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Resumen

Esta tesis estudia métodos de aproximacion para cadenas de Markov controladas en tiempo
continuo y para juegos markovianos bipersonales de suma cero en tiempo continuo. Es-
tos modelos dinamicos ya han sido estudiados desde el punto de vista tedrico pero, en
general, no es posible obtener explicitamente los valores 6ptimos de los problemas ni las
estrategias optimas, debido a la complejidad de las correspondientes ecuaciones de optima-
lidad. Es por ello que se introducen aqui métodos de aproximacion que permitan aproximar
numéricamente dichos valores 6ptimos y las correspondientes estrategias 6ptimas.

En un contexto mas general, la idea es proponer una definicion de convergencia de una
sucesion {M,, },>1 de modelos de cadenas de Markov controladas a un modelo M, cuya
soluciéon éptima se quiere aproximar. Se daran entonces condiciones bajo las cuales la
convergencia M, — M implique la convergencia de los valores éptimos y de las politicas
optimas de M,, a los de M. Esta misma problematica se abordara para la convergencia
G, — G para juegos de Markov de suma nula.

Los modelos de control y juegos considerados tienen espacio de estados numerable,
espacios de acciones de Borel, y sus tasas de transicion y pago pueden ser no acotadas.
Se estudiaran los criterios de optimalidad del pago descontado y del pago promedio. Las
hipotesis principales que se haran sobre estos modelos incluyen desigualdades de tipo Lya-
punov sobre las tasas de transicion, continuidad del pago y de las tasas de transicion, y
compacidad de los conjuntos de acciones. Ademéds de los resultados de convergencia de
los valores 6ptimos de los modelos de control M y juegos G, se estudiaran las tasas de
convergencia de los valores 6ptimos de M,, v G,, cuando estos se definen mediante una
truncacioén finita de los espacios de estados y acciones de los modelos originales. Se probara
que estas tasas estan estrechamente relacionadas con el maximo exponente para el que se
obtiene una desigualdad de Lyapunov.

Los resultados tedricos obtenidos se ilustran con varias aplicaciones a modelos de pobla-
ciones y procesos de nacimiento y muerte. De esta manera, se prueba también que los
métodos de aproximacion estudiados son una herramienta potente que permite estimar
con precision la solucién éptima de modelos estocasticos de decisiéon complejos.
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Chapter 1

Introduction

1.1 Overview

The goal of this thesis is to propose techniques to approximate continuous-time controlled
Markov chains and Markov games. The motivation for such approximations is mainly
practical. Indeed, the aforementioned control and game models have been extensively
studied theoretically, but it is not possible in general to determine explicitly the optimal
value or the optimal strategies. The purpose of the thesis is precisely to tackle the problem
of approximating numerically such optimal solutions.

In a more general framework, the idea is to propose a definition of convergence of a
sequence of control models {M,},>; to a control model M, written M,, — M, such
that this convergence implies convergence of the corresponding optimal value functions
and optimal policies. (This will be done, similarly, for game models {G, },>1 and G.) To
some extent, such results can be viewed as a sort of “continuity results” for control models,
ensuring that the functions that map the control model into its optimal value function and
its optimal policy, say V and P, respectively, are continuous, meaning that M,, — M
implies

V(M,) = V(M) and P(M,) — P(M).

In this sense, it is out of the scope of this thesis to define some kind of topology on the
family of control models ensuring the continuity of V and P. Our point of view in this
thesis will be to start from a so-called original control model M and then study sequences
of control models {M,} converging to M, ensuring convergence of optimal values and
policies.

Concerning the application of this technique, one should think of the sequence {M,, },>1
converging to M as a sequence of simpler control models that, in principle, we are able to
solve explicitly. Then, the above mentioned convergences V(M,,) — V(M) and P(M,,) —
P(M) allow to obtain approximations of the optimal value function and the optimal policies
by letting n tend to infinity. Therefore, one of our main objectives is to show how we can
construct such sequence of approximating control models, starting from a given control
model M. Then, issues such as the convergence rates will be studied as well. All that has
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been said for control models will be analyzed also for game models.

Now we describe briefly the control and game models we will be concerned with. We will
consider continuous-time controlled Markov chains with denumerable state space, Borel
action space and compact action sets. The transition and reward rates are continuous
and they are allowed to be unbounded in state. We are interested in the discounted and
average reward optimality criteria. For game models, we will deal with two-person zero-
sum continuous-time Markov games. The underlying dynamical system is of the same
nature as for the control model: countable state space, Borel action space, compact action
sets, and continuous and possibly unbounded transition and reward rates.

Approximation results for control models are studied in Chapter 2, while such approx-
imation results for game models are the purpose of Chapter 3. There is apparently a close
parallelism between the results obtained in both chapters. In fact, although both chapters
have the same motivation and the same structure, the techniques used in the proofs in
Chapters 2 and 3 are quite different, due precisely to the fact that a control problem (with
a “single player”) and a two-person zero-sum game (two players with opposite goals) are
of a different nature. The conclusions and some interesting open issues are mentioned in
Chapter 4.

1.2 Motivation and state of the art

Control models. When solving a control problem by following the dynamic program-
ming approach, one usually ends up with a so-called optimality equation (also known as the
Bellman or the Hamilton-Jacobi-Bellman equation, depending on the nature of the control
problem under study). Except for some particular cases (as, for instance, linear-quadratic
control problems), such optimality equations cannot be explicitly solved because they are
“highly” non-linear. Moreover, in the case of a countable state space, there is an infinite
amount of such equations.

Concerning continuous-time controlled Markov chains, there exist also algorithms that
are shown to converge to the optimal reward and policies of the control model. These in-
clude the value iteration algorithm —developed in [13, 17] for discounted reward controlled
Markov chains— and the policy iteration algorithm —introduced in [14] for average reward
controlled Markov chains. For the models we shall deal with (with countable state space
and general action space), the value iteration and the policy iteration algorithms are not
viable in practice because they require to perform a “denumerable” amount of calculations
at each step and, in addition, a maximization over a “general” set. This shows the necessity
for numerical methods to approximate the optimal solutions of controlled Markov chains.

In this same vein, and as can be seen in the references, in particular, [5, 35, 36|, there
are several approaches to show the existence of optimal policies, but it is not clear at all
how to compute these policies and the corresponding optimal rewards. More precisely,
in [5, Chapter 5| and [36], continuous-time controlled Markov chains with bounded re-
ward and transition rates are analyzed. The uniformization technique (which reduces the
continuous-time controlled Markov chain to a discrete-time one) is used. In our case, how-
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ever, this approach is not possible because we consider unbounded reward and transition
rates. Similarly, in [35, Chapter 11|, an algorithm to determine the optimal policies and
the optimal gain of a continuous-time controlled Markov chain is proposed for the finite
state and action case.

One usual tool to obtain numerical solutions to the dynamic programming optimality
equation is by means of the Markov chain approximating method. The idea is to define,
starting from the original control model, a controlled Markov chain with finite state space
whose optimal reward and policies approximate the optimal reward and policies of the
original control model. Such methods have been developed to approximate, e.g., controlled
diffusions [23, 38], discrete-time finite horizon and infinite horizon discounted controlled
Markov chains [24, 40], average reward discrete-time controlled Markov chains [25], or
discrete-time control models involving constraints [2], among others.

As in the Markov chain approximation scheme [23], this suggests the idea of considering
finite-state and finite-action control models M, whose optimal reward and policies we can
explicitly compute (by using, for instance, the value or the policy iteration algorithms).
Then, the optimal reward and policies of M,, are used as approximations of those of the
original control model M. Following this approach, we will introduce a finite state and
action truncation technique to obtain the approximating control models M,,. Similar
discretization procedures can be found in, e.g., [2, 20]. The above mentioned more general
framework of convergence of control models M,, — M has already been used in [24] for
finite horizon and infinite horizon discounted discrete-time controlled Markov chains, and
in [3, 39] for constrained discrete-time models.

It is also interesting to mention the reference [19], which proposes approximation tech-
niques for discounted cost Markov decision processes with constraints. Their setting is
similar to ours, in the sense that they propose a definition of convergence for control
models. The technique proofs in [19] mainly rely on linear programming, while here use
dynamic programming arguments.

Game models. We will deal with a two-person zero-sum continuous-time Markov game
with denumerable state space, general action spaces, and possibly unbounded payoff and
transition rates. The optimality criterion consists in finding a Nash equilibrium for the total
expected discounted payoff, and for the long-run expected average payoff of the players.
The existence of such Nash equilibria, as well as the existence of optimal strategies for
the players, has been established in [15, 16]. In these references, it is shown that the
value of the game is the solution of an optimality equation (also referred to as the Shapley
equation).

Now we explain, somehow loosely, the form of this Shapley equation. Let i € S be the
state of the system, and denote by a € A and b € B the actions of the players, that take
values in some Borel spaces A and B. Let P(A) and P(B) be the family of probability
measures on A and B, respectively. There is some operator H that maps, for each fixed
a € A and b € B, a function {u(i)};es into the function {(Hu)(7, a,b)};cs such that the
value of the game {V(i)};cs —either for the discounted or the average payoff criterion—
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is the unique solution of the equations

V(i) = inf // (HV)(i,a,b)1(db)p(da) (1.2.1)

9067) ’I/JG'P(B

= inf  sup //HV )(i, a, b)eb(db)p(da) (1.2.2)

YEP(B) peP(A)

for all 4 € S. It should be clear that one cannot expect to solve, in general, the equations
(1.2.1)—(1.2.2) explicitly. For computational purposes, therefore, one should use some kind
of discretization technique to, at least, approximate the value of the game and the optimal
strategies of the players. This is precisely the goal of this chapter.

Recall that we will let G be the “original” game model and {G,},>1 be a sequence of
game models. We propose a definition of the convergence G,, — G which, under adequate
conditions, implies that the value of the games G,, and the corresponding optimal strategies
converge to the value and the optimal strategies of the game G. Then, for computational
purposes, we show how we can construct, starting from the game model G, a sequence of
game models {G, },>; with finite state and action spaces that converge to G. Such finite
models can be solved explicitly and, hence, we can provide computable approximations of
the value of the game model G.

As far as we know, this is the first attempt to provide such computable approxima-
tions for continuous-time Markov games with denumerable state space and general action
spaces. The reader interested in related works can consult [21, 28], in which the idea of
approximating a game model G with “simpler” models has been studied. The reference [9]
also considers computational issues for a continuous-time game with general state space
and finite action spaces.

At this point, it is interesting to make a comparison between the approximation ap-
proaches for control and game models. Approximating a game model by means of finite
state and actions game models is, from a technical point of view, more complicated than
such approximations for control models. The analogous to (1.2.1)—(1.2.2) for a control
model in which the state space is S and the action space of the controller is A, is the
optimality (or dynamic programming) equation

V(i) = sup{(HV)(i,a)} forieS. (1.2.3)

acA

When making a finite approximation, one roughly considers an optimality equation as in
(1.2.3) with finite S and A. Then, one can use, for instance, the policy iteration algorithm
that solves this optimality equation in a finite number of steps. For a game model, however,
the equations (1.2.1)—(1.2.2) are, even in the case of finite S, A, and B, of a continuous
nature because we are optimizing on a set of probability measures (say, a simplex). This
makes the computational problems less straightforward. Here, we combine linear program-
ming with a “value iteration” or a “policy iteration” algorithm to solve such problems.
Moreover, from a computational perspective, the maximum of a function (as in (1.2.3)) is
easier to approximate than the saddle point of a function (as in (1.2.1)—(1.2.2)).
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We shall address these issues for two-person continuous-time Markov games under both
the discounted and the average payoff optimality criteria.

1.3 Contribution

The basic results on control models, namely, the existence of optimal policies and charac-
terization of the optimal value as the solution of the Bellman equation, are already known
results; these are given in Section 2.1. The convergence results for discounted game models
in Section 2.2 are borrowed from [30], but we present them here for completeness. The
results of the convergence rates for discounted models in Section 2.3.2 are, however, orig-
inal. The analysis of convergence of control models under the average reward optimality
criterion in Sections 2.2 and 2.3 is also an original contribution, and it is mainly drawn
from [33].

Concerning the basic results for game models, these are already known facts, and they
are given in Section 3.1. The rest of the material in this chapter (Sections 3.2, 3.3, and
3.4) is an original contribution, and it is based on [26] for the average payoff criterion, and
on [34] for the discounted payoff criterion.

1.4 Notation and preliminary results

We define some notation that will be used throughout.

The real numbers set is denoted by R. Given a topological space X, its Borel o-algebra
is the smallest o-algebra containing its open sets. It will be denoted by B(X). In what
follows, measurability issues (sets, functions, measures) will be always referred to the Borel
o-algebras. Given D C X, the indicator function of D is Ip, with Ip(z) = 1if x € D, and
Ip(z) =0if ¢ D. Sometimes it will be also written I{x € D}.

A Polish space is a complete and separable metric space. A Borel space is a measurable
subset of a Polish space. Given a probability measure 1 on some Borel space (X, B(X))
and a real-valued measurable function f on X, the integral of f with respect to u, provided
that it is well defined, will be denoted

p(f) = /deu-

The Dirac probability measure supported on some point z € X is denoted by ¢,; that is,
0:(B) = Ip(z) for all B € B(X). The constant function on X equal to 1 will be denoted
by 1.

We will use the Landau notation O. As an illustration, given real-valued sequences
{f(n)}n>1 and {g(n)},>1, the latter being positive, we say that f(n) = O(g(n)) as n — oo

when
lim sup /()]
n—oo  g(n)

< 00
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The Kronecker delta is d;;, which equals 1 whenever ¢ = j, and 0 otherwise. Given real
numbers x and y, we will use the notation zVy = max{z,y}. Finally, the symbol := refers
to an equality by definition.

The Hausdorff distance. Suppose that (X, dy) is a metric space. Given two nonempty
subsets C' and D of X we define

px(C, D) = sup inf {dx(z,y)} V supinf{dx(z,y)}.
yeC rzeD zeD YEC

If C'and D are closed sets, then px(C, D) is referred to as the Hausdorff distance between

C and D. The Hausdorff distance satisfies all the properties of a metric except that it

might not be finite. For {C,,},>1 and C closed subsets of X we say that {C),},>; converges

to C in the Hausdorff metric when px(C,,C) — 0 as n — oo.

Convergence of probability measures. Now we recall some facts on convergence of
probability measures; see, e.g., [6, Chapter 1] or [7, Chapter 8]. Given a metric space
(X,dx), let P(X) be the family of probability measures on (X,B(X)). We say that the

sequence {u,} C P(X) converges weakly to u € P(X), and we will write p, Ly, i

lim j1a(f) = u(f) (1.4.4)

n—oo

for all bounded and continuous functions f : X — R. We will use the following definition.

Definition 1.4.1 We say that the function f : X — R is Lipschitz continuous if there
exists a constant L > 0 such that |f(z) — f(y)| < L -dx(z,y) for all x,y € X. In this
case, we say that f is L-Lipschitz continuous. Let Lip,(X) be the set of all 1-Lipschitz
continuous functions on X.

As a consequence of the Portmanteau theorem (see Theorems 1.2 and 2.1 in [6]), to have
weak convergence it suffices that (1.4.4) holds for all bounded and Lipschitz continuous
functions f : X — R. (Although this is not the usual statement of the Portmanteau
theorem, observe that the function constructed in [6, Theorem 1.2] is bounded and Lipschitz
continuous, and then proceed as in the proof of [6, Theorem 2.1]. Another reference for
this result is [7, Remark 8.3.1].)

In case that X is a compact metric space, we have that weak convergence is metrizable
with the Wasserstein distance

dyv) = swp {u(f) = v} =inf [ ds(@aNdnde),  (145)
f€ELip, (X) XxX

for p,v € P(X), where the infimum ranges over the set of all probability measures A on
X x X with marginals ¢ and v (see Theorems 8.3.2 and 8.10.45, and Section 8.10(viii)
in [7]). With this metric, we have that (P(X),dw) is a compact metric space [7, Theorem
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8.9.3(i)]. In addition, if {x;, zs,...} is a countable dense subset of X, then the countable
family of probability measures
k
> Bjda,
j=1

for all & > 1 and rational fy,...,58, > 0 with ) 5; = 1 is dense in (P(X),dw); see [7,
Theorem 8.9.4(ii)] or [8].






Chapter 2

Approximation of control models

We give an overview of this chapter. In Section 2.1 we introduce the control model we will
be dealing with. In particular, we give the basic results on the existence of the controlled
Markov chain model, and on the discounted and average reward optimality criteria. This
section is mainly based on [17, 18, 31].

Section 2.2 gives the definition of convergence of control models and establishes the
first theoretical convergence results. In Section 2.3 we present finite state and action
truncations of the original control model. Convergence is studied and convergence rates
are also analyzed. These sections are based on [26, 34].

Finally, we give some numerical applications for a controlled population system and a
controlled birth-and-death system in Section 2.4.

2.1 Basic results

In this section we give the definition of the control model M and recall some basic results
on the existence of the controlled process, and on the discounted and average reward
optimality criteria. The results in this section are mainly drawn from [17, 31].

2.1.1 The control model M

We define the control model we will be dealing with. Let
M :={S A K q,r},

which consists of the following elements:

e The state space of the system is the denumerable set S. We suppose that S =
{0,1,2,...} is the set of nonnegative integers.

e The action space of the controller is A, assumed to be a Borel space, that is, a
measurable subset of a complete and separable metric space. Here, measurability is
always referred to the corresponding Borel o-algebra.

17
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e The action set in state i € S is A(7), which is a nonempty measurable subset of A.
The family of feasible state-action pairs is defined as

K:={(i,a) e Sx A:a€ A(i)}.

e The transition rates of the system are given by ¢ = {¢;;(a)}. We interpret ¢;;(a) as
the transition rate from the state i € S to the state j € S under the action a € A(7).
We assume that a — ¢;;(a) is a measurable function on A(7) for each fixed i,j € S.
The transition rates verify that ¢;;(a) > 0 for every (i,a) € K and j # i. Finally, we
suppose that the transition rates are conservative, i.e.,

Zqij(a) =0 forall (4,a) € K,
jes
and stable, i.e.,
q(i) := sup {—qi(a)} <oco forallies.
a€A(7)

e The reward rate function is r : K — R. It is assumed that a — 7(i,a) is measurable
on A(7) for each i € S.

This continuous-time controlled Markov chain model can also be found in, e.g., [14, 16, 33].

The dynamics of the control model can be roughly described as follows. Suppose that
the system is in state ¢ € S at some time ¢ > 0. The controller takes an action a € A(3)
and then, on the small time interval [¢,t 4 dt], the following happens:

e the controller receives an infinitesimal reward r(i, a)dt, and

e the system remains in state i € S with probability 1+ ¢;;(a)dt or makes a transition
to the state j # ¢ with probability ¢;;(a)dt.

This procedure is carried on over all the time horizon t € [0, 00).

Control policies. Now we describe the control policies available to the decision-maker.
Let ® be the family of functions

o = {@(Bli) : t>0,i€S, BeB(A(®4))}
that verify the following properties:

(i) The mapping B — ¢;(B]i) is a probability measure on (A(i), B(A(z))) for each t > 0
and i € S,

(ii) The function t — ¢;(B]i) is measurable on [0, 00) for every i € S and B € B(A(i)).
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We say that ¢ € ® is a randomized Markov policy or a Markov policy, for short. Such
policies are also sometimes referred to as relaxed controls. The interpretation is, loosely,
that when the state of the system is ¢ € S at time ¢t > 0, the actions taken by the controller
are randomized according to the probability distribution ¢;(-|).

If the Markov policy ¢ € & is such that ¢, (B|i) does not depend on ¢ > 0 then we
say that ¢ = {@(BJi)} is a (randomized) stationary policy. The class of such policies is
denoted by ®°. This means that the controller follows the same probability rule at every
time t > 0.

Finally, if the stationary policy ¢ is such that the probability measure ¢(Bli) is a Dirac
measure, then we say that ¢ is a deterministic stationary policy. It should be clear that
the class of deterministic stationary policies can be identified with the family of functions
f S — Awith f(i) € A(i) for all i € S, by letting o(:]i) = d4)(-). The set of such
functions will be denoted by F. Clearly, we have the following inclusions: F C &° C &.

We introduce some notation. For each Markov policy ¢ € ® we define the corresponding
transition rates as

qij(t, ) = / ¢ij(a)pi(dali) for alli,j € S andt >0, (2.1.1)
A7)

which is just the average transition rate from i to j at time ¢ when using the control
policy ¢. The so-defined transition rates are finite because the g;;(a) are conservative and
stable. In particular, |g;;(¢, )| < ¢(7) for all 7,7 € S and ¢ > 0. The corresponding reward
rates are

r(t,i,p) = /A(‘) r(i,a)pi(dali) forallie S and t >0,

which are given a similar interpretation. Later, we will give conditions ensuring that these
reward rates are well defined and finite.
In the particular case when f € F is a deterministic stationary policy, we will write

i (f) = ¢i(f (1)) and (i, f) = r(i, f(7))
fori,j € S.

The controlled process. We recall that a family of nonnegative real-valued functions
Py(s,t), for 0 < s <tandi,j €S, is a (nonhomogeneous) transition function when the
following conditions hold:

o Pj(s,s) = d;; (the Kronecker delta) for all 4, j € S and s > 0.
° ZjesPZ-j(s,t) <lforallze Sand0<s<t{.

e The Chapman-Kolmogorov equation holds:
Z Pi(s,2) Prj(z,t) = Py(s,t)
kes
forall7,j € Sand s <z <t.
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e In addition, the transition function is said to be regular when » . ¢ P;;(s,t) = 1 for
allie Sand 0 < s <t.

Given some initial state in .S at time 0, a regular transition function allows the construction
of a probability measure on S with the product o-algebra, with conditional distribu-
tions given by the transition function itself.

For each Markov policy ¢ € @, consider the family of matrices [g;;(t, ¢)]i;, for t > 0,
which is a nonhomogeneous @Q¥-matrix. By Proposition C.4 in [17, Appendix C]|, there
exists a nonhomogeneous transition function

o .
P5(s,t) fori,jeSandt>s>0
whose transition rates are given by (2.1.1), that is,

. Pf(tvt"i_h)_éz] ..
1}5{)1 d - = qij(t,p) forallt>0andi,jes. (2.1.2)

To ensure that this transition function is unique and regular we impose the Assumption
2.1.2 below, which uses the notion of a Lyapunov function, defined next.

Definition 2.1.1 (a) We say that w: S — [1,00) is a Lyapunov function on S when w
is monotone nondecreasing and, in addition, lim; . w(i) = +o0.

(b) Let B, (S) denote the family of functions u : S — R such that

[lullw = sup{lu(i)|/w(i)} < oo.

€S

We have that || - || is a norm on B,(S), under which it is a Banach space.
Now we are ready to state our first assumption on the control model M.

Assumption 2.1.2 There exist a Lyapunov function w on S, and constants ¢c; € R and
by > 0 such that

Z%’j(a)w(j> < —cquw(i)+ by for all (i,a) € K.

jes
In addition, for each i € S we have q(i) < w(i).

We will usually refer to an equality such as > ¢;;(a)w(j) < —cjw(i) + by as to a Lya-
punov condition on the function w. Under this assumption, we have the following existence
theorem. We omit its proof and the interested reader is referred to [17, Theorem 2.3].

Theorem 2.1.3 Suppose that the control model M satisfies Assumption 2.1.2.
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(i) For every Markov policy ¢ € ® there exists a unique reqular transition function

{P5(s,t) }ijeso<s<t
with transition rates given by the q;;(t, ); recall (2.1.2).
Let Q = K0 = {(z(t), a(t)) }s>0 be endowed with the product o-algebra F.

(ii) Given an initial state i € S at time 0 and a Markov policy ¢ € ®, there exists a
unique probability measure P*? on (Q, F) that satisfies the following properties:

— For every Ay € B(A(i)) we have P*?{x(0) =1,a(0) € Ay} = po(Agli).

— For anyn > 1, given 0 < s1 < 89 < ... < 8, and, on the other hand, i, € S
and Ay € B(A(ig)) for k=1,...,n, we have

P#{x(sy) =iy,a(s1) € Ay, ..., 2(8,) = in,a(s,) € A} =

L1775kt 5000, (Anlin),
k=1

where we make the convention that ig = 1 and sog = 0.

The corresponding expectation operator will be denoted by E“%.

The above theorem ensures the existence of the controlled Markov chain model itself.
Assumption 2.1.2 is used to ensure regularity and uniqueness of the transition function. In
particular, the process {z(t)}+>0 is nonexplosive under any Markov policy ¢ € ®. Assump-
tion 2.1.2 ensures, as well, that the (non homogeneous) backward and forward Kolmogorov
differential equations hold.

We have the following bound on the expected growth of w(z(t)). As a consequence
of Assumption 2.1.2 and [17, Lemma 6.3], for every initial state i € S and every Markov
policy ¢ € ®

‘ b
Ew(z(t))] < e w(i) + —(1 — e=%)  for all ¢ > 0. (2.1.3)
C1

When ¢; = 0, the above inequality reads E*?[w(x(t))] < w(i) + byt.

2.1.2 The discounted reward optimality criterion

Let us now focus on the total expected discounted reward optimality criterion. We suppose
that the rewards earned by the controller are depreciated at a constant discount rate a > 0.

Assumption 2.1.4 The control model M satisfies the following conditions.

(i) The discount rate o > 0 is such that a + ¢, > 0, where ¢; € R is the constant in
Assumption 2.1.2.
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(i) There exists a constant M > 0 such that |r(i,a)| < Mw(i) for all (i,a) € K.

The total expected discounted reward (or, in short, the discounted reward) of the
Markov policy ¢ € ® when ¢ € S is the initial state is defined as

Vi, @) = B¢ UOOO e—atr(x(tm(t))dt] = E% UOOO e r(t, x(t), p)dt| .

Under Assumptions 2.1.2 and 2.1.4, and recalling the inequality (2.1.3), we have that
the discounted reward verifies
at+c  ala+a)

Vi, )| < for all i € S and ¢ € ®;

in particular, the fact that o+ ¢; > 0 is used to ensure that the integral of the exponential
function is finite. Therefore, the optimal discounted reward, defined as

V(i) :=sup V*(i,p) forallie s

ped

is finite. We deduce also that V(-,¢) and V¢ are in B,,(S) and, by letting 9t := %,
we obtain
NV o) <M forall p e @, and ||[V||, <M. (2.1.4)

Finally, we say that a Markov policy ¢ € ® is discount optimal if it satisfies
V(i,p) =Vi) forallieS.

In order to characterize the optimal discounted reward as the solution of a dynamic
programming optimality equation, we need to introduce further assumptions.

Assumption 2.1.5 The control model M verifies the following conditions.
(i) The action sets A(i) are compact for everyi € S.
(1t) The functions a — ¢;;(a) and a — r(i,a) are continuous on A(i) for alli,j € S.

(i1i) There are constants c; € R and by > 0 with

> ai(a)w?(j) < —cqu(i) + by for all (i,a) € K.

jes

The conditions (i) and (ii) in Assumption 2.1.5 above impose the usual compactness-
continuity requirements, while part (iii), which is just a Lyapunov condition on the func-
tion w?, is used to ensure the use of Dynkin’s formula.

Our next result will be useful in the sequel.
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Corollary 2.1.6 Under Assumptions 2.1.5(ii)-(iii), for every uw € B,(S) the function
ar Y ies Gij(@)u(f) is continuous on A(i) for each i € S.

Proof. Fix i € S and let k£ > i. Note that, for each a € A(37),

)un 1<\|uuw2qw

On the other hand, by the monotonicity of the Lyapunov function w we have

qu S —quU

Since k > 1,

Zqij(a)wQ(j) < ZQU(@) Z qii(a — gii(a)w? (),

J#i J€S

and so, by Assumption 2.1.5(iii)
Z ¢i(a < —cuw?* (i) + by + q(i)w?(4).

Summarizing, for all a € A(7),

> asn()] < Bl (= cauiy + 0+ g
=k
Therefore, N
Lim s z_:%’j(a)u(])‘ =0

and so the series ) ies ¢ij(a)u(y) of continuous functions converges uniformly and it is
therefore itself continuous. U

Our next result summarizes the main results on the dynamic programming optimality
equation for M and the existence of discount optimal policies.

Theorem 2.1.7 Let the control model M satisfy the Assumptions 2.1.2, 2.1.4, and 2.1.5.

(i) The optimal discounted reward V' is the unique solution u in B,,(S) of the discounted
reward optimality equation

au(i) = max {r(i,a) + Zqij(a)u(j)} forallie€ S.

acA(i) e
J
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(i1) A deterministic stationary policy f € F is discount optimal if and only if it attains
the mazimum in the discounted reward optimality equation, i.e.,

aVe(i) = arélg(}l;){r(i,a)+Z%‘j(a)va(j)}
jes

= (i, )+ Y a;(HVG)

jes
forallv € S, and such f € F indeed exist.

The proof of Theorem 2.1.7 is made in [13, Theorem 3.2] and [17, Chapter 6] by using
the value iteration algorithm. In [29, Theorem 1], however, Theorem 2.1.7 is established
by showing the convergence of the policy iteration algorithm.

