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ABSTRACT

Abstract en español: En esta tesis, se estudia la teoría de integración estocástica de Itô, así
como, su aplicación en la modelización financiera a partir de las ecuaciones diferenciales estocás-
ticas. A continuación, se presentan dos nuevas teorías de integración, la integral estocástica de
Ayed-Kuo y la de Russo-Vallois, que generalizan la de Itô en el sentido de que introducen el cálculo
estocástico anticipante. Se analizan algunas de sus propiedades más importantes, así como sus
respectivas extensiones de la formula de Itô. Finalmente, se transponen ambas integrales a
la teoría de ecuaciones diferenciales estocásticas y se introduce el problema de inversión con
información privilegiada, cuyas hipotésis están relacionadas con la condición anticipante. Para
este último punto, se proponen dos nuevos teoremas que se han demostrado en este trabajo.

Abstract in English: In this thesis, the Itô theory of stochastic integration is studied, as well as
its application in financial modeling based on stochastic differential equations. Then, two new
integration theories are presented, the Ayed-Kuo and the Russo-Vallois stochastic integrals, which
generalize the Itô one in the sense that they deal with anticipating stochastic calculus. Some of
their most remarkable properties are discussed, as well as their respectively extensions of the
Itô formula. Finally, both integrals are transposed to the stochastic differential equations theory
and the insider trading problem is introduced, whose hypothesis are related to the anticipating
condition. For this final point, two new theorems, which have been proved in this work, are
proposed.

Keywords: Brownian motion; Itô Stochastic Integration; Stochastic Differential Equations; Anticipating

Stochastic Calculus; Ayed-Kuo Integral; Russo-Vallois Integral; Insider Trading
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INTRODUCTION

In the theory of stochastic integration, the mathematician K. Itô in 1944 introduced the Itô

stochastic integral in order to obtain a method to construct diffusion processes as solutions

to stochastic differential equations. The main problem of the integration with respect to

Brownian motion, is the fact that the Riemann-Stieltjes integration fails. This need inspired Itô

to construct a theory of stochastic integration.

The Itô stochastic integral has a rage of applications. The most famous are those related to

financial modeling, as the Black-Scholes-Merton model. A continuos-time model, which aim is

to describe the behaviour of stock price. Specifically, it faces the problem of pricing European

options. However, this integration theory requires that the stochastic process must be adapted.

In this dissertation, our aim is to study an extension of the Itô theory considering the fact of

having information from the future, it means, that the integrand is anticipating. This idea is

mainly motivated by the problem of insider trading, in which a trader is considered to have

privileged information about future prices of assets. Hence, an extension of the Itô theory is

required.

This thesis introduce two anticipating stochastic integration theories. On the one hand, the

Ayed-Kuo stochastic integral, which was proposed by W. Ayed and H.-H. Kuo in 2008. On the

other hand, the Russo-Vallois stochastic integral, which was first introduced by F. Russo and P.

Vallois in 1993. The first one keeps most of the properties of the Itô stochastic integral, while

the second one does not have the analytical structure of the Ayed-Kuo one. However, as we will

discuss in this thesis, if we consider anticipating condition in the financial model, the Ayed-Kuo

solution seems to be counterintuitive, while the Russo-Vallois solution works in the financial

context.

This dissertation is organized in six chapters. In the first one, we give an introduction to Brownian

motion. We provide a definition of it and study some of its most important properties, specifically

those related to stochastic integration, as the martingale property. In the second chapter, we

construct the Itô stochastic integral and discuss some of its most remarkable properties. Then,

we present the Itô formula and an important result, the Girsanov theorem. The third chapter is

focused on the stochastic differential equations theory. We introduce the notion of solution of an

stochastic differential equation and we prove the existence and uniqueness of this solution. We do

also describe the well-known Black-Scholes-Merton model, as an example of financial modeling

based on this theory.
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CONTENTS

The next three chapters are related to the anticipating stochastic calculus. The aim is to give a

theory to the stochastic integrals whose integrand is anticipating, and consequently non-adapted.

In the fourth chapter, we construct the Ayed-Kuo stochastic integral and we discuss some of

its most remarkable results. In the same form, the fifth chapter examines the Russo-Vallois

stochastic integral.

This thesis ends with the description of the insider trading problem, which is one of the motiva-

tions of the anticipating stochastic calculus. We present the problem and discuss the solutions for

the Ayed-Kuo and the Russo-Vallois stochastic integrals. For this final point, we propose two new

theorems that we have proved in this work, which deal with the optimal investment strategy for

insider trading.

The appendixes include a summary on Normal random variables, conditional expectation and

the Borell-Cantelli lemma and the Chebyshev inequality.
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BROWNIAN MOTION

Brownian motion was first defined by the botanist Robert Brown in 1828 while he was

studying the irregular random movement of a particle of pollen. The motion was later

explained by Albert Einstein in 1905 to refer to the random collisions with the molecules

of the liquid. In 1900, Louis Bachelier was the first mathematician to used Brownian motion as a

model for movement of stock prices in his PhD thesis The Theory of Speculation. Nevertheless, it

was not until 1931 when the establishment of Brownian motion as a stochastic process was done

by Norbert Wiener.

Brownian motion B(t) is fundamental in the theory of stochastic integration because of its

definition and properties. It has a range of applications, those including financial modeling, as it

is an important stochastic process. Hence, the aim of this chapter is to discuss the main notions

of Brownin motion, which will be necessary in the stochastic integration theory.

This chapter is organized as follows. First, we provide elementary notions of stochastic processes

and martingales. Next, we give a definition of Brownian motion and discuss some of its most

remarkable properties, as the martingale one and those related to sample paths. Finally, we

examine the quadratic variation and the Markov property for this stochastic process.

1.1 Preliminaries

This section is, in turn, divided into two parts. First, we provide fundamental notions of the

stochastic processes in order to, in the following section, be able to give a definition of Brownian

motion. Then, we introduce the concept of martingale and its importance as a property of the

Brownian motion.
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CHAPTER 1. BROWNIAN MOTION

1.1.1 Stochastic Processes

Let (Ω,F ,P) be a probability space, such that

• Ω is a set of outcomes;

• F is a set of events;

• P :F → [0,1] is a function that assigns probabilities to events.

Definition 1.1. Consider a set Ω. Then, the σ-algebra F on Ω is defined as a family F of subsets

of Ω satisfying the following properties

(i) ;∈F ;

(ii) A ∈F →Ac ∈F ;

(iii) A1,A2, ... ∈F →A=⋃∞
i=1Ai ∈F .

Definition 1.2. Let X :Ω→R. The random variable X is F -measurable, or equivalently, mea-

surable with respect to F , if

X−1(U)= {ω ∈Ω, X (ω) ∈U} ∈F ,

for all Borel sets such that U ∈B(R).

Proposition 1.1 (Doob-Dynkin lemma). Let X ,Y :Ω→R be two random variables. Then, Y is

Hx-measurable, where Hx is the smallest σ-algebra generated by X, if and only if there exists a

Borel measurable function g :R→R, such that

Y = g(x).

Definition 1.3 (Stochastic process). A stochastic process is a parametrized collection of random

variables {
X t, t ∈ T

}= {
X t(ω), t ∈ T,ω ∈Ω}

,

defined on a probability space (Ω,F ,P) and assuming values in R.

Remark 1.1. For each t ∈ T fixed, we have a random variable

ω→ X t(ω), ω ∈Ω.

Hence, we called realization, trajectory or sample path of the process X t to the function

t → X t(ω), t ∈ T,

for each ω ∈Ω fixed.

Definition 1.4. A filtration on the measurable space (Ω,F ) is an increasing family {Ft, t ≥ 0} of

sub-σ-algebras of F .

Definition 1.5. A stochastic process X t is adapted to the filtration {Ft, t ≥ 0}, if the random

variable X t is Ft-measurable for each t.
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1.1. PRELIMINARIES

1.1.2 Martingales

Definition 1.6 (Martingale). A stochastic process {X t, t ≥ 0} is a martingale with respect to the

filtration {Ft, t ≥ 0}, if and only if

(i) E|X t| <∞, for all t ≥ 0;

(ii) X t is Ft-measurable, for any t ≥ 0;

(iii) E (X t|Fs)= Xs almost surely, for all 0≤ s ≤ t.

Remark 1.2. Note that, the expectation of a martingale is constant. Then, by the properties of

the conditional expectation (see Appendix B) and the martingale definition, we have, for all t ≥ 0

E (X t)= E (E (X t|F0))= E (X0) .

This result is called the fair game property. It can be used as an argument to prove that a

stochastic process is not a martingale. However, we cannot use it in the opposite sense, since a

not martingale process can have a constant expectation.

Definition 1.7. Let {X t, t ≥ 0} be a stochastic process and {Ft, t ≥ 0} a filtration. If the stochastic

process satisfies the conditions (i) and (ii) of Definition 1.6, we have

(i) The stochastic process {X t, t ≥ 0} is a submartingale with respect to the filtration if and only

if E (X t|Fs)≥ Xs almost surely, for all 0≤ s ≤ t.

(ii) The stochastic process {X t, t ≥ 0} is a supermartingale with respect to the filtration if and

only if E (X t|Fs)≤ Xs almost surely, for all 0≤ s ≤ t.

Next, let us establish a relationship between martingales and submartingales in the following

proposition. This result can be proved by the martingale definition and the conditional Jensen

inequality (see Appendix B).

Proposition 1.2. Let {X t,0 ≤ t ≤ T} be a martingale and ϕ : R→ R a convex function. Let us

assume that, for each t, E|ϕ(X t)| is finite. Hence, we have

{ϕ(X t),0≤ t ≤ T},

is a submartingale.

For continuous martingales we have the following important result, the Doob Martingale

inequality, which is due to J. L. Doob. The proof can be found in [35].

Theorem 1.1 (Doob martingale inequality). If Mt is a martingale, such that t → Mt(ω) is contin-

uous almost surely. Then, we have

P

(
sup

0≤t≤T

∣∣Mt
∣∣≥λ)

≤ 1
λp E

(∣∣Mt
∣∣p)

,

for all p ≥ 1, T ≥ 0 and λ> 0.

5



CHAPTER 1. BROWNIAN MOTION

1.2 Definition of Brownian Motion

In this section, we give a definition of Brownian motion. Next, we discuss that it can also be

defined as a Gaussian process. Then, we study some of its most remarkable properties and we

prove that it is a martingale.

Definition 1.8 (Brownian motion). A stochastic process {B(t,ω), t ≥ 0} is a standard one-dimensional

Brownian motion or Wiener process if it satisfies the following properties

(i) (Independence of increments) For 0≤ t1 < t2...< tn, the random variables

Bt1 ,Bt2 −Bt1 , ...,Btn −Btn−1 ,

are independent.

(ii) (Normal increments) B(t)−B(s) has a Normal distribution with mean 0 and variance t− s.

(iii) (Continuity of paths) {B(t,ω), t ≥ 0} are continuous functions of t.

Note that, the properties (i) and (ii) determine all the finite dimensional distributions. More-

over, in Theorem 1.2 we prove that all them are Gaussian. On the other hand, the property (iii)

deals with the continuity property of Brownian motion sample paths. We prove this property in

Section 1.3 by the Kolmogorov continuity theorem.

Theorem 1.2 (Gaussian process). A stochastic process X t is a Brownian motion if and only if it

is a Gaussian process with zero mean function and covariance function Σ(s, t)=min(t, s).

Proof. First, we prove the implication (⇒). The mean of the Brownian motion is zero, such that

Σ(s, t)= Cov (B(t),B(s))= E (B(t)B(s)) .

Let us assume that t < s, such that B(s)= B(t)+B(s)−B(t). Hence, we get

E (B(t)B(s))= E (B(t) (B(t)+B(s)−B(t)))= E(
B(t)2)+E (B(t) (B(s)−B(t)))= E(

B(t)2)= t,

by independent increments property. Next, let us assume that t > s, such that E (B(t)B(s)) = s.

Therefore, we have

E (B(t)B(s))=min(t, s).

Next, we prove the implication (⇐). Let us assume that t is arbitrary and s ≥ 0. We have that

X t is a Gaussian process, then the joint distribution of X t and X t+s is a bivariate Normal with

zero mean. Moreover, (X t, X t+s − X t) is also a bivariate Normal. Furthermore, we have that

Σ (X t, X t+s)=min(t, s), such that

Σ (X t, X t+s − X t)=Σ (X t, X t+s)−Σ (X t, X t)= t− t = 0.

Hence, X t and X t+s − X t are not correlated. In addition, we can state that X t and X t+s − X t are

independent. Then, the increment X t+s − X t is independent of X t and it has Normal distribution

with zero mean and variance s. Indeed, it is a Brownian motion.
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1.2. DEFINITION OF BROWNIAN MOTION

Proposition 1.3 (Translation invariance). Consider a fixed t0 ≥ 0. Then, the stochastic process

B̃(t)= B(t+ t0)−B(t0) is a Brownian motion.

Proof. Is easy to check that the stochastic process B̃(t)= B(t+ t0)−B(t0) has continuous sample

paths. Hence, B̃(t) satisfies the property (iii) of Definition 1.8. On the other hand, let us consider,

for any t > s

(1.1) B̃(t)− B̃(s)= B(t+ t0)−B(s+ t0).

Hence, B̃(t)− B̃(s) has Normal distribution with zero mean and variance (t+ t0)− (s+ t0)= t− s.

Hence, B̃(t) satisfies property (ii). Finally, let us assume that t0 > 0, such that, we have, for any

0≤ t1 < ...< tn

0< t0 ≤ t1 + t0 < ...< tn + t0,

such that

B(tk + t0)−B(tk−1 + t0), k = 1,2, ...,n,

are independent random variables. Hence, by Equation (1.1), the increments B̃(tk)− B̃(tk−1), for

k = 1,2, ...,n, are independent random variables. Hence, B̃(t) satisfies property (i). Consequently,

B̃(t) is a Brownian motion.

Proposition 1.4 (Scaling invariance). Let λ> 0 be any real number. Then, the stochastic process

B̃(t)= B(λt)/
p
λ is a Brownian motion.

Proof. Is easy to check that B̃(t) satisfies property (i) and property (iii) of Definition 1.8. Next, let

us consider, for any t > s

B̃(t)− B̃(s)= 1p
λ

(B(λt)−B(λs)) .

Then, B̃(t)− B̃(s) has Normal distribution with zero mean and variance 1
λ (λt−λs)= t− s. Hence,

B̃(t) satisfies property (ii). Consequently, B̃(t) is a Brownian motion.

Theorem 1.3. The Brownian motion B(t) is a martingale.

Proof. Let 0≤ s ≤ t. Then, we have

E (B(t)|Fs)= E ((B(t)−B(s))+B(s)|Fs)

= E (B(t)−B(s)|Fs)+E (B(s)|Fs)

= E (B(t)−B(s)|Fs)+B(s)

= B(s),

by independent increments property and Normal increments property. Hence, B(t) satisfies the

martingale property.

In the following result, we give two examples of martingales that are associated with Brownian

motion.

7



CHAPTER 1. BROWNIAN MOTION

Theorem 1.4. Let B(t) be a Brownian motion. Then, we have

(i) B(t)2 − t is a martingale;

(ii) For any σ, eσB(t)− 1
2σ

2 t is a martingale.

Proof. Let us consider the function f and the filtration Ft, such that

E ( f (B(t+ s)−B(t)) |Ft)= E ( f (B(t+ s)−B(t))) ,

since B(t+ s)−B(t) and Ft are independent. Indeed, the latter expectation is just E ( f (X )), where

X is a random variable with zero mean and variance s.

(i) Note that, E
(
B(t)2)= t <∞. Then, B(t)2 is integrable. Moreover, we have

B(t+ s)2 = (B(t)+B(t+ s)−B(t))2

= B(t)2 +2B(t) (B(t+ s)−B(t))+ (B(t+ s)−B(t))2 .

Then, we use that B(t+ s)−B(t) is independent of Ft and it has zero mean. In addition, we

take g(x)= x2, such that

E
(
B(t+ s)2∣∣Ft

)= B(t)2 +2E
(
B(t) (B(t+ s)−B(t))

∣∣Ft
)+E(

(B(t+ s)−B(t))2 ∣∣Ft
)

= B(t)2 + s.

Hence, the stochastic process B(t)2 − t satisfies the martingale property.

(ii) Let us consider the moment generating function of B(t). Then, since B(t)∼N (0, t), we have

E
(
eσB(t))= e

1
2σ

2 t <∞. Then, eσB(t)− 1
2σ

2 t is integrable. Hence, we get

E
(
eσB(t)− 1

2σ
2 t

)
= 1.

Then, we take g(x)= eσx and use the fact that B(t) is Ft-measurable, such that, we have

E
(
eσB(t+s)

∣∣∣Ft

)
= E

(
eσB(t)+σ(B(t+s)−B(t))

∣∣∣Ft

)
= eσB(t)E

(
eσ(B(t+s)−B(t))

∣∣∣Ft

)
.

Finally, since the increment B(t+ s)−B(t) is independent of Ft, we get

E
(
eσB(t+s)

∣∣∣Ft

)
= eσB(t)E

(
eσ(B(t+s)−B(t))

∣∣∣Ft

)
= eσB(t)E

(
eσ(B(t+s)−B(t))

)
= eσB(t)+ 1

2σ
2s.

Hence, the stochastic process eσB(t)− 1
2σ

2 t satisfies the martingale property.

8



1.3. PROPERTIES OF BROWNIAN MOTION PATHS

Remark 1.3. The three stochastic processes from Theorem 1.3 and Theorem 1.4 are important

martingales in the stochastic calculus theory. The first one B(t) is the Brownian motion. The

second one B(t)2 − t provides the Levy characterization of Brownian motion. Additionally, the

martingale eσB(t)− 1
2σ

2 t is called the exponential Brownian motion or the exponential martingale,

and it is used in the establishment of the distribution properties of Brownian motion.

1.3 Properties of Brownian Motion Paths

In this section, our aim is to prove the continuity of Brownian motion sample paths, which is

stated in property (iii) from Definition 1.8, and the nowhere differentiability of these trajectories.

1.3.1 Hölder Continuity

Next, we prove that Brownian motion B(t) always has a version of it with uniformly Hölder

continuous sample paths for each exponent γ< 1
2 , but these paths are nowhere Hölder continuous

with any exponent γ≥ 1
2 .

Let us first introduce some elementary notions.

Definition 1.9. Let {X t} and {Yt} be two stochastic processes on the probability space (Ω,F ,P).

A process {X t} is called a version of {Yt}, if, for all t

P ({X t(ω)=Yt(ω),ω ∈Ω})= 1.

Definition 1.10. Let 0 ≤ γ≤ 1 and let f : [0,T] → R. The function f is called uniformly Hölder

continuous with exponent γ> 0, if there exists a constant K , such that, for all s, t ∈ [0,T]

| f (t)− f (s)| ≤ K |t− s|γ.

In addition, the function f is called Hölder continuous with exponent γ> 0 at the point s, if there

exists a constant K , such that, for all t ∈ [0,T]

| f (t)− f (s)| ≤ K |t− s|γ.

Next, we present the Kolmogorov continuity theorem, which allows us to prove Hölder conti-

nuity of Brownian motion sample paths. The proof can be found in [22].

Theorem 1.5 (Kolmogorov continuity theorem). Let {X t,0≤ t ≤ T} be a stochastic process. If there

exist three constants K ,α,β> 0, such that, for all s, t ∈ [0,T]

E
(
|X t − Xs|β

)
≤ K |t− s|1+α.

Then, there exists a version {X̃ t, t ≥ 0} of the process with almost surely Hölder continuous sample

paths with exponent γ ∈
(
0, α

β

)
.

9



CHAPTER 1. BROWNIAN MOTION

Theorem 1.6 (Hölder continuity). Let {B(t), t ≥ 0} be a Brownian motion. There exists a version

{B̄(t), t ≥ 0} of the process, such that, for almost all ω ∈Ω and all T > 0, the sample paths t → B(t,ω)

are Hölder continuous on [0,T] with exponent 0< γ< 1
2 .

Proof. In order to prove this result, we use the Kolmogorov continuity theorem. Our aim is to

check that any Brownian motion satisfies the hypothesis of this theorem. Let us recall that

B(t)−B(s)∼N (0, t− s). Hence, by Normal distribution properties (see Appendix A), we have

E
(|B(t)−B(s)|2n)= 1p

2π(t− s)

∫ ∞

−∞
x2ne−

x2
2(t−s) dx

= 1p
2π(t− s)

∫ ∞

−∞
y2n(t− s)e−

y2

2
p

t− sd y

= K(t− s)n.

Then, by Theorem 1.5, we know that there exists a version of the process with Hölder continuous

sample paths, whose exponent γ satisfies

0< γ< n−1
2n

= 1
2
− 1

2n
.

Therefore, taking n →∞, we have

0< γ< 1
2

.

1.3.2 Nowhere Differentiability

Next, we prove that Brownian motion sample paths are nowhere differentiable. In order to do

so, we first state that, with probability one, all sample paths of the process are nowhere Hölder

continuous with exponent greater than or equal to 1
2 .

Theorem 1.7. Let 1/2 ≤ γ ≤ 1. Almost all sample paths of Brownian motion B(t) are nowhere

Hölder continuous with exponent γ.

We do not prove this result as it is highly extensive. The proof can be found in [13]. Moreover,

by Theorem 1.7, we can establish the following result, whose proof leads immediately.

Theorem 1.8 (Nowhere differentiability). Any Brownian motion has almost surely nowhere

differentiable sample paths.

Proof. By reducing to absurd, let us consider that the sample paths of Brownian motion are

differentiable at some point s. Then, they are Hölder continuous with exponent γ = 1 at s.

However, Theorem 1.7 states that this is almost surely not so. Hence, for almost all ω, t → Bt(t,ω)

is nowhere differentiable.

Remark 1.4. As a consequence of the nowhere differentiability of Brownian motion sample

paths, with probability one, these paths are not of bounded variation, it means, the trajectories

are not monotone.

10
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1.4 Quadratic Variation of Brownian Motion

In this section, we derive the quadratic variation of Brownian motion. This result has a great

importance in the following chapter, where we introduce the stochastic integral. As a consequence

of Remark 1.4 and the quadratic variation of brownian motiom, we have that it is not possible to

integrate with respect to Brownian motion in a Riemann-Stieltjes sense.

Definition 1.11. The quadratic variation of Brownian motion [B,B](t) is defined by

(1.2) [B,B](t)= lim
||∆n||→0

n∑
i=1

∣∣B (
tn

i
)−B

(
tn

i−1
)∣∣2,

where the limit is taken over the partition ∆ of the interval [0, t] and ||∆n|| =max1≤i≤n
(
tn

i − tn
i−1

)
as n →∞.

Theorem 1.9 (Quadratic variation). The quadratic variation of a Brownian motion over the

interval [s, t] is t− s.

Proof. In order to prove the result above, we give the proof for a sequence of partitions, such that∑
n ||∆n|| <∞. Let us consider

Tn =∑
i

∣∣B (
tn

i
)−B

(
tn

i−1
)∣∣2.

Then, we have

E (Tn)= E
(∑

i

∣∣B (
tn

i
)−B

(
tn

i−1
)∣∣2)

=
n∑

i=1

(
tn

i − tn
i−1

)
= t− s.

The variance of Tn, using the fourth moment of the Normal distribution with zero mean and

standard deviation σ (see Appendix A), is

V (Tn)=V

(∑
i

∣∣B (
tn

i
)−B

(
tn

i−1
)∣∣2)

=∑
i

V
(
B

(
tn

i
)−B

(
tn

i−1
))2

=∑
i

3
(
tn

i − tn
i−1

)2

≤ 3 max
1≤i≤n

(
tn

i − tn
i−1

)
(t− s)

= 3(t− s)||∆n||.

