixed
intercept (deterministic constant), local level (random walk), fixed slope
(deterministic trend), local level with deterministic trend (random walk
with drift), local linear trend and smooth trend (integrated random walk).

Model specification is typically done relying on human expertise: care-
fully inspecting the series, trying out a few plausible model definitions,
and comparing these, is the usual process, which relies on the knowledge
of how different ARMA and UC realisations look like. Another approach
consists on exploring the parameter space defined and using some criterion
to automatically decide upon the results. This work uses a combined ap-
proach, which intends to make up for the possibility of lack of very strong
knowledge of ARIMA and UC processes, and to make the process to some
extent automatic, while still allowing the expert human to assess the results
and make a choice within a limited range of options.

A selection of five candidates is done by brute force, exploring all possi-
ble combinations of the subset of the model space described above, and
selecting the five best according to the AIC (see section 2.2.4 in chapter 2).
For these five preferred candidates, the BIC (see section 2.2.5 in chapter
2) and HQIC (see section 2.2.6 in chapter 2) are examined, together with
residual variance, independence (as tested with Ljung-Box, see section 2.2.2
in chapter 2) and normality (as tested with Jarque-Bera, see section 2.2.3
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in chapter 2). Parameter significance is also taken into account (see section
2.2.7 in chapter 2), with only parameters with p-values under 0.1 considered
as significant. While the brute exploration might be too extensive (very
rarely is it justified, for example, to use ARMA polynomials of order of
more than 2; and the type of level-trends explored could be reduced, for
example, in its stochasticity), as the different tries can be run in parallel and
are not computationally expensive, it is still deemed a reasonable approach.

The selected models for each series will be described in section 4.4, but it
is interesting to note here some general findings. No model with seasonal
ARIMA was selected in any case, while weekly seasonality was favoured
in all the UC cases. The day of the week covariates described in section 4.2
were therefore only used in the ARIMA case. The absence of a seasonal
ARMA is particularly interesting given that (i) most series do have a clear
weekly seasonality (as shown by significant correlations for lags 7 and
multiples in the correlograms, in particular for PU churn and purchase
churn, see figures 4.12 and 4.14 ); (ii) the UC model does always prefer to
use this periodicity; and (iii) in the ARIMA case, as will be seen, day of
week inputs were estimated as significant. Monthly seasonality was rejected
in the UC case for all series. Local level type was always considered the
best level-trend choice. While other options with more degrees of freedom
naturally succeeded in further decreasing residual variance, these always
yielded significantly worse information scores.

Note that, if we consider the ARIMA or UC model to capture the season-
ality and inertia of the time series, the remaining residuals can be used to
learn about the natural underlying variability and stochasticity. Even more
so after the impact of external variables or covariates -which are modelled
as deterministic effects- is filtered out as described in next section (section
4.3.2).

4.3.2 Exogenous variable selection

The different explanatory exogenous variables available for the modelling
were described in section 4.2. These include the interventions, whose def-
inition process is described in some detail in section 4.3.3. The process
described below to select the covariates for each time series will be repeated
twice. In the first round, for each time series, after having a model including
variables with parameters estimated to be significant, interventions are
defined. The second round is used to try again all the previous regressors
plus all the interventions defined (for all conversion series) in the previous
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round. This will fix the final selection of covariates among all the available
(predefined and interventions).

All exogenous variables that have a Z-score with associated p-value
less or equal than 0.1 are considered significant, and kept as explanatory
regressors for that time series. In the first round, they are tried grouped
according to their type in the following order: day of the week, calendar
effects, holidays, in-game events and number of in-game events. They are
grouped and tried in bundles of ten for groups with a larger than that
number of inputs. This is done to avoid (or at least limit) convergence
problems when trying to estimate with too many variables at the same time.
In the case of churn and purchase churn series, the explanatory variables
are used with a lag equivalent to the relevant churn definition. With the
interventions the procedure is very similar. After completing the process,
additional estimations are run trying to separately include one by one all
the covariates that have not been estimated significant, as there is a chance
that they are with the final configuration.

In the case of additive models, the non-transformed series is modelled
with regressors. This is the case for all of this exercise’s series with the
exception of the new user series. The parameters estimated for each of
the exogenous variables in additive daily models can be understood as
the variation in the modelled series due to each unit of change in the
covariate series. When the series are log-transformed, as is the case of the
new users time series, the resulting model with regressors is multiplicative,
in which the parameters corresponding to explanatory time series represent
elasticities, i.e., they are the proportionality constant relating fractional
variations in the modelled series an the covariate.

4.3.3 Interventions

The procedure to define interventions for a given time series is as follows.
First, the predefined exogenous variable first round selection described in
the previous section is carried out. It is then assumed the largest deviations
left in the residuals probably correspond to missing information. The day
with the largest deviation in absolute value is selected and the series
(original, estimated, sum of regressor effects and residuals) examined in
detail (as has already been mentioned, this is the part of the process for
which human expertise is more critical). The exact shape of the intervention
to be used is then determined. This could be, for example, an additional
degree of freedom for the day of the deviation, if it seems like a one
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day effect. Typically, campaigns would have run through several days.
This means that if the deviation under study is positive, followed by an
additional negative deviation in the residuals some days later, and we are
considering one of the ARIMA models (which in all cases in this work have a
regular difference), it will be assumed these points mark the beginning and
the end of the campaign. The campaign intervention will then be defined
with that shape, i.e., 1 between the first and last day and 0 elsewhere
(plus possibly an additional effect for the first day). The model is then
re-estimated, and the goodness of the new fit as compared to the previous
version assessed, using a similar approach to the initial model selection
phase described in section 4.3.1: parameter significance, information criteria
and variance, normality and independence of residuals are examined. It is
then decided if the intervention is kept or not. If it is kept, the residuals of
the new model are now considered, and their largest deviation now tackled
in the same way.

The types of interventions that can be defined, depending on which
time series they impact and with which sign, were described in section
4.2, and can be grouped into marketing interventions corresponding to
new user acquisition campaigns, promotion interventions and unknown
interventions (all the rest).

All defined interventions were tried with the models of all time series,
regardless of which time series they had been originally detected for. Most
promotion interventions, for example, are expected to be defined when
modelling conversion to PU. Even if these should have no effect in the
new user series, the new user model is also estimated with them. This will
allow us to discriminate between different types of interventions, have a
more consistent model across transitions, and reduce the risk of missing
the effect of some of the discovered explanations in other transitions where
their impact is less obvious.

To facilitate their detection and interpretation, a fixed order in the way
the time series were modelled was followed during the first round: first,
the new user series in order to uncover the marketing campaigns; secondly
conversion to PU to detect promotions; third, non-PU churn, looking for
additional new user acquisition campaigns; followed by non-PU churn; with
purchase churn modelled the very last (and where additional promotions
could be detected). Once defined they are treated in the exact same way as
the rest of exogenous variable groups.

In the second round, the process described in section 4.3.2 is repeated,
now considering the three groups of interventions additional exogenous
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variable groups in equal terms to the rest. Now the order of the groups is
altered (to reflect the hierarchy of expected impacts): for the new user and
login churn series marketing interventions are tried before in-game events;
and for conversion to PU and purchase churn, promotion interventions are
tried before marketing ones. Unknown interventions are tried in last place
for all series.

As will be described in section 4.4, following this methodology with
the ARIMA models yields a plausible scenario of new user acquisition
campaigns and promotions. This was however not the case when dealing
with UC models. This makes sense in that their structure, and particularly
their larger number of noise terms, allows for a bigger flexibility and
capability for absorbing large shocks in the original series. It was in the
end decided to run the intervention definition phase only with the ARIMA
models, and use this same intervention landscape with the UC models.

This is obviously the more time-consuming and expertise-dependent
part of the model definition phase. This process could be carried out
in a fully automatic manner, adding only single day variables to make
residuals more normal, and repeating until the model quality is degraded
instead of improved. This would still make the models more theoretically
sound and consistent, even in the absence of human expertise or time for
a close inspection. In essence, the underlying reasoning is the same: very
large deviations, or deviations from Gaussian behaviour in the noise, are
due to unaccounted for effects that should be filtered out. In this way,
unusual behaviour would also be filtered, but not accounted for. In contrast,
the procedure described above accomplishes this and looks for plausible
explanations for the deviations. This process is still necessary to prevent
underfitting and to make the models used formally valid, but must be done
carefully in order to avoid overfitting. While the model will not be able
to predict similar effects in the future, it will be much better equipped to
predict accurately in the absence of these.

4.3.4 Model selection revisited

After there is a fixed selection of exogenous variables for each model
(including interventions), the same procedure described in section 4.3.1
was repeated now with covariates, in order to ensure that the best possible
ARIMA or UC definition was being used. This resulted in practically no
changes in the model definition, with only a couple of corrections in the
ARMA orders for two of the series. In particular, the main findings of the
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initial model selection (all ARIMA models with a regular difference and
no seasonal ARMA, all UC models with weekly an no monthly periodicity
and with local level) remained unaltered.

4.3.5 Forecasting and verification

Until this step, all available information (historic data) has been considered
(with the period prior to the starting date of each series excluded in the
model selection, parameter estimation and intervention definition). In this
last step, training and forecasting steps are carried out, leaving out the end
of the series to test the predictive accuracy such models would have had. For
more details on how the forecasts are performed in each of the components
(deterministic regression filter and ARIMA or UC), check chapter 2 section
2.1.

Daily forecasts for the following month were run, with data until the last
day of the previous month used in the training, and this for all of 2016

and what was available of 2017. The intention was to replicate a possible
production setup, in which predictions are run to allocate resources for
the following month. Note however, that the model definition and variable
selection were done using all data available, which would not have been
the case in a real life operational situation (although the forecasts produced
still relied only in the data that would have been available by then).

As all interventions are defined locally, and only once the period for
which they are defined is available for training, these are never included
in the forecasting. This means very large errors in the predictions were
expected, which would be the real life situation if forecasts were being run
without taking into account promotions and marketing campaigns. In a
reasonable operational scenario, the information about future campaigns
would be available, and included in the predictions using a similar approach
as has been used for in-game events. Of course, unexpected impacts such
as server failures would still produce large deviations from the expected
behaviour, which is precisely why such a system could be very useful in
production, as it would detect events that are having an unaccounted for
impact in the conversion rates.

Monthly MAE and RMSE (see chapter 2 section 2.9) were used to compare
model accuracy between ARIMA and UC, and between different months
for each model (there is no baseline to assess overall model accuracy).



4.4 transition probability modelling results 101

4.4 transition probability modelling results

Figure 4.10 shows the daily number of users logging into the game for the
first time (top), its log transformation (second plot from the top), and the
regular difference of the latter (third plot from the top). In all three plots
October 10, 2014 is marked with a dashed line, indicating the beginning of
the period used for parameter estimation. The ARIMA selected in this case
was (2, 1, 1), and the UC model had cycle periodicity included (besides the
weekly seasonality and local level common to all the series). In both cases
the log-transformed series was selected for this exercise, i.e., a multiplicative
model in the exogenous variables. However, all references to errors in what
follows will be regarding the non-transformed series. The last row of 4.10

shows its ACF and PACF (excluding the period before the starting date),
where the shaded area represents non-significant correlation values with
95% confidence.

Conversion to PU is shown in figure 4.11, where the top plot depicts the
daily conversion rate, the middle plot its regular difference, with ACF and
PACF at the bottom. The dashed line marks here again the beginning of
the training period (October 5, 2015), which is too the period used in the
computation of the ACF and PACF. The ARIMA model selected in this case
was (0, 1, 3), and the UC model used no additional cycle component.

Similarly, 4.12 and 4.13 represent PU and non-PU churn respectively
(daily probability series, regular difference and correlograms), both with
starting date for the training October 31, 2014, marked here too with a
dashed line. Both UC models did not use cycle component, and the ARIMA
selection yielded (0, 1, 2) for PU and (1, 1, 2) for non-PU.

Finally, similar plots for purchase churn are shown in 4.14, with starting
date November 25, 2014, ARIMA (0, 1, 3) and no long term cycle used in
the UC model. The models selected for all time series are summarised in
table 4.1.

As has already been described, the intervention definition was carried out
using the ARIMA models only. However, after this was done, the second
round of exogenous variable selection yielded the exact same covariate
selection for the UC and ARIMA models, for all of the time series. Further
more, the parameters estimated were also very similar, differing typically
by less than 10% and in only a handful of cases by more than 20%. An
illustrative non-comprehensive selection of the values estimated for a few
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ARIMA UC

Time Series Start date Regular Seasonal Trend type Seasonal Cycle

New users (log) 10-10-2014 (2,1,1) 7 local level weekly 3

Conversion to PU 5-10-2014 (0,1,3) 7 local level weekly 7

PU churn 31-10-2014 (0,1,2) 7 local level weekly 7

Non-PU churn 31-10-2014 (1,1,2) 7 local level weekly 7

Purchase churn 25-11-2014 (0,1,3) 7 local level weekly 7

Table 4.1: Summary of the models selected for each time series. The start date is
the first date from which all historic data available is used for the model
parameter estimation. The regualr and sesonal ARIMA polynomials
are listed for the ARIMA model, and the type of trend, the seasonality,
and whether a cycle term was included for the unobserved components
model.

parameters in the different series is shown in tables 4.2 (ARIMA models)
and 4.3 (local level models).

Taking into account the different nature of additive and multiplicative
models, interpretation of parameters is as follows. Consider, for example,
the effect of national holidays. In the new user series (multiplicative), both
models are estimating an increase of approximately 5% (4.89% for ARIMA,
5.15% for UC) in the number of new players on national holiday days.
Non-PU churn (additive), also becomes more likely on these days, with
the probability of churning for these players being around 0.003 (0.0033 for
ARIMA, 0.0028 for UC) higher (absolute as opposed to relative increase).
There is also an increment of around 0.0002 in the conversion probability,
and of 0.0007 (UC) to 0.0008 (ARIMA) in the purchase churn rate on national
holidays (both additive models), but no measurable effect in PU churn (this
covariate is not deemed to be significant for this series after the modelling
procedure described in section 4.3). School holidays, on the contrary, were
not estimated significant for any of the series, which could be indicating a
low presence of school age players relative to working players in the game.

The positive effect of national holidays in most transition probabilities
reflects the fact that users have more time to play (for the first time and also
afterwards), and thus of spending money, but also of getting bored of the
game. Very engaged players, who make a significant fraction of all PUs, are
far from being at risk of losing interest in the game by playing a few hours
more, thus the lack of impact of holidays in PU churn.
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Parameter New users Conversion to PU non-PU churn PU churn Purchase churn

National holidays 4.89× 10−2 1.61× 10−4 3.30× 10−3 - 7.67× 10−4

Battle event (start) - 2.16× 10−4 - - −2.77× 10−4

Gacha 4 - 1.03× 10−3 - - 1.61× 10−2

Raid event (start) - −1.07× 10−3 - 3.80× 10−3 3.23× 10−3

Unknown 2017/02/09 - −1.33× 10−3 1.51× 10−2 1.37× 10−4 1.88× 10−2

Marketing 2015/02/05-07 5.71× 10−3 9.97× 10−4 3.45× 10−2 4.38× 10−3 1.23× 10−3

Marketing 2015/03/16-25 6.06× 10−3 - 3.70× 10−2 5.14× 10−3 -

Marketing 2015/05/25-31 6.07× 10−3 - 2.74× 10−3 - -

Marketing 2016/09/21-22 6.25× 10−3 1.90× 10−4 2.40× 10−2 - -

Marketing 2017/02/07-09 2.06× 10−3 - −1.26× 10−3 - -

Promotion 2015/03/19 - 1.53× 10−3 - - 4.60× 10−3

Promotion 2015/04/23-24 - 1.74× 10−3 - - 2.30× 10−3

Promotion 2016/09/21-23 - 3.38× 10−3 - - -

Table 4.2: ARIMA estimates for a selection of parameters for the different series.
Parameter signs and values are an indication of the type and strength
(respectively) of the effect the modelled event is estimated to have had.
For the new users series (log-transformed) they can be understood as
elasticities, for the other time series, additive effects to the transition
probabilities. A - indicates the covariate was not found to have a
significant effect on that time series.

Regarding the weekly structure estimated (explicitly through the use
of inputs in the ARIMA case, and as a term of the UC modelling), it is
similar for all series and is, as was the case of bank holidays, related to how
the amount of players logging in and their average playtime varies along
the week. Users play much less at the beginning of the week, they start to
play more around Wednesday, and this increases as the week progresses,
peaking on the weekends, when players typically have more free time.

From the calendar effects that were tried out, only the beginning of the
month and the end of the year were estimated to have a significant impact
in some of the series. Both were estimated as significant in all series except
non-PU churn. The beginning of the month has a positive impact on PU
conversion probably due to the availability of new salaries for spending,
and this too, generates a positive effect in both purchase churn (with 50

days delay), and in PU churn (driven by the increment on PU login in that
day). It also has a small positive effect in the new user series, probably
related to the same phenomenon of individuals exploring new games in
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Parameter New users Conversion to PU non-PU churn PU churn Purchase churn

National holidays 5.17× 10−2 1.47× 10−4 2.83× 10−3 - 7.10× 10−4

Battle event (start) - 2.13× 10−4 - - −2.96× 10−4

Gacha 4 - 1.01× 10−3 - - 1.59× 10−2

Raid event (start) - −1.06× 10−3 - 3.88× 10−3 2.50× 10−3

Unknown 2017/02/09 - −1.25× 10−3 1.57× 10−2 1.31× 10−4 1.79× 10−2

Marketing 2015/02/05-07 5.78× 10−3 9.81× 10−4 3.56× 10−2 4.17× 10−3 2.73× 10−3

Marketing 2015/03/16-25 6.45× 10−3 - 3.95× 10−2 5.17× 10−3 -

Marketing 2015/05/25-31 5.49× 10−3 - 1.34× 10−3 - -

Marketing 2016/09/21-22 6.12× 10−3 1.95× 10−4 2.29× 10−2 - -

Marketing 2017/02/07-09 2.72× 10−3 - −1.88× 10−3 - -

Promotion 2015/03/19 - 1.46× 10−3 - - 3.44× 10−3

Promotion 2015/04/23-24 - 1.74× 10−3 - - 2.11× 10−3

Promotion 2016/09/21-23 - 3.46× 10−3 - - -

Table 4.3: Local level estimates for a selection of parameters for the different
series. Parameter signs and values are an indication of the type and
strength (respectively) of the effect the modelled event is estimated
to have had. For the new users series (log-transformed) they can be
understood as elasticities, for the other time series, additive effects to
the transition probabilities. A - indicates the covariate was not found
to have a significant effect on that time series.

which to spend their newly earned money. It has however no apparent effect
on non-PU behaviour, reinforcing the believe its effect is mainly related to
purchasing rather than playing behaviour. The last day of the year sees an
increment in all probabilities except in non-PU churn, where it has no effect,
and in the new user series, that decrease on that day. That less people try
the game on a day so packed with other activities and festivities makes
sense. The increase in the other series is likely related to special events in
the game that enough players (in this case PUs) find tempting enough.

The hypothesis that events are more a driver of purchases than of logins
is further reinforced by the estimation of in-game event effects. These have,
as was expected, no effect in new users, but also no impact in non-PU churn,
and very limited (only a couple of event types with very low value) in PU
churn. Events can have positive or negative impact both in PU conversion
and in purchase churn, so there is an interesting landscape of events either
encouraging or discouraging spending with respect to a no event scenario,
as understood by the models. Most event types have positive effect on both
series (see for example Gacha in tables 4.2 and 4.3). As they encourage
spending, conversion to PU is increased, but some of this effect is lost
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once the event is over, driving too purchase churn (with 50 days delay).
There are however event types with more interesting effects. Raid event type,
for example, has a negative effect in conversion to PU while increasing
purchase churn and even slightly PU churn: they seem like events that both
discourage spending and are disliked by PUs. On the opposite side of the
spectrum, Battle event type encourages conversion to PU and also reduces
purchase churn, appearing to really drive spending in both PU or non-PU
(or at least they generate long lasting conversion).

Regarding the detection on missing information on marketing and pro-
motion campaigns, as has already been noted, those detected using the
ARIMA setup were used for both SSM approaches. The additional noise
terms in the UC model enable it to better capture sudden changes in level
in the series without interventions, so the attempt to uncover these with
this approach ended up with many less campaigns detected, and degraded
notably the quality of the forecasts.

The marketing and promotion campaign scenario uncovered with the
ARIMA modelling was plausible and consistent, both in terms of the series
impacted and the sign of the effect (as will be discussed below), as of the
in-game planning they suggest. According to the interventions used, for
the first months of life of the game there would have been a profusion of
campaigns of both types, which is typically done by studios right after the
launch of a new a game.

After that, there would have been a much higher intensity of marketing
campaigns during summer months than the rest of the year, which also
makes sense. As has already been discussed, there tends to be an increase
in all measurable play indicators when players have more free time. New
user acquisition campaigns are typically expensive, so more of them are
planned during periods when more people are likely to be on holidays,
increasing the probability of both them actually noticing the campaign, and
on acting on it. Outside the summer months, these campaigns would have
taken place approximately every second month.

In the case of the picture painted by the promotion interventions, these
campaigns were intense at the beginning, and then, after 2015 started, be-
came shorter and sparser. Towards the end of 2016, and specially throughout
2017, they would have however experienced an increase in length, frequency
and intensity. This also makes sense in that it is at this time when other
indicators (in-game sales, DAUs, total playtime. . . ) suggest the game was
transitioning from a growing phase to a contraction one, as they were de-
creasing during the second half of 2016. This intensified campaign planning
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would have had the goal of preventing this. They also appear to have been
successful, as they do appear to bring the amount of purchases back to the
level they had before their decline began.

All marketing interventions have a large positive impact in the new user
series. To assess which campaigns were more successful, one would have to
look, not only at the size of this effect, but also at the impact they had in
the other series. Most campaigns would also have a clear effect in the churn
series, particularly in non-PU churn, as many of the people tempted to try
the game will not find it interesting enough to continue playing. Smaller or
undetectable impact in churn would indicate campaigns which were better
at targeting the right audience, i.e., at bringing players into the game that
remained in the game. Take for example the four first marketing campaigns
listed in tables 4.2 and 4.3. They all have an effect of increasing the amount
of new users by around 6%. All of them impact too non-PU churn, and
of them two make PU churn too increase. The May 2015 campaign has
no effect in PU churn and the lowest of the four in non-PU churn, so can
probably be deemed as the more successful of the four campaigns. On the
opposite side of the spectrum, the March 2015 one appears to have been
the worst, as it has the highest impact in non-PU churn and also increases
PU churn.

Some of the marketing campaigns seem to also been linked to something
going on inside the game, as a limited amount of these interventions were
estimated to have a positive impact in conversion to PU and/or a negative
effect in churn. These could be, for example, new user acquisition campaigns
related to new content or items in the game. It could also be related to
promotions running parallel to the marketing campaign in an attempt
to make new users make their first purchase. It could also signal some
campaigns were so well designed, that they too motivated people that had
played already, and were reached by it, to play and spend. This is the case,
for example, of the February 2015 and the September 2016 campaigns, that
have already been considered in the previous paragraph. The former even
has an impact in purchase churn (with the corresponding delay). The final
marketing intervention included for February 2017, illustrates what would
have been a particularly good campaign of this type: while it increases new
users less significantly than the other four campaigns discussed, it actually
has a negative impact in churn, suggesting it was linked to something
inside the game that engaged new and old players alike.

Marketing interventions were also tried with one and two days of delay
in the conversion to PU series, in an attempt to capture the possible effect
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of new players deciding to make their first purchases a couple of days in.
This effect appears to not be significant, indicating that most users either
become PU straight away, never, or in later stages of the game.

Turning now to promotion interventions, all of them have effect in con-
version to PU, and most of them in purchase churn (with 50 days delay).
None were estimated as significant for any other series (as was expected).
Those rare ones with no noticeable effect in purchase churn, are those that
managed to make long lasting conversion and/or significantly encourage
spending among PUs. Some of them were probably also linked with new
attractive content available for purchase. From the three examples presented
in tables 4.2 and 4.3, the one for September 2016 would belong to this cat-
egory. Of the remaining two, the April 2015 one would have been more
successful, as has a lower impact in purchase churn, and a similar one in
conversion to PU.

Very few interventions not falling into the marketing or promotion cat-
egories were defined. Some of them appear to point at incidents clearly
disengaging players. These could be, for example, changes in content dis-
liked by many, buggy releases, or server failures (or other technical issues
damaging the play experience). Others are less difficult to understand,
and were needed mainly for the purchase churn series. This series is the
one with a much larger part of the dynamics remaining unexplained after
using the rest of covariates. This could indicate that what drives players to
stop spending has more to do with the outside of the game and personal
circumstances than with in-game planning than the rest of conversions. Or
simply that it is more unpredictable for different reasons.

As was explained in subsection 4.3.5, one month long daily forecasts were
ran using data for training until the last day of the previous month, starting
for January 2016. No intervention covariates were used for the prediction,
as they were assumed to be only uncovered once the discrepancies with
the model (and hence the large residuals) would have been observed. The
mean values and standard deviations of MAE and RMSE for both ARIMA
and local level are shown in tables 4.4 and 4.5 respectively, while figures
4.15 (for MAE) and 4.16 (for RMSE) plot the monthly mean values for
both models, with ARIMA represented by a solid line and the UC local
level by a dashed-dotted line. The goal of all these are to compare model
performance between ARIMA and UC, and between different months.
There is no available baseline to which to compare the performance of
these models and judge their general goodness, as they are the first attempt
in this context to provide daily forecasts. When used in production, they
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would become these baseline models to which to compare any proposed
improvements in the time series modelling of these transitions.

Time Series ARIMA Mean ARIMA SD Local Level Mean Local Level SD

New users 440.72 270.73 483.20 282.71

Conversion to PU 4.6× 10−4 2.5× 10−4 5.1× 10−4 2.5× 10−4

PU churn 1.7× 10−3 5.8× 10−4 1.8× 10−3 5.8× 10−4

Non-PU churn 1.4× 10−2 7.0× 10−3 5.2× 10−2 6.8× 10−3

Purchase churn 3.3× 10−3 1.9× 10−3 3.3× 10−3 1.6× 10−3

Table 4.4: Monthly forecast MAE: mean and standard deviation (SD) for the
ARIMA and local level models. Note new users measures number of
users, while the rest probabilities.

Time Series ARIMA Mean ARIMA SD Local Level Mean Local Level SD

New users 634.64 461.44 677.91 463.86

Conversion to PU 7.1× 10−4 5.0× 10−4 8.2× 10−4 5.2× 10−4

PU churn 2.1× 10−3 7.0× 10−4 2.2× 10−3 6.8× 10−4

Non-PU churn 1.9× 10−2 9.4× 10−3 5.6× 10−2 8.9× 10−3

Purchase churn 5.1× 10−3 3.7× 10−3 4.9× 10−3 3.0× 10−3

Table 4.5: Monthly forecast RMSE: mean and standard deviation (SD) for the
ARIMA and local level models. Note new users measures number of
users, while the rest probabilities.

When comparing accuracy for different months, very large errors are
associated to months for which interventions were defined with many
high impact and/or long campaigns, and with effect thus not taken into
account until the forecasted period becomes part of the training set. As
was expected, the performance for different months is highly dependent
in the amount and importance of missing information (that will later be
uncovered and brought into the models through interventions).

The mean absolute error in users is between 400 and 500 users for both
ARIMA and UC, for a series were there are typically several thousand
new daily users. The variability of the MAE is similar in both models and
large (as is the variability of the original time series), ranging from less
than a 100 for January 2017 to over 100o in February 2017. As stated above,
large deviations are only found for months that appear to have had very
intense new user acquisition marketing activity. It is therefore reasonable to
assume the largest errors would be greatly reduced if adequate information
campaign planing was included in the forecasts.
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The MAE for the rest of the series can be interpreted directly in terms
of probability. Size of errors scale as the typical magnitude of the series
modelled, with the same order of magnitude for conversion, PU churn and
purchase churn, and a larger one for non-PU churn. Errors are around one
order of magnitude smaller than the real typical daily values of the original
rate series, indicating the forecasts could be indeed accurate enough to
prove useful. Even more so if the marketing and promotion campaigns were
included from the beginning, as large deviations are consistently associated
to this, as has already been stated.

The ARIMA models generally outperform the local level ones, but only
in the case of non-PU in any significant manner. In this case, the local level
model has systematically larger errors by around 0.05, in a series with
daily values that only rarely exceed 0.1 churn rate. This implies that the
UC model would be of very little practical use in this case. When looking
for an explanation on why this happens only in this particular case, one
notices that for this time series, the UC model selected has a much higher
signal-noise ratio than the rest. The signal-noise ratio is the ratio between
the local level and the residual or irregular variances, and is related to the
number of effective lags that are being taken into account in the modelling:
the higher its value is, the less lags are considered [139]. This in turn makes
it more difficult for the model to capture the correct level of the series, and
could account for the larger relative errors in this case.

Discussions on the similarities and differences of ARIMA and UC models
can be found, for example, in [6] and [139]. They find both models perform
very similarly, and so the much simpler form of the structural time series
model would be preferred, as they are easier to interpret, and also need less
human expertise in their correct definition. All examples they give however,
are weekly or monthly. For daily time series, it is reasonable to expect a
larger number of outliers, as there is less (to no) smoothing happening due
to averaging or addition could explain the existence of more cases where
the discrepancy between both models is large (such as for non-PU churn in
this case), particularly for larger signal-noise ratios. It would be interesting
to study how performance varies when considering different frequencies
(daily, weekly, monthly and even yearly).

4.5 summary and conclusions

Time series SSMs provide a way of studying the probability of transition
between different groups or segments of players. This gives insights on how
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Figure 4.15: MAE for all successive monthly forecasts for new users (top), con-
version to PU (second row), PU churn (third row), non PU churn
(fourth row) and purchase churn (bottom). Own elaboration using
data from AoI.
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Figure 4.16: RMSE for all successive monthly forecasts for new users (top), con-
version to PU (second row), PU churn (third row), non PU churn
(fourth row) and purchase churn (bottom). Own elaboration using
data from AoI. The images have previously appeared in [73].
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different in-game planning strategies affect different kinds of players, and
allows to classify, for example, certain in-game events and campaigns in
terms of their relative success. They can also be used to generate predictions,
taking into account not only in-game planning but also external events
such as calendar effects. Last but not least, it is a powerful tool in detecting
missing relevant information.

In this exercise, besides the time series of new users, PU and non-PU
churn, conversion and purchase churn rates were modelled with two dif-
ferent SSM approaches: ARIMA and structural time series. The ARIMA
model is statistically more complex, and requires substantially more human
expertise in its correct identification. It was also however the only of the two
alternatives that successfully yielded a plausible marketing and promotion
campaign intervention landscape (information on these was not available,
but they were known to have existed frequently and with significant impact).
In everything else, from covariate selection, to parameter estimation, to
resulting forecast quality, both models were remarkably very close. Forecast
performance was slightly better for the ARIMA, except for non-PU churn
were it was substantially better. However, if the focus was in throwing light
on how the different events or campaigns affect the different segments, and
on general game dynamics (rather than in detecting missing information
or producing accurate daily forecasts), UC model would be selected for its
simplicity and less intensive human intervention needs.

