USING RHAPSODY® FOR THE ANALYSIS, DESIGN AND MODELI NG
OF BIOMEDICAL EMBEDDED SYSTEMS. FROM REQUIREMENTS T O
IMPLEMENTATION

P. CABEZAS, S. ARRIZABALAGA, J. MELENDEZ, |. SANCHQJ. LEGARDA
Electronics and Communications Department. Engiimge®chool of the University of Navarra
(TECNUN). University of Navarra. Spain.

{pcabezas, sarrizabalaga, jmelendez, isancho, jdaj@tecnun.es

This article describes the educational methodologjgted to the ‘Software and
Protocols Engineering: Software for Medical Equipmesubject, belonging to the
Engineering School of the University of Navarra CNEJN). The integral design
of embedded systems is successfully overcome ththaguse of techniques from
Software Engineering and Systems Engineering, drel niovel use of the
Rhapsody® tool, applied to the biomedical environindn this sense, the
organization and contents of the subject are shagnwell as an example of a
project carried out by some students.

Keywords: Software engineering, Analysis, DesigiDOV Rhapsody, Biomedical
Embedded Systems

1. Introduction

The Softwareconcept refers to a fundamental part of certainilfas of products, therefore being a
key issue in their success. However, it is impdrtarstress that, in the development of a systeim,riot
all about programmingdesignplays an important role, and it is necessary tontavith a high-level
vision over the whole system. Furthermore, studemtst see that there are several disciplines irebim
project management and development, especiallyahkind of systems that are composecbydware
andsoftware and that go far beyond mere programming. In $hisse requirements, analysis and design
are seen and recognized as key parsystems development

At this point it is complex to show, beyond puredhy and drawings in paper, that a manageable
traceability exists between requirements, analgsisuments and system design documents. If they are
presented as disjointed docs, like simple artifttas are abandoned when proceeding with the reade
of the system, their importance appears seriouslyptlul for students. Functional requirements, non-
functional requirements, use case diagrams, impi&tien models... If everything is done by pencil,
how do | know that | am going wrong? Furthermorbatvwdoes the hardware have to do with the system?
Is it a mere support, or can it be captured indbeuments and their traceability, for example vtita
requirements?

Given the fact that the software is not enough tddba hybrid system by itselfSoftware
Engineeringtechniques must be helped by tBgstems Engineeringdiscipline, providing different and
complementary views at the time of describing asgEmbling a system composed by both software and
hardware.

The lecture called Software and Protocols Engineering: Software for ddal Equipmerit
emphasizes the development (and not only prograginahcomplex systems, providing a needed and

multidisciplinary vision regarding to the analysisd design of hybrid systems, composed by hardware
and software, applied to tligdtomedicalenvironment. The use of a rich application likdViRhapsody®,
based on the Model-Driven Engineering (MDE) apphpdgelps at the time of capturing all these
theoretical ideas for the students in an easyjdaable and appealing way.

2. The Traceability issue: disjointed Artifacts andKnowledge.

The Analysis, Design and Implementation disciplinegd different lectures for their contents, in
order to consolidate well their conceptual basiswklver, either because there is no time for tegcbin
because they must be individually taught, theradstechnical media in the university environment to
express, through a informatics tool, all what imtraned at class regarding to these subjects.

Functional requirements and non-functional requéets and use case diagrams from the Analysis
phase, class and sequence diagrams from the Debigse, different files and solutions from the
Implementation phase... All these elements are uskalbwn asartifacts and their connection is not
trivial at all, when talking about connection medifferent to paper. Requirements get fulfilled lge
cases, while use cases are included and suppoytedduence diagrams, but... What happens with the
implementation? And furthermore, where can we théhardwarein this overall view?

The MDE methodology [1,2] provides clearer and peaimages to capture the previous contents,
in a graphical and closer to the human-being thipkivay. Of course, this can be extended to all the
different phases in systems and projects developmen

Numerous tools can be found, in the current statthe art, that allow the design of systems
through the MDE approach, even generating exeaitzdoile from the models. The majority of them are
based on the combination of MDE and the Unified Blod) Language (UML) [3], creating the Model-
Driven Architecture (MDA) concept [4]. As UML defés a formal notation for software systems
modelling, it can be considered as the common laggdior software engineers and, therefore, ithiegr
gets really useful for the students.

However, and as it has been told in Section 1, Uil Software Engineering techniques can be
hard to apply when talking about hybrid systemis i, when traceability and concepts likardware
come into scene. Regarding this problem, tools Rkapsody® help with personalized (and still formal
notations, with some bits coming from the softwaealm and other bits from Systems Engineering
domain, also including notations like SysML [5].

