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Abstract

The question about how to determine the rank of a tensor has been widely
studied in the literature. However the analytical methods to compute the de-
composition of tensors have not been so much developed even for low-rank
tensors.

In this report we present analytical methods for finding real and complex
PARAFAC decompositions of 2×2×2 tensors before computing the actual rank
of the tensor. These methods are also implemented in MATLAB.

We also consider the question of how best lower-rank approximation gives
rise to problems of degeneracy, and give some analytical explanations for these
issues.

Keywords: Tensor decomposition. PARAFAC decomposition. Alternating
Least Squares. Tensor Rank. Typical and generic rank. Best lower-rank
approximation. Tensor Toolbox for MATLAB. Degeneracy. Uniqueness.
Tensor classification
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que nos ayudó a mi hermana y a mi en la inscripción para el máster. También
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Introduction

This work has been written as the final thesis of the master’s degree ”Máster en
Matemáticas Avanzadas” of the Universidad Nacional de Educación a Distancia,
Spain. This master’s thesis has been written at Linköpings Universitet, Sweden
due to an Erasmus Exchange organized between both universities and has been
supervised by Göran Bergqvist.

This chapter will provide an overview of the whole report. We give some
historical background and give an outline of the different chapters, describing
what topics are covered.

Historical Background

A fundamental problem in mathematics is given by the question of how to orga-
nize data so that they reveal relevant information. If we can identify unknowns
and we can rearrange given data somehow so that it all fits into a problem that
we know how to solve, then we are half way to the solution. - Although perhaps
we still have to work through a long algorithm to find the final solution to our
initial problem. It is also interesting that new problems also give rise to new al-
gorithms to solve them. So it is easy to follow that, mathematicians of all times
have thought about these questions and have always found interesting ways of
approaching the same theoretical problem. The earliest recorded analysis of a
study of data stored as simultaneous equations is found in the Chinese book
Chiu-chang Suan-shu (Nine Chapters on Arithmetic), written around 200 B.C.

As we said before, new problems give rise to new algorithms to solve them.
New problems give rise to new ways of organizing and storing data and new ways
of looking for relevant information. It is interesting that these new problems to
solve by mathematical means often arise in a non-mathematical field. Let it be
chemistry, psychology or biology, results in these fields often relay on numerical
data that need to be organized by means of mathematics. So it is interesting
to remark that many of the relevant papers that we shall talk about in this re-
port have been published in the Psychometric Society journal, Psychometrika,
which contains articles on the development of quantitative models of psycholog-
ical phenomena, as well as statistical methods and mathematical techniques for
evaluating psychological and educational data. It is also interesting to remark
that since the first papers about decomposition of multidimensional arrays were
published by Hitchcock [18] around 1927, there has been a great development
in the subject and the way it has been dealt with. While the first papers had
a more applied approach, many of the more recent papers concentrate on more
mathematical aspects of the algorithms used when working with tensors.

Rovi, 2010. 1
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Purpose of this Thesis

In this thesis I will concentrate on the study of 2 × 2 × 2 tensors, specially on
issues concerning rank, decompositions and problems of degeneracy that arise
when computing lower rank approximations to a tensor. We try to demonstrate
that even such a small tensor as 2 × 2 × 2, which is indeed the smallest tensor
possible, has special features which make its analysis very interesting and very
different from the study of matrices. We relate these features to the inner
structure underlying the tensor and we give a classification of theses 2 × 2 × 2
tensors according to the different features they display. Even to analyze such
a small tensor, we have to develop special mathematical tools, based on linear
algebra, but completely different from their counterpart in matrix analysis. We
also want to point out that many problems concerning rank and decompositions
are still open, waiting for the development of mathematical tools that will help
solving them.

Programming Enviroments

In this report we use MATLAB to compute results and run M-files that demon-
strate algorithms about tensors. We present several examples of MATLAB codes
developed to solve relevant problems and questions about tensors.

We use the MATLAB Tensor Toolbox developed by Brett Bader and Tamara
Kolda, see [3].

Outline of the Chapters

Chapter 1. Preliminaries

We present the necessary mathematical tools to understand tensors and to
develop further work with them. We try to generalize features from one-
dimensional and two-dimensional arrays to multidimensional arrays.

Chapter 2. Tensors

This long Chapter is dedicated to the study of the inner structure of tensors.
We study tensors of different ranks and we try to find some analytical answers
to the question of identifying its rank. We also explain how to work out the
PARAFAC decomposition of tensors of different rank.

Another issue we study in this Chapter is that of computing the best lower
rank approximation to a tensor. This problem is also very different from its
matrix counterpart, since it can only be done using iterative methods instead of
using an straightforward algorithm as given by the Eckart-Young theorem. In
fact, the best lower rank approximation does not even exist in some cases.

Chapter 3. Uniqueness

In this Chapter we study the sufficient and necessary conditions for the unique-
ness of a tensor decomposition. We state Kruskal’s Theorem for Uniqueness
and we give examples to demonstrate these conditions.
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Chapter 4. Degeneracy

In this Chapter we study the special features displayed by certain tensors. We
shall give examples demonstrating these features and we will relate them to
the inner structure of the tensors where they arise. We will give not only a
numerical approach to this issue but also an analytical explanation.

Chapter 5. Classification of 2× 2× 2 Tensors

In this Chapter we present the classification of the tensors studied in 8 different
classes according to the different features they display.
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Chapter 1

Preliminaries

This chapter will give us the necessary tools to describe tensors and to work
with them. It will also give an outline of the problems we attempt to discuss in
the following chapters of this report.

This preliminary chapter also intends to make clear that although tensors
are closely related to matrices, there are many important differences between
them which makes matrix analysis and tensor analysis quite different subjects,
each with their own open questions and specific applications. We will also give
examples of how to compute tensors with MATLAB.

Understanding Arrays

Whenever we encounter data we must think of the best way of arranging them so
that we obtain relevant information that will help us solving the given problem.
We arrange words in alphabetically ordered lists so that we can find them more
easily, we arrange events to organize a schedule and we arrange data in arrays so
that relevant information becomes highlighted and we can describe relationships
more easily as well as operate with the given data more efficiently.

1.1 Working with Vectors

An array consisting of a single column or row is called a vector. Hence we
can define a vector as a 1-dimensional array. Vectors are denoted by boldface
lowercase letters, e.g., a. The ith entry of a vector a is denoted by ai.

Thus we can write a vector a ∈ R2 as

a =

(
a1

a2

)
Although vectors can be studied from a geometrical point of view, in this re-

port we shall focus on a more arithmetical approach, studying the most relevant
operations between vectors as elements of a vector space.

Rovi, 2010. 5



6 Chapter 1. Preliminaries

Vector Addition

We can add two or more vectors by adding their corresponding entries.
Let us write two vectors a,b ∈ R2 as

a =

(
a1

a2

)
and b =

(
b1
b2

)
Then we can write their sum as(

a1

a2

)
+

(
b1
b2

)
=

(
a1 + b1
a2 + b2

)
Vector Products

While we can define vector addition only in one way, things change when defining
vector products and we find different ways of multiplying the entries of the
vectors.

• Inner Product:

Let

a =

(
a1

a2

)
and b =

(
b1
b2

)
Then we can write their inner product as〈(

a1

a2

)
,

(
b1
b2

)〉
= a1b1 + a2b2

We can see that this product gives a scalar as a result.

• Outer Product:

Let

a =

(
a1

a2

)
and b =

(
b1
b2

)
Then we can write the outer product of the two vectors a, b ∈ R2 as(

a1

a2

)
◦
(
b1
b2

)
=

(
a1b1 a1b2
a2b1 a2b2

)
(1.1)

We see that this product gives a matrix as a result.

Norm and Normalization

When considering a vector as a geometrical object, one of its most important
features is length. If we take different vectors with the same direction, we can
see that they are scalar multiples of each other. Hence we can choose one single
vector to define a direction. We will take this vector to have length 1 unit, and
we will define a vector in a given direction to be normalized if it has unit length.
We define the length of a vector to be its norm. Norm and normalization will
be important when computing with MATLAB.
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• Euclidean Vector Norm

Although different norms can be defined on vectors, we will consider here
the Euclidean norm, which is closely related to the geometric length of
the vector.

For a vector v ∈ Rn, the euclidean norm of v is defined as,

‖v‖ =

(
n∑

i=1

v2
i

)1/2

=
√
〈v,v〉 (1.2)

1.2 Working with Matrices

We define a matrix as as two-dimensional array of m rows and n columns.
Matrices are denoted by boldface capital letters, e.g., A.

The ith row is denoted by Ai∗ and the jth column is denoted by A∗j
Thus we can write a m× n matrix as

Am×n =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


The first subscript on an individual entry in a matrix designates the row

that the entry occupies, and the second subscript denotes the column that the
entry occupies.

Adding Matrices

Proceeding in the same way we saw for vectors, we can add matrices by adding
the corresponding entries of each matrix. It is easy to see that there is only one
to define matrix addition.

Matrix Products

Just as we saw when considering vector multiplication, we can define different
ways of multiplying matrices. In this report we will use the following four
products.

• Usual Matrix Multiplication

Let

A =


a11 a12 · · · a1K

a21 a22 · · · a2K

...
...

. . .
...

aI1 aI2 · · · aIK

 and B =


b11 b12 · · · b1J
b21 b22 · · · b2J
...

...
. . .

...
bK1 bK2 · · · bKJ


be an I ×K matrix and a K × J matrix respectively.
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Then we can define the matrix product AB to be an I × J matrix where
each entry (AB)ij will be given by the result of the scalar product of the
ith row of A and the jth column of B, so that

a11 a12 · · · a1K

...
...

. . .
...

ai1 ai2 · · · aiK
...

...
. . .

...
aI1 aI2 · · · aIK




b11 b12 · · · b1j · · · b1J
b21 b22 · · · b2j · · · b2J
...

...
. . .

... · · ·
...

bK1 bK2 · · · bKj · · · bKJ

 =


· · · · · · · · · · · ·
...

...
. . .

...
· · · 〈Ai∗,B∗j〉 · · · · · ·
· · · · · · · · · · · ·



• Hadamard Product: ∗
This matrix product, first defined by the French mathematician Hadamard,
is the elementwise matrix product.

Let

A =


a11 a12 · · · a1J

a21 a22 · · · a2J

...
...

. . .
...

aI1 aI2 · · · aIJ

 and B =


b11 b12 · · · b1J
b21 b22 · · · b2J
...

...
. . .

...
bI1 bI2 · · · bIJ


be two I × J matrices.

Then we can define the Hadamard product A ∗ B as
a11 a12 · · · a1J

a21 a22 · · · a2J

...
...

. . .
...

aI1 aI2 · · · aIJ

 ∗


b11 b12 · · · b1J
b21 b22 · · · b2J
...

...
. . .

...
bI1 bI2 · · · bIJ

 =


a11b11 a12b12 · · · a1Jb1J
a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ


It is interesting to remark that the Hadamard product multiplies matrices
of the same size and that the resulting matrix has the same size as the
original matrices.
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• Kronecker Product: ⊗
The Kronecker product multiplies any two matrices of any given sizes.

Let

A =


a11 a12 · · · a1J

a21 a22 · · · a2J

...
...

. . .
...

aI1 aI2 · · · aIJ

 and B =


b11 b12 · · · b1L
b21 b22 · · · b2L
...

...
. . .

...
bK1 bK2 · · · bKL


be an I × J matrix and a K × L matrix respectively.

Then the Kronecker product A ⊗ B is defined as follows,
a11 a12 · · · a1J

a21 a22 · · · a2J

...
...

. . .
...

aI1 aI2 · · · aIJ

 ⊗


b11 b12 · · · b1L
b21 b22 · · · b2L
...

...
. . .

...
bK1 bK2 · · · bKL

 =



a11


b11 b12 · · · b1L
b21 b22 · · · b2L
...

...
. . .

...
bK1 bK2 · · · bKL

 · · · a1J


b11 b12 · · · b1L
b21 b22 · · · b2L
...

...
. . .

...
bK1 bK2 · · · bKL


...

. . .
...

aI1


b11 b12 · · · b1L
b21 b22 · · · b2L
...

...
. . .

...
bK1 bK2 · · · bKL

 · · · aIJ


b11 b12 · · · b1L
b21 b22 · · · b2L
...

...
. . .

...
bK1 bK2 · · · bKL




The output product is a matrix of size (IK)× (JL).

• Khatri-Rao Product: �
The Khatri-Rao product multiplies matrices with the same number of
columns. Hence, we deduce that this product computes the Kronecker
product of the corresponding columns of each matrix of the two matrices.

Let

A =


a11 a12 · · · a1K

a21 a22 · · · a2K

...
...

. . .
...

aI1 aI2 · · · aIK

 and B =


b11 b12 · · · b1K
b21 b22 · · · b2K
...

...
. . .

...
bJ1 bJ2 · · · bJK


be an I ×K matrix and a J ×K matrix respectively.
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Then the Khatri-Rao product A � B is defined as follows,
a11 a12 · · · a1K

a21 a22 · · · a2K

...
...

. . .
...

aI1 aI2 · · · aIK

 �


b11 b12 · · · b1K
b21 b22 · · · b2K
...

...
. . .

...
bJ1 bJ2 · · · bJK

 =





a11

a21

...
aI1

⊗


b11

b21

...
bJ1


 · · ·




a1K

a2K

...
aIK

⊗


b1K
b2K

...
bJK



 =



a11


b11

b21

...
bJ1

 · · · a1K


b1K
b2K

...
bJK



a21


b11

b21

...
bJ1

 · · · a2K


b1K
b2K

...
bJK


...

. . .
...

aI1


b11

b21

...
bJ1

 · · · aIK


b1K
b2K

...
bJK




As we can see, the Khatri-Rao product produces an output matrix of size
(IJ)×K.

Note that the Khatri-Rao product and the Kronecker product are identical
when considering vectors, i.e., a� b = a⊗ b.

• Matrix Scalar Product

Let

A =


a11 a12 · · · a1J

a21 a22 · · · a2J

...
...

. . .
...

aI1 aI2 · · · aIJ

 and B =


b11 b12 · · · b1J
b21 b22 · · · b2J
...

...
. . .

...
bI1 bI2 · · · bIJ


be two I × J matrices.

Then we can define the scalar product 〈A,B〉 as

〈A,B〉 =

I∑
i=1

J∑
j=1

(aijbij) = Tr (ATB)



1.2. Working with Matrices 11

It is interesting to remark how multiplication can create new mathematical
objects from already existing ones. We can create a two-dimensional array
by multiplying two one-dimensional arrays. We can create larger matrices by
computing the Kronecker product or the Hadamard product of two matrices
and we can also have a scalar as a result when multiplying vectors or matrices.

This idea will also apply to tensors and we will see how a tensor can be
created by defining the multiplication of vectors in a multidimensional space.

Matrix Norm

In equation 1.2 we have defined the euclidean norm of a vector to be its length.
Although we cannot define matrix norms in the same way, we can relate the
entries of the matrix to some scalar that will provide information about the
structure of the matrix. In this sense, although we can define different matrix
norms, we will concentrate on the Frobenius matrix norm that is defined by the
square root of the sum of the squared entries of the matrix.

For a matrix A ∈ Rm×n we define its Frobenius norm as

‖A‖F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

= 〈A,A〉 (1.3)

We will see that the matrix norm of the difference between two matrices
Am×n,Bm×n, given by ‖A − B‖F will define the distance between the two
matrices.

Matrix Inverses

When dealing with matrices we are often confronted with the problem of solving
equations of the form,

Ax = b (1.4)

This equation can be solved by multiplying both sides of the equation 1.4
by the inverse of the matrix A given by A−1 such that, A−1Ax = A−1b and
we can rewrite equation 1.4 as,

x = A−1b

Unfortunately, this straightforward method can only be used when the ma-
trix A is a square matrix and is non-singular, that is ‖A‖ 6= 0.

In the cases where the conditions for finding an inverse of the matrix A do
not hold, we must find another way of solving equations as given by 1.4.

We shall use the pseudoinverse matrix of A

A† =

{
(ATA)−1AT when rank(Am×n) = n

AT (AAT )−1 when rank(Am×n) = m

We find that the pseudoinverse is a generalization of the idea of finding the
inverse of a matrix.
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We have that

• If the system given by equation 1.4 is consistent, then x = A†B will be
the solution of minimal euclidean norm.