While the initial model definition phase is time consuming and highly de-
pendent on human expertise, a methodology has been defined that should
make this stage easier to complete, and would guarantee that different
experts would arrive at similar or identical final model definitions and
regressor selections. Model definition should then be revisited periodically
for maintenance, but otherwise having such a system running in production
would be practically cost free both in terms of human intervention and
computational resources needed. Besides the forecasts running periodically
every week or month for planning and resource allocation, the models could
be actually re-estimated every day, which would allow for early detection
of anything unusual going on, as well as an on-going assessment on how
each particular event or campaign is doing as compared to the previous
ones of the same type. This process could be fully automatic.

As was briefly discussed in the introduction of this chapter, this same
approach can applied to more complex segmentations, and it would then
throw light on how different events, campaigns, external events, etc. affect
churn and conversion of different types of players differently. Additionally,
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the conversion rates, predictions, and estimated effect of the explanatory
variables can be used to build features for models concerned with individual
player behaviour. Such models are used in the following chapters (chapters
5 and 6). The use of the conversion rates and their models, together with
individual player predictions, in generating a well rounded understanding
of churn and conversion will be further discussed in the conclusions of this
thesis (chapter 10).





5
P R E D I C T I N G P L AY E R E N G A G E M E N T

Every individual matters. Every individual has a role
to play. Every individual makes a difference.

— Jane Goodall

Player engagement is an abstract and complex concept, and its definition
is thus elusive. This chapter focuses in understanding and predicting en-
gagement, using the risk or probability of churning as a proxy to its inverse
-disengagement. As opposed to the previous chapter (chapter 4), here the
object of study are individual players. Predictions of the immediate risk of
churn can be used to characterise each player. Additionally, predictions on
how long each player is expected to remain active in the game, in terms of
time since first login, accumulated playtime, and in-game progression, can
further enrich the picture. These also help capture play intensity and ability
of the player, which are, too, related to user engagement. Note that these
are not at all AoI specific, which makes this approach easy to generalise to
basically any sort of game.

Early detection of churn risk is crucial in all service commercial setups.
Video games are no exception, as was already discussed in chapter 3 section
3.2. Having a good understanding on what is driving disengagement, and
which players are in greater risk and when, can be used to target individual
players in an attempt to re-engage them. This opens the door to person-
alization in game planing (and even game development). Certain content
(items, levels, characters, actions. . . ) for example, could be reserved for a
certain degree of disengagement or point in the game in terms of churn
risk. Furthermore, following methodology as the one that will be discussed
in chapter 8, specific content particularly well suited to each player’s pref-
erences can be selected. Generally speaking, the more modelling results
available at individual player level, the greater the opportunities to tailor
the game to each player’s taste. This is a win-win approach: it makes the
game more enticing to the player, while increasing their lifetime within the
game, thus normally positively impacting the studio’s revenue.

This chapter focuses solely in play or login engagement, which is here
considered to be the variable which in the end determines whether a
player is active or inactive (categories as described in chapter 3). Purchasing
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engagement will be defined analogously as that which resolves when a player
is a genuine PU and when they are not. Everything related to purchasing
behaviour (i.e., predicting which players will become PUs, when this will
happen, and how much money they will spend) will be covered in the next
chapter (chapter 6).

In section 5.1, the prediction of churn is treated as a binary classification
problem, while section 5.2 introduces the use of survival analysis to that
effect. The methodology used was first discussed in [28, 52, 167, 225]
(before the studies leading to this thesis), and the results presented were
first published in [224] (which summaries the former and presents new
improved results). Section 5.3 analyses how taking into account the churner
profiling described in chapter 3 section 3.3 can be used to enhance the
understanding of this problem. The content of the latter section is another
original contribution of this thesis (as second author) and was first published
in [52]. Finally, the chapter ends with a summary and some concluding
remarks in 5.4.

5.1 imminent risk of churning

The most simple approach to individual player churn prediction is to treat it
as a binary classification problem. That is, to use decision trees or ensembles,
support vector machines, neural networks, probit model. . . to assign each
player to one of two categories: high or low churn risk. Video game churn
had already been tackled with this type of algorithms in [135, 163, 166, 236,
238, 256]. Having each player categorised as in high or low risk of churning,
is a first simple approach to understanding engagement. It gives a snapshot
of the current situation, dividing users into engaged players (low churn
risk) and those poorly engaged (in high risk of churning).

Certain classification algorithms, such as for example decision trees
or forests (decision tree ensembles), will actually output a probability of
churn when training for this classification problem. This further enriches
the understanding of the situation, as it allows for a more complex (than
binary) image in terms of this probability. It also enables to set the threshold
deciding whether to assign a player to a high or a low risk churn group. This
way, depending on the intended use of the predictions, and thus whether
false positives or false negatives are of greater concern, a different value
can be decided upon, arriving at a more suitable binary classification.

In particular, conditional inference ensembles (see chapter 2 section 2.3.2)
are a good choice to provide probability predictions in a binary approach,
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as they correct the tendency to overfitting and bias towards variables with
more splits present in the more traditional random forest model.

While this is not the preferred approach to this problem in this thesis,
the use of classification ensembles has been presented here, as section 5.3
will also evaluate the behaviour of conditional inference forest generated
predictions, when deciding to incorporate or not the different types of
churners in the training. See table 5.1 for the AUC scores (see chapter
2 section 2.3.2) of the different alternatives tested, and section 5.3 for a
discussion.

5.2 predicting remaining time , playtime and level to churn

Survival models can introduce more complexity in the understanding of
engagement. They are particularly well suited to deal with censored data,
being churn datasets censored in their very nature (at least until the game
ends). They provide, not a prediction on the imminent risk of churning, but
rather how long each player is going to remain active. Different variables
can be used to measure this time to churn:

• Lifetime: Number of days since the user’s first login into the game.

• In-game progression: Level achieved or experience points accumulated
by the player.

• Accumulated playtime: Total number of hours played by the user.

This means every player is then characterised by multiple predictions: on
how many days after starting to play, how much playtime, and at which
level, they are going to completely loose interest in continue playing. The
study of their disengagement in multiple variables allows for the ability,
experience and play intensity of the player to be taken into account, and
thus a more complete picture emerges. This methodology was proposed
in [28, 52, 167, 224, 225], where conditional inference survival ensembles (see
chapter 2 section 2.4.3) were shown to outperform other survival models
such as the Cox regression (see chapter 2 section 2.4.1) or random survival
forests (see chapter 2 section 2.4.2) in this particular task.

Conditional inference survival ensembles output a survival probability
curve per player. In this case actually three: one in lifetime, one in playtime
and one in in-game progression. Rather than a point prediction on when
the event of interest (churn in this case) is going to take place, each player is
in fact characterised by the probability of still being active at each time step
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(with time being days after first log in, hours of playtime, or level). When a
point prediction is needed, the median will be typically used. This means
players are predicted to quit once their survival probability falls below 50%.
Again, as in the conditional inference classification ensemble described in
the previous section (section 5.1), this threshold can be tweaked depending
on the intended use of the predictions. As compared to these, that provided
a single probability of imminent churn per player, the survival ensembles
yield, not only a probability of churn at the present moment (and that in
terms of lifetime, playtime and level), but also the probability per player at
any other (past and future) time. It obviously gives a more well rounded
perspective, reason why is the method of choice in this chapter to study
churn.

Figure 5.1 shows an example, for a player in particular, of this collection
of three survival curves that characterises each user. Their probability of still
being active in the game is plotted against lifetime (a), level (b) and playtime
(c). The player is still active, with the current values on each variable marked
with vertical lines in the plot. Note that all survival probabilities for the
present of that player are well above 50%. Interestingly, however, while
lifetime and playtime they are close to 100%, it is closer to 70% in terms of
level.

Kaplan-Meier estimates are used as split criteria for the conditional
inference survival ensembles (see chapter 2 section 2.4.3). They can be
used to show graphically the actual survival information contained in the
dataset, and hence are very useful to understand how disengagement has
behaved until the present moment, and to compare how it typically evolves
for different players. Figure 5.2 shows the Kaplan-Meier estimates of the
survival probability as a function of days since first login (a) and level
(b) for for non-PUs (purple), PUs (pink) and VIP players (green). As they
progress in the game, the probability of players continuing to be engaged
decreases. Note the acute differences in the engagement of different types of
players: while well over 25% of the VIP players continue to play two years
after they first logged into the game, for non-PUs, the same percentage of
remaining active players is reached only a few days after first login.

Non VIP PUs can be found in the middle ground, although qualitatively
their behaviour resembles more that of non-PUs. This is particularly obvious
when looking at the survival probability curves in level. In the period
considered, although they are much more numerous, basically no non VIP
player makes it past a certain level (the particular level being less than 100

for non-PUs and around 275 for PUs). On the other hand, all VIP players
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(a)

(b)

(c)

Figure 5.1: Predicted survival curves in days since first login (a), game level (b)
and accumulated playtime (c) for a particular player. They logged
in for the first time 164 days ago, have played over 178 hours since
and reached level 151. They are expected to play roughly 230 days
more, reach level 190 after having played a total of more than 600

hours before quitting the game. Elaboration using data from AoI. The
images have previously appeared in [224].
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that make it past level 300 continue to be active until the end of the period
considered (reaching well over level 400).

Another interesting particularity of the VIP curve is that it remains almost
flat for the first 25 levels, meaning absolutely all VIP players make it to
this level (while nearly half of the non VIP PUs and less that 5% non-PUs
do). Given that the VIP survival curve in lifetime does not show the same
behaviour, and assuming in general those leaving the game early on will
also be the same not progressing a lot, this can only be explained by either
whales with short lifetimes still having a high accumulated playtime that
would allow to still make significant progress, or to the actual spending
being of great help in getting through the early levels fast. Figure 5.3 shows
the Kaplan-Meier estimates of the survival probability as a function of days
since first login (plot (a)), level (plot (b)) and playtime (plot (c)) for VIP
players. The lack of a flat beginning for the playtime survival curve points
to the spending facilitated progression as that of greater influence. This
makes even more sense when it is taken into account that players are VIP
after their accumulated expenditure reaches a certain threshold. This means
that VIP players leaving with short lifetimes/low accumulated playtime
spend much more per day/hour played than the more typical loyal whales.
More details on the relations of this variables (and their predictions) for
VIP players are given in chapter 7.

Going back to figure 5.2, survival curves in lifetime are hyperbolic shaped,
with the VIP one having however a much more lowly varying slope, approx-
imately constant for long periods. At the end of the lifetime values available
in our sample, after all curves seem to be approaching their asymptotic
behaviour, there is however a sudden increase in the slopes of both types of
PUs (no non-PUs are left) around day 850. This suggests even very loyal
players loose interest after this point.

As was already mentioned, Figure 5.3 shows the Kaplan-Meier estimates
only for VIP players, including now playtime (c). Note that while the play-
time survival probability decreases much faster than the lifetime probability
(and even more so than the level one, which has already been noted to
remain approximately constant at the beginning), similarly to what happens
with in-game progression, it saturates at around 25% after around 5000

hours of accumulated playtime. At the end of the period considered, of
the 25% of the whales still active, all of them had played over 5000 hours
and reached at least level 300. No similar statement con be done regarding
lifetime. Shaded area in this figure represents 95% confidence intervals.
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(a)

(b)

Figure 5.2: Kaplan–Meier estimates of the survival probability as a function of
time since first login (a) and game level (b) for non-PUs (purple), PUs
(pink) and VIP players (green). Elaboration using data from AoI.The
images have previously appeared in [224].

Figure 5.4 exemplifies the recursive partition with which a conditional
inference survival tree proceeds. At each node, the players are split in terms
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(a) (b)

(c)

Figure 5.3: Kaplan–Meier estimates of the survival probability for VIP players as
a function of time since first login (a), game level (b) and playtime (c).
Elaboration using data from AoI.

of the selected feature using Kaplan-Meier estimates. These are plotted for
the four terminal nodes shown in this figure, exhibiting markedly distinct
behaviours.

Validation plots for a conditional inference survival ensemble run for VIP
players are shown in figure 5.5 for lifetime predictions, figure 5.6 for level
predictions and figure 5.7 for playtime predictions. They show predicted vs
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observed values ((a) plots) and mean-difference plots ((b) plots). They show
overall a remarkably good performance of the models, with a clear bias in
all three variable to predict higher than observed values though.

5.3 impact of zombies and resurrected

Figure 5.8 shows the Kaplan-Meier estimates of the survival probability
as a function of days since first login, level and playtime for zombies,
resurrected, purchase churners and normal (all the rest) VIP players. It is
basically figure 5.3 stratified by type of churner. The markedly different
survival patterns for different churn profiles supports the idea that it could
be useful in the modelling to take the nature of the churners into account.
Simply using this as an additional feature did not however improve model
performance. This chapter examines the impact in the predictive accuracy
(of both the binary classification and survival approaches) of including or
excluding zombies, resurrected and purchase resurrected from VIP churn
prediction models. The goal is to elucidate if information from those types
of churners prevents the models from learning optimally the behaviour of
a typical VIP player by introducing noise. This work was first presented
in [132], which also assesses the impact of considering or not these players
in purchase churn predictions, which will be discussed in chapter 6 section
6.4 in this thesis.

In particular, figure 5.8 shows that zombies have the lowest survival
probabilities in the three variables, except for lifetimes shorter than approx-
imately 150 days, for which normal VIP players are in a greater risk of
churning.Purchase resurrected players, on the other hand, have systemati-
cally much higher survival probabilities in all ranges and variables to all
other groups. The survival behaviour of resurrected players in level and
playtime is qualitatively very similar and with quantitatively only slightly
higher survival probabilities than that of normal players. With respect to
lifetime, however, their behaviour is remarkable. For the first approximately
500 days of play, they present higher survival probabilities than normal
players (markedly so for the first year or so). After that, while the survival
curve for normal players flattens, that of the resurrected continues to drop
at an approximately constant rate, inverting the trend.

Performance of the conditional inference forests for the binary classifica-
tion problem (described in section 5.1), and for the conditional inference
survival ensembles for survival in lifetime, playtime and in-game progres-
sion (described in section 5.2), when including and excluding the different
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(a)

(b)

Figure 5.5: Validation plots for the conditional inference survival model lifetime
predictions for PUs. Plots show predicted vs observed values (plot
(a)) and mean-difference plots (plot (b)). Elaboration using data from
AoI. The images have previously appeared in [224].
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(a)

(b)

Figure 5.6: Validation plots for the conditional inference survival model level
predictions for PUs. Plots show predicted vs observed values (plots
(a)) and mean-difference plot (plot (b)). Elaboration using data from
AoI. The images have previously appeared in [224].
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(a)

(b)

Figure 5.7: Validation plots for the conditional inference survival model playtime
predictions for PUs. Plots show predicted vs observed values (plot
(a)) and mean-difference plot (plot (b)). Elaboration using data from
AoI. The images have previously appeared in [224].
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(a) (b)

(c)

Figure 5.8: Kaplan–Meier estimates of the survival probability as a function of
time since first login (a), game level (b) and cumulative playtime (c)
for VIP players. Curves are stratified by churner type: normal, zombie,
resurrected and purchase resurrected players. Shaded areas represent 95%
confidence intervals. Elaboration using data from AoI. The images
have previously appeared in [132].

combinations of types of churners, was investigated. Ensembles of size 1000

were used in all cases. The experiments run used data between 2014-10-02

and 2017-05-01, with data until 2018-03-01 used for training, and the rest
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for validation. The experiments were run for VIP players only. By the end
of the period considered, 21% of the players had been tagged as churners
and 5% as purchase churners. Nearly 30% had been resurrected throughout
their lifetime, and 23% had purchase resurrected. Around 10% had been
zombies at some point. While the large amount of resurrected could hint
at a poor churn definition, these tend to leave the game not long after
resurrecting, not contributing very much to the fraction of false churners in
the long run. Feature selection was done independently for the different
models and variables, using always features constructed out of indicators
present for many different titles (player playtime, purchases, actions. . . ).
The possibility of adding the type of churner as a feature (for example, a
zombie feature which is 1 if player is zombie and 0 if they are not) was
also explored but were found to bias the models towards their behaviour,
degrading the predictions for normal churners.

Validation was performed using AUC for the binary case and error curves
and IBS for survival (see chapter 2 section 2.9 for more details). The set of
players used for validation was the same in all cases, and excluded zombies,
resurrected and purchase resurrected, as the goal is to assess the accuracy
of predictions for normal players. Results are summarised in table 5.1, with
figures 5.9, 5.10 and 5.11 comparing prediction error curves on the different
variables (for lifetime, level and playtime respectively).

Note that the exclusion of different types of churners or not has close
to absolutely no impact on binary results, but a large one on the survival
predictions accuracy. Survival models rely on the whole lifetime of players
to learn about survival probabilities, and are thus much more sensitive to
noise introduced by the erratic churn behaviours of certain players. This
makes it safe to make the same training decisions for binary and survival
for consistency.

Focusing on survival, it is clear from figures 5.9, 5.10 and 5.11 (particularly
from their (a) plots, which compare the effect on the three variables of
removing each of the groups under study individually) that different groups
have different impacts depending on how large the value of the variable
under consideration is. For very short lifetime, level and playtime, there is
no significant impact from removing any of the groups. For short lifetime,
level and playtime, removing zombies is what has a larger positive impact
in error reduction, followed by removing resurrected that shows a similar
pattern with less impact. While the improvement becomes starker for larger
lifetime in days after first login, it is reversed for larger values of level
and playtime (in these regions all training sets have similar performances
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CHURN Binary models (AUC) Survival models (IBS)

excluding from training lifetime level playtime

none 0.95 0.072 0.069 0.060

zombie 0.93 0.034 0.047 0.035

resurrected 0.90 0.043 0.048 0.041

p. resurrected 0.95 0.104 0.084 0.060

zombie, resurrected 0.94 0.029 0.041 0.035

zombie, p. resurrected 0.93 0.057 0.068 0.049

resurrected, p. resurrected 0.92 0.071 0.068 0.057

zombie, resurrected, p.resurrected 0.94 0.053 0.059 0.050

Table 5.1: Area under the curve (AUC) for binary model and the integrated Brier
score (IBS) for survival model (in terms of lifetime, level and cumula-
tive playtime) for the different situations with regard to the training
sample: including all users (none) vs. excluding zombie, resurrected
or purchase resurrected players (or combinations of them). The best
results for each model and variable are highlighted in bold.

though). Purchase churners seem to have the opposite effect: their removal
enhances performance for large values of lifetime, level and playtime, but
severely impacts prediction quality for small values of the three variables.
While removing zombies and/or resurrected has an overall positive impact,
training without purchase resurrected has an overall negative impact, as can
be checked in table 5.1. This makes sense, as purchase churners might show
at some point an erratic behaviour with regards to purchasing, going for
long periods without spending, but can still have a very typical login activity
from which survival models’ learning benefits. The preferred training set
would be then to remove zombies and resurrected but keep purchase
resurrected.

5.4 summary and conclusions

A first simple proxy to study player engagement is modelling player churn
probability. This can be done using binary classification models, but survival
ensembles provide a more interesting perspective, as they can output for
each player how their survival probability evolves with lifetime, in-game
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(a)

(b)

Figure 5.9: Prediction error curves for PU churn as a function of lifetime. The
different lines represent model runs excluding zombies (red), res-
urrected (green) or purchase resurrected (purple) players (plot (a))
and combinations thereof (plot (b)) from the training sample. Com-
binations represented in plot (b) are: (i) resurrected and purchase
resurrected (pink), (ii) zombies and purchase resurrected (brown),
(iii) zombies and resurrected (green), and zombies, resurrected and
purchase resurrected (blue). Elaboration using data from AoI. The
images have previously appeared in [132].
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(a)

(b)

Figure 5.10: Prediction error curves for PU churn as a function of level. The
different lines represent model runs excluding zombies (red), res-
urrected (green) or purchase resurrected (purple) players (plot (a))
and combinations thereof (plot (b)) from the training sample. Com-
binations represented in plot (b) are: (i) resurrected and purchase
resurrected (pink), (ii) zombies and purchase resurrected (brown),
(iii) zombies and resurrected (green), and zombies, resurrected and
purchase resurrected (blue). Elaboration using data from AoI. The
images have previously appeared in [132].

progression and accumulated playtime. In particular, conditional inference
survival ensembles outperform other methods in this particular task.

Survival average behaviour (given by Kaplan-Meier estimates) of different
types of players can be very different. In particular, disengagement takes
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(a)

(b)

Figure 5.11: Prediction error curves for PU churn as a function of playtime. The
different lines represent model runs excluding zombies (red), res-
urrected (green) or purchase resurrected (purple) players (plot (a))
and combinations thereof (plot (b)) from the training sample. Com-
binations represented in plot (b) are: (i) resurrected and purchase
resurrected (pink), (ii) zombies and purchase resurrected (brown),
(iii) zombies and resurrected (green), and zombies, resurrected and
purchase resurrected (blue). Own elaboration using data from AoI.
The images have previously appeared in [132].

place very differently for non-PU, VIP and non VIP PU players. Focusing on
VIP players only, different types of churners show also markedly different
survival patterns. It has been shown that excluding from the training set
certain types of churn like profiles, in particular active players with very
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little activity and those returning to the game after very long periods of
inactivity, improves the performance of the survival ensembles in predicting
churn for normal players, while not impacting the binary classification
approach.

An obvious application of having these sort of predictions running in
production is an early detection of players in risk of churning. This allows
studios to target these users specifically, in order to reengage them, or
even to try and redirect them to other titles that might be interesting to
them if the modelling is indicating their life-cycle within the game has
been exhausted. If a player, for example, is disengaging fast in playtime
but still has a very high predicted final level, this could be signaling the
game is easy for them and they will complete it soon (and hence no sense
in attempting re-engagment, they will soon be done with the game).

Additional ML models can be used to target them in a personalised
manner, for example, making content particularly suited to their likes
available (see chapter 8 for a description of an item recommendation system,
for example). Note also that the probabilistic nature of the output of these
models allows for a discrimination, even for the same predicted time to
churn, of users who are disengaging slowly and will maintain relatively
high probabilities of still being active for a long period of time after the
predicted time of churn (which would probably be easier to reengage at
least in the short term), from those who are very rapidly disengaging and
will soon after have a negligible probability of coming back to the game
(and with whom any attempt of re-engagement will most likely not be
successful).

The multidimensional nature of the approach (providing in predictions of
time to event, but measuring time in three different ways) also brings added
value. It could, for example, allow for an early detection of problematic
content (level) in the game (too easy, too difficult, too boring. . . ), if many
players are predicted to have a significant drop in survival probability at
that point. Survival predictions in different variables and their combination
can prove useful in profiling players and in generally understanding game
dynamics, as will be explored in chapter 7.
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P R E D I C T I N G P U R C H A S I N G E N G A G E M E N T

Das Leben muss nicht einfach sein, vorausgesetzt, es
ist nicht leer.

— Lise Meitner

Purchasing engagement, defined analogously to login engagement, as that
which resolves when a player is a genuine PU and when they are not,
is obviously of great interest to studios. Not only should they pursue its
study in order to better monetise their games, but also crucially to detect,
track and disengage players that could be displaying problematic addictive
behaviours. The appeal of studying player purchasing habits in games is
obvious from a general human behaviour perspective. As is repeatedly
stressed throughout this thesis, all methodologies presented to that effect
can be directly translated to virtual in-game currency. In terms of economic
behavioural studies, this becomes particularly interesting when concerning
role type games mimicking human societies. Here money typically has to
be earned performing certain tasks, and the players then need to decide
carefully where it will be better spent.

This chapter deals with everything having to do with measuring and
predicting individual player purchasing engagement. A lot of it follows
along the lines of the previous one (chapter 5). All methods that were
applied there to predict churn probability (considered as the main marker
of engagement loss), can be also used to better understand both individ-
ual player conversion and purchase churn (both discussed at very basic
segmentation or game level in chapter 4).

Another quantity of interest when considering individual purchasing
behavioural analysis is obviously that of number of purchases and total
expenditure. Predictions of these quantities can be used for early detection
of whales among other things. The expected outlay during the duration of
the relation is of general interest in non-contractual setups, and is typically
referred to in the literature as Lifetime Value (LTV) (or customer lifetime
value or lifetime customer value), as introduced in chapter 2 section 2.5.

Section 6.1 discusses the use of survival models to predict after how
many days since first login, accumulated playtime and in which level will
players make their first purchase, work that was first published in [133].

135
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The use of binary classification methods and survival models to predict
time to purchase churn is introduced in sections 6.2 and 6.3 respectively,
and the impact of using or not different churn profiles in the training set
analysed in section 6.4. This approach was first discussed in [132]. Different
methods for predicting player LTV are then compared in section 6.5, in
work which first appeared in [51, 224]. The chapter closes with a summary
and conclusions in section 6.6. All the content of this chapter is an original
contribution of this thesis (as second or third author).

6.1 predicting player conversion

The first step when discussing purchasing behaviour is potential paying
user detection. This problem can be approached by using survival models
to predict time, playtime and level to first in-game purchase. Previous
attempts at predicting conversion in video games include [256], where the
problem was treated as a binary classification problem using support vector
machines and decision forests, or [76], where different classification meth-
ods for PU early detection and regression algorithms for LTV prediction are
explored. Conversion has been studied in other fields and contexts, such as
e-commerce [66, 161], medicine [293] or career switching [286].

In this section the results presented in [133] are described in detail for
AoI. In the aforementioned paper, the analysis was also performed for an
additional game (Grand Sphere) with comparable results. Three different
survival analysis approaches were considered for predicting time to con-
version: Cox regression, random survival forests and conditional inference
survival ensembles (see chapter 2 sections 2.4.1, 2.4.2 and 2.4.3 respectively).
As the game progresses, a non-PU can either churn or become a PU. The
random survival forest with churn as an alternative competing risk was
therefore also evaluated. The alternative event that would prevent observing
the transition of a non-PU to PU would thus be churn, as illustrated in
figure 6.1. Following the generic approach of this thesis in what concerns
survival models, predictions on days after first login, level attained and
accumulated playtime to the event of interest (conversion to PU in this case)
were considered. This is implicitly taking into account how the ability and
play intensity of players factor in.

The idea is to evaluate if time to conversion to PU can be accurately
predicted in an operational setup. Data between January 2015 and February
2017 was used, considering only players that logged in at least two days.
Of all new users logging each day for the first time, most are one-time
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Figure 6.1: Plot showing schematically how churn and becoming PU can be
considered competing risks. Ten players are tracked for 30 days of
lifetime. Players may become PUs (circles) or churn (triangles) at
some point. It is also possible that none of this events is observed
within the observation period (crosses). They could however happen
later on, so these are in fact illustrating the censored character of the
dataset. The image has previously appeared in [133].

comers, i.e. players that log in only one day, never to come again (this is
clear in figure 5.2). Eliminating new comers from the sample reduces class
imbalance, as most of them will never become PUs. Non one-time comers
will be considered anyway as soon as they log again, and a prediction of
time to conversion issued for them. And for those new comers that become
PUs in the first day, the predictions would have given very little (if any)
added value.

This translates to around 30 000 players, of which 5,32% became PUs at
some point. To run the experiments, random samples were taken, with 30%
of the players assigned to the training set and 70% to the test sample. The
training set is purposefully much smaller than the test set, as one of the aims
of this exercise is to find out whether these models can provide accurate
predictions in an operational setup. This would involve huge datasets, and
thus the approach would be to train with only a small subsample of the
total population available.

Note in this problem, survival curves give the probability for a given
individual to remain non-PU at a certain point in time. It is therefore more
intuitive in this case to think in terms of its inverse, the cumulative incidence
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function, which gives the probability that the event of interest—becoming a
PU—does happen. Figure 6.2 and Figure 6.3 show these cumulative incidence
functions (inverse of the Kaplan-Meier estimates) in terms of days after first
login (a), level (b) and accumulated playtime (c), for all players of the game
and for PUs only respectively.

These figures highlight a different behaviour in terms of lifetime as com-
pared to playtime and level. Even when considering the whole population,
most of the players that reached the highest levels or played for very large
cumulative playtime did indeed become PUs. When looking at days since
first login, however, players can remain in the game for very long periods
of time without necessarily becoming PUs. This signals that, while lifetime
is a key measure when analysing player behaviour, playtime and in-game
progression are typically better indicators of engagement. While less than
25% of players have become PUs after two and half years using the game
(longest period available in the sample considered), 50% have made at least
one purchase after 500 hours of play or by the time they have reached level
150. Players with up to 8000 hours of accumulated playtime and of nearly
level 350 can be found in the sample, and of those, over 80% are PUs.

When looking at the cumulative incidence function when considering
only PUs, it is obvious that conversion happens much more quickly in
lifetime and playtime than in level, probably indicating the spread in skills
of PUs can still make them reach certain levels at very different points in
time, even when playing with similar frequency and duration. After less
than a month after their first login, and less than 10 hours of playtime,
more than 75% of the players that will indeed make the conversion have
already made at least one purchase. Note these are both very short periods
as compared to scales of observed lifetimes and playtimes available in
the sample considered (of up to 900 days and 8000 hours). Meanwhile, it
takes players to get to level 50 to reach similar levels of 75% conversion
when considering in-game progression, which is already over 15% of the
maximum attained by any player in the sample.

Note that in this case, unlike when using survival models to predict
churn (chapter 5 section 2.4) and purchase churn (section 6.3), there is no
ambiguity with respect to the event definition: conversion to PU happens
when the user makes their first purchase.

Features were selected independently for each of the response variables.
As for all survival models discussed in this thesis, they were constructed
applying different statistical operations (minimum, maximum, median, av-
erage. . . ) to time series based on quantities generic across many games, such
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(a) (b)

(c)

Figure 6.2: Probability of being a PU as a function of lifetime (a), in-game progres-
sion (b) and accumulated playtime (c) for all players except one-time
comers (as given by the inverse of the Kaplan – Meier estimates). The
shaded area represents the 95% confidence interval. Elaboration using
data from AoI. The images have previously appeared in [133].

as level-ups, playtime, actions, sessions, social interactions. . . All ensemble
methods used 900 trees as base learners.

To assess the accuracy of the predictions, scatter plots of predicted vs.
observed variables (figure 6.6 for conditional inference survival ensembles,
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(a) (b)

(c)

Figure 6.3: Probability of beeping a PU as a function of lifetime (a), in-game
progression (b) and accumulated playtime (c) for PUs (as given by the
inverse of the Kaplan – Meier estimates). The shaded area represents
the 95% confidence interval. Own elaboration using data from AoI.
The images have previously appeared in [133].

figure 6.5 for random survival forests, and 6.4 for Cox regression) and of
their log transformed (figure 6.9 for conditional inference survival ensem-
bles, figure 6.8 for random survival forests, and 6.7 for Cox regression) are
studied. Using logarithms has two advantages: it prevents over-penalisation
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(a) (b)

(c)

Figure 6.4: Validation plots for the conversion predictions of the Cox regression.
Plots show predicted vs observed values for conversion times in life-
time (plot (a)), game level (plot (b)) and playtime (plot (c)). Predictions
correspond to the median survival values. Elaboration using data
from AoI. The images have previously appeared in [133].

of large errors for large values, while providing a close-up look at smaller
values of the observed and predicted quantities. Root mean squared log-
arithmic errors (RMSLE) are listed in table 6.1, and percentage of false
negatives (players that were not predicted to become PU but did) and
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(a) (b)

(c)

Figure 6.5: Validation plots for the conversion predictions of the random survival
forest. Plots show predicted vs observed values for conversion times
in lifetime (plot (a)), game level (plot (b)) and playtime (plot (c)).
Predictions correspond to the median survival values. Elaboration
using data from AoI. The images have previously appeared in [133].

positives (players who were predicted to become PU and did not) in tables
6.2 and 6.3 respectively.

