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Chapter 1 

1. Introduction 

One of the most important tasks that financial institutions face is to measure any 

asset exposure to market risk. This risk arises as a result of the changes that may suffer the 

price of the assets that encompass a portfolio. One of the possible measures to quantify this 

risk, it is the evaluation of losses likely to be incurred when the price of the portfolio assets 

falls. This is what Value at Risk (VaR) does. The VaR of a portfolio indicates the maximum 

amount that an investor may lose over a given time horizon and with a given probability. 

 The VaR was popularized by J.P.Morgan in the eighties when its risk management 

methodology, known RiskMetrics, was published. Since then and above all  since the Basel 

Committee on Bank Supervision at the Bank for International Settlements requires the 

financial institution to meet capital requirements on the basis of VaR estimates, allowing 

them to use internal models for VaR calculations, this measurement has become a basic 

market risk management tool for financial institutions 

  The success of VaR is based on that it is essentially a simple concept, since the VaR 

reduces the risk associated with  a  portfolio to a single number.  But despite this simplicity,  
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its statistical measurement remains today a challenge. Therefore, over the years different 

methodologies have been developed for obtaining more accurate VaR estimates. 

Thus, the first goal in this Thesis (Chapter 2) is to conduct a thorough theoretical 

review of existing methodologies, showing the strengths  and weaknesses presented on each  

of them.   Additionally,   since there is no consensus on the best approach, a summary of the 

empirical results obtained by works devoted to the comparison of VaR methodologies is 

displayed. 

As it is shown in the theoretical review, one of the most widely approaches used by 

financial institutions is parametric approximation approach. This approach assumes that 

financial returns follow a known distribution, usually the normal distribution.. This 

assumption simplifies the computation of VaR considerably. However, it is inconsistent 

with the empirical evidence, which finds that the distribution of asset returns is skewed, fat-

tailed, and peaked around the mean (see Bollerslev, 1987). This implies that extreme events 

are much more likely to occur in practice than would be predicted by the symmetric thinner-

tailed normal distribution. Consequently, the normality assumption can produce VaR 

estimates that are inappropriate measures of the true risk faced by financial institutions.  

Since the Student-t distribution (ST) has fatter tails than the normal one, this 

distribution has been commonly used in finance and risk management, particularly to model 

conditional asset returns (Bollerslev, 1987). The empirical evidence of this distribution 

performance in estimating VaR is ambiguous. Some papers show that the ST distribution 

performs better than the normal distribution (see Abad and Benito, 2013; Orhan and Köksal, 

2012 and Polanski and Stoja, 2010), while other papers report that the ST distribution 

overestimates the proportion of exceptions (see Angelidis et al., 2007 and Guermat and 

Harris, 2002).  
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The ST distribution can often account well for the excess kurtosis found in common 

asset returns, but this distribution does not capture the skewness of the returns. Taking this  

in to account, one direction for research in risk management involves searching for other 

distribution functions that capture this characteristic. 

Thus, the second objective raised in this Thesis (Chapter 3), is the evaluation of the 

accuracy of some skewed and fat-tail distributions for the purpose of the VaR estimation. In  

Chapter 3, a comparison of a wide range of symmetric and asymmetric distributions is 

conducted. For such purpose, an empirical analysis using data of the main European, 

Americans and Asians stock indices will be performed. The comparative is performed 

following two directions. First, the distributions are compared in statistical terms to 

determine which it is the best for fitting financial returns. Second, the distributions are 

compared in terms of VaR, in order to select which is best for forecasting VaR. 

As important as measuring market risk is to analyze the results of estimations 

generated, i.e. what is known by the term "backtesting". This concept refers to the 

procedures used to analyze the results obtained from VaR measure. Risk managers need a 

tool or formal procedure that allows them to analyze the VaR measure results as they are 

interested in choosing the best model among different alternative VaR measures. As the 

Basel Committee points out, backtesting is one of the key elements of risk management. In 

fact, in Basel III (2010), the Committee noted the need to verify the adequacy of the model 

using frequent backtesting, although not any particular technique was mentioned. 

By making a review of the literature, backtesting procedures can be broadly 

classified into two groups: backtesting based on any statistical test and backtesting based on 

a loss function. The unconditional coverage test (Kupiec (1995)), the conditional coverage 

test and the independence test of Christoffersen (1998) and the Backtesting Criterion 

Statistic are the most usual backtesting procedures based on any statistical test. 
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The loss function was proposed by Lopez (1998, 1999), who pointed out that it is 

also important to know the magnitude of losses non-covered.  

For the calculation of the uncovered losses, Lopez proposes the use of a loss 

function. The loss function is based on examining the distance between the observed yields 

and the VaR measure when losses are non-covered. Banking regulators are concerned about 

the number of times that losses exceed the VaR and the size of the unfunded losses. Thus, 

the loss function proposed by Lopez is consistent with the concern shown by regulators. 

However, risk managers have a conflict between the objective of security and the 

goal of profit maximization. Excessive VaR requires them to keep too much capital, 

imposing large opportunity cost of capital to the company. Considering this fact, Sarma et 

al. (2003) proposed a firm�s loss function, which in addition to measuring the loss non-

covered, also takes into account the opportunity cost of the company when the losses are 

covered, i.e., the estimated VaR is above the current yield. 

There are numerous loss functions raised by the literature which evaluate the 

uncovered losses, aligning themselves with the regulators concerns though there is little 

evidence of any loss function complying with risk managers� needs. Taking this into 

account, a new firm�s loss function is proposed in this Thesis.  

To last, the third goal of the Thesis (Chapter 4) is to examine whether the 

comparison of VaR models depends on the loss function used for such purpose.  

To do so, a comparison of different VaR models using the loss functions proposed by the 

literature are carried out, taking into account both regulators and company risk managers 

concerns, and eventually checking if the results of these comparisons are robust to the loss 

function used.   
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Additionally, a new firm�s loss function has been proposed, which has the advantage 

of of being more precise estimating the opportunity cost of the firm when the losses are 

covered. 

Finally, the Thesis ends with some concluding remarks shown in the Chapter 5. 
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Chapter 2
*
 

A Comprehensive Review of Value at Risk Methodologies 

2.1. Introduction 

Basel I, also called the Basel Accord, is the agreement reached in 1988 in Basel 

(Switzerland) by the Basel Committee on Bank Supervision (BCBS), involving the 

chairmen of the central banks of Germany, Belgium, Canada, France, Italy, Japan, 

Luxembourg, Netherlands, Spain, Sweden, Switzerland, the United Kingdom and the United 

States of America. This accord provides recommendations on banking regulations with 

regards to credit, market and operational risks. Its purpose is to ensure that financial 

institutions hold enough capital on account to meet obligations and absorb unexpected 

losses.  

                                                             
* This chapter has been published in The Spanish Review of Financial Economics. The complete reference is: 

 �A Comprehensive Review of Value at Risk Methodologies� Abad P., Benito S. and López C. The Spanish 
Review of Financial Economic,12, (2014) pp.15-32 . (Available online 9 September 2013) 

*Also it was published as working paper. The complete reference is: 
Abad P. Benito S. and López C. (2013). A Comprehensive Review of Value at Risk Methodologies�. WP nº 
711/2013  Fundación de las Cajas de Ahorros (FUNCAS).  
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For a financial institution measuring the risk it faces is an essential task. In the 

specific case of market risk, a possible method of measurement is the evaluation of losses 

likely to be incurred when the price of the portfolio assets falls. This is what Value at Risk 

(VaR) does. The portfolio VaR represents the maximum amount an investor may lose over a  

given time period with a given probability. Since the BCBS at the Bank for International 

Settlements requires a financial institution to meet capital requirements on the basis of VaR  

estimates, allowing them to use internal models for VaR calculations, this measurement has 

become a basic market risk management tool for financial institutions1. Consequently, it is 

not surprising that the last decade has witnessed the growth of academic literature 

comparing alternative modelling approaches and proposing new models for VaR estimations 

in an attempt to improve upon those already in existence. 

Although the VaR concept is very simple, its calculation is not easy. The 

methodologies initially developed to calculate a portfolio VaR are (i) the variance-

covariance approach, also called the Parametric method, (ii) the Historical Simulation (Non-

parametric method) and (iii) the Monte Carlo simulation, which is a Semi-parametric 

method. As is well known, all these methodologies, usually called standard models, have 

numerous shortcomings, which have led to the development of new proposals (see Jorion 

(2001)). 

Among Parametric approaches, the first model for VaR estimation is Riskmetrics, 

from J.P. Morgan (1996). The major drawback of this model is the normal distribution 

assumption  for  financial  returns.  Empirical evidence shows that  financial  returns do not 

follow a normal distribution. The second relates to the model used to estimate financial 
                                                             
1 When the Basel I Accord was concluded in 1988, no capital requirement was defined for the market risk. However, 
regulators soon recognised the risk to a banking system if insufficient capital was held to absorb the large sudden losses 
from huge exposures in capital markets. During the mid-90s, proposals were tabled for an amendment to the 1988 accord, 
requiring additional capital over and above the minimum required for credit risk. Finally, a market risk capital adequacy 
framework was adopted in 1995 for implementation in 1998. The 1995 Basel I Accord amendment provided a menu of 
approaches for determining the market risk capital requirements.  
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return conditional volatility. The third involves the assumption that return is independent 

and identically distributed (iid). There is substantial empirical evidence to demonstrate that 

standardised financial returns distribution is not iid.  

Given these drawbacks research on the Parametric method has moved in several 

directions. The first involves finding a more sophisticated volatility model capturing the 

characteristics observed in financial returns volatility. The second line of research involves 

searching for other density functions that capture skewness and kurtosis of financial returns. 

Finally, the third line of research considers higher-order conditional moments are time-

varying.  

In the context of the Non-parametric method, several Non-parametric density 

estimation methods have been implemented, with improvement on the results obtained by 

Historical Simulation. In the framework of the Semi-parametric method, new approaches 

have been proposed: (i) the Filtered Historical Simulation, proposed by Barone-Adesi et al. 

(1999); (ii) the CAViaR method, proposed by Engle and Manganelli (2004) and (iii) the 

conditional and unconditional approaches based on the Extreme Value Theory. In this 

article, we will review the full range of methodologies developed to estimate VaR, from 

standard models to those recently proposed. We will expose the relative strengths and 

weaknesses of these methodologies, from both theoretical and practical perspectives. The 

article�s objective is to provide the financial risk researcher with all the models and 

proposed developments for VaR estimation, bringing him to the limits of knowledge in this 

field. 

The paper is structured as follows. In the next section, we review a full range of 

methodologies developed to estimate VaR. In subsection 2.1, a non-parametric approach is 

presented. Parametric approaches are offered in subsection 2.2, and semi-parametric 

approaches in subsection 2.3.  In section 2.3,  the procedures for measuring  VaR  adequacy  
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are described and in section 2.4, the empirical results obtained by papers dedicated to 

comparing VaR methodologies are shown. In section 2.5, some important topics of VaR are 

discussed.  The last section presents the main conclusions. 

2.2. Value at Risk Methods 

According to Jorion (2001), �VaR measure is defined as the worst expected loss over 

a given horizon under normal market conditions at a given level of confidence. For instance, 

a bank might say that the daily VaR of its trading portfolio is $1 million at the 99 percent 

confidence level. In other words, under normal market conditions, only one percent of the 

time, the daily loss will exceed $1 million.� In fact the VaR just indicates the most we can 

expect to lose if no negative event occurs.  

The VaR is thus a conditional quantile of the asset return loss distribution. Among 

the main advantages of VaR are simplicity, wide applicability and universality (see Jorion 

(1990,1997))2. 

Let n1 2 3r , r , r ,..., r  be identically distributed independent random variables 

representing the financial returns. Use )(rF  to denote the cumulative distribution function,
 

1( ) Pr( )
t t

F r r r -= < W , conditionally on the information set 1t-W  that is available at time t-1. 

Assume that { }tr  follows the stochastic process: 

( )0 1
t t

t t t t

r

z z iid ,

m e

e s

= +
= ~      (2.1) 

                                                             
2 There is another market risk measurement, called Expected Shortfall (ES). ES measures the expected value of our losses 
if we get a loss in excess of VaR. So that, this measure tells us what to expect in a bad estate, while the VaR tells us 
nothing more than to expect a loss higher than the VaR itself. In section 5, we will formally define this measure besides 
presenting some criticisms of VaR measurement.  
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where ( )2 2
1t t tz -s = E ½W  and tz  has the conditional distribution function 

G( z ) , 1t tG( z ) Pr( z <z )-= W
 The VaR with a given probability a  ä (0,1) denoted by  

VaR ( )a , is defined as the a  quantile of the probability distribution of financial returns: 

tF(VaR( )) Pr(r VaR )( )a a a= < =
 or  { }( ) inf ( )tVaR v P r va a= £ =  

This quantile can be estimated in two different ways: (1) inverting the distribution 

function of financial returns, )(rF , and (2) inverting the distribution function of innovations, 

G( z ) . With regard to the latter, it is also necessary to estimate 2
ts .  

1 1) ) )tVaR( F ( � G (a a s a
- -= = +    (2.2) 

Hence, a VaR model involves the specifications of )(rF orG( z ) . The estimation of 

these functions can be carried out using the following methods: (1) Non-parametric methods 

(2) Parametric methods and (3) Semi-parametric methods. Below we will describe the 

methodologies, which have been developed in each of these three cases to estimate VaR3.  

2.2.1 Non-parametric methods 

The Non-parametric approaches seek to measure a portfolio VaR without making 

strong assumptions about returns distribution. The essence of these approaches is to let data 

speak for themselves as much as possible and to use recent returns empirical distribution - 

not some assumed theoretical distribution - to estimate VaR. 

All Non-parametric approaches are based on the underlying assumption that the near 

future will be sufficiently similar to the recent past for us to be able to use the data from the 

recent past to forecast the risk in the near future. 

                                                             
3 For a more pedagogic review of some of these methodologies see Feria-Domínguez (2005).  



Chapter II  

 26 

The Non-parametric approaches include (a) Historical Simulation and (b) Non-

parametric density estimation methods.  

2.2.1.1. Historical Simulation  

Historical Simulation is the most widely implemented Non-parametric approach. 

This method uses the empirical distribution of financial returns as an approximation 

for )(rF , thus VaR ( )a  is the a  quantile of empirical distribution. To calculate the empirical 

distribution of financial returns, different sizes of samples can be considered. 

The advantages and disadvantages of the Historical Simulation have been well 

documented by Down (2002). The two main advantages are as follows: (1) the method is 

very easy to implement, and (2) as this approach does not depend on parametric assumptions 

on the distribution of the return portfolio, it can accommodate wide tails, skewness and any 

other non-normal features in financial observations. The biggest potential weakness of this 

approach is that its results are completely dependent on the data set. If our data period is 

unusually quiet, Historical Simulation will often underestimate risk and if our data period is 

unusually volatile, Historical Simulation will often overestimate it. In addition, Historical 

Simulation approaches are sometimes slow to reflect major events, such as the increases in 

risk associated with sudden market turbulence. 

The first papers involving the comparison of VaR methodologies, such as those by 

Beder (1995), Hendricks (1996), Beder (1996), and Pritsker (1997), reported that the 

Historical Simulation performed at least as well as the methodologies developed in the early 

years, the Parametric approach and the Monte Carlo simulation. The main conclusion of 

these papers is that among the methodologies developed initially, no approach appeared to 

perform better than the others.  
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However more recent papers such as those by Abad and Benito (2012), Ashley and 

Randall (2009), Trenca (2009), Angelidis et al. (2007), Alonso and Arcos (2005), Gento 

(2001),  Danielsson  and  de  Vries  (2000)  have  reported  that  the   Historical    Simulation 

approach produces inaccurate VaR estimates. In comparison with other recently developed 

methodologies such as the Historical Simulation Filtered, Conditional Extreme Value 

Theory and Parametric approaches (as we become further separated from normality and 

consider volatility models more sophisticated than Riskmetrics), Historical Simulation 

provides a very poor VaR estimate. 

2.2.1.2. Non-parametric density estimation methods  

Unfortunately, the Historical Simulation approach does not best utilise the 

information available. It also has the practical drawback that it only gives VaR estimates at 

discrete confidence intervals determined by the size of our data set4. The solution to this 

problem is to use the theory of Non-parametric density estimation. The idea behind Non-

parametric density is to treat our data set as if it were drawn from some unspecific or 

unknown empirical distribution function. One simple way to approach this problem is to 

draw straight lines connecting the mid-points at the top of each histogram bar. With these 

lines drawn the histogram bars can be ignored and the area under the lines treated as though 

it was a probability density function (pdf) for VaR estimation at any confidence level. 

However, we could draw overlapping smooth curves and so on. This approach conforms 

exactly to the theory of non-parametric density estimation, which leads to important 

decisions about the width of bins and where bins should be centred. These decisions can 

therefore make a difference to our results (for a discussion, see Butler and Schachter (1998) 

or Rudemo (1982)).  

                                                             
4 Thus, if we have, e.g., 100 observations, it allows us to estimate VaR at the 95% confidence level but not the VaR at the 
95.1% confidence level. The VaR at the 95% confidence level is given by the sixth largest loss, but the VaR at the 95.1% 
confidence level is a problem because there is no loss observation to accompany it. 
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A kernel density estimator (Silverman (1986), Sheather and Marron (1990)) is a 

method for generalising a histogram constructed  with  the sample data.  A histogram results 

in a density that is piecewise constant where a kernel estimator results in smooth density. 

Smoothing the data can be performed with any continuous shape spread around each data 

point. As the sample size grows, the net sum of all the smoothed points approaches the true 

pdf whatever that may be irrespective of the method used to smooth the data. 

The smoothing is accomplished by spreading each data point with a kernel, usually a 

pdf centred on the data point, and a parameter called the bandwidth. A common choice of 

bandwidth is that proposed by Silverman (1986). There are many kernels or curves to spread 

the influence of each point, such as the Gaussian kernel density estimator, the Epanechnikov 

kernel, the biweight kernel, an isosceles triangular kernel and an asymmetric triangular 

kernel. From the kernel, we can calculate the percentile or estimate of the VaR. 

2.2.2. Parametric method 

Parametric approaches measure risk by fitting probability curves to the data and then 

inferring the VaR from the fitted curve. Among Parametric approaches, the first model to 

estimate VaR was Riskmetrics from J.P. Morgan (1996). This model assumes that the return 

portfolio and/or the innovations of return follow a normal distribution. Under this 

assumption, the VaR of a portfolio at an 1- %a  confidence level is calculated as 

1
tVaR( ) G ( )a m s a-= + , where 1( )G a-  is the a  quantile of the standard normal distribution 

and ts  is the conditional standard deviation of the return portfolio. To estimate ts , J.P. 

Morgan uses an Exponential Weight Moving Average Model (EWMA). The expression of 

this model is as follows: 

( ) ( )2
�-1

j2
t t-j

j=0

 = 1-! ! "å    (2.3) 
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where 0 . 9 4l =  and the window size (N) is 74 days for daily data. 

The major drawbacks of Riskmetrics are related to the normal distribution 

assumption for financial returns and/or innovations. Empirical evidence shows that financial 

returns do not follow normal distribution. The skewness coefficient is in most cases negative 

and statistically significant, implying that the financial return distribution is skewed to the 

left. This result is not in accord with the properties of a normal distribution, which is 

symmetric. Also, empirical distribution of financial return has been documented to exhibit 

significantly excessive kurtosis (fat tails and peakness) (see Bollerslev (1987)). 

Consequently, the size of the actual losses is much higher than that predicted by a normal 

distribution. 

The second drawback of Riskmetrics involves the model used to estimate the 

conditional volatility of the financial return. The EWMA model captures some non-linear 

characteristics of volatility, such as varying volatility and cluster volatility, but does not take 

into account asymmetry and the leverage effect (see Black (1976) and Pagan and Schwert 

(1990)). In addition, this model is technically inferior to the GARCH family models in 

modelling the persistence of volatility.  

The third drawback of the traditional Parametric approach involves the iid return 

assumption. There is substantial empirical evidence that the standardised distribution of 

financial returns is not iid (see Hansen (1994), Harvey and Siddique (1999), Jondeau and 

Rockinger (2003), Bali and Weinbaum (2007) and Brooks et al. (2005)).   

Given these drawbacks research on the Parametric method has been made in several 

directions. The first attempts searched for a more sophisticated volatility model capturing 

the characteristics observed in financial returns volatility. Here, three families of volatility  

models have been considered: (i) the GARCH, (ii) Stochastic Volatility and (iii) Realised 

volatility.  The second line of research investigated other density functions  that  capture  the 
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skew and kurtosis of financial returns. Finally, the third line of research considered that the 

higher-order conditional moments are time-varying.  

Using the Parametric method but with a different approach, McAleer et al. (2010a) 

proposed a risk management strategy consisting of choosing from among different 

combinations of alternative risk models to measure VaR. As the authors remark, given that a 

combination of forecast models is also a forecast model, this model is a novel method for 

estimating the VaR. With such an approach McAleer et al. (2010b) suggest using a 

combination of VaR forecasts to obtain a crisis robust risk management strategy. McAleer et 

al. (2011) present cross-country evidence to support the claim that the median point forecast 

of VaR is generally robust to a Global Financial Crisis. 

2.2.2.1. Volatility models 

The volatility models proposed in literature to capture the characteristics of financial 

returns can be divided into three groups: the GARCH family, the stochastic volatility models 

and realised volatility-based models. As to the GARCH family, Engle (1982) proposed the 

Autoregressive Conditional Heterocedasticity (ARCH), which featured a variance that does 

not remain fixed but rather varies throughout a period. Bollerslev (1986) further extended 

the model by inserting the ARCH generalised model (GARCH). This model specifies and 

estimates two equations: the first depicts the evolution of returns in accordance with past 

returns, whereas the second patterns the evolving volatility of returns. The most generalised 

formulation for the GARCH models is the GARCH (p, q) model represented by the 

following expression:  
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t t t
q p

2 2 2
ot i it-1 t-1

i=1 i=1

r=� +�

� =� + � � + � �å å
   (2.4) 

In the GARCH (1,1) model, the empirical applications conducted on financial series 

detect  hat 1 1a b+  is observed to be very close to the unit. The integrated GARCH model 

(IGARCH) of Engle and Bollerslev (1986)5 is then obtained forcing the condition that the 

addition is equal to the unit in expression (4). The conditional variance properties of the 

IGARCH model are not very attractive from the empirical point of view due to the very 

slow phasing out of the shock impact upon the conditional variance (volatility persistence). 