3. Modeling Systems from scratch with Rhapsody®

Rhapsody® is a tool from the large company IBM, akihprovides a MDD environment for real-
time or embedded systems engineering, softwardaawent, and test based on UML and SysML. In the
real (non-educational) world, it helps enable endeeldsystems engineers and software developers to
improve productivity, quality, and communication pstracting complex designs graphically, by
automating the software development process, asidtiag in finding defects early through continual
testing — to aid in reducing costs [6,7].

This tool is composed by different versions and uhesl providing capabilities such as:
= An integrated requirements and modeling environmasing industry standard SysML or
UML diagrams
= An industry standard based UML and SysML modelimyvimnment, which helps
improving team communication while maintaining dstency across different views

= Full lifecycle traceability and analysis from remments to design, with customizable
automatic documentation capabilities

= Visualize the applications using industry standakL diagrams

= Design object oriented-based or functional appbeest through full behavioral code
generation for C, C++, Java and Ada

= Visual simulation, which brings diagrams to lifer fdesign level debugging and early
validation. It executes the model to help validatehitecture and behavior

= Operating systems supported: Linux, Windows

Rhapsody is a powerful environment for rapid pnygiotlg and model execution, which helps
validating requirements, architecture, design, bBeHavior early in the lifecycle. It also helps met
delivering of products that meet requirements, Wtiounds too close to the real (industrial) wobldt
provides a sharper idea to students at this point.

4. Objectives, Methodology and Contents of the subgt

As it has been previously commented, the analgssign and development of embedded systems
forms part of the contents of the optional subpadted ‘Software and Protocols Engineering: Software
for Medical Equipment It is offered to the students of the Engineeri@ghool of the University of
Navarra (TECNUN), that have basic knowledge in pmogning (C, C++ and some them in Java),
microcontrollers, protocols and networks. Therefdtrés a real challenge to correctly introducenth®
theembedded systems modelliegim.

4.1. Initial approach to software and systems dgrakent. Objectives

This subject aims at providing a focus to softwdexelopment from Information Management
Systems (IMS), as a transportation vehicle fomtrgj and lecturing in requirements extraction, gsial
and design of systems. Later on, students will Haeeknowledge required to go deep into embedded
systems modelling.

This subject is oriented to the acquisition of khewledge required by an engineer for the analysis
the requirements of the client, their specificatio case they are not correctly defined, theirtwagp
through the current modelling standard (UML) anditthinterpretation if these requirements come from
another person of the workgroup. Furthermore, thdenit will get familiarized with the Rhapsody tool
This tool provides a MMD-based development envirentmfor (real time or conventional) embedded
systems. Rhapsody allows the engineer to captueedtsign through standard graphical models,
generating code from them. These designs can héagid, in order to guarantee the successful behavi
and to verify the fulfilment of the functional spiécations, considerably reducing development times
One of the strong points of this tool is that isynaaoid a direct contact with programming languages
abstracting that complexity through models.

The student will be capable of interacting with thesign and execution of a software project,
together with the rest of disciplines that taketparit. The development team may be formed by
informatics engineers, with expertise in softwaevelopment and programming languages, and by
programmers that will latterly write the source eodt is a structure similar to that composed by
architects, foreman builders and building contres;tin the end, all must use the same languagelve s
the project.

4.2. Methodology

The subject has two parts: theory and practiceofyhis taught through master classes, regarding to
the topics in the book of the subject, also coimgirxpositions with slides and practical exerciseget
familiarized with both the UML notation and the cepts from the requirements, analysis and design
fields. In the practical part, the students leaomwwho use a design and development tool (Rhapsody®)
which is a current leader in its application field,the laboratory. Each student uses its own caempu
directed by the professor through practical exgiana in the projector.

A final practice will be carried out by groups @kror four people), in which the students have to
apply the knowledge gained in the theoretical amdtral parts, using the Rhapsody tool. The re<ufit
these practices will be publicly expounded, simnfat presentation of results from a group of eegia
to the client that asked for the product initiallfhe percentage related to the final mark is ofsilxgy per
cent.

The final exam consists of an exercise in whichstiuelent will have to prove that he/she has gained
the theoretical and practical concepts of the stibje is done on paper, without computer, andhis t
fourty per cent of the final mark.

4.3. Distribution and Contents

The total dedication of the subject is 122 hourkictv is equivalent to 4.5 ECTS credits (or 6
conventional credits). The distribution of the wodd, in terms ofstudent working hourscould be
approximated to the following numbers:

= Theory — master classes (18 hours)

Rhapsody training (16 hours)
Group practice (20 hours)
Exposition (4 hours)
Exam (4 hours)
Personal work (40 hours) and Study (20 hours)

These dedication numbers are related to the fatigwbntents of the subject:
I. Introduction to Embedded Systems
Il. Introduction to Systems Requirements: obtentioa)yeis, negotiation and validation
lll. Introduction to the Analysis and Design of Softwagstems
IV. Object Oriented Programming (OOP)
V. The Unified Modelling Language (UML)
VI. Model-oriented design and development with Rhapsody
0 Introduction to the environment
0 Integral development of a embedded system
With the previously presented information and thefifes of the students in mind, a practical
example is shown in the next section.

