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Abstract
This doctoral thesis addresses the problem of numerical integration of singular and
near-singular functions, in two and three dimensions, using variable transformation
methods. It includes the analysis of transformations with a geometric purpose, i.e.,
they map the physical domain onto a parent, standard domain, and transformations
of an algebraic nature, with the purpose of softening the (near-)singularities in the
integrand.
Transformations used to map the physical element onto the parent domain are

described in chapter 2. The most general case of a degenerate isoparametric map,
such that it is homogeneous in one of its variables is presented, and its equivalence to
the polar transformation is justified in the two-dimensional case. These maps induce
a factorization of certain types of integral kernels into a radial and an angular part,
allowing a separate, specific treatment of each factor.
The two-dimensional singular integration problem is examined in chapter 3. The

radial kernel is completely regularized by means of a new scheme that removes its
singularity. Regarding the angular kernel, it is shown to have the same form as the
one-dimensional near-singular kernel, and thus the same set of transformations can
be successfully applied to both kernels.
The two-dimensional near-singular kernel is the subject of chapter 4. Whilst the

treatment of the angular kernel is exactly the same as in chapter 3, the radial kernel
admits a whole new set of regularizing maps, taking advantage of the linear factor
in the Jacobian of the degenerate isoparametric transformation. The generalization
of the problem to adjacent triangles, in which the source point lies outside the
integration domain is also considered.
The extension of the singular integration to three-dimensional domains is covered

in chapter 5. The treatment of the radial kernel is very similar as in chapter 3,
whereas the bivariate angular kernel, restricted to the boundary of the bidimensional
angular domain, behaves very similarly to the near-singular one dimensional kernel,
and yet the same set of softening transformations as in chapter 3 and chapter 4 can
be suitable re-utilized in this situation.
Lastly, chapter 6 presents a proof of the optimal form of the well-known cubic

transformation, employed as one of the most common alternatives to regularize the
angular kernel in the three previous chapters.
All proposed methods have been extensively tested from the numerical point of

view, showing that they are able to outperform the existing methods for a broad
variety of situations.
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Resumen
Esta tesis doctoral aborda el problema de la integración numérica de funciones singu-
lares y casi-singulares, en dos y tres dimensiones, usando métodos de transformación
de variables. Se incluye el análisis de transformaciones con un propósito geométrico,
tales que transforman el dominio físico en un dominio maestro estandarizado, y
transformaciones de naturaleza algebraica, con el propósito de suavizar las casi-
singularidades del integrando.
Las transformaciones del elemento físico en el dominio maestro se describen en el

Capítulo 2. Se presenta el caso más general de una transformación isoparamétrica
degenerada que es homogénea en una de sus variables, y se justifica su equivalen-
cia con la transformación polar en el caso bidimensional. Estas transformaciones
inducen una factorización de ciertos tipos de núcleo singular en una parte radial y
otra angular, permitiendo un tratamiento separado y específico de cada factor.
La integración singular en dos dimensiones se examina en el Capítulo 3. El núcleo

radial se regulariza completamente por medio de un nuevo esquema que suprime su
singularidad. Con respecto al núcleo angular, se muestra que tiene la misma forma
que el núcleo casi-singular en una dimensión, de forma que el mismo conjunto de
transformaciones se puede aplicar satisfactoriamente a ambos núcleos.
El núcleo casi-singular en dos dimensiones es el objeto del Capítulo 4. Aunque el

tratamiento del núcleo angular es idéntico al del Capítulo anterior, el núcleo radial
admite un nuevo conjunto de transformaciones de regularización, aprovechando un
factor lineal presente en el jacobiano de la transformación isoparamétrica. Se con-
sidera también la generalización de este problema a triángulos adyacentes, en los
cuales el punto fuente está situado fuera del dominio de integración.
La extensión de la integración singular a dominios tridimensionales se analiza

en el Capítulo 5. El tratamiento del núcleo radial es muy similar al realizado en
el Capítulo 3, mientras que en lo referido al núcleo angular en dos variables, su
restricción a la frontera del dominio bidimensional se comporta de manera muy
similar a la del núcleo casi-singular en una dimensión, por lo que el mismo conjunto
de transformaciones de suavizado ya empleadas en los Capítulos 3 y 4 se puede
reutilizar de forma satisfactoria en esta situación.
Finalmente, el Capítulo 6 presenta una prueba de la forma óptima de la conocida

transformación cúbica, usada como una de las alternativas más habituales para la
regularización del núcleo angular descrito en los tres Capítulos anteriores.
Todos los métodos propuestos se han sometido a ensayos numéricos exhaustivos,

mostrando que son capaces de sobrepasar en rendimiento a los métodos existentes
en una amplia variedad de situaciones.
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1. Introduction

1.1. Overview

The growing importance of numerical methods for the solution of Partial Differential
Equations, such as FEM, XFEM and BEM, acquired over the last decades, has
revealed the necessity for efficient procedures of numerical quadrature, in both two
and three dimensions, when the integrands are singular or near-singular functions
of their arguments.
Several techniques have been developed to serve this purpose, including adaptive

domain subdivision [21, 51], analytic or semi-analytic singularity subtraction [30,
23], quadrature rules adapted to specific integrands or domains [20, 41], composite
quadratures [59], extrapolation techniques [44] and methods based upon variable
transformations.
This work presents a systematic approach to the variable transformation methods,

taking into account its two fundamental features, namely

• Geometric: since integrals are usually formulated over arbitrary elements in
physical coordinates, changes of variables that express such integrals over a
standard parent domain, typically a unit cube, are desirable. Moreover, these
transformations may help improving the behaviour of singular integrands. A
particular case of a degenerate isoparametric map, designated as pyramidal
transformation, is shown to accomplish both objectives.

• Algebraic: even if the pyramidal transformation helps reducing the integrand
sharpness, a further regularization may be needed to soften the remaining
singularities. A thorough review of existing maps is performed, finding their
optimal forms in some cases, and proposing new transformations otherwise.
Since the regularizing maps are applied after composition with the pyramidal
transformation, only normalized maps, such that the parent domain is kept
unchanged, are considered.

All proposed methods have been subject to extensive numerical simulations, showing
their improvement in performance over existing algorithms. A practical requirement
has been the simplicity of code implementation for all methods, together with their
efficiency in running time.
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Chapter 1 Introduction

1.2. The (near-)singular integration problem in the
XFEM framework

The first stage in the Finite Element Method (FEM), eXtended Finite Element
Method (XFEM) and Boundary Element Method (BEM) is the meshing, by which
the problem domain is partitioned into elements. Triangles and quadrilaterals are
the most typical examples in two dimensions (2D), whereas in three dimensions (3D),
tetrahedra, pyramids, prisms or 8-node hexahedra are common choices. Often, these
elements have arbitrary shapes induced by complicated boundary conditions. The
need to simplify the computation of the elementary matrices motivates a change of
coordinates from a standard parent domain, usually the unit hypercube Cn = [0, 1]n,
onto the physical domain.
Affine transformations of triangles and tetrahedra, see e.g. [53, 36, 57, 69, 55, 47]

together with isoparametric (multilinear) mappings of quadrilaterals, prisms and
hexahedra, see e.g. [42, 40, 38, 66, 39, 18, 71, 41] are routinely utilized in regular
FEM problems. Moreover, degenerate cases of the isoparametric map have been
used since the 1960s in the XFEM context see e.g. [52, 58, 62, 42, 17], because
the transformations and their Jacobians have certain homogeneity properties that
facilitate the integration of the transformed kernels.
The degenerate transformation that will be used throughout this work maps

squares onto triangles and cubes onto pyramids, and hence it will be designated
as pyramidal transformation, P . The most general n-dimensional form of P , and
conditions for its invertibility in 2D and 3D, are given in chapter 2.
As already mentioned, the other major problem that arises in XFEM and BEM is

the numerical integration of (near-)singular functions. It is a well-known fact that
standard quadrature rules usually produce inaccurate results for these integrands,
see e.g. [24, 45, 60, 69, 55, 49], whose derivatives take very large, or even infinite
values within the integration domain.
In order to articulate the preceding ideas in a more specific way, we recall that

the truncation error of a one-dimensional quadrature rule is defined (see e.g. [62])
as

E(f) ≡
∫ b

a
w(x)f(x)dx−

k∑
i=1

wif(xi),

where f is the integrand, w the weighting function, [a, b] the integration interval,
k the order of the rule and {wi, xi} the weights and nodes, respectively, of the
quadrature rule. A bound for the truncation error is given below.
Theorem 1. Let f be a function with continuous derivatives up to order 2k − 1 in
[a, b], and piecewise continuous derivative of order 2k. Then

|E(f)| 6 e2k sup
x∈[a,b]

∣∣∣f (2k)(x)
∣∣∣ ,

with
e2k = 1

(2k)!

∫ b

a
w(x) [Pk(x)]2 dx,

6



1.2 The (near-)singular integration problem in the XFEM framework

in the case of a Gaussian rule, and Pk the monic polynomial whose zeros are the
nodes of the quadrature formula.

Proof. Refer to [62], section 4.2.

This implies that a further regularizing map, denoted R throughout this work, is
needed to attenuate, or soften, the remaining singularities in the integrand. In order
to formulate a systematic approach, R will always transform the standard parent
domain onto itself.
Even though the regularization R may appear completely independent from the

pyramidal transformation P , it will be justified in subsequent chapters that the
Jacobian of P actually helps building certain regularizing maps, that otherwise
could not be implemented.
Another relevant aspect of R is that, apart from softening the singularities in

the integrand, it must be a smooth transformation itself, to avoid introducing new
singularities in the process. This feature will introduce strong restrictions on the
explicit form of the transformations proposed in the next chapters.

Figure 1.1.: Composition of Pyramidal and Regularizing maps in 2D

In order to illustrate the preceding paragraphs, Fig. 1.1 shows the composition of
P and R in the two-dimensional case. As already mentioned, the integrands are
(near-)singular functions of the physical (x, y) and isoparametric (ū, v̄) coordinates,
but are expected to be smooth functions when expressed in modified isoparametric
coordinates (u, v).

7



Chapter 1 Introduction

1.3. Transformation of quadrature rules
A quadrature rule Q over a standard closed domain D is defined by

Q(f) =
nw∑
i=1

wif(ui), (1.1)

where f is an integrable function over D, wi and ui for i = 1, · · · , nw represent the
weights and nodes associated to Q and nw is the order of the rule.
A differentiable transformation T : D ⊂ Rn → T with positive Jacobian JT from

D onto a physical domain T ⊂ Rn allows to translate the rule Q from D to T . The
quadrature rule is reformulated for an arbitrary integrand f over T as follows:

Q∗(f) =
nw∑
i=1

w∗i f(xi), (1.2)

where the new weights and nodes are defined, for i = 1, · · · , nw, by

w∗i = JT (ui)wi, (1.3)
xi = T (ui). (1.4)

The scheme outlined above allows to perform integrations in the physical domain,
by means of the weights and nodes of the modified quadrature rule (1.3)-(1.4),
namely ∫

T
f(x)dx ≈

nw∑
i=1

w∗i f(xi).

Figure 1.2.: Mapping of the quadrature rule nodes

Instead of changing variables in the physical integrand and computing (1.1) in the
parent domain, it is much more efficient, from an implementation point of view, to

8



1.3 Transformation of quadrature rules

apply the transformations to a given set of standard weights and nodes and calculate
the quadrature by means of (1.2), see e.g. [43, 57, 55, 3]. In our approach, the
transformation T is simply the result of composing the pyramidal and regularizing
mappings, i.e.

T = P ◦ R.

All methods presented in this work make use of standard Gauss-Legendre rules
exclusively, as illustrated in Fig. 1.2 for the two-dimensional case. The standard
Gaussian nodes are mapped by the regularizing transformation R onto the unit
square C2 = [0, 1]2 in coordinates (ū, v̄). Furthermore, a pyramidal transformation
P maps the nodes onto the physical domain T , in coordinates (x, y).
One feature shared by all (near-)singular methods, see e.g. [64, 31, 45, 60, 51, 34],

is that the modified nodes, instead of being evenly distributed all over the physical
domain, are clustered towards the singular point, namely vertex 0 of the triangle T
in Fig. 1.2. This vertex corresponds to side 03 of the square in coordinates (ū, v̄),
where the modified nodes have already gathered.
It should be pointed out, however, that too much clustering around the singular

point does not necessarily improve the performance of a particular rule, since there
should be enough points all through the rest of the element to compute the integral
in an accurate way, see e.g. [32, 15].

9





2. The isoparametric and pyramidal
transformations

2.1. The isoparametric transformation
The isoparametric transformation is a widely established technique in FEM problems
(see e.g. [9, 18]). Its formulation in the n-dimensional case starts by considering the
first-order shape functions in the unit interval, namely:

N0(u) = 1− u,
N1(u) = u.

By a tensor product method, it is easy to build the multilinear shape functions for
the unit hypercube Cn = [0, 1]n:

Ni(u) =
n∏
j=1

Nij(uj), (2.1)

where i = i1 · · · in is the multi-index with ij ∈ {0, 1} and u = (u1, · · · , un) are the
parent coordinates. The shape functions in (2.1) are the product of polynomials of
degree one in each parent coordinate. As an example in 3D, with the usual notation
u = (u, v, w), we have that N010(u, v, w) = (1− u)v(1− w).
The 2n vertices of Cn can be mapped onto an arbitrary set S = {xi ∈ Rn : i ∈ In},

with In = {0, 1}n, of 2n points in Rn by the isoparametric transformation

x(u) =
∑
i∈In

Ni(u)xi, (2.2)

for all u ∈ Cn.
The shape functions satisfy the interpolation property (see e.g. [18]): if uj is the

j-th vertex of Cn then Ni(uj) = δij, i ∈ In, with δij being the Kronecker tensor. It
follows that (2.2) maps the vertices of Cn onto S: x(uj) = xj. A consequence of this
fact is the Partition of Unity (PU) property of the shape functions:∑

i∈In
Ni(u) = 1, (2.3)

and since Ni(u) > 0 for i ∈ In, we conclude that (2.2) expresses x(u) as a convex
combination of the points xi ∈ S. The image of Cn by this transformation is usually

11



Chapter 2 The isoparametric and pyramidal transformations

called a multilinear element (see e.g. [19, 29, 66, 39, 18, 71, 13]). It is worth
mentioning that the image of Cn through the isoparametric transformation may not
fill the convex hull of the points xi, and thus a multilinear element need not be a
convex set itself.

Figure 2.1.: Isoparametric transformation in 2D

In 2D, the element defined by (2.2) is the quadrilateral Q shown in Fig. 2.1,
whereas in 3D the isoparametric element is the 8-node, curved-face hexahedron H
displayed in Fig. 2.2.

Figure 2.2.: Isoparametric transformation in 3D

2.2. The pyramidal transformation, P
Apart from transforming a physical element onto the standard hypercube Cn, there
are other algebraic properties of the coordinate change that may be desirable in
certain situations, particularly when the integrand is singular.

12



2.2 The pyramidal transformation, P

For example, if the singular integrand is a homogeneous function, the use of a
transformation that has, at least partially, separated variables may result in one
or more variables factored out from the rest of the integral kernel, see e.g. [62].
Moreover, the Jacobian of the transformation may contribute to the total or partial
cancellation of the singularity itself.
To this purpose, we focus now on isoparametric maps that are homogeneous in

the first parent coordinate when x0 is taken as the origin, i.e.

x(u)− x0 = ur(v), (2.4)

where u = (u, v1, · · · , vn−1) = (u,v) and r(v) is a linear combination of shape
functions, that are polynomials of degree one in each of the variables v1, · · · , vn−1.
Since the general isoparametric transformation (2.2) is affine in each variable, it

follows that
x(u) = (1− u)x(0,v) + ux(1,v). (2.5)

Hence, (2.5) takes the form (2.4) if and only if x(0,v) = x0 for v ∈ Cn−1, or, by the
PU property (2.3), when x0i2···in collapse into x0. It follows from (2.4) that

r(v) = x(1,v)− x0

and thus the base of the element, i.e. the points for which u = 1, corresponds to the
(n − 1)-dimensional face of a multilinear element. If we assume that x1i2···in 6= x0
it is then clear that r(v) 6= 0 for v ∈ Cn−1. Indeed, the geometric interpretation of
r(v) is the radius vector of the base points, x(1,v), measured from x0.
The n-dimensional simplex has been considered in [58, 8] and an n-dimensional

pyramid, with hyperplanar base, in [7]. However, the most general element for which
a u-homogeneous degenerate map can be formulated is the curved-base pyramid
obtained by collapsing all vertices of an (n−1)-dimensional face onto an apex x0, as
described above. This motivates the naming of (2.4) as pyramidal transformation,
that will be denoted by P throughout this work.
Particular cases of (2.4) in the lowest dimensions are commonly referred in the

engineering literature as Duffy transformations [11, 49, 50, 47, 7], although the name
“almost polar transformation” was introduced in [43] and the name “alpha-beta
system” has been used in [56]. The term “Duffy-type” has also been used for other
cases of non-homogeneous degenerate isoparametric mappings, formulated over non-
pyramidal elements such as prisms, see e.g. [41], p. 188 for a three-dimensional
example.

2.2.1. The pyramidal transformation in 2D
A number of (near-)singular methods in 2D make use of a degenerate isoparametric
map that allows the representation of an arbitrary triangular element by means of
the standard unit square C2 = [0, 1]2.
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Chapter 2 The isoparametric and pyramidal transformations

We start by denoting x0 = x00,x1 = x10,x2 = x11,x3 = x01 the vertices of Q in
Fig. 2.1. Hence, the isoparametric transformation (2.2) takes the form

x(u, v) = (1− u)(1− v)x0 + u(1− v)x1 + uvx2 + (1− u)vx3. (2.6)
It is a well-known fact that the bilinear transformation (2.6) is invertible if and
only if Q is convex, see e.g. [19, 40]. When the vertex x3 collapses onto x0, the
quadrilateral Q becomes a triangle T with vertices {x0,x1,x2} (see Fig. 2.3), and
the pyramidal transformation (2.4) can be written as

x(u, v) = x0 + ur(v), (2.7)
with

r(v) = (1− v)(x1 − x0) + v(x2 − x0), (2.8)
and Jacobian

JP(u, v) = 2|T |u, (2.9)
where |T | is the area of the triangle.

Figure 2.3.: Pyramidal element in 2D

For the standard triangle T1 with vertices x0 = (0, 0), x1 = (1, 0), x2 = (1, 1), the
pyramidal transformation takes the usual form [11, 44, 49, 3]:

x(u, v) = (u, uv), (2.10)
JP(u, v) = u. (2.11)

It should be pointed out that several authors, see e.g. [42, 36, 2, 34, 35] use
the biunit square [−1, 1]2 as the parent domain. Even though the unit and biunit
squares are easily related by an affine transformation, the unit square enables the
u-homogeneity property in (2.7) and (2.9), that no longer holds when expressing the
transformations over [−1, 1]2.
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2.2 The pyramidal transformation, P

2.2.2. Polar coordinates
When integrating over triangles, some authors use polar coordinates to transform the
physical domain, e.g. [24, 2, 33, 60], whereas others prefer a degenerate isoparametric
map [11, 49, 56, 3]. A relationship between both schemes is now derived.
It has already been mentioned that r(v) in (2.8) is the radius vector of the points

belonging to the edge x1x2, measured from x0 (Fig. 2.3). Let vp denote the value of
v corresponding to the triangle height, hT (Fig. 2.4, left), noting that vp need not
belong to the interval [0, 1]. It is then clear (Fig. 2.4, right) that:

|r(v)| = |x1 − x2|
(
(v − vp)2 + ε2

v

)1/2
, (2.12)

where the parameter

εv = hT
|x1 − x2|

= 2|T |
|x1 − x2|2

, (2.13)

represents a triangle form factor that takes small values whenever the height of T
is small compared to the length of the opposite site or, alternatively, when the area
of T is small compared to that of the square of side |x1 − x2|.

Figure 2.4.: Relationship between Pyramidal and Polar transformations

The conventional polar transformation is given by

x(ρ, θ) = x0 + ρ cos θ,
y(ρ, θ) = y0 + ρ sin θ,
J(ρ, θ) = ρ,
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Chapter 2 The isoparametric and pyramidal transformations

with θ ∈ [θ01, θ02] and ρ ∈ [0, R(θ)] (Fig. 2.4), where we have defined

R(θ) = |r(v(θ))|.

According to (2.7) it is immediate that

ρ = |x− x0| = uR(θ).

On the other hand, it is clear from Fig. 2.4, right, that

tan(θ − θp) = |x1 − x2|
hT

(v − vp),

where θp is the polar angle corresponding to the triangle height. Taking (2.13) into
account we finally obtain

u(ρ, θ) = ρ

R(θ) , (2.14)

v(θ) = vp + εv tan(θ − θp). (2.15)

This means that the polar (ρ, θ) and isoparametric (u, v) schemes are essentially
interchangeable, and it motivates naming u as the radial variable and v as the
angular one. However, the isoparametric system seems more straightforward due to
the fact that the triangle is represented by a unit square, whereas in polar coordinates
a curved domain is obtained. It is worth mentioning that a relationship between
the polar and pyramidal transformation was derived in [47] for the particular case
of the triangle T1 (sec. 2.2.1), pointing out their similarities.

2.2.3. The pyramidal transformation in 3D
In 3D, the vertices x001, x010 and x011 of the 8-node hexahedron (Fig. 2.2) collapse
onto x0. A trilinear pyramid P is then obtained (Fig. 2.5) with 5 faces (4 of them
triangles), 8 edges and 5 vertices. In general, the four vertices x1i2i3 are not coplanar,
but rather belong to a doubly ruled surface (a hyperbolic paraboloid). The vertex
x0 = x000 is usually called the pyramid apex.
With the usual notation u = (u,v) = (u, v, w), the pyramidal transformation

(2.4) takes the form
x(u)− x0 = ur(v, w). (2.16)

We remark that the most general 3D isoparametric element for which (2.16) exists
is the curved-base pyramid in Fig. 2.5, and therefore other common elements in
the FEM context, such as 6-node pentahedra, with triangular prisms as particular
cases [38, 41] and 8-node non-degenerated hexahedra [70, 18] are excluded from
a u-homogeneous transformation. These elements can always be partitioned into
pyramids or tetrahedra, see e.g. [48].
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2.2 The pyramidal transformation, P

Figure 2.5.: Pyramidal transformation in 3D

For the standard pyramid P1 [11, 49] with vertices (0, 0, 0), (1, 0, 0), (1, 0, 1),
(1, 1, 0) and (1, 1, 1) the pyramidal transformation (2.16) reduces to

x(u) = (u, uv, uw),
JP(u) = u2.

Tetrahedra are obtained by collapsing two additional pyramid vertices, excluding
the apex. If we make x101 collapse with x100, (2.16) becomes

x(u)− x0 = u (−x0 + (1− v)x100 + v(1− w)x110 + vwx111) , (2.17)
JP(u) = u2vV10 = 6u2vVT ,

where VT is the volume of the tetrahedron determined by x0, x100, x110, x111. For
the standard tetrahedron T1 with vertices (0, 0, 0), (1, 0, 0), (1, 1, 0) and (1, 1, 1),
considered e.g. in [58], the transformation (2.17) reduces to

x(u) = (u, uv, uvw),
JP(u) = u2v.

Similar expressions exist for different examples of tetrahedra, see e.g. [57].

2.2.4. The Jacobian of the pyramidal transformation in 3D
Considerable effort has been dedicated to establishing the (local) invertibility of the
isoparametric map for 8-node hexahedra, see e.g. [40, 70, 66, 39]. Sufficient condi-
tions exist but, to our knowledge, no necessary and sufficient algebraic conditions
for positive Jacobian have been derived yet.
The reasonable algebraic complexity of the pyramidal transformation (2.16) makes

it possible to find a closed expression for its Jacobian, as well as a necessary and
sufficient algebraic condition for its invertibility.
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Chapter 2 The isoparametric and pyramidal transformations

Theorem 2. The Jacobian of the pyramidal transformation in 3D is

JP(u) = u2 ∑
i∈I2

Ni(v)Vi, (2.18)

for all u ∈ C3, where Vi is the (signed) volume of the parallelepiped determined by
the edges x1i1i2 − x0, x11i2 − x10i2 and x1i11 − x1i10 of the pyramid, namely

Vi =
∣∣∣ x1i1i2 − x0 x11i2 − x10i2 x1i11 − x1i10

∣∣∣ .
Proof. The Jacobian of the transformation (2.16) is given by the determinant:

JP(u) =
∣∣∣ ∂x(u)

∂u
∂x(u)
∂v

∂x(u)
∂w

∣∣∣
= u2

∣∣∣ r(v) ∂r(v)
∂v

∂r(v)
∂w

∣∣∣ . (2.19)

A direct application of the PU property (2.3) yields

r(v) =
∑
i∈I2

Ni(v)(x1i1i2 − x0), (2.20)

and recalling that Ni(v) = Ni1(v)Ni2(w) it is immediate to show that the partial
derivatives of r(v) are

∂r(v)
∂v

=
∑
i2∈I1

Ni2(w) (x11i2 − x10i2) , (2.21)

∂r(v)
∂w

=
∑
i1∈I1

Ni1(v) (x1i11 − x1i10) . (2.22)

It is then clear that ∂2r(v)
∂v2 = ∂2r(v)

∂w2 = 0, from where it follows that

∂2JP(u)
∂v2 = ∂2JP(u)

∂w2 = 0,

and this means that the Jacobian of P is a polynomial of degree one in each of the
variables v, w. Taking (2.19)-(2.22) into account it is immediate to show that the
value of JP at the vertex x1i1i2 is Vi, which finishes the proof.

Corollary 3. The necessary and sufficient condition for JP to be positive in the
interior of C3 is that all Vi > 0, with at least one positive volume.
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3. The singular integral in 2D

3.1. Overview
This chapter analyzes the two-dimensional singular integral

I =
∫∫

T

g(x)
f(x− x0)dx, (3.1)

where T is an arbitrary triangle, g represents a non-singular integrable function and
f is an α-positively homogeneous function, i.e., f(tx) = tαf(x) for t > 0. We assume
that x0 is a vertex (apex) of T (Fig. 2.3). We also assume that f vanishes nowhere
apart from the origin. A typical example in terms of the Euclidean distance would
be f(x) = |x|α, where the real parameter α is the singularity strength, with α < 2
for (3.1) to be finite.
From now on, we denote the parent (isoparametric) coordinates as ū = (ū, w̄),

and hold the notation u = (u, v) for the modified isoparametric coordinates (recall
Fig. 1.1), that will be introduced later on. Hence, the transformation (2.7), rewritten
here for convenience, becomes:

x(ū, v̄) = x0 + ūr(v̄), (3.2)
JP = 2|T |ū. (3.3)

Applying this transformation to the integral (3.1) results in

I = 2|T |
∫∫

C2
g(x(ū))ū1−αφ(v̄)dū, (3.4)

where C2 = [0, 1]2 and the scalar function φ is given by

φ(v̄) = 1
f(r(v̄)) . (3.5)

Hence, the application of (3.2)-(3.3) to (3.1) conveys a double benefit. On the
one hand, the integration domain is transformed onto a unit square, where standard
quadrature rules can be readily used. On the other hand, the homogeneous integrand
in physical variables becomes factorized into a radial part

K1(ū) = ū1−α, (3.6)

depending on ū, and an angular part

K2(v̄) = φ(v̄). (3.7)
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Chapter 3 The singular integral in 2D

that is a function of v̄. This enables a separate treatment of each factor in the kernel
by means of further transformations able to attenuate the remaining singularities in
each part of the integrand. Furthermore, these reasons account for the convenience
of splitting physical quadrilaterals into triangles before performing the numerical
integration.
An additional advantage of applying (3.2)-(3.3) is that the factor ū in the Jacobian

helps attenuating the singularity in the radial part, since ū1−α is a softer function
than ū−α, unless α = 1, in which case the singularity is completely cancelled, see
e.g. [11, 53, 49]. This effect compensates the increase in the degree of g(x(ū)), in
the polynomial case, as shown by numerical experiments.
As already mentioned, the transformation (3.2) may not suffice to completely

remove the singularities in the integrand. For example, the radial kernel K1 in (3.6)
is regular for integer α, but for non-integer α the successive derivatives of ū1−α may
be singular at ū = 0. In fact, if α > 1 the integrand itself is still singular at ū = 0,
as pointed out e.g. in [49].
On the other hand, the angular kernel φ(v̄) is non-singular since, according to

sec. 2.2, r does not vanish and neither does f(r). However, it will be shown that
φ may have near-singularities, i.e., points where the function and/or its derivatives
take very large, yet finite values. These near-singularities are in fact induced by
an unfavourable geometry of the physical elements, i.e., highly distorted triangles.
Even though the integral (3.4) is performed over a standard domain, the angular
kernel (3.7) still depends on the parameters v̄p and εv. Thus, transformations that
incorporate information on the geometry of the element will be shown to perform
better, in numerical simulations, than other alternatives that do not.