Nevertheless, the impacts that fade away show exponential behaviour, which is how the 

fractional integrated GARCH model (FIGARCH) proposed by Baillie, Bollerslev and 

Mikkelsen (1996) behaves, with the simplest specification, FIGARCH (1,d,0), being:  

2 2

1 1

(1 )1
1 (1 )

d
o

t t
L

r
L

a
s

b b

æ ö
ç ÷
ç ÷
è ø

-= + -
- -

.   (2.5) 

If the parameters comply with the setting conditions 0 1>0, 0 d 1a b£ < £ , the 

conditional variance of the model is most likely positive for all t cases. With this model, 

there is a likelihood that the 2
tr  effect upon 2

t k
s +  will trigger a decline over the hyperbolic 

rate while k surges. 

The models previously mentioned do not completely reflect the nature posed by the 

volatility of the financial times series because, although they accurately characterise the 

volatility clustering properties, they do not take into account the asymmetric performance of 

yields before positive or negative shocks (leverage effect). Because previous models depend 

on the square errors,  the  effect  caused  by  positive  innovations  is the  same as the effect  

 

                                                             
5 The EWMA model is equivalent to the IGARCH model with the intercept 0a being restricted to be zero, the 

autoregressive parameter b  being set at a pre-specific value l , and the coefficient of  2
t 1
e -  being equal to 1-l . 
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produced by negative innovations of equal absolute value. Nonetheless, reality shows that in 

financial time series, the existence of the leverage effect is observed, which means that 

volatility increases at a higher rate when yields  are  negative  compared with when they are 

positive. In order to capture the leverage effect several non linear GARCH formulations 

have been proposed. In Table 2.1 we present some of the most popular. For a detailed 

review of the asymmetric GARCH models see Bollerslev (2009).  
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Table 2.1. Asymmetric GARCH 

 Formulations Restrictions 

EGARCH (1,1) 
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In all models presented in this table, g  is the leverage parameter. A negative value 

of g  means that past negative shocks have a deeper impact on current conditional volatility 

than past positive shocks. Thus, we expect the parameter to be negative ( 0<g ). The 

persistence of volatility is captured by the b  parameter. As for the EGARCH model, the 
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volatility of return also depends on the size of innovations. If 1a  is positive, the innovations 

superior to the mean have a deeper impact on current volatility than those inferior. 

Finally, it must be pointed out that there are some models that capture the leverage 

effect and the non-persistence memory effect. For example, Bollerslev and Mikkelsen 

(1996) insert the FIEGARCH model, which aims to account for both the leveraging effect 

(EGARCH) and the long memory (FIGARCH) effect. The simplest expression of this 

family of models is the FIEGARCH (1, d, 0): 

2 1 1
0 1

1 1

2
1 1 d t t

t
t t

r r
( L )( L ) log( )f s a g a

s s p
- -

- -

æ öæ ö
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ç ÷ ç ÷è ø è ø
- - = + + -   (2.6) 

Some applications of the family of GARCH models in VaR literature can be found in 

the following studies: Abad and Benito (2012), Sener et al. (2012), Chen et al. (2011), Chen 

et al.  (2009), Sajjad et al. (2008), Bali and Theodossiou (2007), Angelidis et al. (2007), 

Haas et al. (2004), Li and Lin (2004), Carvalho et al. (2006), González-Rivera et al. (2004),  

Giot and Laurent (2004) and Mittnik and Paolella (2000) among others. Although there is no 

evidence of an overpowering model, the results obtained in these papers seem to indicate 

that asymmetric GARCH models produce better outcomes.  

An alternative path to the GARCH models to represent the temporal changes over 

volatility is through the stochastic volatility (SV) models proposed by Taylor (1982, 1986). 

Here volatility in t does not depend on the past observations of the series but rather on a 

non-observable variable,   which is usually an autoregressive stochastic process.   To ensure 

the positiveness of the variance, the volatility equation is defined following the logarithm of 

the variance as in the EGARCH model.  

The stochastic volatility (SV) model proposed by Taylor (1982) can be written as:  

1

~ (0,1)

log log ~ (0, )
t t t t t

t t tt

r h z z N

h h N h

m

a f h h s+

= +
= + +

  (2.7)  
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where tm

 
represents the conditional mean of the financial return, ht represents the 

conditional variance, and tz
 
and th  are stochastic white-noise processes.  

The basic properties of the model can be found in Taylor (1986, 1994). As in the 

GARCH family, alternative and more complex models have been developed for the 

stochastic volatility models to allow for the pattern of both the large memory (see the model 

of Harvey (1998) and Breidt et al. (1998)) and the leverage effect (see the models of Harvey 

and Shephard (1996) and So, Li and Lam (2002)). Some applications of the SV model to 

measure VaR can be found in Fleming and Kirby (2003), Lehar et al. (2002), Chen et al. 

(2011) and González-Rivera et al. (2004).  

The third group of volatility models is Realised Volatility (RV). The origin of the 

realised volatility concept is certainly not recent. Merton (1980) had already mentioned this 

concept, showing the likelihood of the latent volatility approximation by the addition of N 

intra-daily square yields over a t period, thus implying that the addition of square yields 

could be used for the variance estimation. Taylor and Xu (1997) showed that the daily 

realised volatility can be easily crafted by adding the intra-daily square yields. Assuming 

that a day is divided into equidistant N periods and if ri,t represents the intra-daily yield of 

the i-interval of day t, the daily volatility for day t can be expressed as: 

RV=
2

2

1 1 1 1

2
N N N N

i,t i,t j ,t j i ,t
i i i j i

r r r r -
= = = = +

é ù
ê ú
ê úë û

= +å å å å   (2.8) 

In the event of yields with ¨zero¨ mean and no correlation whatsoever, then 2

1

N

i,t
i

E r
=

é ù
ê ú
ê úë û
å  

is a consistent estimator of the daily variance 2
ts . Andersen et al. (2001a, 2001b) upheld that 

this measure significantly improves the forecast compared with the standard procedures, 

which just rely on daily data.  
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Although financial yields clearly exhibit leptokurtosis, the standardised yields by 

realised volatility are roughly normal. Furthermore, although the realised volatility 

distribution poses a clear asymmetry to the right, the distributions of the realised volatility 

logarithms are approximately Gaussian (Pong et al. (2004)). In addition, the long-term 

dynamics of the realised volatility logarithm can be inferred by a fractionally integrated long 

memory process. The theory suggests that realised volatility is a non-skewed estimator of 

the volatility yields and is highly efficient. The use of the realised volatility obtained from 

the high-frequency intra-daily yields allows for the use of traditional procedures of temporal 

times series to create patterns and forecasts.  

One of the most representative realised volatility models is that proposed by Pong et 

al. (2004): 

2
1 2 1(1 )(ln ) (1 )t tL L RV L uf f m d- - - = -   (2.9) 

As in the case of GARCH family models and stochastic volatility models, some 

extension of the standard RV model have been development in order to capture the leverage 

effect and long-range dependence of volatility. The former issue has been investigated by 

Bollerslev et al. (2011), Chen and Ghysels (2010) and Patton and Sheppard (2009), among 

others. With respect to the latter point, the autoregressive fractionally integrated model has 

been used by Andersen et al. (2001a, 2001b and 2003), Koopman et al. (2005) and Pong et 

al. (2004), among others.  

a) Empirical results of volatility models in VaR 

This section lists the results obtained from research on the comparison of volatility 

models in terms of VaR. The EWMA model provides inaccurate VaR estimates. In a 

comparison with other volatility models, the EWMA model scored the worst performance in 

forecasting VaR (see Chen et al. (2011),  Abad and Benito  (2012),  Ñiguez (2008),  Alonso  
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and Arcos (2006), González-Rivera et al. (2004) and Huang and Lin (2004) among others). 

The performance of the GARCH models strongly depends on the assumption concerning 

returns distribution. Overall, under a normal distribution, the VaR estimates are not very 

accurate. However, when asymmetric and fat-tail distributions are considered, the results 

improve considerably.  

There is scarce empirical evidence of the relative performance of the SV models 

against the GARCH models in terms of VaR (see Fleming and Kirby (2003), Lehar et al. 

(2002), González-Rivera et al. (2004) and Chen et al. (2011)). Fleming and Kirby (2003) 

compared a GARCH model with a SV model. They found that both models had comparable 

performances in terms of VaR. Lehar et al. (2002) compared option pricing models in terms 

of VaR using two family models: GARCH and SV. They found that as to their ability to 

forecast the VaR, there are no differences between the two. Chen et al. (2011) compared the 

performance of two SV models with a range wide of GARCH family volatility models. The 

comparison was conducted on two different samples. They found that the SV and EWMA 

models had the worst performances in estimating VaR. However, in a similar comparison, 

González-Rivera et al. (2004) found that the SV model had the best performance in 

estimating VaR. In general, with some exceptions, evidence suggests that SV models do not 

improve the results obtained GARCH model family. 

The models based on RV work quite well to estimate VaR (see Asai et al. (2011), 

Brownlees and Gallo (2010), Clements et al. (2008), Giot and Laurent (2004) and Andersen 

et al. (2003)). Some papers show that an even simpler model, (such as an autoregressive) 

combined with the assumption of normal distribution for returns yields reasonable VaR 

estimates.  

As for volatility forecasts, there are many papers in literature showing that the 

models based on RV are superior to the GARCH models. However, not many papers report  
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comparisons on their ability to forecast VaR. Brownlees and Gallo (2011) compared several 

RV models with a GARCH and EWMA model and found that the models based on RV 

outperformed both EWMA and GARCH models. Along this same line, Giot and Laurent 

(2004) compared several volatility models: EWMA, an asymmetric GARCH and RV. The 

models are estimated with the assumption that returns follow either normal or skewed t-

Student distributions. They found that under a normal distribution, the RV model performed 

best. However, under a skewed t-distribution, the asymmetric GARCH and RV models 

provided very similar results. These authors emphasised that the superiority of the models 

based on RV over the GARCH family is not as obvious when the estimation of the latter 

assumes the existence of asymmetric and leptokurtic distributions.  

There is a lack of empirical evidence on the performance of fractional integrated 

volatility models to measure VaR. Examples of papers that report comparisons of these 

models are those by So and Yu (2006) and Beltratti and Morana (1999). The first paper 

compared, in terms of VaR, a FIGARCH model with a GARCH and an IGARCH model. It 

showed that the GARCH model provided more accurate VaR estimates. In a similar 

comparison that included the EWMA model, So and Yu (2006) found that FIGARCH did 

not outperform GARCH. The authors concluded that, although their correlation plots 

displayed some indication of long memory volatility, this feature is not   very crucial in 

determining the proper value of VaR. However, in the context of the RV models, there is 

evidence that models that capture long memory in volatility provide accurate VaR estimates  

(see Andersen et al. (2003) and Asai et al. (2011)). The model proposed by Asai et al. 

(2011) captured long memory volatility and asymmetric features. Along this line, Ñíguez 

(2008) compared the ability to forecast VaR of different GARCH family models (GARCH, 

AGARCH, APARCH, FIGARCH and FIAPARCH, and EWMA) and found that the 
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combination of asymmetric models with fractional integrated models provided the best 

results. 

Although this evidence is somewhat ambiguous, the asymmetric GARCH models 

seem to provide better VaR estimations than the symmetric GARCH models. Evidence in 

favour of this hypothesis can be found in studies by Sener et al. (2012), Bali and 

Theodossiou (2007), Abad and Benito (2012), Chen et al. (2011), Mittnik and Paolella 

(2000), Huang and Lin (2004), Angelidis et al. (2007), and Giot and Laurent (2004). In the 

context of the models based on RV, the asymmetric models also provide better results (see 

Asai et al. (2011)). Some evidence against this hypothesis can be found in Angelidis et al. 

(2007).  

Finally, some authors state that the assumption of distribution, not the volatility 

models, is actually the important factor for estimating VaR. Evidence supporting this issue 

is found in the study by Chen et al. (2011). 

 2.2.2.2. Density functions 

As previously it has been mentioned, the empirical distribution of the financial return 

has been documented to be asymmetric and exhibits a significant excess of kurtosis (fat tail 

and peakness). Therefore, assuming a normal distribution for risk management and 

particularly for estimating the VaR of a portfolio does not produce good results and losses 

will be much higher. 

As t-Student distribution has fatter tails than normal distribution, this distribution 

that  has  been commonly  used in  finance  and  risk  management,  particularly  to  model  

conditional asset return (Bollerslev (1987)). In the context of VaR methodology, some 

applications of this distribution can be found in studies by Cheng et al. (2011), Abad and 

Benito (2012), Polanski and Stoja (2010), Angelidis et al. (2007), Alonso and Arcos (2006), 
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Guermat and Harris (2002), Billio and Pelizzon (2000), and Angelidis and Benos (2004). 

The empirical evidence of this distribution performance in estimating VaR is ambiguous. 

Some papers show that the t-Student distribution performs better than the normal 

distribution (see Abad and Benito (2012), Polanski and Stoja (2010), Alonso and Arcos 

(2006), and So and Yu (2006)6). However other papers, such as those by Angelidis et al. 

(2007), Guermat and Harris (2002), Billio and Pelizzon (2000), and Angelidis and Benos 

(2004), report that the t-Student distribution overestimates the proportion of exceptions.  

The t-Student distribution can often account well for the excess kurtosis found in 

common asset returns, but this distribution does not capture the skewness of the return. 

Taking this into account, one direction for research in risk management involves searching 

for other distribution functions that capture these characteristics. In the context of VaR 

methodology, several density functions have been considered: the Skewness t-Student 

Distribution (SSD) of Hansen (1994); Exponential Generalized Beta of the Second Kind 

(EGB2) of McDonald and Xu (1995); Error Generalised Distribution (GED) of Nelson 

(1991);Skewness Error Generalised Distribution (SGED) of Theodossiou (2001); t-

Generalised Distribution of McDonald and Newey (1988); Skewness t-Generalised 

distribution (SGT) of Theodossiou (1998) and  Inverse Hyperbolic Sign (IHS) of Johnson 

(1949). In Table 2.2, we present the density functions of these distributions.  

                                                             
6 This last paper shows that t-Student at 1% performs better in larger positions, although it does not in short positions. 
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In this line, some papers such as Duffie and Pan (1997) and Hull and White (1998) show 

that a mixture of normal distributions produces distributions with fatter tails than a normal 

distribution with the same variance.   

  Some applications to estimate the VaR of skewed distributions and a mixture of normal 

distributions can be found in Cheng et al. (2011), Polanski and Stoja (2010), Bali and 

Theodossiou (2008), Bali et al. (2008), Haas et al. (2004), Zhang and Cheng (2005), Haas (2009), 

Ausín and Galeano (2007), Xu and Wirjanto (2010) and Kuester et al. (2006).  

These papers raise some important issues. First, regarding the normal and t-Student 

distributions, the skewed and fat-tail distributions seem to improve the fit of financial data (see 

Bali and Theodossiou (2008), Bali et al. (2008), and Bali and Theodossiou (2007)). Consistently, 

some studies found that the VaR estimate obtained under skewed and fat-tailed distributions 

provides a more accurate VaR than those obtained from a normal or t-Student distribution. For 

example, Cheng et al. (2011) compared the ability to forecast the VaR of a normal, t-Student, 

SSD and GED. In this comparison the SSD and GED distributions provide the best results. 

Polanski and Stoja (2010) compared the normal, t-Student, SGT and EGB2 distributions and 

found that just the latter two distributions provide accurate VaR estimates. Bali and Theodossiou 

(2007) compared a normal distribution with the SGT distribution. Again, they found that the SGT 

provided a more accurate VaR estimate. The main disadvantage of using some skewness 

distribution, such as SGT, is that the maximization of the likelihood function is very complicated 

so that it may take a lot of computational time (see Nieto and Ruiz (2008)).  

Additionally, a mixture of normal distributions, t-Student distributions or GED 

distributions provided a better VaR estimate than the normal or t-Student distributions (see 

Hansen (1994), Zhang and Cheng (2005), Haas (2009), Ausín and Galeano (2007), Xu and 

Wirjanto (2010) and Kuester et al. (2006)). These studies showed that in the context of the 
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Parametric method, the VaR estimations obtained with models involving a mixture with normal 

distributions (and t-Student distributions) are generally quite precise. 

Lastly, to handle the non normality of the financial return Hull and White (1998) develop 

a new model where the user is free to choose any probability distribution for the daily return and 

the parameters of the distribution are subject to an updating scheme such as GARCH. They 

propose transforming the daily return into a new variable that is normally distributed. The model 

is appealing in that the calculation of VaR is relatively straightforward and can make use of 

Riskmetrics or a similar database.  

2.2.2.3. Higher-order conditional time-varying moments 

The traditional parametric approach for conditional VaR assumes that the distribution of 

returns standardised by conditional means and conditional standard deviations is iid. However, 

there is substantial empirical evidence that the distribution of financial returns standardised by 

conditional means and volatility is not iid. Earlier studies also suggested that the process of 

negative extreme returns at different quantiles may differ from one to another (Engle and 

Manganelli (2004), Bali and Theodossiou (2007)). Thus, given the above, some studies 

developed a new approach to calculate conditional VaR. This new approach considered that the 

higher-order conditional moments are time-varying (see Bali et al. (2008), Polanski and Stoja 

(2010) and Ergun and Jun (2010)). 

Bali et al. (2008) introduced a new method based on the SGT with time-varying 

parameters. They allowed higher-order conditional moment parameters of the SGT density to 

depend on the past information set and hence relax the conventional assumption in the 

conditional VaR calculation that the distribution of standardised returns is iid. Following Hansen 

(1994) and Jondeau and Rockinger (2003), they modelled the conditional high-order moment 

parameters of the SGT density as an autoregressive process.   The maximum likelihood estimates  
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show that the time-varying conditional volatility, skewness, tail-thickness, and peakedness 

parameters of the SGT density are statistically significant. In addition, they found that the 

conditional SGT-GARCH models with time-varying skewness and kurtosis provided a better fit 

or returns than the SGT-GARCH models with constant skewness and kurtosis. In their paper, 

they applied this new approach to calculate the VaR. The in-sample and out-of-sample 

performance results indicated that the conditional SGT-GARCH approach with autoregressive 

conditional skewness and kurtosis provided very accurate and robust estimates of the actual VaR 

thresholds.  

In a similar study, Ergun and Jun (2010) considered the SSD distribution, which they 

called the ARCD model, with a time-varying skewness parameter. They found that the GARCH-

based models that take conditional skewness and kurtosis into account provided an accurate VaR 

estimate. Along this same line, Polanski and Stoja (2010) proposed a simple approach to forecast 

a portfolio VaR. They employed the Gram-Charlier expansion (GCE) augmenting the standard 

normal distribution with the first four moments, which are allowed to vary over time. The key 

idea was to employ the GCE of the standard normal density to approximate the probability 

distribution of daily returns in terms of cumulants.7 This approach provides a flexible tool for 

modelling the empirical distribution of financial data, which, in addition to volatility, exhibits 

time-varying skewness and leptokurtosis. This method provides accurate and robust estimates of 

the realised VaR. Despite its simplicity, their dataset outperformed other estimates that were 

generated by both constant and time-varying higher-moment models. 

All previously mentioned papers compared their VaR estimates with the results obtained 

by assuming skewed and fat-tail distributions with constant asymmetric and kurtosis parameters. 

They found that the accuracy of the VaR estimates improved when time-varying asymmetric and  

                                                             
7 Although in different contexts, approximating the distribution of asset returns via the GCE has been previously employed in the 
literature (e.g., Jarrow and Rudd (1982), Baillie and Bollerslev (1992), Jondeau and Rockinger (2001), Leon et al. (2005) and 
Christoffersen and Diebold (2006)). 
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kurtosis parameters are considered. These studies suggest that within the context of the 

Parametric method, techniques that model the dynamic performance of the high-order conditional 

moments (asymmetry and kurtosis) provide better results than those considering functions with 

constant high-order moments. 

2.2.3. Semi-parametric methods 

The Semi-parametric methods combine the Non-parametric approach with the Parametric 

approach. The most important Semi-parametric methods are Volatility-weight Historical 

Simulation, Filtered Historical Simulation (FHS), CAViaR method and the approach based on 

Extreme Value Theory. 

2.2.3.1. Volatility-weight Historical Simulation 

Traditional Historical Simulation does not take any recent changes in volatility into 

account. Thus, Hull and White (1998) proposed a new approach that combines the benefit of 

Historical Simulation with volatility models. The basic idea of this approach is to update the 

return information to take into account the recent changes in volatility.  

Let 
itr ,  be the historical return on asset i on day t in our historical sample, 

it ,s  be the 

forecast of the volatility8 of the return on asset i for day t made at the end of t-1, and 
iT ,s  be our 

most recent forecast of the volatility of asset i. Then, we replace the return in our data set, ,
itr , , 

with volatility-adjusted returns, as given by:  

*
t,i t,i t,iT,i

r r /s s=    (2.10) 

According to this new approach, the VaR ( )a  is thea quantile of the empirical 

distribution of the volatility adjusted return ( *
t ,ir ). 

                                                             
8 To estimate the volatility of the returns, several volatility models can be used. Hull and White (1998) proposed a GARCH model 
and the EWMA model. 
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This approach directly takes into account the volatility changes, whereas the Historical 

Simulation approach ignores them. Furthermore, this method produces a risk estimate that is 

appropriately sensitive to current volatility estimates. The empirical evidence presented by Hull 

and White (1998) indicates that this approach produces a VaR estimate superior to that of the 

Historical Simulation approach.  

 2.2.3.2. Filtered Historical Simulation  

Filtered Historical Simulation was proposed by Barone-Adesi et al. (1999). This method 

combines the benefits of Historical Simulation with the power and flexibility of conditional 

volatility models.  

Suppose we use Filtered Historical Simulation to estimate the VaR of a single-asset 

portfolio over a 1-day holding period. In implementing this method, the first step is to fit a 

conditional volatility model to our portfolio return data. Barone-Adesi et al. (1999) recommended 

an asymmetric GARCH model. The realised returns are then standardised by dividing each one 

by the corresponding volatility, 
t t t

z ( )e s= . These standardised returns should be independent and 

identically distributed and therefore be suitable for Historical Simulation. The third step consists 

of bootstrapping a large number L of drawings from the above sample set of standardised returns. 