5. Practical example

The example presented in this section is relatedtonitoring system for premature babiebhis
system aims to control the state of premature baloitaining temperature and ECG measurements by
two different types of sensors and sending thethéosame microcontroller. An alarm is set in thenma
computer, in case a strange behavior is detectemder to finally assist them if necessary.

5.1. Introduction

A premature baby needs special care in hospitaégShe has to be in an incubator during a
determinate time according to him/her particulémaion. The incubator protects the baby from germs
provides the baby with a good temperature envireriraed controls the behavior of the baby.

The responsibility of controlling the baby resides the microcontroller incorporated in the
incubator. There is a set of sensors connectetieddaby which sends the measurements taken to the
microcontroller.

The connection between the sensors and the midrotien is flexible. Bluetooth, WI-Fi or Zigbhee
implementations are allowed.

The measurements are the following ones:
e Temperature
« ECG

The microcontroller processes all the measurememdsdetects strange behaviors checking if the
measurement is within a default range of valueg. fidrmal ranges of values considered are:

e Temperature: between 35 °C and 37°C

» ECG: between 100 beats/min and 120 beats/min

When the measurement is not within the range, tleeoaontroller activates an alarm in the main
computer and sends the wrong measurement and tbenpéinformation of the baby as well. The main
computer shows the wrong measurement and the @érsdormation of the baby so that the premature
baby is attended immediately by a doctor.

The communication between microcontroller and m@omputer is flexible. Bluetooth, WI-Fi,
Zigbee, USB, GPRS are allowed.

5.2. Requirements. Classification
There are there different types of requirementsactional requirements, non functional
requirements and flexibility requirements.
* Functional requirements: These requirements deseritat the system does.
1. Each sensor will send the measured value to theoodotroller.
2. The microcontroller will receive all the measuretsdnom the sensors.
3. The microcontroller will process the received measents.
4. The microcontroller will send the measurement ®rttain computer and activate
the alarm in the main computer in case a strangawer is detected.
The main computer will receive the wrong measurdrfrem the microcontroller.
The main computer will show an advertisement with following information:
= Name and surname of the baby in trouble.
= Name and value of the wrong measurement.
= Non functional requirements: These requirementsridestechnical
aspects related to the requirements described above
7. The temperature sensor will send every three secihvwdinformation to the
microcontroller
8. The ECG sensor will send every one second thernrdtion to the microcontroller.
b) Flexibility requirements:
1. The connection between the sensors and the midrolen must be done with
ports.
2. The connection between the microcontroller anchteén computer must be done
with ports.

oo

5.2. System Analysis
The analysis of system requirements is shown atgbint, specifying use cases and their relations
with the different actors of the system.

Regarding the design of the system, the Use Caagr&mn of the system (this is, the high-level
view of the system architecture in terms of requiats analysis) can be seen in Figure 1. It shbess t
use cases detected for this monitoring system.

In this project, four actors and seven use cases lb@en considered.

0
7 ———(_send measure
AN
\ \l
Uﬂ' \') / ————
SRIRCR e ~ send sensor ™
o ¢ ,',7(\\ d !
A —— N e A .
¢ process data y— —>¢_ setalarm Fncludes “¢Usage¥~ showalam Ty
\ e —Tgincludes T = B & ,,f—ﬁ—w‘.\ I "
f,ﬂ'r'\\ zincluderﬁ 99”[? baby sages
oA * 3 ata <
v N s TR N
microcontroller S\
N\ N
N .
0 . St N, O
——— " get personal ™y j ’_)
r N data A \
o o £
/./ﬁ \ “;.ff \:‘-.
{/ \ \ | W)
Uy main computer
baby

Figure 1. Use Case Diagram (Object Model Diagram)

* Send measure. It describes how sensors send meastine microcontroller
* Process data. It describes how microcontrollergsses the data and checks if a
measure is wrong. This use case includes the foilpwse case:

o Set alarm. It describes how microcontroller geresran alarm. The alarm is
set when a wrong measurement is detected whileepsoty the data. This
use case includes the following use cases as well:

» Send sensor data It describes how a wrong measntamsent to
the main computer. This use case uses the nexiasse
e Show alarm. It describes how the main computertprine
wrong measurement.
= Send baby data It describes how baby data is senhe main
computer in case a wrong measure is detected imitr@controller.
This use case uses the next use case:
e Show alarm. It describes how the main computertprine
data of the baby.
* Get personal data. It describes how the microctetrtakes personal data of the baby.