3.2. The regularizing transformation, R

Numerical experiments show that the direct application of Gaussian quadrature
rules to the integral (3.4) does not produce accurate results in the general case, see
e.g. [24, 45, 60, 69, 55, 49]. It is then clear that a further transformation is needed
in order to regularize the integral kernel, attenuating its remaining singularities.
More specifically, we consider an arbitrary differentiable transformation R, that

maps C2 onto itself. The reason for maintaining a standard integration domain
is that only the integrand singularities must be dealt with, therefore no additional
singularities appear due to the transformed domain being distorted itself, as pointed
out in e.g. [60, 3].
From now on we focus, for simplicity, on transformations with separated variables,

whose parametric equations are

ū = ū(u), (3.8)
v̄ = v̄(v), (3.9)
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3.3 The radial kernel, K1(ū)

subject to the boundary conditions

ū(0) = v̄(0) = 0,
ū(1) = v̄(1) = 1,

i.e., ū and v̄ transform the unit interval [0, 1] onto itself. The transformations (3.8)
and (3.9) will be referred as regularizing or softening transformations throughout
this work.
Several strategies have been proposed to find the optimal forms of ū and v̄. In

general, all these transformations can be split into two categories:

1. Smooth transformations (a couple of typical examples are the sinh and cubic
transformations) with the objective of obtaining a transformed kernel that is
softer, to some degree, than the original one. We remark that the transformed
kernel might still be a (near-)singular function, even though its sharpness has
been reduced. These transformations will be designated “a priori” for the rest
of this work.

2. Transformations obtained after imposing a certain regularization condition
over the kernel, in order to turn it smooth. These transformations, also known
as reciprocal methods [72], might be (near-)singular themselves, justifying the
need for additional softening in the independent variables. These ones will be
designated “a posteriori” transformations from now on.

A brief description of some of the schemes developed in the literature for radial and
angular transformations is given in the next two sections.

3.3. The radial kernel, K1(ū)
The most obvious idea for attenuating the singular behaviour of K1 might seem
to augment the value of the exponent of ū, so the successive derivatives are softer
functions. This can be accomplished by applying a power transformation, i.e., a
smooth regularizing transformation given by

ū(u) = uβ1 ,

for some integer value of the exponent β1. This idea was first considered in [2] for
the case β1 = 2 and then developed in a more systematic way in [49] for the case
where the regular integrand g(x) is a polynomial basis function. The value of β1 in
[49] is taken as the lowest integer for which both g(x(ū)) and the radial kernel

ū2β1−1−αβ1 ,

keep being polynomials in (ū, v̄). However, this can be done in an easy way only when
α has a particular form, such as an integer or the quotient of small integers. In these
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cases, as pointed out by the authors, the numerical results clearly demonstrate the
superior accuracy and efficiency of the generalized transformation over the standard
transformation with β1 = 1.
On the other hand, if α has a more arbitrary form, there might not be any

small integer β1 such that the quantity αβ1 is another integer, and in this case the
performance of the method is seriously affected. These situations happen frequently
in the XFEM literature, and need to be taken into account. For instance, the
singularity near the tip of a sharp angular notch is of the type 1

rα
, where α depends

on the notch angle.
Numerical experiments show that the optimal value of β1 grows quickly with α, in

case α is not the quotient of small integers. In consequence, the global performance
of the method deteriorates for strong singularities with α > 1, α 6= 3

2 , due to the
increased polynomial degrees. A new radial transformation that overcomes this
problem will be described in sec. 3.5.
It is worth mentioning that a power transformation was already proposed in [58],

such that its composition with the isoparametric mapping yields constant Jacobian.
This transformation was applied to a multidimensional case involving non-singular
integrands.

3.4. The angular kernel, K2(v̄)
Depending on the actual form of f in (3.1), different transformations may be suitable
or not. The most common example in practice, known as the algebraic kernel, occurs
for f(x) = |x|α. In this case, recalling (2.12) and Fig. 2.4, the angular kernel in (3.5)
can be expressed as

K2(v̄) = φ(v̄) = φN(v̄)
|x1 − x2|α

,

where φN is the near-singular kernel in one dimension, given by

φN(v̄) =
(
(v̄ − v̄p)2 + ε2

v

)−α/2
, (3.10)

with v̄p and εv as defined in sec. 2.2.2. We remark that φN is a dimensionless
function, i.e. it does not depend on the absolute dimensions of the physical triangle,
but rather on its shape, or form factor.

The near-singular algebraic kernel φN has received considerable attention over
the last 30 years [24, 64, 65, 45, 46, 32, 15, 69, 22, 23]. The next paragraphs
provide a geometric, descriptive motivation on where the difficulties to the numerical
integration of φN arise. A more rigorous justification of the facts suggested here is
developed in sec. 3.4.1.
It is commonly admitted that as the near-singularity perturbation εv in (3.10)

becomes smaller, the integration of φN is more difficult when compared to triangles
with large εv. Some recent works have considered extreme cases for which εv reaches
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Figure 3.1.: Position of the peak point v̄p

10−10 or even less [22, 73, 23]. However, since this near-singularity is induced by the
distortion of the triangular element, it is expected that εv will not be too small if a
proper meshing has been performed.
On the other hand, it is clear from (3.10) that φN has a relative maximum at

the peak point v̄p. Thus, it is expected that the integration of φN is more difficult
whenever v̄p lies inside the integration interval, a circumstance that is also recognized
by a number of authors, see e.g. [24, 6, 1, 46, 32, 33, 22, 23].
Three different examples of triangles are depicted in Fig. 3.1, for which the peak

point lies outside, on the boundary or inside the interval v̄ ∈ [0, 1] (the cases with
v̄p = 1 and v̄p > 1 are easily obtained by symmetry). The situations in which v̄p
is very close, or belongs to the interval [0, 1] are expected to be the most difficult
to deal with, specially if the perturbation εv is small, implying a narrow peak. The
reader may refer to sec. 3.4.1 for a more rigorous justification on these heuristic
arguments regarding εv and v̄p.
We remark that when both unfavourable conditions concur, i.e. εv � 1 and

v̄p ∈ (0, 1), an obtuse apex angle θ0 is obtained (recall Fig. 2.4), which is commonly
acknowledged as a difficult element to integrate on, see e.g. [24, 6, 1, 53, 46, 32, 33,
50, 22, 23]. Some authors perform interval splitting at v̄p [6, 1, 46, 32], whereas others
recommend triangle bisection whenever θ0 >

2π
3 , see e.g. [60, 56, 34]. However, it

will be justified in sec. 3.4.1 that there exist triangles with acute angle θ0, where the
integration is as difficult as in the obtuse case.
A situation with large apex angle θ0 may not be avoided in practice even if an

adequate meshing is in place. A typical example would be the crack-growth problem
considered in some XFEM applications. Since the mesh remains fixed and the
position of the crack-tip varies with time, it may happen that the crack-tip is situated
at an extremely close position to the triangle edges. If the physical triangle is
split into subtriangles at the crack-tip, as it is usually the case, one or more of the

23



Chapter 3 The singular integral in 2D

subtriangles may have very obtuse angles, and the transformation methods proposed
in this chapter will likely fail to produce accurate results.

Figure 3.2.: Crack-tip and obtuse subtriangles

The obvious solution to this shortcoming would be to perform further splitting on
the subtriangles in order to avoid very obtuse angles at the crack-tip, as illustrated in
Fig. 3.2. Notice that this problem also affects the triangles that are adjacent to the
crack-tip, that would need further splitting too. More details on how to implement
softening transformations over adjacent triangles are given in sec. 4.6.
With respect to the existing integration methods in 2D, they usually focus on the

cancellation of the radial singularity, whereas the angular variable may have possibly
received less attention. For instance, [44] assumes that the angular kernel φ(v̄) is
an innocuous function since it is regular for all v̄. While this is true for standard
integration domains, numerical experiments show that the truncation error is mainly
contributed by the angular kernel if a seriously distorted triangle is employed.
A remarkable exception which does take the angular kernel into consideration is

the method described in [2], that proposes a transformation on the polar angle of
the form

t = 1
2 log

(
1 + sin(θ − θp)
1− sin(θ − θp)

)
, (3.11)

where θ takes values between θ01 and θ02 as in Fig. 2.4. Hence, (3.11) incorporates
information on the geometry of the triangle, recall sec. 3.1. This map was first
considered in [24] for near-singular integrals, and can be shown to be equivalent to
a sinh transformation on the isoparametric variable v̄, see Appendix B for details.
The sinh transformation is analyzed in sec. 3.4.4 below.
Another transformation that is worth mentioning is the trigonometric mapping

introduced in [53], that can be seen as the composition of a degenerate isoparametric
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map and a regularizing transformation over the angular variable, given by

ū(u) = u,

v̄(v) = sin2
(
π

2 v
)
.

Unfortunately, neither this transformation not its generalization to other exponents
different from 2, incorporate any information on the geometric parameters v̄p and
εv. Numerical experiments show that the performance of this trigonometric map is
similar to the plain pyramidal transformation.
We next give some justification on how the appropriate softening transformations

can be chosen for the angular algebraic kernel.

3.4.1. The complex poles of the algebraic kernel
There exist classical, well-known results that establish a relationship between the
truncation error of Gaussian quadrature rules and the integrand complex poles, see
e.g. [62, 10]. The key result for our purposes, following the exposition in [10], page
312, can be enunciated as follows.

Theorem 4. The integration of a function f over the interval [−1, 1] by means of
a Gaussian quadrature rule has a truncation error that is bounded by

|EGk(f)| 6 π(ρ+ ρ−1)
ρ2k+1 max

z∈Eρ
|f(z)|, (3.12)

with G being the Gaussian rule, k its order and Ep an ellipse of semi-axis sum ρ,
with foci at the endpoints of the integration interval, such that f(z) is analytic in its
interior.

Proof. Refer to [10], section 4.6.

This result guarantees that the error bound in (3.12) decreases as the semi-axis
sum ρ increases. However, the bound on |f(z)| should also be taken into considera-
tion, as it might grow for larger ellipses Eρ. Numerical experiments suggest that the
error bound actually decreases for the kind of integrands considered in this work,
and hence this question will not be further investigated.
Even though (3.12) applies to the symmetric interval [−1, 1], this result can be

immediately extended to the unit interval [0, 1] through an affine transformation,
with no effect on the truncation error, see Appendix D.
It is immediate to show that the equation of an ellipse with foci at points (0, 0)

and (1, 0) is (
X − 1

2

)2

b2 + 1
4

+ Y 2

b2 = 1,
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from where it is clear that the semi-axis sum is a monotonically increasing function
of the semi-minor axis b, namely

ρ(b) = b+
√
b2 + 1

4 .

Therefore, the truncation error bound in the quadrature rule decreases as b increases.
Since the uniparametric family of all non-intersecting confocal ellipses with foci at
(0, 0) and (1, 0) fills the plane, the largest ellipse such that f(z) is analytic in its
interior will be referred as the ellipse of analiticity, see Fig. 3.3.
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Figure 3.3.: Confocal ellipses and the ellipse of analiticity

This way, the semi-minor axis of this ellipse can be regarded as a measure of the
distance from the kernel poles to the integration interval. In other words, a point
(v̄p, εv) is said to be further away than another one from the integration interval
[0, 1] if its ellipse of analiticity has a larger semi-minor axis b, an idea that has been
developed e.g. in [14].
In order to reduce the truncation error in the numerical quadratures, we will look

for softening transformations capable of taking the complex poles of the integrand
further away from the integration interval. More precisely, the near-singular kernel
(3.10) has its poles originally located at

v̄ = v̄p ± iεv. (3.13)
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3.4 The angular kernel, K2(v̄)

It is clear from the preceding discussion that both conjugate poles determine the
same ellipse of analiticity, whose semi-minor axis b satisfies the equation(

v̄p − 1
2

)2

b2 + 1
4

+ ε2
v

b2 = 1.

Thus, the truncation error is expected to be large whenever (3.13) determine a small
ellipse of analiticity, i.e., one with small values of b and ρ(b). Fig. 3.4 shows several
relative positions of the complex poles (3.13) in such a small ellipse.
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Figure 3.4.: Complex poles on a small ellipse of analiticity

An interesting outcome of this analysis is that physical triangles in coordinates
(x, y), recall sec. 2.2.2, are similar to the corresponding triangles displayed in Fig. 3.4,
whose base is the interval [0, 1] and its opposite vertex lies on the ellipse. This
provides a more solid justification on the shape of unfavourable physical triangles.
Triangles with very obtuse apex angles (coloured in red in Fig. 3.4) are not the only
ones where integration is difficult, there also exist triangles with acute apex angles
(in orange and green in Fig. 3.4) where the numerical quadrature is subject to the
same error bound given in (3.12).
We conclude that, when (3.13) determine a small ellipse, softening transformations

are necessary, with the purpose of producing a modified kernel with poles displaced
to a new position in which a larger ellipse of analiticity can be drawn. The next
subsections describe the general form of these transformations, together with a brief
account on the most common examples.

3.4.2. The general form of the angular transformations
We are now concerned with softening transformations of the form

v̄(v) = v̄p + h(t(v)), (3.14)
where h(t) is a non-linear, bijective function that maps [0, 1] onto itself independently
of v̄p, and t(v) is an affine map of the form

t(v) = t0 + (t1 − t0)v, (3.15)
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Chapter 3 The singular integral in 2D

whose goal is to ensure that v̄(v) also maps [0, 1] onto itself, i.e.

tj = h−1(j − v̄p), j = 0, 1. (3.16)

We remark that j−v̄p need not belong to the interval [0, 1], and hence the hypothesis
of h being bijective in R is necessary. The reason for this is that h transforms
t ∈ [t0, t1] onto v̄ ∈ [−v̄p, 1 − v̄p], and this last interval can be placed anywhere on
the real line. In case v̄p = 0, it is immediate from the definitions above that t(v)
becomes the identity.
We next consider a number of non-linear mappings, commonly employed in the

near-singular integration context, that comply with the conditions specified above,
and serve the purpose of moving the kernel poles further away from the integration
interval, hence reducing the truncation errors.

3.4.3. The cubic transformation
The cubic transformation, introduced in [64], was one of the first attempts aimed
at flattening the near-singular kernel φN . It is a transformation of the form

h(t, r) = rt+ (1− r)t3, (3.17)

where r ∈ [0, 1] is a parameter to be established.
The cubic transformation is commonly acknowledged to have limited effectiveness

due to the difficulty of finding the optimal value of r in (3.17). An approximate
expression for optimal r was derived in [64] and extended in [33], but it has been
established [61] that a deviation of 1% in the optimal value results in a severe loss
of accuracy when computing the integrals involved.
A detailed analysis on the effect of the cubic transformation over the complex

poles of φN allows to determine that the value of r for which those poles are moved
furthest away from the integration interval (recall sec. 3.4.1) is

r0(εv) = 3
2ε

2/3
v

[(√
1 + ε2

v + 1
)1/3
−
(√

1 + ε2
v − 1

)1/3
]
, (3.18)

= 3εv sinh
[1
3 sinh−1

( 1
εv

)]
. (3.19)

See chapter 6 for a proof of this statement.

3.4.4. The sinh transformation
The sinh transformation was first introduced, following an “a priori” reasoning, in
[32], although equivalent maps had been proposed previously (see e.g. [24, 45]). It
has found wide acceptance in the near-singular integration context ever since, see
e.g. [60, 69, 3, 68, 73, 22, 23]. It is worth mentioning that [3] develops a systematic
“a posteriori” approach to the sinh and other related transformations.
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3.4 The angular kernel, K2(v̄)

The explicit form of the transformation is

h(t) = εv sinh(µt), µ(εv) = sinh−1 1
εv
. (3.20)

Unlike the cubic transformation, the sinh transformation has no free parameter that
needs to be optimized. The application of (3.20) to the near-singular kernel in (3.10)
results in

φN(v̄(v)) = 1
εαv coshα(µt(v)) ,

with t(v) as in (3.15)-(3.16). Thus, the new kernel poles coincide with the zeros of
the cosh function. Since the closest of these zeros is at a distance π

2 from the real
axis, it is straightforward to show that the transformed poles are located at

v = − t0
t1 − t0

+ i
π

2µ(t1 − t0) .

A detailed analysis to establish that these transformed poles are in fact further
away from the integration interval than the original poles is carried out in [14].
As already mentioned, other transformations proposed in the literature can be

shown to be equivalent to sinh, refer to Appendix B for details.

3.4.5. The sigmoidal transformation
Yet another common alternative for the regularization of the angular kernel is the
sigmoidal transformation. Nevertheless, it will be shown in this subsection that its
softening effect is less clear than in the case of the cubic and sinh transformations,
according to the behaviour of the transformed kernel poles.
There exist various maps that satisfy the requirements of a sigmoidal transforma-

tion, see e.g. [31]. One of the most common choices is

h(v) = vω

vω + (1− v)ω , (3.21)

with ω being an integer exponent of moderate value, usually ω = 2. The sigmoidal
transformation is applied over the polar angle θ, see e.g. [34]:

θ(v) = θ01 + (θ02 − θ01)h(v).

Therefore, the transformation for the isoparametric variable v̄, taking (2.15) into
account, becomes:

v̄(v) = v̄p + εv tan(θ(v)− θp). (3.22)

In case of ω = 1, it follows that h(v) = v and (3.22) is equivalent to the angular
part of the polar transformation (2.15).

29



Chapter 3 The singular integral in 2D

The application of (3.22) to the near-singular kernel φN(v̄) in (3.10) produces a
transformed kernel

φN(v̄(v)) = 1
εαv

cosα(θ(v)− θp).

Thus, the poles of this kernel coincide with those of h(v), that can be obtained by
equating the denominator of (3.21) to zero:

vω + (1− v)ω = 0.

This equation is easily solved to

v = 1
2 + i

2
sinϕk

1 + cosϕk
= 1

2 + i

2 tan ϕk2 ,

with ϕk = π
ω

(1 + 2k), k = 0, · · · , ω − 1. The real part of this poles takes the worst
possible value, at the midpoint of the integration interval. On the other hand, the
imaginary part of the closest pole to the real axis occurs for k = 0 and k = ω − 1,
and takes a value of ±1

2 tan π
2ω . Thus, the complex poles are moved closer to the

real axis as ω grows, resulting in a smaller ellipse of analiticity, recall sec. 3.4.1.
A consequence of these facts is that the sigmoidal transformation is likely to have

a limited efficiency, as confirmed by numerical experiments.

3.5. A new class of transformations
The previous section has revealed the remarkable fact that the singular integral in
2D, at least in the case of algebraic kernel, is closely related to the near-singular
integration in 1D when the singular vertex, or apex, is close to the opposite edge. In
consequence, well established near-singular techniques can be readily implemented
on the angular variable of a truly singular integral in 2D. This fact, together with
the exponent increase described in sec. 3.3, allows for the softening of both variables
in the factorized kernel of (3.4).
Nevertheless, it is possible to find an a posteriori approach for the regularizing

transformation, in both the radial and angular variables, that makes no assumption
on the particular form of the angular kernel. The question is how to choose the most
appropriate transformation, even assuming that none of them would suit all types
of singularity.
In order for the integration rule to be efficient, the integrand should take the

most adequate form. Since g remains arbitrary, we can only impose a condition over
the singular part of the integrand, together with the Jacobian of the regularizing
transformation R. The simplest option occurs for the kernel becoming a constant.
If R has separated variables, as in (3.8)-(3.9), this condition reduces to

ū1−αφ(v̄)dū
du

dv̄

dv
= c0, (3.23)
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3.5 A new class of transformations

where c0 is a constant that depends on the singularity strength α and the physical
triangle T (through the angular kernel φ), but not on the variables (u, v).
We notice from (3.23) that the factor ū1−α dū

du
depending on u must be a constant,

because otherwise, when fixing the variable v and varying u, the product would not
be a constant. The same holds for the variable v and hence (3.23) can be split into
two first-order ordinary differential equations (ODE):

ū1−αdū

du
= c1, (3.24)

φ(v̄)dv̄
dv

= c2, (3.25)

subject to the boundary conditions

ū(0) = v̄(0) = 0,
ū(1) = v̄(1) = 1,

with c1c2 = c0.
Since (3.24)-(3.25) are first-order equations, only one boundary condition can

be imposed per equation, say ū(0) = v̄(0) = 0. However, the constants c1 and
c2 have not been fixed yet (they remain arbitrary), and this gives an additional
degree of freedom that makes it possible to impose the second boundary condition
ū(1) = v̄(1) = 1. This way, the solution of (3.24) can be obtained in closed form:

ū(u) = u
1

2−α , (3.26)

c1 = 1
2− α. (3.27)

With respect to (3.25), it is clear that it might not be solvable in closed form,
unless the angular kernel takes a very simple form. However, it can be solved
numerically, as described next. We start by integrating both sides of (3.25) between
0 and v̄(v) to yield

F (v̄) = c2v, (3.28)
where F is the function defined by

F (v̄) =
∫ v̄

0
φ(s)ds,

from where it follows

c2 = F (1),
v̄(v) = F−1(c2v).

Thus, v̄ is defined implicitly by (3.28). We remark that the invertibility of (3.28) is
guaranteed by the Implicit Function Theorem, since dF (v̄)

dv̄
= φ(v̄), and according to

(3.5), φ cannot vanish as long as f is well-defined in T .
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The need to solve a differential equation that depends on the specific geometry of
the element could, at first sight, compromise the efficiency of the method. However,
it is a fundamental fact that this processing is necessary only at the nodes of the
Gaussian quadrature rule. In other words, it suffices solving (3.28) over a discrete set
of points. Newton’s method provides a straightforward way to perform the inversion
of the function F , as numerical experiments have made evident.
The increased cost of calculating the transformation at these points is justified

by the considerable benefit of having a quadrature rule that achieves a high degree
of precision with a lower number of integration nodes, and suitable for any regular
function g. Details on how to implement Newton’s method on (3.28) can be found
in Appendix C.

3.5.1. Additional softening on the a posteriori transformation
The procedure outlined above allows to determine an a posteriori transformation,
i.e., one whose equations are not chosen “up-front”, but rather emerge as solutions
of two ODEs. This approach has the obvious advantages that it can be applied to
any singular integrand, and that it produces a constant kernel.
However, a significant shortcoming of this strategy comes from the fact that the

functions ū, v̄ are not guaranteed to be smooth transformations themselves. In
the case of the radial transformation, it is evident from (3.26) that the successive
derivatives of ū can be singular at the origin, even for positive values of α, due
to the fact that the exponent of u may not be an integer. Regarding the angular
solution v̄, it has already been mentioned in sec. 3.4 that the angular kernel may
exhibit a near-singular behaviour for distorted triangles of the type shown in Fig. 3.4.
These singularities are carried back to the regular part of the integrand through the
composition g(x(ū(u))), compromising the global efficiency of the algorithm.
The most obvious idea to help overcome this drawback is to relax the condition

(3.23) by letting its right hand side be a polynomial, rather than forcing it to be a
constant. Thus, the following modification to (3.24) is considered:

ū1−αdū

du
= c1(n1 + 1)un1 , (3.29)

with n1 being a positive integer that can be determined empirically. For example,
if monomials up to degree two are used as the regular part of the integrand, i.e.,
g(x, y) = xiyj, i + j 6 2 over the standard triangle T1 (sec. 2.2.1), the optimal
values of n1, for which the numerical quadrature converges faster, can be picked
from Tab. 3.1.
The solution obtained in this case is

ū(u) = u
n1+1
2−α , (3.30)

where the term (n1 + 1)un1 in (3.29) can be seen as the derivative of a softening
polynomial σ(u) = un1+1, that transforms [0, 1] onto itself and produces a softer
solution ū in (3.30). The value of c1 in (3.29) is the same as in (3.27).
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Table 3.1.: Optimal exponent n1 for ū(u) = u
n1+1
2−α

α < 0.5 < 0.9 < 1.2 < 1.5 < 1.7 < 1.9 < 2
n1 6 5 4 3 2 1 0

We recall that the idea of increasing the exponent to soften ū has been used in [49],
for α being an integer or the ratio of two small integers. The proposed transformation
(3.30) can be readily used for any value of α < 2, in other words, the exponent n1+1

2−α
need not be an integer for the quadrature rule to perform efficiently. Particularly,
fast convergence rates are achieved for strong singularities with α > 1.5.
Regarding the angular kernel, numerical experiments show that v̄ may be near-

singular at one or both endpoints of the integration interval [0, 1], depending on the
singularity strength α and the geometry of the triangle T . This fact suggests the
convenience of relaxing the condition in (3.25) by allowing its right-hand side to also
have a polynomial form, namely

φ(v̄)dv̄
dv

= c2
dτ

dv
, (3.31)

where τ(v) is a polynomial that transforms v ∈ [0, 1] onto itself. Unfortunately,
there seems to be no straightforward procedure, apart from trial and error, to find
such polynomials, due to the high sensitivity of the near-singularities in v̄(v) to the
problem constraints α and T (v̄p, εv).
Nevertheless, by moderately increasing the exponent of u in (3.30), the solution

becomes smooth enough at the origin, and this makes the numerical feasible by
means of a standard Gaussian rule, even though the degree of the rule needs to be
slightly increased.
To summarize, the transformation that satisfies (3.30) and (3.28) is

R :


ū(u) = u

n1+1
2−α ,

v̄(v) = F−1(c2v),
JR(u, v) = c1c2(n1 + 1)u

n1−1+α
2−α 1

φ(v̄(v)) ,

(3.32)

and the composition with the pyramidal transformation P is

P ◦ R :

x(u, v) = x0 + u
n1+1
2−α r(v̄(v)),

JP◦R(u, v) = 2|T |c1c2(n1 + 1)u
2n1+α

2−α 1
φ(v̄(v)) ,

with x in the physical triangle T .

3.5.2. An edge-singular kernel
The flexibility in equations (3.24)-(3.25), that make no previous assumption on the
integrand form, allows us to consider different types of kernels, as long as they keep
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being homogeneous functions of their coordinates. We develop in this subsection,
for illustrative purposes, a very simple example of an edge-singular kernel.
We consider the function

f(x) = (x− y)α,

over the triangle T1 with vertices (0, 0), (1, 0) and (1, 1). It should be pointed out
that in this case, it is necessary that α < 1 for the integral (3.1) to converge.
Applying the pyramidal transformation (2.10)-(2.11) it follows

r(v̄) = (1, v̄),

φ(v̄) = 1
(1− v̄)α ,

and the differential equation (3.25) takes the form

1
(1− v̄)α

dv̄

dv
= c2,

satisfying the boundary conditions v̄(0) = 0 and v̄(1) = 1. Hence, the solution can
be obtained in closed form as

v̄(v) = 1− (1− v)
1

1−α .