Notice that, as a consequence of Corollary 2.1.6, we can indeed take the max as a € A(%)
in the discounted reward optimality equation, instead of taking the sup as a € A(7).

2.1.3 The average reward optimality criterion

We will suppose now that the controller is interested in maximizing his long-run expected
average reward. To deal with this optimality criterion, some of the assumptions made so
far on the control model M must be strengthened. First of all, the Lyapunov condition in
Assumption 2.1.2 is replaced with the following drift condition.

Assumption 2.1.8 There exist a Lyapunov function w on S, constants c; > 0 and by > 0,
and a finite set D C S such that

Zqij(a)w(j) < —cqw(i) + biIp(i)  for all (i,a) € K.
jes
Moreover, for each i € S we have q(i) < w(i).
It should be clear that Assumption 2.1.8 implies Assumption 2.1.2, and so Theorem
2.1.3 applies. In particular, the inequality (2.1.3) is also valid.

Our next assumption is similar to Assumption 2.1.4, except that part (i) has been
suppressed.

Assumption 2.1.9 There exists a constant M > 0 such that |r(i,a)] < Mw(i) for all
(1,a) € K.

Given a control policy ¢ € ® and an initial state ¢ € S, the long-run expected average
reward (or average reward, for short) is defined as

1o " 1o "
J(i, ) = limsup —EW[/ r(z(t),a(t))dt| = limsup —EW[/ r(t, z(t), p)dt|.
T 0 T 0

T—o0 T—o0
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Under Assumptions 2.1.8 and 2.1.9, and using (2.1.3), it is easily seen that the average
reward is finite and bounded, with

Mb
T (i, )| < —

C1

for all € S and ¢ € ©. (2.1.5)

The optimal expected average reward for the initial state ¢ € S is then defined as

J(i) =sup J(i,p) forie S,

ped

and it verifies as well |J(i)| < Mb; /¢ for all i € S. We say that a Markov policy is average
reward optimal when J(7, ) = J(i) for every initial state i € S.

Our next assumption is an extension of Assumption 2.1.5, used for the discounted
reward optimality criterion. It uses the following terminology. We say that a deterministic
stationary policy f € F is irreducible when the controlled process {z(t)}¢>0, under the
policy f € I, can travel with positive probability between any two states. In terms of
transition rates this is equivalently stated as follows.

Definition 2.1.10 The deterministic stationary policy f € F s irreducible when, given
arbitrary distinct states i,j € S, there exist states i = ig, iy, ... 0, = J with g;,_,;,(f) >0
forallk=1,... n.

Note that items (i)—(iii) in our next assumption are the same as in Assumption 2.1.5;
for ease of reference, however, we prefer to state them again.

Assumption 2.1.11 The control model M verifies the following conditions.
(i) The action sets A(i) are compact for everyi € S.
(i) The functions a — g;;(a) and a — r(i,a) are continuous on A(%) for all i,j € S.

(11i) There are constants ca € R and by > 0 with

> ai(a)w?(j) < —cqu(i) + by for all (i,a) € K.

jes
(iv) Every deterministic stationary policy f € F is irreducible.

Under Assumptions 2.1.8 and 2.1.11(iv), we have that for each deterministic stationary
policy f € F, the Markov chain {z(t)}:>¢ has a unique invariant probability measure on S,
that will be denoted by py. The probabilities (i), for i € S, are characterized as the
unique nonnegative solutions z; of the linear equations

szq”(f) =0 foralljes

i€S
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such that ), c2; = 1. In addition, the invariant probabilities satisfy ps(i) > 0 for all
i € S and, moreover, we have pf(w) = >, ¢ pr(i)w(i) < oo. These results can be found
in [31, Theorem 2.5]. It also follows that the expected average reward of a policy f € F is
constant (that is, it does not depend on the initial state of the system), with

TG, )= (i, Fusg(§) = g(f) forallies,

jes
where the constant g(f) € R is usually referred to as the gain of f € F.

Exponential ergodicity. An important consequence of the above assumptions is the so-
called uniform exponential ergodicity property. More precisely, under Assumptions 2.1.8
and 2.1.11, the control model M is uniformly exponentially ergodic on F, meaning that
there exist constants R > 0 and v > 0 such that

sup [/ u(1))] — peg()] < Re™ ot (2.1.6)

for all u € B,(S), i € S, and ¢ > 0. For a proof, see [30, Theorem 2.11] or [32]. This
means that the expected value of u(z(t)), under the policy f € F, approaches its limiting
average value py(u) at an exponential speed, in the w-norm. Moreover, the constants in
the exponential decay are uniform in f € F.

Additionally, under Assumption 2.1.9, given a deterministic stationary policy f € F
and an initial state ¢+ € S, we define the bias of f at ¢ as

hy(i) = / B (), )] - g()]dr.

As a direct consequence of (2.1.6) we obtain that the bias hy is in B,,(S) with

RM
Ryl < — (2.1.7)

and note that the bound on the w-norm of hy is uniform in f € F. Moreover, the expec-
tation of the bias with respect to the invariant probability measure is zero: ps(hy) = 0.

It is not possible, generally speaking, to derive an explicit expression (depending directly
on the elements of the control model M) for the constants R and v in (2.1.6). A particular
case is known, however, for which such explicit expressions are indeed available; see [14, 27]
or [30, Theorem 2.8].

Remark 2.1.12 Suppose that the control model M satisfies the Assumptions 2.1.8 and
2.1.11, with the following additional features.

(a) The set D in Assumption 2.1.8 is D = {0}.
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(b) For any f € I, the state process {x(t)} is stochastically ordered in its initial value,

meaning that
Z ai;(f) < Z Gi+1,5(f)
i=k j=k

forallik € S with k # i+ 1.

(c) For each f € F and every 0 < i < j, the process {x(t)}1>0 can travel with positive
probability from i to {j,j + 1,...} without passing through 0. Equivalently, there
exist nonzero states i = iy, i1, .., 0, With i, > j, such that ¢, ;. (f) > 0 for all
k=1,...,n.

Under these additional conditions, the constants in (2.1.6) are
R=2(140b/c1) and ~=c.

The condition (b) means, roughly, that the total transition rate to the states in the
set {k,k 4+ 1,...} is an increasing function of the initial state. This is not a restrictive
requirement since for, e.g., a population system in which the state space models the size
of the population, it seems quite natural that visiting the states in {k,k +1,...} becomes
more likely as the initial state of the system is itself larger. Similarly, the condition (c)
is not restrictive, as long as the Markov chain has a sufficiently “rich” communication
structure. So, in practice, the more restrictive condition in Remark 2.1.12 is (a).

The optimality equation. Next, we address the characterization of the optimal average
reward J (i) as a solution of an optimality equation. We say that the pair (g, h) € Rx B, (5)
is a solution to the average reward optimality equation for the control model M if

g = max {r(z’,a) + Zqij(a)h(j)} forallz e S.

a€A(1) ies
This is the main theorem on the average reward optimality criterion.

Theorem 2.1.13 Let the control model M satisfy Assumptions 2.1.8, 2.1.9, and 2.1.11.

(i) The optimal average reward J(i) is constant and we will write g* = J (i) for alli € S.
(i1) There exist solutions (g,h) € R x B,(S) to the average reward optimality equation
for M.
If (g,h) € R x B,(S) is a solution to the average reward optimality equation then

g = g*, the optimal average reward, and h is unique up to additive constants.

(i1i) A deterministic stationary policy f € F is average optimal if and only if it attains
the mazximum in the average reward optimality equation, that is,

g° = max {T(iaa)+29ij(a)h(j)}
jes

a€A(i)

= (i, /) + D 4 (Hh()

jes
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for alli € S, and such f € F indeed exist.

In Theorem 2.1.13(ii), the statement on h means that if (¢*,h) € R x B,(S) and
(9", 1) € R x B,(S) are solutions to the average reward optimality equation, then the
function A — A’ is constant on S. In particular, the family of f € F that attain the
maximum in the optimality equation (as in part (iii)) does not depend on the particular
solution h. We will usually refer to g* € R as to the optimal gain of the control model M.

The Poisson equation. We conclude this section by recalling some results that will be
needed in the sequel. Given a deterministic stationary policy f € F, we say that the pair
(g,h) € R x B,(S) is a solution to the Poisson equation for f if

g=r0,f)+ > q(f)h(j) forallies.

jes
The next result characterizes such solutions. For a proof, see Proposition 3.14 in [31].

Proposition 2.1.14 Suppose that the control model M satisfies Assumptions 2.1.8, 2.1.9,
and 2.1.11. Given any f € F, the solutions of the Poisson equation for f € F are of the

form
(g(f), hy + A1) for all X € R.

It follows that the pair given by the gain g(f) and the bias h; of the policy f € F is
the unique solution (g(f),h) of the Poisson equation for f such that ps(h) = 0.

Moreover, if (¢*, h) € Rx B,(S) is a solution to the average reward optimality equation
for M, and f € FF is an average reward optimal policy, it follows that (¢*, h) is a solution
to the Poisson equation for f. Therefore, the function h in the average reward optimality
equation can be chosen to be the bias of an optimal policy, which therefore satisfies the
bound (2.1.7). This is summarized next.

Corollary 2.1.15 Suppose that the control model M satisfies Assumptions 2.1.8, 2.1.9,
and 2.1.11, and let R and ~y be the constants for the uniform exponential ergodicity of M;

recall (2.1.6). There exists a solution (g*, h) € R x B,(S) to the average reward optimality
equation for M with ||h||, < RM/~.

We propose the following definition of convergence of policies.

Definition 2.1.16 Given deterministic stationary policies { fy}n>1 C F, we say that {f,}
converges to [ € F, and we will write f,, — f, if lim, o fu(i) = f(i) for alli € S.

Given {fn}n>1 and f € F, we say that f is a limit policy of {fn}n>1 if there exists a
subsequence n' such that fn — f.

We note that if the action sets A(i) are compact (Assumption 2.1.11(i)) then F is
metrizable and compact with this definition of convergence. The corresponding metric is

no= 1 dalf6), 16)
d(f, f') = 227 T+ da(f(0), /(i)

for f, f' € F. The proof of the next result can be found in [31, Theorem 3.17].
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Lemma 2.1.17 Let the control model M satisfy Assumptions 2.1.8, 2.1.9, and 2.1.11. If
the sequence {f,}n>1 converges to f € F then g(f,) — g(f).

This lemma simply states that the gain function f — ¢(f) is continuous on F.

2.2 Convergence of control models

The previous section was devoted to analyze the control model M. In this section we shall
consider a sequence of control models { M, },>1, that we will interpret as approximations
of the control model M. In the sequel, we will sometimes refer to M as to the “original”
control model, whose optimal value and optimal policies we want to approximate, and to
the M,, as to the approximating control models.

2.2.1 Definition

The control model M,,, for each n > 1, is given by the following elements:
Mn = {Sna A, Kna An, Tn}a
where:

e The state space S, is a subset (either finite or infinite) of S, the state space of the
original control model M.

e The action space is the Borel space A, which is the same as for the control model M.

e The action sets are A, (i) for i € S,,. We assume that A, () is a nonempty measurable
subset of A(7). The family of feasible state-action pairs is

K, = {(i,a) € Sx A : i €Sy, a€ A,(i)} CK.

e The transition rates of M,, are given by ¢j(a) for i,j € S,, and a € A,(i). They are
measurable in a and they verify ¢f;(a) > 0 when (i,a) € K, and j # 4, and they are
also assumed to be conservative and stable, meaning that

Z ¢(a) =0 forall (i,a) € K,
JESn

and

qn(i) := sup {—¢i(a)} <oo forallie S,.
a€An (i)

e The reward rate function for the control model M,, is r,, : K,, — R. We assume that
a — r,(i,a) is measurable on A, (i) for all i € S,,.
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Therefore, the control models M,, are of the same nature as M, with the particular
feature that the state and action sets of M,, are subsets of the corresponding sets for M.

Control policies. The family of Markov policies for M,,, for n > 1, is denoted by ®,,. Its
definition is the same as for M, but now accounting for the control model M,,. Namely,
®,, is the set of functions ¢ = {¢¢(Bli)}, for t > 0, i € S,,, and B € B(A,(i)), such that
B — ¢(B]i) is a probability measure on A, (i) and such that ¢ — ¢;(B]i) is measurable.

The family of stationary (randomized) policies is ®¢, while the set of deterministic
stationary policies is identified with F,,, the family of functions f : S, — A with f(i) €
A, (1) for all i € S,,.

The notation used for M,, is basically the same as for M, by adding a subscript or
superscript n where needed. For instance,

dt.o) = [ aaadd) md i) = [ o)
An (i) An(i)
for i,j € Sp, t > 0, and ¢ € ®,, while ¢7;(f) = q7,(f(i)) and r,(i, f) = r,(i, f(i)) for
f eF,.

The controlled process. To ensure the existence of the controlled process itself, for
the control model M,,, we shall impose some assumptions. Given n > 1, we say that
w: S, — [1,00) is a Lyapunov function when w is monotone nondecreasing and

lim  w(i) = +oc0

(in particular, the latter condition holds whenever S, is finite). The w-norm of a function
u: S, — R is then defined as

[[uller = sup {lu(@)]/w(@)};

cf. Definition 2.1.1. Note that we use the same notation for the w-norm on S and on S,,.
This will not lead to confusion. The family of functions u : .S,, — R with finite w-norm is
denoted by B,,(S,).

Under a condition similar to Assumption 2.1.2, but now for the control model M,,, an
analogous to Theorem 2.1.3 holds. In particular, for any initial state ¢ € S,, and any control
policy ¢ € ®@,,, there exists a unique probability measure P>¥ on the canonical space KL? 120)
that models the controlled process M,,. Its expectation operator will be written E%%.

Definition of convergence. After having described the notation for the sequence of
approximating control models {M,},>1, now we give the definition of convergence of
{M,,},>1 to the original control model M.

Definition 2.2.1 Consider the control models M and {M,},>1 defined above. We say
that {M,, }n>1 converges to M asn — oo, and we will write M,, — M, when the following
conditions are fulfilled.
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(a) The sequence of states {S,}n>1 is monotone nondecreasing and its limit is S. This
means that

S1C€SHCSC... with | ]S, =85
n=1
Define n(i) = min{n > 1:14 € S,} fori € S. Therefore, n > n(i) if and only if
i €Sy,

(b) For each i € S we have the following convergence in the Hausdorff sense:

lim pa(A(i), Ay(i)) = lim [ sup inf(A){dA(a, a)}] = 0.

n—o00 n—o00 aGA(i) a’'€An (i

Given © € S, if {an}n>na) 15 a sequence in A with a, € A, (i) for all n > n(i) and such
that, in addition, lim, a,, = a for some a € A(i), then:

(C) hmn%oo qz (a’n> = Qij(a) fOT all.] € S;'
(d) limy, oo 7y (i, a,) = 7(i,a).

Let us make some comments on this definition. Note that given a state i € S, we
have that n(i) is the first n such that the state i is in S,. Observe that, in item (b),
pa(A(i), A, (7)) is properly defined only for n > n(i) but, since we are dealing with the
limit as n — oo, this will not be explicit in the notation. Similarly, in (c), we require that
n > n(i) V n(j) but this is neither explicit in the notation.

Let us make some further comments on Definition 2.2.1. Note that, here, we allow all
the elements of the control models M,, (namely, the state space, the action sets, and the
transition and reward rates) to depend on n > 1.

When dealing with related definitions of convergence of control models, the state space
is usually allowed to depend on n; see [2, 20, 33]. The transition and reward rates may as
well depend on n. In this case, the “uniform convergence” property in Definition 2.2.1(c)—
(d) is a usual requirement; see, for instance, the condition (2) in [2, Theorem 6.1], and
Assumptions 3.1(c) and 3.3(c) in [3].

The notion of the Kuratowski convergence for the approximation of control models was
used in [24]. In our context, imposing the Kuratowski convergence of A,,(7) to A(7) would
consist in assuming that for each ¢ € §

lim inf {da(a,a’)} =0 forallae A(3),

n—00 a/ €Ay, (1)
which is weaker than the requirement in Definition 2.2.1(b). In our context, however, since
we will assume later that A(7) is compact, Hausdorff and Kuratowski convergences will be,
in this case, equivalent.

Let us also mention that the Kuratowski convergence of the actions sets A, (7) is related
to the discretization of the state space made in [20, Section 6.3] for a discrete-time Markov
control process. We note however that, in the references [2, 3, 20, 33|, the actions sets of
M,, are the same as the action sets of the original control model M.
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2.2.2 The discounted reward criterion

Consider the original control model M and the sequence of control models {M,},>1
defined previously. We deal now with the total expected discounted reward optimality
criterion and we let @ > 0 be the discount rate (the same for all the control models). In
Section 2.1.2 we gave conditions ensuring that the discounted reward problem for M is
well posed, and under which the discounted reward optimality equation for M holds.

Assumptions. Our next assumption states the conditions we will impose on the sequence
of control models {M,,},,>1. We suppose that the original control model M satisfies the
Assumptions 2.1.2, 2.1.4, and 2.1.5.

Assumption 2.2.2 Let w be the Lyapunov function in Assumption 2.1.2. The following
conditions hold for every n > 1.

(i) With the constants ¢; > —a and by > 0 as in Assumption 2.1.2, we have

Z gij(a)w(j) < —crw(i) + by for all (i,a) € K,,

JESn
with g, (i) < w(i) for each i € S,.
(i) With the constant M > 0 taken from Assumption 2.1.4(ii), we have
Irn(i,a)] < Mw(i)  for all (i,a) € K,.

(i4i) The action sets A, (i) are compact, and the functions a = qjs(a) and a — 1,(i,a) are
continuous on A, (i) for everyi,j € S,.

(iv) Taking co € R and by > 0 from Assumption 2.1.5(iii), the following inequality holds
for every (i,a) € K,:
> q(@w(j) < —caw?(i) + by.

JESn

It should be clear from its definition that if w is a Lyapunov function for M then its
restriction to S, is as well a Lyapunov function for M,, for every n > 1. The conditions
imposed in Assumption 2.2.2 mean, roughly, that the hypotheses for M are satisfied by
the M,, “uniformly” in n > 1. Indeed, we are imposing that the constants taken from the
assumptions on M are valid for the corresponding assumptions on the M,,.

Under Assumption 2.2.2, we can use Theorem 2.1.3 for the control model M,, to ensure
the existence of the controlled process, and we can define the discounted reward problem
for the control models M,,. We introduce some more notation. As already mentioned, the
notation for M,, consists in adding a subscript n to the corresponding notation for M.
Given an initial state ¢ € 5, and a control policy ¢ € &, its total expected discounted
reward is

Vi, @) = EL¥ UOOO e r,(z(t), a(t))dt] =B UOOO e r,(t, x(t), p)dt| .
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The optimal discounted reward is

V(i) :== sup V¥(i,¢) forallie S,

n
ped,

and the bounds in the w-norm (cf. (2.1.4))
NV o) <M forall p € @, and ||[V,¥], <IN, (2.2.1)

with 91 := Af((cbllis)) still hold (here, we make use that the constants M, by, c; are the same
for every control model M,,).

Note also that Theorem 2.1.7 remains valid for the control models M,,, and so the
optimal discounted reward V¢ € B,(S,,) as well as discount optimal policies in [F,, can be
characterized by means of the corresponding discounted reward optimality equation, which

takes the form

V(i) = max {r,(i,a) + Z q%(a)Vno‘(j)} (2.2.2)

a€An (i) ics

for each i € S,,.

Preliminary results. Before proving our main results on convergence for discounted
control models, we establish some useful results.

Lemma 2.2.3 Suppose that M satisfies Assumptions 2.1.2 and 2.1.5(iii), and that the
control models { My }n>1 verify Assumptions 2.2.2(i) and (iv). Given i € S and € > 0,
there exists some K > 1 such that

(i) for all a € A(i) we have ZJ’ZK gij(a)w(j) < e
(i) for allm > n(i) and every a € A, (i) we have )i s qis(a)w(j) < e.

Suppose, in addition, that Assumption 2.1.5 holds and that M,, — M. Then for every
i € S and considering n > n(i)

(15i) lim,, SUDge, (1) |rn(i,a) — r(i,a)| = 0.
(1) 1My o0 SUPGe A, i) D jes, |65 (@) — ¢i5(a)w(j) = 0.
Proof. (i)-(ii). Choose any K > i. Observe that for all a € A(7)
. 1 ‘
Z gij(a)w(j) < FK) Z Qij(a)w2(3)7
j=K i>K

where we make use of the monotonicity of w. On the other hand, since K > ¢, all the
terms ¢;;(a) for j > K are nonnegative and thus

Y ap(@w() < Y ay(a)wi() — aala)w’(i)
J>K jes
< —cuw? (i) + by + w?(4).
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Similarly, if n > 1 is such that i € S,, or, equivalently, n > n(i), then we can repeat the
above arguments to obtain that, for each a € A, (1),

S @lawl) < ﬁ S g (@w?()

JESn,i>K JESn,i>K

1 n 2( n 2/,

< w2 B@etl) - diae’(i)

JESH

1 . ‘

< m( — cow? (i) + by + w3(1)>.

Therefore, it suffices to choose K > i such that
1
M( — ngQ(i) + by + w3(z)> <€

to obtain the stated result.

(iii). The proof is by contradiction. Suppose then that for some i € S there are ¢ > 0
and actions a,y € A, (i) for some subsequence n’ such that |r(i, a, ) — 7,(i, an/)| > €. The
action set A(i) being compact, we can choose a further subsequence n” with a,» — a for
some a € A(i). By continuity of the reward rate r we have r(i,a,») — r(i,a), while by
Definition 2.2.1(d) we have r,» (i, a,) — r(i,a), which leads to a contradiction.

(iv). We proceed by contradiction. Hence, for some given i € S we will suppose that
there exists some ¢ > 0 and some subsequence n’, larger than n(i), such that, for some
an € Ap (i), we have

> g (aw) — gijlan)w(j) > .

JES,

By parts (i) and (ii) of this lemma, there exists some K > ¢ such that for every n’

Y gilan)w() <e/3 and Y g (an)w(l) < €/3.

jZK,jGSn/ jZK,jGSn/

Consider the n’ such that {0,1,..., K — 1} C S,, so that we have
K—1
Z |Q?j/(an/) — gij(an)|w(j) > €¢/3 for all n'. (2.2.3)
=0

Since the action sets A(7) are compact, choose a further subsequence n” such that a,» — a
for some a € A(i). Take now the limit through n” in (2.2.3) and use continuity of the
transition rates ¢;;(-) and Definition 2.2.1(c) to reach a contradiction; indeed, both qu”(anu)
and ¢;;(a,~) converge to ¢;;(a). O

Note that, under Assumptions 2.1.5(i)—(ii), parts (iii) and (iv) in this lemma imply items
(c) and (d) in Definition 2.2.1. Under the assumptions of this lemma, these statements are
equivalent, and we may use (iii)—(iv) in Lemma 2.2.3 in lieu of Definition 2.2.1(c)—(d). We
introduce some more terminology.
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Definition 2.2.4 Suppose that {u,}n,>1 is a sequence of functions with u,, € By (Sy,) for
each n > 1. We say that {u,}n>1 converges pointwise to u € By, (S) if

nh_)rglo un (i) = u(i) for eachi € S.

Note that the expression w,(i) is defined provided that n > n(i). Since the above
definition is concerned with the limit as n — oo, we will not make it explicit in the
notation.

We extend the definition of convergence of deterministic stationary policies given in
Definition 2.1.16. Given a sequence of policies {f,}n>1 with f, € F,, for every n > 1, we
say that {f,}n>1 converges to f € F if

lim f,(i) = f(i) foreachie€S.

n—oo
Once again, note that f,(i) is defined only for n > n(i), but this is not made explicit in
the notation since we are dealing with the limit as n — co. In this case, we will also write
fn — f. The notion of limit policy is then similar to that given in Definition 2.1.16.

Lemma 2.2.5 (i) Suppose that the sequence w, € B,(S,), for every n > 1, satisfies
SUP,>1 | [Un|lw < 00. Then there exists a subsequence n' and u € B,(S) such that
{un} converges pointwise to u.

(i1) If Assumption 2.1.5(1) is satisfied then, given arbitrary f, € F,, for n > 1, there
exist a subsequence n' and f € F such that {f,/} converges to f.

Proof. This lemma follows from a standard diagonal argument. Indeed, for every ¢ € S,
the sequence {uy (i) }n>n(;) is bounded, and hence has a convergent subsequence. Similarly,
we have that {f,(7) }n>n(;) is a sequence in the compact metric space A(7), and hence has a
convergent subsequence. Use then the fact that S is countable to construct a subsequence
n' such that u, (i) or f,/(i) are all convergent for i € S. O

We state our final preliminary result.

Lemma 2.2.6 Suppose that M satisfies Assumptions 2.1.2 and 2.1.5(iii), and that the
control models { M, }n>1 verify Assumptions 2.2.2(i) and (iv). Let u, € By(Sy) forn >1
be such that sup,~ ||un||lw < 00 and such that {u,},>1 converges pointwise to some u €
B,(S). Let f, € F,, forn > 1, be such that f, — f for some f € F. Under these
conditions, if M,, — M then

lim |ru(is f) + D a5 (f)un(i)| =i £) + Y a(futi) for alli€ s.

n—oo 4 -
JESn jES

Proof. Let ¢ > 0 be such that ||u,||, < ¢ for all n > 1, and so ||u||, < ¢. Fix ¢ € S and
consider indices n such that n > n(i).
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The fact that r,(7, f,,) converges to r(i, f) follows directly from Definition 2.2.1(d). Let
us now analyze the second term in the limit. Fix ¢ > 0 and for the small constant €/4c, let
K > i be as in Lemma 2.2.3. If n > n(i) is such that, in addition, {0,1,..., K — 1} C S,
then

‘ Z ql] fn un quﬁ ‘

JESn jes
K-

gyz G (Fun(i) = a5 (FuG)]| +e- D agfuw) +e- D as(f)
Jj=0 JESn,j>K J>K
K-1 ¢

<| 3 g ()uali) = g (Fuli)] | + 5

0

<.
Il

Therefore, since by Definition 2.2.1(c) we have ¢i(f.) — ¢i;(f) and as, by hypothesis,
un(7) = u(j) for 0 < j < K, choosing n large enough makes

\KZI (€5 (F)unld) — a5 (M) < /2

(here, note that K does not depend on n; cf. Lemma 2.2.3(b)). This completes the proof.
U

Main result. Now we are ready to prove our main result on the convergence of the
discounted control models.

Theorem 2.2.7 Suppose that the control model M satisfies Assumptions 2.1.2, 2.1.4, and
2.1.5, and that the control models { M, }n,>1 verify Assumption 2.2.2. If M,, — M then

(i) For everyi € S we have lim, o V*(i) = V(i).

(i) If f € Fy, for n > 1, is a discount optimal policy for M,,, then any limit policy
feF of {fu}n>1 ts discount optimal for M.

Proof. (i). Recalling that the optimal discounted rewards V,* are uniformly bounded in
the w-norm (see (2.2.1)) and using Lemma 2.2.5, we deduce that there exists a subsequence
n’ such that {V9} converges pointwise to some v € B,(S5).

Fix now an arbitrary state ¢ € S and any action a € A(7), and consider indices n’ > n(i).
By Hausdorff convergence of A, (i) to A(i), there exist actions a,, € A,/(i) such that
a, — a; recall Definition 2.2.1(b). From the discounted reward optimality equation for
the control model M,,, given in (2.2.2), we obtain

aVo(i) > rp (i, an) Z qu an )V (J

]GS ’
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We can use Lemma 2.2.6 and take the limit as n’ — oo to obtain

av(i) > r(i,a) + Zqij(a)v(j)

jes
Since this is valid for every (i,a) € K we have thus established that

av(i) > max {r(i,a) + qu v(j)} for every i € S. (2.2.4)

a€A(i
JES

To prove the reverse inequality, fix ¢ € S and, for indices n’ > n(i), let f,» € F,, be a
discount optimal deterministic stationary policy for M,,,. Using again Lemma 2.2.5, there
exists a further subsequence n” and some f € F such that f,» — f. The policies f,~
being optimal for M,,», they attain the maximum in the corresponding discounted reward
optimality equation (use Theorem 2.1.7 for the control model M,,), that is,

onn‘%(i) = Tn// fn// Z q” fn// // ) (2.2.5)

JES 7

Take the limit as n”" — oo and use Lemma 2.2.6 to obtain

av(i) = (i, f) + 3 4 (Fo()

jes
Combining this equation with (2.2.4), we have thus proved that

av(i) = argjx {r(i,a) + Zqij(a)v(j)} for every i € S,

that is, we have established that v € B,,(S) is indeed a solution to the discounted reward
optimality equation for M and, therefore, v = V', the optimal discounted reward of M.

Therefore, we have proved that the limit of V,* through any pointwise convergent subse-
quence n' is V. Then, we necessarily have that V.* converges pointwise to V¢, establishing
part (i) of the theorem.