• If the system given by equation 1.4 is inconsistent, the x = A†B will be
the least squares solution of minimal euclidean norm.

However, the pseudoinverse is not a continuous function of the entries of the
matrix considered which can lead to numerical errors when using it in compu-
tations.

1.3 Working with Tensors

Although we can consider tensors in a broad way as a multilinear map, in the
way it is considered in physics and differential geometry, in this report we will
be interested in the concept of tensor a a multilinear array that arises as a
result of the growth of matrix theory and its applications to new fields. When
the problems to solve are no longer supported by matrix theory because we
have to deal with more variables, we have to think of organizing data as multi-
dimensional arrays. This idea has proven to be an interesting approach to the
solutions of many problems in chemometrics, psychometrics, statistics, data
mining and other fields where large quantities of data and many variables play
a role.

We define this multi-dimensional array as a tensor. Although we can define a
tensor to be in N -dimensions, in this report we shall only consider 3-dimensional
tensors which display the same properties as the higher-dimensional ones.

It is important to remark that although the applications of tensors to the
fields of psychometrics, chemometrics or signal processing are only a few decades
old, the mathematical ideas underlying this multidimensional structure were
already known in the 19th century and were developed by Cayley [5] who defined
hypermatrices and hyperdeterminants and to Schläfli who developed ideas about
the N -dimensional space. Many of the ideas from Cayley have been revived by
Gelfand, Kapranov and Zelevinsky [15].

Nowadays, there are many important open questions in this field that are
being intensively researched because of their mathematical interest and also
because of the very important applications that rely on the answers to these
questions. Questions such as determining the rank of higher dimensional tensors
or computing exact decompositions of these tensors are still open.

In this section we will give some preliminary mathematical tools to work
with tensors. In this sense we will first define what a tensor is and how we can
define multiplication so that we can work with arrays of different size and in
different dimensions.
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1.3.1 Defining Tensors

Tensors are denoted by calligraphic script letters, e.g., T . We can visualize
3-dimensional tensors as a parallelepiped.

Figure 1.1: Visualization of a 2× 2× 2 Tensor

Throughout this report we will use the representation used in Kruskal [21],

T =

t5 t6
t7 t8

t1 t2
t3 t4

While we can define a matrix by its number of rows and columns, we need
three integers to define a 3-dimensional tensor. In a similar way as is done
when working with matrices, we can fix 1, 2 or 3 indexes of each entry to define
elements of the tensor.

• Fibers

When working with tensors, columns and rows are replaced by their
higher-order analogue, fibers. Hence we can define fibers in the differ-
ent dimensions or modes of the tensor. Furthermore, we deduce that we
can identify fibers by fixing two of the three indexes that define an entry
of a tensor.

– Tensor columns are mode-1 fibers, t:jk

– Tensor rows are mode-2 fibers, ti:k

– And we can still define a mode-3 fiber tij: in the remaining dimension.

Figure 1.2: Fibers
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• Slices

Fixing only one of the three indexes that define tensor entries we define
slices.

– When fixing the first index of the entries of a tensor, we define the
horizontal slices of the tensor, Ti::

Figure 1.3: Mode-1 Slices.

– Similarly, when fixing the second index of each entry, we define the
lateral slices of the tensor, T:j:

Figure 1.4: Mode-2 Slices

– And by fixing the third index of each entry, we define the frontal
slices of the tensor T::k in the remaining dimension.

Figure 1.5: Mode-3 Slices
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• Tensor Entries

Hence we can write a 2× 2× 2 tensor as

T =

t112 t122

t212 t222

t111 t121

t211 t221

(1.5)

The first subscript on an individual entry in a tensor designates the hor-
izontal slice that the entry occupies. The second subscript denotes the
lateral slice occupied by the entry. The third entry shows the frontal slice
where the entry lies.

1.3.2 Matricization and Modes

Matricization is the process of rearranging the entries of a tensor so that it can
be represented as a matrix. Also called unfolding or flattening, matricization
will be an important tool when working with tensors.

We explained before, that the entries of a 3-dimensional tensor can be ar-
ranged in fibers. Fibers represent the entries of the tensor, when considered
from each of its three different dimensions. Hence, for a 3-dimensional tensor,
we will find mode-1, mode-2 and mode-3 fibers.

Building on this idea, we will define the mode-nmatricization of a tensor T as
the rearrangement of the entries of the tensor so that the mode-n fibers become
the columns of the resulting matrix. This resulting matrix will be denoted by
T(n).

Thus we deduce that the matricization along the different modes of the
tensor represented above in 1.5 will be given by the following expressions,

T(1) =

[
t111 t121 t112 t122

t211 t221 t212 t222

] Mode-1 Matricization
We can see that the entries of the
first row represent the entries of
the upper slice of the tensor.

T(2) =

[
t111 t211 t112 t212

t121 t221 t122 t222

]
Mode-2 Matricization
We can see that the entries of
the first row represent the entries
of the left lateral slice, whereas
the entries in the lower row rep-
resent the entries of the right lat-
eral slice of the tensor.

T(3) =

[
t111 t211 t121 t221

t112 t212 t122 t222

] Mode-3 Matricization
Finally, we can see that the en-
tries in the upper row represent
the entries of the front slice of the
tensor.
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Example 1.1

Let us take the tensor given by

T =

5 6
7 8

1 2
3 4

Then we can represent the matricizations along the three different modes as
follows,

Figure 1.6: Mode-1 Matricization

Figure 1.7: Mode-2 Matricization

Figure 1.8: Mode-3 Matricization

f
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1.4 Redefining Multiplication

1.4.1 Outer Product Revisited

In section 1.1, when studying vector products, we saw that the outer product of
two vectors produces a matrix. (See equation 1.1). Taking this idea a bit further
we can deduce that the outer product of three vectors produces a 3-dimensional
tensor.

Taking each vector to be in a different mode, we can visualize the outer
product of three vectors as follows,

Figure 1.9: Tensor as the Outer Product of Three Vectors

Mathematically, we can write the outer product of three vectors a,b, c ∈ R2

as follows,

(
a1

a2

)
◦
(
b1
b2

)
◦
(
c1
c2

)
=

a1b1c2 a1b2c2
a2b1c2 a2b2c2

a1b1c1 a1b2c1
a2b1c1 a2b2c1

We can see that the indexes of the entries in the resulting tensor follow the
same pattern as displayed by the entries of the tensor given in equation 1.5.

We can rewrite the outer product of three vectors as a matricization of the
resulting tensor along the different modes in the following way,

T(1) =

(
a1

a2

)((
c1
c2

)
�
(
b1
b2

))T

(1.6)

T(2) =

(
b1
b2

)((
c1
c2

)
�
(
a1

a2

))T

(1.7)

T(3) =

(
c1
c2

)((
b1
b2

)
�
(
a1

a2

))T

(1.8)
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MATLAB 1.1

The following MATLAB script performs the outer product of three given vectors
and computes the matricization along the three modes of the resulting tensor.

MATLAB 1.1 Outer Product

a=[1;2],b=[3;4],c=[5;6]

T_1 = a*(kron(c,b))’; T = tensor(T_1, [2,2,2])

T_1 = a*(kron(c,b))’

T_2 = b*(kron(c,a))’

T_3 = c*(kron(b,a))’

Running through this MATLAB code we obtain the following result,

a =

1
2

b =

3
4

c =

5
6

T is a tensor of size 2 x 2 x 2
T(:,:,1) =

15 20
30 40

T(:,:,2) =
18 24
36 48

T_1 =

15 20 18 24
30 40 36 48

T_2 =

15 30 18 36
20 40 24 48

T_3 =

15 30 20 40
18 36 24 48

>>

Note that we use the kron command of MATLAB to compute the Khatri
Rao products given in equations 1.6, 1.7 and 1.8. As we saw in section 1.2 the
Kronecker and Khatri Rao products are identical when considering vectors.
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1.4.2 Tensor Multiplication

Just as we have defined the multiplication of vectors and different ways of mul-
tiplying matrices, we can define tensor multiplication. We can define three
different tensor products depending on whether the tensors is multiplied by
another tensor of the same size, by a matrix or by a vector.

Thus we define,

• Scalar product of two tensors of the same size.

• The n-mode matrix product of a tensor with a matrix.

• The n-mode vector product of a tensor with a vector.

Tensor Inner Product

We have defined the inner product of two vectors as the sum of the products
of the corresponding entries of each vector. In the same way, we can define the
inner product of two same-sized tensors.

Let,

A =

a5 a6

a7 a8

a1 a2

a3 a4

and B =

b5 b6
b7 b8

b1 b2
b3 ab

Then, the inner product of both tensors is defined by,

〈A,B〉 = a1b1 + a2b2 + a3b3 + a4b4 + a5b5 + a6b6 + a7b7 + a8b8

Tensor Times Matrix

We defined usual matrix multiplication as being the inner product of the rows
of the first matrix with the columns of the second matrix.

When considering the product of a tensor times a matrix, we have to decide
which dimension of the tensor we are going to take into account when computing
the product to develop a similar kind of algorithm as we use for multiplying
matrices. We ”decide” the dimension of the tensor we are going to consider by
defining the n-mode product of a tensor T with a matrix A. Hence we can take
the product of a given tensor times a matrix in so many modes as dimensions
of the tensor.

We denote the n-mode product of a tensor T with a matrix A as,

P = T ×n A

where each mode-n fiber of T is multiplied by the matrix A to compute each
mode-n fiber of the resulting tensor P.

We can also express this multiplication in terms of unfolded tensors as

P = T ×n A⇐⇒ P(n) = AT(n)
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We can visualize this tensor multiplication in the following figure.

Figure 1.10: Visualization of the Tensor by Matrix Multiplication

We can see that the matricization process is vital when computing with both
matrices and tensors. We will see that this is also the case when computing
with vectors and tensors. In the following example we are going to compute the
product of a tensor by a matrix along the first mode.

Example 1.2

Let us consider the tensor T =

5 6
7 8

1 2
3 4

and the matrix A =

(
a b
c d

)
.

We want to find the 1-mode product of T with the matrix A.

Writing the tensor T in its mode-1 matricization as T(1) =

(
1 2 5 6
3 4 7 8

)
we can work out the tensor product as follows,

P = T ×1 A ; P(1) = AT(1) =

(
a b
c d

)(
1 2 5 6
3 4 7 8

)

=

(
a+ 3b 2a+ 4b 5a+ 7b 6a+ 8b
c+ 3d 2c+ 4d 5c+ 7d 6c+ 8d

)

;

5c+ 7d 6c+ 8d
5a+ 7b 6a+ 8b

a+ 3b 2a+ 4b
c+ 3d 2c+ 4d

f
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MATLAB 1.2

The following MATLAB script developed by Bader and Kolda [1] performs the
product of a tensor times a matrix along the different modes of the tensor.

MATLAB 1.2 Tensor times Matrix along the Different Modes

M = [0,2,5,6;3,4,7,8]; T = tensor(M, [2,2,2])

A = [1,2;3,4]

P1 = ttm(T,A,1) %mode 1

P2 = ttm(T,A,2) %mode 2

P3 = ttm(T,A,3) %mode 3

running through this script we obtain,

T is a tensor of size 2 x 2 x 2

T(:,:,1) =
0 2
3 4

T(:,:,2) =
5 6
7 8

A =

1 2
3 4

P1 is a tensor of size 2 x 2 x 2
P1(:,:,1) =

6 10
12 22

P1(:,:,2) =
19 22
43 50

P2 is a tensor of size 2 x 2 x 2
P2(:,:,1) =

4 8
11 25

P2(:,:,2) =
17 39
23 53

P3 is a tensor of size 2 x 2 x 2
P3(:,:,1) =

10 14
17 20

P3(:,:,2) =
20 30
37 44

>>
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Tensor Times Vector

Following the algorithm developed for multiplying tensors with matrices, we
can take the product of a given tensor times a vector in so many modes as
dimensions of the tensor.

We denote the n-mode product of a tensor T with a vector v as,

P = T ×̄nv

where each mode-n fiber of T is multiplied by the vector v to compute the
result.

Example 1.3

Let us consider the tensor T =

5 6
7 8

1 2
3 4

and the vector v =

(
a
b

)
.

We want to find the 1-mode product of T with the vector v.

We saw in example 1.1 that the mode-1 fibers of T are given by the columns

of its mode-1 matricization, that is, T(1) =

(
1 2 5 6
3 4 7 8

)
.

Thus, we can work out the tensor product as follows,

P = T ×̄1v =

(
a+ 3b 5a+ 7b
2a+ 4b 6a+ 8b

)

f

MATLAB 1.3

The following MATLAB script developed by Bader and Kolda [1] performs the
product of a tensor times a vector along the different modes of the tensor.

MATLAB 1.3 Tensor times Vector

M = [1,2,5,6;3,4,7,8]; T = tensor(M, [2,2,2])

v = [1;2]

P1 = ttv(T,v,1)

P2 = ttv(T,v,2)

P3 = ttv(T,v,3)

Running through this script we obtain,
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T is a tensor of size 2 x 2 x 2

T(:,:,1) =
1 2
3 4

T(:,:,2) =
5 6
7 8

v =

1
2

P1 is a tensor of size 2 x 2
P1(:,:) =

7 19
10 22

P2 is a tensor of size 2 x 2
P2(:,:) =

5 17
11 23

P3 is a tensor of size 2 x 2
P3(:,:) =

11 14
17 20

>>

Tensor Norm

Whereas the norm of a vector is mainly a geometrical concept that defines its
length, we can also define the norm of a tensor in a similar way as it is defined
for matrices.

In equations 1.2 and 1.3 we defined the euclidean norm of the vector and
the Frobenius matrix norm respectively. Similarly, we can define the Frobenius
norm of a tensor T of size I × J ×K by the equation

‖T ‖F =

 I∑
i=1

J∑
j=1

K∑
k=1

|tijk|2)

1/2

=
√
〈T , T 〉 (1.9)

where 〈T , T 〉 is the inner product of the tensor by itself.

Example 1.4

Let us consider the tensor

T =

5 6
7 8

1 2
3 4

then the norm of the tensor will be given by

‖T ‖F =
√
〈T , T 〉 =

(
12 + 22 + 32 + 42 + 52 + 62 + 72 + 82

)1/2

=
(
12 + 22 + 32 + 42 + 52 + 62 + 72 + 82

)1/2
= 2
√

51

f
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1.5 Tensor Decompositions

We know that we can decompose a given matrix in different ways depending on
the type of problem that we wish to solve.

If we want to solve a system of equations, we will probably choose a LU
decomposition for the matrix representing the equations.

Other matrix decompositions take orthogonality as a main issue and compute
decompositions with orthogonal components.

But if we want to compute operations on a matrix or discover the inner
geometrical structure of the transformation given by a matrix, we will probably
prefer to work with a diagonalized version of our original matrix and we will
use the SVD decomposition.

Thus, we can deduce that tensor decomposition will be an important issue
when analyzing tensors.

We can define different decompositions that represent different approaches
to the various problems that arise when studying tensors.

In this report we will consider the generalization of the Singular Value matrix
Decomposition (SVD) to higher order arrays which correspond to the Higher
Order Singular Value Decomposition (HOSVD) on one hand, and the CANDE-
COMP/PARAFAC decomposition (canonical decomposition and parallel factor
decomposition respectively) on the other hand. These two decompositions are
connected with two different tensor generalizations of the concept of matrix
rank.

1.5.1 CANDECOMP/PARAFAC

This tensor decomposition was first attempted by Hitchcock [18, 19] in 1927
and Eckart and Young [12] in 1936.

However it was not fully introduced until 1970 with the work of Harshman
about the PARAFAC decomposition [16] and of Carroll and Chang about CAN-
DECOMP [4]. Both papers appeared in Psychometrika and explained the same
decomposition.

The CANDECOMP/PARAFAC is based on the fact that tensors can be
rewritten as the sum of several other tensors.

We saw before in subsection 1.4.1 that the outer product of three vectors
gives a tensor as a result. We shall denote this tensor to be of rank 1 and we
will use the term ”rank 1 tensor” to denote tensors that can be written as the
outer product of a vector triple.

The CANDECOMP/PARAFAC decomposition rewrites a given tensor as a
sum of several rank 1 tensors.

Following the argument above, we will define a tensor to be of rank 2 if it
can be expressed as the sum of two rank 1 tensors. Similarly, we define a tensor
to be rank 3 if it can be expressed as the sum of three rank 1 tensors.