In this case, both solutions ū and v̄ depend on non-integer powers, and thus
additional softening is needed. More specifically, we introduce softening polynomials,
namely integer powers un1+1 and (1− v)n2+1, in the corresponding equations (3.24)-
(3.25) to prevent the singular behaviour in the solutions. This way, the composite
transformation P ◦ R becomes

P ◦ R :


x = u

n1+1
2−α ,

y = u
n1+1
2−α

(
1− (1− v)

n2+1
1−α

)
,

J = n1+1
2−α

n2+1
1−α (x− y)αun1(1− v)n2 .

(3.33)

The optimal exponents n1 and n2 in (3.33) can be chosen empirically depending
on the values of g(x) and α.

3.6. Numerical results
The algorithms described in the previous sections are now tested in a variety of
situations, including the combination of different methods for the radial and angular
variables. The underlying idea is to take advantage of the factorized kernel in (3.4)
and apply independent transformations in ū and v̄ to produce a scheme that, by
incorporating softening in both variables, is able to outperform other algorithms
that focus in just one variable.
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As already justified in sec. 1.3, integrations are always performed on the physical
domain by means of modified nodes and weights, obtained from

xj = x(ū(uj)),
w∗j = JP◦R(uj)wj,

for j = 1, · · · , nw, where uj and wj are the standard Gaussian nodes and weights,
respectively, for the quadrature rule of order nw.
The singular part of the physical integrand is the algebraic vertex-singular kernel

given by 1
|x−x0|α . Regarding the regular part of the integrand, the following functions

are considered:
g(x, y) = (x− x0)i(y − y0)jf`(θ),

with i + j 6 dm, dm is the total degree of monomials, θ = tan−1 y−y0
x−x0

and f`(θ) is
the angular part of the crack-tip, or branch functions [48, 2, 55, 63], given by:

f1(θ) = sin θ2 ,

f2(θ) = cos θ2 ,

f3(θ) = sin θ2 sin θ,

f4(θ) = cos θ2 sin θ.

If no crack-tip function is being used, it suffices taking f0(θ) = 1.
The seven methods implemented for comparison purposes are:

• P : Pyramidal transformation in 2D, as described in sec. 2.2.1. There is no
regularization in any of the variables (ū, v̄).

• Trig: Trigonometric transformation [53] described in sec. 3.4. Like the case
of the pyramidal transformation, this method implements no regularization in
the parent coordinates (ū, v̄).

• Pow: Composition of P with the power transformation [49] described in
sec. 3.3. This method implements regularization in the radial variable only.

• PS (Power-Sinh): The method in [2], but expressed over C2, see sec. 3.3 and
sec. 3.4. It is the composition of P with a power transformation ū(u) = u2 in
the radial variable, and a sinh transformation (3.20) in the angular variable.
Thus, softening in both variables is incorporated in this method, though the
radial softening is only adequate for integer and half-integer values of α.

• Cub: It is built as a combination of methods. It consists of a pyramidal
transformation P , followed by a posteriori radial regularization (as described
in sec. 3.5.1), together with a priori angular regularization by means of the
cubic transformation (as outlined in sec. 3.4.3).
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• Sinh: The same as Cub, but the angular regularization is accomplished by
means of the sinh transformation described in sec. 3.4.4.

• ODE: Composition of P with the entire a posteriori regularization described
in sec. 3.5. Additional softening in the radial variable (3.30) has been applied,
with exponents n1 picked from Tab. 3.1. As already mentioned, no additional
softening is applied in the angular variable, due to the high sensitivity of the
solution to the algebraic and geometric problem constraints.

Numerical experiments The exact value of the integral

I =
∫∫

T

(x− x0)i(y − y0)jf`(θ)
|x− x0|α

dx,

is evaluated by means of a high-degree rule. Each graphic displays the parameters
dm (monomial degree), f` (crack-tip function being used), α (singularity strength),
β1 (exponent in the power transformation), n1 (exponent in the radial softening)
and r0 (optimal value of the cubic transformation).

Standard triangle T1 All methods are initially tested on the standard triangle T1
(sec. 2.2.1), with no crack-tip function, for the values

α = −0.34, 0.23, 0.5, 0.79, 1, 1.22, 1.5, 1.83. (3.34)

The corresponding results are shown in Fig. 3.5.
It is evident that methods with no regularization perform more poorly, even for

integer or half-integer values of α, although the pyramidal transformation coincides
with the power method for α = 1. The trigonometric transformation behaves very
similarly to P for almost all values of α. The power transformation deteriorates
for increasing values of α, unless α = 1.5, whereas the Power-Sinh method is only
competitive for integer and half-integer values of α. The three procedures that
do implement true regularization in both variables (Cub, Sinh and ODE) perform
consistently well.

Moderately distorted triangle A moderately distorted triangle, with vertices at
x0 = (0, 0), x1 = (1,−2), x2 = (1, 3) is also considered, for the same values of α as
in (3.34). The corresponding results are shown in Fig. 3.6.
It is clear that all methods deteriorate when applied over an obtuse triangle,

although the Cubic and Sinh transformations keep performing consistently well,
with a slight advantage for the Sinh transformation. The ODE method shows a
high sensitivity to the singularity strength, although it is able to outperform all
methods for a certain range of intermediate α values.
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Strongly distorted triangle Finally, a more demanding scenario on a strongly
distorted triangle, including monomials of greater degree and a crack-tip function,
is considered. More specifically, a triangle with vertices x0 = (0, 0), x1 = (1,−3),
x2 = (1, 7) is tested, with monomials of degree dm = 3 and a crack-tip function
f1(θ). The results are shown in Fig. 3.7.
All methods show a similar behaviour as in the case of the moderately distorted

triangle, although they all deteriorate to a greater extend, due to the more peaked
integrand in both variables.

Conclusions Methods that regularize both parent coordinates are clearly superior
to algorithms with softening in one or no variable. Furthermore, the proposed
methods are able to perform consistently well for a variety of situations, including
different integration domains, singularity strengths and integrand types. In the case
where α is an integer or semi-integer, small values of the exponent β1 for the power
transformation described in sec. 3.3 suffice to attain a fast convergence. However,
for more arbitrary values of α, the scheme introduced in sec. 3.5.1 shows a better
performance.
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Figure 3.5.: Standard triangle T1
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Figure 3.6.: Moderately distorted triangle
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Chapter 3 The singular integral in 2D
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Figure 3.7.: Strongly distorted triangle
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4. The near-singular integral in 2D

4.1. Overview
This chapter focuses on the near-singular integral with algebraic kernel

I =
∫∫

T

g(x)
(|x− x0|2 + ε2)α/2dx, (4.1)

where g is a non-singular integrable function, α ∈ R is the singularity strength and
T is an arbitrary triangle with vertices {x0,x1,x2}, as in chapter 3. The parameter
ε is the algebraic near-singularity, that measures the distance between the point
xs in Fig. 4.1 and its projection on the plane that contains the triangle T , that is
assumed to be the triangle apex x0.
In the BEM context, the point xs is commonly called source point, see e.g. [25,

46, 33, 22] and, in some contexts, observation point [37, 60]. The point x is usually
denominated field point, see e.g. [53, 45, 69]. It should be mentioned that in
XFEM applications, the singular point lies in the same plane as the physical triangle,
originating a different kind of near-singular integrals over adjacent elements. This
situation will be briefly discussed in sec. 4.6.

Figure 4.1.: The algebraic near-singularity ε

Even though integral (4.1) is motivated by the three-dimensional interpretation
of Fig. 4.1, typical of BEM applications, the integration is performed over a planar
triangle. Therefore, this chapter focuses on a two-dimensional bivariate integrand
that admits, to some extent, a similar treatment as the singular integral in 2D
developed in chapter 3.
We remark that the integral I in (4.1) can be evaluated for any real value of α.

Some authors [25, 61, 72, 15, 34, 35, 23] distinguish between weakly near-singular
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Chapter 4 The near-singular integral in 2D

integrals, with α < 2, for which I would take a finite value if ε = 0, and strongly
near-singular integrals, with α > 2, for which I would not be finite if ε = 0.
It will be a conclusion of this chapter that the determination of the suitable

methods for evaluating (4.1) depends strongly on whether the singularity strength
is above or below the critical value α = 2.
Proceeding as in chapter 3 we denote the parent coordinates as ū = (ū, w̄). The

application of the pyramidal transformation (2.7) to (4.1) produces

I = 2|T |
∫∫

C2

g(x(ū, v̄))ū
(ū2|r(v̄)|2 + ε2)α/2

dūdv̄. (4.2)

We define the dimensionless function

b(v̄) = ε

|r(v̄)| , (4.3)

and recall equation (2.12) to deduce

|r(v̄)|α = |x1 − x2|α

φN(v̄) , (4.4)

with φN defined in (3.10) and rewritten here for convenience

φN(v̄) = 1
((v̄ − v̄p)2 + ε2

v)
α/2 . (4.5)

This lets us express the integral (4.2) as

I = 2|T |
|x1 − x2|α

∫∫
C2
g(x(ū, v̄))K(ū, v̄)dūdv̄, (4.6)

where the function defined by

K(ū, v̄) = φN(v̄) ū

(ū2 + b(v̄)2)α/2
, (4.7)

is the kernel of the near-singular integral. This kernel is factorized into an angular
part

K2(v̄) = φN(v̄) = 1
((v̄ − v̄p)2 + ε2

v)
α/2 , (4.8)

and a radial part
K1(ū, v̄) = ū

(ū2 + b(v̄)2)α/2
. (4.9)

The angular kernel K2 does not depend on the algebraic near-singularity ε, but
rather on the parameters v̄p and εv that are determined, as we know, by the geometry
of the triangular element T . Hence, the angular kernel is exactly the same as in the
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4.2 The angular kernel K2(v̄)

two-dimensional singular integral in (3.7), and will receive a very similar treatment
in this chapter.
On the other hand, the radial kernel K1 depends on the algebraic near-singularity

ε and, to a lesser extent, on the geometry of the element through the term b(v̄).
Instead of a constant, there is a linear factor ū in the numerator of (4.9) and the
variable ū is not displaced from its origin, as it happens with K2.
Apart from these differences, both kernels are formally the same, and this will help

us simplify the further treatment of the transformations proposed. The similarities
between both kernels have already been pointed out in e.g. [3], though non-standard
domains were used for that purpose.
As noticed previously by other authors [25, 60, 3, 34], the integral kernel in (4.7)

does not have its variables completely separated, since the radial kernel also depends
on the angular variable. Unlike the singular integral in 2D, any transformation
applied over the angular kernel will affect the radial kernel too.
A great amount of effort has been devoted to the treatment of (4.8) and (4.9) over

the last decades. In the next two sections we provide a brief survey on the main
transformations that have been proposed for each separate part of the kernel.
Since the angular kernel K2 depends only on v̄, it suffices finding a univariate

map v̄ = v̄(v) from [0, 1] onto itself for its regularization. However, the radial kernel
also depends on v̄, so it will be necessary to determine a bivariate transformation
ū = ū(u, v) from C2 onto [0, 1], that depends on v through v̄(v). For this reason,
the angular kernel will be analyzed firstly.

4.2. The angular kernel K2(v̄)
We recall that the geometric near-singularity εv only depends on the geometry of
the triangle T . In consequence, this near-singularity should not be very severe if a
proper meshing has been performed.

4.2.1. General form of the transformations
As stated in sec. 3.4.1 and sec. 3.4.2 we look for non-linear regularizing maps that
are able to move the complex poles of K2 further away from the integration interval.
The general form of these transformations is rewritten here for convenience:

v̄(v) = v̄p + h(t(v)), (4.10)
t(v) = t0 + (t1 − t0)v, (4.11)
tj = h−1(j − v̄p), j = 0, 1, (4.12)

with h transforming [0, 1] onto itself independently of v̄p, as already justified in
sec. 3.4.2.
A number of a priori mappings were already considered in sec. 3.4, of which the

cubic and sinh transformations are the most relevant ones, recall sec. 3.4.3 and
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Chapter 4 The near-singular integral in 2D

sec. 3.4.4. These schemes can be reutilized in exactly the same manner with the
angular kernel K2 in (4.8).
However, the fact that the kernel K in (4.7) does not have completely separated

variables, induces a slightly different treatment on the a posteriori mappings that
are appropriate for this kernel, as described in the next subsection.

4.2.2. A posteriori transformations for K2(v̄)

As already introduced in sec. 3.5, a posteriori transformations are obtained after
applying a certain regularization condition over the kernel K2, namely

1
((v̄ − v̄p)2 + ε2

v)
β/2

dv̄

dv
= c̄2, (4.13)

where the exponent β may or may not coincide with the singularity strength α.
Applying the chain rule to (4.10)-(4.11) yields

dv̄

dv
= dh

dt

dt

dv
= dh

dt
(t1 − t0),

from where it follows
1

(h(t)2 + ε2
v)
β/2

dh

dt
= c2, (4.14)

with c2 = c̄2
t1−t0 . We note that c2 depends on β and the geometry of the problem,

but not on the variable v̄. Since h maps [0, 1] onto itself, c2 is evaluated to

c2 =
∫ 1

0

1
(s2 + ε2

v)β/2
ds,

that can be easily related to the well-known integral representation of the Gaussian
Hypergeometric Function (see e.g. [54]) to yield

c2 = 1
εβv

2F1

(
β

2 ,
1
2; 3

2;− 1
ε2
v

)
.

A large number of authors [24, 46, 37, 60, 72, 56, 3] have considered the solution
to (4.14) in case β is an integer, namely β = 1, 2, 3. These transformations will
be denoted Fβ throughout the rest of this paper, even when applied to the radial
kernel. We summarize the explicit form of such solutions in Tab. 4.1.
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4.3 The radial kernel K1(ū, v̄)

Table 4.1.: Transformations Fβ

β c2 h(t)

1 sinh−1
( 1
εv

)
εv sinh(c2t)

2 1
εv

tan−1
( 1
εv

)
εv tan(εvc2t)

3 1
ε2
v

√
1 + ε2

v

ε3
vc2t√

1− ε4
vc

2
2t

2
= εvt√

1 + ε2
v − t2

We notice that F1 is the sinh transformation described in sec. 3.4.4 applying an
a priori reasoning. Furthermore, F2 is the tangent function, that coincides, after
rescaling, with the angular part of the polar transformation (2.14)-(2.15). A con-
sequence of this fact is that the polar transformation is equivalent to a pyramidal
map composed with an F2 transformation in the angular variable (followed by affine
rescaling to integrate over the unit square).
Once the transformation h(t) has been determined, the parameters tj in (4.11)

can be calculated by means of (4.12), allowing the construction of the composite
transformation (4.10).
In the case β = α, for non-integer α, numerical integration of (4.14) would be

necessary, following the same procedure explained in sec. 3.5. However, turning K2
into a constant does not produce a constant kernel K, because its variables are not
completely separated. For this reason, it is more convenient to propose a modified
scheme for complete kernel regularization, that will be described further in this
chapter, in sec. 4.5.

4.3. The radial kernel K1(ū, v̄)
Due to the formal similarities between the angular and radial kernels in (4.8)-(4.9),
all transformations (a priori and a posteriori) proposed for K2 can be readily refor-
mulated for K1, with the difference that the radial variable ū is always centered at
the origin, rather than displaced from it, as it happens with v̄. Moreover, the radial
transformation ū depends on both independent variables (u, v).
The most relevant transformations, that will be used in numerical simulations, are

listed below. The explicit dependences ū = ū(u, v), b = b(v̄), c1 = c1(v̄), r0 = r0(v̄)
and v̄ = v̄(v) have been omitted for brevity:

• F1 (sinh): ū = b sinh(c1u), c1 = sinh−1
(

1
b

)
• F2 (tan): ū = b tan(bc1u), c1 = 1

b
tan−1

(
1
b

)
• Cubic: ū = r0u+ (1− r0)u3, r0 = 3b sinh

(
1
3 sinh−1

(
1
b

))
, as in (3.19)
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Chapter 4 The near-singular integral in 2D

Unlike the angular kernel, the algebraic near-singularity b(v̄) in K1 can be very
severe. Taking (4.3) into account, it is clear that b depends not only on the geometry
of the triangle T , but also on the parameter ε, that can be arbitrarily small. Some
recent works on crack growth or thin layer elements have considered values ε = 10−10

and smaller, see e.g. [22, 73, 23].
As a consequence, many of the transformations already described for the angular

kernel happen to be incapable of attenuating a very severe radial near-singularity.
Numerical experiments show that the softening effect of these transformations (most
notably the cubic, the sinh and the rest of Fβ) does not suffice to produce accurate
numerical results.
New, different methods have been proposed over the years, aimed at producing

a stronger softening effect over K1, sometimes at the cost of using transformations
that are not completely smooth themselves. We give a brief description of the most
relevant techniques in the next subsections.

4.3.1. A priori transformations for K1(ū, v̄)
The PART method The PART method was introduced in [24, 25, 26]. It consists
of a polar transformation composed with a number of regularization maps in the
radial variable. Their equivalent form in (ū, v̄) coordinates is provided in Tab. 4.2.
The explicit dependences ū = ū(u, v), b = b(v̄), v̄ = v̄(v), t = t(u, v), tj = tj(v) have
been omitted for brevity.

Table 4.2.: Radial transformations in the PART method

Name Equation t0 t1

L2 ū =
√
t2 − b2 b

√
b2 + 1

Log-L2 ū =
√
e2t − b2 log b 1

2 log(b2 + 1)
Log-L1 ū = et − b log b log(b+ 1)
L−1/5 ū = −t−5 − b −b−1/5 −(b+ 1)−1/5

The purpose of the transformation t is very similar to that in the angular case: it
consists of a bivariate function of (u, v), affine in its first argument, ensuring that ū
maps C2 onto [0, 1]. Its general form is

t(u, v) = t0(v) + (t1(v)− t0(v))u, (4.15)

where the explicit form of tj for each transformation is given in Tab. 4.2.
Apart from these radial transformations, it should be mentioned that the PART

method proposes a transformation in the polar angle of the form

t = hT
2 log

(
1 + sin(θ − θp)
1− sin(θ − θp)

)
, (4.16)
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4.3 The radial kernel K1(ū, v̄)

that can be shown to be equivalent to a sinh transformation in the isoparametric
variable v̄, see Appendix B for details. We recall from sec. 3.4 that a very similar
form of the transformation (4.16) was later presented in [2].

The exponential distance transformation An exponential distance transforma-
tion was proposed in [45] and later considered in [56]. It can be expressed (omitting
explicit dependences) as

ū = 1
2(et − b2e−t),

with t0 = log b, t1 = log
(
1 +
√

1 + b2
)
and t(u, v) as in (4.15).

It is possible to show that this transformation is equivalent to F1 (sinh) in the
radial variable, see Appendix B for details.

The exponential transformation Another exponential transformation, proposed
in [72] and later considered in [68], can be expressed as

ū = b(et − 1),

with t0 = 0, t1 = log
(
1 + 1

b

)
and t(u, v) as in (4.15).

As with the previous case, a simple renormalization shows that this transformation
is equivalent to Log-L1 in the PART method, refer to Appendix B for details.

4.3.2. A posteriori transformations for K1(ū, v̄)

The presence of the linear factor ū in (4.9) makes it possible to build a new set of a
posteriori transformations, that have no direct equivalent in the angular kernel, i.e.,
they are exclusive of the near-singular radial kernel.
The idea is to apply a regularizing condition to K1, similar to that in (4.14):

ū

(ū2 + b(v̄)2)β/2
∂ū

∂u
= c1(v̄), (4.17)

subject to the boundary conditions ū(0, v) = 0, ū(1, v) = 1. Notice that c1 in (4.17)
needs to be a function of v̄, since the radial kernel depends on v̄ through b(v̄). Its
value can be obtained integrating both sides of (4.17) in the interval [0, 1]:

c1(v̄) =


(1+b(v̄)2)1−β2 −b(v̄)2−β

2−β , if β 6= 2,

1
2 log

(
1 + 1

b(v̄)2

)
, if β = 2,

(4.18)
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Chapter 4 The near-singular integral in 2D

Once c1 is known, the solution of (4.17) can be easily obtained, by explicit integration
and inversion, to be ū(u, v) = Gβ(u, v̄(v)), with

Gβ(u, v̄) =



b(v̄)

√√√√([(1 + 1
b(v̄)2

)1−β2 − 1
]
u+ 1

) 2
2−β

− 1, if β 6= 2,

b(v̄)

√
e

log
(

1+ 1
b(v̄)2

)
u
− 1, if β = 2.

(4.19)

The transformations Gβ with integer β have been considered by a number of
authors, see e.g. [24, 46, 37, 60, 56, 3], some of them applying an a priori reasoning.
We notice that G1 is equivalent to the L2 transformation in the PART method, and
G2 is equivalent to the Log-L2 transformation in the PART method. The case β = α
has been considered in [25], where a number of disadvantages of Gα are enumerated,
to eventually suggest G2 as a simpler and more robust alternative.
It should be mentioned that the transformations Fβ (resp. Gβ) are referred as

R-Linear (resp. R-Constant) in [3], where they are systematically analyzed for
β = 1, 2, 3.

4.3.3. The singularities in Gβ

It is easy to verify that ū(u, v) = Gβ(u, v̄(v)) has singular derivative at u = 0:

lim
u→0

∂ū

∂u
=∞,

and this severely limits the efficiency of the procedure, unless the regular part of the
integrand in (4.1) is a constant, i.e. g(x) = 1. This problem can be partially solved
by applying additional regularization on the independent variable u, by means of
a softening function σ(u), usually a low-degree polynomial, that maps [0, 1] onto
itself. This way, (4.17) becomes

ū

(ū2 + b(v̄)2)β/2
∂ū

∂u
= c1(v̄)dσ

du
, (4.20)

whose solution is given by ū(u, v) = Gβ(σ(u), v̄(v)).
The case σ(u) = uq with integer q has been considered in [60] for integer values

of β. It is possible to show that in case σ(u) = u2, then

lim
u→0

∂ū

∂u
<∞,

resulting in a much better numerical convergence of the algorithm, at least for the
cases β = 1, 2. The transformation G3 has singularities at u = 1, as well as u = 0,
as pointed out in [60], resulting in a very poor performance of the quadrature rule.
Therefore, G3 will not be further considered in numerical simulations.
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4.4 A new family of composite radial transformations

4.4. A new family of composite radial transformations
This section describes a procedure to formulate an iterative scheme of composite
transformations of the form

Gk
1X,

i.e. a composition of k consecutive transformations G1, with k = 1, 2, 3, · · · , with a
last transformation X of any of the types described in the previous section, including
G1 itself. Numerical experiments show that some of these transformations are able
to outperform the classical methods for a wide range of values of the singularity
strength α.
A brief analysis on the transformation G2, together with a description of the

iterated sinh transformation, completes this section.

4.4.1. The transformation G1

Taking β = 1, σ(u) = u2 in (4.18) and (4.19) yields

c1(v̄) =
√

1 + b(v̄)2 − b(v̄), (4.21)

G1(u, v̄) =
√
c1(v̄)2u2 + 2c1(v̄)b(v̄)u. (4.22)

Recalling that ū(u, v) = G1(u2, v̄(v)) it follows

∂ū

∂u
= 2c1(v̄)c1(v̄)u3 + b(v̄)u

ū
. (4.23)

The key point here is to substitute the solution ū and its derivative, not into the
kernel K1 with β = 1, but into the kernel K1 with arbitrary α. Performing this
substitution yields

ū

(ū2 + b(v̄)2)α/2
∂ū

∂u
= 2c1(v̄)2−α u

(u2 + b2(v̄)2)α−1 , (4.24)

with b2(v̄) =
√

b(v̄)
c1(v̄) . Since b(v̄) � 1 in a near-singular problem, it follows from

(4.21) that c1(v̄) ≈ 1 and b2(v̄) ≈
√
b(v̄).

The interpretation of (4.24) is that by applying G1 to the kernel with arbitrary α,
a new kernel is obtained with the same form as the original one, but with the near-
singularity perturbation attenuated, and a different value of the near-singularity
strength: α

2 → α− 1. The immediate consequence is that a new regularizing condi-
tion of the type (4.20) can be applied over the right hand side of (4.24).
If we take again β = 1 for the new regularization, i.e., if we apply G1 over the

modified kernel, yet another kernel of the same type as in (4.24) is obtained, with a
near-singularity parameter that equals, approximately, 4

√
b(v̄). It is then clear that

this procedure can be iterated, producing a sequence of kernels that are respectively
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Chapter 4 The near-singular integral in 2D

easier to integrate, until a last transformation X is applied. The composite map
eventually obtained is denoted Gk

1X for short.
Writing Gk

1X = G1◦
(
Gk−1

1 X
)
, the term Gk−1

1 X can be regarded as the additional
softening applied over the transformation G1. This way, the additional softening
emerges from solving a sequence of differential equations of the type (4.17), rather
that being introduced by an empirical trial-and-error procedure. Furthermore, the
additional softener Gk−1

1 X incorporates automatically the dependence on v, that
was not present, e.g., in the case σ(u) = u2.
However, as stated in previous sections, softening the radial kernel K1 does not

suffice to obtain good convergence rates, it is also required that the transformations
used for that purpose are smooth themselves. Numerical simulations show that
there exist compositions Gk

1X, with X = Fβ or Gβ, smooth enough to outperform
the existing methods for a wide range of values of α, namely α < 2.5 and α > 6. In
the interval α ∈ [2.5, 6] there exist other solutions that show a better performance,
as described below.

4.4.2. The transformation G2

The transformationG2 has been considered by a number of authors [24, 46, 60, 56, 3].
As it happens with G1, it is easy to show that ū(u, v) = G2(u, v̄(v)) has singular
derivative at u = 0, but this drawback is solved by taking an additional softener
σ(u) = u2, i.e. ū(u, v) = G2(u2, v̄(v)), as proposed e.g. in [60].
The derivative of ū can be readily computed

∂ū

∂u
= b(v̄)2c1(v̄)e

2c1(v̄)σ(u)

ū

dσ

du
.

As in the previous subsection, the key point here is to substitute ū and ∂ū
∂u

not in
the kernel K1 with β = 2, but in the kernel K1 with arbitrary α, given in (4.9).
Performing the substitution produces

ū

(ū2 + b(v̄)2)α/2
∂ū

∂u
= b(v̄)2−αc1(v̄)e(2−α)c1(v̄)σ(u)dσ

du
. (4.25)

We notice that the transformed kernel is a decreasing exponential in u for α > 2,
and as a consequence of this fact, G2 can be successfully applied in all situations
with α > 2. In particular, the numerical results of G2 in the case α = 3 are much
better than those obtained by F3 or G3. Moreover, the transformation G2 is able to
outperform the other methods in the range α ∈ [2.5, 3.5].
Unfortunately, there seems to be no easy way to find a composition G2X that

further improves the performance of the composite transformation. The reason for
this is that, after removing the singularity of ū(u, v) = G2(u2, v̄(v)) at u = 0, there
remains a near-singularity at u = 1, whereas the transformed kernel (4.25) is near-
singular itself at u = 0. Hence, a transformation that simultaneously attenuates
both near-singularities, at u = 0 and u = 1, does not seem feasible.
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4.4.3. The iterated sinh transformation
The idea of iterating transformations to strengthen the global softening effect has
already been considered in [15, 35]. An iterated sinh transformation (i-sinh or F 2

1 )
is formulated on the biunit square [−1, 1]2, without previously applying a polar or
isoparametric transformation. We provide here, for implementation purposes, its
equivalent form when applied to the radial kernel over the unit square C2.
A first sinh transformation is applied on ū, whose explicit expression, omitting

dependences, is
ū = b sinh(c1ũ), c1 = sinh−1

(1
b

)
,

with ũ being an intermediate variable. In this case, the near-singular perturbation,
b, coincides with the distance of the kernel complex poles to the real axis.
Next, a second sinh transformation is applied on ũ, but taking a different value

for the near-singular perturbation, namely

b2 = π

2c1
.

It is shown in [35] that b2 is the new distance of the transformed kernel poles to the
real axis. Hence, the second sinh transformation takes the form

ũ = b2 sinh(d1u), d1 = sinh−1
( 1
b2

)
.