The low percentages of false positives (table 6.3) and negatives (table
6.2) yielded by all models and variables highlight that they can all be
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(a) (b)

(c)

Figure 6.6: Validation plots for the conversion predictions of the conditional
inference survival model. Plots show predicted vs observed values
for conversion times in lifetime (plot (a)), game level (plot (b)) and
playtime (plot (c)). Predictions correspond to the median survival
values. Elaboration using data from AoI. The images have previously
appeared in [133].

adequately used to provide a good binary classification of players that
have PU potential and those that do not. Generally speaking, all methods
also give reasonable predictions for when the conversion will take place
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(a) (b)

(c)

Figure 6.7: Log-log scatter plots of predicted vs observed values for conversion
times in lifetime (plot (a)), game level (plots (b)) and playtime (plot
(c)) using a Cox regression. Predictions correspond to the median
survival values. The logarithm transformation provides a close-up
look at the spread of the data points (cf. Figure 6.4). Elaboration using
data from AoI. The images have previously appeared in [133].

(table 6.1). Cox regression, as expected, yields worse predictions across all
variables than the ensemble methods.
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Model Lifetime Level Playtime

Conditional inference survival ensembles 0.54 0.69 0.47

Random survival forest 0.45 0.50 0.71

Random survival forest (competing risks) 0.50 0.63 0.85

Cox regression 1.08 1.00 0.79

Table 6.1: Root mean square logarithmic error (RMSLE) for time to conversion
predictions of all survival models and variables considered.

Model Lifetime Level Playtime

Conditional inference survival ensembles 0.27% 0.84% 0.60%

Random survival forest 0.18% 1.08% 1.01%

Random survival forest (competing risks) 0.61% 3.21% 0.58%

Cox regression 12.22% 1.69% 2.34%

Table 6.2: False negatives for all survival models and variables considered for
PU detection.

Model Lifetime Level Playtime

Conditional inference survival ensembles 3.68% 4.02% 4.02%

Random survival forest 3.70% 3.32% 3.42%

Random survival forest (competing risks) 3.41% 1.17% 3.27%

Cox regression 3.75% 4.19% 2.30%

Table 6.3: False positives for all survival models and variables considered for PU
detection.
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(a) (b)

(c)

Figure 6.8: Log-log scatter plots of predicted vs observed values for conversion
times in lifetime (plot (a)), game level (plot (b)) and playtime (plot (c))
using a random survival forest. Predictions correspond to the median
survival values. The logarithm transformation provides a close-up
look at the spread of the data points (cf. Figure 6.5). Elaboration using
data from AoI. The images have previously appeared in [133].

Both ensemble methods have comparable performance. Note that the
inclusion of competing risks in the case of the random survival forest
does not improve the classification. As expected, it does reduce a little
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(a) (b)

(c)

Figure 6.9: Log-log scatter plots of predicted vs observed values for conversion
times in lifetime (plot (a)), game level (plot (b)) and playtime (plot (c))
using a conditional inference survival model. Predictions correspond
to the median survival values. The logarithm transformation provides
a close-up look at the spread of the data points (cf. Figure 6.6). Elab-
oration using data from AoI. The images have previously appeared
in [133].

the rate of false negatives (players that churn before becoming PU are
more likely to not be classified as potential PUs). Its detrimental effect in
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the false positive rate is however larger (except in playtime). As for the
predictions on when the conversion will occur, including competing risks
degrades the predictions in the three variables. This suggests that churn
and conversion to PU are in fact not competing risks: players are rarely
considering simultaneously whether they should quit the game or start
spending money on it. Players with a high probability of becoming PUs are
normally not considering abandoning the game, and players in high risk of
churning are normally not considering spending money in the game.

The scatter plots in figures 6.4-6.9 provide insights on for which scales
of the different variables considered are the predictions of the different
models performing worse, and highlight any obvious biases present.

Figures 6.4 and 6.7 are the scatter plot and log-log scatter plot (respec-
tively) of predicted vs observed values using Cox regression. Performance
seems reasonable particularly for lifetime, with the (non-transformed) plot
(figure 6.4 plot (a)) displaying the typical behaviour of points densely
packed around the observed=predicted diagonal, with higher spread for
larger values of both quantities (as it becomes increasingly difficult to
predict with very high accuracy for longer lifetimes). The close-up look
provided by the log-log plot (figure 6.7 plot (a)) shows a bias towards longer
than observed predicted lifetimes for short lived players (relatively high
spread clearly onto the upper semi-quadrant), but still acceptable behaviour.
When studying the performance of in-game progression (figures 6.4 and
6.7 plot (b)), Cox regression shows its inability to predict levels below 35,
and some bias towards higher predicted than observed values, but still a
reasonable performance across many scales. The major problem displayed
by this relatively simple parametric approach appears when considering
playtime (figures 6.4 and 6.7 plot (c)): the model is only able to predict a
very short range of expected playtimes, and even for players with observed
values in that range, it has relatively bad performance with a clear bias
towards underestimation.

Moving to the plots evaluating the RSF performance (figures 6.5 and 6.8),
the same problems as with Cox regression are observed, but in a much
less acute manner. Accuracy in lifetime predictions is improved, and the
bias observed for short lifetimes virtually eliminated (compare plot (a) of
figures 6.8 and 6.7). The inability to forecast low in-game progression is now
limited to levels under 10 (figure 6.8 plot (b)). Still, the most problematic
behaviour in terms of practical applications is the bad performance in
playtime: random survival forest is capable of predicting for a larger range
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of values, and to do so with less bias ((compare plot (c) of figures 6.8 and
6.7)), but the accuracy is still far from acceptable.

Finally, figures 6.6 and 6.9 can help assess the usefulness of conditional
inference survival predictions. Interestingly, performance in lifetime and
level is slightly degraded as compared to that of the other ensemble method
considered (RSF), as made obvious by the larger spread around the di-
agonal in plots (a) and (b) of figures 6.6 and 6.9 (as compared to those
in figures 6.5 and 6.8). When looking at playtime (plot (c) in figures 6.6
and 6.9), however, the situation is completely reversed: the performance of
conditional inference survival ensembles is remarkably good at all scales,
actually showing some bias towards overestimation (as opposed to the clear
underestimation of the other two methods shown in plot (c) of figures 6.7
and 6.8).

Although the random survival forest yields slightly better lifetime and
level predictions, it critically fails when predicting accumulated playtime to
conversion. Only conditional inference ensembles are able to predict conver-
sion after long accumulated playtime, and, as is clear from the log scatter
plots in figure 6.9 (as compared to figures 6.8 and 6.7), both Cox hazards
model and random survival forest have very obvious biases, systematically
predicting significantly lower playtime than the actual outcomes.

In regards to level however, the random forest algorithm yields better
predictions across all scales. Scatter plots also show that all models are
incapable of predicting conversion when it happens in the first few levels.
This however has very little practical relevance: progression through these
levels is very quick, and happens almost instantly in terms of lifetime
and playtime, so early detection of the potential of these users has very
little added value. Random survival forests also give better predictions for
lifetime, but mainly due to improved performance for short lifetimes, which
are again a case of little real practical interest. Note also that all models are
biased (although randoms forests less so) in that they tend to predict higher
levels of conversion than those observed. This is also the case of conditional
inference ensembles predicting accumulated playtime to conversion.

To sum up, all survival methods examined provide reasonable predictions,
both of which players have paying potential, and of when this conversion
will occur in terms of lifetime and level. Survival methods outperform
the classical semi-parametric Cox regression, while adding churn as a
competing risk slightly degrades the results. Although random survival
forests tend to outperform conditional inference ensembles for level and
lifetime, it is specially so when conversion happens early on, which are cases
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of less practical relevance. On top of this, conditional inference ensembles
are the only models to provide reasonable predictions on when conversion
will occur in terms of accumulated playtime, hence this would be the
preferred method to be used in production setups.

6.2 imminent risk of purchase churn

Once the issue of predicting conversion is settled, one can turn to trying
to predict when players that indeed become PUs will stop purchasing (but
will still be active in the game). Purchase churn modelling for individual
players is going to be treated very much like login churn was in the last
chapter (chapter 5). The modelling of purchase churn rate for the whole
game was tackled in chapter 4.

Conditional inference forests can be used for binary classification of
purchase churn, analogously as they can be used for (login) churn (see
chapter 5 section 5.1). Such a binary classification would be a first step,
detecting which of the current PUs of the game are in immediate risk of
not spending any more. As was suggested for the case of login churn, these
players could be targeted with specific particularly well suited content, or
with discounts and promotions, in an attempt to prevent them from loosing
their genuine PU status.

This method actually outputs a purchase churn probability per player
(and not simply a predicted label), so the sensitivity to classify a player
as in high risk of purchase churning can be fine tuned depending on the
particular use intended for the predictions, and on whether it is more im-
portant to minimise false negatives or false positives (as was also described
for regular churn in chapter 5 section 5.1).

As it is probably obvious by now, this is not the preferred approach in
this thesis. The use of survival models to predict time, level and playtime to
purchase churn will rather be explored, thus taking into account explicitly
in the predictions how much each user is playing, and how skilful they
are. This path will be explored in section 6.3, and how the inclusion or
exclusion of zombies, churners and purchase churners from the training
affects model performance in section 6.4. The latter will also assess how
conditional inference classification is affected, reason why its use has been
briefly described here. In section 6.4 table 6.4 the resulting AUC scores
of VIP player purchase churn prediction (both including and excluding
different types of churners) will be presented and discussed.



6.3 predicting time , playtime and level to purchase churn 151

6.3 predicting time , playtime and level to purchase churn

Following the same reasoning and methodology proposed in chapter 5

section 5.2 for regular churn, conditional inference forests can be used
to build survival purchase churn models to predict days after first login,
in-game progression and cumulative playtime to purchase churn.

Figure 6.10 shows the Kaplan-Meier estimates of the purchase survival
probability as a function of days since first login, level and playtime for
VIP players. That is, it shows, for the period considered, the percentage of
whales that have made at least one purchase in the previous 50 days.

These curves are very similarly shaped to the ones related to login
survival plotted in figure 5.3, but with lower values of survival probability.
This is indicating the main reason why whales stop purchasing is because
they quit the game. Note that surviving as PU implies first surviving as
player at all, and it is the remaining active trait which is dominant in
explaining curve shape in both (survival as active player and as active
spender) figures. Top spenders will typically continue spending throughout
their whole history in the game, although a limited number of them will
stop purchasing but continue playing. This accounts for the difference in
values between the login curves of figure 5.3 and the purchasing curves of
figure 6.10.

Actually, for relatively low level and playtime (plots (b) and (c) of figure
6.10), the purchase survival probability is very close even quantitatively to
the survival login probability (plots (b) and (c) of figure 5.3). Only after
level 200 or 1000 hours noticeable quantitative differences appear, with both
curves saturating at levels above 25% in the case of login churn and well
below that in the case of purchase churn. This indicates it is very rare for
VIP players with less experience to stop purchasing without quitting the
game. As they reach the highest progression and accumulated playtime,
this is still rare but much more likely than at previous stages.

The case of lifetime is slightly different. Here, there is more variation
in the shape of the curve that for progression and playtime (compare plot
(a) of figure 6.10 to that of figure 5.3). The descend at the beginning (for
shorter lifetimes) is steeper, while the value at which both curves saturate
is closer (with one slightly above and the other slightly below 25%). This
means players with heavy spending for a period of time after joining the
game can indeed stop doing so later on while still playing (though probably
with less frequency and intensity), while in terms of in-game progression
and playtime this only happens towards the end. On the other hand, if they
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(a) (b)

(c)

Figure 6.10: Kaplan–Meier estimates of purchase survival probability as a func-
tion of time since first login (a), game level (b) and accumulated
playtime (c) for VIP players. Shaded areas represent 95% confidence
intervals. Elaboration using data from AoI.

keep purchasing long enough (in days after first login), as opposed to what
happens in level and playtime, they will most likely keep spending until
they quit the game for good.



6.4 impact of zombies and resurrected 153

6.4 impact of zombies and resurrected

The exercise carried out in chapter 5 section 5.3 for churn, was repeated
for purchase churn, using the same dataset, models (conditional inference
forests and conditional inference survival ensembles, see chapter 2 sections
2.3 and 2.4), and verification metrics. Feature selection was carried out
independently. The reader is encouraged to revisit chapter 5 section 5.3 for
a reminder on the dataset characteristics and model specification.

Figure 6.11 shows the Kaplan-Meier estimates of the purchase survival
probability as a function of days since first login, level and playtime for
zombies, resurrected, purchase churners and normal (all the rest) VIP
players. It is basically figure 6.10 stratified by type of churner. As expected
given that all VIP login churners are also purchase churners (which is not
necessarily true the other way round), these curves are steeper than the
login purchase ones in figure 5.8.

For level and playtime (plots (b) and (c) of figure 6.11), the behaviour is
qualitatively very similar to that of churn (plots (b) and (c) of figure 5.8),
except maybe for very high values of both, where there is a large uncertainty
for purchase churners that makes the situation difficult to assess. Namely,
zombies and resurrected show the fastest descent in probability of still being
active in both cases, with both groups displaying similar behaviour both
qualitatively and quantitatively, with resurrected having a slightly larger
purchase survival probability for all levels and playtime values. On the
other hand, purchase resurrected players have the higher purchase survival
probability of all groups (at least for all levels below 200 and playtimes
below 5000 hours). Normal player behaviour lies pretty much in the middle:
they do not disengage as rapidly as zombies or resurrected VIP players,
but do so markedly faster than purchase resurrected ones, at least for most
values. After level 200 and 5000 hours of playtime, the percentage of normal
active players remain constant (at 25-30% in both cases).

In lifetime (plot (a) of figure 6.11) too, zombies are the more rapidly and
purchase resurrected the more slowly disengaging players. Here, however,
resurrected players don’t show a quantitatively similar behaviour to zom-
bies, and even have a higher purchase survival probability than normal
players for the first approximately 100 days of lifetime. Again, this is the
same pattern found in login churn (plot (a) of figure 5.8), although for a
much shorter period and with very little difference between both groups. In
purchase churn with lifetime, the purchase survival probability of purchase
churners does not stabilise after some period, and continues decreasing at
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approximately the same pace (which was the case of the resurrected for
login churn). As the normal player’s curve does become approximately
constant after 600 days, their probability of still being genuine PUs is very
close to that of purchase resurrected for lifetimes of more than 800 days.

(a) (b)

(c)

Figure 6.11: Kaplan–Meier estimates of purchase survival probability as a func-
tion of time since first login (a), game level (b) and cumulative
playtime (c) VIP players. Curves are stratified by churner type: nor-
mal (blue), zombie (red), resurrected (green) and purchase resurrected
(purple) players. Shaded areas represent 95% confidence intervals.
Elaboration using data from AoI. The images have previously ap-
peared in [132].
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CHURN Binary models (AUC) Survival models (IBS)

excluding from training lifetime level playtime

none 0.69 0.070 0.080 0.077

zombie 0.69 0.055 0.067 0.086

resurrected 0.68 0.070 0.080 0.080

p. resurrected 0.72 0.065 0.076 0.062

zombie, resurrected 0.69 0.055 0.057 0.086

zombie, p. resurrected 0.72 0.053 0.067 0.050

resurrected, p. resurrected 0.73 0.065 0.068 0.057

zombie, resurrected, p.resurrected 0.73 0.053 0.056 0.051

Table 6.4: Area under the curve (AUC) for binary model and the integrated Brier
score (IBS) for survival model (in terms of lifetime, level and cumula-
tive playtime) for the different situations with regard to the training
sample: including all users (none) vs. excluding zombie, resurrected
or purchase resurrected players (or combinations of them). The best
results for each model and variable are highlighted in bold.

Prediction accuracy results are summarised in table 6.4, with figures 6.12,
6.13 and 6.14 comparing prediction error curves on the different variables
(lifetime, level and playtime respectively). As was the case for login churn
(discussed in chapter 5 section 5.3), survival model results are much more
sensitive (than classification model ones) to the removal or not of one or
more of the special types of players in regards to churn. In this case however,
the exclusion of purchase churners does have a (clear albeit small) positive
impact in the binary model’s performance.

When considering overall accuracy of survival model purchase churn
predictions (see table 6.4), the single group whose removal improves per-
formance in the three variables is purchase resurrected. Excluding login
resurrected alone has no overall effect in lifetime and level, but slightly
degrades playtime accuracy, while removing only zombies from the training
improves performance in lifetime and level, but significantly and negatively
affecting accuracy in playtime.

Looking at plot (a) of figure 6.12 (for lifetime), figure 6.13 (for level)
and figure 6.14 (for playtime) to understand what it is happening, it is
obvious that the removal of purchase churners very significantly reduces
errors at medium to large values of all variables. For short values, however,
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(a)

(b)

Figure 6.12: Prediction error curves for AoI purchase churn as a function of life-
time. The different lines represent model runs excluding zombies
(red), resurrected (green) or purchase resurrected (purple) players
(plot (a)) and combinations thereof (plot (b)) from the training sam-
ple. Combinations represented in plot (b) are: (i) resurrected and
purchase resurrected (pink), (ii) zombies and purchase resurrected
(brown), (iii) zombies and resurrected (green), and zombies, resur-
rected and purchase resurrected (blue). Elaboration using data from
AoI. The images have previously appeared in [132].
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(a)

(b)

Figure 6.13: Prediction error curves purchase churn as a function of game level.
The different lines represent model runs excluding zombies (red),
resurrected (green) or purchase resurrected (purple) players (plot (a))
and combinations thereof (plot (b)) from the training sample. Com-
binations represented in plot (b) are: (i) resurrected and purchase
resurrected (pink), (ii) zombies and purchase resurrected (brown),
(iii) zombies and resurrected (green), and zombies, resurrected and
purchase resurrected (blue). Elaboration using data from AoI. The
images have previously appeared in [132].

the impact is reversed. While only short playtimes (below 250 hours) and
in-game progressions are affected (below level 100), and with only a slight
degradation in performance (particularly in playtime), the negative impact
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(a)

(b)

Figure 6.14: Prediction error curves purchase churn as a function of playtime.
The different lines represent model runs excluding zombies (red),
resurrected (green) or purchase resurrected (purple) players (plot (a))
and combinations thereof (plot (b)) from the training sample. Com-
binations represented in plot (b) are: (i) resurrected and purchase
resurrected (pink), (ii) zombies and purchase resurrected (brown),
(iii) zombies and resurrected (green), and zombies, resurrected and
purchase resurrected (blue). Elaboration using data from AoI. The
images have previously appeared in [132].

of their exclusion is much more obvious in lifetime. There, performance is
significantly worse for lifetimes of up to 200 days.

This is a general trend observed in all plots: improving accuracy at some
scales by removing one of the types of churners, always comes at the cost
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of degrading it for other ranges. If having to choose excluding only one
of the groups (or none), however, unless having a particular interest in
short lifetimes, the clear winner (at nearly all scales) for all variables is the
elimination of purchase churners from the training set.

The effect of excluding different combinations of types of churners at
different scales of the different variables can be studied using plot (b) of
figure 6.12 (for lifetime), figure 6.13 (for level) and figure 6.14 (for playtime).
All combinations excluding purchase resurrected display the same pattern,
both qualitatively and quantitatively, which is qualitatively very close to that
of excluding only purchase resurrected, but with slightly smaller errors for
small values, and slightly larger errors for large values of all variables. The
only remaining case, that of removing zombies and resurrected, but leaving
purchase resurrected in, resembles very closely the case of excluding only
zombies.

To sum up, when considering accuracy of survival model purchase
churn predictions, removing zombies and/or resurrected players from the
training has a similar qualitative impact as their removal from login churn
models (as discussed in chapter 5 section 5.3). They improve predictions
for all values of lifetime and for small values of level and playtime, while
degrading them for larger values of playtime and in-game progression.
Learning of the models is heavily influenced by purchase resurrected
players, whose removal has an overall positive effect in the predictions in all
three variables. Interestingly, this is due to a stark error decrease for longer
values of the variables, while their exclusion actually degrades the forecasts
for smaller values, specially so when considering days since first login. This
could point towards the need of a more restrictive definition of purchase
resurrection (along the lines of login resurrection), where players would be
considered purchase resurrected after periods without any purchase that
should be much longer than simply the purchase churn definition. Overall,
the preferred setup would be to exclude zombies and purchase resurrected,
with results nearly independent on whether login resurrected are included
or not in the training.

This study therefore suggests, that if interested in overall accuracy and
particularly so for extended lifetime, progression or playtime, the preferred
option would be to exclude zombies, resurrected and purchase resurrected
from the training. If the focus, however, is on lifetimes below 300 days,
progressions below level 150, or playtimes below 500 hours, purchase
resurrected players are better left in. In a production setup then, and taking
into account the results for churn discussed in chapter 5 section 5.3, this
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study would suggest to use in the training of the models the exact same
sample as for login churn (all players except zombies and resurrected), but
potentially excluding too all purchase churners.

6.5 predicting player lifetime value

The concept of lifetime value (LTV) (or customer lifetime value (CLV)) has been
introduced in chapter 2 section 2.5, and is used to describe the expected total
revenue coming from each customer. Having accurate estimates of it is of
particular interest to any service not bounded by a contract, in which users
can decide when and how many purchases to do. One of the first accounts
of the term appears in [253], and the term became increasingly popular,
as did the number of publications devoted to its study, in the context of
marketing at the end of the 90s, as an increasing amount of computational
power and collected data were available for its modelling [25, 81, 145]. It
can be used to design specific marketing and promotion plans aimed at
retention and expenditure maximisation, can help with the early detection
of high value users [91], and is useful in predicting total expected revenue.

Free-to-play games with in-app purchases are the exact setting where
having good LTV predictions is desirable. Basic approaches to its prediction
making use of previous data include [68, 183]. There is a relatively limited
number of papers exploring the use of ML methods. In [256], the authors
combine a binary classification approach to predict whether players will
spend or not in the future, with a regression model to estimate the number
of purchases. The use of extreme gradient boosting both for classification
and regression, together with the impact of social features in the problem,
is explored in [76]. In [285], several ML methods are combined with the
synthetic minority oversampling technique (SMOTE) [50]. The same ap-
proach is also used in [257] to generate individual player predictions of
expenditure over the next year, in what is probably the only other work to
this date using deep learning architectures as one of the proposed methods
(in particular deep perceptron multilayer networks) to predict player outlay.

ML methods fall into the broad category of what can be defined as
predictive approaches to LTV forecasting. These combine all past and present
information available to try and predict the future behaviour of customers,
and crucially, they intend (be it more implicitly or explicitly) to account
for user purchasing behaviour changes. Examples of ML computed LTV
outside video games are numerous, and these methodologies are becoming
increasingly popular due to their success. See, for example, [48] (which uses
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random forests in the context of an online fashion retailer), or [275] (that
uses deep reinforcement learning to predict total donations for members of
a potential donor mailing list).

Other models used traditionally in LTV estimation fall in the broad cate-
gory of historical approaches, as opposed to predictive. The main distinction
between both is that these base their best guess for each customer only in
their previous purchasing history, i.e., they do not allow for changes in
individual behaviour (other than ending the commercial relation with the
service altogether). Such are the RFM (recency, frequency, monetary value)
models [89], in which predictions for each user are based solely in when
the last time they purchased was (recency), how often they have purchased
in the historic data available (frequency), and how large their expenditure
has been. Probabilistic RFM models assume customers will repeat the same
purchasing patterns until they churn, reason why they also receive the
name of "buy till you day" (BTYD) models. The churn prediction involved
in these models can also be carried out in parametric probabilistic terms, as
was proposed as early as in [247].

Examples of RFM models are those referred to as parametric models and
described in chapter 2 section 2.5. The probability distribution considered
to describe the problem is parameterised, with parameters to be estimated
or learned form the data. A few of these models were used as benchmark
in this study. These were compared to results produced with two different
DNN architectures: the multilayer perceptron and a convolutional neural
network (described in chapter 2 section 2.6).

6.5.1 Dataset and model definitions

From the data available for AoI (described in chapter 1 section 1.2), only
the period from 2016-05-01 to 2017-05-01 was used for evaluation. This
means, predictive accuracy was assessed using the 2505 players that were
active, spent money and left the game during that period. This choice
was made in order to allow enough previous data to be available to have
the transaction history needed for the RFM methods. Purchasing history
together with other past playing data, was used as to build features for the
DNN architectures tested. As described in chapter 3 section 3.2, taking into
account all modelling corresponds to PUs, the churn definition used is 9

days. After not login in for that duration, the player is considered to have
quit the game, their transaction history finalised, and the final value of their
LTV known.
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Regarding the parametric models (see chapter 2 section 2.5), the Pareto/NBD,
BG/NBD, BG/CNBD-k and MBG/CNBD-k models were tried. Two differ-
ent approaches were explored as submodels for the monetary value of the
predicted transactions: the use of gamma distributions, and simply taking
the average value per transaction in the past for each player.

Parametric models need a fixed prediction horizon, which was set to one
year (that is also approximately the period for which data is available for
study). These models only use the player transaction history. Figure 6.15

shows, for a selection of players, the purchasing history during the training
period (in black) and evaluation period (in grey). These kind of figures can
help to quickly assess if the hypothesis of past purchasing patterns being
repeated into the future appears to roughly hold for most players or not.

Figure 6.15: Purchasing patterns per player for a sample paying users for the
training period and the evaluation period (test part). Elaboration
using data from AoI. The image has previously appeared in [51].
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Figure 6.16 shows the box plot of the average purchase value per player
depending on the number of repeated purchases. While the average value
is close in all cases, it tends to slightly increase with the number of repeated
purchases, as does, even more markedly so, the spread.

Figure 6.16: Box plot of the average purchase value per number of repeated
purchases per all paying users. Elaboration using data from AoI.
The image has previously appeared in [51].

Two deep learning architectures were considered: multilayer perceptron
and convolutional neural network. The DMLP (see chapter 2 section 2.6.1)
is the most simple example of a DNN, and has produced good results for a
wide range of problems, so it is always useful to include it as a benchmark
when comparing to other more sophisticated architectures. CNNs (see
chapter 2 section 2.6.2) are potentially of particular interest in this case, as
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their nature allows them to learn from correlations in the input data. This
makes it possible for them to work directly with input features that are time
series (which is the case of most relevant video game data), not requiring
feature engineering as an initial step. Another candidate architecture that
has been used to predict LTV, and that will be described in chapter 7 (but
that was not used in this particular study), is the LSTM (see chapter 2

section 2.6.3), also because their design is specifically well suited to deal
with data of time series nature.

The DMLP used five fully connected layers: an input layer with 203

neurons (one per input feature), followed by three hidden layers with
300, 200 and 100 nodes respectively, and finally the output layer with a
single node (corresponding to the LTV). The specific CNN architecture
used is depicted in figure 6.17: an input layer, followed by a convolutional
layer with 32 filters of size 7, followed by a max-pooling layer to prevent
overfitting [245], followed by two additional convolutional layers with 16

and 1 filters of size 3 and 1 respectively, a flatten layer, three fully connected
layers with 300, 150 and 60 nodes, and finally the single output node. In
both cases, the training algorithm chosen was adaptive stochastic gradient
descent (ADAM) (see chapter 2 section 2.6.5), and Xavier initialisation
(see chapter 2 section 2.6.4) was used. The activation functions used were
sigmoids.

Figure 6.17: Structure of the convolutional neural network used to model LTV.
The image has previously appeared in [51].

Player behaviour logs were used to build player time series of daily
logins, playtime, in-game progress, purchases . . . Generic enough data is
preferred as to ensure the same model definition can be directly translated
to other titles. These time series were used directly as input features for the
CNN. For the DMLP, similarly to what has been described in the case of
decision and survival ensembles, these time series were further processed
using statistics to arrive at the features to be used (for example, average
level-ups between purchases, maximum and minimum daily playtime in
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the last month, number of purchases in the first week, average number of
days played consecutively in the whole history. . . ). Data from players that
had churned before the beginning of the evaluation period (2016-05-01) was
used to train the models. At every epoch, the models were trained using 80%
of these players, and predictions performed and validated for the remaining
20%. The learning process comes to an end once the predictive accuracy
has not increased for 20 epochs, as this method of determining the number
of epochs to use (early stopping) is known to prevent overfitting [229]. The
network weights are then set to those that produce the lowest errors, and
are used to predict for the 2505 players that make up the evaluation dataset.

6.5.2 LTV prediction results

As metrics to assess the goodness of the predictions, the RMSLE, NRMSE,
SMAPE and percentage error were selected (see chapter 2 section 2.9 for
definitions and descriptions of these and other metrics). Results are sum-
marised in tables 6.5 to 6.7. Tables 6.5 and 6.6 collect all the metrics for
all the models for the training and evaluation sets respectively, that is the
validation metrics as computed when comparing predicted and observed
LTV for users used in the training (80% of those available in the dataset) and
those that were not (remaining 20%) The model name for the RFM methods
used codifies the model used to predict the number of purcahses, and after
the + sign, how the value of the remaining transactions is computed. Table
6.7 compares the percentage error the models make when predicting for all
PUs as compared to only the top spenders (defined here as the 20% of the
PUs that spent more during the year considered for model evaluation).

Note that depending on the metric defined and the accuracy standards
required, all of these could fall into the been generally good, or being
generally bad categories. This becomes clear when comparing, for example,
both percentage errors. While the average deviation of predictions is, for
all models, under 10% of the largest observed LTV (error %), SMAPES
are much higher in all cases. Note that while the SMAPE does not have a
straight forward interpretation, it is always bounded between 0 and 200%,
which indicates a clear room for improvement in all cases.

What is out of question is that DNNs are performing better than any
of the traditional parametric models, and they do so consistently across
all metrics. The use of NRMSE allows for comparison to other cases with
different scales, so it can be checked that in particular the DNN performance
is similar to that discussed in [257] for high-value players. Furthermore,
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Model RMSLE NRMSE SMAPE Error %

Pareto/NBD + average 9.42 1.89 95.87% 6.20%

Pareto/NBD + gamma 9.43 1.91 96.29% 6.24%

MGB/CNBD-k + average 3.41 1.72 75.44% 5.52%

MGB/CNBD-k + gamma 3.55 1.77 78.58% 5.71%

BG/CNBD-k + average 4.13 1.69 76.82% 5.43%

BG/CNBD-k + gamma 4.24 1.74 79.83% 5.63%

BG/NBD + average 9.48 1.89 96.35% 5.43%

BG/NBD + gamma 9.49 1.92 96.67% 5.63%

DMLP 1.78 1.07 75.08% 3.90%

CNN 1.74 1.11 72.75% 3.90%

Table 6.5: Error measures for the LTV training

Model RMSLE NRMSE SMAPE Error %

Pareto/NBD + average 9.35 1.88 95.65% 8.96%

Pareto/NBD + gamma 9.37 1.88 96.35% 9.01%

MGB/CNBD-K + average 3.46 1.68 75.53% 7.88%

MGB/CNBD-K + gamma 3.61 1.73 79.67% 8.08%

BG/CNBD-k + average 4.41 1.65 76.22% 7.85%

BG/CNBD-k + gamma 4.24 1.71 79.72% 8.06%

BG/NBD + average 9.37 1.88 96.06% 8.96%

BG/NBD + gamma 9.39 1.88 96.80% 9.03%

DMLP 1.82 1.12 72.99% 5.82%

CNN 1.84 1.05 73.76% 5.72%

Table 6.6: Error measures for the LTV prediction

deep learning are more accurate than the RFM models across all scales,
as indicated by the particularly significant improvement of the RMSLE
metric. It is also interesting to note that the DMLP and the CNN are close in
regards to accuracy. This has very likely a lot to do with the fact that both
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Model All PU Error % Top spenders Error %

Pareto/NBD + average 8.96% 33.35%

Pareto/NBD + gamma 9.01% 33.39%

MGB/CNBD-K + average 7.88% 29.61%

MGB/CNBD-K + gamma 8.08% 30.54%

BG/CNBD-k + average 7.85% 29.46%

BG/CNBD-k + gamma 8.06% 30.45%

BG/NBD + average 8.96% 33.34%

BG/NBD + gamma 9.03% 33.38%

DMLP 5.82% 15.76%

CNN 5.72% 15.64%

Table 6.7: Prediction error compared for all PUs vs top spenders only

used very similar input information on the players (even if with different
amount of processing).