Definition The rank of a tensor T is the minimal number of rank 1 tensors
that yield T as a linear combination [21].

Since in this report we concentrate on 2×2×2 tensors, we will only encounter
tensors up to rank 3.
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Summarizing we have,

Figure 1.11: Visualization of the PARAFAC Decomposition of a Rank 1 Tensor

Figure 1.12: Visualization of the PARAFAC Decomposition of a Rank 2 Tensor

Figure 1.13: Visualization of the PARAFAC Decomposition of a Rank 3 Tensor

We can summarize these ideas mathematically as,

T =

R∑
r=1

ar ◦ br ◦ cr

where R is the number of vector triples that compose T when added up.

This decomposition will also be represented by the following expression

T = JA B CK

where the matrices are given by A = (a1,a2, · · · ,aR), B = (b1,b2, · · · ,bR),
C = (c1, c2, · · · , cR) with vectors ai, bi, and ci , i = 1, · · · , R as columns.

Hence we can write the PARAFAC decomposition of a rank R tensor as
T = a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2 + · · ·+ aR ◦ bR ◦ cR

=
∑R

r=1 ar ◦ br ◦ cr

= JA B CK
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1.5.2 HOSVD. Higher Order Singular Value Decomposi-
tion

This tensor decomposition is based on the Tucker model, which was introduced
by Tucker in 1963 [30] and refined in later articles also by Tucker [31, 32].

The Tucker model is based on the possibility of expressing a tensor as the
result of the n-mode product of another tensor of equal size with several matri-
ces.

We can represent this decomposition as shown in the following picture.

Figure 1.14: Visualization of the Tucker Decomposition of a Tensor

Mathematically, we can write the Tucker model as

T = G ×1 A×2 B×3 C

where G is the core tensor.

This approach has been recently further developed by L. De Lathauwer, B.
De Moor and J. Vandewalle [8] by setting conditions of orthogonality on the
slices of the matrices and on the slices of the core tensor. These developments
aims to generalize the SVD matrix decomposition to tensor analysis, so that it
can be also defined as Higher Order Singular Value Decomposition.

In the HOSVD of a tensor T , matrices A, B, and C must be orthogonal
and will be from now on represented with the letters

(
U(1),U(2),U(3)

)
. The

Higher Order SVD also sets conditions of orthogonality on the core tensor G.
This tensor must have mutually orthogonal slices in all the three different modes
of T so that the slices satisfy the equations 〈G1,G2〉 = 0, where the matrices
are considered in all three modes of the tensor.

We can visualize this decomposition as shown in the following figure

Figure 1.15: Visualization of the HOSVD of a Tensor where U(1),U(2),U(3) are
orthogonal matrices and 〈G1,G2〉 = 0 holds for any matrix slices G1 and G2 in
an arbitrary mode.
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We can write the Higher Order SVD model as

T = G ×1 U(1) ×2 U(2) ×3 U(3)

where G is the core tensor such that the slices along the three modes of the
tensor are orthogonal.

Now, we write the SVD of a matrix A as,

A = UΣVT

where U and V are orthonormal eigenvector matrices of AAT and ATA
respectively.

We compute the HOSVD of a tensor T by first computing the SVD of the
different matrizations along the different modes

(
T(1),T(2),T(3)

)
as seen in

subsection 1.3.2 and example 1.1. The result of the multiplication of the tensor
T by the inverses of the first normalized eigenvector matrices

(
U(1),U(2),U(3)

)
will produce the core tensor G.

In this algorithm we can see the importance of the matricization process
when dealing with tensors.

Example 1.5

In this example we are going to compute the HOSVD of a tensor.
Let us consider the tensor

T =

−1 1
1 0

1 0
1 −1

We want to rewrite the given tensor T as the n-mode product of a core
tensor G with three orthogonal matrices that will be represented by U1,U2,
and U3.

First we compute the matricizations of the given tensor along the different
modes to find the following three different 2× 4 matrices.

T(1) =

[
1 0 −1 1
1 −1 1 0

]

T(2) =

[
1 1 −1 1
0 −1 1 0

]

T(3) =

[
1 1 0 −1
−1 1 1 0

]
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We can compute that the Singular Value Decompositions of T(1), T(2) and
T(3) are given by

T(1) = U(1)Σ(1)(V(1))
T

=

[
1 0
0 1

] [ √
3 0 0 0

0
√

3 0 0

]


1√
3

0 − 1√
3

1√
3

1√
3

− 1√
3

1√
3

0

1
2
√

3
3+
√

3
6

1
2

√
2−
√

3
6

1
2

√
2−
√

3
6 − 1

2
√

3
− 3+

√
3

6



=

[
1 0
0 1

] [
1.7321 0 0 0

0 1.7321 0 0

]
0.57735 0 −0.57735 0.57735
0.57735 −0.57735 0.57735 0
0.28868 0.78868 0.5 0.21132

0.5 0.21132 −0.28868 −0.78868



T(2) = U(2)Σ(2)(V(2))
T

=


√√

5+5
10

√
2√
5+5

−
√

2√
5+5

√√
5+5
10

[ √√5 + 3 0 0 0

0
√
−
√

5 + 3 0 0

]


√

1
5+
√

5

√
1

5−
√

5
−
√

1
5−
√

5

√
1

5+
√

5√
1

5−
√

5
−
√

1
5+
√

5

√
1

5+
√

5

√
1

5−
√

5

0.1 0.7 0.7 −0.1
0.7 −0.1 −0.1 −0.7



=

[
0.85065 0.52573
−0.52573 0.85065

] [
2.2882 0 0 0

0 0.87403 0 0

]
0.37175 0.6015 −0.6015 0.37175
0.6015 −0.37175 0.37175 0.6015

0.1 0.7 0.7 −0.1
0.7 −0.1 −0.1 −0.7



T(3) = U(3)Σ(3)(V(3))
T

=

[
1 0
0 −1

] [ √
3 0 0 0

0
√

3 0 0

]


1/
√

3 1/
√

3 0 −1/
√

3

1/
√

3 −1/
√

3 −1/
√

3 0
1√
6

− 1√
6

√
2
3 0

1√
6

1√
6

0
√

2
3



=

[
1 0
0 −1

] [
1.7321 0 0 0

0 1.7321 0 0

]
0.57735 0.57735 0 −0.57735
0.57735 −0.57735 −0.57735 0
0.37272 −0.37272 0.81364 0
0.44093 0.37272 0 0.81364


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Thus we can write the three orthogonal matrices U1,U2,U3 as

U1 =

[
1 0
0 1

]

U2 =


√√

5+5
10

√
2√
5+5

−
√

2√
5+5

√√
5+5
10

 =

[
0.85065 0.52573
−0.52573 0.85065

]

U3 =

[
1 0
0 −1

]
Now we want to compute the core tensor G that will be given by the product,

G = T ×1 (U1)T ×2 (U2)T ×3 (U3)T

substituting the expressions found above for U1, U2 and U3 we obtain,

G =

(√√
5+5
10 −

√
2√
5+5

) (
−
√√

5+5
10 −

√
2√
5+5

)
−
√√

5+5
10

√
2√
5+5√√

5+5
10 −

√
2√
5+5(√√

5+5
10 −

√
2√
5+5

) (
−
√√

5+5
10 −

√
2√
5+5

)

=

0.32492 −1.3764
−0.85065 0.52573

0.85065 −0.52573
0.32492 −1.3764

Thus, we can express the HOSVD of the given tensor T as,

T =



(√√
5+5
10 −

√
2√
5+5

) (
−
√√

5+5
10 −

√
2√
5+5

)
−
√√

5+5
10

√
2√
5+5√√

5+5
10 −

√
2√
5+5(√√

5+5
10 −

√
2√
5+5

) (
−
√√

5+5
10 −

√
2√
5+5

)



×1

[
1 0
0 1

]
×2


√√

5+5
10

√
2√
5+5

−
√

2√
5+5

√√
5+5
10

×3

[
1 0
0 −1

]

=


0.32492 −1.3764
−0.85065 0.52573

0.85065 −0.52573
0.32492 −1.3764

×1

[
1 0
0 1

]
×2

[
0.85065 0.52573
−0.52573 0.85065

]
×3

[
1 0
0 −1

]

f
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1.6 Rank Issues

We have seen that tensors are closely related to matrices. We see that we can find
a multidimensional counterpart for many features of matrices, say dimension,
multiplication or decomposition. One of the most interesting aspects of tensors
is rank, and we will study rank related problems throughout the rest of this
report.

1.6.1 Defining Rank

Although the concept of rank when referred to tensors is related to that of
matrix rank, there are important differences between them. There is not even
a unique way of generalizing the concept from matrices to their higher-order
counterpart.

Tensor Rank

We have seen before that a tensor can be rewritten as the sum of several other
tensors that arise as the result of computing the outer product of three vectors.
We have seen how the PARAFAC decomposition is based on this idea.

We will use the result above to define the rank of a tensor as the minimum
number of vector triples that yield the tensor as their sum (see figures 1.11, 1.11,
1.12 above). We see that rank is a fundamental concept when talking about
the PARAFAC decomposition.

Tensors and k-rank

The k-rank of a matrix A, denoted kA, is defined as the maximum number
k such that any k columns in A are linearly independent [27]. This concept
was first introduced by Kruskal, whom it owes the k in its name, and will be
fundamental when studying uniqueness.

Example 1.6

Let T =

(
1
1

)
◦
(

1
1

)
◦
(

1
1

)
+

(
−1
1

)
◦
(

1
−1

)
◦
(
−1
1

)

=

0 2
2 0

2 0
0 2

Hence we can write T = JA, B, CK where the component matrices are

A =

(
1 −1
1 1

)
, B =

(
1 1
1 −1

)
, C =

(
1 −1
1 1

)
Calculating the rank of each component matrix we find,

kA = 2, kB = 2, kC = 2,

f
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Tensor n-rank

Generalizing the concept of matrix row rank and column rank, Lathauwer [9, ?]
defines the n-rank of a tensor as the dimension of the vector space spanned by
the n-mode vectors (fibers) of T , that is, the n-rank of a tensor is given by the
column rank of its mode-n matricization.

Thus we can write

rankn (T ) = rank
(
T(n)

)
Example 1.7

Let us consider the tensor

T =

2 0
2 0

0 2
0 2

Then, computing the rank of the matricizations of T along the different
modes we can find out the different n-ranks of T ,

T(1) =

[
0 2 2 0
0 2 2 0

]
=⇒

1-rank
We can see that this matrix has
rank 1. Hence we deduce that
1-rank = 1

T(2) =

[
0 0 2 2
2 2 0 0

]
=⇒

2-rank
We can see that this matrix has
rank 2. Hence we deduce that
2-rank = 2.

T(3) =

[
0 0 2 2
2 2 0 0

]
=⇒

3-rank
We can see that this matrix has
rank 2. Hence we deduce that
3-rank = 2.

f

1.6.2 Problems about Rank

We can easily find the rank of a matrix. However, computing the rank of a
tensor is not an easy issue.

These difficulties makes decomposition a much more complicated operation
than it is for matrices. In fact, there is no straightforward algorithm to deter-
mine the rank of a tensor [2].

This leads to the question of determining how often do tensors of a certain
rank occur when considering tensors of a given size. How often do tensors have
rank 2 when considering 2× 2× 2 tensors? And how often will rank 3 occur?
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Typical Rank

In this sense we can define the typical rank of a tensor as the rank that occurs
with positive probability for random tensors of a given size. For example, using
numerical methods, Kruskal [21] found that rank 2 tensors occur with probabil-
ity 0.79 when considering 2 × 2 × 2 tensors whereas rank 3 tensors occur only
with probability 0.21 when using normal distribution to set the entries of the
tensor. We can deduce that both rank 2 and rank 3 are typical rank for 2×2×2
tensors.

Generic Rank

If the typical rank is unique then we can consider it to be generic, since tensors
will have that rank with probability 1.

Rank and Tensor Decompositions

Computing the rank of a tensor will be a fundamental problem when working
out tensor decompositions. In general, we cannot compute the PARAFAC de-
composition unless we know the rank of the tensor we want to decompose, since
we must compute the components simultaneously and these will be vectors, 2×2
matrices or 2 × 3 matrices depending on the tensor being of rank 1, 2 or 3 re-
spectively. And even if we achieve to compute the corresponding decomposition
of a tensor, we still do not know if it is the only one.

In the next Chapter we will explain the issues relating tensor rank and
tensor decomposition more closely, whereas in Chapters 3 and 4 we will study
uniqueness and degeneracy respectively.



Chapter 2

Tensors

In this chapter we are going to analyze 2 × 2 × 2 tensors concentrating on
problems about rank, decompositions and lower rank approximations to a given
tensor.

2.1 Computing PARAFAC Components

PARAFAC components are usually estimated by minimization of the quadratic
cost function

f(A,B,C) =

∥∥∥∥T − R∑
r=1

ar ◦ br ◦ cr

∥∥∥∥2

(2.1)

When minimizing the function above 2.1, we encounter two different prob-
lems:

• If this function becomes zero, then we have computed a decomposition of
the tensor T .

• If we can compute the minimum of the function above and it is distinct
from zero, then we have computed the best rank R approximation to the
given tensor T .

Equation 2.1 is most often minimized by means of the Alternating Least
Squares algorithm in which the components are updated mode per mode [10].

Note that the components of the PARAFAC decomposition of 2 × 2 × 2
tensors are either vectors, 2 × 2 matrices or 2 × 3 matrices depending on the
rank R of the tensor being 1, 2 or 3.

In each case, the component matrices will be defined as,

A = (a1,a2, · · · ,aR)

B = (b1,b2, · · · ,bR)

C = (c1, c2, · · · , cR)

with vectors ai, bi, and ci , i = 1, · · · , R as columns.

Rovi, 2010. 33
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We can rewrite the quadratic cost function given in equation 2.1 as,

f(A,B,C) =
∥∥T − JA, B, CK

∥∥2
(2.2)

Using the Alternating Least Squares algorithm to solve this equation, we
find that the ALS fixes B and C to find A. Then takes A and C to update B.
Then takes A and the updated B to update C. The updating process is iterated
until we find some convergence criterion.

Using equations 1.6, 1.7 and 1.8, we can write equation 2.1 in matricized
form, one per mode, as follows,

min
A

∥∥T(1) −A (C�B)
T ∥∥ (2.3)

min
B

∥∥T(2) −B (C�A)
T

∥∥∥∥ (2.4)

min
C

∥∥∥∥T(3) −C (B�A)
T

∥∥∥∥ (2.5)

Solving the equations above, we find that we can update each component
matrix A, B and C as follows,

A←− T(1)

[
(C�B)

T
]†

(2.6)

B←− T(2)

[
(C�A)

T
]†

(2.7)

C←− T(3)

[
(B�A)

T
]†

(2.8)

which we can rewrite as in Kolda [2],

A←− T(1) (C�B)
(
CTC ∗BTB

)†
(2.9)

B←− T(2) (C�A)
(
CTC ∗ATA

)†
(2.10)

C←− T(3) (B�A)
(
BTB ∗ATA

)†
(2.11)
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2.2 Rank 1 Tensors

We shall begin the analysis of the 2× 2× 2 tensors by considering the structure
of the rank 1 tensors, which we know can be written as the outer product of 3
vectors.

Example 2.1

We begin studying the rank 1 tensor proposed in Kruskal [21]
We have

T =

10 20
30 60

1 2
3 6

We can spot that T is a rank 1 tensor since all its mode-1 fibers are multiples
of the Ti11 fiber, given by

Ti11 =

[
1
3

]
Using MATLAB’s Tensor Toolbox [3], we find the decomposition,

T = 71.0634

(
0.3162
0.9487

)
◦
(

0.4472
0.8944

)
◦
(

0.0995
0.9950

)

where a =

(
0.3162
0.9487

)
, b =

(
0.4472
0.8944

)
and c =

(
0.0995
0.9950

)
are normalized.

Note that the vectors a, b and c are multiples of the vectors

(
1
3

)
,

(
1
2

)
and

(
1

10

)
respectively.

f

We are going to use an Alternating Least Squares algorithm to compute the
PARAFAC decompositions of different tensors and we will try to reach some
results for a general case which can reveal something about the inner structure
of rank 1 tensors.