(ii). To prove this part, let f € F be any limit policy of optimal policies {f,} for M,,.
Proceed as in (2.2.5) to derive that f attains the maximum in the discounted reward op-
timality equation for M and, hence, it is discount optimal. O

As a consequence of item (ii) in this theorem, if the discount optimal policy for M is
unique and {f,,} are optimal policies for M,,, then we necessarily have f,, — f. Otherwise,
it is not possible to ensure convergence of {f,} although, as it has been shown, any limit
policy is optimal for M.

Summarizing the results in this section, starting from a control model M satisfying
suitable hypotheses, and also from a sequence of control models {M,,} that verify similar
conditions, we have shown that convergence M,, — M implies convergence of the optimal
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discounted reward and of optimal policies. Thus, the approximating control models M,,
can indeed be used to approximate the original control model M.

There remains, however, an important open issue. Usually, the decision-maker is given
the control model M and he is interested in approximating its optimal solution. But,
generally, the decision-maker is not given the sequence of approximating control models
{M.,}. The question, rather, is whether starting from the original control model M the
controller is able to construct a sequence of “simpler” approximating control models {M,, }
which in principle he is able to solve. This is the issue addressed in Section 2.3.

Another important remark is the following. Theorem 2.2.7 gives plain convergence of
Ve to V. It would be interesting to know if some kind of convergence rate could be
provided, so as to obtain some error bounds on the approximations. This is addressed as
well in Section 2.3.

2.2.3 The average reward criterion

We consider now the control model M under the long-run expected average reward op-
timality criterion. We consider also the sequence {M,,},>1 of control models, defined in
Section 2.2.1 above. In Section 2.1.3 we gave conditions for the solvability of the average
reward problem for M. Now we impose such conditions on the control models M,,.

Assumption 2.2.8 Let w be the Lyapunov function in Assumption 2.1.8. The following
conditions hold for every n > 1.

(i) With the constants ¢; > 0 and by > 0 as in Assumption 2.1.8, and for some finite
set D,, C S,, we have

> @ia)w()) < —crw(i) + bilp, (i) for all (i,a) € K,,

JESn
with q,(1) < w(7) for each i € S,,.
(i) With the constant M > 0 taken from Assumption 2.1.9, we have

(i, a)] < Mw(i)  for all (i,a) € K,.

(i4) The action sets A, (i) are compact, and the functions a = gji(a) and a — 1,(i,a) are
continuous on A, (i) for everyi,j € S,.

(iv) Taking co € R and by > 0 from Assumption 2.1.11(iii), the following inequality holds
for every (i,a) € K,,:

> @) w’(j) < —caw?(i) + by

JESn

(v) Every deterministic stationary policy in ¥, is irreducible.
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The above conditions impose that the assumptions we made on the control model
M for the average reward criterion, namely, Assumptions 2.1.8, 2.1.9, and 2.1.11, hold
“uniformly” in n > 1. Indeed, as can be seen from Assumption 2.2.8, all the involved
constants are the same for every M,,, n > 1, and for M. In particular, each control model
M,, is uniformly exponentially ergodic (see (2.1.6)), but it is important to mention that
the above conditions do not necessarily imply that the corresponding constants R,, and -,
do not depend on n > 1.

Now we introduce the notation for the average control model M,,. Given a Markov
policy ¢ € ®,, and an initial state i € S,,, consider the associated probability measure P>?
and expectation operator E%¢ that model the controlled process; those indeed exist as a
consequence of Theorem 2.1.3 and Assumption 2.2.8(i). The expected average payoff is

T—o0 T—o0

1, T 1, T
Jn (i, ) = lim sup ?Efﬁ[/ rn(x(t),a(t))dt| = limsup TE;’S" [/ ra(t, z(t), p)dt|,
0 0
and the optimal average reward is

Jn(i) = sup J,(i,¢) for each i € S,.
IS

Under our assumptions on M,, we have, as in (2.1.5),

Mb Mb
| T (i, )| < C—l and  |.J,(i)| < for all ¢ € ®, and i € S,,. (2.2.6)
1

&1
By Assumptions 2.2.8(i) and (v), for each deterministic stationary policy f € F,, the
Markov chain {z(t)}+>0 under f has a unique invariant probability measure y’t on S, for
which p(w) is finite. Moreover, the average reward of f € [F,, is constant:

Tl £) =Y rnl(, )UF(G) =t ga(f) foralli € 5,
JESn
where we recall that g,(f) is called the gain of f € F,.
Finally, under Assumption 2.2.8, an analogous of Theorem 2.1.13 holds. In particular,
the optimal average reward of M,, is constant:

gr = Ju(i) foralliesS,,

and there exist solutions (g, h) € R x B,(S,) to the average reward optimality equation
for M,

g= max {r,(i,a) + Z i (a)h(j)} forallie S,. (2.2.7)

a€An (i) .
JESK

In this case, we have g = g, while A is unique up to additive constants. Moreover, optimal
deterministic stationary policies are characterized as those achieving the maximum in this
optimality equation.

Now we address the issue of the convergence of the optimal gains g of M, to the
optimal gain ¢g* of M. To obtain this result, however, we must impose some additional
conditions. In fact, we will propose two different sufficient conditions under which this
convergence takes place.
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Theorem 2.2.9 Suppose that the control model M verifies Assumptions 2.1.8, 2.1.9, and
2.1.11, and that the control models { M, },>1 satisfy Assumption 2.2.8. In addition, sup-
pose that there exist solutions (g, hy,) € R x B, (S,) to the average reward optimality equa-
tion (2.2.7) for My, such that sup,,>, ||hnl||lw < oo. Under these conditions, if M, — M
then

*

(i) The optimal gains converge: lim,,_, g% = g*.

(i) If fn € F, is an average reward optimal policy for M, then every limit policy of
{fn}n>1 in F is average optimal for M.

Proof. (i). We know that the sequence {g‘},>1 is bounded (recall (2.2.6)) and, by
hypothesis, the sequence {h,,},>1 of solutions to the average reward optimality equation for
M, is also bounded in the w-norm. Therefore, by Lemma 2.2.5, there exists a subsequence
(that without loss of generality we will still denote by n) and a pair (g,h) € R x B,(S5)
such that

nh_{](r)logfl =g and nh_}rgo hy(i) = h(i) forallie S.

(Recall that the latter expression is defined only when n > n(i).)

Consider now a fixed (7,a) € K. By Definition 2.2.1(b) there exists a sequence {ay, }n>n(:)
with a,, € A,(i) and a,, — a as n — oco. From the average reward optimality equation for
M,, we obtain

g = rali,an) + Y @(an)ha(h)-

JESn

We can use Lemma 2.2.6 to take the limit as n — oo, which yields

g>r(i;a)+ > gla)h(j).

jes
Since this is valid for every (i,a) € K we have thus established that

g > max {r(i,a) + Zqij(a)h(j)} for each i € S.

a€A(i) es

Suppose now that f,, € F, is average optimal for M,,. Again by Lemma 2.2.5, there exists
some f € F and a further subsequence (that we shall still denote by n) such that f, — f.
For such f,, € F,,, the optimality equation for M,, reads

G =ralis fu) + Y a2 (fa)ha(j) for cach i € S,. (2.2.8)

JESn

Using Lemma 2.2.6 we deduce that

g=r(, f)+ Zqij(f)h(j) for each 7 € S.

jes



2.2. Convergence of control models 41

Therefore, we have established that (g, h) € R x B,,(5) is a solution to the average reward
optimality equation for M, and so g = g*.

Summarizing, we have shown that any convergent subsequence of the bounded sequence
{gt}n>1 converges to g*. This implies that the whole sequence converges to ¢g*, that is,
lim, 00 g5 = g*.

(ii). To prove that any limit policy of average optimal policies { f,,},>1 for M,, is average
optimal for M, use (2.2.8) and take the limit through some subsequence such that f, —
f € F and such that h,s converges pointwise to obtain that f indeed attains the maximum
in the average reward optimality equation for M. O

Observe that the analogous result for discounted reward models (Theorem 2.2.7) holds
without any additional condition, except for the basic assumptions on M and M,, and
the convergence M,, — M. Here, for the average reward optimality criterion, we need to
impose further requirements, namely, the existence of bounded solutions h,, to the average
optimality equation for the M,,.

In connection with Remark 2.1.12, observe that if all the control models M,, satisfy the
monotonicity and irreducibility properties given in Remark 2.1.12, together with D,, = {0}
in Assumption 2.2.8(i), then there exist solutions h, to the average reward optimality
equation for M,, that satisfy

2M(1 + by /cy)
C1

[An] | <

(recall Corollary 2.1.15), and so the condition in Theorem 2.2.9 is indeed satisfied.

We propose now another sufficient condition to obtain convergence of the optimal gains.
The idea is to drop the condition sup,,»; ||hn||w < 0o in Theorem 2.2.9 and to use, instead,
a Lyapunov condition on some power ¢ > 2 of the function w.

Theorem 2.2.10 Suppose that the control model M wverifies Assumptions 2.1.8, 2.1.9,
and 2.1.11, and that the control models {My}n>1 satisfy Assumption 2.2.8. In addition,
suppose that there exist constants 6 > 2, c¢s > 0 and bs > 0 with

Z qi"j(a)wé(j) < —csw’(i) + bs  for allm > 1 and (i,a) € K,,.
JESn

Under these conditions, if M,, — M then
(i) The optimal gains converge: lim,,_, g5 = g*.

(i) If fn € F, is an average reward optimal policy for M, then every limit policy of
{fn}n>1 in F is average optimal for M.
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Proof. Given n > 1, fix an arbitrary policy f € F,, and an initial state i € S,,. Observe
that for every k > 0 and ¢t > 0

1

. Pa() = 3t() < —5m Y Pil{at) = i’ ()
jeSni>k w2 (k) jESn ik
1 ) . .
SEWQ;FWWbﬁWﬁ

= —1 if w6 T
= o B ()]

By an analogous to (2.1.3) but now for the function w® we have
B! [w (a(t)] < e™*"w(i) + bs/cs,

and thus .

Y. Pl {alt) = 1t() < g (7w + bafes).

JESn,j>k

Recalling that pf is the invariant probability measure of f for the control model M,,, we
can use Fatou’s lemma as t — oo to get

N 9y b
Z M?(])w () < m~

JESn,j>k

Summarizing, we have shown the following w?-uniform integrability result:

lim sup ) pp()w’(f) = 0.

k—o00
n>1, feF"jESn,jzk

We will need also the following result. Given (i,a) € K and u € B, (95), or (i,a) € K,
and u € B,(S,), we have

Y as@ul)| < llullw@+b)w?6) and | 3 gp(@)w)| < lullo(2+0)u0), (2:2.9)
JjeSs JESH
respectively. Indeed, if (i,a) € K, we have
> as(@u)] < llullu( — 20:(@w(i) + 3 g (@) < llullu(2u26) +br),
JjES jeS

by Assumption 2.1.8. The argument is similar for (i,a) € K,.
Suppose now that € > 0 is given.

e Choose K; such that

Z ,u}l(j)w2(j) <e foreveryn>1and f €F,. (2.2.10)

JESRn,J>K1
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e For this Ky, choose Ky > K; with

_max max Z gij(a)w(j) < € (2.2.11)

(recall Lemma 2.2.3(i)).

e For these K; and K3 choose Ny with {0,1,..., K3} C Sy, such that n > Ny implies
(Lemma 2.2.3(iii))

' 2.2.12
_max, agla)(() [7(1,a) —rp(i,a)] < e ( )

and (Lemma 2.2.3(iv))

max - max Z |gij(a) — qis(a)|w(j) < e. (2.2.13)

1=0,1,...,K1 a€An(
J €Sn

Let n > N, and fix arbitrary f € F,,. We can extend f € F,, to some policy f € F, where
f(@) = f(i) € A,(3) C A(i) for i € S,, and f(i) € A(i) is defined arbitrarily for i ¢ S,,.
The Poisson equation for f is

g(f) = —I—qu h(j) forallie S,

jeS

where h € B, (S) can be chosen to be the bias of f, and thus ||h||, < RM/v; recall (2.1.7)

and Proposition 2.1.14. This Poisson equation is written on the states ¢ € S,, as

9(F) = rali, ) =16, f) =rali, f) + D ay()R(j) foralli € S,

jes

where we can indeed replace f with f in the righthand side. Multiply the above equations
by the invariant probability measure u;‘(z) and sum over ¢ € S,, to obtain

9(F) = gn(f) =D i — (i, 1)) + Y ) Y a4 ())R(). (2.2.14)
i€5n i€5n jes

Let us first analyze the leftmost term in the righthand side of this expression. For states
0 <i < K we have by (2.2.12)

SO F) = rali )| < D e <

For states larger than K; we have, by (2.2.10),

Z (i) (r (i, f) ’<2M Z i (w(i) < 2Me,

I€ESH,i>K 1E€ESY,i>K1
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where we use the fact that w(i) > 1.
We analyze now the rightmost term of (2.2.14). Note that it equals

> wi@) Y ay(DRG) + D W) D a(F)A)

1€Sn JESK 1€Sn Jj¢Sn
= w6 > (g (F) = @5 (PRG) + D @) Y i (HBG), (2.2.15)
1€Sn JESH 1€Sn Jj¢Sn

where me make use of the equality > . ¢ p}(i)g(f) = 0 for all j € S, because u} is
the invariant probability measure of f € F,, under M,,. Regarding the leftmost term of
(2.2.15), it can be split into the sums for 0 < i < Kj and for i € S, with i > K. Firstly,
by (2.2.13),

0

Zuf ‘ > (a4 (f) —QZ(f))h(j)‘ < #

JESH 7

. _RM
€ ,Uf()<T€

I
o

Secondly, applying (2.2.9)

S w0 Y @) - @G| < 2ArLe+b) Y wiwe)

1€8Sn,i>K1 JESh 1€Sn,1> K1

ORM (2 + by)
7 J
by (2.2.10). We proceed now with the rightmost term of (2.2.15). We have
> 50| X aHh)] < T2 32 w50 3 a( D)
1ESn j&Sn 1ESy J¢Sn
For states 0 < i < Ky, by (2.2.11) we have
Ki
Z/L}L(Z) Z Qij(f)w( = Z Z qU > 6
i=0 &Sn i=0 J>Ks

while for states i € S,,,i > K7, proceeding as in the proof of (2.2.9), we have

oW D aulf S@+b) Y Hpiw(i) < 2+ b)e

1ES,i>K1 ]%S 1€Sn,i>K1

Consequently, letting ¢ = 142M + RM (3b, +8) /7, we have shown that |g(f) —gn(f)| <
ce for all n > Ny. Since f € I, is arbitrary it follows that

lim sup [g(f) — ga(f)| =0, (2.2.16)

n—oo fE]Fn
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where f is any extension to F of f € F,,.

Now we are ready to conclude the proof. Suppose that f* € F is an average reward
optimal policy for M. We can construct a sequence {f,},>1 of policies in F,, such that
fn — f* and let f, be an arbitrary extension of f, to F. It should be clear that f, € F
converges to f* € F. Given € > 0, for n large enough we have, by continuity of the gain
(Lemma 2.1.17)

l9(fn) — 9" <e
and also that

9(fn) <€+ gulf) <€+ gpns
from which ¢* — ¢ < 2e follows. Conversely, if f¥ € [F,, is average optimal for M,,, then
given € > 0 and for n large enough

gn—e<g(f) <9

for any extension f, € F of f*, and so g* — ¢g* < e. This completes the proof of part (i) of
this theorem, that g — g*.

For statement (ii), let {f,},>1 be average optimal policies for M,, and consider a sub-
sequence (for simplicity, also denoted by n) that converges to some f € F. If f, is an
extension of f, to F, then we also have that f, converges to f € F. Using (2.2.16) it
follows that

n

Tim [g(f,,) — ] =0,

and so, by part (i) and Lemma 2.1.17 again, g(f) = lim g(f,) = ¢*, thus showing that f is
average optimal for M. O

This theorem, whose proof is by far more involved than that of Theorem 2.2.9, allows
to drop the condition sup,~; ||hn|lw < 0o imposed in that theorem. The inconvenient of
this condition in Theorem 2.2.9 is that it practically assumes that the constants R, and
v, in the uniform ergodicity condition for M, do not depend on n > 1. Such a result is
not readily available since, except for the particular case described in Remark 2.1.12, there
is no explicit known relation between the coefficients R and v and the data of the control
model. On the contrary, the strengthened Lyapunov condition presented in Theorem 2.2.10
depends directly on the data (namely, the transition rates) of the control model M,, and,
therefore, it is easy to verify it (or discard it) in practice.

2.3 Finite state and action approximations

In the previous section, we have analyzed convergence of a sequence of given control models
M, to a so-called original control model M, and we have studied several properties of this
convergence. Here we take another point of view: we assume that we are given the original
control model M and we show how we can construct a sequence { M, },>1 of control models
that verify the hypotheses described in the previous section.
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2.3.1 Definition

Consider the control model M = {S, A, K, ¢q,r} described in Section 2.1.1. We are in-
terested in approximating numerically the optimal value and the optimal policies for M,
either for the discounted or the average reward optimality criteria.

We propose the following finite state and action truncation of the control model M.
We must assume, further, that the action sets A(i) of M are compact for every i € S
cf. Assumptions 2.1.5(i) and 2.1.11(i). For any n > 1, consider the control model M,, =
{Sn, A, K., ¢, } defined as follows:

e The state space is S, = {0,1,...,n}.

e For each i € S, the action set A,(7) is a finite subset of A(7) such that the condition
in Definition 2.2.1(b) is verified (see the comment below).

e The transition rates are as follows. If (i,a) € K, and 0 < j < n, let ¢};(a) = g;;(a),
and if j = n let

(@) = Y gula) = — 3 aula).

k>n
e For (i,a) € K,,, define the reward rate r,(i,a) = r(i,a).

Regarding the construction of the action sets, such a construction is indeed possible be-
cause the action sets A(7) are compact. As an illustration, consider the family of balls with
center in A(7) and radius 1/n. Define A,,(7) as the set of centers of a finite subcover. Then
the Hausdorff distance verifies pa(A(i), An()) < 1/n, thus satisfying Definition 2.2.1(b).
Observe also that the transition rates are conservative and stable, with ¢, (i) < ¢(i) for
every i € S,. Indeed, —ql(a) = —qi(a) < q(i) for (i,a) € K,, with ¢ < n, while for
a€ A,(n)

(@) = i k(@) < —gun(a) < q(n).

Finally, note that n(0) = 1 and that n(i) =i for all i > 1.

The interpretation of M,, is as follows. We can say, loosely, that the truncated control
model M,, follows the same dynamics as M, but when it reaches a state larger than n it
is “restarted” at n.

Our next lemma needs continuity of the transition and reward rates; cf. Assumptions
2.1.5(ii) and 2.1.11(ii).

Lemma 2.3.1 Suppose that the control model M is such that its action sets A(i) are
compact for every i € S, and such that the functions a — ¢;(a) and a — r(i,a) are

continuous on A(i) for each i,j5 € S. Then the control models M,, defined above verify
M, = M.
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Proof. It is clear that S, T S and, by construction, convergence in the Hausdorff metric of
the A, (7) to A(7) holds. Given i, j € S and a sequence a,, € A, (i) such that a, — a € A(i),
for n large enough we have ¢;%(a,) = gij(a,), which converges to g;j(a) by continuity of
the transition rates; thus Definition 2.2.1(c) holds. A similar argument is valid for the
condition on the reward rates given in Definition 2.2.1(d). d

Consequently, the control models M,, constructed above are finite state and action
truncations of the original control model M and, besides, under some additional conditions
on M, they converge: M, — M. It remains to study if the control models M, somehow
inherit the assumptions so far imposed on M, so that we can use Theorems 2.2.7, 2.2.9,
and 2.2.10 to obtain convergence of the optimal values and the optimal policies.

2.3.2 Finite truncations for discounted models

Consider the control model M and let us focus on the discounted reward optimality cri-
terion, with a discount rate o > 0. Our first task is to check whether the finite state and
action truncations M, defined previously verify the conditions in Assumption 2.2.2, so
that we can use Theorem 2.2.7.

Proposition 2.3.2 Suppose that the control model M satisfies Assumptions 2.1.2, 2.1.4,
and 2.1.5. Then the control models M,, constructed in Section 2.5.1 verify:

(i) The optimal discounted rewards converge: for every i € S, lim,_ o, V.*(i) = V*(i).

(ii) Any limit policy of discount optimal policies for M,, is discount optimal for M.

Proof. Our first step in this proof is to show that Assumptions 2.1.2, 2.1.4, and 2.1.5
on the control model M imply Assumption 2.2.2 for the finite state and action truncated
control models M,,.

Let us check Assumption 2.2.2(i). Recall that the Lyapunov function w, as well as
the constants ¢; > —a and by > 0, are taken from Assumption 2.1.2. Given n > 1 and
(i,a) € K,,

> a@el) = Y as@ui) + (Y a) - win

JESn jzn
< Y a@u() + Y asa)ul)
= Z%’j(a)w(j> < —cw(i) + by,
JjeS

where we use monotonicity of w and the fact that ¢;;(a) > 0 for j > n > i. We have
already mentioned that ¢, (i) < q(i) < w(i) for all i € S,,. Therefore, Assumption 2.2.2(i)
holds.
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Clearly, by construction we have also Assumption 2.2.2(ii), while Assumption 2.2.2(iii)
trivially holds because the sets A, (i) are finite. Finally, Assumption 2.2.2(iv) is derived
using the same arguments as before, for part (i).

The control models M,, converge to M (recall Lemma 2.3.1) and they satisfy Assump-
tion 2.2.2. We can therefore use Theorem 2.2.7, and the proof is complete. U

Therefore, starting from a control model M that satisfies suitable assumptions, we
have been able to construct a sequence of control models M,,, with finite state and action
spaces, whose optimal discounted value and discount optimal policies converge to those
of M. This enables us to provide computable numerical approximations of the solution of
a control model with countable state space and compact action sets.

Solving a finite discounted control problem. For completeness, we show now how we
can explicitly solve a finite state and action control model, as the M,,, under the discounted
reward optimality criterion. We use the well known technique of uniformization.

Consider the finite state and action control model M,, for some fixed n > 1. Its
discounted reward optimality equation reads

V(i) = max {r,(i,a) + Z g (a)Ve(g)} forieS,.

a€An () ics
n

Let the constant q,, be such that q,, > ¢, (i) for all i € S,,. It suffices to choose, for instance,
q, > w(n). Given (i,a) € K,, consider the following probability distribution on S,:

"(a

Clearly, the pj;(a) are nonnegative and they sum up to one. Straightforward calculations
show that the discounted reward optimality equation for M,, can be equivalently rewritten
as

ro(i,a

V(i) = max {

" a€An (i)

) an . .
+ > @)V } for i € 5.
o+ qp o+ qp jesnplj(a) n(]) ot

This is the discounted reward optimality equation of a discrete-time finite state and action
control model with state space S,,, action sets A, (i), reward function r,,/(a+qs,), transition
probabilities p;(a), and discount factor -2~ < 1. Both the continuous-time and the
discrete-time problems are equivalent, meaning that their optimal discounted value function
is the same, and that they have the same sets of optimal deterministic stationary policies.
The so-defined discrete-time control problem can be explicitly solved using, for instance,
the value iteration algorithm, which consists in the successive application of a contraction
operator; see [35] for more details on this algorithm.

We can also use the policy iteration algorithm for M,,, described next, which converges
to the optimal value and an optimal policy in a finite number of steps.
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Step 0. Choose an arbitrary policy fy € F,, and set £ = 0.

Step 1. Determine the discounted reward vy of f; as the unique solution of the system of
linear equations

av(i) = ra(i, fi) + Y @(fr)voe(j) for j € S,

JESn
Step 2. Determine fi,; € [F,, as the policy attaining the maximum

fr1(i) € argmax {r,(i,a) + Z qu(a)vk(j)} for i € S,

a€An (i) €Sy

letting fr41(2) = fx(2) if possible.

Step 3. If fry1 = fi then f; is discount optimal for M,, and v, = V,*. Otherwise, increase
k by one and go to Step 1.

This algorithm provides a sequence {vy }r>o that is (componentwise) increasing. If the
algorithm does not terminate at some step k > 0, then there exists at least one 7 € S,, with
vg(1) < vgs1(i). The policy space F,, being finite, it follows that the algorithm converges
necessarily in a finite number of steps.

Hence, the finite state and action truncated models M,, can be indeed explicitly solved.

The Lipschitz continuous case. It remains to study whether it is possible to obtain a
rate of the convergence of V,%(i) to V(i), for i € S. We will now show that this is indeed
possible, although some of our assumptions on the control model M must be strengthened.

First of all, we prove the following useful result. In (2.3.1) below, note that the maxi-
mum is attained as a consequence of Corollary 2.1.6.

Lemma 2.3.3 Suppose that the control model M satisfies Assumptions 2.1.2, 2.1.4, and
2.1.5. Suppose also that there exists some u € B,(S) and some nonnegative function
v:S —[0,00) such that

‘au(i) - algj{i()i() {r(i,a) + Z qij(a)u(j)}‘ <w(i) forallies, (2.3.1)
jes

where the function v satisfies

ZQij(a)U(j) < —c(i) + b, forall (i,a) e K
jes
for some constants ¢, > —a and b, > 0. Under these conditions, we have
v (e b,
0,
a+c,  ala+cy)

V(i) —u(i)| < for each i € S.
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Proof. Given any initial state ¢ € S and an arbitrary Markov policy ¢ € ®, it can be
proved, as in (2.1.3), that

‘ b,
E“?o(z(t))] < e (i) + C—(l —e @) forallt>0, (2.3.2)

or E¥?[v(z(t))] < v(i) + byt in case that ¢, = 0.
Let f € IF be such that (recall Corollary 2.1.6)

max {r(i,a) + > ayla)u(i)} =r@. )+ aq;(fHulj) forallies,
JES

a€A(q es
and so, as a consequence of (2.3.1),
au(i) = r(i, f) = > qi(fHu(j) < v(i) forallic S.
jes

By Dynkin’s formula, for all 2 € S and ¢ > 0 we have

P e =) = B[ [ e[ = oute(s) + 2 auos( Duti]s]

JjeS
> —F [/Ot e [r(z(s), f) + v(a:(s))]ds]

By dominated and monotone convergence, we can take the limit as ¢ — oo to obtain, using
(2.3.2) that

oo

w@) < Ve, f)+Ei’f[ / e’o‘sv(x(s))ds]

0
: b,
o),
a+tc, ala+c)

vee) + avj—izzv a(ab:- Cy)

IN

Ve, f)+

IA

for each 7 € S.
On the other hand, if f* € F is a discount optimal policy for M, using (2.3.1) we obtain

—v(i) < au(i) — r(i, f) =Y _ q;(fulj) forallieS.
JES
Using the Dynkin formula for f*, for alli € S and t > 0
B e tu(a(t)] - ui) = BV | / e[~ au(a(s)) + Y quio(F)uli)]ds|

JeES

< B [/Ot e[ —r(z(s), ) + v(x(s))]ds]
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Letting t — oo and recalling that f* is discount optimal we obtain, proceeding as before,

that ‘ )
u(i) > V(i) — vli) ° for each i € S.
atc, ala+c)

The stated result readily follows. Il

Remark 2.3.4 As a side result, this lemma shows that if u € B, (S) is a solution of the
discounted reward optimality equation for M, then u = V'*, the optimal discounted reward
function. Indeed, if u is such solution, choose v =0 with b, = 0, and the result follows.

The next result shows an interesting fact about Lyapunov conditions. It states, roughly,
that if a Lyapunov condition holds for some function, then it is also satisfied for its powers,
provided that these are less than one.

Lemma 2.3.5 Given a family of conservative and stable transition rates {q;;(a)}, suppose
that the function h : S — [0,00) satisfies q(i) < h(i) for alli € S. If there exists a power
v > 0 and a constant ¢, > 0 such that

> ai(@)h () < e,h7(0)  for all (i,a) € K, (2.3.3)

JjeS

then for every power 0 < ~' <~

qu ) < e,k (i) for all (i,a) € K.

JjES

Proof: Fix (i,a) € K and n > 0. Rewrite (2.3.3) as

}j%mmwﬁ+(£§@ F 1)) < (7t + 1)), (2.3.4)

h(i) +n <= +1 h(i) +n

Define now

gii(a) g5 (a)
h(i) +n h(i) +1
These coefficients are nonnegative (we use here the fact that ¢(i) < h(z)) and >~ op; = 1.
Therefore, (2.3.4) is equivalent to

S ph () < (h(;”m + 1)),

JjeS

Di = +1 and p; = for j # i.

Using Jensen’s inequality for the concave function z — 27/ yields

> ot () < (o + ")

jes
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or, equivalently,

S g(@h?' () < B () ((h(;l - N 1) (h(i) + ).