From the parametric models, those considering erlang-distributed num-
ber of purchases (and thus more regular transaction frequencies) clearly
outperform those that assume randomness. The distribution chosen for the
dropout process does not appear to have any significant impact. The intro-
duction of a gamma-gamma submodel for the economic value predicted
for each transaction shows practically the same accuracy as relying on the
past average, so the latter would be the preferred method to be used in
production, as the introduction of this additional complexity is not justified
by the results.

Not only do both DNNs clearly outperform parametric methods, but
their relative accuracy becomes larger with increasing player expenditure.
All parametric models significantly and systematically underestimate top
spender LTV, which makes them particularly ill suited for the endeavour of
VIP player detection. This is highlighted by the results shown in table 6.7,
with both DNNs halving the errors of the parametric approaches. Another
shortcoming of the classical RFM models is that they also predict no future
purchases for a significant number of players that do go on in reality to
continue spending money.

It is however hardly a surprise that deep learning techniques show a
much higher accuracy than simple probabilistic models. Not only are the
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models and their learning algorithms more sophisticated, but more impor-
tantly, they are able to use much more information about the players and
their behaviour to learn how these relate to their purchasing engagement.
Moreover, because of the nature of ANNs, the accuracy of these models is
expected to continue to improve when more data is used (either a longer
historic period used for training, or for games with more players), while
other statistical or ML models’ performance saturates rapidly after a certain
point. The ease with which CNNs can be used with nearly raw data, hardly
requiring any feature engineering, would also become more important for
larger histories and/or games, probably pointing to that architecture as the
prefer candidate for productionalisation of LTV predictions for large games.

6.6 summary and conclusions

Purchasing engagement can be studied using similar approaches and
methodologies as those used for regular play engagement. As was the
case for churn, survival models are an interesting tool when addressing
purchase churn, and they can be used to describe each player by a set of
predictions in time, level and playtime. Purchase churn is also markedly
different for different types of players, in particular for the different types
of churn profiles that have been discussed: zombies, resurrected, purchase
resurrected, and the rest. As was the case for login churn, players displaying
very little activity (while remaining officially active) appear to introduce
noise, and models perform better when they are excluded from the training
set. The inclusion or not of those that return to the game after a long period
of inactivity have no significant impact, while removing purchase churners
positively impacts accuracy in all variables (in both cases, contrary to the
case of regular churn).

Besides studying purchase churn as a proxy to purchasing engagement,
survival models can also be successfully used to detect paying potential
and to predict after how many days, hours played, and at which level,
will every user make their first transaction (if this will happen at all).
Survival ensembles outperform the parametric Cox hazards model, and
only conditional inference survival ensembles (as compared to RSF) show a
decent performance in playtime.

The total expected outlay gives an additional dimension to characterise
purchasing engagement. With regards to LTV prediction, two deep learning
architectures, CNN and DMLP were proposed, and their accuracy compared
to that of some of the most popular conventional parametric approaches.
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CNN emerges as the best option. While both DNN architectures have
similar performances, CNN can work with raw sequential data directly,
which could be potentially critical if it is to be used in near real time for
very large games. Not only does deep learning achieve higher accuracy
than all traditional probabilistic models, but this is particularly so when
considering top spenders, which makes them specially well suited for VIP
player detection. An additional DNN architecture which also indicated to
deal with sequential data -the LSTM (see chapter 2 section 2.6.3)- was also
tested (after this study was finished) to predict LTV for VIP players only,
and was found to perform comparably to the CNN and DMLP. While those
results have not been presented here because the dataset used was different
(the DNN was trained with top spenders only), the LSTM predictions are
used for player profiling in next chapter (chapter 7).
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P R O F I L I N G P L AY E R S U S I N G P R E D I C T I O N S

All creative people want to do the unexpected.
— Heidy Lamarr

Player profiling consists essentially in grouping players according to their
behaviour and characteristics, as was already discussed in chapter 3. In an
increasingly competitive market with increasingly diverse demographics
playing games, it is crucial to be able to profile players appropriately, in
order to meaningfully target them and cater the game to their needs. Much
of the past player profiling has often focused in expenditure, as the goal
was mainly to pinpoint high value users. However, the use of additional
behavioural information can help characterise players engagement, play
style, interests, skills and motivations, thus greatly enriching the picture.

The last chapters (chapters 5 and 6) have been devoted precisely to the
characterisation of user’s play and purchasing engagement with different
individual player behavioural predictions. This chapters explores how some
of these -those of expected LTV, and of days, playtime and level to churn-
can be used and combined to provide insights on the player population
and game dynamics, and to produce meaningful player profiles.

The use of predictions (rather than actual values) should allow to profile
players since their very first steps in the game, making use of all present
and also past information (even of players who quit the game long ago).
The rest of the chapter focuses on whales, as the predictions described in
previous chapters have been fine tuned to perform particularly well for
this group of players. It would however be straight forward to generalise
this methodology to apply it to other types of players, or to use additional
predictions to better characterise their behaviour.

All content of this chapter is an original contribution of this thesis. The
approach was first presented in [72].

7.1 methodology

Each player was characterised by a collection of predictions. Survival curves
in lifetime, in-game progression and cumulative playtime are used to de-
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scribe each player’s engagement, while their purchasing behaviour is sum-
marised in their expected LTV, computed using deep learning.

The LTV predictions used in this chapter were computed in the same
spirit albeit with a different architecture as those discussed in last chapter
(chapter 6 section 6.5). Time series of player actions and of transaction
histories were built and used as input of two LSTM (see chapter 2 section
2.6.3) layers respectively, considering only VIP players. The outputs of these
two layers were concatenated and forwarded to a fully connected layer, that
was followed by three additional fully connected layers, with a final single
output node yielding the LTV prediction. This architecture is schematically
shown in figure 7.1.

Figure 7.1: Schematic representation of the LSTM architecture used to predict
VIP player LTV and classify them into low, medium or high expected
LTV groups.

LTV predictions will be used to classify players into three groups: high,
medium and low spending groups. Different ways of grouping players can
be useful for different purposes. In what follows, players with expected
outlay less than half the expected average are considered low spenders,
those with expected outlay at least twice the expected average are the high
spenders, and the rest are medium spenders.

Conditional inference survival ensembles are used to generate predictions
of days, playtime and level to churn, as was described in chapter 5 section
5.2. The grouping is not done only in terms of the predicted value (as
given by the median of the survival curve), but making use of the different
quartiles of each curve, to classify them as corresponding to short, medium
or long lifespans. Furthermore, players whose survival probability remains
always above 50% (i.e., for which the median value and hence a numeric
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prediction does not exist), are considered to be loyal in that variable. Players
for which the lowest probability value of the survival curve is greater than
or equal to 25% but smaller than 50%, and with a median value greater
than or equal to the population’s average have long lifespans. There are
three different ways a player can be classified as having a medium lifespan:
(i) if the lowest value of their survival probability curve is between 25%
and 50%, but the median value is below the population’s average; (ii) if the
lowest value of their survival curve is between 0 and 25%, whenever the
value at which this 25% probability is reached is greater than or equal to
the population’s average; or (iii) when 0% survival probability is attained,
provided the median value is greater or equal than the average value
computed only taking players into account that have survival probability
always above zero. The rest are short lived players. These classification
criteria are summarised in figure 7.2.

Figure 7.2: Schematic representation of the classification followed to assign each
player and variable (i.e. each survival curve) to one of the various
lifespan groups (short, medium, long and loyal).

This exercise was carried out considering only AoI VIP players (check
chapter 3 for details on this and other definitions), training the models with
data from October 2014 to April 2017 (comprising 3265 whales in total).
Predictions were run (and their relationships plotted and discussed in some
detail in what follows) for the 1771 VIP players that remained active as of
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May 1, 2017, i.e., those whales that have connected to the game at least once
in the previous 9 days.

(a) (b)

(c)

Figure 7.3: Survival curves for VIP players in terms of lifetime (days since first
login; (a)), in-game progression (game level reached; (b)) and accu-
mulated playtime (hours played; (c)). Colours distinguish the various
lifespan groups (short, medium, long and loyal) for the corresponding
variable. Own elaboration using AoI predictions. The images have
previously appeared in [72].

Of course other groupings are possible and may be more useful depend-
ing on the specific needs of the profiling. However, this grouping seems to
work well as can be seen in Figure 7.3, which shows the survival curves
for all the players considered in terms of lifetime, in-game progression
and playtime, with colours distinguishing the different groups. That the
grouping also works can also be seen in Figure 7.4 which shows histograms
corresponding to median vales (when they exist, i.e., for non-loyal players)



7.1 methodology 175

for those three variables, and also of the predicted LTV. Again, colours
highlight the different groups. The histograms show predictions in the dif-
ferent variables are distributed very differently: approximately uniformly
in lifetime, monotonously decreasing in LTV, skewed (i.e., asymmetric with
respect to the mean) to larger values in level, and to smaller in playtime.

(a) (b)

(c) (d)

Figure 7.4: Histograms of the predicted lifetime (days since first login; (a)), in-
game progression (game level reached; (b)), playtime (hours played;
(c)) and LTV (outlay in local currency; (d)) for VIP players. Players
are classified as described in the text, with groups shown in dif-
ferent colours. All players except those labelled as loyal (for whom
the median value of the survival curve does not exist) are shown.
Own elaboration using AoI predictions. The images have previously
appeared in [72].
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7.2 exploring relations between predictions

Grouping players according to predictions in each of the variables can be of
course useful in itself: by using predictions, players of one type or another
can be spotted early on and targeted appropriately. Furthermore, the use
of probability curves in the case of survival modelling, used as a proxy of
login engagement in this case, also contributes to a richer picture. Only a
way of grouping players in terms of their survival curves is discussed here,
but an infinite number is possible, and can take into account more subtle
information than what the most likely value is. One could for example, for a
particular exercise, group players in terms of their probability of still being
active after a fixed period of time. Or make a difference between players
that will disengage gradually but constantly (with an approximately stable
decline or curve’s slope throughout the predicted period), to those that will
have a nearly constant probability of survival for some period, that will
then drop abruptly.

An even richer landscape arises when the relation between predictions
between two or more of the variables for each player is also taken into
account. This can provide a lot of insights on the game dynamics and the
different types of players present. For example, in Figure 7.5 the relation
between predicted lifetime (in days) and playtime (in hours) is explored.
Additional information about predicted LTV is added to both plots as
the area (each point represents a player that has lifetime and playtime
predictions, i.e., players not loyal on those variables), and to the top plot
also as colour (which represents the LTV grouping of the player). The
bottom plot differs from the top one in that the colour codes belonging to
predicted level grouping instead.

As expected, Figure 7.5 shows how the spread in playtime increases as
predicted lifetime does: periods of inactivity and difference in play fre-
quency and typical session length between players, account for increasingly
stark differences in accumulated playtime as time passes. The spread in-
creases in an approximately linear manner, with most players lying on the
region corresponding to an average daily play of 20 minutes to 5 hours.

It is also obvious from both plots, that, although large LTV predictions
tend to belong to players with longer predicted lifetime, it is possible to
find players with a relatively large LTV prediction for low predicted lifetime
and/or playtime. Similarly, players with low LTV abound across all scales.

In regards to expected in-game progression (colour coded in the bottom
plot), there is an obvious and expected correlation between playtime and
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Figure 7.5: Playtime (in hours) versus lifetime (in days) predictions (median
survival values) for all VIP players non-loyal in both variables. Colour
represents grouping in terms of predicted LTV (top) and game level
(bottom). The area of the circles is proportional in both cases to the
expected LTV. Own elaboration using AoI predictions. The top image
has previously appeared in [72].
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predicted final level. It is, for example, rare, to find players with short
expected final level and predicted lifetime above 400 days or predicted
playtime above 1000 hours. However, variations in the player’s skills still
account for significant deviations: there are players with very long predicted
lifetimes that are expected to be short lived in level (see, for example, the
player at around 800 days and nearly 2500 hours in the short level group),
while others are predicted to be long lived or even loyal for relatively short
or medium expected lifespans (with some users in the long level group
appearing soon after the 200 day mark, and the first loyal around 300).

This kind of analysis also facilitates outlier behaviour detection. Figure
7.5, for example, shows a player with very high expected playtime as
compared to their predicted lifetime and the behaviour of the rest of the
group (nearly 5000 hours of playtime in less than 600 days). The models are
therefore predicting this player will play for over a year and a half, everyday,
for a regular workday. This player is in need of disengaging rather than
engaging strategies. This type of analysis also highlights how this type of
extreme behaviour is actually found seldom in the real data.

Figures 7.6 and 7.7 focus on studying the relation between predicted
playtime and in-game progression. The only difference between both plots
in Figure 7.6 is that the colour codes the LTV prediction group in the top
plot and the predicted lifetime group in the bottom plot. In both plots,
the area of the circles is proportional to the predicted LTV. Figure 7.7
looks differently because, although still depicting the same playtime-level
relationship, in this plot the area is proportional to lifetime predictions,
therefore loyal players in this variable (i.e., all darkest blue circles from
the bottom plot in 7.6) need to be excluded. Area of the circles is also
proportional to expected days of lifetime for this plot.

It is clear from all three plots that progression through the first levels of
the game is very quick and easy, hence the steep slope and the relatively
low spread. The slope becomes much less steep around level 100. For even
longer playtime and higher levels (over level 200), the relation between
both predictions flattens, indicating a typical pattern in many games where
higher levels need much longer to go through. The spread also becomes
much larger, reflecting mainly that the varying skills of different players
become increasingly important in predicting in-game progression for longer
playtime.

Both plots in figure 7.6 seem to indicate that, as was the case with
playtime, in the case of level there still seems to be some correlation with
LTV but not that much: relatively large LTV is predicted for players with
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Figure 7.6: Game progression (in level) versus playtime (in hours) predictions
(median survival values) for all VIP players non loyal in both vari-
ables. Colour represents grouping in terms of predicted LTV (top)
and lifetime (bottom). The area of the circles is proportional to the
expected LTV. Own elaboration using AoI predictions. The bottom
image has previously appeared in [72].
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Figure 7.7: Game progression (in level) versus playtime (in hours) predictions
(median survival values) for all VIP players non loyal in all variables
modelled using survival models (lifetime, level and playtime). Colour
represents grouping in terms of predicted lifetime. The area of the
circles is proportional to the expected lifetime. Own elaboration using
AoI predictions.
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limited predicted in-game progression, while small LTV are found across
all scales. This pattern does not seem, however, to be symmetrical: players
with low LTV can reach the highest possible levels, while no player with
high LTV can be found with expected level under 100 (and only four below
200).

Bottom plot together with Figure 7.7 again indicates, as was already
unveiled when studying Figure 7.5, that although there is an obvious
and strong correlation between lifetime and playtime, it still allows for
significant variation. In particular, players loyal in lifetime populate all the
range from 1000 to 5000 hours of playtime, and are typically predicted to
get to levels over 200 (and in all cases above 150).

The predictions can also be normalised (subtracting the average and
dividing by the standard deviation of the distributions depicted in figure
7.4), so that they are distributed around zero with unity variance. This can
make the interpretation of individual predictions more straight forward
to understand for certain uses, as it makes easy to detect values above
or below average, as they will be positive or negative respectively. The
absolute values can also be directly interpreted in terms of how many
standard deviations away form the average each predicted value is.

Figure 7.8 shows the same playtime-level relation that has been explored
in figures 7.6 and 7.7, this time using normalised values for both of them.
Instead of the grouping, the colour of this plot is a scale representing
normalised predicted lifetime, and the area of the circles is proportional
to the expected LTV. Figure 7.8 zooms into the first and third quadrants
of the plot, with players with expected playtime and level below average
shown in the top plot, and those with both predictions above average in the
bottom plot. They exemplify an equivalent and similar way of performing
the same analysis that has been done above, arriving thus at the same
conclusions regarding the much smaller times needed to complete low
levels as compared to high ones, the impact of player skills, and significant
variation of the lifetime-playtime relation across players.

Note how this representation highlights an interesting fact: for players
expected to play and progress less than average, the relative variability
is much greater in their predicted progression (two and a half standard
deviations from the average) than in their predicted playtime (only one
standard deviation from the average). On the contrary, for those expected
to play and progress above average, this pattern is reversed, with some
players with expected playtime more than five standard deviations away
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Figure 7.8: Normalised game level versus playtime predictions for all AoI VIP
players non-loyal in level or lifetime. Positive (negative) values there-
fore correspond to players with predictions above (below) the average.
The normalised predicted lifetime is shown as a colour scale, with
larger than the mean values depicted in red shades, and smaller ones
in blue. The area of the circles is proportional to the expected LTV.
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from the average, but (again) only two and half standard deviations away
from the average predicted level.

This is in accordance with the fact already observed in the predicted
progression and playtime histograms (figure 7.4 plots (b) and (c)) of being
skewed to larger and smaller values respectively. The skewness (asymmetry
with respect to the mean) shifts the mean value towards larger/smaller
values, hence incrementing the relative distance to the smallest/largest
values in the sample. In this particular case, it probably simply reflects that
time availability is constrained much more tightly than individual skills or
playing ability.

The bottom plot in figure 7.8 suggests, that, for players with both pre-
dicted playtime and progression above average, despite the large spread,
there seems to be a nearly two to one relationship in the playtime to level
relation. That is, there is a larger concentration of players being approxi-
mately nearly twice as far from the mean expected playtime, than from
the mean expected progression. When looking at the top plot in figure
7.8, one sees for players with both predicted playtime and progression
below average, this still approximately holds for users close enough to the
average (always with a high variability around this trend). For players more
than 1.5 standard deviations of the average progression, and between 0.8
and 1 standard deviations away from the average playtime, the relation
between both variables shows much less spread, with smaller variations in
the deviation in playtime associated which a much higher variation in the
deviation in level.

It is also interesting to note that, despite all the variability observed in
the lifetime-playtime-progression relations, very seldom are users with
both predicted playtime and progression below average found to have
above average predicted lifetimes (warm coloured dots in figure 7.8 top
plot). Likewise, very few players have above average predicted playtime
and progression, while also having below average expected lifetime (cold
coloured dots in figure 7.8 bottom plot).

The relationship between expected level and expenditure is explored
in detail in Figure 7.10, where the area of the circles is proportional to
predicted lifetime in days, while the colour codes the grouping in playtime
predictions. It shows that, while all players with high expected outlay are
also expected to make significant progress in the game before leaving,
players with much smaller predicted LTV can do just as good. This suggests
the game could be relatively fair, in the sense that although money could
be helping to get faster through the levels (although this correlation could
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Figure 7.9: Zoom into two areas of figure 7.8. Normalised game level versus
playtime predictions for all VIP players non-loyal in level or lifetime,
and with both predictions below average (top), or above average
(bottom). The normalised predicted lifetime is shown as a colour
scale, and the area of the circles is proportional to the expected LTV.
Own elaboration using AoI predictions.
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Figure 7.10: Game progression (in level) versus LTV (in local currency) pre-
dictions for all VIP players non-loyal in level or lifetime. Colour
represents grouping in terms of predicted playtime. The area of
the circles is proportional to the expected lifetime. Own elaboration
using AoI predictions. The image has previously appeared in [72].
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also be explained if, for example, players that reach higher levels tend to
spend more), the analysis shows progression seems to have much more to
do with the time spent playing and the skill of the player.

7.3 skilful players

As has been mentioned throughout the chapter, the combination of several
of these classifications can be used to profile groups of players of particular
interest. For example, players that are predicted to be loyal in terms of
expected level to be attained in the game, are those who will probably
finish the game or get to the highest possible levels. Players that are non-
loyal in playtime are those for which the models can output an accumulated
playtime prediction (while loyal players in playtime are expected to play
indefinitely). This implies that those players that are simultaneously loyal
in level and non-loyal in playtime are conceivably the most skilful of the
engaged players (and more so the shorter the expected playtime is). There
are 385 players fulfilling those conditions in the dataset considered.

The sort of exploration carried out in this chapter can be restricted to
this group of interest (or other defined in similar ways) to understand their
dynamics and to compare it to the general player behaviour. Figure 7.11

shows the histograms of predicted lifetime, playtime and LTV for these
players. Lifetime and playtime predictions are distributed differently as
compared to the total VIP population (see Figure 7.4). For skilful players,
playtime instead of lifetime is more evenly distributed, and lifetime becomes
now skewed to larger values. This makes sense, in that players that will
reach such high levels will still typically play relatively longer than the
average in both playtime and lifetime, hence making the previously skewed
to shorter values (playtime) more uniform, and the previously uniform
(lifetime), skewed to larger values. It indicates that for this type of players,
even those that are more skilled among them (with short expected playtime),
will do so typically over relatively extended times since their first login as
compared to the general VIP population. These are players that could be
bored by their quick progression and fail to log into the game until many
days later, then making rapid in-game progression in a short playtime, and
then keep repeating this behaviour pattern.

Figure 7.12 explores the lifetime-playtime relation of skilful players fur-
ther. Area and colour of the circles code LTV predictions. It confirms
the patterns just described, and for example, it makes obvious that high
playtime is always associated with high lifetime, while players with short
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(a) (b)

(c)

Figure 7.11: Histograms of predicted lifetime (days since first login (a)), playtime
(hours played; (b)) and LTV (outlay in local currency; (c)) for VIP
players loyal with respect to level and non-loyal in terms of playtime.
Colours represent different groups for the corresponding variable.
Own elaboration using AoI predictions. The images have previously
appeared in [72].

expected playtime can be found across all lifetime scales. It also confirms
previous discussions on the relative fairness of the game: LTV is distributed
similarly as in the general population under study, and there are still many
low spending players to be found in this group across all lifetime and
playtime predictions.
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Figure 7.12: Playtime (in hours) versus lifetime (in days) predicted values for
all VIP players non-loyal in both variables and loyal in terms of level.
Colour represents grouping in terms of expected LTV and the area
of the circles is also proportional to LTV. Own elaboration using
AoI predictions. The image has previously appeared in [72].
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7.4 summary and conclusions

This chapter has explored the possibility of using predicted engagement
-expected lifetime, accumulated playtime, final level and total outlay as
a proxy to it- to profile players. Segmentation using any of the variables
studied can be useful in itself, but even more interesting seems to be
analysing the relationship between the different predictions, and combining
them to produce meaningful player categories. This exercise allows for an
easy detection of outlier behaviour. It spots distinct behavioural patterns,
and can help drawing qualitative conclusions about game dynamics and
player population.

It has been discussed how to use churn and LTV predictions, but similarly
conversion and purchase churn curves (described in chapter 6 sections 6.1
and 6.3) can be added to enrich the picture, and characterise purchasing
behaviour in more detail. This can become particularly useful when using
this approach to study all players (and not only top spenders). The method-
ology presented constitutes a very promising approach to generating richer
profiling landscapes.





8
P E R S O N A L I S E D I T E M R E C O M M E N D AT I O N S

If I can’t work with you, I will work around you.
— Annie Easley

Methodologies to study individual user play and purchasing engagement
have been described in chapters 5 and 6, and it has been suggested they
could be used to decide when to target players. This has been proposed
as a first step towards a greater personalization in games. Content, items,
actions. . . could be made available, notifications sent, or discounts offered,
at the right time for each player.

Another step in the same direction is personalising the content offered.
This chapter is going to outline how item recommendations specific to
every player can be issued in a production setup. The method proposed is
able to work with hundreds of thousands of items and users. The results
can be used, for example, to personalise game content (such as by making
every player find their favourite -as opposed to a fixed or random- level
one sword), to re-engage players by offering them free or discounted items
particularly well suited to their taste, or to select the order in which items
are shown to each player in the purchasing or selecting screen, making it
easier for them to find items they really like. It is designed with games in
which an enormous amount of virtual items are available in mind. These
typically can be purchased by players using some sort of in-game currency
(that in turn needs to be earned or purchased).

A method to recommend items in video games, when the collection
available is not that large, was presented in [27], using AoI as illustrative
dataset. Having a limited amount of items is typically the case in games
where these are bought directly in real money. In that work, ensembles of
ERTs (described in chapter 2 section 2.3.3) and DNNs (described in chapter
2 section 2.6) were trained to predict with what probability would each
player purchase each item next, and those probabilities used as indications
of the preferred items for that player at that stage in the game. The analysis
favoured the use of ERT ensembles in production, as they had similar
performance, while being more efficient computationally. This method
however breaks down when dealing with literally thousands of items,
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which is the case for many games (particularly when dealing with items
that are bought in in-game currency).

The methodology described in this chapter extends the work presented
in [27] to make it suitable to work in very high dimensional item spaces.
This work has not been previously communicated in print due to the
absence of an appropriate dataset available for publication to exemplify
its uses and test its effectiveness (AoI has not a large enough collection of
items). For that same reason, here only an outline of the methodology is
given. The research leading to the operationalization of this system was
carried out by Anna Guitart, Shi Hui Tan, and África Periáñez, together
with the author of this thesis.

Section 8.1 explains how item clustering can be used to reduce the
dimensionality of the problem. Section 8.2 deals with how to issue cluster
recommendations per player, while section 8.3 focuses on ordering items
within each cluster according to individual user preferences. Section 8.4
describes how to combine both to yield probabilities per player and item in
the original dimension space. The validation metrics used are indicated in
section 8.5, and the content of the chapter summarised in section 8.6

8.1 reduction of the item space dimensionality

The first step is to reduce the dimensionality of the item space. This is
achieved by applying a clustering algorithm. The idea is to group similar
items together, with this similarity playing a role in how the recommenda-
tions are issued. Features characterising the items themselves were used.
For example, categories such as Armour, weapons, healing potions, magic
items, etc. can be defined, each of them with subcategories such as helmet or
shield for Armour, or sword or axe for weapons, and so on. Additional fea-
tures can be used to describe the looks, material, resistance, price. . . Besides
these categorical characteristics, play data was also fed into the clustering,
to help identify which type of players, and in which stages or parts of the
game, each item is more coveted or used.

Different feature selections and choices of clustering algorithm will arrive
at different groupings. It is difficult, and to some point arbitrary, to decide
which one is better. An objective measure would be given by the final perfor-
mance of the recommendation system, but this is also not straight forward
to determine, as there is no way to find out what the actual favourite items
of each player are (as will be discussed in section 8.5). Validation metrics
will be nonetheless defined, and they will play an important role in decid-
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ing which clustering to select. The intended use of the recommendations
however, is also to be taken into account. Certain applications might call
for a clustering which strongly depends on the category or subcategory
(e.g. swords together), others on the type of players that usually pick them
(e.g. frequent players with character type warrior). This can be modulated
through the feature selection, and by giving them adequate weights within
the distance computation.

Game experience typically plays a crucial role in this type of recommen-
dations, as they need to be level appropriate. Giving an inexperienced player
a very powerful item, for example, might make them very happy, but break
the game, by giving them an unfair competitive advantage with respect
to other players, or by rendering the game boring due to the absence of
matching challenges. On the other hand, an item that might have been
much cherished by a player in the past, may become completely worthless
and useless after a certain level of the game is left behind. This can be taken
into account by making an extensive use of level related features (both in
the clustering and for the ML cluster predictions described in section 8.2).

The final choice of clustering algorithm was HDBSCAN applied on the
Gower’s similarity matrix (see chapter 2 section 2.7). This is a conceptually
sound choice, in that it enables the use of both quantitative and qualitative
features. It also allows for clusters with complex shapes in the dimension
space. Critically, it identifies outliers, which is important for an item rec-
ommendation system, as many games have objects that are very unique,
non interchangeable with any other, and which need to be given individu-
alised attention even in spaces with very high dimensionality. HDBSCAN
determines the number of clusters, and requires the specification of few
parameters, minimising the need for fine tuning. This choice was the one
that produced the most reasonable groupings after detailed inspection of
many different cases, and the best model performance after the whole
recommendation process was completed and evaluated using the metrics
described in section 8.5.

8.2 cluster recommendation

Once the item clusters were defined, the idea was to assign a probability
to each user and item group. A predictive ML model was trained in the
same spirit that was followed for the individual items in [27], to compute
the probability, for each player, that the next item they will buy belongs
to each cluster. Feature engineering made use of both player, cluster, and
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player-cluster information. In addition to ERT ensembles (see chapter 2

section 2.3.3), XGboost (see chapter 2 section 2.3.4) was also tested, but
found to perform worse (according to the metrics that will be described in
section 8.5). DNN architectures were not tried out in this case. Decision tree
ensembles were the preferred option because the ERT system described
in [27] was already running in production for games with a limited number
of items, and the goal was to extend this scheme to be able to deal with
high dimensional item spaces too.

8.3 preferences within each cluster

A recommendation system can also be run per cluster. Given that there can
be a relatively large amount of item groups, and that the clustering itself
has already made an extensive use of play features, it was decided to use a
simple CF approach (see chapter 2 section 2.8). This family of algorithms
is single feature based (previous purchase history in this case), and has
proven to give good recommendations in many different contexts.

As was described in chapter 2 section 2.8, CF is particularly well suited
to deal with systems were there is explicit feedback from the users (i.e.,
some review mechanism). Alternatively, a measure of implicit response
can be defined. In this case, this needs to reflect the previous preferences
of each player for the different items, and is thus constructed out of their
transaction history. Several measures were tested, such as the total number
of purchases per item, or total money spent in each item. The best results
were obtained for the purchase count percentage, i.e., for each user, the
percentage of their total purchases that corresponded to that item defines
their review of that object.

As for the method in particular to carry out the CF, ALS matrix factori-
sation (see chapter 2 section 2.8) was chosen, as it is well suited to the
problem, and outperformed the other methods considered (namely nearest
neighbours and bayesian ranking). A different CF model was trained for
each item cluster (and for all players). The CF scores were then normalised
to generate a probability for the preference of each player for items within
that cluster as esi / ∑i(esi ), for si the score of item i (this normalisation
provided better results than others that were tried).
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8.4 from cluster to item space

If items are meaningfully clustered, having a system yielding both good
cluster recommendations, and item scores within each cluster, can already
be a powerful tool. If it is to be used to target players with an item of their
liking, their preferred cluster can be selected and an item from it simply
picked at random. If the item has to be of a certain specific type, or the
order in which to show them is desired, the scores yielded by the CF in an
appropriate cluster can be used.

Both can also be combined to recover probabilities in the higher dimen-
sional space. There is an associated probability per user and cluster (with
probability one for each user when summing over all clusters), and an asso-
ciated probability per user and item for each cluster after normalising the
CF scores (with probability one for each user when summing over all items
within each cluster). We can therefore arrive at a final probability per user
and item (with probability one for each user when summing over all items
in the game). Using conditional probabilities, the probability of player u
choosing item i (pui) can be expressed as the probability of user u choosing
an element of the cluster c (p(c) as given by the ERT ensemble) to which
item i belongs times the probability of choosing that item conditioned to
having picked that cluster:

pui = p(c)p(i|c) (8.1)

where p(i|c) is zero when item i does not belong to cluster c, and the
probability computed normalising the CF scores of cluster c (esi / ∑i∈c(esi ))
otherwise.