The i-sinh transformation (i.e. the composition between ū and ũ) shows an excellent
convergence rate, for large values of the strength parameter α, in agreement with the
numerical experiments performed in [35]. More specifically, it is able to outperform
the other methods in the range α ∈ [3.5, 6].
We remark that the i-sinh transformation can also be applied to the angular

kernel, although the benefits there seem less clear than in the radial case.

4.5. A transformation for complete kernel
regularization

The transformations proposed in the previous sections try to force separately each
factor of the kernel, K1 and K2, to be as simple as possible. Since c1(v̄) is not a
constant, neither is the whole transformed kernel, more specifically, the product of
(4.13) and (4.17) gives

K(ū, v̄)dv̄
dv

∂ū

∂u
= c1(v̄)c̄2 6= const.

Extending the ideas introduced in sec. 3.5, a condition over the whole kernel is now
imposed, namely

K1(ū, v̄)∂ū
∂u
K2(v̄)dv̄

dv
= c0, (4.26)
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where c0 depends on the problem parameters α, ε and the triangle T , but not on
the variables (ū, v̄). The condition over K1 is the same as in (4.17) rewritten here
for convenience

K1(ū, v̄)∂ū
∂u

= c1(v̄), (4.27)

with c1 as in 4.18 for the case β = α. Substituting (4.27) into (4.26) we obtain the
condition for K2, namely

c1(v̄)K2(v̄)dv̄
dv

= c0. (4.28)

It should be pointed out that (4.28) is a slight modification of (4.13), that ensures
the whole transformed kernel becomes regularized. The value of c0 can be evaluated
numerically by means of

c0 =
∫ 1

0
c1(v̄)K2(v̄)dv̄.

Once c0 is known, the solution v̄(v) is computed first, by solving (4.28) numerically.
More specifically, the Newton-Rahpson method can be applied at the Gaussian nodes
{vi}nwi=1, see Appendix C for details. After v̄(v) is known, the radial solution ū(u, v)
is obtained by means of (4.19) for the case β = α.
As already indicated in previous sections, the regularization of the whole kernel

does not suffice to obtain a smooth integrand in (4.1), unless g(x) is a constant.
The solutions v̄(v) and ū(u, v) may be singular themselves, and these singularities
are carried back to the integrand through the composition g(x(ū, v̄)). One way to
overcome this difficulty is to apply additional softening by performing a substitution
on the independent variables, namely

u → σ(u),
v → τ(v),

where σ and τ are non-linear functions, usually polynomials of low degree, that map
the interval [0, 1] onto itself. This means that new, weaker conditions are imposed
over the angular and radial kernels:

c1(v̄)K2(v̄)dv̄
dv

= c0
dτ

dv
, (4.29)

K1(ū, v̄)∂ū
∂u

= c1(v̄)dσ
du

(4.30)

Unfortunately, there seems to be no direct way to determine σ and τ , apart from
the choice σ(u) = u2 considered in previous sections. Empirical evidence shows a
strong dependence of σ and τ on the problem parameters α, ε and T .
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4.6 The integration of (near-)singular kernels over adjacent triangles

4.6. The integration of (near-)singular kernels over
adjacent triangles

So far, we have focused on the integration of singular (chapter 3) and near-singular
(chapter 4) kernels over source triangles, such that the (projection of the) source
point xs coincides with one of the triangle vertices, say x0, as shown in Fig. 4.2. The
source triangle T may possibly be the result of subdividing a physical triangle at
the singular point, recall Fig. 3.2 in sec. 3.4.

Figure 4.2.: Source triangle. Singular (left) and near-singular (right) integrals

This section focuses on adjacent triangles T ′, contiguous to a source triangle T ,
but such that the (projection of the) source point lies outside the triangle T ′ itself.
The situation with the source point on the same plane as the triangle usually occurs
in XFEM, whereas the source point outside that plane is typical of BEM. In this
last case, the projection of the source point over the triangle plane is denoted xp, as
illustrated in Fig. 4.3.

Figure 4.3.: Adjacent triangle in XFEM (left) and BEM (right)

Hence, the integral under consideration in this section will be

I =
∫∫

T ′

g(x)
|x− xs|α

dx. (4.31)
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It is clear that this integral reduces to (3.1) if xs = x0 (i.e. ε = 0) and to (4.1)
if xp = x0 with ε > 0. Furthermore, the integral (4.31) keeps being near-singular
whenever the distance between xs and the triangle edges is small, for both cases
ε = 0 and ε > 0, and further treatment of the integral kernel is required. A similar
reasoning as with the integrals over source triangles is followed:

• A pyramidal transformation P expresses the integral (4.31) over the standard
domain C2 = [0, 1]2.

• A regularizing transformation R softens the remaining singularities in the
integrand.

Details on how to implement both transformations are provided in the subsections
below.

4.6.1. The pyramidal transformation for adjacent triangles
We start from the pyramidal transformation in 2D described in sec. 2.2.1

x(ū, v̄)− x0 = ūr(v̄),
JP(ū, v̄) = 2|T ′|ū,

that maps the unit square C2 onto the adjacent triangle T ′. Before applying this
transformation to (4.31), we write

x(ū, v̄)− xs = (x(ū, v̄)− x0)− (xs − x0),

from where it follows, by direct substitution

I =
∫∫

C2

g(x(ū))2|T ′|ū
|ūr(v̄)− (xs − x0)|αdx. (4.32)

Denoting by x · y the scalar product of the vectors x and y, the denominator of
(4.32) can be manipulated as follows

|ūr(v̄)− (xs − x0)|2 = [ūr(v̄)− (xs − x0)] · [ūr(v̄)− (xs − x0)]
= ū2|r(v̄)|2 − 2ūr(v̄) · (xs − x0) + |xs − x0|2.

Notice that in a source triangle T it holds

r(v̄) · (xs − x0) = 0,

since both vectors are perpendicular, and

|xs − x0| = ε, ε > 0.
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4.6 The integration of (near-)singular kernels over adjacent triangles

Next, the following dimensionless functions are defined

ūp(v̄) = r(v̄) · (xs − x0)
|r(v̄)|2 , (4.33)

b(v̄) = 1
|r(v̄)|2

√
|r(v̄)|2|xs − x0|2 − (r(v̄) · (xs − x0))2, (4.34)

where b(v̄) is well-defined as a consequence of the Cauchy-Schwarz inequality. For
a source triangle, it is clear that (4.33) and (4.34) reduce to

ūp(v̄) = 0,
b(v̄) = ε

|r(v̄)| ,

in agreement with equation (4.3), prior in this chapter.
Taking (4.4)-(4.5) into account, the integral (4.32) can be written as

I = 2|T ′|
|x1 − x2|α

∫∫
C2
g(x(ū))φN(v̄) ū

((ū− ūp(v̄))2 + b(v̄)2)α/2
dū. (4.35)

We next analyze the near-singularities of this kernel, pointing out its similarities
with the kernel in (4.6)-(4.7).

4.6.2. The near-singular kernel for adjacent triangles
As in the case of source triangles, the integral kernel of (4.35) is composed of two
parts. The angular kernel is given by

K2(v̄) = φN(v̄) = 1
((v̄ − v̄p)2 + ε2

v)
α/2 , (4.36)

and is exactly the same as in the source triangle, though this time the geometric
parameters v̄p and εv are obviously referred to the adjacent triangle T ′. This means
that the same treatment as in chapter 3 and sec. 4.2 is adequate for this type of
triangles.
On the other hand, the radial kernel is

K1(ū, v̄) = ū

((ū− ūp(v̄))2 + b(v̄)2)α/2
. (4.37)

that does not have the same form as in sec. 4.3, since the radial variable ū is now
displaced from its origin by a quantity ūp(v̄), according to (4.33). The following
transformation is then necessary over ū:

ū(u, v)− ūp(v̄(v)) = h(z(u, v̄(v))), (4.38)

where h is a non-linear injective transformation that maps [0, 1] onto itself and z
is an affine transformation in u that ensures that the transformation maps C2 onto
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ū ∈ [0, 1]. Thus, the role of z is completely similar to that of t(v) in chapter 3. Its
explicit form is

z(u, v̄) = z0(v̄) + (z1(v̄)− z0(v̄))u, (4.39)
with zj(v̄) given by

zj(v̄) = h−1(j − ūp(v̄)), j = 0, 1. (4.40)

4.6.3. The regularizing transformation for the radial variable
The affine renormalization (4.39)-(4.40) imposes a very significant restriction over
the transformations that can be used to regularize the radial variable, since the non-
linear part of the transformation, h, must be an invertible function. In particular,
this excludes the transformations of the type Gβ (sec. 4.3.2), that are based on square
roots.
This means that there is no advantage in this case coming from the factor ū in the

numerator of (4.37), and thus the situation is similar to that in the angular kernel,
that lacks the indicated factor. As a consequence of this fact, the suitable methods
need to deal with triangles where the minimum distance between xp and the triangle
edges is not too small, typically of the same order of magnitude as εv, but not as
small as ε, that can take extreme values of 10−10 relative to the triangle height.
With respect to the procedures for complete kernel regularization, as described in

sec. 4.5, they might not be the most appropriate for this case, since the analogous
to differential equation (4.27) would be

ū

((ū− ūp(v̄))2 + b(v̄)2)α/2
∂ū

∂u
= c1(v̄), (4.41)

that can be analytically solved but not inverted. Moreover, the numerical solution
of (4.41) would involve the calculation of a bivariate function ū(u, v), likely to incur
a high computational cost.
By this elimination process we conclude that the only suitable methods to handle

adjacent triangles are injective functions, among which the most relevant examples
are the cubic, sinh and i-sinh transformations. The explicit expressions of each of
the transformations are briefly indicated below.

The cubic transformation It is a transformation of the type (4.38) in which

h(z) = r0z + (1− r0)z3,

where the optimal function r0 has the same formal expression as in (3.19):

r0(v̄) = 3b(v̄) sinh
(

1
3 sinh−1

(
1
b(v̄)

))
,

and zj(v̄) are the roots of

j − ūp(v̄) = r0zj(v̄) + (1− r0)zj(v̄)3,
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4.7 Numerical results

whose explicit expression, according to (A.8), is

zj(v̄) = 2

√√√√ r0(v̄)
3(1− r0(v̄)) sinh

1
3 sinh−1

 3
2r0(v̄)

√√√√3(1− r0(v̄))
r0(v̄) (j − ūp(v̄))

 .

The sinh transformation This transformation is formally analogous to (3.20) with

h(z) = b sinh(µz), µ(v̄) = sinh−1
(

1
b(v̄)

)
,

and zj(v̄) given by

zj(v̄) =
sinh−1

(
j−ūp(v̄)
b(v̄)

)
sinh−1

(
1
b(v̄)

) , j = 0, 1.

The i-sinh transformation A first sinh transformation is applied to the kernel in
(4.37), namely

ū− ūp(v̄) = b(v̄) sinh(µ(v̄)(z0(v̄) + (z1(v̄)− z0(v̄))ũ)),

where ũ is an intermediate variable. This produces a transformed kernel with a
factor

cosh (µ(v̄)(z0(v̄) + (z1(v̄)− z0(v̄))ũ)) ,

whose closest complex poles to the real axis have imaginary parts given by

b2(v̄) = π

2µ(v̄)(z1(v̄)− z0(v̄)) .

According to [15], a second sinh transformation is applied, of the form

ũ(u, v) = b2(v̄(v)) sinh(µ2(v̄)u), µ2(v̄) = sinh−1
(

1
b2(v̄)

)
.

4.7. Numerical results
Some of the procedures described in the previous sections are now tested. Even
though the integral in (4.1) depends on α, ε, T and g, numerical experiments will
show that it is possible to choose the optimal method attending exclusively to the
parameter α. In other words, the optimal method selected in each case is robust
enough to withstand changes in ε, T and/or g.
The parameters related to the integral (4.1) are now briefly described.
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Chapter 4 The near-singular integral in 2D

4.7.1. Near-singularity strength, α
It is the main parameter in simulations, and the one that determines the optimal
transformation in each case. Arbitrary values in the continuous range α ∈ [−2, 10]
are tested. However, since there are transformations that perform specially well for
particular values of α (integers or half-integers), those specific situations have been
considered as well.

4.7.2. Near-singularity perturbation, ε
To be precise, the near-singularity perturbation is given by the dimensionless func-
tion b(v̄) in (4.3). However, since we can test, without loss of generality, triangles of
height one, it follows that ε and b(v̄) have the same order of magnitude. According
to recent works [22, 73, 23], all methods have been tested for values of ε between
10−1 and 10−12, although the typical value that will be displayed in simulations is
ε = 10−7. As already mentioned, the optimal transformation chosen in each case
shows low sensitivity upon changes in the value of ε.

4.7.3. Integration domain, T
Recalling sec. 3.4.1, numerical quadrature becomes a more difficult task for physical
triangles similar to those displayed in Fig. 3.4. Since all methods perform successfully
over the standard triangle T1 (sec. 2.2.1), a quite elongated triangle with vertices
x0 = (0, 0), x1 = (1,−2), x2 = (1, 3) will be used throughout simulations. This
triangle has an apex angle θ0 = 3π

4 that induces a significant distortion in K2(v̄) and
in consequence softening in the angular variable becomes relevant.
For more distorted triangles, all methods degrade significantly, and differences

among them vanish. This fact may appear surprising at first sight, because the
near-singularity in K1(ū, v̄) can be several orders of magnitude stronger than in
K2(v̄). However, it should be taken into account that different, much more powerful
methods based on Gβ are employed to regularize the algebraic near-singularity in
K1. In case the apex angle θ0 is extremely obtuse, interval splitting at v̄p or triangle
bisection seem the most reasonable options, see e.g. [6, 1, 46, 32, 60, 56, 34].

4.7.4. The regular part of the integrand, g(x, y)
We consider the same regular integrands as in the previous chapter, namely

g(x, y) = (x− x0)i(y − y0)jf`(θ),
with i + j 6 dm, dm being the monomial degree, and f`(θ) a crack-tip function,
whose explicit form was given in sec. 3.6. The monomial degree is set to dm = 2
throughout simulations, and no crack-tip function is used by default, i.e. f0(θ) = 1.
However, it has been checked that the optimal methods are robust (in other words,
they do not degrade significantly) when the monomial degree is augmented up to
dm = 4, and/or a crack-tip function is used.
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4.7.5. Implemented methods
The iterative scheme described in sec. 4.4 makes it possible to construct a large
number of composite methods. Among them, numerical experiments allow to pick
those ones that are optimal for a certain range of values of α, i.e. methods that are
able to outperform the other ones for a given range of the parameters.
Except for the method introduced in sec. 4.5, the angular map is independent of

the radial one, i.e., a single method may consist of any combination of radial and
angular transformations. However, all methods displayed in simulations incorporate
the same kind of transformation in both variables. In particular, all methods Gk

1X
implement a sinh transformation in the angular variable. Since moderate angular
distortion is assumed, no noticeable change in performance is due to a replacement
in the angular transformation of a particular method.
Some of the methods described in previous sections show a limited performance

and will not be displayed, most notably F3, G3, Log-L1 (exponential) and L
−1/5
1 .

The sinh-sigmoidal method, introduced in [34], consists of a sinh transformation
in the radial variable and a sigmoidal transformation (sec. 3.4.5) in the polar, or
angular, variable. Its convergence proves to be slightly slower than a pure F1 (sinh)
transformation in both variables, and it will not be displayed, either.
As the behaviour of the kernel is quite different for values of α above or below

the critical value α = 2, the methods considered in each situation differ. The best
options selected for each case are enumerated below.

The case α 6 2 The methods displayed on simulations are:

• Pyramidal transformation P (sec. 2.2.1).

• F1 (sec. 4.3). It is a sinh transformation in both variables ū and v̄.

• G1 (sec. 4.4.1). This method is equivalent to PART L2, see sec. 4.3.2.

• Cubic (sec. 3.4.3 and sec. 4.3). It is a cubic transformation in both variables ū
and v̄.

• ODE (sec. 4.5).

• Composite methods G2
1, G3

1, G4
1, G1Cub, G1F1 (sec. 4.4.1).

The results are shown in Fig. 4.4 and Fig. 4.5. For negative even values of α
the integral kernel becomes polynomial and thus a simple pyramidal transformation
suffices to reach machine-precision with very few integration points.
These numerical experiments indicate that for arbitrary values of α 6 2 there exist

at least one composite method that is able to outperform the classical methods, most
notably the PART and the sinh transformations. Nevertheless, the performance of
the methods show a strong dependence on the value of α, and the optimal method
should be carefully selected among all available options.
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The case α > 2 The methods displayed in this case are:

• F2 (sec. 4.3). It is a tangent transformation in both variables ū and v̄.

• G2 (sec. 4.4.2). This method is equivalent to PART Log-L2 (see sec. 4.3.2) but
implementing an F2 (tan) transformation in the variable v̄. We recall that the
PART method implements a transformation in the polar angle that can be
shown to be equivalent to sinh, see Appendix B.

• Iterated sinh or F 2
1 (sec. 4.4.3). It is an i-sinh transformation in both variables

ū and v̄.

• Composite methods G3
1, G4

1, G5
1, G1Cub, G1F1, G1F2, G3

1F2 (sec. 4.4.1).

The numerical results are shown in Fig. 4.6 and Fig. 4.7.
It is worth noting that G2 is the best method for values of α ∈ (2.5, 3.5). It is in

fact much superior to the method G3 obtained by taking β = 3 in (4.17), that has
been considered in [25, 60, 3]. Moreover, G3 performs very poorly for all values of
α and it is therefore not displayed.
The i-sinh method is the best performer for α ∈ (3.5, 6), when applied over the

transformed kernel K(ū, v̄). It should be pointed out that the authors in [35] apply
the method directly to the integrand defined on a biunit square, without previously
transforming a physical triangular domain. Thus, there is no factor ū coming from
the Jacobian of the polar or pyramidal transformations in [35].
In case α is a large integer, the method F2 largely outperforms the other methods,

although this behaviour is not robust, in the sense that it does not hold in case α is
not an integer, or if the degree of the monomials, dm, is augmented. The reason for
this is that the radial kernel K1 has a factor cosα−3(c1u) after the transformation
has been applied, but the solution itself depends on tan(c1u). It is clear that only
for integer α and moderate values of dm the kernel is a smooth function (cosine)
that is easy to integrate. Nevertheless, it is a significant fact that a simple F2
transformation obtains almost perfect results, if dm 6 2, for such an important case
in practice as the flux integral with α = 5, see e.g. [26, 33].
Finally, for arbitrary values of α > 6, the methods Gk

1F2 are able to outperform
i-sinh and the rest of the methods.

4.7.6. Numerical results for adjacent triangles
The methods described in sec. 4.6 are also tested for a variety of situations, with
both ε = 0 and ε > 0. The adjacent triangle has vertices at x0 = (0, 0), x1 = (1,−1)
and x2 = (1, 2). The (projection of the) source point is located at xp = (0, 0.1). The
regular part of the integrand is a monomial of degree dm = 2, and the values of α
lie within the interval (0, 4).

The case ε = 0 The results are displayed in Fig. 4.8. As expected, the i-sinh
method is only able to outperform cubic and sinh for large values of α.

60



4.7 Numerical results

The case ε > 0 It is identical to the case ε = 0, unless the value of ε is large
enough to be comparable to the minimum distance between xp and the triangle
edges. For instance, in case that ε = 0.1, all methods show an improvement in
performance, since the effect of ε is to move the source point further away from the
triangle vertices, producing a softer near-singularity. The corresponding results are
shown in Fig. 4.9.
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Figure 4.4.: Near-singular integral for α 6 2, part 1
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Figure 4.5.: Near-singular integral for α 6 2, part 2
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Figure 4.6.: Near-singular integral for α > 2, part 1
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Figure 4.7.: Near-singular integral for α > 2, part 2
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Figure 4.8.: Numerical results for an adjacent triangle (ε = 0)
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Figure 4.9.: Numerical results for an adjacent triangle (ε > 0)
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5. The singular integral in 3D

5.1. Overview
This chapter is dedicated to the computation of the vertex-singular integral:

I =
∫∫∫

P

g(x)
f(x− x0)dx, (5.1)

where P is a trilinear pyramid (sec. 2.2.3) with apex x0 such that JP > 0 in the
interior of C3, g is a regular integrable function and f is an α-positively homogeneous
function, i.e. f(tx) = tαf(x), for t > 0. We assume that f vanishes nowhere apart
from the origin. A typical example in terms of the Euclidean distance would be
f(x) = |x|α. The real parameter α is the singularity strength, with α < 3 for (5.1)
to be finite.
As in the previous chapters, we denote the parent coordinates as ū = (ū, v̄, w̄)

and keep the notation u = (u, v, w) for the transformed coordinates. Applying the
pyramidal transformation (2.16), (2.18) to the integral in (5.1) results in

I =
∫∫∫

C3
g(x(ū))ū2−αφ(v̄, w̄)dū, (5.2)

where C3 = [0, 1]3, the scalar function φ(v̄, w̄) is defined by

φ(v̄, w̄) =
∑

i∈I2 Ni(v̄, w̄)Vi

f(r(v̄, w̄)) , (5.3)

and r(v̄, w̄) is given in (2.20) and rewritten here for convenience:

r(v̄, w̄) =
∑
i∈I2

Ni(v̄, w̄)(x1i1i2 − x0). (5.4)

We notice that g(x(ū)) is regular since g is regular and x is a polynomial map. The
regular part of the integrand, g, is typically composed of a polynomial of arbitrary
degree related to isoparametric shape functions and their derivatives. Moreover, in
certain problems related to crack growth or fracture mechanics, branch functions
may appear as a factor of g (see sec. 5.5 for details).
Thus, the application of the pyramidal transformation conveys a double benefit:

the integral I in (5.2) is expressed over a standard domain, whereas its singular
kernel becomes factorized into a radial part, ū2−α, and an angular part, φ(v̄, w̄).
Unfortunately, this transformation may not completely remove all singularities. For
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instance, the radial term ū2−α is regular for integer α, but for non-integer α its
successive derivatives may be singular at ū = 0. In fact, if α > 2 the integrand itself
is still singular at ū = 0, as pointed out in [49].
On the other hand, the angular term φ(v̄, w̄), is non-singular in C2 = [0, 1]2 since,

according to sec. 2.2, r does not vanish and neither does f(r). However, it will
be shown that φ(v̄, w̄) may have near-singularities over C2, i.e., points where the
function and/or its partial derivatives take very large, yet finite values.
The next subsections describe how to deal with the remaining singularities in

each separate part of the kernel. More specifically, a radial transformation will be
introduced to treat the singularity in the term ū2−α, whereas angular transformations
will take care of the near-singularities in φ.

5.2. The radial kernel
Several strategies have been devised to treat the radial singularity. Some authors try
to soften the singularity by applying quadrature rules adapted to specific kernels, by
means of moment fitting methods. For example, Gauss-Jacobi and composite Gauss-
Legendre rules are used in [7, 8] and Gauss-Jacobi rules in [11]. On the other hand,
there exist transformation methods that aim at attenuating the ū-singularity and
produce the simplest possible kernel in terms of integration, namely a polynomial.
They consist of a map of the unit interval [0, 1] onto itself, such that the exponent of
the new variable in the kernel is increased to an integer value, to make the function
softer without compromising the computational cost of the procedure (see e.g. [49]).
Extending the ideas in sec. 3.5, we consider an a posteriori map ū = ū(u) that

verifies the following equation

ū(u)2−αdū

du
= c1

dσ(u)
du

, (5.5)

where c1 is a constant to be determined and σ is a polynomial that maps [0, 1] onto
itself, whose purpose is to make ū as smooth as possible. Thus, the radial factor of
the kernel becomes a polynomial in u, that is written in terms of the derivative of
another polynomial, σ, in order to simplify the subsequent developments.
By direct integration of (5.5) we obtain the solution ū in closed form

ū(u) = σ(u)
1

3−α ,

c1 = 1
3− α.

In the simplest case where σ(u) = u, the solution of (5.5) takes the form

ū(u) = u
1

3−α ,

which is smooth enough for values of α close to 3. However, if α < 5
2 , the second or

even the first derivative of ūmay be singular at u = 0, affecting severely the accuracy
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of the quadrature rule. Following the reasoning in sec. 3.5 we take σ(u) = un1+1,
where n1 is a small, suitable integer, from where

ū(u) = u
n1+1
3−α . (5.6)

If α is an integer or a half-integer, the value of n1 can be easily chosen so that
the exponent in (5.6) is an integer. For instance, if α = 1

2 , 1,
3
2 , 2,

5
2 , it suffices taking

n1 = 4, 1, 2, 0, 0.
For more arbitrary values of α, the choice of n1 might not be so immediate. It is

clear that the larger n1, the stronger the softening effect on ū(u). More specifically, if
n1+1
3−α > k, then the first k derivatives of ū(u) are non-singular at u = 0. However, the
degree of the polynomials involved increases with n1, and this affects the exactness
of the rule. Numerical simulations allow to determine the optimal trade-off value of
n1 for which the quadrature error reaches a minimum. For example, if monomials up
to degree two are used as the regular part of the integrand, i.e., g(x, y, z) = xiyjzk,
i+ j+ k 6 2 over the standard pyramid P1 (sec. 2.2.3), the optimal values of n1 can
be picked from Tab. 5.1.

Table 5.1.: Optimal exponent n1 for ū(u) = u
n1+1
3−α

α < 1.1 < 1.4 < 1.8 < 2.1 < 2.4 < 2.6 < 2.8 < 3
n1 7 6 5 4 3 2 1 0

We remark that the idea of increasing the exponent to soften ū has been used
in [49], for α being an integer or the ratio of two small integers. The proposed
transformation (5.6) can be readily used for any value of α ∈ (0, 3). Particularly,
fast convergence rates are achieved for strong singularities with α > 2.

5.3. The angular kernel
Unlike the radial singularity, less attention has been devoted in the literature to
the near-singularities in the angular kernel of (5.1). In fact, most existing methods
implement a plain Gaussian rule on the non-radial variables [11, 47, 49, 55], although
Dunavant rules (see [12]) have been used in [55], and some other techniques, such
as sparse grids and Sobol’ sequences have been considered in [7, 8].
This section describes how the near-singularities in φ(v̄, w̄) happen to be of a quite

subtle nature, yet they have a strong influence on the performance of the quadrature
rules. In order to illustrate this point, Fig. 5.1 shows the behaviour, for α = 1.6 and
f(r) = |r|α, of φ(v̄, w̄) and its first derivatives ∂φ

∂v̄
, ∂φ
∂w̄

for a regular element, namely
the standard pyramid P1 (see sec. 2.2.3), and a distorted element whose vertex x100
has been displaced to the point (0.5,−0.4,−0.2) (the same vertical scaling has been
used for each pair of graphics). It is clear that much stronger variations occur in
the case of the distorted element.
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Regular

Distorted

Figure 5.1.: Behaviour of φ(v̄, w̄) for a regular and a distorted element

The standard strategy to soften the near-singularities in the angular kernel would
be to treat φ(v̄, w̄) as a weight function, and develop a quadrature rule, by means of
moment fitting equations, specific to that particular weight. The obvious disadvan-
tage of this idea is that a new quadrature rule would have to be developed whenever
the vertex coordinates, or even the singularity strength α, were changed.
A different approach might be to extend the method introduced in sec. 3.5 to the

kernel in two variables, by finding a transformation

(v̄, w̄) = (v̄(v, w), w̄(v, w)), (5.7)

that maps C2 onto itself and leaves a polynomial kernel. However, the fact that
φ(v̄, w̄) does not have, in general, separated variables, means that this procedure is
likely to incur a high computational cost.