Assuming a 1-day VaR holding period, the third stage involves bootstrapping from our 

data set of standardised returns: we take a large number of drawings from this data set, which we 

now treat as a sample, replacing each one after it has been drawn and multiplying each such 

random drawing by the volatility forecast 1 day ahead:  

11t t
r z*m s

++ = +    (2.11) 

where z* is the simulated standardised return. If we take M drawings, we therefore obtain a 

sample of M simulated returns. With this approach, the VaR ( )a  is the a % quantile of the 

simulated return sample.  
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Recent empirical evidence shows that this approach works quite well in estimating VaR 

(see Barone-Adesi and Giannopolous (2001), Barone-Adesi et al. (2002), Zenti and Pallotta 

(2001), Pritsker (2001), and Giannopoulos and Tunaru (2005)). As for other methods, Zikovic 

and Aktan (2009), Angelidis et al. (2007), Kuester et al. (2006) and Marimoutou et al. (2009) 

provide evidence that this method is the best for estimating the VaR. However, other papers 

indicate that this approach is not better than any other (see Nozari et al. (2010) and Alonso and 

Arcos (2006)).  

 2.2.3.3. CAViaR Model 

Engle and Manganelli (2004) proposed a conditional autoregressive specification for 

VaR. This approach is based on a quantile estimation. Instead of modelling the entire 

distribution, they proposed directly modelling the quantile. The empirical fact that the volatilities 

of stock market returns cluster over time may be translated quantitatively in that their distribution 

is autocorrelated. Consequently, the VaR, which is tightly linked to the standard deviation of the 

distribution, must exhibit similar behaviour. A natural way to formalise this characteristic is to 

use some type of autoregressive specification. Thus, they proposed a conditional autoregressive 

quantile specification that they called the CAViaR model. 

Let 
tr  be a vector of time t observable financial return and 

ab
 a p-vector of unknown 

parameters. Finally, let 1tt tVaR VaR ,( ) ( r )ab b-º  be the a  quantile of the distribution of the 

portfolio return formed at time t-1, where we suppress the a  subscript from ab  for notational 

convenience.  

 

A generic CAViaR specification might be the following:  

0
1 1

q r

t i t i j t j
i j

VaRVaR ( ) ( ) l( x )b b b b b- -
= =

= + +å å   (2.12) 
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where p=q+r+1 is the dimension of b and l  is a function of a finite number of lagged 

observable values. The autoregressive terms i t iVaR ( )b b-  
 i=1,..,q ensure that the quantile 

changes �smoothly� over time. The role of 1( )
t

l r -  is to link tVaR ( )b  to observable variables that 

belong to the information set. A natural choice for xt-1 is lagged returns. The advantage of this 

method is that it makes no specific distributional assumption on the return of the asset. They 

suggested the first order is sufficient for practical use: 

1 1 2 10( ) ( ) ( , )
t t i tt VaR l r VaRVaR b b b b b- - -+= +   (2.13) 

In the context of CAViaR model, different autorregresive specifications can be considered 

- Symmetric absolute value (SAV):  

0 1 1 2 1( ) ( )t t t
VaR VaR rb b b b b- -= + +    (2.14) 

- Indirect GARCH(1,1) (IG):   

( )22 1/ 2
0 1 1 2 1( ) ( )( )t t tVaR VaR rb b b b b- -= + +    (2.15) 

 

In these two models the effects of the extreme returns and the variance on the VaR 

measure are modeled symmetrically. To account for financial market asymmetry, via the 

leverage effect (Black, 1976), the SAV model was extended in Engle and Manganelli (2004) to 

asymmetric slope (AS): 

( ) ( )0 1 1 2 1 3 1( ) ( )t t t tVaR VaR r rb b b b b b
+ -

- - -= + + +   (2.16) 

In this representation, (r)+= max(rt,0) and (rt)
- = -min(rt,0) are used as the functions.  

The parameters of the CAViaR models are estimated by regression quantiles, as 

introduced  by  Koenker and  Basset  (1978).  They showed how to extend the notion of a sample  

 

quantile to a linear regression model. In order to capture leverage effects and other nonlinear 

characteristics of the financial return, some extensions of the CAViaR model have been 
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proposed. Yu et al. (2010) extend the CAViaR model to include the Threshold GARCH 

(TGARCH) model (an extension of the double threshold ARCH (DTARCH) of Li and Li (1996)) 

and a mixture (an extension of Wong and Li (2001)�s mixture ARCH). Recently, Chen et al. 

(2011) proposed a non-linear dynamic quantile family as a natural extension of the AS model. 

Although empirical literature on CAViaR method is not extensive, the results seem to 

indicate that the CAViaR model proposed by Engle and Manganelli (2004), fails to provide 

accurate VaR estimate although it may provide accurate VaR estimates in a stable period (see, 

Bao et al. (2006) and Polanski and Stoja (2009)). However, some recent extensions of the 

CAViaR model such as those proposed by Gerlach et al. (2011) and Yu et al. (2010) work pretty 

well in estimating VaR. As in the case of the parametric method, it appears that when use is made 

of an asymmetric version of the CAViaR model the VaR estimate notably improves. The paper 

of Sener et al. (2012) supports this hypothesis. In a comparison of several CAViaR models 

(asymmetric and symmetric) they find that the asymmetric CAViaR model outperforms the result 

from the standard CAViaR model. Gerlach et al. (2011) compared three CAViaR models (SAV, 

AS and Threshold CAViaR) with the Parametric method using different volatility GARCH 

family models (GARCH-Normal, GARCH-Student-t, GJR-GARCH, IGARCH, Riskmetric). At 

the 1% confidence level, the Threshold CAViaR model performs better than any other. 
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2.2.3.4. Extreme Value Theory 

The Extreme Value Theory (EVT) approach focuses on the limiting distribution of 

extreme returns observed over a long time period, which is essentially independent of the 

distribution of the returns themselves. The two main models for EVT are (1) the block maxima 

models (BM) (McNeil (1998)) and (2) the peaks-over-threshold model (POT).  The second one   

is generally considered to be the most useful for practical applications due to the more efficient 

use of the data at extreme values. In the POT models, there are two types of analysis: the Semi-

parametric models built around the Hill estimator and its relatives (Beirlant et al. (1996), 

Danielsson et al. (1998)) and the fully Parametric models based on the Generalised Pareto 

distribution (Embrechts et al. (1999)). In the coming sections each one of these approaches is 

described. 

2.2.3.4.1. Block Maxima Models (BMM) 

This approach involves splitting the temporal horizon into blocks or sections, taking into 

account the maximum values in each period. These selected observations form extreme events, 

also called a maximum block. 

The fundamental BMM concept shows how to accurately choose the length period, n, and 

the data block within that length. For values greater than n, the BMM provides a sequence of 

maximum blocks Mn,1, �, Mn,m that can be adjusted by a generalised distribution of extreme 

values (GEV). The maximum loss within a group of n data is defined as Mn=max(X1, X2, �, Xn).  

For a group of identically distributed observations, the distribution function of Mn is 

represented as:  

1
1

n
n

n n
i

P( M x ) P( X x,....,X x ) F( x ) F ( x )
=

£ = £ £ = =Õ   (2.17) 
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The asymptotic approach for F 
n
(x) is based on the maximum standardised value 

 

n n
n

n

M
Z

m

s

-=
  

(2.18) 

where nµ  and ns  are the location and scale parameters, respectively. The theorem of Fisher and 

Tippet establishes that if Zn converges to a non-degenerated distribution, this distribution is the 

generalised distribution of the extreme values (GEV). The algebraic expression for such a 

generalised distribution is as follows: 

 

1/

, ,

exp( (1 ( ) / ) 0 (1 ( ) / ) 0
( )

exp( ) 0x

x y x
H x

e

x

x m s

x m s x x m s

x

-

-

ìï
í
ïî

- + - ¹ + - >
=

- =
  (2.19) 

where 0s > , µ<-¥ < ¥ , and <x-¥ < ¥ . The parameter x  is known as the shape parameter of the 

GEV distribution, and 1h x -=  is the index of the tail distribution, H. The prior distribution is 

actually a generalisation of the three types of distributions, depending on the value taken by x : 

Gumbel type I family (x =0), Fréchet type II family (x >0) and Weibull type III family (x <0). 

Thex , s  and µ  parameters are estimated using maximum likelihood. The VaR expression for 

the Gumbel and Fréchet distribution is as follows: 

 

(1 ( ln( )) ) 0 ( )

ln( ln( )) 0 ( )

nn
n

n

n n

n to Fréchet
VaR

n to Gumbel

xs
m a x

x

m s a x

-ì
ï
í
ï
î

- - - >
=

- - =
 (2.20) 

 

In most situations, the blocks are selected in such a way that their length matches a year 

interval and n is the number of observations within that year period.  
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This method has been commonly used in hydrology and engineering applications but is 

not very suitable for financial time series due to the cluster phenomenon largely observed in 

financial returns.  

 

2.2.3.4.2. Peaks over Threshold Models (POT) 

The POT model is generally considered to be the most useful for practical applications 

due to the more efficient use of the data for the extreme values. In this model, we can distinguish 

between two types of analysis: (a) the fully Parametric models based on the Generalised Pareto 

distribution (GPD) and (b) the Semi-parametric models built around the Hill estimator. 

2.2.3.4.2.a. Generalised Pareto Distribution 

Among the random variables representing financial returns ( )1 2 3, , ,..., nr r r r , we choose a 

low threshold u and examine all values (y) exceeding u: ( )1 2 3, , ,...,
uNy y y y , where ury ii -=  and 

Nu are the number of sample data greater than u. The distribution of excess losses over the 

threshold u is defined as: 

u

F( y u ) F( u )
F ( y ) P( r u y r u )

1 F( u )

+ -
= - < > =

-
  (2.21) 

Assuming that for a certain u, the distribution of excess losses above the threshold is a 

Generalised Pareto Distribution, 
1 k

k ,

k
G ( y ) 1 1 yx

x

-
é ù

= - +ê ú
ë û

, the distribution function of returns is 

given by: 

�  
k ,

F( r ) F( y u ) 1 F( u ) G ( y ) F( u )
s

! " ! # "    (2.22) 
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To construct a tail estimator from this expression, the only additional element we need is 

an estimation of F( u ) . For this purpose, we take the obvious empirical estimator u( u N ) / u- . We 

then use the historical simulation method. Introducing the historical simulation estimate of F( u )  

and setting r y u= +  in the equation, we arrive at the tail estimator  

1 / k

uN k
F( r ) 1 1 ( r u )

n x

-
é ù

= - + -ê ú
ë û

    r > u  (2.23) 

 

For a given probability F( u )a > , the VaR estimate is calculated by inverting the tail 

estimation formula to obtain 

 

k

u

n
VaR( ) u (1 ) 1

k N

x
a a

-é ùé ùê úê úê úë ûë û

= + - -    (2.24) 

 

None of the previous Extreme Value Theory-based methods for quantile estimation yield 

VaR estimates that reflect the current volatility background. These methods are called 

Unconditional Extreme Value Theory methods. Given the conditional heteroscedasticity 

characteristic of most financial data, McNeil and Frey (2000) proposed a new methodology to 

estimate the VaR that combines the Extreme Value Theory with volatility models, known as the 

Conditional Extreme Value Theory. These authors proposed GARCH models to estimate the 

current volatility and extreme value theory to estimate the distributions tails of the GARCH 

model shocks.  

If the financial returns are a strictly stationary time series and e  follows a Generalised 

Pareto Distribution, denoted by , ( )kG s e , the conditional a  quantile of the returns can be 

estimated as  
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1
t k ,VaR ( ) G ( )sa m s a

-= +    (2.25) 

where 2
ts  represents the conditional variance of the financial returns and 1

k ,
G ( )

s
a-  is the a  

quantile of the GPD, which can be calculated as: 

1
, ( ) (1 ) 1

k

k
u

n
G u

k N
s

x
a a

-
-

é ùé ùê úê úê úë ûë û

= + - -   (2.26) 

 

2.2.3.4.2.b. Hill estimator 

The parameter that collects the features of the tail distribution is the tail index, 1h x -= . 

Hill proposed a definition of the tail index as follows: 

1
u

iH u 1
i 1

1
� log( r ) log r

u
h

-

+
=

é ùæ ö
ê úç ÷ç ÷ê úè øë û

= -å   (2.27) 

where ru represents the threshold return and u is the number of observations equal to or less than 

the threshold return. Thus,  the  Hill  estimator  is  the  mean  of  the most extreme u observations  

 

 

minus u+1 observations ( )u 1r + . Additionally, the associated quantile estimator is (see Danielsson 

and de Vries (2000)): 

1 /

u 1

1
VaR( ) r

u / n

h
a

a
-

+
æ ö
ç ÷
è ø

-=    (2.28) 

The problem posed by this estimator is the lack of any analytical means to choose the 

threshold value of u in an optimum manner. Hence, as an alternative, the procedure involves 

using the feature known as Hill graphics. Different values of the Hill index are calculated for 

different u values; the Hill estimator values become represented in a chart or graphic based on u, 
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and the u value is selected from the region where the Hill estimators are relatively stable (Hill 

chart leaning almost horizontally). The underlying intuitive idea posed in the Hill chart is that as 

u increases, the estimator variance decreases, and thus, the bias is increased. Therefore, the 

ability to foresee a balance between both trends is likely. When this level is reached, the 

estimator remains constant. 

Existing literature on EVT models to calculate VaR is abundant. Regarding BMM, Silva 

and Melo (2003) considered different maximum block widths,  with  results  suggesting that the  

extreme value method of estimating the VaR is a more conservative approach for determining the 

capital requirements than traditional methods. Byström (2004) applied both unconditional and 

conditional EVT models to the management of extreme market risks in the stock market and 

found that conditional EVT models provided particularly accurate VaR measures. In addition, a 

comparison with traditional Parametric (GARCH) approaches to calculate the VaR demonstrated 

EVT as being the superior approach for both standard and more extreme VaR quantiles. Bekiros 

and Georgoutsos (2005) conducted a comparative evaluation of the predictive performance of 

various VaR models, with a special emphasis on two methodologies related to the EVT, POT and 

BM.  Their results reinforced previous results and demonstrated that some �traditional� methods 

might yield similar results at conventional confidence levels but that the EVT methodology 

produces the most accurate forecasts of extreme losses at very high confidence levels. Tolikas et 

al. (2007) compared EVT with traditional measures (Parametric method, HS and Monte Carlo) 

and agreed with Bekiros and Georgoutsos (2005) on the outperformance of the EVT methods 

compared with the rest, especially at very high confidence levels. The only model that had a 

performance comparable with that of the EVT is the HS model.  

           Some papers showed that unconditional EVT works better than the traditional HS or 

Parametric approaches when a normal distribution for returns is assumed and a EWMA model is 

used to estimate the conditional volatility of the return (see Danielsson and de Vries (2000)). 
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However, the unconditional version of this approach has not been profusely used in the VaR 

estimation because such an approach has been overwhelmingly dominated by the conditional 

EVT (see McNeil and Frey (2000), Ze-To (2008), Velayoudoum et al. (2009), and Abad and 

Benito (2012)). Recent comparative studies of VaR models, such as Nozari et al. (2010), Zikovic 

and Aktan (2009) and Gençay and Selçuk (2004), show that conditional EVT approaches 

perform the best with respect to forecasting the VaR.  

Within the POT models, an environment has emerged in which some studies have 

proposed some improvements on certain aspects.  For  example,  Brooks et al. (2005) calculated  

the VaR by a semi-nonparametric bootstrap using unconditional density, a GARCH (1,1) model 

and EVT. They proposed a Semi-nonparametric approach using a GPD, and this method was 

shown to generate a more accurate VaR than any other method. Marimoutou et al. (2009) used 

different models and confirmed that the filtering process was important for obtaining better 

results. Ren and Giles (2007) introduced the media excessive function concept as a new way to 

choose the threshold. Ze-To (2008) developed a new conditional EVT-based model combined 

with the GARCH-Jump model to forecast extreme risks. He utilised the GARCH-Jump model to 

asymmetrically provide the past realisation of jump innovation to the future volatility of the 

return distribution as feedback and also used the EVT to model the tail distribution of the 

GARCH-Jump-processed residuals. The model is compared with unconditional EVT and 

conditional EVT-GARCH models under different distributions, normal and t-Student. He shows 

that the conditional EVT-GARCH-Jump model outperforms the GARCH and GARCH-t models. 

Chan and Gray (2006) proposed a model that accommodates autoregression and weekly 

seasonals in both the conditional mean and conditional volatility of the returns as well as 

leverage effects via an EGARCH specification. In addition, EVT is adopted to explicitly model 

the tails of the return distribution. 
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Finally, concerning the Hill index, some authors used the mentioned estimator, such as 

Bao et al. (2006), whereas others such as Bhattacharyya and Ritolia (2008) used a modified Hill 

estimator. 

2.2.3.5. Monte Carlo 

The simplest Monte Carlo procedure to estimate the VaR on date t on a one-day horizon 

at a 99% significance level consists of simulating N draws from the distribution of returns on date 

t+1. The VaR at a 99% level is estimated by reading off element N/100 after sorting the N 

different draws from the one-day returns, i.e., the VaR estimate is estimated empirically as the 

a quantile of the simulated distribution of returns. 

 

However, applying simulations to a dynamic model of risk factor returns that capture path 

dependent behaviour, such as volatility clustering, and the essential non-normal features of their 

multivariate conditional distributions is important. With regard to the first of these, one of the 

most important features of high-frequency returns is that volatility tends to come in clusters. In 

this case, we can obtain the GARCH variance estimate at time t ( )�
ts  using the simulated returns 

in the previous simulation and set �
t t t

r zs= , where 
t

z  
is a simulation from a standard normal 

variable. With regard to the second item, we can model the interdependence using the standard 

multivariate normal or t-Student distribution or use copulas instead of correlation as the 

dependent metric.  

Monte Carlo is an interesting technique that can be used to estimate the VaR for non-

linear portfolios (see Estrella et al. (1994)) because it requires no simplifying assumptions about 

the joint distribution of the underlying data. However, it involves considerable computational 

expenses. This cost has been a barrier limiting its application into real-world risk containment 

problems. Srinivasan and Shah (2001) proposed alternative algorithms that require modest 
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computational costs and, Antonelli and Iovino (2002) proposed a methodology that improves the 

computational efficiency of the Monte Carlo simulation approach to VaR estimates.  

Finally, the evidence shown in the studies on the comparison of VaR methodologies agree 

with the greater accuracy of the VaR estimations achieved by methods other than Monte Carlo 

(see Abad and Benito (2012), Huang (2009), Tolikas et al. (2007) and Bao et al. (2006)). 

To sum up, in this section we have reviewed some of the most important VaR 

methodologies, from the standard models to the more recent approaches. From a theoretical point 

of view, all of these approaches show advantages and disadvantages. In Table 2.3 we resume 

these advantages and disadvantages. In the next sections, we will review the results obtained for 

these methodologies from a practical point of view.  
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                  Table 2.3. Advantages and disadvantages of VaR approaches 

    Advantages Disadvantages 

 
Non Parametric approach  

(HS)                                                 
Minimal assumptions made 
about the error distribution, 

nor the exact form of the 
dynamic specifications 

� Not making strong assumptions about 
the distribution of the returns portfolio, 

they can accommodate wide tails, 
skewness and any other non-normal 

features.                                           
� Very easy to implement. 

� Results are completely dependent on 
the data set. 

� Sometimes slow to reflect major 
events. 

� Only allows VaR estimations at 
discrete confidence intervals 

determined by the size of our data set. 
 

 Parametric approach                                    
Makes a full parametric 

distributional and model form 
assumption. For example 

AGARCH model with 
Gaussian errors 

� Ease of implementation when a normal 
or Student-t distributions is assumed. 

� Ignores leptokurtosis and skewness 
when a normal distribution is 

assumed.                                                
� Difficulties of implementation when 
a skewed distributions is assumed(*). 

 

Riskmetrics    
A kind of Parametric 

Approach 

� Ease of implementation can be 
calculated using a spreadsheet. 

� Assumes normality of return 
ignoring fat tails, skewness, etc.                    

� Lacks non-linear property which is a 
significant of financial return. 

Filter 

Historical 

Simulation 

� Approach retains the nonparametric 
advantage (HS) and at the same time 

addresses some of HS´s inherent 
problems, i.e. FHS take volatility 

background into account. 

� Results slightly dependent on the 
data set. 

ETV 
� Capture curtosis and changes in 

volatility (conditional ETV). 

� Depends on the extreme return 
distribution assumption.                              

� Results depend on the extreme data 
set. 

CAViaR 

� Makes no specific distributional 
assumption on the return of the asset. 

� Captures non linear characteristics of 
the financial returns 

� Difficulties of implementation. 

 

 

 

 

 

Semi 

Parametric 

approach:                               
Some 

assumptions 
are made, 

either about 
the error 

distribution, its 
extremes, or 
the model 
dynamics 

Monte 

Carlo 

� Large number of scenarios generated 
provide a more reliable and 

comprehensive measure of risk than 
analytical method.                                  

� Captures convexity of non-linear 
instruments and changes in volatility and 

time. 

�  Reliance on the stochastic process 
specified or historical data selected to 
generate estimations of the final value 
of the portfolio and hence of the VaR 
� Involves considerable computational 

expenses 

(*) In addition, as the skewness distributions are not included in any statistical package, the user of this methodology have to 
program their code of estimation To do that, several program language can be used: MATLAB, R,  GAUSS, etc. It is in this sense 
we say that the implementation is difficult. As the maximization of the likelihood based on several skewed distributions, such as, 
SGT is very complicated so that it can take a lot of computational time. 
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2.3. Back-testing VaR methodologies 

Many authors are concerned about the adequacy of the VaR measures, especially 

when they compare several methods. Papers, which compare the VaR methodologies 

commonly use two alternative approaches: the basis of the statistical accuracy tests and/or 

loss functions. As to the first approach, several procedures based on statistical hypothesis 

testing have been proposed in the literature and authors usually select one or more tests to 

evaluate the accuracy of VaR models and compare them. The standard tests about the 

accuracy VaR models are: (i) unconditional and conditional coverage tests; (ii) the back-

testing criterion and (iii) the dynamic quantile test. To implement all these tests an exception 

indicator must be defined. This indicator is calculated as follows:  

( )
( )1

1

0
t+1

t

t+1

  if  r VaR
I

 if  r VaR

a

a
+

ìï
í
ïî

<
=

>
  (2.29) 

Kupiec (1995) shows that assuming the probability of an exception is constant, then 

the number of exceptions ( 1tx I +=å ) follows a binomial distribution B(N, �), where N is the 

number of observations. An accurate VaR(�) measure should produce an unconditional 

coverage (
1

� /tI Na +=å ) equal to � percent. The unconditional coverage test has as a null 

hypothesis �a a= , with a likelihood ratio statistic:  

( )( ) ( )( )N x N xx x
UCLR log 1 log 1a a a a

- -é ù
ê úë û

= 2 - - -) )   (2.30) 

which follows an asymptotic 2 (1)c  distribution. 