Since we want to compute the PARAFAC decomposition of rank 1 tensors,

the component matrices A, B and C will be given by vectors a =

(
a1

a2

)
,

b =

(
b1
b2

)
and c =

(
c1
c2

)
so that the updating equations 2.6, 2.7, 2.8 used

by the Alternating Least Squares algorithm become,

(
a1

a2

)
←− T(1)

[((
c1
c2

)
�
(
b1
b2

))T
]†

(2.12)
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(
b1
b2

)
←− T(2)

[((
c1
c2

)
�
(
a1

a2

))T
]†

(2.13)

(
c1
c2

)
←− T(3)

[((
b1
b2

)
�
(
a1

a2

))T
]†

(2.14)

which we can rewrite using equations 2.9 , 2.10 , 2.11 , as in Kolda [2],

a←− T(1) (c� b)
(
cT c ∗ bTb

)†
(2.15)

b←− T(2) (c� a)
(
cT c ∗ aTa

)†
(2.16)

c←− T(3) (b� a)
(
bTb ∗ aTa

)†
(2.17)

Note that the expression given by
(
vTv ∗wTw

)†
for two vectors v,w ∈ R2

is a scalar if v,w 6= 0.

2.2.1 Working out the Decomposition of a Rank 1 Tensor
Using ALS

We now take another rank 1 tensor, similar to the one proposed by Kruskal and
work the decomposition by hand using the Alternating Least Squares algorithm
to see the basic steps of the algorithm.

Take,

T =

2 4
6 12

1 2
3 6

We set the starting values b0 =

(
1
−1

)
and c0 =

(
1
0

)
and use equation

2.15 to compute a1.

a1 = T(1)

((
1
0

)
�
(

1
−1

))((
1
0

)T (
1
0

)
∗
(

1
−1

)T (
1
−1

))†

=

[
1 2 2 4
3 6 6 12

]
1
−1

0
0

 ((1) ∗ (2))
†

=

(
−1/2
−3/2

)

Now we set c0 =

(
1
0

)
and a1 =

(
−1/2
−3/2

)
and use equation 2.16 to compute

b1.

b1 = T(2)

((
1
0

)
�
(
−1/2
−3/2

))((
1
0

)T (
1
0

)
∗
(
−1/2
−3/2

)T ( −1/2
−3/2

))†
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=

[
1 3 2 6
2 6 4 12

]
−1/2
−3/2

0
0

 ((1) ∗ (5/2))
†

=

(
−2
−4

)

Now we set b1 =

(
−2
−4

)
and a1 =

(
−1/2
−3/2

)
and use equation 2.17 to

compute c1.

c1 = T(3)

((
−2
−4

)
�
(
−1/2
−3/2

))((
−2
−4

)T ( −2
−4

)
∗
(
−1/2
−3/2

)T ( −1/2
−3/2

))†

=

[
1 3 2 6
2 6 4 12

]
1
3
4
6

 ((20) ∗ (5/2))
†

=

(
1
2

)

Going through the above algorithm again to find a2,b2 and c2, we obtain

a2 = a1 =

(
−1/2
−3/2

)
, b2 = b1 =

(
−2
−4

)
and c2 = c1 =

(
1
2

)
and we stop to iterate since the values for a, b and c converge.
Thus we can write,

2 4
6 12

1 2
3 6

=

(
−1/2
−3/2

)
◦
(
−2
−4

)
◦
(

1
2

)

2.2.2 General Rank 1 Tensor

We can see that the relation between the different components of each of the
three vectors of the PARAFAC decomposition matches the scalings between the
3 ways of the rank 1 tensor.

We are going to consider a general tensor and see what relations must hold
between its entries to make it be a rank 1 tensor.

Let T be a tensor of rank 1, then we can write it as the outer-product of
three vectors.

We can assume,

(
1
a2

)
◦
(

1
b2

)
◦
(
c1
c2

)
=

t112 t122

t212 t222

t111 t121

t211 t221

with a2, b2, c1, c2 6= 0 and non-zero entries in the tensor.
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Thus, we can rewrite the equation above as set of equations in four variables.

c1 = t111 (1)
c2 = t112 (2)

b2c1 = t121 (3)
b2c2 = t122 (4)
a2c1 = t211 (5)
a2c2 = t212 (6)

a2b2c1 = t221 (7)
a2b2c2 = t222 (8)

Hence we obtain,

a2 =
t221

t121
=
t211

t111
=
t212

t112
=
t222

t122
, b2 =

t121

t111
=
t122

t112
=
t222

t212
=
t221

t211
, c1 = t111, c2 = t112

We can see that a2 denotes the ratio between the entries in each mode-1 fiber
of the tensor.

In a similar way, we see that b2 denotes the ratio between the entries in each
mode-2 fiber of the tensor.

Finally, we see that c2 denotes the ratio between the entries in each mode-3
fiber of the tensor.

Now we are going to consider the case when one or more entries of the vectors
are zero. We can find that in these cases, the entire corresponding slice of the
tensor becomes zero.

Let us consider the case a2 = 0.

If a2 = 0 then we can write

(
1
0

)
◦
(

1
b2

)
◦
(
c1
c2

)
=

t112 t122

0 0
t111 t121

0 0

and we can see that the lower horizontal slice T2:: has all entries equal to
zero.

Hence we can write the equation above as,

c1 = t111 (1)
c2 = t112 (2)

b2c1 = t121 (3)
b2c2 = t122 (4)

with solutions,

b2 =
t121

t111
=
t122

t112
, c1 = t111, c2 = t112

Similarly, we can find the general form of the decomposition of a rank 1
tensor when other entries of the component vectors are zero.
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Thus we can easily check if a given tensor is rank 1 by checking the ratios
between the entries in each mode.

Also, we see that we can find the PARAFAC decomposition of a rank 1
tensor by writing the ratios between the entries in each mode as the entries of
each corresponding vector of the decomposition. If the entries of one or more
slices of the tensor are zero, then the corresponding entry in the component
vector is zero.

2.3 Best Lower Rank Approximation to a Ten-
sor

The question of approximating a matrix by another of lower rank is an important
issue in matrix analysis. We want to find a matrix of lower rank that is closest
to a given matrix A of rank r.

Let A be matrix of rank r and let B be the matrix of rank k with k < r
that is closest to A.

Then

‖A−B‖F =
√
σ2
k+1 + . . .+ σ2

r

where σk is the k-singular value of the matrix A.
We can see that the distance between the matrix and its lower rank approx-

imation is given by a function of the relevant singular values.

We can generalize this concept to the tensor analysis. Nevertheless, we will
see that although the underlying ideas are the same, there are important features
when computing the best rank approximation to a tensor that makes this issue
quite different from its matrix counterpart.

When considering tensors, we want to find some tensor B which has a lower
rank than the tensor T such that the expression,

‖T − B‖F (2.18)

is minimized.
While the distance between a matrix and its best lower rank approximation

is given by a function of some of the singular values, there is no such straight-
forward result for tensors and we have to compute it using an iterative method.

This is usually done using an Alternating Least Squares algorithm as ex-
plained in section 2.1.

The best rank 1 approximation is an important tool when analyzing tensors.
This approximation provides a rank 1 tensor as a result; and these tensors can
be easily decomposed as the outer product of vectors as we have seen in the
previous section. All tensors can be more or less closely approximated by the
result of the outer product of three vectors.

The best rank 2 approximation can provide some information about the
actual rank of the given tensor. However, this approximation displays special
features that make it very different from its rank 1 counterpart.
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Once we have computed the best lower-rank approximation B to a tensor
T , we will be interested in knowing how good an approximation it is. If the
expression given in equation 2.18 is very small, then we can deduce that the
approximation is very close to the tensor T .

2.3.1 Best Rank 1 Approximation

We can find the best rank 1 approximation to a given tensor by minimizing the
quadratic cost function given by equation 2.1, which we can write for R = 1 as,

f(a,b, c) = ‖T − a ◦ b ◦ c‖2 (2.19)

By minimizing this equation, we will find the rank 1 tensor that is closest
to the given tensor T .

We will use the Alternating Least Squares algorithm, as we did for computing
the PARAFAC decomposition of a rank 1 tensor in Section 2.2.

Working out the Best Rank 1 Approximation to a Tensor

We will consider the rank 2 tensor proposed in Kruskal [21]
Let,

T =

0 1
1 0

1 0
0 1

We set the starting conditions b0 =

(
1
0

)
and c0 =

(
−1

1

)
and use equation

2.15 to compute a1.

a1 = T(1)

((
−1

1

)
�
(

1
0

))((
−1

1

)T ( −1
1

)
∗
(

1
0

)T (
1
0

))†

=

[
1 0 0 1
0 1 1 0

]
−1

0
1
0

 ((2) ∗ (1))
†

=

(
−1/2

1/2

)

Now we set c0 =

(
−1

1

)
and a1 =

(
−1/2

1/2

)
and use equation 2.16 to

compute b1.

b1 = T(2)

((
−1

1

)
�
(
−1/2

1/2

))((
−1

1

)T ( −1
1

)
∗
(
−1/2

1/2

)T ( −1/2
1/2

))†

=

[
1 0 0 1
0 1 1 0

]
1/2
−1/2
−1/2

1/2

 ((2) ∗ (1/2))
†

=

(
1
−1

)
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Now we set b1 =

(
1
−1

)
and a1 =

(
−1/2

1/2

)
and use equation 2.17 to

compute c1.

c1 = T(3)

((
1
−1

)
�
(
−1/2

1/2

))((
1
−1

)T (
1
−1

)
∗
(
−1/2

1/2

)T ( −1/2
1/2

))†

=

[
1 0 0 1
0 1 1 0

]
−1/2

1/2
1/2
−1/2

 ((2) ∗ (1/2))
†

=

(
−1

1

)

Going through the above algorithm again to find a2,b2 and c2, we obtain,

a2 = a1 =

(
−1/2

1/2

)
, b2 = b1 =

(
1
−1

)
and c2 = c1 =

(
−1

1

)
and we stop to iterate since the values for a, b and c converge.

Thus we can write, after normalizing the vectors a, b and c

B1 = 1.4142×
(
−0.7071

0.7071

)
◦
(

0.7071
−0.7071

)
◦
(
−0.7071

0.7071

)
=

−1/2 1/2
1/2 −1/2

1/2 −1/2
−1/2 1/2
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MATLAB 2.1

The following MATLAB script performs the computation of the best rank 1
approximation to a given tensor.

MATLAB 2.1 Best Rank 1 Approximation

M = [1 2 5 6; 3 4 7 8]; %this matrix denotes the mode-1 matricization

of the given tensor

T = tensor(M, [2,2,2]) %this line builds up the tensor

B = parafac_als(T,1) % this line computes the approximation

However, when setting the rank 2 tensor T in MATLAB and running the
tensor toolbox as shown in the script above, we obtain the following solution,

T is a tensor of size 2 x 2 x 2

T(:,:,1) =
1 0
0 1

T(:,:,2) =
0 1
1 0

CP_ALS:

Iter 1: fit = 2.924501e-001 fitdelta = 2.9e-001
Iter 2: fit = 2.928932e-001 fitdelta = 4.4e-004
Iter 3: fit = 2.928932e-001 fitdelta = 5.7e-014
Final fit = 2.928932e-001

B is a ktensor of size 2 x 2 x 2
B.lambda = [ 1.4142 ]

B.U{1} =
0.7071
0.7071

B.U{2} =
0.7071
0.7071

B.U{3} =
0.7071
0.7071

>>

We define the term final fit of an approximation used in the MATLAB
Tensor Toolbox as a percentage showing how close the approximation is to the
tensor. If we have a final fit of 1, then the approximation fits exactly and
represents the tensor itself making equation 2.18 equal to zero. If we have a
final fit much smaller than one, then we can deduce that the approximation is
not very close to the tensor.

The final fit of an approximation is given by the expression,

1− ‖T − B‖F
‖T ‖F



2.3. Best Lower Rank Approximation to a Tensor 43

Thus we can write B2 as

B2 = 1.4142×
(

0.7071
0.7071

)
◦
(

0.7071
0.7071

)
◦
(

0.7071
0.7071

)
=

1/2 1/2
1/2 1/2

1/2 1/2
1/2 1/2

where the displayed vectors are normalized.

We can see that B1 and B2 represent two different rank 1 approximations to
the tensor T .

Conclusion

Substituting the expressions found for T , B1 and B2 in equation 2.19
and using equation 1.9 to compute the Frobenius norm of the difference
between both tensors we can see that,

‖T − B1‖ =

∥∥∥∥∥
1/2 1/2
1/2 1/2

1/2 1/2
1/2 1/2

∥∥∥∥∥
F

=
√

2

Similarly, we see that

‖T − B2‖ =

∥∥∥∥∥
1/2 1/2
1/2 1/2

1/2 1/2
1/2 1/2

∥∥∥∥∥
F

=
√

2

Since the value for the distance between the tensor T and its approxima-
tions B1 and B2 is the same in both cases, we can deduce that B1 and B2

represent equally good approximations to T .

We can see that the final fit of both approximations is,

1−
√

2

2
= 0.29289 to 5 decimal places

as computed by MATLAB.

Thus we deduce that there is more than one best rank 1 approximation
to a tensor of rank 2. That is, “best”does not mean “unique”.
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Representing Rank 1 Approximations to a Tensor

We are going to represent the minimizing function f(a,b, c) as given in equation
2.19. We can find similar representations in Lathauwer, Moor and Vandewalle
[9].

We are going to consider different tensors that we define as

T =

E F

G H

A B

C D

We want to represent the distance between the tensor T and its rank 1 ap-
proximations in a three dimensional space so that we can visualize the behaviour
of the minimizing cost function f(a,b, c).

Thus, we must represent f(a,b, c) as a function of only two variables. This
means that we must assume arbitrary values for some entries of the component
vectors a,b, c so that the three dimensional representation is possible.

Let us assume that the rank 1 tensor given by the vector outer product

a ◦ b ◦ c is formed by the vectors a =

(
1
−1

)
, b =

(
cosα
sinα

)
, c =

(
cosβ
sinβ

)
.

We have chosen vectors b and c to be normalized and depending only on
one variable respectively and we have chosen an arbitrary vector a in order to
be able to represent f(a,b, c) as a function of two variables, α and β.

Thus, we can write

a ◦ b ◦ c =

cosα sinβ sinα sinβ
− cosα sinβ − sinα sinβ

cosα cosβ sinα cosβ
− cosα cosβ − sinα cosβ

We find that we can represent the value of the minimizing function 2.19
‖T − a ◦ b ◦ c‖2F against the values of α and β as,

f(a,b, c) = (A−cosα cosβ)2+(B−sinα cosβ)2+(C+cosα cosβ)2+(D+sinα cosβ)2

+(E−cosα sinβ)2+(F−sinα sinβ)2+(G+cosα sinβ)2+(H+sinα sinβ)2



2.3. Best Lower Rank Approximation to a Tensor 45

MATLAB 2.2

We can sketch a graph of the minimizing function given above by running
through the following MATLAB code.

MATLAB 2.2 Code for the Minimizing Function Graph

A = t_111; B = t_121; C = t_211; D = t_221;

E = t_112; F = t_122; G = t_212; H = t_222;

T_1 = [A,B,E,F;C,D,G,H];

T = tensor(T_1,[2,2,2])

[x,y] = meshgrid([-pi:0.2:pi]);

N =(A - ((cos(x)).*(cos(y)))).^2 + (B - ((cos(x)).*(cos(y)))).^2

+ (C + ((cos(x)).*(cos(y)))).^2 + (D + ((cos(x)).*(cos(y)))).^2

+ (E - ((cos(x)).*(cos(y)))).^2 + (F - ((cos(x)).*(cos(y)))).^2

+ (G + ((cos(x)).*(cos(y)))).^2 + (H + ((cos(x)).*(cos(y)))).^2;

surfc(x,y,N)

This code is constructed setting vector a =

(
1
−1

)
and it can be modified

to set anther vector a as an initial assumption for the problem.
The variables α and β are sketched in a range from −π to π
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Example 2.2

We are going to consider the tensor given by T =

0 1
1 0

1 0
0 1

and the

vectors a =

(
1
−1

)
, b =

(
cosα
sinα

)
, c =

(
cosβ
sinβ

)
.

We can represent the value of the minimizing function given in equation 2.19,
that is, f(a,b, c) = ‖T − a ◦ b ◦ c‖2 against the values of α and β as shown in
the following figure.

We can see that the best rank 1 approximations highlighted in deep blue are
given by the minima of the function.