Similarly to the output of the models described in [27], there is now a
probability associated to each player-item, which can be interpreted as the
probability, for the user, of that item being the next one they will purchase.

8.5 validation metrics

Measuring the success of a recommendation system is not trivial. The only
way to really determine if it works or not, is to have its purpose perfectly
determined (for example, increase retention or playtime), and to then carry
out A/B testing to see if there are significant differences in the indicator of
interest when using the ML issued recommendations as compared to the
previous system at work.
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The system described in this chapter, however, is designed as a multipur-
pose generic methodology (that can be tweaked through feature selection
and parameter fine tuning for different purposes). The basic models (both
the ERT ensemble and the CF) are trained on user’s previous purchase
history, because it is considered to be a good proxy to what they like. In
particular, the cluster ERT ensemble’s goal is to predict to which cluster will
the next purchased item belong, while the CF is concerned with the per-
centage of each player’s total purchases that will be associated to each item.
Note that there is a difference between predicting which item a player will
buy, and which would they like best, which is what makes these systems’
performance difficult to assess without proper experimentation.

In regards to the CF, the expected percentile ranking is used to evaluate how
good the resulting preference order is, as described for example in [151].
This is a recall rather than precision oriented metric, which intends to take
into account the uncertainty on the explanations to why a player does not
purchase a certain item. While it is assumed that a user buys an item only
if they like it, the lack of purchase could be due to a dislike for the object,
but also to not having enough money to acquire it, or even to not knowing
it exists. For each player and cluster, there is a list of items ordered by
preference. For each user, the items have a percentile ranking ranging from
0% for the preferred item according to CF, to 100% for the last one in the
list. The expected percentile ranking is given by:

rank =
∑u,i ruirankui

∑u,i rui
(8.2)

with rankui the percentile ranking of item i and player u, and rui the
associated observed response variable. The lower this score, the better,
with 50% being the threshold value separating those recommendations
performing better and worse than random ones.

The metrics described in [27] were deemed appropriate to assess, both
the cluster prediction quality, and the final item probabilities. They were
also used to discriminate between methodologies concerning the former,
and to carry out fine tuning for both. These are:

• Ratio of times where the next predicted cluster/item per player was
the next cluster/item purchased. The same considering top 2 and top
3 cluster/items.

• Ratio of times where the next predicted cluster/item per player was
purchased in the next day where the user made at least a purchase.
The same considering top 2 and top 3 cluster/items.
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• Ratio of times where the next predicted cluster/item per player was
purchased in the next window of time (selected here to be next week
and next month). The same considering top 2 and top 3 cluster/items.

These scores were found to be significantly improved when applied to
clusters with respect those obtained for AoI applying ERT ensembles to
single items (see table 1 in [27]). Remarkably, even when evaluating item
probabilities by combining the ERT and CF results, the performance was
still very similar to that of the low dimensional spaces without clustering.

8.6 summary and conclusions

An approach has been proposed that combines clustering to group items
into meaningful groups, ML predictions carried out to assign a probability
per user and cluster (of next item to be purchased being in that cluster), and
a CF for each group to translate cluster probabilities into item probabilities.
It can be used to issue item recommendations in a production setup in an
efficient and timely manner, even for very large number of available items
in games with lots of players.Unfortunately, the research leading to this
system running in operations was carried out with datsets not available for
publication (AoI has a limited number of items). Hence, the methodology
has been described, but no concrete results presented.

Depending on the purpose of the recommendations, the probabilities per
player and item can be handled in different ways. If the aim is for example,
to offer a free item to increase player retention, each user could be offered
their favourite within a value range. It can also be used in subtler ways to
personalise the game and make it more enjoyable. For example, selecting
the weights in Gower’s distance for each characteristic wisely, this method
can be nudged to produce clusters where the type of item and level of
the game where they are useful are crucial. Then if, for example, in a role
type game, at some stage players always find a particular item because it
is an element needed to successfully continue in the game (e.g. additional
protection against attacks), this system could be used to give each player
their favourite equivalent item (shield, Armour, protective magic spell. . . ),
even before they themselves are even aware that that is in fact their favourite
one.

The recommendation of items has been discussed and is certainly of
relevance in the context of video games. Methodologies working under the
same principles can be developed to build systems that can recommend
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actions, opponents, events. . . catered to each player’s individual tastes. This
opens a door to a lot of possibilities for game content personalization.



9
I N T E R D E P E N D E N T C H O I C E S A N D V I D E O G A M E S

I like crossing the imaginary boundaries people set up
between different fields – it’s very refreshing.

— Maryam Mirzakhani

This chapter analyses in-game behaviour from a fundamentally different
perspective than the rest of the thesis. First and foremost, the aim is to
understand qualitatively, rather than quantitatively, some of the processes
at play, and the implications these may have collectively, rather than on
individual players. Secondly, the results presented here are not concerned
with the dynamic evolution itself of quantities in the game, as the rest of
the content largely is. It considers the application of models from discrete
choice theory -or their equivalent condensed matter formulation- described
in chapter 2 section 2.10. As was explained there, these actually assume the
system is in statistical equilibrium, in order to understand the properties
emerging in the context of interdependent choices.

Players are constantly making choices that affect the status and evolution
of the game: whether to login, take part in a particular event, subscribe
to a certain service (ad-free playing for example), acquire a certain item,
interact with another player. . . are only a few examples. In this sense, some
of these choices and their study with the proposed framework here, are
intimately related with much of the work already presented. Both whether
a player remains active in the game (studied from different perspectives in
chapters 4 and 5), and whether they remain non-PU or become PU, and
how many purchases they will make (studied in chapters 4 and 6), can
be understood as discrete choice problems. Player conversion, churn, and
purchase churn -which have been the focus of much of what precedes-
can therefore be studied formally and qualitatively using the framework
proposed in chapter 2 section 2.10.

As was described there, discrete choice theory (or its equivalent statistical
mechanical formulation), is particularly well suited to include the effect
of social influence, i.e., to understand how the tendency of individuals to
emulate the behaviour of their peers affects the collective outcome. The
decisions described above regarding play, participation in events, item
purchases. . . are definitely prone to be affected by the perceived choices of
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other players, whenever users can interact in some way. The term social games
will be used here loosely to describe any such game (and not necessarily
one in which social interactions are a crucial element). This interaction can
be very explicit -such as in role type games where players can actually band
together or fight against each other-, implicit -like a puzzle game where the
scores of other players are shown-, or anything in between.

In this chapter, decision interdependence is considered, meaning inter-
relation between two choice or spin like variables. This can represent two
different groups of players making a choice, where each player is influenced
by the (perceived) decision of the members of their group differently than
by those of the other group (non-local model or group interdependence scenario).
It can also be understood as describing a situation where each player in
a single group is making two choices that affect each other (local model
or individual interdependence scenario), in that they either tend to reinforce
(positive interdependence) or exclude (negative) each other.

Examples where the group interdependence model might be useful are,
for example, the study of daily login for players connected socially vs
those who are not, participation in a particular event for PUs vs non-PUs,
purchases of a particular item for players belonging or not to a certain clan
in the game. . . Examples where the local model could be applicable include
the study of simultaneous participation in two different events, purchase of
two different related items, or of the reciprocal impact of participation in a
certain event type and purchase of a particular type of item.

Note that both models can be used to very generally understand playing
frequency and purchasing behaviour in social games, and the role user in-
teraction plays in the collective outcome. That is, they provide a framework
to qualitatively study the fraction of active and spending players, which are
obviously intimately related to conversion, churn and purchase churn. The
non-local model can be applied to any of the indicators (regarding login
or purchasing activity) when dividing the population of interest into two
groups (more vs less connected or experienced, two different player types
as can be selected in the game, . . . ). Maybe even more interestingly, the
local model can be employed to investigate the relationship between play
and purchase decisions in social games, and how games can be in different
phases in regards to these.

Note that by qualitative rather that quantitative study, what is in fact
meant is that this part of the thesis does not follow the data driven approach
of all the previous content. This chapter is the only one in which the data
is not used to fit a particular model to then make quantitative predictions.



9.1 coupled choices and coupled order parameters 201

Its aim is rather to understand why different games (or the same game at
different moments in time) show different collective behaviours in terms
of how their player preferences are distributed, the strength of the social
coupling, and on how the interaction between both groups or choices
is. A limited number of attempts to explain real data with this type of
models can be found in the literature [26, 32, 98, 105, 119, 201, 287]. While
a general framework to study these problems will be developed, only
radically simple models will be analysed and discussed in detail. These
should be considered as toy models with the only goal of uncovering basic
qualitative features emerging from player and choice interaction. It would
therefore be unrealistic to expect them to provide quantitatively accurate
descriptions of any real case. They can however be considered a first step
in that direction.

In section 9.1 we motivate further the interest of studying two coupled
Ising models form a binary choice perspective, and describe the general
model resulting. In sections 9.2 and 9.3 the equations of state are deduced
for the non-local and local models respectively. The phase diagrams for
unbiased populations (those where individuals have no inherent preference
and are guided only by their social interactions) are then discussed in section
9.4. The local case is further extended to non-homogeneous populations
(those where there are preferences that are distributed in a certain way
among the players) in a deterministic scenario (zero temperature or no free
will or completely rational decision making case) in section 9.5. The chapter
ends with a summary and conclusions in section 9.6. All content of this
chapter is, unless clearly stated otherwise, an original contribution of this
thesis. The models as they apply to general social sciences problems (rather
than specifically in the video game context) were first described in [71, 74].
The results presented in section 9.5, while unpublished until now, had been
presented at a couple of conferences.

9.1 coupled choices and coupled order parameters

Coupled spin systems have been studied in statistical physics to describe
plastic crystals and phase transitions among other phenomena [103, 106, 108,
110, 155, 171, 221, 259]. Two coupled Ising type models can also represent a
system of interdependent binary choices. Consider the Hamiltonian:

H = − 1
N ∑

(i,j)

(
Js
ijsisj − Jt

ijtitj

)
− 1

N ∑
(i,j)k

kijsitj −∑
i

(
hs

i si + ht
i ti
)

(9.1)
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where si and ti are the interdependent choice/spin variables, Js
ij, Jt

ij > 0
the intra-couplings quantifying the strength of the spin interactions or
social pressure, and kij the inter-coupling quantifying the interdependence
between both choice variables. The summation over (i, j) is over all pairs
(i, j) = 1 ≤ i < j ≤ N, while that over (i, j)k can correspond to two different
options associated to two different coupling schemes and models. Consider-
ing an infinite range interaction ∑(i,j)k

sitj = ∑1≤i<j≤N sitj is equivalent to
coupling both variables through their expectation value, in a system studied
by Korutcheva [171] in the context of plastic phase transitions. We will refer
to such a system as having non-local inter-coupling between the two choices.
Local inter-coupling occurs for ∑(i,j)k

sitj = N ∑i siti with kij = kiδij. Finally,
the external fields hs

i and ht
i are the agent’s idiosyncratic willingness to adopt

(IWA) or opinion fields for choice s and t respectively 1.
The non-local inter-coupling or group interdependence model can be under-

stood as representing two groups which are making the same choice under
social influence of their peers (members of the same group), when their
choice is also affected by their (accurate) perception of the average behaviour
of the other group. The local inter-coupling or individual interdependence model
can be thought to represent a single population, where all its members are
making two choices that depend on each other for each individual. In both
the local and non-local model, kij can be both positive or negative, indicat-
ing that the choices tend to be the same or opposite respectively. Solutions
for the constant inter- and intra-coupling case are studied in detail for both
models for the zero IWA case (homogeneous unbiased populations), in
section 9.2 for group interdependence and in section 9.3 for individual
interdependence, and their phase diagrams are described in 9.4. In section
9.5 some cases of the zero temperature for two coupled RFIMs (quenched
disorder introduced in both IWAs) are considered for the local model.

Examples of interest from the general social sciences realm that can be
studied qualitatively using the non-local model include, for example, voting
for a certain political party from (self identified) left or right wing voters,
having a full time job for individuals with or without kids, public opinion
on a certain matter in neighbouring regions, school drop out in two schools
of the same district, use of owned vs free software in two professional
sectors, or demand of any product or brand between two groups of people

1 In a demand context, these can be rewritten, as for the single product or item case, as
hs

i = bs
i + ps, ht

i = bt
i + pt with bs

i , bt
i the idiosyncratic willingness to pay (IWP) and ps, pt the

prices. This would allow to study how the prevalence of the buying choice varies with the
price, i.e., the demand curves.
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where there will be some kind of interaction between the choice in both
groups (different to the interaction within the group).

The possible applications of the local model can seem relevant for even
more interesting social sciences problems: voting a particular party for the
Congress and Senate, families with children where all adult members have
a full time job or where one becomes a stay home parent, public opinion
on two given matters, school dropout and teenage pregnancy, buying a
smartphone and computer of the same brand, hiring the same company to
provide mobile and home internet connection services. . .

In the realm of video games, whenever there is social interaction in the
sense that real players see each other (be that literally or through scores,
for competition and/or collaboration), the non-local setup can be used to
analyse the outcome of any relevant binary choice when considering the
interactions between two groups of players. The local model provides a
framework in which to understand how any single choice the players are
making can be affected by another one they are simultaneously making.

Relevant binary choices within the game can be continuing to play, taking
part in an event, purchasing an item, hiring a service, taking a certain action,
interacting with another player. . . . When grouping players, segmentations
taking into account social characteristics might be more relevant or be
better suited for this framework, for example, dividing players that choose
to interact with other players frequently vs those who don’t, or dividing
players according to the topology of their social interaction networks, or
explicitly belonging to different social groups in the game. However, as far
as it is assumed that any grouping is done according to some measure of
similarity, that could make the two groups distinct enough that they will be
affected differently from members of their own group than from the other,
it can be applied too. This would include, for example, PUs and non-PUs,
high skilled players and less skilled players, more and less experienced
players. . .

Focusing on the generic choices of continuing to play or not, and spending
or not, and defining groups along the lines of the segmentation strategies
that have been outlined throughout this thesis, these models can be used to
formally study quantitatively the same problems that have been analysed
quantitatively throughout the previous chapters (namely player conver-
sion, churn and purchase churn), and to explicitly analyse the impact of
social interactions in the expected collective outcome, as will be discussed
throughout the next sections.
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The extension of this work to more than two groups or choices would be
interesting and, in principle, while technically challenging, straight forward.

The system described by (9.1) has both average choices as its two (cou-
pled) order parameters:

s = 1
N ∑i si = 2µs − 1

t = 1
N ∑i ti = 2µt − 1

(9.2)

with µs, µt the fractions of adopters (fraction of the population with si = 1
and ti = 1 respectively).

Depending on the value of the magnetisation or mean choice vector (s, t),
which has the two order parameters as components, the system can be
described to be in one of three phases:

1. Unpolarized or paramagnetic phase (s = 0, t = 0): Half of the population
deciding in favour and half against for both decisions at all times
(disorder in both spin variables).

2. Completely polarised or ferromagnetic phases (s 6= 0, t 6= 0): There is some
alignment in both variables, with four different cases depending on
the sign of the two components of the magnetisation vector.

3. Partially polarised or mixed phases (s = 0, t 6= 0 or s 6= 0, t = 0): Order
in one of the variables but not in the other, with again four different
cases depending on which of the order parameters is zero and the
sign of the non zero one.

Considering then the average magnetisation or choice vector (s, t), it
will have zero norm for unpolarized phases and norm between 0 and 1

otherwise. It will only have value 1 in the complete absence of statisti-
cal fluctuations, i.e, for zero social temperature. If en euclidean norm in
IR2 is considered, then the first and third quadrants represent completely
polarised systems where both components have the same sign, while the
second and the fourth those where they have opposite sign. Partially po-
larised states are those with average magnetisation vector lying in one of
the axes, and the paramagnetic phase is represented by the origin.

9.2 non-local model for homogeneous populations

Let us considered the system governed by the Hamiltonian:
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H = ∑
(i,j)

(
− Js

Ns
sisj −

Jt

Nt
titj −

k(Ns + Nt)

2NsNt
sitj

)
−∑

i
(hssi + htti) (9.3)

where summations over (i, j) are 1 ≤ i < j ≤ Ns for the first term, 1 ≤ i <
j ≤ Nt for the second term and 1 ≤ i ≤ Ns, 1 ≤ j ≤ Nt for the mixed term.
Summations over i are 1 ≤ i ≤ Ns for the fourth term and 1 ≤ i ≤ Nt for
the last term.

This system can represent two groups, one made up by Ns type s players,
one by Nt t type players, in a social game. These could be for example,
PUs and non-PUs, players of the same game in two different countries,
players belonging to two different in-game clans or races, or player types
(as in warrior or healer, for example), or groups of very different experience
and/or skills. All players are making a binary choice, ranging from the basic
and general play or not and purchase or not, to more specific ones related to
taking any particular action, participating in any particular event, adopting
some particular strategy, or purchasing any particular item. Within each
group, all players are assumed to have the same inherent preference, which
is the payoff associated to the decision making in the absence of social and
choice interaction. Note this payoff can related to an explicit reward or
penalisation in the game, be that in experience points, game lives or virtual
currency. It can also represent a more abstract satisfaction for the real flesh
and blood players.

All players have an additional reward if they mimic players of their group
in their decision, with this urge being of equal strength for all members
of the same group, but with possibly different intensity from group to
group. In addition, there is an extra bonus or penalisation to their payoffs
depending on how their choice compares to that of all members of the other
group. These infinite range interactions (both within the group and with
members of the other) are well approximated in the thermodynamic limit
(large enough Ns and Nt) by the mean field theory (as will be described
in section 9.2.1). This is then representing the case where each player is
affected only by their (accurate) perception of what the average behaviour
in each of the groups is (rational expectations or perfect knowledge of the
system).

Both these (intra- and inter-group) interactions with the average values,
can represent some sort of fuzzy social influence, in that they would mimic
the desire of individual players to conform to the norm (or differentiate
themselves from another group perceived as contrarian). For example,
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players will be more likely to purchase a particular item if they see many
other players in the game who already own it, and be more strongly affected
by players in their same time zone than in others, as they will be more
likely to interact with them. A particular event where they can find other
players with whom to associate will be more attractive the more players
that are taking part in it, but more so if these are of a similar level or
experience. In this case, the inter-group coupling might even be negative, as
the participation of a very large number of very experienced players might
indicate the newbie that the event is not appropriate for them (and vice
versa). As has been already noted, in certain video games, these interactions,
that account in the end to additional terms in the player’s utility, could
actually reflect actual gains or losses for the players, in terms of in-game
currency or experience points for example.

9.2.1 Model definition

Using mean field theory (on all intra- or inter-coupling terms) for equally
sized groups (which will always be the case in the thermodynamic limit),
equation (9.3) can be rewritten as

H =
NJs

2
s2 +

NJt

2
t2 + Nkst−

− (Jss + kt + hs)∑
i

si − (Jtt + ks + ht)∑
i

ti (9.4)

This model was first studied in detail in [171] in the context of plastic
phase transitions. The results of that work are summarised here, then
extended with the numerical analysis of the unbiased case in subsection
9.2.3 and section 9.4, and the implications of its use in a binary choice (and
in particular video game) context discussed.

The partition function corresponding to the Hamiltonian in equation 9.4
for the representative canonical ensemble (Z = Tre−βH where Tr indicates
sum over all possible spin configurations) can be expressed

Z =e−β( N
2 s2 Js+

N
2 t2 Jt+Nkst)·

[2 cosh (β (Jss + kt + hs)) 2 cosh (β (Jtt + ks + ht))]
N (9.5)

where β = 1
KBT , KB is Boltzmann’s constant and T the temperature (which

in this case accounts for statistical fluctuations). The system’s free energy
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density ( f = F/N with F the free energy F = KBT log(Z)) will be therefore
given in the mean field approximation by

f =
1
2

Jss2 +
1
2

Jtt2 + kst−

1
β

ln (2 cosh (β (Jss + kt + hs)))−
1
β

ln (2 cosh (β (Jtt + ks + ht))) (9.6)

with stable states of the system those that minimise the free energy.

9.2.2 Equations of state: solutions and stability

The free energy in equation 9.6 has first derivatives in the order parameters
s and t given by

∂ f
∂s

= Jss + kt− Js tanh (β (Jss + kt + hs))− k tanh (β (Jtt + ks + ht)) (9.7)

∂ f
∂t

= Jtt + kw− Jt tanh (β (Jtt + ks + ht))− k tanh (β (Jss + kt + hs)) (9.8)

and so its critical points are the solutions to the system of equations of state:

a (s− tanh (β (Jss + kt + hs))) = 0

a (t− tanh (β (Jtt + ks + ht))) = 0
(9.9)

where:

a = Js Jt − k2 (9.10)

There will be two differentiated cases:

1. Degenerate case (a = 0): The resulting equation of state (besides Js Jt −
k2 = 0) is:

Jss + kt− Js tanh (β (Jss + kt + hs))

−k tanh
(

β
(

k2

Js
t + ks + ht

))
= 0

(9.11)

2. Non degenerate case (a 6= 0): With system of equations of state:

s = tanh[β (Jss + kt + hs)]

t = tanh[β (Jtt + ks + ht)]
(9.12)
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This work focuses in the non degenerate case, as it is of interest for a
much larger region of the parameter space. The type of critical points that
solutions to the system of equations 9.12 are (and hence their stability) will
be determined by the Hessian of the free energy 9.6, which has elements:

∂2 f
∂s2 =Js − βJs

2 1
cosh2[β (Jss + kt + hs)]

− βk2 1
cosh2[β (Jtt + ks + ht)]

(9.13)

∂2 f
∂t2 =Jt − βJt

2 1
cosh2[β (Jtt + ks + ht)]

− βk2 1
cosh2[β (Jss + kt + hs)]

(9.14)

∂2 f
∂s∂t

= k− βkJs
1

cosh2[β (Jss + kt + hs)]

− βkJt
1

cosh2[β (Jtt + ks + ht)]
(9.15)

Stable solutions (minima) will be those with positive definite Hessian,
i.e., those with positive determinant of the Hessian:

det(H) = a (1− βJsγs − βJtγt) + β2a2γsγt (9.16)

and positive first diagonal element:

∂2 f
∂s2 = Js − βJs

2γs − βk2γt (9.17)

where γs = 1
cosh2[β(Jss+kt+hs)]

and γt = 1
cosh2[β(Jtt+ks+ht)]

. That is, critical

points will be minima when both equation 9.16 and equation 9.17 evaluated
on them are positive, maxima for positive equation 9.16 and negative
equation 9.17, and saddle points whenever equation 9.16 is negative.

9.2.2.1 Unbiased populations

To continue with the analytical study of the system, let us now analyse the
situation for the unbiased case, i.e., when the opinion field in both groups
is zero hs = ht = 0. This will be the case when players have no inherent
preference, and any reward or penalisation (be it concrete or abstract) is
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due to imitation of one’s group and the interaction between the average
choice in both groups.

First, it is obvious that the unpolarized state (s, t) = (0, 0) can only be a
solution of the system of state equations 9.12 for unbiased populations. For
high enough temperatures (β→ 0), it is the only solution and it is stable.

In the absence of statistical fluctuations (T = 0), the situation is reversed,
and there is now always complete order, with either (1,1) and (-1,-1) for
k > 0 or (1,-1) and (-1,1) for k < 0 being the (stable) solutions of the system,
both with identical probability (physically equivalent). At finite non zero
temperature, the situation is qualitatively similar, although as there are now
statistical fluctuations, both components of the average magnetisation will
be less than 1 in absolute value (being closer to 1 the lower the temperature
is). Solutions always appear in pairs (with both components of the same
sign for positive k and of opposite sign for negative k). Further more, the
system 9.12 is invariant under k→ −k by changing the sign of one of the
components of the average magnetisation vector, so the absolute values of
the critical points are the same for k and −k. Note equations 9.16 and 9.17

also share this symmetry, so these pairs of solutions will also have the same
stability.

Partially polarised or mixed phases can only exist for k = 0, i.e., when
the system is made up by two uncoupled Ising models. This describes the
situation where two unbiased groups are making a choice subject only
to social influence from within their group. Mixed phases appear in this
case when, for the given temperature, one of the Ising models is in a
ferromagnetic or polarised phase (J > KBT), while the other is unpolarized
(J < KBT). The non-zero component will therefore always be that associated
to a higher intra-coupling constant J. The uncoupled system still has the
same symmetries, so solutions always appear in couples, both with same
component zero, and with the other component the same absolute value
and opposite signs.

To study critical regions where the stability of the solution (s, t) = (0, 0)
changes, equations 9.12 can be linearized for |s| � 1 and |t| � 1. At finite
temperature in the unbiased case this yields:

s = β (Jss + kt) + O(s3, t3, s2t, st2)

t = β (Jtt + ks) + O(s3, t3, s2t, st2)
(9.18)

which leads to the expression

l(β) = aβ2 − (Js + Jt)β + 1 = 0 (9.19)
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The roots of l(β) in equation 9.19 are the points in the parameter space
where the stability of the paramagnetic solution changes. These are given
by the expression:

β =
Js + Jt ±

√
(Js + Jt)2 − 4a
2a

=
Js + Jt ±

√
(Js − Jt)2 + 4k2

2a
(9.20)

There will therefore be some regions for which l(β) has a single positive
root (and thus physically plausible and relevant to the discussion, at βb =
Js+Jt+

√
(Js−Jt)2+4k2

2a ) and others where it has two (βb =
Js+Jt+

√
(Js−Jt)2+4k2

2a

and βc =
Js+Jt−

√
(Js−Jt)2+4k2

2a , with βc < βb).
As it is the stability of the paramagnetic phase what is now under study,

equations 9.16 and 9.17 need to be considered (evaluated at (s, t) = (0, 0),
i.e., γs = γt = 1) which will have in this situation the form:

det(H) = a (1− βJs − βJt) + β2a2 = al(β) (9.21)

∂2 f
∂s2 = Js + β

(
Js

2 − k2
)

(9.22)

The Hessian in equation 9.21 also changes sign at the roots of l(β) (equation
9.19), and the first diagonal element in equation 9.22 is positive only when
β < Js

Js 2+k2 . Solving for Js

β2 <
1

4k2 (9.23)

Js
− < Js < Js

+ (9.24)

with

Js
± =

1±
√

1− 4β2k2

2β
(9.25)

Putting all this together, this means a distinction between two different
regimes can be made:

• Strong coupling regime (k2 > Js Jt): There is single physically relevant
value βb separating regions where the paramagnetic phase is a saddle
point of the free energy of those where it is a maximum, so the
unpolarized solution is never a stable state in this regime. For T = 0,
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the pair of fully polarised critical points (with absolute value 1 and
relative signs depending on the sign of k) are also saddle points. This
is indicating that no stable solutions exist at all in this region, as will
be corroborated by the numerical analysis in section 9.2.3.

• Weak coupling regime (k2 < Js Jt): Here βb is still related to a change in
the instability type of the unpolarized solution, from being a maxi-
mum (for β > βb) to being a saddle point (for βb > β > βc) of the free
energy, while βc is an actual critical point where a second order phase
transition takes place, as the paramagnetic phase becomes a stable
solution (minimum of the free energy) for β < βc. When looking at
the zero temperature case, the pair of fully polarised solutions with
absolutely no disorder ((1, 1) and (−1,−1) for k > 0 and (1,−1) and
(−1, 1)) are now also minima and thus stable states of the system,
both with equal probability. The four of them are minima for k = 0
in the zero temperature case. Actually, there are four minima until
at high enough temperatures they merge into the two mixed phase
solutions. At zero temperature but non zero inter-coupling values
break the symmetry of the four minima privileging two of them.
There is a first order phase transition at k = 0, and for low enough
values the other two will still be metastable states (local minima of the
free energy with a higher value that the other two stable solutions).
This suggests this will also be qualitatively the picture for non zero
temperatures below the critical one, with components of the average
choice having absolute values (strictly) between 0 and 1. Again, all
this is corroborated by the numerical analysis that will be described
in section 9.2.3.

The degenerate case (k = Js Jt) corresponds to where the system changes
from being able to reach equilibrium to having no stable solutions at all.

9.2.3 Numerical analysis for unbiased populations

Solutions to the system of equations of state in the non degenerate case
(equation 9.12) were computed using the Newton-Raphson algorithm, and
their stability assessed by evaluating equation 9.16 and equation 9.17 at each
of them. Solutions showing convergence problems or with no invertible
Jacobian were discarded, with number of iterations used between 100 and
1000, and convergence considered to have been attained when the absolute
value of each of the components of the function was smaller that the
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tolerance considered, which was set to 5 · 10−6. To simplify the parameter
space to study, Js was set to 1, and thus the rest of couplings are measured
in terms of it. For each collection of values of the parameters considered,
different values for the initial average choices (each component between
-1 and 1 with 0.1 steps) were considered in order to exhaust the solution
space.

A couple of plots have been selected to illustrate the dependence of
the average choice or magnetisation vector on each of the parameters in
what follows. Additional auxiliary plots to better understand the phase
diagrams that will be described in section 9.4 can be found in appendix
A section A.1. In all plots, green is used for the component s and blue for
component t, with dark colours (points) denoting stable solutions (minima
of the free energy 9.6), and lighter colours non-stable solutions (asps x for
saddle points of the free energy and crosses + for maxima). Note that all
solutions and both components are plotted together, which could lead to
some confusion. Whenever k > 0 the solutions will appear in pairs with
either both components positive or both components negative, while for
k < 0 the valid pairs have components with opposite signs.

9.2.3.1 Dependence on temperature

Figure 9.1 shows an example of the behaviour of (s, t) vs KBT for a system
in the strong coupling regime (in particular for Js = 1, Jt = 0.6, k =
±0.8, a = −0.04 and thus KBTc = 2a

Js+Jt+
√

(Js−Jt)2+4k2
= 1.62). As the

previous analysis about the stability of the paramagnetic solution, and
of the completely ordered one for zero temperature, was hinting, there are
no stable solutions at all. The free energy of equation 9.6 has a saddle point
in (s, t) = (0, 0) for temperatures above Tb. For temperatures below it, it
becomes a maxima and two additional symmetric ferromagnetic saddle
points appear (with relative sign of the components depending on the sign
of k).

Figure 9.2, on the other hand, depicts the situation on the weak coupling
regime (Js = 1, Jt = 0.6, k = ±0.15, a = 0.58, KBTc = 1.05 and KBTb = 0.55).
As was discussed in section 9.2.2.1, Tb is the temperature separating regions
where the unpolarized state is a maximum of the free energy from those
where it is a saddle point, while Tc is a critical point at which there is a
second order phase transition and the paramagnetic phase becomes the
ground state of the system. Below Tc there are two critical ferromagnetic
phases which are the absolute minima of the free energy. Below a certain
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Figure 9.1: Dependence on temperature of the numerically calculated average
magnetisation in the strong coupling regime: Js = 1, Jt = 0.6 , k =
±0.8 (KBTc = 1.62). Different solutions are plotted for temperatures
between 0.01 and 2 every 0.01 (KBT). Magnetisation is plotted in
light green for s and light blue for t using asps (×) for saddle point
solutions and crosses (+) for maxima of f . Own elaboration using
numerically computed solutions to the equations of state. The image
has previously appeared in [71].
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spinodal temperature Ta, an additional pair of saddle points and local minima
appear, in which the magnetisation component associated with the lowest
intra-coupling has opposite relative sign with respect to the other compo-
nent as that dictated by the sign of k. These correspond to metastable states,
as the free energy still has a higher value than for the other minima when
evaluated on these points.