Hence, we get
∞∑

n=1
V (Tn)<∞.

11
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Therefore, by the Monotone convergence theorem (see Appendix B), we have

E

( ∞∑
n=1

(Tn −E (Tn))2

)
<∞.

Indeed, the series converges almost surely, which implies that its terms converge to zero and

Tn −E (Tn)→ 0 almost surely. Consequently, Tn → (t− s) almost surely.

Remark 1.5. As we will discuss in Chapter 2, the stochastic integration, it means, integrating

with respect to Brownian motion is such a complex task. The Riemann-Stieltjes integration fails.

The sample paths of Brownian motion are nowhere differentiable, then they are not of bounded

variation, as Theorem 1.9 states. This is one of motivations to construct a theory of stochastic

integration.

1.5 Markov Property of Brownian Motion

In this final section, our aim is to prove that Brownian motion satisfies the Markov property,

which refers to the loss of memory of the stochastic processes.

First, let us give a definition for Markov processes.

Definition 1.12 (Markov process). For any t and s > 0, the process X is a Markov process if

P (X t+s ≤ y|Ft)= P (X t+s ≤ y|X t) ,

almost surely.

Theorem 1.10 (Markov property). Brownian motion satisfies the Markov property.

Proof. In order to prove the result above, let us use the moment generating function, such that,

we have

E
(
eσB(t+s)

∣∣∣Ft

)
= eσB(t)E

(
eσ(B(t+s)−B(t))

∣∣∣Ft

)
= eσB(t)E

(
eσ(B(t+s)−B(t))

)
.

Note that eσ(B(t+s)−B(t)) and Ft are independent. In addition, the increment B(t+ s)−B(t) has a

Normal distribution with zero mean and variance s. Then, we get

E
(
eσB(t+s)

∣∣∣Ft

)
= eσB(t)E

(
eσ(B(t+s)−B(t))

)
= eσB(t)eσ

2s/2

= eσB(t)E
(
eσ(B(t+s)−B(t))

∣∣∣B(t)
)

= E
(
eσB(t+s)

∣∣∣B(t)
)
.

12



1.5. MARKOV PROPERTY OF BROWNIAN MOTION

The Strong Markov property follows the same argument as the Markov Property, except

that the fixed time t is replaced by a stopping time τ. We do not prove this result as it is highly

extensive. The proof can be found in many of the given references as in [11], as well as some

applications of these two properties.
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2
THEORY OF STOCHASTIC INTEGRATION

The aim of this chapter is to study the Itô stochastic integral, which was defined by K. Itô

in [14] in 1944. This setting was the very first stochastic integral proposed and it plays a

fundamental role in the theory of stochastic processes as we will see among this chapter

and the following ones.

The theory of stochastic integration of Itô was originally motivated by the need of constructing

diffusion processes as solutions to stochastic differential equations. As we have shown in Chapter

1, the main problem of the integration with respect to Brownian motion, is the fact that the

Riemann-Stieltjes integration fails. This need inspired Itô to construct a theory of stochastic

integration.

This chapter is organized as follows. First, we construct the Itô stochastic integral. We show

that it can be also understood in terms of Riemann sums, by evaluating the integrand at the left

endpoints of the intervals of the partition, and we calculate some examples. Then, we study some

of its most remarkable properties as the zero mean property, the martingale property and the Itô

isometry. Next, we present the Itô formula and calculate some examples in order to show how it

works. Finally, we introduce the Girsanov theorem and explain its importance in the stochastic

processes theory.

2.1 Definition of the Itô Stochastic Integral

Let B(t) be a Brownian motion {B(t), t ≥ 0} defined on some probability space (Ω,F ,P) and let

{Ft, t ≥ 0} be the associated filtration, i.e., Ft =σ{B(s), t ≥ s ≥ 0}, such that

(i) For each t ≥ 0, B(t) is Ft-measurable;

(ii) For any 0≤ s ≤ t, B(t)−B(s) is independent of Fs.

15



CHAPTER 2. THEORY OF STOCHASTIC INTEGRATION

2.1.1 Construction of the Itô Stochastic Integral

In this subsection, our aim is to construct the Itô stochastic integral. We follow K. Itô original

ideas from [14] in order to define the integral∫ b

a
f (t)dB(t),

for f ∈ L2
ad ([a,b]×Ω).

Definition 2.1. Let L2
ad ([a,b]×Ω) be the set of stochastic processes X , such that

(i) (t,ω)→ X (t,ω) is B ([a,b])×F -measurable;

(ii) X is adapted to the filtration {Ft, t ∈ [a,b]};

(iii)
∫ b

a E
(
X2

t
)
dt <∞.

The argument is, in turn, divided into three parts. First, we construct the stochastic integral

for step processes in L2
ad ([a,b]×Ω). Next, we examine a result, which is key for the next step.

Finally, we construct the stochastic integral for general stochastic processes in L2
ad ([a,b]×Ω).

Step 1. f is a step process in L2
ad ([a,b]×Ω) .

Let us assume that f is a step stochastic process

f (t,ω)=
n∑

i=1
ξi−1(ω)1[ti−1,ti)(t),

such that ξi−1 is Fti−1-measurable and E(ξ2
i−1)<∞. Then, we construct

(2.1) I( f )=
n∑

i=1
ξi−1 (B(ti)−B(ti−1)) .

Remark 2.1. Note that, for any a, b ∈ R and any step stochastic processes f and g, I is

clearly linear. Then, we have

I(af +bg)= aI( f )+bI(g).

Hence, let us propose the following result.

Lemma 2.1. Let I( f ) be defined as in Equation (2.1). Then, we have

E (I( f ))= 0 and E
(|I( f )|2)= ∫ b

a
E
(| f (t)|2)

dt.

Proof. For each 1≤ i ≤ n in Equation (2.1), we have

E (ξi−1 (B(ti)−B(ti−1)))= E(
E
(
ξi−1 (B(ti)−B(ti−1))

∣∣Fti−1

))
= E(

ξi−1E
(
B(ti)−B(ti−1)

∣∣Fti−1

))
= E (ξi−1E (B(ti)−B(ti−1)))

= 0.
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2.1. DEFINITION OF THE ITÔ STOCHASTIC INTEGRAL

Hence, E (I( f ))= 0, it means, I( f ) satisfies the zero mean property. Furthermore, let

δBi = (B(ti)−B(ti−1)) and δB j =
(
B(t j)−B(t j−1)

)
.

Then, we have

|I( f )|2 =
n∑

i, j=1
ξi−1ξ j−1δBiδB j.

Firstly, suppose i < j such that, we have

E
(
ξi−1ξ j−1δBiδB j

)= E(
E
(
ξi−1ξ j−1δBiδB j|Ft j−1

))
= E(

ξi−1ξ j−1δBiE
(
δB j|Ft j−1

))
= 0,

as E
(
δB j|Ft j−1

)= E(
δB j

)= 0. Next, suppose i = j such that, we have

E
(
ξ2

i−1δB2
i
)= E(

E
(
ξ2

i−1δB2
i |Fti−1

))
= E(

ξ2
i−1E

(
δB2

i
))

= E(
ξ2

i−1 (ti − ti−1)
)

= (ti − ti−1)E
(
ξ2

i−1
)
.

Hence, the isometry from Lemma 2.1 holds.

Step 2. An approximation lemma.
Next, we propose the following lemma, which is key in the construction of the stochastic

integral from Equation (2.1) for general stochastic processes in L2
ad ([a,b]×Ω).

Lemma 2.2. Let f ∈ L2
ad ([a,b]×Ω). There exists a sequence { fn(t),n ≥ 1} of the step stochas-

tic processes in L2
ad ([a,b]×Ω) satisfying

(2.2) lim
n→∞

∫ b

a
E
(| f (t)− fn(t)|2)

dt = 0.

We do not prove it as it is highly extensive. The proof can be found in [22].

Step 3. Stochastic integral
∫ b

a f (t)dB(t) for f ∈ L2
ad ([a,b]×Ω).

Finally, by the results obtained in Step 1 and Step 2, we construct, for f ∈ L2
ad ([a,b]×Ω),

the stochastic integral ∫ b

a
f (t)dB(t).

Let { fn(t,ω),n ≥ 1} be the sequence of adapted step stochastic processes, such that expres-

sion from Equation (2.2) holds. Then, I( fn) is defined by Step 1. Hence, by Lemma 2.1, we

get

E
(∣∣I( fn)− I( fm)

∣∣2)
=

∫ b

a
E
(∣∣ fn(t)− fm(t)

∣∣2)
dt → 0,

as n,m →∞. Hence, the sequence {I( fn)} is a Cauchy sequence in L2(Ω).
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CHAPTER 2. THEORY OF STOCHASTIC INTEGRATION

Definition 2.2 (Itô stochastic integral). The limit I( f ) defined by

(2.3) I( f )= lim
n→∞ I( fn), in L2(Ω),

is called the Itô stochastic integral, and it is denoted by

(2.4) I( f )=
∫ b

a
f (t)dB(t).

Remark 2.2. Note that, the Itô integral I( f ) is defined for f ∈ L2
ad ([a,b]×Ω). For any a, b ∈ R

and any f , g ∈ L2
ad ([a,b]×Ω), I is clearly linear. Then, we have

I(af +bg)= aI( f )+bI(g).

2.1.2 The Itô Stochastic Integral as Riemann Sums

As we have mentioned at the beginning of this chapter, the Itô integration can be understood in

terms of Riemann sums by evaluating the integrand at the left endpoints of the intervals of the

partition. The aim of this subsection is to prove this statement in the following result.

Theorem 2.1. Let f ∈ L2
ad ([a,b]×Ω) and let E ( f (t) f (s)) be a continuous function of t and s. Then,

we have

(2.5)
∫ b

a
f (t)dB(t)= lim

||∆n||→0

n∑
i=1

f (ti−1) (B(ti)−B(ti−1)) , in L2(Ω),

where ∆= {a = t0 < t1 < ...< tn−1 < tn = b} is a partition of [a,b] and ||∆n|| =max1≤i≤n(ti − ti−1).

Proof. Let f ∈ L2
ad ([a,b]×Ω) and let ∆n = {t0, t1, ..., tn} be a partition of the interval [a,b]. The

Riemann sum of f with respect to B(t) is given by

(2.6)
n∑

i=1
f (ti−1) (B(ti)−B(ti−1)) .

Our aim is to prove that this sequence of Riemann sums converges to the Itô stochastic integral

from Equation (2.4). Let E ( f (t) f (s)) be a continuous function of t and s. Consider the stochastic

process fn of the form

fn(t,ω)= f (ti−1,ω), ti−1 < t ≤ ti.

Then, we have

lim
n→∞

∫ b

a
E
(∣∣ f (t)− fn(t)

∣∣2)
dt = 0.

Hence, by Equation (2.3), we get∫ b

a
f (t)dB(t)= lim

n→∞ I( fn), in L2(Ω).
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In addition, by Equation (2.1), we have

I( fn)=
n∑

i=1
fn(ti−1)

(
B(ti)−Bti−1

)
=

n∑
i=1

f (ti−1)
(
B(ti)−Bti−1

)
,

which is exactly the Riemann sum in Equation (2.6). Consequently, the statement from Theorem

2.1 is proved.

Next, we calculate some stochastic processes in order to show that the Itô stochastic integral

allows us to compute some stochastic integrals. In Section 2.3, we will check that the results

obtained by the definition coincide with the ones calculated by the Itô formula.

Example 2.1. Consider the stochastic process∫ t

0
B(t)dB(t).

By definition, we have ∫ t

0
B(t)dB(t)= lim

||∆n||→0

n∑
i=1

B(ti−1) (B(ti)−B(ti−1)) .

We need to take into account that the quadratic variation of Brownian motion on the interval

[0, t] is equal to t (see Theorem 1.7). In addition, we have to consider

a(b−a)= 1
2

(b2 −a2 − (b−a)2),

and
n∑

i=1

(
B(ti)2 −B(ti−1)2)= B(tn)2 −B(t0)2.

Hence, we get ∫ t

0
B(t)dB(t) = lim

||∆n||→0

n∑
i=1

B(ti−1) (B(ti)−B(ti−1))

= 1
2

lim
||∆n||→0

n∑
i=1

(
B(ti)2 −B(ti−1)2 − (B(ti−1)−B(ti))2)

= 1
2

(
B(t)2 − t

)
.

Example 2.2. Consider the stochastic process∫ t

0
B(t)2dB(t).

By definition, we have ∫ t

0
B(t)2dB(t)= lim

||∆n||→0

n∑
i=1

B(ti−1)2 (B(ti)−B(ti−1)) .
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We have to consider

a2(b−a)= 1
3

(b3 −a3)−a(b−a)2 − 1
3

(b−a)3.

Hence, we get∫ t

0
B(t)2dB(t) = lim

||∆n||→0

n∑
i=1

B(ti−1)2 (B(ti)−B(ti−1))

= 1
3

n∑
i=1

(
B(ti)3 −B(ti−1)3)− n∑

i=1
B(ti−1) (B(ti)−B(ti−1))2 − 1

3

n∑
i=1

(B(ti)−B(ti−1))3

= 1
3

B(t)3 −
n∑

i=1
B(ti−1) (ti − ti−1)−

((((
(((

((((
(((

((((
(n∑

i=1
B(ti−1)

(
(B(ti)−B(ti−1))2 − (ti − ti−1)

)
−
���

���
���

��1
3

n∑
i=1

(B(ti)−B(ti−1))3

= 1
3

B(t)3 −
∫ t

0
B(t)dt.

Example 2.3. Consider the stochastic process∫ t

0
tdB(t).

By definition, we have ∫ t

0
tdB(t)= lim

||∆n||→0

n∑
i=1

ti−1 (B(ti)−B(ti−1)) .

We have to consider

c(b−a)= db− ca−b(d− c).

Hence, we get ∫ t

0
tdB(t) = lim

||∆n||→0

n∑
i=1

ti−1 (B(ti)−B(ti−1))

=
n∑

i=1
(tiB(ti)− ti−1B(ti−1))−

n∑
i=1

B(ti) (ti − ti−1)

= tB(t)−
n∑

i=1
B(ti) (ti − ti−1)

= tB(t)−
∫ t

0
B(t)dt.

Example 2.4. Consider the stochastic process∫ t

0
B(T)dB(t), 0≤ t ≤ T.

Note that, B(T) is not adapted to the filtration. Hence, the Itô integral does not exist. This example

shows that, the assumption of the integrand to be adapted to the filtration is fundamental in

the existence of the Itô integral. In the following chapters, we will find a solution to anticipating

stochastic integrals, it means non-adapted.
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2.2 Properties of the Itô Stochastic Integral

In this section, our aim is to prove that the defined Itô stochastic integral satisfies three properties

that are considered fundamental in stochastic analysis. These properties are the Zero Mean

property, the Martingale property and the Itô isometry. Some of these have already been proved

for the step stochastic processes in the previous section, but now we consider the Itô stochastic

integral for general stochastic processes in L2
ad ([a,b]×Ω).

2.2.1 Zero Mean Property

In the next theorem we prove that the Itô stochastic integral satisfies the zero mean property.

Theorem 2.2 (Zero mean property). Let f ∈ L2
ad ([a,b]×Ω). The expectation of the Itô integral of

f (t) is zero, it means, the following equality holds

E

(∫ b

a
f (t)dB(t)

)
= 0.

Proof. By the definition of the Itô integral, we have

E

(∫ b

a
f (t)dB(t)

)
= E

(
lim

||∆n||→0

n∑
i=1

f (ti−1) (B(ti)−B(ti−1))

)

= lim
||∆n||→0

n∑
i=1

E ( f (ti−1) (B(ti)−B(ti−1))) .

In order to prove that the expectation of the Itô integral is zero, we have to show that, for all

i ∈ {1,2, ...,n} and all n ∈ B, E ( f (ti−1) (B(ti)−B(ti−1))) = 0. Then, by the conditional expectation

properties (see Appendix B), we have

E ( f (ti−1) (B(ti)−B(ti−1)))= E(
E
(
f (ti−1) (B(ti)−B(ti−1))

∣∣Fti−1

))
= E(

f (ti−1)E
(
B(ti)−B(ti−1)

∣∣Fti−1

))
= E ( f (ti−1)E (B(ti)−B(ti−1)))

= E ( f (ti−1))E (B(ti)−B(ti−1))

= 0.

Hence, the Itô stochastic integral satisfies the zero mean property.

2.2.2 Martingale Property

Next, we present a theorem that states that the Itô stochastic integral is a martingale. Further-

more, this allows us to prove the continuity of the stochastic process, it means, that almost all

sample paths of the stochastic integral are continuous functions on the interval.
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Theorem 2.3 (Martingale property). Let f ∈ L2
ad ([a,b]×Ω). The stochastic process

(2.7) X t =
∫ t

a
f (s)dB(s), a ≤ t ≤ b,

is a martingale with respect to the filtration {Ft,a ≤ t ≤ b}.

Proof. Let us consider the case that f is a step stochastic process. Our aim is to show that, for

any a ≤ s ≤ t ≤ b

E (X t|Fs)= Xs,

almost surely. However, we have

X t = Xs +
∫ t

s
f (u)dB(u).

Hence, our aim is to prove

(2.8) E

(∫ t

s
f (u)dB(u)

∣∣∣∣Fs

)
= 0,

almost surely. Let us assume that f is given by

f (u,ω)=
n∑

i=1
ξi−1(ω)1[ti−1,ti)(u),

where s = t0 < t1 < ...< tn = t, ξi−1 is Fti−1-measurable and ξi−1 ∈ L2(Ω). Then, we get∫ t

s
f (u)dB(u)=

n∑
i=1

ξi−1 (B(ti)−B(ti−1)) .

Note that E
(
B(ti)−B(ti−1)|Fti−1

)= 0. Then, for any i = 1,2, ...,n, we have

E (ξi−1 (B(ti)−B(ti−1)) |Fs)= E
(
E
(
ξi−1 (B(ti)−B(ti−1))

∣∣Fti−1

)∣∣Fs
)

= E(
ξi−1E

(
B(ti)−B(ti−1)

∣∣Fti−1

)∣∣Fs
)

= 0.

Therefore, Equation (2.8) holds. Next, let us consider the general case. Let f ∈ L2
ad ([a,b]×Ω) and

let { fn} be a sequence of step stochastic processes in L2
ad ([a,b]×Ω). Hence, we have

lim
n→∞

∫ b

a
E
(∣∣ f (u)− fn(u)

∣∣2)
du = 0.

Consider the stochastic process

X (n)
t =

∫ t

a
fn(u)dB(u).

We have already proved that X (n)
t is a martingale. Then, for s < t, we have

X t − Xs =
(
X t − X (n)

t

)
+

(
X (n)

t − X (n)
s

)
+

(
X (n)

s − Xs

)
.
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Next, let us take the conditional expectation, in order to get

(2.9) E (X t − Xs|Fs)= E
(
X t − X (n)

t

∣∣∣Fs

)
+E

(
X (n)

s − Xs

∣∣∣Fs

)
,

such that

E

(∣∣∣∣E(
X t − X (n)

t

∣∣∣Fs

)∣∣∣∣2
)
≤ E

(
E
(∣∣X t − X (n)

t
∣∣2∣∣∣Fs

))
= E

(∣∣X t − X (n)
t

∣∣2)
.

Note that E
(|I( f )|2)= ∫ b

a E
(| f (t)|2)

dt. Then, we get

E

(∣∣∣∣E(
X t − X (n)

t

∣∣∣Fs

)∣∣∣∣2
)
≤

∫ t

a
E
(∣∣ f (u)− fn(u)

∣∣2)
du

≤
∫ b

a
E
(∣∣ f (u)− fn(u)

∣∣2)
du → 0,

as n → ∞. Then, E
(
X t − X (n)

t
∣∣Fs

)
and E

(
Xs − X (n)

s
∣∣Fs

)
converge almost surely to 0. Hence, by

Equation (2.9), we have

E (X t − Xs|Fs)= 0,

almost surely. Hence, X t is a martingale, it means, the Itô stochastic integral satisfies the

martingale property.

The following result allows us to state that the stochastic process X t defined in Equation

(2.7) satisfies the continuity property, such that almost all sample paths of X t are continuous

functions on the interval. We do not prove this result as it is highly extensive. The proof can be

found in [22].

Theorem 2.4 (Continuity property). Let f ∈ L2
ad ([a,b]×Ω). The stochastic process

X t =
∫ b

a
f (s)dB(s), a ≤ t ≤ b,

is continuous, or equivalently, almost all of its sample paths are continuous functions on the

interval [a,b].

2.2.3 Itô Isometry

In the following theorem, we compute the second moment of the Itô integral in order to find

its variance. This statement is also known as the Itô isometry, because of its importance in the

stochastic analysis.

Theorem 2.5 (Itô isometry). Let f ∈ L2
ad ([a,b]×Ω). The following isometry holds

(2.10) E

((∫ b

a
f (t)dB(t)

)2)
= E

(∫ b

a
f 2(t)dt

)
.
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Proof. By definition, we have

E

((∫ b

a
f (t)dB(t)

)2)
= ∑

i, j=1
E
(
ξi−1ξ j−1 (B(ti)−B(ti−1))

(
B(t j)−B(t j−1)

))
.

Moreover, let

δBi = (B(ti)−B(ti−1)) and δB j =
(
B(t j)−B(t j−1)

)
.

Firstly, suppose i < j such that, we have

E
(
ξi−1ξ j−1δBiδB j

)= E(
E
(
ξi−1ξ j−1δBiδB j

∣∣Ft j−1

))
= E(

ξi−1ξ j−1δBiE
(
δB j

∣∣Ft j−1

))
= E(

ξi−1ξ j−1δBiEδB j
)

= 0,

where ξi−1ξ j−1 and δBi are Ft j−1-measurable. Hence, suppose i = j such that, we get

E

((∫ b

a
f (t)dB(t)

)2)
=

n∑
i=1

E
(
ξ2

i−1δB2
i
)

=
n∑

i=1
E
(
E
(
ξ2

i−1δB2
i
∣∣Fti−1

))
=

n∑
i=1

E
(
ξ2

i−1E
(
δB2

i
∣∣Fti−1

))
=

n∑
i=1

E
(
ξ2

i−1E
(
δB2

i
))

=
n∑

i=1
E
(
ξ2

i−1
)
(ti − ti−1)

=
n∑

i=1

∫ ti

ti−1

E
(
ξ2

i−1
)
dt

=
∫ b

a
E

(
n∑

i=1
ξ2

i−11[ti−1,ti)(t)

)
dt

=
∫ b

a
E
(
f 2(t)

)
dt.

Hence, the Itô stochastic integral satisfies the isometry from Equation (2.10).

2.3 The Itô formula

As we have check in the examples calculated in Section 2.1, the evaluation of the stochastic

integrals may be a quite complex exercise. This fact also happens in the Newton-Leibniz calculus,

where the Fundamental Theorem of Calculus give us a method to evaluate definite integrals,

which simplifies the calculus notoriously.
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In the same form, the aim of this section is to give a method that simplifies computations

for the stochastic integration. The Itô formula is such a tool. It is a fundamental method that

generalizes the well-known chain rule in the classical calculus for the stochastic integrals. Let us

recall that, for f and g differentiable functions, the chain rule establishes

∂ f
∂t

(g(t))= f ′(g(t))g′(t).

Remark 2.3. Note that, we can write the above equation as

(2.11) f (g(b)− f (g(a))=
∫ b

a
f ′(g(t))g′(t)dt =

∫ b

a
f ′(g(t))dg(t),

where the last integral is of the Riemann-Stieltjes form.

In order to introduce the Itô formula, first let us give a definition of Itô processes, which is

restricted to those from the L2
ad ([a,b]×Ω) class.