JjES

Since 0 < 7//v < 1, we have

'y
( > +1)WV—1§ Kl

h(i) +n h(i) +n
and so
Z aij(a ) < ¢y Y (2),
jeS
which completes the proof. O

As a consequence of this lemma, we have the following. Suppose that there exists a
power v > 0 such that the Lyapunov function w, taken from Assumption 2.1.2, verifies for
some constants ¢, € R and b, > 0 the inequality

> gila)w (§) < —cw? (i) + by for all (i,a) € K. (2.3.5)
jes

We have also ) ¢;j(a)w(j) < (|ey| + by)w?(7), and so we can use Lemma 2.3.5 to derive
that, for every 0 <+ < 7,

Zng < (ley| +by)w? (4)  for all (4,a) € K, (2.3.6)

jES

and thus w" also verifies a Lyapunov condition as in (2.3.5):

qu —cwluﬂ (i) + b, forall (i,a) € K,

JES
with ¢, = —(|¢y| + b,) and b,y = 0.

Now we present our new conditions on the control model M. Namely, we will assume, as
before, that the control model M satisfies Assumptions 2.1.2 and 2.1.4, while Assumption
2.1.5 will be replaced with the following stronger condition.

Assumption 2.3.6 The control model M verifies the following conditions.
(i) The action sets A(i) are compact for every i € S.

(i) The functions a — g;;(a) and a — r(i,a) are Lipschitz continuous on A(i) for all
1,7 €S, that is,

|gij(a) = qi;(a’)| < Lijda(a,a’) and |r(i,a) —r(i,a’)| < Lida(a, a’)

foralli,j €S and a,a’ € A(i), and some constants L;; > 0 and L; > 0.
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(i1i) There are constants § > 2, ¢s > —a, and bs > 0 with

Z%g < —csw’(i) +bs  for all (i,a) € K.

jES

Part (i) of this assumption is the same as Assumption 2.1.5(i). Observe that the continu-
ity of the transition and reward rates imposed in Assumption 2.1.5(ii) is now strengthened
to Lipschitz continuity. The condition in Assumption 2.3.6(iii) above imposes a Lyapunov
inequality on some power § > 2 of the Lyapunov function w. By the previous discussion
(in particular, recall Lemma 2.3.5) this condition implies Assumption 2.1.5(iii). Therefore,
it is indeed true that Assumption 2.3.6 is stronger that Assumption 2.1.5. Regarding the
Lyapunov condition on w® above, note that it has the particular feature that the coefficient
cs is supposed to be strictly larger than —a; cf. Assumption 2.1.4(i).

We are now ready to state our main result on the convergence rates. Recall that,
starting from the original control model M, we construct the finite state and action trun-
cated control models M,,, as described in Section 2.3.1. Our next result shows that if we
choose a “sufficiently fine” grid of actions A, (i) for the control model M,,, measured by
the Hausdorff distance between A,,(7) and A(7), then we can achieve a convergence rate of
order 1/w’~2. For the next result, recall the notation 9 used in (2.1.4) and (2.2.1).

Theorem 2.3.7 Suppose that the control model M satisfies the Assumptions 2.1.2, 2.1.4,
and 2.3.6, and suppose that the action sets of the finite state and action truncated models
{M, }n>1 are chosen such that, for some constant D > 0 and every n > 1 and i € S,

Dw‘s(') -
wi=2(n) - (L; + 29Mw(n )Z;:&Lij)

pa(An(i), A7) <

Then there exists a constant ¢ > 0 such that for everyn > 1 and i € S,
6 .

. : w’ (i)

Vi) = V)| < ¢ ———.

| n (l) (Z)| >¢ w(g_z(n)

Proof. Fix n > 1 and ¢ € S,,. The discounted reward optimality equation for M at the
state i € S,, reads

aVe(i) = max {r(i,a) + qu (2.3.7)
JES
Thus, for every a € A(i) we have
aVe(i) = r(i,a) + 3 qy(a)Vey) =r(i,a) + > g;(a) — V(n)). (2.3.8)
JES jES
Observe now that, since ||[V*{], < 9N, recall (2.1.4),

Y (@ (veG) = vem)| <2 g

j>n i>n
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By monotonicity of w we have the following inequality
5 000 < i e
>n

As a consequence of Assumption 2.3.6(iii) and Lemma 2.3.5, we have the following Lya-
punov inequality on w’~t (cf. (2.3.6))

> gi(a) < (Jes| + bs)w®=1() for all (4,a) € K.

jeSs

In particular,

Z Qij<a)w5_1 _q“ + Z Qz]

i>n jeSs

< q(@)w’ M (4) + (Jes| + bs)w’ " (4)
< (L |es| + by)w’ (i),

IN

Consequently, we obtain from (2.3.8) that for every a € A(7)

1+ |C§| + b§>w5(i)
w®2(n) '

aVe(i >rza+2q” —V*n ))—2932(

Now, if a € A, (i) C A(i) we have, by definition of the control model M,,, that r(i,a) =
rn(t, a) and that g;;(a) = ¢f5(a) if 0 < j < n, while

- Z QU qm

We have thus shown that for every a € A, (i)

1+ |C5| + bg)wa(i)
w5—2(n) )

aVe(i) = ra(i,a) + Y qli(a) —2zm(

JESn

and therefore

(1 + Jes| + bs)w’(4)
w’=2(n) ’

aV?(i) > max {rn ia)+ > g@i(a)Ve()} —2m

a€An(

(2.3.9)

JESn

Starting again from (2.3.7), let a* € A(7) attain the maximum in that equation, so that

aVe(i) =r(i,a") + Zqij(a*)va( (1,a") + Zng —V*(n)).

jeSs jeSs
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Proceeding as in the first part of this proof, we derive

1+ |C§| + b(;)w(s(i)

aVe(i) <r(i,a* +un —Vn)) —1—29ﬁ( ()

(2.3.10)

By the Lipschitz continuity property in Assumption 2.3.6(ii), we have that the function

n—1

a r(i,a —|—qu (VE(5) = V¥n))

7=0

is Lipschitz continuous on A(7) with Lipschitz constant L; + 290tw(n) Z;:ol L;;. Therefore,
if a¥ € A, (i) is such that

dA(CLZ,CL*) = min dA(CL/,CL*> < pA(An(Z)vA(Z»

a’'€An (i)
we have, from (2.3.10),
V@) < r605) + Y e (V) — V)
- (L+ 20(0) 3 L)) A9+ 2 S DD

Recalling our hypothesis on pa(A,(i), A(i)) and letting
C =D+ 29(1 + |cs| + bs)

yields, by definition of the reward and transition rates of M,,, that

wd (i
aVe@) < rp(i,al) + Zq?}(aZ)Va(jH@%

e wH(n)

< max {r,(i,a) + Z g (a)Ve(i)} +C

acAn(i
) JESn

w’ (i)
w2(n)’

Combining this inequality with (2.3.9) finally establishes that

a n af al w(s(l) .
aVe(i) — aglélax {ra(i,a) + Z gj(a)V (])}‘ <C 2() for all i € S,,.
JESn

Now we are going to use Lemma 2.3.3 for the control model M,,. By construction of
M., recall in particular Proposition 2.3.2, the control model M,, satisfies the assumptions
in Lemma 2.3.3. Observe now that {V*(j)};es, € Bw(Sn) plays the role of the function wu,
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while the function v in Lemma 2.3.3 is now C %, for i € S,,. By Assumption 2.3.6(iii)
and arguing as in the proof of Proposition 2.3.2, it can be shown that
Cuw’(j) Cwd (1) Cbs
n — M <
2By S ) )

for all (7,a) € K,.

We can indeed use Lemma 2.3.3 to show that, for every ¢ € S,

e Cu’ (i) Cbs
V(i) — V)] < w2(n)(a +c5) | w2(n)ala+ )’

Therefore, letting
¢ — 6(01 + b(s)
ala+ cs)
we obtain the desired result. Il

This theorem shows that, if we consider a fixed initial state ¢ € .S, then the convergence
rate of V,%(i) to V(i) is of order 1/w’"2(n). Therefore, the convergence order is related
to the maximal exponent > 2 such that a Lyapunov condition

Zqij(a)w‘s(j) < —c;w’(i) +bs; for all (i,a) € K

jes
with ¢s > —a holds. Clearly, the larger we can find § with this property, the faster the
convergence.

An interesting fact in Theorem 2.3.7 is that the approximation error |V,*(i) — V(i)|
can be explicitly computed because it depends on the data of the original control model: it
depends on the function w and on related constants. Therefore, the finite state and action
truncations provide computable approximations with explicitly computable approximation
errors.

Moreover, notice that the condition on the finite action sets A, (), expressed in terms
of pa(A,(i), A(i)) in Theorem 2.3.7, is parametrized in the numerator by w°(i); assuming
that the Lipschitz constants of the reward and transition rates do not vary with ¢, this
requires to have a “dense” grid of points A, (i) in A(i) for small values of the state i,
whereas this grid is allowed to be “sparse” for large values of 1.

2.3.3 Finite truncations for average models

Now we are interested in the expected average reward optimality criterion for the control
model M. To approximate its optimal value and policies we consider the finite state and
action truncations {M,,},>; defined in Section 2.3.1.

The basic assumptions for the control model M under the average reward criterion are
Assumptions 2.1.8, 2.1.9, and 2.1.11. Our next result explores whether these conditions
are inherited by the truncated control models M,,, that is, to check whether Assumption
2.2.8 is satisfied.
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Proposition 2.3.8 If the control model M satisfies Assumptions 2.1.8, 2.1.9, and 2.1.11,
then the truncated control models M, verify Assumption 2.2.8 except perhaps item (v),
and M,, - M.

Proof. The fact that Assumptions 2.2.8(i)—(iv) are satisfied by the M,, is proved as in
Proposition 2.3.2 and we omit the details. Concerning Assumption 2.2.8(v) observe that
it is not possible to deduce that each policy in [F,, is irreducible for M,, from irreducibility
of policies in F for M. Indeed, since the control model M, consists in “restarting” the

process at state n when it leaves {0,1,...,n}, the states in S,, need not communicate. For
instance, suppose that for M the only way to go from 0 to 1 is by visiting n 4+ 1. Then,
for M,,, the states 0 and 1 will not communicate. ]

From this proposition we deduce that the control model M,, might not have a constant
optimal average reward, and that there might not exist solutions to its average reward
optimality equation. This is an important departure point from the discounted case for
which Proposition 2.3.2 indeed establishes that the optimal discounted rewards of M,
converged to those of M.

By recovering the conditions in Theorems 2.2.9 and 2.2.10 we can, however, obtain
convergence. For our next result, recall that g denotes the optimal gain of the control
model M,,.

Proposition 2.3.9 Suppose that the control model M satisfies Assumptions 2.1.8, 2.1.9,
and 2.1.11, and assume further that the finite state and action truncated models M,, are
such that every policy in [F,, is irreducible. Suppose that one of the conditions below hold:

(a) Either there exist solutions (g, hn) € R x By, (S,) to the average reward optimality
equation of M, such that sup, ||hn||lw < 00,

(b) Or there exist constants 6 > 2, c¢s > 0, and bs > 0 such that

ZQij(a)w6(j) < —csw’(i) +bs  for all (i,a) € K.

JjeSs

Under these conditions, the optimal gains g of M,, converge to the optimal gain g* of M,
and any limit policy of average optimal policies for M,, is average optimal for M.

Proof. Under the additional irreducibility condition, we have that the finite state and
action truncated control models M, satisfy Assumption 2.2.8 with, moreover, M,, — M,
recall Proposition 2.3.8. If part (a) holds, then the result follows from Theorem 2.2.9. If
part (b) is true, the we can proceed as in the proof of Proposition 2.3.2 to show that the
condition in Theorem 2.2.10 is satisfied by the M,,. O

As already mentioned, for practical purposes, the condition in (b) is easier to manage
than (a) for a given control model M.
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Solving a finite average control problem.

To solve explicitly a finite state and action control problem with irreducible stationary
policies, one can use the policy iteration algorithm. This algorithm has been analyzed in
[14] and also in [31, Section 4.2.2]. We describe it next.

Step 0. Choose an arbitrary policy fy € F,, and set k = 0.

Step 1. Determine the gain ¢i*) € R of f; and a vector hy, € B, (S,) such that (¢*), hy)
is a solution to the Poisson equation for fj

g® =i, fi) + > a5 (f)hi(s) fori € Sy,

JESn
Step 2. Determine fi,; € [F,, as the policy attaining the maximum

fis1(i) € argmax {r,(i,a) + Z ¢ (a)hi(j)} forie S,

a€Ay(7) §ESn
letting fr41(2) = fx(4) if possible.

Step 3. If fiy1 = fi then f; is average optimal for M,, and ¢®) = g*. Otherwise, increase
k by one and go to Step 1.

The sequence {g*)};>¢ is monotone nondecreasing and if the algorithm does not stop at
step k then ¢®) < ¢(*+1 . The policy space F,, being finite, the algorithm necessarily ter-
minates by solving the average reward optimality equation for M,, and finding an average
optimal policy.

The Lipschitz continuous case. Now we aim at obtaining rates of convergence for the
convergence to the optimal gain of the original control model M. To do so, we need to
impose stronger assumptions on our control model. We begin with our next result, which
is an average reward version of Lemma 2.3.3. It does not need to assume that stationary
policies are irreducible.

Lemma 2.3.10 Let the control model M satisfy Assumptions 2.1.8, 2.1.9, and 2.1.11(i)-
(iii). Suppose that there exists a pair (g,h) € R x B,(S) and a nonnegative function
u: S — [0,00) such that

_ . - N <o .
‘g ;22(}1_() {r(i,a) + Zq,](a)h(j)}‘ <wu(i) forall (i,a) € K,
JES
where u is such that there exist constants ¢, > 0 and b, > 0 with
Z gij(a)u(j) < —cyu(i) + b, for all (i,a) € K.
j€S
Under these conditions,

by )
|J(i) —g| < — forallieS.

U
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Proof. Given arbitrary o € ®, ¢ € S, and t > 0, we have
jes
Using Dynkin’s formula for the function h € B,,(S) we obtain
Elha(t)] - 1) = B[ [ 3 qslss ol
0 jes

< gt+ Ei’“"[/otu(x(s))ds] - Ei"o[/otr(s,x(s), gp)ds].

Dividing by ¢ > 0 and rearranging terms yields

lEi’@[/Otr(s,x(s),cp)ds} +%<E""“"[h(x(t))]—h(i)) < g—i—%Ei""[/Otu(x(s))ds] (2.3.11)

t

Observe that |E*?[h(z(t))]| < |[hllwE"[w(z(t)] < [|Allw(e™w (i) + by /c1), as a conse-
quence of (2.1.3). Therefore, we have

lim %(EW[W@))] (i) =0

t—o0

By (2.1.3) applied to the function u we have E*?[u(z(s))] < e™* + b, /c,, and so

t
lim sup %EW[/ u(x(s))ds] < b—u
0

t—o0 Cy

Taking the limsup as ¢ — oo in (2.3.11) gives J(i,¢) < g + b,/c, for every i € S and
¢ € ®. Therefore, for each ¢ € S we have J(i) < g + b,/c,.
Choose now a policy f € [F such that

g—u(i)<r(, f)+ ZQij(f>h(j) for alli € S.

jes

Proceeding as in the first part of this proof we can show that J(i) > J(i, f) > g — bu/cy
for each ¢ € S. The stated result follows. O

Now we give our additional condition on the control model M. This condition is
stronger than Assumption 2.1.11 and will henceforth replace it. It is inspired from As-
sumption 2.3.6.

Assumption 2.3.11 The control model M verifies the following conditions.

(i) The action sets A(i) are compact for everyi € S.
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(1) The functions a — g;j(a) and a — r(i,a) are Lipschitz continuous on A(i) for all
1,7 €5, that is,

|gi(a) — qij(d')| < Lijda(a,d’) and |r(i,a) —r(i,d')| < Lida(a,a’)
oralli,j €5 and a,a” € A1), and some constants L;; > 0 and L; > 0.
foralli,j €S and "e A(7) d Lij >0 and L; >0

(111) There are constants § > 2, ¢s > 0, and bs > 0 with

un < —csw’(i) +bs  for all (i,a) € K.

jeS
(iv) Each deterministic stationary policy in F is irreducible.

We can use Lemma 2.3.5 to show that item (iii) implies Assumption 2.1.11(iii), so that
indeed Assumption 2.3.11 is stronger than Assumption 2.1.11.

This is our main result on the convergence rates to g*. Since we are not assuming
irreducibility of the policies in F,,, the optimal gain ¢} of M, needs not exist, and hence
our result refers to the optimal average reward J,,(i) for ¢ € S,.

Theorem 2.3.12 Suppose that the control model M satisfies the Assumptions 2.1.8, 2.1.9,
and 2.3.11, and suppose that the action sets of the finite state and action truncated models
{M}n>1 are chosen such that, for some constant D > 0 and every n > 1 and i € S,

Dw‘s(')
w=2(n) - (L; + 282w (n) Y1) Lij)

Then there exists a constant ¢ > 0 such that for every n > 1

pa(An(i), A(1)) <

. i} c

Iirel%nXUn(Z) -9 < 21)(5_—2(71)
Proof. Let (¢*,h) € R x B,(S) be a solution to the average reward optimality equation
for the control model M with ||h||, < RM/~; recall Corollary 2.1.15. Let n > 1 and
1 € S, and write the average reward optimality for the control model M at state i € S,,:

g = arggx {r 1,a +Z%j(a)h( )}

= max {r(i,a) + qu — h(n))}. (2.3.12)
Observe now that for all a € A(i)
S as@)(h) — )| < 2003 gy @),

j>n i>n
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Arguing as in the proof of Theorem 2.3.7, we obtain

> aila)w()) _w5 2 qu

i>n

By Assumption 2.3.11(iii) and Lemma 2.3.5,

S gis(@)w? () < (5 + bs)w® (1)

JjES

and so

> aij(a) < (14 cs5 4 bs)w’(4).

i>n

Therefore, from (2.3.12), for every a € A(1),

n—1

g = r(i,a) + Y ay(a)(h(j) = h(n)) -

Jj=0

2RM

m(l + Cs + b(;)wd(l)

Suppose now that a € A, (i) C A(i). Recalling the definition of the transition and reward
rates of the truncated control model, the above inequality can be written

2RM
g > m(i,a) + ¢ (a)h(§) — ———(1 + ¢5 + bs)w’ (i),
() + 3 dh(a)nti) -~ (i
so that
. 2RM .
g Zaglzix {ra(i,a) + Zq” m(1+05+b5)w (7). (2.3.13)

JESn

Proceeding with the proof, let a* € A(7) attain the maximum in (2.3.12), that is,

g =r(i,a’) + Z%’j(a*)(h(j) — h(n)).

jes
As before, we obtain
— 2R
g <ria”) + Y ay(a”)(h(h) = h(n)) + =55 (1 + c5 + bs)uw’ (i).
= yw’=2(n)
By Assumption 2.3.11(ii), the function
n—1

a r(i,a) + ZQij(CL)(h(j) — h(n))

J=0
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is Lipschitz continuous on A(i) with Lipschitz constant L; + @w(n) Z;:Ol L;;. Conse-
quently, letting a* € A, (i) given by

dA(afL,a*) = min dA(a/7a*) S pA(An(Z)’A(Z))’

a’€An (1)
we obtain
2RM
< i —h —(1 bs)w’ (i
g <r(i +qu () + —smagy (L + o + )’ ()

+ (LZ- 2RM 3§ LU> i), A(0)).

=0

<.

By the condition on pa(A,(i), A(i)), letting

— 2RM
C:D+T(1+05+b5)

we obtain

— w’(i)
gt <r(i +qu — h(n)) +C

or, recalling the definition of r,, and ¢", that

6.
g <rp(i —|—qu Cw(z).

JESH

Recalling the inequality (2.3.13), we have thus established that

— w’(7)
* " ] < )
)g aglélax {ra(i,a —l—jgs qu(aﬂl(])}‘ <C 2 () for every i € S,.

We apply now Lemma 2.3.10 to the control model M,, for the function

indeed, note that M,, satisfies the conditions given in that lemma (recall Proposition 2.3.8)
because Lemma 2.3.10 did not assume irreducibility of stationary policies. Hence, letting
¢ = Cbs/cs, for all i € S, we get

|Jn (i) — 97| < m-

The proof is now complete. O
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This result shows that the optimal average reward of the control model M,, converges
to g*, the optimal gain of the original control model M, at a rate 1/w’~2(n). Therefore, the
convergence rate is related to the maximal exponent § > 2 for which a Lyapunov condition
of the form

> aila)w’ () < —csw’ (i) + by for all (i,a) € K

j€s
holds, with the condition that cs > 0. Interestingly, the convergence of J,(i) to g* is
uniform in ¢ € S,, as n — oo.

Observe also that the constant ¢ in the convergence rate depends on the data of the
original control model M, except perhaps for the constants R and ~ from exponential
ergodicity.

2.4 Applications

Now we show some applications of the results in the previous section. We study a dis-
counted reward problem in Section 2.4.1 and an average reward problem in Section 2.4.2.

2.4.1 A population system with catastrophes

Our next example is a generalization of the population system proposed in [17, Exam-
ple 7.2]; see also [33, Section IV].

We describe the elements of the controlled population system M. The state space is
S ={0,1,2,...}, which stands for the size of the population. The natural birth and death
rates of the population are A > 0 and p > 0, respectively.

We suppose that the decision-maker controls the immigration rate a taking values in
the interval a € [0, ay], for some as > 0. Also, when the population size is i > 1, we assume
that a catastrophe occurs at a rate d(i,b) > 0, which is is controlled by an action b € [by, bs]
chosen by the controller. Therefore, the action space is A = [0, as] x [by, bs] and the action
sets are

A(O) = [O,CLQ] X {bl} and A(Z) = [O,CLQ] X [bl, bg] for 4 > 1.

Note that when the population size is 0, the controller does not take any action regarding
the catastrophes: this is represented by the “void” action b;. To have a unified notation,
we define nevertheless d(0,b) = 0 for all b € [by, bo].

If a catastrophe occurs when the size of the population is ¢ > 1, we denote by 7;(j), for
1 <5 <4, the probability that j individuals perish in the catastrophe. We must have

Z%’(j) =1 for each i > 0.
j=1

Let us now define the transition rates of the system. In state ¢ = 0 they are given by

qo1(a,b) = a = —qoo(a,b) for all (a,b) € A(0),
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while for i > 0 and (a,b) € A they are given by

0 for j > i+ 1,

A +a for j =1+ 1,
¢ij(a,b) = —(A+p)i —a—d(i,b) for j =i,

wi + d(i,0)v:(1) for j=i—1,

d(i, b)v:(i — j) for 0 <j<i—1.

When the population size is ¢ € S, the controller receives a reward at a rate p - for
some p > 0. The cost rate for controlling the immigration and the catastrophe rates is
c(i,a,b), for (i,a,b) € K. We will thus consider the net reward rate

r(i,a,b) = p-i—c(i,a,b) for (i,a,b) € K.
The rewards earned by the controller at depreciated at the constant discount rate a > 0.

Assumption 2.4.1 The controlled population system M verifies the following conditions.

(i) There exists constants 0 < d,,, < dp; such that dp, - i < d(i,0) < dp-i for alli € S
and b € [bl, bg]

(i1) For some constant cy; we have |c(i,a,b)| < epy(i+ 1) for all (i,a,b) € K.
(iii) The functions d(i,b) and c(i,a,b) are continuous in a and b for each i € S.

Note that part (ii) in this assumption indeed implies that d(0,b) = 0 for b € [by, bs].
We choose the Lyapunov function w of the form w(i) = R- (i + 1) for i € S, where the
constant R satisfies

R > max{l,k—i—u—i—ag +dM}

Here is our first result on the control model M.

Proposition 2.4.2 If the discount rate a > 0 verifies « > X\ — p — d,,, then the controlled
population system M satisfies Assumptions 2.1.2, 2.1.4, and 2.1.5.

Proof. By its definition, it is clear that w is a Lyapunov function on S. Also by con-
struction, it satisfies ¢(i) < w(i) for each i € S because q(i) < (A + p + dar)i + ay for all
1es.

A direct calculation shows that, for all (i,a,b) € K

[y

71—

S gis(a,bw(j) = (A — (i) + R(p— A+ a) — Rd(i,5) S (i — k)i — ).

j€S 0

i

(Note that the above sum is not defined when i = 0, but in this case the factor d(i,b)
vanishes.) Since d(i,b) S"1_ (i — k)vi(i — k) > d,i it follows that

> gilab)w(j) < (A= p— dp)w(i) + R(p — A+ ay +dy)  for all (i,a,b) € K.

jes



2.4. Applications 65

Therefore, Assumption 2.1.2 holds for
ci=p—A+d, and b =R|p— N+ ay+dyl

The condition «a + ¢; > 0 is indeed satisfied and so Assumption 2.1.4(i) holds. It is also
easily seen that Assumption 2.1.4(ii) is satisfied.

Regarding Assumption 2.1.5, parts (i) and (ii) follow directly from our condition on the
population system M. Concerning part (iii), it can be shown that for all (i,a,b) € K, the

quantity ¢ gij(a, b)w?(j) equals
2\ — (i) + B2 — A+ 3puli) + B¥a — A — o) — d(5,b) S [(w3(0) — w(E) (i — )

£
Il

and thus
> aijla,b)w?(j) < 2(A — p)w’(i) + R(2a3 — A + 3p)w(i) + R*(az — A — p)
JES

:w%ﬂ@@—u%% R(2a3 — A+ 3p) + —

b L
w(i) w?(17)

Given € > 0, choose i( large enough such that ¢ > iy implies

R%@—A—MQ.

1
R(2a2 — A+ 3#) + 3

w—(’L)R (ag—)\—u)<e.

b
w(i)
Fur such ¢ > iy and (a,b) € A(i) we have
Z qij(a’7 b)wz(j) < (2()\ - ,LL) + €)w2<i)7
jes

while choosing the constant by > 0 large enough, we have for all 0 < i < 4y and (a,b) € A(7)

that
Z%’j(aa D)w?(5) < (2(A — p) + €)w?(i) + by,
jes
thus showing the condition in Assumption 2.1.5(iii). O

As a consequence, if we consider the finite state and action truncations of M, as defined
in Section 2.3.1, we can use Proposition 2.3.2 to conclude that, for every initial state ¢ € .S,
the optimal discounted value V.*(i) of M,, converges to the optimal discounted reward
Ve (i), and also that limit policies of discount optimal policies for M,, are optimal for M.
This holds for every discount rate a with v > A — p — d,,.

Under some additional conditions, we can obtain an explicit convergence rate.

Proposition 2.4.3 Let the controlled population system M verify Assumption 2.4.1 and
suppose, in addition, that the functions c¢(i,a,b) and d(i,b) are Lipschitz continuous in a
and b for every fized i € S. Under these conditions,
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(i) If u > X then for every discount rate o« > 0 and every v > 0 we can adequately choose
the action sets for the truncated finite state and action control models M,, so that

V(i) = Vi) =0(mn"") asn — oo forallieS.

(i) If 1 < A then for every discount rate ov with o > 2(\— ) and every 0 < v < ﬁ -2,
we can adequately choose the action sets for the truncated finite state and action
control models M,, so that

Vi) = Vi) =0(n~") asn — oo foralli € S.

Proof. Fix an arbitrary power 3 > 2 and consider the Lyapunov function i — w?(i).
Writing down the expression for EjeS ¢ij(a,b)wP(j) as a series of powers of i +1, i.e., using
expressions such as

(i42)° = (i+1)P+66+1)"14+0((i+1)"72) or ¥ = (i+1)P—BGi+1)"14+0((i+1)"2),

it can be shown that for all (i,a,b) € K
> ai(ab)w’(j) < B = pw’@) + O +1)7)

i+ 1)°1
= w8 (50— )+ L),

Now we proceed as in the proof of Proposition 2.4.2. For every € > 0 there exists some
ip € S such that the expression within parentheses is less than G(\ — u) + € for all i > i
and, therefore, for such i > iy and (a,b) € A(i) we have

S i@, P () < (B — 1) + ().

Finally, by choosing bz > 0 large enough we obtain

Z qij(a, D)w’ () < (BN — p) + €)w’ (i) + bz for all (i,a,b) € K. (2.4.1)

jES

Therefore, a Lyapunov condition for w” holds for every S > 2. We will now obtain the
convergence rates by checking Assumption 2.3.6(iii).

Consider the case > X. Let a > 0 be the discount rate and choose any v > 0. Let
B =7+2andlet 0 < e < . Then we indeed have the condition in Assumption 2.3.6(iii)
because S(A — p) + € < a; recall (2.4.1). Therefore, by Theorem 2.3.7, we can choose the
action sets of M,, to achieve an O(n~7) approximation error.

Consider now the case p < A and let o be a discount rate with o > 2(A — p). For any
0<y< /\%M—Q, let 5 =7v+2,s0that 2 < < /\O‘TM Choose € > 0 with € < a — (A — p).
The condition in Assumption 2.3.6(iii) holds (recall (2.4.1)) and we can determine the
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Figure 2.1: The optimal discounted rewards V.*(7) for ¢ = 5,10, 15.

action sets of M,, so as to obtain a convergence order of O(n~7). U

Numerical experimentation. We fix the values of the parameters
A= 305, on = 3, a9 = 5, b1 = 5, bg = 8.