Figure 2.1: Graph of the Rank 1 Approximations to the Rank 2 Tensor proposed
in Kruskal [21]

We can see that there are several minima which would provide Best Rank 1
Approximations to the tensor T .
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However, when changing the choice for vector a to the vector a =

(
1
1

)
,

we obtain the following representation of the distance between the tensor and
the rank 1 tensors.

Figure 2.2: Graph of the Rank 1 Approximations to the Rank 2 Tensor proposed
in Kruskal [21]

Comparing both representations, we see that the choice of vector a improves
the computed approximations.

f
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Example 2.3

Now, let us consider the tensor given by T =

5 6
7 8

1 2
3 4

As in the previous example, we can represent the value of the minimizing
function f(a,b, c) = ‖T − a ◦ b ◦ c‖2 against the values of α and β as shown in
the following graph.

Figure 2.3: Graph of the Rank 1 Approximations to the Tensor given in Example
1.1

We can see that the good rank 1 approximations highlighted in deep blue
are attained for many different vectors a,b, c.
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Now, when computing the best rank 1 approximation using MATLAB as
explained in MATLAB 2.1 we find that the proposed best rank 1 approximation
is given by,

B = 14.2254×
(

0.5663
0.8242

)
◦
(

0.6406
0.7679

)
◦
(

0.3759
0.9266

)
Modifying the MATLAB code given in MATLAB 2.2 so that the initial guess

for vector a matches the proposed best rank 1 approximation, we obtain the
graph,

Figure 2.4: Graph of the Rank 1 Approximations to the Tensor given in Example
1.1 with new guess for a

As in the previous example, we can see when comparing both representations
that the improvement in the choice of vector a corresponds to an improvement
in the computed approximations so that we find more vectors representing a
good approximation to the tensor.

f
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2.3.2 Best Rank 2 Approximation

We saw before that we can write the PARAFAC decomposition of a rank R ten-
sor as T = JA,B,CK where the matrices are given by A = (a1,a2, · · · ,aR),
B = (b1,b2, · · · ,bR), C = (c1, c2, · · · , cR) with vectors ai, bi, and ci, i =
1, · · · , R as columns.

Hence we can compute the rank R approximation to a given tensor by min-
imizing the function given by equation 2.2 which we rewrite here

f(A,B,C) =
∥∥T − JA,B,CK

∥∥2

F

By computing the minimum of this equation, we will find the rank R tensor
that is nearest to the given tensor T .

However, as we will explain later in Chapter 4, this function sometimes fails
to have a minimum since the tensor T can be arbitrarily well approximated by
a lower rank tensor and we can deduce that the best lower rank approximation
does not exist. This is in fact the case by the rank 2 approximation of a rank
3 tensor. This special behaviour will be defined as degeneracy and will be
closely related to certain problems arising at very long iterative sequences that
do not come to an end.

However, we can define a MATLAB code to compute rank 2 approximations
to a tensor.

MATLAB 2.3

The following MATLAB script performs the computation of rank 2 approxi-
mations to a given tensor.

MATLAB 2.3 Best Rank 2 Approximation

M = [1 2 5 6; 3 4 7 8]; %this matrix denotes the mode-1 matricization

of the given tensor

T = tensor(M, [2,2,2]) %this line builds up the tensor

B = parafac_als(T,2) % this line computes the approximation

We will see that we obtain different results each time we run the code.

Final fit = 9.764462e-001

B is a ktensor of size 2 x 2 x 2

B.lambda = [ 426.5394 419.2111 ]

B.U{1} =

0.5279 0.5253

0.8493 0.8509

B.U{2} =

0.6245 -0.6234

0.7810 -0.7819

B.U{3} =

-0.5847 -0.6078

0.8112 0.7941
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>>

Another result

Final fit = 9.980868e-001

B is a ktensor of size 2 x 2 x 2

B.lambda = [ 23.1101 10.4251 ]

B.U{1} =

0.6497 -0.7761

0.7602 -0.6306

B.U{2} =

0.6792 0.7434

0.7339 0.6688

B.U{3} =

0.6009 0.8532

0.7993 0.5216

We can rewrite these results as,

B1 = 426.5394×
(

0.5279
0.8493

)
◦
(

0.6245
0.7810

)
◦
(
−0.5847
0.8112

)

+419.2111×
(

0.5253
0.8509

)
◦
(
−0.6234
−0.7819

)
◦
(
−0.6078
0.7941

)

=

t(
225.17 220.21
362.26 356.71

)
,

(
266.37 −261.34
333.13 −327.78

)
,

(
−249.4 −254.80
346.01 332.90

)|

(2.20)

We can see that the vectors in each component matrix in B1 are very
similar up to sign change, with differences between corresponding entries
of less than 4 %.

B2 = 23.1101×
(

0.6497
0.7602

)
◦
(

0.6792
0.7339

)
◦
(

0.6009
0.7993

)

+10.4251×
(
−0.7761
−0.6306

)
◦
(

0.7434
0.6688

)
◦
(

0.8532
0.5216

)

=

t(
15.015 −80909
17.568 −6.5741

)
,

(
15.696 7.75
16.961 6.9723

)
,

(
13.887 8.8947
18.472 5.4377

)|

(2.21)

We can see that both approximations are very close to the original tensor T ,
but there is still a significant difference in the final fits computed by MATLAB
for both approximations.
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In this sense, it is interesting to consider the concept of border rank which
is defined as the minimum number of rank 1 tensors that are sufficient to ap-
proximate the given tensor with arbitrarily small nonzero error.

Thus, we will find that some rank 3 tensors have border rank 2 since they
can be arbitrarily well approximated by a rank 2 tensor. This feature will be
further studied in chapter 4.

2.4 Higher Rank Tensors

It is interesting to see that when adding the two best rank 1 approximations
found in the previous chapter for the rank 2 tensor proposed in Kruskal [21], we
obtain the tensor itself and we can deduce that the two rank 1 tensors B1 and
B2 constitute a PARAFAC decomposition of the tensor.

However, calculating the PARAFAC decomposition of a rank 2 or rank 3
tensor usually involves much more difficult calculations.

Since PARAFAC components must be computed simultaneously, this means
working with 2× 2 matrices instead of vectors in the case of rank 2 tensors and
with 2× 3 matrices in the case of rank 3 tensors if an iterative method like the
ALS is used to compute the decomposition of the tensor. It also means that
we should determine the rank of the tensor before beginning to compute its
decomposition.

Note that the updating formulas for the ALS algorithm given in section 2.1
give rise to long computations when considering 2×2 or 2×3 matrices instead of
vectors as in section 2.2. It is important to remark that these long computations
involve calculating the pseudoinverse of a matrix which can lead to problems
of discontinuity, so that the ALS will not work as well as when computing the
rank 1 decomposition of a tensor as we saw in section 2.2.

Indeed, the usual method to compute the PARAFAC components of a tensor
given by the ALS algorithm could be improved by developing an analytical
method to compute the exact decomposition of a tensor without using any
iterative method which will in most cases lead to numerical errors.

2.4.1 Criteria to Determine the Rank of a Tensor

In the literature we can find different criteria to determine the rank of a given
tensor. Nevertheless, there is no such a straightforward algorithm to determine
the rank of higher rank tensors as we studied for rank 1 tensors, where we can
indeed spot that a tensor is rank 1 by considering the ratio between the entries.

Numerical Criterion

We use Kolda’s Tensor Toolbox [3] to compute the best rank 2 approximation
to a given tensor. If we can compute a very close fit for the approximation, we
will deduce that the given tensor has rank 3 and rank 1 or 2 otherwise.
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Example 2.4

1. Let us consider the Rank 2 tensor proposed by Kruskal in [21],

T =

0 1
1 0

1 0
0 1

Setting this tensor in the Tensor Toolbox of MATLAB [3] and running
the MATLAB code given above in MATLAB 2.3, computes a best rank 2
approximation with final fit = 9.999999e-001 after 6 iterations.

This means that the given tensor fits almost perfectly into the decompo-
sition as a sum of two rank 1 tensors and thus we can deduce that the
tensor is rank 2.

2. Now let us consider the tensor proposed in Kolda [2]

T =

0 1
−1 0

1 0
0 1

Running the MATLAB code given in MATLAB 2.3 computes the best
rank 2 approximation with final fit 4.965562e − 001 after 35 iterations.
Hence we can deduce that the tensor does not fit very well into this ”sum
of two rank 1 tensors decomposition”. On the other hand we can see
that the tensor toolbox computes a best rank 3 approximation with fit
9.999938e − 001 after 6 iterations. Thus we can deduce that the given
tensor has rank 3.

3. Let us consider again the tensor we studied in Examples 1.1 and 2.3 given
by,

T =

5 6
7 8

1 2
3 4

The tensor toolbox computes a rank 2 approximation with fit= 9.566761e-
001 whereas it computes a best rank 3 approximation with fit =9.998599e-
001.

We see that it is impossible to decide whether it is rank 2 or 3 using this
iterative method.

This example demonstrates that numerical studies do not always reveal the
nature of the tensor.

f
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Criterion based on Hyperdeterminants

Tensors where first approached by Cayley [5], which he defined as hypermatrices.
The inner structure of 2× 2× 2 tensors is governed by a quartic polynomial ∆
which Cayley [5] discovered in 1845 and was later further developed by Gelfand,
Kapranov and Zelvinsky [15] already in the 20th century. This polynomial is
given by the hyperdeterminant of the 2× 2× 2 tensor.

Let a 2× 2× 2 tensor be defined as

T =

t112 t122

t212 t222

t111 t121

t211 t221

then we define its hyperdeterminant ∆ as

∆(T ) =
(
t2111t

2
222 + t2112t

2
221 + t2121t

2
212 + t2122t

2
211

)
−2 (t111t112t221t222 + t111t121t212t222 + t111t122t211t222

+t112t121t212t221 + t112t122t221t211 + t121t122t212t211)

+4 (t111t122t212t221 + t112t121t211t222) (2.22)

The hyperdeterminant ∆(T ) for the 2 × 2 × 2 tensor T described above is
known as Kruskal polynomial by the psychometrics community and is so referred
to in the literature [7].

In fact, Kruskal [21] discusses the use a of certain polynomial that is defined
only for 2 × 2 × 2 arrays as a method to determine the rank of the array.
Positive values of the polynomial ∆(T ) signify that the rank of the array is 2
while negative values account for a rank 3 tensor. If the polynomial ∆(T ) is
zero, the rank may be either 0, 1 or 3 and cannot be accurately determined
using this method.

Ten Berge [28] sharpens the definition of the diagnostic properties proposed
by Kruskal [21] and considers only arrays where at least one slice in non-singular
and the other slice is non-zero and not proportional to the other.

In the class of arrays proposed by Ten Berge [28], having ∆(T ) > 0 is the
necessary and sufficient conditions for rank 2. If ∆(T ) < 0, then the array has
rank 3. The arrays with ∆(T ) = 0 are special because although their rank is
3, they may be approximated arbitrarily well by arrays whose rank is 2. These
arrays will be considered more closely in Chapter 4.
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Example 2.5

1. Let us consider the rank 1 tensor proposed in Kruskal [21]

T =

10 20
30 60

1 2
3 6

Computing its hyperdeterminant we find,

∆(T ) = 0

2. Let us now consider the tensor given by

T =

10 30
8 24

7 21
6 18

Computing its hyperdeterminant we find,

∆(T ) = 0

In this case, Kruskal’s criterium [21] does not provide further information
about the rank of the tensor. However, we find that there are singular
slices so that Ten Berge’s condition [28] is not satisfied. Since we can spot
the the tensor has not rank 1, we deduce that it will have rank 2.

3. Let us now consider the tensor given by

T =

5 6
7 8

1 2
3 4

Computing its hyperdeterminant we find,

∆(T ) = 0

In this case, as in the tensor considered above, we can see that Kruskal’s
criterium does not provide further information about the rank of the ten-
sor.

Since the conditions set by Ten Berge [28] are met and there are no non-
singular slices, we can decide that the tensor is rank 3. This tensor will
however show some special behaviour when computing lower rank approx-
imations.

f

The results given in this example show that tensors such that ∆() = 0 can
present different ranks. This example shows also that Kruskal’s criterium in not
enough to evaluate the rank of the tensor in these cases and we need to study
more closely its inner structure.
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Example 2.6

Let us consider the rank 2 tensor proposed in Kruskal [21]

T =

0 1
1 0

1 0
0 1

Computing its hyperdeterminant we find,

∆(T ) = 4

We can see that computing the value of the hyperdeterminant gives a positive
value as expected for a rank 2 tensor.

f

Example 2.7

Let us now consider the rank 3 tensor proposed in Kolda [2]

T =

0 1
−1 0

1 0
0 1

Computing its hyperdeterminant we find,

∆(T ) = −4

We can see that computing the value of the hyperdeterminant provides a
negative value as expected for a rank 3 tensor.

f

These examples demonstrate that if the hyperdeterminant of a tensor turns
out to be ∆(T ) = 0, then we have to study more closely the inner structure of
the tensor to discover its rank. We can see that setting the condition explained
by Ten Berge [28] on the slices being non-singular, the inner structure becomes
clearer and we can decide the actual rank of the tensor.

Criterium based on Eigenvectors

Ten Berge [28] claims that a sufficient condition for a given tensor T of size
p× p× 2 to have rank p is that the matrix given by the product of the mode-3
slices (frontal slices) T::2(T::1)−1 has p distinct real eigenvalues.

Then it follows that a 2× 2× 2 tensor will have rank 2 is the slice product
T::2(T::1)−1 has 2 distinct real eigenvalues.

Stegeman [24] gives a more accurate rank condition for real-valued p× p× 2
tensors.
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Let T be a real-valued p×p×2 array with p×p slices T::2 and T::1. Suppose
(T::1)−1 exists. The following statement holds:

• If T::2(T::1)−1 has p real eigenvalues and is diagonalizable, then rank(T ) =
p.

• If T::2(T::1)−1 has at least one pair of complex eigenvalues, then rank(T ) ≥
p+ 1

• If T::2(T::1)−1 has p real eigenvalues but is not diagonalizable, then rank(T ) ≥
p+ 1

Thus we can deduce that a 2 × 2 × 2 tensor will have rank 2 if the corre-
sponding product T::2(T::1)−1 has two real eigenvalues and is diagonalizable
and will have rank 3 if the slice product is not diagonalizable or has complex
eigenvalues.

Example 2.8

1. Let us consider the rank 2 tensor proposed in Kruskal [21],

Let T =

0 1
1 0

1 0
0 1

we have T::1 =

[
1 0
0 1

]
and T::2 =

[
0 1
1 0

]
Thus the relevant slice product is given by,

T::2(T::1)
−1

=

([
0 1
1 0

])([
1 0
0 1

])−1

=

[
0 1
1 0

]
with eigenvalues given by λ1 = 1 and λ2 = −1.

Since the eigenvalues are real and distinct we deduce that the tensor is
rank 2 as expected.

2. Let us consider the rank 3 tensor proposed in Kolda [2],

Let T =

0 1
−1 0

1 0
0 1

we have T::1 =

[
1 0
0 1

]
and T::2 =

[
0 1
−1 0

]
Thus the relevant slice product is given by,

T::2(T::1)
−1

=

([
0 1
−1 0

])([
1 0
0 1

])−1

=

[
0 1
−1 0

]
with eigenvalues given by λ1 = i and λ2 = −i.
Since the eigenvalues are complex we deduce that the tensor is rank 3 as
expected.
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3. Let us consider the tensor given by,

T =

5 6
7 8

1 2
3 4

we have T::1 =

[
1 2
3 4

]
and T::2 =

[
5 6
7 8

]
Thus the relevant slice product is given by,

T::2(T::1)
−1

=

([
5 6
7 8

])([
1 2
3 4

])−1

=

[
−1 2
−2 3

]
with an only eigenvalue given by λ = 1

Since the eigenvalue has multiplicity two and the matrix is not diagonal-
izable we can deduce that the tensor is rank 3.

4. Let us again consider the tensor given by

T =

10 30
8 24

7 21
6 18

We can see that both frontal slices are singular and this is also the case
for the horizontal slices.

Thus we must consider the lateral slices.