Christoffersen (1998) developed a conditional coverage test. This jointly examines 

whether the percentage of exceptions is statistically equal to the one expected and the serial 

independence of It+1. He proposed an independence test, which aimed to reject VaR models 

with clustered violations.  The likelihood  ratio  statistic  of   the  conditional coverage test is  
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LRcc=LRuc+LRind, which is asymptotically distributed 2(2)c , and the LRind statistic is the 

likelihood ratio statistic for the hypothesis of serial independence against first-order Markov 

dependence. 9 

A similar test for the significance of the departure of �a  from a  is the back-testing 

criterion statistic: 

( ) ( )1Z N N Na a a a= - / -)

   (2.31) 

which follows an asymptotic N(0,1) distribution. 

Finally, the Dynamic Quantile (DQ) test proposed by Engle and Manganelli (2004) 

examines whether the exception indicator is uncorrelated with any variable that belongs to 

the information set 1t-W
 
available when the VaR was calculated. This is a Wald test of the 

hypothesis that all slopes in the regression model 

1
1 1

p q

t i j j tt
i j

I I Xb b m e0 -
= =

= + + +å å
 

 (2.32) 

are zero, where Xj are explanatory variables contained in 1t-W
. 

VaR(�) is usually an 

explanatory variable to test if the probability of an exception depends on the level of the 

VaR. 

The tests described above are based on the assumption that the parameters of the 

models fitted to estimate the VaR are known, although they are estimations. Escanciano and 

Olmo (2010) show that the use of standard unconditional and independence backtesting 

procedures can be misleading. They propose a correction of the standard backtesting 

procedures. Additionally, Escanciano and Pei (2012) propose correction when VaR is 

                                                             

9 The LRind statistic is [ ]02 log log= -ind ALR L L  and has an asymptotic 2 (1)c  distribution. The likelihood function under 

the alternative hypothesis is ( ) ( )00 1001 11

01 01 11 111 1= - -N NN N

AL p p p p  where Nij denotes the number of observations in state j 

after having been in state i in the previous period, 01 01 00 01/( )= +N N Np  and 11 11 10 11/( )= +N N Np . The likelihood 

function under the null hypothesis is ( 01 11 11 01( ) /= = = +N N Np p p ) is ( ) 00 01 01 11

0 1
+ += - N N N NL p p . 
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estimated with HS or FHS. On a different route, Baysal and Staum (2008) provide a test on 

the coverage of confidence regions and intervals involving VaR and Conditional VaR. 

The second approach is based on the comparison of loss functions. Some authors 

compare the VaR methodologies by evaluating the magnitude of the losses experienced 

when an exception occurs in the models. The �magnitude loss function� that addresses the 

magnitude of the exceptions was developed by Lopez (1998, 1999). It deals with a specific 

concern expressed by the Basel Committee on Banking Supervision, which noted that the 

magnitude, as well as the number of VaR exceptions is a matter of regulatory concern. 

Furthermore, the loss function usually examines the distance between the observed returns 

and the forecasted VaR (�) values if an exception occurs.  

Lopez (1999) proposed different loss functions: 

( )( ) ( )
( )

1 1
1

1

,

0

t t

t

t

l
z r VaR   if    r VaR  

f
                      if    r VaR  

a a

a

+ +
+

+

ìï
í
ïî

<
=

>  

       (2.33) 

where the VaR measure is penalized with the exception indicator ( )( ). 1z = , the exception 

indicator plus the square distance ( 2
1(.) 1 ( ( ))

t
z r VaR a+= + - ) or using weight 

( 1( , ( ), )tz r VaR x ka+ = , where x, being the number of exceptions, is divided into several zones 

and k is a constant which depends on zone)  based on what regulators consider to be a 

minimum capital requirement reflecting their concerns regarding prudent capital standards 

and model accuracy.  

More recently, other authors have proposed loss function alternatives, such as Abad 

and Benito (2012) who consider 2
1(.) ( ( ))

t
z r VaR a+= -  and 1(.) ( )tz r VaR a+= -  or Caporin 

(2008) who proposes 1(.) 1
( )

t
r

z
VaR a

+= -
 

and 
2

1( ( ) )
(.)

( )
tr VaR

z
VaR

a

a

+ -
= . Caporin (2008) also 

designs a measure of the opportunity cost. 
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In this second approach, the best VaR model is that which minimizes the loss 

function. In order to know which approach provides minimum losses, different tests can be 

used. For instance Abad and Benito (2012) use a non-parametric test while Sener et al. 

(2012) use the Diebold and Mariano (1995) test as well as that of White (2000). 

Another alternative to compare VaR models is to evaluate the loss in a set of 

hypothetical extreme market scenarios (stress testing). Linsmeier and Pearson (2000) 

discuss the advantages of stress testing.  

2.4. Comparison of VaR methods 

Empirical literature on VaR methodology is quite extensive. However, there are not 

many papers dedicated to comparing the performance of a large range of VaR 

methodologies. In Table 2.4, we resume 24 comparison papers. Basically, the methodologies 

compared in these papers are HS (16 papers), FHS (8 papers), the Parametric method under 

different distributions (22 papers included the normal, 13 papers include t-Student and just 5 

papers include any kind of skewness distribution) and the EVT based approach (18 papers). 

Only a few of these studies include other methods, such as the Monte Carlo (5 papers), 

CAViaR (5 papers) and the Non-Parametric density estimation methods (2 papers) in their 

comparisons. For each article, we marked the methods included in the comparative exercise 

with a cross and shaded the method that provides the best VaR estimations.  
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The approach based on the EVT is the best for estimating the VaR in 83.3% of the 

cases in which this method is included in the comparison, followed closely by FHS, with 

62.5% of the cases. This percentage increases to 75.0% if we consider that the differences 

between EVT and FHS are almost imperceptible in the paper of Giamouridis and Ntoula 

(2009), as the authors underline.  The CAViaR method ranks third. This approach is the best 

in 3 out of 5 comparison papers (it represents a percentage of success of 60%, which is quite 

high). However, we must remark that only in one of these 3 papers, ETV is included in the 

comparison and FHS is not included in any of them.  

The worst results are obtained by HS, Monte Carlo and Riskmetrics. None of those 

methodologies rank best in the comparisons where they are included. Furthermore, in many 

of these papers HS and Riskmetrics perform worst in estimating VaR. A similar percentage 

of success is obtained by Parametric method under a normal distribution. Only in 2 out of 18 

papers, does this methodology rank best in the comparison. It seems clear that the new 

proposals to estimate VaR have outperformed the traditional ones.  

Taking this into account, we highlight the results obtained by Berkowitz and O´Brein 

(2002). In this paper the authors compare some internal VaR models used by banks with a 

parametric GARCH model estimated under normality. They find that the bank VaR models 

are not better than a simple parametric GARCH model. It reveals that internal models work 

very poorly in estimating VaR.  

The results obtained by the Parametric method should take into account when the 

conditional high-order moments are time-varying. The two papers that include this method 

in the comparison obtained a 100% outcome success (see Ergun and Jun (2010) and 

Polanski and Stoja (2010)). However, only one of these papers included EVT in the 

comparison (Ergun and Jun (2010)).  
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Although not shown in the Table 2.4, the VaR estimations obtained by the 

Parametric method with asymmetric and leptokurtic distributions and in a mixed-distribution 

context are also quite accurate (see Abad and Benito (2012), Bali and Theodossiou (2007, 

2008), Bali et al. (2008), Chen et al. (2011) and Polanski and Stoja (2010)). However this 

method does not seem to be superior to EVT and FHS (Kuester et al. (2006), Cifter and 

Özün (2007) and Angelidis et al. (2007)). Nevertheless, there are not many papers including 

these three methods in their comparison. In this line, some recent extensions of the CAViaR 

method, seem to perform quite well, such as those proposed by Yu et al. (2010) and Gerlach 

et al. (2011). This last paper compared three CAViaR models (SAV, AS and Threshold 

CAViaR) with the Parametric model under some distributions (GARCH-N, GARCH-t, 

GJR-GARCH, IGARCH, Riskmetric). They find that at 1% confidence level, the Threshold 

CAViaR model performs better than the Parametric models considered. Sener et al. (2012) 

carried out a comparison of a large set of VaR methodologies: HS, Monte Carlo, EVT, 

Riskmetrics, Parametric method under normal distribution and four CAViaR models 

(symmetric and asymmetric). They find that the asymmetric CAViaR model joined to the 

Parametric model with an EGARCH model for the volatility performs the best in estimating 

VaR. Abad and Benito (2012), in a comparison of a large range of VaR approaches that 

include EVT, find that the Parametric method under an asymmetric specification for 

conditional volatility and t-Student innovations performs the best in forecasting VaR. Both 

papers highlight the importance of capturing the asymmetry in volatility. Sener et al. (2012) 

state that the performance of VaR methods does not depend entirely on whether they are 

parametric, non-parametric, semi-parametric or hybrid but rather on whether they can model 

the asymmetry of the underlying data effectively or not. 
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In Table 2.5, we reconsider the papers of Table 2.4 to show which approach they use 

to compare VaR models. Most of the papers (62%) evaluate the performance of VaR models 

on the basis of the forecasting accuracy. To do that not all of them used a statistical test. 

There is a significant percentage (25%) comparing the percentage of exceptions with 

that expected without using any statistical test.  38% of the papers in our sample consider 

that both the number of exceptions and their size are important and include both dimensions 

in their comparison.  

Table 2.5. Overview of papers that compare VaR methodologies: How do they compare? 

 
The accuracy Loss function 

Abad and Benito (2012) LRuc-ind-cc, BT, DQ quadratic 

Gerlach et al. (2011) LRuc-cc, DQ  

Sener et al. (2012) DQ absolute 

Ergun and Jun (2010) LRuc-ind-cc  

Nozari et al. (2010) LRuc  

Polansky and Stoja (2010) LRuc-ind  

Brownlees and Gallo (2010) LRuc-ind-cc, DQ tick loss function 

Yu et al. (2010) %  

Ozun et al. (2010) LRuc-ind-cc quadratic's Lopez 

Huang (2009) LRuc  

Marimoutou et al. (2009) LRuc-cc quadratic's Lopez 

Zikovic and Aktan (2009) LRuc-ind-cc Lopez 

Giamouridis and Ntoula (2009) LRuc-ind-cc  

Angelidis et al. (2007) LRuc quadratic 

Tolikas et al. (2007) LRcc  

Alonso and Arcos (2006) BT quadratic's Lopez 

Bao et al. (2006) % predictive quantile loss 

Bhattacharyya and Ritolia (2008) LRuc  

Kuester et al. (2006) LRuc-ind-cc, DQ  

Bekeiros et al. (2005) LRuc-cc  

Gençay and Selçuk (2004) %  

Gençay et al. (2003) %  

Darbha, G. (2001) %  

Danielsson and de Vries (2000) %  
Note: In this table, we present some empirical papers involving comparisons of VaR methodologies. We indicate 
the test to evaluate the accuracy of VaR models and/or the loss function used in the comparative exercise. LRuc is 
the unconditional coverage test. LRind is the statistic for the serial independence. LRcc is the conditional coverage 
test. BT is the back-testing criterion. DQ is the Dynamic Quantile test. % denotes the comparison of the percentage 
of exceptions with the expected percentage without a statistical test. 
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Although there are not many articles dedicated to the comparison of a wide range of 

VaR methodologies, the existing offer quite conclusive results. These results show that the 

approach based on the EVT and FHS is the best method to estimate the VaR. We also note 

that VaR estimates obtained by some asymmetric extensions of CAViaR method and the 

Parametric method under the skewed and fat-tail distributions lead to promising results, 

especially when the assumption that the standardised returns is iid. is abandoned and the 

conditional high-order moments are considered to be time-varying. 

 2.5. Some important topics of VaR methodology 

As we stated in the introduction, VaR is by far the leading measure of portfolio risk 

in use in major commercial banks and financial institutions. However, this measurement it is 

not exempt from criticism. Some researchers have remarked that VaR is not a coherent 

market measure (see Artzner et al. (1999)). These authors define a set of criteria necessary 

for what they call a �coherent� risk measurement. These criteria include homogeneity 

(larger positions are associated with greater risk), monotonicity (if a portfolio has 

systematically lower returns than another for all states of the world, its risk must be greater), 

subadditivity (the risk of the sum cannot be greater than the sum of the risk) and the risk free 

condition (as the proportion of the portfolio invested in the risk free asset increases, 

portfolio risk should decline).  They show that VaR is not a coherent risk measure because it 

violates one of their axioms. In particular VaR does not satisfy the subadditivity condition 

and it may discourage diversification. On this point Artzner et al. (1999) proposed an 

alternative risk measure related to VaR which is called Tail Conditional Expection, also  

called Conditional Value at Risk (CVaR).The CVaR measures the expected loss in the a % 

worst cases and is given by 

{ }
1t t t t

t
CVaR E R R VaRa a

-
= - £ -   (2.33) 
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The CVaR is a coherent measure of risk when it is restricted to continuous 

distributions. However, it can violate sub-additivity with non-continuous distributions. 

Consequently, Acerbi and Tasche (2002) proposed the Expected Shortfall (ES) as a coherent 

measure of risk. The ES is given by 

( ) ( )1
t tt t VaRES CVaR CVaRa aa al= + - -   (2.34) 

where 1 1
t t

t
P R VaR

a

l
a

-
é ù£ -ë ûº ³ . Note that CVaR=ES when the distribution of returns is 

continuous. However, it is still coherent when the distribution of returns is not continuous. 

The ES has also several advantages when compared with the more popular VaR. First of all, 

the ES is free of tail risk in the sense that it takes into account information about the tail of 

the underlying distribution. The use of a risk measure free of tail risk avoids extreme losses 

in the tail. Therefore, the ES is an excellent candidate for replacing VaR for financial risk 

management purposes.  

Despite the advantages of ES, it is still less used than VaR. The principal reason for 

this pretermission is that the ES backtest is harder than VaR one. In that sense, in the last 

years some ES backtesting procedures have been developed. We can cite here the residual 

approach introduced by McNeil and Frey (2000), the censored Gaussian approach proposed 

by Berkowitz (2001), the functional delta approach of Kerkhof and Melenberg (2004), and 

the saddlepoint technique introduced by Wong (2008, 2010).  

However, these approaches present some drawbacks. The backtests of McNeil and 

Frey (2000), Berkowitz (2001) and Kerkhof and Melenberg (2004) rely on asymptotic test 

statistics that might be inaccurate when the sample size is small. The test proposed by Wong 

(2008) is robust to these questions, nonetheless it has some disadvantages (as with the 

Gaussian distribution assumption).  
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Regardless of the sector in which a financial institution participates, all such 

institutions are subject to three types of risk: market, credit and operational. So, to calculate 

the total VaR of a portfolio it is necessary to combine these risks. There are different 

approximations to carry this out. First, an approximation that sums up the three types of risk 

(VaR). As VaR is not a subadditivity measure this approximation overestimates total risk or 

economic capital. Second, assuming joint normality of the risk factors, this approximation 

imposes tails than are thinner than the empirical estimates and significantly underestimates 

economic capital and the third approach to asses the risk aggregation is based on using 

copulas. To obtain the total VaR of a portfolio it is necessary to obtain the joint return 

distribution of the portfolio. Copulas allow us to solve this problem by combining the 

specific marginal distributions with a dependence function to create this joint distribution. 

The essential idea of the copula approach is that a joint distribution can be factored into the 

marginals and a dependence function, called copula. The term copula is based on the notion 

of coupling: the copula couples the marginal distributions together to form a joint 

distribution. The dependence relation is entirely determined by the copula, while location, 

scaling and shape are entirely determined by the marginals. Using a copula, marginal risk 

that is initially estimated separately can then be combined in a joint risk distribution 

preserving the marginals original characteristics. This is sometimes referred to as obtaining 

a joint density with predetermined marginals. The joint distribution can then be used to 

calculate the quantiles of the portfolio return distribution, since the portfolio returns are a 

weighted average on individual returns. Embrechts et al. (1999, 2002) were among the first 

to introduce this methodology in financial literature. Some applications of copulas focussing 

on cross-risk aggregation for financial institutions can be found in Alexander and Pezier 

(2003), Ward and Lee (2002) and Rosemberg and Schuermann (2006).  
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2.6. Conclusion 

In this article we review the full range of methodologies developed to estimate the 

VaR, from standard models to the recently proposed and present their relative strengths and 

weaknesses from both theoretical and practical perspectives.  

The performance of the parametric approach in estimating the VaR depends on the 

assumed distribution of the financial return and on the volatility model used to estimate the 

conditional volatility of the returns. As for the return distribution, empirical evidence 

suggests that when asymmetric and fat-tail distributions are considered, the VaR estimate 

improves considerably. Regardless of the volatility model used, the results obtained in the 

empirical literature indicate the following. (i) The EWMA model provides inaccurate VaR 

estimates. (ii) The performance of the GARCH models strongly depends on the assumption 

of returns distribution. Overall, under a normal distribution, the VaR estimates are not very 

accurate, but when asymmetric and fat-tail distributions are applied, the results improve 

considerably. (iii) Evidence suggests with some exceptions that SV models do not improve 

the results obtained by the family of GARCH models. (iv) The models based on the realised 

volatility work quite well to estimate VaR, outperforming the GARCH models estimated 

under a normal distribution. Additionally, Markov-Switching GARCH outperforms the 

GARCH models estimated under normality. In the case of the realised volatility models, 

some authors indicate that its superiority compared with the GARCH family is not as high 

when the GARCH models are estimated assuming asymmetric and fat-tail returns 

distributions. (v) In the GARCH family, the fractional-integrated GARCH models do not 

appear to be superior to the GARCH models. However, in the context of the realised 

volatility models, there is evidence that models, which capture long memory in volatility 

provide more  accurate  VaR estimates.  (vi)  Although  evidence is somewhat ambiguous,  
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asymmetric volatility models appear to provide a better VaR estimate than symmetric 

models.  

Although there are not many works dedicated to the comparison of a wide range of 

VaR methodologies, the existing offer quite conclusive results. These results show that the 

approaches based on the EVT and FHS are the best method to estimate the VaR. We also 

note that VaR estimates obtained by some asymmetric extension of CAViaR method and the 

Parametric method under the skewed and fat-tail distributions lead to promising results, 

especially when the assumption that the standardised returns is iid is abandoned and that the 

conditional high-order moments are considered to be time-varying. It seems clear that the 

new proposals to estimate VaR have outperformed the traditional ones.  

To further the research, it would be interesting to explore whether in the context of 

an approach based on the EVT and FHS considering asymmetric and fat-tail distributions to 

model the volatility of the returns could help to improve the results obtained by these 

methods. Along this line, results may be further improved by applying the realised volatility 

model and Markov-switching model.  
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Chapter 3
*
 

Evaluating the performance of the skewed distributions to 

forecast Value at Risk in the Global Financial Crisis 
 

3.1. Introduction 
 

A primary tool for financial risk assessment is Value at Risk (VaR). It is defined as the 

maximum loss expected of a portfolio of assets over a certain holding period at a given 

confidence level. Since the Basel Committee on Bank Supervision at the Bank for International 

Settlements requires the financial institution to meet capital requirements on the basis of VaR 

estimates, allowing them to use internal models for VaR calculations, this measurement has 

become a basic market risk management tool for financial institutions.  

Despite VaR´s conceptual simplicity, its calculation could be rather complex. Many 

approaches have been developed to forecast VaR: non parametric approaches, eg, Historical 

Simulation; semi-parametrics approaches, eg, Extreme Value Theory and the Dynamic quantile 

                                                             

*
 This chapter has been published as working paper by Instituto Complutense de Análisis Económico.The complete reference 

is:  Abad P., Benito S.. Sánchez M.A. and  López C. (2013)  Evaluating the performance of the skewed distributions to forecast 
Value at Risk in the Global Financial Crisis. [Documentos de Trabajo del Instituto Complutense de Análisis Económico 
(ICAE); nº 40, 2013, ]  
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regression CAViaR model (Engle and Manganelli (2004)); and parametric approaches eg, 

RiskMetrics (J.P. Morgan (1996)).  

The parametric approach is one of the most used by financial institutions. This approach 

usually assumes that the asset returns follow a normal distribution. This assumption simplifies 

the computation of VaR considerably. However, it is inconsistent with the empirical evidence 

of asset returns, which finds that the distribution of asset returns is skewed, fat-tailed, and 

peaked around the mean (see Bollerslev (1987)). This implies that extreme events are much 

more likely to occur in practice than would be predicted by the symmetric thinner-tailed normal 

distribution. Furthermore, the normality assumption can produce VaR estimates that are 

inappropriate measures of the true risk faced by financial institutions.  

Since the t-Student distribution (ST) has fatter tails than the normal one, this 

distribution has been commonly used in finance and risk management, particularly to model 

conditional asset returns (Bollerslev (1987)). The empirical evidence of this distribution 

performance in estimating VaR is ambiguous. Some papers show that the ST distribution 

performs better than the normal distribution (see Abad and Benito (2013), Orhan and Köksal 

(2012) and Polanski and Stoja (2010)) while other papers report that the ST distribution 

overestimates the proportion of exceptions (see Angelidis et al. (2007) and Guermat and Harris 

(2002)).  

The ST distribution can often account well for the excess kurtosis found in common 

asset returns, but this distribution does not capture the skewness of the returns. Taking this into 

account, one direction for research in risk management involves searching for other distribution 

functions that capture this characteristic. The skewness Student-t distribution (SSD) of Hansen 

(1994), the exponential generalized beta of the second kind (EGB2) of McDonald and Xu 

(1995), the generalised error distribution (GED) of Nelson (1991), the skewness generalised-t 

distribution (SGT) of Theodossiou (1998), the skewness error generalised distribution (SGED) 
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of Theodossiou (2001) and  the inverse  hyperbolic  sign  (IHS) of Johnson (1949) are the most 

used in VaR literature. Some applications of skewness distributions to forecast the VaR can be 

found in Chen et al. (2012), Polanski and Stoja (2010), Bali and Theodossiou (2008), Bali et al. 

(2008), Haas et al. (2004), Zhang and Cheng (2005), Haas (2009), Ausín and Galeano (2007), 

Xu and Wirjanto (2010) and Kuester et al. (2006). Chen et al. (2012) compared the ability to 

forecast the VaR of a normal, ST, SSD and GED. In this comparison the SSD and GED 

distributions provide the best results. Polanski and Stoja (2010) compared the normal, ST, SGT  

and EGB2 distributions and found that just the latter two distributions provide accurate VaR 

estimates. Bali and Theodossiou (2008) compared a normal distribution with the SGT 

distribution and showed that the SGT provided a more accurate VaR estimate.  

In this paper we carry out a comprehensive comparison of the skewed distributions 

aforementioned: SSD, SGT, SGED and IHS. Besides, we include both the normal and the ST 

distribution. The comparative is performed following two directions. First, we compare the 

distributions in statistical terms to determine which it is the best for fitting financial returns. 