With regard to the actors drawn in Figure 1:
* Sensors. This actor interacts with the system usitegfaces with:

0 Send measurdt is responsible of sending the measurement.
* Microcontroller. This actor interacts with the syst using interfaces with:

0 Send measurdt is responsible of receiving the measurement.

0 Process datalt is responsible of processing and checkingitta.

0 Setalarmltis responsible of setting the alarm by sendirggwrong
measuremenSend sensor datase case) and sending the personal baby
information Send babylata use case)

0 Get personal datdt is responsible of getting personal data oflibby.

* Main Computer. This actor interacts with the systesimg interfaces with:

0 Send sensor dat# is responsible of receiving sensor data.

0 Send baby datdt is responsible of receiving the informationtioé baby
whose measurement is wrong.

o Show alarmlt is responsible of printing the wrong measuretrand the
information of the baby whose measurement is wrong.

* Baby. This actor interacts with the system through:

o Get personal datdt is responsible of allowing microcontrollerabtain its

data.

5.2. System Design
Regarding the design of the system, the Object Mbagram of the system (this is, the high-level
view of the architecture of the system in termghefRhapsody tool) can be seen in Figure 2.

itsPrematureBabyControlUnit:PrematureB abyControlUnit

| itsECGSens B

M value:int

M ECGSenson)
Hsendvaluet...

| tsTempSer™

M value:int ITemp

2 TempSens...
Hsendvalue...

pot_Temp_out |Temg

I itsMicroContraller:Mi

]

H defaulttdinEC G int
M defaulttdax<EC G:int
= defaultMinTemp:...
EdefaultM.!xTemp...

| itsBaby:Baby

H name:char
H surlame:char
M bithdav:char

port_Temp_in

ok MicroControllen)

HehedEC Givalue:i...
Erecei\reECG(\ralu...
Hreceive Tempival ..

—L] BeheckTempivalue...

—
port_Alarm_out TICemputer

L

A
L

port_prasy T ICemputer

pu

)

port_Alarm_in ’_LICorr-puter

1 iisMainLEf'ornguter:M

HalarmEC &lvalu...
HalarmTemplval...

Figure 2. Class Diagram of the System (Object Model Diagram

These models can be executed throagimated statechartsvhich give a real feel to the different
people of the team working on the same systemRggéere 3. These statecharts run when the program is
executed, and represent part of its internal fonetity. In the example shown above, there is amlg
state named idle, and every three secondseahdValue(Junction is called.

idle

1_

tm(1000)/
sendValue();

Figure 3. Simple statechart example: ‘Statechart of the EB@@sor’

Sequence diagrantsan easily be created to test the system fundtignar from the execution of
the system itself. Some examples can be sekigime andFigure 5

FrematureBa MlicroController Baby ECGSensor TempSensor
byControllnit

| | | |
Ceae) | | |
et] |

Create() _

lEEEItEI:I - _' _____ | _____ *1
|_

Figure 4. Sequence diagram of the creation of the compokits

ECGSensor MicroController MainComputer

t

=

(1000)

2

sendvalue()

il

receiveEC G(value = 1[JEiH

m(1000)

il

sendvalue() :
|

recerneECGivalue = 121

|
|
|
|
|
|
checkECG(value = 108) |
|
|
|
|
|
checkECGvalue = 121) |

alarmECG(value = 121 name = Juan, surhame = Perez)

|
| k|

Figure 5. Sequence diagram regarding the creation of an &@asn

- BU

6. Conclusion

The methodological and technical solution appliedhe subject calledSoftware and Protocols
Engineering: Software for Medical Equipmetias been shown, providing theoretical and prattic
contents to students with limited knowledge in @afe Engineering, Systems Engineering and
programming languages.

Through the abstraction of complexity thank to tlee of models, and as it can be seen in the
example shown in Section 5, the students get aarahlgeneral vision from the subject, regardintheo
analysis and design of a system composed by hagdaveat software, with its functionalities appliedhe
biomedical environment.

References

[1] Douglas C. SchmidiGuest Editor's Introduction: Model-Driven Engineggj Computer, vol. 39, 2, 25-31
(2006)

[2] Stuart KentModel Driven Engineeringntegrated Formal Methods, vol. 2335, 286-298jrigjer (2002)

[3] UML Resource Page. Web page: http://ww.uml.org

[4] AG Kleppe, J Warmer, W BadtIDA explained: the model driven architecture: pieaetand promise
Addison-Wesley (2003)

[5] SML PartnersSystems Modeling Language (SysML) Specificafiwailable at omg.org

[6] E Gery, D Harel, E Palachirhapsody: A complete life-cycle model-based dpuetat systenSpringer (2002)

[71 ML Crane, J DingelUML vs. classical vs. Rhapsody statecharts: Notratlels are created equ&oftware
and Systems Modeling, Springer (2007)