9.2.3.2 Dependence on inter-coupling

In terms of the inter-coupling k, values at which the nature of the paramag-
netic critical point changes can be expressed as:

kc = ±
√

Js Jt −
1
β
(Js + Jt) +

1
β2 (9.26)

Figures 9.3 and 9.4 show the value and type of the magnetisation compo-
nents that are critical points of the free energy against k, for Js = 1, Jt = 0.6,
and KBT = 1.2 (high temperature) and KBT = 0.35 (low temperature) re-
spectively. Note that in both cases there are no stable solutions in the strong
coupling regime k2 > Js Jt. Both plots are symmetric in k, however whenever
there are pairs of ferromagnetic solutions, the relative sign between the two
components of the magnetisation will be different for negative and positive
values of k.

The values kc of equation 9.26 are those (together with those delimiting
the degenerate state) where the sign of the determinant of the Hessian
9.16 changes for the unpolarized state. This means there are two additional
such values except for KBT having values between the two intra-coupling
constants (Jt < KBT < Js for Jt < Js), i.e., between the two uncoupled
critical temperatures. Equation 9.17 for the first diagonal element of the
Hessian, on the other hand, changes sign for the paramagnetic phase for
the two values satisfying k2 = Js(Js + KBT).

The high temperature plot of figure 9.3 depicts the situation when the
temperature is above both critical uncoupled ones. Here the paramagnetic
phase is stable for k2 < k2

c , a saddle point for k2
c < k2 < Js Jt and a maximum

for k2 > Js Jt. At kc there is a second order phase transition (if |kc| < Js Jt), as
a pair of ferromagnetic solutions appear as minima of the free energy. These
will lose their stability and become saddle points in the strong coupling
regime.

The low temperature plot in figure 9.4 illustrates the dependence with
k for temperatures below both the uncoupled critical ones. Here, while
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Figure 9.2: Dependence on temperature of the numerically calculated average
magnetisation for the weak coupling regime: Js = 1, Jt = 0.6 ,
k = ±0.15 (KBTb = 0.55, KBTc = 1.05). Different solutions are plotted
for temperatures between 0.01 and 1.5 every 0.01 (KBT). Magnetisa-
tion is plotted in green for s and blue for t. Dark points are used for
stable solutions and lighter asp (×, for saddle points) or cross (+,
for maxima) for non stable solutions. Own elaboration using numer-
ically computed solutions to the equations of state. The image has
previously appeared in [71].
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Figure 9.3: Dependence on inter-coupling of the numerically calculated aver-
age magnetisation for Js = 1, Jt = 0.6 , KBT = 1.2 (kc = ±0.35).
Degenerate case (limiting value between both coupling regimes) for
|k| =

√
Js Jt = 0.77. Different solutions are plotted for k between -1.2

and 1.2 every 0.01. Magnetisation is plotted in green for s and blue
for t. Dark points are used for stable solutions and lighter asp (×, for
saddle points) or cross (+, for maxima) for non stable solutions. Own
elaboration using numerically computed solutions to the equations
of state. The image has previously appeared in [71].



9.2 non-local model for homogeneous populations 217

|kc| < Js Jt, the unpolarized solution will be a a maximum except for |k|
between the critical |kc| and the degenerate value Js Jt, where it is a saddle
point. There is a completely polarised solution that is stable in the weak
coupling regime, with absolute values closer to one the higher the absolute
value of k (and components with relative signs as dictated by the sign of
k). Between the two critical values of k (of the same absolute value and
opposite sign), additional pairs of critical points (saddle points) appear, and
for absolute values below the spinodal value k2 < k2

a, two more metastable
ferromagnetic solutions emerge, where the component associated to lower
intra-coupling has lower absolute value and opposite sign of what the sign
of k would be favouring.

No plot is shown for the intermediate case Jt < KBT < Js here because
the behaviour will be that of the low temperature one (figure 9.4), but
with no saddle point ferromagnetic solutions or metastable states at low k,
and with the paramagnetic phase always being a saddle point in the weak
coupling regime. See figure A.3 (d), figures A.4 (g), (h) and (i) and figure
A.4 (a), (b) and (c) in appendix A section A.1 for some examples.

9.2.3.3 Dependence on intra-couplings

Finally, when considering dependence on the intra-couplings, roots of the
polynomial l(Js) will be given by:

Jc
t =

β(k2β + Js)− 1
β(Jsβ− 1)

(9.27)

This means that, besides the change between weak and strong coupling at
Jt =

k2

Js
, depending on the values of the inter-coupling and the temperature,

there will be one or no positive critical value Jt where the sign of the
determinant of the Hessian (equation 9.16) for the paramagnetic phase

changes: the second derivative in equation 9.17 is negative for KBT < k2−J2
s

Js

and positive for KBT > k2−J2
s

Js
.

There are two qualitatively different situations, as portrayed for Js = 1,
k = ±0.3 by figure 9.5 for high temperature (KBT = 1.5, Jc

t = 1.32) and
figure 9.6 for low temperature (KBT = 0.4, Jc

t = 0.55). In the former, there
are no stable solutions for Jt < 0.09 (strong coupling regime) as the only
critical point, the unpolarized state, is a saddle point. For values of the
intra-coupling constant placing the system in the weak coupling regime,
but below the critical value Jc

t = 1.32, the paramagnetic phase is still the
only critical point but is now stable. At the critical value there is a second
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Figure 9.4: Dependence on inter-coupling of the numerically calculated aver-
age magnetisation for Js = 1, Jt = 0.6 , KBT = 0.4 (kc = ±0.35).
Degenerate case (limiting value between both coupling regimes) for
|k| =

√
Js Jt = 0.77. Different solutions are plotted for k between -0.9

and 0.9 every 0.01. Magnetisation is plotted in green for s and blue
for t. Dark points are used for stable solutions and lighter asp (×, for
saddle points) or cross (+, for maxima) for non stable solutions. Own
elaboration using numerically computed solutions to the equations
of state. The image has previously appeared in [71].
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order phase transition and it becomes again a saddle pint, with a pair of
ferromagnetic minima appearing.

For low enough temperatures (see figure 9.6) the unpolarized phase is
always either a maximum or a saddle point, and the ferromagnetic phase is
the only stable solution (and this only in the weak coupling regime). For
values above the coupling Jc

t , two new saddle point ferromagnetic branches
appear (and the paramagnetic solution becomes again a maximum), and for
even higher values, at the spinodal point Ja

t the ferromagnetic metastable
states appear.

9.3 local model for homogeneous populations

Let us now turn to the system described by two Ising models coupled
locally, with dynamics governed by the Hamiltonian:

H = ∑
(i,j)

(
− Js

N
sisj −

Jt

N
titj

)
−∑

i
(ksiti + hssi + htti) (9.28)

where summations over (i, j) are 1 ≤ i < j ≤ N and summations over i are
1 ≤ i ≤ N.

Its translation to a social utility representation of a binary decision making
problem in social video games would be that of (a single group of) players
making two choices, both of which are subject to some sort of social pressure
in that all individuals are rewarded for aligning each of their choice with
the same choice of the other players. All players have the same IWA for
a given choice, but it can be different for the two different decisions (i.e.,
there are two constant opinion fields). Besides the payoff provided through
imitation of their peers in each choice (social utility), and that associated
to their inherent preferences (private utility), which are considered to be
the same across all players in this case, there is an additional bonus or
penalisation mediated through the inter-coupling k for each individual if
they align (for k > 0) or not align (k < 0) their choices. This individual
interdependence is in the case considered also constant for all players, i.e.
all players have the exact same incentive to align (or not) their decisions.
In the thermodynamic limit this system is well described by the Weiss
mean approximation, which, as was discussed for the single Ising model
in chapter 2 section 2.10, is equivalent to all players wanting to align their
decisions to what they perceive to be the average behaviour of the group,
when their perception is accurate (rational expectations).
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Figure 9.5: Dependence on the intra-coupling Jt of the numerically calculated
average magnetisation at low temperature (Js = 1, k = ±0.3 , KBT =
1.5, Jc

t = 1.32). Degenerate case (limiting value between both coupling
regimes) for Jt = k2

Js
= 0.09. Different solutions are plotted for Jt

between 0 and 3 every 0.01. Magnetisation is plotted in green for s
and blue for t. Dark points are used for stable solutions and lighter
asps (×) for saddle points, non stable solutions. Own elaboration
using numerically computed solutions to the equations of state. The
image has previously appeared in [71].
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Figure 9.6: Dependence on the intra-coupling Jt of the numerically calculated
average magnetisation at low temperature (Js = 1, k = ±0.3 , KBT =
0.4, Jc

t = 0.55). Degenerate case (limiting value between both coupling
regimes) for Jt = k2

Js
= 0.09. Different solutions are plotted for Jt

between 0 and 1.5 every 0.01. Magnetisation is plotted in green for s
and blue for t. Dark points are used for stable solutions and lighter
asp (×, for saddle points) or cross (+, for maxima) for non stable
solutions. Own elaboration using numerically computed solutions to
the equations of state. The image has previously appeared in [71].



222 interdependent choices and video games

Whether to play, coupled to deciding to pay for add-free play or addi-
tional in-game content, is a perfect general example of when such a system
is relevant in the realm of video games. Other more particular examples
could be related to purchasing two matching items (e.g. a sword and shield
of the same type, with positive k) or two items that can not be used simul-
taneously (negative k), adopting a particular strategy (for example attack
vs defence) and purchasing a particular item (for example better defensive
gear), taking part in two related events. . . Payoff can measure an abstract
quality, like the fun or satisfaction that would be experienced by the player
by wearing matching cool garments in the game, or the expected better
results in taking part in two events with similar dynamics. It could also
be more tangible, like say, if combining the same type helmet and shield
gives the player additional protection than the simple combination of both,
or when the player gets an additional in-game reward for completing two
related but independent tasks than that provided by the some of each of
them.

The system with Hamiltonian given by equation 9.28 for hs = ht = 0
and for random inter-coupling k is studied in [110] in the context of plastic
phase transitions. While the methodology and some results of that work is
used in the analysis that follows, it focuses in symmetric distributions for k,
and so most of the results there presented are of no use to our discussion.
The rest of this section follows the same lines of the previous one (section
9.2), focusing now in the solutions of Hamiltonian 9.28 (instead of 9.3).
In section 9.4 the results will be used to describe and compare the phase
diagrams of both models (non-local and local).

9.3.1 Model definition

The Hamiltonian in equation 9.28 can also be expressed as:

H =
Js + Jt

2
− Js

2N

(
∑

i
si

)2

− Jt

2N

(
∑

i
ti

)2

−∑
i
(ksiti + hssi + htti) (9.29)

Following [110], the partition function of the representative canonical
ensemble can be computed exactly in the thermodynamic limit yielding

Z =
βN
2π

(Js Jt)
1
2 e−

β
2 (Js+Jt)

∫ ∞

−∞

∫ ∞

−∞
ds dte−βNg(s,t) (9.30)

with
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g =
1
2

Jss2 +
1
2

Jtt2 − 1
β

ln[2eβk cosh (β (Jss + Jtt + hs + ht))

+ 2e−βk cosh (β (Jss− Jtt + hs − ht))] (9.31)

where g(s, t) is the free energy functional such that:

f = lim
N→∞

F
N

=
∫ ∞

−∞

∫ ∞

−∞
ds dt g(s, t) (9.32)

for F the free energy and f the free energy density of the system.

9.3.2 Equations of state: solutions and stability

The free energy and the free energy functional share the same critical points,
which can be found using g derivatives:

∂g
∂s

= Jss−

Jseβk sinh (β(Jss + Jtt + hs + ht)) + Jse−βk sinh (β(Jss− Jtt + hs − ht))

eβk cosh (β(Jss + Jtt + hs + ht)) + e−βk cosh (β(Jss− Jtt + hs − ht))
(9.33)

∂g
∂t

= Jtt−

Jteβk sinh (β(Jss + Jtt + hs + ht)) + Jte−βk sinh (β(Jtt− Jss + ht − hs))

eβk cosh (β(Jss + Jtt + hs + ht)) + e−βk cosh (β(Jtt− Jss + ht − hs))
(9.34)

yielding the system of equations of state:

s =
tanh (β(Jss + hs)) + tanh (β(Jtt + ht)) tanh (βk)

1 + tanh (β(Jss + hs)) tanh (β(Jtt + ht)) tanh (βk)

t =
tanh (β(Jtt + ht)) + tanh (β(Jss + hs)) tanh (βk)

1 + tanh (β(Jss + hs)) tanh (β(Jtt + ht)) tanh (βk)

(9.35)

which can be written as:

s =
αs + αtαk

1 + αsαtαk

t =
αt + αsαk

1 + αsαtαk

(9.36)
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with αs = tanh (β(Jss + hs)), αt = tanh (β(Jtt + ht)) and αk = tanh (βk).
The stability of critical points of the free energy will be determined by its

Hessian, with components:

∂2g
∂s2 = Js −

βJ2
s γs

(
1− α2

t α2
k
)

(1 + αsαtαk)2 (9.37)

∂2g
∂t2 = Jt −

βJ2
t γt

(
1− α2

s α2
k
)

(1 + αsαtαk)2 (9.38)

∂2g
∂s∂t

= − βJs Jtγsγtαk
(1 + αsαtαk)2 (9.39)

where γs =
1

cosh2(β(Jss+hs))
and γt =

1
cosh2(β(Jtt+ht))

.

The determinant of the Hessian is:

det(H) = Js Jt[1−
β
(

Jtγt(1− α2
s α2

k) + Jsγs(1− α2
t α2

k)
)

(1 + αsαtαk)2

+
β2 Js Jtγsγt

(
(1− α2

s α2
k)(1− α2

t α2
k)− γsγtα

2
k
)

(1 + αsαtαk)4 ] (9.40)

Solutions of the system of equations 9.36 are the critical points of the free
energy, but only those where the Hessian is positive definite are minima
and thus stable solutions. These are those with positive first diagonal
element (equation 9.37) and positive determinant (equation 9.40). Those
with positive determinant and negative first diagonal element are maxima,
and finally those critical points where the determinant is negative are saddle
points of the free energy.

9.3.2.1 Unbiased population

Let us considered the case where players do not have any inherent pref-
erence, i.e., hs = ht = 0. This is the case when any reward or penalisation
associated to the decisions players are making are either purely social or
due to the choice interaction.

The system presents similar characteristics to the non-local model (that
was discussed in section 9.2.2.1), in that the paramagnetic phase is always
a solution at finite temperature, and the only one at high enough temper-
ature. The symmetry in k and thus the appearance of solutions in pairs,
with the relative signs of both components of the average magnetisation
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Figure 9.7: Plots of the function l(KBT) = Js Jt

(
1− tanh2( k

KBT )
)

1
(KBT)2 − (Js +

Jt)
1

KBT + 1 against temperature (KBT). Js = 1, Jt = 0.6 and different
values of inter-coupling are considered. In (a) k = 0.8 and l has one
root. In (b) k = 0.15 and l has two roots. In (c) k = 0.05 and l has
three roots. Own elaboration. The image has previously appeared
in [71].

depending on the sign of k, also holds in this case. The corresponding pair
of ferromagnetic solutions with no disorder at all (i.e., with unitary norm)
are the only solutions at zero temperature. Mixed phases are also here
only possible when k = 0, where the behaviour is exactly the same as that
displayed by the group interdependence scenario (both systems reduced to
two uncoupled Ising models). Note that here, unlike for the non-local case,
there are no metastable ferromagnetic solutions for zero temperature.

To study how the stability of the paramagnetic phase varies, the linearized
system of equations of motion is considered:

s = βJss + βJt tanh(βk)t + O(s3, t3, s2t, st2)

t = βJtt + βJs tanh(βk)s + O(s3, t3, s2t, st2)
(9.41)

which can be simplified to

l(β) = Js Jt

(
1− tanh2(βk)

)
β2 − (Jt + Js)β + 1 = 0 (9.42)

The polynomial l(β) has here again roots where the type of the critical
point the paramagnetic phase constitutes changes. In this case however,
depending on the region of the parameter space considered, there will be
one, two or three solutions, as illustrated by figure 9.7.

Evaluated at (s, t) = (0, 0), γs = γt = 0 and αs = αt = 0, and so the
determinant of the Hessian (equation 9.40) and the first diagonal element
(equation 9.37) are:
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det(H) = Js Jt[1− β (Js + Jt) + β2 Js Jt

(
1− α2

k

)
] = l(β) (9.43)

∂2g
∂s2 = Js − βJ2

s (9.44)

Upon inspection, the determinant of the Hessian changes sign too at the
roots of l(β). By looking at the signs of equation 9.43 and equation 9.44 for
T → 0 and T → ∞, it is inferred that, depending on the number of roots of
l(β) as given by equation 9.42:

• If l(β) has three roots βc < βb < βb′ , then there is a second order
phase transition at βc, as for β < βc (temperatures above the critical
one), the paramagnetic phase is a minimum of the free energy, while
for βc < β < βb it is a saddle point. Between βb and βb′ it is a local
maximum, while for β > βb′ it becomes again a saddle point.

• If l(β) has two roots βc < βb, there is still a second order phase
transition at βc, with the unpolarized state being the ground state of
the system for β < βc, and then a saddle point for βc < β < βb and a
maximum of the free energy above βb.

• If l(β) has one root, βc is a critical point separating regions where
(0, 0) is a minimum from those where it is a saddle point.

Regardless of the number of roots, it is always the smallest (or only) value
of β where there is a phase transition and the stability of the unpolarized
phase changes.

9.3.3 Numerical analysis for unbiased populations

As in section 9.2.3, here too the Newton-Raphson algorithm is used to com-
pute solutions to the system of equations 9.36, and their stability assessed
by evaluating equations 9.43 and 9.44 at them. The same convergence crite-
ria, iterations, and initial values for the average choice vector components
are considered, with Js set to 1 here too (and thus the rest of couplings
measured in terms of it).

The plots follow the same conventions, namely, green is used for the
component s and blue for component t, with dark colours (points) denoting
stable solutions (minima of the free energy functional of equation 9.31),
and lighter colours non-stable solutions (asps x for saddle points of the free
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energy and crosses + for maxima). The symmetry in k must also be taken
into account to correctly interpret how the solutions are paired. Additional
auxiliary plots can be found in the appendix A section A.2.

As will be seen, qualitatively the situation is very similar to that of the
non-local model described in section 9.2.3. Both phase diagrams will be
discussed and compared in section 9.4. There is one major difference: as
has been seen, for the non-local model, there are regions in the parameter
space where the system becomes frustrated and there is no stable state.
This is never the case for the local model. As the coupling of both choices is
not social and is through each player, they can always successfully decide
whether aligning them or not is the best option, and the frustration scenario
is never arrived at.

9.3.3.1 Dependence on temperature

As for the non-local model, figure 9.8 shows the dependence with tem-
perature in strong coupling (here referring to the region of the parameter
space where l(β) in equation 9.42 has a single root), and figure 9.9 for
weak coupling (regions of the parameter space where l(β) has at least two
roots, three in this particular case). No explicit distinction is made between
situations where l(β) has two roots from those where it has three, as there
is no change in stability of the solutions, and the former can simply be
considered a particular case of the latter with Tb′ → 0. For both plots Js = 1
and Jt = 0.6, with k = ±0.8 for figure 9.8 and k = ±0.15 for figure 9.9
(same parameter values than figures 9.1 and 9.2 for the non-local case).

Figure 9.8 is very similar to figure 9.1, but now saddle points have
become local minima, and local maxima saddle points, indicating a stable
unpolarized phase for temperatures above the critical one, and a pair of
stable completely polarised solutions (with relative signs of the components
that of k) for temperatures below, and a second order phase transition
taking place at KBTc = 1.28 (value computed numerically using the Newton-
Raphson algorithm). Note the value of the temperature at which the change
of critical point type occurs is slightly lower than in the non-local case.

There are two qualitative differences between figure 9.9 and its non-local
counterpart 9.2. There are now three values of the temperature where the
nature of the paramagnetic critical point changes KBTc = 1.03, KBTb = 0.50
and KBTb′ = 0.13 (all values computed numerically using the Newton-
Raphson algorithm). As compared to the non-local case, here for T < Tb′ ,
(0, 0) becomes a saddle point, and an additional pair of ferromagnetic
maxima appear, but this has no implications regarding the stability of
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Figure 9.8: Dependence on temperature of the numerically calculated average
magnetisation for Js = 1, Jt = 0.6 ,k = ±0.8 (KBTc = 1.28). Different
solutions are plotted for temperatures between 0.01 and 1.8 every 0.01

(KBT). Magnetisation is plotted in green for s and blue for t. Dark
points are used for stable solutions and lighter asps (×) for saddle
point, non stable solutions. Own elaboration using numerically com-
puted solutions to the equations of state. The image has previously
appeared in [71].
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solutions. More importantly, the ferromagnetic metastable solutions that
here too appear, do not exist until zero temperature (fact that had already
been noted after the analytical study of the system of equations of state),
but rather for Ta′ < T < Ta. Again here, as for the strong coupling case,
the values of Tc and Tb are lower than in the non-local case, i.e., the region
where the ferromagnetic solution is the ground state is smaller, and so is
the region where metastable states exist.

9.3.3.2 Dependence on inter-coupling

The roots of the polynomial l(β) in equation 9.42 in terms of k, where the
determinant of the Hessian changes sign for the paramagnetic phase, are in
the local case given by:

kc = ±KBT tanh−1

√1− KBT(Js + Jt)

Js Jt
+

(KBT)2

Js Jt

 (9.45)

The situation is qualitatively similar to that of the non-local model,
with a remarkable difference besides the already stressed existence of
at least a stable equilibrium in all the parameter space. Here again the
uncoupled model critical values of the temperature appear and determine
whether the paramagnetic phase changes from minimum to saddle point
(for temperatures above both the uncoupled critical ones), or is never stable
but changes from saddle point to maximum for low enough values of k (for
temperatures below both of them). Now there is an additional threshold
value KBT above which the paramagnetic phase is always the ground state
of the system, with no change in its stability regardless of the value of k.
There is no plot in this section illustrating this behaviour, but examples can
be found in the appendix A section A.2 in figures A.12 plot (a) and A.13

plots (a) and (b).
Figure 9.10 depicts the behaviour of the free energy critical points for

varying values of k for temperature above both uncoupled critical values
(Js = 1, Jt = 0.6, KBT = 1.2 and kc = ±0.58), but lower than its sum. It
displays basically the same behaviour as figure 9.3 did for the non-local
model, besides the fact that stable solutions do not disappear in the strong
coupling regime, and so the pair of ferromagnetic solutions continue to be
minima (and the paramagnetic solution to be a saddle point) of the free
energy for arbitrarily large values of k.

Figure 9.11 displays a similar behaviour than its non-local counterpart
depicted in figure 9.4 for low temperature (Js = 1, Jt = 0.6, KBT = 0.4
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Figure 9.9: Dependence on temperature of the numerically calculated aver-
age magnetisation for Js = 1, Jt = 0.6 ,k = ±0.15 (KBTc = 1.03,
KBTb = 0.50 and KBTb′ = 0.13). Different solutions are plotted for
temperatures between 0.01 and 1.5 every 0.01 (KBT). Magnetisation
is plotted in green for s and blue for t. Dark points are used for
stable solutions and lighter asp (×, for saddle points) or cross (+,
for maxima) for non stable solutions. Own elaboration using numer-
ically computed solutions to the equations of state. The image has
previously appeared in [71].
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Figure 9.10: Dependence on the inter-coupling k of the numerically calculated
average magnetisation at high temperature for Js = 1, Jt = 0.6
and KBT = 1.2 (kc = ±0.58). Different solutions are plotted for k
between -2 and 2 every 0.01. Magnetisation is plotted in green for s
and blue for t. Dark points are used for stable solutions and lighter
asps (×) for saddle point, non stable solutions. Own elaboration
using numerically computed solutions to the equations of state. The
image has previously appeared in [71].
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Figure 9.11: Dependence on the inter-coupling k of the numerically calculated
average magnetisation at low temperature Js = 1, Jt = 0.6 and
KBT = 0.4 (kc = ±0.19). Different solutions are plotted for k between
-0.8 and 0.8 every 0.01. Magnetisation is plotted in green for s and
blue for t. Dark points are used for stable solutions and lighter
asp (×, for saddle points) or cross (+, for maxima) for non stable
solutions. Own elaboration using numerically computed solutions
to the equations of state. The image has previously appeared in [71].

and kc = ±0.19), besides the change when entering in the strong coupling
regime

9.3.3.3 Dependence on Intra-couplings

The dependence on Jt of the polynomial l as defined in equation 9.42 yields
as roots:

Jc
t =

KBT(Js − KBT)
Js(1− α2

k)− KBT
(9.46)
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Figure 9.12: Dependence on the intra-coupling Jt of the numerically calculated
average magnetisation for Js = 1, k = 0.3 , KBT = 1.5 (Jc

t = 1.39).
Different solutions are plotted for Jt between 0 and 3 every 0.01. Mag-
netisation is plotted in green for s and blue for t. Dark points are
used for stable solutions and lighter asps (×) for saddle point, non
stable solutions. Own elaboration using numerically computed solu-
tions to the equations of state. The image has previously appeared
in [71].

This means there are three qualitatively different behaviours depending
on the region of the parameter where the system is. For Js < KBT there is
a second order phase transition at the only (positive and thus relevant to
this discussion) critical value determined by equation 9.46, dividing regions
where the paramagnetic is the only solution and it is stable, from those
where it is a saddle point and the ground state will be one of two possible
ferromagnetic solutions. This is depicted in figure 9.12 for Js = 1, k = 0.3 ,
KBT = 1.5 (Jc

t = 1.39). It is the same qualitative behaviour as described for
the non local model in figure 9.5 without the stability problems associated
to the strong coupling regime when there is group interdependence.
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Figure 9.13: Dependence on the intra-coupling Jt of the numerically calculated
average magnetisation for Js = 1, k = 0.3 and KBT = 0.4 (Jc

t = 1.22).
Different solutions are plotted for Jt between 0 and 1.5 every 0.01.
Magnetisation is plotted in green for s and blue for t. Dark points
are used for stable solutions and lighter asp (×, for saddle points)
or cross (+, for maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equations of state. The
image has previously appeared in [71].

For Js >
KBT
1−α2

k
, Jc

t is no longer a critical point, as the paramagnetic phase

can now only be a saddle point or a maximum. The ferromagnetic phase is
the stable solution for all values of Jt, with additional saddle point branches
and metastable states appearing for large enough values of the coupling.
This is depicted in figure 9.13 for Js = 1, k = 0.3 , KBT = 0.4 (Jc

t = 1.22),
and is again very similar qualitatively to the situation for the non-local
model depicted by figure 9.6, but without the stability problems of the
strong coupling regime.
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The final possible distinct behaviour occurs when KBT < Js < KBT
1−α2

k
,

which can in fact be considered as a limit case of the behaviour just de-
scribed as low temperature (only the ferromagnetic state is stable at all
values of the coupling), but without additional saddle point or metastable
polarised branches (no relevant Jc

t ). It is not depicted graphically in this
section, but examples can be found in the appendix A section A.2 in figure
A.14 plot (i) and figure A.16 plots (h) and (i).

9.4 phase diagrams for homogeneous unbiased populations

This section discusses and compares the phase diagrams of the group
interdependence (non-local k coupling) and individual interdependence
(local k coupling) models in the case of unbiased populations (hs = ht = 0),
as well as their implications when discussing interrelated choices in the
context of video games. It contains figures depicting the type and number
of solutions that are stable for the different cross sections of the parameter
space.

All the plots show numerically computed solutions of the systems of
equations of state 9.12 (non-local model) and 9.36 (local model) that are sta-
ble, i.e., minima of the free energy (equation 9.6) for group interdependence,
and of the free energy functional (equation 9.31) for individual interde-
pendence. The unpolarized or paramagnetic solution is always shown as a
green dot, while pairs of ferromagnetic or completely polarised cases are
shown as blue asps (x) when both average magnetisation components have
the same sign, and blue crosses (+) when they have opposite signs. These
always appear in pairs. Red triangles represent mixed or partially polarised
phases, which also appear in pairs as has been discussed. Regions where
blue asps (x) and crosses (+) are superposed are those where a pair of
metastable states (with relative sign between the components of the average
magnetisation vector different from what would be expected from the sign
of k) exist, besides the ferromagnetic ground state pair (with relative sign
as indicated by k).

Both models show qualitatively a remarkably similar behaviour, except
for a critical difference that has been already repeatedly stressed: for the
group interdependence or non-local model, there are no stable solutions for
k2 > Js Jt.

Besides the numerically calculated solutions, some analytical results are
also plotted. The degenerate curve k2 = Js Jt is shown as a thick solid line
for the non-local model, and separates the strong coupling regime (where
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no stable solutions exist) from the weak coupling regime. Note regions in
the strong coupling regime are those where the choice making process is
dominated by the inter-choice interaction. Players have then a larger urge
to imitate (or differentiate themselves from) the other group’s choice than
to emulate their own peers.

When considering both intra and inter choice interactions as purely social
in nature, this would simply be pointing at ill defined groups. Making
the influence of in-group members stronger than that of outsiders seems
reasonable when defining player segments or groupings to study decision
making processes in social games. The payoff associated to the interaction
between groups can however be a tangible reward or penalisation (say, for
example, players get additional experience points by participating in an
event where many other players of the other group are taking part). In this
case, the absence of stable solutions would be pointing to a real lack of
satisfactory stable collective state, and the frustration preventing the system
for reaching a state of equilibrium could be very real. It would probably be
indicating some sort of non desirable in-game planing or design.

Imagine the case of participation in an in-game event, where players
can form alliances and confront each other, of two groups of users of very
different experience levels. If the event involves fighting other users, players
will typically be more attracted to take part if there is a significant amount
of users of a similar level, both to provide a well balanced challenge and
a reasonable chance at winning. Depending on the event dynamics, the
presence of users of the other group can also be attractive (k > 0). This
will be particularly so if it favours collaboration across different experience
levels, but could simply be due to accomplished players looking for an
easy win, and/or newly arrived ones for an exciting challenge with the
possibility of a major win (if player skill and not only game experience
plays a role). Game dynamics could be such that it actually discourages
joining events with players of a different experience level (k < 0). Imagine
for example, there is really no chance of winning (not even experience
points) for the new comers, and also absolutely no gain whatsoever in
confronting and defeating amateur players to the seasoned ones. These are
all reasonable game dynamics.

Very different would be cases in which, for example, very experienced
players were rewarded more for beating unexperienced ones than their
peers, while newbies also received a larger compensation for this than
for overpowering their own equals. Or those in which the preference for
similarly experienced players was so big it completely prevented players



9.4 phase diagrams for homogeneous unbiased populations 237

from mixing, virtually compartmentalising the game into categories from
which there is no escape. These would both correspond to undesirable
game dynamics, both described by the strong coupling regime (k2 > Js Jt).

The mixed segment is the only region where the partially polarised pair
of solutions are the ground states, and is plotted as a dashed line. It is the
segment for k = 0 between the two uncoupled critical values Jt < β−1 < Js
when Jt < Js (or Js < β−1 < Jt when Js < Jt). It is associated to first order
phase transitions in k = 0.

It corresponds, in the group interdependence scenario, to the regime
in which two groups are making a decision affected by social interaction
from within the group, but completely isolated from the other (k = 0). This
would be the case, for example, of players always playing at different times
(imagine opposite sides of the globe with very different time zones). For
the individual interdependence scenario, this corresponds to the case of
unrelated decisions, such as picking between two aesthetically different but
otherwise identical items, and deciding to confront or not another player
encountered.

