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Abstract

This dissertation discusses the formulation of discrete models for
diffusion of Brownian particles. Wewill describe the evolution of a discrete set
of concentration variables given by the number of Brownian particles per unit
volume around a given region. The discrete concentration is defined in terms
of a set of basis functions localized around nodes of a mesh. These local func-
tions describe how the number of Brownian particles contribute to each node.
The evolution equation for the discrete concentration field takes the form of a
Stochastic Differential Equation (SDE). One of the aim of this dissertation is
the study of the continuum limit of this equation.

Two approaches will be followed in order to obtain the SDE. The first one
starts from amicroscopic description in terms of the position and velocities of
all the particles that constitute the colloidal suspension. By using the Theory
of Coarse-Graining (ToCG), we derive the equation governing the evolution
of the discrete concentration field. This will be referred to as the Bottom-up
approach. The second approach starts from a continuum diffusion equation
that is discretized with numerical analysis techniques. This will be called the
Top-down approach. Interestingly, and fortunately, both approaches lead to
the same deterministic dynamics for the discrete concentration, under suitable
approximations.

Wewill study two possibilities for the basis functions set that are used to de-
fine the discrete concentration variables. In both cases, the basis functions are
defined on top of the Delaunay triangulation. The first set of basis functions
is given directly by a standard finite element basis functions (a pyramid with
support on the triangular mesh in 2D). This basis set turns out to be valid for
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regular grids. The second set, termed as conjugate finite elements, is given by
a linear combination of the Delaunay finite elements. We show that this sec-
ond basis functions set is superior for irregular grids and has a second order of
convergence, as oposed to the finite element basis function.

The SDE for the discrete concentration variables allowus to discuss the gen-
eral theme of how to introduce thermal fluctuations in a Partial Differential
Equation (PDE), of which the diffusion equation is a primary example. The
continuum limit of such SDE should produce a Stochastic Partial Differential
Equation (SPDE).We show that for the models considered in this dissertation
which are all of them in 1D, the continuum limit exists. In general, forD > 1
the continuum limit of the models considered here does not exist. The coarse-
graining point of view in the present dissertation sheds further light to this
problem, and gives the naive physicist answer: one should be aware that the
models used usually limit the cell size by physical conditions, and the existence
of a continuumm limit for the selectedmodels should not be of concern when
considering thermal fluctuations.
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Resumen

Estatesisdoctoraldiscutelaformulacióndemodelosdiscretospara
la difusión de partículas Brownianas. Describiremos la evolución de un con-
junto discreto de variables dado por el número de partículas Brownianas por
unidad de volumen alrededor de una región. La concentración discreta se de-
fine en términos de un conjunto de funciones base localizadas alrededor de
los nodos de una determinada malla. Estas funciones locales describen cómo
las partículas Brownianas contribuyen a cada nodo. La ecuación de evolución
para el campo de concentración discreto toma la forma de una ecuación difer-
encial estocástica (SDE). Uno de los propósitos de esta tesis es el estudio del
límite continuo de esta ecuación.

Se seguirán dos procedimientos para obtener la ecuación diferencial estocás-
tica. El primero de ellos comienza con una descripción microscópica en térmi-
nos de las posiciones y las velocidades de todas las partículas que constituyen la
suspensión coloidal. Utilizando la Teoría del Coarse-Graining (ToCG) obten-
dremos la ecuación que gobierna la evolución del campo discreto de concen-
traciones. A este procedimiento lo llamaremos el acercamiento abajo-arriba.
El segundo procedimiento comienza con una ecuación de difusión en el espa-
cio continuo que discretizaremos mediante técnicas de análisis numérico. Lo
llamaremos acercamiento arriba-abajo. Interesante y afortunadamente, am-
bos acercamientos convergen a la misma dinámica determinista para la con-
centración discreta bajo ciertas aproximaciones.

También estudiaremos dos posibilidades para el conjunto de funciones base
que serán usadas para definir las variables de concentración discreta. En ambos
casos las funciones base se definen en términos de la triangulación de Delau-
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nay. El primero de los conjuntos de funciones base está dado directamente
por un elemento finito convencional (como, por ejemplo, una pirámide con
soporte en la red triangular para el caso bidimensional). Este conjunto base es
válido para redes regulares. El segundo conjunto, denominado de elementos
finitos conjugados, está dado por una combinación lineal de los elementos fini-
tos de Delaunay. En contraposición al conjunto formado por elementos fini-
tos, mostraremos como este segundo conjunto de funciones base es superior
en redes irregulares y tiene un orden de convergencia 2.

La ecuación diferencial estocástica para las variables de concentración disc-
reta nos permite discutir cómo introducir fluctuaciones térmicas en una Ecua-
ción en Derivadas Parciales (PDE), de las que la ecuación de difusión es un
ejemplo paradigmático. En el límite continuo, estas ecuaciones diferenciales es-
tocásticas deben ser equivalentes a una Ecuación Estocástica en Derivadas Par-
ciales (SPDE). Mostraremos que para los modelos considerados en esta tesis
doctoral, todos ellos en una dimensión, el límite continuo existe. En general,
paraD > 1, el límite continuode losmodelos considerados no existe. El punto
de vista de la teoría del Coarse-Graining en esta tesis doctoral arroja algo de luz
sobre este problema y aporta una respuesta física naíf: los modelos que habit-
ualmente se usan limitan el tamaño de las celdas discretas debido a las condi-
ciones físicas del problema y, por tanto, la existencia de un límite continuo
para estos modelos no debe preocuparnos cuando consideramos fluctuaciones
térmicas.
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0
Introduction

Many countries have standards for the minimum fat levels in dairy
products. In the U.S., for example, whole milk has to contain at least 3.25 %
fat. [2] The rest of themilk is a water-based fluid that contains dissolved carbo-
hydrates, proteins and minerals.[3] The water-based fluid is made of particles
from 1 Å to 3 Å of length, while the fatty acids that compound the butterfat
are mostly triglycerides of size from 0.2 μm to 15 μm. Milk is an example of a
colloidal suspension, a substance compounded by dispersed insoluble particles
(the fatty acids) suspended throughout a fluid (the water-based fluid).i Other
similar examples of colloids are ink or blood. Dust and fog are also colloids,
made of particles immersed not into liquids but into gases.

In 1827, while studying the structure of the pollen, R. Brown foundwhat he
called a vivid motion in grains of pollen of about 7 μm in length immersed into

iIn this dissertation, it is customary to name the insoluble particles as colloidal particles.
The fluid is frequently called solvent particles or, simply, solvent. The colloidal suspension is
called indistinguishably suspension, or thermodynamical system, or simply system.
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water. [4] Themotion consisted not only on a change in the relative positions
of the grains (apparently erratic), but also on a change of shape of the grains.
From his subsequent experiments he concluded that he found “the supposed
constituent or elementary Molecules of organic bodies”. Further experiments
showed that those “Molecules” appeared inbothorganic and inorganicmatter.
The motion arose neither from currents in the fluid in which the molecules
were immersed into, nor from the gradual evaporation of the fluid, nor from
the interaction between molecules. He thought that the movement belonged
to the particles themselves.

In 1905, by using themolecular-kinetic theory [5], Einstein showed that dis-
solvedmolecules and suspended particles are identical in their behavior at great
dilution. [6] Einstein’sTheory of BrownianMotion explains themovement of
the pollen. The molecules that Brown described did not move by themselves
but because of the collisions with the particles that compound the fluid (see
Fig. 1). Einstein’s Theory, and experiments carried out by Perrin et al. [7], fi-
nally established the evidence of the atomistic behavior of Nature.

Figure1: Einsteinproved thatdissolvedmoleculesandsuspendedparticleshavean identical behavior

fordilute suspensions. Themotionof the colloidal particles (depicted inorange) is due to thecollisions

with the particles of the fluid.
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In this atomistic vision, the laws of Classical Mechanics can be used to pre-
dict the time evolution of the constituents of a colloidal suspensionii. For-
mally, we would need to provide the initial positions and velocities of all the
particles that constitute the suspension in order to predict the subsequent evo-
lution of the system. [8] Let us recover the milk example. One cubic millime-
ter of whole milk has roughly n ∼ 1020 molecules of water and N ∼ 1016

molecules of fatty acids. There are as much as 6(n + N) initial conditions
to be specifiediii and 6(n + N) equations of motion to be solved. We shall
conclude that finding a solution for the position and the velocities of all the
particles at any time is unfeasible from an analytical point of view.

Discarded the analytical solution for the evolution equations, we may use a
computer to obtain an approximate expression for the positions and velocities
of the particles of the suspension. The basic idea is to discretize the time in
small intervals (called time steps) and to evaluate the position and velocity of
every particle at every time step. The procedure of performing numerical sim-
ulations to obtain approximate solutions of the evolution laws is calledMolec-
ular Dynamics (MD). Typically for a fluid, there are as many as 1020 collisions
per second. [9] A realistic MD simulation of the colloidal suspension would
need a time step much smaller than the typical collision time. The position
of a colloidal particle evolves in a time scale of 10−3 seconds. [10] Therefore,
we need more than 1017 evaluations of the position and the velocity of every
particle in the colloidal suspension just to obtain a small displacement of a col-
loidal particle. To sumup, the dynamic equations of a colloidal suspension are
impossible to solve, neither analytically, nor computationally, even for such a
small size of one cubic millimeter.

The description given in the previous paragraph, which takes into account
the positions and velocities of all the particles in the colloidal suspension, is
called themicroscopic level of description. Thismicroscopic description is highly
detailed, as it allows one (in principle) to recover, at any time, the exact state
(position and velocity) of any particle that belongs to the colloidal suspension.

iiQuantum Mechanics is not required at the range of typical temperatures and masses in
colloidal suspensions.

iiiIn 3D, each particle needs three Cartesian coordinates and three components for the ve-
locity to be fully described by Hamilton’s equations.
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Sometimes, wemay be interested only in partial (coarser) information. For ex-
ample, we may just want to know the positions of the colloidal particles at a
given time, regardless of the positions or momenta of the solvent particles. Or
we could be interested in the total number of colloidal particles. This would
be the coarsest level of description, called the macroscopic level of description.
Between the micro- and the macro- levels, there are many other levels of de-
scription. The retained amount of information (in the form of what degrees
of freedom are retained) defines the level of description. Hereinafter, we will
use indistinguishably the terms degrees of freedom, relevant variables or coarse
grained variables to refer the set of variables retained in a given level of descrip-
tion. The neglected information is usually incorporated into the evolution
equation for the relevant variables as dissipative and stochastic terms. The se-
lection of the appropriate coarse-grained variables relies on the presence of a
separation of time scales between the retained variables and the neglected ones.

Let us discuss in more detail the different levels of description. The mi-
croscopic level of description is also called the level of Classical Mechanics.
It is fully deterministic and the evolution equations are given by Hamilton’s
equations. To describe a colloidal suspension at this level of description, we
need the positions and momenta of all the particles. That is, the positions
andmomenta of then fluid particles (given by {qi,pi; i = 1, . . . , n}) and the
corresponding positions and momenta of the N colloidal particles (given by
{Qj,Pj; j = 1, . . . , N}). A coarser level of description is given byHydrody-
namics. At this level, the solvent dynamics is modeled through hydrodynamic
variables, i.e., a set of fields of mass, momentum and energy {ρ,g, e} that
couple to the colloidal particles {Qj,Pj}. In the Fokker-Planck level of de-
scription [11], the state of the system is given by the set {Qj,Pj}. The Smolu-
chowski level of description [12] is characterizedby thepositions of the colloidal
particles{Qj}. The eliminated degrees of freedom takes the formof stochastic
terms that appear in the evolution equation for the relevant variables. For ex-
ample, the evolution equation for colloidal particles like the ones that Brown
described can be written in modern terms as

dQj = σdWj , (0.1)

4



whereσ ≜
√

2kBTD is a friction coefficientiv anddWj is a set of independent
increments of theWiener process (i.e. randomGaussiannumbers). Thebigger
the σ coefficient, the larger the displacement of the colloidal particles at every
time step. At high temperature, for example, it is expected that the colloidal
particles move a larger distance than at low temperature. Eq. (0.1) reflects the
erratic motion originally described by Brown in his experiments with grains of
pollen. Fig. 2 shows the position of a colloidal particle that moves according
to Eq. (0.1). It is appreciable the random displacement of the particle at every
time step.

−20
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20

30

40
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Figure 2: Brown described in his experiments that the grains moved erratically throughout the fluid.

The picture shows a simulation of Eq. (0.1) for themotion of a colloidal particle projected in theXY
plane. The color gradient shows the temporal evolution from the starting position at (0, 0, 0) (black)
to the final position (green) afterT time steps.

A coarser description can be assumed if we are interested in the number of
ivIn the friction coefficient, kB,T andD are some constant that wewill define later on. See

Appendix H for the definition of every symbol.
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colloidal particles in a region of the space around a point r. The Fick level of
description [13] is characterized by choosing as relevant variable the concen-
tration field c(r, t). At this level of description we know how many particles
are in a region, but not which one is exactly where. For a dilute suspension
in which there is no interaction between the colloidal particles, the evolution
equation for the relevant variables takes the form of

∂c

∂t
(r, t) = D∇2c(r, t) , (0.2)

where D is the diffusion coefficient. This equation is a particular example of
the more general diffusion equation

∂c

∂t
(r, t) = ∇ ·

[
Γ(c(r, t))∇ δF

δc(r, t)
[c(r, t)]

]
. (0.3)

where Γ(c) is a mobility coefficient andF [c] is a free energy functionalv. The
equation (0.3) has become the focus ofDDFT for the study of the dynamics of
colloidal suspensions. [14–17]Thepartial differential equation (0.3) is paradig-
matic in that it captures two essential features of a non equilibrium system. On
one hand, being in divergence form, it conserves the number of particles

N =

∫
dr c(r, t) = constant .

Onthe other hand, it fulfills theH-theorembecause the timederivative ofF [c]
is always negative provided that the mobility Γ(c) is positive.

The non-linear diffusion equation (0.3) has been generalized in order to de-
scribe thermal fluctuations. In this case, one writes

∂c

∂t
(r, t) = ∇ ·

[
Γ(c(r, t))∇ δF

δc(r, t)
[c(r, t)]

]
+∇ · J̃(r, t) , (0.4)

vIt is a matter of simple calculation to obtain, for a dilute suspension in which the free
energy functional takes the form of an ideal gas, the particular Eq. (0.2) from Eq. (0.3).
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where, following the pioneering work of Landau and Lifshitz [18], noise in
a conservative PDE is introduced as the divergence of a random flux. The
stochastic mass flux J̃(r, t) is related to the mobility as follows

J̃(r, t) =
√

2kBTΓ(c)W(r, t) , (0.5)

which obviously requires that Γ(c) > 0. Here, W(r, t) is again a random
Gaussian numbervi. The covariance of the stochastic mass flux is proportional
to themobility coefficient, a result known as the FluctuationDissipation The-
orem (FDT), The stochastic term (0.5) ensures that the probability distribu-
tion for the concentration field is given by

P eq[c] =
1
Z

exp

{
−F [c]

kBT

}
, (0.6)

where the partition functionZ normalizes the probability distribution. Fluc-
tuating equations of the form (0.4) have been considered in theDynamicDen-
sity Functional Theory (DDFT) literature [17], where a debate on its physical
meaning has arisen (see Ref. [19] for a review). Eq. (0.4) has been used for
the description of phase separation [20] and critical phenomena, where it is
known as Model B in the terminology of Ref. [21].

Despite the formal similarity between (0.3) and (0.4), they are very different
kinds of equations, not only because one is deterministic and the other stochas-
tic. From a purely mathematical point of view, the very existence of an equa-
tion like (0.4) or a functional like (0.6) is a delicate point, due to the fact that
the term W(r, t) and the field itself c(r, t) are very irregular objects [22, 23].
For example, in the Ginzburg-Landau free energy model to be discussed later
on in this dissertation, the partition functionZ in Eq. (0.6) has a proper con-
tinuum limit in 1D but it is divergent inD > 1, a phenomenon known as ul-
traviolet catastrophe. In this latter case, renormalization group techniques have
been used in order to recover a continuum limit. [24–28] A rigorous mathe-
matical analysis of the renormalization of SPDEs near the critical point has
been conducted recently. [29, 30] Alternatively, one may regularize the equa-
tion by introducing a physical coarse-graining length. This may take the form

viFormally, a white noise in space and time.
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of regularization of the noise, e.g. replacing white noise with colored noise, or
regularization of nonlinear terms [31].

The non-linear diffusion equation (0.3) can be obtained from microscopic
principles by using the Theory of Coarse Graining (ToCG), as shown in Ref.
[32]. One chooses as relevant variable the empirical or instantaneous concen-
tration

ĉr(z) ≜
∑
i

δ(r− ri) , (0.7)

where z is the microscopic state of the system and ri is the position of the i-th
colloidal particle. The ToCG allows to obtain an exact equation for the en-
semble average c(r, t) of ĉr(z), where the average is over the solution of the
microscopic Liouville equation. The resulting exact equation is non-local in
space and in time. Under the assumption that the concentration evolves very
slowly as compared with any other variable in the system, the exact integro-
differential equation becomes an approximate local in time equation. A fur-
ther approximation in which the space non-locality of the dissipative kernel is
neglected, leads to Eq. (0.3). [32]The average c(r, t) is just the probability den-
sity of finding (any) one colloidal particle (i.e. its center of mass) at the point r
of space. The free energy functionalF [c] and the mobility Γ(c) have both ex-
pressions in terms of theHamiltonian dynamics of the underlying system.[32]

Instead of using the relevant variables (0.7) we may use the number of col-
loidal particles per unit volume at the mesh node rμ as input for the ToCG.
These relevant variables are

ĉμ(z) ≜
∑
i

δμ(ri) . (0.8)

The function δμ(r) is assumed to be localized around the mesh node rμ and,
therefore, the function ĉμ(z) counts the number of colloidal particles that are
around rμ. Different functional form have been proposed for δμ(r) in the
context of the Theory of Coarse-Graining for discrete hydrodynamics, rang-
ing from a function defined in terms of a finite number of Fourier modes [33]
to the characteristic function of theVoronoi cell around rμ (divided by the vol-
ume of the cell) [34]. As we have discussed in Ref. [35], the resulting dynamic
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equations are not well behaved for the Voronoi cells. Motivated by Ref. [35],
in this dissertation we study different proposals for the basis function. [36, 37]

Thephysical justificationof the SPDE (0.4) is a sensible issue. The first ques-
tion to address is the physical meaning to be assigned to the symbol c(r, t) in
Eq. (0.4). It cannot be “the probability density of finding a colloidal particle
at r at time t” as in Eq. (0.3), because in (0.4) c(r, t) is an intrinsically stochas-
tic field and cannot be a “fluctuating probability”. Except for non-interacting
Brownian walkers, Eq. (0.4) cannot be understood as an equation governing
the dynamics of the spiky field (0.7), and even in that case, (0.4) can only be
interpreted formally. [38] There has been a lot of debate about themeaning of
fluctuating equations in the field of DDFT. [19]

Clearly, in order to speak about “fluctuations in the number of particles per
unit volume” one needs to use the variables (0.8) as relevant variables and con-
sider the time dependent probability distributionP (c, t) that the phase func-
tions ĉμ(z) in (0.8) take particular valuesc. Aswill be seen later, it is possible to
obtain an exact integro-differential equation forP (c, t)with the ToCG. After
the assumption of clear separation of time scales between the evolution of the
concentration and any other variable in the system, one obtains the following
Fokker-Planck equation that governs P (c, t)

∂P

∂t
(c, t) =

∂

∂c
·

{
D̂(c) ·

[
∂F̂

∂c
(c)P (c, t) + kBT

∂

∂c
P (c, t)

]}
. (0.9)

The Ito stochastic differential equation (SDE) corresponding to the FPE
(0.9) is

dc(t) = −D̂(c) · ∂F̂
∂c

(c)dt+ kBT
∂

∂c
· D̂(c)dt+ dc̃(t) , (0.10)

where the term proportional to kBT is a reflection of the Ito stochastic inter-
pretation of this SDE.Heredc̃ is a linear combination ofWiener processes that
has the covariance structure⟨

dc̃μ(t)dc̃ν(t)
⟩
= 2kBTD̂μν(c)δμνdt .

The ToCG is extremely useful as it gives the structure of the equations (0.3)
and (0.10), but it remains formal because the microscopic expressions for the
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objects appearing in these equationsF [c], F̂ (c) and Γ(c), D̂(c) are too com-
plex to be evaluated explicitly. In this dissertation we will discuss different
models for these quantities, inspired by both the Bottom-up microscopic ap-
proach and the Top-down numerical analysis approach.

The transition from the discrete world (D̂(c), F̂ (c)) to a continuum no-
tation (Γ(c), F [c]) is usual in the literature, [34, 39–41] but it is not exempt
of potential problems. The natural question to ask is whether a sequence of
equations like (0.10), with a givenmodel for the free energy functional F̂ [c]has
a “continuum limit” as we increase the resolution, in such a way that a proper
meaning can be given to an equation like (0.4).

This dissertation is structured as follows. In Chapter 1 we review the The-
ory ofCoarse-Graining that allows us to derive the dynamics of ge1neric coarse-
grained (CG) variables starting from the microscopic dynamics of the system.
By assuming a separationof scales between theCGvariables and the rest of vari-
ables, we obtain a Fokker-Planck Equation for the time evolution of the prob-
ability for the mesoscopic variables. We also obtain the equivalent Stochastic
Differential Equation for the evolution of the coarse grained variables them-
selves.

In Chapter 2 we particularize the SDE obtained in the previous chapter
to the case of a diffusion problem, obtaining Eq. (0.10). We define as coarse
grained variable the discrete concentration field (0.8). The discretization defi-
nition uses a basis function δμ(r) that is left unspecified. The two objects that
enter into the SDE (the free energy function and the dissipative matrix) are
written in terms of those generic basis functions. In Chapter 3 we specify as
basis functions δμ(r) the finite element ψμ(r) with support on the Delaunay
triangulation. The free energy and the dissipative matrix are approximated to
simple expressions inChapter4. With these particularmodels for the free en-
ergy and the dissipative matrix, we perform numerical simulations of the SDE
(0.10) by using an explicit Predictor-Corrector Euler scheme. We extract static
and dynamic properties for Gaussian models of the free energy with a state-
dependent dissipative matrix, and compare them successfully with the direct
“microscopic” simulation of independent Brownian particles.
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In the Interlude we suggest a generalization of the discretization proce-
dure to the case of irregular lattices. We propose a conjugate finite element de-
fined as a linear combination of the finite element ψμ(r) basis function. With
this idea, in Chapter 5 we use the conjugate finite elements to discretize the
deterministic and continuumdiffusion equation (0.3), obtaining a determinis-
tic discrete equation for the evolution of the coarse grained variables. We note
that when the cells are large and contain many particles, fluctuations are ne-
glected and the SDE (0.10) becomes deterministic. In this limit, themicroscop-
ically derived (0.10) and the discretizationof the continuumequation coincide.
InChapter6weobtain the SDE (0.10) for discrete diffusionbyusing the con-
jugate finite element. This SDE (0.10) is a discrete version of the continuum
SPDE (0.4) for diffusion. Finally, in Chapter 7 we consider the Ginzburg-
Landau non-linear model for the free energy, and a state-independent dissipa-
tive matrix. With these models, we solve numerically the discrete SDE (0.10).
We extract, static and dynamic properties, and we show numerically the exis-
tence of a continuum limit in 1D.
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1
The Bottom-Up Approach

Wherewe review a generalway to describe a system at a coarse
level, starting from microscopic principles.

1.1.1.1.1.1. IntroductionIntroductionIntroduction

In the Introductionwementioned that a system can be described at differ-
ent levels of description. Each level is in between two limits, the microscopic
levelwhere its state variables followHamilton’s equations, and themacroscopic
level described by Thermodynamics. All the intermediate mesoscopic levels
have less information that themicroscopic level butmore information that the
macroscopic one. The lack of information at mesoscopic levels is described in
probabilistic terms leading to stochastic differential equations for the coarse-
grained or relevant variables. In this chapter, we review the Theory of Coarse-
Graining (ToCG) whose main objective is to derive the dynamics of the CG
variables starting from the Liouville equation for the microscopic probability
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density. The ToCG allows one to obtain a dynamical description of a system
with much less information that the microscopic description. [10] By coarse-
graining, fast variables are neglected and only slow variables remains in the de-
scription of the physical system. Twomain advantages arise in the newdescrip-
tion: i) the number of degrees of freedom is much smaller and, therefore, the
computational cost for solving the evolution equations is reduced, and ii) it is
possible to explore much larger time scales.

After the foundational work by Gibbs on Equilibrium Statistical Mechan-
ics [42], Einstein[6], Onsager [43], and Kirkwood [44] made crucial contri-
butions to Non-Equilibrium Statistical Mechanics. The Theory of Coarse-
Graining, which is another name for the latter, was formulated by Green [45,
46] in its present form. Zwanzig [47] andMori [48] used projection operators
to re-derive the Theory. Many others have contributed to the formulation of
coarse-graining. [49] Starting from themicroscopic Liouville equation for the
probability density in the phase space, projection operator techniques allow
one to obtain the evolution equations for the coarse grained variables. This
evolution equation is a closed integro-differential equation for the probability
distribution of the CG variables. When there exists a clear separation of time
scales between the eliminated variables and the coarse grained variables, rele-
vant variables “forget” their past quickly, and their future evolution depend
only on their present state. This description is said to be Markovian. Under
the Markovian approximation, the integro-differential equation for the prob-
ability distribution becomes a Fokker-Planck Equation (FPE) for the probabil-
ity distribution of CG variables. This is, in theMarkovian approximation, the
dynamics of CG variables is modeled as a diffusion process in the space of CG
variables [45, 46].

The dynamics of a diffusion process can be described either by its FPE or by
a Stochastic Differential Equation (SDE) which is mathematically equivalent
to the former. Solving numerically a multidimensional FPE, which is a PDE,
is in general a daunting task. However, we are usually interested in averages of
functions of the relevant variables and not in the full probability distribution.
In such cases, the numerical solution of the SDE is sufficient to obtain these
averages, and at a much reduced cost.[50]

In this chapter, wewill obtain the SDE for theCGvariables starting fromthe
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microscopic dynamics of the system. This chapter is a summary of Ref. [10].

1.2.1.2.1.2. The Theory of Coarse-GrainingThe Theory of Coarse-GrainingThe Theory of Coarse-Graining

In thepresent section,wewill rewrite theLiouville equation for theprobability
density ρ(z, t)

dρ
dt

(z, t) =
∂ρ
∂t

(z, t) + iLρ(z, t) = 0 , (1.1)

wherez summarizes all thepositions andmomentaof the system. For example,
in a colloidal suspensionwithn solvent particles andN colloidal particles, z ≡
{qi,pi,Qj,Pj; i = 1, . . . , n; j = 1, . . . , N}. The operator iL in (1.1) is the
Liouville operator defined by

iL ≜ −∂H

∂z
L0

∂

∂z
,

andL0 is the simplectic matrix given by the blocks

L0 =

(
0 111
−111 0

)
.

The Liouville equation states that the volume of the phase space is conserved
by aHamiltoniandynamics. ForHamiltonian systems, the evolution equation
for the n+N particles is given by the Hamilton’s equations [51]

ż = L0
∂H

∂z
. (1.2)

To solve the set of first order differential equations (1.2), we need to specify
the initial condition z0 of all the particles that belong to the system. Formally,
given a vector z0 with the initial state in the phase space, the solution ofHamil-
ton’s equations at time t will be z(z0, t) = Ttz0, where we introduced the
evolution operator Tt that satisfies the following properties:

T0 = 111 ,
TtTt′ = Tt+t′ .
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For colloidal suspensions like the ones we mentioned in the Introduc-
tion, the number of variables that enter into (1.2) is extremely large, and we
cannot solve neither analytically nor computationally the set of equations (1.2).
For that reason, instead of focusing in the evolution equation for the variables
in the microscopic level of description, we will focus on the evolution of CG
variables at a coarser (mesoscopic) level. The CG variables are phase functions
and denoted byX(z) so thatX(z) ≡

{
Xμ(z); μ = 1 . . . ,M

}
, usually with

M ≪ N i.
The coarse grainedX(z) variables evolve, as a consequence of their depen-

dence on z, as follows

dX

dt
(z) =

dX

dt
(Ttz0) =

∂X

∂z
(Ttz0)

∂z

∂t
=

∂X

∂z
(Ttz0)ż =

∂X

∂z
(Ttz0)L0

∂H

∂z
= iLX(Ttz0) = iLX(z) . (1.3)

Formally, the solution of (1.3) is given by

X(Ttz0) = exp {iLt}X(z0) , (1.4)

where the exponential operator can be formally defined through its Taylor ex-
pansion

exp {iLt} ≜ 1 + iLt+ 1
2!
(iLt)2 + 1

3!
(iLt)3 + . . . .

Equation (1.4) gives the exact solution for the coarse grained variables in
terms of the microscopic solution Ttz0. Note, however, that it is not a closed
form equation forX(z). From the knowledge of the initial mesoscopic value
of X(z0) we cannot predict the evolution of X(z). Suppose that we know
exactly the value of x0 = X(z0) at a initial time t = 0. There are many dif-
ferent z0 that give the same x0, but we do not know which is the actual initial
microstate. The evolution of the coarse grained variables will be different de-
pending on the initial unknown microstate. Therefore, knowing the initial
valuex0 of the CG variables configuration is not sufficient to predict the value

iNote the use of Greek indices for labeling variables at the coarse level, while the micro-
scopic variables are labeled with Latin indices.
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at later times. All what can be known aboutX(z) is the probability of finding
the mesoscopic variables at a given point of the space of CG variables.

Formally, given the probability density of the microstates ρ(z, t), the prob-
ability of finding the mesoscopic variables X(z) at a given configuration x at
a time t is given by

P (x, t) =

∫
dz δ(X(z)− x)ρ(z, t)

=

∫
dz δ(X(Ttz)− x)ρ(z, 0) . (1.5)

Here, we have used that the solution of the Liouville equation is ρ(z, t) =
ρ(T−tz, 0) and we have made the change of variable Ttz → z. Equation (1.5)
displays the time dependence of the macroscopic probability as due to the mi-
croscopic dynamics. Our aim is to obtain a closed differential equation for
P (x, t). As a first step, though, we need to specify the initial ensemble ρ(z, 0)
that appears in (1.5).

We assume that we know what is the mesoscopic distribution P (x, 0) at a
time t = 0. This is the only available information that we have about the mi-
croscopic state. It is obvious that this is not enough to fix the functional form
of the microscopic initial ensemble ρ(z, 0) because many different ensembles
can give the same P (x, 0), according to Eq. (1.5). We need a method to obtain
the least biased guess for the initial ensemble given the mesoscopic informa-
tion P (x, 0). The Principle of Maximum Entropy introduced by Jaynes [52]
is such amethod andwewill use it in order to find the initial ensemble ρ(z, 0).
Jaynes [52], after the seminal work by Gibbs [42], introduced the entropy
functional defined as

S[ρ] ≜ −kB

∫
dz ρ(z) ln

ρ(z)
ρeq(z)

,

Here, kB is the Boltzmann’s constant and ρeq(z) is the equilibrium stationary
probability density. By maximizing this functional under the restriction given
in Eq. (1.5) (for t = 0) we obtain the least biased initial ensemble compatible
with the mesoscopic information P (x, 0). The entropy functional that takes

17



into account the restriction (1.5) and the normalization condition is

I[ρ(z)] ≜ −kB

∫
dz ρ(z, 0) ln

ρ(z, 0)
ρeq(z)

+

∫
dz λ(z)P (x, 0) + μ

∫
dzP (x, 0) ,

where λ(z) and μ are two Lagrange multipliers that enforce the restrictions∫
dz ρ(z) = 1 ,∫

dz δ(X(z)− x)ρ(z) = P (x, 0) , (1.6)

respectively. The maximum of I[ρ(z)]will be the one that satisfies

δI[(z)]
δρ(z)

= −kB ln
ρ(z)

ρeq(z)
− 1 + μ + λ(X(z)) = 0 ,

that is

ρ(z, 0) = ρeq(z) exp {λ(X(z))} exp {μ − 1} . (1.7)

The constraints (1.6) imply, respectively,

exp {μ − 1} =
1∫

dz ρeq(z) exp {λ(X(z))}
,

exp {λ(X(z))} =
P (x, 0)∫

dz ρeq(z)δ(X(z)− x)

1∫
dz ρeq(z) exp {λ(X(z))}

=
P (x, 0)
P eq(x)

exp {1 − μ} , (1.8)

where we define the equilibriummeasure of the region of phase space compat-
ible with the state x as

P eq(x) ≜
∫

dz δ(X(z)− x)ρeq(z) . (1.9)
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Introducing (1.7) into (1.8) we obtain the probability density at t = 0 as [53]

ρ(z, 0) = ρeq(z)
P (X(z), 0)
P eq(X(z))

. (1.10)

We now introduce a crucial quantity in the Theory of Coarse-Graining,
which is the relevant ensemble ρ(z, t). This is the least biased ensemble which
is compatible with the mesoscopic probability P (x, t) at time t. This ensem-
ble does not satisfy the Lioville equation but has the virtue to reproduce the
mesoscopic information encoded inP (x, t). The form of the relevant ensem-
ble is obtained again from the Principle of Maximum Entropy and it is given
by

ρ(z, t) ≜ ρeq(z)
P (X(z), t)

P eq(X(z))

= ρeq(z)

∫
dx δ(X(z)− x)

P (x, t)

P eq(x)
, (1.11)

We may check that, indeed, the relevant ensemble reproduces the mesoscopic
probability

P (x, t) =

∫
dz δ(X(z)− x)ρ(z, t)

=

∫
dz δ(X(z)− x)ρeq(z)

P (X(z), t)

P eq(X(z))

= P (x, t) . (1.12)

Note that the relevant ensemble (1.11) can be expressed in terms of the real
ensemble (solution of the Liouville equation) as follows

ρ(z, t) = ρeq(z)

∫
dx δ(X(z)− x)

P (x, t)

P eq(x)

= ρeq(z)

∫
dx δ(X(z)− x)

1
P eq(x)

∫
dz′ δ(X(z′)− x)ρ(z′, t)

= P†ρ(z, t) , (1.13)
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where we introduce the projection operatorP†

P† · · · = ρeq(z)

∫
dx δ(X(z)− x)

1
P eq(x)

∫
dz′ δ(X(z′)− x) · · · .

We say that the (idempotentii) projection operator P† projects the microscopic
dynamics into the mesoscopic dynamics. It is useful to introduce the irrelevant
part of the real ensemble as the difference between the real ensemble (obeying
Liouville’s equation) and the relevant one, that is,

δρ(z, t) ≜ ρ(z, t)− ρ(z, t) = Q†ρ(z, t) ,

where we define the complementary projection operator Q† ≜ 1 − P†. Be-
cause the initial ensemble (1.10) is of the relevant form (1.11) at t = 0, the irrel-
evant part vanishes at t = 0

δρ(z, 0) = 0 . (1.14)

In what follows, we aim at obtaining a closed equation for the relevant en-
semble. Because the relevant ensemble is determinedby theprobabilityP (x, t)
(as shown in (1.11)) this will turn out to be a closed equation for P (x, t) itself.
By noting that the projection operator does not depend on time, the derivative
of the irrelevant part is obtained by directly using the Liouville equation (1.1),
i.e.,

∂δρ
∂t

(z, t) = −Q†iLρ(z, t) = −Q†iLρ(z, t)−Q†iLδρ(z, t) . (1.15)

The formal solution of (1.15) (as can be seen by taking the time derivative) is

δρ(z, t) = exp
{
−Q†iLt

}
δρ(z, 0)

−
∫ t

0
dt′ exp

{
−Q†iL(t− t′)

}
Q†iLρ(z, t′)

= −
∫ t

0
dt′ exp

{
−Q†iL(t− t′)

}
Q†iLρ(z, t′) ,

iiAs a projection operatorP†P† ≡ P†.