5.3.1. The behaviour of φ on the boundary of C2

A simpler approach is possible by focusing on single-variable transformations that
soften the angular kernel on the boundary of C2, rather than its interior. Numerical
experiments show that there exist maps that improve simultaneously the behaviour
of φ on the boundary of C2 and its interior for some particular kernels. We next
give some evidence on this statement.
Taking (5.4) into account, the restriction of φ(v̄, w̄) to any of the 4 sides of C2 can

be written as
φB(v̄) = (1− v̄)V1 + v̄V2

f((1− v̄)(x1 − x0) + v̄(x2 − x0)) , (5.8)
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where short indices 1, 2 have been used. Here, the volumes V1, V2 coincide with one
of the volumes Vi1i2 , x1, x2 stand for x1i1i2 and the variable w̄ has been renamed as
v̄ where necessary. The correspondence between the short indices 1,2 and the tensor
indices i1i2 can be easily obtained from (5.3).
We look for a single-variable map v̄ = v̄(v) such that the near-singularities in

the composite function φB(v̄(v)) become attenuated. One transformation will be
applied to one of the boundaries (v̄, 0) or (v̄, 1), wherever φB behaves less smoothly
(Fig. 5.1). Similarly, another transformation will be applied to one of the boundaries
(0, w̄) or (1, w̄). We impose that all maps leave [0, 1] invariant, in order to avoid
hidden singularities on the boundaries of non-standard domains, as pointed out in
e.g. [3, 60].

5.3.2. The algebraic kernel
Since the actual form of the transformation v̄ depends on the particular kernel
considered, we now focus on the algebraic case, that occurs when f(r) = |r|α in
(5.3), i.e.:

φ(v̄, w̄) =
∑

i∈I2 Ni(v̄, w̄)Vi

|r(v̄, w̄)|α . (5.9)

Then, the restriction of (5.9) to the boundary of C2 takes the form:

φB(v̄) = (1− v̄)V1 + v̄V2

|(1− v̄)(x1 − x0) + v̄(x2 − x0)|α . (5.10)

We recall that an expression for the denominator of (5.10) had already been obtained
in equation (2.12), that is rewritten here for convenience:

|(1− v̄)(x1 − x0) + v̄(x2 − x0)| = |x1 − x2|
(
(v − vp)2 + ε2

v

)1/2
,

with v̄p and εv as defined in sec. 2.2.2. It is then immediate that

φB(v̄) = (1− v̄)V1 + v̄V2

|x1 − x2|α
φN(v̄),

with φN defined in (3.10).
This reasoning leads to the remarkable conclusion that the boundary-restricted

angular kernel in the 3D singular problem, equals a linear term multiplied by the
same near-singular kernel in 1D already considered in chapter 3 and chapter 4.
Numerical experiments show that some of the angular transformations already

utilized in the previous chapters to soften φN , most notably the cubic and the sinh
transformations, are able to improve simultaneously the behaviour of the bivariate
kernel φ(v̄, w̄) on the boundary of C2 and its interior.
We remark that the bivariate kernel φ in (5.9) depends on 12 parameters (the three

spatial coordinates of the four vertices opposite to the pyramid apex), whereas the
2D near-singular kernel in (4.1)-(4.2) depends at most on 7 parameters (the two
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planar coordinates of the triangle vertices plus the near-singular perturbation ε).
In consequence, φ(v̄, w̄) is likely to be a more complicated function, in the general
case, than the near-singular kernel in 2D, and the existence of a purely bivariate
transformation (5.7) remains an open question.

5.3.3. Implementation of the methods proposed
From a practical point of view, the softening transformations are applied separately
to the variables v̄ and w̄. In each case, the transformation is applied on the boundary
where φN behaves less smoothly, i.e., the one for which εv has the smallest value,
according to the following steps:

1. On boundaries (v̄, 0), (v̄, 1) compute εv = hT
|x1−x2| and take the smallest value.

2. Calculate r0 from (3.17) or µ from (3.19).

3. Compute t0 and t1 by means of (3.15).

4. Construct v̄ and its Jacobian from (3.11).

5. Repeat steps 1-4 on boundaries (0, w̄), (1, w̄) to obtain w̄ and its Jacobian.

Even though v̄ and w̄ are applied on the boundary of C2, numerical experiments
will show noticeable improvements in convergence speed when compared to methods
that implement no angular softening.
We remark that the use of separate univariate maps in both variables v̄ and w̄ has

already been considered by a number of authors for the ordinary near-singular 2D
kernel [24, 46, 73]. Further developments of [24] can be found, e.g., in [25, 26, 27].

5.4. The Jacobian of the composite transformation
The Jacobian of the regularizing transformationR described in the previous sections
is

JR(u) = n1 + 1
3− α ū(u)α−2un1

dv̄

dv

dw̄

dw
.

Thus, the composition of the pyramidal and regularizing maps has a Jacobian

JP◦R(u) = n1 + 1
3− α ū(u)α

∑
i∈I2

(Ni(v̄(v), w̄(w))Vi)un1
dv̄

dv

dw̄

dw
.

5.5. Numerical results
The algorithms detailed in the previous sections are now tested in a variety of
situations, comparing its performance with some existing methods [11, 47, 49, 55].
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Integrations are always performed in the physical domain by means of modified
nodes and weights, that recalling (1.3)-(1.4) are obtained from

xj = x(ū(uj)),
w∗j = JP◦R(uj)wj,

for j = 1, · · · , nw, where uj and wj are the standard Gaussian nodes and weights,
respectively, for the quadrature rule of order nw.
The singular part of the physical integrand is 1

|x−x0|α . Regarding the regular
integrand, the following functions are taken:

g(x, y, z) = (x− x0)i(y − y0)j(z − z0)kf`(θ),

with i + j + k 6 dm, dm being the total degree of monomials, θ = tan−1 y−y0
x−x0

and
f`(θ) is the angular part of the crack-tip, or branch functions, whose explicit form
was given in sec. 3.6.

5.5.1. Simulations over pyramids
The methods implemented for comparison purposes are:

• P : Pyramidal transformation in 3D, already described in subsection sec. 2.2.3.

• P ◦ C: Composition of P with the radial softening in sec. 5.2 and the cubic
transformation in both angular variables (sec. 3.4.3).

• P ◦ S: Same scheme but instead of cubic, the sinh transformation (sec. 3.4.4)
is implemented in the angular variables.

• P◦W : Composition of P with the power transformation in the radial variable.
This method, which does not incorporate angular softening, is an extension of
[49] to arbitrary pyramids given by

x(u, v, w)− x0 = uβ1r(v, w),
JP◦W(u) = β1u

3β1−1 ∑
i∈I2

Ni(v)Vi.

The efficiency of the P ◦ W method greatly relies on an adequate choice of
the parameter β1, that plays a similar role to the parameter n1 in (5.6). The
authors in [49] point out that when the singularity strength, α, is an integer
or the ratio of two small integers (like 1

2 ,
1
3 ,

2
3 and so on), then the value of

β1 should be equal to the denominator of α. However, when α has a more
arbitrary value, no systematic way of finding β1 is provided. As with n1, the
optimal value of β1 can be picked from Tab. 5.2, that was obtained empirically.
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Table 5.2.: Optimal exponent β1 for P ◦W

α < 1 < 2 < 2.3 < 2.6 < 3
β1 3 4 5 6 7
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Figure 5.2.: Performance of the methods over the standard pyramid P1

Numerical experiments The exact value of the integrals is evaluated by means of
a high-degree rule, with a total monomial degree of dm = 2. On top of each graphic,
the parameters dm, α, β1, n1, rv (r0 for v̄), and rw (r0 for w̄) are displayed.
All methods are initially tested on the standard pyramid P1 (see sec. 2.2.3), for

α = 0.53 + 0.63k, k = 0, 1, 2, 3. The cases with integer or half-integer α are similar
to the examples displayed, with P and P ◦W being coincident for integer α. Notice
that angular softening in the cubic transformation already applies (i.e., rv, rw < 1)
to this apparently non-distorted case (Fig. 5.2).
A moderately distorted pyramid is considered as well. If we take x0 = (0, 0, 0),

x100 = (1, 0.5, 0.5), x101 = (1,−0.5, 1), x110 = (1.5, 3, 0.5), x111 = (0.5, 4.5, 4), the
angular softening becomes quite significant, as depicted in Fig. 5.3.
For a more distorted pyramid, typically with obtuse tip angles θ0, all methods
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perform more poorly, and the effect of angular softening is less evident. For example,
taking x0 = (0, 0, 0), x100 = (2,−0.5,−0.5), x101 = (1,−1, 1), x110 = (1.5, 1,−1),
x111 = (0.5, 3, 3), yields the results shown in Fig. 5.4.
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Figure 5.3.: Moderately distorted pyramid

5.5.2. Simulations over tetrahedra
We assume without loss of generality that the vertex x101 collapses onto x100 to form
a tetrahedron, in other words, the boundary (0, w̄) now reduces to a point.
All methods implemented for pyramids can be readily reformulated for arbitrary

tetrahedra. Moreover, two additional transformations are considered:

Trigonometric transformation Denoted by T , it is a modification of the method
proposed in [55]. More specifically it consists of two stages:

1. An affine transformation whose inverse maps an arbitrary tetrahedron T (in
coordinates x, y, z) onto the standard tetrahedron T0 (in coordinates r, s, t),
with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).
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Figure 5.4.: Strongly distorted pyramid

2. A trigonometric transformation whose inverse maps T0 onto the unit cube C3
(in coordinates u, v, w), with parametric equations

r(u) = u cos2
(
π

2 v
)
,

s(u) = u cos2
(
π

2 (1− v + vw)
)
,

t(u) = u− r(u)− s(u),

J(u) = π2

4 u
2v sin(πv) sin(π(1− v + vw)).

Hyperbolic transformation Denoted by H, it is an implementation in two steps
of the method described in [47]:

1. An affine transformation whose inverse maps an arbitrary tetrahedron T (in
coordinates x, y, z) onto T0 (in coordinates ξ, η, ζ).
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2. A hyperbolic transformation whose inverse maps T0 onto C3, given by

ξ(u) = u2 1− sinh(β2(2v − 1))
2 (1− w),

η(u) = u2 1 + sinh(β2(2v − 1))
2 (1− w),

ζ(u) = u2w,

J(u) = 2β2u
5(1− w) cosh(β2(2v − 1)),

with β2 = sinh−1 1 = log(1 +
√

2).
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Figure 5.5.: Standard tetrahedron T1

Numerical experiments The results are very similar to the pyramid case: all
methods degrade when applied to distorted elements, specially for large values of α.
The first element tested is the standard tetrahedron T1 (see sec. 2.2.3), with results

displayed in Fig. 5.5. Notice that angular softening in the cubic transformation is
already needed (i.e., rv, rw < 1) for this non-distorted case.
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The second element tested is a distorted tetrahedron with vertices x0 = (0, 0, 0),
x100 = (1, 0, 0), x110 = (1, 4, 0), x111 = (0.5, 4, 3). As expected, all methods show a
slower convergence (Fig. 5.6).
It is worth noting that in general, when using pyramids as well as tetrahedra,

the performance of all methods deteriorates when crack-tip functions are part of the
regular integrand. This effect is more evident as the tip angles θ0 become larger.
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6. The optimal form of the cubic
transformation

6.1. Overview
Throughout the previous chapters, several non-linear transformations of the form

v̄(v) = v̄p + h(t(v)), (6.1)

have been considered with the purpose of softening the near-singular kernel

φN(v̄) = 1
((v̄ − v̄p)2 + ε2

v)
α/2 , (6.2)

whose complex poles are originally located at

v̄ = v̄p ± iεv.

The cubic transformation is a particular case of (6.1) with

h(t) = rt+ (1− r)t3, (6.3)

where r is a free parameter whose optimal value, i.e., the one that minimizes the
error in the quadrature rules, is established in what follows. A remarkable conclusion
of this chapter will be that this optimal value depends on the geometric form factor
εv, but not on the position of the kernel peak point v̄p (sec. 2.2.2). We also recall
that t(v) is an affine transformation given by

t(v) = t0 + (t1 − t0)v, (6.4)
tj = h−1(j − v̄p), (6.5)

whose purpose is to renormalize the integration interval to v ∈ [0, 1].
As already pointed out in sec. 3.4.1, the truncation error in the quadrature rules

decreases as the semi-axis sum in (3.12) increases. Thus, the optimal value of the
cubic transformation will be such that a maximum (largest) ellipse of analiticity Ep
is originated. This chapter develops a proof that the largest Ep occurs for a critical,
or optimal value r0, already established without proof in (3.18)-(3.19), and whose
expression is now justified. Some details on the structure of the proof are outlined
below.
The cubic transformation can be regarded as the composition of three steps, each

one having an effect over the integration interval:
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Chapter 6 The optimal form of the cubic transformation

1. A translation v̄ = v̄p + h from v̄ ∈ [0, 1] to h ∈ [−v̄p, 1− v̄p].

2. A cubic transformation (6.3) from t ∈ [t0, t1] onto h ∈ [−v̄p, 1 − v̄p], with
tj = h−1(j − v̄p).

3. An affine renormalization t(v) from v ∈ [0, 1] to t ∈ [t0, t1].

After the first two steps, a transformed kernel of the form

φN(v̄p + h(t)) = 1
((rt+ (1− r)t3)2 + ε2

v)
α/2 , (6.6)

is obtained, with poles on the complex plane t. After the renormalization in step 3,
these poles are moved to

v = t− t0
t1 − t0

, (6.7)

on the complex plane v. The complex poles of (6.6) will be denoted t-poles from
now on, whereas their renormalization to (6.7) will be denoted v-poles.
The preceding discussion motivates the distribution of the proof in three different

parts, namely

• Part 1 establishes that the poles of (6.6) are moved furthest away from the real
axis when r = r0. In other words, the closest t-pole has maximum imaginary
part =(t), in absolute value, for r = r0.

• Part 2 shows that the imaginary part =(v) of the v-poles in (6.7) also reaches
a maximum for r = r0.

• Part 3 finishes the proof by determining that the largest ellipse of analiticity
Ep occurs for r = r0 in the complex plane v, although an additional hypothesis
needs to be introduced for the case v̄p < 0.

These three parts are developed in the corresponding sections below.

6.2. Part 1. Optimality of =(t)
The complex poles of (6.6) are the 6 roots of the equation

(1− r)t3 + rt± iεv = 0.

As t is a solution of this equation only if −t is a solution too, it suffices considering
the 3 complex roots of

(1− r)t3 + rt− iεv = 0, (6.8)
with εv > 0. Taking t = iτ to avoid complex coefficients, (6.8) can be written as

Pr(τ) = 0,
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6.2 Part 1. Optimality of =(t)

with
Pr(τ) = (1− r)τ 3 − rτ + εv. (6.9)

Hence, the objective of this section is the determination of the value of r for which
the roots of Pr(τ) are moved furthest away from the imaginary axis of the complex
plane τ . In other words, we aim at maximizing the real part of the closest root of
Pr(τ) to the imaginary axis. It will be proved that this happens when (6.9) has a
double real root.
We start by establishing two preliminary results.

Lemma 5. For ∂Pr
∂τ
6= 0, the derivative of τ with respect to r is

dτ

dr
= τ(r)(τ(r)2 + 1)

∂Pr
∂τ

. (6.10)

Proof. The Implicit Function theorem guarantees that Pr(τ) = 0 defines a function
τ(r) whose derivative is given by

dτ

dr
= −

∂Pr
∂r
∂Pr
∂τ

,

with (6.10) obtained after substituting ∂Pr
∂r

= −τ 3−τ into the numerator above.

Lemma 6. Pr(τ) has a double real root for the value r = r0 that satisfies

4
27ε2

v

r3
0 = 1− r0. (6.11)

Proof. Since the coefficients of (6.9) have one change of sign, it is a consequence of
the Descartes’ rule of signs that Pr(τ) has exactly one negative root. Besides, Pr(τ)
has two or zero positive roots depending on the sign of Pr(τ) at the local minimum
point

τm(r) =
√

r

3(1− r) .

Therefore, Pr(τ) has a double root for a value r = r0 such that Pr0(τm) = 0, a
condition that can be written, after some manipulations, in the form (6.11).

Corollary 7. r0 ∈ (0, 1)

Proof. It follows from (6.11) having consistent signs on both sides.

The previous results lead to considering a partition of the interval r ∈ [0, 1] into
two subintervals, namely r ∈ [0, r0] and r ∈ (r0, 1]. We analyze the optimality of
the t-poles in each subinterval separately.
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Chapter 6 The optimal form of the cubic transformation

6.2.1. Left subinterval 0 6 r 6 r0

Theorem 8. The maximum distance of the closest root of (6.9) to the imaginary
axis τ occurs at the right endpoint of the subinterval, namely r = r0.

Proof. In this case, Pr(τ) has one real, negative root, τ1, and two complex conjugate
roots τ23. The two complex roots merge into a double real (positive) root in the
limit case r = r0, as displayed in Fig. 6.1. Since it can be easily checked that

∂Pr
∂τ

∣∣∣∣∣
τ1

> 0,

it follows from (6.10) that dτ1

dr
< 0, i.e., τ1(r) is a decreasing function in r ∈ [0, r0].

r < r0

r � r0

r > r0

Τ1

Τ2 Τ3

Τ0

-1.0 -0.5 0.5 1.0 1.5
Τ

-1.0

-0.5

0.5

1.0

PrHΤL

Figure 6.1.: Real roots of Pr(τ)

On the other hand, one of the well-known Vieta’s formulas states that the sum of
the three roots of a monic polynomial of third degree equals its quadratic coefficient
with sign changed. Since in our case this coefficient is zero, we have that the real
part of the complex roots τ23 verifies

<(τ23) = −τ1

2 ,

i.e., τ23 are always closer than τ1 to the imaginary axis. Moreover, their real part is
a positive and strictly increasing function of r. Hence, its maximum τ0 (Fig. 6.1) is
reached at r0, with

τ0(εv) = 3εv
2r0(εv)

. (6.12)

6.2.2. Right subinterval r0 < r 6 1
Theorem 9. The distance of the closest root of (6.9) to the imaginary axis τ is
smaller than τ0, as defined in (6.12).
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6.2 Part 1. Optimality of =(t)

Proof. In this case, Pr(τ) has three real roots, with exactly one negative root, i.e.

τ1 < 0 < τ2 < τ3,

as illustrated in Fig. 6.1. The abovementioned formula of Vieta establishes that

τ1 + τ2 + τ3 = 0,

from where it is clear that |τ1| > |τ2|. Thus, the closest root to the imaginary axis
is τ2, for which it can be easily checked that

∂Pr
∂τ

∣∣∣∣∣
τ2

< 0,

which, together with (6.10), means that dτ2

dr
< 0. Therefore, τ2(r) is a decreasing

function in r ∈ (r0, 1], satisfying

τ2(r) < lim
r→r0

τ2(r) = τ0.

r0H¶vL

Τ0

0.2 0.4 0.6 0.8 1.0
r

0.1

0.2

0.3

0.4

IHtHrLL

Figure 6.2.: Optimality of =(t)

6.2.3. The explicit value of r0

The main result of this section can now be stated.

Theorem 10. The closest t-pole of (6.6) is moved furthest away from the real axis
of the plane t by the cubic transformation (6.3) with r = r0 satisfying (6.11).

Proof. Recalling t = iτ , the statement is a direct consequence of the theorems in the
last two subsections. This result is illustrated in Fig. 6.2, that shows the imaginary
part (in absolute value) of the closest t-pole as a function of the variable r.
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Chapter 6 The optimal form of the cubic transformation

With regard to the explicit value of r0, we start by noticing that (6.11) has
exactly one real root, as justified in sec. A.2. Its expression was already anticipated
in (3.18)-(3.19) and is rewritten here for convenience:

r0(εv) = 3
2ε

2/3
v

[(√
1 + ε2

v + 1
)1/3
−
(√

1 + ε2
v − 1

)1/3
]
,

= 3εv sinh
[1
3 sinh−1

( 1
εv

)]
.

These values are obtained by explicit inversion of the cubic equation (6.11), refer
to sec. A.2 for details.

6.3. Part 2. Optimality of =(v)
A proof that the t-poles of (6.6) are moved furthest away from the real axis for r = r0
has been developed in the previous section. However, this result is formulated in
the complex plane t, where the integration interval width has been modified by a
non-linear (cubic) transformation. More specifically, the original integration interval
v̄ ∈ [0, 1] has been transformed onto t ∈ [t0, t1], with tj = h−1(j − v̄p).
Since the interval width t1− t0 has a non-linear dependence in the variable r, the

optimality condition might not hold when renormalizing back to v ∈ [0, 1] through
the affine transformation t(v). Therefore, it is necessary to prove that the closest
v-pole in (6.7) keeps reaching its maximum distance to the real axis v for the same
condition r = r0, which is the objective of the current section.
Some preliminary properties of t(v) are established in the next subsection.

6.3.1. The affine transformation t(v)
It is clear from (6.2) that the near-singular kernel is symmetric under a change of
parameter v̄p → 1− v̄p, since a simple change of variable v̄ → 1− v̄ leaves the kernel
invariant and keeps the integration interval v̄ ∈ [0, 1]. As tj in (6.5) satisfy

(1− r)t3j + rtj = j − v̄p, j = 0, 1, (6.13)

it suffices considering the affine transformation t(v) for values of v̄p that lie at, say,
the left of the symmetry center v̄p = 1

2 .
Furthermore, the behaviour of tj depends on whether v̄p belongs or not to the

integration interval v̄ ∈ [0, 1]. Thus, for the rest of this chapter, two different cases
will be considered regarding the parameter v̄p:

1. 0 < v̄p 6 1
2

2. v̄p < 0

86



6.3 Part 2. Optimality of =(v)

We remark that the cases 1
2 6 v̄p < 1 and v̄p > 1 are symmetric to the cases

considered above. Moreover, the trivial case v̄p = 0, and its symmetric v̄p = 1, are
such that t1− t0 = 1 and, according to (6.7), =(v) = =(r). Hence, nothing needs to
be proved thereafter.
We next establish the monotonicity of the interval width t1 − t0 when considered

as a function of the variable r.

t0
t1

1- vp

-vp

-1.5 -1.0 -0.5 0.5 1.0 1.5
t

-1.5

-1.0

-0.5

0.5

1.0

1.5
hHtL

Figure 6.3.: Behaviour of t1 − t0 for 0 < v̄p 6 1
2

Theorem 11. In case 0 < v̄p 6 1
2 , (t1− t0)(r) is a decreasing function in r ∈ [0, 1].

In case v̄p < 0, (t1 − t0)(r) is an increasing function in the same interval.

Proof. Taking implicit derivatives with respect to r in (6.13) yields

dtj
dr

= tj(r)
tj(r)2 − 1

3(1− r)tj(r)2 + r
,

and thus

d(t1 − t0)
dr

= t1(r) t1(r)2 − 1
3(1− r)t1(r)2 + r

− t0(r) t0(r)2 − 1
3(1− r)t0(r)2 + r

. (6.14)

In case 0 < v̄p 6 1
2 it can be readily verified from (6.13) that

−1 < t0 < 0 < t1 < 1,

as illustrated in Fig. 6.3, hence

tj(r)2 − 1 < 0, j = 0, 1,
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Chapter 6 The optimal form of the cubic transformation

from where
d(t1 − t0)

dr
< 0.

In case v̄p < 0 it is necessary to consider two subcases. If −1 < v̄p < 0, then it
can be verified that

0 < t0 < 1 < t1,

see Fig. 6.4, left. This means that

t1(r)2 − 1 > 0,
t0(r)2 − 1 < 0,

from where
d(t1 − t0)

dr
> 0.
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Figure 6.4.: Behaviour of t1 − t0 for −1 < v̄p < 0 (left) and v̄p 6 −1 (right)

If v̄p 6 −1, then it holds
1 6 t0 < t1,

see Fig. 6.4, right, from where it is clear that −t0 > −t1. Thus, the derivative in
(6.14) admits the following lower bound

d(t1 − t0)
dr

> t1(r) t1(r)2 − 1
3(1− r)t1(r)2 + r

− t1(r) t0(r)2 − 1
3(1− r)t0(r)2 + r

= t1(r) (3− 2r) (t1(r)2 − t0(r)2)
(3(1− r)t1(r)2 + r) (3(1− r)t0(r)2 + r) > 0,

finishing the proof.
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6.3 Part 2. Optimality of =(v)

6.3.2. The explicit form of =(v(r))
Before actually showing that the closest v-pole is at maximum distance from the real
axis for r = r0, it is necessary to find the explicit expression of =(v) as a function
of r. Since tj(r) are real functions, it follows from (6.7) that

=(v(r)) = =(t(r))
(t1 − t0)(r) ,

with t(r) = ±iτ(r). It is clear from (6.9) that τ(r) are the solutions of

τ 3 − r

1− rτ + εv
1− r = 0, (6.15)

whose inverse can be expressed in terms of trigonometric and hyperbolic functions,
as indicated below (refer to sec. A.1 for details).
In the left subinterval 0 < r 6 r0, (6.15) has one real solution τ1 and two complex

conjugate solutions τ23 given by

τ1(r) = − 2√
3

√
r

1− r cosh
1

3 cosh−1

3
√

3
2r

√
1− r
r

εv

 , (6.16)

τ23(r) = −τ1(r)
2 ± i

√
r

1− r sinh
1

3 cosh−1

3
√

3
2r

√
1− r
r

εv

 , (6.17)

where τ23 are, as we know (sec. 6.2.1), the closest roots to the imaginary axis τ .
In the right subinterval r0 < r 6 1, (6.15) has tree real and distinct solutions

whose explicit expression is

τk(r) = 2√
3

√
r

1− r sin
1

3 sin−1

3
√

3
2r

√
1− r
r

εv

+ 2π
3 (k − 2)

 , (6.18)

with k = 1, 2, 3 and τ2 being, as we know (sec. 6.2.2), the closest solution to the
imaginary axis τ .
With respect to tj(r), their explicit expressions are obtained in a similar manner.

Rewriting (6.13) as
t3j + r

1− r tj = j − v̄p
1− r , j = 0, 1,

its only real solution (sec. A.2) takes the form

tj(r) = 2√
3

√
r

1− r sinh
1

3 sinh−1

3
√

3
2r

√
1− r
r

(j − v̄p)
 . (6.19)

In order to conclude this subsection, we notice that the v-poles are symmetrically
distributed with respect to the real axis v, hence it suffices considering the poles
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with positive imaginary part. Thus, the closest v-pole to the real axis satisfies

=(v(r)) =



<(τ23(r))
(t1 − t0)(r) if 0 6 r 6 r0

τ2(r)
(t1 − t0)(r) if r0 < r 6 1,

(6.20)

with all relevant functions defined in (6.16)-(6.19).
We are now ready to prove the optimality of =(v(r)) for all possible cases. More

specifically, four situations are analyzed, corresponding to the discussion made for
the values of v̄p and r. Each case is developed in a separate subsection.

6.3.3. The case 0 < v̄p 6 1
2 and 0 6 r 6 r0

It was proved in sec. 6.2.1 that <(τ23(r)) is an increasing function. Besides, it was
proved in Theorem 11 that (t1−t0)(r) is a decreasing function. In consequence, their
quotient in (6.20) is an increasing function that reaches its maximum at r = r0.

6.3.4. The case 0 < v̄p 6 1
2 and r0 < r 6 1

It was proved (sec. 6.2.2) that τ2(r) is a decreasing function, hence

=(v(r)) = τ2(r)
(t1 − t0)(r) , (6.21)

is the quotient of two decreasing functions, whose behaviour needs to be carefully
examined. In order to simplify the further treatment of (6.21), we introduce the
change of variable

3
√

3
2r

√
1− r
r

= 1
s
, (6.22)

which is an increasing function that transforms s ∈ [εv,∞) onto r ∈ [r0, 1). Thus,
taking (6.16)-(6.19) into account, the imaginary part of the v-poles becomes

=(v(r(s))) = g(s)
w1(s)− w0(s) , (6.23)

with

g(s) = sin
[1
3 sin−1

(
εv
s

)]
, (6.24)

wj(s) = sinh
[1
3 sinh−1

(
j − v̄p
s

)]
. (6.25)

A straightforward application of the chain rule yields

d=(v(r(s))
ds

= d=(v(r))
dr

dr

ds
,
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and since dr
ds

> 0, it suffices showing that =(v(r(s))) is a decreasing function in
s ∈ [εv,∞), as the optimality of =(v(r)) follows immediately. We start by finding
an upper bound for the derivative of g(s) in (6.24).