The critical curve (where there is a second order phase transition between
polarised and unpolarised phases) is shown as a solid thin line. It is given
by the combined conditions:

β−1 > max{Js, Jt}
2aβ = Js + Jt ±

√
((Js − Jt)2 + 4k2)

(9.47)

in the non-local model or group interdependence case, and by:

β−1 > max{Js, Jt}
Js Jt

(
1− tanh2(βk)

)
β2 − (Jt + Js)β + 1 = 0

(9.48)

in the local model or individual interdependence case.
Note the critical curve delimits the areas of the parameter space where

there will be spontaneous magnetisation or choice alignment due to social
pressure once the opinion fields are turned on, and thus the regions where
there might be additional metastable states (at low enough values of the
IWAs) associated to a first order phase transition at zero opinion field, where
very rapid drastic shifts in the average choices are to be expected. These are
the regions where, when moving to study players with inherent preferences
on the choices, but still relatively small as compared to the payoffs provided
through social imitation and/or choice interaction, a richer phenomenology
with additional combinations of possible fractions of adopters will appear.
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The concrete values of the parameters for which the cross sections are
plotted have been selected to be representative of all possible phenomenol-
ogy (that has already been generally discussed in sections 9.2.3 and 9.3.3
including that of non stable critical points). For all plots Js = 1 (which is
equivalent to measuring all other couplings in terms of it).

Figure 9.14 shows the Jt − β−1 section at Js = 1 and k = 0.3 for the
non-local (a) and local (b) models. Note they are remarkably similar both
qualitatively and quantitatively, with the very significant difference of
the non-local model not having stable solutions for low enough values
of Jt (where the system will be in the strong coupling regime). If both
Ising models were uncoupled, the section would have as critical curve
the slope 1 line across the origin. Each of the choices could be in two
(physically equivalent and thus equally probable) ferromagnetic states,
of equal absolute value. Combining the two possibilities for each choice
would yield four possible states in all the ferromagnetic region. The choice
coupling, be that through group or individual interdependence, extends
the ferromagnetic region, and selects only two of the four ferromagnetic
states by determining the relative sign between both components of the
average magnetisation vector. For some regions however, there are two
additional metastable states (with relative sign different from that dictated
by k) associated to first order phase transition at k = 0. The shift in the
critical curve and extended ferromagnetic phase implies that there will be a
range of temperatures for which the paramagnetic solution will never be
stable regardless of the value of the rest of the parameters. In the individual
interdependence case, the inter-choice coupling accounts for regions in the
ferromagnetic phase even for no social coupling Jt = 0.

Consider the example of players being either warriors or sorcerers, pick-
ing between two outfits (non-local model). None of the choices brings any
particular advantage, but players are assumed to be influenced by what
appears to be more fashionable (i.e. choices the other players are making),
particularly within their group. Additionally, all of these players are de-
ciding whether or not to participate in two different events (local model).
Here, participating and succeeding in both simultaneously, does bring users
an additional reward. However, it also prevents players from taking part
in other two such events. Chances of success increase the more players
involved in the event.

For any given intensity of the choice coupling (desire to resemble or
differentiate from the other group, additional reward possible from simul-
taneous participation), for large enough statistical fluctuations with respect
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to social pressure, approximately half of the players will be favouring each
decision (unpolarized or paramagnetic phase). For the region of the phase
space with large enough social coupling (and given that the choice coupling
k is positive in this example), a majority in both groups will be choosing
the same outfit, and a majority of players will either be taking part in none
or both of the events (completely polarised or ferromagnetic phase with
both average magnetisation components having the same sign). That is
except statistical fluctuations are small enough, and intensity of social inter-
actions strong enough as compared to the desire to resemble or differentiate
from the other group, or the additional reward possible from simultaneous
participation. Then, a strong desire to conform to the same group could
bring about situations in which the collective state contradicts the sign
of k (additional pair of ferromagnetic solutions with components of the
average magnetisation having different sign). These correspond, however,
to metastable states, and will decay eventually as statistical fluctuations
manage to get the system out of the local minimum.

It is also worth noting that for the non-local case there are metastable
solutions for zero temperature, while this is not the case for the local
model. This fact can also be easily checked analytically. It is actually easy
to understand this distinctive characteristic intuitively as arising from the
nature of the choice interdependence. In the completely deterministic case
of zero temperature, without statistical fluctuations at all, in the individual
interdependence scheme each player will know beyond any doubt how
to align both their choices (in relation to one another, there will still be a
pair of possible solutions). When there is group interdependence instead,
although there is still going to be a collectively more convenient pair (the
absolute minima of the free energy), rational individual players trying to
maximise their payoff still will not be sure on how to best align their own
choices. Hence the existence of metastable states even at extremely low
temperatures.

The k − T cross sections are shown in figure 9.15, again for both the
non-local (a) and the local (b) choice coupling cases, for Js = 1 and Jt =
0.6. Besides the breaking down of any stability in the strong coupling
regime, here the most remarkable difference is the asymptotic behaviour
of the critical curve which is present only in the local model, such that
lim|k|→∞ KbTc = Js + Jt (=1.6 in this case). In the individual interdependence
case, at large enough intensity of this interdependence, the critical social
permeability at which the system goes from a completely ordered to a
completely disordered state remains approximately constant. This means
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Figure 9.14: Jt − β−1 cross-section for the non-local (a) and local (b) models for
Js = 1 and k = 0.3. Own elaboration using numerically computed
solutions to the equations of state. The images have previously
appeared in [71, 74].
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that when this choice coupling k is very strong, small changes in its value
will never bring about a qualitative change in the system. As has already
been discussed multiple times, the non-local model is ill behaved precisely
for large values of k, so the non existence of this asymptotic behaviour of
the critical curve has no practical implications, as in the regions of strong
inter-choice coupling there are no stable states at all (neither ordered or
disordered).

In fact, in the non-local model the degenerate and critical curves intersect
at Js + Jt, so whenever there is group interdependence and KBT > Js + Jt
if there is a stable solution it will be unpolarized. At has been discussed,
the individual interdependence will also be unpolarized for KBT > Js + Jt
due to the asymptotic behaviour of the critical curve. Hence, in both cases,
and as was to be expected, for large enough statistical fluctuations (or
possibly irrational decisions), very large decision couplings will not bring
about choice alignment. Note too that this is the region where, once non
zero constant opinion fields or IWAs are considered, these will completely
determine the alignment and direction of both choices, with no possibility
of metastability, hysteresis or the abrupt changes associated with first order
phase transitions.

Consider now the warriors and sorcerers are deciding in which of two
in-game events to take part (non-local model). Game dynamics are such
that, the more other players of the same group are participating, the more
experience points they can expect to win. There is an additional payoff
(k > 0) or penalisation (k < 0) for each player of the other group they
encounter in the event. Players could also need to decide between two
options for two different accessories (local model), in which matching two
of these could bring the user an additional protection (k > 0), or less
protection than a different combination (k < 0).

For the case of in-game event participation, stable solutions only exist
if the reward/penalisation associated to the fraction of members of the
other group taking part, is smaller than the benefit brought about by
sharing event with their peers (weak coupling regime). In the case of
accessory selection, if the additional protection brought (or prevented by)
the item combination is large enough, further changes in this, or in the
social temperature, will have no impact in the fraction of players selecting
each item (asymptotic behaviour of the critical curve). In both cases, there
is always a large region where, despite choice and/or social interaction,
statistical fluctuations are large enough to prevent the former from having
an impact in the outcome (completely unpolarized or paramagnetic phase).
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Figure 9.15: k− β−1 cross-section for the non-local (a) and local (b) models for
Js = 1 and Jt = 0.6. Own elaboration using numerically computed
solutions to the equations of state. The images have previously
appeared in [71, 74].
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This situation can represent player’s free will, understood as their possibility
to behave against to what seems to be their own interest. It could also
codify fluctuating individual preferences that make some players prone to
decisions different from those suggested by the couplings.

For both the local and non-local model, there is also a region of metastable
states associated to the phase transition in inter-choice coupling (both
ferromagnetic phases present). This means if, for example, game dynamics
were shifting to a situation where sharing events with players of the other
group is going from being rewarded to penalised; or when the combination
of the two accessories is going from being the best objective option to not;
memory of the previous situation could prevent the system from going to
the best collective state immediately.

The Jt − k (for Js = 1) sections are shown at two different temperatures,
for KBT = 1.5 in figure 9.16, and KBT = 0.4 in figure 9.17, as there are
two possible qualitatively markedly different situations. In both figures (a)
corresponds to the non-local model, and (b) to the local one. In both cases
there are mixed segments. In both cases, always for the uncoupled k = 0
case, and for Jt > KBT = 1.5 for high temperature (Js = 1 smaller than
1.5) and Jt < KBT = 0.4 for low temperature (Js = 1 larger than 0.4). In
both figure 9.16 (a) and figure 9.17 (b), the degenerate curve delimits the
parabolic region where stable states exist. For high temperature (figure 9.16),
the critical curve separates the paramagnetic region from that where there
is a pair of ferromagnetic stable solutions that are equally probable, with
relative sign between both components of the average magnetisation vector
determined by the sign of k. As was just discussed for the k− T sections,
here too is there asymptotic behaviour in the local model (lim|k|→∞ Jt =
KbTc − Js, which is 0.4 in this case) which is not present in the non-local
case.

For low enough temperatures, and unlike in the uncoupled case, the
unpolarized state is never a stable state, and there will only be partial
disorder (in one of the choices) in the mixed segment described above.
There is however a region of metastability for low enough |k| and/or high
enough Jt. This corresponds to cases in which, in all of the event and item
choice examples that have been mentioned throughout this section, there is
never the possibility of half of the players opting for each option (except for
only one of the groups or choices and only on the mixed segment). Social
and choice interactions always brings the system to an ordered state in this
case.
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Figure 9.16: Jt − k cross-section for the non-local (a) and local (b) models at
high temperature for Js = 1 and β−1 = 1.5. Own elaboration using
numerically computed solutions to the equations of state. The images
have previously appeared in [71, 74].
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Figure 9.17: Jt − k cross-section for the non-local (a) and local (b) models at
low temperature for Js = 1 and β−1 = 0.4. Own elaboration using
numerically computed solutions to the equations of state. The images
have previously appeared in [71, 74].
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9.5 rational non homogeneous populations

This section considers the individual interdependence scenario or local
model when the IWAs follow a certain distribution among the population.
This is the case of heterogeneous populations (and the general case in
regards to choice making), and corresponds (everything else left the same
in the Hamiltonian of equation 9.28) to two coupled RFIMs. As studying the
system in its full complexity is challenging, the goal here is to draw some
conclusions about the deterministic case, i.e., for zero temperature. This,
as has been discussed, can be considered (depending on the interpretation
given to the uncertainty associated to the social permeability) to represent
completely rational individuals. As compared to what precedes, this section
is concerned with quenched disorder (fixed in time) as opposed to the annealed
disorder (evolving in time) associated to finite temperature of section 9.3.

The intention here is to outline what will happen to the conclusions de-
scribed by Gordon et al. [124] for a single decision (which are summarised
in chapter 2 section 2.10.3), when choice interdependence is introduced. For
this reason, and although it may obscure the comparisons to the homoge-
neous populations case described till now, the same notation, conventions
and terminology that in the aforementioned paper [124] (which was also
introduced in chapter 2 section 2.10.3) will be used. Note that, as mentioned
in 2 section 2.10.3, the socioeconomic interpretation of equilibrium states is
that of Nash equilibria in non-cooperative games.

Let us therefore consider a system made up by N players, in which each
individual i is making two simultaneous choices wi and ui which can take
values 0 or 1 (the latter signifying adoption). Both choices depend on each
other with intensity given by the coupling K. Both are also affected by the
player’s perception of the decisions other users are making with strength
Jij for j ∈ ni and ni the set of players with whom player i interacts, also
referred to as their neighbourhood. The individual preference for the choices
are given by each player’s IWAs Hw

i and Hu
i , which are IID across the

population. A price Pw and Pu for each can be included to facilitate the
analysis when this is applied to purchases (and then Hw

i and Hu
i are in fact

the IWPs, and the IWAs are given by Hw
i − Pw and Hu

i − Pu), and these can
be set to zero to recover the pure (non transaction related) decision case.

In a such a system, users can be understood to make choices that will
maximise their utility, as given by the expression
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Ui =
(

Hw
i − Pw + ∑j∈ni

Jw
ij Ei(wj)

)
wi+

+
(

Hu
i − Pu + ∑j∈ni

Ju
ijEi(uj)

)
ui+

+Kwiui

(9.49)

where Ei(wj) and Ei(uj) represent player i’s belief on how player j is
deciding. This can also be rewritten as

Ui = Sw
i wi + Su

i ui + Kwiui (9.50)

with Sa
i = Ha

i − Pa + Jaµa the individual i’s uncoupled surplus in a, and
µa =

1
N ∑i ai the fraction of adopters in a, with a = {w, u}. Note that as the

deterministic case is under consideration, all randomness is contained in the
IID random variables characterising individual preferences.

Note that, while considering the deterministic case, with no room for
any social permeability, is probably an unrealistic approximation, its study
can help shed light on general features brought about by choice interaction.
In the same way as with the study of completely unbiased populations
(section 9.4), which is also an unrealistic approximation for most cases of
interest, it will provide insights on what the outcome will look like for
situations that are approximately in this regime. It is also a needed first
step before moving to study increasingly complex systems.

What follows will therefore be more relevant the more players can be
considered to be always making completely rational decisions. Decisions
are understood as rational in the sense that they aim at maximising utility,
with utility fully determined by the choice random fields, and the social
and choice couplings. A good approximation could be that of games with
relatively simple dynamics (well defined set of rules on rewards or penalties
to be expected depending on the interactions), and where the players are
really invested in achieving the best outcome possible (if wins in the game
are, for example, associated to rewards in real life).

In the thermodynamic limit N → ∞, the expectation of any choice will be
given by its average in the population (which under the current conventions
is also the fraction of adopters). In equilibrium, these will be given by the
system of fixed point equations:

µw =
P(Sw

i >0)+P(Su
i >0)Φw

i
1−Φw

i Φu
i

µu =
P(Su

i >0)+P(Sw
i >0)Φu

i
1−Φw

i Φu
i

(9.51)

where Φa
i = P(Sa

i + K > 0)−P(Sa
i > 0).
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If Ha is the average IWA in a, and Ha
i −Ha
σa
∼ fa(x) ( fa(x) has zero mean

and variance 1) then

P(Sa
i > 0) = P(Ha

i − Ha > −Sa) = P(ha
i − ha > −sa)

= 1−
∫ ∞

−sa
fa(x)dx (9.52)

and

Φa
i =

P(−ka < sa
i < 0) ∀K > 0

−P(0 < sa
i < −k) ∀K < 0

=

P(−sa − ka < ha
i − ha < −sa) ∀K > 0

−P(−sa < ha
i − ha < −sa − ka) ∀K < 0

=
∫ −sa

−sa−ka
fa(x)dx (9.53)

with Sa the average uncoupled surplus in choice a, and sa
i =

Sa
i

σa
, sa = Sa

σa
,

ka =
K
σa

normalised variables, measuring surpluses and decision coupling
in terms of the relevant scales of the a IWA distribution.

Extracting conclusions about generic properties from equations 9.51, 9.52

and 9.53 is challenging, but particular cases of interest can be studied and
their phase diagrams explored. To illustrate this, the example where one
of the IWAs follows a logistic distribution, and the other a delta one (i.e.,
is constant across the population) will be analysed. Note the case where
both IWAs are delta distributed around zero has actually already been
considered, as it is given by the T = 0 cross section of the local model’s
phase diagram described in 9.4.

As was already briefly discussed in chapter 2 section 2.10.2, the logistic
distribution appears naturally when discussing binary decision problems.
If the difference in random shocks associated to the two different choices is
logistically distributed, the system can be understood as being in statistical
equilibrium at temperature T (inverse of the logistic parameter). In the
deterministic case considered here, this temperature is zero. Logistically dis-
tributed preferences thus correspond to players making decisions according
to a Boltzmann-Gibbs distribution.

In this case, however, the logistic distribution is used to characterise
the quenched (rather than annealed) disorder. This can be a good choice
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for describing smoothly continuously distributed random variables. Its
similarity to a normal distribution, but with fatter tails, makes it appropriate
to describe distributions emerging from some human processes. Examples
of its usage in the literature in economic and demographic contexts can be
found as early as the first half of the 19th century [283, 284]. It is also the
specific example analysed in [124], of which this section intends to be the
extension to two coupled choices.

9.5.1 An example: logistic and delta distributions

Consider for example a role card game, in which players are aware of the
different choices (at least across the population) and scores of the other
players. Imagine players can purchase (be that in real money or in-game
currency) cards. Consider two such items. One of them provides the same
benefit to all players, such as for example an automatic win against any
player. The other provides a different relative advantage depending on the
other cards the user already has. Acquiring both items together additionally
penalises or favours the player. The relative advantage provided by the
second card is distributed logistically amongst the population of players.

If Hw
i follows a logistic distribution across the population of players,

while Hu
i takes the same value for all users, the joint probability distribution

function (PDF) is:

(Hw
i − Hw, Hu

i − Hu) ∼ f (x, y) = σw fw(x) fu(y) (9.54)

where the marginal PDFs are given by

fw(x) = π
4
√

3
1

cosh2
(

πx
2
√

3

)
fu(y) = δ(y)

(9.55)

and the marginal cumulative distribution functions (CDFs) by

Fw(s) = 1
2 + 1

2 tanh
(

πs
2
√

3

)
Fu(t) = Θ(t) =

0 t < 0

1 t ≥ 0

(9.56)

The system of equations of state 9.51 will then take different analytical
forms depending on the values of the average uncoupled surplus in u
and the sign of the choice interdependence. When K > 0, there are three
possibilities:
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1. Large average uncoupled constant surplus Su > 0:

µw = 1
2 + 1

2 tanh
(

π(sw+kw)

2
√

3

)
µu = 1

(9.57)

2. Intermediate average uncoupled constant surplus −K < Su < 0:

µw =
1
2+

1
2 tanh

(
πsw
2
√

3

)
1+ 1

2 tanh
(

πsw
2
√

3

)
− 1

2 tanh
(

π(sw+kw)

2
√

3

)
µu = µw

(9.58)

3. Low average uncoupled constant surplus Su < −K:

µw = 1
2 + 1

2 tanh
(

πsw
2
√

3

)
= µ

(K=0)
w

µu = 0
(9.59)

and when K < 0:

1. Large uncoupled constant surplus Su > −K:

µw = 1
2 + 1

2 tanh
(

π(sw+kw)

2
√

3

)
µu = 1

(9.60)

2. Intermediate uncoupled constant surplus 0 < Su < −K:

µw =
1
2+

1
2 tanh

(
π(sw+kw)

2
√

3

)
1− 1

2 tanh
(

πsw
2
√

3

)
+ 1

2 tanh
(

π(sw+kw)

2
√

3

)
µu =

1
2−

1
2 tanh

(
πsw
2
√

3

)
1− 1

2 tanh
(

πsw
2
√

3

)
+ 1

2 tanh
(

π(sw+kw)

2
√

3

) (9.61)

3. Low uncoupled constant surplus Su < 0:

µw = 1
2 + 1

2 tanh
(

πsw
2
√

3

)
= µ

(K=0)
w

µu = 0
(9.62)

The large and low constant surplus cases correspond to those where
the IWP that is delta distributed (constant across the population) is large
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or small (respectively) as compared to the relative strength of the logis-
tically distributed IWP and the coupling between both choices, and the
intermediate to those in between.

If the card that has identical effect for all players is not worth its price
(at least as compared to other available options), in the case of completely
rational agents under consideration, absolutely no player will purchase it.
This corresponds to the low uncoupled surplus regime. Note that whether it
is worth or not its price depends on the sign and intensity of the inter-choice
coupling: if purchasing both cards together gives additional benefit, players
will be ready to spend more money on acquiring it than if, on the contrary,
users are penalised for the combined purchase. In both cases though, the
choice making on the logistically distributed IWP becomes uncoupled, and
the exact scenario described in [124] recovered.

On the opposite side of the spectrum, if one of the cards provides an
identical but massive playing advantage to all players, the coupled choice
problem will operate in the large uncoupled constant surplus regime, in
which absolutely all players acquire the card with constant IWP across
the population. As was the case for the low uncoupled constant surplus
case, what providing a large enough advantage is depends on the size and
strength of the inter-choice coupling. In this case, the other choice behaves
as it was uncoupled, but with fraction of adopters shifted to larger or
smaller values (depending on whether a net benefit or penasilation comes
from aligning both choices).

In the intermediate uncoupled constant surplus case, due to the inter-
choice coupling, different players will make different choices, even when
they are all behaving rationally and the card would provide identical benefit
to all of them.

The phase diagrams for the different regimes are described below in
some detail. As will be discussed, the are two main takeaways. Remarkably,
demand of the card with logistically distributed value will behave quali-
tatively as in the uncoupled case (with the regions of different behaviour
shifted to different values of the order parameters depending on the specific
configuration). The card with identical value for all players, does qualita-
tively change its demand behaviour for some region of the phase space
(also determined by the specific values and social strengths considered).

On one hand, as was the case for uncoupled choices, the fraction of
adopters for the logistically distributed IWA (the demand for the card
with different relative value for different players in the example of choice),
will have high demand, low demand, or two coexisting Nash equilibria
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corresponding to low and high demand, depending on the exact logistic
distribution, the strength of social influence, the strength of the constant
opinion field (identical value across players provided by the other card), and
the sign of the inter-choice interaction (whether it is beneficial or detrimental
to players to buy them simultaneously). This is qualitatively the case in
both the low uncoupled surplus case (figure 9.18), of the high surplus
one regardless of the sign of k (figures 9.19 and 9.20), and of intermediate
surplus, also regardless of the sign and absolute value of k (figures 9.21,
9.22 and 9.23). The only difference between these cases is the exact region
of the phase diagram where there is prevalence of high and low demand,
or they both coexist.

On the other hand, in regards to the other card, for many regions of the
phase diagrams, the situation resembles that of the uncoupled case, with
either all or no players adopting. However on an another region with extent
depending on its value, social influence strength and inter-coupling, its
demand will be linked to that of the logistically distributed value card, and
hence it will have partial adoption in the population (figure 9.24).

9.5.1.1 Phase diagram hw − pw vs jw section for low uncoupled constant surplus

This region of the parameter space is defined differently depending on the
sign of K such that

Hu − Pu < −Ju − K ∀K > 0

Hu − Pu < −Ju ∀K < 0 (9.63)

Here the equations of state then take the form:µw = 1
2 + 1

2 tanh
(

πsw
2
√

3

)
= µ

(K=0)
w

µu = 0
(9.64)

This means when the constant IWA is low enough, the problem has little
interest in that choice (all players will be deciding against). The choice
associated to the logistically distributed IWA behaves as if there was no
decision interdependence. The hw − pw vs jw section of the phase diagram
is shown in figure 9.18

2. Regions where there will be a high demand in w
(µw > 0.5) are coloured dark green, and those with low adoption (µw < 0.5)

2 Note the similarity to figure 4 in [124], which illustrated the single choice phase diagram
section.
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Figure 9.18: Phase diagram hw − pw vs jw section for low uncoupled constant
surplus Su. Dark green is used for the region where µw > 0.5 (high
demand), and dark yellow for those where µw < 0.5 (low demand),
with the segment dividing both where it is exactly 0.5 plotted as a
dashed-dotted line. The blue region corresponds to a region where
two possible solutions exist, one of each. A phase transition between
both regimes takes place at the dashed lines δwU and δwL . For all
regions µu = 0. Own elaboration.

dark yellow. Blue corresponds to a different phase, where there are two
Nash equilibria, one corresponding to high and one to low adoption.

9.5.1.2 Phase diagram hw− pw vs jw section for large uncoupled constant surplus

This region is defined by the inequalities

Hu − Pu > −Ju ∀K > 0

Hu − Pu > −Ju − K ∀K < 0 (9.65)

and the system of equations of state can be here expressed as
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µw = 1
2 + 1

2 tanh
(

π(sw+kw)

2
√

3

)
µu = 1

(9.66)

This is in many ways qualitatively similar to the situation described
above for the low uncoupled constant surplus. Namely, both fractions of
adopters become for the most part uncoupled. The choice associated to
the logistically distributed IWA does not depend on the other decision,
but its expression does contain the strength of the coupling K. The choice
associated to the constant opinion field is, as in the low uncoupled constant
surplus case, the same for all players, in favour in this case. The situation is
depicted in figures 9.19 (positive choice interdependence) and 9.20 (negative
one), which show the hw − pw vs jw section of the phase diagram in this
case. It is very similar to the low uncoupled constant surplus case, with a
shift in the hw − pw axis. For K > 0, adoption will be higher for the same
values of the average opinion field, and lower for K < 0.

9.5.1.3 Phase diagram hw− pw vs jw section for intermediate uncoupled constant
surplus

This is the only region of the parameter space where both average choices
remain, in fact, completely coupled. The system will be in this regime
whenever

−K− Ju < Hu − Pu < −Ju ∀K > 0

−Ju < Hu − Pu < −Ju − K ∀K < 0 (9.67)

In this case, the equations of state also depend on the sign of the choice
interrelation, such that for K > 0:

µw =
1
2+

1
2 tanh

(
πsw
2
√

3

)
1+ 1

2 tanh
(

πsw
2
√

3

)
− 1

2 tanh
(

π(sw+kw)

2
√

3

)
µu = µw

(9.68)

and for K < 0: 
µw =

1
2+

1
2 tanh

(
π(sw+kw)

2
√

3

)
1− 1

2 tanh
(

πsw
2
√

3

)
+ 1

2 tanh
(

π(sw+kw)

2
√

3

)
µu =

1
2−

1
2 tanh

(
πsw
2
√

3

)
1− 1

2 tanh
(

πsw
2
√

3

)
+ 1

2 tanh
(

π(sw+kw)

2
√

3

) (9.69)
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Figure 9.19: Phase diagram hw − pw vs jw section for high uncoupled constant
surplus Su for positive interdependence K = 0.5. Dark green is used
for the region where µw > 0.5 (high demand), and dark yellow for
those where µw < 0.5 (low demand), with the segment dividing
both where it is exactly 0.5 plotted as a dashed-dotted line. The
blue region corresponds to a region where two possible solutions
exist, one of each. A phase transition between both regimes takes
place at the dashed lines δwU and δwL . For all regions µu = 1. Own
elaboration.
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Figure 9.20: Phase diagram hw − pw vs jw section for high uncoupled constant
surplus Su for negative interdependence K = −0.5. Dark green is
used for the region where µw > 0.5 (high demand), and dark yellow
for those where µw < 0.5 (low demand), with the segment dividing
both where it is exactly 0.5 plotted as a dashed-dotted line. The
blue region corresponds to a region where two possible solutions
exist, one of each. A phase transition between both regimes takes
place at the dashed lines δwU and δwL . For all regions µu = 1. Own
elaboration.
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Note in both cases the expression on the average choice w (with a logistic
distribution of the opinion field) has a more complex expression than the
uncoupled case, while the average choice u (with constant opinion field)
completely depends on the uncoupled surplus on the other decision. In
particular, for positive interdependence both average choices are always the
same.

Using numerically computed solutions (using the Newton-Raphson al-
gorithm) to 9.68, the phase diagram section of figure 9.21 can be plotted.
Analogously, for negative inter-coupling and system of equations of state
9.69 one arrives at figure 9.22. Both show that in fact, the behaviour is still
qualitatively very similar to the uncoupled case, with regions of interest
now shifted, not only on the hw − pw axis but also on the jw one. This is
further explored in figure 9.23, which compares the region where multiple
solutions exist for different values of the interdependence coupling K.

9.5.1.4 Phase diagram hu − pu vs ju section

Considering what has been discussed about the average choice with con-
stant opinion field in the previous subsections, its behaviour in the phase
diagram’s hu − pu vs ju section is summarised in figure 9.24 for positive
K. The low uncoupled constant surplus region is plotted in dark yellow,
where all players decide for ui = 0. In the large uncoupled constant surplus
region, plotted in dark green, all players decide for ui = 1. In between,
for the intermediate case (plotted in white), the fraction of adopters µu is
identical to that in the other choice.

The behaviour for negative K is very similar but shifted in the Hu − Pu
axis, and with µu in the intermediate uncoupled constant surplus region
not identical to µw, although still completely determined by the dynamics
in that decision. Regardless of the sign of K, for negative average IWA, there
can be full demand, no demand, or something in between, depending on
the value of the social coupling Ju. For positive choice interdependence,
there will always be full demand (for all values of social pressure). For
negative one, the fraction of adopters is always greater than zero, but there
is only full adoption for large enough values of the social coupling.

9.6 summary and conclusions

The object of this chapter was markedly different from the rest of the thesis.
It is still an attempt to formalise and systematise what can be learned
about human behaviour as is expressed in a video game. While most of the
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Figure 9.21: Numerically computed phase diagram hw − pw vs jw section for
intermediate uncoupled constant surplus Su and positive interde-
pendence K = 2.5. Dark green asps (x) are used to represent µw > 0.5
(high demand), and dark yellow stars (*) for µw < 0.5 (low demand),
and blue crosses (+) to two solutions, one of each. For all regions
µu = µw. Own elaboration.



9.6 summary and conclusions 259

-4

-3

-2

-1

 0

 1

 0  2  4  6  8

h w
-p

w

jw

K=-2.5, hw-pw vs jw, intermediate Su

high and low demand
high demand
low demand

Figure 9.22: Numerically computed phase diagram hw − pw vs jw section for
intermediate uncoupled constant surplus Su and negative interde-
pendence K = −2.5. Dark green asps (x) are used to represent
µw > 0.5 (high demand), and dark yellow stars (*) for µw < 0.5
(low demand), and blue crosses (+) to two solutions, one of each.
Behaviour of µu is not contemplated in this plot. Own elaboration.
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Figure 9.23: Phase diagram hw − pw vs jw section: multiple solution region for
different values of K for intermediate uncoupled constant surplus.
Own elaboration.
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Figure 9.24: Phase diagram Hu − Pu vs Ju section for positive interdependence
K = 2.5. Dark green is used for the region where µu = 1 (full
demand, corresponding to large uncoupled constant surplus), and
dark yellow for those where µu = 0 (no demand, corresponding to
low uncoupled constant surplus). The white region corresponds to
the intermediate uncoupled constant surplus region, where µu = µw.
Behaviour of µw is not contemplated in this plot. Own elaboration.
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models described before were applied with the goal in mind of quantifying
and predicting behaviours, in this case the focus was on understanding qual-
itatively how certain apparently complex collective behaviours can emerge
due to the social nature of human systems. This can help explain the global
outcome of a concrete decision process, up to discussing the level of success
of a video game, in terms of the strength of social interactions, statistical
fluctuations, and on how the game dynamics make different player choices
depend on each other.

In particular, social games where players make choices which are affected
by what they see other players are deciding, have been considered. It has
been shown how the interaction between different choices further enriches
the picture described for single decisions in chapter 2 section 2.10. The
analysis was carried out using two coupled mean field Ising models. When
the two choice variables are coupled through infinite range interactions,
the model mimics two groups of players (with specific in-group social
pressures to conform) whose decision is also impacted by the average
choice of the other group. If the choice coupling is done through every
individual, then the model resembles a single group of players in which
each of them has to decide themselves on two different matters that affect
each other. As has been described throughout the chapter, this methodology
can be applied to understand the features arising from player interactions
in what concerns, from broad groups and generic choices that can help to
qualitatively understand churn and purchase dynamics, to very specific
ones concerning particular groups and/or reactions to content.