20



where we used the property (1.14) in the last step. With this information, the
time derivative of the relevant distribution (1.13) is

∂ρ
∂t

(z, t) = P†∂ρ
∂t

(z, t) = −P†iLρ(z, t) ,

where we used the Liouville equation in the last step. By noting that P† +
Q† = 1, the time derivative turns into
∂ρ
∂t

(z, t) = −PiL(P†ρ +Q†ρ)

= −P†iLρ(z, t)− P†iLδρ(z, t)

= −P†iLρ(z, t)

+

∫ t

0
dt′ P†iL exp

{
−Q†iL(t− t′)

}
Q†iLρ(z, t′) .

This is an integro-differential closed-form equation for the probability density
ρ(z, t′). The corresponding equation for theprobability distribution,P (x, t),
which is equivalent toP (x, t) as shown in (1.12), can be obtained through (1.5)
as
∂P

∂t
(x, t) =

∫
dz δ(X(z)− x)

∂ρ
∂t

(z, t)

= −
∫

dz δ(X(z)− x)iP†Lρeq(z)
P (X(z), t)

P eq(X(z))

+

∫ t

0
dt′
∫

dz δ(X(z)− x)iP†L exp
{
−iQ†L(t− t′)

}
× iQ†Lρeq(z)

P (X(z), t)

P eq(X(z))
,

(1.16)
or, in a more convenient form,
∂P

∂t
(x, t) =

∫
dx′ V(x,x′)

P (x′, t)

P eq(x′)

+

∫ t

0
dt′
∫

dx′ D(x,x′, t− t′)
P (x′, t)

P eq(x′)
,

(1.17)
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where we defined the following quantities

V(x,x′) ≜ −
∫

dzΨx(z)iP†Lρeq(z)Ψx′(z) ,

D(x,x′, τ) ≜
∫

dzΨx(z)iP†L exp
{
−iQ†Lτ

}
iQ†Lρeq(z)Ψx′(z) ,

Ψx(z) ≜ δ(X(z)− x) . (1.18)

Equation (1.17) with the definitions (1.18) is an integro-differential non local
equation forP (x, t). Let us simplify this equationby introducing a projection
operatorP (adjointiii ofP†) in such a way that when we apply it to a function
F (z) of the mesostate, it gives

PF (z) = ⟨F ⟩X(z) =

∫
dx ⟨F ⟩x δ(X(z)− x) ,

where the conditional average is defined as

⟨F ⟩x ≜ 1
P eq(x)

∫
dz ρeq(z)δ(X(z)− x)F (z) .

The projection operatorP (and its complementaryQ ≜ 1−P) satisfy for any
functionsA andB of the phase space:∫

dzA(z)PB(z) =

∫
dzB(z)P†A(z) ,∫

dzA(z)QB(z) =

∫
dzB(z)Q†A(z) .

therefore they are adjoints of P† andQ†, respectively. In addition to this, the
projection over Ψx(z) obeys

PΨx(z) = Ψx(z) ,

QΨx(z) = 0 .

iiiGiven anoperatorA, its adjoint operatorA† is the one that satisfies (Ax, y) = (x,A†y),
with the usual definition of the scalar product (A,B) ≜

∫
drA(r)B(r).
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A nice property about the operatorsP ,P†,Q andQ† is that they allow the
equilibrium distribution to travel from left to right as follows∫

dz ρeq(z)A(z)PB(z) =

∫
dz ρeq(z)B(z)PA(z) ,∫

dzA(z)Q†ρeq(z)B(z) =

∫
dz ρeq(z)A(z)QB(z) ,∫

dzA(z)iLρeq(z)B(z) =

∫
dz ρeq(z)A(z)iLB(z) .

These relations allow us to rewrite both V(x,x′) andD(x,x′, τ) as

V(x,x′) =

∫
dz ρeq(z)Ψx′(z)iLΨx(z) ,

D(x,x′, τ) = −
∫

dz ρeq(z)(QiLΨx′(z)) exp {−QiLτ} (QiLΨx(z)) .

By using the Liouville equation to the “delta” function Ψx(z)

iLΨx(z) = −∂Ψx

∂t
(z) = −Ẋμ

∂Ψx

∂Xμ
(z) = iLXμ

∂Ψx

∂xμ
(z) ,

we finally have the following simplified exact expressions

V(x,x′) = − ∂

∂xμ
δ(x− x′)vμ(x)P

eq(x) ,

D(x,x′, τ) = − ∂

∂xμ

∂

∂xν
P eq(x′)Kμν(x,x

′, τ) , (1.19)

where we define a drift term vμ(x) and a memory kernelKμν(x,x
′, τ) as

vμ(x) ≜
⟨
iLXμ

⟩x
Kμν(x,x

′, τ) ≜ 1
P eq(x′)

∫
dz ρeq(z)(QΨx′(z)iLXν(z)) exp {−QiLτ}

× (QΨx(z)iLXμ(z)) .
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To sum up, with the previous definitions, the evolution of the probability
distribution (1.16) turns into
∂P

∂t
(x, t) = − ∂

∂xμ
vμ(x)P (x, t)

+

∫ t′

0
dt′
∫

dx′ P eq(x′)
∂

∂Xμ
Kμν(x,x

′, t− t′)
∂

∂Xν

P (x′, t′)

P eq(x′)
.

(1.20)

This equation (1.20) is a closed equation for the probability distribution
that has been obtained without any approximation. Both the drift term and
the memory kernel are defined formally in microscopic terms as integrals over
all the microstates. The explicit obtention of those quantities is usually very
difficult and modelling assumptions are required.

1.3.1.3.1.3. Separation of time scales and the Fokker-Planck equationSeparation of time scales and the Fokker-Planck equationSeparation of time scales and the Fokker-Planck equation

The integro-differential equation (1.20) is an exact formal equation that is un-
tractable. Wediscuss now theMarkovian approximation that renders this equa-
tion in the form of a memoryless differential equation. The Markovian as-
sumption considers that the relevant variables have a time scale much larger
than the time scale in which the memory kernel (1.19) decays. If this is true,
during the time in which the memory kernel Kμν(x,x

′, τ) is different from
zero, the relevant variables x have hardly changed. Therefore we may approx-
imate∫ t

0
dt′ Kμν(x,x

′, t− t′)P (x′, t′) ≈ P (x′, t)

∫ ∞

0
dt′ Kμν(x,x

′, t′) .

Due to the quick decay of the kernel, we extend the integral up to infinitewith-
out losing generality. With this approximation, the memory kernel (1.19) be-
comes

Kμν(x,x
′, τ) =

⟨
(iLXν − ⟨iLXν⟩x) exp {QiLτ} (iLXμ −

⟨
iLXμ

⟩x
)
⟩x

× δ(x− x′) ,
(1.21)
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i.e., it becomes diagonal in the space of the coarse grained variables. Substitu-
tion of this kernel (1.21) into (1.20) becomes

∂P

∂t
(x, t) = − ∂

∂Xμ
vμ(x)P (x, t) + kB

∂

∂Xμ
P eq(x)Dμν(x)

∂

∂Xν

P (x, t)

P eq(x)
,

(1.22)

where we have defined the dissipative matrix

Dμν(x) ≜
1
kB

∫ ∞

0
dt′Kμν(x,x

′, t′) .

Equation (1.22) is aFokker-Planck equation (FPE) for the probability density
of the mesoscopic variables x = X(z). Note that this equation is completely
determined by objects that can be computed in principle in the microscopic
scale and, therefore, allows one to obtain the mesoscopic dynamics from mi-
croscopic principles. In fact, all the quantities involved in the FPE are defined
microscopicaly

P eq(x) =

∫
dz ρeq(z)δ(X(z)− x) ,

Dμν(x) =
1
kB

∫ ∞

0
dt′
⟨
(iLXν − vν(x)) exp {QiLt′} (iLXμ − vμ(x))

⟩x
,

vμ(x) =
⟨
iLXμ

⟩x
,

⟨· · · ⟩x =
1

P eq(x)

∫
dz ρeq(z)δ(X(z)− x) · · · . (1.23)

Note that the equilibrium solution of (1.22) is preciselyP eq(x) given in (1.23).
Thedissipativematrix is given in termsof the time integral of a time-correlation
function of the random force. This is a general result refered as a Green-Kubo
relation for the dissipative matrix (or matrix of transport coefficients) [46, 54].

It is convenient to introduce the thermodinamic potential

φ(x) ≜ kB lnP eq(x) .

Here, φ(x) could be either an entropyS(x) or an equivalent free energy func-
tionF (x), depending onwhether the total energy of the system is included or
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not in the list of relevant variables x. If not, then φ(x) is a free energy. The
FPE (1.22) in terms of the free energy is

∂P

∂t
(x, t) =

∂

∂Xμ

[
−vμ(x) +Dμν(x)

∂F

∂Xν
(x)

]
P (x, t)

+ kBT
∂

∂Xμ
Dμν(x)

∂P

∂Xν
(x, t) . (1.24)

It is matter of substitution to chech that that the equilibrium probability dis-
tribution is given by the Gibbs-Boltzmann’s probability distribution,

P eq(X(z)) ∝ exp

{
−F (X(z))

kBT

}
, (1.25)

1.4.1.4.1.4. From the FPE to a SDEFrom the FPE to a SDEFrom the FPE to a SDE

The Fokker-Planck Equation (1.24) is a closed form equation for the probabil-
ity distribution of the coarse grained variables. Such equation gives the prob-
ability distribution that the relevant variables X(z) take the particular values
x. Note that the FPE (1.24) is an M -dimensional Partial Differential Equa-
tion. Even for a small number of relevant variables the numerical resolution
of the FPE (1.24) is unpractical. Such numerical resolution requires a grid in
an M -dimensional space, and the required number of grid points scales ex-
ponentially with M . However, we are usually not interested in finding the
full probability distribution but, instead, require the evaluation of averages of
functions of the CG variables. In this case, it is sufficient to simulate the corre-
sponding Stochastic Differential Equation (SDE) for the evolution of the CG
variables. The computational cost in this case scales linearly with the number
M of variables.

There is a well known relationship between the FPE (1.24) and a mathe-
matically equivalent Stochastic Differential Equation. [50] Let us consider a
stochastic vector x(t) =

{
xμ(t); μ = 1, . . . ,M

}
that obeys an Ito Stochastic

Differential Equation (SDE) written as

dx = a(x, t)dt+B(x, t)dW(t) . (1.26)
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Here, a is a M -dimensional vector, B a M ×M matrix, and dW(t) ∈ RM

is aM -variable vector whose μ-th component is an independent increment of
the Wiener process

dWμ(t) ≜ ΔWμ(t) = Wμ(t+ dt)−Wμ(t) .

The Wiener increments are uncorrelated in the following sense

dWμ(t)dWν(t
′) = δμνdt .

As indicated inRef. [50], the FPEmathematically identical to the SDE (1.26)
is

∂P

∂t
(x, t) = − ∂

∂Xμ
aμ(x)P (x, t) +

1
2

∂2

∂XμXν
Bμσ(x)B

T
σν(x)P (x, t) .

Note that the FPE (1.24) can be rearranged as

∂P

∂t
(x, t) = − ∂

∂Xμ

[
vμ(x)−Dμν(x)

∂F

∂Xν
(x) + kBT

∂Dμν

∂Xν
(x)

]
P (x, t)

+
1
2

∂2

∂XμXν
2kBTDμν(x)P (x, t) ,

so that we may identify

a(x) ≡ v(x)−D(x)
∂F

∂x
(x) + kBT

∂D

∂x
(x) ,

B(x) ≡
√

2kBTD(x) .

and then the SDE equivalent to the FPE (1.24) is

dx =

{
v(x)−D(x)

∂F

∂x
(x) + kBT

∂D

∂x
(x)

}
dt+B(x)dW(t) , (1.27)

The matrixB(x) satisfies

B(x)BT (x) = 2kBTD(x) . (1.28)
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which is the celebrated Fluctuation-Dissipation Theorem [55]. This theorem
says that the amplitude of the noise is determined by the dissipation matrix.
The physical meaning attributed to this theorem is that in order for the SDE
to reproduce the correct Gibbs-Boltzmann equilibrium distribution (1.25) the
noise and the dissipation need to be in balance, according to (1.28).

As a final remark, note that there are many different SDE that give the same
FPE. All these SDE (1.26) have amatrixBwhich gives the sameBBT product.
That is, a SDE with a matrix B′ = BO, where O is an arbitrary orthogonal
matrix, such that

B′B′T = BBT ,

corresponds to exactly the same FPE.

1.5.1.5.1.5. SummarySummarySummary

In this chapter we have obtained two types of equations that govern the evolu-
tion of a set of generic coarse grained variables in a mesoscopic level of descrip-
tion. The first equation, written as a FPE (1.24), is an evolution equation for
the probability of finding the CG variables in a given point of the CG space.
The validity of the FPE (1.24) needs a separation of time scales between the rel-
evant variablesX(z) and thememory kernelKμν(x,x

′, τ). If this assumption
is fulfilled, the closed-form equation for the probability of the coarse grained
variables (given in (1.20)) can be approximated by a Fokker-Planck Equation
(1.24).

The second equation that we have obtained is the SDE (1.27) for the evo-
lution of the coarse grained variables. Both the FPE (1.24) and the SDE (1.27)
are equivalent equations, but the latter is more suited for numerical simula-
tions. The SDE (1.27) allows one to obtain average values of functions of the
CG variables, which is all we are interested in, usually.

This chapter has shown how to describe the evolution of a mechanical sys-
tem in a coarse grained level of description, provided that there is a separation
of scales between the typical time scale of the probability distribution and that
of the memory kernel. This assumption is usually fulfilled in many cases, and
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it will be taken for granted in the next chapters. Up to now, we set a formal
mechanism to obtain the evolution equation for the coarse grained variables,
but we need to specify the functional form of the dissipative matrix and the
free energy.

The generic SDE (1.27) obtained in this chapter is the basis of the Bottom-
Up approach to diffusion in this dissertation.

Excursus. TheTheory ofCoarse-Graining can be applied to awide range of
physical problems to obtain evolution equations for a set of relevant variables
much lower than the total number of variables involved in the microscopic
description. Although it does not contribute directly to the line of this disser-
tation, we have used the Theory of Coarse-Graining in order to understand
constraints. [56] It is quite usual inMolecular Dynamics simulations to intro-
duce constraints whenever stiff potentials leading to high frequency motions
appear. Care should be taken, though, because the dynamics and the statis-
tics of a constrained system is different from those of an unconstrained one.
On the contrary, if we do not use constraints but we neglect the fast degrees
of freedom by using a coarse graining procedure, we may add the eliminated
degrees of freedom as thermal fluctuations. This scheme has the advantage of
preserving the correct statistics. [56]

For the sake ofmaintaining a coherent structure in this dissertation, we have
decided not to continue the work on constraints. The interested reader may
find more information in Ref. [56].
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2
The Bottom-Up Approach for

Discrete Diffusion

Wherewe particularize the CG variables to be a set of discrete
concentration variables.

2.1.2.1.2.1. IntroductionIntroductionIntroduction

In Chapter 1 we presented a general framework that allows one to obtain,
from microscopic principles, the Fokker-Planck Equation (1.24) for the prob-
ability of the CG variables. We also presented the equivalent Stochastic Dif-
ferential Equation for the evolution of the coarse variables themselves (1.26).
The only assumption is that the CG variables are slow compared with the de-
cay time of the random forces which are, then, modelled as white noise. In
the present chapter, we will use this framework in a specific example: an in-
finitely dilute colloidal suspension, i.e., a system of non-interacting Brownian
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particles.
The continuumhypothesis allows one to formulate coarse grained field the-

ories. [57] However, there are many situations in which it is necessary to work
with a discrete version of the continuum theory. An obvious example is when
one is interested in numerical solution of the continuum equations. Another
example arises whenever we need to introduce thermal fluctuations, reflecting
the underlyingmolecular structure of the system. A popular way to introduce
thermal fluctuations in a field theory is to introduce stochastic terms and trans-
form the governing Partial Differential Equation (PDE) into a Stochastic Par-
tial Differential Equation (SPDE). This was pioneered by Landau and Lifshitz
formulation of fluctuating hydrodynamics [18]. However, we have pointed
out in the Introduction that there are a number of subtleties that make
preferable to work directly with a discrete theory, [58] for which all problems
disappear. [59] There has been a great effort in the numerical implementation
of thermal fluctuations in continuum hydrodynamics, [60–63]. The present
chapter is a first step towards the introduction of thermal fluctuations in trans-
port equations in a physically and numerically sensible ways.

Another area where discrete version of a continuum-theory is necessary ap-
pearswhen devising hybrids algorithms for the simulation of systemswith sep-
arate length and time scales. For example, in a system there may be regions of
space in which full atomic detail is necessary (like in the docking of a protein
or at the tip of a crack in a brittle material) and other regions where a more
coarse-grained (and cheaper) description like hydrodynamics or elasticity can
be used . The coupling of different levels of description is an interesting area
with intense research [64–66] and requires a good understanding of the pro-
cess of coarse-graining. In this way, microscopically motivated discretizations
of continuum hydrodynamics models have been proposed in the past years.
[32]The coarse-graining procedure leads to thermodynamically consistent dis-
cretizations and it accommodates the presence of thermal fluctuations in away
consistent with statistical mechanics.

In this chapter, wewill consider one of the simplest systemsdisplaying trans-
port and thermal fluctuations which is a diffusing colloidal system. In this
Chapter, we will assume that the system is made of N non-interacting Brow-
nian particles floating in a quiescent fluid. In latter Chapters we will consider
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modelswith interactingBrownianparticles. Wewill construct a coarse-grained
theory of diffusion by seeding the space with a set of M nodes and defining
a set of discrete concentration variables at each node. We will particularize
the general expressions given in Chapter 1 to this particular selection of CG
variables. The resulting coarse grained dynamics of the discrete concentration
variables is given by a set of stochastic differential equations that can be under-
stood, as we will show, as a discretization of a fluctuating diffusion equation.

2.2.2.2.2.2. Coarse-grained variablesCoarse-grained variablesCoarse-grained variables

The bottom level of description for a colloidal system is characterized by the
microscopic state z = {ri,pi,Rj,Pj; i = 1, . . . , n; j = 1, . . . , N}, i.e. the
collectionofpositions andmomentaof then solventparticles and theN Brow-
nian particles. We choose as the top level of description one inwhich the coarse
variablesX(z) are a set of discrete concentration of particles variables. We seed
a space of total volume VT with M discrete points (nodes). The μ-th node is
located at rμ. The discrete concentration field cμ at a node μ is defined as the
number of Brownian particles per unit volume in the region that surround
that node.

Specifically,

ĉμ(z) ≜
N∑
j

δμ(Rj) . (2.1)

Here, δμ(r) is a function localized around rμ that counts the number of Brow-
nian particles per unit volume that are in the vicinity of rμ. The specific func-
tional form of δμ(r) that describes how each Brownian particle contributes to
the concentration of node μ will be left unspecified until later chapters. We
will refer to the collection of all δμ(r) as the set of basis functions. The only
required property for these δμ(r) functions is∑

μ

Vμδμ(r) = 1 , (2.2)
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for any r. Here, Vμ is a volume associated to the node μ, that depends on the
particular definition of δμ(r). The property (2.2) ensures that no matter the
microscopic state z, the correct numberN of Brownian particles in the system
is conserved, that is ∑

μ

Vμĉμ(z) = N .

We may translate the general FPE in Chapter 1 to the case that the rele-
vant variables are the concentration. If P (c, t) is the probability of being in
a specific configuration c =

{
cμ; μ = 1, . . . ,M

}
at time t , then it obeys the

Fokker-Planck equation (1.24) [35]

∂P

∂t
(c, t) =

∂

∂cμ

[
−v̂μ(c) + D̂μν(c)

∂F̂

∂cν
(c)

]
P (c, t)

+ kBT
∂

∂cμ
D̂μν(c)

∂P

∂cν
(c, t) . (2.3)

Here repeated indices are summed over, kB is the Boltzmann’s constant and T
is a reference temperature. The explicit microscopic terms of (2.3) are defined
in (1.23)

F̂ (c) = kBT lnP eq(c) ,

P eq(c) =

∫
dz ρeq(z)δ(ĉ(z)− c) ,

D̂μν(c) =
1

kBT

∫ ∞

0
dt′
⟨
(iLcν − vν) exp {QiLt′} (iLcμ − vμ)

⟩c
,

v̂μ(c) =
⟨
iLĉμ(z)

⟩c
,

⟨· · · ⟩c = 1
P eq(c)

∫
dz ρeq(z)δ(ĉ(z)− c) · · · . (2.4)

Let us discuss in detail the structure of the above objects. The the drift term
v̂μ(c) and the dissipative matrix D̂(c) require the time derivative of the dis-
crete concentration ĉμ(z), given by iLĉμ(z). With the definition of the dis-
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crete concentration (2.1) we havei

iLĉμ(z) = iL
∑
i

δμ(ri) =
∑
i

vi∇δμ(ri) , (2.5)

where vi = ṙi. Then, Eq. (2.5) can be written as

iLĉμ(z) =

∫
dr
∑
i

δ(r− ri)vi∇δμ(r)

=

∫
dr Ĵr(z)∇δμ(r) , (2.6)

where we defined the current

Ĵr(z) ≜
∑
i

δ(r− ri)vi . (2.7)

2.2.1. The drift term, v̂μ(c)

The drift term v̂μ(c) is

v̂μ(c) =
⟨
iLĉμ(z)

⟩c
=

1
P eq(c)

∫
dz ρeq(z)

∏
σ

δ(ĉσ(z)− cσ)iLĉμ(z) .

Note that, for a canonical probability distribution, we have

ρeq(z) ∝ exp {−βH(z)} ,

with β ≜ (kBT )
−1 and the Hamiltonian H(z) quadratic on pi. The time

derivative of ĉμ(z) is proportional topi = vi/mi (as indicated in (2.5)). There-
fore, the integral over dpi vanishes, and

v̂μ(c) = 0 .

We conclude that, in this level of description, the drift term is zero.
iIn the following, for notational convenience, we will rename Rj → ri and Pj → pi

the position and momentum of the i-th colloidal particle.
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2.2.2. The free energy, F̂ (c)

Before considering the free energy, let us consider first the equilibrium proba-
bility distribution. It is a matter of simple substitution to check that any dis-
tribution function of the form

P eq(c) =
1
Z

φ

(∑
μ

Vμcμ

)
e−βF̂ (c) , (2.8)

withZ the suitable normalization, is a stationary solution of the FPE (2.3). In
principle, φ(· · · ) is an arbitrary function. Its meaning, though, is obtained by
looking at the probability that the system has exactly N Brownian particles,
that is

P eq(N) =

∫
dc δ

(
N −

∑
μ

Vμcμ

)
P eq(c)

= φ(N)
1
Z

∫
dc δ

(
N −

∑
μ

Vμcμ

)
e−βF̂ (c) ,

so that

φ(N) =
ZP eq(N)∫

dc δ
(
N −

∑
μ Vμcμ

)
e−βF̂ (c)

.

If we know that we have exactlyN0 particles, thenP eq(N) = δ(N −N0). By
substituting in (2.8) we obtain

P eq(c) =
P eq(N)∫

dc δ
(
N −

∑
μ Vμcμ

)
e−βF̂ (c)

e−βF̂ (c)

=
δ(N −N0)∫

dc δ
(
N −

∑
μ Vμcμ

)
e−βF̂ (c)

e−βF (c)

=
1
Z

δ

(∑
μ

Vμcμ −N0

)
e−βF̂ (c) .
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The presence of theDirac delta function reflects the fact that the probability is
different from zero only for those discrete fields that give preciselyN particles
in the system. The free energy F̂ (c), defined up to arbitrary functions of the
total number of particles, is obtained directly as

F̂ (c) = kBT lnP eq(c) .

In principle, the equilibrium distribution function could be computed from
the microscopic expression (2.4) as

P eq(c) =
1
Z

∫
dz ρeq(z)

M∏
μ=1

δ
(
ĉμ(z)− cμ

)
, (2.9)

where ρeq(z) is the equilibrium distribution of the Brownian particles. For
an infinitely diluted suspension, i.e., non interacting Brownian particles, in a
periodic box of volume VT in the absence of external fields, the equilibrium
probability distribution is homogeneous in space, and by normalization it is
given by

ρeq(z) =
1

V N
T

.

Therefore,

P eq(c) =
1
Z

∫
dz

1
V N
T

∏
μ

δ
(
ĉμ(z)− cμ

)
. (2.10)

In this expressions, the solvent degrees of freedom are integrated out. Note
that the calculation of the integral (2.10), which is a purely geometrical object,
is extremely involved.
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2.2.3. The dissipative matrix, D̂(c)

Let us consider now the dissipative matrix

D̂μν(c) =
1

kBT

∫ ∞

0
dt

1
P eq(c)

×
∫

dz ρeq(z)
∏

σ

δ(ĉσ(z)− cσ)iLĉν(z)e
QiLtiLĉμ(z)

=
1

kBT

∫ ∞

0
dt

1
P eq(c)

×
∫

dz ρeq(z)
∏

σ

δ(ĉσ(z)− cσ)iLĉν(z)iLĉμ(Ttz) .

We use the definition (2.6) so that

D̂μν(c) =
1

kBT

∫ ∞

0
dt

1
P eq(c)

∫
dz ρeq(z)

∏
σ

δ(ĉσ(z)− cσ)

×
∫

dr Jr(z)∇δν(r)

∫
dr′ Jr′(Ttz)∇δμ(r

′)

=
1

kBT

∫
dr

∫
dr′ ∇δν(r)∇δμ(r

′)

×
∫ ∞

0
dt

1
P eq(c)

∫
dz ρeq(z)

∏
σ

δ(ĉσ(z)− cσ)Jr(z)Jr′(Ttz)

=
1

kBT

∫
dr

∫
dr′ ∇δν(r)∇δμ(r

′)

∫ ∞

0
dt ⟨Jr(z)Jr′(Ttz)⟩c .

(2.11)

The calculation of the dissipative matrix boils down to the calculation of
the time integral of the conditional average of the current (2.7). This condi-
tional average is difficult to compute in general, and we will need to take some
approximations. We will assume that the positions of the Brownian particles
evolve in a much slower scale than the velocities, so that during the time in
which the correlation of the currents is different from zero, we may approxi-
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mate the current (2.7) as

Jr(t) =
∑
i

vi(t)δ(r− ri(t)) ≃
∑
i

vi(t)δ(r− ri) .

For the times t for which the correlation is different from zero the conditional
average becomes

⟨Jr(z)Jr′(Ttz)⟩c =

⟨(∑
i

viδ(r− ri)

)(∑
j

vj(t)δ(r
′ − rj)

)⟩c

=
∑
i

⟨viδ(r− ri)vi(t)δ(r
′ − ri)⟩c

+
∑
i̸=j

⟨viδ(r− ri)vj(t)δ(r
′ − rj)⟩c . (2.12)

In (2.12), the last term on the right hand side is the correlation between the ve-
locity of the i-th particle in r with the velocity of the j-th particle in r′. For
a dilute solution, these particles are at large distances and this term can be ne-
glected as compared with the first term on the right hand side of (2.12). Under
this approximation we have

⟨Jr(z)Jr′(Ttz)⟩c ≃
∑
i

⟨vivi(t)δ(r− ri)⟩c δ(r− r′) .

A second approximation, closely related to the assumed separation of time
scales of positions and velocities, is the following decoupling approximation
between positions and velocities

⟨Jr(z)Jr′(Ttz)⟩c ≃
∑
i

⟨vivi(t)⟩c ⟨δ(r− ri)⟩c δ(r− r′) . (2.13)
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By inserting (2.13) in (2.11) we finally have

D̂μν(c) ≃
1

kBT

∫
dr

∫
dr′∇δν(r)∇δμ(r

′)δ(r− r′)

⟨∑
i

δ(r− ri)

⟩c

×
∫ ∞

0
dt ⟨vivi(t)⟩c

=
D

kBT

∫
dr∇δν(r)∇δμ(r) ⟨ĉr⟩c , (2.14)

where we defined the diffusion coeffient in terms of a Green-Kubo expression

D ≜
∫ ∞

0
dt ⟨vivi(t)⟩c ,

and the conditional expectation of the concentration field is

⟨ĉr⟩c ≜
⟨∑

i

δ(r− ri)

⟩c

.

The conditional expectation of the concentration field, ⟨ĉr⟩c, is given in
terms of an integral over the phase space and it is difficult to compute explicitly.
In the following, we will suppose the diffusion coefficientD as a constant.

2.3.2.3.2.3. The stochastic differential equationThe stochastic differential equationThe stochastic differential equation

The connection between the FPE and its equivalent SDEwas already obtained
in Chapter 1. For the present case of the FPE given in Eq. (2.3) the corre-
sponding SDE is

dcμ(t) = −D̂μν(c)
∂F̂

∂cν
(c)dt+ kBT

∂D̂μν

∂cν
(c)dt+ dc̃μ(t) , (2.15)

where dc̃μ(t) ≜ Bμσ(c)dWσ(t) is a linear combination of independent incre-
ments of the Wiener process, that fulfills the Fluctuation-Dissipation Theo-
rem (FDT)

Bμσ(c)Bνσ(c) = 2kBTD̂μν(c) ,
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or, in a more informal way,

dc̃μdc̃ν

2kBTdt
= D̂μν(c) . (2.16)

The resulting Eq. (2.15) can be solved numerically if we know exactly how
to compute the free energy F̂ (c) and the dissipative matrix D̂(c). Note that
the noise term dc̃ can be determined directly through the dissipative matrix.

2.4.2.4.2.4. SummarySummarySummary

In this chapterwe have obtained the SDE governing the discrete concentration
variables ĉμ(z) defined in (2.1). The coarse grained variables are written with
a general discretization basis δμ(r). The basis function will be left unspeci-
fied until next chapters. Here, we just considered the basis function δμ(r) as
a function localized around rμ, that counts how many Brownian particles are
per unit volume in a region around rμ. The resulting SDE (2.15) is completely
general. The two elements that enter into the SDE (2.15) are the free energy
F̂ (c) (given by (2.10)), and the dissipative matrix D̂(c) (given by (2.14)). The
definitions of those blocks are general and valid for any basis function δμ(r).

The assumptions under which the SDE is valid are the following. First, we
have assumed that there is a separation of time scales in the dynamics of the
solvent particles and in the dynamics of concentration variables. We expect
that the number of particles in a region changes only due to the fact that par-
ticles enter or leave the region through its boundary. Therefore, the larger the
region the slower will be the dynamics of the concentration variable. The sec-
ond assumption considers an infinitely diluted colloidal suspension. In this
case, there is no correlation between the velocities of different Brownian par-
ticles. Furthermore, the equilibrium probability distribution is just a homo-
geneous distribution where the positions for all the Brownian particles are
equally probable. The third and last assumption is the separation of scales be-
tween the velocity of a Brownian particle and its position. This is expected to
be true if the Brownian particle is sufficiently large in such a way that the time
in which it diffuses its own radius is much larger than the time in which the
velocity decays due to the collisions with the solvent.
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3
The Bottom-Up Approach for
Discrete Diffusion with Finite

Elements. Theory

Where we specify the basis functions δμ(r) to be finite elements
defined on the Delaunay triangulation.

3.1.3.1.3.1. IntroductionIntroductionIntroduction

The SDE (2.15) is a discrete equation for the evolution of the discrete concen-
tration variables ĉμ(z) defined in (2.1). The concentration variables depend
on the specific form for the basis function δμ(r). Also, the discrete free en-
ergy (defined through the equilibrium probability distribution (2.10)) and the
dissipative matrix (2.14) depend on the particular functional form of the basis
function.
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The basis function δμ(r) tell us how the Brownian particle i contributes
to the concentration in node μ. There are of course many different possibili-
ties to assign particles to nodes. For example, we might consider that a parti-
cle contributes only to the concentration of the node nearest to the position
of that particle. In that way, a particle contributes only to no more than one
node. This assignment corresponds to the so called Voronoi construction. The
Voronoi construction is defined as follows. Given a domain x ∈ RN , and a
set of points rμ ⊂ x, a Voronoi cell eν (whose center is located at rν) is the set
of all the points in x that are closer to rν than to any other point rν′ ̸=ν. Fig. 3.1
shows, for a regular 2D lattice, a Voronoi cell (orange) surrounded by its six
neighbors cells (green). Note that there is no overlapping between neighbor
cells. That is, a point in the space (and, therefore, a Brownian particle locate at
that point) belongs to one cell or another, but never contributes to more than
one cell.

Figure 3.1: Voronoi tessellation in2D for a regular grid. For a given nodeμ, it is depicted theVoronoi
cell associated to that node (orange), as well as the neighbor cells (green). Note that the cells do not

overlap themselves.
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Mathematically, we define aVoronoi cell as the region inwhich the function

φμ(r) ≜ θeμ(r) ,

takes value 1. Here, θeμ is the characteristic function of the Voronoi cell (ele-
ment) eμ. It takes the value 1 if r is inside the Voronoi cell and 0 otherwise.
Note that there is a first kind discontinuity at the border of the cell, so that
φμ(r) /∈ C1 and, therefore, its gradient is singular at the boundaries of the cell.
Also note that the dissipativematrix obtained in (2.14) contains the gradient of
the basis function δμ(r). Therefore, it is clear that if we choose δμ(r) = φμ(r),
the dissipative matrix will be ill-defined. We conclude that the Voronoi con-
struction is not really useful for defining the concentration variable to be used
for coarse-graining, in spite of its rather natural formulation. [35]

As suggested inRef. [35], one way to avoid the above singularity is by using
for δμ(r) a usual finite element basis function based on the Delaunay triangu-
lation. The Delaunay triangulation is the dual graph of the Voronoi tessella-
tion. This is, if two nodes have Voronoi cells that are neighbours, then a link
of the triangulation exists between these nodes. The finite element basis func-
tion ψμ(r) is defined as a pyramidmade of triangular faces that takes the value
1 at node μ and zero at the neighbour nodes. To fix ideas, consider the Fig. 3.2,
where a 2D Delaunay triangulation is shown for a regular mesh. An arbitrary
cell (in orange) is composed by six sub-elements, or triangles. Note that there
are six neighbor cells (in green) that overlap with the orange cell itself. The
explicit form of the finite element basis function of node μ is

ψμ(r) ≜
∑
e∈μ

teμ(r)θeμ(r) , (3.1)

where θeμ(r) is the characteristic function of the element eμ that belongs to
the node μ. The characteristic function takes value 1 if a point r is inside the
element eμ, and 0 otherwise. The function teμ(r) is a linear piecewise function
which takes the value 1 at r = rμ and decrease to 0 at the border of the element.
It has the form

teμ(r) = a+ be→μ · r , (3.2)
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where the notation be→μ means that the vector b that belongs to the element
e points toward the node μ. The sum over eμ in (3.1) indicates that the cell
associated to the node μ is composed by many elements.

Figure 3.2: Delaunay tessellation in 2D for a triangular lattice. For a given node μ it is depicted the

Delaunay cell associated to that node (orange), as well as the neighbor cells (green). Note that the

cells do overlap themselves, as every neighbor cell partially penetrates into cellμ.

The finite element ψμ(r) based on theDelaunay triangulation has themain
advantage over the Voronoi construction of being a continuous function of
RN , i.e., ψμ(r) ∈ C1. Therefore, it seems a good candidate to define the basis
δμ(r) function. By using the finite element ψμ(r) as the basis function in (3.1),
the dissipative matrix (2.14) will not show any divergence, as opposed to the
Voronoi characteristic function.
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3.2.3.2.3.2. Finite element discretization basisFinite element discretization basisFinite element discretization basis

Motivated by the previous discussion, in this chapter we take as the discrete
delta function

δμ(r) →
ψμ(r)

Vμ
, (3.3)

where Vμ ≜
∫
drψμ(r) is the volume of the cell μ and ψμ(r) is the linear

finite element with support on the Delaunay cell μ. Therefore, the discrete
concentration field ĉ(z) (2.1) at node μ is given by

ĉμ(z) =
∑
i

ψμ(ri)

Vμ
. (3.4)

As indicated by (3.1) and (3.2), the finite element ψμ(r) is of the form

ψμ(r) =
∑
e∈μ

teμ(r)θeμ(r)

=
∑
e∈μ

(
aeμ + be→μ · r

)
θeμ . (3.5)

The function ψμ(r) has the nice property of preserving the partition of unity∑
μ

ψμ(r) = 1 . (3.6)

This property ensures that no matter the microscopic state z, the sum of the
discrete concentration variables gives the correct number of particles in the sys-
tem. Indeed, by using the definition of the discrete concentration field (2.1)
and the discrete delta function (3.3) we have∑

μ

Vμĉμ(z) =
∑
i

∑
μ

ψμ(ri) =
∑
i

1 = N ,

irrespective of z, as desired.
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e1

e2
e3

e4

e5
e6

μμμ

be→μ

Figure 3.3: In 2D, the Delaunay cell of node μ is surrounded by the triangular elements e. For each
point of the triangular elemente, there is a constant vectorbe→μ that points towards thenodeμ and

that gives the derivative of the linear functionψμ(r) at that point.