Lemma 12. g(s) is a decreasing function for s > 0 that satisfies

dg

ds
< −g(s)

s
.

Proof. It is clear from (6.24) that 0 < g(s) 6 1
2 . Moreover, it satisfies the cubic

equation
4sg(s)3 − 3sg(s) + εv = 0,

in agreement with (A.2). Taking implicit derivatives with respect to s yields

dg

ds
= −g(s)

s

3− 4g(s)2

3− 12g(s)2 < 0.

We also notice that in the rightmost fraction above, both the numerator and the
denominator are positive functions, from where

3− 4g(s)2

3− 12g(s)2 > 1,

finishing the proof.

We next find bounds for the derivatives of wj by an analogous procedure.

Lemma 13. The interval width w1(s) − w0(s) is a decreasing function for s > 0
and 0 < v̄p 6 1

2 that satisfies

−d(w1 − w0)
ds

<
w1(s)− w0(s)

s
.

Proof. According to (A.10), the functions wj satisfy

4swj(s)3 + 3swj(s) = j − v̄p.

Taking implicit derivatives with respect to s produces

dwj
ds

= −wj(s)
s

3 + 4wj(s)2

3 + 12wj(s)2 .

The rightmost fraction above is obviously positive and less than one. Noticing from
(6.25) that w0(s) < 0 < w1(s), we have that

−dw1

ds
<
w1(s)
s

,

dw0

ds
< −w0(s)

s
,

from where the claim immediately follows.
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The main result of this subsection can now be stated. Notice that the two previous
Lemmas hold for s > 0 though the next Theorem only applies for s > εv.

Theorem 14. =(v(r(s))) is a decreasing function for s > εv and 0 < v̄p 6 1
2 .

Proof. Taking explicit derivatives in (6.23)

d=(v(r(s)))
ds

=
dg
ds

(w1(s)− w0(s))− d(w1−w0)
ds

g(s)
(w1(s)− w0(s))2

<
−g(s)

s
(w1(s)− w0(s)) + w1(s)−w0(s)

s
g(s)

(w1(s)− w0(s))2 = 0.
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Figure 6.5.: Optimality of =(v(r)) for 0 < v̄p 6 1
2 (left) and v̄p < 0 (right)

The immediate consequence of the two preceding subsections is that =(v(r)) in
(6.20) reaches its maximum at r = r0, as illustrated in Fig. 6.5 (left).

6.3.5. The case v̄p < 0 and 0 6 r 6 r0

Numerical experiments indicate that =(v(r)) need not be a monotonic function in
this case, see Fig. 6.5 (right), and thus the determination of its maximum value is
a rather delicate task. A change of variable that has been found to be appropriate
for this purpose is

3
√

3
2r

√
1− r
r

εv = 1
s
√
s
, (6.26)

which is an increasing function that maps s ∈ [0, 1] onto r ∈ [0, r0]. Substituting
explicitly in (6.20) yields

=(v(r(s))) =
1
2 cosh

[
1
3 cosh−1

(
1
s
√
s

)]
sinh

[
1
3 sinh−1

(
1−v̄p
εv

1
s
√
s

)]
− sinh

[
1
3 sinh−1

(
−v̄p
εv

1
s
√
s

)] .
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According to (A.5) and (A.10), all terms in the numerator and denominator above
can be expressed in algebraic form as follows:

cosh
[

1
3 cosh−1

(
1
s
√
s

)]
= g1(s)

2
√
s
, (6.27)

sinh
[

1
3 sinh−1

(
j − v̄p
εv

1
s
√
s

)]
= wj(s)

2
√
s
, (6.28)

with

g1(s) =
(
1 +
√

1− s3
)1/3

+
(
1−
√

1− s3
)1/3

, (6.29)

wj(s) =
(√(

j−v̄p
εv

)2
+s3+ j−v̄p

εv

)1/3

−
(√(

j−v̄p
εv

)2
+s3− j−v̄p

εv

)1/3

(6.30)

and this lets us express the imaginary part of the v-poles as

=(v(r(s))) = 1
2

g1(s)
w1(s)− w0(s) . (6.31)

The reason for using the change of variable (6.26) is that g1(s) and wj(s) have certain
monotonicity and convexity properties that do not hold when using other changes
of variable. These properties will allow us to prove that (6.31) reaches its maximum
at s = 1. More specifically, we will find and upper bound of (6.31), with the same
value at s = 1, that is an increasing function itself.
We start by finding a upper bound for g1(s), imposing that both g1 and its bound

reach the same value at the right endpoint of the interval, namely s = 1.

Lemma 15. g1(s) is an increasing function in s ∈ [0, 1].

Proof. g1(s), defined in (6.29), satisfies the following functional relationship, which
can be easily deduced from (A.6)

g1(s)3 − 3sg1(s) = 2. (6.32)

Taking implicit derivatives with respect to s produces

dg1

ds
= g1(s)
g1(s)2 − s

. (6.33)

From (6.32) it is clear that

g1(s)2 − s = 2
g1(s) + 2s > 0,

which finishes the proof.

Next, we establish the convexity of g1.
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Lemma 16. g1(s) is a concave function in s ∈ [0, 1].

Proof. It suffices taking the derivative in (6.33) and simplify terms to yield

d2g1

ds2 = −2sg1(s)
(g1(s)2 − s)3 < 0.

As a consequence of the two previous lemmas, g1 is bounded above by its tangent
at s = 1. Since

g1(1) = 2, dg1

ds

∣∣∣∣∣
s=1

= 2
3 ,

it follows that
g1(s) 6 2

3(s+ 2), (6.34)

with equality holding at s = 1.
Our next objective is to prove that the factor 1

w1(s)−w0(s) in (6.31) is a convex
function in s ∈ [0, 1]. We remark that this does not imply that w1(s) − w0(s) is
a concave function in that interval (in fact, it is not). Furthermore, this convexity
property may not hold for other changes of variable different from the one proposed
in (6.26). A couple of preliminary results are proved first.

Lemma 17. If v̄p < 0, wj(s) are decreasing and convex functions in s ∈ [0, 1].

Proof. The functions wj defined in (6.30) satisfy the following relationship, as it can
be easily deduced from (A.11):

wj(s)3 + 3swj(s) = 2
εv

(j − v̄p), j = 0, 1. (6.35)

Taking implicit derivatives with respect to s in (6.35) yields

dwj
ds

= − wj(s)
wj(s)2 + s

< 0.

Taking explicit derivatives and simplifying terms, we finally arrive at

d2wj
ds2 = 2swj(s)

(wj(s)2 + s)3 > 0.

Lemma 18. If v̄p < 0, w1(s)2, w1(s)w0(s) and w0(s)2 are decreasing and convex
functions in s ∈ [0, 1].
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Proof. By explicit derivation it holds

d(w1(s)2)
ds

= 2w1(s)dw1

ds
< 0,

d2(w1(s)2)
ds2 = 2

(
dw1

ds

)2

+ 2w1(s)d
2w1

ds2 > 0.

The corresponding properties for w1(s)w0(s) and w0(s)2 are proved in a completely
analogous way.

Theorem 19. If v̄p < 0, 1
w1(s)−w0(s) is a convex function in s ∈ [0, 1].

Proof. Taking the difference between both equations (6.35) produces

w1(s)3 − w0(s)3 + 3s (w1(s)− w0(s)) = 2
εv
.

Applying the identity w3
1 − w3

0 = (w1 − w0)(w2
1 + w1w0 + w2

0) it follows that

1
w1(s)− w0(s) = εv

2
[
w1(s)2 + w1(s)w0(s) + w0(s)2 + 3s

]
,

where all the functions within the brackets above are convex.

An immediate consequence of this theorem is that 1
w1(s)−w0(s) is bounded above

by its chord, namely

1
w1(s)− w0(s) 6

1− s
w1(0)− w0(0) + s

w1(1)− w0(1) , (6.36)

with equality at both endpoints s = 0 and s = 1.
Summarizing the last steps, we have found upper bounds (6.34) and (6.36) for

both factors in (6.31). This allows us to write =(v(r(s))) 6 B1(s), with equality at
s = 1, where B1 is the upper bound given by

B1(s) = 1
3(s+ 2)

[
1− s

w1(0)− w0(0) + s

w1(1)− w0(1)

]
. (6.37)

Therefore, in order to conclude this subsection, it suffices showing that B1(s) is an
increasing function in s ∈ [0, 1]. We start by explicitly computing

d2B1

ds2 = 2
3

[
1

w1(1)− w0(1) −
1

w1(0)− w0(0)

]
, (6.38)

where the term in brackets can be positive, negative or zero, depending on the values
of εv and v̄p. Numerical examples for both situations can be easily found from the
definitions in (6.30).
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In case (6.38) is non-negative, B1 is a convex function and its minimum slope
occurs at s = 0, that can be evaluated to

1
3(w1(0)− w0(0)) + 2

3

[
1

w1(1)− w0(1) −
1

w1(0)− w0(0)

]
> 0,

meaning that B1 is an increasing function.
In case (6.38) is negative, B1 is a concave function and its minimum slope occurs

at s = 1, that can be evaluated to

1
3(w1(0)− w0(0)) +

[
1

w1(1)− w0(1) −
1

w1(0)− w0(0)

]
,

hence, our next objective is to show that the expression above is positive. This
condition is equivalent to

w1(1)− w0(1)
w1(0)− w0(0) <

4
3 , (6.39)

where, according to (6.28) and (6.30)

wj(1) = 2 sinh
[1
3 sinh−1

(
j − v̄p
εv

)]
, (6.40)

wj(0) = 21/3
(
j − v̄p
εv

)1/3
. (6.41)

We next prove a condition that is, in fact, stronger than (6.39).

Theorem 20. If εv > 0 and v̄p < 0, then

sinh
[

1
3 sinh−1

(
1−v̄p
εv

)]
− sinh

[
1
3 sinh−1

(
−v̄p
εv

)]
(

1−v̄p
εv

)1/3
−
(
−v̄p
εv

)1/3 6
1

21/3 .

Proof. We let
− v̄p
εv

= X, X > 0,

from where
1− v̄p
εv

= X + 1
εv
.

We write
sinh

[
1
3 sinh−1

(
X + 1

εv

)]
− sinh

[
1
3 sinh−1X

]
(
X + 1

εv

)1/3
−X1/3

6
1
k
, (6.42)

and try to find the maximum value of the parameter k for which the inequality
above holds. Rearranging terms in (6.42) yields

k sinh
[1
3 sinh−1

(
X + 1

εv

)]
−
(
X + 1

εv

)1/3
6 k sinh

[1
3 sinh−1X

]
−X1/3.
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As both sides of this inequality are the same function, but with arguments shifted,
it suffices finding the largest value of k for which the function

k sinh
[1
3 sinh−1X

]
−X1/3,

is decreasing for X > 0.
In order to simplify further calculations, we take a new change of variable

1
3 sinh−1X = Y → X = sinh(3Y ), Y > 0,

which is a monotonically increasing function. Thus, our objective is to find the
largest value of k such that

k sinh Y − sinh1/3(3Y ),

is a decreasing function for Y > 0. Taking derivatives with respect to Y , we impose

k cosh Y − cosh(3Y )
sinh2/3(3Y )

< 0,

which is equivalent to

k3 cosh3 Y <
cosh3(3Y )
sinh2(3Y )

.

Substituting cosh(3Y ) = cosh Y
(
4 sinh2 Y + 1

)
, sinh(3Y ) = sinh Y

(
4 sinh2 Y + 3

)
,

the condition becomes

k3 <

(
4 sinh2 Y + 1

)3

sinh2 Y
(
4 sinh2 Y + 3

)2 .

Putting sinh2 Y = Z and manipulating the expression above, a polynomial condition
is obtained, namely

(4Z + 1)3 − k3Z(4Z + 3)2 > 0. (6.43)
It is clear that this equation has no positive solution for k = 0. Thus, we impose
that the left-hand side of (6.43) has a double (positive) root. Taking derivatives
with respect to Z, equating to zero and simplifying terms it follows

4(4Z + 1)− k3(4Z + 3) = 0,

whose only positive solution is

Z = 4− 3k3

4(k3 − 4) .

Substituting into (6.43) and solving for k we obtain

k3 = 2,

which finishes the proof, since if k > 21/3 the left-hand side of (6.43) would take
negative values for some positive value of Z.
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Going back to (6.39), and taking (6.40)-(6.41) into account, it is an immediate
consequence of the previous theorem that

w1(1)− w0(1)
w1(0)− w0(0) 6

2
21/3

1
21/3 = 21/3 <

4
3 .

We conclude that B1(s) is an increasing function also in case (6.38) is positive,
hence =(v(r(s))) reaches its maximum at s = 1, and so does =(v(r)) at r = r0.

6.3.6. The case v̄p < 0 and r0 < r 6 1
It was proven in Theorem 9 that τ2(r) is a decreasing function. Moreover, (t1−t0)(r)
is an increasing function, according to Theorem 11. In consequence, their quotient
in (6.20) is a decreasing function that reaches its maximum at r = r0.
The results of the two preceding subsections are illustrated in Fig. 6.5, right.

6.3.7. Lower bounds for =(t(r0)) and =(v(r0))
Once the optimality of the closest t and v-poles has been established, it might be
interesting to provide a measure of the distance gain to their respective real axes.

Theorem 21. The imaginary parts =(t(r0)) and =(v(r0)) are bounded below by(
εv
2

)1/3
and ε

1/3
v

2 respectively.

Proof. =(t(r0)) coincides with τ0 in (6.12). Recalling (6.11) and Corollary 7, it can
be easily derived that

r0(εv) 6 3
(
εv
2

)2/3
, (6.44)

from where
=(t(r0(εv))) >

(
εv
2

)1/3
,

finishing the first part of the theorem.
On the other hand, it follows from (6.12) and (6.20) that

=(v(r0)) = 3εv
2r0(t1(r0)− t0(r0)) , (6.45)

and an upper bound for the second factor in the denominator is found next. We
consider tj as functions of the parameter v̄p and recall that they satisfy (6.13), that
can be rewritten as

(1− r)tj(v̄p)3 + rtj(v̄p) = j − v̄p, j = 0, 1. (6.46)

We try to find the maximum of the function t1(v̄p)− t0(v̄p) for arbitrary r. Taking
implicit derivatives with respect to v̄p

d(t1 − t0)
dv̄p

= 3(1− r) (t1(v̄p)2 − t0(v̄p)2)
(3(1− r)t1(v̄p)2 + r) (3(1− r)t0(v̄p)2 + r) .
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Equating to zero and taking into account that t1 > t0, we arrive at the condition
t1(v̄p) = −t0(v̄p). Substituting in (6.46) and summing equations for j = 0, 1 we
obtain v̄p = 1

2 . This way, the equation for t1 takes the form

(1− r)t31 + rt1 −
1
2 = 0.

Taking implicit derivatives with respect to r it is easy to determine that t1(r) is a
decreasing function in r ∈ [0, 1]. Thus, its maximum is reached at r = 0 for which
t1 = 1

21/3 , and we have that for v̄p = 1
2 , t1 6 1

21/3 . Since t1 = −t0 we conclude that
t1 − t0 = 2t1 6 22/3. Substituting this, together with (6.44) into (6.45), we finally
arrive at

=(v(r0)) > ε1/3
v

2 ,

which finishes the proof.

6.4. Part 3. The optimal ellipse of analiticity Ep
It has already been mentioned (sec. 6.1), that, in order to determine the optimal
form of the cubic transformation, it does not suffice with proving the optimality of
the imaginary part of the v-poles, as their real part might be closer to midpoint of
the integration interval, resulting in a smaller ellipse of analiticity Ep.
This section proves that the optimal (largest) ellipse, in the sense defined in

sec. 3.4.1, occurs in fact for r = r0, although an additional hypothesis, that produces
a slightly weaker result, is introduced for the case v̄p < 0. Most of the results
established in Parts 1 and 2 of the proof will have to be used throughout this final
section of the proof.
It was already mentioned in sec. 3.4.1 that the equation of an ellipse with foci at

points (0, 0) and (1, 0) is
(X − 1

2)2

b2 + 1
4

+ Y 2

b2 = 1,

with b being its semi-minor (vertical) axis. Since none of these ellipses intersect, the
continuous uniparametric family of all confocal ellipses fill the plane, noticing that
the integration interval [0, 1] corresponds to the degenerate case b = 0.
Given a complex pole of the near-singular kernel at the critical value r = r0, the

value of the semi-minor axis of the confocal ellipse determined by v(r0) satisfies the
equation (

<(v(r0))− 1
2

)2

b2 + 1
4

+ =(v(r0))2

b2 = 1, (6.47)

where b is the only positive solution of the biquadratic equation above. We remark
that b depends on the geometric parameters εv and v̄p, that determine the position
of the transformed poles v(r0). However the explicit dependence b = b(εv, v̄p) will
be omitted for the rest of this section, unless otherwise indicated.
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Hence, in order to show that the critical ellipse is the optimal one, it suffices
showing that if r ∈ [0, 1], then(

<(v(r))− 1
2

)2

b2 + 1
4

+ =(v(r))2

b2 6 1, (6.48)

with equality holding for r = r0.
Taking (6.7) and (6.16)-(6.19) into account, it is clear that in case 0 6 r 6 r0 the

6 v-poles can be written in explicit form as

v(r) = −t0(r)
(t1 − t0)(r) ±

i

(t1 − t0)(r)2<(τ23(r)),

v(r) = ±=(τ23(r))− t0(r)
(t1 − t0)(r) ± i

(t1 − t0)(r)<(τ23(r)).

It is straightforward to find numerical examples of these poles lying outside the
ellipse of analiticity, except for the case

v(r) = =(τ23(r))− t0(r)
(t1 − t0)(r) ± i

(t1 − t0)(r)<(τ23(r)), (6.49)

which is the pole displayed in orange (only the positive imaginary part is shown) in
Fig. 6.6.
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Figure 6.6.: Critical ellipse and v-poles for 0 < v̄p 6 1
2 (left) and v̄p < 0 (right)

On the other hand, if r0 < r 6 1 the 6 v-poles are given by

v(r) = −t0(r)
(t1 − t0)(r) ±

i

(t1 − t0)(r)τk(r), k = 1, 2, 3. (6.50)
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Again, numerical examples exist with the poles corresponding to k = 1 and k = 3
lying outside the ellipse of analiticity. Thus, the only poles that seem to remain
inside the ellipse are the ones corresponding to k = 2, as displayed in green (only
the positive imaginary part is shown) in Fig. 6.6.
Summarizing the ideas above, Fig. 6.6 shows the critical ellipse, together with the

locus of the closest complex poles v(r) in (6.49) and (6.50) with k = 2. The green
dot at r = 1 corresponds to the original position of the kernel poles, together with
the ellipse of analiticity before applying the cubic transformation. Only the poles
with positive imaginary part are shown, since the poles with negative imaginary
part are obviously symmetric. Two different situations are shown, corresponding to
values 0 < v̄p 6 1

2 and v̄p < 0.
The aim of this section is, therefore, to show that the poles displayed in Fig. 6.6

do not “escape” from the ellipse of analiticity. More specifically, a proof of (6.48) is
developed for the case 0 < v̄p 6 1

2 and a slightly weaker result for the case v̄p < 0.
The explicit form of the real part of the v-poles is provided first.

6.4.1. The explicit form of <(v(r))
According to the previous subsection, the v-poles under consideration for the rest
of this section have a real part given by

<(v(r)) =



=(τ23(r))− t0(r)
(t1 − t0)(r) if 0 6 r 6 r0

−t0(r)
(t1 − t0)(r) if r0 < r 6 1,

(6.51)

with all relevant functions defined in (6.16)-(6.19). The same four cases as in sec. 6.3
are examined in the respective subsections below.

6.4.2. The case 0 < v̄p 6 1
2 and 0 6 r 6 r0

We apply the same change of variable already considered in sec. 6.3.4, namely

3
√

3
2r

√
1− r
r

= 1
s
, (6.52)

although in this case the interval s ∈ [0, εv) is transformed onto r ∈ [0, r0). Taking
into account the expressions for the real and imaginary parts of the closest v-pole
in (6.20) and (6.51), it follows

v(r(s)) = g2(s)− w0(s)
w1(s)− w0(s) + i

g1(s)
w1(s)− w0(s) , (6.53)
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with

g1(s) = 1
2 cosh

[1
3 cosh−1

(
εv
s

)]
, (6.54)

g2(s) =
√

3
2 sinh

[1
3 cosh−1

(
εv
s

)]
, (6.55)

wj(s) = sinh
[1
3 sinh−1

(
j − v̄p
s

)]
, (6.56)

noticing that wj are formally the same functions as in (6.25), though defined over a
different interval. Thus, w0 < 0 < w1 also holds in this case. Moreover, it is readily
shown that the following relationship exists between g1 and g2:

g2(s)2 = 3g1(s)2 − 3
4 . (6.57)

The condition (6.48) can then be written in equivalent form as

4b2
(
<(v(r(s)))− 1

2

)2
+ (4b2 + 1)=(v(r(s)))2 6 b2(4b2 + 1), (6.58)

with equality at s = εv. This means that it is necessary to show that the left-hand
side of this inequality reaches its maximum at s = εv. The first parenthesis in (6.58)
is computed to

1
4

(w1(s) + w0(s))2

(w1(s)− w0(s))2 −
w1(s) + w0(s)

(w1(s)− w0(s))2 g2(s) + g2(s)2

(w1(s)− w0(s))2 .

Noting that g2(s) > 0, g2(εv) = 0 and taking (6.57) into account, it is clear that(
<(v(r(s)))− 1

2

)2
6

1
4

(w1(s) + w0(s))2

(w1(s)− w0(s))2 +
3g1(s)2 − 3

4
(w1(s)− w0(s))2 ,

from where it follows

4b2
(
<(v(r(s)))− 1

2

)2
+ (4b2 + 1)=(v(r(s)))2 6

b2 (w1(s) + w0(s))2

(w1(s)− w0(s))2 + (16b2 + 1)g1(s)2 − 3b2

(w1(s)− w0(s))2 , (6.59)

with equality guaranteed at s = εv by the definition of b in (6.47). Therefore, it
suffices proving that (6.59) reaches its maximum at s = εv. We start by showing
that the first fraction in (6.59) is an increasing function.

Lemma 22. If 0 < v̄p 6 1
2 , the function w1(s) + w0(s) is positive for s ∈ [0, εv).

Proof. We know from (A.10) that the function Z(Y ) = sinh
[

1
3 sinh−1 Y

]
satisfies

the functional relationship
Y = 3Z + 4Z3.
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Taking implicit derivatives with respect to Y produces

dZ

dY
= 1

3(4Z2 + 1) > 0,

meaning that Z is an increasing function.
Since 0 < v̄p 6 1

2 , it follows that 1− v̄p > v̄p from where it is clear that

1− v̄p
s

>
v̄p
s
,

for s > 0. In consequence

sinh
[1
3 sinh−1

(1− v̄p
s

)]
− sinh

[1
3 sinh−1

(
v̄p
s

)]
> 0,

finishing the proof.

On the other hand, it is obvious that

w1(s) + w0(s)
w1(s)− w0(s) > 0,

and we prove that this fraction is also an increasing function.

Lemma 23. If 0 < v̄p 6 1
2 , the function w1(s) + w0(s)

w1(s)− w0(s) is increasing for s ∈ [0, εv).

Proof. It can be readily shown that

d

ds

(
w1 + w0

w1 − w0

)
= 2

(w1(s)− w0(s))2

[
w1(s)dw0

ds
− w0(s)dw1

ds

]
. (6.60)

Since, according to (A.10), wj satisfy

4swj(s)3 + 3swj(s) = j − v̄p, (6.61)

it follows, by implicit derivation with respect to s, that

dwj
ds

= −wj(s)3s

(
1 + 2

4wj(s)2 + 1

)
. (6.62)

Substituting into the bracket in (6.60) and rearranging terms it follows

d

ds

(
w1 + w0

w1 − w0

)
= −16w1(s)w0(s)

3s(w1(s)− w0(s))
w1(s) + w0(s)

(4w1(s)2 + 1)(4w0(s)2 + 1) , (6.63)

which is positive, as w0 < 0 for 0 < v̄p 6 1
2 .
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As a consequence of the two previous lemmas, we conclude that the first fraction
in (6.59) is an increasing function.
We now take under consideration the second fraction in (6.59), and show that its

maximum is also reached at s = εv. We remark that the numerator of this fraction
is positive since, according to (6.57):

(16b2 + 1)g1(s)2 − 3b2 = 4b2g2(s)2 + (4b2 + 1)g1(s)2.

As the next step, we find an upper bound for g1(s)2, with g1 defined in (6.54).

Lemma 24. If X > 1 then

cosh2
[1
3 cosh−1(X3/2)

]
6

X

24/3 + 1− 1
24/3 . (6.64)

Proof. The equality holds trivially forX = 1. The explicit derivative of the left-hand
side above is

1
2

√
X

X3 − 1 sinh
[2
3 cosh−1(X3/2)

]
. (6.65)

We let
1
3 cosh−1(X3/2) = Y → X = cosh2/3(3Y ), Y > 0,

and thus, (6.65) takes the form

1
2

cosh1/3(3Y )
sinh(3Y ) sinh(2Y ).

Raising to the third power, and manipulating the expression above by means of the
appropriate hyperbolic identities (indicated within braces), it follows

1
8

cosh(3Y )
sinh3(3Y )

sinh3(2Y ) {sinh(2Y ) = 2 sinh Y cosh Y }

= cosh(3Y )
sinh3(3Y )

sinh3 Y cosh3 Y {sinh(3Y ) = 3 sinh Y + 4 sinh3 Y }

= cosh(3Y )
(3 + 4 sinh2 Y )3 cosh3 Y {cosh(3Y ) = 4 cosh3 Y − 3 cosh Y }

= 1
16

4 cosh2 Y − 3
4 sinh2 Y + 3

cosh4 Y

(sinh2 Y + 3
4)2 {cosh2 Y = sinh2 Y + 1}

= 1
16

4 sinh6 Y + 9 sinh4 Y + 6 sinh2 Y + 1
4 sinh6 Y + 9 sinh4 Y + 27

4 sinh2 Y + 27
16

<
1
16 .

In consequence, the derivative of the left-hand side of (6.64) is less than 1
24/3 . Since

the derivative of the right-hand side of (6.64) equals 1
24/3 , the lemma follows as a

consequence of Rolle’s theorem.

104



6.4 Part 3. The optimal ellipse of analiticity Ep

Corollary 25. Taking X =
(
εv
s

)2/3
it follows that

g1(s)2 6 g3(s),

with equality holding for s = εv, where g3 is defined as

g3(s) = 1
4

(
1

24/3

(
εv
s

)2/3
+ 1− 1

24/3

)
. (6.66)

Going back to (6.59), we consider the upper bound for its second fraction, namely

(16b2 + 1)g3(s)− 3b2

(w1(s)− w0(s))2 , (6.67)

whose numerator is obviously positive, and show that it is an increasing function
for s ∈ [0, εv).
The derivative of (6.67) is

(16b2 + 1)dg3
ds

(w1(s)− w0(s)) + 2 [(16b2 + 1)g3(s)− 3b2] d[−(w1−w0)]
ds

(w1(s)− w0(s))3 . (6.68)

Recalling from Lemma 13 that w1−w0 is a decreasing function for s > 0, we next find
a lower bound for d[−(w1−w0)]

ds
. It is a consequence of Lemma 22 that w0(s)2 < w1(s)2.

Hence, taking (6.62) into account, it follows

dw0

ds
> −w0(s)

3s

(
1 + 2

4w1(s)2 + 1

)
,

d[−(w1 − w0)]
ds

>
w1(s)− w0(s)

3s

(
1 + 2

4w1(s)2 + 1

)
.