Note that while the methodology used is valid for systems in statistical
equilibrium, the equilibria described are not static. The individuals will still
typically be changing their minds about one or both of the choices, and what
becomes fixed are order parameters which reflect the collective outcome, in
terms of the average decisions and thus fractions of adopters. Even though
in many cases it is to be expected that the choice making processes in
video games will be evolving out of equilibrium, in many others, statistical
equilibrium -or slow evolution from a state of dynamic equilibrium to a
different one- will be a good approximation. The conclusions drawn in this
chapter can be then used to hypothesise about the origin of differences in
the average outcomes of different similar games, or of the same game at
different moments in time.

A detailed analysis, both analytical and numerical, was carried out for
homogeneous unbiased populations, i.e., for cases in which the players
have no particular inherent preference guiding their choice making, and
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their perception of what is their best interest depends solely on the rewards
(abstract or concrete) provided through social imitation and choice inter-
action. This can be the case for some decisions that can be understood to
be governed by trends. For example, if players have to pick between two
items of the same characteristics, or on taking part in one of two similar
events, the problem could very well be approximated with zero opinion
fields. When considering the critical choice of playing or not, if the focus
is in players that are very kin in that particular type of game (e.g. puzzle
games), it might be a good way of approximating the problem of how they
pick between two competing ones. In any case, the study of homogeneous
unbiased populations would be the starting point for more complex IWA
distributions. Studying the zero field case is enough to know in which re-
gions of the parameter space the social interactions will play a determinant
role in the collective outcome once the fields are turned on.

Let us examine, in order to illustrate the discussion, two particular exam-
ples. One, that will portray the use of the non-local model, will be that of
players of low and high level taking part (or not) in a particular event in the
game (instead of another of the same type), in which they can combat other
players to gain experience points. For the non local case, the example consid-
ered is that of users at a certain stage of the game which need to pick among
two swords, and two shields. In this last example, if one of the swords and
one of the shields are somehow matching, choice interdependence would
be favouring to either pick both or none (positive choice interdependence).
In the event case, it depends on how the game is designed. It is assumed
players will always imitate to some extent users of similar skills, as this
would provide opportunities for well balanced combats. If, when there is a
significant level mismatch, the inexperienced player still has some chance of
winning, and/or if they can learn new skills or earn a significant amount of
experience points even when loosing against more advanced players, users
will also be attracted by events where there are players of the other group
(positive choice interdependence). If the level largely determines combat
success, and rewards for losing, or for winning a much less experienced
player, are negligible, players will actually avoid events where a large part of
their possible opponents don’t have approximately matching level (negative
interdependence).

Qualitatively, and even quantitatively, both the group and the individual
interdependence scenarios generate similar outcomes. As compared to
what would happen in the case of unbiased populations if the two choice
variables were uncoupled, the interactions will have a significant impact in
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the average choice for larger statistical fluctuations (or social temperature)
and/or smaller strength of the social pressure or player desire to imitate
their peers.

For choice interdependence large enough (in absolute value), the relative
alignment between both choices is always that suggested by the variable
interrelation. This means, either a majority of players pick both matching
items, or none of them, in the individual interdependence example. In the
event participation case, a majority of both experienced or inexperienced
players will take part, or not, when the interrelation is positive. When it
is negative, it will attract a majority of high level players but a minority
of low level ones, or the other way round. This of course, unless statistical
fluctuations are large enough, or couplings within the same choice low
enough, that there is disorder in both decisions. In that case, all players are
basically deciding randomly, so half of them end up deciding in favour and
half of them against. In regions close to the transition values, small changes
in the strength of the social pressure or the choice interdependence could
bring about quick and drastic changes in the collective outcome.

When the inter-choice coupling becomes very large however, no stable
equilibrium is arrived at for the non-local model. In the example, if players
are basing their choice on which event to take part in, more on their
perception of what players of a very different level, rather than a similar
one, are doing, there are no optimal average values that will maximise
global player satisfaction. This could be easily prevented by making sure
that the expected incentives to fight an equivalently experienced player
are, in average, larger than the possible mean benefits or hindrances of a
mismatched encounter.

While this is not the case for the local model, and there is always a state
of equilibrium, once the interdependence is strong enough, increasing it
more will never bring about a qualitative change (phase transition) in the
state of the system. Considering the matching sword and shield example,
once this matching is obvious enough to enough players, most of them will
only pick them together if at all. Making them even more alike will not
change the situation (if social permeability and the drive to imitate their
peers don’t change very much).

Phenomenologically speaking, probably the most interesting case is that
of small relative choice interdependence. In this region, small changes in
the strength of this coupling can make the system transition from order to
disorder. There can also be additional unstable equilibria where the relative
alignment of both choice variables is not the one dictated by their interrela-
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tion. Considering the game event example, this means that, particularly if
game dynamics are changing and, for example, rewards associated to mis-
matched combats becoming penalisation’s (on average), the system could
get stuck in a metastable state where the majority of both inexperienced
and experienced players are picking the same event (against their collective
and individual best interest). With time (or larger fluctuations) however, the
system will eventually decay to real equilibrium, in which most of the users
of each group will pick different events. In regards to the item example,
when the matching or alikeness of both objects is not obvious, rapid drastic
changes should be expected when modifying this item affinity. There could
even be situations where a majority of players are picking the specific sword
but not its matching shield.

The individual interdependence scenario was also investigated for hetero-
geneous populations in the deterministic case. In particular, the case where
one of the opinion fields is constant, and the other follows a logistic distri-
bution has been studied in some detail. Let us consider how it would apply
to the previous combined item example, where each player at a certain
stage in the game needs to pick between two swords and two shields, when
one of the shields is aesthetically matching one of the swords. Imagine one
of the swords is objectively better than the other in the same way for all
players (it inflicts more damage upon a successful blow, for example). We
can then consider the IWA for picking sword of interest constant, negative
if it is worse than the other, positive otherwise. If the problem under study
is formulated in terms of picking the sword of interest and the matching
shield, the interdependence between both choices is positive. Instead of
constant and zero, as in the case of homogeneous unbiased populations dis-
cussed above, the IWA in the matching shield is now logistically distributed.
This could be the case, for example, in games where a lot of stress is put on
the looks of the character. If both shield form which players can choose are
objectively the same in regards to the protection offered, the distribution
of IWA relates to the user’s taste, and how aesthetically pleasing they find
that particular shield.

The first remarkable observation is that there is always going to be a
range of values for the social imitation strength concerning shields, and the
average preference in the group, where there is going to be two possible
and equally likely equilibria, one in which a majority of players are picking
the shield of interest, and one in which they are not. The value of constant
field, will determine what happens to the sword choice, but also where the
region of high and low shield adoption, and of both being simultaneously
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possible, lie in terms of the strength of the propensity to imitate the shields
the others are picking, and the average of the preference for the shield of
interest in the group.

If the sword of interest is much worse objectively than its counterpart,
nobody will choose it. Players will stick pick the matching shield however,
whenever the average associated IWA is positive, and even for negative
values if the social imitation strength associated to the shield choice is
strong enough. In fact, shield picking behaves in this case exactly as it
would do if both choices were uncoupled, indicating the matching looks of
both items plays absolutely no role whenever the sword is bad enough.

On the other hand, if the sword of interest is better than the other option,
all players will pick it. This favours too the matching shield election. Its
adoption will be higher than in the uncoupled case for the same value of
the parameters, and the high demand region is shifted to lower values of
average preference. Even with no social pressure to conform, and with a
negative average IWA, more than half of the players will pick the matching
shield.

The most interesting case is when the sword is worse, but by very little.
In this region, the dynamics in sword selection become completely coupled
to the shield choice, and the fraction of adopters will be the same in both
items. The high adoption region is in this cases shifted to lower values
of average shield IWA and propensity to imitate other’s shield, and the
more so the higher the value of the sword-shield interdependence. In a
way, the existence of a matching shield compensates for the penalisation of
choosing the worse sword, whenever the difference with the better one is
small enough.

Note that while the discussion has been made comparing the convenience
of both swords (or rather of picking the item of interest or not), this is always
going to be measured in terms of the intra- and inter- coupling. It is however
the difference between the relative usefulness of both swords what has been
considered to determine the value of the constant IWA.

To sum up, this chapter has shown that the use of some models of
condensed matter to understand the average outcomes in social games -in
particular to study interdependent choice making- is promising. It provides
tools to formally understand the impact the interaction between players
(and decisions) has, to compare different games or moments in time of
the same game depending on the strength of the interactions and how
individual player preferences are distributed, and to identify situations
were rapid abrupt changes in the collective behaviour are likely.
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C O N C L U S I O N S

Rien dans la vie n’est à craindre, tout doit être compris.
C’est maintenant le moment de comprendre davantage,
afin de craindre moins.

— Marie Curie

This thesis has shown that statistical and mathematical models can be
successfully used to understand game dynamics and individual player
behaviour, both in a quantitative data-driven fashion, and also from a more
formal theoretical perspective to gain insights on the processes at play,
particularly social ones.

Although other problems -such as LTV predictions (chapter 6 section
6.5) or content preference prediction (chapter 8) on the data-driven side, or
interaction between different events, items or player groups in the quanti-
tative approach (chapter 9)- have been considered, most of the content of
this thesis revolves around understanding and predicting the level of login
and purchasing activity of players. The evolution of these will determine
the degree of success of any free2play game.

Quantitatively speaking, these have been studied through the modelling
of conversion (non-PUs becoming PUs), churn (active players becoming
inactive) and purchase churn (PUs becoming non-PUs). This work has
shown that these quantities can be studied at different levels of aggregation
in the game, ranging from how they behave when considering all players of
the game, going down to looking at what is going on for individual users.

Hopefully, this thesis has persuaded the reader that it is useful to look
at this problem at different scales. Not only do the results complement
each other to give a well rounded outlook of the issue. Models at different
aggregation levels can actually be used to enhance and enrich each other,
as has already been pointed out and will be discussed in some detail below.

The proposed approach is summarised in figure 10.1. At the macroscale
or game level, i.e., considering all players, conversion and churn can be
studied from a time series perspective. In particular (as discussed in chapter
4), classical SSM approaches can be a useful tool to predict the evolution
of these, and to quantify the impact of internal and external events on the
them. Laying at the other side of the spectrum, it can be checked whether
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individual players are still active or not, and whether they are purchasing
or not, and models built to predict what will happen in the future, in what
can be referred to as the microscale or player level. A lot of results have
been presented and discussed concerning the use of survival models to this
effect (in chapters 5 and 6), showing they can be used to produce accurate
predictions on after how many days since first login, accumulated playtime,
and at which level, each player will undergo conversion, purchase churn
and churn.

Figure 10.1: Schematic representation on how conversion and churn can (and
should) be studied at different scales in the game.

In between these scales, player profiling comes in, as one can look at the
problem in layers of increasingly complex segmentation landscapes, in the
so called mesoscales. Closer to the game level, the same SSM approaches
can be used (as discussed in chapter 4). This is particularly useful when
trying to understand game dynamics, and how different types of players are
affected differently by different in-game planning strategies. These are the
scales video game studios should be concerned with when trying to answer
questions regarding which in-game events to run and when, or what type
of marketing and promotion campaigns are more effective. Closer to the
microscale, ML models can be run for small cohorts of users, using similar
approaches as those discussed at the player level. These are the critical
scales when the aim is to develop personalised games in which players can
be targeted individually, with content tailored to their specific likes.

Figure 10.2 summaries how, not only do the different scales provide
complementary insights depending on the specific goal, they can actually
be reconciled and used to enhance each other.

In a top-down approach, when moving from the macroscale to less aggre-
gated levels, it has already been discussed that the same methodologies can
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Figure 10.2: Schematic representation on how the study of conversion and churn
at one scale can be used to complement and enrich the others.

be used for increasingly diverse groupings of players. The need of human
expertise and time needed to model these is however quite extensive. In
addition to this, the rates, predictions and estimated effects from scales
close to the macro, can actually be useful at the player level, by using them
to build additional features for the microscale models. For example, when
studying non-PU to PU conversion, the time series of past and predicted
conversion rate could be used to build features that would already incor-
porate calendar, campaigns and in-game event effects. Additional features
characterising the individual player could then be understood to correct the
average group behaviour particularising the prediction for each user. The
first tests ran in this sense were promising.

When considering how the individual predictions can be used in a
bottom-up approach, two possibilities emerge. One can try to generate pre-
dictions moving up the mesoscales by aggregating individual predictions,
building a hierarchical model that yields consistent results at all levels.
Another interesting approach has already been hinted in the thesis (chapter
7), and consists in using the predictions to generate meaningful player
segmentations on which to apply the macro-type models. Their predictions
can then be used to enrich the individual player models, closing the circle.
Note that, while in this thesis the method was only outlined, giving some
basic examples using churn predictions, these could be combined with con-
version and purchase churn predictions, allowing for an extremely fertile
player characterisation.

Besides the use of data driven techniques, the last part of this thesis has
illustrated how models coming from statistical mechanics can be used to
qualitatively understand how the social nature of some games can affect the
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average outcome of player decisions, ranging from the very generic about
how often to play or purchase, to very specific ones regarding which events,
actions, items. . . to pick. In particular, the interaction between different
choices or groups has been studied in detail for some particular cases.

The main takeaways here follow the same lines as the single choice/group
case, that had already been studied in the literature in social science con-
texts. Namely, that the propensity to imitate others or social pressure, can
impact the collective outcome both quantitatively and qualitatively, induc-
ing sometimes part of the population to decide against their best interest.
The equivalent to phase transitions can take place, meaning the system
can change drastic and quickly with the onset/ending of significant social
or choice interactions. They can also account for the existence of multiple
equilibria for some regions of the parameter space. This multiplicity of
possible states of the system, is often related to metastable states associated
to first order phase transitions (in the opinion fields or the choice coupling).
This means that, although some of the sudden shifts in the average state
that have been described, will be reverted if the changes in the parameters
are undone (when they are associated to second order or continuous phase
transitions), in the cases were the system leaves a metastable state, the
change will be irreversible (hysteresis).

This thesis has been an attempt to use video games as a play field to
take steps towards a more scientific body of knowledge concerning human
behaviour. The quantitative data driven models play the role of empirical
laws, defined ad hoc to fit the data. The purely theoretical formal approach
is of assistance to conceptually understand the mechanisms that give rise
to some of the collective properties observed. It would be desirable, on the
one hand, to make the empirical laws richer, capturing the dependence
with all relevant variables, thus becoming more explanatory and precise.
On the other hand, to move to complex enough formal theories, that would
be able to go beyond their toy model character, and make quantitative
predictions that can be compared to observations. The end goal would be
to bridge the difference between both, providing a sound quantitative and
qualitative understanding of the main processes at play, and their associated
uncertainties.
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10.1 summary of main contributions

This section provides an schematic summary of the main original contri-
butions of this thesis. The reader is referred to the list of publications 6 for
details on where and when the content was published.

10.1.1 As first author

1. (Chapter 4) A framework in which state space models are used to
understand and predict the evolution of churn, purchase churn and
conversion in a game, and in which the impact of game planning and
the effect of external events can be assessed.

2. (Chapter 7) The use of predictions for individual players of expected
lifetime, playtime, in-game progression and outlay to understand
game dynamics and to assist meaningful player profiling.

3. (Chapter 9) Study of collective outcomes of interdependent decision
making processes in social video games using statistical physics.

10.1.2 As second or third author

1. (Chapter 6, section 6.1) Framework to predict PU potential and days,
playtime and level to conversion using survival models.

2. (Chapter 5, section 5.3 & Chapter 6, section 6.4) Analysis of the impact
of different churner and purchase churner profiles in the performance
of binary classification and survival models for churn and purchase
churn prediction.

3. (Chapter 6, section 6.5) Use of multilayer perceptron and convolutional
neural networks to predict player lifetime value.

10.1.3 Unpublished work to which the author contributed

1. (Chapter 8) An item recommendation system for video games with
large dimensional item spaces, using a combination of clustering
methods, extremely randomised ensembles and collaborative filtering.
The methodology is described but no concrete results presented, as
the datasets used to carry out its development are not available for
publication.
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2. (Chapter 9 section 9.5) The case of collective outcomes of interde-
pendent decision making processes with heterogeneous inclinations
in social video games has not been previously published, but was
presented in two conferences.
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Here the reader can find additional plots illsutrating how the magneti-
zations at the critical points of the free energy vary for different values
of the parameters. The are intended to further clarify the behavior of the
systems (for the non-local and local models with homogeneous unbiased
populations) and the phase diagrams described in chapter 9 section 9.4.

a.1 non-local model

The follwoing plots give additional information about the numerical analy-
sis for the non-local or group interdependenc model describedn in chapter
9 section 9.2.3.

a.1.1 Dependence on temperature

Figure A.1 illustrates how the dependence on the temperature varies when
leaving the intra-couplings constant (Js = 1 and Jt = 0.6) and varying the
inter coupling k, while in figure A.2 k = ±0.3 together with Js = 1 and Jt is
allowed to vary in the different plots.

a.1.2 Dependence on inter-coupling

Figure A.3 shows different plots of the magnetization vs k as the tem-
perature is lowered for Js = 1 and Jt = 0.6. In figures A.4 and A.5 the
temperature is kept constant (at KBT = 1.5 and KBT = 0.4 respectively) for
different values of Jt (and Js = 1 for all plots).

a.1.3 Dependence on intra-couplings

Figure A.6 shows different plots of the magnetization vs Jt as the tem-
perature is lowered for Js = 1 and k = ±0.3. In figures A.7 and A.8 the
temperature is kept constant (at KBT = 1.5 and KBT = 0.4 respectively)
and the graphs for different values of k (and Js = 1 for all plots) plotted.
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Figure A.1: Dependence on temperature of the numerically calculated average
magnetization’s (s, t) for different values of the inter-coupling k for
the non-local model. Js = 1 and Jt = 0.6 for all plots. (a) k = 0.05, (b)
k = 0.1, (c) k = 0.2, (d) k = 0.5, (e) k = 0.6, (f) k = 0.75, (g) k = 0.8,
(h) k = 0.9 and (i) k = 1. In all cases, different solutions are plotted
for temperatures between 0.01 and 2 every 0.05 (KBT). Magnetization
are plotted in green for s and blue for t. Dark points are used for
stable solutions and lighter asp (×, for saddle points) or cross (+, for
maxima) for non stable solutions. Own elaboration using numerically
computed solutions to the equations of state. The image had already
appeared in [71].
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Figure A.2: Dependence on temperature of the numerically calculated average
magnetization (s, t) for different values of the inter-coupling Jt for
the non-local model. Js = 1 and k = ±0.3 for all plots. (a) Jt = 0.05,
(b) Jt = 0.1, (c) Jt = 0.2, (d) Jt = 0.5, (e) Jt = 0.6, (f) Jt = 0.8, (g)
Jt = 0.9, (h) Jt = 1.2 and (i) Jt = 1.5. In all cases, different solutions
are plotted for temperatures between 0.01 and 2 every 0.05 (KBT).
Magnetization are plotted in green for s and blue for t. Dark points
are used for stable solutions and lighter asp (×, for saddle points)
or cross (+, for maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equations of state. The
image had already appeared in [71].
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Figure A.3: Dependence on inter-coupling of the numerically calculated average
magnetization (s, t) for different values of the temperature for the
non-local model. Js = 1 and Jt = 0.6 for all plots. (a) KBT = 1.81,
(b) KBT = 1.41, (c) KBT = 1.11, (d) KBT = 0.81, (e) KBT = 0.51, (f)
KBT = 0.46, (g) KBT = 0.41, (h) KBT = 0.31 and (i) KBT = 0.11. In
all cases, different solutions are plotted for k between -1.2 and 1.2
every 0.05 (KBT). Magnetization are plotted in green for s and blue
for t. Dark points are used for stable solutions and lighter asp (×, for
saddle points) or cross (+, for maxima) for non stable solutions. Own
elaboration using numerically computed solutions to the equations
of state. The image had already appeared in [71].
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Figure A.4: Dependence on inter-coupling of the numerically calculated average
magnetization (s, t) for different values of Jt at high temperature for
the non-local model. Js = 1 and KBT = 1.5 for all plots. (a) Jt = 0.05,
(b) Jt = 0.2, (c) Jt = 0.5, (d) Jt = 0.7, (e) Jt = 0.9, (f) Jt = 1.4, (g)
Jt = 1.6, (h) Jt = 2 and (i) Jt = 3. In all cases, different solutions are
plotted for k between -1.5 and 1.5 every 0.05 (KBT). Magnetization
are plotted in green for s and blue for t. Dark points are used for
stable solutions and lighter asp (×, for saddle points) or cross (+, for
maxima) for non stable solutions. Own elaboration using numerically
computed solutions to the equations of state. The image had already
appeared in [71].
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Figure A.5: Dependence on inter-coupling of the numerically calculated average
magnetization (s, t) for different values of the Jt at low temperature
for the non-local model. Js = 1 and KBT = 0.4 for all plots. (a)
Jt = 0.05, (b) Jt = 0.2, (c) Jt = 0.3, (d) Jt = 0.5, (e) Jt = 0.7, (f)
Jt = 0.9, (g) Jt = 1.1, (h) Jt = 2 and (i) Jt = 3. In all cases, different
solutions are plotted for k between -1.5 and 1.5 every 0.05 (KBT).
Magnetization are plotted in green for s and blue for t. Dark points
are used for stable solutions and lighter asp (×, for saddle points)
or cross (+, for maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equations of state. The
image had already appeared in [71].
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Figure A.6: Dependence on intra-coupling Jt of the numerically calculated av-
erage magnetization (s, t) for different values of the temperature
KBT for the non-local model. Js = 1 and k = ±0.3 for all plots.
(a) KBT = 1.51, (b) KBT = 1.11, (c) KBT = 1.06, (d) KBT = 0.91,
(e) KBT = 0.71, (f) KBT = 0.51, (g) KBT = 0.31, (h) KBT = 0.21
and (i) KBT = 0.01. In all cases, different solutions are plotted for
intra-coupling Jt between 0.01 and 1.8 every 0.05. Magnetization are
plotted in green for s and blue for t. Dark points are used for stable
solutions and lighter asp (×, for saddle points) or cross (+, for max-
ima) for non stable solutions. Own elaboration using numerically
computed solutions to the equations of state. The image had already
appeared in [71].
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Figure A.7: Dependence on intra-coupling Jt of the numerically calculated aver-
age magnetization (s, t) for different values of the inter-coupling k
at high temperatures for the non-local model. Js = 1 and KBT = 1.5
for all plots. (a) k = 0.05, (b) k = 0.1, (c) k = 0.2, (d) k = 0.3, (e)
k = 0.4, (f) k = 0.6, (g) k = 0.8, (h) k = 1 and (i) k = 1.2. In all cases,
different solutions are plotted for intra-coupling Jt between 0.01 and
3 every 0.05. Magnetization are plotted in green for s and blue for
t. Dark points are used for stable solutions and lighter asp (×, for
saddle points) or cross (+, for maxima) for non stable solutions. Own
elaboration using numerically computed solutions to the equations
of state. The image had already appeared in [71].
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Figure A.8: Dependence on intra-coupling Jt of the numerically calculated aver-
age magnetization (s, t) for different values of the inter-coupling k
at low temperatures for the non-local model. Js = 1 and KBT = 0.4
for all plots. (a) k = 0.05, (b) k = 0.1, (c) k = 0.2, (d) k = 0.3, (e)
k = 0.4, (f) k = 0.6, (g) k = 0.8, (h) k = 1 and (i) k = 1.2. In all cases,
different solutions are plotted for intra-coupling Jt between 0.01 and
3 every 0.05. Magnetization are plotted in green for s and blue for
t. Dark points are used for stable solutions and lighter asp (×, for
saddle points) or cross (+, for maxima) for non stable solutions. Own
elaboration using numerically computed solutions to the equations
of state. The image had already appeared in [71].
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a.2 local model

The follwoing plots give additional information about the numerical analy-
sis for the local or individual interdependence model described in chapter
9 section 9.3.3.

a.2.1 Dependence on temperature

Figure A.9 illustrates how the dependence on the temperature varies when
leaving the intra-couplings constant (Js = 1 and Jt = 0.6) and varying the
inter coupling k, while in figure A.10 k = ±0.3 together with Js = 1 and Jt
is allowed to vary in the different plots.

a.2.2 Dependence on inter-coupling

Figure A.11 shows different plots of the magnetization vs k as the tem-
perature is lowered for Js = 1 and Jt = 0.6. In figures A.12 and A.13 the
temperature is kept constant (at KBT = 1.5 and KBT = 0.4 respectively) for
different values of Jt (and Js = 1 for all plots).

a.2.3 Dependence on intra-couplings

Figure A.14 shows different plots of the magnetization vs Jt as the tem-
perature is lowered for Js = 1 and k = ±0.3. In figures A.15 and A.16 the
temperature is kept constant (at KBT = 1.5 and KBT = 0.4 respectively)
and the graphs for different values of k (and Js = 1 for all plots) plotted.
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Figure A.9: Dependence on temperature of the numerically calculated average
magnetisations (s, t) for different values of the inter-coupling k for
the local model. Js = 1 and Jt = 0.6 for all plots. (a) k = ±0.05, (b)
k = ±0.1, (c) k = ±0.15, (d) k = ±0.3, (e) k = ±0.35, (f) k = ±0.45,
(g) k = ±0.55, (h) k = ±0.8 and (i) k = ±1.9. In all cases, different
solutions are plotted for temperatures between 0.01 and 1.8 every
0.02 (KBT). Magnetisations are plotted in green for s and blue for
t. Dark points are used for stable solutions and lighter asp (×, for
saddle points) or cross (+, for maxima) for non stable solutions. Own
elaboration using numerically computed solutions to the equations
of state. The image had already appeared in [71].
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Figure A.10: Dependence on temperature of the numerically calculated average
magnetisations (s, t) for different values of the intra-coupling Jt
for the local model. Js = 1 and k = 0.15 for all plots. (a) Jt = 0.05,
(b) Jt = 0.2, (c) Jt = 0.25, (d) Jt = 0.5, (e) Jt = 0.7, (f) Jt = 1.1, (g)
Jt = 2, (h) Jt = 2.5 and (i) Jt = 3.5. In all cases, different solutions
are plotted for temperatures between 0.01 and 4 every 0.05 (KBT).
Magnetisations are plotted in green for s and blue for t. Dark points
are used for stable solutions and lighter asp (×, for saddle points)
or cross (+, for maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equations of state. The
image had already appeared in [71].
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Figure A.11: Dependence on inter-coupling k of the numerically calculated aver-
age magnetisations (s, t) for different values of the temperature KBT
for the local model. Js = 1 and k = 0.15 for all plots. (a) KBT = 1.61,
(b) KBT = 1.21, (c) KBT = 1.01, (d) KBT = 0.71, (e) KBT = 0.61, (f)
KBT = 0.55, (g) KBT = 0.15, (h) KBT = 0.11 and (i) KBT = 0.05. In
all cases, different solutions are plotted for inter-coupling between
-1.5 and 1.5 every 0.05 (KBT). Magnetisations are plotted in green for
s and blue for t. Dark points are used for stable solutions and lighter
asp (×, for saddle points) or cross (+, for maxima) for non stable
solutions. Own elaboration using numerically computed solutions
to the equations of state. The image had already appeared in [71].
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Figure A.12: Dependence on inter-coupling k of the numerically calculated aver-
age magnetisations (s, t) for different values of the intra-coupling
Jt at high temperatures for the local model. Js = 1 and KBT = 1.5
for all plots. (a) Jt = 0.05, (b) Jt = 0.5, (c) Jt = 0.8, (d) Jt = 1.2, (e)
Jt = 1.4, (f) Jt = 1.5, (g) Jt = 1.7, (h) Jt = 2 and (i) Jt = 2.5. In all
cases, different solutions are plotted for inter-coupling k between
-2 and 2 every 0.05. Magnetisations are plotted in green for s and
blue for t. Dark points are used for stable solutions and lighter
asp (×, for saddle points) or cross (+, for maxima) for non stable
solutions. Own elaboration using numerically computed solutions
to the equations of state. The image had already appeared in [71].
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Figure A.13: Dependence on inter-coupling k of the numerically calculated aver-
age magnetisations (s, t) for different values of the intra-coupling
Jt at low temperatures for the local model. Js = 1 and KBT = 0.4
for all plots. (a) Jt = 0.05, (b) Jt = 0.2, (c) Jt = 0.3, (d) Jt = 0.5, (e)
Jt = 0.7, (f) Jt = 0.9, (g) Jt = 1.1, (h) Jt = 2 and (i) Jt = 4. In all
cases, different solutions are plotted for inter-coupling k between
-1.5 and 1.5 every 0.05. Magnetisations are plotted in green for s
and blue for t. Dark points are used for stable solutions and lighter
asp (×, for saddle points) or cross (+, for maxima) for non stable
solutions. Own elaboration using numerically computed solutions
to the equations of state. The image had already appeared in [71].
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Figure A.14: Dependence on intra-coupling Jt of the numerically calculated aver-
age magnetisations (s, t) for different values of the temperature KBT
for the local model. Js = 1 and k = 0.15 for all plots. (a) KBT = 1.71,
(b) KBT = 1.11, (c) KBT = 0.91, (d) KBT = 0.61, (e) KBT = 0.41, (f)
KBT = 0.31, (g) KBT = 0.21, (h) KBT = 0.11 and (i) KBT = 0.01.
In all cases, different solutions are plotted for intra-coupling Jt be-
tween 0.01 and 3 every 0.05. Magnetisations are plotted in green for
s and blue for t. Dark points are used for stable solutions and lighter
asp (×, for saddle points) or cross (+, for maxima) for non stable
solutions. Own elaboration using numerically computed solutions
to the equations of state. The image had already appeared in [71].
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Figure A.15: Dependence on intra-coupling Jt of the numerically calculated aver-
age magnetisations (s, t) for different values of the inter-coupling
k at high temperatures for the local model. Js = 1 and KBT = 1.5
for all plots. (a) k = 0.05, (b) k = 0.1, (c) k = 0.2, (d) k = 0.3, (e)
k = 0.5, (f) k = 0.7, (g) k = 0.9, (h) k = 1.1 and (i) k = 1.5. In all
cases, different solutions are plotted for intra-coupling Jt between
0.01 and 5 every 0.05. Magnetisations are plotted in green for s and
blue for t. Dark points are used for stable solutions and lighter
asp (×, for saddle points) or cross (+, for maxima) for non stable
solutions. Own elaboration using numerically computed solutions
to the equations of state. The image had already appeared in [71].
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Figure A.16: Dependence on intra-coupling Jt of the numerically calculated aver-
age magnetisations (s, t) for different values of the inter-coupling
k at low temperatures for the local model. Js = 1 and KBT = 0.4
for all plots. (a) k = 0.05, (b) k = 0.1, (c) k = 0.2, (d) k = 0.3, (e)
k = 0.35, (f) k = 0.4, (g) k = 0.5, (h) k = 0.6 and (i) k = 0.8. In all
cases, different solutions are plotted for intra-coupling Jt between
0.01 and 5 every 0.05. Magnetisations are plotted in green for s and
blue for t. Dark points are used for stable solutions and lighter
asp (×, for saddle points) or cross (+, for maxima) for non stable
solutions. Own elaboration using numerically computed solutions
to the equations of state. The image had already appeared in [71].
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