Then, we compare the distributions in terms of VaR, in order to select which is best for 

forecasting VaR.  

The main differences with the previous literature are as follows: (1) we consider a larger 

number of skewed distributions; (2) the comparison in statistical terms is made using a large 

battery of tests: Likelihood ratio, Chi-square (Chi2) and Kolmogorov-Smirnov (KS) test; the 

papers aforementioned only used the likelihood ratio test; 3) to carry out the comparison in 

terms of VaR we evaluate the results on the basis of two criteria: (i) the accuracy of VaR and 

(ii) the minimization of two loss functions which reflect the concerns of the  financial regulator 

and the firm (Sarma et al. (2003)).   

In the next section, we present the methodology used to estimate the VaR and 

summarize  the  statistical  tests  and  the loss  functions  that we have used to evaluate the VaR 
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estimates. In section 3.3, we present the data. The results of the comparison in statistical terms 

and in terms of VaR are presented in sections 3.4 and 3.5 respectively. The last section includes 

the main conclusions. 

3.2. Methodology 

According to Jorion (2001), VaR measure is defined as the worst expected loss over a 

given horizon under normal market conditions at a given level of confidence. The VaR is thus a 

conditional quantile of the asset return distribution. Let n1 2 3r , r , r ,..., r  be identically distributed 

independent random variables representing the financial returns. Use )(rF  to denote the 

cumulative distribution function, 
t-1t< )F(r)=Pr(r r W , conditionally on the information set 1t-W  

that is available at time t-1. Assume that tr   follows the stochastic process t tr m e= +  

where ( )01t t t tz z iid ,e s= ~ , m  is the conditional mean, ts  the conditional standard deviation 

of returns. The VaR with a given probability ( )0 1,aÎ , denoted by VaR ( )a , is defined as the a  

quantile of the probability distribution of financial returns: tF(VaR( )) Pr( r VaR )( )a a a= < = . 

Under the framework of the parametric techniques (see Jorion (2001)), the conditional 

VaR estimate can be calculated as �t t tVaR kam s= + , where tm  represents the conditional mean, 

which we assume is zero, � ts  sigma is the conditional standard deviation and ka  denotes the 

corresponding quantile of the distribution of the standardized returns at a given confidence 

level 1-a .10  

Having obtained significant evidence from the Engle and Ng (1993) test on the fact that 

good and bad news have a different impact on conditional volatilities of  asset  returns,   we use 

the Exponential GARCH model of Nelson (1991) to estimate  needed for conditional VaR 

analysis11,12
. Finally, once the variance has been calculated, we estimate the distributions of the 

                                                             
10 In case of the skewed distributions the ka value is a function of the skewness and kurtosis parameters. 
11 The EGARCH models have been estimated below a ST distribution. 
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standardized returns under each of the considered distribution functions: normal, ST, SGT, 

SGED, SSD and IHS.  

Table 3.1 shows the density function of these skewed distributions and their graphs for 

Nikkei index are shown in Figure 3.1.   

 

Figure 3.1. Density functions 
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Note: This figure depicts the considered distributions. The data used in the graphs are 
 those obtained  from the Nikkei Index and the sample spans from January 3, 2000 to  
November 30, 2012. 

 
 

                                                                                                                                                                                  
12 The squared daily returns, as employed by GARCH models are not the most efficient measure of the daily volatility. The 
recent literature has focused on the realized volatility and daily stock ranges. Latest are also known to be more efficient 
measures of return volatility than daily returns, since they employ all price changes during the day. Chou et al. (2009) present a 
thorough review of range-based models. Lin, Chen and Gerlach (201) propose a nonlinear smooth transition conditional 
autoregressive range model for capturing smooth volatility asymmetries in international financial stock markets. However, we 
consider only GARCH models because the database is daily based. 
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In the first stage, before the calculation of the VaR, we compare the distributions in 

statistical terms. To do this, we use a likelihood test (to compare the fit of two models) and two 

goodness of fit tests, Chi-square of Pearson (1900) and Kolmogorov-Smirnov test 

(Kolmogorov (1933), Smirnov (1939) and Massey (1951)) (to determine whether a sample can 

be considered as a draw sample from a given specified distribution). The KS test is based on 

the maximum difference between an empirical and a hypothetical cumulative distribution 

function. The Chi2 test is based on the probability distribution function and performs by 

grouping the data into bins, calculating the observed and expected counts for those bins.                                                  

In the second stage, we calculate the VaR and evaluate the accuracy of the VaR 

estimate under these distributions. We have an exception when 1tr+  < VaR( )a  and then the 

exception indicator variable (It+1) is equal one (zero in other cases).  

A common non based on test criterion to compare VaR models is the rate of violation 

(VRate), defined as the proportion of exception, over the forecast period. The ratio VRate/� 

should be close to one. Thus, models with VRate/� � 1 are better.  

When VRate/� < 1 (VRate < �), risk and potential loss estimates are conservative, while 

alternatively, when VRate/� > 1 (VRate > �), financial institutions may not allocate sufficient 

capital to cover likely future losses. As in Gerlach, Chen, and Chan (2011), conservative rates 

are preferred for models where VRate/� is equidistant from 1. Following Gerlach et al. 2011, 

we evaluate the accuracy of the VaR estimates focusing in those ratios. 

Besides, we test formally the accuracy of the VaR estimates to which we use four 

standard tests: unconditional and conditional coverage tests, the Back-Testing criterion (BTC) 

and the Dynamic Quantile test (DQ). Kupiec (1995) shows that the unconditional coverage test   

has as a null hypothesis a a
)

= , with a likelihood ratio statistic 

( )( ) ( )( )N x N xx x
UCLR log 1 log 1a a a a

- -é ù
ê úë û

= 2 - - -) ) which follows an asymptotic 2 (1)c  distribution.  
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A similar test for the significance of the deviation of a)  from a  is the back-testing 

criterion statistic ( ) ( )1Z N N Na a a a= - / -)

 
which follows an asymptotic N(0,1) distribution. 

The conditional coverage test (Christoffersen (1998)) jointly examines if the percentage of 

exceptions is statistically equal to the expected one and the serial independence of It+1. The 

likelihood ratio statistic of the conditional coverage test is LRcc=LRuc+LRind, which is 

asymptotically distributed 2 (2)c , and the LRind statistic is the likelihood ratio statistic for the 

hypothesis of serial independence against first-order Markov dependence. Finally, the dynamic 

quantile test proposed by Engle and Manganelli (2004) examines if the exception indicator is 

uncorrelated with any variable that belongs to the information set 1t-W  available when the VaR 

was calculated. This is a Wald test of the hypothesis that all slopes are zero in a regression of 

the exception indicator variable on a constant, 5 lags and the VaR.  

Additionally, we evaluate the magnitude of the losses experienced. The model that 

minimizes the total loss is preferred to the other models. For this purpose, we have considered 

two loss functions: the regulator loss function and the firm�s loss function.13 Lopez (1998, 

1999) proposed a loss function, which reflects the utility function of a regulator. In this 

specification, the magnitude loss function assigns a quadratic specification when the observed 

portfolio losses exceed the VaR estimate. Thus, we penalize only when an exception occurs 

according to the following quadratic specification:  

( )2ìï
í
ïî

<t t t t
t

VaR r if r VaRRLF
0 otherwise

-
=   (3.1) 

 

 

 

                                                             
13 One strand of the literature has proposed a lot of loss functions. However, Abad et al. (2014) show that the VaR 
model that minimises the total losses is robust within groups of loss function but differs across firm�s and 
supervisor�s loss functions. Therefore, we consider only two loss functions: one function designed by regulators 
and other designed by risk managers.  
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This loss function gives higher scores when failures take place and considers the 

magnitude of the failure. In addition, the quadratic term ensures that large failures are penalized 

more than small failures. 

But firms use VaR in internal risk management and, in this case, there is a conflict 

between the goal of safety and the goal of profit maximization. A too high VaR forces the firm 

to hold too much capital, imposing the opportunity cost of capital upon the firm. Taking this 

into account, Sarma et al. (2003) define the firm�s loss function as follows: 

( )2
.

ìï
í
ïî

<t t t t

t

t
VaR r if r VaR

FLF
VaR otherwiseb

-
=

-
   (3.2) 

b  being the opportunity cost of capital.  

3.3. Data  

The data consist of closing daily returns on nine composite indexes from 1/1/2000 to 

11/30/2012 (around 3250 observations). The indexes are: Japanese Nikkei, Hong Kong Hang 

Seng, Israeli Tel Aviv (100), Argentine Merval, US S&P 500 and Dow Jones, UK FTSE100, 

the French CAC40 and the Spanish IBEX-35. The data were extracted from the Bloomberg 

database. The computation of the indexes returns (rt) is based on the formula, rt=ln(It)-ln(It-1) 

where It is the value of the stock market index for period t.  

Figure 3.2 shows the daily returns and Table 3.2 provides basic descriptive statistics of 

them.  
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Table 3.2. Descriptive Statistics 

Indexes Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Jarque Bera 

Nikkei -0.022 0.004 13.234 -12.111 1.568 -0.393** 
(0.044) 

9.686** 
(0.087) 

5996 
(0.001) 

Hang Seng 0.008 0.044 13.407 -13.582 1.632 -0.065 
(0.043) 

10.386** 
(0.087) 

7253 
(0.001) 

Tel Aviv 0.024 0.055 9.782 -8.425 1.338 -0.311** 
(0.044) 

6.945** 
(0.087) 

2107 
(0.001) 

Merval 
0.047 0.090 16.117 -12.952 2.140 -0.093* 

(0.043) 
7.944** 
(0.087) 

3243 
(0.001) 

S&P 500 -0.001 0.050 10.957 -9.47 1.354 -0.158** 
(0.043) 

10.293** 
(0.086) 

7212 
(0.001) 

Dow Jones 0.010 0.049 10.089 -8.7 1.265 -0.185** 
(0.043) 

9.372** 
(0.086) 

5515 
(0.001) 

FTSE100 -0.004 0.025 9.384 -9.266 1.301 -0.135** 
(0.043) 

8.692** 
(0.086) 

4416 
(0.001) 

CAC40 -0.015 0.019 10.595 -9.472 1.572 0.038 
(0.043) 

7.494** 
(0.085) 

2782 
(0.001) 

IBEX35 -0.012 0.060 13.484 -9.5858 1.576 0.1227** 
(0.043) 

7.8219** 
(0.086) 

3177 
(0.001) 

Note: This table presents the descriptive statistics of the daily percentage returns of Nikkei, Hang Seng, Tel Aviv 100, 
Merval, S&P 500, Dow Jones, FTSE 100, CAC-40 and IBEX-35. The sample period is from January 2nd, 2000 to 
November 30th, 2012. The index return is calculated as Rt=100(ln(It)-ln(It-1)) where It is the index level for period t. 

Standard errors of the skewness and excess  kurtosis are calculated as n/6  and n24 respectively. The JB 

statistic is distributed as the Chi-square with two degrees of freedom. *, ** denote significance at the 5% and 1% 
level respectively. 

Figure 3.2. Stock index returns 
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Note: This figure illustrates the daily evolution of returns of nine indexes (Nikkei, Merval, S&P 500, Dow Jones Industrial Average,  
CAC40, IBEX35, Hang Seng, Telaviv and FTSE-100.) from January 3rd 2000 to November 30th, 2012. Source: Bloomberg 
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For each index, the unconditional mean of daily returns is very close to zero. The 

unconditional standard deviation is especially high for Merval (2.14). For the rest of stock 

index returns the standard deviation moves between 1.27 (Dow Jones) and 1.63 (Hang Seng). 

Going back to Figure 3.2, we can see that the range fluctuation of the returns is not constant, 

which means that the variance of these returns changes over time.  

In order to gain some intuition, we adopt the volatility measure proposed by Franses and 

van Dijk (2000), wherein the volatility of returns is defined as: 

( )
2

2
1t t t tV r E r

æ ö
ç ÷
è ø

W
-

= -   (3.3) 

where 1t
W

-
 is the information set at time t-1. Figure 3.3 presents tV  as �volatilities�.  

Figure 3.3. Volatility of the returns 

NIKKEI

0.000

0.005

0.010

0.015

0.020

2000 2002 2004 2006 2008 2010 2012

 

MERVAL

0

0.01

0.02

0.03

2000 2002 2004 2006 2008 2010 2012

 

S&P 500

0.000

0.004

0.008

0.012

2000 2002 2004 2006 2008 2010 2012

 

DOW JONES

0.000

0.004

0.008

0.012

2000 2002 2004 2006 2008 2010 2012

 

CAC-40

0.000

0.004

0.008

0.012

2000 2002 2004 2006 2008 2010 2012

 

IBEX-35

0.000

0.005

0.010

0.015

0.020

2000 2002 2004 2006 2008 2010 2012

 

HANG SENG

0.000

0.005

0.010

0.015

0.020

2000 2002 2004 2006 2008 2010 2012

 

TEL AVIV

0

0.002

0.004

0.006

0.008

0.01

2000 2002 2004 2006 2008 2010 2012

 

FTSIE-100

0.000

0.003

0.006

0.009

2000 2002 2004 2006 2008 2010 2012

 

Note: This figure illustrates the conditional volatility of daily returns. The volatility was estimated using the approach proposed by Franses  
           and van Dijk (1999). Sample runs from January 3rd 2000 to November 30th, 2012. Source: Bloomberg. 
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The volatility of the series was high during the early 2000s, especially in the Merval 

index. From 2001 to 2002 the conditional volatility of Merval was almost 1 point higher than 

the whole period, even greater than those showed from 2008 to 2009.  This corresponds to the 

Argentine economic crisis (1999�2002) which was the major downturn in Argentine´s 

economy14. The period from 2003 to early 2007 was very quiet. In August 2007 the financial 

market tensions started and they were followed by a global financial and economic crisis 

leading to a significant rise in the volatility of returns. This increase was especially important 

after August 2008 coinciding with the fall of Lehman Brothers. From 2008 to 2009, the 

volatility of the S&P500, Nikkei and IBEX35, measured by the standard deviation of returns 

was 2.42, 2.20, and 2.10 respectively. In the case of S&P500, the standard deviation was 

almost 1 point higher than the standard deviation of the whole period 2000-2012 (1.57). A 

similar increase is observed in all indexes. In the last two years of the sample, we observe a 

more stable period than during the financial crisis. 

The skewness statistic is negative and significant for all the indexes considered except 

in the case of the CAC40 and the IBEX35. This means that the distribution of those returns is 

skewed to the left. When considering the CAC40 and the IBEX35 the skewness statistic is 

positive, implying that these distributions are skewed to the right but only in the case of 

IBEX35 this statistic is significant at 1% level.  

For all the indexes considered, the excess kurtosis statistic is very large and significant 

at 1% level implying that the distributions of those returns have much thicker tails than the 

normal distribution. Similarly, the Jarque-Bera statistic is significant rejecting the assumption 

of normality. These results are in line with those obtained by Bollerslev (1987), Bali and 

Theodossiou (2007), and Bali et al (2008), among others.  

 

                                                             
14It began in 1999 with a decrease of the real Gross Domestic Product. The crisis caused the fall of the 
government, default on the country's foreign debt, widespread unemployment, riots, the rise of alternative 
currencies and the end of the peso's fixed exchange rate to the US dollar. 
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All of them find evidence that the empirical distribution of the financial return is 

asymmetric and exhibits a significantly excess of kurtosis (fat tails and peakness).  

In order to capture the non-normal characteristics observed in our data set, we fit several 

skewed distributions: SGT, SGED, SSD and IHS. In this comparison we also include the 

normal and symmetric ST distributions. In Table 3.3 we present the estimated parameters of 

these distributions.  
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Table 3.3. Maximum likelihood estimates of alternative distribution functions 

Nikkei � SE   SE ! SE " SE # SE 
SGT 0.000 (0.000) 0.016** (0.001) -0.047* (0.021) 4.766** (0.282) 1.896** (0.078) 

SGED 0.000 (0.000) 0.015** (0.000) -0.041** (0.004)   1.133** (0.033) 
SSD 0.000 (0.000) 0.016** (0.000) -0.048* (0.021) 4.442** (0.236)   
IHS 0.000 (0.000) 0.015** (0.000) -0.086 (0.032)   1.472** (0.054) 
ST 0.000 (0.000) 0.016** (0.001)   4.404** (0.232)   

Normal  0.000 (0.000) 0.016** (0.000)       
Hang Seng � SE   SE ! SE " SE # SE 

SGT 0.000 (0.000) 0.016** (0.001) -0.034** (0.014) 6.328** (0.547) 1.338** (0.044) 
SGED 0.000 (0.000) 0.016** (0.000) -0.031 (--)   0.977** (0.028) 
SSD 0.000 (0.000) 0.017** (0.000) -0.041* (0.018) 3.314** (0.100)   
IHS 0.000 (0.000) 0.016** (0.000) -0.067* (0.027)   1.21 (0.033) 
ST 0.000 (0.000) 0.017** (0.001)   3.297** (0.100)   

Normal  0.000 (0.000) 0.016** (0.000)       
Tel Aviv � SE   SE ! SE " SE # SE 

SGT 0.000 (0.000) 0.013** (0.001) -0.060** (0.021) 5.247** (0.365) 1.785** (0.068) 
SGED 0.000 (0.000) 0.013** (0.000) -0.052** (0.016)   1.175** (0.035) 
SSD 0.000 (0.000) 0.014** (0.000) -0.062** (0.021) 4.381** (0.232)   
IHS 0.000 (0.000) 0.013** (0.000) -0.102** (0.032)   1.463** (0.054) 
ST 0.001** (0.000) 0.014** (0.001)   4.331** (0.228)   

Normal 0.000 (0.000) 0.013** (0.000)       

Merval � SE   SE ! SE " SE # SE 
SGT 0.000 (0.000) 0.022** (0.001) -0.043* (0.018) 4.456** (0.241) 1.531** (0.051) 

SGED 0.000 (0.000) 0.021** (0.000) -0.033** (0.002)   0.998** (0.028) 
SSD 0.000 (0.000) 0.023** (0.000) -0.047** (0.018) 3.083** (0.075)   
IHS 0.000 (0.000) 0.022** (0.000) -0.068* (0.027)   1.171** (0.029) 
ST 0.001* (0.000) 0.023** (0.001)   3.088** (0.078)   

Normal 0.000 (0.000) 0.021** (0.000)       

S&P 500 � SE   SE ! SE " SE # SE 
SGT 0.000 (0.000) 0.014** (0.001) -0.064** (0.013) 5.735** (0.430) 1.239** (0.038) 

SGED 0.000 (0.000) 0.013** (0.000) -0.062 (--)   0.902** (0.008) 
SSD 0.000 (0.000) 0.016** (0.000) -0.069** (0.016) 2.760** (0.046)   
IHS 0.000 (0.000) 0.014** (0.000) -0.087** (0.024)   1.079** (0.023) 
ST 0.000 (0.000) 0.015** (0.001)   2.770** (0.049)   

Normal 0.000 (0.000) 0.014** (0.000)       
Dow Jones � SE   SE ! SE " SE # SE 

SGT 0.000 (0.000) 0.013** (0.001) -0.058** (0.017) 4.496** (0.241) 1.524** (0.051) 
SGED 0.000 (0.000) 0.012** (0.000) -0.057** (0.002)   0.983** (0.027) 

SSD 0.000 (0.000) 0.014** (0.000) -0.059** (0.018) 3.122** (0.078)   
IHS 0.000 (0.000) 0.013** (0.000) -0.088** (0.026)   1.178** (0.029) 
ST 0.000 (0.000) 0.014** (0.001)   3.122** (0.080)   

Normal 0.000 (0.000) 0.013** (0.000)       
FTSE100 � SE   SE ! SE " SE # SE 

SGT 0.000 (0.000) 0.013** (0.001) -0.054** (0.018) 4.273** (0.212) 1.623** (0.055) 
SGED 0.000 (0.000) 0.013** (0.000) -0.049** (0.003)   1.015** (0.028) 
SSD 0.000 (0.000) 0.014** (0.000) -0.056** (0.018) 3.237** (0.089)   
IHS 0.000 (0.000) 0.013** (0.000) -0.083** (0.027)   1.208** (0.031) 
ST 0.000 (0.000) 0.014** (0.001)   3.231** (0.091)   

Normal 0.000 (0.000) 0.013** (0.000)       

CAC40 � SE   SE ! SE " SE # SE 
SGT 0.000 (0.000) 0.016** (0.001) -0.062** (0.018) 4.545** (0.249) 1.673** (0.059) 

SGED 0.000 (0.000) 0.015** (0.000) -0.044* (0.021)   1.065** (0.030) 
SSD 0.000 (0.000) 0.016** (0.000) -0.066** (0.019) 3.540** (0.120)   
IHS 0.000 (0.000) 0.016** (0.000) -0.094** (0.028)   1.277** (0.036) 
ST 0.000 (0.000) 0.016** (0.001)   3.533** (0.122)   

Normal 0.000 (0.000) 0.016** (0.000)       

IBEX35 � SE   SE ! SE " SE # SE 
SGT 0.000 (0.000) 0.016** (0.001) -0.073** (0.017) 7.127** (0.717) 1.380** (0.045) 

SGED 0.000 (0.000) 0.016** (0.000) -0.068 (--)   1.050** (0.030) 
SSD 0.000 (0.000) 0.017** (0.000) -0.069** (0.018) 3.548** (0.125)   
IHS 0.000 (0.000) 0.016** (0.000) -0.092** (0.028)   1.270** (0.037) 
ST 0.000 (0.000) 0.016** (0.001)   3.584** (0.132)   

Normal 0.000 (0.000) 0.016** (0.000)       

Note: Parameter estimates of the Normal, SGT, SGED, SSD, IHS and  ST. S.E. denotes standard errors (in parentheses). Nine stock 
market returns in the period 1/1/2000-11/30/2012. �,  , !%and%#%are%the%estimated%mean,%standard%deviation, skewness parameter, and 
tail-tickness parameter; �  represents the peakness parameter. An * (**) denotes significance at the 5% (1%) level. 
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This table provides the estimates for the mean (�) and the standard deviation ( ) of log-

returns and its standard errors in brackets. As expected, these estimates are quite similar across 

distributions and do not differ much from the simple arithmetic means and standard deviations 

of log-returns (see Table 3.2). The unconditional mean is close to zero for all the indexes and 

the unconditional standard deviation moves around 1.5 (in percentage) except Merval (2.14). 

As expected from the previous analysis, the Merval index is the most volatile index.  