Definition 2.3 (Itô process). The stochastic process X t is an Itô process if

(2.12) X t = Xa +
∫ t

a
f (s)dB(s)+

∫ t

a
g(s)ds, a ≤ t ≤ b.

In differential form,

(2.13) dX t = f (t)dB(t)+ g(t)dt,

where Xa is an Fa-measurable random variable and f , g ∈ L2
ad ([a,b]×Ω).

The next theorem establishes the Itô formula for the Itô processes defined in Equation (2.12).

The proof can be found in many of the references proposed, we suggest to read the one in [22].

Theorem 2.6 (Itô formula). Let X t be an Itô process given by Equation (2.12) and let θ(t, x) be a

continuous function with continuous partial derivatives ∂θ
∂t , ∂θ

∂x and ∂2θ
∂x2 . Then, we have

θ(t, X t)= θ(a, Xa)+
∫ t

a

∂θ

∂x
(s, Xs) f (s)dB(s)

+
∫ t

a

(
∂θ

∂t
(s, Xs)+ ∂θ

∂x
g(s)+ 1

2
∂2θ

∂x2 (s, Xs) f (s)2
)

ds.
(2.14)

In differential form,

(2.15) dθ(t, X t)= ∂θ

∂x
(t, X t)dX t + 1

2
∂2θ

∂x2 (t, X t)(dX t)2 + ∂θ

∂t
(t, X t)dt.

In order to compute some examples with the Itô formula, it is often helpful to use the so-called

Itô table that we present below.
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dB(t) dt

dB(t) dt 0

dt 0 0

Table 2.1: Itô table

Remark 2.4. Note that, in the Itô table the term (dX t)2 is equal to dt. Hence, by Equation (2.13),

we have

(dX t)2 = ( f (t)dB(t)+ g(t)dt)2

= f 2(t) (dX t)2 +2 f (t)g(t) (dX t) (dt)+ g(t) (dt)2

= f 2(t)dt.

(2.16)

By combining Equation (2.14) and Equation (2.16), we get

dθ(t, X t)= ∂θ

∂x
(t, X t)dX t + 1

2
∂2θ

∂x2 (t, X t)(dX t)2 + ∂θ

∂t
(t, X t)dt

= ∂θ

∂x
(t, X t) ( f (t)dB(t)+ g(t)dt)+ 1

2
∂2θ

∂x2 (t, X t)
(
f 2(t)dt

)+ ∂θ

∂t
(t, X t)dt

= ∂θ

∂x
(t, X t) f (t)dB(t)+

(
∂θ

∂x
(t, X t)g(t)+ 1

2
∂2θ

∂x2 (t, X t) f 2(t)+ ∂θ

∂t
(t, X t)

)
dt.

(2.17)

Taking into account the fact that B(t) is nowhere differentiable (see Section 1.3), we have that

Equation (2.17) is the same as Equation (2.14).

Next, we apply the Itô formula to the stochastic processes introduced in Section 2.1 and we check

that the results obtained by the definition and this method coincide.

Example 2.5. Consider the stochastic process introduced in Example 2.1

X t =
∫ t

0
B(t)dB(t).

According to Theorem 2.6, we consider the function θ(t, x), such that

∂θ

∂x
(t, x)= x.

Hence, we take θ(t, x)= x2/2, whose partial derivatives are

∂θ

∂t
= 0,

∂θ

∂x
= x,

∂2θ

∂x2 = 1.

Then, we get

d
(
B(t)2/2

)= B(t)dB(t)+ 1
2

(dB(t))2

= B(t)dB(t)+ 1
2

dt.
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Integrating on both sides of the equality from 0 to t, we have∫ t

0
d

(
B(t)2/2

)= ∫ t

0
B(t)dB(t)+

∫ t

0

1
2

dt.

Hence, we get ∫ t

0
B(t)dB(t)= 1

2
(B(t)− t) ,

which coincides with the result obtained in Example 2.1.

Example 2.6. Consider the stochastic process introduced in Example 2.2

X t =
∫ t

0
B(t)2dB(t).

According to Theorem 2.6, we consider the function θ(t, x), such that

∂θ

∂x
(t, x)= x2.

Hence, we take θ(t, x)= x3/3, whose partial derivatives are

∂θ

∂t
= 0,

∂θ

∂x
= x2,

∂2θ

∂x2 = 2x.

Then, we get

d
(
B(t)3/3

)= B(t)2dB(t)+ 1
2

(2B(t)) (dB(t))2

= B(t)2dB(t)+B(t)dt.

Integrating on both sides of the equality from 0 to t, we have∫ t

0
d

(
B(t)3/3

)= ∫ t

0
B(t)2dB(t)+

∫ t

0
B(t)dt.

Hence, we get ∫ t

0
B(t)2dB(t)= 1

3
B(t)−

∫ t

0
B(t)dt,

which coincides with the result obtained in Example 2.2.

Example 2.7. Consider the stochastic process introduced in Example 2.3

X t =
∫ t

0
tdB(t).

According to Theorem 2.6, we consider the function θ(t, x), such that

∂θ

∂x
(t, x)= t.

Hence, we take θ(t, x)= tx, whose partial derivatives are

∂θ

∂t
= x,

∂θ

∂x
= t,

∂2θ

∂x2 = 0.
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Then, we get

d (tB(t))= B(t)dt+ tdB(t).

Integrating on both sides of the equality from 0 to t, we have∫ t

0
d (tB(t))=

∫ t

0
B(t)dt+

∫ t

0
tdB(t).

Hence, we get ∫ t

0
tdB(t)= tB(t)−

∫ t

0
B(t)dt,

which coincides with the result obtained in Example 2.3.

2.4 The Girsanov Theorem

We end this chapter by discussing an important result called the Girsanov theorem, which plays a

fundamental role in the theory of stochastic processes. This theorem states that if we change the

drift coefficient of a given Itô process, then the law of the process will not change dramatically.

In order to state the Girsansov theorem, first let us give some elementary notions.

Definition 2.4. Let P and Q be two probabilities on (Ω,F ). We state that this probabilities are

equivalent if, for any G ⊂F

P(G)> 0↔Q(G)> 0, or equivalently, P(G)= 0↔Q(G)= 0.

Remark 2.5. The Radon-Nikodym theorem states that this is equivalent to the existence of

a random variable M > 0, which is Ft-measurable and EP(M) = 1, such that, for any random

variable X , which is also Ft-measurable, we have

EQ(X )= EP(X M),

Then, M is defined as the density of Q respect to P, or equivalently, as the Radon-Nikodym

derivative of Q respect to P

M = dQ
dP

, such that
dP
dQ

= 1
M

.

Then, let B(t) be a Brownian motion on the probability space (Ω,F ,P), which is adapted to

the filtration Ft and fixed for any µ ∈R. Consider the martingale

Mt = e−µB(t)−µ2 t/2,

where Mt > 0 and E(Mt)= E(M0)= 1. Hence, MT defines a new probability Q on (Ω,FT ) given by

Q(G)= E(
1GMT

)
, ∀G ∈FT .
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It leads immediately that Mt is the density of Q respect to P when both are restricted to the

σ-algebra Ft, as for any G ⊂Ft, we have

(2.18) Q(G)= E(
1GMT

)= E(
E
(
1GMT |Ft

))= E(
1GE (Mt|Ft)

)= E(
1GMt

)
.

The most simple version of the Girsanov theorem states that by changing the probability measure

P to Q, a Brownian motion with drift µ is converted into a Brownian motion without drift.

Theorem 2.7 (Girsanov theorem). The Brownian motion with drift µ on the probability space

(Ω,F ,P)
B̄(t)= B(t)+µt,

is a normalized Brownian motion in the probability space (Ω,F ,Q).

This theorem can be prove by the Levy characterization. However, we do not prove this result

as it is highly extensive. The proof can be found in [22].

An immediate generalization can be made by substituting the constant µ by a square integrable

deterministic function µ(t) in [0,T], such that

B̄(t)= B(t)+
∫ t

0
µ(s)ds.

Indeed, the final step would be to consider that {µt} is a stochastic process adapted to the filtration

{Ft}. We do not prove these results either as they are highly extensive. However, the proofs and

details can be also found in [22].

As we said at the beginning, this result seems to be important in the stochastic process theory

and in many of its applications. For example, in financial modeling, this result is used each time

one needs to derive an asset or a rate dynamic under a new probability measure, as happens in

the Black-Scholes-Merton model, in the Libor Market model or for the quanto adjustments.
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3
STOCHASTIC DIFFERENTIAL EQUATIONS

In Chapter 2 we study the Itô stochastic integration theory, whose original purpose was

motivated by the need of a method to construct diffusion processes as solutions of stochastic

differential equations. Hence, in this chapter we discuss the theory of stochastic differential

equations, abbreviated as SDEs.

In stochastic integration theory, we understand by stochastic differential equation or SDE an

expression like

X t = Xa +
∫ t

a
σ(s, Xs)dB(s)+

∫ t

a
µ(s, Xs)ds, a ≤ t ≤ b,

where our aim is to find the solution X t satisfying it. Moreover, this equation can be also

interpreted in differential form as

dX t =σ(t, X t)dB(t)+µ(t, X t)dt.

This chapter is organized as follows. First, we give a definition for the notions of solution of a

stochastic differential equation and calculate some examples. Next, we prove the existence and

uniqueness of solutions of stochastic differential equations as in the classical theory of differential

equations. Finally, we present a financial example, the Black-Scholes-Merton model, which is

quite famous because of its importance in financial markets theory.

3.1 Definition of Stochastic Differential Equation

In this section, our aim is to give some notions related to the solutions of a stochastic differential

equations. Then, we calculate several examples in order to show how it works.
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Definition 3.1 (Stochastic differential equation). Let σ,µ : [a,b]×R→ R be two measurable

functions. A stochastic differential equation is an expression of the form

(3.1)

dX t =σ(t, X t)dB(t)+µ(t, X t)dt,

X0 = Xa,

where Xa is a Ft-measurable random variable. Moreover, it is interpreted as meaning the

stochastic integral

(3.2) X t = Xa +
∫ t

a
σ(s, Xs)dB(s)+

∫ t

a
µ(s, Xs)ds.

Next, we define the concept of strong solution. From now on, whenever we refer to solutions

of stochastic differential equations, we mean in the strong sense.

Definition 3.2 (Strong solution). A stochastic process {X t,a ≤ t ≤ b} is said to be a strong solution

of SDE (3.1), if it is measurable, {Ft}-adapted and satisfies the following conditions

(i) {σ(t, X t),a ≤ t ≤ b} ∈ L2
ad ([a,b]×Ω);

(ii) Almost all sample paths of the process {µ(t, X t),a ≤ t ≤ b} belongs to L1[a,b];

(iii) For each t ∈ [a,b], the SDE (3.1) holds almost surely.

Definition 3.3. The stochastic differential equation from SDE (3.1) has a pathwise unique

solution, if given two strong solutions X1 and X2, they are indistinguishable, such that

P (X1(t)= X2(t),∀t ∈ [a,b])= 1.

Next, let us calculate some well-known examples, as the Langevin equation and other classical

SDEs in order to show how it works.

Example 3.1. Let us consider the Langevin equationdX t =αdB(t)−βX tdt,

X0 = x0.

According to Theorem 2.6, it means, applying the Itô formula, we consider the function θ(t, x),

such that
∂θ

∂x
= eβt.

Hence, we take θ(t, x)= eβtx, whose partial derivatives are

∂θ

∂t
=βeβtx,

∂θ

∂x
= eβt,

∂2θ

∂x2 = 0.
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Then, we get

d
(
eβtX t

)
=βeβtX tdt+ eβtdX t

=βeβtX tdt+ eβt (αdB(t)−βX tdt
)

=�����βeβtX tdt+αeβtdB(t)−�����βeβtX tdt

=αeβtdB(t).

Integrating on both sides of the equality from 0 to t, we have

eβtX t = x0 +α
∫ t

0
eβsdB(s).

Hence, we get

X t = x0eβt +α
∫ t

0
e−β(t−s)dB(s).

Hence, the stochastic process X t is measurable and {Ft}-measurable. Therefore, we can conclude

that the process X t is a well-defined solution. In addition, the stochastic process X t is called an

Ornstein-Uhlenbeck process.

Example 3.2. Consider the stochastic differential equationdX t = X2
t dB(t)+ X3

t dt,

X0 = 1.

According to Theorem 2.6, we consider the function θ(t, x), such that

∂θ

∂x
=− 1

x2 .

Hence, we take θ(t, x)= 1/x, whose partial derivatives are

∂θ

∂t
= 0,

∂θ

∂x
=− 1

x2 ,
∂2θ

∂x2 = 2
x3 .

Then, we get

d
(

1
X t

)
=− 1

X2
t

dX t + 1
2

2
X3

t
(X t)2

=− 1
X2

t

(
X2

t dB(t)+ X3
t dt

)+ X tdt

=−dB(t)−���X tdt+���X tdt

=−dB(t).

Integrating on both sides of the equality from 0 to t, we have

1
X t

= 1−B(t).

Hence, we get

X t = 1
1−B(t)

.
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3.2 Existence and Uniqueness Theorem of the Solutions of the
Stochastic Differential Equations

As in the classical theory of differential equations, we aim to have a unique strong solution of a

stochastic differential equation. In order to prove the existence and uniqueness theorem, let us

introduce some preliminaries which are required.

First, we need to impose conditions on the functions µ(t, x) and σ(t, x) in order to ensure that the

solution of the SDE from Equation (3.1) makes sense. We state the conditions in the next two

definitions.

Definition 3.4 (Lipschitz condition). A measurable function g(t, x) on [a,b]×R satisfies the

Lipschitz condition in x if there exists a constant K > 0, such that

(3.3) |g(t, x)− g(t, y)| ≤ K |x− y|, ∀a ≤ t ≤ b, x, y ∈R.

Definition 3.5 (Linear growth condition). A measurable function g(t, x) on [a,b]×R satisfies the

linear growth condition in x if there exists a constant K > 0, such that

(3.4) |g(t, x)| ≤ K(1+|x|), ∀a ≤ t ≤ b, x ∈R.

Next, let us introduced two lemmas that are fundamental to prove the existence and unique-

ness of SDEs solutions theorem. We do not prove them as they are highly extensive. Both proofs

can be found in [22].

Lemma 3.1 (Bellman-Grownwall inequality). Let φ ∈ L1[a,b] be, such that

(3.5) φ(t)≤ f (t)+β
∫ t

a
Φ(s)ds,

where f ∈ L1[a,b] and β> 0 is a constant. Then, we have

(3.6) φ(t)≤ f (t)+β
∫ t

a
f (s)eβ(t−s)ds.

Lemma 3.2. Let { fn}∞n=1 be a sequence of functions in L1([a,b]), such that

(3.7) fn+1(t)≤φ(t)+β
∫ t

a
fn(s)ds, ∀t ∈ [a,b],

where φ ∈ L1([a,b]) is non-negative and β≥ 0 is a constant. Then, ∀n ≥ 2, the following expression

holds

(3.8) fn+1(t)≤φ(t)+β
∫ t

a
φ(s)eβ(t−s)ds+βn

∫ t

a

(t− s)n−1

(n−1)!
f1(s)ds.

Now, we are ready to state and prove the theorem of existence and uniquenesss of solutions of

the stochastic differential equations solutions.
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Theorem 3.1 (Existence and Uniqueness of SDEs solutions). Let σ,µ : [a,b]×R→ R be two

measurable Lipschitz functions of linear growth in x. Suppose ξ is an Fa-measurable random

variable with E(ξ2)<∞. Then, the stochastic differential equation

(3.9)

dX t =σ(t, X t)dB(t)+µ(t, X t)dt,

Xa = ξ,

has a unique continuous solution on X t.

Proof. First, we prove the uniqueness of solutions of SDEs. Let X t and Yt,∈ [a,b], be two strong

solutions of Equation (3.9). We denote by Zt = X t −Yt to a continuous stochastic process. Then,

our aim is to prove

P (Zt = 0,∀t ∈ [a,b])= 1.

By definition, we have

Zt =
∫ t

a
(σ(s, Xs)−σ(s,Ys))dB(s)+

∫ b

a

(
µ(s, Xs)−µ(s,Ys)

)
ds.

Using that (a+b)2 ≤ 2(a2 +b2) and taking on both sides squares, we get

Z2
t ≤ 2

(∫ t

a
(σ(s, Xs)−σ(s,Ys))dB(s)

)2

+2
(∫ b

a

(
µ(s, Xs)−µ(s,Ys)

)
ds

)2

.

Then, taking expectations on both sides, we have

(3.10) E
(
Z2

t
)≤ 2E

((∫ t

a
(σ(s, Xs)−σ(s,Ys))dB(s)

)2
)
+2E

((∫ b

a

(
µ(s, Xs)−µ(s,Ys)

)
ds

)2)
.

Next, applying the Itô isometry, the Lipschitz condition and by the definition of strong solution to

σ(s, Xs) ∈ L2
ad, we get

E

((∫ t

a
(σ(s, Xs)−σ(s,Ys))dB(s)

)2
)
=

∫ t

a
E
(|σ(s, Xs)−σ(s,Ys)|2

)
ds

= K2
∫ t

a
E
(|Xs −Ys|2

)
ds

= K2
∫ b

a
E
(
Z2

s
)
ds.

(3.11)

Next, we use the Hölder inequality, the Lipschtiz condition and the Fubini theorem over the

Lebesgue integral in Equation (3.10), such that

E

((∫ t

a

(
µ(s, Xs)−µ(s,Ys)

)
ds

)2
)
≤ tE

(∫ t

a
|µ(t, Xs)−µ(s,Ys)|2ds

)
≤ bK2

∫ t

a
E
(
Z2

s
)
ds.

(3.12)
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Substituting Equation (3.11) and Equation (3.12) into Equation (3.10), we get

(3.13) E
(
Z2

t
)≤ 2K2(1+b)

∫ t

a
E
(
Z2

s
)
ds.

Since Zs ∈ L2
ad, we can apply Lemma 3.1, such that

E
(
Z2

t
)≤ 0.

Indeed, E
(
Z2

t
)= 0,∀t ∈ [a,b]. Then, this fact implies that, for each t ∈ [a,b], Zt(ω)= 0, for almost

all ω ∈Ω. Next, we denote Qb =Q∩ [a,b] = {qn}n. Hence, we have, for each qn ∈Qb, that there

exists Ωn ⊂Ω, such that P (Ωn)= 1 and, for all ω ∈Ωn, Zqn (ω)= 0.

Next, let us consider Ω′ =⋂∞
n=1Ωn, which has probability one and ∀ω ∈Ω′ and ∀n ∈N, Zqn (ω)= 0.

Hence, taking into account that t → Z(t,ω) is continuous almost surely, we have that there exists

Ω′′ ⊂Ω such that, P
(
Ω′′)= 1 and ∀ω ∈Ω0, Z(·,ω) is a continuous function, which vanishes on Qb.

In addition, since Qb is dense in [a,b], Z(·,ω) vanishes on [a,b] for almost all ω ∈Ω0. Hence, we

have

1=P (Ω0)≤P {ω ∈Ω : Zt(ω)= 0,∀t ∈ [a,b]})≤ 1.

Indeed, the uniqueness of the solution is proved. Next, we aim to prove the existence of the

solution of the SDE (3.9).

Let {X (n)
t }∞n=1 a sequence of stochastic processes given by

(3.14) X (n+1)
t = ξ+

∫ t

a
σ

(
s, X (n)

s

)
dB(s)+

∫ t

a
µ

(
s, X (n)

s

)
ds.

For n = 1 and ξ= X (1)
t , we have

Step 1. For all integers n≤ 1, {X (n)
t , t ∈ [a,b]} ∈ L2

ad and has continuous sample paths al-
most surely.
By induction hypothesis. For n = 1, we have that ξ is Fa-measurable, it means, {Ft}-adapted,

and ∫ b

a
E
(
ξ2)

dt = bE
(
ξ2)<∞.

Let us assume that X (n)
t ∈ L2

ad and it has continuous sample paths. Then, we have

E

(∫ b

a
σ

(
t, X (n)

t

)2
dt

)
≤ E

(∫ b

a
2K

(
1+

(
X (n)

t

)2
)

dt
)

= 2Kb+2K
∫ b

a
E

((
X (n)

t

)2
)

dt <∞.
(3.15)

Indeed, σ
(
t, X (n)

t

)
is Ft-measurable, so σ

(
t, X (n)

t

)
∈ L2

ad. Hence, the Itô integral in Equation

(3.14) makes sense, it is Ft-measurable and has continuous sample paths.
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For the Lebesgue integral in Equation (3.14), where X (n)
s has continuous sample paths

almost surely, we have

(3.16)
∫ t

a

∣∣∣∣µ(
s, X (n)

s

)∣∣∣∣ds ≤
p

2Kb
(∫ t

a

(
1+

(
X (n)

s

)2
)

ds
) 1

2

<∞,

almost surely. Hence, it is continuous almost surely and is {Ft}-adapted. Indeed, the

stochastic process X (n+1)
t is {Ft}-adapted with continuous sample paths almost surely.

Moreover, since (a+b+ c)2 ≤ 3(a2 +b2 + c2), we get

∣∣X (n+1)
t

∣∣2 ≤ 3

(
ξ2 +

(∫ t

a
σ

(
s, X (n)

s

)
dB(s)

)2

+
(∫ t

a
µ

(
s, X (n)

s

)
ds

)2
)

.

By the linear growth condition (see Definition 3.5) and taking into account that X (n)
t ∈ L2

ad,

we have ∫ b

a
E
(∣∣X (n+1)

t
∣∣2)

dt <∞.

Hence, the stochastic process X (n+1)
t belongs to L2

ad ([a,b]×Ω).

Step 2. The sequence
{
X (n)

t , t ∈ [a,b]
}∞

n=1 converges uniformly on t almost surely.
Let

Y (n+1)
t =

∫ t

a
σ

(
s, X (n)

s

)
dB(s) and Z(n+1)

t =
∫ t

a
µ

(
s, X (n)

s

)
ds,

such that

X (n+1)
t = ξ+Y (n+1)

t +Z(n+1)
t .

Next, applying the Itô isometry and the Lipschitz condition, we get

E
(∣∣Y (n+1)

t −Y (n)
t

∣∣2)
= E

((∫ t

a

(
σ

(
s, X (n)

s

)
−σ

(
s, X (n−1)

s

))
dB(s)

)2
)

=
∫ t

a
E
∣∣σ(

s, X (n)
s

)
−σ

(
s, X (n−1)

s

)∣∣2ds

≤ K2
∫ t

a
E
∣∣X (n)

s − X (n−1)
s

∣∣2ds.

(3.17)

By the Hölder continuity inequality and the Lipschitz condition, we have

∣∣Z(n+1)
t −Z(n)

t
∣∣2 = (∫ t

a

(
µ

(
s, X (n)

s

)
−µ

(
s, X (n−1)

s

))
ds

)2

≤ bK2
∫ t

a

∣∣X (n)
s − X (n−1)

s
∣∣2ds.

(3.18)

By Equation (3.17) and Equation (3.18), we get

E
(∣∣X (n+1)

t − X (n)
t

∣∣2)
= E

(∣∣Y (n+1)
t −Y (n)

t +Z(n+1)
t −Z(n)

t
∣∣2)

≤ 2E
(∣∣Y (n+1)

t −Y (n)
t

∣∣2)
+2E

(∣∣Z(n+1)
t −Z(n)

t
∣∣2)

≤ 2K2(1+b)
∫ t

a
E
∣∣X (n)

s − X (n−1)
s

∣∣2ds.

(3.19)
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Next, we apply Lemma 3.2 to get

(3.20) E
(∣∣X (n+1)

t − X (n)
t

∣∣2)
≤ (

2K2(1+b)
)n−1

∫ t

a

(t− s)
(n−2)!