The catastrophe rate is given by d(i,b) = ib/10 for ¢ > 0 and b € [5,8]. The distribution
{7i(j)} of the catastrophe size is a truncated geometric distribution with parameter y = 0.8;
more precisely, given ¢ > 0,

) = Y (1—7)

Yi(J . for 1 <j <.
1 —7

Finally, the net reward rate is
r(i,a,b) = (10 — (a — 2)* — 0.5(b — 8)%) i.

The interpretation of the term (a—2)? is that we suppose that there is a natural immigration
rate (which equals 2), and that augmenting or diminishing this natural immigration rate
implies a cost for the controller. Similarly, the term (b — 8)% means that there is a natural
catastrophe rate (which equals 8), and the controller incurs a cost when decreasing it. The
discount rate is @« = 0.1. Note that we are indeed under the conditions of Proposition
2.4.2, and so the optimal value and optimal policies of M,, converge to those of M.
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Figure 2.2: The optimal policies f(i) for i = 5,10, 15

For every m > 1, we consider the truncated control model M, with state space S, =
{0,1,...,n} and action sets

A,(0) = {% 0< 0 < 2n} % {b}

and

A (i) = {(% , b+ 5—;(172 — bl)) 10 < /tq,0y < Zn} for ¢« > 0.
In particular, the actions sets A, (i) verify the Hausdorff convergence property given in
Definition 2.2.1.

For every 1 < n < 70, we solved the discounted control problem for M,,. Given
the initial states i = 5,10, 15, the discount optimal rewards V,*(i) and the optimal actions
actions a; (i) and b, (i) for M,, are displayed in Figures 2.1 and 2.2, respectively, as functions
of n.

Empirically, we observe that the optimal reward and actions quickly converge, and
become stable for relatively small values of n. We observe that the graph in Figure 2.1
is smoother, whereas the actions displayed in Figure 2.2 are somehow saw-shaped. This
should not be surprising because V,*(7) is obtained after some kind of “averaging”, while
the actions shown in Figure 2.2 take values proportional to 1/2n for 1 < n < 70.

2.4.2 A controlled birth-and-death process

We consider the control birth-and-death system studied in [17, Example 7.1] under the
average reward optimality criterion.

The state space is S = {0,1,...} and the state variable stands for the size of the
population. The population’s natural birth rate is A > 0, while the death rate is assumed to
be controlled by the decision-maker. More precisely, we consider the compact action space
A = [p1, po), for 0 < py < po, with A(i) = A for all i € S. So, the death rate corresponds
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to an action @ € A chosen by the controller. In addition, we suppose that, when the
population decreases, either one or two individuals die, with respective probabilities p;
and po. In order to avoid extinction, we assume also that, when the population size is 0,
the birth rate is given also by A, which is then interpreted as an immigration rate.
Therefore, the transition rates of the original control model M are, for ¢ = 0,

qo1(a) = A= —quo(a) fora e A,
whereas, for i = 1,
qo(a) = a, q11(a) = —(a+ A), q12(a) =\ for a € A.

For ¢ > 2, the transition rates of the system are given by

Dot for j =1 — 2,

prai for j =1 —1,
gij(a) = ¢ —(a+N)i for j =1,

i for j =i+1,

0 otherwise,

for each a € A, with p;,ps > 0 and p; + po = 1.

We suppose that the controller receives a reward p-¢ per time unit when the population
size is 1 € S, where p > 0 is a given constant. Moreover, we suppose that the cost rate
when taking the action a € A in state i € S is ¢(i,a). Thus, the decision-maker considers
the net reward rate function

r(i,a) =p-i—c(i,a) forall (i,a) € K.
Next we state our assumptions on this controlled model.

Assumption 2.4.4 The controlled birth-and-death system M wverifies the following con-
ditions. For some constant cpy we have |c(i,a)| < cp(i + 1) for all (i,a) € K, and the
function c(i,a) is continuous in a € A for every i € S.

We check our hypotheses on this control model.

Proposition 2.4.5 If the controlled birth-and-death system verifies Assumption 2.4.4 and
p1(1 + po) > A, then the Assumptions 2.1.8, 2.1.9, and 2.1.11 hold. If, in addition, we
have

A<p and py<1/2

then the conditions in Remark 2.1.12 hold.
Proof. We consider the Lyapunov function w(i) = C(i + 1), for i € S, where the constant

C' satisfies
C > max{1, A + us}.
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With this definition, w is a Lyapunov function and it indeed satisfies ¢(¢) < w(i) for each
1 € S. Direct calculations give, for every a € A,

D ai(@)w(i) =Cx and Y qy(a)w(j) = —Cla— )

jes jes
and, for ¢ > 2,

Z gij(@w(j) = —(a(l+p2) —Nw(i) + Cla(l+p2) — A) (2.4.2)
< = (1 +p2) = Nw(i) + Cuz(1 4+ p2) — A).

Choose now ¢ with 0 < ¢; < p1(1 4 p2) — A and let Iy > 2 be such that ¢ > I implies

C
——(p2(1+p2) = A) < (1 +p2) = A —cu.

w(i)

Then, for ¢ > Iy and a € A we have

Zqij(a)w(j) < w(z)( — (1 (14 p2) = A) + %(,&2(1 +p2) — )\)) < —cqw(i).

Clearly, choosing b; > 0 large enough, we have

Zqij(a)w(j) < —cqw(i) + by for 0 <i<Iyand ae€ A(7).

jes

Therefore, Assumption 2.1.8 holds for the finite set D = {0,1,..., Io}.

It is trivial to check that Assumptions 2.1.9 and 2.1.11(i)—(ii) hold. Also, each deter-
ministic stationary policy f € F is irreducible because the process can travel with positive
probability between any two states (by augmenting or diminishing the state by one unit).
Finally, it remains to study Assumption 2.1.11(iii).

Fix a power 3 > 2. The idea is to write g;;(a)w?(j), for i > 2 and a € A, as a power
series of (i + 1), in which we keep the terms of degree § + 1 and 3. Proceeding this way,
we obtain:

Giia(Q)wP(i —2) = % w1 (3) — paa(l + 28) - wP (i) + R_s(i, a),
G (Quwi(i—1) = f% B (i) — pra(l + B) - wP(i) + R_1(4, ),
qii(a)wﬁ(i) = _a—gA . wﬁﬂ(i) + (a+A)- wﬁ(z’),

Gin(@)e() = 2wt A~ 1) wli) + Rifisa),
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where the residual terms R, are all O((i + 1)°~!) and they verify

lim sup —| Ry(i, a)

=0 forl=-2-1,1.
i-)oanA wﬁ(z) or ) 9

Summing the above equations yields

Y ay(@w’(j) = —pla(l +p2) = N) - w’(@) + Y Rili,a)

jeS ¢

< w0 (~Bn(1-+p) -0+ ZHLA),

Therefore, proceeding as in the proof of Assumption 2.1.8, if

0 < cs < B(u(1l+p2)—N),
choosing [ large enough such that ¢ > I implies

%8@ Sﬁ(ﬂl(l‘i‘pz)—)\)—% for all a € A,

and letting bg > 0 be large enough, we obtain
> aila)w?(j) < —cpuw’(i) + b {0 < i < I} for all (i,a) €K,
JjeSs

which is in fact stronger than the requirement in Assumption 2.1.11(iii).

Let us now focus on the conditions given in Remark 2.1.12. For item (a), we must check
Assumption 2.1.8 but now for the set D = {0}. In this case, we assume that p; > A, which
implies that p1(1 4+ po) > A

From (2.4.2) we have that, for i > 2 and a € A,

> gijla)w(j) = —Ci(a(l+ ps) = A) < =Ci(p(1+pa) — ).

jeSs

Therefore, choosing

(\]

0<c¢ < g(ﬂl(l + p2) — /\)
we obtain, for all 7 > 2 and a € A

Z(h’j(a)w(j) < —ciw(i). (24.3)
jes

For i =1 and a € A, we have ), g;j(a)w(j) < —C(u1 — A). Consequently, if we choose

. 1

G = 5(#1 —A) < S (T +p2) = N),

[SSE
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then (2.4.3) holds also for i = 1. Finally, since }_; gojw(j) = C'A, we conclude that letting

.1 - C
¢ = §(u1 —A) and b = EQ“ +A)

yields
> qw(j) < —éw(i) + biI{i =0} for all (i,a) € K,
j€S

and so part (a) in Remark 2.1.12 holds.

For the monotonicity conditions in part (b), after some elementary computations, it
can be shown that these monotonicity conditions hold provided that p, < 1/2 (the critical
values to obtain this bound are i = 1 and k = 1). Finally, it is obvious that part (c) in
Remark 2.1.12 holds.

Consequently, under these additional conditions, the constants R and ~ in the uniform
exponential ergodicity conditions become

- C A 1
R:2(1+bl/61):2(1+%) and 7:5125(,“1—)\).
L —

The proof is complete. U

Let g* € R be the optimal gain of the controlled birth-and-death process M. Consider
the finite state and action truncated control models M,,, for n > 1, as defined in Section
2.3.1. By construction of the M,,, deterministic stationary policies are irreducible for M,,.
So, let g¥ € R be the optimal gain for M,,.

We can use Proposition 2.3.9 to establish the convergence g — g*. Proposition 2.3.9
gives, namely, two different sufficient conditions (a) and (b), which correspond to items (i)
and (ii) in the result below, respectively. Our next result makes a direct application of the
results in Proposition 2.4.5 and its proof is straightforward.

Proposition 2.4.6 Suppose that the controlled birth-and-death process M satisfies As-
sumption 2.4.4.

(i) If uy > X and py < 1/2 then the condition in Proposition 2.3.9(a) holds. So, g% — ¢*
and limit policies of average optimal policies of M,, are average optimal for M.

(ii) If (1 + pa) > A then the condition in Proposition 2.3.9(b) holds. So, g — g*, and
limit policies of average optimal policies of M,, are average optimal for M.

Consequently, at least for this example, the Lyapunov condition on w® given in Proposi-
tion 2.3.9(b) is weaker than the monotonicity conditions in Proposition 2.3.9(a) because, as
already noticed, 1 > A implies p1(1 + pa) > A. Therefore, the technique of the Lyapunov
conditions on w® appears to be a powerful tool from the applications perspective.

The interpretation of the inequality p;(1 + p2) > A is as follows. The minimal death
rate is p1, while the expected number of perished individuals is p; + 2ps = 1 + py. Hence,
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105 -

20 40 60 80 100
Figure 2.3: The optimal gain g;.

t1(1 4+ po) > A states that the minimal death rate (taking into account the diminution of
the population) is larger than the birth rate: this is just the usual ergodicity condition of
a birth-and-death process.

Finally, we address the issue of the convergence rate.

Proposition 2.4.7 Suppose that the controlled birth-and-death system satisfies Assump-
tion 2.4.4, with py(1+ p2) > A, and suppose also that the function a — c(i,a) is Lipschitz
continuous on A for each i € S, with a Lipschitz constant L; such that L; < £(i + 1) for
all i € S. Under these conditions, given 0 > 2, if we choose the actions sets A,(i) of the
truncated control model M,, such that, for some constant D > 0,

forallm>1andi € S,

then there is some constant ¢ > 0 with

1
9 = 9"l < == foralln>1.

Proof. We can use Theorem 2.3.12, which indeed applies as a consequence of our hy-
potheses and the proof of Proposition 2.4.5. Regarding the condition on p4(A, (i), A),

observe that L; is of order i, while ) ; Lij 1s of order i as well. Therefore, the Hausdorff
distance between A, (i) and A(7) must be bounded by Dw?(i)/w’(n) to obtain the desired
convergence rate. O

Therefore, under our standing conditions, we can reach any convergence rate 1/n”, for
£ > 0, provided that we choose sufficiently fine grids of points when discretizing the action
space A.
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20 40 60 80 100
Figure 2.4: The optimal actions f(6).

Numerical results. For this controlled birth-and-death system, we fix the following
values of the parameters:

A=05, puy =45, pus=7 p=0.75 py =025 p=10,

and so, p1(1 + pa) > A holds but not p; > A; recall Proposition 2.4.6. The reward rate
function is
r(i,a) = pi — (a — pp)* (1 + pp —a)-i for all (i,a) € K.

The cost rate function c(i,a) = (a — p2)? In(1+ gy — a) - i can be interpreted as follows.
Suppose that ps is the natural death rate of the population. The controller can decrease
this natural death rate by using an adequate medical policy. Hence, the farther the real
death rate a € [puq, u2] is from the natural death rate o, the more expensive is the medical

policy.
The finite state and action truncated control model M, has state space

S, ={0,1,...,n}

and action sets A,(i), for i € S, given by

k
{,u1+2—(u2—u1):0§k§2n}.
n

The transition and reward rates are defined as in Section 2.3.1. In particular, all the
transition rates remain unchanged:

gi;(a) = gij(a)  except for g, (a) =—an for a € A,(i).

For each 1 < n < 100 we solve the truncated control model M, by using the policy
iteration algorithm. In Figure 2.3, we show the optimal gain g’ as a function of n. To
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study the convergence of optimal policies, Figure 2.4 shows the optimal actions f*(6) for
M,, as a function of n. Empirically, it is clear from Figures 2.3 and 2.4 that the sequences
{g:} and {f(6)} converge. We deduce the approximate values

g =10.6603 and [*(6)=5.3125,

for the optimal gain ¢* and an optimal policy f* of M.






Chapter 3

Approximation of Markov games

This chapter is organized as follows. In Section 3.1 we define the game models we will
be dealing with, state our main assumptions, and recall some previously known results
on the discounted and average payoff optimality criteria. Convergence of game models is
defined in Section 3.2, in which we also state our assumptions on the sequence of converging
game models. In Section 3.3 we give our main results on approximations of game models
under the discounted payoff optimality criterion, while Section 3.4 addresses these issues for
the average payoff criterion. Finally, in Section 3.5 we make an application to a controlled
population system managed by two players, and we show some computational results using
the techniques developed herein.

The results presented in Section 3.1 are already known and they are mainly borrowed
from [15, 16, 31]. The rest of the material in this chapter is an original contribution and
it corresponds to the publications [34] for the discounted payoff criterion and [26] for the
average payoff criterion.

3.1 Basic results

The definition of the game model in this chapter and the corresponding basic results are
mainly borrowed from [15, 16] and [31, Chapter 10].

3.1.1 The game model §
We consider a two-player zero-sum continuous-time Markov game model
G={S, A BKQ,r},
where the elements of G are the following.
e S=1{0,1,2,...} is the state space.

e A and B are the action spaces for players 1 and 2, respectively. We assume that A
and B are Borel spaces (i.e., measurable subsets of complete and separable metric
spaces). The corresponding metrics are denoted by d4 and dp, respectively.

77
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e For each ¢ € S, the nonempty measurable sets A(i) C A and B(i) C B stand for
the actions available for players 1 and 2 in state ¢ € .S, respectively. The family of
feasible triplets is defined as

K={(i,a,b) e Sx Ax B:a€ A(i),b € B(i)}.

e The transition rate matrix of the system is @ = [g;;(a,b)]. It is assumed that:

(1) The function (a,b) — ¢;;(a,b) is measurable on A(i) x B(i) for all i,j € S;
(2) The transition rates are conservative, that is,
Zqij(a, b) =0 for all (i,a,b) € K|
jes
with ¢;;(a,b) > 0 whenever i # j;
(3) The transition rates are stable, i.e., q(i) := SUPye () pen@l —¢i(a, b)} < oo,

e Finally, the measurable function r : K — R is interpreted as the reward rate function
for player 1 and the cost rate function for player 2.

The game G is played as follows. At each time ¢t > 0, both players observe the state of
the system z(t) =i € S and then, independently and simultaneously, they choose actions
a(t) =a € A(i) and b(t) = b € B(7). In a small time interval [t,t + dt]:

e player 1 receives a reward r(i, a, b)dt,
e player 2 incurs a cost (i, a, b)dt,

e the system remains in state ¢ € S with probability 1+ ¢;;(a, b)dt or makes a transition
to the state j # ¢ with probability ¢;;(a, b)dt.

This procedure is carried on over all the time horizon ¢ € [0,00). The optimality criteria
with respect to which the players will try to make optimal decisions will be defined later.
Let us mention that we are interested in the discounted and the average payoff optimality
criteria.

To ensure the existence of the dynamic game model G we need some additional assump-
tions. We will use the following terminology.

Definition 3.1.1 (a) We say that w: S — [1,00) is a Lyapunov function on S when w
is monotone nondecreasing and, in addition, lim; ., w(i) = 4o00.

(b) Let B,(S) denote the family of functions u : S — R such that

[lull = sup{lu(i)|/w(i)} < oo.

€S

We have that || - || is a norm on B, (S), under which it is a Banach space.
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Next we state our conditions on the game model G.

Assumption 3.1.2 There exists a Lyapunov function w on S, and constants ¢; € R and
qu a,b)w(j) < —cw(i) +dy  for all (i,a,b) € K.

JjES

In addition, for each i € S we have q(i) < w(i).

This assumption is usually referred to as a Lyapunov hypothesis on the transition rates
of the system. In the sequel, we will explain the use of the above hypotheses.

Strategies of the players. We introduce some notation. Let A(i) and B(i) be the
families of probability measures on A(:i) and B(i), when endowed with their Borel o-
algebras B(A(i)) and B(B(i)), respectively. On A(i) and B(i) we will consider the topology
of weak convergence.
Let
= {7, (Cli) hi>0.es.cem(40)

be such that m}(-|i) is in A(i) for all + > 0 and i € S, and such that ¢ + x}(C|i)
is a measurable function on [0,00) for all C' € B(A(i)) and i € S. We say that 7! is a
randomized Markov strategy for player 1, and we denote by IT' the set of all such strategies.
The family II? of randomized Markov strategies

= {m7(Ci) }t>0,e5,ceB(B0)

for player 2 is defined similarly.

We say that 7! € II' is a randomized stationary strategy (or stationary, for short)
for player 1 when 7/ (C|i) does not depend on ¢ > 0. Thus, the class II'* of stationary
strategies for player 1 can be identified with

=46
€S

Similarly, the class of randomized stationary strategies for player 2 is I1** = [, 4 B(i).
Given a pair of strategies (7!, 72) € I' x 12, 4,5 € S, and ¢ > 0, define

gis(t, 7, 72) = / / 4i5(a, B)T2(dbli) ! (dal).
A(i) J B(i)

The above integral is well defined and finite because the system’s transition rates are
conservative and stable. In particular, they satisfy

—qu(t, 7, qutﬂ' 7?) < q(i) foreacht>0and i€ S.
JF#i
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Define also

r(t,i, 7, 72) = / / P (i, a, b)r2(dbli) (dal ).
A(1) J B(1)

We will also use the following notation. Given i,j € S, ¢ € A(i), and ¢ € B(i), let
we0) = [ [ aslabiuld)eda) (311)
A(i) J B(i)
i) = [ [ rabu@)sda) (31
A(z) J B(i)

and for stationary strategies (7!, 7%) € 1'% x TI**| we write

gij(m", 7%) = qiy(w' ([i), 7* (i) and r(i, @', 7%) = r(i, 7 (-]i), 7*(]i)).

Our next result summarizes the main results on the existence of the state and actions
process. See, e.g., Proposition 3.1 in [15] or Proposition 10.3 in [31].

Theorem 3.1.3 Suppose that Assumption 3.1.2 is satisfied.

(i) For every (m',7?) € II' x II? there exists a regular (nonhomogeneous) transition
function

1.2
{PZ} (s, 1) bijeso<s<t

with transition rates q;;(t, ™, ), that s,

Tl'l,ﬂ'2 _ .
- P (t,t+h) — 0y

— . 1 2 .. > ’
710 h qj(t,m, ") foralli,j €S andt >0

Let Q = K = {(z(t), a(t), b(t)) } >0 be endowed with the product o-algebra F.

(ii) Given an initial state i € S at time 0 and (7', 7%) € II* x [1?, there exists a unique
probability measure P*™ ™ on (Q, F) such that:

— For each Ay € B(A(i)) and By € B(B(i)), we have
P {(0) = i,a(0) € Ao, b(0) € Bo} = mh(Aoli) - m2(Boli).

— Given arbitraryn > 1 and 0 < s1 < s < ... < s, and, on the other hand,
given iy, € S, Ax € B(A(ix)), and By € B(B(iy)), for k=1,...,n, we have

P {a(sy) = i1, a(s1) € A1, b(s1) € By, ...,
x(Sp) = in,a(sy) € Ap,b(s,) € By}

n
1 2 . .
= [ 27, (sker. si)ml, (Axlie)w? (Blir),
k=1

with the convention that 1o =1t and sy = 0.
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This result ensures the existence of the dynamic game model itself. In particular, the
Lyapunov condition stated in Assumption 3.1.2 is used to ensure the uniqueness and non-
explosiveness of the non-homogeneous Q)-process, and it guarantees that the forward and
backward Kolmogorov differential equations are satisfied.

We will refer to {z(t)};>0 as the state process, while {a(t)}>o and {b(t)}i>o are the
actions processes for players 1 and 2. The expectation operator associated to the probability
measure P*™ ™ will be denoted by E&™ .

3.1.2 The discounted payoff optimality criterion

In this section we analyze the discounted optimality criterion. We will suppose that the
reward/cost of the players is depreciated at a constant discount rate o« > 0, and so the
infinitesimal rate r(x(t),a(t),b(t)) at time ¢ > 0 is brought to its present value, namely,
e~ r(x(t),a(t),b(t)). The goal of player 1 is then to maximize his total expected discounted
reward, loosely,

] /0 ooty (w(t), a(t), b(t))dt],

while player 2 wants to minimize his total expected discounted cost. A formal definition
will be given below.

Assumption 3.1.4 The game model G satisfies the following conditions.

(i) The discount rate « satisfies o+ ¢; > 0, with ¢y the constant in Assumption 3.1.2.

(i1) There exists a constant M > 0 such that |r(i,a,b)| < Mw(i) for all (i,a,b) € K.

Given an initial state i € S and a pair of strategies (7!, 72?) € II' x II?, we define the
total expected discounted payoff as

Ve, rt, n2) = gimm [ /0 et (a(t), alt), b(t))dt | (3.1.3)

Thus, V(i, 7!, 72) is the total expected discounted reward for player 1, and it is the total
expected discounted cost for player 2. Using [14, Lemma 3.2] or [17, Lemma 6.3], under
Assumption 3.1.2, we have that
. 1 .92 d
E w(x(t))] < e (i) + —(1 — e~1t), (3.1.4)
C1
We note that if ¢; = 0 then the righthand term of (3.1.4) is w(i) + d;t; to see this, just let
c1 7 0in (3.1.4). As a consequence of Assumption 3.1.4, given i € S and (7!, 72) € II* x 12,
we have
< Muw(7) N di M '
T a+ta  alata)

Ve, n', 7)< M /O e~ BT [w ()] di

M(Oé+d1)
a(a+tecr)

Ve, 7t 7)) <M for all (7!, 72) € I x I12. (3.1.5)

Hence, letting 91 = it follows that
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Remark 3.1.5 If (7!, 7?) is a pair of stationary strategies, by Theorem 3.1.3(ii) we have
(cf. (3.1.8))

Vel ot n?) = B [/ e r(x(t), ", 7%)dt| for eachi € S.
0

Therefore, in order to obtain V(i, 7', 7%) for a pair of stationary strategies, instead of
integrating the reward state-actions process r(x(t),a(t),b(t)), it suffices to integrate the
function r(z(t), 7", 7%) which depends only on the state process.

Given the initial state ¢ € .S, the discounted lower value and upper value functions of
the game model G are defined as

L(; — inf V% 1 2
R A
U*(i) = inf sup V(i7" %),

w2€ll? 117t
respectively. We note that, as a consequence of (3.1.5), we have
90, <9 and [[U°]],, < 9.

The lower value of the game is the maximal discounted reward for player 1 when using
a “maximin” strategy. Indeed, for every fixed strategy m' € II', the worst scenario for
player 1 is when player 2 chooses the strategy m2 € II? attaining the infimum
inf Vi, ", 7).
m2ell2
Then, player 1 chooses the strategy yielding the maximal reward, that is, the one achieving
the supremum in the definition of L*(7). Similarly, the upper value of the game corresponds

to the optimal payoff of player 2 when using a “minimax” strategy. It is easy to see that
L*(i) < U*(i) for every i € S.

Definition 3.1.6 The game G has a value when L*(i) = U“(i) for alli € S. The function
V(i) :== L*(i) = U*(0) is called the value function of the game G.
In this case, we say that (7!, 7*?) € 11 x 112 is a pair of discount optimal strategies
when
Ve(i,nt, m?) < Ve, 7t m?) < Ve, ot 1?)
for alli € S and (n',7%) € TI' x 112,

A direct calculation shows that if ¥V is the value function of the game and (7*!, 7*?) €
IT' x I1? is a pair of discount optimal strategies, then V(i) = V*(i, 7*!, 7*2) for each i € S.
A pair of optimal strategies is usually referred to as a noncooperative or Nash equilibrium
of the game.

To ensure the existence of the value function and solutions to the corresponding Shapley
equations, we need to impose further conditions on our game model.
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Assumption 3.1.7 The game model G satisfies the following conditions.
(i) For eachi € S, the sets A(i) and B(i) are compact.
(i1) For alli,j € S, the functions r(i,a,b) and g;;(a,b) are continuous on A(i) x B(i).

(iii) There exist constants c; € R and dy > 0 with

Zqij(a, bw?(j) < —cow?(i) +dy  for all (i,a,b) € K.

jes

The conditions (i)—(ii) above are the usual continuity-compactness hypotheses, while
(iii) is used to ensure that Dynkin’s formula holds. It imposes a Lyapunov condition on
the function w? but, this time, the constant c, needs not be related to the discount rate «;

cf. Assumption 3.1.4(i).
The following lemma is a consequence of our assumptions, and it will be useful in the

forthcoming.

Lemma 3.1.8 Suppose that Assumption 3.1.7 holds.

(i) Giveni e S and k > i, we have

> e 0)ul) € o (= et (i) + o+ 0l ()

for all o € A(i) and v € B(i).

(i1) For everyi € S and u € B,(S), the functions

(()07770) = T(i7907¢) and (907¢) = ZQU(QO’¢)U(]>

jes

are continuous OEZ(i) X E(z), when endowed with the product topology of the weak
convergences on A(i) and B(1).

Proof. (i). First of all, observe that given i € S, k > 4, and (a,b) € A(i) x B(i) we have

> aabul) € s 3 asla i) (3.16)
2 X jzk o »
< m(;w, b (j) = ga(a, bu’()
1 - Ny
< W)(—@w (i) + d> + q(i)w*(3) ), (3.1.7)

where we have used monotonicity of w in (3.1.6) and Assumption 3.1.7(iii) in (3.1.7).
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(ii). From (3.1.7) we have that

lim  sup ¢i5(a, b)w(j) = 0
k—o0 (a,b)eA(1)x B(i) ;

and, in particular,

lim sup Zqij(a,b)u(j)’ = 0.

k=00 (4,b)e A(i)x B(3) =k
Consequently, the series ) ¢;;j(a,b)u(j) of continuous functions converges uniformly on
A(7) x B(i). It is therefore a bounded and continuous function, because A(i) and B(i) are
compact. This establishes that (a,b) — >, s qij(a,b)u(j) is continuous. The continuity

of (,1) = > cs ij(p, ¥)u(j) follows from Theorem 3.2 in [6]. The arguments for the
continuity of (¢, ¥) +— r(i, ¢, 1) are similar. O

The continuity of >, ¢ gij(a,b)w(j) is a usual requirement in Markov game models;
see [16, Assumption C.3] or [31, Assumption 10.7.b]. As seen in Lemma 3.1.8 above, this
condition is in fact implied by our hypotheses.

The main result on the discounted game G is the following. It is borrowed from [16, 31].

Theorem 3.1.9 Suppose that the game model G satisfies Assumptions 3.1.2, 3.1.4, and
3.1.7.

(i) The game G has a value V* € B, (S) with ||V, < 9.

(i) The value function V* is the unique solution u in B,(S) of the equations

auli) = (ps;%wgf(i){r<i,w,w>+j§€;qﬂ<¢,w>uu>} (3.18)
) {rli.0.0) + Z 4l 0)uts) (3.1.9)

for alli e S.

(11i) There exists a pair of optimal randomized stationary strategies.

Moreover, (wt,m2) € IV x I1** is a pair of optimal randomized stationary strategies

if and only if w (i) and 72(-|i) attain the supremum and the infimum in (5.1.8) and
(8.1.9), respectively, for every i € S. That is,

au(i) = inf {r(i, 7 (1), 0) + 3 as(7 (1), 0)ul) |

YeB(3)

jES
= Sli[()) {r(i, o, m(-|3)) + Z 5 (¢, 7T2(|2))U(])}
pEA( JES

foralli e S.
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Remark 3.1.10 The fact that there exists a pair of optimal stationary strategies implies
that the value of the game satisfies
Ve (i) = su inf Vi, 7', 7%) = inf sup V(i n', w2
()= sup Jmf Vom,m)=jmf, sw Vi)

for all 1 € S. Note that we are taking the infimum and the supremum over the family of
stationary strategies (cf. the definition of the lower and upper value of the game).