The skewness parameter !, for all indexes, is negative and significant at the 1% level, 

which means that the distributions of these returns are skewed to the left. This result is in 

opposition to the preliminary evidence that suggested a symmetric distribution for CAC40 and 

a skewed distribution to the right for IBEX35.  

In the case of SGT, the parameter " controls mainly the peakness of the distribution 

around the mode, while the parameter # controls mainly the tails of the distribution (adjusting 

the tails to the extreme values). The parameter # has the degrees of freedom interpretation as in 

ST. For all the series and all distributions considered, the kurtosis parameters (# and ") are 

highly significant. For the SGT, the value of " is around 1.5, except for Nikkei and Tel Aviv 

which are 1.89 and 1.78 respectively. The value of # is around 4.5 for Nikkei, Merval, Dow 

Jones, Footsie-100 and CAC40. For the rest of the indexes it is a little bit higher. These 

estimates are quite different from those of the normal distribution (" = 2 and # = $),%which%

indicates that this set of returns is characterized by excess kurtosis.  
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3.4. Comparison of the distributions in statistical terms 

In this section we want to answer the following question: Which distribution is the best 

one for fitting asset returns? The above results provide strong support to the hypothesis that 

stock returns are not normal. As the normal distribution is nested within 

 the SGT, SGED and SSD distributions we can use the log-likelihood ratio for testing the null 

hypothesis of normality against that of SGT, SGED or SSD. For all the indexes considered, this 

statistic is quite large and significant at the 1% level, providing evidence against the normality 

hypothesis (see Table 3.4).  
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Table 3.4. Goodness-of-fit tests 

 
   Log-L LR_Normal LR_SGT Chi2 KS 

Nikkei SGT 8920.4 463.2** -- 5.239 (0.022)** 0.031 (0.004) 
 SGED 8897.4 417.2** 46.0** 7.715 (0.006) 0.027 (0.021)** 
 SSD 8920.3 463.0** 0.2 13.448 (0.001) 0.034 (0.001) 
 IHS 8918.6 -- -- 3.453 (0.063)* 0.029 (0.011)** 
 ST 8918.2 -- 4.4 20.958 (0.000) 0.029 (0.008) 
 Normal 8688.8  -- 124.218 (0.000) 0.058 (0.000) 
Merval SGT 8016.9 612.6** -- 8.164 (0.017)** 0.019 (0.197)* 
 SGED 8003 584.8** 27.8** 12.318 (0.002) 0.027 (0.021)** 
 SSD 8012.5 603.8** 8.8* 15.965 (0.003) 0.020 (0.147)* 
 IHS 8017 -- -- 6.005 (0.111)* 0.018 (0.260)* 
 ST 8010.4 -- 13.0** 18.687 (0.000) 0.024 (0.053)* 
 Normal 7710.6 -- -- 253.700 (0.000) 0.072 (0.000) 
S&P 500 SGT 9777.7 824.2** -- 14.092 (0.001) 0.028 (0.013)* 
 SGED 9769.2 807.2** 17.0** 8.761 (0.013)** 0.033 (0.002) 
 SSD 9762.2 793.2** 31.0** 35.861 (0.000) 0.038 (0.000) 
 IHS 9769.2 -- -- 22.316 (0.000) 0.035 (0.001) 
 ST 9757.1 -- 41.2** 33.963 (0.000) 0.037 (0.000) 
 Normal 9365.6 -- -- 266.854 (0.000) 0.080 (0.000) 
Dow Jones SGT 9929.7 682.6** -- 6.333 (0.042)** 0.028 (0.011)** 
 SGED 9914.2 651.6** 31.0** 24.553 (0.000) 0.032 (0.002) 
 SSD 9925.1 673.4** 9.2** 21.875 (0.000) 0.034 (0.001) 
 IHS 9928.4 -- -- 8.647 (0.034)** 0.029 (0.007) 
 ST 9921.6 -- 16..2** 30.360 (0.000) 0.030 (0.007) 
 Normal 9588.4 -- -- 256.272 (0.000) 0.071 (0.000) 
CAC40 SGT 9297.4 523.6** -- 3.209 (0.201)* 0.023 (0.067)* 
 SGED 9281 490.8** 32.8** 17.858 (0.000) 0.033 (0.002) 
 SSD 9295.3 519.4** 4.2* 7.248 (0.027)** 0.027 (0.018)** 
 IHS 9297.4 -- -- 2.761 (0.430)* 0.022 (0.079)* 
 ST 9291.1 -- 12.6** 38.232 (0.000) 0.025 (0.030)** 
 Normal 9035.6 -- -- 191.314 (0.000) 0.064 (0.000) 
IBEX35 SGT 9176.8 484.2** -- 3.767 (0.052)* 0.027 (0.018)** 
 SGED 9169.8 470.2** 14.0** 11.509 (0.001) 0.028 (0.011)** 
 SSD 9167.1 464.8** 19.4** 13.293 (0.001) 0.028 (0.011)** 
 IHS 9170.9 -- -- 7.174 (0.067)* 0.029 (0.010)** 
 ST 9162.4 -- 28.8** 25.413 (0.000) 0.034 (0.001) 
 Normal 8934.7 -- -- 118.562 (0.000) 0.065 (0.000) 
Hang Seng SGT 8927.5 649.0** -- 1.543 (0.214)* 0.027 (0.020)** 
 SGED 8918.4 630.8** 18.2** 5.519 (0.063)* 0.029 (0.010)** 
 SSD 8916.3 626.6** 22.4** 9.290 (0.002) 0.037 (0.000) 
 IHS 8920.4 -- -- 1.873 (0.392)* 0.034 (0.001) 
 ST 8914.6 -- 25.8** 15.599 (0.000) 0.035 (0.001) 
 Normal 8603 -- -- 23.434 (0.000) 0.072 (0.000) 
Tel Aviv SGT 9358.2 316.8** -- 5.721 (0.057)* 0.027 (0.023)** 
 SGED 9343.6 332.6** 29.2** 4.288 (0.039)** 0.034 (0.002) 
 SSD 9357.3 360.0** 1.8 11.097 (0.004) 0.029 (0.008) 
 IHS 9358.6 -- -- 5.878 (0.053)* 0.026 (0.024)** 
 ST 9354 -- 8.4* 33.459 (0.000) 0.025 (0.041)** 
 Normal 9177.3 -- -- 106.813 (0.000) 0.058 (0.000) 
FTSE100 SGT 9857 628.2** -- 3.311 (0.191)* 0.025 (0.037)** 
 SGED 9839.1 592.4** 35.8** 10.540 (0.005) 0.034 (0.001) 
 SSD 9854.2 622.6** 5.6* 16.291 (0.000) 0.027 (0.018)** 
 IHS 9857.3 -- -- 4.518 (0.211)* 0.027 (0.015)** 
 ST 9851.2 -- 11.6** 25.173 (0.000) 0.029 (0.007) 
 Normal 9542.9 -- -- 203.848 (0.000) 0.072 (0.000) 
Note: Log-L is the maximum likelihood value. LRNormal is the LR statistic from testing the null hypothesis that the daily returns 
are distributed as Normal against they are distributed as SGT, SGED or SSD. LRSGT is the LR statistic from testing the null 
hypothesis of alternative distribution against the SGT. Chi2 and KS denote Chi-square and Kolmogorov Smirnov tests. Figures 
in brackets denote p-value. An *(* *) denotes significance at the 5% (1%) level. 
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To evaluate which is the most adequate, we perform several kinds of tests. First, as the 

SGT nets all the distributions considered in this paper (except IHS), we use the likelihood ratio 

test to evaluate which distribution is best for fitting the data15. Overall, for all the indexes 

considered, the likelihood statistics indicate rejection of the SGED, the SSD, and the ST in 

favour of the SGT (see Table 3.4). As the IHS is not nested in the SGT distribution, we cannot 

conclude that the SGT distribution is the best. So, to ensure the robustness of these results, 

several alternative tests have been used: Chi2 and KS tests. Unlike the likelihood ratio test used 

to compare two distributions, the Chi2 and the KS tests are used to examine if the asset returns� 

empirical distribution follows a particular theoretical distribution. The theoretical distributions 

considered are: normal, ST, SGT, SSD, SGED and IHS. The Chi2 statistic (see Table 3.4) 

suggests that the empirical distributions of the returns can be adequately characterized using 

two distributions: SGT and IHS. Both distributions seem to fit the data well in 8 of the 9 

indexes considered. For the Hang Seng, Tel Aviv and S&P 500 indexes, the SGED distribution 

cannot be refused either. On the other hand, the ST and the normal distributions do not fit any 

index. The KS test provides similar results (see Table 3.4).  

According to this test, the empirical distribution of all the indexes (except Nikkei) 

follows a SGT distribution. The IHS fits the data well in only five of the indexes (Merval, 

CAC40, IBEX35, Tel Aviv and Nikkei). The SSD distribution fits the data well in four indexes 

(Merval, CAC40, IBEX35 and Footsie) and the SGED distribution fits the data well in four 

indexes (Nikkei, Merval, IBEX35 and Hang Seng). The ST distribution only fits well in three 

of the nine indexes while the normal distribution does not do well in any index. 

Taking into account the results described in this section, we can conclude that the 

symmetric distributions (normal and ST) do not fit financial returns well. This is in line with 

the previous results shown in the above sections. Among the set of skewed distributions 

                                                             
15

 Specifically, it gives for � = � the SGED, for � = 2 the SSD, for �=0 and � = 2 the ST and for �=0, n = � and k = 2 the 

normal distribution (see Hansen, McDonald and Theodossiou (2001) for a comprehensive survey on the skewed fat-tailed 
distributions). 
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considered in this paper, the SGT distribution seems to be the best in fitting the data, followed 

closely by the IHS distribution. 

3.5. Evaluating the performance in terms of VaR  

In this section we compare the normal, the ST and the skewed distributions in terms of 

VaR. The comparison is carried out evaluating (i) the accuracy of the VaR estimates and (ii) 

the losses that VaR produces. For each distribution, we use parametric approaches to forecast 

the VaR out-of-the-sample one-step-ahead at 1% and 0.25% confidence level.  

The data period is divided into a learning sample from January 1, 2000 to December 31, 

2007; and a forecast sample from January 1, 2008 to the end of December 2009. We choose 

this forecast period because it is characterized by a high volatility all over the world so that it is 

known in financial literature as the Financial Global Crisis period. In Figure 3.2, we highlight 

in black the period analyzed.  

3.5.1 Back Testing 

As Gerlach et al. (2011), Table 3.5 shows the ratio VRate/� for �=0.01 and 0.0025 

across all 6 models and 9 indexes.  

Table 3.5. Ratio of VRate/� at � = 1%, 0.25% for each VaR model across the 9 stock indexes 
Model Nikkei Merval S&P500 Dow Jones CAC40 IBEX35 Hang Seng Tel Aviv FTSE 100 

� = 1% 

Normal 2.9 2.2 3.6 2.8 2.3 2.2 1.6 2.6 3.6 

ST 1.6 0.6 1.2 1.0 1.2 1.2 0.6 0.6 2.2 

SGT 1.8 1.4 1.8 1.4 1.2 1.6 1.0 1.0 1.8 

IHS 1.8 1.4 1.8 1.2 1.2 1.6 1.0 1.0 1.6 

SSD 1.8 1.8 2.2 1.4 1.2 1.6 1.2 1.6 2.0 

SGED 1.8 1.4 1.8 1.4 1.2 1.6 1.0 1.2 2.0 

� = 0.25% 

Normal 3.3 3.2 4.8 2.4 3.9 4.7 2.4 2.4 4.7 

ST 0.8 0.0 1.6 0.8 2.4 0.8 0.0 0.0 4.0 

SGT 0.8 0.8 2.4 1.6 2.4 0.8 1.6 0.8 4.0 

IHS 0.8 0.8 2.4 1.6 2.4 0.8 0.0 0.8 3.2 

SSD 0.8 2.4 2.4 1.6 2.4 0.8 1.6 1.6 4.0 

SGED 0.8 1.6 2.4 1.6 2.4 0.8 1.6 0.8 4.0 

Note: Shaded cells indicate closest to 1 in that index. Bold figures indicate the least favored model. 
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The best model´s ratio in each index is shaded, while bolding indicate that the LRUC test 

rejects the model at the 5% level. The results are similar for both levels, �=1% and 0.25%. 

Most of the normal distribution ratios are far above 1 across the 9 indexes. This distribution 

consistently under-estimate risk. The ST, SGT and IHS distribution provide the closest ratios to 

1. We must highlight that SGT and IHS are the only distributions that provide ratios equal to 1 

in some indexes. At 1% level the SSD distribution performance is the worst one although 

slightly improves at 0.25%.  

Following Gerlach et al. (2011), Table 3.6 displays summary statistics for the VRate/� 

ratio for each model across the 9 indexes, using the results of Table 3.5.  

Table 3.6. Summary statistics for the ratio of VRate/� at � = 1%, 0.25% for each VaR model 

 � = 1% � = 0.25% 

  Mean Median Std (1) 1st In top 3 Mean Median Std (1) 1st In top 3 

Normal 2.64 2.6 3.43 0 0 3.54 3.3 8.32 0 0 

ST 1.07 1.1 0.29 5 5 1.15 0.8 1.76 5 6 

SGT 1.44 1.4 0.33 4 9 1.68 1.6 1.67 6 9 

IHS 1.40 1.4 0.28 5 9 1.41 0.8 1.24 6 8 

SSD 1.64 1.6 0.58 1 5 1.95 1.6 1.97 4 7 

SGED 1.49 1.4 0.37 4 9 1.77 1.6 1.71 5 9 

Note: Shaded cells indicate the favored model and bold figures indicate the least favored model, in each column. Std (1) is the standard 
deviation in ratios from an expected value of 1. 1st indicates the number of markets where that model�s VRate/� ratio ranked closest to 
1. In top 3 counts the number of markets where the model�s VRate/� ratio ranked in the top 3 models. 

 

The Std (1) column shows the standard deviation from expected ratio of 1 (not the mean 

sample), while 1 st  column  counts the indexes where the model had VRate/�  

ratio closest to 1 and In top3 column counts the indexes where the model ranked in top 3 

models by VRate/� ratio. The results confirm the above conclusion. The normal distribution 

shows a very poor performance. For both level, 1% and 0.25%, the mean VRate/� ratio is far 

above 1 and this distribution never rank in the top three models. The ST, SGT and IHS 

distribution are most favored across all criteria. For both levels, 1% and 0.25%, the ST 

distribution provides the mean VRate/� ratio closest to 1. However, the IHS which provides a 

mean ratio close to 1 has the smallest standard deviation from the expected ratio of 1, followed 

by the SGT and ST distribution. It  seems  that  the  performance  of  the  ST  distribution is 

more  volatile.   The data presented in  
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columns four and five corroborate this idea. The ST distribution ranks first in 5 indexes, similar 

to the IHS distributions which rank first in 5 and 6 indexes, depending on the level considered 

(1% and 0.25%). For both levels, this last distribution in conjuntion with the SGT distribution 

ranks in the top 3 distributions for all 9 indexes.  

To help distinguishing between the better models at each quantile level�s Table 3.7 

shows summary statistics for each distribution´s rank, in terms of how close its Vrate/� ratio is 

to 1 across the indexes. For ratios that are equidistant from 1, conservative ratios (less than 1) 

are preferred.  

Table 3.7. Summary statistics for model ranks, in terms of VRate/�  

at � = 1%, 0.25% across the 9 stock indexes 

 � = 1% � = 0.25% 

  Mean Median Std (1) Range Mean Median Std (1) Range 

Normal 6.00 6.00 5.00 0 6.00 6.00 5.00 0 

ST 2.44 1.00 2.24 4 3.11 3.00 2.48 3.5 

SGT 2.83 3.00 1.99 2.5 2.78 3.00 1.91 2 

IHS 2.50 3.00 1.72 2.5 2.78 3.00 2.05 3.5 

SSD 4.06 4.00 3.14 2 3.39 3.50 2.51 3 

SGED 3.17 3.00 2.23 2 2.94 3.00 2.02 1.5 

Note: Shaded cells indicate the favored model and bold figures indicate the least favored model, in each column. Std (1) is the 
standard deviation in ranks from the value of 1. 

 

Table 3.7 displays the average, median, standard deviation (from 1) and range of the 

forecast ranks for each model over the 9 indexes. For both levels, 1% and 0.25%, normal 

distribution has by far the highest mean rank, equal highest median rank, and by far the highest 

deviation in ranks, away from 1 across de distributions. SSD and SGED distributions display 

the following worst performance. At 1% level, the ST distribution has the lowest mean rank, 

follow close by IHS and SGT distributions. However, the IHS and SGT distribution have the 

lowest standard deviation in ranks away from 1 and lower range than the ST distribution. At 

0.25% level, the SGT and IHS distributions have the lowest mean rank and equal lowest 

standard deviation in ranks away from 1. For this level the SGT distribution has the lowest 

range. In fact, the SGT distribution joins the IHS ranks in top three in each index, and thus has 

the smaller range in ranks than the ST distributions.  
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Finally, Table 3.8 counts the number of rejections for each distribution, over the 9 

indexes at 5% level for each of the five tests considered (LRUC, BTC, LRind, LRCC and DQ).   

Table 3.8. Counts of model rejections for 5 tests, across the 9 stock indexes 

 � = 1% � = 0.25% 

  UC P BTC CC P UC IND DQ P UC P BTC CC P UC IND DQ P 

Normal 5 8 2 0 0 1 6 0 0 1 

ST 0 1 0 0 1 0 1 0 0 0 

SGT 0 0 0 0 1 0 1 0 0 0 

IHS 0 0 0 0 1 0 1 0 0 0 

SSD 0 2 0 0 1 0 1 0 0 0 

SGED 0 1 0 0 1 0 1 0 0 0 

Note: Shaded cells indicate the favored model and bold figures indicate the least favored model, in each column. 

 

The accuracy tests corroborate the conclusion from Tables 3.5 and 3.6. At both levels, 

the normal distribution is rejected by many tests. For the ST distribution and all the skewness 

distributions the number of rejections is minimum, just one or two.  

Overall, we can conclude that i) normal distribution performs very poor in estimating 

VaR (this distribution underestimate risk in almost all indexes); ii) after the normal distribution 

the SSD and SGED are the worst; iii) the ST distribution performs very well in estimating VaR 

but shows a volatile behavior (this distribution works well in some indexes and poorly in 

others) and iv) however, the IHS and SGT distributions outpace the ST distribution in many 

indexes and perform well in the cases in which ST is the best one.     

3.5.2 Loss Functions 

In this section we evaluate the VaR estimate in terms of the regulator loss function 

(Table 3.9) and the firm�s loss function (Table 3.10). The results in Table 3.9 have been 

multiplied by 1000 given the small value obtained. The shaded cell represents the minimum 

value for this function in each case (index and confidence level).  
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From the regulator loss function (see Table 3.9), we find that the parametric approach 

under a normal distribution provide the highest losses while the ST distribution provides the 

lowest losses followed by the IHS and the SGT distributions. Among the skewed distributions, 

the SSD gives the worst outcome in all cases. According to this result, we can conclude that 

from the point of view of the regulator the best distribution is the ST, as this distribution is the 

most conservative.  
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Table 3.9. Magnitude of the regulatory loss function 

 Level NORMAL ST SGT IHS SSD SGED 

1.00% 0.00338 0.00134 0.00186 0.00176 0.00212 0.00186 
Nikkei 

0.25% 0.00065 0.00004 0.00015 0.00008 0.00020 0.00015 

1.00% 0.00667 0.00053 0.00256 0.00244 0.00340 0.00251 
Merval 

0.25% 0.00191 0.00000 0.00013 0.00009 0.00039 0.00022 

1.00% 0.00617 0.00337 0.00352 0.00362 0.00393 0.00349 
S&P 500 

0.25% 0.00293 0.00121 0.00133 0.00130 0.00167 0.00137 

1.00% 0.00220 0.00056 0.00073 0.00065 0.00080 0.00067 
Dow Jones 

0.25% 0.00044 0.00003 0.00004 0.00003 0.00008 0.00006 

1.00% 0.00568 0.00462 0.00445 0.00427 0.00445 0.00443 
CAC40 

0.25% 0.00282 0.00185 0.00158 0.00148 0.00175 0.00178 

1.00% 0.00554 0.00308 0.00355 0.00336 0.00366 0.00350 
IBEX35 

0.25% 0.00274 0.00152 0.00161 0.00158 0.00186 0.00182 

1.00% 0.00333 0.00048 0.00124 0.00127 0.00165 0.00125 
Hang Seng 

0.25% 0.00062 0.00000 0.00001 0.00000 0.00006 0.00001 

1.00% 0.00150 0.00024 0.00060 0.00054 0.00069 0.00062 
Tel Aviv 

0.25% 0.00030 0.00000 0.00000 0.00000 0.00004 0.00003 

1.00% 0.00376 0.00254 0.00227 0.00205 0.00228 0.00228 
FTSE100 

0.25% 0.00126 0.00056 0.00036 0.00029 0.00047 0.00048 

Note: This table reports the average of the loss function of each VaR model in both confidence levels. The average was 
multiplied by 1,000. Shaded cell the minimum value for the average of the loss function for each index, following by boldface 
figures. 

 

Table 3.10. Magnitude of the firm�s loss function 

 Level NORMAL ST SGT IHS SSD SGED 

1.00% 0.00054 0.00062 0.00059 0.00059 0.00058 0.00059 
Nikkei 

0.25% 0.00066 0.00080 0.00076 0.00077 0.00074 0.00075 

1.00% 0.00056 0.00079 0.00065 0.00066 0.00062 0.00066 
Merval 

0.25% 0.00068 0.00112 0.00090 0.00092 0.00081 0.00085 

1.00% 0.00044 0.00052 0.00051 0.00050 0.00049 0.00051 
S&P 500 

0.25% 0.00054 0.00066 0.00065 0.00065 0.00062 0.00064 

1.00% 0.00040 0.00048 0.00046 0.00047 0.00045 0.00046 
Dow Jones 

0.25% 0.00050 0.00062 0.00060 0.00061 0.00058 0.00059 

1.00% 0.00111 0.00121 0.00122 0.00123 0.00122 0.00122 
CAC40 

0.25% 0.00136 0.00150 0.00153 0.00154 0.00150 0.00150 

1.00% 0.00109 0.00132 0.00125 0.00127 0.00124 0.00125 
IBEX35 

0.25% 0.00132 0.00173 0.00167 0.00168 0.00158 0.00159 

1.00% 0.00062 0.00080 0.00072 0.00071 0.00069 0.00071 
Hang Seng 

0.25% 0.00077 0.00107 0.00092 0.00096 0.00089 0.00092 

1.00% 0.00040 0.00052 0.00046 0.00047 0.00045 0.00046 
Tel Aviv 

0.25% 0.00050 0.00069 0.00062 0.00062 0.00058 0.00059 

1.00% 0.00099 0.00108 0.00111 0.00113 0.00110 0.00110 
FTSE100 

0.25% 0.00122 0.00135 0.00140 0.00143 0.00137 0.00136 

Note: This table reports the average of the loss function of each VaR model in both confidence levels. Shaded cell denote the 
minimum value for the average of the loss function for each index, following by boldface figures. 