The relevant slice product is

T::2(T::1)
−1

=

([
21 30
18 24

])([
7 10
6 8

])−1

=

[
3 0
0 3

]
with an only eigenvalue given by λ = 3

Since the eigenvalue has multiplicity two and the matrix is diagonalizable
we can deduce that the tensor is rank 2.

f

Criterium based on the Relationships between the Entries of the
Component Vectors

The criteria considered above do help to determine the actual rank of the tensor.
They do not give however any help to compute the decomposition of the tensor.
In the next section we will compute a certain polynomial based on the entries of
the component vectors of the PARAFAC decomposition of the tensor which will
throw information about the rank of the tensor. We also explain an analytical
method to compute the PARAFAC decomposition of a tensor.
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2.4.2 General Form of a Rank 2 Tensor

Just as we have computed a general form for rank 1 tensors, we will now try
to find out the relationships between the entries of the tensor and the entries
of the vectors that form its PARAFAC decomposition so that we can compute
the PARAFAC decomposition of a rank 2 tensor over R2 and of a rank 3 tensor
over C. We also want to find a more straightforward, analytic way of deciding
if a given tensor is rank 2 or 3.

Let T be a tensor of rank 2, then we can write it as a sum of two outer-
products of vector triples.

Then we can write,

(
a1

a2

)
◦
(
b1
b2

)
◦
(
c1
c2

)
+

(
d1

d2

)
◦
(
e1

e2

)
◦
(
f1

f2

)
=

t112 t122

t212 t222

t111 t121

t211 t221

(2.23)

Without loss of generality we assume that the entries a1, b1, d1 and e1

are nonzero, and we scale the component vectors so that we can write the
decomposition of T as,

(
1
a2

)
◦
(

1
b2

)
◦
(
c1
c2

)
+

(
1
d2

)
◦
(

1
e2

)
◦
(
f1

f2

)
=

t112 t122

t212 t222

t111 t121

t211 t221

(2.24)

Note that the cases when any of the entries a1, b1, d1 and e1 are zero can
be considered as special cases that will not change the general setting of the
problem considered.

We can rewrite the equation above as set of equations in eight variables.

c1 + f1 = t111 (1)
c2 + f2 = t112 (2)

b2c1 + e2f1 = t121 (3)
b2c2 + e2f2 = t122 (4)
a2c1 + d2f1 = t211 (5)
a2c2 + d2f2 = t212 (6)

a2b2c1 + d2e2f1 = t221 (7)
a2b2c2 + d2e2f2 = t222 (8)

Solving the equations when some entries of the component vectors
are equal

If either a2 = d2, b2 = e2 or c1
c2

= f1
f2

then we can consider the equation above
as a matrix equation since we find that some equations are multiples of each
other.

Let us consider the case when we have b2 = e2. We can see that the other
cases considered above can be solved in a similar way as will be now explained
for this case.
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Let b2 = e2, then we can rewrite equations (1), (2), (3), (4), (5), (6), (7) and
(8) as,

c1 + f1 = t111 (1)
c2 + f2 = t112 (2)

b2(c1 + f1) = t121 (3)
b2(c2 + f2) = t122 (4)
a2c1 + d2f1 = t211 (5)
a2c2 + d2f2 = t212 (6)

b2(a2c1 + d2f1) = t221 (7)
b2(a2c2 + d2f2) = t222 (8)

We can see that if b2 = e2, then equation (3), (4), (7) and (8) are multiples
of equations (1), (2), (5) and (6) and the values of b2 and e2 are given by the
ratio of the entries along the 2-mode of the tensor.

The fact that b2 = e2 turns the problem above into a matrix problem that
we can write as,(

1
a2

)
◦
(
c1
c2

)
+

(
1
d2

)
◦
(
f1

f2

)
=

[
t111 t112

t211 t212

]
(2.25)

Thus we deduce that there exist infinitely many possible values for the entries
of the vectors.

Hence we find that the decomposition of a given tensor in not unique when
b2 = e2 and the above equations hold.

Similarly, we can deduce that the decomposition of the tensor will not be
unique when we have a2 = d2 or c1

c2
= f1

f2
.

Solving the equations when the entries of the component vectors are
different

We will now solve equation 2.24 for the case when b2 6= e2

From equations (1) and (2) we can obtain the following expressions,

f1 = t111 − c1 and f2 = t112 − c2

which we can substitute in the remaining six equations to obtain a new
system of equations in six variables.

b2c1 + e2(t111 − c1) = t121 (3)
b2c2 + e2(t112 − c2) = t122 (4)
a2c1 + d2(t111 − c1) = t211 (5)
a2c2 + d2(t112 − c2) = t212 (6)

a2b2c1 + d2e2(t111 − c1) = t221 (7)
a2b2c2 + d2e2(t112 − c2) = t222 (8)

From equation (3) we can obtain the following expression,

c1 =
t121 − e2t111

b2 − e2
(2.26)
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Similarly, from equation (4) we can obtain the following expression,

c2 =
t122 − e2t112

b2 − e2
(2.27)

Thus we can see that the equations above will only be valid if b2 6= e2.

Substituting the expressions for c1 and c2 in equations (5), (6), (7) and (8)
we obtain the following equations,

a2
t121−e2t111

b2−e2 + d2

(
t111 − t121−e2t111

b2−e2

)
= t211 (5)

a2
t122−e2t112

b2−e2 + d2

(
(t112 − t122−e2t112

b2−e2

)
= t212 (6)

a2b2
t121−e2t111

b2−e2 + d2e2

(
t111 − t121−e2t111

b2−e2

)
= t221 (7)

a2b2
t122−e2t112

b2−e2 + d2e2

(
(t112 − t122−e2t112

b2−e2

)
= t222 (8)

multiplying equation (5) by e2 and substracting from equation (7) we obtain
the following expression for a2,

a2 =
t221 − e2t211

t121 − e2t111

which holds for t121 − e2t111 6= 0.

Multiplying equation (6) by e2 and substracting from equation (8) above
and substituting the expression for a2 in the result we obtain

e2
2(t211t112−t111t212)+e2(t212t121−t211t122+t111t222−t221t112)−t121t222+t221t122 = 0

(2.28)

with solutions,

e2 =
−(t212t121 − t211t122 + t111t222 − t221t112)±

√
∆

2 (t211t112 − t111t212)
for t211t112−t111t212 6= 0

where the discriminant of the second-order equation is given by,

∆ = (t212t121−t211t122+t111t222−t221t112)2−4(t211t112−t111t212)(t121t222−t221t122)

which is in fact the same expression as the hyperdeterminant for the 2×2×2
tensor T as defined in equation 2.22.

Solving equation 2.24 in a similar way as shown above, we find the equation

b22(t211t112−t111t212)+b2(t212t121−t211t122+t111t222−t221t112)−t121t222+t221t122 = 0

which has the same roots as the equation 2.28 above.
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Thus we deduce that one root of the second-order equation 2.28 corresponds
to the entry b2 of the corresponding component vector while the other root of
the equation corresponds to the entry e2. We can see that is does not make any
difference which root we consider first since it would only be a trivial change of
order between both rank 1 components.

Hence we can deduce that both roots, although different, provide the same
decomposition of the tensor.

This second-order equation provides useful information about the rank of
the tensor.

• If the equation has distinct real roots, then the tensor will have rank 2.

• If the roots are complex, then we can deduce that these analytic equations
above will compute the complex PARAFAC decomposition of the tensor
and thus we can deduce that the tensor has rank 3.

• If the equation has equal roots, then we have a contradiction. Note that
we have solved equation 2.24 setting the conditions b2 6= e2 and t211t112−
t111t212 6= 0. Nevertheless, the second-order equation 2.28 has equal roots
for the case when ∆ = 0. Thus we can prove by contradiction that we
cannot write a rank 3 tensor for which its hyperdeterminant is zero as the
sum of two rank 1 tensors.

We can see that these results explain the importance of the hyperdeterminant
in the inner structure of the tensor and clarify the use of the Kruskal polynomial
or hyperdeterminant to compute the rank of a tensor.

Now we want to find explicit expressions for the rest of the entries of the
vectors of the decomposition.

Equating the expressions obtained for (a2− d2) in equations (5) and (6), we
obtain the expression,

t211 − d2t111

c1
=
t212 − d2t112

c2
(2.29)

Substituting the expressions for c1 and c2 given in 2.26 and 2.27 in this
equation above 2.29 we obtain,

t211 − d2t111

t121 − e2t111
=
t212 − d2t112

t122 − e2t112

which we can solve for d2 as

d2 =
(t212t121 − t211t122)− e2(t111t212 − t211t112)

t112t121 − t111t122
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Thus we obtain,

e2 = −(t212t121−t211t122+t111t222−t221t112)+
√

∆
2(t211t112−t111t212)

b2 = −(t212t121−t211t122+t111t222−t221t112)−
√

∆
2(t211t112−t111t212)

a2 = t221−e2t211
t121−e2t111

d2 = (t212t121−t211t122)−e2(t111t212−t211t112)
t112t121−t111t122

c1 = t121−e2t111
b−e

c2 = t122−e2t112
b−e

f1 = t111 − c1
f2 = t112 − c2

We can use these equations to compute an analytical decomposition of a
tensor as a sum of two rank 1 tensors.

MATLAB 2.4

The following MATLAB code will help us compute the decomposition of dif-
ferent tensors. The entries of the tensor are labeled A,B,C,D,E,F,G,H as usual.

MATLAB 2.4 Computing the Rank 2 PARAFAC Decomposition

A=1; B=0; C=1; D=-1; E=-1; F=1; G=1; H=0;

T_1 = [A,B,E,F;C,D,G,H];

T = tensor(T_1,[2,2,2])

kruskalpol = [(C*E-A*G) (G*B-C*F+A*H-D*E) (-B*H+D*F)]

r = roots(kruskalpol)

e = r(1)

b = r(2)

d = ((G*B-C*F)-(e)*(A*G-C*E))/(E*B-A*F)

a = (D-e*C)/(B-A*e) % equation 3 minus e times equation 1

c_1 = (B-e*A)/(b-e)

c_2 = (F-e*E)/(b-e)

f_1 = A-(c_1)

f_2 = E-(c_2)

Note that using this MATLAB code, we can compute the decomposition of
a tensor without knowing before hand its actual rank.

If we obtain a real decomposition, we can deduce that the tensor has rank
2.

If we obtain a complex decomposition, we will deduce that the actual rank
of the tensor considered is 3.
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Tensors revisited

We are going to discuss several tensors in the light of the analytic equations
we have found above relating the entries of the tensors to their PARAFAC
decomposition as the sum of two rank 1 tensors.

Example 2.9

Let us consider the rank 3 tensor proposed in Kolda [2]

T =

0 1
−1 0

1 0
0 1

In example 2.7 we computed the hyperdeterminant of this tensor as

∆(T ) = −4

and we can deduce that the tensor T has rank 3.

Solving equation 2.28 for the values given in the entries of this tensor we
find

e2
2 + 1 = 0

with solutions e2 = ±i.

The solutions are complex, as expected for a rank 3 tensor.

Thus, we can deduce that the equations above will compute the complex
PARAFAC decomposition of this rank 3 tensor as a sum of two complex rank
1 tensors.

Running through the MATLAB code 2.4 to find the decomposition of T , we
find

• e2 = i, d2 = −i, a2 = i, b2 = −i, c1 = 1
2 , c2 = i

2 , f1 = 1
2 , f2 = − i

2

if e2 takes the values of the first root.

• e2 = −i, d2 = i, a2 = −i, b2 = i, c1 = 1
2 , c2 = − i

2 , f1 = 1
2 , f2 = i

2

if e2 takes the values of the second root.

Thus we can write the complex decomposition for T as

T =

(
1
i

)
◦
(

1
−i

)
◦
(

1/2
i/2

)
+

(
1
−i

)
◦
(

1
i

)
◦
(

1/2
−i/2

)

We can see that both choices provide the same decomposition, so that this
decomposition is essentially unique.

f
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Example 2.10

Now we are going to consider the rank 2 tensor proposed in Kruskal [21].

T =

0 1
1 0

1 0
0 1

In example 2.6 we computed the hyperdeterminant of the tensor to be

∆(T ) = 4

and we can deduce that the tensor T has rank 2. Indeed, solving equation
2.28 for the values given in the entries of T we find

e2
2 − 1 = 0

with real solutions e2 = ±1, as expected for a rank 2 tensor. Thus, we can
deduce that the method above will compute the PARAFAC decomposition of
this tensor as a sum of two rank 1 tensors.

Running through the equations to find the decomposition of T , we find,

• e2 = 1, d2 = 1, a2 = −1, b2 = −1, c1 = 1
2 , c2 = − 1

2 , f1 = 1
2 , f2 = 1

2

If e2 takes the value of the first root.

• e2 = −1, d2 = −1, a2 = 1, b2 = 1, c1 = 1
2 , c2 = 1

2 , f1 = 1
2 , f2 = − 1

2

If e2 takes the value of the second root.

Thus we can write the PARAFAC decomposition for T as,

T =

(
1
1

)
◦
(

1
1

)
◦
(

1/2
1/2

)
+

(
1
−1

)
◦
(

1
−1

)
◦
(

1/2
−1/2

)

Note that the two sets of values for the entries of the rank 1 tensors do
not produce different decompositions and we deduce that the decomposition is
essentially unique.

f

In the following example we give the decomposition of a tensor for which
equation 2.28 does not give any relevant result so that we must solve equation
2.25 to compute the decomposition of the tensor . We find important differences
between the decomposition of this tensor and the decompositions of the tensors
in the two previous examples. We shall see that we have to assume arbitrary
values to compute one result so that the decomposition provided is not unique.
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Example 2.11

Let us consider the tensor given by

T =

10 30
8 24

7 21
6 18

In example 2.5 we computed the hyperdeterminant of this tensor as

∆(T ) = 0

Hence we deduce that equation 2.28 will have two equal roots. In fact,
substituting the values for the entries of the tensor in equation 2.28 we obtain

4e2
2 − 24e2 + 36 = 0

with solution e2 = 3.
Thus we can deduce that b2 = e2 = 3 so that we cannot use the MATLAB

code 2.4 to compute the decomposition. Indeed we cannot use back substitution
to compute the decomposition of the tensor and we must solve equation 2.25
instead.

Note that the ratio between the entries of the tensor along the 2-mode is
constant and is equal to 3.

Substituting the values for the entries of the tensor in equation 2.25 we can
write

c1 + f1 = 7 (1)
c2 + f2 = 10 (2)

a2c1 + d2f1 = 6 (3)
a2c2 + d2f2 = 8 (4)

We can consider different combinations of values for the variables that will
fix the equations. We are going to consider two different arbitrary choices for
the above variables.

• Take c1 = 1, f1 = 6

Equation (1) above holds for values for c1 and f1. Substituting these
values in equation (3) above, we find

a2 + 6d2 = 6

which also holds for infinite linear combinations of the two variables.
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Let us take a2 = −6 and d2 = 2.

Then, we can write equations (2) and (4) above as

c2 + f2 = 10
−6c2 + 2f2 = 8

with solutions given by c2 = 3
2 and f2 = 17

2

Thus, we can write the decomposition of T as,

T =

(
1
−6

)
◦
(

1
3

)
◦
(

1
3/2

)
+

(
1
2

)
◦
(

1
3

)
◦
(

6
17/2

)

• Take c1 = 2, f1 = 5

Equation (1) above holds for values for c1 and f1. Substituting these
values in equation (3) above, we find

2a2 + 5d2 = 6

Let us take a2 = −2 and d2 = 2.

Then, we can write equations (2) and (4) above as

c2 + f2 = 10
−2c2 + 2f2 = 8

with solutions given by c2 = 3 and f2 = 7.

Thus, we can write the decomposition of T as

T =

(
1
−2

)
◦
(

1
3

)
◦
(

2
3

)
+

(
1
2

)
◦
(

1
3

)
◦
(

5
7

)

f

We can deduce that if b2 = e2 and the ratio between the entries along the
mode-2 is constant and equal to b2, that is, the lateral slices are multiples of
each other, then the tensor does not have an unique decomposition.

Similarly, we can deduce that if a2 = d2 and the ratio between the entries
along the mode-1 is constant and equal to a2, that is, the lateral slices are
multiples of each other, then the tensor does not have an unique decomposition
either. In this case, the second-order equation 2.28 becomes zero and does not
give any result.
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In this case, we can rewrite equation 2.24 as

c1 + f1 = t111 (1)
c2 + f2 = t112 (2)

b2c1 + e2f1 = t121 (3)
b2c2 + e2f2 = t122 (4)

Finally, we find that if c1
c2

= f1
f2

then the frontal slices T::1 and T::2 are related
by the same ratio. In this case, equation 2.28 also turns zero without giving any
result. We can deduce that the tensor does not have an unique decomposition.