The equations (3.1.8)—(3.1.8) are also referred to as the Shapley equations.

3.1.3 The average payoff optimality criterion

In this section we will study the average optimality criterion, that is, when the players
want to optimize their long-run expected average payoff. To study the average optimality
criterion, further conditions on the game model G must be imposed. In particular, the
Assumption 3.1.2, which ensures the existence of the state and actions process, is replaced
with the following stronger condition.

Assumption 3.1.11 There exists a Lyapunov function w on S, constants ¢; > 0 and
dy >0, and a finite set D C S such that

Z gij(a,b)w(j) < —crw(i) + dIp(i)  for all (i,a,b) € K.

jes
Moreover, for alli € S we have q(i) < w(i).

We note that we use the same notation as in Assumption 3.1.2 for the constants c1, d;
in the Lyapunov condition. This will not cause confusion because it will always be clear
from the context whether we are in the discounted or the average payoff case.

Since Assumption 3.1.11 implies Assumption 3.1.2, Theorem 3.1.3 applies and there
indeed exist state and actions processes {(z(t),a(t),b(t))}+>o for the game model G. The
expectation operator associated to Pt will be, as before, denoted by Eimtm

Under Assumption 3.1.11, given an initial state 7 € S and a pair of strategies (7!, 72%) €
1 x 12, by [17, Lemma 6.3], cf. (3.1.4), we have

@

i [w(z(t)] < e~ tw(i) + o

(1—e ") forallt>0. (3.1.10)

The long-run expected average payoff (or average payoff) of the players, when starting
from the initial state i € S, and using the strategies 7! € IT! and 7% € 112, is defined as

1 T
J(i, 7', 7%) = limsup — B " [ / r(z(t), at), b(t))dt| .
T—o0 T 0

To ensure finiteness of the average payoff of the players, we use Assumption 3.1.4(ii),
which is stated here for ease of reference.
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Assumption 3.1.12 There exists a constant M > 0 such that |r(i,a,b)| < Mw(i) for all
(i,a,0) € K.

Under Assumption 3.1.12 and as a consequence of (3.1.10), the long-run average payoff
is finite. Moreover,

Md
T (it 7?)] <

for all 7 € S and (7!, 7?) € II! x 112
C1

Definition 3.1.13 The long-run average lower and upper value functions of the game G
are respectively defined as

L(i) = sup inf J(i,7",7%) and U(i) = inf sup J(i,7",7°)

alert m2ell? m2ell? pigm

for each i € S. If L(i) = U(i) =: V(i) for all i € S then we say that the game G has a
value, and V 1is the value function of the game. If the game G has a value then we say that
(!, %) € TI' x 112 is a pair of average optimal strategies if

V(i) = inf J(i,7},7%) = sup J(i,7",72) for eachi € S.
m2ell? xlell!

As a consequence of Assumption 3.1.12, the lower and upper value functions of the
game are finite, namely,

Md Md
Loand |U@G)| < —=, forallieS. (3.1.11)

C1 C1

[L(2)] <

The next assumption uses the following terminology. We say that a pair of stationary
strategies (7!, 7%) € II'* x H2S is irreducible if, given arbitrary distinct states 7,5 € S,
there exist states i = ig,4y,...,4, = j such that ¢;,_,,; (7', 7%) > 0 for all &k = 1,.

Equivalently, the homogeneous Markov chain {(t)}s>o is irreducible under P"™ ™ for
every initial state i € S.

Assumption 3.1.14 The game model G satisfies the following conditions.
(i) For eachi € S, the sets A(i) and B(i) are compact.
(11) For alli,j € S, the functions r(i,a,b) and ¢;j(a,b) are continuous on A(i) x B(7).

(iii) There exist constants co € R and dy > 0 with

qu a,b)w?(j) < —cow?(i) +dy  for all (i,a,b) € K.

JES

(iv) Each pair of strategies in IIY% x T1%* is irreducible.
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We note that Assumptions 3.1.14(i)—(iii) are the same as Assumption 3.1.7. For ease
of reference, however, we prefer to state them again here.

Under Assumptions 3.1.11 and 3.1.14(iv) we have that, for each (7!, %) € TI'* x TI%%
the Markov chain {(t)};> (under the probability measure P ™) has a unique invariant
probability measure ji1 2 on S that does not depend on the initial state and which, in
addition, satisfies pi1 2(w) < oo; see, e.g., [31, Theorem 2.5]. In particular, the average
payoff of (7!, 7?) € II* x I1?* does not depend on the initial state i € S and

J(i, 7', 7°) = pgr 2 (r(-, 7, 7%))  for alli € S.

Furthermore, if Assumption 3.1.14 is satisfied then the game model G is uniformly expo-
nentially ergodic on IT%* x I1%%; see, e.g., [31, Assumption 10.10]. This means that there
exist positive constants R and v such that for each u € B,(S), t >0, and i € S,
sup | B (@ (t))] — pat 22 (u)| < Re™"ul[w(i). (3.1.12)
(w1, m2)elllss xI12:5
Remark 3.1.15 In general, it is not possible to have an explicit expression for the value
of the constants R and 7 in (3.1.12) above. There exists, however, a particular case in

which these constants are actually known. For a reference, see [14, 27] or [30, Theorem
2.8]. Suppose that Assumptions 3.1.11 and 3.1.14 hold and, in addition, assume that

(a) In Assumption 3.1.11 we have D = {0}.

(b) For every (', %) € II'* x II**, the stochastic process {x(t)}i>0 is stochastically
ordered in its initial value:

ZC_IU(WI,WQ) < Z%‘H,j(ﬂl,ﬂZ)
=k j=k
forall ik € S with k # i+ 1.

(¢c) For each (w',7?) € I x I1** and every 0 < i@ < j, the process {x(t)}i>0 can
travel with positive probability from i to {j,j + 1,...} without passing through 0.
Equivalently, there exist nonzero states i = ko, ky,...,k,, with k, > j, such that
Qro 1k (T 72) >0 for all s =1,.

Under these conditions, the game model G is uniformly exponentially ergodic on I1%* x 112
and the value of the constants in (3.1.12) is

R=2(1+di/c1) and ~=c.

We introduce some more terminology. We say that a pair (g,h) € R x B,(S) is a
solution of the average optimality equations of the game model G if, for all i € S,

g = sup inf {Hsm/) )+ ai(e. ()}

SDGA( ) ¢GB JES

= inf sup {TZS01/J +Zng¢¢ ()}

YEB(1) peA(i) jes
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The main result on the existence of the value of the game and on characterization of
optimal strategies follows.

Theorem 3.1.16 Suppose that the game model G satisfies Assumptions 3.1.11, 3.1.12,
and 3.1.14. Then the following statements hold.

(1) The game has a value g* € R that does not depend on the initial state, that is, V(i) = g*
foralli e S.
(ii) There exist solutions to the average optimality equations.

If (g,h) € R x B,(S) is a solution to the average optimality equations then g = g*,
the value of the game, and h is unique up to additive constants.

There exists a solution (g*, h) of the average optimality equations with ||h||, < RM /[~
(recall (3.1.12)).

(iii) There exists a pair of optimal stationary strategies. A pair of stationary strategies
(ml,7?) € I x 11%* is average optimal if and only if

g = inf){?“(i,ﬂl('li),w)+Zqij(ﬂl('|i),¢)h(j)}

YWEB(i ies
o . 2 . 2 . .
= sup {r(i,0, (1) + D ai (0, W (10)h(i) }
PEA(M) jes

for each i € S, where (g*, h) is any solution of the average optimality equations.

3.2 Convergence of game models

3.2.1 Definition
In the forthcoming we consider a sequence of game models
gn = {STLJA7B7Kn7Qn7rn} fOI'TL Z 1.

These game models will be interpreted as approximations of the original game model G.
The elements of these game models satisfy the following conditions.

e The state space S, is a (finite or infinite) subset of S.
e The action spaces are A and B, as for the game model G.

e The set of available actions in state i € \S,, are the nonempty measurable sets A, (i) C
A(7) and B, (i) C B(1) for players 1 and 2, respectively. Let

K, = {(i,a,b) €S, x Ax B:a€ Ay(i),b € By(i)} CK.
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e The transition rate matrix is given by Q, = [q¢};(a,b)] for i,j € S, and (a,b) €
An(i) X By(i). We assume that (a,b) — ¢7;(a,b) is measurable on A, (i) x B, (i) for
all 7,7 € S,,. The transition rates are assumed to be conservative and stable, that is,

Z gj(a,b) =0 and sup {=q(a,b)} =: ¢,(i) < 0

jGSn aeAn(i),beBn(i)
for (i,a,b) € K,, with the condition that gj;(a,b) > 0 for i # j.
e The reward/cost rate function is r, : K, — R, assumed to be measurable.

As for G, the game model G, is a two-person zero-sum continuous-time Markov game.
We will be interested in the discounted and the average payoff optimality criteria for the
game models G,.

Next we introduce some notation. In the game model G,, the family of randomized
Markov strategies for players 1 and 2 are denoted by II. and TI2, respectively. They are

defined similarly to the corresponding strategies for the game model G. The family of
stationary strategies is

1y = [ 4ui) and 12 = [ Ba(d),

1€Sn 1€Sn

where A, (i) and B,(i) denote the family of probability measures on Ay(i7) and B, (i),
respectively. We will consider the topology of weak convergence on A, (i) and B, (7).
With w a Lyapunov function in S, let B,(S,) be the Banach space of functions w :
S, — R with finite w-norm
[lulle = sup{|u(@)|/w(i)}.

1ES5n

(We note that we use the same notation ||ul|, for v : S — R and u : S,, — R.) Notations
such as

4i;(p,) and 7, (i, 0,9)
fori,j € S,, v € A, (i), and ¥ € B, (i) are given the obvious definitions; see (3.1.1)(3.1.2).

Consider the game models G and G, studied so far. We propose a definition of the
game models G,, converging to the original game model G. In this definition, we make use
of the Hausdorff metric (recall its definition given in Section 1.4).

Definition 3.2.1 We say that G, — G as n — oo when the following conditions hold:

(a) The sequence of states {S,}n>1 verifies

S, C8 CSC... and Usnzs.

n=1

This will be denoted by S, T S. We define n(i) = min{n > 1:i € S,} for eachi € S,
and so i € S, if and only if n > n(i).
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(b) For each i € S, the sequences of action sets An(i) and B, (i) verify

lim pa(A,(7),A(#)) =0 and lim pp(B,(i), B(i)) = 0.

n—o0 n—oo

We will write p,(i) = pa(An(i), A(7)) V ps(B,(i), B(7)).

(In the sequel, we will assume that the sets A, (i), B, (i), A(i), B(i) are closed and
so we will properly say that A, (i) and B,(i) converge to A(i) and B(i) as n — oo,
respectively, in the Hausdorff metric.)

For everyi € S, given sequences {an }n>n(iy and {bn }n>n), with a, € A, (i) and b, € B, (i),
such that a,, — a and b, — b for some a € A(i) and b € B(i), we have:

(¢) limy, o0 G5 (an, by) = Gij(a,b) for all j € S, and
(d) limy, o 7 (3, an, by) = 7(i,a,b).

Observe that expressions such as pa(A, (i), A()) or gj;(an, b,) are defined only for large
enough n (namely, n > n(i) in the former case, and n > n(i) V n(j) in the latter). This is
not made explicit in the notation since we are dealing with the limit as n — oo.

Our next lemma gives some equivalent statements of Definition 3.2.1.

Lemma 3.2.2 Suppose that Assumptions 3.1.7(i)-(ii) hold.

(i) The condition in Definition 3.2.1(c) can be replaced with the following statement.
Given i,j € S and € > 0 there exists ng > n(i) V n(j) such that for all n > ny

sup \q?j(a,b) — gij(a,b)] <e.
(a,b)€An (1) x Bn(i)

(ii) The condition in Definition 3.2.1(d) can be replaced with the following statement.
Given 1 € S and € > 0 there exists ng > n(i) such that for all n > nyg

sup |rn(i,a,b) —r(i,a,b)| <e.
(a:)E€An (i) x By (i)

Proof. (i). First we prove that if Definition 3.2.1 holds, then (i) also holds. We proceed
by contradiction. If (i) does not hold then there is some i, j € S and € > 0 such that, for
infinitely many n > n(i) V n(j), there exist a,, € A, (i) and b, € B, (i) with

|455(@n; bn) = gij(an, bn)| > . (3.2.1)

For such n, since a,, € A, (i) C A(i), there exists a subsequence {n'} and a € A(i) such
that a,, — a. Similarly, for some subsequence, still denoted by {n'}, we have b, — b for
some b € B(i). Next, define a,, € A,(7) and b, € B, (i), for n > n(i), as follows.

e If n belongs to the subsequence {n'} then let a,, = a, and by, = by
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e Otherwise, let a, € A,(i) and b, € B, (i) be such that

1 1

. < 1 . . 1
da(ap,a) < xel,{llf(i) da(z,a) + s pa(A, (i), A7) + "
- 1 1

< 1 . . 1
dabut) < inf dn(y.0)+ = < pu(Bali). B)) + 5

We have thus constructed sequences a, € A,(i) and b, € B,(i), for n > n(i), such that
a, — a and b, — b. Consequently, by (c), for n large enough we have

DO ™

In particular, recalling (3.2.1), along the subsequence {n'} we have
€
|ql-j(an/, bn’) — Qij(@> b)' > 5

This contradicts the continuity of the transition rate function.

Conversely, let us now prove that Definition 3.2.1(a), (b), and (d), together with (i),
imply (c). Fix i,j € S, and let a,, € A, (i) and b, € B, (i) be such that a, — a € A(i) and
b, — b € B(i). By the condition (i), given € > 0, for n large enough we have

|Q?j(ana bn) = Gij(an, bn)| <

N

But now continuity of the function (a,b) — ¢;;(a,b) implies that for n large enough we
also have

‘Qij (ana bn) - Qij (aa b)| S

NN e

This yields
|qinj<an7 bn) - Qij(a, b)| <S¢

and so limy, gj5(an, bn) = gij(a,b). This completes the proof that (c) < (i).
To prove statement (ii) we can proceed similarly. O

Given a sequence of functions u, : S, — R, for n > 1, we say that {u,} converges
pointwise to some function v : S — R when

lim u,(i) =u(i) foralli e S.
n—oo
Note that, for fixed i € S, u,(i) is well defined only when n > n(i). Since the above
definition is concerned with the limit as n — oo, the requirement n > n(i) will not be
explicit in the notation.
We introduce some more terminology. Given a pair of randomized stationary strategies

(), 72) € b x T12* for the game model G,, for n > 1, we say that the randomized

n’»n
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stationary strategies (7!, 72) € II! x II? are a limit strategy of {(r}, 72

+ 2 ) b1 if there exists
a subsequence {n'} such that

1

n/

7l (1)) —% wt(li) and w2 (i) -5 72 (-|0)
for all i € S. Under the assumption that the action sets A(i) and B(i) are compact, every
such sequence {(m},72)} indeed has a limit strategy because 7} € A(i) and 72 € B(i),

nn

which are compact metric spaces with the Wasserstein metric (recall Section 1.4).

3.2.2 The discounted payoff case

Suppose for the moment that we are interested in analyzing the discounted payoff opti-
mality criterion for the game model G. For each game model G, we will analyze as well
the discounted payoff criterion.

The discount rate v > 0 is the same for all the game models G,, and G. Supposing that
the Assumptions 3.1.2, 3.1.4, and 3.1.7 are satisfied, next we state our hypotheses on the

sequence {Gy, }n>1.

Assumption 3.2.3 The following statements hold for every n > 1.

(i) For all (i,a,b) € K,
Z gii(a, b)w(j) < —crw(i) + di,

JESn

where the Lyapunov function w and the constants ¢, > —a and dy > 0 come from
Assumption 3.1.2. For each i € S, we have ¢, (i) < w(7).

(i1) For the constant M > 0 in Assumption 3.1.4(ii) we have

|rn(i,a,b0)| < Mw(i)  for all (i,a,b) € K,.

(i1i) For each i € S, the sets A, (i) C A(i) and B,(i) C B(i) are compact, while for all
i,j € Sn, the functions r,(i,a,b) and gj;(a,b) are continuous on Ay (i) x By(i).

(iv) With ca € R and dy > 0 as in Assumption 3.1.7(iii), we have

Z qi;(a, b)w?(j) < —cow?(i) +dy for all (i,a,b) € K,.

JESn

We can say, roughly, that Assumption 3.2.3 consists in supposing that Assumptions
3.1.2, 3.1.4, and 3.1.7 hold “uniformly” in n > 1.

We can apply Theorem 3.1.3 to G,, and, therefore, there indeed exists a stochastic
process {(x(t),a(t),b(t))}+>0 taking values in K, that models the state and actions pro-
cesses for the game model G,. In particular, the corresponding expectation operator will
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be denoted by E-™ " Given i € S, and (n',72) € II} x II2, define the total expected
discounted payoff for the game model G, as

Veli,nt w?) = Bir [/ e r,(x(t), a(t),b(t))dt|.
0
We also have (cf. (3.1.5)),

V(- 7t 7?)| <9 for all 7! € IT} and =% € T12. (3.2.2)

The lower and upper value functions of the game L& and U2 in B,,(S,), and the value
function V¢ (provided it exists) are given the usual definitions. We have a result similar
to Lemma 3.1.8, which is stated without proof.

Lemma 3.2.4 Suppose that Assumption 3.2.3 holds and firn > 1.
(i) Giveni € S, and k > i, we have

S dhle ) < —s (= ew?(i) +ds + q(i)u()

j2kg€Sn w(k)
for all ¢ € A, (i) and ¢ € B,(3).

(i1) For everyi € S, and u € B,(S,), the functions

(. 0) = (i, 0,0)  and (0,9) = > g, )ul)

JESR
are continuous on A, (i) x B,(i).
Our next lemma states a useful continuity result.

Lemma 3.2.5 Suppose that the game models G and {G,}n>1 satisfy Assumptions 3.1.2,
3.1.4, 3.1.7, and 3.2.3, and also that G, — G. Suppose that the sequence v,, € By(S,), for
n > 1, converges pointwise to v € By, (S), and that

sup ||vp]w = m < 00.
n>1

For fived i € S, assume also that @, € A, (i) and 1, € B,(i), for n > n(i), are such that
on 550 and P, 1) asn — oo

for some ¢ € A(i) and 1y € B(i). Under these conditions,

Tim {1 (i, pn, ) + D @ en Y)vn(D)] = (0, 0) + > ai(0, ¥)0(i)-

JESn jes
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Proof. Let us first analyze the term 7, (i, o, ¥,). By Lemma 3.2.2(ii), given € > 0 there
exists ng > n(i) such that n > ng 1mphes

|rn (i, a,b) — (i, a,b)| < 5 for all (a,b) € A, (i) x B,(7).
In particular, we have

i) = 1wt < [ ) = o Dl @i < (323

DO ™

for n > ng. On the other hand, by Lemma 3.1.8(ii) we have that (i, ¢y, 1) converges to
r(i,,1%) as n — oo. Consequently, there is some n; > n(i) such that n > n; gives

[P o, ) = (i 0, 0)| < 5. (3.2.4)

From (3.2.3) and (3.2.4) we have that |r,(i, ¢n, ¥n) — r(i,0,9)| < € for n > ng V ny.
Therefore,
nh_g)lo Tn(ia Prs wn) = ’I“(i, @,w)-

We proceed with the proof. As a consequence of Lemmas 3.1.8(i) and 3.2.4(i) we deduce
that, given € > 0, there exists some k > i such that 3., ¢;;(¢, ¥)w(j) < € and such that,
for all n > n(1),

ST @en tnwlj) < e

J2k,jESn
Therefore, since ||v,|l, < m implies ||v||,, < m, we have
‘ qu] @, )v ’ < me
7>k
and, for all n > n(7),

‘ Z qw((ﬂnﬂﬂn)vn( )| < me.

>k, jESn
Consequently, if n > n(i) is such that, in addition, {0,1,...,k — 1} C S, we have
k-1
’ > @ (n ba)va(i) = Y il )v ) D 1 (n n)on(5) — g3 (@, 9)0(5) | + 2me.
JESK JES 7=0

The left-hand term of the last expression can be made arbitrarily small by choosing n large
enough. Indeed, as made at the beginning of this proof, we can prove that

which, together with the fact that v,(j) — v(j) for all j € S, yields the stated result
because, once ¢ € S and € > 0 are given, the state k£ remains fixed and does not depend
on n. The proof is now complete. [l

Each discounted game model G, has a value function that can be characterized by the
corresponding Shapley equations; cf. Theorem 3.1.9.
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Theorem 3.2.6 Suppose that Assumption 3.2.3 is satisfied. Then the following statements
hold for each n > 1.

(i) The game G, has a value V* € By (S,) with ||V, < 9.

(i) The value function V,* is the unique solution u in B, (S,) of the equations

au(i) = sup inf {Tn(i,so,w)Jqu?j(wﬂ)U(j)} (3.2.5)

oA, (i) WEBn (i) =
= it swp {mle )+ Y dile )} (326)
YEBn (i) ped, (i) €S

for each i € S,,.

(11i) There exists a pair of optimal randomized stationary strategies for the game model G,, .

Moreover, (wt,7%) € TI* x TI>* is a pair of optimal randomized stationary strategies
if and only if w (i) and 72(-|i) attain the supremum and the infimum in (3.2.5) and

(8.2.6), respectively, for every i € S,.

3.2.3 The average payoff case

Suppose now that we are interested in the average optimality criterion for the game
model G. In this case, we will also consider the long-run average payoff criterion for
the approximating game models G,,, for n > 1. The hypotheses we made on the average
game model G were Assumptions 3.1.11, 3.1.12, and 3.1.14. We will impose the following
conditions on the game models G,.

Assumption 3.2.7 The following statements hold for every n > 1.

(i) For all (i,a,b) € K,

Z g (a,b)w(j) < —crw(i) + dilp, (i),

JESn

where the Lyapunov function w and the constants ¢; > 0 and di > 0 come from
Assumption 3.1.11, and D,, C S, is a finite set. For each i € S, we have q,(1) <

w().

(ii) For the constant M > 0 in Assumption 3.1.12 we have

|rn(i,a,b0)| < Mw(i) for all (i,a,b) € K,.

(i1i) For each i € S,, the sets A, (i) C A(i) and B,(1) C B(i) are compact, while for all
i,j € S, the functions r,(i,a,b) and ¢j;(a,b) are continuous on A (i) x By(i).
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(iv) With ¢y € R and dy > 0 as in Assumption 3.1.14(iii), we have

Z q;;(a, b)w?(j) < —cow?(i) +dy  for all (i,a,b) € K,.

JESn
(v) Each pair of strategies in I1L* x 112 is irreducible.

Once again, these conditions consist in assuming the the hypotheses for the game
model G hold “uniformly” in n > 1 for the game models G,. It is worth noting that
Assumption 3.2.7 implies Assumption 3.2.3. In particular, Lemmas 3.2.4 and 3.2.5 remain
valid under Assumption 3.2.7.

For the game model G,, the long-run expected average payoff of the players, when
starting from the initial state i € S, and using the strategies 7! € II} and 7% € II?, is
defined as

. . 1 -1 2
Jo(i, 7t 7?) = limsup —E5™ 7
T—o0

[/OTT”(x(t)’“(t)ab(t))dt ,

The long-run average lower and upper value functions of the game G, are respectively
defined as

Ln(i) = sup nf, Ju(i, %) and U(i) = inf, s Tn(i, 7t 72
for each i € S. If L, (i) = U,(i) =: V,,(i) for all i € S then we say that the game G, has a
value, and V,, is the value function of the game.
As a consequence of Assumptions 3.2.7(i)—(ii), the lower and upper value functions of

the game are finite and they have the same bounds as the value functions of G, recall
(3.1.11),

M M
1L, (1) < U and U, (1)| < 2 for all i € S,,.
C

1 C1
The next theorem is derived directly from Theorem 3.1.16. It just states that every
game model G, has a constant value function that can be characterized by means of the

corresponding optimality equations.
Theorem 3.2.8 Suppose that Assumption 3.2.7 holds and fir n > 1.
(1) The average game G, has a constant value g € R, with |gk| < Mdi/¢;.

(ii) There exist solutions (g, h) € R x By, (Sy,) to the average optimality equations for G,
g = sup inf {r.(i,0,0)+ > (e, v)h(i)}

€A, (i) YEBN (1) e
= inf  sup {r(i.o.0)+ Y ghle.)h()}
YEBn(1) oA, (i) e

fori e S,.

If (g,h) € R x By(Sy) is a solution to the average optimality equations then g = gz,
the value of the game, and h is unique up to additive constants.
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(iii) There exists a pair of optimal stationary strategies. A pair of stationary strategies

(mt, 72) € TIL* x [1%° is average optimal if and only if they attain the supremum and

the infimum in the average optimality equations.

We note that, in Theorem 3.1.16, we mentioned the existence of a function h € B, (S5),
solution of the average optimality equations, such that ||h||, < RM /v, where the positive
constants R and - come from the uniform exponential ergodicity property; recall (3.1.12).
For the approximating game models G,, we cannot say that the constants R,,", for the
game model G, (which indeed is uniformly exponentially ergodic) do not depend on n > 1.
However, if each game model G, satisfies the conditions given in Remark 3.1.15, then we
deduce the existence of solutions h,, € B,,(S,) with ||h,||, < RM/v, the same bound for
G and every G,.

3.3 Approximation results for discounted games

3.3.1 Convergence results: the general case

Now we prove our main result on the convergence of discounted game models.

Theorem 3.3.1 Suppose that the game models G and {G,,},>1 satisfy Assumptions 3.1.2,
3.1.4, 3.1.7, and 3.2.3. If G, — G then the following statements are satisfied.

(i) For alli € S, lim, o V,*(i) = V(7).

(ii) If (x}, 72) is a pair of optimal randomized stationary strategies for the game model G,,,
then any limit strategy (7', 7%) € 11} x I12 is a pair of optimal randomized stationary
strategies for the game model G.

Proof. (i). Recall that the sequence {V,*} of the values of the games G,, verifies
V(i) < Mw(i) forallnm >1and i€ Sy;

see (3.2.2). Therefore, by using a diagonal argument, we deduce the existence of u € B,,(.S)
and a subsequence {k,} such that

lim Vi (i) = u(i) forallie S.

n—oo

Fix i € S and, for n such that k, > n(i), consider the function on Ay, (i) x By, (i)

(. 0) = 1, (10, 0) + Y g (0, 0)VE ().

]Eskn

This function is continuous as a consequence of Lemma 3.2.4. Therefore,

> inf(){m G 0)+ > dlr @@ZJan()}

B G
VB JE€Sky,
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is upper semi-continuous on the compact set Ay, (i) and, hence, it has a maximum which
is reached at some ¢, € Ay, (7). There exists a further subsequence {k, } such that

Ot BN @o for some o, € A(i). Without loss of generality, and to simplify the notation,
we will suppose that the whole sequence {¢, } converges to .
Fix now arbitrary ¢ € B(i). For each n there exist

Il,...,ZEtEB(i) and 51,...,6156[0,1]

with 32 8; = 1 such that dy (¢,4,) < 1/n, with ¢, = Zﬁj . Let y; € By, (i) be such
that dp(y;, z;) = mingep, @ dp(y,v;) for each j =1,... 1, and deﬁne

t
U= Bd,, € B, (D).
j=1

If f is a bounded L-Lipschitz continuous function on B(i) then we have

[ sain= [ o] <| [ gai [ gain| ] [ rain- [ rao]

We note that
| [ rad, -~ [ sai,

which converges to 0 as n — oo. On the other hand, since &n N 1) we have f fdiﬂn —
[ fdi. So, we have shown that

= |22 81w ~ @) < LY Bidsly; )

< Lpg(B, (i), B(1)),

i [ fad, = [ fav

n—oo

for all bounded and Lipschitz-continuous functions on B(¢). This implies that U SN .
Summarizing, given arbitrary ¢ € B(i) we have constructed 1, € By, (i) such that {1, }
converges weakly to 1.

By Theorem 3.2.6(ii), the value Vi of the game Gy, verifies

aVii(i) = sup  inf {Tkn i,0,0) + Z q;7 (0, V) Vo ( )}

pEAy,, (1) ¥EBE, (1) e

= inf(‘){rk" 7 QOn, Z q” Qona an( )}

B
YEBy,, (1 JESh,

< Z @na¢n Z q Wnawn an( )

JE€Sk,
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Taking the limit as n — oo and recalling Lemma 3.2.5, we obtain

()<7’Z8007 +ZQ2]SOO

JES

But 1 € B(i) being arbitrary, we conclude that

OJ'U/(’L)S Hlf { r( @07 + qij 9007 }7
veB(i) JGZS ’

and so,

au(@) < swpinf {r(i 1)+ D a0 v)uls) .

peA(i) YEB() jes

Arguing similarly, we can show that

au(i) = inf sup {rli,p,0) + Y aislp.¥)uls) }-

YEB(i) oA (i) jes

Combining these two inequalities, we conclude that

au(i) = swp inf {r(i,0.0) + > ale v)ul) }

pedA(s) vEB() jes
= inf sup {T(i,w,d})—FZ%]‘(%WUU)}
YEB(H) peA(i) jes

for each ¢ € S. By Theorem 3.1.9(ii), this implies that u equals V', the value of the
game G.