The gradient of the finite element ψμ(r) is

∇ψμ(r) =
∑
e∈μ

be→μθeμ(r) , (3.7)

which is a discontinuous vector field that takes the constant vector valuebe→μ

within each element eμ, and zero outside the Delaunay cell. This vector be→μ

is directed towards the node μ (See Fig. 3.3, where there are depicted the six
elements that compound a cell μ in a regular grid). In 1D, for example, as we
show in Fig. 3.4, each node μ has two elements, one on the left, elμ, and one on
the right, erμ. The basis function has the explicit expression

ψμ(x) =
x− xμ−1

xμ − xμ−1
θ(x− xμ−1)θ(xμ − x)

+
xμ+1 − x

xμ+1 − xμ
θ(x− xμ)θ(xμ+1 − x) ,

where θ(x) is theHeaviside step function. In this 1D example, the scalars be→μ

in (3.2) take the values

belμ→μ =
1

xμ − xμ−1
=

1
V l

μ

,

berμ→μ = − 1
xμ+1 − xμ

= − 1
V r

μ

,

where V l
μ and V r

μ are defined precisely as the volume of each sub-element of
node μ.
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ψ
μ
(x
)

0.0

0.5

1.0

xμ−1 xμ xμ+1

e r
μe l

μ

μμ−1 μ+1

Figure 3.4: Delaunay triangulation in 1D for a regular grid. In solid green, the functionψμ(x) corre-
sponding to an arbitrary nodeμ. With patterns, the neighbor cellsψμ−1 andψμ+1, showing an over-

lapping between them and the originalψμ. The two shared elements are depicted as e l
μ and e r

μ .

3.3.3.3.3.3. The Stochastic Differential EquationThe Stochastic Differential EquationThe Stochastic Differential Equation

Let us display again the stochastic differential equation for the discrete concen-
tration field given by (2.15)

dcμ(t) = −D̂μν(c)
∂F̂

∂cν
(c)dt+ kBT

∂D̂μν

∂cν
(c)dt+ dc̃μ(t) . (3.8)

In Chapter 2 we have left the free energy function F̂ (c), the dissipative ma-
trix D̂(c), and the thermal fluctuations dc̃ unspecified. They have been writ-
ten as functions of the basis functions δμ(r). Now that we have the explicit
form for δμ(r) in (3.3), we may obtain explicit expressions for the three ele-
ments that enter into the SDE (3.8).

3.3.1. The free energy

As we pointed out in Chapter 2, the free energy function F̂ (c) can be ob-
tained from the microscopic equilibrium distribution function (2.9) as

P eq(c) =
1
Z

∫
dz ρeq(z)

∏
μ

δ
(
ĉμ(z)− cμ

)
. (3.9)
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Because the calculation of thismultidimensional integral is unfeasible, we need
to model the probability distribution P eq(c). For infinitely diluted suspen-
sions (i.e., non interacting Brownian particles) we expect that under the as-
sumption that the number of particles per node is sufficiently large, the prob-
ability P eq(c) should become a Gaussian, and the free energy should be a
quadratic function of the concentration. In this approximation, by comput-
ing the first two moments of the probability distribution, the explicit expres-
sion for the free energy function can be obtained. This will be presented later
on.

3.3.2. The dissipative matrix

We consider now the dissipative matrix defined in (2.14)

D̂μν(c) =
D

kBT

∫
dr∇δμ(r)∇δν(r) ⟨ĉr⟩c , (3.10)

with the conditional average ⟨ĉr⟩c given by

⟨ĉr⟩c =

⟨
N∑
i

δ(r− ri)

⟩c

.

From the definition of the discrete delta function (3.3), the dissipative matrix
(3.10) turns into

D̂μν(c) =
D

kBT

∫
dr

∇ψμ(r)

Vν

∇ψν(r)

Vμ
⟨ĉr⟩c .

With the explicit form of the gradient of the finite element ψμ(r) given by
(3.7), Eq. (3.10) becomes

D̂μν(c) =
D

kBT

1
VμVν

∑
e∈μ
e∈ν

be→μ · be→ν

⟨
N∑
i

θeμ(ri)θeν(ri)

⟩c

. (3.11)
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Because the sub-elements eμ and eν do not overlap, the only surviving terms
in the sum over particles in (3.11) are those with eμ = eν. This results in

D̂μν(c) =
D

kBT

∑
e∈μν

be→μ · be→ν
Ve

VμVν
ce(c)

=
∑
e∈μν

be→μ · be→ν
Ve

VμVν
Γe(c) , (3.12)

wherewe introduced fornotational convenienceΓe(c) = Dce(c)/kBT . Here,
e ∈ μν is any of the common elements of the neighbor nodes μ and ν, be→μ

is the vector of the element e, directed towards the node μ, be→ν is the vector
of the element e, directed towards the node ν, and the concentration ce of the
sub-element e is defined as

ce(c) ≜
1
Ve

⟨
N∑
i

θe(ri)

⟩c

, (3.13)

where Ve is the volume of the sub-element e. In principle, the concentration
of the element e may depend on the value c of the concentration in all the
nodes, that is, ce = ce(c). However, we expect that for smooth distributions
of particles, cewill only dependon the values of thenodal points of the element
e.

For future references, we compute the gradient of the dissipative matrix
(3.12). It is given by

∂D̂μν(c)

∂cν
=

D

kBT

∑
e∈μν

be→μ · be→ν
Ve

VμVν

∂ce(c)

∂cν
. (3.14)

3.3.3. Thermal fluctuations

Motivated by the discussion in Section 2.3, the Fluctuation-DissipationThe-
orem in (2.16), and the structure of the dissipative matrix in (3.12), a particular
convenient possibility for the noise term is the following one

dc̃μ =
∑
e∈μ

1
Vμ

be→μ · dJ̃eμ . (3.15)
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Here, dJ̃e =
{
dJ̃α

e ; α = 1, . . . ,M
}

is a vector whose components are pro-
portional to an independent Wiener process. Note that for each sub-element
of the Delaunay triangulation we have a random vector dJ̃e. As suggested in
Ref. [67], a convenient form for the stochastic mass flux dJ̃e is

dJ̃α
e ≜

√
2DceVedWα

e . (3.16)

The independent increments of theWienerprocessdWα
e satisfy themnemotech-

nical Ito rule

dWα
e dW

β
e′ = δee′δ

αβdt .

Therefore, we have the following variances of the stochastic mass flux defined
in Eq. (3.16)

dJ̃α
e dJ̃

β
e′ = δee′δ

αβ2DceVedt , (3.17)

and the proposed noise in Eq. (3.15) obeys

dc̃μdc̃ν =

∑
e∈μ
e′∈ν

∑
α
β

1
VμVν

be→μbe′→νdJ̃
α
e dJ̃

β
e′

 . (3.18)

By introducing (3.17) into (3.18) we have

dc̃μdc̃ν = 2D
∑
e∈μν

1
VμVν

be→μ · be→νVecedt

= 2kBTD̂μνdt .

Therefore, our proposal for dc̃μ in (3.15) fulfills the Fluctuation-Dissipation
Theorem (2.16), as desired.
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3.3.4. The Stochastic Differential Equation

Now thatwe have obtained expressions for the dissipativematrix (3.12) and the
thermal fluctuations (3.15)-(3.16), the SDE (3.8) becomes

dcμ(t) = −D̂μν(c)
∂F̂

∂cν
(c)dt+ kBT

∂D̂μν

∂cν
(c)dt+ dc̃μ(t)

= − D

kBT

∑
ν

∑
e∈μν

be→μ · be→ν
Ve

VμVν
ce
∂F̂

∂cν
dt

+D
∑

ν

∑
e∈μν

be→μ · be→ν
Ve

VμVν

∂ce
∂cν

dt

+
∑
e∈μ

√
2DceVe

1
Vμ

be→μ · dWe . (3.19)

The SDE (3.19) is to be interpreted in Ito sense. One essential property of
Eq. (3.19) is that the total number of colloidal particles is conserved, that is,∑

μ Vμcμ(t) = N . This is a direct consequence of the definition of the con-
centration field in terms of theDelaunay cell and the fact that the finite element
functions ψμ(r) satisfy the partition of unity property (3.6).

Note that the noise term dc̃μ defined in (3.15)-(3.16) scales as the inverse of
the square root of the volume of the cells, while the gradient of the dissipative
matrix (3.14) scales as the inverse of the volume. The term that involves the
derivatives of the free energy in (3.19) does not depend on the volume of the
cell, because F̂ (c) is an extensive quantity that scales with the volume of the
cell. This means that by increasing the size of the cells and keeping the aver-
age concentration fixed, the effect of the noise terms and the gradient of the
dissipative matrix diminish. In accordance with the usual view of equilibrium
statistical mechanics, thermal fluctuations depend on the size of the system (in
the present case, the size of the cell, determined by the resolution of the grid).
That is consistentwith the fact that the probability distributionP (c)becomes
more and more peaked as the cell size increases. In the limit of large cells, we
may neglect both thermal fluctuations and the gradient of the dissipative ma-
trix in Eq. (3.19). In this limit the SDE (3.19) becomes a deterministic ODE for
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the concentration given by

dcμ(t)

dt
= − D

kBT

∑
ν

∑
e∈μν

be→μ · be→ν
Ve

VμVν
ce
∂F̂

∂cν

= −
∑

ν

D̂μν
∂F̂

∂cν
. (3.20)

3.4.3.4.3.4. Connection with a continuum differential equationConnection with a continuum differential equationConnection with a continuum differential equation

The deterministic evolution equation (3.20) has been obtained by following
a coarse-graining procedure. Remarkably, it can also be understood as a par-
ticular discrete representation of the diffusion equation (0.3) written in the
Introduction

∂c

∂t
(r, t) = −∇ ·

[
Γ(c(r, t))∇ δF

δc(r, t)
[c(r, t)]

]
, (3.21)

where the mobility Γ(c(r, t)) has the form

Γ(c(r, t)) =
D

kBT
c(r, t) ,

and it is a function of the concentration field in general, and the free energy
functional F [c(r, t)] also depends on the concentration field. To fix ideas,
consider a dilute solution. In this case we have an ideal gas form for the free
energy functional

F [c(r, t)] = kBT

∫
dr c(r, t) ln

(
c(r, t)

c0
− 1
)

.

By taking the functional derivative and inserting the result into (3.21)we obtain
Fick’s diffusion equation

∂c

∂t
(r, t) = D∇2c(r, t) .
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Let us discretize Eq. (3.21). The discretization begins with the definition of
the average discrete concentration field

cμ(t) ≜
∫

dr δμ(r)c(r, t) . (3.22)

If we multiply Eq. (3.21) by δμ(r) and we integrate over all space we obtain an
equation for the discrete concentration field cμ(t),

∂cμ

∂t
(t) = −

∫
dr∇δμ(r) ·

[
Γ(c(r, t))∇ δF

δc(r, t)
[c(r, t)]

]
, (3.23)

where an integration by parts has been done. Equation (3.23) is not a closed
equation for the discrete values cμ. To close the equation we introduce a free
energy function as

F (c) = F [ψψψ · c] ,

whereψψψ · c =
∑

μ ψμ(r)cμ is the interpolated field. The derivative of the free
energy becomes

∂F

∂cμ
(c) =

∫
dr′

δF
δc(r′)

[ψψψ · c]ψμ(r
′) .

By multiplying the above equation with δμ(r) and summing over μ we have∑
μ

δμ(r)
∂F

∂cμ
(c) =

∫
dr′

δF
δc(r′)

[ψψψ · c]
∑

μ

ψμ(r
′)δμ(r) .

The function
∑

μ ψμ(r
′)δμ(r) is zero if the points r, r′ are separated by a dis-

tance larger than the typical size of the triangulationmesh. Under the assump-
tion that the field c(r) changes little in this length scale we may approximate∑

μ

δμ(r)
∂F

∂cμ
(c) ≈ δF

δc(r)
[ψψψ · c] . (3.24)
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By inserting Eq. (3.24) into (3.23) we obtain

∂cμ

∂t
(t) = −

∑
ν

∫
dr∇δμ(r) · Γ(c(r, t))∇δν(r)

∂F

∂cν
(c) ,

which, by using the definition of δμ(r) in (3.3) and its gradient in (3.7), turns
into

∂cμ

∂t
(t) = −

∑
ν

1
VμVν

∑
e∈μ
e∈ν

be→μ · be→ν

∫
dr θeμ(r)Γ(c(r, t))θeν(r)

∂F

∂cν
(c) .

(3.25)

Here, e is any of the common elements of the neighbor nodesμ and ν,be→μ

is the vector of the element e, directed towards the nodeμ,be→ν is the vector of
the element e, directed towards the node ν. This expression is not yet explicit
due to the dependence onΓ(c(r, t)) of the field. We approximate themobility
Γ(c(r, t))with the piece-wise linear function again

Γ(c(r, t)) ≈ Γ(r) ≜
∑

σ

ψσ(r)Γ(cσ) . (3.26)

By inserting (3.26) into the integral in Eq. (3.25) we obtain∫
dr θeμ(r)Γ(c(r, t))θeν(r) ≈

∑
σ

Γ(cσ)

∫
dr θeμ(r)θeν(r)ψσ(r) . (3.27)

By inserting (3.27) into (3.25) we get finally an explicit ODE for the discrete
variables. The integral (3.27) vanishes unlessμ and ν are neighboring nodes. In
2D, for example, we have two sub-elements which are common to the nodes
μ and ν that give a non-zero contribution (see Fig. 3.5). For each of these sub-
elements, σmay be any of the three nodes of the sub-element. For other values
of σ the integral in Eq. (3.27) vanishes. For σ equal to any of the nodes of
the element, the integral takes the same value, equal to Ve/D, where Ve is the
volume of the sub-element andD is the space dimension. Therefore, Eq. (3.25)
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Figure 3.5: In a 2D regular grid, two neighbor nodes share two elements. For example, a node μ
(green) and a node ν (blue) have in common the elements e3 and e4. The element e4 is shared be-

tween the nodesμ, ν andσ. Therefore, a particle located in e4 will contribute to the concentration of
the three nodes, cμ, cν and cσ.

becomes

∂cμ

∂t
(t) = −

∑
ν

∑
e∈μν

be→μ · be→ν
Ve

VμVν
Γe

∂F

∂cν
(c)

= −
∑

ν

∑
e∈μν

be→μ · be→ν
Ve

VμVν

Dce
kBT

∂F

∂cν
(c)

= −
∑

ν

Dμν
∂F

∂cν
(c) , (3.28)

where

Dμν =
D

kBT

∑
e∈μν

be→μ · be→ν
Ve

VμVν
ce ,

to be compared with (3.12). Eq. (3.28) is the final discretized version of the con-
tinuum diffusion equation (3.21). This discretized diffusion equation coincides
with the dynamic equation obtained microscopically in Eq. (3.20).
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3.5.3.5.3.5. SummarySummarySummary

In Chapter 2 we have obtained a discrete diffusion equation for the coarse
grained variable cμ(t). The definition of the discrete concentration field c has
been given in terms of a general basis function δμ(r). In this chapter we have
proposed a specific form for the basis function: the finite element ψμ(r) with
support on the Delaunay triangulation defined in (3.5). This basis function
preserves the partition of unity so that the sum of the discrete concentrations
gives exactly the correct number of particles in the system.

With the particular selection of the finite element ψμ(r) for the basis func-
tions, we have obtained the explicit form (3.12) for the dissipativematrix D̂(c).
In principle, D̂(c) depends on the concentration of the elements of the nodes
through ce, which is defined in (3.13) as a conditional expectation that depends
on the concentration of all the nodes. In order to simplify the computation of
ce, we will assume in future chapters smooth concentration profiles. With this
assumption the concentration of an element e ∈ μ should depend only on
the concentration of nodes neighboring μ. The computation of the free en-
ergy function (through the equilibrium probability distribution) is also com-
plicated. We will assume in the next chapter a large number of particles per
node, so that the probability becomes Gaussian. Therefore, the free energy
should become a quadratic function of the concentration.

The SDE (3.19) can be understood, in the limit of large cells when thermal
fluctuations are negligible, as a discretization of the deterministic continuum
diffusion equation (3.21). Note that the two identical equations (3.20) and
(3.28) are derived very differently. On one hand, the deterministic ODE (3.20)
has been obtained from microscopic principles. We have defined the discrete
concentration field by counting the number of particles inside a region with
the help of the finite element ψμ(r). On the other hand, the ODE (3.28) has
been obtained by defining an discretized version of the concentration field
through (3.22). The fact that both procedures lead to the sameODE indicates a
close relationshipbetween themicroscopically derived elements D̂μν(c), F̂ (c),
andDμν(c),F [c]. In the limit of large cells, we have shown that both expres-
sion for the dissipative matrix coincide. In addition to this, we have obtained
the discrete free energy function by evaluating the free free energy functional
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at the interpolated field c. This procedure allows one to obtain discrete free
energy expressions from physically motivated free energy functionals, like the
ones corresponding to the ideal gas or the van der Waals gas. This method for
obtaining free energy functions avoids the computation of microscopic inte-
grals like (3.9), and will be explored in next chapters.
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4
The Bottom-Up Approach for
Discrete Diffusion with Finite

Elements. Models and Numerical
Results

Where we propose specific models for the free energy and the
dissipativematrixandweperformnumerical simulationsofthe
resulting SDE.

4.1.4.1.4.1. IntroductionIntroductionIntroduction

In previous chapters we have obtained the SDE (3.19) for discrete diffusion
starting from the general evolution equation for coarse grained variables. The
definition of the discrete concentration variables ĉμ(z) given by (2.1) is writ-
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ten in terms of a generic discretization basis function δμ(r) that we specified in
Chapter 3 to be the finite element with support on the Delaunay triangula-
tion,ψμ(r)/Vμ. The discrete free energy F̂ (c) and the dissipativematrix D̂(c)
appearing in (3.19) have been obtained in Chapter 3. On one hand, the free
energy (3.9) is obtained from the probability distribution

P eq(c) =
1
Z

∫
dz ρeq(z)

M∏
μ=1

δ
(
ĉμ(z)− cμ

)
, (4.1)

On the other hand, the dissipative matrix (3.12) is

D̂μν(c) =
D

kBT

∑
e∈μν

be→μ · be→ν
Ve

VμVν
ce(c) , (4.2)

which depends on the concentration of the sub-element of node μ defined as

ce(c) ≜
1
Ve

⟨
N∑
i

θe(ri)

⟩c

.

Because the explicit evaluation of these quantities is impossible, we need to
model the equilibriumprobability (4.1) and the dissipativematrix (4.2). In this
chapter we assume particular models for both quantities that give the explicit
functional form of F̂ (c) and D̂(c). We will assume two approximations: the
number of Brownian particles per node is large enough such that the prob-
ability distribution is a Gaussian. Also the concentration field is sufficiently
smooth so that the concentration of a sub-element can be obtained from the
concentration of its neighbor nodes. With these two approximation we end
up with simple models that allow for the numerical simulation of the SDE.

4.2.4.2.4.2. Free energy modelsFree energy modelsFree energy models

Under the assumption that the probability is Gaussian, the free energy be-
comes a quadratic function. The parameters of these quadratic function are
obtained from the first twomoments of the probability distribution (2.10). In
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Appendix B we obtain these moments explicitly for non-interacting Brown-
ian particles frommicroscopic principles. The resulting equilibrium probabil-
ity distribution is

P eq(c) =
1
Z

exp

−
∑
μν

(cμ − c0)Vμ

(
Mψ
)−1

μν

2c0
Vν(cν − c0)

 , (4.3)

so that the free energy is of the form

F̂ (GA)(c) = kBT
∑
μν

(cμ − c0)Vμ

(
Mψ
)−1

μν

2c0
Vν(cν − c0) . (4.4)

Here, c0 = N/VT is the average concentration, δc is a vector whose μ-th com-
ponent is δcμ = cμ − c0, and

[
Mψ
]−1 is the inverse of the mass matrix Mψ

defined as

Mψ
μν ≜

∫
drψμ(r)ψν(r) .

The matrix of correlations is directly related toMψ through (see (B.10))

⟨(cμ − c0)(cν − c0)⟩eq =
c0

VμVν
Mψ

μν ,

In 1D, the mass matrix is given by

Mψ =
1
6



2
(
V l
1 + V r

1
)

V r
1 0 . . . V l

1

V l
2 2

(
V l
2 + V r

2
)

V r
2 . . . 0

0 V l
3 2

(
V l
3 + V r

3
)

. . . 0
...

...
... . . . ...

V r
M 0 0 . . . 2

(
V l
M + V r

M

)


.

Note that theGaussian form for the probabilityP (c) given in (4.3) does not
factorize into products of independent probabilities of each node. With the fi-
nite element basis functionon theDelaunay triangulation, aBrownianparticle
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contributes to the concentration of all the nodes of the element in which the
particle resides. In 1D, for example, a particle in a given segment contributes to
the nodes at the end of this segment. We conclude that there is a non-vanishing
correlation of the concentration of neighbor nodes even for statistically inde-
pendent particles. As a consequence,P (c) cannot be factorized into products
of the probability of the concentration of a single node and, therefore, the free
energy function is not an additive function in general. Nevertheless, for the sake
of comparison, we will consider also the local equilibrium approximation

P eq(c) ≈
∏

μ

P (cμ) ,

where P (cμ) is the exact probability of finding cμ particles per unit volume in
the node μ. This factorization approximation implies that the free energy is of
the form F̂ (c) ≈ F̂ (LE)(c)where

F̂ (LE)(c) ≜
∑

μ

Vμf(cμ) (4.5)

and the total free energy is the sum of the contribution of each cell, defined as
f(cμ).

The fact that “free energy is additive” as in (4.5) is one aspect of the local equi-
librium assumption. The form of the free energy density f(cμ) is determined
by the form of the single node probability P (cμ). We compute explicitly in
Appendix B this probability. The result is given in (B.21), and it allows us to
write the local free energy as

f(cμ) ≜ kBT
V 2

μ

Mψ
μμ

(cμ − c0)
2

4c0
. (4.6)

For future references, let us compute the gradients of the free energy func-
tions (4.4) and (4.5)-(4.6)

∂F̂ (GA)

∂cμ
(c) = kBTVμ

∑
ν

(
Mψ
)−1

μν
Vν

cν − c0
c0

, (4.7)

∂F̂ (LE)

∂cμ
(c) = kBT

V 2
μ

Mψ
μμ

cμ − c0
2c0

. (4.8)
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4.3.4.3.4.3. Dissipative matrix modelsDissipative matrix modelsDissipative matrix models

The dissipativematrix obtained in (3.12) requires the knowledge of the concen-
tration of the sub-element e defined in (3.13),

ce(c) ≜
1
Ve

⟨
N∑
i

θe(ri)

⟩c

. (4.9)

The calculation of the conditional expectation of the number of particles
in the sub-element e appearing in (4.9) is difficult and we will need to make
some approximate evaluation. To this end, we observe that when a node μ
does not contain any Brownian particle and cμ = 0, all the sub-elements of
this node should be also empty so that ce = 0 for all the elements that belong
to the node μ. In order to satisfy this condition we might assume a geometric
mean for the concentration of the element ce. The geometrical mean has the
advantage that it captures the physical property that when one of the nodes
of the sub-element has zero concentration, meaning that the Delaunay cell has
no Brownian particles within, the corresponding sub-element of the cell has
no particles either. In aD dimensional system the geometrical mean is defined
as

ce =

(∏
μ∈e

cμ

) 1
D+1

.

For example, in 1D, each node μ has two elements, elμ and erμ (left and right),
where the element erμ coincides with the element elμ+1. The particles in each
element contributes to the nodes μ and μ+ 1, so that the concentration of that
element will be, by using the geometrical mean,

ce =
√
cμcμ+1 . (4.10)

For smooth fields we may approximate cμ+1 ≈ cμ + Δc and an expansion to
first order in the small quantity Δc gives the arithmetic mean

ce =
cμ + cμ+1

2
. (4.11)
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Choosing between (4.10) and (4.11) is a sensible question. In spite of the sim-
plicity of the arithmetic mean, the geometric mean approximation captures
the physical property of empty elements for empty nodes (which is something
that does not happen for the arithmetic mean). However, the derivative of the
geometric mean is

∂ce
∂cμ

=
1
2

√
cμ+1

cμ
,

which diverges for cμ = 0. Because this derivative will appear in the stochas-
tic differential equation (see (2.15)), it may lead to potential numerical prob-
lems. Moreover, due to random kicks performed by the fluctuating forces a
node could reach a negative concentration, which gives non-sense in (4.10).
In Appendix C we discuss, through the maximum entropy calculation of the
conditional averages, that for smooth fields the arithmetic mean is recovered.
Therefore, in this chapter we will approximate ce(c) by the arithmetic mean
of the concentration of theD + 1 nodal values of the sub-element e, that is,

ce(c) ≈
1

D + 1

∑
ν∈e

cν . (4.12)

For example, in a one dimensional case we recover (4.11), where μ and μ+ 1 are
the nodes corresponding to the sub-element e, in this case a line segment. The
validity of this assumption is checked in Appendix D.

The dissipative matrix (3.12), with the arithmetic mean assumption (4.12),
turns into a state-dependent matrix given by

D̂μν(c) =
D

kBT

∑
e∈μν

be→μ · be→ν
Ve

VμVν

1
D + 1

∑
σ∈e

cσ . (4.13)

Note that only those elements that belong to neighbor nodes contribute to
the dissipative matrix. For example, in a 1D grid, the only surviving elements
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related to a given node μ are

D̂μμ−1 = − D

kBT

1
VμVμ−1

1
V l

μ

cμ−1 + cμ

2
,

D̂μμ =
D

kBT

1
V 2

μ

(
1
V l

μ

cμ−1 + cμ

2
+

1
V r

μ

cμ+1 + cμ

2

)
,

D̂μμ+1 = − D

kBT

1
VμVμ+1

1
V r

μ

cμ+1 + cμ

2
,

which can be written in compact form as

D̂μν =
D

kBT

1
VμVν

Uμν ,

where

Uμν =


− 1

V l
μ

cμ+cμ−1
2 iff ν = μ − 1 ,

1
V l

μ

cμ+cμ−1
2 + 1

V r
μ

cμ+cμ+1
2 iff ν = μ ,

− 1
V r

μ

cμ+cμ+1
2 iff ν = μ + 1 ,

0 otherwise .

Here, V l
μ is defined as the volume of the sub-element elμ, while V r

μ refers to the
volume of the sub-element erμ.

Equation (4.13) is the explicit form of the dissipative matrix, in terms of ge-
ometric quantities and the coarse grained variables c. We can also consider
the dissipative matrix under the approximation that D̂μν(c) ≈ ⟨D̂μν⟩eq, as
pointed in Ref. [68]. In this case we have simply

ce = c0 , (4.14)

and then the dissipative matrix D̂ is state independent

D̂μν =
Dc0
kBT

∑
e∈μν

be→μ · be→ν
Ve

VμVν
= independent of c . (4.15)
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In the case of a 1D grid, the dissipative matrix takes the form

D̂μμ−1 = −Dc0
kBT

1
VμVμ−1

1
V l

μ

,

D̂μμ =
Dc0
kBT

1
V 2

μ

(
1
V l

μ

+
1
V r

μ

)
,

D̂μμ+1 = −Dc0
kBT

1
VμVμ+1

1
V r

μ

,

which can be written in compact form as

D̂μν =
Dc0
kBT

1
VμVν

Lψ
μν . (4.16)

Here,Lψ is the so-called stiffness matrix given by

Lψ =



(
1
V l
1
+ 1

V r
1

)
− 1

V r
1

0 . . . − 1
V l
1

− 1
V l
2

(
1
V l
2
+ 1

V r
2

)
− 1

V r
2

. . . 0

0 − 1
V l
3

(
1
V l
3
+ 1

V r
3

)
. . . 0

...
...

... . . . ...
− 1

V r
M

0 0 . . .
(

1
V l
M
+ 1

V r
M

)


.

4.4.4.4.4.4. Numerical resultsNumerical resultsNumerical results

In this section, we present the results of 1D numerical simulations of the fluc-
tuating discrete diffusion equation (3.19) for both the Gaussian model (GA)
in which F̂ (c) = F̂ (GA)(c) as given by (4.7), and the local equilibriummodel
(LE) F̂ (c) = F̂ (LE)(c) as given by (4.8). The results presented in this section
have been conducted with the state-dependent dissipative matrix given in Eq.
(3.12) with (4.12).
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The results of the numerical simulations of the discrete diffusion equation
will be compared with the “microscopic” dynamics of the independent Brow-
nian particles governed by

dri =
√

2DdW i . (4.17)

From the microscopic configuration z = {xi; i = 1, . . . , N} generated by
Eq. (4.17), we will compute themesoscopic concentration field ĉμ(z). The sta-
tistical properties of thesemesoscopically obtained concentration fields will be
compared with the results of the discrete diffusion equation (3.19).

4.4.1. The SDE to be solved

We consider the nodes located in a regular lattice separated by a distancea, with
periodic boundary conditions (i.e. nodeM+1 coincideswith node 1 and node
0 coincides with nodeM ). First, we need to particularize the discrete diffusion
equation (3.19) to this situation. For the sake of simplicity in the notation, let
us introduce the chemical potential of node ν as

μν ≜
1
Vν

∂F̂

∂cν
,

so that for each free energy model (4.7) and (4.8) we have the following chem-
ical potentials

μ(GA)
μ (c) = kBT

∑
ν

(
Mψ
)−1

μν
Vν

cν − c0
c0

, (4.18)

μ(LE)
μ (c) = kBT

3
2
cμ − c0

c0
. (4.19)

For a regular lattice the SDE (3.19) may be written in the form

dcμ(t) = aμdt+ dc̃μ

= a(1)μ dt+ a(2)μ dt+ blμdW
l
μ + brμdW

r
μ . (4.20)
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Where, a(1)μ is defined as

a(1)μ ≜ − D

kBT

∑
ν

(∑
e∈μν

be→μ · be→ν
Ve

Vμ
ce

)
μν

= − D

kBT

( ∑
e∈μμ−1

be→μ · be→μ−1ce

)
μμ−1

− D

kBT

(∑
e∈μμ

be→μ · be→μce

)
μμ

− D

kBT

( ∑
e∈μμ+1

be→μ · be→μ+1ce

)
μμ+1

In 1D, the vectors be→μ are simply the numbers ± 1
a
. There is only one sub-

element that is shared by the nodes μ and μ − 1, or by the nodes μ and μ + 1.
However, the node μ shares two sub-elements l, r (for left and right) with the
node μ itself. This leads to

a(1)μ = − 1
a2 c

l
μμμ−1 +

1
a2 (c

l
μ + crμ)μμ −

1
a2 c

r
μμμ+1

=
1
a2 c

l
μ(μμ − μμ−1) +

1
a2 c

r
μ(μμ − μμ+1) (4.21)

where

clμ ≜ cμ + cμ−1

2
,

crμ ≜ cμ + cμ+1

2
.

The term a2
μ in Eq. (4.20) is given from Eq. (4.13) by

a2
μ =

∑
ν

(∑
e∈μν

be→μ · be→ν
Ve

VμVν

)
1

D + 1
. (4.22)
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Due to the symmetry of the finite element construction,

bl
e→μ = −br

e→μ−1 ,

−br
e→μ = bl

e→μ+1 ,

the sum in (4.22) will be zero regardless of the regularity of the grid. This im-
plies that

a(2)μ = 0 .

Note that this result is completely general provided that the concentration of
the element, ce is a linear functionof the concentrationof thenodes, because in
this case the derivative of the concentration will be a constant. Therefore, this
result is valid with the arithmetic approximation (4.12) and with the constant
concentration approximation (4.14).

Finally, let us consider the thermal fluctuations in Eq. (3.19) in a regular lat-
tice. From the definitions of dc̃μ(t) in Eqs. (3.15)-(3.16), we have

dc̃μ =
1
Vμ

∑
e∈μ

be→μ ·
√

2DceVedWe

= blμdW l
μ + brμdWr

μ , (4.23)

with

blμ ≜
√

2Da

a2

√
cμ + cμ−1

2
,

brμ ≜
√

2Da

a2

√
cμ + cμ+1

2
. (4.24)

We can now collect the results (4.21), (4.22), and (4.23) to write down the final
SDE satisfied by the discrete concentration variables in a regular lattice

dcμ =
D

kBT

1
a2

cμ + cμ−1

2
(μμ − μμ−1)dt+

D

kBT

1
a2

cμ + cμ+1

2
(μμ − μμ+1)dt

+

√
Da

a2

(
(cμ + cμ−1)

1/2dW l
μ − (cμ + cμ+1)

1/2dWr
μ

)
. (4.25)
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In 1D, for periodic boundary conditions, there are as many sub-elements as
there are nodes. The noises also satisfy dW l

μ = dWr
μ−1 and dWr

μ = dW l
μ+1.

Therefore, wewill rename dW l
μ to dWμ and dWr

μ to dWμ+1, respectively. The
final Eqs. (4.25), with the different models for the given chemical potential in
Eqs. (4.18) and (4.19) are the equations that will be simulated.

The above equations do exactly satisfy the conservation of the number of
particles N =

∑
μ cμVμ but do not necessarily ensure that the concentra-

tion of the nodes is always positive. Indeed, when the free energy function
is a quadratic function and the dissipative matrix is proportional to the arith-
metic mean, Eqs. (4.25) may lead, from time to time, to negative values of cμ

due to the random kicks of theWiener process. However, physically an empty
cell cannot go emptier. If this happens, Eq. (4.25) will be ill defined and the
method will fail. If a cell is empty, then the noise terms corresponding to the
sub-elements of that cell would need to vanish, preventing any stochasticity to
empty already empty cells.

In the simulations presented later we observe that emptying empty cells oc-
curs very infrequently when the number of particles per node is sufficiently
large. When the concentration of a node becomes negative we need to restart
the simulation again.

4.4.2. Time discretization

Equations (4.25) are discrete in space and continuum in time. For the numeri-
cal solutionwe also need a time discretization. There aremany integrators that
may be used to solve StochasticDifferential Equations. [69, 70] In this chapter
we use a predictor-corrector Euler method [71]. This method gives an order of
strong convergence of 0.5. A scheme converges strongly with order ν > 0 at a
time t if there exists a positive constant c, which does not depend on Δt, such
that for sufficiently small Δt√

⟨(x(t)− y(t))2⟩ ≤ c(Δt)ν ,

where x(t) corresponds to the real solution and y(t) corresponds to the nu-
merical solution. Strong convergence allows one to recover real individual tra-
jectories, because the difference between the numerical and the real solution
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decreases with the time step.
In order to write the explicit integration scheme, let us write Eq. (4.20) in

integral form

cμ(t) = cμ(0) +
∫ t

0
ds aμ(s, c(s)) +

∫ t

0
dW l

μ(s) b
l
μ(s, c(s))

+

∫ t

0
dWr

μ(s) b
r
μ(s, c(s)) .

And define the function a η with μ-th component

a η
μ (t, c) ≜ aμ(t, c) + ημ

∑
ν

(blν(t, c) + brν(t, c))
∂

∂cν

(
blμ(t, c) + brμ(t, c)

)
.

(4.26)

Then, the proposed family of strong predictor-corrector Euler schemes is given
by the predictor

cμ(ti + Δt) = cμ(ti) + aμ(ti, c(ti))Δt+ blμ(ti, c(ti))ΔW l
μ

+ brμ(ti, c(ti))ΔWr
μ , (4.27)

and the corrector

cμ(ti + Δt) = cμ(ti)

+
[
θμa

η
μ (ti + Δt, c(ti + Δt)) + (1 − θμ)a

η
μ (ti, c(ti))

]
Δt

+
[
ημb

l
μ(ti + Δt, c(ti + Δt)) + (1 − ημ)b

l
μ(ti, c(ti))

]
ΔW l

μ(ti)

+
[
ημb

r
μ(ti + Δt, c(ti + Δt)) + (1 − ημ)b

r
μ(ti, c(ti))

]
ΔWr

μ(ti) .