E
∣∣X (2)

s − X (1)
s

∣∣2ds.

Hence, we have

E
∣∣X (2)

s − X (1)
s

∣∣2 = E((∫ s

a
σ (u,ξ)dB(u)+

∫ s

a
µ (u,ξ)du

)2)
≤ 2

∫ s

a
E
(
σ (u,ξ)2)

du+2b
∫ s

a
E
(
µ (u,ξ)2)

du

≤ 2K2
∫ s

a

(
1+E(

ξ2))
du+2b

∫ s

a

(
1+E(

ξ2))
du

≤ 2K2 (1+b)
(
1+E(

ξ2))
s.

(3.21)

Substituting Equation (3.21) into Equation (3.20), we get

E
(∣∣X (n+1)

t − X (n)
t

∣∣2)
≤ (

2K2(1+b)
)n (

1+E(
ξ2))∫ t

a

(t− s)
(n−2)!

sds

≤ (
1+E(

ξ2))(
2K2(1+b)

)n
(
− s(t− s)n−1

(n−1)!

∣∣∣∣t

a
+

∫ t

a

(t− s)n−1

(n−1)!
ds

)

≤ (
1+E(

ξ2))(
2K2(1+b)

)n tn

n!
.

(3.22)

On the other hand, since

∣∣X (n+1)
t − X (n)

t
∣∣≤ ∣∣Y (n+1)

t −Y (n)
t

∣∣+ ∣∣Z(n+1)
t −Z(n)

t
∣∣,

it holds

sup
a≤t≤b

∣∣X (n+1)
t − X (n)

t
∣∣≤ sup

a≤t≤b

∣∣Y (n+1)
t −Y (n)

t
∣∣+ sup

a≤t≤b

∣∣Z(n+1)
t −Z(n)

t
∣∣.

Then, we have

{
sup

a≤t≤b

∣∣X (n+1)
t − X (n)

t
∣∣> 1

n2

}
⊂

{
sup

a≤t≤b

∣∣Y (n+1)
t −Y (n)

t
∣∣> 1

2n2

}
∪

{
sup

a≤t≤b

∣∣Z(n+1)
t −Z(n)

t
∣∣> 1

2n2

}
.

Next, we take probabilities on both sides to get

P

{
sup

a≤t≤b

∣∣X (n+1)
t − X (n)

t
∣∣> 1

n2

}
≤P

{
sup

a≤t≤b

∣∣Y (n+1)
t −Y (n)

t
∣∣> 1

2n2

}
+P

{
sup

a≤t≤b

∣∣Z(n+1)
t −Z(n)

t
∣∣> 1

2n2

}
.

(3.23)
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Taking into account that
∣∣Y (n+1)

t −Y (n)
t

∣∣ is a submartingale, we use the Doob inequality and

Equation (3.22), in order to obtain

P

{
sup

a≤t≤b

∣∣Y (n+1)
t −Y (n)

t
∣∣> 1

2n2

}
≤ 4n4E

(∣∣Y (n+1)
b −Y (n)

b

∣∣2)
≤ 4n4E

((∫ b

a

(
σ

(
s, X (n)

s

)
−σ

(
s, X (n−1)

s

))
dB(s)

)2)

≤ 4n4K2
∫ b

a
E
(∣∣X (n)

s − X (n−1)
t

∣∣2)
ds

≤ 4n4K2 (
1+E(

ξ2))(
2K2(1+b)

)n−1
∫ b

a

sn−1

(n−1)!
ds

= 4n4K2 (
1+E(

ξ2))(
2K2(1+b)

)n−1 bn

n!
.

(3.24)

Then, we take the supremum on both sides in Equation (3.18) to get

(3.25) sup
a≤t≤b

∣∣Z(n+1)
t −Z(n)

t
∣∣2 ≤ bK2

∫ b

a

∣∣X (n)
s − X (n−1)

s
∣∣2ds.

We apply Chebyshev inequality (see Appendix C) in Equation (3.22) and in Equation (3.25).

Thus, we have

P

{
sup

a≤t≤b

∣∣Z(n+1)
t −Z(n)

t
∣∣> 1

2n2

}
≤ 4n4E

((∣∣Z(n+1)
t −Z(n)

t
∣∣)2

)
≤ 4n4K2b

(
1+E(

ξ2))(
2K2(1+b)

)n−1 bn

n!
.

(3.26)

Next, we substitute Equation (3.24) and Equation (3.26) into Equation (3.23) to get

(3.27) P

{
sup

a≤t≤b

∣∣X (n+1)
t − X (n)

t
∣∣≤ 4

(
1+E(

ξ2)) n4bn (
2K2(1+b)

)n

n!
,

such that, if we sum on both sides of the inequality, we have

(3.28)
∞∑

n=1
P

{
sup

a≤t≤b

∣∣X (n+1)
t − X (n)

t
∣∣≤ 4

(
1+E(

ξ2)) ∞∑
n=1

n4bn (
2K2(1+b)

)n

n!
<∞.

Indeed, by the Borel-Cantelli lemma (see Appendix C), for almost all ω ∈Ω, there exists

n0(ω) ∈N, such that ∀n ∈N,≥ n0

(3.29) sup
a≤t≤b

∣∣X (n+1)
t (ω)− X (n)

t (ω)
∣∣≤ 1

n2 .

Hence, we have

X (n+1)
t = ξ+

n−1∑
j=1

(
X ( j+1)

t − X ( j)
t

)
.

Then, the series on the right-hand side converges uniformly on t for almost all ω ∈ Ω.

Therefore, the limit exists and is uniform on t ∈ [a,b]

lim
n→∞ X (n)

t = X t,

almost surely.
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Step 3. {X t, t ∈ [a,b]} is the solution of the SDE (3.9).
Let us recall that X (n)

t is adapted to the filtration and has continuous sample paths almost

surely. In addition, by convergence, X t is also adapted to the filtration and has continuous

sample paths almost surely. Next, we prove that X t ∈ L2
ad, such that

||X t||L2(Ω) =
∣∣∣∣∣∣∣∣ξ+ ∞∑

j=1

(
X ( j+1)

t − X ( j)
t

)∣∣∣∣∣∣∣∣
L2(Ω)

= ||ξ||L2(Ω) +
∞∑
j=1

∣∣∣∣∣∣∣∣X ( j+1)
t − X ( j)

t

∣∣∣∣∣∣∣∣
L2(Ω)

= ||ξ||L2(Ω) +
∞∑
j=1

√(
1+E(

ξ2
))b

n
2
(
2K2(1+b)

) n
2

p
n!

<∞.

Thus, we have

(3.30)
∫ b

a
E
(
X2

t
)
dt <∞.

Next, we prove that X t satisfies the conditions of Definition 3.2. By Equation (3.30), we

have

E

(∫ b

a
σ (t, X t)2 dt

)
≤ K2

∫ b

a

(
1+E(

X2
t
))

dt ≤ K2
(
b+

∫ b

a
E
(
X2

t
)
dt

)
<∞.

Then, σ (t, X t) ∈ L2
ad. Then, we have that µ (t, X t) ∈ L1([a,b]) almost surely. Next, we take

limits on the expression below to prove the condition (iii) from Definition 3.2, such that

(3.31) X (n)
t = ξ+

∫ t

a
σ

(
s, X (n−1)

s

)
dB(s)+

∫ t

a
µ

(
s, X (n−1)

s

)
ds.

We know from Step 2, on t ∈ [a,b]

(3.32) lim
n→∞ X (n)

t = X t,

converges uniformly almost surely. Then, as n →∞, we have∣∣∣∣∫ t

a

(
µ

(
s, X (n−1)

s

)
−µ (s, Xs)

)
ds

∣∣∣∣≤ K
∫ t

a

∣∣X (n−1)
s − Xs

∣∣ds

≤ Kb sup
a≤t≤b

∣∣X (n)
t − X t

∣∣→ 0,
(3.33)

almost surely. Then, for any ε> 0 and n large enough, we get

P

(∣∣∣∣∫ t

a

(
σ

(
s, X (n)

s

)
−σ (s, Xs)

)
dB(s)

∣∣∣∣> ε)≤P(∫ t

a

∣∣∣σ(
s, X (n)

s

)
−σ (s, Xs)

∣∣∣2ds > ε2
)
+ε

≤P
(
K2

∫ t

a

∣∣X (n)
s − Xs

∣∣2ds > ε2
)
+ε

≤P
(
K2t sup

a≤t≤b

∣∣X (n)
s − Xs

∣∣2ds > ε2
)
+ε

≤ 2ε.

(3.34)
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We can assume that convergence is almost surely. Then, if we let n →∞ in Equation (3.31)

and by Equation (3.32), Equation (3.33) and Equation (3.34), we can conclude that, for any

t ∈ [a,b]

X t = ξ+
∫ t

a
σ (s, Xs)dB(s)+

∫ t

a
µ (s, Xs)ds,

holds almost surely.

3.3 Black-Scholes-Merton Model

F. Black, M. Scholes and R. C. Merton in [6, 30] in 1973 faced the problem of pricing a European

option on a non-dividend paying stock. This method is based on the theory of stochastic process,

such that, it models stock price variations as an Itô process.

The Black-Scholes-Merton model is a continuous-time model, which aim is to describe the be-

haviour of stock price, with one risky asset (a stock price St at time t) and a riskless asset (a

bond with price S0
t at time t). We suppose the behaviour of S0

t to be described by the following

(ordinary) differential equation

(3.35)

dS0(t)= ρS0(t)dt,

S0(0)= M0,

where ρ is a non-negative constant and M0 is the initial amount of money invested in the bond.

Moreover, let us assume that the behaviour of the stock price is described by the following

stochastic differential equation

(3.36)

dS1(t)=σS1(t)dB(t)+µS1(t)dt,

S1(0)= M1,

where µ, σ are two positive constants, the appreciation rate (drift term) and the volatility of the

stock, respectively. The initial amount of money invested in the risky asset is denoted by M1 and

B(t) is a standard Brownian motion.

The investor or trader has an initial amount M > 0 and invests some of it in the bond and the rest

of it in the stock in order to maximize the average payoff, such that

M = M0 +M1.

Remark 3.1. Note that, we assume that µ> ρ, because of the risk-return binomial, it means, the

stock price must have a larger return because we take risk when we invest in stock instead of in

the bond. Indeed, in financial markets, the more risk we take, the more return we can get.

Next, let us prove the following theorem, which establishes the solution to the ODE (3.35)

and the SDE (3.36).
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Theorem 3.2. Consider the stochastic differential equations from ODE (3.35) and SDE (3.36).

Hence, for t ∈ [0,T], the solutions are

(3.37)

S0(t)= M0eρt,

S1(t)= M1e(µ− 1
2σ

2)t+σB(t).

Proof. The computation of S0(t) follows immediately. On the other hand, we use the Itô formula

to solve the stochastic differential equation. Let

Z(t)= logS1(t).

Then, we have

dZt = 1
S1(t)

dS1(t)− 1
2

1
S1(t)2 (dS1(t))2

=µdt+σdB(t)− 1
2
σ2dt.

Integrating on both sides of the equality from 0 to T, we have

Zt = Z0 +
(
µ− 1

2
σ2

)
t+σB(t).

Hence, removing the change of variables, for t ∈ [0,T], we get

S1(t)= M1e(µ− 1
2σ

2)t+σB(t).

Finally, we have that both solutions exist and are unique because of Theorem 3.1.

Remark 3.2. The total wealth at any time t ∈ [0,T] is given by

S(t)= S0(t)+S1(t).

Remark 3.3. Note that, the process St is a solution of the SDE if and only if the process log(St)

is a Brownian motion. According to Definition 1.8, the process St satisfies the following properties

(i) The sample paths of the process St are continuous;

(ii) The increments are independent;

(iii) The increments are stationary.

Indeed, these properties describe the hypotheses of Black-Scholes-Merton on the behavior of the

stock price.
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4
THE AYED-KUO STOCHASTIC INTEGRAL

In this chapter, we present the Ayed-Kuo anticipating stochastic integral, which was first

studied by W. Ayed and H.-H Kuo in [1] in 2008. This new setting generalizes the Itô

integral in the sense that it deals with the anticipating stochastic calculus.

In the Itô integration theory, the stochastic integral can be defined in terms of Riemann sums,

which consists in evaluating the integrand at the left endpoints of the intervals of a partition. For

the Ayed-Kuo integral, the integrand is assumed to be a product of an adapted stochastic process

with respect to a Brownian filtration and an instantly independent stochastic process. Then, the

adapted process is evaluated as in the Itô theory while the instantly independent process at the

right endpoints.

This chapter is organized as follows. First we give a definition for the Ayed-Kuo integral and

calculate some examples. We transpose some properties of the Itô integral for this new one, which

have been proved in [2, 24, 27]. We study an Itô formula for the Ayed-Kuo integral, which has

been proposed in [23, 28], and calculate some examples in order to show how it works. Finally, we

study a general solution for stochastic differential equations with anticipating initial conditions,

which has been discussed in [16, 21, 39], and a solution for the Black-Scholes-Merton model

under Ayed-Kuo theory.

4.1 Definition of the Ayed-Kuo Stochastic Integral

Let B(t) be a Brownian motion {B(t), t ≥ 0} and let {Ft, t ≥ 0} be the associated filtration, i.e.,

Ft =σ{B(s), t ≥ s ≥ 0}, such that

(i) For each t ≥ 0, B(t) is Ft-measurable;

(ii) For any 0≤ s ≤ t, B(t)−B(s) is independent of Fs.
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Definition 4.1 (Instantly independent stochastic process). A process {ϕ(t),a ≤ t ≤ b}, is said to

be an instantly independent stochastic process with respect to {Ft,a ≤ t ≤ b}, if and only if, ϕ(t)

and Ft are independent for each t.

Proposition 4.1. If {ϕ(t),a ≤ t ≤ b} is Ft-adapted and an instantly independent process with

respect to the filtration {Ft,a ≤ t ≤ b}, then ϕ(t) is a deterministic function.

Proof. The process ϕ(t) is Ft-adapted. Hence, by the conditional expectation properties (see

Appendix B), we get

E
(
ϕ(t)|Ft

)=ϕ(t).

Moreover, ϕ(t) is also an instantly independent process with respect to the filtration {Ft,a ≤ t ≤ b},

such that

E
(
ϕ(t)|Ft

)= E(
ϕ(t)

)
.

Then, combining both statements, we have

ϕ(t)= E(
ϕ(t)

)
.

Thus, ϕ(t) is a deterministic function.

In this sense, we can view instantly independent stochastic processes as a counterpart of the

adapted stochastic processes for the Itô integral.

Definition 4.2 (Ayed-Kuo stochastic integral). Let { f (t), a ≤ t ≤ b} be a Ft-adapted stochastic

process and let {ϕ(t),a ≤ t ≤ b} be an instantly independent stochastic process with respect to the

filtration Ft. The Ayed-Kuo stochastic integral of f (t)ϕ(t) is defined by

(4.1) I( fϕ)=
∫ b

a
f (t)ϕ(t)dB(t)= lim

||∆n||→0

n∑
i=1

f (ti−1)ϕ(ti)(B(ti)−B(ti−1)),

provided that the limit in probability exists, where ∆= {a = t0, t1, t2, ..., tn = b} is a partition of the

interval [a,b] and ||∆n|| =max1≤i≤n(ti − ti−1).

As is explained in Chapter 2, the Itô integral can be defined in terms of Riemann sums by

evaluating the integrand at the left endpoints of the intervals of the partition (see Theorem

2.1). The Definition 4.2 follows the same argument with the adapted process, while the instantly

independent process is evaluated at the right endpoints of the intervals of the partition in order

to take advantage of the independence property.

Remark 4.1. Note that if we consider ϕ(t)= 1 and f (t) pathwise continuous. Then, by Theorem

2.1, the Ayed-Kuo integral coincides with the Itô integral.

Remark 4.2. By Equation (4.1), we can state that the Ayed-Kuo integral is linear. In addition,

we see that many anticipating integrals can be written as a product of an adapted stochastic

process and an instantly independent stochastic process.
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Next, we calculate some stochastic processes in order to show that the Ayed-Kuo integral

allows us to compute some anticipating integrals. In Section 4.3, we will check that the results

obtained by the definition coincide with the ones calculated by the extension of the Itô formula.

Example 4.1. Consider the stochastic process∫ t

0
B(1)dB(s), 0≤ t ≤ 1.

By linearity, we have

(4.2)
∫ t

0
B(1)dB(s)=

∫ t

0
(B(1)−B(s))dB(s)+

∫ t

0
B(s)dB(s), 0≤ t ≤ 1.

The second integral on the right-hand side of Equation (4.2) is an adapted stochastic process,

while the first integral is an instantly independent stochastic process with respect to the filtration

Ft, it means anticipating. We calculate the first integral of the right-hand side of Equation (4.2)

as follows ∫ t

0
(B(1)−B(s))dB(s) = lim

||∆n||→0

n∑
i=1

(B(1)−B(si)) (B(si)−B(si−1))

= lim
||∆n||→0

(
B(1)

n∑
i=1

(B(si)−B(si−1))

−
n∑

i=1
(B(si)−B(si−1)+B(si−1)) (B(si)−B(si−1))

)
= lim

||∆n||→0

(
B(1)B(t)−

( n∑
i=1

(B(si)−B(si−1))2

+
n∑

i=1
B(si−1) (B(si)−B(si−1))

))

= B(1)B(t)− t−
∫ t

0
B(s)dB(s), 0≤ t ≤ 1.

(4.3)

Hence, substituting Equation (4.3) into Equation (4.2), we get∫ t

0
B(1)dB(s) =

∫ t

0
(B(1)−B(s))dB(s)+

∫ t

0
B(s)dB(s)

= B(1)B(t)− t−
�
��

�
��
�∫ t

0
B(s)dB(s)+

�
��

�
��
�∫ t

0
B(s)dB(s)

= B(1)B(t)− t, 0≤ t ≤ 1.

(4.4)

Note that, when t > 1 we can write the integral
∫ t

0 as
∫ 1

0 +∫ t
1 to obtain the equality, such that∫ t

0
B(1)dB(s) =

∫ 1

0
B(1)dB(s)+

∫ t

1
B(1)dB(s)

= B(1)2 −1+B(1)
∫ t

1
dB(s)

=���B(1)2 −1+B(1)B(t)−���B(1)2

= B(1)B(t)−1, t > 1.

45



CHAPTER 4. THE AYED-KUO STOCHASTIC INTEGRAL

Example 4.2. Consider the stochastic process∫ t

0
B(1)B(s)dB(s), 0≤ t ≤ 1.

Note that the integrand can be decompose as follows

B(1)B(s)= (B(1)−B(s)+B(s))B(s)= (B(1)−B(s))B(s)+B(s)2.

By linearity, we have

(4.5)
∫ t

0
B(1)B(s)dB(s)=

∫ t

0
B(s)(B(1)−B(s))dB(s)+

∫ t

0
B(s)2dB(s), 0≤ t ≤ 1.

The first integral on the right-hand side of Equation (4.5) is an instantly independent stochastic

process with respect to the filtration Ft, while the second is an adapted stochastic process.

Therefore, we calculate the first integral of the right-hand side of Equation (4.5) as follows∫ t

0
B(s)(B(1)−B(s))dB(s)= lim

||∆n||→0

n∑
i=1

B(si−1) (B(1)−B(si)) (B(si)−B(si−1))

= lim
||∆n||→0

(
B(1)

n∑
i=1

B(si−1) (B(si)−B(si−1))

−
n∑

i=1
B(si−1) (B(si)−B(si−1)+B(si−1)) (B(si)−B(si−1))

)
= lim

||∆n||→0

(
B(1)

n∑
i=1

B(si−1) (B(si)−B(si−1))

−
n∑

i=1
B(si−1) (B(si)−B(si−1))2 −

n∑
i=1

B(si−1)2 (B(si)−B(si−1))
)

= lim
||∆n||→0

(
B(1)

∫ t

0
B(s)dB(s)−

∫ t

0
B(s)ds−

∫ t

0
B(s)2dB(s)

)
.

By classical Itô integration theory (see Section 2.1), we know∫ t

0
B(s)dB(s)= 1

2
(
B(t)2 − t

)
and

∫ t

0
B(s)2dB(s)= 1

3
B(t)3 −

∫ t

0
B(s)ds.

Thus, we have∫ t

0
B(s)(B(1)−B(s))dB(s) = 1

2
B(1)

(
B(t)2 − t

)−
��

��
�∫ t

0
B(s)ds−

(
1
3

B(t)3 −
��

��
�∫ t

0
B(s)ds

)

= 1
2

B(1)
(
B(t)2 − t

)− 1
3

B(t)3, 0≤ t ≤ 1.

(4.6)

Hence, substituting Equation (4.6) into Equation (4.5), we get∫ t

0
B(1)B(s)dB(s) =

∫ t

0
B(s)(B(1)−B(s))dB(s)+

∫ t

0
B(s)2dB(s)

= 1
2

B(1)
(
B(t)2 − t

)−
�
�
��1

3
B(t)3 +

(
�
�
��1

3
B(t)3 −

∫ t

0
B(s)ds

)
= 1

2
B(1)

(
B(t)2 − t

)−∫ t

0
B(s)ds, 0≤ t ≤ 1.
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Note that, when t > 1 we get

∫ t

0
B(1)B(s)dB(s) =

∫ 1

0
B(1)B(s)dB(s)+

∫ t

1
B(1)B(s)dB(s)

=
���

���
��1

2
B(1)

(
B(1)2 −1

)−∫ 1

0
B(s)ds+ 1

2
B(1)

(
B(t)2 − t

)−
���

���
��1

2
B(1)

(
B(1)2 −1

)
= 1

2
B(1)

(
B(t)2 − t

)−∫ 1

0
B(s)ds, t > 1.

Example 4.3. Consider the stochastic process∫ t

0
eB(1)dB(s), 0≤ t ≤ 1.

whose integrand can be written in the form

eB(1) = eB(s)eB(1)−B(s).

Thus, we have ∫ t

0
eB(1)dB(s)= lim

||∆n||→0

n∑
i=1

eB(1)e−(B(si)−B(si−1)) (B(si)−B(si−1)) .

Note that we can write the integrand as a first-order Taylor expansion because ex ∈ C1-function

on R. Hence, we get

∫ t

0
eB(1)dB(s) = lim

||∆n||→0

n∑
i=1

eB(1)e−(B(si)−B(si−1)) (B(si)−B(si−1))

= lim
||∆n||→0

eB(1)
n∑

i=1

(
1− (B(si)−B(si−1))+ o ((B(si)−B(si−1)))

)
(B(si)−B(si−1))

= eB(1) (B(t)− t) , 0≤ t ≤ 1,

(4.7)

in probability, since the first two summands converge in L2(Ω)-norm and the error converges to 0.

Note that, when t > 1 we get

∫ t

0
eB(1)dB(s) =

∫ 1

0
eB(1)dB(s)+

∫ t

1
eB(1)dB(s)

= eB(1) (B(1)−1)+ eB(1)
∫ t

1
dB(s)

=�����eB(1)B(1)− eB(1) + eB(1)B(t)−�����eB(1)B(1)

= eB(1) (B(t)−1), t > 1.

Example 4.4. Consider the stochastic process∫ t

0
B(1)B(1

2 )dB(s).
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First of all, we consider the integral for 0≤ t ≤ 1
2 . Note that the integrand can be decompose as

follows

B(1)B(1
2 )= ((B(1)−B(s)))+B(s))

((
B(1

2 )−B(s)
)+B(s)

)
.