So far, we have shown that if u is any limit point of {V,*} then, necessarily, u = V.
But this implies that lim,,_,o, V,*(i) = V(i) for all i € S. The proof of (i) is now complete.

(ii). Suppose that (7!, 7%) € II! x 12 is a limit strategy through the subsequence {n'}. Fix
© € S and write

for n > n(i). Then we have
* d * * d *
o, — @ and Y, — P

For n > n(i), we know that ¢!, and ¢, attain the supremum and the infimum in the
Shapley equation for G, for the state ¢; recall Theorem 3.2.6(iii). Therefore,

Vi) = sw it {roew) + Y d e u)vi0) |

PEA,, (i) VEBw (i jes,,

= ot {rligind)+ 3 (e vViEG) | (3.3.)

YeEB /(1 jes,,
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Proceeding as in the proof of part (i () we can show that for every 1 € B(i) there exists a
sequence 10,y € B,y (i) such that 1, BN ¥, and so, by (3.3.1),

«Q «r?(l) < T’fl i (anwn Z qZ] 90n7¢n ( )

JES,/

Taking the limit as n’ — oo and recalling that V% converges pointwise to V* (part (i) of
this theorem), gives

AV (i) < (i, 0", ) + Y ai(e" 9)V ().
jes
Since 1 € B(i) is arbitrary, we have

aVo(i) < inf {rli 9" ) + Y g’ V) .

peB(i) jes

But from the Shapley equation for G we know that

aVo(i) = sup inf {rli;o,0)+ Y (o 0)V0) }.

PEA(i) YeB(i) jes

Hence, p* attains the supremum in the Shapley equation for i € S.

Similarly, ¢* attains the infimum in the Shapley equation for G and ¢ € S and, by
Theorem 3.1.9(iii), this implies that (', 72) € II! xII2 is indeed a pair of optimal strategies
for G. O

Theorem 3.3.1 above proposes a general convergence result but it is not ready yet for
numerical applications. Next, we show how to construct finite state and actions game
models G, starting from the original game model G.

3.3.2 Convergence results: finite approximations

Given a game model G satisfying Assumptions 3.1.2, 3.1.4, and 3.1.7 we now show how to
construct a sequence of game models {G, },>1 for which Assumption 3.2.3 holds. For each
n > 1, the elements of the game model G,, are the following.

e The state space is S, = {0,1,...,n}.

e Forie S, let A,(i) and B, (i) be finite subsets of A(i) and B(i), respectively, such
that
pa(An(i), AW) = 0 and  p(Bu(i), BG)) — 0

as n — 0.
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e Giveni € S, and 0 < j < n, define gj;(a,b) = g;;(a,b), and let

g (a,b) = quab quab

j>n
for (a,b) € A,(i) x By(3).
e The reward/cost rate is r,(i,a,b) = r(i,a,b) for (a,b) € A, (i) x B, (7).

We note that construction of A,(i) and B, (i) with the property of convergence in the
Hausdorff metric is indeed possible. For instance, for each n > 1, consider the open cover
of A(i) given by the open balls centered in a € A(:) with radius 1/n, and let A,,(i) be the
centers of a finite subcover. Then p4(A,(7), A(7)) < 1/n.

Theorem 3.3.2 If the game model G satisfies Assumptions 3.1.2, 8.1.4, and 3.1.7 then
the sequence {G, }n>1 defined above satisfies Assumption 3.2.3 and, moreover, G, — G.

Proof: First of all, we observe that the transition rates of G, are conservative:

Z qi5(a,b) = Zqij(a,b) =0 forall (i,a,0) € K,,

JESn jes

and stable. Indeed, —¢l%(a,b) = —¢;i(a,b) < w(i) for i < n and

—nn(a,b) qu a,b) < —gun(a,b) < w(n).

ji>n

Concerning Assumption 3.2.3(i), observe that for all (i, a,b) € K,

Z gii(a, b)w(j) = Z gij(a,b)w —i—qu a,b)w

JESH JESn i>n
S Z ng a, b + qu a, b
JESn ji>n
= qu a,b)w(j) < —crw(i) + dy,
JES

where we make use of the monotonicity of w. The fact that ¢,(i) < w(i) has been estab-
lished along with the stability of the transition rates of G,. So, Assumption 3.2.3(i) indeed
holds.

Clearly, Assumptions 3.2.3(ii)—(iii) are also satisfied, while Assumption 3.2.3(iv) is
proved similarly to Assumption 3.2.3(i).

It remains to check that G, — G. Items (a) and (b) in Definition 3.2.1 hold by construc-
tion of G,. Finally, given i, € S, if (a,,b,) € A, (i) X B,(i) are such that a, — a € A(7)
and b, — b € B(i) then

Tn@a Ap, bn) = T(i, Ay, bn) and QZ(Gm bn) = Qij (ana bn)
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for n > iV j, and so Definitions 3.2.1(c)—(d) hold by continuity of the transition and
reward /cost rates of G. O

As a consequence of Theorem 3.3.1, the value functions of the finite state and actions
games G, converge to the value function of G, and any limit strategy of optimal stationary
strategies for G,, is optimal for G.

Next, we address the issue of the rate of convergence of V,*(i) to V(7). To establish
such convergence rates, we need to strengthen our hypotheses. Namely, Assumption 3.1.7
will be replaced with the following stronger condition.

Assumption 3.3.3 The game model G satisfies the following conditions.
(i) For eachi € S, the sets A(i) and B(i) are compact.

(1t) For each i,j € S, the functions (a,b) — r(i,a,b) and (a,b) — ¢;j(a,b) are L;- and
L;;-Lipschitz continuous on A7) x B(i), i.e.,

r(i,a,b) —r(i,d’,t')| < Li(da(a,a’)+dg(b,b))
|gij(a,b) — qi;(a, V)| < Lij(da(a,a’) + dp(b, V"))

for all a,a’ € A(i) and b,b' € B(i), and some L; >0 and L;; > 0.

(11i) With w the Lyapunov function in Assumption 3.1.2, there exist constants 6 > 2,
cs > —a, and dg > 0 with

Z%’j(aa b)uw’(j) < —csw’(i) +ds  for all (i,a,b) € K. (3.3.2)

JjeS

We have that Assumption 3.3.3(iii) is indeed stronger than Assumption 3.1.7(iii). To
this end we use the following transcription of Lemma 2.3.5.

Lemma 3.3.4 Suppose that the function h : S — [0, 00) satisfies q(i) < h(i) for alli € S.
If there exists a power v > 0 and a constant ¢, > 0 such that

> aij(a, b)Y (j) < eyh7(@)  for all (i,a,b) € K, (3.3.3)

JjeS
then for every power 0 < ~' <~

> aila, ) () < e,k (i) for all (i,a,b) € K.

jes
Consequently, if there exists a power v > 0 such that the Lyapunov function w verifies

S g0, ) () < —ew (i) +d, for all (i,a,b) € K

jes
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and some constants ¢, € R and d, > 0, then for every 0 < " <~

> aij(a,b)w” (§) < (ley| + dy)w' (i) for all (i,a,b) € K
jes
(indeed, just note that ) g¢;;(a,b)w(j) < (|c,] + dy)w (i) and use Lemma 3.3.4). In

particular, if Assumption 3.3.3(iii) holds then necessarily Assumption 3.1.7(iii) is satisfied.
Moreover, the following inequality, which will be used in the sequel, easily follows as well:

> aij(a,b)w’ () < (Jes| + ds)w’ ' (i) for all (i,a,b) € K. (3.3.4)

jES

Lemma 3.3.5 Consider a fited n > 1 and suppose that the game model G,, satisfies As-
sumption 3.2.3. Suppose that there exists a function u € B, (S,) such that, for all i € S,,

lau(i) — sup inf {r,(i, ¢, ) +qu p, 0)u(i)}| < hi3)
€A (i) YEB (D) JESn

for some h(i) > 0. Assume, in addition, that there exist constants ¢, > —a and dp, > 0
such that
Z gi;(a,b)h(j) < —cph(i) +dy  for all (i,a,b) € K,.

JESK
Under these conditions,
h(t d
@ h
a+c,  ala+c)

V(i) —u(i)| < for each i € S,,.

Proof: First of all, we note that for every (7!, 7%) € I} x I12, ¢ > 0, and i € S,, we have

@(1 —e ) if ¢ # 0

By [h(a(t))] < e h(i) + o

or B [h(z(t))] < h(i) + dpt when ¢, = 0 (the proof of these inequalities is similar to
that of (3.1.4)). Therefore, in either case,

S 12 o h(Z) dh .
1,70, T at < . «J.
E! [/0 e h(ac(t))} S o + ot for alli € S, (3.3.5)

For every i € S,,, there exists some o € A, (i) such that for all ¢ € B,,(i)

au(i) —rp(i, @, 1) — ZQUSOl/} h(i).

JESH

1

Consequently, there exists a stationary policy 7! € II* such that for every stationary

72 e I12¢

au(i) — rp(i, 7, quﬂ' m)u(j) < h(i) for all i€ S,.

JESH
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Using Dynkin’s formula gives, for every i € S,, and t > 0,

B e e O)] - uli) = B [ D+ Y @y Tul)lds|

> g [/Ot e [rn(x(s), 7', 7%) + h(x(s))]ds].

Now we let ¢ — oo in this inequality. Recalling (3.1.4) and Remark 3.1.5 for the game
model G, and using dominated and monotone convergence, we obtain

u@) < Vo(i,n', %) + BT [/000 e_ash(x(s))ds]

h(i) dp,
atce,  alatce)’

< Vna(i,ﬂl,ﬂ'Q) +

1

where we have used (3.3.5). Since this inequality holds for some 7! and all 72, we obtain

h(z d
u(i) < sup inf {VO(@, 7', 7%} + (0 "
Alenls m2en?? a+te,  ala+c)
: h(i) d
= V(i) + 3.3.6
v (@) atc,  ala+c) ( )
for all i € S,, (use Remark 3.1.10 for the game model G,,).
Observe now that, the sets A, (i) and B, (i) being finite, we have
inf  sup {ra(i,0,0) + > gl )u(l)}
YEBn (1) e, (i) €Sy
= swp b {ru(i.¢.0) + > a(e,)uli)};
€A (i) YEBn( JES
see Theorem 1 in [12]. So, using a symmetric argument with the inequality
—h(i) < au(@) — inf sup {ra(i 0, 9) + Y ai(,9)uli)}
PEBy (i) PEAL (1) JES
gives the existence of 72 € 12 such that for all 7! € TI.*
h(7 d
Ve, 7%) < u(i) + (&) + i for all i € S,
atc,  ala+c)
and, therefore,
h(z d
V(i) < wu(i) + (0 + i for all i € S,,.
a+c,  ala+cp)
Together with (3.3.6), this proves the stated result. O

Finally, we state our main result on the convergence rates to the value of the game. In
this theorem, the game models G, are constructed, starting from G, as described at the
beginning of this section. It uses the notation p, (i) introduced in Definition 3.2.1.



3.3. Approximation results for discounted games 105

Theorem 3.3.6 Suppose that the game model G satisfies Assumptions 3.1.2, 3.1.4 and
3.3.3. Let {Gn}n>1 be the sequence of finite state and actions truncations of G, and suppose
that the action sets for G, are chosen in such a way that, for allmn > 1 and i € S,,, and for
some constant D > 0

D’ (4)
wi2(n + 1)(L; + 2Mw(n) Y070 L)

pn(i) <

Under these conditions, there exists a constant ¢ > 0 such that, for everyn > 1 andi € Sy,
6 .

. : w (i)

Veia) = V()| < ¢ ———.

| n (Z) (Z)l — w(;_g(n i 1)

Proof: Fix n > 1 and i € S,,. We have

aV(i) = sup inf {r(i,¢,) +qu e, V)V ()}

pEA(7) YeB(i) jes
< sup inf {r(i, e, 0) + > ai(e, o)V} (3.3.7)
€A (i) YEBn (1) jes

Note that for every (¢,v) € A(i) x B(i)
> aile )V qu 2, V) (V) = Vo) + > ai(e, ) (V(5) — V(n)),
JES j>n

and recalling that |[V*|], < 9N,

1> aile, ) (V) = V)| <2 gy, )w(y).

i>n i>n

Observe now that proceeding as in the proof of Lemma 3.1.8(i) and recalling (3.3.4), we
can show that

S asle ) € g (sl + dsu () + aliyu’ (i)

52
i>n w (TL + 1)
w’ (i)
< ds + 1) ———— 3.3.8
< (ol +ds+ i, 3:35)
Therefore, combining (3.3.7) and (3.3.8), we obtain
OzVa(z) < sup inf {T('L © 77/1) + nz_:lq((p ¢)<Va<]) o VQ(TL))} +5 w‘;(l)
T A LT T w2 (n+ 1)’

with o
C = 29)4((’05‘ +ds + 1).
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By upper semicontinuity, the above supremum is indeed attained. Consequently, there
exists ¢ € A(i) such that, for every ¢ € B, (i), we have

o w0

aVe(i) < ri, 0, ¢) + Z 6 (0, V) (V) = V*(n)) + Om. (3.3.9)

Given arbitrary € > 0, there exist a finite set {x1,...,zx} C A(i) and By, ..., Br > 0, with

b1+ ...+ B, =1, such that
k
dw (e, Bjda,) <€
j=1

For every z;, let 2; € A,(¢) be such that

dafa ) = min da(a;.9) < pa(4,(0). A(D))

It is easy to see (recall (1.4.5)) that

Zm@],Zﬂ] ) SZ alzy, 25) < pa(An(i), A(D)),

and so, letting ¢ = Z;’:l B0z, € An(i),
dw (0, §) < €+ pa(An(i), A(i)).

Summarizing, for ¢ € A(i) we have found a probability measure in ¢ € A, (i) which is
“close” to ¢ in the Wasserstein metric. By the Lipschitz continuity Assumption 3.3.3,
observe that the function on A(i) x B(i) given by

n—1

(a’ b) = T(i, a,b) + Z Qij(aa b)(va(j) —V%(n))

Jj=0

is Lipschitz continuous, with Lipschitz constant L; + 29w (n) Z;:ol L;;. Consequently, the
same applies to

n—1

e [ [l ab)+ D ala 0)(VEG) = Vo) |v(a).

Bn (i) =0

Use now (1.4.5) to derive that

0.9+ 20V 0) = V(1) = 1l 900+ 255 V) = Vo)

—_

n—

< (Li—|—29ﬁw(n) LU) dw (g, ) < (Li+29ﬁw ZL”) (€ + pa(An(i), A(D))).

J

Il
=)
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Therefore, recalling (3.3.9), this yields that aV'*(7) is less than or equal to

n—1

r(i, &, ¢) + Z 45 (0, ) (VE(j) =V (n))

wd (i nl

Since this holds for all ¢» € B, (i) and the particular ¢ € A,(i) constructed above, we
deduce that

» ' , = o = w()
ave(i) < wesgﬁi)welgnf(i){r(%%w)+;qzj(%w)(v )=V (n))} T O 1)

—_

n—

+(Lf+mmwoo LU)46+pAu%@LA@»y

<.
Il
=)

But € > 0 being arbitrary and recalling our hypothesis on pa(A, (i), A(7)) < p,(i), we
derive that

n—1 — .
af; : , "y o (C + D)u’(q)
aVe(i) < %s%ﬁiwe%f(i){r(z,%w) + j;oqij(so,w)(‘/ (j) = Ve(n)} + prET
' : n Y (C + D)w’(i)
- £ (i @, i, V)V R Y R
Lp:;}?(i)lbel%ln(i){r (i, 0,9) —i-]%qj(gp VIVEG)E+ wO2(n+1)

where the last equality is derived from the definition of the reward and transition rates of
the game model G,,.
Using a symmetric argument, we can show that

. . . . (C + D)yw’ (i)
aVe(i 2 lllf sup " Zj%w + qy SD,T/J Ve J - :
(i) wewmnm{ (i, ,9) Z e VUl = 1y

As in the proof of Theorem 3.3.2 we can show that the inequality in Assumption
3.3.3(iii) is satisfied by the transition rates of G, with the same constants ¢s and ds.
Therefore, by Lemma 3.3.5, we conclude that, for every ¢ € .S,,,

a5y _ (i (C + D)w’(i) (C + D)ds
V() = Vel = (a+cs)w'2(n+1)  ala+c)w=2(n+1)

Recalling the definition of the constants C' and 9, and letting

(2M (o +di)(|es| +ds + 1) + Dafa + 1))(ds + )
a?(a+ ) (a+ cs)
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we have
w’ (i)
w'2(n+1)
foralln >1and i€ S,. O

[Var(i) = V()] < ¢

The above theorem shows that, if a Lyapunov condition holds for the function w® (with
d > 2) then, by making a suitable choice of the finite action sets A,,(i) and B, (i), the error
when approximating V(i) with V,(4) is of order 1/w®~2(n + 1). Moreover, we have an
explicit expression for the multiplicative constant ¢ that depends on the initial data (and
related constants) of the game model G.

3.3.3 Solving numerically a finite discounted game

Our previous results show that the value function V' of the original game model G can be
approximated by the value V* of the finite state and actions game models G,,. But, from
the numerical perspective, it remains to explain how a finite state and actions game model
can be solved explicitly.

Consider the finite state and actions game G,, defined at the beginning of Section 3.3.2.
Let q, > 0 be such that

an > —¢;;(a,b) for all (i,a,b) € K, (3.3.10)

(it suffices to let q, > w(n)). For u = {u(i)}ics, € R™™ define the operator T,u € R"™!
as

T,u(i) = max mini){rn(i,%dJ)"‘quj(%wu(j)}

€A (i) YEB( =

= min max {Tn(z', 0, ) + Z qznj(% ¢)U(])}

weﬁn (@) ‘Pezn (@) GESn
for i € S,. Define also Tj,u € R"*! as

T,u(i) = max min {Tn(i7('0’¢)+ G Z(qlﬂj(%w)—l—&j)ﬂj)} (3.3.11)

@EAR (i) YEBR(1) a+qn @+ dn JESn an

N TR L LU T LN P UERE)

$EB (i) peAn(i) L .+ dp @+ dn o In

fori € S, (cf. Section 8 in [16]). It is easily seen that the equation au = T,u is equivalent
to the fixed point equation u = fnu Therefore, as a consequence of Theorem 3.2.6, the
value V& of the game G, is the unique fixed point of the operator T,. Moreover, by a
standard calculation, it follows that Tn is a contraction operator on R"*! with modulus
q./(a+q,) < 1 when considering the supremum norm; that is,

qn

| Tou — T <
a+qp

|lu—v|| for all u,v € R*+L.
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Hence, the iterative procedure (which is a sort of value iteration algorithm):
1. Fix arbitrary ug € R"*L,
2. For k> 1, let u;, = Tnuk_l,

converges geometrically to V* in the supremum norm. Concerning the computation of the
iterate fnu for a given u € R™™!, we can apply our next lemma, which uses the following
notation. Given a positive integer IV, define Ay as the set of nonnegative Ay, ..., Ay such
that )\1+—|—)\N: 1.

Lemma 3.3.7 Given the real-valued matriz C' = {Cs h<s<r1<t<s, define

V* = max min A;Cs; = min max E 1 Cls .
AEA; 1<t<J ’ HEA ; 1<s<T ’
1<s<I 1<t<J

Let ¢ > 0 be such that all the elements of the matriz D, with Dy, = Cs; + ¢, are strictly
positive. Consider the linear programming problem

min 1'x  subject to D'x >1, x>0,

and let x* € R! be an optimal solution. Then V* = - — c.

T o1/x*

Proof: We have

V* + ¢ = max min ANDgy =V
AeAT 1<t<J ’
1<s<I

and suppose that D,; > € > 0 for all s and ¢. Observe that V equals the optimum of the
linear programming problem: maximize v subject to

v< > ADy foralll <t<J,

1<s<]

with v > € and A € Aj. Letting z, = \;/v for s = 1,..., 1, it follows that l/f/ equals the
optimum of:
min 1'x  subject to D'x>1, x>0, 1'x < 1/e,

where the last constraint is redundant. O

Therefore, once uy_; is known, we can effectively compute wu; by solving the linear
programming problem described in Lemma 3.3.7. Namely, given ¢ € S,, and for all a, €
A, (i) with 1 < s <, and all b; € B, (i) with 1 <t < J, define

— rn<i7a37bt> + qn Z Q%(a87bt)
o _'_ qn Q _'_ qn qn

s,t

+ 6¢j>uk_1(j)
JESn
and then use Lemma 3.3.7 to determine wuy.

Regarding a stopping criterion for the above algorithm, we have the following result.
In the next lemma, the norm || - || refers to the supremum norm on R™*1.
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Lemma 3.3.8 Given the finite state and actions game model G, consider the sequence of
iterates {uy }r>0, where ug € R"™ is arbitrary and, for k > 1, ux = Tyuy_y. Fize >0 and
let k > 1 be such that ||ug—1 — ux|| < ea/qn,. The following statements hold.

(1) [lur = V| <e

(ii) The strategy . € TL* such that, for all i € S,, 7l (-|i) attains the mazimum in

(3.3.11) for the iteration ugyy = Tyuy is 2e-optimal for player 1, meaning that
V(i) —2¢ < inf VO(i,7i, %) foralli € S,.

m2€ell2

(iii) The strategy 72 € U** such that, for all i € S,, ©2(-|i) attains the minimum in

* *

(3.3.12) for the iteration ugyy = T uy is 2e-optimal for player 2, meaning that

V(i) +2¢ > sup VO(i, 7, 72) foralli€ S,.

*
mlelll

Proof. (i). We have

an

-V < - — V¥l <
ue — V| < [Juk — wiga ]| + [Jursa n||—a+qn

(1fens = ol + [l = V211)
because V" is the fixed point of Tn, and so
o dn
e = VIl = —lur-1 —wil| < e.

(ii). For w: S, — R, consider the operator

~ mi(-1i). b n(wl(-]i),b
bEB(4) a+qp a+qy - dn
JESK
which is a contraction on R™™! with modulus %’&n, and let W be its unique fixed point.
The fixed point equation

Tn(lvﬂ-i(“)’b) + dn Z <QZ(7T>1(|Z)>[7)

a+qp, at+dn An

W(i) = min { +5ij)W(j)} for i € S,
be By (i)
corresponds to the discounted cost optimality equation of a continuous-time control prob-
lem (for player 2) when the strategy of player 1 is 7}; see [31, Section 3.3]. Therefore,
W (i) = inf2ere V,2(i, 7y, 72) for all i € S,.
Observe now that

(W =V < IW = | + [Jux = V2. (3.3.13)
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Now, on the one hand,

W — || < W — Toug| + || Tour — ws|

— (| TW — U] + || T — ug]| < —2

a+qn

(1 =l + [y = il
because Tnuk = ﬁuk, and so
W = el < 2 s = ]

On the other hand, as established in part (i), |[ur — V,*|| < 2 [|ug—1 — ugl|. From (3.3.13),
we obtain

o)l < 29n
W =Vl < —Fllue-y — wi]] < 2e,
and the result follows. The proof of (iii) is similar. O

As a consequence of this lemma, we can explicitly obtain an approximation of the value
and nearly optimal strategies for both players for the game model G,.

3.4 Approximation results for average games

In this section we study the approximation problem for an average payoff Markov game;
recall Sections 3.1.3 and 3.2.3.

3.4.1 Convergence results: the general case

In our next theorem we prove the main result on the convergence of the average value
of the game models G, to the average value g* of G. We also analyze the optimality of
the limiting strategies. We note that, in addition to the conditions imposed so far on the
game models G and G,, we need a supplementary hypothesis. Namely, we suppose that the
functions h,, € B,(S,) in the solution of the average optimality equations for G,, recall
Theorem 3.2.8, can be chosen in such a way that sup,~ ||hn||w» < 00. In connection with
this, see Remark 3.4.2 below. -

Theorem 3.4.1 Suppose that the game model G satisfies Assumptions 3.1.11, 3.1.12, and
3.1.14, and that the game models G, satisfy Assumption 3.2.7. In addition, assume that
there exist h,, € By (Sy,), solutions to the average optimality equations of G, in Theorem
3.2.8, such that sup,~, ||hn||w is finite. Under these conditions, if G, — G then

(i) The average value of G,, converges to the average value of G, i.e., lim,_, g5 = g*.

(ii) If (7}, 72) € TIL" x %" 4s a pair of average optimal strategies for G, for everyn > 1,
then any limiting strategy (w', 72) € I} x 112 is average optimal for G.
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Proof. (i). Since the sequence of average values {g;},>1 is bounded (recall Theorem
3.2.8(i)), and by the hypothesis on the sequence {h,},>1, it follows that there exists some
subsequence {n'} along which {g¢*} and {h,} converge. Without loss of generality, we shall
assume that the whole sequences converge. Hence, there exists a pair (g, h) € R x B,(.S)
such that

7}1—2}0 gy =9 and lim h,(i) = h(i) forallie S.

n—0o0

Fix ¢ € S and consider n > n(i). From the average optimality equations for the game
model G,, in state 7 € S,, we obtain

g.= sw inf {ru(i,e.¥)+ > ai (e, 0)ha(5)}-

€A, (i) YEB (i jESn

The function

(@, 0) = (i, 0,0) + D g2 (0, ) ha(j)

JESn

being continuous (Lemma 3.2.4), it follows that

pr dnf {ra(i0,0) + > a0, ) ha(5)}

v €5,

is upper semicontinuous, and so it reaches a maximum on the compact set A, (i) at the
point, say, ¢ € A, (i), that is,

gn = inf ){Tn(i,SOi‘L?w) +> g (en)ha(h)}- (3.4.1)

YEBL (1 s

The sequence {p*} C A(i) has some convergent subsequence. We shall assume that the

whole sequence converges: that is, for some ¢ € A(i) we have ¢¥ < ©.
Fix now arbitrary ¢ € B(i) and n > n(i). For every such n there exist some points
x1,...,2; € B(i) and positive 5, ..., 5, with > B, = 1, such that

t

k=1
We will write 7&” = 22:1 Brds, . For each xy let y, € B, (i) be such that

dp(yr, vx) = min_dp(y, z1) < pp(Bn(i), B(i)).
yE€Bn (i)
Consider the probability measure 1), = Zzzl B0y, . A straightforward calculation yields

that dy (n, ¥n) < pi(Bn(i), B(i)). Consequently, we have that ,, € B, () verifies 1), )
because )
dw (¥n, V) < pu(i) +1/n — 0.
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Now, from (3.4.1), for every n > n(i) we have

G < rali @ 0n) + > g2 (@ n) ()

JESn

Take the limit as n — oo and use Lemma 3.2.5 to conclude that

jes
Since 1 € B(i) is arbitrary, we obtain that

g < inf {7“ L0, ) + ) i, )h()

»eB(i) jes

and so

g < sup inf {rzww +qu€0¢ ()}

@GA( )wéB(z ies

Proceeding with a symmetric argument we can establish that

g> inf sup {r(i, ¢, ) —I-ZCIUSO@Z’ h(5)}-

1/’€B()LpEA( ) jcs

Since i € S is arbitrary, we conclude that the pair (g,h) € R x B,(.5) is a solution to the

average optimality equations for the game model G. Hence, we must have g = g*.
Summarizing, we have proved that any convergent sequence of the bounded sequence

{95 }n>1 converges to g Necessarily, we must have lim g = g¢*.

(ii). Suppose that (m?, n) € 11" x IT>™ are optimal stationary strategies for the players,

and suppose that (7!, 72) is a hmltlng strategy through the subsequence {n'}. As in the

proof of statement (i) of this theorem, we can show that

< inf (i, 7" )+ i . h(j forall i € 9,
g'< inf { ;qg ()}

from which optimality of strategy 7! for player 1 follows. We proceed similarly for player 2.
The proof is now complete. 0

Remark 3.4.2 This convergence theorem has been proved under the additional hypothesis
that sup,, ||hn||w < 00. We note that if each game model G,, satisfies the conditions given in
Remark 3.1.15 then the condition sup,, ||hy||w < 00 is fulfilled. See also Theorem 3.1.16(ii).