(4.28)

Here, θμ and ημ ∈ [0, 1] correspond to the degree of implicitness in the drift
and the diffusion coefficients, respectively. The case η = θ = 0 recovers the
usual Euler-Maruyama scheme. The symmetric predictor-corrector takes η =
θ = 1

2 .
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Note that for a constant dissipative matrix like the one in (4.15) the stochas-
tic drift term in (4.26) vanishes. On the other hand, for the arithmetic mean
approximation for the dissipative matrix (4.13) we have

a η
μ (t, c) =

D

kBT

1
a2

(
cμ + cμ−1

2
(μμ − μμ−1) +

cμ + cμ+1

2
(μμ − μμ+1)

)
+ ημ

√
Da

2a2

(
−
√

cμ + cμ+1

cμ + cμ−1
+

√
cμ−1 + cμ−2

cμ + cμ−1

−
√

cμ + cμ−1

cμ + cμ+1
+

√
cμ+1 + cμ+2

cμ + cμ+1

)
. (4.29)

In a 1D regular grid with lattice spacing a, wemust predict with (4.27) with
aμ given by (4.21), bl,rμ given by (4.24) and ΔW l,r

μ random Gaussian noises
(multiplied by

√
Δt). The random noises will be obtained with a Mersenne-

TwisterMT19937 algorithm [72] as initializator and the Ziggurat method [73]
as generator. The corrector step (4.28) takes η = θ = 0.5 and a η

μ given by
(4.29).

4.4.3. Static properties

We first present results concerning the staticproperties of themodel. In Fig. 4.1
we plot the probability that a single node has a particular value of the concen-
tration at equilibrium. Three models, microscopic Brownian Dynamic (BD),
Gaussian (GA) and local equilibrium (LE) are plotted. The relative error be-
tween BD and GA is less than 1%, while GA and LE coincide by construction.
Indeed, the explicit expression for LEwas obtained from the probability of the
Gaussian model.

While the probability of a single node is essentially the correct one for the
twomodels (GA andLE coincidingwithBD), the situation is very different for
the joint probability of neighbor nodes. In Fig. 4.2we show the joint probabil-
ity P (cμ, cμ+1) for the Gaussian model. This joint probability has a structure
along the diagonal, which is a reflection of the non-vanishing correlation be-
tween neighboring cells. We have compared this joint probability with the BD
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Figure 4.1: Probability of finding a particular value of the concentration, cμ, in a single node using

threemodels. Red line shows aBrownianDynamics simulation, green dots uses theGaussian approx-

imation (4.4) and blue dots uses the local equilibrium assumption (4.5)with (4.6). All three simula-

tions were performedwith c0 = 10000 particles per node.

result, showing that in the region where the probability P (cμ, cμ+1) is greater
than 0.01%, the relative error is lower than 5%. The results show that very good
agreement is obtained between the BD simulation and the GA model.

On the other hand, the LE model produces a perfectly isotropic distribu-
tion, as shown in Fig. 4.3. This isotropy is a reflection of the product struc-
ture of the joint probability in terms of the probability of a single node. Of
course, the LE approximation neglects correlations between the concentration
of neighboring cells, leading to large errors when compared with the true BD
simulations or the essentially correct GA model in Fig. (4.2).

4.4.4. Dynamic properties

We have also considered the dynamic behavior of the differentmodels by com-
puting the correlation function ⟨cμcν(t)⟩eq of the concentration in different
nodes. This correlation function has been computed analytically in Ref. [35],
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Figure 4.2: Le panel. Probability of finding a node with concentration cμ and a neighbor node with

concentration cμ+1, for the GAmodel. A structure along the diagonal can be appreciated, reflecting

the correlationbetweenneighbor nodes. Right panel. Relative error between theGaussianmodel and

the Brownian Dynamics. In the region where the probabilityP (cμ, cμ+1) is greater than 0.01 % the

relative error is lower than 5%.
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Figure 4.3: Le panel. Probability of finding a node with concentration cμ and a neighbor node with

concentration cμ+1, for the LEmodel. The structure is isotropic, because for the LEmodel two neigh-

bor nodes are uncorrelated. The LE model does not reproduce correctly the joint probability of con-

secutive nodes. Right panel. Relative error between the Local Equilibrium model and the Brownian

Dynamics, where errors as large as 20% are observed.
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thanks to the simplicity of the Brownian dynamics of independent particles.
In Fig. 4.4 we plot the analytical result (BD, red) together with the simulation
results of the Gaussian (GA, green points) and Local Equilibrium (LE, blue
points) models. Three groups of curves can be distinguished, corresponding
to the autocorrelation μ = ν and cross correlations with neighbors nodes. It
is apparent that the GAmodel reproduces correctly the theoretical result in all
cases, while the LE model fails to capture the correct behavior of the correla-
tion function. Typically, the LE model produces a too quick decay towards
zero, as compared with the actual behavior. This shows that not only static
properties but also the dynamics is poorly captured by the local equilibrium
model. This is a somewhat unexpected result and puts some caveats to the use
of additive local equilibrium expressions for the free energy in finite element
discretizations for stochastic theories of transport. What we observe is that,
when “discretization effects” are taken into account, one should be cautious
about directly using the concept of local equilibrium.
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Is there any way to reconcile the failure of the local equilibrium in a discrete
model with the expectation that it should prevail in a continuum theory? To
answer this question, we have measured the root mean square error between
the analytical result and the local equilibrium model for the correlation func-
tion of the concentration in different nodes. That is, we subtract both cor-
relations, take its square, and average the result over time. Then we take the
square root to get an error estimator of how much the LE model differs from
the actual BD model. In Fig. 4.5 we plot this error as a function of the sepa-
ration between the two nodes that are being correlated. There is a clear trend
that suggest that for large separations, the LE model gives basically correct re-
sults. In conclusion, large scale dynamics is still correctly captured with the
local equilibrium model, while small scale dynamics is not.
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model.
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4.5.4.5.4.5. SummarySummarySummary

In the first four chapters of this dissertation, we have studied the numerical
behavior (Chapter 4) of a discrete model for diffusion based on the ToCG
(Chapter 1) with a discretization basis (Chapter 2) constructed with the
support of the Delaunay triangulation (Chapter 3) that has been proposed
in Ref. [68]. The simplicity of the model describing non-interacting Brow-
nian particles allows one to focus on the specific aspects of the Delaunay tri-
angulation without having to bother about other issues that will necessarily
arise when considering more complex systems like interacting colloidal parti-
cles and simple fluids. Discrete models based on the Delaunay triangulation
for hydrodynamics are the natural outcome of a coarse-graining process that
allows one to describe in a thermodynamically consistentway the introduction
of thermal fluctuations in finite-element-like discretizations of Navier-Stokes
equations. [68] This discrete hydrodynamic Delaunay model shows a great
promise for the consistent coupling of atomically described fluids and hydro-
dynamic descriptions, where the coupling between regions of different detail
is done with due account of thermal fluctuations. It is therefore, of utmost
importance to understand the behavior of the models based on the Delaunay
construction in simple cases before entering themore challenging and interest-
ing situations. The discrete diffusion equation for non-interacting Brownian
particles that we have considered here is one of these simplest cases.

Two building blocks, the free energy function and the dissipative matrix,
appear in the discrete diffusion equation. Both are functions of the full state
of the system, which is the set of concentrations in theM nodes of the system.
Although these building blocks are defined in terms of conditional averages,
the calculation of this multidimensional functions is not an easy task in gen-
eral. It is necessary to make modeling assumptions on the form of the free
energy function. In the present chapter, we have considered two models, a
Gaussian model, which works very well when the typical number of particles
for node is large, and a Local Equilibrium model that captures correctly the
statistical distribution of particles of a single node, but neglects correlations
between neighboring nodes. The numerical results show that the LE model
gives inaccurate results for both joint statistics of equilibrium fluctuations and
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the dynamics of a single node. In other words, for theDelaunay triangulation,
the overlapping of neighbor cells needs to be properly accounted for in the
free energy function, which then becomes a non-additive function (it cannot
be expressed as the sum of single free energies associated to each node). We
find that a quadratic expression for the free energy reproduces very well both
the static properties and also the dynamic properties of the underlying Brown-
ian dynamics model. We have also shown that despite of the fact of providing
poor results at small scales, the LEmodel is still appropriate for describing large
scale results, in accordance with the idea that local discretization details should
not affect large scale results.

Concerning the second building block, which is the dissipative matrix, we
have proposed a state-dependent dissipative matrix based on a simple arith-
metic mean ansatz. We have validated this ansatz from an explicit calculation
of the conditional averages involved in the definition of the dissipative matrix.
Nevertheless, it turns out that taking into account the state dependence of the
dissipative matrix does not have a significant impact in the simulation results
as compared with an even simpler ansatz for the dissipative matrix based on a
state-independent assumption.

Both, the Gaussian approximation for the free energy and the state inde-
pendent assumption for the dissipative matrix are expected to fail when the
number of particles per node is very small. For the free energy, deviations from
Gaussian behavior are expected already at the level of the single node equilib-
rium distribution function. On the other hand, the dissipative matrix must
reflect the fact that the transport of particles out of an empty cell is forbid-
den, thus preventing any node from taking negative values of the concentra-
tion field. For the practical situations we have inmind (coupling of regions de-
scribed at different detail but in near-equilibrium situations) such non-trivial
behavior seems to be not necessary, but in highly non-equilibrium situations
like shock and rarefaction situations, a propermodelingof the free energy func-
tion and the dissipative matrix may be necessary.

The present chapter considers a one dimensional CGmodel of non interact-
ing Brownian particles but the main conclusion, which is the need of consid-
ering non-additive free energy models when using the Delaunay triangulation
for the definition of the CG variables, is valid also for two and three dimen-
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sions. In higher dimensions, the Delaunay cells also overlap as in 1D, and the
nodes are not statistical independent. Of course, the analytic calculation of
the matrix of static covariances

(
Mψ
)−1

μν
defining the Gaussian free-energy be-

comesmuch involved in high dimensions. In higher dimensions it seemsmuch
easier to evaluate the static covariances ⟨(cμ−c0)(cν−c0)⟩eq from a numerical
simulation of the underlying microscopic system (BD for the case of colloidal
particles, MD for the case of simple fluids).

In a similarway, the importantmessage that even though a local equilibrium
approximation gives correct large scale results it fails to capture the short scale
physics remains valid at higher dimensions. This short scale physics is precisely
what is needed in any hybrid scheme trying to match two different levels of
description in two regions of the space connected with a boundary.
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Interlude

Where we propose a new basis function to discretize the diffu-
sion equation.

Let us recall the procedure we have followed in Section 3.4 in order to
discretize the continuum diffusion equation

∂c

∂t
(r, t) = D∇2c(r, t) , (4.30)

which is a particular example of the PDE (3.21) for a highly dilute solution.
First, we stipulated how to discretize the continuum concentration field as

cμ(t) =

∫
dr δμ(r)c(r, t) , (4.31)

where the discrete delta function was given by (3.3)

δμ(r) →
ψμ(r)

Vμ
. (4.32)

Here, ψμ(r) is the linear finite element with support on the Delaunay cell μ.
Second, we specified how to interpolate the discrete concentration field by in-
troducing the interpolated field c(r, t) as

c(r, t) =
∑

μ

ψμ(r)cμ(t) . (4.33)
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By taking the time derivative of the discrete field (4.31) we obtain

∂cμ

∂t
(t) =

∫
dr δμ(r)D∇2c(r, t) , (4.34)

which is not a closed equation for the discrete concentration field, because the
obtained equation involves a discrete concentration field cμ(t) and a continu-
ous concentration field c(r, t). Then, in (4.34) we approximate the continu-
ous field c(r, t)with the interpolated field c(r, t) defined in (4.33), so that the
discrete version of (4.30) becomes

∂cμ

∂t
(t) = −D

1
Vμ

∑
ν

Lψ
μνcν ,

where we did an integration by parts. Here, the stiffness matrixLψ is given by

Lψ
μν =

∫
dr∇ψμ(r)∇ψν(r) . (4.35)

We may interpret the matrix

Δμν = − 1
Vμ

Lψ
μν (4.36)

as a discrete version of the Laplace operator∇2. Let us check how accurate is
this discretization procedure by considering a 1D settingwith periodic bound-
ary conditions. In the continuum case, the action of the Laplace operator on
the function

c(r) = c0 cos

(
2πr
L

)
is

∇2c(r) = −c0

(
2π
L

)2

cos

(
2πr
L

)
= −

(
2π
L

)2

c(r) .
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Now, consider the following discrete solution of the concentration field for a
node μ located at rμ,

cμ = c0 cos

(
2πrμ

L

)
. (4.37)

If the action of the discrete Laplace operator (4.36) on this “discrete field” was

∑
ν

Δμνcν = −
(

2π
L

)2

cμ ,

then we would have a perfect discrete representation of the Laplace operator.
In summary, we would like to check the following identity(

2π
L

)2

cμ =
1
Vμ

∑
ν

Lψ
μνcν . (4.38)

For a 1D regular grid of total length L = 1 with M = 32 nodes, we com-
pare in Fig. 4.6 the left hand side (blue line) and the right hand side (red points)
of (4.38) for the discrete cosine (4.37) with c0 = 1. A perfect agreement is ob-
tained. In fact, in Chapter 7 we will show that the vector cwith component
cμ given by (4.37) is, in a regular grid, an eigenvector ofLψ (see Section 7.4.1).
Therefore, we conclude that the operator Lψ is an exact representation of the
Laplace operator acting on cosine functions, and the procedure followed in
Section 3.4 to discretize a continuum equation is good.

The above argument is valid for regular grids only. For irregular lattices the
discrete concentrationvectorc givenby (4.37) is no longer an eigenvector of the
operatorLψ. Therefore,Lψ is just a reasonable approximation for the Laplace
operator. In Fig. 4.7we represent, in blue line, the left hand side of Eq. (4.38) in
a 1D grid of lengthL = 1 withM = 32 nodes at completely randompositions
(cμ is given by (4.37) with c0 = 1). Red dots represent the right hand side of
Eq. (4.38) for the same discrete profile. As comparedwith Fig. 4.6, it is obvious
that for irregular lattices the discrete version of the Laplacian given by (4.35) is
not as satisfactory as desired.
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Figure4.6: DiscreteLaplacianLψ obtained fromthebasis function (4.32), applied to the cosine (4.37)
in a 1D regular lattice.
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Figure4.7: DiscreteLaplacianLψ obtained fromthebasis function (4.32), applied to the cosine (4.37)
in a 1D irregular lattice.
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In order to find a better discrete Laplace operator for irregular grids, we
make the following observation. Let us discretize a continuous field c(r, t)
by using the discretization (4.31). If we replace the continuous field c(r, t) by
the interpolated field c(r, t) (4.33), we obtain

cμ(t) =

∫
dr δμ(r)c(r, t)

=
1
Vμ

∫
drψμ(r)c(r, t)

≈ 1
Vμ

∫
drψμ(r)c(r, t)

=
1
Vμ

∑
ν

∫
drψμ(r)ψν(r)cν(t)

=
1
Vμ

∑
ν

Mψ
μνcν(t) , (4.39)

where the mass matrixMψ is given by

Mψ
μν =

∫
drψμ(r)ψν(r) .

Inwords, equation (4.39) expresses the fact that if we discretize an interpolated
field constructed from a discrete field, we do not recover the original discrete
field. Eq (4.39) is inconsistent unless the vector cwith μ-th component (4.37)
is an eigenvector of the mass matrix Mψ. This is only true for regular lattices
(see Section 7.4.1), Therefore, in irregular lattices (4.39) is inconsistent.

With this observation in mind, we will propose in Chapter 5 a basis func-
tion set different from (3.3). This new basis function is given by a linear com-
bination of the finite element ψμ(r)

δμ(r) →
∑

ν

M δ
μνψν(r) , (4.40)

where Mδ is the inverse of the mass matrix Mψ. The basis function δμ(r)
defined in (4.40) will be called the conjugate finite element basis function or,
simply, the conjugate basis.
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Note that the basis (4.40) recovers the discrete field if we substitute the con-
tinuous field by the interpolated one

cμ(t) =

∫
dr δμ(r)c(r, t)

=
∑

ν

M δ
μν

∫
drψν(r)c(r, t)

≈
∑

ν

M δ
μν

∫
drψν(r)c(r, t)

=
∑
ν,σ

M δ
μν

∫
drψν(r)ψσ(r)cσ(t)

=
∑
ν,σ

M δ
μνM

ψ
νσcσ(t)

= δμσcσ(t)

= cμ(t) ,

irrespective of the regularity of the grid. In this way, if we interpolate a discrete
field and then we discretize it, we get back the original discrete field.

We cannowdiscretize thediffusion equation (4.30)with thenewbasis (4.40)
to obtain

∂cμ

∂t
(t) = −D

∑
ν,σ

M δ
μνL

ψ
νσcσ .

Instead of (4.38), in this case we obtain the condition(
2π
L

)2

cμ =
∑
ν,σ

M δ
μνL

ψ
νσcσ , (4.41)

with the (conjugate) discrete Laplacian defined by the matrix multiplication
MδLψ. In Fig. 4.8weplot, for the discrete cosine (4.37)withL = 1 and c0 = 1,
the left hand side (blue line) and the right hand side (green dots) of (4.41). We
observe that, as compared with Fig. 4.7, this new prescription for the discrete
Laplacian gives a much better agreement for irregular grids.
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Figure 4.8: Conjugated discrete LaplacianMδLψ obtained from the basis function (4.40), applied to
the cosine (4.37) in a 1D irregular lattice.

To obtain a quantitative measure of the improvement with the conjugate
basis (4.40)with respect to the original basis (4.32), we look at the order of con-
vergence of the two discrete Laplacian operators,Lψ and the conjugateMδLψ.
For the discrete cosine (4.37) with L = 1 and c0 = 1, we create 100 different
1D configurations with nodes at random positions and we compute, for each
configuration, the following errors

εψ =

√√√√ 1
M

∑
μ

(∑
ν

Lψ
μνcν −

4π2

L2 cμ

)2

,

εδ =

√√√√ 1
M

∑
μ

(∑
ν,σ

M δ
μνL

ψ
νσcσ −

4π2

L2 cμ

)2

.

These errors are plotted in Fig. 4.9. Red dots represent εψ, the error obtained
for the discrete Laplacian Lψ. Green dots represent εδ, the error obtained for
the conjugate discrete Laplacian MδLψ. We also compute a least squares ad-
justment to y = axb, obtaining for Lψ a coefficient bψ ≃ −1 (red line) and
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for MδLψ a coefficient bδ ≃ −2 (green line). The conjugate discrete Lapla-
cian operator MδLψ converges faster (with second order accuracy) than Lψ

(which is first order accurate) in irregular grids. Therefore, hereinafter we will
use the conjugate basis function δμ(r) defined in (4.40) to discretize any con-
tinuous field in aTop-down approach. The conjugate basis function δμ(r)will
be also used to define the discrete concentration variables ĉμ(z) given by (2.1)
in a Bottom-up approach.

10−3

10−2

10−1

100

101

10 100 1000

Er
ro

r,
ε

Number of nodes,M

Figure 4.9: Error between the discrete LaplacianLψ (red) andMδLψ (green) for a discrete cosine

(4.37). Dots represent the numerical error obtained with 100 configurations with nodes located at

random positions. Lines represent a least squares adjustment.
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5
The Top-Down Approach for

Discrete Diffusion

Wherewediscretizeacontinuumnon-lineardiffusionequation.

5.1.5.1.5.1. IntroductionIntroductionIntroduction

In the previous chapters, by using the Theory of Coarse-Graining, we have
obtained a discrete stochastic diffusion equation for the concentration field
ĉμ(z). The discrete concentration field has been defined in terms of a dis-
cretization basis function ψμ(r), with support on the Delaunay triangulation.
The SDE that describes the evolution of the coarse grained variables ĉμ(z) is
given by (2.15). Two elements enter into that equation. A free energy func-
tional F̂ (c), and a dissipative matrix D̂(c). We have obtained explicit expres-
sions for them in terms of the basis function ψμ(r).
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In Section 3.4 we have shown that the SDE (2.15) (which has been already
displayed in (0.10)) can be understood as a discretization of the continuum
PDE (0.3). We defined an space-averaged discrete concentration field cμ(t)
based on the finite element ψμ(r). Then, we approximated continuum fields
with interpolated fields constructed from the discrete concentration, by using
the same finite element ψμ(r). In the Interlude we have discussed the con-
venience of a new basis function δμ(r), which is a linear combination of the
finite element ψμ(r). The conjugate basis function δμ(r) has the advantage of
being a better discretization basis for irregular grids. We are interested in dis-
cretizations on arbitrary (not necessarily regular) grids because arbitrary grids
can accommodate complex geometries and allow for adaptive spatial resolu-
tion.

The fact the SDE (0.10) and thePDE (0.3) lead to the sameODEunder some
assumptions indicates a possible connection between (0.10) and the stochastic
PDE (0.4). Traditionally, the numerical solution of SPDEs of the kind (0.4)
have resorted to finite difference schemes, [27, 74] that are easy to implement
in regular lattices. However, as we pointed out in the Introduction, strictly
speaking a finite difference scheme for an SPDE like (0.4) (without regulariza-
tion) is meaningless in higher dimensions because taking the point-wise value
of the field is not appropriate. Instead, one can use a finite volumemethod, in
which the discrete variables are the fields integrated over the cell volume. [63]
The resulting algorithm in regular grids looks like a finite difference method
but the variables have very different meanings. While finite volumes may deal
with adaptive resolutions and irregular grids [63], finite elements are often
most natural when considering complicated boundary conditions. Finite ele-
mentmethods for the solution of SPDEs are just beginning to be explored [75–
78]. In this chapter, we discuss in detail the general idea behind the defini-
tion of the conjugate basis function δμ(r) defined in the Interlude, and we
construct a discretization method for the PDE (0.3). These are necessary steps
prior to the obtention of a physicallymotivated SPDE in subsequent chapters.
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5.2.5.2.5.2. Discretization and continuation operatorsDiscretization and continuation operatorsDiscretization and continuation operators

There are two basic operations in the process of discretizing a Partial Differen-
tial Equation. One is to discretize the fields and the other to interpolate discrete
values of the fields. In this section we consider a general framework that leads
to the definition of the conjugate basis functions.

Consider a continuous field a(r)which is a differentiable function of space
r ∈ R3. We want to discretize this field in a set of points (or nodes) R =
{r1, . . . , rM}. This set of pointsR is called a configuration and, if connectivity
between points is defined, the points form amesh. On every point rμ we asso-
ciate a number aμ that “represents” the field a(r) at this point. The simplest
option is to consider aμ = a(rμ), but there are of course many other possi-
bilities. We call the collection aR of the pairs (rμ, aμ) a discrete field, while the
original (r, a(r)) field is called the continuous field. It is obvious that a discrete
field contains less information than a continuous field.

Let us generalize the procedure followed in Section 3.4 by introducing a
discretization operator DR. It takes any continuous field and produces a dis-
crete field, that is

DR [a(r)] = aR .

The square brackets denote that DR is a functional of a(r) and the subindex
R denotes that the discretization depends on the configuration of the nodes
R. Note that the discretization operator is surjective, that is, it converts many
different continuous fields into the same discrete field. Loosely speaking, we
say that the discretization operator destroysi information from the continuous
field.

Reciprocally, we introduce a continuation operator C that takes a discrete
field and transforms it into a continuous field, that is

C(aR) = a(r) .

The rounded parenthesis denote that C is a function of aR. The continuation
operator createsii information in all points of space from the information aR
given in a few points.

iFor that reason, we will also callD the destruction operator.
iiBy analogy with the destruction operator, we will also call C the creation operator.
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5.2.1. Required properties forDR and C

A first property wewould like to have for these operators is that if we continue
a discrete field aR from a configurationR and thenwe discretize it on the same
configurationR, we should get the same original discrete field aR. That is

DR [C(aR)] = aR . (5.1)

We call this the projective property. This seems a basic property to be satisfied
by bothDR and C.

The second property wewould like to have is that the result of continuing a
discrete field aR from a configurationR and then discretizing at another con-
figuration R′, that is, obtaining a′R′ , should be such that if we continue a′R′

and discretize it at the configurationR, we get back aR. Formally,

a′R′ = DR′ [C(aR)] ,
aR = DR [C(a′R′)] . (5.2)

We call this the reversibility property. This is a basic requirement that appears
when considering the possibility of remeshing a field. Remeshing is the process
bywhich a discrete fieldaR, defined in a configurationR, ismapped onto a dis-
crete field a′R′ defined in another configurationR′. Therefore, the reversibility
property states that the result of remeshing a discrete field into another config-
uration and remeshing again back to the original configuration should lead to
the original discrete field. This property could be essential to reduce the “nu-
merical diffusion” that appears in remeshing techniques. However, Eq. (5.2)
implies

DR [C(DR′ [C(aR)])] = aR . (5.3)

Equation (5.1) shows that the operatorDRC that takes discrete fields onto dis-
crete fields is the identity operator, that is, DRC = 111. This suggest that DR

and C may be inverse of each other. However, for a true inverse property, we
would need to have also CDR = 111 . In general, the operator CDR transforms
continuous fields into other continuous fields, for example,

C(DR′ [a(r)]) = a(r) .
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It is apparent that, in general, a(r) ̸= a(r) becausemany different continuous
fields may discretize into the same discrete field. Note that Eq. (5.3) would be
satisfied if and only if CDR would be the identity operator. However, neces-
sarily the information contained in a(r) is smaller than the information con-
tained in a(r). We shall conclude that Eq. (5.3) cannot be generally valid. In
fact, we have the following theorem. We define f(r) as an exactly continued
field of C if it satisfies

C(f(rμ)) = f(r) .

Wemay say that the operator C exactly continues these fields. Then, the projec-
tive property (5.1) implies that

DR [f(r)] = f(rμ) .

And, as a consequence, for exactly continued fields, we have

CDR [f(r)] = f(r) .

Therefore, given the projective property (5.1), the reversible property (5.2) is
satisfied on all the continuous fields that are exactly continued by C.

For example, assume that the exactly continued fields of C are quadratic
functions. Then

C(a+ b · rμ + c : rμrμ) = a+ b · r+ c : rr ,

where a, b and c are constant. Then, by requiring that DRC = 111 we obtain
that the discretization operatorDR must satisfy

DR [1] = 1 ,
DR [r] = rμ ,

DR [rr] = rμrμ .

These properties, in turn, imply that,

CDR [a+ b · r+ c : rr] = a+ b · r+ c : rr .

And, as a consequence, CDR = 111 if applied to quadratic functions.
In conclusion, given the operatorsDR andC, it is very important to find out

which are their exactly continued fields, because on these fields it is possible to
have both the desired projective and reversibility properties.
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5.2.2. Local operators

Up to now we have not specified the form of the operatorsDR and C. We in-
troduce now a set of functions δμ(r) andψμ(r) associated to each point rμ that
defines the position of a node μ. We think about these functions as “localized”
around each point, but this is not necessary for the moment. The discretiza-
tion operatorDR is defined through the following action

DR [a(r)] ≜
∫

dr δμ(r)a(r) = aμ ,

that transforms an arbitrary field a(r) into a set of discrete values aμ. The ba-
sis function δμ(r) has dimensions of inverse of a volume. Reciprocally, the
continuation operator C is defined as

C(aμ) ≜
∑

μ

ψμ(r)aμ = a(r) .

The properties (5.1) and (5.3) now reflect onto properties for the functions
δμ(r) and ψμ(r). The first projection property in Eq. (5.1) becomes

aμ = Dμ

[
C(aμ)

]
= Dμ

[∑
ν

ψν(r)aν

]
=
∑

ν

∫
dr δμ(r)ψν(r)aν .

Because thismust be true for all aμ, we obtain that the local versions ofDR and
C will be projective if the basis functions satisfy the orthogonality condition∫

dr δμ(r)ψν(r) = δμν , (5.4)

where δμν refers to the Kroenecker delta function, which takes the value 1 if
and only if μ = ν and 0 otherwise.
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The reversibility property in Eq. (5.3) now becomes∫
dr δν(r)

∑
μ′

ψμ′(r)

∫
dr′ δμ′(r′)

∑
μ

ψμ(r
′)aμ = aν . (5.5)

Note that here ψμ′(r) is the set of functions corresponding to the configura-
tion R′, and it is different from ψμ(r) which is defined on the configuration
R. Note that Eq. (5.5) implies, because aμ is arbitrary, that∫

dr

∫
dr′ ψμ(r)S(r, r

′)δν(r
′) = δμν , (5.6)

where the smoothing kernel is defined as

S(r, r′) ≜
∑

σ

ψσ(r)δσ(r
′) . (5.7)

The explicit form (5.6) of the reversibility condition is not very important be-
cause we already know that it is not possible to have Eq. (5.6) satisfied exactly
in general. However, this identity will be satisfied automatically for the exactly
continued fields.

5.2.3. The basis functions δμ and ψμ are linearly related

We will assume now that the local discretization basis functions δμ(r) can be
expressed as linear combinationsof the local continuationbasis functionsψμ(r),
that is

δμ(r) ≜
∑

ν

M δ
μνψν(r) , (5.8)

whereMδ is the matrix of the linear combination. In this case, the projection
property (5.1) turns into

δμν =

∫
dr δμ(r)ψν(r) =

∑
σ

M δ
μσM

ψ
σν , (5.9)
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where the symmetric and positive definitemass matrix is defined as

Mψ
μν ≜

∫
drψμ(r)ψν(r) . (5.10)

If we assume that the basis functions ψμ(r) are dimensionless, themass matrix
Mψ has dimensions of volume. According to the projective property (5.9), we
have that the matricesMδ andMψ are inverse each other

Mδ =
[
Mψ
]−1

.

It is easy to show that the matrix elementM δ
μν is given by

M δ
μν =

∫
dr δμ(r)δν(r) . (5.11)

In summary, given a set of continuationweight functions ψμ(r)we can always
construct a set of discretization weight functions δμ(r)with

δμ(r) =
∑

ν

(
Mψ
)−1

μν
ψν(r) . (5.12)

in such a way that the projective property (5.4) is satisfied.
In the following, we define the vectors

δδδ(r) ≜ {δ1(r), . . . , δM(r)} ,
ψψψ(r) ≜ {ψ1(r), . . . ,ψM(r)} ,

so that we may write (5.12) as

δδδ(r) = Mδψψψ(r) .

Then, the mass matricesMδ andMψ may be written as

Mδ = (δδδT ,δδδ) ,

Mψ = (ψψψT ,ψψψ) ,

with an obvious notation for the scalar product (·, ·) in functional space.
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5.2.4. Linear consistency

We further assume that the functions ψμ(r) satisfy the partition of unity and
linear consistency properties

∑
μ

ψμ(r) = 1 ,∑
μ

rμψμ(r) = r . (5.13)

In this way, a linear discrete field of the form aμ = a+b · rμ is continued into
a linear field, that is

C(a+ b · rμ) = a+ b · r .

As a consequence of Eq. (5.4) andEq. (5.13), we have that the functions δμ(r)
satisfy ∫

dr δμ(r) = 1 ,∫
dr rδμ(r) = rμ . (5.14)

So, if the projective property (5.4) and the linear consistency property (5.13)
are both satisfied, then the required reversibility property in (5.5) is fully ac-
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complished for linear discrete fields of the form aμ = a+ b · rμ, that is,∫
dr δν(r)

∑
μ′

ψμ′(r)

∫
dr′ δμ′(r′)

∑
μ

ψμ(r
′)aμ

=

∫
dr δν(r)

∑
μ′

ψμ′(r)

∫
dr′ δμ′(r′)

∑
μ

ψμ(r
′)
[
a+ b · r′μ

]
=

∫
dr δν(r)

∑
μ′

ψμ′(r)

∫
dr′ δμ′(r′) [a+ b · r′]

=

∫
dr δν(r)

∑
μ′

ψμ′(r)
[
a+ b · rμ′

]
=

∫
dr δν(r) [a+ b · r]

= [a+ b · rν]

= aν .

Let us investigate to what extent we may have properties similar to (5.13)
for the discretization basis function δμ(r). To this end, we first introduce the
volume and center of mass of the cell corresponding to node μ through the
definitions

Vμ ≜
∫

drψμ(r) ,

rcmμ ≜ 1
Vμ

∫
dr rψμ(r) .

The linear consistency (5.13) has the following implications on themass matrix
defined in Eq. (5.10) ∑

ν

Mψ
μν = Vμ ,∑

ν

rνM
ψ
μν = Vμr

cm
μ .
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These two equations can be thought asmatrix equations thatmay be inverted,
leading to ∑

ν

VνM
δ
μν = 1 ,∑

ν

VνrνM
δ
μν = rcmμ .

By multiplying with ψν(r) and summing over ν, we have∑
ν

Vνδν(r) = 1 ,∑
ν

Vνrνδν(r) =
∑

ν

rcmν ψν(r) .

If the center of mass rcmν of cell ν coincides with the node position rν, then we
have a similar linear consistency relation for the discretization basis functions
δμ(r), ∑

μ

Vμδμ(r) = 1 ,∑
μ

Vμrμδμ(r) = r . (5.15)

In regular grids, with fixed lattice spacing, it always happens that the center of
mass of a cell is just at the node of that cell. Wemayhave gridswith different cell
size for which still the center of mass of the cell falls on top of the node. Such
grids are called centroidal. Regular grids are a particular case of a centroidal
grid. Therefore, for centroidal grids the destruction operators δμ(r) are also
linearly consistent.

Finally, for a linearly consistent scheme, we note the following identities re-
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lated to the smoothing kernel S(r, r′)∫
drS(r, r′) =

∑
ν

∫
drψν(r)δν(r

′) =
∑
μν

∫
drψμ(r)ψν(r)δν(r

′)

=
∑
μν

Mψ
μνδν(r

′) =
∑

μ

ψμ(r
′)

= 1 ,

and∫
dr rS(r, r′) =

∑
ν

∫
dr rψν(r)δν(r

′) =
∑
μν

∫
dr rμψμ(r)ψν(r)δν(r

′)

=
∑
μν

rμM
ψ
μνδν(r

′) =
∑

μ

rμψμ(r
′)

= r′ . (5.16)

In this sense, we may understand S(r, r′) as a “fat” Dirac delta that gives the
same result as the Dirac delta for linear functions.

5.2.5. Spatial derivatives

Given the discrete version aR of a field, we now estimate spatial derivatives at
the configuration R. One possibility is to continue aR, compute the deriva-
tives and then discretize back the derivative function atR. For the case of the
gradient, for example, we may define

(∇a)R ≜ DR [∇C(aR)] .

For local operators we have the following estimate for the gradient

(∇a)μ =
∑

ν

Ωμνaν ,

with

Ωμν ≜
∫

dr δμ(r)∇ψν(r) .
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Care should be taken if we consider the discretization of a field like c(r) =
a(r)b(r). Inprinciple, one can follow twodifferent routes toobtain thederiva-
tives of the discrete field. On one hand,

(∇c)μ = (∇ab)μ =
∑
νν′

∫
dr δμ(r)∇ (ψν(r)ψν′(r)) aνbν′

=
∑
νν′

∫
dr δμ(r) (ψν(r)aν∇ψν′bν′ + ψν′(r)bν′∇ψνaν)

= (a∇b)μ + (b∇a)μ , (5.17)

which complies with Leibnitz’s product rule.
On the other hand, one would also take the product a(r)b(r) as a single

block

(∇c)μ = (∇ab)μ =
∑

ν

∫
dr δμ(r)∇ψν(r)aνbν

̸= (a∇b)μ + (b∇a)μ . (5.18)

Note that the derivative (5.18) does not comply with the Leibnitz’s product
rule. In conclusion, we shall always prefer the form (5.17) over the form (5.18).

Let us move now to the definition of discrete second derivatives, obtained
as

(∇∇a)R ≜ DR [∇∇C(aR)] , (5.19)

which gives

(∇∇a)μ = −
∑

ν

Δμνaν

with

Δμν ≜ −
∫

dr δμ(r)∇∇ψν(r)

=

∫
dr∇δμ(r)∇ψν(r) . (5.20)
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We may use the linear connection between the two sets of basis functions and
write in compact matrix form the following identities

Δ = MδLψ = LδMψ ,

where we have introduced the stiffness matrices in each basis set as

Lψ ≜
(
∇ψ,∇ψT

)
,

Lδ ≜
(
∇δ,∇δT

)
. (5.21)

Note thatLψ andLδ are related according to

Lδ = MδLψMδ ,

Lψ = MψLδMψ .