By linearity, we have∫ t

0
B(1)B(1

2 )dB(s)=
∫ t

0
((B(1)−B(s))+B(s)) ((B(1

2 )−B(s))+B(s))dB(s)

=
∫ t

0
B(s)2dB(s)+

∫ t

0
(B(1)−B(s))(B(1

2 )−B(s))dB(s)︸ ︷︷ ︸
(∗1)

+
∫ t

0
B(s)(B(1

2 )−B(s))dB(s)︸ ︷︷ ︸
(∗2)

+
∫ t

0
B(s)(B(1)−B(s))dB(s)︸ ︷︷ ︸

(∗3)

.

(4.8)

Note that the first integral of the right-hand side of Equation (4.8) is an adapted processes, while

the three other integrals are instantly independent processes with respect to the filtration. We

start calculating the first one of the anticipating processes (∗1). Let δBi = (B(si)−B(si−1)). Hence,

by analogy with the previous examples, we have∫ t

0
(B(1)−B(s))(B(1

2 )−B(s))dB(s)= lim
||∆n||→0

n∑
i=1

(B(1)−B(si))(B(1
2 )−B(si))δBi

= lim
||∆n||→0

(
B(1)B(1

2 )
n∑

i=1
δBi)−B(1

2 )
n∑

i=1
B(si)δBi

−B(1)
n∑

i=1
B(si)δBi +

n∑
i=1

B(si)2δBi

)
= lim

||∆n||→0

(
B(1)B(1

2 )B(t)−B(1
2 )

n∑
i=1

(B(si)−B(si−1)+B(si−1))δBi

−B(1)
n∑

i=1
(B(si)−B(si−1)+B(si−1))δBi

+
n∑

i=1
(B(si)−B(si−1)+B(si−1))2δBi

)
= lim

||∆n||→0

(
B(1)B(1

2 )B(t)−B(1
2 )

n∑
i=1

δB2
i

+B(1
2 )

n∑
i=1

B(si−1)δBi −B(1)
n∑

i=1
δB2

i

−B(1)
n∑

i=1
B(si−1)δBi +

n∑
i=1

δB3
i

+
n∑

i=1
B(si−1)2δBi +2

n∑
i=1

B(si−1)δB2
i

)

= B(1)B(1
2 )B(t)− (B(1

2 )+B(1))
B2

t + t
2

+
∫ t

0
B(s)2dB(s)+2

∫ t

0
B(s)ds, 0≤ t ≤ 1

2
.
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Next, we calculate the second anticipating integral (∗2) of Equation (4.8) as follows

∫ t

0
B(s)(B(1

2 )−B(s))dB(s)= lim
||∆n||→0

(
n∑

i=1
B(si−1)(B(1

2 )−B(si))δBi

)

= lim
||∆n||→0

(
B(1

2 )
n∑

i=1
B(si−1)δBi −

n∑
i=1

B(si)B(si−1)δBi

)

= lim
||∆n||→0

(
B(1

2 )
B2

t − t
2

−
n∑

i=1
(B(si)−B(si−1)+B(si−1))B(si−1)δBi

)

= lim
||∆n||→0

(
B(1

2 )
B2

t − t
2

−
n∑

i=1
B(si−1)δB2

i −
n∑

i=1
B(si−1)2δBi

)

= B(1
2 )

B2
t − t
2

−
∫ t

0
B(s)2dB(s)−

∫ t

0
B(s)ds, 0≤ t ≤ 1

2
.

By analogy with the previous processes, we calculate the third anticipating integral (∗3) of

Equation (4.8) as follows

∫ t

0
B(s)(B(1)−B(s))dB(s)= lim

||∆n||→0

(
n∑

i=1
B(si−1)(B(1)−B(si))δBi

)

= lim
||∆n||→0

(
B(1)

n∑
i=1

B(si−1)δBi −
n∑

i=1
B(si)B(si−1)δBi

)

= lim
||∆n||→0

(
B(1)

B2
t − t
2

−
n∑

i=1
B(si −B(si−1)+B(si−1))B(si−1)δBi

)

= lim
||∆n||→0

(
B(1)

B2
t − t
2

−
n∑

i=1
B(si−1)δB2

i −
n∑

i=1
B(si−1)2δBi

)

= B(1)
B2

t − t
2

−
∫ t

0
B(s)2dB(s)−

∫ t

0
B(s)ds, 0≤ t ≤ 1

2
.

Hence, substituting into Equation (4.8), we get

∫ t

0
B(1)B(1

2 )dB(s) =����
���

∫ t

0
B(s)2dB(s)+

(
B(1

2 )
B2

t − t
2

−
���

���
���

���
�∫ t

0
B(s)2dB(s)−

∫ t

0
B(s)ds

)

+
(
B(1)B(1

2 )B(t)− (B(1
2 )+B(1))

B2
t + t
2

+
((((

((((
(((

((∫ t

0
B(s)2dB(s)+2

∫ t

0
B(s)ds

)

+
(
B(1)

B2
t − t
2

−
���

���
��

���
��∫ t

0
B(s)2dB(s)−

∫ t

0
B(s)ds

)

= B(1)B(1
2 )B(t)− t

(
B(1

2 )+B(1)
)
, 0≤ t ≤ 1

2
.
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Note that, when 1
2 < t ≤ 1 we get

∫ t

0
B(1)B(1

2 )dB(s) =
∫ 1

2

0
B(1)B(1

2 )dB(s)+
∫ t

1
2

B(1)B(1
2 )dB(s)

=
(
B(1)B(1

2 )2 − 1
2

(
B(1

2 )+B(1)
))+∫ t

1
2

(B(1)−B(s)+B(s))B(1
2 )dB(s)

=
(
B(1)B(1

2 )2 − 1
2

B(1
2 )− 1

2
B(1)

)
+

∫ t

1
2

(B(1)−B(s))B(1
2 )dB(s)+

∫ t

1
2

B(s)B(1
2 )dB(s)

=
(
B(1)B(1

2 )2 − 1
2

B(1
2 )− 1

2
B(1)

)
+B(1

2 ) lim
||∆n||→0

n∑
i=1

(B(1)−B(si)) (B(si)−B(si−1))

+B(1
2 ) lim

||∆n||→0

n∑
i=1

B(si−1) (B(si)−B(si−1))

=
(
B(1)B(1

2 )2 − 1
2

B(1
2 )− 1

2
B(1)

)
+B(1

2 )
[
B(1)B(t)− t

]t
1
2

=
���

���
���

B(1)B(1
2 )2 − 1

2
B(1

2 )− 1
2

B(1)+B(1
2 )B(1)B(t)−B(1

2 )t−
���

���
���

B(1
2 )2B(1)+B(1

2 )
1
2

= B(1)B(1
2 )B(t)− 1

2
B(1)−B(1

2 )t,
1
2
< t ≤ 1.

Note also that, when t > 1 we have

∫ t

0
B(1)B(1

2 )dB(s) =
∫ 1

2

0
B(1)B(1

2 )dB(s)+
∫ 1

1
2

B(1)B(1
2 )dB(s)+

∫ t

1
B(1)B(1

2 )dB(s)

=
[
B(1)B(1

2 )B(t)− t
(
B(1

2 )+B(1)
)] 1

2

0

+
[
B(1)B(1

2 )B(t)− 1
2

(
B(1

2 )+B(1)
)]1

1
2

+
∫ t

1
B(1)B(1

2 )dB(s)

=
((((

((((
(((

((((
B(1)B(1

2 )2 − 1
2

(B(1
2 )+B(1))

)
+

(
B(1)2B(1

2 )− 1
2

B(1)−B(1
2 )

−
(((

((((
(((

(((
B(1)B(1

2 )2 + 1
2

(B(1)+B(1
2 ))

)
+B(1)B(1

2 )
∫ t

1
dB(s)

=����
�B(1)2B(1
2 )− 1

2
B(1)−B(1

2 )+B(1)B(1
2 )B(t)−����

�B(1)2B(1
2 )

= B(1)B(1
2 )B(t)− 1

2
B(1)−B(1

2 ), t > 1.

Hence, we can conclude

∫ t

0
B(1)B(1

2 )dB(s)=


B(1

2 )B(1)B(t)− tB(1
2 )− tB(1) , 0≤ t ≤ 1

2 ,

B(1
2 )B(1)B(t)− tB(1

2 )− 1
2 B(1) , 1

2 < t ≤ 1,

B(1
2 )B(1)B(t)−B(1

2 )− 1
2 B(1) , t > 1.
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4.2 Properties of the Ayed-Kuo Stochastic Integral

In this section, we study the Itô integral properties, which were introduced in Chapter 2, for

the Ayed-Kuo integral. We prove that this new anticipating stochastic integral satisfies the zero

mean property, the near-martingale property and we propose an extension of the Itô isometry.

4.2.1 Zero Mean Property

Note that, in Equation (4.1) the evaluation points for f (t) and ϕ(t) on [ti−1, ti] are the left and

right endpoints, respectively. Moreover, let us recall that, if ϕ(t) = 1, the Ayed-Kuo integral

reduces to the Itô integral.

In the next theorem, we prove that the Ayed-Kuo integral satisfies the zero mean property, in the

same form as the Itô integral does.

Theorem 4.1 (W. Ayed, H.-H Kuo, [1]). Let { f (t),a ≤ t ≤ b} be an {Ft}-adapted stochastic process

and let {ϕ(t),a ≤ t ≤ b} be an instantly independent stochastic process with respect to the filtration

Ft. If the Ayed-Kuo integral
∫ b

a f (t)ϕ(t)dB(t) exists such that, for all a ≤ t ≤ b, E| f (t)| < ∞ and

E|ϕ(t)| <∞, then

E

(∫ b

a
f (t)ϕ(t)dB(t)

)
= 0.

Proof. Let ∆ be a partition such that ∆ = {a = t0 < t1 < t2 < ... < tn = b}. By the conditional

expectation properties (see Appendix B), we have

E
(
f (ti−1)ϕ(ti)(B(ti)−B(ti−1))

)= E(
E
(
f (ti−1)ϕ(ti)(B(ti)−B(ti−1))

∣∣Ft
))

= E(
f (ti−1)(B(ti)−B(ti−1))E

(
ϕ(ti)

∣∣Ft
))

.

Note that E{ϕ(ti)|Ft}= E{ϕ(ti)}, since ϕ(t) is instantly independent. Hence, we get

E
(
f (ti−1)ϕ(ti)(B(ti)−B(ti−1))

)= E(
ϕ(ti)

)
E ( f (ti−1)(B(ti)−B(ti−1)))

= E(
ϕ(ti)

)
E
(
E
(
f (ti−1)(B(ti)−B(ti−1))

∣∣Fti−1

))
= E(

ϕ(ti)
)
E
(
f (ti−1)E

(
(B(ti)−B(ti−1))

∣∣Fti−1

))
= 0,

since E
(
(B(ti)−B(ti−1))

∣∣Fti−1

)= 0.

By Definition 4.1, we have∫ b

a
f (t)ϕ(t)dB(t)= lim

||∆n||→0

n∑
i=1

f (ti−1)ϕ(ti)(B(ti)−B(ti−1)),

in probability. By taking subsequence, we have that the limit holds in L1(Ω). We denote by Sn

the partial sums and by I the integral. We have already proved that E(Sn)= 0. Then, we have

|E(I)| = |E(I −Sn)+E(Sn)| ≤ E|I −Sn|→ 0,

as n →∞.
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4.2.2 Near-Martingale Property

In this section, we show with a counterexample that the Ayed-Kuo integral does not satisfy the

martingale property, because of the evaluation points of the integrand. However, we introduce

the notion of near-martingale, which is satisfied by this new setting.

Example 4.5. Consider the stochastic process introduced in Example 4.1

(4.9) X t =
∫ t

0
B(1)dB(s)= B(1)B(t)− t, 0≤ t ≤ 1.

Let s ≤ t, then

E (X t|Fs)= E
(
B(1)B(t)− t

∣∣Fs
)

= E(
((B(1)−B(t))+ (B(t)−B(s))+B(s)) ((B(t)−B(s))+B(s))

∣∣Fs
)− t

= t− s+B(s)2 − t

= B(s)2 − s.

(4.10)

Hence, {X t} is not a martingale with respect to the filtration {Ft}, since Xs 6= B(s)2 − s. Note that

{Xs} is not Ft-measurable. Moreover, by taking t = s in Equation (4.10), we get

(4.11) E
(
Xs

∣∣Fs
)= B(s)2 − s.

Then, by Equation (4.10) and Equation (4.11), for any s ≤ t, we have

E
(
Xs

∣∣Fs
)= E(

X t
∣∣Fs

)
.

This equality is the motivation for the near-martingale definition.

Definition 4.3 (Near-martingale property). A stochastic process {X t} is said to be a near-

martingale with respect to the filtration {Ft} if

(i) For all 0≤ t, E|X t| <∞;

(ii) For all 0≤ s ≤ t, E
(
X t − Xs

∣∣Fs
)= 0, or equivalently, E

(
X t

∣∣Fs
)= E(

Xs
∣∣Fs

)
.

Example 4.6. In Example 4.5, we show that the stochastic process introduced in Equation (4.9)

is not a martingale. Let us check that the process does satisfy the near-martingale property. From

Equation (4.10), for 0≤ s ≤ t ≤ 1, we get

E
(
X t

∣∣Fs
)= B(s)2 − s.

Furthermore, we have

E
(
Xs

∣∣Fs
)= E(

B(1)B(s)− s
∣∣Fs

)
= B(s)E

(
B(1)

∣∣Fs
)− s

= B(s)2 − s.

Hence, {X t} is a near-martingale with respect to the filtration {Ft}.
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Remark 4.3. Note that when the near-martingale process {X t} is adapted to the filtration, {X t}

is also a martingale. Moreover, for any 0≤ s ≤ t, we have

E (X t)= E
(
X t

∣∣Fs
)= E(

Xs
∣∣Fs

)= E (Xs) ,

such that, for all t ≥ 0, we get

E (X t)= E (X0) .

Thus, the near-martingale property implies the fair game property (see Remark 1.2).

The next theorem proves that the near-martingale property is the analogue of the martingale

property in the Itô integral for the Ayed-Kuo integral.

Theorem 4.2 (H.-H. Kuo et al., [24]). Let { f (t),a ≤ t ≤ b} be a {Ft}-adapted stochastic process and

let {ϕ(t),a ≤ t ≤ b} be an instantly independent stochastic process with respect to the filtration.

Consider the stochastic process {X t}, such that

X t =
∫ t

a
f (B(s))ϕ(B(b)−B(s))dB(s), a ≤ t ≤ b,

and assume that E|X t| <∞ for all a ≤ t ≤ b. Then, the stochastic process {X t} is a near-martingale

with respect to the filtration {Ft}.

Proof. We aim to check that E (X t − Xs|Fs) = 0 for a ≤ s ≤ t. By the properties of the Riemann

sums, we have

X t − Xs =
∫ t

s
f (B(u))ϕ (B(b)−B(u))dB(u).

Let ∆ = {s = t0 < t1 < t2 < ... < tn−1 < tn = t} be a partition of the interval [s, t]. Moreover, let

δBi = (B(ti)−B(ti−1)). By the definition of the Ayed-Kuo integral, we have

E (X t − Xs|Fs)= E
(∫ t

s
f (B(u))ϕ(B(b)−B(u))dB(u)

∣∣∣∣Fs

)
= E

(
lim

||∆n||→0

n∑
i=1

f (B(ti−1))ϕ (B(b)−B(ti))δBi

∣∣∣∣Fs

)

= lim
||∆n||→0

n∑
i=1

E
(
f (B(ti−1))ϕ (B(b)−B(ti))δBi

∣∣Fs
)
.

Thus, it is enough to show that every component of the last sum is equal to zero. By the

conditional expectation properties (see Appendix B), and since f (B(ti−1)) is Fti -measurable and
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ϕ (B(b)−B(ti)) is independent of Fti , we have

E
(
f (B(ti−1))ϕ (B(b)−B(ti))∆Bi

∣∣Fs
)= E(

E
(
f (B(ti−1))ϕ (B(b)−B(ti))δBi

∣∣Fti−1

)∣∣Fs
)

= E(
f (B(ti−1))E

(
ϕ (B(b)−B(ti))δBi

∣∣Fti−1

)∣∣Fs
)

= E(
f (B(ti−1))E

(
E
(
ϕ (B(b)−B(ti))δBi

∣∣Fti

)∣∣Fti−1

)∣∣Fs
)

= E(
f (B(ti−1))E

(
δBiE

(
ϕ (B(b)−B(ti))

∣∣Fti

)∣∣Fti−1

)∣∣Fs
)

= E(
ϕ (B(b)−B(ti))

)
E
(
f (B(ti−1))E

(
δBi

∣∣Fti−1

)∣∣Fs
)

= E(
ϕ (B(b)−B(ti))

)
E (δBi)E

(
f (B(ti−1))

∣∣Fs
)

= 0.

Finally, we get

E (X t − Xs|Fs)= E
(∫ t

s
f (B(u))ϕ(B(b)−B(u))dB(u)

∣∣∣∣Fs

)
= E

(
lim

||∆n||→0

n∑
i=1

f (B(ti−1))ϕ (B(b)−B(ti))δBi

∣∣∣∣Fs

)

= lim
||∆n||→0

n∑
i=1

E
(
f (B(ti−1))ϕ (B(b)−B(ti))δBi

∣∣Fs
)

= 0.

Hence, {X t} is a near-martingale with respect to the filtration {Ft}.

4.2.3 An extension of the Itô Isometry

In this section, we propose an extension of the Itô isometry for the Ayed-Kuo stochastic integral.

The identity is for a specific type of stochastic processes, including polynomial and exponential

functions of B(t).

Theorem 4.3 (H.-H. Kuo et al., [27]). Let f and ϕ be C1-functions on R. Then

E

((∫ b

a
f (B(t))ϕ (B(b)−B(t))dB(t)

)2)
=

∫ b

a
E
(
f (B(t))2ϕ (B(b)−B(t))2)

dt

+2
∫ b

a

∫ t

0
E
(
f (B(s))ϕ′ (B(b)−B(s)) f ′ (B(s))ϕ (B(b)−B(s))

)
dsdt.

(4.12)

This result is based on McLaurin expansions and the conditional expectation properties. We

do not prove it as it is highly extensive. The proof can be found in [27].

Remark 4.4. Note that if ϕ(x) = 1, we have the Itô isometry property from Itô stochastic

integration theory. If f (x)= 1, we do also have this isometry.

Next, we apply the result from Theorem 4.3 to some of the processes introduced in Section

4.1, in order to show how it works.

54



4.2. PROPERTIES OF THE AYED-KUO STOCHASTIC INTEGRAL

Example 4.7. Consider the stochastic process introduced in Example 4.2 (see Equation (4.6) for

detail) ∫ T

0
B(t) (B(T)−B(t))dB(t)= 1

2
B(T)

(
B(T)2 −T

)− 1
3

B(T)3.

First, we begin with the left brace of Equation (4.12)

E

((∫ T

0
f (B(t))ϕ (B(b)−B(t))dB(t)

)2)
= E

((∫ T

0
B(t) (B(T)−B(t))dB(t)

)2)

= E
((

1
6

B(T)3 − 1
2

TB(T)
)2)

= 1
36
E
(
B(T)6)− 1

6
TE

(
B(T)4)+ 1

4
T2E

(
B(T)2)

= 1
36

5!!T3 − 1
6

3!!T3 + 1
4

T3

= 1
6

T3.

According to Theorem 4.3, we consider the function f (x) = ϕ(x) = x, such that f ′(x) = ϕ′(x) = 1.

Then, we have

E

((∫ T

0
B(t) (B(T)−B(t))dB(t)

)2)
=

∫ T

0
E
((

B(t)2 (B(T)−B(t))
)2)

dt

+2
∫ T

0

∫ t

0
E (B(s) (B(T)−B(t)))dsdt.

(4.13)

Note that B(T)−B(t) is independent of B(s) and since Brownian motion fulfills the zero mean

property, we have E (B(s) (B(T)−B(t)))= 0. Hence, we get

E

((∫ T

0
B(t) (B(T)−B(t))dB(t)

)2)
=

∫ T

0
E
(
B(t)2)

E
(
(B(T)−B(t))2)

dt

=
∫ T

0
t(T − t)dt

= 1
2

T3 − 1
3

T3

= 1
6

T3.

Finally, we conclude that the Ayed-Kuo isometry property is satisfied for this example.

Example 4.8. Consider the stochastic process introduced in Example 4.3∫ 1

0
eB(1)dB(t)= eB(1) (B(1)−1).

First, we begin with the left brace of the identity

E

((∫ 1

0
eB(1)dB(t)

)2)
= E

((
eB(1) (B(1)−1)

)2
)

=
∫ +∞

−∞
e2x (x−1)2 1p

2π
e−x2/2dx = 2e2.
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According to Theorem 4.3, we consider the functions f (x)=ϕ(x)= ex, such that f ′(x)=ϕ′(x)= ex.

Then, we have ∫ t

0
E
(
f (B(s))2ϕ (B(1)−B(s))

)2
ds = e2,∫ t

0

∫ b

0
E
(
f (B(s))ϕ′ (B(b)−B(s)) f ′ (B(s))ϕ (B(b)−B(s))

)
dbdt = 1

2
e2.

Hence, we get

E

((∫ b

a
f (B(t))ϕ (B(b)−B(t))dB(t)

)2)
= 2e2.

Finally, we conclude that the Ayed-Kuo isometry property is satisfied for this example.

4.3 An extension of the Itô formula for the Ayed-Kuo Stochastic
Integral

In this section, we extend the Itô formula established in Section 2.3 for the Ayed-Kuo integral.

The formula is derived by H.-H. Kuo et al. in [23, 28]. After we obtain the formula, we show how

it works for the same examples that were calculated in Section 4.1 and we check that the results

coincide.

Consider an Itô process of the form

(4.14) X t = Xa +
∫ t

a
g(s,ω)dB(s)+

∫ t

a
γ(s,ω)ds,

where Xa is a Fa-measurable random variable, g ∈ L2
ad (Ω× [a,b]) and γ ∈ L1 ([a,b]) almost surely.

Consider the process

(4.15) Y (t) =Ya +
∫ b

t
h(s)dB(s)+

∫ b

t
χ(s)ds,

where Ya is a random variable independent of Ft, h ∈ L2 ([a,b]) and χ ∈ L1 ([a,b]) are two deter-

ministic functions.

By Itô theory, we have that the stochastic process X t is adapted to the filtration Ft. In the next

results, we show that Yt is an instantly independent stochastic process.

Proposition 4.2 (H.-H. Kuo et al., [23]). Let h ∈ L2 ([a,b]), χ ∈ L1 ([a,b]) be two deterministic

functions and Ya a random variable independent of Ft. Then,

Y (t) =Ya +
∫ b

t
h(s)dB(s)+

∫ b

t
χ(s)ds, t ∈ [a,b],

is an instantly independent stochastic process with respect to the Brownian filtration.
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Proof. Our aim is to check that Y (t) is independent of the filtration Ft for a ≤ t ≤ b. Note that

Ya in independent of the filtration Ft, for all a ≤ t ≤ b. Then, by assumption and the Lebesgue

integral Y (t) is also independent of Ft because it is deterministic. Hence, we need to study the

stochastic integral. By definition of the Ayed-Kuo stochastic integral, we have∫ b

t
h(s)dB(s)= lim

||∆n||→0

n∑
i=1

h(si) (B(si)−B(si−1)) ,

where ∆ = {t = s0 < s1 < s2 < ... < sn = b} is a partition of [t,b]. The evaluation points of h

are not as important as it is the deterministic function. By the Brownian motion properties,

h(si) (B(si)−B(si−1)) is independent of Ft, for all 1≤ i ≤ n, because t ≤ si−1. Then, the sum

n∑
i=1

h(si) (B(si)−B(si−1)) ,

is also independent of the filtration Ft. We can conclude that the integral is also independent of

the filtration Ft as a limit of independent random variables.