Remark 3.4.3 It is also worth noting that, in Theorem 3.4.1, we have not used Assump-
tion 3.1.14(iv) on the irreducibility of stationary strategies for G. In fact, if we drop
Assumption 3.1.14(iv) then we cannot apply directly Theorem 3.1.16 to the game model G.
Interestingly, Theorem 3.4.1 is in fact a proof of the existence to solutions of the average
optimality equations for G (and, hence, the existence of a constant average value function),
based on suitable properties of a family of (simpler) game models G,,.
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3.4.2 Convergence results: finite approximations

Starting from the countable state space, general action spaces game model G, we consider
the sequence of finite state and actions game models G,, that were defined in Section 3.3.2.
For ease of reference, we give again the definition of the game model G,,. For each n > 1
we define the game model G,, with elements {S,,, A, B,K,,, Qn,7}:

e The state space of G, is the finite set S,, = {0,1,...,n}.
e The action spaces are A and B, as for the game model G.

e The available actions for players 1 and 2 are arbitrary finite sets A, (i) C A(i) and
B,(i) C B(i), respectively. For every i € S, they verify

pn(i) = pa(An(i), A(i)) V pp(Bn(i), B(i)) = 0
asn — o0o. Let K,, = {(i,a,b) € S, x Ax B:ae€ A,(i),b € B,(i)}.

e Given (i,a,b) € K,, and j € S,,, the transition rates @,, are

n qdi;\@, b when 7 #n
i (a,b) = 4 4 i#
> ksn Gik(a,b)  when j =n.

These transition rates are conservative and stable, with —¢%t(a, b) < —g;;(a,b) < q(7)
for (i,a,b) € K,.

e The payoff rate function is the restriction of r to K,,, that we will also denote by 7.

The dynamics of the game model G, is roughly as follows: the game model G,, evolves
according to the same dynamics as the game G and, whenever the system reaches a state
strictly larger than n, it is restarted at state n.

Lemma 3.4.4 If the game model G satisfies Assumptions 3.1.11, 3.1.12, and 3.1.14(i)-
(i1i) then the sequence {G,}n>1 satisfies Assumptions 3.2.7(i)-(iv) and, besides, G, — G.

Proof. The proof is easy and similar to that of Theorem 3.3.2. (]

It is important to mention that the irreducibility of stationary strategies for G,, cannot
be deduced from the irreducibility of stationary policies for G. That is why we have not
included Assumption 3.1.14(iv) in the hypotheses of Lemma 3.4.4. Therefore, Assumption
3.2.7(v) needs not hold, we cannot use Theorem 3.2.8, and G,, might not have a value.

Moreover, we can neither use Theorem 3.4.1 on the convergence of the value functions
of G, to that of G. So, in the context of a Markov game with the average payoff opti-
mality criterion, the finite state and actions truncated game models G,, might not be used
as approximations of G. This is an important departure point from the results in the
discounted payoff setting in which, under mild hypotheses, the truncated game models G,
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could be used to approximate the discounted game G. So, we will need to impose additional
assumptions to obtain convergence.

The next result will be useful in the forthcoming. We note that this lemma does not
suppose Assumption 3.1.14(iv) on the irreducibility of stationary strategies for G. Hence,
the game model G might not have a value function.

Lemma 3.4.5 Let G satisfy Assumptions 3.1.11, 3.1.12, and 3.1.14(i)(iii). Suppose that
there exist g € R, h € B, (S), and u : S — [0,00) such that, for alli € S,

g—u(i) < sup inf {r(i,0,0) + > ai;(0, )h())} (3.4.2)
¢eA()¢€B@ ies
< inf sup {r(i,p,¢¥) +qu o, )h(j)} < g+ u(i), (3.4.3)
YEB(i) peA(s) jes

and such that, for some constants c, > 0 and d, > 0, the function u satisfies

qu a,bu(j) < —cyu(i) +d, for all (i,a,b) € K.

JES
Then g — d,/c, < L(i) <U(i) < g+dy/c, foralli € S.

Proof. By Lemma 3.1.8 and Assumptions 3.1.14(i)(iii), given i € 5, the function ¢
(i, 0,%) + 32 s @i (0, ¥)R(4) is continuous on A(i) for all ¢ € B(i). Hence,

o inf (rli.o ) + 3 as(e)h())

wEB JES

is upper semicontinuous and it reaches a maximum on the compact set A(i). As a conse-
quence of (3.4.2), there exists some ¢} € A(i) such that for all ¢ € B(i)

g ()<T2g01,7 +qu] SO'L7
JeS

Consider the stationary strategy ml € TIY* such that wl(-|i) = ¢} for all i € S. Given an
arbitrary Markov strategy 72 € H2,

g —u(i) <r(ti k7 +qutﬂ' 7)h(j)
JjES

for all « € S and ¢t > 0. Using Kolmogorov’s backward equations for a nonstationary
Markov chain [17, Proposition C.4],

B [h(a(1))] - h(i)

_ / B (s, a(s), w, 72) + ua(s))] ds + gt. (3.4.4)

0
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By arguments similar to those used to derive (3.1.10) we have

s -1 2 du
i fu(a(s)) < e (i) + 41— e ) forall s 2 0,
Cu

dy
cy

and so dividing by ¢ in (3.4.4) and taking the limsup as t — oo yields g < J (4,7}, %) +
Consequently, since 72 € 112 is arbitrary

dy
— 2 < inf J(i,nl,7?) < s inf J(i,7',7?) = L(i).
97 S Ak Jmem) < sup k) = LG)

Proceeding similarly with (3.4.3) we obtain U (i) < g+ ‘j—: for each i € S. The stated result
follows. O

As already mentioned, we need to strengthen our hypotheses to obtain convergence.
Namely, we will replace Assumption 3.1.14 with the following stronger condition.

Assumption 3.4.6 (i) Withw the Lyapunov function in Assumption 3.1.11, there exist
0>2,¢c5s >0, and ds > 0 such that

S ai(a,bw’(j) < —cswl(i) +ds  for all (i,a,b) € K.

jes

(i) The action sets A(i) and B(i) are compact for everyi € S. For alli,j € S there are
positive constants L; and L;; with

Ir(i,a,0) —r(i,d, V)| L, (dA(a, a') + dg(b, b/))
lqi;(a, b) — qi;(a’, )| Lij(da(a,a") + dp(b, b))

foralla,a’ € A(i) and b,V € B(i); i.e., the functions r(i,-,-) and ¢;;(-,-) are Lipschitz
CONntinuUouUs.

<
<

(iii) Each pair of strategies in 11 x I1%* is irreducible.

In this assumption, we impose a Lyapunov condition on w® for some § > 2, in which the
coefficient ¢; is positive (cf. Assumption 3.3.3(iii)). Also, we impose Lipschitz continuity
of the reward and transition rates. Note that Assumption 3.4.6(i)—(ii) is analogous to
Assumption 3.3.3 expect for the additional condition on ¢s. Note that Assumption 3.4.6(i)
indeed implies Assumption 3.1.14(iii), as consequence of Lemma 3.3.4.

Next we state our main result on the convergence of the value functions.

Theorem 3.4.7 Suppose that the game model G satisfies Assumptions 3.1.11, 3.1.12, and
3.4.6. Fix D > 0 and suppose that the action sets A, (i) and By(i) of G,, forn > 1, are
chosen so that

Du’ (i)
wd=2(n +1) (Li + w(n)@ Z;:(} Lij)

pn(i) < fori € S,. (3.4.5)
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Then there exists a constant ¢ > 0 that depends neither onn > 1 nor on i € S,, such that,
foralli e S, andn > 1,

c ¢
. - < LN<UMN<gG+—
gy = O = OO S
Consequently,
nax|Ly(i) — g and  max|Un(i) - g°|

€S

are both O(w=C=2(n 4+ 1)) as n — oo,

Proof. Fix n > 1 and i € S,. Let (¢*,h) € R x B,(S) be a solution of the average
optimality equations for the game model G such that ||h[|, < RM/v. From the average

optimality equation in Theorem 3.1.16 we deduce that there exists ¢* € A(i) such that,
for all ¢ € B(i),
g < (i) + Y ais(e" 0)h(). (3.4.6)

jES

Observe that >, ¢ qi;(#*,¥)h(j) equals

> e 0AG) = ) + Y ai ", ) (b(3) — )
< 3l )0G) ~ h) + 2l Y a5 ),

where, proceeding as in Lemma 3.1.8 we obtain

ma T dy)ud (i),

On the other hand, the probability measures with finite support being dense in A(7)
(see Theorem 8.9.4 in [7]), given € > 0 there exist z1, ...,z € A(i) and positive 1, ..., [
with Y B, = 1 such that dy (¢*, Y Bids,) < €. For each z; let y, € A, (i) be such that

dA(ft,yt) = min‘ dA(xtya) < pA(An(Z)>A(Z))

a€An (1)

and define @, = Y 3i6,, € A,(i). It is easily seen that

dw (D Biburs Pn) < palAn(i), A)) < pali)
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and thus dw (¢*, ) < €+ pp(i). By Lipschitz continuity in Assumption 3.4.6(ii), it follows
that > . ¢ij (", ¥)h(j) is less than or equal to

—_

n—

Zqij(%,%b)(h(j) = h(n) + 2[hlfww(n)dw (7, 8n) ) Lij

<
Il
o

w
+ 2l 1+ d)——

On the other hand, we have

r(i, 0", ¥) < (i, @n, V) + Lidw (", 6n).

Summarizing, for @, € A, (i) constructed above and for all ¢ € B,,(i) C B(i) we have (see
(3.4.6)) that g* is less than or equal to

n—1
+ 2/ Al (n) ZLU) + 2l Al (1 + ds)—=
=0

Recalling the bound on dy (¢*, ¢, ) and the definition of the transition rates of G,, it follows
that

g <TZ()OTH _I_Zqz] 907“ +(E+pn())
JESH
-<L-+2Hh\| w(n)nZlL--) + 2] (1+d5)ﬂ.
7 w ~ 1) w w5*2(n+1)

Since ¢ € B, (i) is arbitrary, recalling the bounds on ||A||,, and p,(i), and since € > 0 is
arbitrary as well, it follows that

= )+ 3 ) +
g < sup  imf {r(i,p, a (e, ——
oe A, (i) YEBR(i = J wi2(n+1)

for all ¢ € S,,, where € = D + 2RM (1 + ds)/7. The symmetric inequality, that is,

* inf { w + Z w ( )} Q:w5(i)
g = 1 sup 7(, ¥, qi; (¢, T2 1 1)
YEBR(i) ped, (i) v ! w'2(n+1)

for ¢ € S, is proved similarly. Now we use Lemma 3.4.5 for the game model G, to derive
the stated result for ¢ = €/cs. O
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Therefore, by making a suitable choice of the sets A, (i) and B, (i), we obtain conver-
gence, uniformly in ¢ € .5,,, of the lower and upper value functions L, and U, to the value
of G at a rate 1/w’ 2(n + 1). Note that, for fixed n > 1, the bound on p,(i) in (3.4.5)
grows (loosely) with w’(i) for i € S,. This means that “fine” choices of the action sets
of G, must be made for “small” states, but “coarser” actions sets are allowed for “large”
states.

It is also worth mentioning that Theorem 3.4.7 above does not assume the existence of
the value of the games G,,, and yet it provides a result on the convergence of the lower and
upper value functions. If the game G,, has a value g; € R then the result of Theorem 3.4.7
becomes, obviously,

9 — 9] < for all n > 1.

w'2(n+1)

3.4.3 Solving numerically a finite average game

It remains to show how to solve numerically the game model G,,. Under an additional
irreducibility assumption, we can use the following “policy iteration” procedure.

Theorem 3.4.8 Suppose that the finite state and actions game models {G,}n>1 satisfy
Assumption 3.2.7. For each fized n > 1 consider the following iterative procedure.

Step 0. Choose arbitrary 7y € L%, Set k=0 and go to Step 1.

Step 1. Find solutions g, € R and hy, : S, — R of the average cost optimality equation
ge = min {rai,mh )+ D a(rh (i)} fori€ S,

be By, (7) ics

Step 2. For each i € S, find ¢; € A,(i) attaining the mazimum

max min {rn(i,w,b) + Z qi5 (¢, b)hk(j)}~

A (i beBn i
$EAn (1) @ FESn

Define my,, € I1% by means of w1 (-|i) = ¢; for i € S,. Increase k by one and go
to Step 1.

The sequence {gi}r>0 is monotone nondecreasing and it converges to the value g of the
game G,.

Remark 3.4.9 In Step 1, we solve the average cost optimality equation of a control prob-
lem for player 2 when the strategy of player 1 is m.. It can be solved, in a finite number of
steps, with the usual policy iteration algorithm (see chapters 3 and 4 in [31]). But also it
15 well known that solving this optimality equation reduces to a linear programming prob-
lem; see [35, Section 8.8] for the discrete-time analogue. Regarding Step 2, this maximin
problem is equivalent to a linear programming problem (recall Lemma 3.3.7 and see also
[22, Section 7.11]) and, therefore, it can be solved explicitly.

Hence, the “policy iteration” algorithm in Theorem 3.4.8 reduces to solving, iteratively,
linear programming problems. This makes the algorithm computationally tractable.
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Proof. Fix k > 0 and observe that, by construction of 1

min {Tn(i,’iﬁi_,_l,b) + Z qf}(ﬂéﬂab)hk(j)}

beB, (i) ics,
. . 1 n 1 . o

> min {r.(i.x.0) + Y i (nk DI() | = 0 (3.4.7)
" JESn

for all i € S,,. By a standard dynamic programming argument (see, e.g., [31, Lemma 3.10])
it follows that

. .1 2
gk+1 = %nf2 Jn<27ﬂ-k+17ﬂ- ) Z Gk,
m2ell2

since gr11 is the optimal average reward of player 2 when the strategy of player 1 is fixed
and equal to 7, ;. On the other hand, it also follows that

gr = sup inf J,(i,7',7%) > g
" rleln) m2€lly

Consequently, the sequence {gx}r>0 is monotone nondecreasing and its limit, denoted by
g, satisfies g < g;.

Let 77 € II** be a (nonrandomized) strategy attaining the minimum in the definition
of gr. We can choose hy, as the bias of (7}, 77) and, by uniform exponential ergodicity of
G, and the results in [31, Section 3.4, we can choose hy such that supj~ ||h«||w is finite.
There exists a subsequence {k’} such that the sequences hj and hj,, converge to some
functions AV and h® on S, respectively, and such that, in addition,

T (1) S 7' () and 7l (i) =5 72(-Ji) foralli € S,
for some (7!, %) € II,* x I1%%, as k' — oo. We have that

Grr+1 = T4, ﬂ-]i’+17 Wi/ﬂ) + Z q@nj(ﬂbﬂy 7"13'+1>hk’+1(j)
JESn
and also, by (3.4.7), that
grr < (i, ﬂ-li/-f-l? 771%/-1—1) + Z aij (Wli’+1> 771%/-1—1)}%’ ()
JESn
for all i € S,,. Therefore, for all i € S,,,
Z i (ﬂ-liurl? W2/+1)(hk’+1<j) — i (§)) < ger1 = g
JESn
Taking the limit as k' — oo, it follows that
> gyt 7 (WP () — kY () <0 for alli € S,

JESn
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The function h?) — h(Y) being subharmonic for the irreducible strategy (7', 72), it is con-
stant; see [31, Proposition 2.6]. Now,

max min {rn(i,go,b) + Z qf‘j(cp,b)hk/(j)} (3.4.8)

A ) b B’n ]
€A, (i) bEBR (i) ics,

- beI%IIgz) {Tn(iv ﬂ-li’—l-la b) + Z q?j(ﬂ-li’—‘rl) b)hk’(j)}
" jESn
< ra(i, Wli’+17 7713/+1) + Z QZ(W/%’H, 7713'+1)hk’ ()
jESn

= gk+1t Z qzlj(ﬂ-liurlv o) (i — hyoa)(j) - for all i € S,
JESn

Taking the limit as &' — oo and recalling that hj — hy 1 converges to a constant function,
we obtain

max min {rn(z',go,b) + Z q:}(%b)h(l)g)}

A (i beBn i
PEAR(2) ® JESn

= min max {r.(i.a,0)+ Y @i ()| <7

’IZJEEn(’L) QEA7L(Z) jESn

(interchange of limit and max-min in (3.4.8) follows because the action sets A, (i) and
B, (i) are finite; see [12, Theorem 1]) from which (cf. proof of Lemma 3.4.5)

inf sup J(i,7!,7%) = g5 <7
n2ell? rlelll

follows. This completes the proof of the result. O

It should be clear that if m,,, = m; for some k > 0 then (gx, hy) is a solution of the
average optimality equations for G,. Similarly, it can be derived from [11, Theorem 1] that
if g1 = gx for some k > 0 then (gi, hi) is as well a solution of the average optimality
equations for G,. Therefore, in either case g equals the value g of the game G, and 7}
is an optimal strategy for player 1. Finite convergence of the algorithm might not occur
in general, however, because even if A, (i) is finite, A,(i) is not. On the contrary, for
finite state and action Markov decision processes, the policy iteration algorithm converges
in a finite number of steps. The policy iteration algorithm has been shown to converge
quadratically for certain classes of Markov decision processes [37], but no such convergence
rates have been obtained for the policy iteration algorithm for Markov games.

3.5 An application

In this section we show an application of our numerical procedures to a game model based
on a population system.
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3.5.1 A dynamic population system

A population system is managed by players 1 and 2. The natural birth and death rates per
individual are A > 0 and pu > 0, respectively. Player 1 is interested in the system having
a large population and, to this end, player 1 can decrease the mortality rate (for instance,
by using a suitable medical policy). On the other hand, the goal of player 2 is to have a
small number of individuals; player 2 can choose policies that decrease the birth rate of
the system (e.g., discouraging immigration).

We consider the following game model.

e The state space, standing for the number of individuals in the population, is S =
{0,1,2,...}.

e The action sets of the players are A = B = [—1,1], while A(i) = B(i) = [-1,1] for
alli e S.

e The system’s transition rates g;;(a,b) satisfy ¢;;(a,b) = 0 when |i — j| > 1. When
li — 7] <1 we let
qo1(a,b) = —qoo(a,b) = X — Gy[b),

and, for ¢ > 1,
Qi,i—l(av b) = ji — Ca|a|\/;a Qi,i+1(a7 b) = \i — C'b|b|2',

with g;;(a,b) = —(gii-1(a,b) + gii+1(a,b)), for some constants 0 < C, < p and
0<C,< A and all (a,b) € A x B.

e The payoff rate (interpreted as a reward for player 1 and a cost for player 2) is given
by
r(i,a,b) =pi+ CrabVi forie Sand —1<a,b<1,

for some constants p > 0 and C,. > 0.

In the above definitions, the term v/ models the fact that the payoff has a concave behavior
with respect to the population size, while the term ab in the payoff rate captures the
interplay between the actions of the players. Note that when the players take the actions
a = 0 and b = 0 then they do not act on the dynamic system. In this case, the corresponding
Markov process (referred to as the natural population system) is recurrent when A\ < p
and transient when A > p.

3.5.2 The discounted game

We consider the Lyapunov function w given by w(i) = (A+pu+1)-(i+1) for i € S. Now
we focus on the discounted payoff optimality criterion. Suppose that o > 0 is the discount
rate for the payoffs of the players.
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Proposition 3.5.1 Consider the population model G defined above. If the discount rate
a > 0 satisfies N — p < a then Assumptions 3.1.2, 3.1.4, and 3.1.7 hold. If, in addition,
we have 2(\ — ) < a then Assumption 3.5.3 is satisfied.

Proof: Fix an integer k¥ > 1 and consider the Lyapunov function i — w*(i). Given a state
7 > 1 we have

> aiila,b)wk(i) = (wh(i — 1) = w* (i) (i — CulalVi) + (wh(i + 1) — w* (@) (Xi — Cylp]d).

jes

Noting that

(i+2)" =+ D" =k(i+ 1" +0G"?) and " —(i+1)" = k(i +1)"" + 0@ ),
some elementary calculations give

> aigla, byt (i) = k(A = 1 = Colb)w (i) + O(*2) < k(A — p)wt (i) + O ~2).

jes

Therefore, given an integer k > 1 and a constant ¢, < k(u — A), there exists dj. > 0 such
that

Z gij(a, D)w(i) < —cpw®(i) + di,  for all (i,a,b) € K.

jeS
Note also that —g;;(a,b) < w(i) for all (7,a,b) € K, and so Assumptions 3.1.2 and 3.1.7(iii)
hold.

If \—pu < a then choose —a < ¢; < p— A, and so Assumption 3.1.4(i) holds. Regarding
the other assumptions, note that Assumption 3.1.4(ii) holds by letting M = p + C,., while
Assumptions 3.1.7(ii)—(iii) are straightforward.

It should be clear that Assumption 3.3.3(ii) is satisfied. If 2(A — u) < «, then choose
0 > 2 and ¢z such that

—a<cs <O(p—N),

and so Assumption 3.3.3(iii) holds. O

For each n > 1, consider now the finite state and actions game model G,, as described in
Section 3.3.2. As a consequence of Theorems 3.3.1, 3.3.2, and 3.3.6 we obtain the following
results.

(i) Case A < p (the natural population system is recurrent). Given arbitrary discount rate
a > 0 we have
lim V' (i) = V(i) forallie S.

n—oo

Given arbitrary k > 0, by suitably choosing the action sets A, (i) and B, (i) we have

V(i) — V(i) = O(n™*) for eachi € S.
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(ii) Case A > u (the natural population system is transient). Given a discount rate A\ —p <
a we have

lim V(i) =V*() forallieS.
n—o0

If the discount rate is such that 2(A — p) < « then for each 0 < k < 3o — 2 we can
choose the finite sets A, (i) and B, (i) such that

V(i) — V(i) = O(n™*) for eachi € S.

—i=3

o

I I
1 5 10 15 2 25 30

Figure 3.1: Value of the games V,*(i) for n =1,..., 30.

For the numerical experimentation we choose the following values of the parameters:

A=26, pu=25 a=12 C,=C,=C,=0.2, and p = 3.

For each n > 1 we consider the truncated game model G,, with state space {0, 1,...,n}. The
action sets A, (i) = A, and B, (i) = B, consist of the n+1 points 2 —1 for k = 0,1,...,n.
For n = 1,...,30, we solve the finite game model G, by using the value iteration

procedure described in Section 3.3.3: we start from the initial value ug = 0, while uy,, =
T,ug for k> 0, and we let

n= —q(a,b 0.1;
q (z-,?},?é{Kn{ Gii(a,b)} +

recall (3.3.10). As a stopping criterion for the value iteration algorithm, we let & = 5x 1075
and we stop at the iterate k when

|up — ug—1|| < ea/qn,
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Actions in Asy and Bsg.
—1.000 ] —0.933 1 —0.867 | ... | 0.867] 0.933 [ 1.000
i=0] 0033] 0033 0033]...] 0.033]0.033]0.000
Player 1 — —) - =
i=1] 0499 | <10 %| <10 *|...] <10 %] 0.499 | 0.000
Plaver 2 |2 =0 | 0499 | <107 | <10 | ... [<10-"| 0499 | 0.000
¥ i=1] 0499 | <10 %| <10 *|...] <10°%]0.499 | 0.000

Table 3.1: Optimal strategies in Asy and Bsy for Gsg.

which ensures that ||ux — V.%|| < € (this refers to the supremum norm in R"*!).

In Figure 3.1 we display the values V(i) for i = 0,1,2,3 and 1 < n < 30. We observe
that the values of the games G,, become stable for relatively small values of the truncation
size n, say for n > 20. We obtain the approximations

Ve(0) ~2.6179, V(1) ~3.9269, V(2)~58948, V*(3)~8.0524.

By Lemma 3.3.8, the approximation error (with respect to the value V3§ of the game model
Gso) is less than 5 x 107°. Empirically, we observe that convergence seems to occur faster
than at the convergence rate given in Theorem 3.3.6. This is because the bounds used to
derive the convergence rate are very conservative.

Concerning the approximation of optimal strategies, for n = 30 we show in Table 3.1
the randomized strategies 7}(-]i) and 72(-|i) for i = 0 and i = 1 as described in Lemma
3.3.8. Table 3.1 displays the corresponding probability distributions on the discretized sets
of actions Azy = Bsy. These are 10~*-optimal strategies. Empirically, this suggests that the
optimal strategy for player 1 in the game model G will be to choose his actions uniformly
on [—1,1] in state ¢ = 0, and to randomize between actions —1 and 1, with probabilities
1/2, in state ¢ = 1. For player 2, the estimation of an optimal strategy is to randomize
between actions —1 and 1, with probabilities 1/2, in both states ¢ = 0 and 7 = 1.

3.5.3 The average game

Now we consider the game model G under the average payoff optimality criterion. The
proof of our next result is omitted because it is similar to that of Proposition 3.5.1.

Proposition 3.5.2 If u > X\ then Assumptions 3.1.11, 3.1.12, and 3.4.6 hold, with w the
Lyapunov function w(i) = (A+p+1)-(i+1) fori € S.

For n > 1, let G,, be the game model described previously, namely, its state space is
S, = {0,1,...,n} and its action sets are A,(1) = B,(i) = {2 —1:k =0,1,...,n} for
1€ 5.

The game G,, has a value g (indeed, stationary policies are irreducible; recall Assump-
tion 3.2.7(v) and Theorem 3.2.8) and, as a consequence of Theorem 3.4.7, we have that ¢
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10

0 I I \
1 15 30 45 60

Figure 3.2: Value g} of the game G, forn =1,...,60.

converges to the value ¢* of G at a rate n=" for any k£ > 1, by suitably choosing the finite
actions sets, provided that p > A.

For the numerical experimentation we choose the following values of the parameters:
A=22, u=25C, =08, C,=C, =02, and p=3. Forn =1,...,60, we solve the
finite game model G,, by using the policy iteration procedure described in Theorem 3.4.8.
Figure 3.2 displays the value g as a function of n = 1,...,60. Empirically, we indeed
observe a quick convergence and we obtain the approximate value g* ~ 9.694. This is in
accordance with our theoretical results.
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Conclusions

In this thesis we have introduced the notion of convergence of control and game models;
namely, we have studied the convergence of a sequence of approximating models to an
original control model. This definition of convergence of M, to M, or G, to G, mainly
relies on:

e Convergence of the state space;
e Convergence of the action sets in the Hausdorff metric;

e Uniform convergence of the transition and reward rates.

If the approximating models and the original model satisfy similar hypotheses, then the
above referred convergence implies convergence of the optimal value function and the op-
timal policies. These theoretical results find direct applications by using the finite state
and action truncations. Moreover, under some additional conditions, explicit rates of con-
vergence of the optimal values can be obtained. Our numerical results show that the
techniques developed herein are computationally efficient and can be used in practice to
solve approximately control and game problems.

From a technical point of view, and as it has been seen, the analysis of game mod-
els is more complicated than studying control problems. Indeed, when solving a control
problem, the corresponding dynamic programming equation is concerned with a “maxi-
mization” operator, whereas for game models it is a “maxmin” or “minmax” operator.
This makes that our proofs for game models here are more subtle than those for control
models. Another important difference between control and game models is that, for the
discounted and average optimality criteria, deterministic stationary policies are a sufficient
class for control problems, while in game models we need to consider randomized station-
ary strategies. This makes that the finite state and action truncated models are of a finite
nature for control models (the family of deterministic stationary policies is finite), but the
game model is still of a continuous nature (the class of stationary strategies is uncount-
able). A consequence of this fact is, as an illustration, that the policy iteration algorithm
for control models converges in a finite number of steps, but, on the other hand, the policy
iteration algorithm does not necessarily finitely converge for a game model.

127
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A recurrent issue throughout this thesis is the use of Lyapunov conditions on the control
and game models, related to a so-called Lyapunov function w. Such conditions can be seen
as the core of the assumptions imposed on the control and game models. Indeed, the
function w, which somehow bounds the reward and transition rates, and the Lyapunov
conditions are used to:

(a) Prove the existence of the dynamic system itself (existence of the Markov process),
(b) Ensure the use of Dynkin’s formula,
(c) Obtain convergence rates of the optimal value functions.

In this sense, one typically needs a Lyapunov condition on w to obtain (a), a Lyapunov
condition on w? for (b), and a Lyapunov condition on w® for some § > 2 to obtain (c).
Therefore, the technique of the Lyapunov conditions on the powers of w turns out to be
a powerful tool to obtain interesting results on the control and game models studied here.
In particular, the convergence rate of the optimal value functions closely depends on the
maximal exponent ¢ > 2 for which a suitable Lyapunov condition holds. Moreover, from
a practical point of view, and as can be seen in the applications sections, verifying or
discarding such Lyapunov conditions is usually a quite easy task, and sufficient conditions
for these can be expressed, most of the time, by simple conditions on the parameters of
the dynamic system.

Finally, let us mention some open issues. It would be interesting to study the approxi-
mation techniques developed in this thesis for finite horizon control and game models. In
this case, optimal strategies are not, in general, stationary, and the corresponding opti-
mality equation incorporates a differentiation with respect to the time component (such
term does not appear in discounted and average models due to their stationary nature).
It would be also interesting to know whether the approximation techniques can be used
to study refined optimality criteria such as, e.g., bias optimality. In this case, optimal
policies are derived by solving two nested optimality equations. Adapting our techniques
to approximate such optimal policies is indeed a challenging open issue because the error
in the first optimality equation would be somehow transferred to the second optimality
equation, with, in addition, its own approximation error. Hence, it is not yet clear at all
how to tackle such optimality criteria with our approximation techniques.
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