Also note that the matrix Lδ satisfies, thanks to (5.13) and (5.15), the following
identities ∑

μ

Lψ
μν = 0 ,∑

μ

VμL
δ
μν = 0 ,

which shows that the vectors (1, · · · , 1) and (V1, · · · , VM) are eigenvectors in
the null space ofLδ.

In principle, we may also define second derivatives in an alternative way as
the result of two iterations of first derivatives. In particular, we could also de-
fine

(∇∇a)R = DR [∇C ((∇a)R)]

= DR [∇C (DR [∇C(aR)])] . (5.22)

Note the presence of the operator CDR. As we discussed previously, this op-
erator is not the identity in general. It acts as the identity only when we apply
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it on exactly continued fields. Indeed, for exactly continued fields, we have
C(DR [∇C(aR)]) = ∇C(aR) and, therefore, (5.22) becomes again (5.19). In
terms of the discrete operators Ωμν, the second derivative constructed itera-
tively is

(∇∇a)μ =
∑

νσ

ΩμνΩνσaσ

It is apparent that
∑

ν ΩμνΩνσ ̸= Δμσ in general. However, when applied onto
exactly continued fields, both discretizations of second order derivatives coin-
cide.

5.3.5.3.5.3. Petrov-Galerkin Weighted Residuals methodPetrov-Galerkin Weighted Residuals methodPetrov-Galerkin Weighted Residuals method

Up to now we have just a language to discretize and interpolate functions and
its derivatives, in a local form. We use now this language to discretize partial
differential equations like the diffusion equation (0.3)

∂c

∂t
(r, t) = ∇ ·

[
Γ(c(r, t))∇ δF

δc(r, t)
[c(r, t)]

]
.

Ageneralmethod for discretizing partial differential equations is theWeigh-
ted Residual method [79]. With the use of two different sets of basis func-
tions, the method is known as the Petrov-Galerkin method. As we discuss in
Appendix E, the order of convergence of the Petrov-Galerkin method with
linearly consistent basis functions is of second order.

The idea of weighted residuals is to approximate the actual solution c(r, t)
of the PDE (0.3) with its interpolated version c(r, t), in such a way that

c(r, t) ≈ c(r, t) =
∑

μ

ψμ(r)cμ(t) (5.23)

where now

cμ(t) =

∫
dr δμ(r)c(r, t)

=
∑

ν

M δ
μν

∫
drψν(r)c(r, t) . (5.24)

105



becomes the unknown of the problem.
One defines the residual as the result obtained after substitution in the PDE

(0.3) of the approximate field (5.23)

R(r) ≜ ∂c

∂t
(r, t)−∇ ·

[
Γ(c(r, t))∇ δF

δc(r)
[c]

]
.

If c(r, t) was a solution of the diffusion equation (0.3), the residual would be
zero. Byweighting the residualwithweights δμ(r), and requiring theweighted
residual to vanish we obtain

∂c

∂t
(t) =

(
δ,∇∇∇ ·

[
Γ(c(r, t))∇δF

δc
[c(t)]

])
= −

(
∇δδδ,Γ(c(r, t))∇δF

δc
[c(t)]

)
, (5.25)

wherewedid an integrationbyparts. Formally, Eq. (5.25) is a set ofM ordinary
differential equations for theM unknowns c(t).

It is apparent that we cannot proceed until we have a way to compute the
functional derivative δF

δc . To this end we define the discrete free energy func-
tion F (c) as

F (c) ≜ F [ψψψ · c] , (5.26)

that is, the free energy function of the discrete field c is obtained by evaluat-
ing the free energy functional at the interpolated field. What we need, though,
is not a discrete approximation for the functional, but a discrete approxima-
tion for its functional derivative. By using the functional chain rule we may
compute the derivative of the function (5.26)

∂F

∂cμ
(c) =

∫
dr′

δF
δc(r′)

[ψψψ · c]ψμ(r
′) . (5.27)

Let us multiply Eq. (5.27) with the basis function δ(r)

δ(r) · ∂F
∂c

(c) =

∫
dr′

δF
δc(r′)

[ψ · c]S(r, r′) , (5.28)
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where the smoothing kernelS(r, r′) is defined in (5.7). Wewill assume that the
functional derivative does not change appreciably within the range ofS(r, r′).
In this case, we may simply write from Eq. (5.28)∫

dr′
δF

δc(r′)
[ψψψ · c]S(r, r′) ≈ δF

δc(r)
[ψψψ · c] ,

and, therefore,wehave an approximate expression for the functional derivative

δF
δc(r)

[c] =
δF

δc(r)
[ψψψ · c] ≈ δδδ(r) · ∂F

∂c
(c) . (5.29)

We may introduce (5.29) into (5.25) and obtain

dc

dt
(t) = −D(c) · ∂F

∂c
(c) , (5.30)

where the dissipative matrix has the elements

Dμν(c) =

∫
dr∇δμ(r) · Γ

(∑
σ

ψσ(r)cσ

)
∇δν(r) . (5.31)

The form (5.31) for the dissipativematrix involves a space integral that needs
to be computed explicitly in order to introduce it in a computer code. Note
that the mobility depends on the position through its dependence on the con-
centration field and, therefore, such space integrals are not immediate. Wewill
use the following approximation

Γ

(∑
σ

ψσ(r)cσ

)
≈
∑

σ

ψσ(r)Γ (cσ) , (5.32)

in such a way that the mobility function at the interpolated field is approx-
imated by a linear interpolation of the mobility function at the nodes. The
approximation is exact for the nodal points r = rμ. It is expected that this ap-
proximation is appropriate for smooth functionsΓ(c), provided that themesh
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size is sufficiently small. With the approximation in Eq. (5.32), the dissipative
matrix (5.31) becomes

Dμν(c) =
∑

σ

Γ(cσ)

∫
dr∇δμ(r)ψσ(r)∇δν(r) , (5.33)

This matrix is positive semi-definite because if we multiply both sides of the
matrix with an arbitrary vector aμ we have

∑
μν

aμDμν(c)aν =
∑

σ

Γ(cσ)

∫
dr

(∑
μ

aμ∇δμ(r)

)2

ψσ(r) ,

which is clearly a positive quantity because Γ > 0 and the finite element
ψμ(r) ≥ 0. The semi character is due to the Eq. (5.15).

The integral in (5.33) is a geometric object readily computable as we show in
what follows. For the linear finite elements ψμ(r), we may explicitly compute
the gradient of the basis functions

∇δμ(r) =
∑

μ′

M δ
μμ′∇ψμ′(r)

∇ψμ′(r) =
∑
e∈μ′

be→μ′θe(r) (5.34)

where θe(r) is the characteristic function of the sub-element e. The gradient
of the basis function ψμ(r) is a constant vector be→μ for those points r that
are within the sub-element e ∈ μ of node μ. [32] In Fig. 5.1 we show the sub-
elements e of the node μ and the corresponding vectors be→μ in 2D. By using
(5.34) we have

Dμν(c) =
∑
μ′ν′

M δ
μμ′M δ

νν′

∑
e∈μ′,ν′

be→μ′be→ν′VeΓe(c)

=
∑
μ′ν′

M δ
μμ′Vμ′D̂μ′ν′(c)Vν′M

δ
ν′ν . (5.35)
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μμμ

be→μ

Figure 5.1: In 2D, the Delaunay cell of node μ is surrounded by the triangular elements e. For each
point of the triangular elemente, there is a constant vectorbe→μ that points towards thenodeμ and

that gives the derivative of the linear functionψμ(r) at that point.

Here, the dissipative matrix D̂μν has been already defined in (3.12). Note that
we also have introduced the mobility Γe of the element e as

Γe(c) ≜
∑
σ∈e

WσeΓ(cσ) , (5.36)

and represents aweighted average of themobility associated to the nodesσ that
are the vertices of the element e. We have introduced the volume of element e
and the geometric ratioWeσ as

Ve ≜
∫

dr θe(r) ,

Wσe ≜
∫
dr θe(r)ψσ(r)∫

dr θe(r)
.

5.4.5.4.5.4. SummarySummarySummary

In this chapter, we have used a Top-down approach to obtain a discrete diffu-
sion equation for the concentration field. Wehave started from the continuum
diffusion equation (0.3), and have used a Petrov-Galerkin Weighted Residual
Method towrite the discrete diffusion equation as in (5.30) thatwewrite down
again

∂c

∂t
(t) = −D(c) · ∂F

∂c
(c) ,
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where the free energy function and thedissipativematrix take the explicit forms
given by (5.26) and (5.35), respectively. The method uses the concept of mu-
tually orthogonal sets of discretization basis functions δμ(r) and continuation
basis functions ψμ(r).

The total number of particles, defined as N =
∑

μ Vμcμ(t) is a dynamical
invariant of the equation (5.30). The time derivative of the discrete free energy
F (c(t)), which is given by

dF

dt
(c(t)) = −∂F

∂c
(c) ·D(c) · ∂F

∂c
(c) ≤ 0 ,

is always negative or zero, because D(c) is semi-positive definite. Therefore,
we have obtained in Eq. (5.30) a discrete version of the non-linear diffusion
equation (0.3) that captures the two essential features about conservation of
the number of particles and the Second Law (or H-theorem).

The Petrov-Galerkin method leads to a positive semi definite dissipative
matrix. This property is crucial for representing at the discrete level the H-
theorem satisfied by the original PDE (0.3). More importantly, the dissipative
matrix needs to be positive definite if thermal fluctuations are to be introduced
in the equation (as we will do in the next chapter) because, according to the
Fluctuation-Dissipation Theorem, the positive-definite covariance matrix of
the random terms is just the dissipative matrix.

The method presented for the discretization of the diffusion equation is
general, valid for regular and irregular grids, and in any dimension. Given the
linear consistency inherent in the scheme, we expect that the convergence of
the equations will be of second order with respect to the lattice spacing.

This chapter generalizes the obtention of a discrete ODE for the diffusion
starting from the continuumPDE (0.3). In Section 3.4we obtained a similar
ODE but using as basis function the finite element with support on the De-
launay triangulation. From the discussion in the Interlude it is clear that,
in order to work with arbitrary grids, the use of the conjugated finite element
δμ(r) defined in (5.12) is much better. With this idea, the proposed forms of
the discrete free energy function (5.26) and the dissipative matrix (5.35) are ex-
pected to fit better to the continuum diffusion equation (0.3).

The only approximation that we have taken is that the functional derivative
of the free energy functional hardly changes in the range of S(r, r′) defined in
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Eq. (5.7). Weplot this function in Fig. 5.2 andwe observe that if the average lat-
tice spacing is much smaller than the length scale of variation of the field, then
the approximation (5.29) will be appropriate. Of course, this argument holds
for the deterministic setting where the fields are smooth. In a stochastic setting
as set forth in the next chapter, for which, in general, the fields are extremely
irregular, the procedure should be understood not as an approximation but
rather as a definition of the discrete model itself.
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Figure 5.2: Plot of S(x, x′) in a 1D grid with length L = 10 and lattice spacing a = 0.5. The
functionS(x, x′) does not vanish only for points differing by a few (2 or 3) lattice spacings.
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6
The Bottom-Up Approach for

Discrete Diffusion with Conjugate
Finite Elements

Where the Bottom-up approach meets the Top-down approach.

6.1.6.1.6.1. IntroductionIntroductionIntroduction

In the Introduction we mentioned that the non-linear diffusion equation
(0.3)

∂c

∂t
(r, t) = ∇ ·

[
Γ(c(r, t))∇δF

δc
[c(r, t)]

]
(6.1)

can be obtained frommicroscopic principles with the technique of projection
operators. [49, 68] The basic idea of this technique is to obtain a closed dy-
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namic equation for the ensemble average concentration field

c(r, t) =

∫
dz ρ(z, t)ĉr(z) ,

where the microscopic concentration field is defined as

ĉr(z) =
∑
i

δ(r− ri) . (6.2)

Next, inChapter 5wediscretizedEq. (6.1)with aPetrov-GalerkinWeighted
Residualmethod [79] that produced a closed equation for the discrete concen-
tration field defined as

cμ(t) =

∫
dr δμ(r)c(r, t) . (6.3)

This variable can be obviously interpreted as the ensemble average

cμ(t) =

∫
dz ρ(z, t)ĉμ(z) ,

where the coarse grained variable ĉμ(z) takes the form, by using the conjugate
finite element δμ(r) defined in (5.8)

ĉμ(z) =
∑
i

δμ(ri) =
∑

ν

M δ
μν

∑
i

ψν(ri) . (6.4)

Wecould reproduce the steps leading to (6.1)made in themicroscopic deriva-
tion inRef. [68], that stars from (6.2), with (6.4) instead. The procedure (that
we do not present here) results in a dynamic equation for the averages that has
exactly the form of (5.30), with a dissipative matrix given by (2.14). However,
we are interested in fluctuations and therefore we aim at the derivation of the
FPE or the equivalent SDE when the discrete variables are given by (6.3), with
the δμ(r) basis functions given by (5.8),

δμ(r) →
∑

ν

M δ
μνψν(r) . (6.5)

Note that we already obtained in Chapter 3 the FPE for δμ(r) → ψμ(r)/Vμ,
and therefore we only have to do small modifications.
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6.2.6.2.6.2. Discrete diffusion with conjugate finite elementsDiscrete diffusion with conjugate finite elementsDiscrete diffusion with conjugate finite elements

In Chapter 2 we obtained the SDE for the discrete concentration field ĉμ(z),
with the resulti

dcμ(t) = −D̂μν(c)
∂F̂

∂cν
(c)dt+ kBT

∂D̂μν

∂cν
(c)dt+ dc̃μ(t) .

This equation has the same structure no matter the actual shape of the basis
function δμ(r). Be it δμ(r) → ψμ(r)/Vμ as we did in Chapter 3, or δμ(r) →
M δ

μνψν(r) as we defined in Chapter 5. The only things that change are the
functional form of the free energy and the dissipative matrix.

6.2.1. The free energy

The free energy can be obtained through the computation of the equilibrium
probability distribution

P eq(c) = δ

(
N −

∑
μ

Vμcμ

)
exp

{
−βF̂ (c)

}
=

∫
dz
∏

μ

δ(ĉμ(z)− cμ)ρ
eq(z) . (6.6)

Given the difficulty in computing the phase space integral and, therefore, the
free energy, in Chapter 3 we made the assumption of a big number of par-
ticles per node, so that the probability become Gaussian. In the next chapter
we will explore more general models. However, it is interesting to see what
kind of Gaussian is obtained when the discrete concentration is given by (6.4).
Because the first and second moments fix a Gaussian distribution, we need to

iHere, repeated indices are summed over.
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compute these moments for P eq(c). These moments are given by

⟨
cμ

⟩
=

1
V N
T

∫
dz cμ(z)

=
1

V N
T

∫
dz
∑
i

δμ(ri)

=
N

V N
T

∫
dz δμ(ri)

=
N

VT

∫
dri δμ(ri)

=
N

VT

= c0 ,

where we used the property (5.14). Concerning the second moment, we have

⟨
cμcν

⟩
=

∫
dz cμ(z)cν(z)

=
1

V N
T

∫
dz
∑
i

δμ(ri)
∑
j

δμ(rj)

=
N

VT

∫
dri δμ(ri)δν(ri) +

N(N − 1)
V 2
T

∫
dri δμ(ri)

∫
drj δν(rj)

= c0M
δ
μν + c20

(
1 − 1

N

)
,

where we used the definition of Mδ (5.11). In terms of central moments, for
N ≫ 1 we finally have ⟨

δcμδcν

⟩
≃ c0M

δ
μν .

Once the first and second moments of the probability distribution are ob-
tained, we may write the Gaussian equilibrium probability in the form

P eq(c) =
1
Z

exp

{
−δcT

Mψ

2c0
δc

}
,
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so that the Gaussian free energy will be quadratic in the concentration, given
by

F (GA)(c) = kBT δcT
Mψ

2c0
δc . (6.7)

This free energy is different from the free energy obtained in (4.4). This
is just a reflection of the fact that the second moments are different when the
discrete concentration field is given either by the finite elementψμ(r) or by the
conjugate finite element (6.5).

6.2.2. The dissipative matrix

The dissipative matrix is given by

Dμν(c) =
D

kBT

∫
dr∇δμ(r)∇δν(r) ⟨ĉr⟩c

=
∑
μ′ν′

M δ
μμ′

D

kBT

∫
dr∇ψμ′(r)∇ψν′(r) ⟨ĉr⟩

c M δ
ν′ν

=
∑
μ′ν′

M δ
μμ′Vμ′D̂μ′ν′Vν′M

δ
ν′ν , (6.8)

where thematrix D̂ has been defined in (2.14). Note that this matrix, obtained
by following the Bottom-up approach with the conjugate finite elements, co-
incides with the dissipative matrix obtained from the Top-down approach in
Chapter 5 (5.35). We consider now the differences between the dissipative
matrix (5.35) and the dissipative matrix obtained with the finite element based
on the Delaunay triangulation (3.12). For example, for the state-independent
dissipative matrix in (4.16)

D̂μν =
Dc0
kBT

1
VμVν

Lψ
μν ,
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by using the conjugate basis function δμ(r) in (6.5) we obtain

D =
Dc0
kBT

MδLψMδ

=
Dc0
kBT

Lδ . (6.9)

6.2.3. Thermal fluctuations

In Chapter 3 we obtained the thermal fluctuations for the discrete diffusion
equation as specified in Eq. (3.15) as

dc̃μ =
∑
e∈μ

1
Vμ

be→μ · dJ̃eμ .

By using the conjugate basis function (6.5), it is straightforward to obtain
the explicit form for the thermal fluctuations as

dc̃μ =
∑

ν

M δ
μν

∑
e∈ν

√
2kBTVeΓe(c)be→ν · dWe(t) . (6.10)

where dWe(t) is an independent increment of the Wiener process satisfying⟨
dWα

e (t)dWα′
e′ (t

′)
⟩
= δαα′δee′dt .

Note that a similar result would be obtained following the discretization
procedure explained in Chapter 5 for the stochastic partial differential equa-
tion (0.4). Recall that in the Weighted Residual procedure we multiplied the
PDE (0.3) with δμ(r) and integrated over space. If we do this for the stochastic
term∇ · J̃ in Eq. (0.5) we obtain

dc̃μ

dt
= −

∫
dr ζζζ(r, t) ·∇δμ(r)

√
2kBTΓ(c(r, t)) (6.11)

The correlations of the noises (6.11) are easily computed under the assumption
that ζζζ(r, t) is a white noise in space and time, satisfying

⟨ζζζ(r, t)ζζζ(r′, t′)⟩ = δ(r− r′)δ(t− t′) ,
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and, therefore, (6.11) has the desired covariances⟨
dc̃

dt
(t)

dc̃

dt
(t′)

⟩
= 2kBTD(c)δ(t− t′)dt .

However (6.11) involves the white noise ζζζ(r, t) and an integral over the whole
space while what we are looking for is a linear combination of a finite number
of independent Wiener processes. By using the gradient of the basis function
given in (5.34) in (6.11), and taking the same approximation for the mobility
that leads to (5.36), we obtain the following linear combination ofwhite noises

dc̃μ

dt
=
∑

ν

M δ
μν

∑
e∈ν

√
2kBTVeΓe(c)be→ν · dWe(t) ,

which is the same noise obtained in (6.10).
It is a matter of simple calculation to show that the Fluctuation-Dissipation

Theorem is fulfilled under this assumption. Let us consider for example the
state independent dissipative matrix (6.9), where Γe(c) = Γ0. The product
dc̃μdc̃ν is

dc̃μdc̃ν =
∑

μ′

M δ
μμ′

∑
e∈μ′

√
2kBTVeΓ0be→μ′ · dWe(t)

·
∑

ν′

M δ
νν′

∑
e′∈ν′

√
2kBTVe′Γ0be′→ν′ · dWe′(t) ,
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where
⟨
dWα

e (t)dWα′
e′ (t)

⟩
= δαα′δee′dt. So⟨

dc̃μdc̃ν

⟩
=
∑
μ′ν′

M δ
μμ′M δ

νν′

∑
e→μ′

∑
e′→ν′

2kBTΓ0

√
VeVe′δee′dt

=
∑
μ′ν′

M δ
μμ′M δ

νν′2kBTΓ0dt
∑
e∈μ′ν′

Vebe→μ′ · be→ν′

=
∑
μ′ν′

M δ
μμ′ M δ

νν′2kBTΓ0dtL
ψ
μ′ν′

= 2kBTΓ0dt
∑
μ′ν′

M δ
μμ′L

ψ
μ′ν′M

δ
ν′ν

= 2kBTΓ0dtL
δ
μν

= 2kBTDμνdt ,

and the noise (6.10) satisfies the FDT, as desired.
For future references, let us compute the form of the noise in a 1D grid with

constant mobility (Γe(c) = Γ0), which is

dc̃μ(t) =
√

2Dc0
∑

ν

M δ
μν

(
dW r

ν (t)√
xν+1 − xν

− dW l
ν(t)√

xν − xν−1

)
,

where l is referred to the left element of node ν and r refers to the right element
of node ν.

6.3.6.3.6.3. SummarySummarySummary

In Chapter 3 we have obtained the SDE (0.10) by using finite elements with
support on the Delaunay triangulation, ψμ(r). In the Interlude we have
proposed a conjugate finite element to discretize not only regular but irregu-
lar meshes. We have found that on arbitrary grids the use of conjugate finite
elements like (6.5) produces a discrete Laplacian which is more accurate than
the use of theψμ(r) finite elements. With this idea, following the same scheme
that allows us to obtain a discrete diffusion equation in Chapter 3, we have
started again from the general expressions for the free energy and the dissipa-
tive matrix in Chapter 2. By using the conjugate finite elements, we have
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obtained different expression for the free energy (given for example by (6.7))
and the dissipative matrix (for example, (6.9)).

We have obtained an important message from the explicit expression of the
dissipativematrix (6.8). Thismatrix is exactly the same thatwehave alreadyob-
tained in Chapter 5 (see Eq. (3.12)). Again, this result allows one to connect
the microscopically derived SDE for the discrete concentration field (Bottom-
up approach, Eq. (0.10)), with the continuum equation (0.3) (Top-down ap-
proach). Therefore, the Top-down approach and the Bottom-up approach
lead to the samedeterministic equation, and the procedure explained inChap-
ter 5 to discretize a continuum equation like (0.3) is sounded. In this chapter
we have followed both procedures and we conclude that they lead to the same
expression for the noise terms.

Wehaveobtained that theBottom-upapproach and theTop-downapproach
give the same discrete stochastic diffusion equation. This is one of themain re-
sult of this dissertation. The two levels of description (the continuum level and
the microscopic level) are connected at a mesoscopic level of description. This
mesoscopic level is characterized by the definition of the discrete concentration
field as relevant variable, given by

ĉμ(z) =
∑
i

δμ(ri) .

The discrete concentration field is written in terms of a (conjugate) finite ele-
ment based on the Delaunay triangulation. The discretization procedure lead
to a well behaved discrete evolution equation for the concentration field that
fulfills the Fluctuation-Dissipation Theorem and the existence of a Second
Law.
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7
Discrete Diffusion with Conjugate

Finite Elements. Models and
Numerical Results

Where we propose free energy models and a dissipative matrix
model and we perform computer simulations.

7.1.7.1.7.1. IntroductionIntroductionIntroduction

In Chapter 6 we have reproduced Chapter 3 with the conjugate finite el-
ement basis functions δμ(r) →

∑
ν M

δ
μνψν(r) instead of the finite element

basis functions δμ(r) → 1
Vμ

ψμ(r). The generic form of the blocks that enter
into the SDE for the discrete diffusion have been already obtained in Chap-
ter 2. We have obtained in Chapter 6 particular expressions for the free
energy and the dissipative matrix. The dissipative matrix, for example, coin-
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cides with the one obtained in the Top-down approach (Chapter 5). In this
way, the Top-down formulation for the free energy function (through the free
energy functional) and the dissipative matrix given in Chapter 5 is compat-
ible with the Theory of Coarse-Graining. Therefore, the addition of thermal
fluctuations to the deterministic PDE for diffusion (Eq. (0.3)) in order to ob-
tain the SDE (0.4) is straightforward. InChapter 6, in fact, we have obtained
explicit expression for the noise term of the SDE.

In this chapter, we will propose particular models for both the free energy
and the dissipative matrix appearing in the discrete diffusion equation (0.10).
In Chapter 5we have defined the free energy function as the evaluation of the
free energy functional at the interpolated concentration field. In this chapter
we propose several different free energy functionals and their corresponding
free energy functions. These models go beyond the non-interacting Brow-
nian system described by Gaussian statistics. We will also propose a model
for the dissipative matrix. The noise term can be obtained directly with the
Fluctuation-Dissipation Theorem from the specific model of the dissipative
matrix.

The formulation of the discrete-in-space forms for the free energy and the
dissipativematrix is a first step towards the simulation the SDE (0.10) in a com-
puter. Thenumerical simulation also require a discretization-in-time. Oneob-
jective of this chapter is to present a good time integration algorithm to com-
pute efficiently the evolution of the discrete concentration field for a given free
energy function and a dissipative matrix. Several “good” time discretization
schemes for stochastic differential equations have been studied recently. [80,
81] Here, by “good” we understand integrators accurate enough and in agree-
ment with the Fluctuation-Dissipation Theorem. Of course, such a good in-
tegrator should allow one to obtain both dynamic and static properties in a
reasonable computational time, that is, with a sufficiently large time step. In
Chapter 4 we have proposed an explicit strong Predictor Corrector Euler
scheme [71] with a strong convergence order of 0.5. However, explicit algo-
rithms are known to require small time steps in order to avoid instabilities in
stiff equations. [82] In addition to this, by increasing the resolution on a dis-
crete diffusion problem we need to use smaller time steps. For that reason,
in this chapter we will propose a semi-implicit algorithm that allows one to
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use larger time steps, ensuring the stability of the dynamics even for big time
steps. [80] Fully implicit algorithms treats all the time integration implicitly,
while semi-implicit algorithms split the integrator into two pieces: a first one
treated implicitly for stability reasons and a second one that can be treated ex-
plicitly.

7.2.7.2.7.2. Free energy modelsFree energy modelsFree energy models

One of the basic objects appearing in the dynamic equation (5.30) is the free en-
ergy function F (c). This function is obtained from the free energy functional
through the definition in Eq. (5.26). In this section, we first consider physi-
cally motivated free energy functionals and their polynomial approximations
and, afterwards, we present the corresponding free energy functions.

7.2.1. Physically motivated free energy functionals

Twophysicallymotivated free energy functionals are given by the ideal gas and
the van der Waals models. On one hand, the ideal gas free energy functional
can be computed explicitly because there are no interactions between particles.
The free energy functional of the ideal gas is

F (ID)[c(r)] = kBT

∫
dr c(r)

[
ln

c(r)

c0
− 1
]
,

Here, kB is the Boltzmann’s constant, T is the temperature, and c0 is the equi-
librium concentration.

The van der Waals free energy functional is useful to describe colloidal sus-
pensions that may display a liquid-vapor phase separation with a liquid phase
and a vapor phase.[83] It is usually derived for a fluid system interacting with a
pair-wise potential that can be separated into a short range repulsive hard core
and a long range attractive part φ(r) < 0, but the extension to interacting
Brownian particles is trivial. The van der Waals free energy functional is

F (vdW)[c(r)] =

∫
dr

[
f0(c(r), β) +

1
2

∫
dr′c(r)φ(r− r′)c(r′)

]
, (7.1)
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where the attractive part φ(r − r′) of the potential of interaction between
Brownian particles is treated in mean field and the short range part of the po-
tential produces the local contribution f0(c(r), β). Under the assumption
that the density field hardly varies in the range of the attractive potential, we
may expand c(r′) = c (r) + (r′ − r)∇c(r) + . . .with the result

1
2

∫
drdr′ c (r)φ(r− r′)c(r′) =− a

∫
dr c (r)2 + ω2

∫
dr (∇c (r))2 ,

where we have defined

a ≜ 1
2
φ̃(0) = − 1

2

∫
drφ(r) ,

ω2 ≜
1
2
φ̃
′′
(0) = − 1

2

∫
dr r2φ(r) .

Note that a > 0 and ω2 > 0 for purely attractive potentials φ (r). With these
definitions, the free energy functional (7.1) becomes

F (vdW)[c (r)] =

∫
dr
[
f(c (r) , β) + ω2(∇c (r))2

]
,

where f(c (r) , β) = f0(c (r) , β) − ac (r)2. For a van der Waals gas, the free
energy density is given by

f(c, T ) = kBTc

[
ln

(
c

c0(1 − cb)

)
− 1
]
− ac2 .

The constants a, b are the attraction parameter and the excluded volume, re-
spectively.

The van derWaals gas is characterized by two critical parameters, Tc and cc,
obtained through the first and second derivatives of the pressure, which leads
to

kBTc =
8a
27b

,

cc =
1
3b

.
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7.2.2. Polynomial free energy functionals

While we could use the above models directly, in the present chapter we are
interested in the numerical aspects of the problem. For this reason, we prefer
toworkwith free energymodels that are polynomials of the concentration field.
For this kind of models, the discrete free energy F (c) defined in (5.26) can be
computed exactly.

By expanding the ideal gas functional up to second order in the deviations
δc(r) = c(r)− c0 one obtains the Gaussian free energy functional

F (GA)[c(r)] = F [c0] +

∫
dr

δF
δc(r)

δc(r)

+
1
2

∫
drdr′

δ2F
δc(r)δc(r′)

δc(r)δc(r′)

= F [c0] +
1
2

∫
drdr′

δ2F
δc(r)δc(r′)

δc(r)δc(r′) .

The derivatives of the free energy functional of the ideal gas are, respectively,

δF
δc(r)

= kBT ln
c(r)

c0
,

δ2F
δc(r)δc(r′)

= kBT
1

c(r)
δ(r− r′) .

Therefore, the resulting Gaussian free energy functional will be

F (GA)[c(r)] =
kBT

2c0

∫
dr δc2(r) , (7.2)

where we omit the constant termF [c0]without losing generality.
The van der Waals free energy can also be approximated by neglecting high

order terms in an expansion around a constant concentration field, leading to
the Ginzburg-Landau functional for the free energy. If we put c(r) = c0 +
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δc(r)we may expand to fourth order in δc(r) as

F (vdW)[c(r)] =

∫
dr

{
a0 + bδc(r) +

1
2
[
f ′′
0 (c, β)|c0 − 2a

]
δc(r)2

+
1
3!

f ′′′
0 (c, β)|c0 δc(r)3

+
1
4!
f ′′′′
0 (c, β)

∣∣∣∣
c0

δc(r)4 + ω2(∇δc(r))2
}

.

Any constant term is irrelevant in the free energy so that we can omit the
term a0. The linear term in δc(r) disappears because of the normalization of
the concentration field that ensures

∫
dr δc(r) = 0. At the critical concentra-

tion the derivatives of f0 are

f
′

0 = kBT

(
ln

(
bc0
2

)
+

1
2

)
,

f
′′

0 = kBT
27
4
b ,

f
′′′

0 = 0 ,

f
′′′′

0 = kBT
729
8

b3 ,

so the free energy functional is obtained as

F (GL)[φ(r)] = kBT

∫
dr

{
r0
2

φ(r)2 +
K

2
(∇φ(r))2 +

λ
4

φ(r)4
}

, (7.3)

where φ(r) = δc(r)/c0 is the relative fluctuation on the concentration and
we defined the following coefficients

r0 ≜
3
4b

(
1 − Tc

T

)
,

K ≜ 3
4b

σ2Tc

T
,

λ ≜ 3
16b

,

σ2 ≜ ω2

a
. (7.4)
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These coefficients depend on the temperature but are assumed to be inde-
pendent on the concentration field. Here, b is themolecular volume of the van
derWaals model, Tc the critical temperature and σ a length scale related to the
range of the attractive part of the microscopic potential.

The approximation (7.3) to the vanderWaals free energy functional is known
as theGinzburg-Landau free energy functional. In a similar way to the van der
Waals model, the GLmodel shows phase separation when T < Tc giving con-
centration fields that have two distinct values in different regions of space. In
the present chapter, though, we will restrict ourselves to supercritical temper-
atures T > Tc in such a way that there is no phase transition. Note that the
statistics required in subcritical simulations needs to sample the diffusion of
the phase separated droplets, which is usually very slow. [20] In addition, for
supercritical temperatures translation invariance leads to simple forms for the
structure factor, which will be the basic observable to be considered in Chap-
ter 7.

We will also consider two analytically solvable models. The first one is a
Gaussianmodel with surface tension (referred as (GA+σ)) which is obtained
by setting λ = 0 in the GL model (7.3):

F (GA+σ)[c(r)] = kBT

∫
dr

{
r0
2

φ(r)2 +
K

2
(∇φ(r))2

}
. (7.5)

The secondmodel will be a purely Gaussianmodel derived from (7.3), with
both λ = 0 andK = 0, i.e,

F (GA)[c(r)] = kBT

∫
dr
{r0

2
φ(r)2

}
. (7.6)

Note that (7.6) has the ideal gas form (7.2), with r0 = c0.
It is obvious that theGinzburg-Landau free energy functional is only a good

approximation to the van der Waals free energy functional near the critical
point for which the concentration profiles are close to the homogeneous pro-
file. Nevertheless, the GL free energy already captures the essentials of a phase
transition and non-Gaussian behavior, and we will restrict ourselves to this
simpler polynomial model. Note that the van derWaals model does not allow
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to have values of the concentration larger than 1/b (one molecule per molec-
ular volume) nor smaller than zero. On the other hand, the GL model allows
for unbounded values of φ(r). Also, if the temperature is much larger than
the critical one, the GL model produces a Gaussian model like (7.2).

7.2.3. Free energy functions

In this subsection, we construct free energy functions corresponding to the free
energy functionalsF (GA)[c(r)] in (7.6),F (GA+σ)[c(r)] in (7.5) andF (GL)[c(r)]
in (7.3). The prescription (5.26) tells us how to define the free energy function.
We only need to substitute the field φ(r) by the interpolated field

φ(r) =
∑

μ

ψμ(r)φμ . (7.7)

7.2.4. Gaussian free energy function

TheGaussian discrete free energy functionF (GA)(c) is obtained from the def-
inition (7.6) for λ = K = 0. By inserting (7.7) into themodel (7.6) we obtain
the corresponding free energy function

F (GA)(c) = kBT
r0
2

φTMψφ . (7.8)

This quadratic free energy produces an equilibrium probability which is
Gaussian and for which the second moments can be explicitly computed (see
Chapter 6), with the result

⟨
δcμδcν

⟩
= c0

(
M δ

μν −
1

V D
T

)
≈ c0M

δ
μν ,

where we used that r0 = c0 and we have neglected a term that vanishes in the
thermodynamic limit.
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For future reference, let us compute the derivative of the free energy func-
tion (7.8)

∂F (GA)

∂φμ

(c) =
∑

ν

kBTr0M
ψ
μνφν .

where the repeated index summation convention has been adopted here and
in what follows.

7.2.5. Gaussian with surface tension

Let us look at the result of evaluating the surface tension contribution at the
interpolated field (7.7)∫

dr (∇φ (r))2 =

∫
dr∇φ (r) · ∇φ (r)

=

∫
drφμ∇ψμ (r) · ∇ψν (r)φν

= φμL
ψ
μνφν ,

whereLψ is the stiffness matrix given by Eq. (5.21).
The corresponding free energy function is then

F (GA+σ)(φ) = kBT

{
r0
2

φTMψφ +
K

2
φTLψφ

}
. (7.9)

whose derivative is

∂F (GA+σ)

∂φμ

=
∑

ν

kBT
{
r0M

ψ
μνφν +KLψ

μνφν

}
.