 

 



Evaluating the performance of the skewed distributions to forecast VaR in the Global Financial Crisis 

 97 

The problem associated with the regulator loss function is that this function does not 

take into account the firms� opportunity cost. So that one model that overestimates the risk, as 

the ST distribution does in three of the cases, may be considered the most appropriate16. Taking 

this into account we calculate the losses from a firm´s point of view.17   

In terms of the firm�s loss function (see Table 3.10), the normal distribution provides 

the lowest losses while the ST distribution shows the highest losses. This result is coherent 

since it is well known that the normal distribution underestimates risk providing the lowest 

capital opportunity cost. Since the ST distribution tends to overestimate risk, the capital 

opportunity cost with this distribution is the highest. The magnitudes of losses obtained by all 

the skewed distribution are very similar. In terms of this loss function, the best skewed 

distribution is the SSD. This distribution obtains the lowest losses in seven of the nine cases. 

The SGT distribution, although it is not the best, works out well giving lower losses than the 

ST does.  

Overall, following this selection process in two stages, where first we ensure that the 

distributions provide accurate VaR estimate and then focusing in the firm�s loss function, we 

can conclude that the skewed and fat tail distributions outperformed the normal and the ST 

distribution. From a point of view of the regulator, the superiority of the skewed distributions 

related to the ST is not so clear. 

 

                                                             
16 For Merval, Hang Seng and Tel Aviv, and for both levels (1% and 0.25%), the ST distribution by far 
overestimates risk compare to IHS and SGT distribution (see Table 3.9).  
 
17 In order to calculate the firm�s loss function we need to know the cost of capital. For this purpose, we have used 
the daily data of the interest rate of the Eurosystem monetary policy operations for the European indexes. For the 
rest of the indexes, we took the interest rate of the open market operations used by the Federal Reserve in the 
implementation of its monetary policy. 
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3.6. Conclusion 

This paper evaluates the performance of several skewed and symmetric distributions in 

modeling the tail behavior of daily returns and in forecasting VaR. The skewed distributions 

considered are: (i) the skewed Student-t distribution of Hansen (1994); (ii) the skewed error 

generalised distribution of Theodossiou (2001); (iii) the skewed generalised-t distribution of 

Theodossiou (1998) and (iv) the inverse hyperbolic sign of Johnson (1949). The symmetric 

distributions are the normal and the Student-t ones.  

For this study we have used daily returns on nine composite indexes: the Japanese 

Nikkei, Hong Kong Hang Seng, Israeli Tel Aviv (100), Argentine Merval, US S&P 500 and 

Dow Jones, UK�s FTSE100, the French CAC40 and the Spanish IBEX-35. The sample used for 

the statistical analysis runs from January 2000 to the end of November 2012. The analysis 

period for forecasting VaR runs from 2008 to 2009, which is known as the Global Financial 

Crisis period.  

From the results presented in the paper, we can conclude that the skewness and fat tail 

distributions outperform the normal one in fitting financial returns and forecasting VaR. 

Among all the skewed distributions considered in this paper, the skewed generalised-t 

distribution of Theodossiou (1998) is the best one in fitting data. In terms of their ability to 

forecast the VaR, the inverse hyperbolic sign and skewed generalised-t distribution provide the 

more accurate VaR estimates across the indexes.  

Therefore, we find evidence in favor of the skewed distributions compared to the 

Student-t distribution.  In statistical terms, most of them fit the data better than the Student-t. 

According to the accuracy VaR estimates, the inverse hyperbolic sign and the skewed 

generalised-t  distribution  outperformance the Student-t distribution as those distributions 

provide less volatile results. The Student-t distribution performs very well in estimating VaR 

but shows a more volatile behavior across indexes.   
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On the other hand, regards to the loss function, the result depends on the kind of 

function used to measure the losses. From a point of view of the regulator, Student-t 

distribution is the best in forecasting VaR as this distribution provides the more conservative 

VaR estimate. However, from the point of view of the firm, the skewed distributions 

outperform the ST distribution, since the latter distribution tends to raise the firm´s capital cost. 

As companies are free to choose the VaR model they use to forecast VaR, it is clear that they 

will prefer the skewed distributions. 
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Chapter 4
*
 

Role of the loss function in the VaR comparison 

4.1. Introduction 

The global financial crisis suffered in the last years has taught us the importance 

of measuring risk accurately. Because the Basel Committee on Banking Supervision 

(BCBS) at the Bank for International Settlements requires that financial institutions 

meet capital requirements for the base Value at Risk (VaR), this methodology has 

become a basic market risk management tool. Consequently, the last decade has 

witnessed the growth of literature proposing new models to estimate the VaR. To know 

which is the best of these models has been and still is a primary aim of the empirical 

 

                                                             
* This chapter has been published in Journal of Risk Model Validation. The complete reference is: �The role of the 
loss function in Value at Risk comparisons� Abad P., Benito S. and López C. (2015) Vol. 9, nº 1, pp. 1-19.  

This chapter has been published  as a working paper. The complete reference is Abad P, Benito S, López C. (2014). 
Role of the Loss Function in the VaR Comparison. WP nº 756/2014. Fundación de Cajas de Ahorros (FUNCAS). 
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Several studies dedicated to comparing VaR models have used a standard 

backtesting procedure (see Bhattacharyya and Ritolia (2008), Yu et al. (2010), Nozari et 

al. (2010), Bao et al. (2006), and Mittnik and Paolella (2000), among others). 

 The standard backtesting is based on calculating the number of times that losses 

exceed the VaR and comparing this value with the expected number using statistical 

tests.  

Jorion (2001) defines backtesting as an ex-post comparison of a risk measure 

generated by a risk model against actual changes in the portfolio value over a given 

period. The Basel Committee on Banking Supervision (1996a) and the amendments of 

the Basel Committee on Banking Supervision (1996b) developed several statistical tests 

to evaluate the accuracy of the VaR estimates.  More recently, in Basel III (2010),  the 

committee pointed out the necessity of verifying the model�s accuracy through frequent 

backtesting, although no particular backtesting technique is recommended.  

A different perspective is given by Lopez (1998, 1999) who indicates that it is 

also important to know the size of the non-covered losses. To calculate the uncovered 

losses, he proposes using a loss function. The loss function is based not on a hypothesis-

testing framework such as the statistical test but on examining the distance between the 

observed returns and the forecasted VaR(�) when the losses are uncovered. Some 

papers dedicated to comparing VaR models use both backtesting procedures: statistical 

tests and loss function (see Abad and Benito (2013), Orhan and Köksal (2012), 

Marimoutou et al. (2009) and Angelidis and Degiannakis (2007), among others).  

There is a trade-off between the regulators and the financial enterprises 

regarding the aims in the market risk management tool. Supervisors are concerned about 

how many times losses exceed the VaR and the size of the non-covered losses. 

However, the risk managers have a conflict between the goal of safety and the goal of 
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profit maximisation. An excessively high VaR forces them to hold too much capital, 

imposing large opportunity costs of capital upon the firm. Considering this factor, 

Sarma et al. (2003) propose a firm�s loss function. 

This paper focuses on loss functions. We examine whether the results of 

comparing the VaR models depend on the loss function used. In a comparison of a large 

set of VaR models, we compare these models using several loss functions  proposed   in 

the literature from the point of view of the regulator and from the point of view of the 

firm. Additionally, we propose a new firm�s loss function, in line with Sarma et al. 

(2003). This function has the advantage of precisely computing the opportunity cost of 

the firm when the losses are covered.  

The relevance of this study is twofold. First, it fills a gap in the literature 

regarding the comparison of VaR models, as this is the first paper to analyse whether 

the results of the VaR model comparison are robust with the loss function used. Second, 

we propose a new loss function that better captures the aim of the firm. Our results can 

help market participants, supervisors and risk managers to select the best VaR models, 

taking into account the different utility functions that each one has to face. 

The rest of the paper is organised as follows: in the next section, we describe the 

backtesting procedure, focusing mainly on the role of the loss function. In section 3, we 

present the data we have used in the paper and the results of the empirical application. 

The last section includes the main conclusions. 

4.2. Loss Functions 

Since the late 1990s, a wide variety of tests have been proposed for evaluating 

the performance of VaR models. The backtesting procedures used in the literature can 



Chapter IV 

 104 

be classified into two groups: backtesting based on any statistical test and backtesting 

based on the loss function.18  

The unconditional coverage test (Kupiec (1995)), the conditional coverage test 

and the independence test of Christoffersen (1998) and the Backtesting Criterion 

Statistic are the most usual backtesting procedures based on any statistical test. To 

implement all these tests, the exception indicator (It) must be defined. If rt represents the  

returns and VaR(a ) is the VaR obtained with a given probability ( )0,1aÎ , we have an 

exception when r t�< VaRt(a ), and then It is equal one (zero otherwise). 

The unconditional coverage test assumes that an accurate VaR(!) measure 

provides an unconditional coverage; i.e., the percentage    of    exceptions  observed ( !
)

)  

should be consistent with the theoretical proportion of failures (!). Thus, the null 

hypothesis of this test is a a) = . A similar test for the significance of the departure of �a  

from a  is the backtesting criterion statistic. 

The conditional coverage test proposed by Christoffersen (1998) jointly 

examines whether the model generates a correct proportion of failures and whether the 

exceptions are statistically independent from one another. The independence property of 

exception is an essential property because the measures of risk must reply automatically 

to any new information; a model that does not consider this factor would provoke 

clustering of exceptions. 

The backtesting procedures based on certain statistical tests present a drawback; 

they only show whether the VaR estimates are accurate, so this toolbox does not allow 

us to rank the models. 

Backtesting based on the loss function pays attention to the magnitude of the 

failure when an exception occurs. Lopez (1998, 1999), who is a pioneer in this area, 

                                                             
18 There is no general agreement in the literature addressing what backtesting really comprises. 
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proposes to examine the distance between the observed returns and the forecasted 

VaR(�). This difference represents the loss that has not been covered. The loss function 

enables the financial manager to rank the models. The model that minimises the total 

loss will be preferred to the other models.  

Lopez (1999) proposed a general form of the loss function: 

( )
( )t

,VaR if VaR
,VaR if VaR

t t

t t

f r r
L

g r r

ìï
í
ïî

<
³

=   (4.1) 

where ( ),VaRtf r and ( ),VaRtg r are functions such that ( ),VaRtf r ! ( ),VaRtg r , 

thereby penalising to a greater extent those cases where the real returns fall bellow the 

VaR estimations. He considers three loss functions: (i) the Binomial loss function that 

assigns the value 1 when the VaR estimate is exceeded by its loss and 0 otherwise, 

(ii)the Zone loss function based on the adjustments to the multiplication factor used in 

market risk amendment (see Sajjad et al. (2008), Hass (2001) and Lopez (1998) among 

others), and (iii) the magnitude loss function, which assigns a quadratic numerical score 

when a VaR estimate is exceeded by its loss and 0 otherwise. Subsequently, not only the 

VaR exception but also the magnitude of the losses is incorporated. Depending on the 

form adopted by ( ),VaRtf r and ( ),VaRtg r , we can speak of two types of functions: 

regulator�s loss functions and firm�s loss functions. 

The regulator�s loss functions pay attention to the magnitude of the non-covered 

losses only when they occur. Thus, the Lopez�s Magnitude loss function has the 

following quadratic specification:  

( )2
1

0
t t t t

t t

VaR r if r VaR
RQL

if r VaR

ìï +
í

³ïî

<-
=   (4.2) 

In this loss function, the quadratic term ensures that large failures are penalised 

more than small failures. This function was built mainly for regulatory purposes for 
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evaluating the bank internal models. Applications of this loss function are numerous 

(see Ozun et al. (2010), Campell (2005), Marimoutou et al. (2009), Zatul (2011), 

Osiewalski and Pajor (2012) and Orhan and Köksal (2012), among others). 

 

Since Lopez (1998, 1999), many authors have proposed other alternative 

functions with the same goal, to measure the distance between returns and VaR 

estimates when an exception occurs. In column 1 of  Table 4.1, we report some of these 

functions. 

Sarma et al. (2003) defined the regulator�s loss function as follows: 

( )2t t t tVaR r if r VaRRQ
0 otherwise

ìï
í
ïî

<-
=   (4.3) 

Applications of this function can be found in Angelidis et al. (2007) and Abad 

and Benito (2013), among others. Caporin (2008) notes that there is an open issue with 

the function aforementioned. At a parity exception, we may reject a correctly specified 

model only because it provides higher losses. For this author, what is important is not 

the losses uncovered but their relative size. To solve this point, he divides ( ),VaRtf r by 

VaR. The mathematical expression of these functions can be found in the first column 

of Table 4.1. 

The aforementioned loss function only takes into account the magnitude of the 

failure but does not consider the cases in which the returns exceed the VaR estimates. 

This is an important point because a too high VaR overestimation would lead firms to 

hold much more capital than necessary, thus imposing an opportunity cost of capital 

above. Firms must resolve the conflict related to safety, in the same way that a regulator 

does, but they also have the objective of maximising their profits. For this purpose, 

Sarma et al. (2003) define a firm�s loss function (FS), where the non-exception days are 
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penalised according to the opportunity cost of the reserved capital held by the firm for 

risk management purposes: 

 

( )t t t t

t t t

VaR r if r VaR

VaR if r VaR

2

.
FS

ì
ï
í
ïî b ³

<
-

-
=   (4.4) 

 

whereb  is the cost of capital for the firm. Thus, a model that may be adequate because 

it provides few exceptions becomes inadequate if the opportunity capital cost is high. 

Caporin (2008) suggests applying the same loss function not only to the exceptions but  

also to the entire sample, (an exception occurs and does not), i.e., he suggests applying a 

function such as ( )tf r ,VaR = ( )tg r ,VaR .  

In line with Sarma et al. (2003), we propose a new loss function to capture the 

aim of the firm. The expression of our function is as follows:  

 

( )
( )

t t

t t

VaR r if r VaR
r VaR if r VaR

2
-FABL=

-

ìï
í
ïî

<
b ³

  (4.5) 

 

As can be determined in this function, the exceptions are penalised as usual in 

the literature, following the instructions of the regulator. When there are no exceptions, 

the loss function penalises the difference between the VaR and returns weighted by a 

factor b  that represents an interest rate. This product is exactly the opportunity cost of 

the capital, i.e., the excess capital held by the firm.  

Sarma et al. (2003) penalises the cases in which there are no exceptions for 

multiplying the VaR estimate by a factorb . From our point of view, this product does 

not precisely capture the opportunity cost of the capital. Unlike Sarma et al. (2003), we 
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are committed to measuring the real cost of opportunity, rather than the cost of security 

imposed by Basel. On the other hand, Sarma et al. (2003) do not identify the factor b . 

We propose the price of the capital opportunity cost to be an interest rate. These firm´s 

loss functions are presented in the second column of Table 4.1.  

 

 

Table 4.1. Loss functions 

 
Regulator�s loss function (RLF) Firm�s loss functions (FLF) 

 

Lopez�s quadratic 
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Note: This table presents the different loss functions used in this paper. In the first column, we show the regulator�s loss functions 
(Lopez� magnitude loss function (RQL), lineal regulatory function (RL), Sarma et al. (2003) quadratic loss function (RQ) and the 
three loss function suggested by Caporin (2008) ((RC_1), (RC_2), and (RC_3)). The second column lists the firm�s loss functions 
(Sarma et al. (2003) (FS), the three loss function suggested by Caporin (2008) (FC_1), (FC_2), and (FC_3) from the viewpoint of the 
firms, and our new loss function (FABL)). 

 



Role of the loss function in the VaR comparison 

 109 

 4.3. Empirical results. 

The purpose of this paper is to check whether the comparison of different VaR 

models is independent of the loss function used. With this aim, we compare several VaR 

models using a two-stage selection approach. In the first stage, Kupiec and 

Christoffersen�s tests are applied. In the second stage, and only for the remaining 

models, we calculate the loss functions of Table 4.1. The VaR models included in the 

comparison are as follows: Historical Simulation (HS), Filtered Historical Simulation 

(FHS), Conditional and Unconditional Extreme Value Theory (CGPD and GPD) and 

Parametric approach based on a normal and t-Student distribution. Next, we consider 

the conditional and unconditional volatility measure: Normal, Conditional Normal (CN) 

and Conditional t-Student (CS). Table 4.2 shows the expressions for these VaR models.  

 

Table 4.2. Statistical approaches for estimating the Value at Risk 

Normal ( )1
t 1 pVaR f-

+
=  

Historical Simulation (HS) { }{ }n
tt 1 t 1

VaR Quantile r
+ =
=  

Filtered Historical Simulation (FHS) { }{ }n
tt 1 t+1 t 1 t 1

VaR Quantile rm s
+ + =
= +  

Unconditional GPD (GPD) ( )
u

t 1
n

1 p 1
N

VaR u
xé ùæ öê úç ÷

x ê úè øë û

s
)

)

)

)

-

+
- -= +  

Conditional Normal (CN) ( )1
t 1 t 1 t 1 pVaR m s f-

+ + +
= +  

Conditional Student (CS) ( )1
t 1 t 1t 1

2
F pVaR

n
n

m s -

+ ++

-
= +  

Conditional GPD (CGPD) ( )tt 1 t 1VaR ZVaR m s
t+ +

= +  

Note: 1f- (p) is the quantile of the standard normal distribution, u
)

 is the threshold, s)  is the estimated scale 

parameter, x
)

is the estimated shape parameter, Nu is the number of exceedances over the threshold, t+1 t 1andm s
+

 are 

the conditional forecasts of the mean and the standard deviation, F-1(p) and � are the quantile the t-distribution and the 
degrees of freedom, respectively, and Z is the standardised residual series.  
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The study has been performed using the spot price for crude oil (the Brent) and a 

stock index (Dow Jones), offering robustness to dataset. 

4.3.1. Data  

The data consist of a spot crude oil price (Brent) and a stock index (Dow Jones 

Industrials) extracted from DataStream database. The prices of crude oil Brent are 

measured in US $/Barrel. These prices are transformed into returns by taking 

logarithmic differences of the closing daily price.   We use daily data for the period May  

20, 1987 through November 30, 2014, thus our sample covers the recent years of 

turmoil.    

The full data period is divided into a learning sample (May 20, 1987 to 

December 31, 2007) and a forecast sample (January 1, 2008 to November 30, 2014). 

Thus, we work with 7183 observations and generate 1803 out-of-sample VaR forecasts. 

Figure 4.1 presents the daily prices of crude oil Brent and of Dow Jones index. 

Both of them show an increasing trend. The daily returns are too presented in Figure 4.1 

and their basic descriptive statistics are provided in Table 4.3. 

Table 4.3. Descriptive statistics of the daily returns 

  Mean (%) Median Maximum Minimum Std. Dev. Skewness Kurtosis Jarque-Bera 

0.0189* -1.143* 28.144* 190758 
BRENT 

(0.0002) 
0.000 0.135 -0.439 0.022 

(0.035) (0.07) (0.001) 

0.029* -1.791* 47.755* 603238 
DOW JONES 

(0.0001) 
0.000 0.105 -0.256 0.011 

(0.029) (0.058) (0.001) 
Note: This table presents the descriptive statistics of the daily returns of the Brent crude oil and Dow Jones index. The 
data set cover  from May 20th, 1987, to November 30th, 2014. The return is calculated as rt=ln(Pt)/(Pt-1), where Pt is the 

price level for period t. The standard errors of the skewness, the mean and excess kurtosis are calculated as n/6 , 

ns   and n24 , respectively. The Jarque-Bera statistic is distributed as the Chi-square with two degrees of 

freedom. (*) denotes significance at the 5% and 1% levels, respectively 
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The unconditional mean daily return is very close to zero (0.02% and 0.03% 

respectively), which is significant. The skewness statistics are negative, implying that 

distributions of both daily returns are skewed to the left. The kurtosis coefficients imply 

that both distributions have much thicker tails than the normal distribution does. 

Similarly, the Jarque-Bera statistics are statistically significant, rejecting the assumption 

of normality. All of this evidence shows that the empirical distribution of both daily 

returns cannot be fit by a normal distribution, as they exhibit a significantly excess of 

kurtosis and asymmetry (fat tails and peakness).  

Going back to Figure 4.1, we can see that the range fluctuation of both daily 

returns are not constant, which means that the variance of these returns changes over 

time. The volatility of Brent was high during the early 1900s, coinciding with the 

beginning of the Gulf War. Furthermore, we observe high volatility since middle 2008 

to the end 2009 in both daily returns. In the last years of the sample, we observe a 

period more stable. We estimate an AR(1)-GARCH(1,1) specification. The VaR is 

calculated the forthcoming day for four confidence levels: 95%, 99%, 99.5% and 

99.9%.  

For evaluating the performance of each model in terms of the VaR, we also use a 

backtesting procedure in two stages. In the first stage, we use four accuracy tests (the 

unconditional coverage test (LRuc), Backtesting criterion (BTC), the conditional 

coverage test (LRcc) and the independence test (LRind)). If a model passes all tests, the 

model is accurate. In the second stage, we evaluate the magnitude of the loss functions 

for the first stage overcoming models. Eleven loss functions have been used in our 

comparative: six loss functions which reflect the utility function of the 

regulator/supervisor and five loss functions from the viewpoint of the firm/risk 

manager. 
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Overall, we design an exhaustive comparison. We estimate the VaR by using 

seven different models for four levels of confidence ensued by two-stage backtesting 

procedure to assess the forecasting power of each model: four accuracy tests and eleven 

loss functions.  

4.3.2. Results    

The results of the accurate tests are presented in Table 4.4. In this table we show 

the percentage of exception obtained with each VaR model at the 99.9%, 99.5%, 99% 

and 95% confidence levels. The table reports the p-value obtained for the accurate tests 

for each confidence scenario. When the null hypothesis that �the VaR estimate is 

accurate� has not been rejected by any test, we have shaded the percentage of 

exceptions.  

According to Table 4.4, we can assert that the VaR estimates obtained by the 

unconditional and conditional normal distribution are very poor, especially for the Dow 

Jones. For Brent, the unconditional normal distribution provide accurate VaR estimate 

at 0.5% and 1% probability level while conditional normal distribution yield good VaR 

estimate at 0.1% and 5% probability level. For the Dow Jones, these distributions 

provide unaccurate VaR estimates for whatever probability level.  