We can see that, in these cases, we can even spot that the given tensor is
rank 2 just by considering the ratios between the entries, just as by tensors of
rank 1.

Example 2.12

Let us consider the rank 3 tensor studied in previous examples 1.1, 2.3 given
by

T =

5 6
7 8

1 2
3 4

In example 2.5 we computed the hyperdeterminant of this tensor to be

∆(T ) = 0

As we saw in the example, the hyperdeterminant does not provide enough
information to compute the rank of the tensor, but considering the conditions
set by Ten Berge [28] on the slices of the tensor we deduced in example 2.5 that
the tensor has rank 3.

Now we want to compute its complex rank 2 decomposition.
Substituting the values for the entries of the tensor in equation 2.28 we

obtain,

8e2
2 − 16e2 + 8 = 0

with solution e2 = 1. We find a double root as expected when the hyperde-
terminant is zero. Thus we can deduce that b2 = e2 = 1 and we must compute
the decomposition using equation 2.25 as argued in example 2.11

Nevertheless, we can see that no ratio holds between the entries of the tensor
along the different modes, so that we cannot compute its decomposition in the
same way as in the previous example 2.11 since the corresponding equations do
not hold.

Thus we deduce that this tensor does not ”fit” in the 2 component model
approached here and we cannot compute the corresponding complex PARAFAC
decomposition.
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Indeed, all rank 3 tensors for which we find that its hyperdeterminant is zero
will have this special feature which will be more closely considered in chapter 4

It is important to remark that although the generic rank of 2× 2× 2 tensors
when considered over C is two, the maximum rank of these tensors considered
over C is three as is shown in Friedland [13, 14]. So that we can consider all
rank 3 tensors with ∆(T ) = 0 to have complex rank 3.

f

2.4.3 General Form of a Rank 3 Tensor

In the previous section we have computed the decomposition of a tensor as sum
of two rank 1 tensors. Hence we have found the decomposition over R of rank
2 tensors and the complex rank 2 decomposition over C of real rank 3 tensors.

In this section we will compute the PARAFAC decomposition over R of a
rank 3 tensor as the sum of three rank 1 tensors.

Let T be a tensor of rank 3, then we can write it as a sum of three outer
products of vector triples.

We will add a third vector triple to the model given by equation 2.24 that
we studied in the previous section.

We have(
0
1

)
◦
(

0
1

)
◦
(
α
β

)
+

(
1
a2

)
◦
(

1
b2

)
◦
(
c1
c2

)
+

(
1
d2

)
◦
(

1
e2

)
◦
(
f1

f2

)

=

t112 t122

t212 t222

t111 t121

t211 t221

(2.30)

Note that this model will no longer provide an unique decomposition of the
tensor, since it represents a system of equations in ten variables while there are
only eight entries in the tensor. Already at this stage, we can see that rank 3
tensors never present an unique decomposition over R.

Writing the system of equations represented by equation 2.30 we obtain

c1 + f1 = t111 (1)
c2 + f2 = t112 (2)

b2c1 + e2f1 = t121 (3)
b2c2 + e2f2 = t122 (4)
a2c1 + d2f1 = t211 (5)
a2c2 + d2f2 = t212 (6)

α+ a2b2c1 + d2e2f1 = t221 (7)
β + a2b2c2 + d2e2f2 = t222 (8)

We can see that the variables α and β only appear in the last two equations
so that we can solve this system of equations in a similar way as we solved
equation 2.24 in the previous section.
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From equations (1) and (2) we obtain

f1 = t111 − c1 and f2 = t112 − c2

substituting these values for f1 and f2 in equations (3), (4) and solving for
c1 and c2 we obtain

c1 =
t121 − e2t111

b2 − e2
and c2 =

t122 − e2t112

b2 − e2

Substituting these values in equations (5) and (6) above we find a2( t121−e2t111
b2−e2 ) + d2(t111 − t121−e2t111

b2−e2 ) = t211

a2( t122−e2t112
b2−e2 ) + d2(t112 − t122−et112

b2−e2 ) = t212

which we can rearrange as a2(t121 − e2t111) + d2(b2t111 − t121) = (b2 − e2)t211

a2(t122 − et112) + d2(b2t112 − t122) = (b2 − e2)t212

We discussed above that we were trying to solve a system in ten unknowns
so that we can assume two variables to take arbitrary values.

Let us set b2 = 1 and e2 = −1, then a2(t121 + t111) + d2(t111 − t121) = 2t211

a2(t122 + t112) + d2(t112 − t122) = 2t212

Thus we find

d2 =
t211(t112 + t122)− t212(t111 + t121)

t111t122 − t121t112

and

a2 =
t2111t212 − t2121t212 + t111t211t122 − t121t211t112 − t111t211t112 + t121t211t122

(t111 + t121)(t111t122 − t121t112)

as well as

c1 =
t111 + t121

2
, c2 =

t122 + t112

2
and f1 =

t111 − t121

2
, f2 =

t112 − t122

2

Thus we can easily find the variables α and β by the values for the rest of
variables in equations (7) and (8) and solving for α and β.

Note that we have assumed that the two variables b2 and e2 take some given
value. Thus we can deduce that the equations above do not have an unique
solution, which means that the tensor does not have an unique real rank 3
decomposition.
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MATLAB 2.5

The following MATLAB code will help us compute a rank 3 decomposition of
different tensors. The entries of the tensor are labelled A,B,C,D,E,F,G,H as
usual. We assume that b2 = 1 and e2 = −1.

MATLAB 2.5 Computing the Rank 3 PARAFAC Decomposition

A=1; B=0; C=1; D=-1; E=-1; F=1; G=1; H=0;

T_1 = [A,B,E,F;C,D,G,H];

T = tensor(T_1,[2,2,2])

e=-1

b=1

c_1 = (A+B)/2

c_2 = (E+F)/(2)

d=(C*(E+F)-G*(A+B))/(A*F-B*E)

a=(G*A^2-G*B^2+A*C*F-B*C*E-A*C*E+B*C*F)/((A+B)*(A*F-B*E))

f_1 = A-(c_1)

f_2 = E-(c_2)

alpha= D-a.*b*c_1-d.*e.*f_1

beta= H-a.*b*c_2-d.*e.*f_2

Note that these results are computed only for case when b2 = 1 and e2 = −1.
It is important to remark that different choices for these entries of the component
vectors will produce different equations and results.

Tensors revisited again

We are going to study some tensors we already decomposed in the previous
section. There we considered the complex rank 2 decomposition of these tensors,
now we are going to compute their decomposition over R as sums of three rank
1 tensors using the equations above 2.30.

Example 2.13

1. Let us consider again the tensor proposed in Kolda [2]

T =

0 1
−1 0

1 0
0 1

In example 2.7 we computed the hyperdeterminant of this tensor to be
∆(T ) = 0 and in example 2.9 we found its complex rank 2 decomposition.
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Running through the MATLAB code 2.5 we find the following real decom-
position

T =

(
0
1

)
◦
(

0
1

)
◦
(

2
0

)
+

(
1
−1

)
◦
(

1
1

)
◦
(

1/2
1/2

)
+

(
1
1

)
◦
(

1
−1

)
◦
(

1/2
−1/2

)
2. Let us now consider the rank 3 tensor proposed in Lathauwer [11]

T =

1 0
0 0

0 1
1 0

Using equation 2.22 we compute its hyperdeterminant to be ∆(T ) = 0.
Since the slices are non singular, we deduce that the tensor has rank 3.

Running through the MATLAB code 2.5 we find

T =

(
0
1

)
◦
(

0
1

)
◦
(

0
−1

)
+

(
1
1

)
◦
(

1
1

)
◦
(

1/2
1/2

)
+

(
1
−1

)
◦
(

1
−1

)
◦
(
−1/2
1/2

)
3. Let us now consider the rank 3 tensor given by,

T =

5 6
7 8

1 2
3 4

In example 2.5 we computed its hyperdeterminant to be ∆(T ) = 0 and
in example 2.12 we deduced that this tensor could not be written as the
sum of two real or complex rank 1 tensors.

Now we compute the rank 3 decomposition running through the MATLAB
code 2.5 to find

T =

(
0
1

)
◦
(

0
1

)
◦
(

4
4

)
+

(
1
1

)
◦
(

1
1

)
◦
(

3/2
11/2

)
+

(
1
−3

)
◦
(

1
−1

)
◦
(
−1/2
−1/2

)

f

Since we could have assumed other values for the variables b2 and e2, we
can deduce that these decompositions represent one of the many possible ways
of writing a 3 rank tensor as a sum of three rank 1 tensors.



Chapter 3

Uniqueness

Uniqueness is an important feature of the PARAFAC tensor decomposition.
As we shall see, this feature is not always present and this leads to important
differences between tensors.

In the previous chapters we have found the PARAFAC decomposition of
several tensors.

We have found that some tensors have an unique decomposition whereas
other tensors do not.

The first results about the uniqueness of tensor PARAFAC decompositions
are found in the work of Harshman [17], but the most general sufficient condition
for essential uniqueness is due to Kruskal [20].

Theorem 3.1 Let T = JA,B,CK where the matrices are given by A = (a1,a2, · · · ,aR),
B = (b1,b2, · · · ,bR), C = (c1, c2, · · · , cR) with vectors ai, bi, and ci ,
i = 1, · · · , R as columns. then the condition,

kA + kB + kC ≥ 2R+ 2

where kA, kB and kC is the k-rank of the matrices A,B and C respectively
and R is the rank of T is sufficient for uniqueness.

A proof can be found in Stegeman and Sidiropoulos [26]. Ten Berge and
Sidiropoulos [29] have shown that the sufficient condition set by Kruskal is also
necessary for uniqueness of the decompositions of rank 2 or rank 3 tensors.

Note also that this condition cannot be met for rank 1 tensors. However
the uniqueness of the PARAFAC decomposition in this case has already been
proved by Harshman [17] and it follows that the above condition is not necessary
for rank 1 tensors.

Uniqueness for Rank 1 Tensors

We found before that the PARAFAC decomposition of rank 1 tensors is given
by three vectors representing the ratio between the entries of the tensor along
each different mode. Since there is only one non-trivial form to represent this
ratio, we can deduce that the PARAFAC decomposition of rank 1 tensors is
unique.

Rovi, 2010. 73
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Uniqueness for Rank 2 Tensors

When considering rank 2 decompositions, we have found several examples of
tensors that can be expressed as a sum of rank 1 tensors in only one essential
way, producing a unique decomposition. However, we have also found examples
of rank 2 tensors that can be rewritten as a sum of two rank 1 tensors in different
ways, so that their decomposition is not unique. We give several examples
demonstrating this feature.

Example 3.1

Let us consider the decomposition we found in Example 2.10 for the tensor
proposed in Kruskal [21].

We have,

0 1
1 0

1 0
0 1

=

(
1
−1

)
◦
(

1
−1

)
◦
(

1/2
−1/2

)
+

(
1
1

)
◦
(

1
1

)
◦
(

1/2
1/2

)

with component matrices given by,

A =

(
1 1
−1 1

)
, B =

(
1 1
−1 0

)
and C =

(
1/2 1/2
−1/2 1/2

)
We can see that kA = 2, kB = 2, kC = 2 and the condition given in Theorem

3.1 is satisfied.
f

Example 3.2

Let us consider the tensor given in Example 2.11.

We have found that,

T =

10 30
8 24

7 21
6 18

=

(
1
−2

)
◦
(

1
3

)
◦
(

2
3

)
+

(
1
2

)
◦
(

1
3

)
◦
(

5
7

)

Thus we can write,

T =

t(
1 1
−2 2

)
,

(
1 1
3 3

)
,

(
2 5
3 7

)|

We can see that

kA = 2, kB = 1, kC = 2
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We find that the sufficient condition proposed by Kruskal in Theorem 3.1
is not satisfied and we deduce that this tensor does not have an unique rank 2
decomposition.

In fact, we can compute other decompositions, for example,

T =

t(
1 1
−6 3

)
,

(
1 1
3 3

)
,

(
1 6

3/2 17/2

)|

f

We can summarize these features as follows

• If the component matrices A,B and C have full rank, then we have
kA = 2, kB = 2, kC = 2 and the condition given in Theorem 7.1 is
satisfied. Thus we can deduce that rank 2 decompositions are unique if
the components matrices have full rank.

• If either of the component matrices A,B and C does not have full rank,
then we have kA + kB + kC < 6 and the condition given in Theorem 7.1
is not satisfied. Note that the component matrix will not have full rank if
the corresponding component vectors are multiples of each other. This is
the case when there exists some ratio between the slices of the tensor as
explained in example 2.11.

Uniqueness for Rank 3 Tensors

When considering the PARAFAC decomposition of a 2×2×2 tensor as the sum
of three rank 1 tensors, we find that the component matrices are of size 2 × 3
so that we can deduce that they have a maximum rank of 2.

Hence we deduce that the maximum number which can be attained by the
sum of the k-rank corresponding to each component matrix is 6 whereas Theo-
rem 7.1 sets a bound of 2× 3 + 2 = 8 for uniqueness.

Thus we deduce that rank 3 tensor decompositions are never unique over R.

Example 3.3

Let us now consider the tensor proposed in Lathauwer [11],

T =

1 0
0 0

0 1
1 0

In [11] we find the following decomposition,(
0
1

)
◦
(

1
0

)
◦
(

1
0

)
+

(
1
0

)
◦
(

0
1

)
◦
(

1
0

)
+

(
1
0

)
◦
(

1
0

)
◦
(

0
1

)

with A =

(
0 1 1
1 0 0

)
, B =

(
1 0 1
0 1 0

)
and C =

(
1 1 0
0 0 1

)
as

component matrices.



76 Chapter 3. Uniqueness

However, solving Equation 2.30 for this tensor we find,(
0
1

)
◦
(

0
1

)
◦
(

0
−1

)
+

(
1
1

)
◦
(

1
1

)
◦
(

1/2
1/2

)
+

(
1
−1

)
◦
(

1
−1

)
◦
(
−1/2
1/2

)

with A =

(
0 1 1
1 1 −1

)
, B =

(
0 1 1
1 1 −1

)
and C =

(
0 1/2 −1/2
−1 1/2 1/2

)
as component matrices.

With these examples we can see that rank 3 decompositions are not unique.

f

Example 3.4

Let us now consider the tensor proposed in Kolda [2]

T =

0 1
−1 0

1 0
0 1

We found in example 2.13 the following decomposition for this tensor,(
0
1

)
◦
(

0
1

)
◦
(

2
0

)
+

(
1
−1

)
◦
(

1
1

)
◦
(

1/2
1/2

)
+

(
1
1

)
◦
(

1
−1

)
◦
(

1/2
−1/2

)

with A =

(
0 1 1
1 −1 1

)
, B =

(
0 1 1
1 1 −1

)
and C =

(
2 1/2 1/2
0 1/2 −1/2

)
as component matrices.

As in the previous example, we find another decomposition for this tensor
proposed in Kolda [2],(

1
0

)
◦
(

1
0

)
◦
(

1
−1

)
+

(
0
1

)
◦
(

0
1

)
◦
(

1
1

)
+

(
1
−1

)
◦
(

1
1

)
◦
(

0
1

)

with A =

(
1 0 1
0 1 −1

)
, B =

(
1 0 1
0 1 1

)
and C =

(
1 1 0
−1 1 1

)
as component matrices.

f



Chapter 4

Degeneracy

This chapter is dedicated to the study of the rank 3 tensors for which the
hyperdeterminant is zero.

In the previous chapters we have encountered tensors that display special
features, i.e., the hyperdeterminant of the tensor is zero, see 2.5, the numerical
criterion based on approximations fails to produce any relevant information,
see example 2.4 or the fact that it is impossible to write these tensors as the
sum of two real or complex rank 1 tensors, see example 2.12. These features
describe the behaviour of the tensors studied in this chapter. They will play an
important role when considering the rank 2 approximations to the tensor.

It is important to remark that Kruskal [21] explained that for the tensors for
which his polynomial attained the zero value, the rank could not be decided.

This issue is solved when Ten Berge [28] introduces the condition on the
entries of the tensor that the slices should be non singular. In this way, he
achieves to prove that tensors such that their hyperdeterminant is zero which
have non singular slices will have rank 3.