7.2.6. Ginzburg-Landau

The Ginzburg-Landau free energy functional is given by Eq. (7.3) as

F (GL)[c(r)] = kBT

∫
dr

{
r0
2

φ(r)2 +
K

2
(∇φ(r))2 +

λ
4

φ(r)4
}

.
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The quartic part leads to the following term in the free energy function

F (4)(φ) =
∫

drφ(r)4 = φμφμ′φνφν′

∫
drψμ(r)ψμ′(r)ψν(r)ψν′(r)

= φμφμ′φνφν′M
ψ
μμ′νν′ .

where the last equality defines the fourth point mass tensor. Therefore the
discrete free energy will be given by

F (GL)(φ) = kBT

{
r0
2

φTMψφ +
K

2
φTLψφ +

λ
4
F (4)(φ)

}
. (7.10)

Due to the form of ψμ(r) (see Fig. 5.1) only if nodes {μ, μ′, ν, ν′} are neigh-
bors the integranddoesnot vanish. Otherwise, the integrandwill be identically
zero.

The form of the term F (4)(φ) in 1D is as follows. For a given μ value, other
indices should be either μ, μ + 1 or μ − 1. That is, the sum over μ, μ′, ν and ν′

will simplify to

φμφμ′φνφν′M
ψ
μμ′νν′ =

∑
μ

[
φ4

μM
ψ
μμμμ

+ 3φ3
μφμ−1M

ψ
μμμ(μ−1) + 3φ2

μφ
2
μ−1M

ψ
μμ(μ−1)(μ−1) + φμφ

3
μ−1M

ψ
μ(μ−1)(μ−1)(μ−1)

+ 3φ3
μφμ+1M

ψ
μμμ(μ+1) + 3φ2

μφ
2
μ+1M

ψ
μμ(μ+1)(μ+1) + φμφ

3
μ+1M

ψ
μ(μ+1)(μ+1)(μ+1) ] .

where the objects Mψ
μμ′νν′ can be computed explicitly. These objects are, re-
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spectively,

Mψ
μμμμ =

1
5
(xμ+1 − xμ−1) ,

Mψ
μμμ(μ−1) =

1
20

(xμ − xμ−1) ,

Mψ
μμ(μ−1)(μ−1) =

1
30

(xμ − xμ−1) ,

Mψ
μ(μ−1)(μ−1)(μ−1) =

1
20

(xμ − xμ−1) ,

Mψ
μμμ(μ+1) =

1
20

(xμ+1 − xμ) ,

Mψ
μμ(μ+1)(μ+1) =

1
30

(xμ+1 − xμ) ,

Mψ
μ(μ+1)(μ+1)(μ+1) =

1
20

(xμ+1 − xμ) ,

so that

F (4)
μ (φ) =

1
20

(
4φ4

μ + 3φ3
μφμ+1 + 2φ2

μφ
2
μ+1 + φμφ

3
μ+1

)
V r

μ

+
1
20

(
4φ4

μ + 3φ3
μφμ−1 + 2φ2

μφ
2
μ−1 + φμφ

3
μ−1

)
V l

μ ,

where the volumes of the sub-elements are V l
μ = xμ −xμ−1 and V r

μ = xμ+1−
xμ.

The derivative of this function with respect to φμ will be

∂F (GL)

∂φμ

=
∑

ν

kBT
{
r0Mμνφν +KLμνφν + λF (3)(φμ,φμ±1)

}
,

where

F (3)(φμ,φμ±1) ≜
1
20

(
4φ3

μ + 3φ2
μφμ+1 + 2φ1

μφ
2
μ+1 + φ3

μ+1

)
V r

μ

+
1
20

(
4φ3

μ + 3φ2
μφμ−1 + 2φ1

μφ
2
μ−1 + φ3

μ−1

)
V l

μ .
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7.3.7.3.7.3. Dissipative matrix modelDissipative matrix modelDissipative matrix model

In this chapter, we assume that the mobility Γ(c) = Dc0
kBT

is a constant, where
D is a constant diffusion coefficient and c0 is the equilibrium value of the con-
centration field. In this case, the dissipative matrix (5.33) is simply

Dμν(c) =
Dc0
kBT

∫
dr∇δμ(r)∇δν(r) =

Dc0
kBT

Lδ
μν

where the stiffness matrix Lδ
μν is given by (5.21) as

Lδ
μν =

∫
dr∇δμ(r)∇δν(r).

7.4.7.4.7.4. Time discretizationTime discretizationTime discretization

Inspired by the discussion in the introduction of this chapter, we propose here
a second-orderweakly accurate implicit trapezoidal predictor corrector scheme
[80]. For its derivation, let us first consider the following SDE

dx

dt
= a(x) +KW(t)

= L(x)x+ g(x) +KW(t) , (7.11)

where we split the drift term a(x) into a what we call a diffusive term L(x)x
(linear in x), and an advective term g(x). Eq. (7.11) is a prototypical exam-
ple of the fluctuating Navier-Stokes equation, where L is proportional to the
Laplacian and K proportional to the divergence. Here, W(t) is a collection
of independent Wiener processes. The semi-implicit trapezoidal predictor-
corrector scheme used in Ref. [84] treats the diffusive part implicitly and the
advective part explicitly. Formally, the updated step of x from ti (referred as
xn = x(ti) = x(nΔt)) to ti + Δt (referred as xn+1 = x((n+ 1)Δt)) is given
by a predictor step

xn+1 = xn +
Δt
2
Ln
(
xn + xn+1)+ Δtgn +

√
ΔtKWn ,
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and a corrector step

xn+1 = xn +
Δt
2
Ln
(
xn + xn+1)+ Δt

2

(
L

n+1 − Ln
)
xn+1

+
Δt
2
(
gn+1 − gn

)
+
√

ΔtKWn ,

whereWn = W(nΔt) and we use the following notation

Ln ≡ L(xn) , gn ≡ g(xn) ,

L
n+1 ≡ L(xn+1) , gn+1 ≡ g(xn+1) .

This scheme has the nice property of being unconditionally stable for any
time step for lineal equations, giving the same static covariance independent of
the time step size. [80] Therefore temporal integration errors in static covari-
ances are eliminated by this scheme. However, it should be kept in mind that
the dynamics of the fluctuations is not correctly reproduced for large time step
sizes. In addition to this, if the advective term is not zero, some temporal dis-
cretization error will be observed both in static and dynamic properties. [80]

For the sake of simplicity, let us rearrange the scheme into the following
form(

111 − Δt
2
Ln

)
xn+1 =

(
111 +

Δt
2
Ln

)
xn + Δtgn +

√
ΔtKWn ,(

111 − Δt
2
Ln

)
xn+1 =

(
111 +

Δt
2
Ln

)
xn +

Δt
2

(
L

n+1 − Ln
)
xn+1

+
Δt
2
(
gn+1 + gn

)
+
√

ΔtKWn .

Now, we have to particularize this scheme to the specific SDE in Chap-
ter 6. In the assumption of a constant mobility the dissipative matrix is writ-
ten as

D = Γ0M
δLψMδ .

The noise term has the explicit form

KWn =
√

2Dc0M
δNψWn ,
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where, for example in 1D, the matrixNψ is written as

Nψ =



0 (V r
1 )

−1/2 0 0 . . . −(V l
1 )

−1/2

−(V l
2 )

−1/2 0 (V r
2 )

−1/2 0 . . . 0
0 −(V l

3 )
−1/2 0 (V r

3 )
−1/2 . . . 0

...
...

...
... . . . ...

(V r
M )−1/2 0 0 0 . . . 0


,

and the vector Wn is a collection of M independent white-noise processes.
Note that for periodic systems in 1D the number of elements (which are seg-
ments between the nodes) coincides with the number of nodes. Therefore,
the number of Wiener processes is the same as the number of nodes. This is
no longer true in higher dimensions.

The explicit integrator to be used for each free energy model and its resolu-
tion will be obtained in the next subsections.

7.4.1. Analytically solvable models

The purely Gaussian model given by (7.8) and the Gaussian with surface ten-
sion term (7.9) allow for an analytically solution the discrete diffusion equa-
tion. Both models have as the resulting SDE

dc

dt
= −D

c0

(
r0M

δLψ +KMδLψMδLψ
)
c+

√
2Dc0M

δNψW

≡ L(c)c+ g(c) +KW ,

with the only difference of beingK = 0 for the purely Gaussian model (7.8).
Here, we may identify the following terms

L(c) = −D

c0

(
r0M

δLψ +KMδLψMδLψ
)
,

g(c) = 0 ,

136



so that the advective term is equal to zero. In that sense, the scheme is fully
implicit and the predictor step can be neglected. The final scheme is written as(
111 +

DΔt
2c0

(
r0M

δLψ +KMδLψMδLψ
))

cn+1

=

(
111 − DΔt

2c0

(
r0M

δLψ +KMδLψMδLψ
))

cn+
√

2Dc0ΔtM
δNψWn .

If we multiply byMψ on both sides we have(
Mψ +

DΔt
2c0

(
r0L

ψ +KLψMδLψ
))

cn+1

=

(
Mψ − DΔt

2c0

(
r0L

ψ +KLψMδLψ
))

cn +
√

2Dc0ΔtN
ψWn ,

which can be written in a compact form as

Tn+1cn+1 = Tncn +WnWn , (7.12)

where we define

Tn+1 ≜ Mψ +
DΔt
2c0

(
r0L

ψ +KLψMδLψ
)
,

Tn ≜ Mψ − DΔt
2c0

(
r0L

ψ +KLψMδLψ
)
,

Wn ≜
√

2Dc0ΔtN
ψ . (7.13)

Note that if we set K = 0 in (7.13) one recovers the pure Gaussian model.
Two strategies can be followed to solve efficiently the scheme (7.12). The first
one assumes a regular grid and uses a Fast Fourier Transform (FFT) to decou-
ple Eqs. (7.12). The other one is valid for irregular grids, where we avoid the
multiplication of dense matrix by backward substitutions.

In the first case, we seek for a transformation in the original matricial SODE
to a diagonal system, leading to a set of uncoupled SODE trivial to solve for
each cμ value. Fortunately, theM vectorsv(m) = {ei 2π

L
mxμ , μ = 0, . . . ,M−
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1} for m = 0, . . . ,M − 1 diagonalize simultaneously the three matrices in-
volved in a 1D regular lattice of spacing a.

Let us begin with a base function u1(m)with ν component

u1
ν(m) = cos

(
2πmxν

L

)
,

Note that∑
ν

Mψ
μν cos

(
2πm
L

xν

)
=

a

6

[
cos

(
2πm
L

(xμ−1)

)
+ 4 cos

(
2πm
L

xμ

)
+ cos

(
2πm
L

(xμ+1)

)]
=

a

6

[
cos

(
2πm
L

(xμ − a)

)
+ 4 cos

(
2πm
L

xμ

)
+ cos

(
2πm
L

(xμ + a)

)]
=

a

3

[
2 + cos

(
2πma

L

)]
cos

(
2πm
L

xμ

)
that shows that the bas function is indeed an eigenvector

Mψu1(m) = m̂(m)u1(m)

with eigenvalues

m̂(m) =
a

3

[
2 + cos

(
2πma

L

)]
.

Equally, we define a base function u2(m)with ν component

u2
ν(m) = sin

(
2πmxν

L

)
,

so that∑
ν

Mψ
μν sin

(
2πm
L

xν

)
=

a

6

[
sin

(
2πm
L

(xμ−1)

)
+ 4 sin

(
2πm
L

xμ

)
+ sin

(
2πm
L

(xμ+1)

)]
=

a

3

[
2+ cos

(
2πma

L

)]
sin

(
2πm
L

xμ

)
,
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so

Mψu2(m) = m̂(m)u2(m) .

Hence, the linear combination

u(m) ≜ u1(m) + iu2(m) = exp

{
i
2π
L
mx

}
is an eigenvector ofMψ with eigenvalue m̂(m).

Note that both the stiffness matrix Lψ and the noise matrixNψ are also di-
agonalized by the same eigenvector u(m)with the eigenvalues given by

l̂(m) =
2
a

[
1 − cos

(
2πma

L

)]
,

n̂(m) =
2√
a
sin
(πma

L

)
≡
√

l̂ .

These expressions allow us to define a set of equations analogous to (7.12)-
(7.13) in Fourier space as

T̂ n+1(m) = m̂(m) +
DΔt
2c0

(
r0l̂(m) +K

l̂(m)2

m̂(m)

)
,

T̂ n(m) = m̂(m)− DΔt
2c0

(
r0l̂(m) +K

l̂(m)2

m̂(m)

)
,

Ŵ n(m) =
√

2Dc0Δtn̂(m) ,

so that the SDE (7.12) turns into

ĉn+1(m) =
T̂ n(m)

T̂ n+1(m)
ĉn +

Ŵ n(m)

T̂ n+1(m)
Ŵn . (7.14)

Being written in this form, note that the obtained SDEwill be stable only if
it fulfills ∣∣∣∣∣ T̂ n(m)

T̂ n+1(m)

∣∣∣∣∣ < 1 .
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That is, if∣∣∣∣∣m̂(m) +
DΔt
2c0

(
r0l̂(m) +K

l̂(m)2

m̂(m)

)∣∣∣∣∣
<

∣∣∣∣∣m̂(m)− DΔt
2c0

(
r0l̂(m) +K

l̂(m)2

m̂(m)

)∣∣∣∣∣ .
This inequality implies, necessarily,

m̂(m) > 0 and
DΔt
2c0

(
r0l̂(m) +K

l̂(m)2

m̂(m)

)
> 0 ,

or

m̂(m) < 0 and
DΔt
2c0

(
r0l̂(m) +K

l̂(m)2

m̂(m)

)
< 0 .

Both m̂(m) and l̂(m) are greater than zero for anym value, so thatwe finally
have

DΔt
2c0

(
r0l̂(m) +K

l̂(m)2

m̂(m)

)
> 0 ,

ensuring the stability of the scheme for any Δt > 0, provided that r0 and K
are positives. We shall conclude then that the scheme is unconditionally stable
for regular grids.

The FFT procedure, obtained for regular grids that diagonalize thematrices
Mψ, Lψ andNψ, cannot be used for irregular lattices. BothTn

K andTn+1
K are

densematrices due to the productLψMδLψ, so that the system (7.12) becomes
computationally expensive if the number of nodes is large. However, consider
Tn on the right hand side of (7.12). Instead of performing the dense matrix
multiplication LψMδLψ, which implies operations of order O(M 2), we will
prefer to solve tridiagonal systems as follows. Consider the initial matrix mul-
tiplication

LψMδLψcn = LψMδcn1 ,
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where we define cn1 ≜ Lψcn. Being Lψ a tridiagonal matrix, the computa-
tion of cn1 is fast. Then, instead of computing the product cn2 = Mδcn1 , we
solve the equivalent system of equationsMψcn2 = cn1 , with the advantage that
Mψ is tridiagonal. With a backward substitution the obtention of cn2 is, again,
fast. As a result, there are only O(M) operations, which is much faster than
computing the multiplication with the dense matrix.

Unfortunately, on the left hand side of (7.12) we cannot proceed in the same
way withTn+1, because cn+1 is the variable we want to obtain. However, be-
causeTn+1

K is a Hermitian positive-definite matrix, it can be decomposed with
a Cholesky factorization, which allow us to solve Eq. (7.12) efficiently.

The final SDE can be solved efficiently for both regular and irregular lat-
tices. Being anallytically solvable, we use the Gaussian model and the Gaus-
sian with surface tension term model as benchmarks to test the accuracy and
convergence of the proposed integrator. We will obtain static and dynamic
properties for both models, and we will move to the non-analytical model of
Gizburg-Landau to extract interesenting observables.

7.4.2. The Ginzburg-Landau model

The Ginzburg-Landau model is defined by the free energy (7.10), which gives
the following SDE
dc

dt
= −D

c0

(
r0M

δLψ +KMδLψMδLψ
)
c−DλMδLψMδc′

+
√

2Dc0M
δNψW

≡ L(c)c+ g(c) +KW ,

where we identify

L(c) = −D

c0

(
r0M

δLψ +KMδLψMδLψ
)
,

g(c) = −DλMδLψMδc′ ,

c′μ =
1
20

(
4φ3

μ + 3φ2
μφμ+1 + 2φ1

μφ
2
μ+1 + φ3

μ+1

)
V r

μ

+
1
20

(
4φ3

μ + 3φ2
μφμ−1 + 2φ1

μφ
2
μ−1 + φ3

μ−1

)
V l

μ .
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Now g(c) ̸= 0, and we will need both the predictor and the corrector step in
the algorithm. The semi-implicit trapezoidal scheme is given by

Tn+1
K cn+1 = Tn

Kc
n − ΔtDλLψMδc′

n
+
√

2Dc0ΔtN
ψWn ,

Tn+1
K cn+1 = Tn

Kc
n −DλLψMδ

(
c′n + c′n+1

2

)
+
√

2Dc0ΔtN
ψWn .

(7.15)

As we did before, regular lattices can be solved via FFT efficiently, where we
should consider the FFT of the explicit term ĉ′ also. For irregular lattices we
cannot uncouple the SODE, but we may use the specialized backward substi-
tution already explained.

To sum up, we obtain a SODE (coupled or uncoupled depending on the
regularity of the grid) that can be solved efficiently.

7.5.7.5.7.5. ObservablesObservablesObservables

In this section we discuss the selection of good observables to monitor the dy-
namics. Gaussian models are analytically solvable and we present in this sec-
tion analytic results for the static and dynamic structure factors for the Gaus-
sian models in both continuum and discrete settings. The main result is that
the numerical algorithm closely matches not only the infinite resolution limit,
as it should, but also the predictions of the continuum theory for the fluctu-
ations in finite resolution discrete lattices. In this way, we may compare the-
oretical and simulation results in order to test the goodness of our algorithm.
These observables will also be considered for irregular grids and the Ginzburg-
Landau model.

7.5.1. Static structure factor from the continuum

The equilibrium correlation of the fluctuations of the concentration is trans-
lationally invariant, which implies

⟨δc(r, 0)δc(r′, 0)⟩ = S(r− r′) , (7.16)
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for some function S(r). We may obtain the Fourier transform of S(r) as fol-
lows. The right hand side of (7.16)

1
V

∫
V
dr

1
V ′

∫
V ′
dr′ e−ik·re−ik′·r′S(r− r′)

=
1
V

∫
V
dr

1
V ′

∫
V ′
dr′ e−ik·(r−r′)e−i(k′+k)·r′S(r− r′)

=
1
V ′

∫
V ′
dr′ e−i(k′+k)·r′ 1

V

∫
V
dr′′ e−ik·r′′S(r′′)

= δk,−k′S(k) .

Respectively, the left hand side of (7.16) in Fourier space is

1
V

∫
V
dr

1
V ′

∫
V ′
dr′ e−ik·re−ik′·r′ ⟨δc(r, 0)δc(r′, 0)⟩

=
∑
k′′k′′′

1
V

∫
V
dr

1
V ′

∫
V ′
dr′ e−ik·re−ik′·r′eik

′′·reik
′′′·r′ ⟨δc(k′′, 0)δc(k′′′, 0)⟩

=
∑
k′′k′′′

δk′′kδk′′′k′ ⟨δc(k′′, 0)δc(k′′′, 0)⟩

= ⟨δc(k, 0)δc(k′, 0)⟩ .

This results give an equivalent relation in the Fourier space from a transla-
tional invariant in the real space. The Fourier transform of S(r)

S(k) ≜
∫

drS(r)e−ik·r

= ⟨δc(k, 0)δc(−k, 0)⟩ ,

is known as structure factor.
Note thatS(k) = c20Sφ(k), withSφ(k) = ⟨φ(k, 0)φ(−k, 0)⟩, andφ(r) is

the relative fluctuations of the concentration field. The static structure factor
is the Fourier transform of the second moments of the functional probabil-
ity P [c] ∼ exp{− 1

kBT
F [c]}. For a Gaussian probability we may compute
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the secondmoments in a straightforwardmanner. The probability functional
with the modelFGA+σ[c] given in (7.5) can be written in operator notation as

P eq[c] ∝ exp

{
− 1

2

∫
dr

∫
dr′ φ(r)L(r, r′)φ(r′)

}
,

where we have introduced the kernel

L(r, r′) = r0δ(r− r′)−K∇2δ(r− r′) .

The covariance of the Gaussian probability functional is given by

⟨φ(r)φ(r′)⟩ = L−1(r, r′) ,

whereL−1(r, r′) is the inverse of the operatorL(r, r′), satisfying∫
dr′ L(r, r′)L−1(r′, r′′) = δ(r− r′′) .

By inserting the form of the operator L(r, r′) one recognizes that the inverse
operator is just the Green’s functionL−1(r, r′) = Sφ(r− r′), which satisfies

r0Sφ(r− r′)−K∇2Sφ(r− r′) = δ(r− r′) . (7.17)

The solution of this equation is obtained by going to Fourier space. We intro-
duce the Fourier transform

Ŝφ(k) =

∫
dr e−ik·rSφ(r) ,

Sφ(r) =

∫
dk

(2π)D
eik·rŜφ(k) .

In Fourier space, (7.17) becomes

r0Ŝφ(k) +Kk2Ŝφ(k) = 1 ,

which gives

Ŝφ(k) =
1
r0

1
1 + k2/k2

0
, (7.18)
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where k2
0 = r0/K . Therefore, the Green function is

Sφ(r) =

∫
dDk

(2π)D
eik·r

1
r0

1
1 + k2/k2

0
,

and the covariance, or correlation function, is given by

⟨φ(r)φ(r′)⟩ =
∫

dDk

(2π)D
eik·(r−r′) 1

r0

1
1 + k2/k2

0
.

ForD = 1 this correlation takes the form

⟨φ(x)φ(x′)⟩ = k0

2r0
e−k0|x−x′| .

ForD = 2 the result is

⟨φ(r)φ(r′)⟩ = k2
0

4πr0
K0(k0|r− r′|) .

whereK0(x) is a Bessel function. Finally, in 3D the result is

⟨φ(r)φ(r′)⟩ = k2
0

4πr0

e−k0|r−r′|

|r− r′|
. (7.19)

Note that the quantity ⟨φ2(r)⟩ that gives the normalized fluctuations of the
concentration field at a given point of space does not diverge in 1D but it di-
verges in 2D and 3D, a phenomenon known as the ultraviolet catastrophe. We
shall conclude that the point-wise fluctuations are unbounded in dimensions
higher than one. Any particular realization of a Gaussian field in D > 1 is
extremely rough.

Nevertheless, physical observables like the number of particles in a finite re-
gion are well behaved. From a physical point of view this quantity should be
independent of the resolution used to discretize the problem. The number of
particles in a region V is given by

NV =

∫
V

dr c(r) ,
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and the relative fluctuations are given by

φV ≜ NV − V c0
V c0

=
1
V

∫
V

drφ(r) .

The variance of this fluctuation is

⟨φ2
V ⟩ =

1
V 2

∫
V

dr

∫
V

dr′ ⟨φ(r)φ(r′)⟩ .

This quantity is finite for any finite volume but as the domain shrinks to a
point it diverges in 2D logarithmically with the size of the domain, and in 3D
inversely with the size of the domain, in agreement with (7.19).

7.5.2. Dynamic structure factor from the continuum

In this subsection we compute the dynamic structure factor for the Gaussian
model. Assume a constant mobility Γ = Dc0/kBT in (0.4) with the model
FGA+σ[c] in Eq. (7.5). The resulting SPDE is

∂tδc(r, t) = D
r0
c0

(
∇2δc(r, t)− 1

k2
0
∇2∇2δc

)
+
√

2Dc0∇ · ζζζ(r, t) (7.20)

where we have introduced k2
0 = r0/K , ζζζ(r, t) is a white noise in space and

time, this is, ⟨ζζζ(r, t)⟩ = 0, and ⟨ζζζ(r, t)ζζζ(r′, t′)⟩ = δ(r− r′)δ(t − t′). Let us
solve the SPDE (7.20) by Fourier transform

∂tδĉ(k, t) = − 1
τk

δĉ(k, t)− ik
√

2Dc0 · ζ̂ζζ(k, t) , (7.21)

where we have introduced the relaxation time

τk =

(
D

c0
r0

(
1 +

k2

k2
0

)
k2
)−1

.

The Fourier transform of a white noise is also a white noise which obeys the
properties,

⟨
ζ̂ζζ(k, t)

⟩
= 0 and

⟨
ζ̂ζζ(k, t)ζ̂ζζ(k′, t′)

⟩
= δ(k+ k′)δ(t− t′).
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The linear equation (7.21) has the explicit solution

δĉ(k, t) = δĉ(k, 0) exp
{
− t

τk

}
− ik

√
2Dc0

∫ t

0
dt′ e

t−t′
τk · ζ̂ζζ(t′) .

Bymultiplyingwith respect to the initial condition δĉ(−k, 0) and averaging
with respect to all possible equilibrium realization of the initial condition we
obtain

⟨δĉ(k, t)δĉ(−k, 0)⟩ = Sc(k) exp

{
− t

τk

}
,

where the static structure factor is given in Eq. (7.18).

7.5.3. The discrete static structure factor

The (continuum) structure factor is defined as the Fourier transform of the
static correlation function

Ŝ(k) =

∫ ∞

∞
dr ⟨δc(0)δc(r)⟩e−ikr .

Eq. (7.18) shows that

Ŝ(k) = c20Sφ(k) =
c20
r0

1
1 + k2/k2

0
. (7.22)

We introduce the Fourier series representation of the continuum concentra-
tion field

c(r, t) =
∑
k

ĉ(k, t)eik·r ,

where the sum is over all those k = 2π
L

κ, with κ ∈ Z, this is the sum is over
k = 0,± 2π

L
,± 2π

L
2, …,±∞. The Fourier coefficients are given by

ĉ(k, t) =
1
L

∫ L

0
c(r, t)e−ikrdr .
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Note that translation invariance ⟨δc(r)δc(r′)⟩ = S(r − r′) implies that

⟨δc(k)δc(k′)⟩ = 1
L

∫ L

0
dr

1
L

∫ L

0
dr′e−ikre−ik′r′⟨δc(r)δc(r′)⟩

=
1
L

∫ L

0
dr

1
L

∫ L

0
dr′e−ikre−ik′r′S(r − r′)

=
1
L

∫ L

0
dr′′

1
L

∫ L

0
dr′e−ik(r′′+r′)e−ik′r′S(r′′)

= δk,−k′S(k) ,

where we have assumed that L is sufficiently large for the following approxi-
mation to hold ∫ L

0
dr′e−ikr′ = δ(k) ,

and S(k) are the Fourier coefficients of S(r)

S(k) =
1
L

∫ L

0
dre−ikrS(r) ,

and we are abusing notation and understand δk,−k′ as the Kroenecker delta
δκ,−κ′ for the integers κ, κ′ corresponding to k = 2π

L
κ, k′ = 2π

L
κ′. The Fourier

coefficient S(k) and the Fourier transform Ŝ(k) (the structure factor) are re-
lated according to

S(k) =
1
L

∫ L

0
dre−ikrS(r) =

1
L

∫ L

0
dre−ikr

∫
dk′

2π
eik

′rŜ(k′)

=

∫
dk′Ŝ(k′)

1
L

∫ L

0

dr

2π
e−i(k−k′)r ≈ 1

L
Ŝ(k) .

We express the second moments of the probability P eq(c) in terms of the
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continuum structure factor S(k) obtained above⟨
δcμδcν

⟩
=

∫
drδμ(r)

∫
dr′δν(r

′) ⟨δc(r, 0)δc(r′, 0)⟩

=

∫
drδμ(r)

∫
dr′δν(r

′)
∑
kk′

eikreik
′r′⟨δĉ(k)δĉ(k′)⟩

=
∑
k

S(k)δμ(−k)δν(k)

=
1
L

∑
k

Ŝ(k)δμ(−k)δν(k) , (7.23)

where we have defined the Fourier transform of the basis function

δν(k) ≜
∫

drδν(r)e
−ikr .

Let us compute explicitly this function. From the linear relationship between
basis functions δμ(r) =

∑
ν M

δ
μνψν(r)we have

δμ(k) =
∑

ν

M δ
μν

∫
drψν(r)e

−ikr .

The Fourier transform of the basis function ψν(r) for a 1D regular grid of lat-
tice spacing a is

ψν(k) =

∫
dr ψν(r)e

−ikr = a sinc2
(
ka

2

)
e−ikrν = ψ0(k)e

−ikrν .

Note that the plane wave is an eigenvector of Mδ. In fact, because Mδ is the
inverse ofMψ, and we have that∑

μ

Mψ
μνe

−ikrμ = m̂(k)e−ikrν ∀k , (7.24)

with eigenvalues

m̂(k) =
a

3
[2 + cos (ka)] , (7.25)
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we may multiply the vector equation (7.24) withMδ to obtain∑
μ

M δ
μνe

−ikrμ =
1

m̂(k)
e−ikrν .

This gives the following explicit functional form for the Fourier transform of
the basis function

δμ(k) =
ψμ(k)

m̂(k)
=

ψ0(k)

m̂(k)
e−ikrμ where k =

2π
L

κ . (7.26)

Note that for k → 0, we have δμ(0) = 1, which, from (7.26) and (5.13) is what
it should be.

Eq. (7.23) gives the covariance of the discrete field in real space, in terms
of the structure factor, but we are interested in the covariances of the discrete
Fourier transform of the discrete field. To this end, we introduce the discrete
Fourier transform ĉm withm = 0,M − 1 of the discrete concentration field
cμ according to

ĉm =
1
M

M−1∑
μ=0

e−i 2π
L
mrμcμ ,

cμ =
M−1∑
m=0

ei
2π
L
mrμ ĉm .

We define the discrete static structure factor Ŝc(km) as the covariance of the
discrete Fourier components ĉm

Ŝc(km) ≜ L ⟨δĉmδĉ∗m⟩

=
L

M 2

∑
μ,ν

e−i 2π
L
mrμei

2π
L
mrν
⟨
δcμδcν

⟩
=

L

M 2

∑
μ,ν

e−i 2π
L
mrμei

2π
L
mrν
∑
k

S(k)δμ(k)δν(−k)

=
∑
k

Ŝ(k)δm(k)δ−m(−k) ,
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where km = 2π
L
m and we have introduced the doubly Fourier transformed

basis function

δm(k) ≜
1
M

∑
μ

e−i 2π
L
mrμδμ(k) =

ψ0(k)

m̂(k)

1
M

∑
μ

e−i 2π
L
mrμeikrμ

=
ψ0(k)

m̂(k)

∑
α∈Z

δm,κ+αM ,

where k = 2π
L

κ and we have used the mathematical identity

1
M

∑
μ

ei
2π
L
mrμ =

∑
α∈Z

δm,αM .

In this way, we have

Ŝc(km) =
∑
k

∑
α∈Z

δm,κ+αM

∑
α′∈Z

δm,κ+α′M Ŝ(k)

[
ψ0(k)

m̂(k)

]2
,

where k = 2π
L
m. Note that we have∑

α′∈Z

δm,κ+αMδm,κ+α′M =
∑
α′∈Z

δm,κ+αM δκ+αM,κ+α′M︸ ︷︷ ︸
δαα′

= δm,κ+αM ,

and then

Ŝc(km) =
∑
α∈Z

Ŝ

(
2π(m− αM)

L

)ψ0

(
2π(m−αM)

L

)
m̂
(

2π(m−αM)
L

)
2

. (7.27)

After inserting (7.22) into (7.27) we obtain the discrete structure factor for the
GA+σ model,

Ŝc(k) =
c20
r0

9
[2 + cos (ka)]2

∑
α∈Z

sinc4
(
ka
2 − πα

)
1 +
(

k
k0
− 2πα

k0a

)2 , (7.28)
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where k = 2π
L
m. Note that in the limit of high resolution a = L/M → 0, the

only term that contributes in the sum over α is α = 0. In this limit, then, the
discrete structure factor (7.28) converges towards the continuum limit (7.22).
Eq. (7.28) gives the prediction of the continuum theory for the fluctuations of
the discrete concentration variables.

In the limit k0 → ∞ corresponding to the GA model, (7.28) becomes

Ŝc(k) =
c20
r0

9[
2 + cos

( 2πma
L

)]2 ∑
α∈Z

sinc4
(

π(m− αM)

M

)
,

which, on account of the following identity∑
α∈Z

sinc4
(πm
M

− πα
)
=

1
3

[
2 + cos

(
2πm
M

)]
,

becomes

Ŝc(k) =
c20
r0

3
[2 + cos (ka)]

, (7.29)

where k = 2πm
L

. This is indeed the correct result of the GA model as it can
be shown by a more direct route. In the GA model, we know that the second
moments of the probability functional are given by

⟨δc(r)δc(r′)⟩ = c20
r0

δ(r − r′) → ⟨δcμδcν⟩ =
c20
r0
M δ

μν ,

where (5.24) has been used. Next

Sd(k) = L ⟨δĉmδĉ∗m⟩ =
L

M 2

∑
μ,ν

e−i 2π
L
mrμei

2π
L
mrν
⟨
δcμδcν

⟩
=

c20
r0

L

M 2

∑
μ,ν

e−i 2π
L
mrμei

2π
L
mrνM δ

μν

=
c20
r0

L

M 2

∑
μ

e−i 2π
L
mrμei

2π
L
mrμ

1
m̂(kn)

=
c20
r0

1
M

1
m̂(kn)

=
c20
r0

3
[2 + cos (ka)]

,

where we have used (7.25) and coincides with (7.29).
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7.5.4. The discrete structure factor of the numerical scheme

The static structure function (7.22) has been computed from the second mo-
ments of the probability functional and can also be obtained from the follow-
ing argument that involves the continuum dynamic equation (7.21). In the
limit Δt → 0, a simple Euler integrator scheme for Eq. (7.21) gives

δĉn+1 = δĉn − Δt
τk

δĉn − ik
√

2Dc0Δt · ζ̂ζζ
n
. (7.30)

If we multiply this equation by itself and average we obtain

⟨
δĉn+1δĉn+1⟩ = (1 − Δt

τk

)2

⟨δĉnδĉn⟩+ 2k2Dc0Δt

≃
(
1 − 2

Δt
τk

)
⟨δĉnδĉn⟩+ 2k2Dc0Δt ,

wherewehave neglected terms of order (Δt)2. At equilibrium ⟨δĉn+1δĉn+1⟩ =
⟨δĉnδĉn⟩ = Sc(k), so that

Ŝc(k) = k2Dc0τk =
c20
r0

1
1 + k2/k2

0
, (7.31)

which coincides with (7.22).
The same strategy may be used to compute the discrete structure factor, by

using the discrete time stepping scheme, and thus including effects due to the
finite time step.[63] In this way, one may obtain an exact prediction for the
discrete structure factor Sd(k) that is produced by the numerical code. If the
code is meant to reproduce the structure factor predicted by the continuum
theory, we should have Sd(k) ≈ Sc(k) for sufficiently small times. The only
difference from the procedure used to derive Eq. (7.31) is that both k2 and τk
are to be replaced by their corresponding discrete counterparts.

Namely, τk can simply be read from the fact that in the discrete setting the
integrator scheme is given, in the GA+σ model, by Eq. (7.15) with no explicit
part. In Fourier space, this equation should give us Eq. (7.30). If we equal
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(7.30) with the equivalent (7.15) in Fourier space we obtain

τk 7→
c0
Dr0

m̂

l̂ + 1
k2
0

l̂2

m̂

+O(Δt) .

In the same way, the discrete k2 term can be obtained from the covariance of
the noise term that appears in (7.30), which should coincide with the noise
term in (7.15), giving as a result k2 7→ l̂

m̂2 , where we have neglected terms of
orderO(Δt). In this way, the equivalent of Eq. (7.31) for the discrete structure
factor will be

Ŝd(k) = k2Dc0τk =
c20
r0

1
m̂

1
l̂ + 1

k2
0

l̂2

m̂

=
c20
r0

3
[2 + cos (ka)]

1

1 + k2

k2
0

(
3sinc2(ka/2)
(2+cos ka)

) . (7.32)

Another possibility is to consider the integrator scheme in the Fourier space
(7.14)

ĉn+1(m) =
T̂ n(m)

T̂ n+1(m)
ĉn +

Ŵ n(m)

T̂ n+1(m)
Ŵn .

If we multiply by itself and we average we obtain

⟨
ĉn+1ĉn+1⟩ = T̂ nT̂ n

T̂ n+1T̂ n+1
⟨ĉnĉn⟩+ Ŵ nŴ n

T̂ n+1T̂ n+1
.