For almost all probability level, HS, FHS and the conditional GPD yield good 

VaR estimations for both series of data. For CS and unconditional GPD some 

differences are observed between the two series. For the Dow Jones, the CS distribution 

provides accurate VaR estimates at any probability level while for Brent just only at 

0.1% and 0.5% probability. The opposite is observed for unconditional GPD. For Brent,  
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this method yields accurate VaR estimates at three probability level while for Dow 

Jones this method provides inaccurate VaR estimates for all probability levels.  

Table 4.4. Accuracy tests 

  
Brent Dow Jones 

  0.10% 0.50% 1% 5% 0.10% 0.50% 1% 5% 

Normal 0.50% 0.78% 1.00% 3.33% 1.89% 2.44% 3.22% 6.38% 

LRUC 0.0119 0.3105 0.9963 0.0226 0 0 0 0.0891 
BTC 0 0.0998 0.3989 0.002 0 0 0 0.0108 

LRIND 0.3677 0.2726 0.3677 0.0554 0.096 0.1375 0.096 0.0754 

LRcc 0.0281 0.3275 0.6665 0.0119 0 0 0 0.0485 

HS 0.22% 0.50% 0.94% 4.27% 0.22% 0.83% 1.44% 5.44% 

LRUC 0.3534 0.9974 0.8711 0.3373 0.3534 0.2295 0.2436 0.5812 
BTC 0.1045 0.3989 0.3873 0.1454 0.1045 0.0542 0.0673 0.2784 

LRIND 0.0849 0.1618 0.0849 0.0689 0.0659 0.2958 0.0659 0.2027 

LRcc 0.1474 0.3759 0.2238 0.1206 0.1199 0.2813 0.0934 0.3815 

FHS 0.06% 0.28% 0.89% 4.60% 0.06% 0.44% 1.22% 6.32% 

LRUC 0.6666 0.3345 0.7468 0.606 0.6666 0.8199 0.5494 0.1022 
BTC 0.3336 0.1624 0.3554 0.296 0.3336 0.3767 0.2566 0.0144 

LRIND 0.7242 0.9125 0.7242 0.3094 0.627 0.8603 0.627 0.5862 

LRcc 0.8564 0.6239 0.8919 0.5223 0.8098 0.9594 0.7429 0.2268 

GPD 0.00% 0.22% 0.72% 3.72% 0.33% 1.39% 2.16% 6.99% 

LRUC 0.2107 0.2148 0.409 0.0847 0.1052 0.0039 0.0046 0.0157 
BTC 0.1618 0.0982 0.1964 0.0175 0.003 0 0 0.0002 

LRIND 0.2496 0.9299 0.2496 0.0255 0.2145 0.0586 0.2145 0.0771 

LRcc 0.2355 0.4615 0.3666 0.0187 0.1246 0.0026 0.0084 0.0114 

CN 0.22% 1.00% 1.50% 5.16% 0.67% 1.50% 2.55% 6.32% 

LRUC 0.3534 0.0819 0.1925 0.84 0.0009 0.0014 0.0003 0.1022 
BTC 0.1045 0.0044 0.0419 0.3805 0 0 0 0.0144 

LRIND 0.5963 0.6912 0.5963 0.3495 0.3063 0.5503 0.3063 0.8421 

LRcc 0.565 0.2035 0.3718 0.6326 0.0025 0.0051 0.0008 0.2578 

CS 0.06% 0.17% 0.28% 3.00% 0.00% 0.39% 0.78% 4.22% 

LRUC 0.6666 0.124 0.0161 0.0056 0.2107 0.6444 0.5129 0.3009 

BTC 0.3336 0.0531 0.0034 0.0002 0.1618 0.3181 0.2531 0.1239 

LRIND 0.9125 0.9474 0.9125 0.2789 0.7576 0.8776 0.7576 0.3266 

LRcc 0.9059 0.3057 0.055 0.0119 0.4356 0.8884 0.7698 0.3619 

CGPD 0.11% 0.33% 0.89% 5.05% 0.00% 0.44% 1.05% 6.16% 

LRUC 0.9243 0.4798 0.7468 0.9518 0.2107 0.8199 0.8808 0.1512 
BTC 0.3947 0.2404 0.3554 0.3973 0.1618 0.3767 0.3886 0.0315 

LRIND 0.7242 0.895 0.7242 0.4664 0.675 0.8603 0.675 0.442 

LRcc 0.9354 0.7724 0.8919 0.7656 0.4184 0.9594 0.9056 0.2657 

Note: VaR violation ratios of the daily returns (%) are boldfaced. The table reports the p-values of the following tests: (i) the 
unconditional coverage test (LRuc); (ii) the backtesting criterion (BTC); (iii) statistics for serial independence (LRind) and (iv) the 
conditional coverage test (LRcc). A p-value greater than 5% indicates that the forecasting ability of the VaR model is accurate. The 
shaded cells indicate that the null hypothesis that the VaR estimate is accurate is not rejected by any test. 

 

 



Role of the loss function in the VaR comparison 

 
 

115 

 

Thus, only those VaR models which are more accurate remain. For Dow Jones 

only four of the seven models remain valid (HS, FHS, CS and CGPD), while all VaR 

models remain for the Brent.   

For the remaining models, we calculate the loss functions19. The model that 

provides the lowest loss function value is the best. Tables 4.5 and 4.6 show the results 

obtained by the regulator´s loss functions and the firm�s loss functions for Dow Jones 

and Brent, respectively. For each loss function, we marked in bold the model that 

provides the lowest losses. To calculate the FS and FABL firm�s loss functions, we 

proxy the price of capital with the interest rate of the Eurosystem monetary policy 

operations of the European Central Bank for Brent oil and the interest rate of the open 

market operations used by the Federal Reserve in the implementation of its monetary 

policy for Dow Jones. Regarding the regulator�s loss function, the results are as follow: 

(i) For the Dow Jones, the best model is the conditional Student (see panel a) of Table 

4.5). 

 

 

                                                             
19 We calculate the loss function only when the VaR model at this confidence levels is accurate according to tests of 
Table 4.4. 
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Table 4.5. Magnitude of the loss functions: Dow Jones 

Panel (a): Regulator´s loss function 

 Level HS FHS CS CGPD 

0.10% 4.0009 1 0 0 

0.50% 15.0064 8.0004 7 8.0003 

1% 26.0108 22.0012 14.0004 19.0011 
RQL 

5% 98.035   76.0061   

0.10% 0.0485 0.0022 0 0 

0.50% 0.2271 0.0416 0.0102 0.0312 

1% 0.391 0.1207 0.0546 0.0986 
RL 

5% 1.2646   0.5002   

0.10% 0.0009 0 0 0 

0.50% 0.0064 0.0004 0 0.0003 

1% 0.0108 0.0012 0.0004 0.0011 
RQ 

5% 0.035   0.0061   

0.10% 1.0799 0.1281 0 0 

0.50% 6.2797 1.4925 0.4107 0.8165 

1% 12.731 4.8116 2.1122 3.5973 
RC_1 

5% 73.2401   27.1116   

0.10% 0.0211 0.0003 0 0 

0.50% 0.1734 0.011 0.0006 0.0071 

1% 0.3464 0.0377 0.0111 0.0327 
RC_2 

5% 1.9921   0.2624   

0.10% 0.0485 0.0022 0 0 

0.50% 0.2271 0.0416 0.0102 0.0312 

1% 0.391 0.1207 0.0546 0.0986 
RC_3 

5% 1.2646   0.5002   

Panel (b): Firm´s loss function 

0.10% 0.0003 0.0004 0.0003 0.0003 

0.50% 0.0002 0.0002 0.0002 0.0002 

1% 0.0002 0.0002 0.0002 0.0002 
FS 

5% 0.0001   0.0001   

0.10% 1575.5669 1547.0887 1528.2154 1517.1347 

0.50% 1497.2591 1387.6669 1422.4349 1394.9188 

1% 1445.5347 1311.6891 1359.3426 1321.8967 
FC_1 

5% 1288.31   1154.8907   

0.10% 99.3183 85.3595 69.1726 67.3703 

0.50% 63.8263 38.4371 44.2028 40.7233 

1% 50.3828 28.9933 35.0165 31.2904 
FC_2 

5% 23.1432   17.0768   

0.10% 124.7218 111.4768 95.0095 93.0125 

0.50% 87.505 62.0102 68.4697 64.5222 

1% 72.844 51.4048 58.3761 53.9864 
FC_3 

5% 39.5071   37.2432   

0.10% 0.0003 0.0004 0.0003 0.0003 

0.50% 0.0002 0.0002 0.0002 0.0002 

1% 0.0002 0.0002 0.0002 0.0002 
FABL 

5% 0.0001   0.0001   

Note: The table reports the values of the sum of the different loss functions of each VaR model at all  
confidence levels. The boldface figures denote the minimum value of the function. 
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Table 4.6. Magnitude of the loss functions: Brent 

 
                             Panel (a): Regulator´s loss function 

 Level Normal HS FHS GPD CN CS CGPD 

0.10%  4.0015 1.0019 0.0000 4.0022 1.0004 2.0012 

0.50% 14.0072 9.006 5.0024 4.0018  3.0015 6.0024 

1% 18.0107 17.0112 16.0032 13.0054   16.0037 
RQL 

5%  77.0372 83.017  93.0191  91.0185 

0.10%  0.0662 0.0431 0.0000 0.0667 0.0195 0.0352 

0.50% 0.2537 0.1929 0.0606 0.0786  0.0459 0.0727 

1% 0.3482 0.346 0.1247 0.1984   0.1392 
RL 

5%  1.1299 0.7951  0.9004  0.8895 

0.10%  0.0015 0.0019 0.0000 0.0022 0.0004 0.0012 

0.50% 0.0072 0.006 0.0024 0.0018  0.0015 0.0024 

1% 0.0107 0.0112 0.0032 0.0054   0.0037 
RQ 

5%  0.0372 0.017  0.0191  0.0185 

0.10%  0.9383 0.8899 0.0000 1.5423 0.2702 0.6244 

0.50% 4.3029 3.3443 1.4659 1.0386  0.9089 1.7678 

1% 6.5256 6.8983 3.0948 3.1515   3.61 
RC_1 

5%  35.0959 26.9359  32.42  32.1989 

0.10%  0.0232 0.0383 0.0000 0.0491 0.0053 0.0202 

0.50% 0.1232 0.108 0.0554 0.0238  0.0294 0.0562 

1% 0.201 0.2312 0.0785 0.0853   0.0961 
RC_2 

5%  1.1833 0.5535  0.6485  0.6447 

0.10%  0.0662 0.0431 0.0000 0.0667 0.0195 0.0352 

0.50% 0.2537 0.1929 0.0606 0.0786  0.0459 0.0727 

1% 0.3482 0.346 0.1247 0.1984   0.1392 
RC_3 

5%  1.1299 0.7951  0.9004  0.8895 

                              Panel (b): Firm´s loss function 

0.10%  0.0005 0.0006 0.0006 0.0009 0.0015 0.0005 

0.50% 0.0003 0.0003 0.0003 0.0004  0.0011 0.0003 

1% 0.0003 0.0003 0.0003 0.0003   0.0003 
FS 

5%  0.0002 0.0002  0.0005  0.0002 

0.10%  1543.4875 1528.4207 1585.2465 1386.463 1547.0633 1487.0991 

0.50% 1409.9798 1450.33 1385.2812 1489.3883  1446.8982 1385.8997 

1% 1374.7132 1404.4418 1323.2754 1430.9376   1321.4011 

FC_1 

5%  1211.841 1125.4982  1110.886  1109.2768 

0.10%  126.2354 137.0146 152.1202 64.2721 127.6408 96.5676 

0.50% 67.3055 79.9697 64.5803 94.4141  81.106 64.3532 

1% 58.4595 66.2946 51.7016 73.437   51.2515 

FC_2 

5%  31.8777 26.3528  24.8093  24.6552 

0.10%  166.9571 178.5091 194.0341 102.3374 169.62 137.1252 

0.50% 104.0549 118.127 102.6672 133.541  120.7028 102.4565 

1% 94.1364 102.9299 88.3235 110.8294   87.8005 

FC_3 

5%  61.9775 57.587  55.563  55.3022 

0.10%  0.0005 0.0006 0.0006 0.0009 0.0015 0.0004 

0.50% 0.0003 0.0003 0.0003 0.0004  0.0011 0.0003 

1% 0.0003 0.0003 0.0003 0.0003   0.0003 
FABL 

5%  0.0002 0.0002  0.0005  0.0002 

Note: The table reports the values of the sum of the different loss functions of each VaR model at all confidence levels. The boldface 
figures denote the minimum value of the function. 
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This result is independently of the probability level and the regulator´s loss 

function used to evaluate losses; (ii) For Brent, the best model depends on the 

probability level we are considering (see panel a) of Table 4.6). However, once we have 

fixed the probability level, the results are robust to the regulator´s loss function used to 

evaluate the losses. At 0.1% probability the best model is unconditional GPD.  At 0.5% 

the best model is CS. To last, at 1% and 5% the best model is FHS. Thus, the results of 

the comparison seem to indicate that the best model is robust to the regulator´s loss 

function although depend on the probability level.  

Regarding the loss function from the viewpoint of the firm, the best model 

depends on the probability level and the loss function used to evaluate losses (see panel 

b) of Tables 4.5 and 4.6). However, the differences among the loss function are not 

arbitrary. The firm´s loss function we propose in this paper and the Sarma firm´s loss 

function move always together, while the three Caporin firm´s loss functions provide 

almost always the same results. We find two groups of firm�s loss functions. Sarma 

firm´s loss function and the function which we propose in this paper capture the 

opportunity capital cost of the firm, while the Caporin firm´s loss functions do not 

capture these cost since them penalize in the same way the covered and non-covered 

losses. 

For Dow Jones, according to firm´s loss function we and Sarma propose that the 

best model is HS for any probability level, while according to the three Caporin firm´s 

loss function the best model is FHS at 0.5% and 1% probability, CS at 5% and CGPD at 

0.1%.  

For Brent, we also find some differences depending on the probability level and 

the type of firm´s loss function used to evaluate losses. According to the loss functions 

which measure the opportunity capital cost of the firm, the best model at 0.5% and 1%  
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is unconditional Normal. For these probability levels the Caporin firm´s loss function 

point to CGPD as the best model. At 0.1% of probability, the Caporin firm�s loss 

function point to CN, while the loss functions which proxy the opportunity capital cost 

indicate that CGPD is the best VaR model. Again, we find differences with regard to the 

regulator´s loss function.  

Thus, we find some differences depending on the kind of firm´s loss function 

chosen. We distinguish between the firm�s loss function which proxy the opportunity 

capital cost of the firm and the firm�s loss function which penalize in the same way the 

covered and non-covered losses. According to these results, it seems that the risk 

manager shouldn´t be indifferent to the firm´s loss function chosen. To this respect, we 

recommend to use the firm´s loss function we propose in this paper as this loss function 

captures in the most reliable way the opportunity capital cost of the companies.    

As a summary, we conclude that from the regulator point of view, the best VaR 

model is robust to the function. However, from the viewpoint of the companies, the best 

VaR model depends on the firm´s loss function. In any case, what is clear is that the 

best VaR model depends on the family functions used: regulator´s loss functions and/or 

firm´s loss function. 20  

 

 

                                                             
20 We find the same result for the Brent price in another forecast sample (January 1, 1991 to January, 24, 2006). They 
are available for any interested reader upon request to the authors. 
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4.4. Conclusions 

This chapter investigates whether the results of the comparison VaR models 

depend on the loss function used for such purpose. Furthermore, we propose a loss 

function that captures the opportunity capital cost of the firm in the case in which losses 

have been covered.  

For this study, we use daily returns of the Brent price and Dow Jones index from 

May 20, 1987 to November 30, 2014. 

The VaR models that we have included in the comparison are Historical 

Simulation (HS), Filtered Historical Simulation (FHS), Conditional and Unconditional 

Normal, Conditional Student and Conditional and Unconditional Extreme Value (GPD).  

The best model is selected by a two-stage selection approach. First, we apply a 

backtesting procedure based on four statistical tests. For the accurate models that remain 

at the first stage, we compute the losses using several loss functions from two groups: 

firm´s loss functions and regulator/supervisor�s loss functions. Our results indicate that 

in terms of their ability to forecast the VaR, the best model is robust to the regulator�s 

loss function. However, from the viewpoint of the companies, the best VaR model 

depends on the type of firm�s loss function. We find two subgroup of firm�s loss 

function: the firm�s loss functions which proxy the opportunity capital cost of the firm 

when the losses are covered and the firm�s loss functions which penalize in the same 

way the covered and non-covered losses. The best VaR model is robust to the firm�s 

loss function within the subgroup. In any case, what is clear is that the best VaR model 

depends on the family functions used: regulator´s loss functions and/or firm´s loss 

function as these families provide different results.  
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Our results can help market participants make effective selections between VaR 

models. The market participants (supervisors and risk managers) must consider that they 

have specific loss functions, and the final result depends on who is the end-user of the 

VaR model. Finally, our results can also help researchers to understand the different 

results presented in the literature.  
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Chapter 5 

 

Conclusions 

In this dissertation, three specific issues have been developed: i) a deep analysis 

of the State of the Art, from standard approaches for measuring VaR to the more 

evolved, while highlighting their relative strengths and weaknesses; ii) the performance 

of several skewed and symmetric distributions in modeling the tail behavior of daily 

returns and forecasting Value at Risk (VaR); iii) and the analysis of the role that the loss 

function plays in the comparison of VaR models. This Chapter aims to conclude from 

the main results obtained in each section. 

In the first part of the dissertation, corresponding to Chapter two, a theoretical 

review of the existing literature on Value at Risk (VaR) has been shown including the 

back-testing procedures used to assess VaR approach performance. Furthermore, some 

empirical studies dedicated to compare several VaR methodologies are reviewed. From 

this review, it can be concluded that the approach based on the EVT and FHS are the 

best methods to estimate the VaR. It is also shown that VaR estimates obtained by some 
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asymmetric extensions  of  CAViaR   method  and  the   Parametric method under the 

skewed and fat-tail distributions lead to promising results, especially when the 

assumption  that  the  standardised  returns are independent and identically distributed is 

abandoned  and that the  conditional  high-order  moments  are  considered  to  be  time-

varying.. From the study, it seems clear that the new proposals to estimate VaR have 

outperformed the traditional ones.  

According to the results shown in Chapter two, where the Parametric method 

under the skewed and fat-tail distributions lead to promising results, in Chapter three it 

is evaluated the performance of several skewed and symmetric distributions in modeling 

the tail behavior of daily returns and in forecasting VaR. For this, the skewed 

distributions considered are: (i) the skewed Student-t distribution of Hansen (1994); (ii) 

the skewed error generalised distribution of Theodossiou (2001); (iii) the skewed 

generalised-t distribution of Theodossiou (1998) and (iv) the inverse hyperbolic sign of 

Johnson (1949). The symmetric distributions are the normal and the Student-t ones.  

For this study, it has been used daily returns on nine composite indexes: the 

Japanese Nikkei, Hong Kong Hang Seng, Israeli Tel Aviv (100), Argentine Merval, US 

S&P 500 and Dow Jones, UK�s FTSE100, the French CAC40 and the Spanish IBEX35. 

The sample used for the statistical analysis runs from January 2000 to the end of 

November 2012. The analysis period covered to forecast VaR runs from 2008 to 2009, 

which is known as the Global Financial Crisis period.  

Based on the submitted results, it can be concluded that the skewness and fat tail 

distributions outperform the normal one in fitting financial returns and forecasting VaR. 

Among all the skewed distributions considered, the skewed generalised-t distribution of 

Theodossiou (1998) is the best one in fitting data. However, in terms of their ability to 

forecast the VaR, it does not find significant differences as all of them provide accurate 

VaR estimates for a high number of indexes and produce  similar  losses.  Finally, it is  



Conclusions 
 

 
 

125 

 found evidence in favor of the skewed distributions compared to the Student 

distribution. In statistical terms, most of them fit the data better than the Student ones. In 

terms of VaR, the accuracy test indicates that the skewed distributions outperform the 

Student ones. On the other hand, with regards to the loss function, the result depends on 

the kind of function used to measure the losses. From the regulator point of view, 

Student distribution is the best one in forecasting VaR, as this distribution provides the 

more conservative VaR estimate. However, from the firm point of view, the skewed 

distributions outperform the Student distribution, since the latter distribution tends to 

raise the firm´s capital cost. As companies are free to choose the VaR model they use to 

forecast VaR, it is clear that they will prefer the skewed distributions. 

The fourth Chapter of this dissertation examines whether the comparison of VaR 

models depends on the loss function used for such purpose. In this Chapter, a detailed 

comparison for several VaR models for two groups of loss functions (designed for 

regulators and for risk managers) is shown. The VaR models included in the comparison 

are as follows: Historical Simulation, Filtered Historical Simulation, Conditional and 

Unconditional Extreme Value Theory and Parametric approach based on a normal and t-

Student distribution. In addition, conditional and unconditional volatility measures have 

been considered: Normal, Conditional Normal and Conditional t-Student. For this study, 

closing daily data of a spot crude oil price (Brent) and a stock index (Dow Jones 

Industrials) have been used. The data set covers the period May 20, 1987 through 

November 30, 2014, in order to include the economic shocks that occurred during the 

nineties (Gulf War and Asian Financial Crises)and the recent years of global crisis. 

Additionally, a firm�s loss function that exactly measures the opportunity cost of the 

firm when the losses are covered has been proposed. The best model is selected by a 

two-stage selection approach. First, a backtesting procedure based on four statistical 

tests has been applied.   For  the  models that survive the first stage, the losses have been  
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calculated using several loss functions from two groups: firm´s loss functions and 

regulator/supervisor�s loss functions.  

The results indicate that in terms of their ability to forecast the VaR, the best 

model is robust to the regulator�s loss function. According to the firm�s loss function, 

the results indicate that it must distinguish between two subgroups of firm�s loss 

function: i) functions which proxy the opportunity cost of the firm when losses are 

covered and ii) functions which penalize in the same way when losses are covered or 

non-covered. The best VaR model is robust to these subgroups. In any case, what it is 

clear is that the best VaR model depends on the family functions used: regulator´s loss 

functions and/or firm´s loss function, as these families provide different results. These 

results can help market participants make effective selections between VaR models. The 

market participants (supervisors and risk managers) must consider that they have 

specific loss functions, and the final result depends on who is the end-user of the VaR 

model. Finally, the results can also help researchers understand the different results 

presented in the compared literature.  
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