In the following result, we present the Itô formula, which allows us to compute Itô stochastic

processes. This method is fundamental in the theory of stochastic differential equations.

Theorem 4.4 (H.-H. Kuo et al., [23]). Let θ(x, y)= f (x)ϕ(y) be a function such that f ,ϕ ∈ C2(R).

Let X t and Y (t), a ≤ t ≤ b, be two stochastic processes as in Equation (4.14) and Equation (4.15),

respectively. The following equality holds almost surely for a ≤ t ≤ b,

θ(X t,Y (t))= θ
(
Xa,Y (a)

)
+

∫ t

a

∂θ

∂x

(
Xs,Y (s)

)
dXs + 1

2

∫ t

a

∂2θ

∂x2

(
Xs,Y (s)

)
(dXs)2

+
∫ t

a

∂θ

∂y

(
Xs,Y (s)

)
dY (s) − 1

2

∫ t

a

∂2θ

∂y2

(
Xs,Y (s)

)(
dY (s)

)2
.

(4.16)

In differential form,

dθ(X t,Y (t))= ∂θ

∂x

(
Xs,Y (s)

)
dXs + 1

2
∂2θ

∂x2

(
Xs,Y (s)

)
(dXs)2

+ ∂θ

∂y

(
Xs,Y (s)

)
dY (s) − 1

2
∂2θ

∂y2

(
Xs,Y (s)

)(
dY (s)

)2
.

(4.17)

Proof. Let ∆ = {t = s0 < s1 < s2 < ... < sn = b} be a partition of the interval [a, t]. Moreover, let

δX i = X ti − X ti−1 . Let us express F
(
X t,Y (t))−F

(
Xa,Y (a)) as a telescoping sum

θ
(
X t,Y (t)

)
−θ

(
Xa,Y (a)

)
=

n∑
i=1

(
θ

(
X ti ,Y

(ti)
)
−θ

(
X ti−1 ,Y (ti−1)

))
=

n∑
i=1

(
f
(
X ti

)
ϕ

(
Y (ti)

)
− f

(
X ti−1

)
ϕ

(
Y (ti−1)

))
.

(4.18)

In Equation (4.18), in order to get an Ayed-Kuo integral, we have to take the left endpoints of the

intervals [ti−1, ti] to evaluate every occurrence of f and the right endpoints of the intervals to
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evaluate every occurrence of ϕ. We proceed in the same form as in the proof of the classical Itô

formula. Then, we use Taylor expansion up to second order. The restriction to second order is

enough, since for k > 2, we have

o
(
(δX i)k

)
> o (δt) and o

(
(δYi)k

)
> o (δt) .

Then, both (δX i)k and (δYi)k tend to zero as ||∆n||→ 0. Thus, we expand f
(
X ti

)
around the point

X ti−1 with 1≤ i ≤ n,

(4.19) f
(
X ti

)≈ f
(
X ti−1

)+ f ′
(
X ti−1

)
δX i + 1

2
f ′′

(
X ti−1

)
(δX i)2 .

Next, we expand ϕ
(
Y (ti−1)) around the point Y (ti) for 1≤ i ≤ n,

(4.20) ϕ
(
Y (ti−1)

)
≈ϕ

(
Y (ti)

)
+ϕ′

(
Y (ti)

)
(−δYi)+ 1

2
ϕ′′

(
Y (ti)

)
(−δYi)2 .

Substituting Equation (4.19) and Equation (4.20) into Equation (4.18), we get

θ
(
X t,Y (t)

)
−θ

(
Xa,Y (a)

)
≈

n∑
i=1

((
f
(
X ti−1

)+ f ′
(
X ti−1

)
δX i + 1

2
f ′′

(
X ti−1

)
(δX i)2

)
ϕ

(
Y (ti)

)
− f

(
X ti−1

)(
ϕ

(
Y (ti)

)
+ϕ′

(
Y (ti)

)
(−δYi)+ 1

2
ϕ′′

(
Y (ti)

)
(−δYi)2

))
=

n∑
i=1

(
f ′

(
X ti−1

)
ϕ

(
Y (ti)

)
δX i + 1

2
f ′′

(
X ti−1

)
ϕ

(
Y ti

)
(δX i)2

+ f
(
X ti−1

)
ϕ′

(
Y (ti)

)
δYi − 1

2
f
(
X ti−1

)
ϕ′′

(
Y (ti)

)
(δYi)2

)
→

∫ t

a

∂θ

∂x

(
Xs,Y (s)

)
dXs + 1

2

∫ t

a

∂2θ

∂x2

(
Xs,Y (s)

)
(dXs)2

+
∫ t

a

∂θ

∂y

(
Xs,Y (s)

)
dY (s) − 1

2

∫ t

a

∂2θ

∂y2

(
Xs,Y (s)

)(
dY (s)

)2
,

as ||∆n||→ 0.

Corollary 4.1 (H.-H. Kuo et al., [23]). Consider a function θ (t, x, y) = τ(t) f (x)ϕ(y) such that

f ,ϕ ∈ C2 (R) and τ ∈ C1 ([a,b]). Let X t and Y (t), a ≤ t ≤ b, be two stochastic processes as in Equation

(4.14) and Equation (4.15), respectively. The following equality holds almost surely for a ≤ t ≤ b,

θ
(
t, X t,Y (t)

)
= θ

(
a, Xa,Y (a)

)
+

∫ t

A

∂θ

∂s

(
s, Xs,Y (s)

)
ds

+
∫ t

a

∂θ

∂x

(
s, Xs,Y (s)

)
dXs + 1

2

∫ t

a

∂2θ

∂x2

(
s, Xs,Y (s)

)
(dXs)2

+
∫ t

a

∂θ

∂y

(
s, Xs,Y (s)

)
dY (s) − 1

2

∫ t

a

∂θ2

∂y2

(
s, Xs,Y (s)

)(
dY (s)

)2
.

(4.21)

In differential form,

dθ
(
X t,Y (t)

)
= ∂θ

∂s

(
s, Xs,Y (s)

)
ds+ ∂θ

∂x

(
s, Xs,Y (s)

)
dXs + 1

2
∂2θ

∂x2

(
s, Xs,Y (s)

)
(dXs)2

+ ∂θ

∂y

(
s, Xs,Y (s)

)
dY (s) − 1

2
∂2θ

∂y2

(
s, Xs,Y (s)

)(
Y (s)

)2
.

(4.22)
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Remark 4.5. If ϕ(t)= 1 in Equation (4.22), we get the classical Itô formula.

Next, we derive a particular case of the formula obtained in Corollary 4.1, which will be useful

in the calculus of some processes.

Corollary 4.2 (H.-H. Kuo et al., [23]). Let θ(t, x, y)= τ(t) f (x)ϕ(y) be a function, such that f ,ϕ ∈
C2 (R) and τ ∈ C1 ([a,b]). The following equality holds

(4.23) dθ (t,B(t),B(b))=
(
∂θ

∂t
+ 1

2
∂2θ

∂x2 + ∂2θ

∂xy

)
dt+ ∂θ

∂x
dB(t).

Proof. Note that X t = B(t) is an adapted process. However, Yt = B(b) is not an instantly indepen-

dent process. Then, we have

B(b)= B(b)−B(t)+B(t).

Let us define a function ω, such that ω (t, x, y)= θ (t, x, x+ y). Thus, we get

dω (t,B(t),B(b)−Bt)= dθ (t,B(t),B(b)) .

Thus, dω (t,B(t),B(b)−B(t)) can be calculated using Corollary 4.1. Hence, its partial derivatives

are
∂ω

∂t
= θ1,

∂ω

∂x
= θ2 +θ3,

∂ω

∂y
= θ3,

∂2ω

∂x2 = θ22 +2θ23 +θ33,
∂2ω

∂y2 = θ33,

where the indexes 1,2,3 are referred to derivatives with respect to the first, second and third

variables of θ, respectively. By Equation (4.22), we have

dθ (t,B(t),B(b))= ∂ω

∂t
dt+ ∂ω

∂x
dB(t)+ 1

2
∂2ω

∂x2 (dB(t))2 + ∂ω

∂y
(−dB(t))− 1

2
∂2ω

∂y2 (−dB(t))2

= θ1dt+ (θ2 +θ3)dB(t)+ 1
2

(θ22 +2θ23 +θ33)dt−θ3dB(t)− 1
2
θ33dt

= θ1dt+θ2dB(t)+ 1
2
θ22dt+θ23dt

=
(
∂θ

∂t
+ 1

2
∂2θ

∂x2 + ∂2θ

∂xy

)
dt+ ∂θ

∂x
dB(t).

Next, we apply the obtained results to the stochastic processes introduced in Section 4.1 and

check that the results obtained by the definition and the formula coincide.

Example 4.9. Consider the stochastic process introduced in Example 4.2

X t =
∫ T

0
B(T)B(t)dB(t).

According to Corollary 4.2, we consider the function θ (t, x, y), such that

∂θ

∂x
(t, x, y)= xy.
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Hence, we take θ (t, x, y)= x2/2y, whose partial derivatives are

∂θ

∂t
= 0,

∂θ

∂x
= xy,

∂2θ

∂x2 = y,
∂2θ

∂xy
= x.

Then, we get

d
(

1
2

B(t)2B(T)
)
= B(T)B(t)dB(t)+

(
1
2

B(T)+B(t)
)

dt.

Integrating in both sides of the equality from 0 to T, we have

1
2

B(T)3 =
∫ T

0
B(T)B(t)dB(t)+

∫ T

0

1
2

B(T)+B(t)dt.

Thus, we get ∫ T

0
B(T)B(t)dB(t) = 1

2
B(T)3 −

∫ T

0

1
2

B(T)−B(t)dt

= 1
2

B(T)3 − 1
2

TB(T)−
∫ T

0
B(t)dt,

which coincides with the result obtained in Example 4.2.

Example 4.10. Consider the stochastic process introduced in Example 4.3

X t =
∫ T

0
eB(T)dB(t).

According to Corollary 4.2, we consider the function θ (t, x, y), such that

∂θ

∂x
(t, x, y)= ey.

Hence, we take θ (t, x, y)= xey, whose partial derivatives are

∂θ

∂t
= 0,

∂θ

∂x
= ey,

∂2θ

∂x2 = 0,
∂2θ

∂xy
= ey.

Then, we get

d
(
B(t)eB(T)

)
= eB(T)dB(t)+ eB(t)dt.

Integrating on both sides of the equality from 0 to T, we have∫ T

0
d

(
B(t)eB(T)

)
dB(t)=

∫ T

0
eB(t)dB(t)+

∫ T

0
eB(T)dt.

Hence, we get ∫ T

0
eB(t)dB(t) = B(t)eB(T) −

∫ T

0
eB(T)dt

= eB(T) (B(T)−T) ,

which coincides with the result obtained in Example 4.3.
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Example 4.11. Consider the stochastic process introduced in Example 4.3 (see Equation (4.6)

for detail)

X t =
∫ T

0
B(t) (B(T)−B(t))dB(t).

According to Corollary 4.2, we consider the function θ (t, x, y), such that

∂θ

∂x
(t, x, y)= x(y− x).

Hence, we take θ (t, x, y)= yx2/2− x3/3, whose partial derivatives are

∂θ

∂t
= 0,

∂θ

∂x
= x (y− x) ,

∂2θ

∂x2 = y−2x,
∂2θ

∂xy
= x.

Then, we get

d
(
B(T)B(t)2/2−B(t)3/3

)= B(t) (B(T)−B(t))dB(t)+
(

1
2

(B(T)−2B(t))+B(t)
)

dt.

Integrating on both sides of the equality from 0 to T, we have∫ T

0
d

(
B(T)B(t)2/2−B(t)3/3

)
dB(t)=

∫ T

0
B(t) (B(T)−B(t))dB(t)+

∫ T

0

1
2

B(T)dt.

Hence, we get

∫ T

0
B(t) (B(T)−B(t))dB(t) = B(T)B(t)2/2−B(t)3/3−

∫ T

0

1
2

B(T)dt

= 1
2

B(T)
(
B(t)2 −T

)− 1
3

B(t)3,

which coincides with the result obtained in Example 4.2 (see Equation (4.6) for detail).

Remark 4.6. In addition, we would like to mention that an extension of the Girsanov theorem

for the Ayed-Kuo stochastic integral is proved in [25, 26] by H.-H. Kuo, Y. Peng and B. Szozda. As

we have discussed in Section 2.4, this result plays a fundamental role in the theory of stochastic

processes, as well as in its applications, for example in financial modeling.

4.4 Stochastic Differential Equations with Anticipating Initial
Conditions for the Ayed-kuo Stochastic Integral

In this final section, our aim is to study a theorem that establishes a general solution for the

stochastic differential equations with anticipating initial conditions for the Ayed-Kuo integral.

This result has been proved in [21] by N. Khalifa, H.-H. Kuo, H. Ouerdiane and B. Szozda. Then,

we propose an example of a linear stochastic differential equation for the financial classical

problem under the Ayed-Kuo integration theory. Aditional results for stochastic differential

equations with anticipating initial conditions under the Ayed-Kuo theory can be found in [16, 39].
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4.4.1 A general solution for Stochastic Differential Equations with
Anticipating Initial Conditions for the Ayed-Kuo Stochastic Integral

Theorem 4.5 (N. Khalifa et al., [21]). Let α(t) ∈ L2 ([a,b]) and β(t) ∈ L2
ad (Ω× [a,b]). Consider

ρ ∈M∞∩S (R). Then, the stochastic differential equation

(4.24)

dX t =α(t)X tdB(t)+β(t)X tdt, a ≤ t ≤ b,

Xa = ρ (B(b)−B(a)) ,

has a unique solution given by

(4.25) X t =
(
ρ (B(b)−B(a))−ξ (t,B(b)−B(a))

)
Zt,

where

ξ(t, y)=
∫ t

a
α(s)ρ′

(
y−

∫ t

s
α(u)du

)
ds,

and

Zt = exp
(∫ t

a
α(s)dB(s)+

∫ t

a

(
β(s)− 1

2
α(s)2

)
ds

)
.

We do not prove this results as it is highly extensive. The proof of the existence and uniqueness

of the solution of Theorem 4.5 can be found in [21].

Remark 4.7. Note that, if a = 0, α(t) = α and β(t) = β, the coefficients are constants and the

evolution starts at 0. Hence, the solution to Equation (4.24) has the form

(4.26) X t =ω (t,B(T))exp
(
αB(t)+

(
β− 1

2
α2

)
t
)
,

where ω(t, x) is the solution of the following partial differential equation

(4.27)


∂ω
∂t (t, x)=−α∂ω

∂x (t, x), 0≤ t ≤ b,

ω(0, x)= ρ(x).

Hence, in order to show that the solution from Theorem 4.5 coincides with Equation (4.26), it is

enough to show that ω(t, x)= ρ(x)−ξ(t, x) solves Equation (4.27). Note that, in the case of constant

coefficients, we have ω(t, x)= ρ(x−αt).

4.4.2 Black-Scholes-Merton Model under Ayed-Kuo Theory

Consider the following stochastic differential equation for the Black-Scholes-Merton model with

a slightly modification, whose financial sense will be explained in Chapter 6

(4.28)

dSt =σStdB(t)+µStdt,

S0 = B(T).
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As it has been already explained, the Black-Scholes-Merton model is a continuous-time model

which aim is to describe the behaviour of the prices of one risky asset (a stock with price St at

time t) and a riskless asset (with price S0
t at time t), where µ are σ are two constants, such that

µ≡ appreciation rate of the stock St;

σ≡ volatility of the asset St;

B(t)≡ standard brownian motion;

S0 ≡ spot price observed at time t = 0.

Remark 4.8. If we consider that the solution of the SDE (4.28) is the same as the solution of the

classical SDE from Itô theory, we check that it does not work, as we get an extra term because of

the anticipating initial condition.

By the result obtained in Theorem 4.5, we are able to find a solution for the Black-Scholes-

Merton model with an anticipating condition under Ayed-Kuo theory. Note that, for the SDE

(4.28), we have

α(t)=σ, β(t)=µ, ρ(x)= x.

Then, we consider the solution

(4.29) St = (B(T)−σt) eσB(t)+(µ− 1
2σ

2)t.

where

ω(t, x)= ρ (x−σt) and ω(0, x)= x.

Remark 4.9. Hence, according to Theorem 4.5, we conclude that the Equation (4.29) is the

solution for the SDE (4.28), whose existence and uniqueness has already been proved.

Now, let us check that this result is accomplished by the extension of the Itô formula for the

Ayed-Kuo integral, which has been studied in Section 4.3. According to Corollary 4.2, we consider

the function θ(t, x, y), such that

θ(t, x, y)= (y−ξ(t)) e(µ− 1
2σ

2)t+σx,

whose partial derivatives are

∂θ
∂t =−ξ′(t)e(µ− 1

2σ
2)t+σx + (

µ− 1
2σ

2)
(y−ξ(t)) e(µ− 1

2σ
2)t+σx,

∂θ
∂x =σ (y−ξ(t)) e(µ− 1

2σ
2)t+σx,

∂2θ
∂x2 =σ2 (y−ξ(t)) e(µ− 1

2σ
2)t+σx,

∂2θ
∂xy =σe(µ− 1

2σ
2)t+σx.
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CHAPTER 4. THE AYED-KUO STOCHASTIC INTEGRAL

Hence, we have

dSt = ∂θ

∂t
dt+ ∂θ

∂x
dB(t)+ 1

2
∂2θ

∂x2 + ∂2θ

∂xy
dt

=
(
−ξ′(t)e(µ− 1

2σ
2)t+σB(t) +

(
µ− 1

2
σ2

)
St

)
dt+σStdB(t)+ 1

2
σ2Stdt+σe(µ− 1

2σ
2)+σB(t)dt

=−ξ′(t)e(µ− 1
2σ

2)t+σB(t)dt+µStdt
�
��

�
��

−1
2
σ2Stdt+σStdB(t)

�
��

�
��

+1
2
σ2Stdt+σe(µ− 1

2σ
2)t+σB(t)dt

=−ξ′(t)e(µ− 1
2σ

2)t+σB(t)dt+µStdt+σStdB(t)+σe(µ− 1
2σ

2)t+σB(t)dt.

Note that, ξ(t) is a deterministic function, whose value is determined by imposing that Equation

(4.29) is the solution of the SDE (4.28), such that, ξ(t) must satisfy the conditionsξ
′(t)=σ, 0≤ t ≤ T,

ξ(0)= 0.

Thus, we get

(4.30) ξ(t)=σt, 0≤ t ≤ T.

Finally, substituting Equation (4.30) into Equation (4.29), we have

St = (B(T)−σt) e(µ− 1
2σ

2)t+σB(t),

is the solution of the SDE (4.28).
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5
THE RUSSO-VALLOIS STOCHASTIC INTEGRAL

The Russo-Vallois integral was first introduced by F. Russo and P. Vallois in [36] in 1993.

This integration encompasses three different stochastic processes: forward, backward and

symmetric integration. Since the forward integral is the only one that generalizes the Itô

integral, we would always refer with Russo-Vallois integral to the forward integral.

This setting can be defined in terms of Riemann sums, as well as the Itô integral and the Ayed-

Kuo integral, where the integrand is assumed to be a product of an adapted stochastic process

with respect to a Brownian filtration and an anticipating stochastic process. This setting is

characterized by not having the analytical structure of the Ayed-Kuo one, as it does not satisfy

any of the properties studied for the other integrals. However, it has a more desirable behaviour

in financial modeling, while the Ayed-Kuo integral does not, as we will analyze in Chapter 6.

This chapter is organized as follows. First we give a definition for the Russo-Vallois integral and

calculate some examples. We prove that this new setting does not satisfy the martingale property,

the near-martingale property or the zero mean property. Then, we study an Itô formula for the

Russo-Vallois integral, which has been proved in [37], and calculate some examples in order to

show how the formula works. Finally, we study a solution for the Black-Scholes-Merton model

under Russo-Vallois theory.

5.1 Definition of the Russo-Vallois Stochastic Integral

Let B(t) be a Brownian motion {B(t), t ≥ 0} and let {Ft, t ≥ 0} be the associated filtration, i.e.,

Ft =σ{B(s), t ≥ s ≥ 0}, such that

(i) For each t ≥ 0, B(t) is Ft-measurable;

(ii) For any t ≥ s ≥ 0, B(t)−B(s) is independent of Fs.
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CHAPTER 5. THE RUSSO-VALLOIS STOCHASTIC INTEGRAL

Definition 5.1 (Forward integrable stochastic process). A stochastic process ϕ=ϕ(t), t ∈ [a,b], is

said to be a forward integrable stochastic process (in the weak sense) over the interval [a,b] with

respect to the Brownian motion {B(t), t ∈ [a,b]} if there exists a process {I(t), t ∈ [a,b]}, such that

sup
t∈[a,b]

∣∣∣∣∫ t

a

ϕ(s)B(s+ε)−B(s)
ε

ds− I(t)
∣∣∣∣→ 0, ε→ 0+,

in probability. In this case, the forward integral of ϕ(t) can defined by

I(t)=
∫ t

a
ϕ(s)d−B(s), t ∈ [a,b],

with respect to B(t) on [a,b].

We can also define the Russo-Vallois integral in terms of Riemann sums, as F. Biagini and B.

Øksendal proved in [5].

Lemma 5.1 (Russo-Vallois stochastic integral). Let ϕ be a càglàd and forward integrable stochas-

tic process. Then, the Russo-Vallois integral can be defined by

(5.1)
∫ b

a
ϕ(s)d−B(s)= lim

||∆n||→0

n∑
i=1

ϕ (ti−1) (B(ti)−B(ti−1)) ,

provided that the limit in probability exists, where ∆= {a = t0 < t1 < t2 < ...< tn = b} is a partition

of the interval [a,b] and ||∆n|| =max1≤i≤n(ti − ti−1).

Proof. Let us assume that ϕ is a simple stochastic process. Hence, we get

ϕ(t)=
n∑

i=1
ϕ (ti−1)χ(ti−1,ti](t), t ∈ [a,b].

By Fubini theorem, we have∫ b

a
ϕ(s)d−B(s)= lim

ε→0+

∫ b

a
ϕ(s)

B (s+ε)−B(s)
ε

ds

=
n∑

i=1
ϕ (ti−1) lim

ε→0+

∫ ti

ti−1

B (s+ε)−B(s)
ε

ds

=
n∑

i=1
ϕ (ti−1) lim

ε→0+
1
ε

∫ ti

ti−1

∫ s+ε

s
dB(u)ds

=
n∑

i=1
ϕ (ti−1) lim

ε→0+
1
ε

∫ ti

ti−1

∫ u

u−ε
dsdB(u)

=
n∑

i=1
ϕ (ti−1) (B(ti)−B(ti−1)) .

Remark 5.1. Note that, in Lemma 5.1 the Riemann sums are an approximation to the Itô

integral of ϕ with respect to the Brownian motion, if the integrand ϕ is Ft-adapted to the

filtration. Hence, in this case the Russo-Vallois, Itô and Ayed-Kuo integrals coincide.
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Remark 5.2. By Equation (5.1), we can state that the Russo-Vallois integral is linear.

The following result is an immediate consequence of the Definition 5.1. It is a useful property

in order to calculate forward stochastic processes.

Lemma 5.2 (G. Di Nunno, B. Øksendal, [8]). Let ϕ be a forward integrable stochastic process and

G a random variable. Then, the product Gϕ is a forward integrable stochastic process and

∫ b

a
Gϕ(t)d−B(t)=G

∫ b

a
ϕ(t)d−B(t).