At equilibrium ⟨ĉn+1ĉn+1⟩ = ⟨ĉnĉn⟩, so that,

⟨ĉnĉn⟩ = Ŵ nŴ n

T̂ nT̂ n − T̂ n+1T̂ n+1

=
c20
r0

1
m̂

1
1 + K

r0
l̂
m̂

=
c20
r0

3
[2 + cos (ka)]

1

1 + k2

k2
0

(
3sinc2(ka/2)
(2+cos ka)

) ,
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which coincides (as it should be) with (7.32).
In summary, we have computed both the static and the dynamic structure

factors for Gaussian models and have checked that their discrete counterparts
converge towards the analytical predictions. In the next section we will com-
pute numerically the discrete static structure factor in regular and irregular
grids, andwewill also compare the relaxation timeτk for the dynamic structure
factor. This should allow us to validate the numerical algorithm.

7.6.7.6.7.6. Simulation resultsSimulation resultsSimulation results

In this section, we consider a 1D periodic system governed by the free energy
functionals (7.6), (7.5) and (7.3). In 1D these models are well behaved, and the
continuum equations have a precise interpretation. We are concerned with
the convergence of the numerical method to the solution of the continuum
equations as the grid is refined.

7.6.1. Parameters

The set of parameters in the van derWaals model and in its approximate form,
the Ginzburg-Landau model, is the following. The parameters correspond-
ing to the particular fluid being studied are the excluded volume b of a van der
Waalsmolecule, the length scale σ of the potential, and the critical temperature
Tc of the van der Waals fluid. The parameters corresponding to the thermo-
dynamic state are the temperature T and the global concentration c0 = N/L
whereN is the total number of particles and L is the size of the box. Because
the dynamics conserves the total number of particlesN =

∫
dr c0(r), the to-

tal number of particles is a parameter of the simulation that enters through
the initial conditions specified through the initial profile c0(r). The param-
eter corresponding to the dynamic equation is the mobility Γ assumed to be
constant and given in terms of the diffusion coefficient D as Γ = Dc0/kBT .
Finally, we have a set of numerical parameters, like the time step size Δt and
the total number M of nodes of the mesh. Each node has a volume Vμ with∑

μ Vμ = L .
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From this set of parameters, we choose b, kBTc and D as our units, thus
fixing the basic units of length, time, and mass. This results in the following
dimensionless numbers as our free parametersL/b, σ/b,T/Tc,N ,M . Wewill
consider a fluid characterized by a fixed value of b, σ and kBTc. In this way, we
will fix the ratio b/σ = 10. We also fixN in order to have the total concentra-
tionN/L equal to the critical concentration 1/3b, this is, N = L/3b. In this
way, the number of free parameters to explore is reduced to L/b, M , T/Tc.
The limit L/b → ∞ is the thermodynamic limit or infinite system size limit,
whereas the limitMb/L → ∞ (so the volume of each cell approaches zero) is
the continuum limit.

In the following sections, all the simulations are performed at a box of size
L = 10 at a temperaturekBT = 1.11 in the selectedunits, with the correspond-
ing parameters in Eq. (7.4) being r0 ≃ 0.07 andK ≃ 0.007. All simulations
start from an initial state in which cμ(t = 0) = c0 for all μ, and employ a suffi-
ciently small time step to ensure numerical stability and convergence of results.
We ensure that we sample equilibrium configurations by compiling statistics
only after a time of the order L2/D. The number of particlesN =

∑
μ cμVμ

is exactly conserved by the algorithm.

7.6.2. Observables

The structure factor is an observable that is specially suitedwhen there is trans-
lation invariance. The structure factor is the discrete Fourier transform of the
matrix of covariances, this is, the matrix of secondmoments of the probability
distribution P eq(c) in Eq. (6.6). The k-dependent structure factor allows to
discuss correlations of the concentration at different length scales. As shown
in Section 7.5,the structure factor can be analytically computed in the con-
tinuum limit for a GA+σ model with the result

Sc(k) = ⟨δc(k, 0)δc(−k, 0)⟩ = c20
r0

1
1 + k2

k2
0

(7.33)

where

k0 =
( r0
K

)1/2
=

1
σ

(
T

Tc

− 1
)1/2
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The typical length scale below which fluctuations start to decorrelate is given
by λ = 2π/k0.

The dynamic structure factor is the Fourier transform of the time depen-
dent correlation function and can also be explicitly computed for theGaussian
models leading to

Sc(k, t) = ⟨δĉ(k, t)δĉ(−k, 0)⟩ = Sc(k) exp

{
− t

τk

}
(7.34)

with a typical relaxation time given by

τk =

[
D

c0
r0

(
1 +

k2

k2
0

)
k2
]−1

(7.35)

The continuum results (7.33) and (7.35) serves also as the basis for computing
the structure factors of the discrete variables, as we have seen in Section 7.5.

In addition to the structure factor, we will also consider as observable the
probability that a region of finite size l has a given number of particles in its
interior. In 1D, this observable should be independent of the resolution, given
a sufficiently large resolution, andwill allowus todetectwhether theGLmodel
behaves in a Gaussian or non-Gaussian way, depending on the temperature.

7.6.3. Regular lattice results

Static structure factor for Gaussian models

While the structure factor (7.33) has an explicit expression,whatwe compute in
a simulation is the covariance ⟨δcμδcν⟩of the discrete variables cμ or, for regular
lattices, its Fourier transform. We introduce the discrete Fourier transform ĉm
withm = 0,M − 1 of the discrete concentration field cμ according to

ĉm =
1
M

∑
μ

e−i 2π
L
mrμcμ

and define the discrete structure factor as [63]

Ŝc(k) ≜ L ⟨δĉmδĉ∗m⟩
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Figure 7.1: Comparison for the GA+σmodel of the static structure factorsSc(k) (dashed lines) in

Eq. (7.36), Sd(k) (points) in Eq. (7.37), andS(k) (solid pink line) in Eq. (7.33). From top to bottom:

red,M = 64; green,M = 128, blue,M = 256; cyan,M = 512; yellow,M = 1024; pink,
continuumstructure factor. As theresolution increases, the rangeofk forwhich there isnosignificant

discrepancy between the discrete results and the continuum predictionS(k) in Eq. (7.33) increases.

where k = 2π
L
m for integerm. The modes ĉm are related to cμ which, in turn,

are related to the continuum field through the basis delta function δμ(r). For
the GA+σ model we know the correlations of the fluctuations of the contin-
uum field and, therefore, we have an explicit expression for the discrete struc-
ture factor

Ŝc(k) =
c20
r0

9
[2 + cos (ka)]2

∑
α∈Z

sinc4
(
ka
2 − πα

)
1 +
(

k
k0
− 2πα

k0a

)2 (7.36)

Thenumerical integratorproposed inRefs. [38, 80]produces the same static
structure factor regardless of the time step. As we show in Section 7.5.4,
the actual discrete structure factor Ŝd(k) produced by our integrator for the
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GA+σ model is given by

Ŝd(k) =
c20
r0

3
[2 + cos (ka)]

1

1 + k2

k2
0

(
3sinc2(ka/2)
(2+cos ka)

) (7.37)

which is independent of the time step Δt. [38] This result (7.37) is useful as
it allows to check for correct coding of the algorithm. We have indeed veri-
fied that the numerical results lead exactly to (7.37). Note that Ŝd(k) in (7.37)
tends to the continuum limit Ŝ(k) in (7.33) for k ≪ π

a
. In the limit k0 → ∞,

Ŝd(k) = Ŝc(k) (see Eq. (7.29)). For finite k0, Ŝd(k) is different from Ŝc(k),
although both structure factors tend to the continuum value Ŝ(k) for suffi-
ciently high resolutions. We compare in Fig. 7.1 Ŝ(k) in Eq. (7.33), Ŝc(k) in
Eq. (7.36) and Ŝd(k) in Eq. (7.37) for increasing levels of resolution. Themain
observation is that Ŝd(k) and Ŝc(k) are very similar. In other words, not only
the infinite limit resolution Ŝ(k) is well captured by the numerical method,
but also the predictions of the continuum theory for a finite mesh are equally
well reproduced.

The Gaussian model GA is obtained by setting K = 0 and suppressing
the square gradient term. This implies k0 = ∞ and results in that different
points in space are completely uncorrelated. Figure 7.2 shows the static struc-
ture factor for different resolutions, from M = 64 to M = 256 as well as
the continuum solution. [63] We also plot in Fig. 7.2 the theoretical discrete
structure factor, given by Eq. (7.36), which takes into account the finite size of
the cell. The simulation results are indistinguishable from the theoretical pre-
diction at each resolution as they should, since in this case Eq. (7.36) is equal
to (7.37). As we keep increasing the resolution, the range of wavenumber for
which the structure factor coincides with the prediction c20/r0 of the contin-
uum theory increases. However, there is always a discrepancy at large wave
numbers corresponding to the inverse of the lattice spacing.

Dynamic structure factor for Gaussian models

The dynamic structure factor can also be obtained from Eq. (7.34) for a given
k value. Figure 7.3 shows the dynamic structure factor for k = 5.02 with
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Figure7.2: Static structure factor asa functionofk for themodelGA.From left to right: red,M = 64
nodes (Δt = 10−3); green,M = 128 (Δt = 1

4 10
−3); blue,M = 256 (Δt = 1

16 10
−3); cyan,

M = 512 (Δt = 1
32 10

−3); pink solid line, continuum result c20/r0 given by Eq. (7.33) in the limit

k0 → ∞. Dots correspond to the numerical structure factor obtained from simulations; dashed

lines correspond to the theoretical prediction given by Eq. (7.36).

M = 256 (a sufficiently fine grid) for both the GA (circles) and the GA+σ
(squares) models, and compares numerical results with the theoretical predic-
tion (pink solid line). In the GA case, the value r0 ≃ 0.07 gives a relaxation
time of τk = 0.2. In the GA+σ case, the parameter r0 remains unchanged
and K ≃ 0.007, with a time scale τk ≃ 0.05. As can be seen, numeri-
cal simulations overlap with theoretical predictions. We also plot in Fig. 7.4
the relaxation time τk obtained through simulations for both the GA (cir-
cles) and GA+σ (squares) models, and compares them with the theoretical
result (7.35). Both results overlap the theoretical ones for time scales smaller
than 10−4 in reduced units, which is comparable to the time step size Δt =
1
1610

−3 = 6.25 × 10−5. Note that this time step is much smaller than the re-
laxation time for the wavenumber plotted. We may still have good results for
small wave numbers withmuch larger time steps, but we have decided to use a
time step thatwould resolve also the smallest relaxation times, which is roughly
τmin = Δx2/D = L2/(M 2D) = 1.5× 10−3.
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Figure7.3: Dynamicstructure factor fork = 5.02asa functionof timefor themodelGA(bluecircles,

top) and GA+σ (blue squares, bottom). Averaged over 10 simulations atM = 256. Circles and
squares correspond to the numerical result, solid pink line corresponds to the theoretical prediction

(7.34). In the GAmodel, σ2 = 0 gives a relaxation time τk = 0.2. In the GA+σmodel, σ2 = 0.01
(K ≃ 0.007) gives a relaxation time τk = 0.05.

Static structure factor for Ginzburg Landau model

Once the code has been checked for the Gaussian models, we may move to
the more interesting case of the Ginzburg-Landau model Eq. (7.3) with its
discrete free energy function given in Eq. (7.10). This model shows phase sepa-
ration at subcritical temperatures. For sufficiently high supercritical tempera-
tures Gaussian behavior is recovered. In order to detect interesting non-linear
effects, albeit in the single phase region, we will explore temperatures near
(above) the critical temperature characterized by a single non Gaussian phase.

Figure 7.5 shows the probability distribution of finding a deviation from the
mean of the number of particles, δN , inside a region of size l = 1

16L. The sim-
ulation were done at kBT = 1.11 (r0 ≃ 0.07) and σ2 = 0.01 (K ≃ 0.007)
in the selected units. As we increase the resolution the probability distribu-
tion converges towards a unique limit. In a Gaussian model, one should ex-
pect a linear dependence between (δN)2 and P (δN). This is not observed in
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Figure 7.4: Relaxation time τk as a function of k for M = 256 in both the GA model (blue cir-

cles, top) and the GA+σmodel (blue squares, bottom) averaging over 10 simulations with time step

Δt = 1
16 10

−3. Dots correspond to the relaxation time obtained from a numerical fitting of the dy-

namic structure factor to an exponential function. Lines correspond to the theoretical prediction in

Eq. (7.35).

the limit curve of Fig. 7.5, signaling non-Gaussian behavior for this thermody-
namic point state.

Figure 7.6 shows the static structure factor for the Ginzburg-Landaumodel
at different resolutions, M = 64 (red), M = 128 (green) and M = 256
(blue) andM = 512 (cyan). We observe that as we increase the resolution we
converge towards a unique answer. The L2-norm

L2(M1,M2) =

√∑
i

(SM1(ki)− SM2(ki))2

is also shown in the inset of Fig.7.6, where we compare the structure factor
obtained at resolutionM1 with the one obtained at a higher resolutionM2 =
M1+32. A pink line of slope−2 agrees well with the numerical results reflect-
ing second order spatial convergence of the algorithm.

We also compare in Fig. 7.6 the static structure factor of the GLmodel with
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Figure 7.5: Probability distribution of finding a deviation from the mean of the number of particles

inside a region of size l = 1
16L for the GL model. This is, δN = c0l −

∑
μ∈l cμVμ. From top to

bottom,M = 64 nodes,M = 128,M = 256 andM = 512. We observe convergence of the

probability distribution towards a non Gaussian distribution as the resolution is increased.

the continuum limit of the corresponding one in the GA+σ model. Two re-
gions are clearly observed, separated by a value at around kc = 30. On one
hand, for k < kc (large length scales) there is a clear difference between the
Gaussian and the GL model. For small wavenumbers, the contribution of
the quartic term is important and suppresses the amplitude of the fluctua-
tions relative to the GA+σ model. On the other hand, for k > kc there is
no difference between both models in the limit of infinite resolution, and the
quartic term has a minimal effect. The existence of two regions may be un-
derstood from the probability of finding a particular Fourier mode φk of the
field, which will be given by the exponential of the free energy (7.3), expressed
inFourier space. Thequadratic term in this free energyhas ak-dependent pref-
actor (r0 +Kk2)/2. Near the critical point, we have r0 ∼ 0. Therefore, for
k ∼ 0, the free energy is entirely dominated by the quartic interaction (which
in Fourier space is in the form of a convolution). At sufficiently large k, how-
ever, the quadratic term dominates over the quartic. The effect of the quartic
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Figure 7.6: Static structure factor as a function of k for the GL model. Red,M = 64 nodes (Δt =
10−3); green, M = 128 (Δt = 1

4 10
−3); blue, M = 256 (Δt = 1

16 10
−3); cyan, M = 512

(Δt = 1
32 10

−3). Convergence of the numerical results is observed as the resolution increases. With

solid pink line, the continuum structure factor of the GA+σ model with the same parameters r0 ≃
0.07 K ≃ 0.007 as the GL model. Dashed pink line shows the continuum structure factor of a

renormalizedGA+σmodelwhich has the same variance as theGLmodel. The empirical fitting of the

numerical data to the renormalized GA+σ static structure factor gives r0 = 1.27 andK = 0.007.
Inset, L2-norm indicating convergence.

term is to strongly suppress the amplitude of the long-wave fluctuations with
respect to the Gaussian model with the same r0, K parameters.

Dynamic structure factor for Ginzburg Landau model

Figure 7.7 shows the dynamic structure factor of the GL model for k = 5.02
at different resolutions. We observe convergence as the resolution is increased
in the region where the statistical errors are small (S(k, t) ∼ 10−3). The fact
that the decay of the dynamic structure factor of the GL model is exponential
suggests that its dynamics is very similar to that of a renormalized Gaussian
model. In order to test this conjecture, we have considered the best GA+σ
model that would reproduce the static structure factor of the GL model. The
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Figure7.7: Dynamic structure factor as a functionof t fork = 5.02 for theGLmodel. With dots: red,

M = 64 nodes (Δt = 10−3); green,M = 128 (Δt = 1
4 10

−3); blue,M = 256 (Δt = 1
16 10

−3).

With solid pink line, the dynamic structure factor of a renormalized GA+σ model with parameters

r0 = 1.27 andK = 0.007.

best Gaussian model is the one that has the same structure factor as that of the
GLmodel. The result of the fit is presented in Fig. 7.6 and gives the parameters
r0 = 1.27 andK = 0.007. Observe that in the renormalizedGA+σmodel the
surface tension coefficient K is the same and only the value of the quadratic
coefficient r0 is renormalized, consistent with predictions of renormalization
(perturbative) theories [30]. With these values of r0, K we compute indepen-
dently the prediction for the relaxation time given by Eq. (7.35) for a GA+σ
model. The result is the solid line in 7.8. A very good agreement between the
measured relaxation times of the GL model and the prediction of this renor-
malized Gaussian model is obtained. This suggests that, as far as the structure
factor is concerned, the GL model behaves as a GA+σ model with renormal-
ized parameters.
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Figure 7.8: Relaxation time τk as a function of k in the GL model at different resolutionsM = 64
(red),M = 128 (green),M = 256 (blue) andM = 512 (cyan). All of them obtained averaging

over 10 simulations. Dots correspond to the numerical relaxation time (obtained from a numerical

fittingof thedynamic structure factor toanexponential function). Line corresponds to the theoretical

prediction (7.35) of the renormalized GA+σ model with T = −1.4 (r0 ≃ 1.27) and σ2 = 0.01
(K ≃ 0.007).

7.6.4. Irregular lattices

In this section, we present similar results as in the previous section but in this
case for irregular lattices. Adaptive mesh resolution allow one to resolve inter-
faces appearing below critical conditions, and deal with complicated bound-
ary conditions. In the present paper, while we still remain in the supercritical
region of the GL model, where no interfaces are formed, we test the perfor-
mance of the algorithm presented for irregular lattices. We consider irregular
lattices constructed by displacing randomly the nodes of a regular lattice, al-
lowing for a maximum fluctuation of ± 40% with respect to the regular lat-
tice configuration. These random lattices are a worst case scenario and other
lattices with slowly varying density of nodes behave much better in terms of
numerical convergence. We compare regular and irregular lattice simulation
results by using the same set of parameters in both cases. Typically, what we
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observe is that higher resolutions are required in irregular lattices in order to
achieve comparable accuracy as those in regular lattices. The time step in an
irregular lattice is dictated by the shortest lattice distance Δxmin encountered
according to Δt ∼ Δx2

min/D.
From a numerical point of view, obtaining the static structure factor for reg-

ular grids can be efficiently done with Fast Fourier Transforms (FFT): we just
need to perform a FFT of the concentration field and multiply it by its com-
plex conjugate. However, irregular grids complicate the use of the FFT and
we need to follow a different route to obtain the static structure factor. The
idea is to interpolate the discrete field on the irregular coarse grid onto a very
fine regular grid on which the FFT can be used. Of course, the interpolation
proceduremodifies the structure factor because we are creating information at
the interpolated points.

At the same time, when we consider irregular grids, we do not have simple
analytical results to compare, even for the Gaussian models. In this case, our
strategy is to produce synthetic Gaussian fields generated in a very fine grid en-
suring that they are distributed in such a way that have a structure factor given
by (7.33). This is achieved by generating randomGaussian numbers in Fourier
space with the correct mean and covariance for each wavenumber k so that the
theoretical S(k) is recovered. These synthetic Gaussian fields are taken as the
“truth” to compare with. From the synthetic Gaussian field, we compute a
coarse-grained field on an irregular coarse grid by applying the coarsening op-
erator δμ(r) as in the first equation (5.24), where the integral is approximated
as a sum over the very fine grid. This gives us realizations of a Gaussian field in
a coarse irregular grid. We may now apply the methodology used for comput-
ing the structure factor in regular grids, by interpolating on a very fine regular
grid and using the FFT.

Figures 7.9 and 7.10 show, for both aGAand aGA+σmodel, the agreement
between simulations (in dots) and the synthetic procedure (dashed lines). We
also show the predictions obtained from (7.33), demonstrating that we cor-
rectly discretized Eq. (3.21) on the irregular grid.

We move now to the GL model. We consider the probability distribution
of a fluctuation of the number of particles in a fixed region of space for the
GL model. The region of space is delimited by two nodes that are always at
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Figure 7.9: Static structure factor as a function of k for the model GA in irregular lattices. From left

to right,M = 64 nodes (Δt = 10−3),M = 128 (Δt = 1
4 10

−3),M = 256 (Δt = 1
16 10

−3),M =
512 (Δt = 1

32 10
−3) and continuum limit of the GAmodel (solid pink line, Eq. 7.33). Dots correspond

to the simulations of the diffusion equation, while dashed lines correspond to the synthetic Gaussian

fields. The striking differencewith Fig. 7.2 is due to the interpolation procedure used to compute the

static structure factor in the irregular grid.

the same distance l = L/16. In a first simulation, we consider an arbitrary
grid of nodes set at random in the whole domain, except for the two points
delimiting the region of interest that are always fixed. In Fig. 7.11 we plot the
result of increasing the number of nodes in the simulation.

In a second simulation, we divide the box in 16 equally spaced regions de-
limited by nodes of the grid. Then, in half of the boxes we have a coarse reso-
lution and in the other half we have a finer resolution. The probability in any
of the regions is essentially the same, as shown in Fig. 7.12, further validating
the method for irregular grids.

Finally, we show in Fig. 7.13 the static structure factor for the GL model in
an irregular random grid, where the simulations are performed with the same
parameters as those in Figs. 7.9 and 7.10. We observe that by increasing the
resolution the structure factor converges towards a continuum result, consis-
tent with the results based on the regular grid. We conclude that the algorithm
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Figure 7.10: Structure factor in the GA+σmodel for an irregular lattice. In themain panel,M = 64
nodes (red, Δt = 10−3) andM = 128 (green, Δt = 1

4 10
−3). In the inset we plot in log-log scale

results forM = 256 nodes (blue,Δt = 1
16 10

−3) andM = 512 nodes (cyan,Δt = 1
32 10

−3). Dots

correspond to the simulations of the diffusion equation. Dashed lines correspond to the synthetic

Gaussian (with surface tension term) field. The theoretical prediction in Eq. (7.33) is also plotted in

solid pink line.

presented displays convergence of theGLmodel for both regular and irregular
grids.
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Figure 7.11: Probability of δN in a given region of space l = 1
16L in a random grid. The points that

limit the region are kept fixed as in the regular grid, inside the region the nodes are randomly dis-

tributed. Green, M = 128; blue, M = 256; cyan, M = 512. We compare the probability in

a random grid (points) with the probability corresponding to a regular grid with the same resolution

(dashed lines).
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Figure 7.12: Probability of δN in a given region of space l = 1
16L. Green dashed line corresponds

to a regular lattice withM = 128. Blue dots correspond to a grid withM = 256 and cyan dots

correspond to a grid withM = 512. For theM = 512 grid, 64 nodes are uniformly distributed

in half of the box while the remaining 448 nodes are distributed uniformly in the other half. In this

way, we have a gridwhich is, in one region, seven times finer than the original one; in the other region,

exactly the original one. The gridM = 256 is definedwith32 nodes in half of the box and224 nodes
in the other half.
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Figure 7.13: Static structure factor as a function of k for the GL model in an irregular lattice. From

bottom to top: red,M = 64 (Δt = 1
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−3) and cyanM = 512 (Δt = 1

128 10
−3). FromM = 64 toM = 256, averaged over

10 simulations. Pink solid line shows the theoretical renormalizedGA+σmodel (withr0 = 1.27 and
K = 0.007).
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7.7.7.7.7.7. SummarySummarySummary

In this final chapter we have proposed particular models for the SDE (0.10).
We have used the conjugate basis function (3.3) to build discrete models for
the free energy and the dissipativematrix. The obtained equations for the evo-
lution of the coarse-grained variables (the discrete concentration field) can be
understood as a generalization ofwhat has been done inChapter 4, valid also
for irregular grids. As we discussed in Chapter 6, the obtained SDE for the
models of the free energy and the dissipative matrix can also be understood as
discretizations of the continuum SPDE (0.4).

One of the main differences with respect to what it has been done in Chap-
ter 4 is the use of an implicit algorithm for the time discretization. As we
have discussed, implicit schemes allow one to use larger time steps in compar-
ison with explicit algorithms. In that way, we may explore larger times and
problems with bigger resolution at the same computational cost. The implicit
method considered here is also unconditionally stable for any time step for the
linear equations. Thus, static properties are correctly reproduced even for large
time steps.

In this chapter, the observables selected are the static and dynamic structure
factors (the second moments of the probability of the field) and the probabil-
ity of having a number of particles in a fixed region of space. The fact that
linear problems (like the Gaussian model) are analytically solvable allow one
to check the accuracy of the proposed integration scheme. We have validated
the scheme and have moved to the non-linear Ginzburg-Landau model. We
have unambiguously observed that this model has, in 1D, a well-defined con-
tinuum limit. As shown in Eq. (7.19), the structure factor for a Gaussian field
presents a divergence forD > 1 in the limit r−r′ → 0. This so called ultravio-
let catastrophe implies that products of four Gaussian fields are not really well
defined and, therefore, the Ginzburg-Landau model is not really well defined
inD > 1. Although we do not have conducted simulations in 2D or 3D, we
expect that a continuum limit will not be reached in these cases.

Finally, we point out that the finite element methodology presented in this
dissertationmaybe extended toother SPDE like those appearing in theLandau-
Lifshitz Navier-Stokes (LLNS) equations. For a compressible theory, the free
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energy function plays essentially the same role as in the present theory. In
LLNS one usually chooses a free energy which is Gaussian. We should expect
similar ultraviolet catastrophic behavior as in the present simpler non-linear
diffusion. However, the Gaussian theory should still give correct macroscopic
observables like the amplitude of the fluctuations of the number of particles
in a finite region of space. While the equilibrium properties in the Gaussian
model do not have pathological behavior, the convective terms in the equa-
tions, involving non-linear terms, require a careful regularization. [31]
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8
Conclusions

The general objective of this dissertation is a proper formulation,
fromboth amathematical and aphysical perspective, of thermal fluctuations in
partial differential equations. We have selected one of the simplest non-trivial
transport equations, describing diffusion of colloidal particles in a quiescent
fluid, in order to discuss such a formulation. This equation already captures
two of the essential features that appear in more complex transport equations
like those appearing in Fluctuating Hydrodynamics, namely, they are conser-
vative and comply with an H-theorem.

In Fig. 8.1 we present a roadmap of the dissertation that will guide us in the
following discussion. We have taken two very different approaches in order to
obtain the coarse-grained dynamics of diffusing colloidal particles.

The first approach, termedBottom-up, uses theTheory ofCoarse-Graining
in order to derive, from the underlyingHamiltonian dynamics (1.2) governing
themotion ofmicroscopic particles, the dynamics of phase functions that rep-
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Figure 8.1: This dissertation studies the connection between a microscopic description given by

Hamilton’sequations (bottom)andacontinuumdescriptiongivenbythediffusionequation (topright).

This dissertation also explores Terra Incognita corresponding to the formulation of Stochastic Partial

Differential Equations and its microscopic underpinning.

resent the system in a coarse-grained way. These variables are a set of discrete
concentration variables (0.8) that give the number of particles per unit vol-
ume that are in a given region of space, or cell. Through road A’ , we consider
the probability distribution P (c, t) of these concentration variables. The re-
sulting dynamics is expressed either as a Fokker-Planck Equation or in terms
of the mathematically equivalent Stochastic Differential Equation (0.10) for
the dynamics of the concentration variables themselves. The Bottom-Up ap-
proach B’ in the road-map 8.1 is very powerful, as it gives the structure of the
equations, but the two objects that appear in the FPE and SDE, which are the
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free energy function F̂ (c) and the dissipative matrix D̂(c), are given in mi-
croscopic terms through rather complicated expressions. In the limit where
thermal fluctuations can be neglected, typically for sufficiently large cells, the
SDE becomes deterministic, as depicted in F in Fig. 8.1.

Instead of looking at the full probability, we could have focused on obtain-
ing dynamic equations for the averages of the concentration variables. This is
depicted in A and B in the roadmap. Wehavenot presented that route in the
present dissertation, butwe assure the reader that the derivation leads to (5.30).
When the cells are sufficiently large, the fluctuations in the instantaneous value
of the concentration variables become weaker, and the instantaneous values
and averages behave in the same way. In a similar way, the Theory of Coarse-
graining applied to the microscopic concentration field ĉr(z) =

∑
i δ(ri− r)

leads, through route E to the non-linear diffusion equation (0.3) as shown in
Ref. [68].

Of course, the following question readily emerges. Is it possible to derive
the SPDE (0.4) directly from the Theory of Coarse-Graining, i.e. to follow
route E’ ? Unfortunately, the answer is no. It is rather clear that we cannot
not use the microscopic field ĉr(z) =

∑
i δ(ri − r) as the coarse-grained vari-

able, because we cannot give a physical meaning to the probability that these
variables take particular values of a continuum field. They are too spiky objects.
Therefore, the best we can do to arrive at Terra Incognita is to go through the
road B’ until arriving at (0.10). The question then is whether the continuum
limit of (0.10) exists as we increase the resolution of the mesh. We will return
to this question below.

The second approach that we have considered is a numerical analysis ap-
proach in which we take for granted the validity of the continuum non-linear
diffusion equation (0.3), and we discretize it with a Petrov-Galerkin method
by using a set of basis functions. This approach, route D in the roadmap, is
termed Top-down. Quite reassuringly, this route gives again (5.30). The argu-
ment can then be turned upside down and suggest that, because the Bottom-
up discrete equation has the same form as the discretized Top-down equation,
then a sequence of Bottom-up equations (5.30) with increasing resolution will
converge towards a continuum limit (0.3).

Can we, then, use this argument for the SPDE (0.4), and take a Top-down
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approach D’ inorder to recover themicroscopically derived (0.10)? Thiswould
solve all questions about the existence of a continuum limit, right? In fact, we
have shown in Section 6.2.3 that, by treating (0.4) as if it was an ordinary
PDE, the discretization procedure that we have followed produces a thermal
noisedc̃out of the noise term∇·J̃ that coincideswith the one that is obtained
from the Bottom-up approach.

The problem with this approach is that treating (0.4) as if it was a normal
PDE is not mathematically correct in general. The signature of the problems
show up when considering the Gaussian model, for which one can still give a
sounded mathematical meaning to (0.4). We have seen that the realization of
the continuum Gaussian field are extremely rough inD > 1. The point-wise
variance of the field simply diverges in D > 1, a phenomenon known as the
ultraviolet catastrophe. This implies that the fields φ(r) are extremely irregu-
lar and should be rather understood as distributions inD > 1. [22, 23, 29, 30]
However, distributions cannot bemultiplied and a quartic term in the free en-
ergy is ill-defined. This means that the Ginzburg-Landau model is ill defined
in D > 1 because, without further amendments, does not have have a con-
tinuum limit inD > 1. If one naively discretizes the corresponding ill-posed
nonlinear SPDE, pathological behavior will be observed inD > 1. For exam-
ple, the number of particles in a given finite region of space have fluctuations
that depend on the lattice spacing, which is obviously nonphysical.

There are two fundamentally different approaches to address this problem.
On one hand, in stochastic field theories as those appearing in Quantum

Field Theory the governing SPDE is postulated from symmetry arguments
without further connection to any other more microscopic description of the
system. In this case, the SPDE is the fundamental equation for which the
Ginzburg-Landaumodel is perhaps the simplestmodel. Because theGLmodel
is not analytically resoluble, it requires perturbation theory for computing, for
example, correlation functions. However a plague of infinities creep in pertur-
bation theory, reflecting the ultraviolet catastrophe. These infinities are elimi-
nated by Renormalization Group techniques, which in its more basic formu-
lation says that the “correct” model is not the Ginzburg-Landau model, but
one that contains an additional term (a counterterm) which depends on the
lattice spacing. [24–28] By the way, these counterterms diverge in the contin-
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uum limit, so one substracts infinities in the process, a somewhat awkward
operation.

On the other hand, when a “more fundamental” theory exists, as is the case
of colloidal suspension where the fundamental theory are Hamilton’s equa-
tions we may take the point of view of the Coarse-Graining Physicist: For-
get about the continuum limit! This point of view is substantiated as follows.
We already know that the Gaussian model is just an approximate model that
requires to have many particles per cell. In a similar way, we know that the
Ginzburg-Landaumodel is an approximation to the vanderWaalsmodelwhen
considering phase transitions. The van derWaalsmodel is also an approximate
model in which, in its construction, a basic assumption about the potential of
interaction is made. This assumption says that the potential has two separate
length scales, one short range σ corresponding to the repulsive part of the po-
tential, and one long ranged λ corresponding to the attractive part of the po-
tential. As was shown by van Kampen in his original derivation of the van der
Waals model [39], only when the size Λ of the cells comply with σ ≪ Λ ≪ λ,
then the van der Waals form of the free energy emerges. The van der Waals
modelmakes sense only for a given cell size (large enough to containmany par-
ticles, small enough for the attractive part of the potential to be treated inmean
field) [39]. This means that the cell size is fixed by physical conditions. Indeed,
if the cell size was to be taken too large, larger than droplet sizes, it would not
be able to discriminate between liquid and vapor phases and the free energy
functional to be used in that case would need to be different from the usual
square gradient van der Waals free energy functional. In this state of affairs,
it makes no sense to look at the mathematical continuum limit of the discrete
SPDE, while the discrete version still has a physically sounded foundation.

The dissertation has two parts, separated by an Interlude. Each part cor-
responds to a particular definition of the concentration field and they corre-
spond, chronologically, to our own process of understanding the problem.
The first one is based on a standard finite element basis set, defined on De-
launay triangulation. This method for obtaining a discrete concentration field
is valid for regular grids. The second possibility is given in terms of a linear
combination of the standard finite element basis function. The main advan-
tage of this second option is the fact that it is also valid for irregular meshes. In
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addition, the convergence rate in irregular grids is superior for the definition
in terms of conjugate basis functions.

We note that it is important to have discretization methods valid on irregu-
lar grids whenever phenomenology with separate length scales appear. Then,
we may need a resolution in some regions of the space and a different reso-
lution in other regions. For example, in phase transitions, we may need high
resolution in the interface, but low resolution in other regions. The use of the
conjugate finite elements is a clear advantage in comparison with the standard
finite element choice.

Another sensible issue when solving efficiently a SDE is time discretization.
In the first part of this dissertationwe have tested explicit methods to discretize
in time the diffusion equation. The explicit scheme that we have used gives a
strong convergence order 0.5. Strong convergence schemes are useful to re-
produce real trajectories of the mesoscopic variables along time. As a counter-
part, the explicit scheme needs a small time step to be stable. Exploring the
continuum limit requires tiny time steps. Solving the SDE becomes unpracti-
cal for such a fine resolution. For that reason, we have studied in the second
part implicit methods to time discretize the SDE. The implicit method has the
same strong convergence than the explicit method 0.5. But it is a second-order
weakly accurate scheme. Weak convergence schemes are usefulwhen there is an
interest in reproducing correctly averages of themesoscopic variables. The im-
plicit method has the disadvantage of requiring the solution of a linear system
of equations at every time step. But it has as main advantage the possibility of
using amuch larger time step. In balance, the implicitmethod has been proved
tobemore efficient that the explicit one. In addition to this, the specific scheme
we have used in the last chapter is unconditionally stable for linear equations
(as the Gaussian model), ensuring the obtention of stable static properties re-
gardless of the time step used.
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9
Future Directions

In this dissertationwe have presented a general methodology for the
discretization of Stochastic Partial Differential Equations. We have seen how
the Petrov-Galerkin method, with conjugate basis functions lead to positive
definite dissipative matrices and, therefore, allow in a natural way for the for-
mulation of stochastic differential equations, where the random forcing terms
comply with the Fluctuation-Dissipation Theorem.

A natural extension and, admittedly, the original aim of the present disser-
tation is the finite element formulation of Fluctuating Hydrodynamics. Once
we have understood the methodology, the writing of the discrete equations
corresponding to the continuum Fluctuating Hydrodynamics is, in principle,
straightforward. Of course, a complementary view in terms of the Theory of
Coarse-Graining is recommended. In this view, one should derive the SDE
governing the dynamics of mass, momentum, and energy density of nodes
from first principles. While microscopic derivations of discrete hydrodynamic
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exists [35], none have considered yet the conjugate finite element basis func-
tions.