4.1 Degeneracy Parabola

Let us consider again the hyperdeterminant of a tensor as given by equation
2.22. Since we are considering 2 × 2 × 2 tensors we are dealing with 8 entries
which can be considered as 8 variables. But since we would like to gain some
insight in what it means that the hyperdeterminant of a tensor is zero, we are
going to attempt to represent the hyperdeterminant as a function of only two
variables.

Thus, let us consider equation 2.22 taking the entries t221 and t222 as vari-
ables, as explained in Paatero [23]. We can rewrite the equation for the hyper-
determinant of the tensor as follows, relabelling the entries t221 and t222 as D

and H to highlight them.

Rovi, 2010. 77
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∆(T ) ≡ D(D, H) = t2111H
2 + t2112D

2 + t2121t
2
212 + t2122t

2
211

−2 (t111t112DH + t111t121t212H + t111t122t211H

+t112t121t212D + t112t122t211D + t121t122t212t211)

+4 (t111t122t212D + t112t121t211H) (4.1)

Rearranging this equation we obtain,

D(D, H) = t2112D
2−2t111t112DH+t2111H

2+(4t111t122t212 − 2t112t121t212 − 2t112t122t211) D

+ (4t112t121t211 − 2t111t121t212 − 2t111t122t211) H+t2121t
2
212+t2122t

2
211−2t121t122t212t211

We can see that,

(−2t111t112)2 − 4t2112t
2
111 = 0

Hence, we can deduce that equation D (D, H) = 0 represents a parabola for
all values of the entries t111, t121, t211, t112, t122, t212 except for t111 = t112 = 0.
We shall denote the parabola D(D, H) as the degeneracy parabola for T [33].

• The points above this parabola represent tensors for which ∆(T ) > 0 and
thus are tensors of rank 2.

• Similarly, tensors with ∆(T ) < 0 and therefore of rank 3 are represented
below the parabola.

• The points on the parabola represent tensors with ∆(T ) = 0.

Note that the points on the parabola represent tensors with the only con-
dition that ∆(T ) = 0. That is, represented on this parabola we find tensors of
rank 1, 2 and 3 as seen in example 2.5.

Nevertheless, De Silva and Lim [7] have shown that the generic rank of the
tensors such that ∆(T ) = 0 is 3. Thus, we can consider that, generically, the
tensors represented on the parabola will have rank 3. These tensors are on the
boundary between the sets representing the rank 2 and rank 3 tensors. The
tensors on the parabola D(D, H) are defined to be degenerate.
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Example 4.1

Let us consider the tensor studied in examples 1.1, 2.3, 2.5, 2.12 given by,

T =

5 6
7 8

1 2
3 4

In example 2.5 we computed its hyperdeterminant to be,

∆(T ) = 0

The corresponding parabola is given by,

D(D, H) = 25D2 − 10DH + H2 − 152D + 56H + 16

0 5 10

5

10

Figure 4.1: Visualization of the parabola 25D2−10DH+H2−152D+56H+16 = 0

We can visualize rank 2 tensors to be ”above” the parabola while rank 3
tensors are represented ”below” the parabola.

f
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4.2 Defining Degeneracy

We can see that the tensors represented on the degeneracy parabola are on the
boundary between the set of tensors of rank 3 with ∆(T ) < 0 and the set of rank
2 tensors with ∆(T ) > 0. It follows that they can be approximated arbitrarily
close from the set of rank 2 tensors. In this sense, we can define these tensors
to have rank 3 but border rank 2 as pointed out in section 2.3.2. Thus, we find
that we cannot compute a best rank 2 approximation to a rank 3 tensor. That
is, the minimizing cost equation given by

f(A,B,C) =

∥∥∥∥T − 2∑
r=1

ar ◦ br ◦ cr

∥∥∥∥2

(4.2)

has no minimum.

This means that any iterative algorithm trying to find the best rank 2 ap-
proximation to a rank 3 tensor will have problems along the iteration. As the
iterations approximate the tensor, the change in each step will become very small
defining a behaviour denoted as swamp as defined by Mitchell and Burdick [22].

In these cases the PARAFAC decomposition displays a pattern of degeneracy
as explained in Stegeman [25], that is defined by the following features:

• For the component matrices A,B and C the columns corresponding to
the degenerate factors will become nearly equal to each other or to each
other’s negative.

• The magnitudes of the elements of the columns in the unrestricted com-
ponent matrix will become arbitrarily large.

Example 4.2

We are going to consider the computations obtained with the MATLAB
Tensor Toolbox for the rank 2 approximation of the tensor.

Let

T =

5 6
7 8

1 2
3 4

In example MATLAB 2.3 we computed two rank 2 approximations to T ,
each giving a different value for the minimizing function 4.2.

Let us consider the approximation given by,

B1 = 426.5394×
(

0.5279
0.8493

)
◦
(

0.6245
0.7810

)
◦
(
−0.5847
0.8112

)

+419.2111×
(

0.5253
0.8509

)
◦
(
−0.6234
−0.7819

)
◦
(
−0.6078
0.7941

)
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Rewriting the decomposition for B1 in terms of its component matrices we
find,

B1 =

t(
225.17 220.21
362.26 356.71

)
,

(
266.37 −261.34
333.13 −327.78

)
,

(
−249.4 −254.80
346.01 332.90

)|

As already highlighted in example MATLAB 2.3, the vectors in each compo-
nent matrix are very similar, with differences between the corresponding entries
of less than 4 %, up to sign change.

This example demonstrates the features of degenerate PARAFAC decompo-
sition as stated above.

f

We will now consider a tensor studied in Stegeman [24] which he explains
has been the only tensor for which it has been proved that the objective function
has no minimum.

Example 4.3

Let us consider the tensor studied in Stegeman [24] given by

T =

0 1
1 0

1 0
0 −1

We can compute its hyperdeterminant to be

∆(T ) = −4

Thus, we deduce that the tensor is of rank 3.
Running through the code given in MATLAB 2.3 we find different approxi-

mations to the tensor T .

Let us consider the following one,

Final fit = 4.998490e-001

B2 is a ktensor of size 2 x 2 x 2

B2.lambda = [ 28.8224 28.8224 ]

B2.U{1} =

-0.1250 0.1594

0.9922 -0.9872

B2.U{2} =

0.5345 0.5049

0.8451 0.8632

B2.U{3} =

0.3770 0.4089

0.9262 0.9126
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which we can rewrite as,

T = 28.8224×
(
−0.1250
0.9922

)
◦
(

0.5345
0.8451

)
◦
(

0.3770
0.9262

)

+28.8224×
(

0.1594
−0.9872

)
◦
(

0.5049
0.8632

)
◦
(

0.4089
0.9126

)

=

t(
−3.6028 4.5943
28.598 −28.453

)
,

(
15.406 14.552
24.358 24.879

)
,

(
10.866 11.785
26.695 26.303

)|

We find the same features of degeneracy as in the example above.

The corresponding degeneracy parabola is given by,

D(D, H) = 4D + H2

Note that we can represent the tensor above T to be at the focus of the
parabola.

0 5 10

5

10

Figure 4.2: Visualization of the parabola 4D + H2 = 0

f
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Example 4.4

Let us now consider the tensor proposed in Lathauwer [11],

T =

1 0
0 0

0 1
1 0

Running through the code given in MATLAB 2.3, we find,

Final fit = 9.723627e-001
B is a ktensor of size 2 x 2 x 2
P.lambda = [ 2.4501 2.4501 ]
B.U{1} =

0.9768 0.9768
0.2140 -0.2140

B.U{2} =
0.9769 -0.9769
0.2137 0.2137

B.U{3} =
0.9770 0.9770
0.2134 -0.2134

with equal columns in each component matrix up to sign change. In fact,
we will obtain such degenerate solutions for almost every rank 2 approximation
computed with MATLAB.

The corresponding degeneracy parabola is given by,

D(D, H) = D2 + 4H

We can represent the tensor T to be at the maximum of the parabola.

0 5 10

5

10

Figure 4.3: Visualization of the parabola D2 + 4H = 0

f
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Hyperdeterminants Revisited

Cayley defined the inner structure of 2 × 2 × 2 hypermatrices or tensors to be
governed by the polynomial ∆(T ) as defined in equation 2.22.

It is logical that we should find an explanation for degeneracy in the infor-
mation provided by the study of the hyperdeterminant ∆(T ).

We have seen that degenerate tensors are identified with the fact that they
cannot be decomposed as the sum of two real of complex rank 1 tensors, that
is, equation 2.23 cannot be solved.

This is given by the fact that the expression for e2 as root of equation 2.28
must attain two different values, that is, ∆(T ) 6= 0.

Let us now recall the expressions for the entries of the component vectors as
given by the solutions of equation 2.24

e2 =
−(t212t121 − t211t122 + t111t222 − t221t112) +

√
∆

2 (t211t112 − t111t212)

b2 =
−(t212t121 − t211t122 + t111t222 − t221t112)−

√
∆

2 (t211t112 − t111t212)

a2 =

√
∆t211 + t2211t122 + 2t111t212t221 − t111t211t222 − t211t112t221 − t121t211t212√
∆t111 − t2111t222 − 2t112t121t211 + t111t112t221 + t211t111t122 + t121t111t212

d2 =
t111t222 − t112t221 − t121t212 + t211t122 −

√
∆

2t111t122 − 2t112t121

c1 =
t111

2
+

1

2
√

∆
(−t2111t222−2t121t211t112+t111t112t221+t121t212t111+t211t122t111)

c2 =
t112

2
+

1

2
√

∆
(t2112t221+2t111t122t212−t111t112t222−t121t212t112−t211t122t112)

f1 =
t111

2
− 1

2
√

∆
(−t2111t222−2t121t211t112+t111t112t221+t121t212t111+t211t122t111)

f2 =
t112

2
− 1

2
√

∆
(t2112t221+2t111t122t212−t111t112t222−t121t212t112−t211t122t112)

We want to study the behaviour of these expressions when ∆(T )→ 0.

If ∆(T ) → 0 then we find (b2 − e2) → 0. Thus, it follows that the values
for the entries c1 and c2 become infinitely large. Similarly, the entries f1 and f2

but with opposite sign to c1 and c2 respectively.
This behaviour of the entries of the component vectors explains the pattern

of degeneracy arisen when trying to approximate rank 3 tensors.
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Example 4.5

Let us consider the degeneracy parabola for T =

5 6
7 8

1 2
3 4

as given in

Figure 4.3.

We find that a rank 2 tensor which is very close to T is given by

B1 =

5 6
7 8.001

1 2
3 4

with ‖T − B1‖ = 10−6 and ∆(B1) = 0.032.

Running through the MATLAB code 2.4 to find the decomposition of B1,
we find,

B1 =

(
1

0.9775

)
◦
(

1
0.9888

)
◦
(
−44.2235
−42.2346

)
+

(
1

1.0222

)
◦
(

1
1.0111

)
◦
(

45.2235
47.2346

)

A closer rank 2 approximation to the tensor T is given

B2 =

5 6
7 8.000001

1 2
3 4

with ‖T − B2‖ = 10−12 and ∆(B2) = 3.2× 10−5.

Running through the MATLAB code 2.4 to find the decomposition of B2,
we find,

B2 =

(
1

0.9993

)
◦
(

1
0.9996

)
◦
(
−1413.7
−1411.7

)
+

(
1

1.0007

)
◦
(

1
1.0004

)
◦
(

1414.7
1416.7

)

An even closer rank 2 approximation to T is

B3 =

5 6
7 8 + 10−9

1 2
3 4

with ‖T − B3‖ = 10−18 and ∆(B3) = 3.2× 10−8.
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Running through the MATLAB code 2.4 to find the decomposition of B3,
we find,

B3 =

(
1
1

)
◦
(

1
1

)
◦
(
−44721
−44719

)
+

(
1
1

)
◦
(

1
1

)
◦
(

44722
44724

)
We can see that MATLAB no longer supports with so many decimal places
so that it approximates the exact values to 5 decimal places.

This last approximation shows how dramatically can degeneracy alter the
results obtained by numerical methods.

f



Chapter 5

Classification of 2× 2× 2
Tensors

Richard Harshman liked to explain Multi-Way Factor Analysis (MFA) as one
tells a story: with words, sentences, appealing for intuition, and with few for-
mulas. Sometimes, the story turned to a tale, which required the belief of par-
ticipants, because of the lack of proof of some strange - but correct - results.

These are the first words of a paper [6] written by P. Comon, X. Luciani
and A. L. F de Almeida in a special issue of the Journal of Chemometrics in
memory of Richard Harshman, founder of the PARAFAC model.

Following the words by Harshman, we can think of a thesis as a story or as
a theatre play. First, some characters are presented, then we get to know them
better, so that we can recognize their special features and behaviour. Now the
story comes to an end and all the different characters presented are welcome
back to the stage to bid the listener farewell.

Classifying Tensors

In this chapter we give a classification of 2×2×2 tensors regarding the different
features studied throughout this report.

Taking only the feature of tensor rank into account, we can classify tensors
in 4 different sets, namely, rank 0, rank 1, rank 2 and rank 3.

In chapter 3, we saw that rank 2 tensors can have either an unique or a
non-unique decompositions depending on whether there is some ratio between
the slices.

When considering rank 3 tensors, we find that some have a negative value
for their hyperdeterminant while other have ∆(T ) = 0.

We can summarize these ideas in the following table showing the different
tensors studied as examples in this report and displaying their special features.

Furthermore, De Silva and Lim [7] propose a classification of tensors in
R2×2×2 in eight canonical forms. Each of the tensors given in the following
classification table represents one of the canonical forms defined by De Silva and
Lim [7]. We can consider each of the tensors given in the table as a representative
of each of the eight equivalence classes in which 2× 2× 2 tensors are classified.
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T ∆(T ) Tensor Rank k − rank Border Rank Entries

0 0
0 0

0 0
0 0

0 0
kA = 0, kB = 0, kC = 0

Unique decomposition
0

All
equal to
zero

2 4
6 12

1 2
3 6

0 1
kA = 1, kB = 1, kC = 1

Unique decomposition
1

Ratios
between
all slices

10 30
8 24

7 21
6 18

0 2
kA = 2, kB = 1, kC = 2

Non unique
2

Ratio
between
lateral
slices.
b2 = e2

3 4
6 8

1 2
2 4

0 2
kA = 1, kB = 2, kC = 2

Non unique
2

Ratio
between
horizon-
tal slices.
a2 = d2

2 4
6 8

1 2
3 4

0 2
kA = 2, kB = 2, kC = 1

Non unique
2

Ratio
between
frontal
slices.
c1
c2

= f1
f2

0 1
1 0

1 0
0 1

+ 2
kA = 2, kB = 2, kC = 2

Unique decomposition
2

5 6
7 8

1 2
3 4

0
3

Complex Rank: 3

kA = 2, kB = 2, kC = 2

Non unique
2

0 1
−1 0

1 0
0 1

−
3

Complex Rank: 2

kA = 2, kB = 2, kC = 2

Non unique
3
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Note that the three equivalence classes given by the rank 2 tensors without
unique decomposition could be considered as only one equivalence class. Since
these three classes arise from the fact that the slices in each of the three modes
are multiples of each other, we have considered it more convenient to consider
the three classes independently.

Now that we have classified 2×2×2 tensors in the eight classes presented, we
would like to know how often does each of the different classes occur. Kruskal
undertook numerical studies which revealed that rank 2 tensors occur with prob-
ability 79% while rank 3 tensors occur with probability 21%. He considered the
cases when ∆(T ) > 0 to have rank 2 and the cases when ∆(T ) < 0 to have rank
3, so that both rank 2 and rank 3 are typical ranks for 2× 2× 2 tensors.

We can see that the set of the tensor with ∆(T ) = 0 has zero volume.
Nevertheless, if we consider this subset, it can be proven that these tensors have
generic rank 3.
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Conclusion

In this thesis we have studied the features of 2× 2× 2 tensors and we have found
methods to compute the Higher Order Singular Value Decomposition (HOSVD)
and PARAFAC decomposition of these tensors. We have also studied the con-
ditions leading to degeneracy and have related them to the inner structure of
the 2× 2× 2 tensors. Finally we have been able to classify the tensors studied
in 8 different classes, namely the 8 canonical forms proposed in De Silva and
Lim [7].

Further Work

Much work can be done in the computation of decompositions of larger size
tensors. It is interesting to remark that in many cases the known results about
rank relay on numerical studies so that much work can be done in the analytical
explanation of these results.
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var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och
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