Next, we calculate some stochastic processes in order to show that the Russo-Vallois integral

allows us to compute some anticipating integrals and to compare them with the results obtained

with the Ayed-Kuo integral (see Section 4.1). In Section 5.3, we will also check that the results

obtained by the definition coincide with the ones calculated by the extension of the Itô formula

for the Russo-Vallois integral.

Example 5.1. Consider the stochastic process∫ T

0
B(T)d−B(t).

By Lemma 5.2, we have

∫ T

0
B(T)d−B(t) = B(T)

∫ T

0
dB(t)

= B(T)2,

(5.2)

which does not coincide with the result calculated by the Ayed-Kuo integral (see Example 4.1).

Example 5.2. Consider the stochastic process∫ T

0
B(T)B(t)d−B(t).

By Lemma 5.2, we have

∫ T

0
B(T)B(t)d−B(t) = B(T)

∫ T

0
B(t)dB(t)

= 1
2

B(T)
(
B(T)2 −T

)
= 1

2
B(T)3 − 1

2
TB(T),

(5.3)

which does not coincide with the result calculated by the Ayed-Kuo integral (see Example 4.2).
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Example 5.3. Consider the stochastic process

∫ t

0
eB(T)d−B(t).

By Lemma 5.2, we have

∫ T

0
eB(T)d−B(t) = eB(T)

∫ T

0
dB(t)

= eB(T)B(T),

(5.4)

which does not coincide with the result calculated by the Ayed-Kuo integral (see Example 4.3).

Example 5.4. Consider the stochastic process

∫ T

0
B(t) (B(T)−B(t))d−B(t).

By Lemma 5.2, we have

∫ T

0
B(t) (B(T)−B(t))d−B(t) =

∫ T

0
B(t)B(T)d−B(t)−

∫ T

0
B(t)2dB(t)

= B(T)
∫ T

0
B(t)dB(t)−

(
1
3

B(T)3 −
∫ T

0
B(t)dt

)
= 1

2
B(T)

(
B(T)2 −T

)−(
1
3

B(T)3 −
∫ T

0
B(t)dt

)

= 1
6

B(T)3 − 1
2

TB(T)+
∫ T

0
B(t)dt,

(5.5)

which does not coincide with the result calculated by the Ayed-Kuo integral (see Example 4.2,

Equation (4.6) for detail).

5.2 Properties of the Russo-Vallois Stochastic Integral

In this section, our aim is to check if the Russo-Vallois integral satisfies some of the properties

studied before for the Itô integral and the Ayed-Kuo integral, as zero mean property and the

near-martingale property.

As we have proved in Section 4.2, the anticipating stochastic integral of Ayed-Kuo satisfies the

near-martingale property, the zero mean property and we are also able to establish an extension

of the Itô isometry for this setting. However, in this section we prove that the Russo-Vallois

integral does not satisfy any of this properties, neither the martingale property. Indeed, it does

not have the analytical structure of the Ayed-Kuo one.
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5.2.1 Zero Mean Property

In Subsection 2.2.1 and in Subsection 4.2.1, it has been shown that the Itô integral and the

Ayed-Kuo integral, respectively, satisfy the zero mean property.

Let us show a counterexample in order to illustrate that the Russo-Vallois integral does not have

zero mean for every process.

Example 5.5. Consider the stochastic process from Example 5.1∫ T

0
B(T)d−B(t)= B(T)2.

We can verify

E

(∫ T

0
B(T)d−B(t)

)
= E(

B(T)2)
= T,

which is clearly not equal to 0.

Remark 5.3. Hence, we conclude that the Russo-Vallois integral does not satisfy the zero mean

property.

5.2.2 Martingale and Near-Martingale Property

Next, we prove that the Russo-Vallois integral does not satisfy the near-martingale property, and

consequently the martingale property is not satisfied either.

Remark 5.4. If the stochastic process {X t} is a martingale, then it is a near-martingale. On the

other hand, if the stochastic process {X t} does not satisfy the near-martingale property, it does

not fulfill the martingale property either.

As it was shown in Subsection 4.2.2, a stochastic process {X t} is said to be a near-martingale

with respect to the filtration {Ft} if the mean is constant, it means

E (X t|Fs)= E (Xs|Fs) =⇒ E (E (X t|Fs))= E (E (Xs|Fs)) =⇒ E (X t)= E (Xs) .

Example 5.6. Consider the stochastic process∫ t

0
B(T)d−B(t), 0≤ t ≤ T.

Following the above argument, we have

E (B(T)B(t))= E ((B(T)−B(t)+B(t))B(t))

= E ((B(T)−B(t))B(t))+E(
B(t)2)

= t,

which is clearly not constant.

Remark 5.5. Hence, we conclude that the Russo-Vallois integral does not satisfy the near-

martingale property. Therefore, the martingale property is not satisfied either.
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5.3 An extension of the Itô formula for the Russo-Vallois
Stochastic Integral

In this section, we extend the Itô formula established in Section 2.3 for the Russo-Vallois integral.

This formula is proposed in [37, 38].

First, it is convenient to introduce an analogous notation to the classical one for Itô processes.

Definition 5.2 (Forward process). A forward process with respect to B(t) is a stochastic process

of the form

(5.6) X t = Xa +
∫ t

a
u(s)ds+

∫ t

a
v(s)d−B(s), t ∈ [a,b],

where ∫ b

a
|u(s)|ds <∞,

and v is a forward integrable stochastic process. In differential form,

(5.7) d−X t = u(t)dt+v(t)d−B(t).

Next, we present the extension of the Itô formula for the Russo-Vallois integral. The proof

can be found in [38]. We only make a brief sketch of the proof as it is highly extensive.

Theorem 5.1 (F. Russo, P. Vallois, [38]). Let

d−X t = u(t)dt+v(t)d−B(t),

be a forward process. Let θ ∈ C1,2 ([a,b]×R) and define

Y (t) = θ (t, X t) , t ∈ [a,b].

Then, Y (t), for t ∈ [a,b], is a forward process and

(5.8) d−Y (t) = ∂θ

∂t
(t, X t)dt+ ∂θ

∂x
(t, X t)d−X t + 1

2
∂2θ

∂x2 (t, X t)v2(t)dt.

Sketch of proof. Let θ(t, x) = θ(x) for t ∈ [a,b] and x ∈ R. Let ∆ = {a = t0 < t1 < ... < tn = b} be a

partition of the interval [a,b]. Then, by Taylor expansion, we have, for some point X̄ i ∈ [X ti−1 , X ti ]

θ (X t)−θ (X0)=
n∑

i=1
θ

(
X ti

)−θ (
X ti−1

)
=

n∑
i=1

θ′
(
X ti−1

)(
X ti − X ti−1

)
+ 1

2

n∑
i=1

θ′′
(
X̄ i

)(
X ti − X ti−1

)2 .

(5.9)
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By Lemma 5.1, we have
n∑

i=1
θ′

(
X ti−1

)(
X ti − X ti−1

)= n∑
i=1

θ′
(
X ti−1

)(∫ ti

ti−1

u(s)ds+
∫ ti

ti−1

v(s)d−B(s)
)

=
n∑

i=1

(∫ ti

ti−1

θ′
(
X ti−1

)
u(s)ds+

∫ ti

ti−1

θ′
(
X ti−1

)
v(s)d−B(s)

)

=
∫ b

a

(
n∑

i=1
θ′

(
X ti−1

)
χ(ti−1,ti](s)

)
u(s)ds

+
∫ b

a

(
n∑

i=1
θ′

(
X ti−1

)
χ(ti−1,ti](s)

)
v(s)d−B(s)

→
∫ b

a
θ′ (Xs)u(s)ds+

∫ b

a
θ′ (Xs)v(s)d−B(s)

=
∫ b

a
θ′ (Xs)d−Xs,

(5.10)

as ||∆n||→ 0, with convergence in probability. As in the classical case, one can also prove

(5.11)
n∑

i=1
f ′′

(
X̄ i

)(
X ti − X ti−1

)2 →
∫ b

a
f ′′ (Xs)v2(s)ds,

||∆n|| → 0, in probability. Combining Equation (5.9), Equation (5.10) and Equation (5.11), we

obtain the result from Equation (5.8).

Next, we apply the obtained formula to the stochastic processes previously introduced in

Section 5.1. We check that the results calculated by the definition and the formula coincide.

Example 5.7. Consider the stochastic process introduced in Example 5.2∫ T

0
B(T)B(t)d−B(t).

According to Theorem 5.1, we consider the function θ (t, x)= B(T)x2/2, whose partial derivatives

are
∂θ

∂t
= 0,

∂θ

∂x
= B(T)x,

∂2θ

∂x2 = B(T).

Thus, we get

d− (B(T)B(t))= B(T)B(t)d−B(t)+ 1
2

B(T)dt.

Integrating in both sides of the equality from 0 to T, we have∫ T

0
d− (

B(T)B(t)2/2
)
d−B(t)=

∫ T

0
B(T)B(t)d−B(t)+ 1

2

∫ T

0
B(T)dt.

Hence, we get ∫ T

0
B(T)B(t)d−B(t) =

∫ T

0
d− (

B(T)B(t)2/2
)
d−B(t)− 1

2

∫ T

0
B(T)dt

= 1
2

B(T)3 − 1
2

TB(T)

= 1
2

B(T)
(
B(T)2 −T

)
,
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which coincides with the result obtained in Example 5.2.

Example 5.8. Consider the stochastic process introduced in Example 5.1∫ T

0
eB(T)d−B(t).

According to Theorem 5.1, we consider the function θ (t, x)= eB(T)x, whose partial derivatives are

∂θ

∂t
= 0,

∂θ

∂x
= eB(T),

∂2θ

∂x2 = 0.

Thus, we get

d−
(
eB(T)B(t)

)
= eB(T)d−B(t).

Integrating in both sides of the equality from 0 to T, we have∫ T

0
d−

(
eB(T)B(t)

)
d−B(t)=

∫ T

0
eB(T)d−B(t).

Hence, we get

∫ T

0
eB(T)d−B(t) =

∫ T

0
d−

(
eB(T)B(t)

)
d−B(t)

= eB(T)B(T),

which coincides with the result obtained in Example 5.3.

Example 5.9. Consider the stochastic process introduced in Example 5.4∫ T

0
B(t) (B(T)−B(t))d−B(t).

By linearity, we have∫ T

0
B(t) (B(T)−B(t))d−B(t)=

∫ T

0
B(t)B(T)d−B(t)−

∫ T

0
B(t)2d−B(t),

where the first integral of the right-hand side of the equality is the stochastic process from the

Example 5.7 and we have already calculated the solution. For the second integral, according to

Theorem 5.1, we consider the function θ (t, x)= x3/3, whose partial derivatives are

∂θ

∂t
= 0,

∂θ

∂x
= x2,

∂2θ

∂x2 = 2x.

Thus, we get

d− (
B(t)3/3

)= B(t)2d−B(t)+B(t)dt.

Integrating in both sides of the equality from 0 to T, we have∫ T

0
d− (

B(t)3/3
)
d−B(t)=

∫ T

0
B(t)2d−B(t)+

∫ T

0
B(t)dt.
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Then, we get

∫ T

0
B(t)2d−B(t) =

∫ T

0
d− (

B(t)3/3
)
d−B(t)−

∫ T

0
B(t)dt

= 1
3

B(T)3 −
∫ T

0
B(t)dt.

Hence, combining both integrals we have

∫ T

0
B(t) (B(T)−B(t))d−B(t) =

∫ T

0
B(t)B(T)d−B(t)−

∫ T

0
B(t)2d−B(t)

= 1
2

B(T)
(
B(T)2 −T

)− 1
3

B(T)2 +
∫ T

0
B(t)dt

= 1
6

B(T)3 − 1
2

TB(T)+
∫ T

0
B(t)dt,

which coincides with the result obtained in Example 5.4 (see Equation (5.5) for detail).

5.4 Stochastic Differential Equations with Anticipating Initial
Conditions for the Russo-Vallois Stochastic Integral

In this final section, our aim is to study a solution for a particular linear stochastic differential

equation, which has already been introduced in Section 3.3 and in Subsection 4.4.2. We study the

Black-Scholes-Merton model under Russo-Vallois theory.

5.4.1 Black-Scholes-Merton Model under Russo-Vallois Theory

Consider the linear stochastic differential equation for the Black-Scholes-Merton model, with a

slightly modification, as in the Ayed-Kuo setting

(5.12)

d−St =σStd−B(t)+µStdt,

S0 = B(T).

Let us also consider the same solution as for the classical linear stochastic differential equation

from Itô theory

(5.13) St = B(T)e(µ− 1
2σ

2)t+σB(t).

Then, the function θ(t, x) chosen is

θ(t, x)= B(T)e(µ− 1
2σ

2)t+σx,
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whose partial derivatives are 
∂θ
∂t =

(
µ− 1

2σ
2)

B(T)e(µ− 1
2σ

2)t+σx,
∂θ
∂x =σB(T)e(µ− 1

2σ
2)t+σx,

∂2θ
∂x2 =σ2B(T)e(µ− 1

2σ
2)t+σx.

According to Theorem 5.1, we have

d−
(
B(T)e(µ− 1

2σ
2)t+σB(t)

)
=

(
µ− 1

2
σ2

)
B(T)e(µ− 1

2σ
2)t+σxdt+σ2B(T)e(µ− 1

2σ
2)t+σxdt

+σB(T)e(µ− 1
2σ

2)t+σxd−B(t)

=µB(T)e(µ− 1
2σ

2)t+σxdt
((((

(((
((((

(
−1

2
σ2B(T)e(µ− 1

2σ
2)t+σxdt

((((
(((

((((+σ2B(T)e(µ− 1
2σ

2)t+σxdt+σB(T)e(µ− 1
2σ

2)t+σxd−B(t)

=µB(T)e(µ− 1
2σ

2)t+σxdt+σB(T)e(µ− 1
2σ

2)t+σxd−B(t).

Finally, we check whether Equation (5.13) is a solution of the stochastic differential equation

(5.12)

d−
(
B(T)e(µ− 1

2σ
2)t+σB(t)

)
=µB(T)e(µ− 1

2σ
2)t+σxdt+σB(T)e(µ− 1

2σ
2)t+σxd−B(t),

which yields, according to the results studied in this chapter, that

d− (St)= B(T)µe(µ− 1
2σ

2)t+σxdt+σB(T)e(µ− 1
2σ

2)t+σxd−B(t)

=µStdt+σStd−B(t).

Remark 5.6. Note that, in spite of the anticipating initital condition, the solution obtained for

the stochastic differential equation is equivalent to the one calculated by the classical Itô theory.

Now, let us prove the existence and uniqueness of the solution proposed. The existence has

been proved by a guess based on Itô calculus. Then, we have left to check that St in Equation

(5.13) is the unique solution of the stochastic differential equation in SDE (5.12).

By reducing to absurd, let X t be another solution to the SDE (5.12). Hence, we have

St = B(T)+µ
∫ t

0
Sud(u)+σ

∫ t

0
Sud−B(u),

and

X t = B(T)+µ
∫ t

0
Xud(u)+σ

∫ t

0
Xud−B(u).

If we define Zt = St − X t, for all 0≤ t ≤ T, we have that Zt is a stochastic process satisfyingZt =µ
∫ t

0 Zud(u)+σ∫ t
0 Zud−(u), 0≤ t ≤ T,

Z0 = 0.
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This linear stochastic differential equation is a non-anticipating Black-Scholes-Merton type of

equation, whose unique solution is given by

Zt = Z0e(µ− 1
2σ

2)t+σB(t).

The uniqueness of this solution is guaranteed by Theorem 3.1. Since Z0 = 0, we have

P (Zt = 0, for all 0≤ t ≤ T)= 1,

such that

P (St = X t, for all 0≤ t ≤ T)= 1.

Hence, we conclude that St from Equation (5.13) is the same solution as X t, and the unique

solution of the SDE (5.12).
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6
FINANCIAL MODELING

The aim of this final chapter is to transpose the results studied among this dissertation

into an specific problem of financial modeling. As we have discussed in Chapter 3, we are

able model stock price behaviour with the stochastic differential equations theory. Then,

in Subsection 4.4.2 and in Subsection 5.4.1, we propose an extension of the Black-Scholes-Merton

model, which deals with the anticipating stochastic calculus, for the Ayed-Kuo and the Russo-

Vallois stochastic integrals respectively.

The problem we are presenting in this chapter is called the insider trading. Consider a trader who

has privileged information from the financial markets, where our aim is to model this approach

with stochastic calculus. The logic encourages us to related this idea to the anticipating stochastic

theory explained among this thesis.

This chapter is organized as follows. First, we introduce a simplified version of the insider trading.

Then, we propose a solution for this problem under the Ayed-Kuo and the Russo-Vallois stochastic

integration theories, and we compare both alternatives. We discuss that the Russo-Vallois integral

has a more desirable solution in the financial sense, while the Ayed-Kuo setting does not, at

least for this version of the insider trading problem. Finally, we propose two new theorems that

we have proved in this work. In these, we establish the optimal investment strategy for both

integrals according to their solutions for the general version of insider trading.

6.1 The Insider Trading Problem

The insider trading is the trading of stocks by individuals with access to privileged information

from those securities. This idea is clearly related to the anticipating stochastic theory that we

have already discussed among this dissertation.
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Let us consider a simplified version of the problem of insider trading in the financial market. We

approach it by means of anticipating stochastic calculus. Let us start from the classical financial

model (see Section 3.3 for detail) with one asset free of risk, the bond

(6.1)

dS0
t = ρS0

t dt,

S0
0 = M0,

and a risky asset, the stock

(6.2)

dS1
t =µS1

t dt+σS1
t dB(t),

S1
0 = M1,

where M0, M1, ρ, µ and σ are constants. We have the following financial meaning to all the

variables that make up the model

M0 ≡ initial wealth invested in the bond;

M1 ≡ initial wealth invested in the stock;

ρ ≡ interest rate of the bond S0
t ;

µ≡ appreciation rate of the stock S1
t ;

σ≡ volatility of the stock S1
t ;

B(t)≡ standard brownian motion;

S1
0 ≡ spot price observed at time t=0.

Let us assume that µ> ρ because of the risk-return binomial. Also, we consider that the trader

has a fixed total wealth M at the initial time t = 0 and is free to choose what fraction is invested

in each asset. Then, the total initial wealth invested by the trader is

M = M0 +M1.

Clearly, at any time t > 0, the total wealth is given by

St = S0
t +S1

t .

We consider this financial market on [0,T] for a fixed future time T > 0. Then, we have the

following results for the classical financial theory.

Theorem 6.1 (J. Bastons, C. Escudero, [4]). The expected value of the total wealth at time t = T is

E (ST )= M0eρT +M1eµT ,

for ODE (6.1) and SDE (6.2).
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Proof. By Itô theory, we have the following solutions to ODE (6.1) and SDE (6.2) respectivelyS0
t = M0eρt,

S1
t = M1 exp

((
µ− 1

2σ
2)

T +σB(T)
)
.

Hence, the expectation of St at time t = T is

E (ST )= E(
S0

T
)+E(

S1
T
)

= M0E
(
eρt)+M1E

(
exp

((
µ− 1

2
σ2

)
T +σB(T)

))
= M0eρT +M1eµT .

Corollary 6.1. The optimal investment strategy for ODE (6.1) and SDE (6.2) is

M0 = 0 and M1 = M.

Remark 6.1. The aim of the trader is to maximize the expected wealth at time t = T. As we have

assumed that µ> ρ, the maximal expected wealth is

(6.3) E (ST )= MeµT ,

which is the one obtained by the investment strategy established in Corollary 6.1.

Remark 6.2. Combining the martingale property for the Itô integral and the assumption of µ

being the expected rate of return of the risky asset, we have that SDE (6.2) is an Itô stochastic

differential equation.

According to Remark 6.2, things should be different under the assumption of the trader

possessing privileged information with respect to the one contained in the filtration generated by

B(T) at time t = 0. The honest trader will choose the strategy proposed in Remark 6.2, while the

dishonest trader, it means the insider trader, will take advantage of privileged information.

Let us consider the following anticipating situation. Our trader is an insider who has some

privileged information on the future price of the stock. Specifically, the trader knows at the initial

time t = 0 the value B(T). Therefore, the value ST . However, in our simplification of the problem

we assume that the trader does not fully trust this information. Then, we use an adjustment of

the information for the initial condition, in order to take advantage of the privilege of the trader.

The strategy assumed for the bond is

(6.4)

dS0
t = ρS0

t dt,

S0
0 = M

(
σ2T/2−σB(T)

2(µ−ρ)T

)
,
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and, for the stock

(6.5)

dS1
t =µS1

t dt+σS1
t dB(t),

S1
0 = M

(
1+ σB(T)−σ2T/2

2(µ−ρ)T

)
.

This strategy is linear in B(T). However, it is also a form to introduce some trust of the insider

trader in the privileged information that the trader possesses.

Remark 6.3. The modulation of the strategy imposes the following assumptions:

• The amount invested at the initial time t = 0 is the same for the bond and the stock, if their

values at time t = T are equal for a given common initial investment.

• The amount invested in the bond is null whenever the realization of the Brownian motion

yields the average result of Equation (6.3).

• The strategy allows negative values for the investment, which means that the trader can

borrow money.

Remark 6.4. Note that, the problem formulated in SDE (6.5) is ill-posed, while problem described

in ODE (6.4) can be regarded as an ordinary differential equation subject to a random initial

condition. The anticipating initial condition makes the stochastic differential equation ill-defined

in the Itô sense. If we change the notion of Itô stochastic integration to another one that considers

anticipating integrands, the problem from SDE (6.5) might be well-posed.

In the following section, we discuss how the anticipating settings studied among this disser-

tation, the Ayed-Kuo stochastic integral and the Russo-Vallois stochastic integral, find a solution

for this problem, and we compare the results obtained for each one. Both of these anticipating

stochastic integrals guarantee the well-posednesss of this version of the insider trading problem.

However, in the financial sense, the solution given by each integral might be different. In par-

ticular, we will check that the Russo-Vallois integral gives a more desirable solution, while the

Ayed-Kuo solution seems to be counterintuitive in the financial sense.

6.2 Comparison between Ayed-Kuo and Russo-Vallois
integration for Insider Trading

Let us consider the notation and results from Chapter 4. For the Ayed-Kuo stochastic integral,

we arrive at the initial value problem

(6.6)

dS1
t =µS1

t dt+σS1
t dB(t),

S1
0 = M

(
1+ σB(T)−σ2T/2

2(µ−ρ)T

)
,

for a Ayed-Kuo stochastic differential equation. The existence and uniqueness of solutions for

linear stochastic differential equations has been already proved in Section 4.4.
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Theorem 6.2 (J. Bastons, C. Escudero, [4]). The expected value of the total wealth of the insider

at time t = T under Ayed-Kuo theory is

E
(
S(AK)

T

)
= M

(
σ2

4
(
µ−ρ) eρT +

(
1− σ2

4
(
µ−ρ))

eµT
)
,

for ODE (6.4) and SDE (6.6).

Proof. According to Theorem 4.5, we have that the solution of SDE (6.6) is

(6.7) S1
t = M

(
1+ σB(T)−σ2t−σ2T/2

2
(
µ−ρ)

T

)
exp

((
µ− σ2

2

)
t+σB(t)

)
.

Let us recall that the total wealth of the insider trader is

S(AK)
T = S0

t +S1
t ,

such that, for the expected wealth at time t = T we have

E
(
S(AK)

T

)
= E(

S0
T
)+E(

S1
T
)
.