Therefore, (6.68) is bounded below by

3s(16b2 + 1)dg3
ds

+ 2 [(16b2 + 1)g3(s)− 3b2] + 4[(16b2+1)g3(s)−3b2]
4w1(s)2+1

3s(w1(s)− w0(s))2 , (6.69)

and, in order to show that (6.67) is increasing, it suffices proving that the numerator
of (6.69) is positive. We start by finding an explicit expression for the sum of the
first two terms in the numerator of (6.69). From (6.66) it is immediate that

dg3

ds
= −1

6
1

24/3

(
εv
s

)2/3 1
s
,

from where it follows, after some algebraic manipulations, that

3s(16b2 + 1)dg3

ds
+ 2

[
(16b2 + 1)g3(s)− 3b2

]
= 1

2

(
1− 1

24/3

)
− 2

(
22/3 − 1

)
b2

≈ 0.3016− 1.1748b2.
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We remark that this expression is independent of s. Moreover, it is clearly non-
negative for

b 6 b1 = 1
2
√

2

√
21/3 + 2−1/3 ≈ 0.5067, (6.70)

and since the third term in the numerator of (6.69) is always positive, the optimality
condition (6.48) is proved whenever (6.70) holds.
In order to prove (6.48) when (6.70) does not hold, it is necessary to find a lower

bound for the third term in the numerator of (6.69), that can be written as

4b2(16g3(s)− 3) + 4g3(s)
4w1(s)2 + 1 . (6.71)

We start by proving the following

Lemma 26. If X > 0 then

sinh
[1
3 sinh−1(X3)

]
6

X

22/3 .

Proof. It is immediate that the equality holds for X = 0. We let

1
3 sinh−1(X3) = Y → X = sinh1/3(3Y ), Y > 0,

and try to prove

sinh Y 6
sinh1/3(3Y )

22/3 ,

which is equivalent, after raising to the third power, to

4 sinh3 Y

sinh(3Y ) 6 1.

The left-hand side of this expression can now be manipulated with the help of the
appropriate hyperbolic identities, indicated within braces:

4 sinh3 Y

sinh(3Y ) {sinh3 Y = 1
4(sinh(3Y )− 3 sinh Y )}

= sinh(3Y )− 3 sinh Y
sinh(3Y ) {sinh(3Y ) = 3 sinh Y + 4 sinh3 Y }

= 1− 3
3 + 4 sinh2 Y

6 1,

which concludes the proof.
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Corollary 27. Taking X = (1− v̄p)1/3

s1/3 it follows

w1(s) < 1
22/3

(1− v̄p)1/3

s1/3 , s ∈ (0, εv).

The lower bound for (6.71) can now be written explicitly as follows

b2 4
[
22/3ε2/3

v − (22/3 − 1)s2/3
]

22/3(1− v̄p)2/3 + s2/3 + ε2/3
v + (24/3 − 1)s2/3

4(1− v̄p)2/3 + 24/3s2/3 . (6.72)

In this expression, the first fraction is clearly a decreasing function of s, and thus

b2 4
[
22/3ε2/3

v − (22/3 − 1)s2/3
]

22/3(1− v̄p)2/3 + s2/3

> b2 4ε2/3
v

22/3(1− v̄p)2/3 + ε
2/3
v

> b2 4ε2/3
v

22/3 + ε
2/3
v

.

With respect to the second fraction in (6.72), it is the quotient of two affine functions
in s2/3, from where it can be easily shown that

• it is an increasing function if ε2/3
v

(1− v̄p)2/3 < 4− 22/3.

• it is a constant function if ε2/3
v

(1− v̄p)2/3 = 4− 22/3.

• it is a decreasing function if ε2/3
v

(1− v̄p)2/3 > 4− 22/3.

The first condition can be written alternatively as

εv < (4− 22/3)3/2(1− v̄p).

Since 0 < v̄p 6 1
2 , a sufficient condition for this is

εv <
1
2(4− 22/3)3/2 ≈ 1.8737. (6.73)

Thus, in case (6.73) holds, the second fraction in (6.72) can be bounded below as
follows

ε2/3
v + (24/3 − 1)s2/3

4(1− v̄p)2/3 + 24/3s2/3 >
ε2/3
v

4(1− v̄p)2/3 >
ε2/3
v

4 ,

which is a result that will be used at the end of this subsection.
Summarizing the last steps, the numerator in (6.69) admits the following lower

bound
1
2

(
1− 1

24/3

)
− 2

(
22/3 − 1

)
b2 + ε2/3

v

4 + 4ε2/3
v

22/3 + ε
2/3
v

b2. (6.74)
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A bound for the semi-minor axis, b Before showing that (6.74) is positive for any
b > 0, we need to find an upper bound for the semi-minor axis as a function of the
geometric parameters. Thus, for the rest of this subsection, the explicit dependence
of the semi-minor axis will be written, i.e. b(εv, v̄p). The dependence of the functions
wj is explicitly written too, i.e. wj(s, v̄p).
Fixing εv, two functions are now introduced to be conveniently used later on:

h1(v̄p) = (w1(εv, v̄p)− w0(εv, v̄p))2, (6.75)

h2(v̄p) = w1(εv, v̄p)w0(εv, v̄p) + 1
4 . (6.76)

A proof that both are monotonic functions of v̄p is provided below.

Lemma 28. h1(v̄p) is an increasing function for 0 < v̄p 6 1
2 .

Proof. It is clear from (6.61) that, at s = εv, the functions wj satisfy

4εvwj(εv, v̄p)3 + 3εvwj(εv, v̄p) = j − v̄p.

Taking implicit derivatives with respect to v̄p yields:

dwj(εv, v̄p)
dv̄p

= − 1
3εv

1
4wj(εv, v̄p)2 + 1 ,

from where it is immediate that

d(w1(εv, v̄p)− w0(εv, v̄p))
dv̄p

= 4
3εv

w1(εv, v̄p)2 − w0(εv, v̄p)2

(4w1(εv, v̄p)2 + 1)(4w0(εv, v̄p)2 + 1) .

We know from Lemma 22 that w1(εv, v̄p) + w0(εv, v̄p) > 0, hence the numerator of
the right-hand side fraction is positive. In consequence,

dh1(v̄p)
dv̄p

= 2(w1(εv, v̄p)− w0(εv, v̄p))
d(w1(εv, v̄p)− w0(εv, v̄p))

dv̄p
> 0,

finishing the proof.

Lemma 29. h2(v̄p) is a decreasing function for 0 < v̄p 6 1
2 .

Proof. It suffices computing the explicit value of the derivative

dh2

dv̄p
= − 1

3εv
4(w1(εv, v̄p)3 + w0(εv, v̄p)3) + w1(εv, v̄p) + w0(εv, v̄p)

(4w1(εv, v̄p)2 + 1)(4w0(εv, v̄p)2 + 1) .

As w1(εv, v̄p) + w0(εv, v̄p) > 0 implies w1(εv, v̄p)3 + w0(εv, v̄p)3 > 0, it is clear that
the numerator of the fraction above is positive, concluding the proof.
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It is interesting to remark that these two lemmas are valid for all values of v̄p 6 1
2 ,

i.e., they are not restricted to the current case under consideration, 0 < v̄p 6 1
2 .

We next focus on equation (6.47) that defines the semi-minor axis b(εv, v̄p). First,
(6.53) is evaluated at s = εv, taking into account that (6.55) implies g2(εv) = 0 and
(6.54) implies g1(εv) = 1

2 . Substituting its real and imaginary parts into (6.47) and
recalling the definitions in (6.75) and (6.76), a biquadratic equation for b(εv, v̄p) is
obtained:

h1(v̄p)b(εv, v̄p)4 − h2(v̄p)b(εv, v̄p)2 − 1
16 = 0, (6.77)

that allows us to prove the following

Theorem 30. If εv is fixed and 0 < v̄p 6 1
2 , the semi-minor axis b(εv, v̄p) is a

decreasing function of v̄p.

Proof. Since b(εv, v̄p) > 0 it suffices proving that b(εv, v̄p)2 is decreasing. Taking
implicit derivatives with respect to v̄p in (6.77) yields

d(b(εv, v̄p)2)
dv̄p

= b(εv, v̄p)2
dh2
dv̄p
− dh1

dv̄p
b(εv, v̄p)2

2h1(v̄p)b(εv, v̄p)2 − h2(v̄p)
.

The numerator of this expression is clearly negative as a consequence of the two
previous lemmas. With respect to the denominator, it follows from (6.77) that

h1(v̄p)b(εv, v̄p)2 − h2(v̄p) = 1
16b(εv, v̄p)2 > 0,

from where it is immediate that 2h1(v̄p)b(εv, v̄p)2 − h2(v̄p) > 0.

Corollary 31. In case 0 < v̄p 6 1
2 it holds b(εv, v̄p) 6 b(εv, 0), with equality at

v̄p = 0.

It is now straightforward to obtain the explicit value of b(εv, 0). Taking (6.56) into
account, it is clear that w0(εv, 0) = 0 and w1(εv, 0) = sinh

[
1
3 sinh−1

(
1
εv

)]
. Hence,

(6.77) reduces to
w1(εv, 0)2b(εv, 0)4 − 1

4b(εv, 0)2 − 1
16 = 0,

whose positive solution can be written as

b(εv, 0)2 = 1
8w1(εv, 0)2 + 1

4

√
1

4w1(εv, 0)4 + 1
w1(εv, 0)2 . (6.78)

We next obtain a more convenient (in fact, linear) upper bound for b(εv, 0). An
upper bound for 1

w1(εv ,0) is found first.

Lemma 32. If X > 0 then

1
sinh

[
1
3 sinh−1

(
1
X

)] 6 3X + 1√
3
.
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Proof. We try to find the smallest value of k such that the inequality

1
sinh

[
1
3 sinh−1

(
1
X

)] 6 3X + k,

holds. We let
1
3 sinh−1

( 1
X

)
= Y → 1

X
= sinh(3Y ), Y > 0,

and obtain an equivalent form for the condition above, namely:

3 sinh Y
sinh(3Y ) + k sinh Y > 1.

Using the identity sinh(3Y ) = 3 sinh Y + 4 sinh3 Y , and after some manipulations,
the condition becomes

k(3 + 4 sinh2 Y ) > 4 sinh Y.
This is a quadratic inequality in sinh Y such that equality holds if

sinh Y = 1
2k ±

1
2

√
1
k2 − 3.

Thus, the smallest value of k that prevents the equality from having two different
real solutions is k = 1√

3 and the proof is finished.

Corollary 33. Taking X = εv it follows

1
w1(εv, 0) 6 3εv + 1√

3
.

Going back to (6.78), the term under the square root can be bounded above as
follows

1
4w1(εv, 0)4 + 1

w1(εv, 0)2 6
81ε4

v

4 + 9
√

3ε3
v + 27

2 ε
2
v + 7√

3
εv + 13

36 .

It is straightforward to verify that the right-hand side polynomial is bounded above
itself by

(
3εv√

2 + a1
)4
, with a1 =

3√7√
6 ≈ 0.7810. Hence, it follows from (6.78) that

b(εv, 0)2 <
1
8

(
3εv + 1√

3

)2

+ 1
4

(
3εv√

2
+ a1

)2

.

Again, it is straightforward to check that the right-hand side polynomial is, once
more, bounded above by

(
3εv
2 + a2

)2
, with

a2 = 1
2

√
a2

1 + 1
6 = 1

2

√
72/3 + 1

6 ≈ 0.4406. (6.79)
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Summarizing the steps above, a chain of upper bounds has been found for the semi-
minor axis in case 0 < v̄p 6 1

2 , namely

b(εv, v̄p) 6 b(εv, 0) < 3εv
2 + a2. (6.80)

It is interesting to mention that a similar reasoning leads to a lower bound for the
semi-minor axis, more specifically

b(εv, v̄p) > b
(
εv,

1
2

)
>

3εv
2 ,

although this fact will not be used in the rest of the proof.
We are now ready to prove that (6.74) is positive for any b(εv, v̄p) > 0. An iterative

procedure will be followed, as explained below.
For the first iteration, we know that (6.74) is positive for b(εv, v̄p) 6 b1, with the

value of b1 defined in (6.70), and rewritten here for convenience

b1 = 1
2
√

2

√
21/3 + 2−1/3 ≈ 0.5067.

Taking (6.79) and (6.80) into account, a sufficient condition to ensure b(εv, v̄p) 6 b1
comes from imposing

3εv
2 + a2 6 b1.

Solving the equality produces εv = 2
3(b1 − a2) ≈ 0.04403 and thus we can take

εv1 = 0.04 as the value for the first iteration (see Tab. 6.1). Since the optimality is
now guaranteed for εv 6 εv1, we can assume εv > εv1 to find a lower bound of the
last two fractions in (6.74). Since both ε

2/3
v

4 and 4ε2/3v

22/3+ε2/3v

are increasing functions of
εv, it follows that

ε2/3
v

4 + 4ε2/3
v

22/3 + ε
2/3
v

b(εv, v̄p)2

>
ε

2/3
v1
4 + 4ε2/3

v1

22/3 + ε
2/3
v1
b(εv, v̄p)2

≈ 0.03116 + 0.2912b(εv, v̄p)2,

and in consequence (6.74) is bounded below by

1
2

(
1− 1

24/3

)
− 2

(
22/3 − 1

)
b(εv, v̄p)2

+ 0.03116 + 0.2912b(εv, v̄p)2

≈ 0.3327− 0.8836b(εv, v̄p)2,

which is positive for b(εv, v̄p) . 0.6136. This ensures that (6.74) is positive for
b(εv, v̄p) 6 b2, where we can take b2 = 0.60.
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Table 6.1.: Iterations for b(εv, v̄p)

Iteration bi εvi
1 0.506 0.04
2 0.60 0.10
3 0.71 0.17
4 0.84 0.26
5 1.06 0.41
6 1.75 0.87

The procedure just described is now iterated, as summarized in Tab. 6.1. After
the sixth iteration, the lower bound for (6.74) becomes

0.5294 + 0.2841b(εv, v̄p)2,

which is obviously positive for all values of b(εv, v̄p), and the proof that (6.74) is
positive is finished. We remark that all iterations above satisfy the condition (6.73),
ensuring that (6.74) is a lower bound of the numerator of (6.69).

6.4.3. The case 0 < v̄p 6 1
2 and r0 < r 6 1

Applying once more the change of variable in (6.22) produces

v(r(s)) = −w0(s)
w1(s)− w0(s) + i

g(s)
w1(s)− w0(s) , (6.81)

with s ∈ [εv,∞) and

g(s) = sin
[1
3 sin−1

(
εv
s

)]
, (6.82)

wj(s) = sinh
[1
3 sinh−1

(
j − v̄p
s

)]
, (6.83)

noticing that wj are the same functions as in (6.25). Substituting the real and
imaginary parts of (6.81) into (6.48), the condition to be proved becomes

1
4b2 + 1

(w1(s) + w0(s))2

(w1(s)− w0(s))2 + 1
b2

g(s)2

(w1(s)− w0(s))2 6 1. (6.84)

The optimality of the imaginary part of (6.81) was already proved in sec. 6.3.4, i.e.,

we know that g(s)
w1(s)− w0(s) is a positive and decreasing function in s ∈ [εv,∞),

hence its square is a decreasing function too and reaches its maximum at s = εv.
However, it was already proved in Lemma 23 that w1(s) + w0(s)

w1(s)− w0(s) is an increasing
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function for 0 < v̄p 6 1
2 and in consequence, the left-hand side of (6.84) might not

reach its maximum at the same point.
In order to simplify further calculations, we start by finding an upper bound for

g(s) in (6.82).

Lemma 34. If s ∈ [εv,∞) then g(s) 6 εv
2s .

Proof. The equality holds at s = εv by trivial substitution in (6.82). In case s > εv
we let

1
3 sin−1

(
εv
s

)
= X, X ∈

(
0, π6

)
,

and the condition to be proved can be expressed as

sinX <
1
2 sin(3X).

Applying the identity sin(3X) = (2 cos(2X) + 1) sinX, the condition becomes

1
2 < cos(2X),

that holds trivially.

A consequence of this lemma is that the confocal ellipse containing the point

P1(s) =
(

−w0(s)
w1(s)− w0(s) ,

g(s)
w1(s)− w0(s)

)
,

is always interior to the confocal ellipse containing the point

P2(s) =
(

−w0(s)
w1(s)− w0(s) ,

εv
2s(w1(s)− w0(s))

)
.

Thus, in order to prove (6.84), it suffices showing that the ellipse containing P2(s) is
always interior to the critical ellipse that contains the point P1(εv) = P2(εv). More
specifically, it will be shown that the semi-axis minor b(s) of the ellipse containing
P2(s) is smaller that the semi-axis minor of the critical ellipse, i.e.

b(s) 6 b(εv) = b, (6.85)

with equality holding at s = εv.
Taking (6.47) into account, it is clear that the semi-axis minor b(s) of the ellipse

determined by P2(s) must satisfy the equation

1
4b(s)2 + 1

(w1(s) + w0(s))2

(w1(s)− w0(s))2 + ε2
v

4s2b(s)2(w1(s)− w0(s))2 = 1. (6.86)

The remaining objective of this subsection is to prove that b(s) defined above is a
decreasing function in s ∈ [εv,∞).
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We define two auxiliary functions

h1(s) = s2(w1(s)− w0(s))2,

h2(s) = s2w1(s)w0(s) + ε2
v

4 ,

that allow us to rewrite (6.86) as

h1(s)b(s)4 − h2(s)b(s)2 − ε2
v

16 = 0. (6.87)

It is now shown that h1(s) and h2(s) are both monotonic functions. The proof
of the next two Lemmas makes use of bounds for the derivatives of wj(s), already
proved in Lemma 13, and rewritten here in a slightly different manner:

dw1

ds
> −w1(s)

s
, (6.88)

−dw0

ds
>

w0(s)
s

. (6.89)

Lemma 35. h1(s) is an increasing function.

Proof. Since s(w1(s)−w0(s)) > 0 it suffices proving that s(w1(s)−w0(s)) is increas-
ing. Computing explicitly its derivative and applying (6.88)-(6.89) yields

d(s(w1(s)− w0(s))
ds

= w1(s)− w0(s) + s

(
dw1

ds
− dw0

ds

)

> w1(s)− w0(s) + s

(
−w1(s)

s
+ w0(s)

s

)
= 0.

Lemma 36. h2(s) is a decreasing function.

Proof. The explicit value of the derivative admits the expression

dh2

ds
= 2sw1(s)w0(s) + s2

[(
−dw1

ds

)
(−w0(s)) + w1(s)dw0

ds

]
,

where all functions in the right-hand side bracket are positive. In this case the
bounding properties (6.88)-(6.89) are more conveniently written as

−dw1

ds
<

w1(s)
s

,

dw0

ds
< −w0(s)

s
,
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from where

dh2(s)
ds

< 2sw1(s)w0(s) + s2
[
w1(s)
s

(−w0(s)) + w1(s)
(
−w0(s)

s

)]
= 0.

We are now ready to prove the main result in this subsection.

Theorem 37. b(s), as defined in (6.87), is a decreasing function.

Proof. Since b(s) > 0 it suffices showing that b(s)2 is decreasing. Taking implicit
derivatives with respect to s in (6.87) yields

d(b(s)2)
ds

= b(s)2
dh2
ds
− dh1

ds
b(s)2

2h1(s)b(s)2 − h2(s) . (6.90)

The numerator of the fraction in (6.90) is clearly negative. With respect to its
denominator, it follows from (6.87) that

h1(s)b(s)2 − h2(s) = ε2
v

16b(s)2 > 0,

from where it is obvious that 2h1(s)b(s)2 − h2(s) > 0.

6.4.4. The case v̄p < 0 and 0 6 r 6 r0

A direct proof of (6.48) seems too difficult in this case. For this reason, we will give
a proof of optimality from a different point of view. Instead of proving that the
closest v-pole lies inside the critical ellipse Ep, two different bounds for its real part
will be provided, recalling that the optimality of the imaginary part was already
established in sec. 6.3.5. More specifically:

• A lower bound for the real part of the closest v-pole will be provided first,
namely <(v(r)) > <(v(r0)), with equality at r = r0.

• An upper bound of the form <(v(r)) 6 1 will be provided. This condition is
in fact stronger than (6.48), but an additional hypothesis, without practical
relevance, will need to be introduced, producing a slightly weaker result.

Lower Bound of <(v(r)) In order to prove that <(v(r)) reaches its minimum at
r = r0, it will be more practical to show the equivalent condition

1−<(v(r)) = t1(r)−=(τ23(r))
t1(r)− t0(r) 6 1−<(v(r0)), (6.91)
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that involves a positive bound. Applying the same change of variable from s ∈ [0, 1]
onto r ∈ [0, r0] as in (6.26), namely

3
√

3
2r

√
1− r
r

εv = 1
s
√
s
, (6.92)

it follows that
1−<(v(r(s))) = w1(s)− g2(s)

w1(s)− w0(s) , (6.93)

with wj and g2 given by

wj(s) =
(√(

j−v̄p
εv

)2
+s3+ j−v̄p

εv

)1/3

−
(√(

j−v̄p
εv

)2
+s3− j−v̄p

εv

)1/3

(6.94)

= 2
√
s sinh

[
1
3 sinh−1

(
j − v̄p
εv

1
s
√
s

)]
. (6.95)

g2(s) =
√

3
2

[(
1 +
√

1− s3
)1/3
−
(
1−
√

1− s3
)1/3

]
=
√

3s sinh
[

1
3 cosh−1

(
1
s
√
s

)]
. (6.96)

We remark that wj are the same functions already defined in (6.30).
In order to prove (6.91), two lower bounds for g2 are deduced first.

Lemma 38. g2(s) is a concave function in s ∈ [0, 1].

Proof. By explicit derivation of (6.96) we obtain

d2g2

ds2 =
√

3
4

(
s

1− s3

)3/2 {√
1−s3 sinh

[
1
3 cosh−1

(
1
s
√
s

)]
−3 cosh

[
1
3 cosh−1

(
1
s
√
s

)]}
We put

1
3 cosh−1

(
1
s
√
s

)
= X → 1

s3 = cosh2(3X), (6.97)

and the term within braces above becomes
sinh(3X)
cosh(3X)︸ ︷︷ ︸

<1

sinhX − 3 coshX < sinhX︸ ︷︷ ︸
<coshX

−3 coshX < 0.

As a consequence of this lemma, g2 is bounded below by its chord, namely

g2(s) >
√

3
22/3 (1− s), (6.98)

with equality at s = 0 and s = 1.
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Lemma 39. g2(s)2 is a convex function in s ∈ [0, 1].

Proof. By explicit derivation we obtain

d2g2
2

ds2 =
2
√

1− s3 cosh
[

2
3 cosh−1

(
1
s
√
s

)]
− (s3 + 2) sinh

[
2
3 cosh−1

(
1
s
√
s

)]
4
3s(1− s3)3/2 .

Applying the same change of variable as in (6.97), the numerator of this expression
becomes

2 cosh(3X) sinh(3X) cosh(2X)− (1 + 2 cosh2(3X)) sinh 2X
cosh2(3X)

,

where the identities

cosh(3X) = coshX
(
4 sinh2X + 1

)
, (6.99)

sinh(3X) = sinhX
(
4 sinh2X + 3

)
, (6.100)

cosh(2X) = 2 sinh2X + 1,
sinh(2X) = 2 sinhX coshX,

can be used to yield
8 sinh3X coshX

cosh2(3X)
> 0.

A consequence of this lemma is that g2(s)2 is bounded below by its tangent at
s = 1. It can be readily computed that

dg2
2

ds

∣∣∣∣∣
s=1

= −1,

hence, it follows that g2(s)2 > 1− s and thus

g2(s) >
√

1− s, (6.101)

with equality at s = 1.
According to Lemma 17, wj are decreasing and convex functions, and thus are

bounded above as follows
wj(s) 6 w∗j (s),

with w∗j (s) being the chords given by

w∗j (s) = wj(0)(1− s) + wj(1)s, j = 0, 1. (6.102)

On the other hand, it was established, as a consequence of Theorem 19, that

1
w1(s)− w0(s) 6

1− s
w1(0)− w0(0) + s

w1(1)− w0(1) ,
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with equality at s = 0 and s = 1. This allows us to write an upper bound for
1−<(v(r(s))). However, we remark that the numerator in (6.93) can take negative
values, and thus the upper bound needs to be carefully expressed as

1−<(v(r(s))) = w1(s)− g2(s)
w1(s)− w0(s) 6 max {0, B2(s)} ,

where B2(s) is the bounding function given by

B2(s) = [w∗1(s)− g∗2(s)]
[

1− s
w1(0)− w0(0) + s

w1(1)− w0(1)

]
, (6.103)

w∗1 is the upper bound for w1 given in (6.102) and g∗2 is one of the two lower bounds
for g2 previously obtained in (6.98) and (6.101).
Since 1−<(v(r(1))) > 0, it suffices for the rest of this section to show that B2(s)

reaches its maximum at s = 1, as max {0, B2(s)} would reach its maximum at s = 1
too. To this purpose, it is necessary to consider the term in brackets in (6.38),
rewritten here for convenience[

1
w1(1)− w0(1) −

1
w1(0)− w0(0)

]
. (6.104)

We recall that (6.104) can take positive, negative and zero values, depending on εv
and v̄p. The next steps of the proof can be outlined as follows:

1. If (6.104) is non-negative, take g∗2(s) =
√

3
22/3 (1− s), prove that B2(s) is convex

and B2(0) < B2(1), thus B2(s) reaches its maximum at s = 1.

2. If (6.104) is negative, take g∗2(s) =
√

1− s and proceed as in the first case, i.e.,
prove that B2(s) is convex and B2(0) < B2(1).

In the first case, where (6.104) is non-negative, we obtain by explicit derivation

d2B2

ds2 = 2
(√

3
22/3 − w1(0) + w1(1)

)[
1

w1(1)− w0(1) −
1

w1(0)− w0(0)

]
, (6.105)

where the bracket is non-negative by hypothesis. In order to show that the first
parenthesis above is always positive, we next find the maximum of w1(0)− w1(1).

Lemma 40. w1(0)− w1(1) has a maximum value of
√

2
√

3− 3

Proof. Taking (6.94) and (6.95) into account, it is clear that

w1(0)− w1(1) = 21/3
(1− v̄p

εv

)1/3
− 2 sinh

[1
3 sinh−1

(1− v̄p
εv

)]
.
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With the changes

1− v̄p
εv

= X, X > 0, (6.106)

1
3 sinh−1X = Y → X = sinh(3Y ), Y > 0, (6.107)

the problem reduces to finding the maximum, for Y > 0, of

21/3 sinh1/3(3Y )− 2 sinh Y. (6.108)

By explicit derivation, the following condition is imposed

21/3 cosh(3Y )
sinh2/3(3Y )

= 2 cosh Y.

Raising to the third power, using the hyperbolic identities (6.99) and (6.100) and
simplifying terms, it follows

48 sinh4 Y + 24 sinh2 Y − 1 = 0,

which is a biquadratic equation in sinh Y whose only positive solution is

sinh Y = 1
2

√
2√
3
− 1.

This way, it is easily shown that

X = sinh(3Y ) =
( 4

27

)1/4
.

Substituting sinh Y and sinh(3Y ) into (6.108) yields

w1(0)− w1(1) 6
√

2
√

3− 3 ≈ 0.6813.

As an immediate consequence of this Lemma we have that
√

3
22/3 − w1(0) + w1(1) & 0.4099 > 0,

meaning that B2(s) is a convex function. It is now time to show that B2(0) < B2(1),
namely

w1(0)−
√

3
22/3

w1(0)− w0(0) <
w1(1)

w1(1)− w0(1) . (6.109)

We will prove, in fact, a stronger condition.
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Lemma 41. The minimum value of k for which

w1(0)− k
w1(0)− w0(0) 6

w1(1)
w1(1)− w0(1) , (6.110)

is k = 1
21/3 .