One issue that will be necessary to consider is the formulation of appropri-
ate boundary conditions. In this dissertation we have used periodic boundary
conditions in order to avoid the issue. Note that, from a microscopic point of
view, boundary conditions arise from interactions with solid container walls.
How these interactions are captured at a coarse-grained level is not trivial, and
wemay find some surpriseswhen consideringmicroscopicallymotivatedbound-
ary conditions for Fluctuating-Hydrodynamics.

The implementation in algorithmic terms of the method for the case of
Fluctuating Hydrodynamics is also simple (in principle) in 1D and this is one
of the next steps to take. Of course, in practical applications a formulation in
3D is required. Before going into this endeavor, we should probably formu-
late the diffusion problem in 3D first, which is much simpler because it in-
volves only one transport equation. There are very good open source libraries
for the calculation of Delaunay triangulations, but the task is, nevertheless,
formidable.

In 3D, as we have mentioned several times, we should expect interesting
anomalous behavior with the continuum limit for Fluctuating Hydrodynam-
ics. Both from a Coarse-Graining Physicist and from a Numerical Analysis
Mathematician point of view, we would like to have a good understanding of
what is going on in the continuum limit. Gaussian models, in which the free
energy or entropy are quadratic functions, should be probably harmless, but
other models allowing for the description of phase transitions, may not have a
continuum limit. In those cases we would need to renormalize the transport
coefficients, both free energy and mobilities, as a function of the grid spacing.
These coefficients are not universal as are the macroscopic coefficients.

The problems arise because we stick to the Gaussian model for the free en-
ergy. Should we have general methods tomeasure the free energy function, i.e.
to find the functional form of the free energy as a function of the discrete hy-
drodynamic variables, thenwe could address different resolutions in a physical
reasonable way. Of course, this is very difficult in general.

Finally, another general open problem is the design of hybrid particle-conti-
nuum methods based on the conjugate finite element basis functions. Again,
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there are many proposals in the literature about how to interface two such dis-
similar algorithms (involving particles and meshes), but none has yet used the
conjugate basis functions with its possibly improved performance.
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B
Gaussian Probability Distribution in

the Bottom-Up Approach

In this appendix we consider a Gaussian approximation for the discrete con-
centration field ĉμ(z), which is given in terms of the finite element with sup-
port on the Delaunay cell, (3.4). We start from the microscopic probability
of non interacting Brownian particles to obtain the first two moments of the
probability distribution. If the number of particles per node is large enough,
it is expected that the probability distribution becomes a Gaussian, so that ob-
taining the first two moments we may fully characterize P eq(c).

Let us compute the probability distribution P (c) that, at equilibrium, a
discrete concentration field takes the value c =

{
cμ; μ = 1, . . . ,M

}
. We con-

sider aD dimensional domain whereN Brownian particles move in a volume
of length VT . The configuration of the particles is denoted by the collection of
positions z = {ri; i = 1, . . . , N}, where ri is the position of the i-th particle.
We seed the volume VT in a uniform grid of M nodes located at rμ, and we
assume periodic boundary conditions (i.e., we have rM ≡ r1). The average
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concentration is defined as c0 ≜ N/VT . The concentration variable ĉμ(z) in
the node μ given in general by (3.4) is

ĉμ(z) =
1
Vμ

∑
i

ψμ(ri) . (B.1)

The probability P (c) introduced in (4.1), provided that ρeq(z) = 1/V N
T ,

now takes the form

P (c) =
1

V N
T

∫
dz
∏

μ

δ
(
ĉμ(z)− cμ

)
. (B.2)

Before computing approximately theprobability fromEq. (B.2) it is instruc-
tive to compute exactly the first and secondmoments of the distribution (B.2).
The first moments are

⟨cμ⟩ =
∫

dc1 · · · dcM P (c)cμ

=
1

V N
T

∫
dz

∫
dc1 δ(ĉ1(z)− c1) · · ·

∫
dcμ δ(ĉμ(z)− cμ)cμ · · ·

=
1

V N
T

∫
dz ĉμ(z)

=
1

V N
T

1
Vμ

∫
dz
∑
i

ψμ(ri)

=
1

V N
T

1
Vμ

N

∫
dzψμ(r)

=
1
VT

1
Vμ

N

∫
drψμ(r)

=
N

VT

= c0 . (B.3)
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Let us compute now the second moments

⟨cμcν⟩ =
∫

dc1 · · · dcM P (c)cμcν

=
1

V N
T

∫
dz ĉμ(z)ĉν(z)

=
1

V N
T

1
VμVν

∫
dz
∑
i

ψμ(ri)
∑
j

ψν(rj)

=
1

V N
T

1
VμVν

∫
dz
∑
i

ψμ(ri)ψν(ri)

+
1

V N
T

1
VμVν

∑
i̸=j

∫
dzψμ(ri)ψν(rj)

=
1
VT

1
VμVν

N

∫
drψμ(r)ψν(r)

+
1
V 2
T

1
VμVν

N(N − 1)
∫

drψμ(r)

∫
dr′ ψν(r

′)

=
c0

VμVν

∫
drψμ(r)ψν(r) +

(
1 − 1

N

)
c20

=
c0

VμVν
Mψ

μν +

(
1 − 1

N

)
c20 , (B.4)

where themass matrixMψ is defined as

Mψ
μν ≜

∫
drψμ(r)ψν(r) . (B.5)

Note that, due to the formof the finite elementψμ(r) (see, for example, Fig. 3.4),
neighbor nodes do overlap. Therefore, for neighbor nodes the mass matrix
Mψ does not vanish, and there exist correlations between them. In fact, in
terms of central moments we have

⟨δcμδcν⟩ =
c0

VμVν
Mψ

μν −
1
N
c20 , (B.6)
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with the obvious notation δcμ = cμ − c0. In the limit of a number of particles
large enough (i.e.,N ≫ 1) we may approximate central moments to

⟨δcμδcν⟩ ≈
c0

VμVν
Mψ

μν . (B.7)

Once we know the first and second moments of P (c) it is straightforward
to calculate the probability under a Gaussian approximation that has precisely
these moments. In general, we have for a multivariate system

P (c) =
1
Z

exp

{
−(c− c0)

C−1

2
(c− c0)

}
, (B.8)

where Z is a normalization factor, c0 a vector with all its μ-th component
equals to c0 andC−1 is related to the second moments through

Cμν =
⟨
δcμδcν

⟩
. (B.9)

From (B.7) it follows, then

Cμν =
c0

VμVν
Mψ

μν , (B.10)

so that the explicit form of the probability becomes

P (c) =
1
Z

exp

−
∑
μν

δcμVμ

(
Mψ
)−1

μν

2c0
Vνδcν

 , (B.11)

wherewe introduced δcμ = cμ−c0 andweused the usual notation of
(
Mψ
)−1

for the inverse of the mass matrixMψ.
The free energy that arises in this Gaussian approximation can be obtained

from its canonical definition

P (c) =
1
Z

exp

{
−F (c)

kBT

}
, (B.12)
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so that

FGA(c) = −kBT (lnZ + lnP (c))

= kBT
∑
μν

(cμ − c0)Vμ

(
Mψ
)−1

μν

2c0
Vν(cν − c0) , (B.13)

where we omit the constant term kBT lnZ in the free energy without losing
generality. Therefore, in order to have an explicit form for the free energy, we
need to compute the inverse of the matrixMψ. Fortunately, the inverse of the
Toeplitz periodicmatrix (B.5) is known analytically (see Eq. (4.6) ofRef. [96]),
which is(
Mψ
)−1

μν
=

1
4hn + 2hn−1 + 2

{
hn−ν+1hμ − hμ−1hn−ν + hν−μ for μ ≤ ν
hn−μ+1hν − hν−1hn−μ + hμ−ν for ν ≤ μ

(B.14)

where

hk ≡
λk
1 − λk

2

λ1 − λ2

λ1,2 ≡ −2 ±
√

3 . (B.15)

In order to obtain the probability of the concentration in a single node we
may integrate the Gaussian joint probability in (B.11) over all except one vari-
able:

P (cμ) =

∫
dc δ(cμ − cμ)P (c)

=
1
Z

∫
dc δ(cμ − cμ) exp

−
∑
μν

δcμVμ

(
Mψ
)−1

μν

2c0
Vνδcν

 . (B.16)
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By using the definition of the Dirac’s delta function in Fourier space

P (cμ) =
1
Z

∫ ∞

−∞
dωμ exp

{
−iωμ(cμ − c0)

}
×
∫

dy exp

{
−yT

[
Mψ
]−1

2c0
y + bTy

}
,

(B.17)

where we defined the vector y which μ component yμ = Vμ(cμ − c0) and the
auxiliary vector b is

bν = i
ωμ

Vμ
, iff ν = μ ,

bν = 0 , otherwise . (B.18)

Weknowthe analytical expression for thedisplacedGaussian integral, which
is ∫

dy exp

{
−yT

[
Mψ
]−1

2
y + bTy

}
=

1
Z

exp
{
bTMψb

}
, (B.19)

so that the one node probability turns into

P (cμ) =
1
Z

∫ ∞

−∞
dωμ exp

{
−iωμ(cμ − c0)

} 1
Z ′ exp

{
c0b

T M
ψ

2
b

}
=

1
Z ′′

∫ ∞

−∞
dωμ exp

{
− c0
V 2

μ

Mψ
μμω

2
μ − i(cμ − c0)ωμ

}

=
1

Z ′′′ exp

{
−
(cμ − c0)

2

4c0

V 2
μ

Mψ
μμ

}
. (B.20)

The normalization constant Z ′′′ can be obtained by integrating over the
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whole domain, giving as a final result

P (cμ) =

√
V 2

μ

4πc0M
ψ
μμ

exp

{
−
(cμ − c0)

2

4c0

V 2
μ

Mψ
μμ

}
. (B.21)

Once we have this result, it is straightforward to use it under the local equi-
librium assumption in Eq. (4.6) so that to obtain the explicit expression for the
LE model in (4.5).
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C
Analytic Calculation of the

Conditional Average

In this appendix we compute, by resorting to the maximum entropy principle
the conditional average of a certain class of phase functions F (z) that can be
written as a functional of the one particle operator cr(z) =

∑
i δ(r− ri), this

is

F (z) = F [cr(z)] . (C.1)

When computing conditional averages of this kind of functions, we will as-
sume the following ansatz

⟨F [cr]⟩c = F [c∗(r)] , (C.2)

where c∗(r) is the least biased one particle probability (i.e. density field) that
is compatible with the values c. Therefore, c∗(r) has an implicit functional
dependence on c.

207



The least biased c∗(r) can be obtained from the maximization of the en-
tropy functional

S[c] = −
∫

dr c(r) ln

(
c(r)

c0

)
(C.3)

subject to the constraints ∫
dr c(r) = c0VT∫

dr c(r)δμ(r) = cμ . (C.4)

Here, c0 is a (prior) homogeneous distribution function and VT is the volume
of the system. The solution of the maximization problem is standard in terms
of a dimensionless vector λ of Lagrange multipliers λμ

c∗(r) = c0
exp

{
−
∑

μ Vμλμδμ(r)
}

1
VT

∫
dr′ exp

{
−
∑

μ Vμλμδμ(r′)
} . (C.5)

The actual value of the Lagrange multipliers λ is fixed by requiring that c∗(r)
satisfies the constraints in (C.4). In this way, λ become a (one-to-one) function
of the imposed constraining c.

The calculations can be performed explicitly in 1D for a regular lattice. Let
us consider the integral overx, by dividing the interval [0, L] into sub-elements
of size a, this is

1
L

∫ L

0
dx exp

{
−
∑

μ

aλμδμ(x)

}
=

1
L

[∑
ν

∫ xν+1

xν

dx

]

× exp

{
−
∑

μ

aλμδμ(x)

}
. (C.6)
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Now, consider just the term

1
L

∫ xν+1

xν

dx exp

{
−
∑

μ

λμδμ(x)

}

=
1
L

∫ xν+1

xν

dx exp

{
−λν

(
rν+1 − r

a

)
− λν+1

(
x− xν

a

)}
= − a

L

e−λν+1 − e−λν

λν+1 − λν
. (C.7)

Therefore, Eq. (C.6) becomes

GM ≜ 1
L

∫ L

0
dx exp

{
−
∑

μ

aλμδμ(x)

}
= − 1

M

∑
μ

e−λμ+1 − e−λμ

λμ+1 − λμ
.

(C.8)
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We can also perform the integral∫
dx δμ(x) exp

{
−
∑

ν

λνδν(x)

}

=

∫ xμ

xμ−1

dx
1
a

(
r − xμ−1

a

)
exp

{
−
∑

ν

λνδν(x)

}

+

∫ xμ+1

xμ

dx
1
a

(
xμ+1 − x

a

)
exp

{
−
∑

ν

λνδν(x)

}

=

∫ xμ

xμ−1

dx
1
a

(
x− xμ−1

a

)
exp

{
−λμ−1

(
xμ − x

a

)
− λμ

(
x− xμ−1

a

)}
+

∫ xμ+1

xμ

dx
1
a

(
xμ+1 − x

a

)
exp

{
−λμ

(
xμ+1 − x

a

)
− λμ+1

(
x− xμ

a

)}
=

∫ 1

0
dx′ x′ exp

{
−λμ−1 (1 − x′)− λμx

′}
+

∫ 1

0
dx′ (1 − x′) exp

{
−λμ (1 − x′)− λμ+1x

′}
=

e−λμ−1 − e−λμ

(λμ − λμ−1)2
− e−λμ

(λμ − λμ−1)
+

e−λμ+1 − e−λμ

(λμ − λμ+1)2
− e−λμ

(λμ − λμ+1)
.

(C.9)

We may now collect the results and find the result linking cwith λ,

cμ = G(λμ, λμ+1) +G(λμ, λμ−1) , (C.10)

where we have introduced

G(λμ, λμ+1) ≜
c0
GM

(
e−λμ+1 − e−λμ

(λμ − λμ+1)2
− e−λμ

(λμ − λμ+1)

)
. (C.11)

Note that the relationship between c and λ is not one to one. In fact, note that
if we make the substitution λμ → λμ + c, c remains unchanged.

Now, we can compute the conditional average of the sub-element density
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ce(c), which is of the form considered

ce(c) =

⟨
N∑
i

θe(ri)

⟩c

=

∫
dr θe(r) ⟨cr⟩c ≈

∫
dr θe(r)c

∗(r)

=
c0
GM

∫
dr θe(r) exp

{
−
∑

μ

Vμλμδμ(r)

}
, (C.12)

where we have used Eq. (C.5). In 1D we obtain for the element e ∈ (xμ, xμ+1)

ce(c) =
c0
GM

∫ xμ+1

xμ

dx exp

{
−λμ

(
xμ+1 − x

a

)
− λμ+1

(
x− xμ

a

)}
= − c0

GM

∫ 1

0
dx′ exp

{
−λμ (1 − x′)− λμ+1x

′}
= − c0

GM

e−λμ+1 − e−λμ

λμ+1 − λμ
. (C.13)

This form satisfies
∑

e Vece = N .
It isworth exploring the casewhenλμ+1 = λμ+Δλμ withΔλμ comparatively

small. Consider first the normalizationGM introduced in Eq. (C.8)

GM = − 1
M

∑
μ

e−λμ+1 − e−λμ

λμ+1 − λμ

=
1
M

∑
μ

e−λμ

(
1 −

Δλμ

2

)
+O(Δλ2) . (C.14)

Next, consider the functionG(λμ+1, λμ) introduced in (C.11)
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G(λμ+1, λμ) = c0

(
e−λμ+1 − e−λμ

(λμ+1 − λμ)2
+

e−λμ

(λμ+1 − λμ)

)
=

c0
GM

e−λμ

(
1
2
−

Δλμ

6

)
+O(Δλ2)

= c0
e−λμ

(
1
2 −

Δλμ

6

)
+O(Δλ2)

1
M

∑
ν e

−λν
(
1 − Δλν

2

)
+O(Δλ2)

= c0
e−λμ

(
1
2 −

Δλμ

6

)
1
M

∑
ν e

−λν

(
1 +

∑
ν e

−λνΔλν

2
∑

ν e
−λν

)
+O(Δλ2)

= c0
e−λμ

1
M

∑
ν e

−λν

(
1
2
−

Δλμ

6
+

∑
ν e

−λνΔλν

4
∑

ν e
−λν

)
+O(Δλ2) .

(C.15)

Therefore, we have, to first order

cμ = c0
e−λμ

1
M

∑
ν e

−λν

(
1 − Δλr + Δλl

6
+ ⟨Δλ⟩

)
, (C.16)

where Δλr = λμ+1 − λμ is the increment of the right sub-element of μ and
Δλl = λμ−1 − λμ is the increment of the left sub-element of μ. The term

⟨Δλ⟩ ≜ 1
6
∑

ν e
−λν

∑
ν

e−λμ (Δλr + Δλl) (C.17)

ensures that cμ is normalized. To zero order we have simply

cμ = c0
e−λμ

1
M

∑
ν e

−λν
. (C.18)

Note that ifwe assume thatλμ varies “smoothly”, then cμ also varies in a smooth
way.
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In this level of approximation, the sub-element density (3.13) becomes

ce(c) = − c0
GM

e−λμ+1 − e−λμ

λμ+1 − λμ

= c0
e−λμ

(
1 − Δλμ

2

)
1
M

∑
ν e

−λν

(
1 +

∑
ν e

−λνΔλν

2
∑

ν e
−λν

)
+O(Δλ2)

= c0
e−λμ

1
M

∑
ν e

−λν

(
1 −

Δλμ

2
+

∑
ν e

−λνΔλν

2
∑

ν e
−λν

)
+O(Δλ2) . (C.19)

Clearly, this is not symmetric with respect μ, μ + 1. We can obtain a sym-
metrized result by noting that to first order we also have (by changing μ by
μ + 1)

ce(c) = c0
e−λμ+1

1
M

∑
ν e

−λν

(
1 +

Δλμ

2

∑
ν e

−λνΔλν

2
∑

ν e
−λν

)
+O(Δλ2) . (C.20)

Therefore, we have simply that

ce =
cμ+1 + cμ

2
+O(Δλ2) . (C.21)

In summary, we have proved that for smooth fields, the maximum entropy
calculation of the conditional averages provides the arithmetic mean for the
sub-element density.
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D
Computing the Condition

Expectation

In order to validate the approximation (4.12) wemay compute numerically the
conditional expectation (3.13). This conditional expectation is defined as

⟨· · · ⟩c = 1
P eq(c)

∫
dz ρeq(z)δ(c(z)− c) · · ·

=
1

P eq(c)

∫
dz ρeq(z)

∏
μ

δ(ĉμ(z)− cμ) · · · . (D.1)

ForN non-interacting Brownian particles ρeq(z) = 1/V N
T . This gives

⟨· · · ⟩c = 1
V N
T

1
P eq(c)

∫
dz
∏

μ

δ(ĉμ(z)− cμ) · · · . (D.2)
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The evaluation of the average over theDirac delta functions in hindered by the
singular nature of these functions. We regularize this average by approximat-
ing the Dirac delta function with a Gaussian so that

⟨· · · ⟩c = 1
V N
T

1
Z

∫
dz exp

{
− 1

2

(
ĉμ(z)− cμ

c0

)2
}
· · · . (D.3)

In the limit c0 → 0 this regularized conditional expectation coincides with
(D.2).

The regularized average is computed by sampling theGaussian distribution
with a fictitious dynamics given by

dri = −D
∂V

∂ri
(z)dt+

√
2DdWWW i , (D.4)

with

V (z) =
1
2

∑
μ

(
cμ(z)− cμ

c0

)2

. (D.5)

Here, V (z) is a dimensionless potential that depends on themicrostate z ≜
{ri; i = 1, . . . , N} of the system and dWWW i are independent increments of the
Wiener process. The Fokker-Planck Equation corresponding to (D.4) is

∂P

∂t
(z) = D

∂

∂ri

(
∂

∂ri
V (z)

)
P (z) +D

∂

∂ri

∂

∂ri
P (z) . (D.6)

The equilibrium solution of the FPE (D.6) is

P eq(z) =
1
Z

exp{−V (z)} , (D.7)

whereZ is the normalization factor. The stationary solution (D.7) of the FPE
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(D.6) is

P eq(z) =
1
Z

exp

{
− 1

2

∑
μ

(
cμ(z)− cμ

c0

)2
}

.

In the limit c0 → 0 this goes to the distribution

P eq(z) =
1
Z
∏

μ

δ(cμ(z)− cμ) . (D.8)

Then, the SDE (D.4) becomes with the potential (D.5)

dri = −D

c20

∑
μ

(cμ(z)− cμ)∇δμ(ri)dt+
√

2DdWWW i . (D.9)

Equation (D.9) samples, in the steady state and for sufficiently small c0, the
distribution (D.8). It is clear that in order to achieve small values of c0 one
needs to reduce correspondingly the time step in the numerical solution of
(D.9).

For a one-dimensional situation with a regular grid of spacing a, every node
has two sub-elements as shown in Fig. 3.4, where the vectors be→μ in (3.7) are
simply the numbers± 1

a
. The term∇δμ(r) is then (neglecting the discontinu-

ities at the nodes)

∇δμ(x) = − 1
a2 θ(x− xμ)θ(xμ+1 − x) +

1
a2 θ(x− xμ−1)θ(xμ − x) .

(D.10)
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And the SDE (D.9) becomes

dxi =
D

c20a
2

∑
μ

(cμ(z)− cμ)θ(xi − xμ)θ(xμ+1 − xi)dt

− D

c20a
2

∑
μ

(cμ(z)− cμ)θ(xi − xμ−1)θ(xμ − xi)dt

+
√

2DdWi . (D.11)

In order to see how this dynamics works, assume that the i-th particle is in the
element (x3, x4). Then,

dxi =
D

c20a
2 (c3(z)− c3)dt−

D

c20a
2 (c4(z)− c4)dt+

√
2DdWi . (D.12)

Assume further that c4(z) = c4 and c3(z) > c3. This means that there is an
excess of particles near node 3. In that case, Eq. (D.12) tend tomove the particle
to the right, this is, reducing the concentration of node 3, as it should.

In Fig. D.1 we plot the approximation (4.12) with the numerically evaluated
conditional expectation (3.13) for the case that the profile c is a sinusoidal shape
cμ = 10 + 3 sin(2πaμ/L), with L = 20 and a = 1. The agreement is very
good and shows indeed that the concentration ce of the sub-element e is the
arithmetic mean of the nodal concentrations, as assumed in Eq. (4.12).
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Figure D.1: The conditional average ce defined in Eq. (3.13) for a regular grid of lengthL = 20 and

spacing a = 1. Red dots are the input value c, which in this case is cμ = 10 + 3 sin(2πaμ/L).
Greendotsare the result ofperforming theconditional averageaverage inEq. (3.13)with the sampling

method given in Eq. (D.11).
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E
Error Estimates for Linearly

Consistent Operators.

In Section 5.3 we only considered the formal aspects of the construction of
discrete ordinary differential equations (ODE) like (5.30) fromcontinuumpar-
tial differential equations (PDE) like (0.3). With the Petrov-Galerkin method
we made an approximation in the process without worrying about the error
committed. In this appendix, we pay attention to this issue by focusing on
basis functions ψ(r) that have as continued functions the linear functions.

Let us consider the PDE (0.3) for a highly dilute suspension. In this case,
the general diffusion equation (0.3) turns into the Fick’s diffusion equation

∂c

∂t
(r, t) = ∇2c(r, t) . (E.1)

Let us start by using the discretization operatorDR on the diffusion equa-
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tion (E.1). By applying the discretization operator on both sides

DR

[
∂c

∂t
(r, t)

]
= DR[∇2c(r, t)] .

The effect of the discretization operator is achieved by multiplying (E.1) with
respect to δμ(r) and integrating over the whole space, which leads to

d

dt
c(t) =

∫
dr δ(r)∇2c(r, t) , (E.2)

where

c(t) ≜
∫

dr δ(r)c(r, t) .

The exact equation (E.2) is not a closed equation for cμ(t)until we represent
the continuous field c(r, t) in terms of the discrete values cμ(t). To this end,
we write

c(r, t) = ψT (r)c(t) + ε(r, t) , (E.3)

where the error field ε(r, t) is precisely defined as

ε(r, t) ≜ c(r, t)− ψT (r)c(t) .

By inserting Eq. (E.3) into (E.2), we have

d

dt
c(t) = −Δc(t) + ε ,

where the discrete Laplacian operator is defined in Eq. (5.20) and the error
term is

ε =
∫

drδ (r)∇2ε(r, t) . (E.4)
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We analyze now this error term by noting that the error field can be written as

ε(r) = c(r)−
∫

dr′ S(r, r′)c(r′) .

By Taylor expanding the field c(r′) inside the integral around rwe have

ε(r) =
∞∑
n=1

∇nc(r)mn(r) ,

where the momentsmn (r) are given by

mn(r) ≜
∫

dr′ S(r, r′)(r′ − r)n .

Therefore, the error term (E.4) has the form

ε =
∫

dr δ(r)∇2
∞∑
n=1

∇nc(r)mn(r) .

Thediscussionof the error in thediscretizationprocedure requires the knowl-
edge of the moments of the smoothing kernel S(r, r′). The conditions (5.16)
show that for linearly consistent interpolations, the smoothing kernelS(r, r′)
has themomentsm0(r) = 0 andm1(r) = 0. Given the locality ofS(r, r′)we
expect thatmn(r) ∝ hn whereh is a typical value of the lattice spacing around
the point r. In conclusion, we expect that for a linearly consistent scheme, the
error committed in solving the discrete equation instead of the continuumone
will be of order h2.
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F
Dissipative Term in 1D

In this appendix we compute the dissipative term (5.33) in 1D for regular lat-
tices of spacing a. Due to the form of the Delaunay construction, the ψμ(x)
functions are zero for all x positions far away to the node μ. Keeping this in
mind, it is straightforward to compute the dissipative matrix explicitly.

F.1.F.1.F.1. Obtention of the dissipative matrix in 1DObtention of the dissipative matrix in 1DObtention of the dissipative matrix in 1D

The dissipative matrix can be obtained ny evaluating the mobility coefficient
Γ(c) at the interpolated field c(x) =

∑
μ ψμ(x)cμ so that

Dμν =

∫
dx∇δμ(x)∇δν(x)Γ(ψψψ · c)

=
D

kBT

∫
dx
[
∇δμ(x)

]
[∇δν(x)]

[∑
σ

ψσ(x)Γσ

]
. (F.1)
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The basis function δμ(x) and its gradient are given by

δμ(x) =
∑

μ′

M δ
μμ′ψμ′(x) , (F.2)

∇δμ(x) =
1
a

∑
μ′

M δ
μμ′

[
θ(x− xμ′−1)θ(xμ′ − x)− θ(x− xμ′)θ(xμ′+1 − x)

]
=

1
a

∑
μ′

M δ
μμ′

[
θxl

μ′
− θxr

μ′

]
, (F.3)

where θ(x) is the Heaviside step function. Therefore, the dissipative matrix
will be

Dμν =
D

kBT

1
a3

∫
dx

∑
μ′

M δ
μμ′

[
θxl

μ′
− θxr

μ′

][∑
ν′

M δ
νν′

[
θxl

ν′
− θxr

ν′

]]

×

[∑
σ

[
θxl

σ
(x− xσ−1)− θxr

σ
(xσ+1 − x)

]
cσ

]

=
D

kBT

1
a3

∑
μ′

M δ
μμ′

{∫
dx θxl

μ′

[∑
ν′

M δ
νν′

[
θxl

ν′
− θxr

ν′

]]

×

[∑
σ

[
θxl

σ
(x− xσ−1)− θxr

σ
(xσ+1 − x)

]
cσ

]

−
∫

dx θxr
μ′

[∑
ν′

M δ
νν′

[
θxl

ν′
− θxr

ν′

]]

×

[∑
σ

[
θxl

σ
(x− xσ−1)− θxr

σ
(xσ+1 − x)

]
cσ

]}
. (F.4)

Of the sum over all ν′ nodes (and, respectively, all the σ nodes) only those
nodes whose elements left and right overlap with the μ′-th node will be dif-
ferent from zero. The element xl

μ′ , for example, overlaps only with nodes
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ν′ = μ′ − 1 and ν′ = μ′, so

Dμν =
D

kBT

1
a3

∑
μ′

M δ
μμ′

×

{∫ xμ′

xμ′−1

dx
[
−M δ

νμ′−1 +M δ
νμ′

] [
(xμ′ − x)uμ′−1 + (x− xμ′−1)uμ′

]
−
∫ xμ′+1

xμ′

dx
[
−M δ

νμ′ +M δ
νμ′+1

] [
(xμ′+1 − x)uμ′ + (x− xμ′)uμ′+1

]}

=
D

kBT

1
a3

∑
μ′

M δ
μμ′

×

{[
M δ

νμ′ −M δ
νμ′−1

] [
cμ′−1

∫ xμ′

xμ′−1

dx (xμ′ − x) + cμ′

∫ xμ′

xμ′−1

dx (x− xμ′−1)

]

+
[
M δ

νμ′ −M δ
νμ′+1

] [
cμ′+1

∫ xμ′+1

xμ′

dx (x− xμ′) + cμ′

∫ xμ′+1

xμ′

dx (xμ′+1 − x)

]}

=
D

kBT

1
a

∑
μ′

M δ
μμ′

×
{[

M δ
νμ′ −M δ

νμ′−1
] [cμ′−1 + cμ′

2

]
+
[
M δ

νμ′ −M δ
νμ′+1

] [cμ′ + cμ′+1

2

]}
=

D

kBT

1
a

∑
μ′

M δ
μμ′

[
−
(
cμ′−1 + cμ′

2

)
M δ

μ′−1ν

+

(
cμ′−1 + cμ′

2
+

cμ′ + cμ′+1

2

)
M δ

μ′ν −
(
cμ′−1 + cμ′

2

)
M δ

μ′+1ν

]
=

D

kBT
M δ

μμ′Uμ′ν′M
δ
ν′ν ,

where the matrixU is

Uμν =
1
a


− cμ+cμ−1

2 iff ν = μ − 1 ,
cμ+cμ−1

2 +
cμ+cμ+1

2 iff ν = μ ,

− cμ+cμ+1
2 iff ν = μ + 1 ,

0 otherwise .
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F.2.F.2.F.2. Gradient of the dissipative matrixGradient of the dissipative matrixGradient of the dissipative matrix

Once obtained the dissipative matrix, we may compute its derivative. Let us
expand the sum over μ′ around ν so that

Dμν =
D

kBT

1
a

∑
μ′

M δ
μμ′

[
−
(
cμ′−1 + cμ′

2

)
M δ

μ′−1ν

+

(
cμ′−1 + cμ′

2
+

cμ′ + cμ′+1

2

)
M δ

μ′ν −
(
cμ′−1 + cμ′

2

)
M δ

μ′+1ν

]
=

D

kBT

1
a

{
· · ·

+M δ
μν−1

[
−
(
cν−2 + cν−1

2

)
M δ

ν−2ν +

(
cν−2 + cν−1

2
+

cν−1 + cν

2

)
M δ

ν−1ν

−
(
cν−2 + cν−1

2

)
M δ

νν

]
+M δ

μν

[
−
(
cν−1 + cν

2

)
M δ

ν−1ν +

(
cν−1 + cν

2
+

cν + cν+1

2

)
M δ

νν

−
(
cν−1 + cν

2

)
M δ

ν+1ν

]
+M δ

μν+1

[
−
(
cν + cν+1

2

)
M δ

νν +

(
cν + cν+1

2
+

cν+1 + cν+2

2

)
M δ

ν+1ν

−
(
cν+1 + cν+2

2

)
M δ

ν+2ν

]
+ · · ·

}
. (F.5)

The derivative with respect to cν will be, hence,

∂Dμν

∂cν
=

D

kBT

1
2a
{
M δ

μν−1
[
M δ

ν−1ν −M δ
νν

]
+M δ

μν

[
−M δ

ν−1ν + 2M δ
νν −M δ

ν+1ν
]
+M δ

μν+1
[
−M δ

νν +M δ
ν+1ν
]}

.

(F.6)
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So that the gradient, expanding around the node μ, is

∑
ν

∂Dμν

∂cν
=

D

kBT

1
2a

{
· · ·

+M δ
μμ−2

[
M δ

μ−2μ−1 −M δ
μ−1μ−1

]
+M δ

μμ−1
[
−M δ

μ−2μ−1 + 2M δ
μ−1μ−1 −M δ

μμ−1
]

+M δ
μμ

[
−M δ

μ−1μ−1 +M δ
μμ−1
]

+M δ
μμ−1

[
M δ

μ−1μ −M δ
μμ

]
+M δ

μμ

[
−M δ

μ−1μ + 2M δ
μμ −M δ

μ+1μ
]

+M δ
μμ+1

[
−M δ

μμ +M δ
μ+1μ
]

+M δ
μμ

[
M δ

μμ+1 −M δ
μ+1μ+1

]
+M δ

μμ+1
[
−M δ

μμ+1 + 2M δ
μ+1μ+1 −M δ

μ+2μ+1
]

+M δ
μμ+2

[
−M δ

μ+1μ+1 +M δ
μ+2μ+1

]
+ · · ·

}
. (F.7)

Note that if in (F.7) all the shown terms cancel, by symmetry, all the un-
shown terms also vanish. AsMδ is as symmetric matrix, we have the following
properties

M δ
μν = M δ

νμ ,

M δ
μμ = M δ

νν , (F.8)

so that it is obvious that all the terms that appear in (F.7) vanish. Therefore,
the gradient is identically equals to zero∑

ν

∂Dμν

∂cν
= 0 . (F.9)
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G
List of Acronyms

BD Brownian Dynamics
CG Coarse Grained (variable)
DDFT Dynamic Density Functional Theory
FDT Fluctuation-Dissipation Theorem
FFT Fast Fourier Transform
FPE Fokker-Planck Equation
GA Gaussian
GL Ginzburg-Landau
LLNS Landau-Lifshitz Navier-Stokes
MD Molecular Dynamics
ODE Ordinary Differential Equation
PDE Partial Differential Equation
SDE Stochastic Differential Equation
SODE Stochastic Ordinary Differential Equation
SPDE Stochastic Partial Differential Equation
ToCG Theory of Coarse-Graining
vdW van der Waals
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H
List of Symbols

In general, boldboldbold shape refers to matrices (upper case) or vectors (lower case).
Italic shape refers to scalars. CALLIGRAPHIC shape refers to operators.
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Physical parameters and variablesPhysical parameters and variablesPhysical parameters and variables

N Number of particles
M Number of nodes
kB Boltzmann’s constant
T Temperature
β (kBT )

−1

Tc Critical temperature (vdW model, GL model)
c(r, t) Concentration field
c0 Average concentration field
cc Critical concentration (vdW model, GL model)
L Total length of a 1D simulation box
VT Total volume of aD simulation box
D Diffusion coefficient
Γ(c) Mobility
D(c) Dissipative matrix
F [c] Free energy functional
F (c) Free energy function

Finite elementsFinite elementsFinite elements

Vμ Volume of node μ
ψμ(r) Finite element with support on the Delaunay triangulation
δμ(r) (Conjugate) finite element of ψμ(r)

θeμ(r) Characteristic function of the element eμ

be→μ Vector belonging to the element e that points toward node μ
Mψ Mass matrix
Lψ Stiffness matrix
Mδ Inverse of the mass matrixMψ

Lδ Conjugate of the stiffness matrixLψ
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Theory of Coarse GrainingTheory of Coarse GrainingTheory of Coarse Graining

z Microscopic state
z0 Initial microscopic state
ρ(z) Microscopic probability density
ρeq(z) Equilibrium stationary microscopic probability density
ρ(z, t) Microscopic relevant dynamics
δρ(z, t) Microscopic irrelevant dynamics
iL Liouville operator
Tt Evolution operator
λ(z), μ Lagrange multipliers
S[ρ(z)] Gibbs-Jaynes Entropy functional
X(z) Generic coarse-grained variable
P (x) Mesoscopic probability density
P eq(x) Equilibrium stationary mesoscopic probability density
P ,P†,Q,Q† Projection operators
⟨· · · ⟩c Conditional expectation
vμ(z) Drift
Kμν(x,x

′, τ) Memory kernel
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