Hence, at maturity time t = T, we get

E
(
S(AK)

T

)
= E(

S0
T
)+E(

S1
T
)

= E
(
M
σ2T/2−σB(T)

2
(
µ−ρ)

T

)
eρT

+E
(
M

(
1+ σB(T)−3σ2T/2

2
(
µ−ρ)

T

)
exp

((
µ− σ2

2

)
T +σB(T)

))
= M

σ2T/2−σE (B(T))
2

(
µ−ρ)

T
eρT

+M
σ

2
(
µ−ρ)

T
E

(
B(T)exp

((
µ− σ2

2

)
T +σB(T)

))
+M

(
1− 3σ2

4
(
µ−ρ))

E

(
exp

((
µ− σ2

2

)
T +σB(T)

))
= M

σ2

4
(
µ−ρ) eρT +M

σ2

2
(
µ−ρ) eµT +M

(
1− 3σ2

4
(
µ−ρ))

eµT

= M
(

σ2

4
(
µ−ρ) eρT +

(
1− σ2

4
(
µ−ρ))

eµT
)
,

where B(T)∼N (0,T).

Corollary 6.2 (J. Bastons, C. Escudero, [4]). The expected value of the total wealth of the insider

at time t = T is strictly smaller than that of the honest trader

E
(
S(AK)

T

)
< E

(
S(ITÔ)

T

)
.
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Remark 6.5. The statement from Corollary 6.2 implies that the Ayed-Kuo stochastic integration

does not take advantage of the anticipating condition. Hence, in the financial sense, we might say

that the Ayed-Kuo integral does not work, at least for this version of insider trading.

Next, let us consider the notation and results from Chapter 5. For the Russo-Vallois stochastic

integral, we arrive at the initial value problem

(6.8)

d−S1
t =µS1

t dt+σS1
t d−B(t),

S1
0 = M

(
1+ σB(T)−σ2T/2

2(µ−ρ)T

)
.

Theorem 6.3 (J. Bastons, C. Escudero, [4]). The expected value of the total wealth of the insider

at time t = T under Russo-Vallois theory is

E
(
S(RV )

T

)
= M

(
σ2

4
(
µ−ρ) eρT +

(
1+ σ2

4
(
µ−ρ))

eµT
)
,

for ODE (6.4) and SDE (6.8).

Proof. The Russo-Vallois integral preserves Itô calculus. Hence, using the classical stochastic

calculus, we have that the solution of SDE (6.8) is

(6.9) S1
t = M

(
1+ σB(T)−σ2T/2

2
(
µ−ρ)

T

)
exp

((
µ− σ2

2

)
t+σB(t)

)
.

Let us remind that the total wealth of the insider trader is

S(RV )
T = S0

t +S1
t ,

such that, for the expected wealth at time t = T, we have

E
(
S(RV )

T

)
= E(

S0
T
)+E(

S1
T
)

= E
(
M
σ2T/2−σB(T)

2
(
µ−ρ)

T

)
eρT

+E
(
M

(
1+ σB(T)−σ2T/2

2
(
µ−ρ)

T

)
exp

((
µ− σ2

2

)
T +σB(T)

))
= M

σ2T/2−σE (B(T))
2

(
µ−ρ)

T
eρT

+M
σ

2
(
µ−ρ)

T
E

(
B(T)exp

((
µ− σ2

2

)
T +σB(T)

))
+M

(
1− σ2

4
(
µ−ρ))

E

(
exp

((
µ− σ2

2

)
T +σB(T)

))
= M

σ2

4
(
µ−ρ) eρT +M

σ2

2
(
µ−ρ) eµT +M

(
1− σ2

4
(
µ−ρ))

eµT

= M
(

σ2

4
(
µ−ρ) eρT +

(
1+ σ2

4
(
µ−ρ))

eµT
)
,

where B(T)∼N (0,T).
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Corollary 6.3 (J. Bastons, C. Escudero, [4]). The expected value of the total wealth of the insider

at time t = T is strictly larger than that of the honest trader

E
(
S(RV )

T

)
> E

(
S(ITÔ)

T

)
.

Remark 6.6. The statement from Corollary 6.3 implies that the Russo-Vallois stochastic integra-

tion does take advantage of the anticipating condition. Hence, in the financial sense, we might

say that the Russo-Vallois integral works, at least for this version of insider trading.

In the next theorem, we show that the expected value of the wealth of the Ayed-Kuo insider is

always strictly smaller than that of the expected value of the wealth of the Russo-Vallois insider.

Theorem 6.4 (J. Bastons, C. Escudero, [4]). The respective solutions to the initial value problems

(6.10)

dS(AK)
t =µS(AK)

t dt+σS(AK)
t dB(t),

S(AK)
0 = C (B(T)) ,

and

(6.11)

d−S(RV )
t =µS(RV )

t dt+σS(RV )
t d−B(t),

S(RV )
0 = C (B(T)) ,

where C(·) denotes an arbitrary monotonically increasing function that is both non-constant and

continuous, satisfy

E
(
S(AK)

T

)
< E

(
S(RV )

T

)
.

Proof. The solutions of SDE (6.10) and SDE (6.11) can be computed by the calculus rules for the

Ayed-Kuo integral and the Russo-Vallois integral respectively. Hence, we get

S(AK)
t = C (B(T)−σt)exp

((
µ− σ2

2

)
t+σB(t)

)
,

and

S(RV )
t = C (B(T))exp

((
µ− σ2

2

)
t+σB(t)

)
.

By monotonicity, we have, for all t > 0

C (B(T)−σt)≤ C (B(T)) ,

with the inequality being strict for B(T) taking values in at least some interval of R. Hence, we

get

E
(
S(AK)

t

)
= 1p

2πT

∫ ∞

−∞
C (B(T)−σT)exp

((
µ− σ2

2

)
T +σB(T)

)
exp

(
−B(T)2

2T

)
dB(T)

< 1p
2πT

∫ ∞

−∞
C (B(T))exp

((
µ− σ2

2

)
T +σB(T)

)
exp

(
−B(T)2

2T

)
dB(T)

= E
(
S(RV )

t

)
.

83



CHAPTER 6. FINANCIAL MODELING

Corollary 6.4. According to the results from Corollary 6.2, Corollary 6.3 and Theorem 6.4, we

have

E
(
S(AK)

T

)
< E

(
S(ITÔ)

T

)
< E

(
S(RV )

T

)
.

Remark 6.7. Note that, we can conclude that the Ayed-Kuo integral underestimates the expected

wealth of the insider, while the Russo-Vallois has a more desirable behaviour in the financial

sense, at least for this simplified version of the insider trading problem.

6.3 Optimal Investment Strategy for Insider Trading

In this final section, we discuss about the investment strategies for the general version of the

insider trading problem. Indeed, the aim of any trader is to maximize the expected wealth at

maturity time t = T. As a result of the work done in this thesis, we are able to prove two theorems

that state which is the optimal investment strategy for the Ayed-Kuo and the Russo-Vallois

integration theories.

Remark 6.8. Note that, we consider a insider trader who knows at the initial time t = 0 the

value B(T). Hence, the value ST . In the financial sense, the optimal investment strategy is clear

for an anticipating initial condition f (B(T)). The insider trader should invest all the amount M

in the asset whose expected wealth is larger at maturity time t = T.

Let us consider the more general version of the insider trading problem, it means, without

making adjustments on the anticipating initial condition. Let us also recall that we assume to be

µ> ρ, because of the risk-return binomial. Hence, we have the following strategy for the bond

(6.12)

dS0
t = ρS0

t dt,

S0
0 = M (1− f (B(T))) ,

and, for the stock

(6.13)

dS1
t =µS1

t dt+σS1
t dB(t),

S1
0 = M ( f (B(T))) ,

where f is a function of B(T), such that f ∈ L∞(R) and 0≤ f ≤ 1.

In the next theorem, we prove that the investment strategy that maximizes the expected wealth

for the Ayed-Kuo integration is to invest all the amount M into the stock asset. Indeed, we have

the same strategy as in the Itô classical model without privileged information (see Corollary 6.1).

Theorem 6.5. Let f be a function of B(T) such that f ∈ C(R) and 0≤ f ≤ 1. The optimal investment

strategy for ODE (6.12) and SDE (6.13) under Ayed-Kuo integration is

f (B(T))= 1.

84



6.3. OPTIMAL INVESTMENT STRATEGY FOR INSIDER TRADING

Proof. The solutions of ODE (6.12) and SDE (6.13) can be computed by the calculus rules for the

Ayed-Kuo integral. Hence, we get

(6.14)

S0
t = M (1− f (B(T))) eρT ,

S1
t = M f (B(T)−σT)e(µ−σ2/2)T+σB(T).

The aim is to find the strategy f , such that E (Mt) is maximized. Indeed, we have

E (Mt)= E
(
S0

t
)+E(

S1
t
)

= M (1−E ( f (B(T)))) eρT +ME
(
f (B(T)−σT)eσB(T)

)
e(µ−σ2/2)T

= MeρT
(
1−

∫ ∞

−∞
1p

2πT
f (x)e−

x2
2T dx

)
+Me(µ−σ2/2)T

(∫ ∞

−∞
1p

2πT
f (x−σT)e−

x2
2T eσxdx

)
.

Let us consider the change of variable

y= x−σT,

and

M̄ ( f (x))= E (Mt)
M

.

Hence, we get

M̄ ( f (x))= eρT
(
1−

∫ ∞

−∞
1p

2πT
f (x)e−

x2
2T dx

)
+ e(µ−σ2/2)T

(∫ ∞

−∞
1p

2πT
f (x−σT)e−

x2
2T eσxdx

)
= eρT − eρT

∫ ∞

−∞
1p

2πT
f (x)e−

x2
2T dx+

∫ ∞

−∞
1p

2πT
f (y)e−

(y+σT)2

2T e(µ−σ2/2)T eσ(y+σT)d y

= eρT − eρT
∫ ∞

−∞
1p

2πT
f (x)e−

x2
2T dx+

∫ ∞

−∞
1p

2πT
f (y)e−

(y2+σ2T2+2yσT)
2T eµT−σ2/2T eσy+σ2T d y

= eρT − eρT
∫ ∞

−∞
1p

2πT
f (x)e−

x2
2T dx+ eµT

∫ ∞

−∞
1p

2πT
f (y)e−

y2

2T d y.

Note that, we have

E
(
M̄t

)= eρT − eρTE ( f (B(T)))+ eµTE ( f (B(T))) .

By assumption, f is a function of B(T) such that 0≤ f ≤ 1, and we have that µ> ρ. Hence, since

the exponential function is strictly monotone, we have that E (Mt) ∈
[
eρT , eµT]

and, in order to

maximize E (Mt), we get

E ( f (B(T)))= 1.

Then, we have
1p

2πT

∫ ∞

−∞
f (x)e−

x2
2T dx = 1,

such that, f (B(T))= 1.

Remark 6.9. Let us consider f such that f ∈ L∞(R) and 0≤ f ≤ 1. Let us also consider fn to be a

sequence of functions, such that fn ∈ C(R), n ∈N, and 0≤ fn ≤ 1. Then, we have∣∣E ( f (B(T)))−E ( fn(B(T)))
∣∣= ∣∣E ( f (B(T))− fn(B(T)))

∣∣
≤ E(∣∣ f (B(T))− fn(B(T))

∣∣)
= 1p

2πT

∫ ∞

−∞

∣∣ f (x)− fn(x)
∣∣e− x2

2T dx.
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By Lusin theorem, there exists a family of fn such that

1p
2πT

∫ ∞

−∞

∣∣ f (x)− fn(x)
∣∣e− x2

2T dx → 0,

as n →∞. Hence, we have

E ( fn(B(T)))→ E ( f (B(T))) ,

and if f is such that f ∈ L∞(R), instead of being f ∈ C(R), the solution does not get better.

Remark 6.10. The Theorem 6.5 reaffirms the argument that the Ayed-Kuo theory does not take

advantage of the anticipating condition, as its optimal investment strategy is the same as the Itô

one, which suggests to invest the whole amount M in the stock, such that

E (Mt)= eµT .

As we have discussed in Section 6.2, the behaviour of the Ayed-Kuo integral seems to be counter-

intuitive from the financial point of view.

In the next theorem, we prove that the optimal investment strategy for the Russo-Vallois

integration is to invest all the amount M in the asset whose expected wealth is larger at maturity

time t = T, as Remark 6.8 states.

Theorem 6.6. Let f be a function of B(T) such that f ∈ L∞(R) and 0 ≤ f ≤ 1. The optimal

investment strategy for ODE (6.12) and SDE (6.13) under Russo-Vallois integration is

f (B(T))= 1{
B(T)> T

σ (ρ−µ+ 1
2σ

2)
}.

Proof. The solutions of ODE (6.12) and SDE (6.13) can be computed by the calculus rules for the

Russo-Vallois integral. Hence, we getS0
t = M (1− f (B(T))) eρt,

S1
t = M f (B(T))e(µ−σ2/2)T+σB(T).

The aim is to find the strategy f , such that E (Mt) is maximized. Indeed, we have

E (Mt)= E
(
S0

t
)+E(

S1
t
)

= M (1−E ( f (B(T)))) eρT +ME
(
f (B(T))eσB(T)

)
e(µ−σ2/2)T

= MeρT
(
1−

∫ ∞

−∞
1p

2πT
f (x)e−

x2
2T dx

)
+Me(µ−σ2/2)T

(∫ ∞

−∞
1p

2πT
f (x)e−

x2
2T eσxdx

)
.

Let us consider

M̄ ( f (x))= E (Mt)
M

.
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Hence, we get

M̄ ( f (x))= eρT
(
1−

∫ ∞

−∞
1p

2πT
f (x)e−

x2
2T dx

)
+ e(µ−σ2/2)T

(∫ ∞

−∞
1p

2πT
f (x)e−

x2
2T eσxdx

)
= eρT +

∫ ∞

−∞
1p

2πT
f (x)e−

x2
2T

(
−eρT + e(µ−σ2/2)T eσx

)
dx.

By assumption, f is a function of B(T) such that 0≤ f ≤ 1, and we have that µ> ρ. Hence, the

sign of this integrand is determined by the value of x, such that the critical point xc is

xc = T
σ

(
ρ−µ+ σ2

2

)
.

Note that, if x > xc, it means

B(T)> T
σ

(
ρ−µ+ σ2

2

)
,

the integrand is positive and we should take f as large as possible in order to maximize E (Mt).

On the other hand, if x < xc the integrand is negative and we should take f as small as possible

for the same reason. Hence, the optimal investment strategy is

f (B(T))= 1{
B(T)> T

σ (ρ−µ+ 1
2σ

2)
}.

Remark 6.11. The function f from Theorem 6.6 implies that the trader should invest the whole

amount M in the bond or the stock according to the value of B(T), it means, in the asset whose

expected value is larger at maturity time t = T. Hence, this investment strategy maximizes the

expected value E(MT ), as it does take advantage of the anticipating condition. The Russo-Vallois

integral works as one expects from the financial point of view.
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CONCLUSIONS

This thesis gives a review of the main results of the classical stochastic integration theory.

We study some of the most remarkable notions and results of Brownian motion, the Itô

stochastic integration and the theory of stochastic differential equations.

Likewise, we study two extensions of the Itô classical stochastic integration theory, the Ayed-Kuo

and the Russo-Vallois stochastic integrals, which generalize the Itô one in the sense that they deal

with anticipating stochastic calculus, it means, with stochastic processes that are anticipating,

and consequently non-adapted. Among this dissertation, we discuss some of the most important

notions and results of both of them.

Finally, we introduce the insider trading problem, in which a trader is considered to have

privileged information about future prices of assets. This idea is clearly related to the anticipating

condition. Then, we study some of the most notorious and novel results about it. For this final

point, we propose two new theorems that we have proved in this thesis, which deal with the

optimal investment strategy for the insider trading problem under Ayed-Kuo and Russo-Vallois

theories.
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NORMAL RANDOM VARIABLES

In this appendix our aim is to give some elementary notions of the Normal random variables

or Gaussian processes, which are used among this dissertation. In the probability theory,

the normal distribution N (µ,σ) is a very usual continuous probability distribution.

Definition A.1 (Univariate Normal random variable). Let (Ω,F ,P) be a probability space. The

Normal random variable X :Ω→R, denoted by N (µ,σ), has a density function of the form

φµ,σ(x)= 1p
2πσ2

exp
(
− (x−µ)2

2σ2

)
,

where µ and σ are constants, the mean and the standard deviation respectively. Moreover, the

distribution is of the form

Φµ,σ(x)
1p

2πσ2

∫ x

−∞
exp

(
− (x−µ)2

2σ2

)
d y.

Remark A.1. Note that, by Definition A.1 we have

E(X )=
∫ ∞

−∞
xφµ,σ(x)dx =µ,

and

V (X )=
∫ ∞

−∞
x2φµ,σ(x)dx−µ2 =σ2,

such that, the parameter µ moves the center of the distribution and the parameter σ widens or

narrows it.

Definition A.2 (Multivariate Normal random variable). The multivariate Normal random

variable X = (X1, ...Xn), denoted by Np(µ,Σ), has a density function of the form

f (x)= 1
(2π)n/2 det(Σ)1/2 exp

(
−1

2
(x−µ)Σ−1(x−µ)T

)
,

where µ= (µ1, ...,µn) is the mean vector and Σ is a symmetric and positive definite matrix.
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APPENDIX A. NORMAL RANDOM VARIABLES

Remark A.2. Note that, by Definition A.1 we have

• The variables X i are Normal random variables;

• The mean vector µ, is such that E(X i)=µi for each i = 1, ...,n;

• The matrix Σ is the variance-covariance matrix of the X i variables.

Proposition A.1. Let X ∼N (µ,σ2). Then, the random variable X can be written as

X =µ+σY ,

where Y ∼N (0,1).

Proposition A.2. Let X ∼N (µ,σ2). Then, the four first moments of X are

(Mean) E(X )= E(µ+σY )=µ+σE(Y )=µ;

(Variance) E(X2)= E((µ+σY )2)=µ2 +σ2;

(Skewness) E(X3)= E((µ+σY )3)=µ3 +3µσ2;

(Kurtosis) E(X4)= E((µ+σY )4)=µ4 +6µ2σ2 +3σ4.
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B
CONDITIONAL EXPECTATION

The concept of conditional expectation plays a fundamental role in modern Probability and

the Theory of Stochastic Processes. In this appendix, our aim is to define this concept and

study some of its main properties, which are used among this dissertation.

Theorem B.1. Let us consider a sub-σ-algebra G ⊂F in the probability space (Ω,F ,P) and a

random variable Y , such that E(Y )<∞. Then, there exists a random variable X ∈ L1(Ω), such that

(i) X is measurable respect to G;

(ii) For all G ∈G, we have ∫
G

Y (ω)P(dω)=
∫

G
X (ω)P(dω).

Moreover, the random variable X is unique up to a set of probability zero.

Remark B.1. The Radon-Nikodym theorem guarantees the existence of the random variable X .

The Theorem B.1 lead us to the following definition for the conditional expectation, which is

well-defined and it is unique up to a set of probability zero.

Definition B.1 (Conditional expectation). Let Y ∈ L1 (Ω,F ,P) be a random variable and let G be

a sub-σ-algebra. We define the conditional expectation of Y given G, denoted by E (Y |G), to any

random variable X :Ω→R, measurable respect to G, satisfying∫
G

X (ω)P(dω)=
∫

G
Y (ω)P(dω),

for any G ∈G.

Remark B.2. Any P-equivalent random variable satisfying the previous conditions, is called a

version of E (Y |G).
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APPENDIX B. CONDITIONAL EXPECTATION

The next theorem provides some important properties of the conditional expectation, which

are used among this dissertation.

Theorem B.2. Let X and Y be two integrable random variables and let G be a sub-σ-algebra.

The following properties hold

(i) If Y is G-measurable, then E (Y |G)=Y .

(ii) E (E (Y |G))= E(Y ).

(iii) For any a, b ∈R, we have

E (aX +bY |G)= aE (X |G)+bE (Y |G) .

(iv) If E ⊂G are sub-σ-algebras of F , we get

E (E (Y |E) |G)= E (Y |G) and E (E (Y |G) |E)= E (Y |G) .

(v) If Y ≥ 0 almost surely. Then, E (Y |G)≥ 0 almost surely.

(vi) If the integrable random variable Z is G-measurable. Then, we have

E (Y Z|G)= ZE (Y |G) .

(vii) If the integrable random variable Y and the sub-σ-algebra G are independent. Then, we get

E (Y |G)= E (Y ) .

(viii) If the integrable random variable Z is G-measurable and h :R2 →R is measurable such that

E (h (Y , Z))<∞. Hence, with probability one, we have

E (h (Y , Z) |G) (ω)= E (h (Y , Z(ω)) |G) (ω).

In the following results, we provide the monotone convergence theorem and the dominated

convergence theorem.

Theorem B.3 (Monotone convergence theorem). Let Yn be a sequence of random variables, such

that Yn ≥ 0 and Yn ↑Y , where Y is an integrable random variable. Hence, we have

E (Yn|G) ↑ E (Y |G) .

According to property (v) of Theorem B.2, with probability one, E (Yn|G) is an increasing and

an upper bounded sequence of positive random variables by E (Y |G). Therefore, the sequence

convergences almost surely to a limit lower than E (Y |G).
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Theorem B.4 (Dominated convergence theorem). Let Yn be a sequence of random variables, such

that |Yn| < X for each n, where X is an integrable random variable and Yn → Y almost surely.

Hence, we have

E (Yn|G)→ E (Y |G) ,

almost surely.

Theorem B.5. Let Y be an integrable random variable and let G and E sub-σ-algebras of F . The

σ-algebra of F produce by G∪E is denoted by σ(G,E), and in the same form, σ(Y ,G) denotes the

σ-algebra produce by F (Y ) and G. Then, if σ(Y ,G) and E are independent, we have

E (Y |σ(D,E))= E (Y |D) ,

almost surely.

The Theorem B.5 establishes that, by conditioning on G any expression, the G-measurable

variables can be consider constants and can be replace by their value. In this sense, by con-

ditioning on the σ-algebra G, makes all G-measurable random variables become constants, it

means, it supposes having the information of the value of any G-measurable random variable.

This interpretation of the σ-algebras as an expression of the available information seems useful

in many circumstances.

In the following theorem, we give the Jensen inequality for conditional expectations.

Theorem B.6 (Jensen inequality). Let f :R→R be a convex function and Y an integrable random

variable. If E| f (Y )| <∞. Then, we have

f (E (Y |G))≤ E ( f (Y )|G) ,

with probability one.
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BOREL-CANTELLI LEMMA AND CHEBYSHEV INEQUALITY

In this appendix, we study the Borel-Cantelli lemma and the Chebysev inequality. These

two are seemingly disparate results from probability theory. However, they combine well

in order to demonstrate some of the statements proposed among this dissertation.

Let {An}∞n=1 be a sequence of events in some probability space. Consider the event A given by

A=
∞⋂

n=1

∞⋃
k=n

Ak.

It is easy to see that ω ∈A if and only if ω ∈An for infinitely many n’s. Thus, we can think of the

event A as the event that An’s occur infinitely often. Let us use the following notation

{An, infinitely often}=
∞⋂

n=1

∞⋃
k=n

Ak.

Theorem C.1 (Borel-Cantelli lemma). Let {An}∞n=1 be a sequence of events, such that

∞∑
n=1

P (An)<∞.

Then, we have

P (An, infinitely often)= 0.

Remark C.1. The Theorem C.1 is often called the first part of the Borel-Cantelli lemma. The

second part of it states that if
∑∞

n=1P (An) <∞ and the events An are independent. Then, we

have

P (An, infinitely often)= 1.

However, for our purposes we only use the first part of the lemma.
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APPENDIX C. BOREL-CANTELLI LEMMA AND CHEBYSHEV INEQUALITY

Theorem C.2 (Chebyshev inequality). Let X be a random variable, such that E|X | <∞. Then,

for any a > 0, we have

P (|X | ≥ a)≤ 1
a
E|X |, ∀a > 0.
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