Proof. Rearranging terms and substituting the explicit expressions for wj(0) and
wj(1) in (6.94) and (6.95), we arrive at

k − 21/3
(

1−v̄p
εv

)1/3

sinh
[

1
3 sinh−1

(
1−v̄p
εv

)] 6 k − 21/3
(
−v̄p
εv

)1/3

sinh
[

1
3 sinh−1

(
−v̄p
εv

)] .
We notice that both sides of this inequality are the same function, but with shifted
argument. Therefore, it suffices imposing that the left-hand side is a decreasing
function for any positive argument. With the same changes as in (6.106) and (6.107)
we impose that the function

k − 21/3 sinh1/3(3Y )
sinh Y ,

is decreasing for Y > 0, or, equivalently, find the minimum value of k for which that
function has a critical point (with vanishing derivative). By explicit derivation, the
condition obtained is

24/3

sinh2/3(3Y )
= k

sinh Y .

Raising to the third power, using (6.100) and rearranging terms we arrive at

16 sinh Y = k3
(
4 sinh2 Y + 3

)2
.

Putting sinh Y = Z and expanding terms we arrive at the polynomial equation

16Z4 + 24Z2 − 16
k3Z + 9 = 0. (6.111)

Imposing that this equation has a double (positive) root it follows

4Z3 + 3Z = 1
k3 .

Substituting this into (6.111) yields

16Z4 + 8Z2 − 3 = 0,

whose only positive root is Z = 1
2 , from where k = 1

21/3 is easily obtained.
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Going back to (6.109), since √
3

22/3 >
1

21/3 ,

it follows that B2(0) < B2(1) and thus the proof if finished for the case in which
(6.104) is non-negative.
In the second case, where (6.104) is negative, we take g∗2(s) =

√
1− s, and follow

a similar reasoning as before. In this case, B2(s) can be regarded as the sum of two
terms, the first one being

w∗1(s)
[

1− s
w1(0)− w0(0) + s

w1(1)− w0(1)

]
, (6.112)

with w∗1 defined in (6.102). The second derivative of (6.112) is

−2 (w1(0)− w1(1))
[

1
w1(1)− w0(1) −

1
w1(0)− w0(0)

]
> 0,

where the bracket is negative by hypothesis. Thus, the first term of B2(s) is a convex
function.
With respect to the second term, given by

−
√

1− s
[

1− s
w1(0)− w0(0) + s

w1(1)− w0(1)

]
, (6.113)

its second derivative is
1

4(1− s)3/2

{
4(1−s)

[
1

w1(1)−w0(1)−
1

w1(0)−w0(0)

]
+ 1−s
w1(0)−w0(0) + s

w1(1)−w0(1)

}
The term into braces is a first-degree function, and hence it suffices verifying that it
takes positive values at both endpoints of the interval s ∈ [0, 1]. At s = 0 the brace
should verify

4
w1(1)− w0(1) −

3
w1(0)− w0(0) > 0,

that is equivalent to
w1(1)− w0(1)
w1(0)− w0(0) <

4
3 ,

which is the same condition as in (6.39), already proved in Theorem 20.
At s = 1, the brace should verify

1
w1(1)− w0(1) > 0,

that holds trivially. In consequence, the second term is a convex function, and the
sum of both terms, B2(s), is a convex function too. Hence, it suffices showing that
B2(0) < B2(1), namely

w1(0)− 1
w1(0)− w1(1) <

w1(1)
w1(1)− w0(1) .
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But this condition has already been proved, since it is a particular case of (6.110)
with 1 > 1

21/3 . In consequence, (6.91) also holds in this case, and the proof that
<(v(r)) reaches its minimum at r = r0 is finished.

Upper Bound of <(v(r)) It is now time to provide an upper bound for the real
part of the complex poles. More specifically, it will be shown that if

εv 6
4
3(1− v̄p) (6.114)

for v̄p < 0, then <(v(r)) 6 1, or, equivalently

=(τ23(r)) 6 t1(r).

We remark that this condition is sufficient to ensure that the complex poles v(r) lie
in the interior of the critical ellipse, since the optimality of the imaginary part of
the closest v-pole has been independently established.
With the same change of variable as in (6.92), the condition to be proved becomes

g2(s) 6 w1(s),

with w1 and g2 as in (6.95) and (6.96). This is the purpose of the last theorem in
this subsection.

Theorem 42. If v̄p < 0 and εv 6 4
3(1− v̄p) then g2(s) 6 w1(s) for s ∈ [0, 1].

Proof. If s = 1 the theorem holds trivially. If s < 1, the inequality to be proved can
be explicitly written as

√
3 sinh

[
1
3 cosh−1

(
1
s
√
s

)]
6 2 sinh

[
1
3 sinh−1

(
1− v̄p
εv

1
s
√
s

)]
. (6.115)

An equivalent, polynomial form of (6.115) is found next.
From the identity (see sec. A.2)

sinh
[1
3 cosh−1X

]
= 1

2

[(
X +

√
X2 − 1

)1/3
−
(
X −

√
X2 − 1

)1/3
]
,

with X > 1, it can be readily shown that

G = sinh
[

1
3 cosh−1

(
1
s
√
s

)]
,

implies
1
s3 = (G2 + 1)(4G2 + 1)2, (6.116)

with G > 0. On the other hand, from the identity (sec. A.2)

sinh
[1
3 sinh−1X

]
= 1

2

[(√
X2 + 1 +X

)1/3
−
(√

X2 + 1−X
)1/3

]
,
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with X > 0, it is clear that

W = sinh
[

1
3 sinh−1

(
1− v̄p
εv

1
s
√
s

)]
,

implies
1
s3 =

(
εv

1− v̄p

)2 (
4W 3 + 3W

)2
. (6.117)

Equating (6.116) with (6.117) and taking into account that the equality in (6.115)
can be written in the form

√
3G = 2W , a biquadratic equation in G is obtained,

namely

(
4G2 + 1

)2
= 27

4

(
εv

1− v̄p

)2

G2
(
G2 + 1

)
, (6.118)

whose solutions are

G2 =
32− 27

(
εv

1−v̄p

)2
± 9

(
εv

1−v̄p

)√
9
(

εv
1−v̄p

)2
− 16

54
(

εv
1−v̄p

)2
− 128

.

It is then clear that (6.118) cannot have (distinct) real solutions whenever (6.114)
holds, which finishes the proof.

6.4.5. The case v̄p < 0 and r0 < r 6 1
Applying the same change of variable as in (6.52) produces the same expressions
(6.81)-(6.84) for the complex poles v(r(s)). The optimality of the imaginary part of
v(r) was already established in sec. 6.3.6, and this result holds in the new variable s
since (6.52) is an increasing function. In other words, it is proved that

g(s)
w1(s)− w0(s) ,

is a positive and decreasing function in s ∈ [εv,∞), and in consequence its square,
i.e., the second fraction in (6.84), is positive and decreasing too. Therefore, it suffices
proving that the first fraction in (6.84) is also a decreasing function.

Theorem 43. If v̄p < 0, the function
(
w1(s) + w0(s)
w1(s)− w0(s)

)2

, (6.119)

is decreasing in s ∈ [εv,∞).
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Proof. Since in case v̄p < 0 it holds

0 < w0(s) < w1(s),

it is clear that both the numerator and denominator of (6.119) are positive functions

and in consequence it is enough to prove that w1(s) + w0(s)
w1(s)− w0(s) is a decreasing function.

The explicit expression for its derivative was already obtained in (6.63), and is
rewritten here for convenience:

d

ds

(
w1 + w0

w1 − w0

)
= −16w1(s)w0(s)

3s(w1(s)− w0(s))
w1(s) + w0(s)

(4w1(s)2 + 1)(4w0(s)2 + 1) ,

whose left-hand side is clearly negative, as claimed above.
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7. Conclusions

7.1. Overview
This work has undertaken a comprehensive treatment of the transformation methods
for singular and near-singular integration problems in two and three dimensions,
covering their major theoretical and experimental aspects.
From the theoretical point of view, all emphasis has been given to the justification

of the proposed transformations, that pursue the double objective of a geometric
domain normalization and the algebraic regularization of integrands. A thorough
review of the most significant mappings proposed over the last decades has been
performed, in order to find the most general form in which these transformations
can be expressed, identifying their optimal forms in some cases, and introducing
new, more efficient alternatives in other cases.
With respect to geometric considerations, this work has focused exclusively in

transformations that map the physical domain onto a standard domain in parent
coordinates. In particular, this has excluded the polar transformation from further
discussion, in spite of being a very common choice in the two-dimensional case that,
nonetheless, adds unnecessary complexity due to the use of trigonometric functions
and non-standard domains. A particular case of the isoparametric map, designated
as pyramidal transformation, has been found to be the most versatile option, since it
allows rather general forms of the physical domain, whilst carrying certain algebraic
properties that help attenuate the integrand singularities.
Regarding the algebraic aspects, one of the main outcomes of this work is that

the singular and near-singular integration problems are inevitably intertwined, since
once the algebraic (near-)singularities have been removed from the kernel, hidden
near-singularities may persist in the angular integrand, due to an adverse geometry
of the physical domain. Therefore all techniques available for the near-singular
problem can be automatically re-utilized in the angular part of the singular problem.
Another substantial finding relates to the same transformation being introduced over
the time under different forms, a circumstance that can be unveiled by expressing
all available transformations over a standard domain.
From the experimental point of view, thorough numerical simulations have been

performed for all significant cases of the integrals considered. To this purpose, more
than 20 existing methods have been expressed in standard form and implemented
in code, in order to benchmark them together with the new methods proposed in
this work. The new methods are found to outperform the existing ones for a wide
variety of relevant situations.
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7.2. Original contributions
The main contributions of this work can be summarized as follows

• Introduction of the pyramidal transformation as the most suitable way to
transform a physical domain onto a standard one when the integrand is vertex-
singular (chapter 2). This transformation, formulated for the n-dimensional
case, generalizes the Duffy-type mappings in use over the last decades, by
showing that it is a particular, degenerate case of the well-known isoparametric
transformation with a common feature of homogeneity in one of the parent
variables.

• Characterization of the most general element, in arbitrary dimension, in which
a pyramidal transformation can be formulated (sec. 2.2). Though n-simplices
and n-pyramids with hyperplanar base had already been considered in the
literature, these domains can be extended to n-pyramids with isoparametric
base, but no further generalization is possible, i.e., more general elements such
as n-prisms and n-parallelepipeds are excluded from a transformation that is
homogeneous in one of its variables.

• In the three-dimensional case, a necessary and sufficient condition for the
invertibility of the pyramidal mapping, including an explicit, non-iterative,
formula for the computation of its Jacobian (sec. 2.2.4).

• In the two-dimensional case, argumentation that the pyramidal and polar maps
are essentially equivalent, eliminating the requirement to implement different
regularizing transformations for each case (sec. 2.2.2). The pyramidal scheme
becomes the preferred option since it is a purely algebraic transformation,
formulated over a standard domain.

• For the singular integration problem in both 2D and 3D, justification that the
angular kernel is the same as (chapter 3) or very closely related to (chapter 5)
the one-dimensional near-singular kernel. Thus, the same set of well-known
near-singular transformations can be successfully applied to the truly singular
integration, eliminating the need to introduce ad-hoc, less efficient alternatives
in the angular variable.

• Verification that the integration over adjacent triangles admits an analogous
treatment as the problem of integrating over source triangles. Extension of
the corresponding radial transformations to the adjacent case (sec. 4.6).

• Identification of the most relevant transformations, mainly in the near-singular
integration context, that have been proposed under apparently different forms,
that are actually the same transformation when expressed in standard form
(Appendix B).
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7.3 Future developments

• Development of a complete kernel regularization in the two dimensional case,
for both singular (sec. 3.5) and near-singular integration (sec. 4.5), by solving,
either analytically or numerically, appropriate differential equations imposed
over the kernel. In the case of the radial variable, and additional polynomial
softening has been found necessary, in both 2D (sec. 3.5.1) and 3D (sec. 5.2),
in order to remove the remaining singularities.

• Introduction of a new family of composite transformations for regularization in
the near-singular radial variable (sec. 4.4). These transformations represent a
compromise between two extreme cases that have been extensively considered
in the literature, i.e. purely smooth transformations, and transformations that
leave a completely smooth kernel. Numerical experiments have shown that the
most appropriate transformations can be chosen according exclusively to the
value of the parameter α, since their behaviour is robust enough to withstand
changes in the other problem parameters.

• Proof of the optimal form of the cubic transformation, known as one of the
most common softening methods in the near-singular integration context since
its introduction in 1987 (chapter 6).

7.3. Future developments
The present work admits several lines of extension, including but not limited to
• Finite element implementation in two and three-dimensional problems. In the

case of two-dimensional crack-growth problems (XFEM), there are available
transformations for source triangles, where the crack-tip lies, and adjacent
triangles, where the enrichment functions have a near-singular behaviour.

• Extension to elements of higher order. This work has focused exclusively
on first order elements, namely three-node triangles and five-node pyramids,
hence an extension of all proposed transformations to higher-order elements is
clearly an interesting area to explore. Higher-order elements have edge-nodes
and interior nodes, as well as vertex-nodes, helping improve the modelling of
curved boundaries.

• Non-pyramidal physical elements. Another area of further research would be
the feasibility of the proposed methods when applied to more general elements,
typically quadrilaterals in 2D together with prisms and parallelepipeds in 3D,
bearing in mind that isoparametric transformations are no longer homogeneous
in this case.

• Additional treatment of the bivariate angular kernel in the three-dimensional
singular integration. This work proposes univariate softening transformations
on the boundary of the angular domain, but the feasibility of a genuine bivari-
ate softening procedure remains an open question.
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• Further research on the additional softening necessary in the angular variable
after the complete kernel regularization in two dimensions has been performed.
Though the radial variable can be successfully softened by means of a power
transformation σ(u), the characterization of the corresponding polynomials
τ(v) has proved to be more elusive, due to the strong dependences on the
geometric parameters v̄p and εv.

• Edge and logarithmic singularities. In spite of the vertex-singular algebraic
kernel being one of the most important purposes of the singular integration,
vertex-singular logarithmic kernels and edge-singular kernels (both algebraic
and logarithmic) are routinely analyzed as well. Since logarithmic kernels are
no longer homogeneous functions of their coordinates, new challenges will have
to be solved for these specific cases.
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A. Inversion of the cubic equation
Classical, well-known procedures exist for the inversion of the cubic equation. Some
of them, based on trigonometric and hyperbolic functions, are summarized here
(refer e.g. to [28] for details). This Appendix focuses on depressed cubic equations,
namely monic trinomials whose quadratic term has coefficient zero. These equations
can be expressed as one the two following cases:

1. Y = X (p2 −X2)

2. Y = X (p2 +X2)

Both cases are displayed in Fig.A.1.

2 p3

3 3

p

3

-2 -1 1 2
X

-1.0

-0.5

0.5

1.0

Y

-1.5 -1.0 -0.5 0.5 1.0 1.5
X
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-0.5

0.5

1.0

Y

Figure A.1.: Cubic equations Y = X(p2 −X2) (left), Y = X(p2 +X2) (right)

We next discuss the inversion of each type of equation.

A.1. The equation Y = X (p2 −X2)
In the irreducible case |Y | 6 2p3

3
√

3 the equation has three real roots, with a double
root if equality holds, see Fig.A.1, left. The Descartes’ rule of signs implies the
separation of the roots as

• If Y > 0, then X1 < 0 < X2 6 X3

• If Y < 0, then X1 6 X2 < 0 < X3
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These three roots can be explicitly written as

Xk = 2p√
3

sin
[

1
3 sin−1

(
3
√

3
2p3 Y

)
+ 2π

3 (k − 2)
]
, k = 1, 2, 3. (A.1)

An interesting situation occurs for p =
√

3
21/3 . Letting X = 22/3Z, it is easily shown

that the cubic equation and its second (middle) root are reduced to

Y = 3Z − 4Z3 ←→ Z = sin
[1
3 sin−1 Y

]
, |Y | 6 1. (A.2)

Formulas of these type are widely used throughout this work, when dealing with
more general cases of cubic polynomials.
In case |Y | > 2p3

3
√

3 , the cubic equation has one real root (with opposite sign to
Y ) and two complex conjugate roots, whose real parts have the same sign as Y , see
Fig.A.1, left. These roots can be written explicitly as

X1 = − 2p√
3

cosh
[

1
3 cosh−1

(
3
√

3
2p3 Y

)]
, (A.3)

X23 = p√
3

cosh
[

1
3 cosh−1

(
3
√

3
2p3 Y

)]
± ip sinh

[
1
3 cosh−1

(
3
√

3
2p3 Y

)]
. (A.4)

For the condition previously analyzed of p =
√

3
21/3 , and assuming Y < −1, we let

X = 22/3Z, Y → −Y to obtain

Y = 4Z3 − 3Z ←→ Z = cosh
[1
3 cosh−1 Y

]
, Y > 1. (A.5)

Furthermore, since the hyperbolic functions can be expressed in algebraic form by
means of

cosh
[1
3 cosh−1 Y

]
= 1

2

[(
Y +
√
Y 2 − 1

)1/3
+
(
Y −

√
Y 2 − 1

)1/3
]
, Y > 1,

it follows that (A.5) admits an alternative formulation

Y = 1
2
(
Z3 − 3Z

)
←→ Z =

(
Y +
√
Y 2 − 1

)1/3
+
(
Y −

√
Y 2 − 1

)1/3
. (A.6)

An analogous expression can be found for the imaginary part of X23 in (A.4).
First, the hyperbolic functions are expressed in algebraic way

sinh
[1
3 cosh−1 Y

]
= 1

2

[(
Y +
√
Y 2 − 1

)1/3
−
(
Y −

√
Y 2 − 1

)1/3
]
.

Equating the right-hand side to Z
2 and raising to the third power, it follows

Z3 = 2
√
Y 2 − 1− 3

[(
Y +
√
Y 2 − 1

)1/3
−
(
Y −

√
Y 2 − 1

)1/3
]
.

Since the term intro brackets above equals Z, a bicubic relationship can be finally
obtained

4
(
Y 2 − 1

)
= (Z3 + 3Z)2 ←→ Z =

(
Y +
√
Y 2 − 1

)1/3
−
(
Y −

√
Y 2 − 1

)1/3
. (A.7)
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A.2. The equation Y = X (p2 +X2)
This equation has one real root, with the same sign as Y , and two complex conjugate
roots, with opposite signs to Y , see Fig.A.1, right. Their explicit expression is

X1 = 2p√
3

sinh
[

1
3 sinh−1

(
3
√

3
2p3 Y

)]
, (A.8)

X23 = − p√
3

sinh
[

1
3 sinh−1

(
3
√

3
2p3 Y

)]
± ip cosh

[
1
3 sinh−1

(
3
√

3
2p3 Y

)]
. (A.9)

For the situation with p =
√

3
21/3 , we let X = 22/3Z to obtain

Y = 3Z + 4Z3 ←→ Z = sinh
[1
3 sinh−1 Y

]
. (A.10)

In this case the hyperbolic functions can be expressed as

sinh
[1
3 sinh−1 Y

]
= 1

2

[(√
Y 2 + 1 + Y

)1/3
−
(√

Y 2 + 1− Y
)1/3

]
,

from where (A.10) admits the alternative formulation

Y = 1
2
(
3Z + Z3

)
←→ Z =

(√
Y 2 + 1 + Y

)1/3
−
(√

Y 2 + 1− Y
)1/3

. (A.11)

With respect to the imaginary part of X23 in (A.9), no further treatment has been
necessary in this work. However, its bicubic inversion formula is provided below for
completeness:

4
(
Y 2 + 1

)
= (Z3 − 3Z)2 ←→ Z =

(√
Y 2 + 1 + Y

)1/3
+
(√

Y 2 + 1− Y
)1/3

.
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B. Equivalent form of some
transformations

B.1. The PART Method
The PART method was introduced in [24, 25, 26]. It proposes a series of mappings
on the polar radial variable, see sec. 4.3.1, together with a transformation on the
polar angle that can be written, with reference to Fig. 2.4, as

t = hT
2 log

(
1 + sin(θ − θp)
1− sin(θ − θp)

)
. (B.1)

We next show that (B.1) is equivalent to a sinh transformation on the isoparametric
variable v̄.
From the well-known identities

sinh−1A = log
(
A+
√

1 + A2
)
, A ∈ R,

1 + sinA
cosA =

√
1 + sinA
1− sinA, A ∈

[
−π2 ,

π

2

]
,

it is easy to show that

log
√

1 + sinA
1− sinA = sinh−1(tanA), A ∈

[
−π2 ,

π

2

]
.

This way, (B.1) reduces to

t = hT sinh−1(tan(θ − θp))→ tan(θ − θp) = sinh
(
t

hT

)
.

Recalling equation (2.15)
v̄ = v̄p + εv tan(θ − θp),

and applying the appropriate affine transformation t(v) onto t
hT

, it follows that (B.1)
reduces to

v̄(v) = v̄p + εv sinh(t(v)),
which is the sinh transformation described in sec. 3.4.4.
An almost identical transformation is proposed in [2], namely

t = 1
2 log

(
1 + sin(θ − θp)
1− sin(θ − θp)

)
.
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It is obvious that this mapping is also equivalent to sinh in the angular variable, as
described in sec. 3.4.
Yet another similar transformation appears in [37], that can be written, with

reference to Fig. 2.4, as

t = log
(

tan
(
θ

2 + π

4

))
. (B.2)

This transformation is shown to be equivalent to sinh in [3], a fact that follows from
the well-known identity

tan A2 =
√

1 + cosA
1− cosA, A ∈

[
0, π2

]
.

Elementary trigonometric manipulations lead from (B.2) to (B.1), which concludes
the proof.

B.2. The Exponential distance transformation
An exponential distance transformation was proposed in [45] and later considered
in [56]. It can be expressed (sec. 4.3.1) as

ū = 1
2(et − b2e−t), (B.3)

with t0 = log b, t1 = log
(
1 +
√

1 + b2
)
and

t(u, v) = t0(v) + (t1(v)− t0(v))u. (B.4)

We next show that (B.3) is equivalent to a sinh transformation in the isoparametric
radial variable ū. It suffices manipulating (B.3) as follows:

ū = b

2
(
b−1et − be−t

)
= b

2
(
et−log b − e−(t−log b)

)
= b sinh(t− log b).

Renaming t′ = t− log b it is clear that the endpoints for the auxiliary variable t′ are

t′0 = 0,

t′1 = log
1
b

+
√

1 + 1
b2


= sinh−1

(1
b

)
,

that has the same form as F1 (sinh) in Tab. 4.1.
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B.3 The Exponential transformation

B.3. The Exponential transformation
Another exponential transformation, proposed in [72] and later considered in [68],
can be expressed (sec. 4.3.1) as

ū = b(et − 1), (B.5)

with t0 = 0, t1 = log
(
1 + 1

b

)
and t(u, v) as in (B.4).

To show that (B.5) is equivalent to a radial transformation Log-L1 in the PART
method (Tab. 4.2) we write

ū = bet − b
= et+log b − b.

Renaming t′ = t+ log b, it follows that the endpoints of t′ are

t′0 = log b,
t′1 = log(b+ 1),

which concludes the proof.
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C. Newton’s method
Specific methods for complete kernel regularization of the singular 2D and near-
singular 2D integrals have been developed in sec. 3.5 and sec. 4.5. These methods
imply the numerical solution of a first-order Ordinary Differential Equation (ODE)
for the angular variable, namely (3.31) and (4.30). These equations can be written
in generic form as:

φ(v̄)dv̄
dv

= c2
dτ

dv
, (C.1)

where φ(v̄) is the (non-vanishing) angular kernel, v̄ ∈ [0, 1] and v ∈ [0, 1] are the
dependent and independent variables respectively, c2 is a normalizing constant given
by

c2 =
∫ 1

0
φ(s)ds,

and τ(v) is a softening polynomial that transforms [0, 1] onto itself, with τ(v) = v
as the simplest example.
The solution of (C.1) need not be obtained by a genuine ODE integration scheme,

such as the Euler or the Runge-Kutta methods. Since we only need to know the
value of v̄ at the discrete set of nw Gaussian nodes, namely {vi}nwi=1, we can rather
solve (C.1) by the Newton’s method.
To this purpose, we define

F (v̄) =
∫ v̄

0
φ(s)ds,

and integrate both sides of (C.1) between 0 and v̄(v) to yield

F (v̄) = c2τ(v), (C.2)

from where v̄ is implicitly defined by

v̄(v) = F−1(c2τ(v)).

We notice that the invertibility of (C.2) is guaranteed by the Implicit Function
Theorem since

∂(F (v̄)− c2τ(v))
∂v̄

= φ(v̄) 6= 0.

For each known value of vi, (C.2) takes the form

F (v̄i)− c2τ(vi) = 0,
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Chapter C Newton’s method

where the value of v̄i = v̄(vi) is unknown. Hence, the Newton iterations take the
form

v̄ki − v̄k+1
i = F (v̄ki )− c2τ(vi)

φ(v̄ki ) . (C.3)

Moreover, F (v̄ki ) can be expressed in incremental form

F (v̄ki ) =
∫ v̄ki

0
φ(s)ds =

∫ v̄i−1

0
φ(s)ds︸ ︷︷ ︸

F (v̄i−1)

+
∫ v̄ki

v̄i−1
φ(s)ds, (C.4)

where F (v̄i−1) is known from the previous iteration, v̄0
i = v̄i−1 and v̄0 = 0. Substi-

tuting (C.4) into (C.3) yields

v̄ki − v̄k+1
i =

F (v̄i−1) +
∫ v̄ki
v̄i−1 φ(s)ds− c2τ(vi)
φ(v̄ki ) .

This procedure provides a very efficient way to solve (C.2). Indeed, numerical
experiments show that a few Newton iterations suffice to reach machine precision in
the values of v̄.
Once the transformation v̄(v) is known, its derivative is readily computed from

(C.1), namely
dv̄

dv
= c2

φ(v̄)
dτ

dv
.
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D. Truncation error under affine
transformations

This Appendix proves that the truncation error of a one-dimensional Gaussian
quadrature rule is not affected by an affine change of variable.

D.1. The error term of the Gaussian quadrature
The truncation error when approximating the integral

I =
∫ b

a
g(x)dx, (D.1)

by the Gaussian quadrature rule of order n is given (see e.g. [16], p. 295) by

Eab(g) ≡
∫ b

a
g(x)dx−

n∑
i=1

wig(xi)

= (b− a)2n+1kn
d2ng(x)
dx2n

∣∣∣∣∣
x=xc

, (D.2)

with xc ∈ [a, b] and

kn = (n!)4

(2n+ 1)[(2n)!]3 .

An application of Stirling’s rule allows to show that the coefficients kn decrease
exponentially with n, see [16] for details.

D.2. Effect of an affine transformation
We analyze now the effect of an affine change of variable over the truncation error
(D.2). More specifically, the affine transformation considered is

x(z) = b− a
d− c

z + ad− bc
d− c

, (D.3)

from z ∈ [c, d] onto x ∈ [a, b]. Applying (D.3) onto (D.1) yields

I =
∫ d

c
g(x(z))b− a

d− c
dz

=
∫ d

c
f(z)dz, (D.4)
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Chapter D Truncation error under affine transformations

where we have defined
f(z) = b− a

d− c
g(x(z)).

The error in (D.4), taking (D.2) into account, is

Ecd(f) = (d− c)2n+1kn
d2nf(z)
dz2n

∣∣∣∣∣
z=zc

,

with zc ∈ [c, d]. On the other hand, repeated application of the chain rule produces

d2nf(z)
dz2n

∣∣∣∣∣
z=zc

=
(
b− a
d− c

)2n+1
d2ng(x)
dx2n

∣∣∣∣∣
x=xc

,

from where it is immediate that

Ecd(f) = (b− a)2n+1kn
d2nf(z)
dz2n

∣∣∣∣∣
z=zc

= Eab(f),

which finishes the proof.
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