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ABSTRACT 

 

 
 

Abstract en español: 

El propósito de este trabajo es estudiar la validez de los métodos de simulación Monte Carlo 

para la valoración de estrategias de rebalanceo de carteras de inversión. Los resultados 

demuestran la validez del enfoque, que se muestra consistente a lo largo de los distintos 

experimentos llevados a cabo con carteras de diferentes tamaños, suministrando evidencias de 

conocidos efectos como la diversificación o el salto de volatilidad. 

 

 

 

 
 

Abstract in English: 

The aim of this research is to address the suitability of the Monte Carlo methods for the 

valuation of investment portfolio rebalancing strategies. The results confirm the accuracy of this 

approach, which turns to be consistent throughout the different simulation experiments carried 

out with various sizes of portfolios, showing evidences of the existence of well-known effects, like 

the diversification phenomenon or the volatility pumping effect.  
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1 
INTRODUCTION 

 

 
 

inancial theory is one of the fields where stochastic calculus offers more remarkable 

applications. Thus, modelling the price of financial assets using stochastic differential 

equations is a common practice, supplying a suitable framework in order to analyze a big 

number of financial problems and accomplish diverse financial decisions.  

 

It is worthwhile mentioning the widely extended use of stochastic calculus in order to 

valuate financial derivatives in general and financial options in particular [1]. A financial option 

is a contract where the holder pays an initial premium in order to get the right, but not the 

obligation, to buy (if it is a call option) or sell (if it is a put option) a certain asset (the underlying 

asset), in a certain date (the expiration date), and for a given price (the exercise price). If this 

right can only be exercised in the expiration date, it is called a European option; if the right can 

be exercised in any moment until that expiration date, it is called an American option. One of 

the most famous results in this field is the Black-Scholes formula used to valuate European 

options [2]. 

 

This methodology has also been successfully applied to evaluate investment decisions, 

taking into account the uncertainty characterizing the financial environment [3]. In addition, 

investors tend to distribute their investment budget among various assets building an 

investment portfolio. If the investor chooses carefully those assets so that they hold different 

characteristics, the investor can reduce the aggregated risk in a process called diversification 

[4].  

 

Consequently, optimal portfolio selection becomes a central key of concern for professional 

investors, who need to constantly readjust or rebalance their portfolio as a response to the 
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variations in market prices, in order to preserve the consonance between the portfolio structure 

and the preferences of the investor regarding risk and expected return [5].  So, this methodology 

results particularly useful for managing investment funds, which have become a very popular 

investment vehicle in recent times. Although there is a large variety of investment funds, 

exchange traded funds are a particularly famous subset of these products, since they are 

transacted in exchange markets, as happens with stocks, and they usually path a stock index 

[6]. 

 

Monte Carlo methods are widely used for several financial purposes, including the 

valuation of an investment project or a financial instrument. Thus, they are useful when valuing 

a financial option, because they allow simulating a number of paths for the price of the 

underlying asset. Also, regarding portfolio valuation, these methods can simulate the behavior 

of the uncertainty factors and, as a consequence, the investor can achieve a statistical 

description of the portfolio. 

 

This research is organized as follows. In chapter 2, a description of several strategies for 

portfolio rebalancing is provided, and these strategies are also mathematically characterized. In 

chapter 3, the basics of the Monte Carlo methods for financial purposes are discussed and 

presented. In chapter 4, a description of the data used for this research is provided, together 

with some basic summary statistics. In chapter 5, the code of the program written in order to 

carry out the simulations is exposed. In chapter 6, the numerical results of the accomplished 

simulations are reported and explained. Finally, a set of conclusions driven out from the present 

research and some tips for further investigation are disclosed. 
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2 
INVESTMENT PORTFOLIO REBALANCING 

 

 
Portfolio rebalancing describes any strategy carried out by investors and portfolio 

managers consisting in readjusting the portfolio composition by selling units of certain assets in 

order to buy units of other ones. This results in a transfer of funds among assets inside the 

portfolio, modifying their particular weights with the purpose of realigning the portfolio with the 

desired asset allocation. When practiced successfully, portfolio rebalancing can lead to a 

superior aggregated return [7]. In order to conquer this objective, portfolio rebalancing can be 

accomplished periodically or occasionally, and it is always justified when its benefits are higher 

than the costs [8]. 

 

Academics and practitioners have proposed several rebalancing strategies, and there is 

some investigation comparing their performance [9]. In this research, we focus on five different 

scenarios connected with portfolio rebalancing: constant proportions portfolio, constant 

proportion portfolio insurance, leveraged exchange traded funds, covered call writing and stop-

loss. 

 

2.1. Constant proportions portfolio 
 

Considering a portfolio formed by several different investment assets, a constant 

proportions strategy implies that the proportion of the investment compromised in each asset 

remains constant through time. This strategy requires an initial investment and from that 

moment on it is self-financing. At each moment of time, the investor can sell some units of 

certain assets in order to free sufficient resources to acquire additional units of some other 

assets. Acting that way, the investor rebalances the portfolio in order to preserve the constant 

proportion imperative. 
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The basis of the constant proportions strategy is the Kelly rule [10]. This well-known 

criterion has been reported to be useful for portfolio optimization [11,12]. Following Forsyth 

[13], we begin by considering an investor who builds a diversified portfolio with a set of n 

different investment assets. Representing each one of those assets by 𝑆𝑖; 𝑖 = 1, … , 𝑛, we suppose 

that their behavior can be modeled as a Geometric Brownian Motion:  

 

 𝑑𝑆𝑖 = 𝜇𝑆𝑖𝑑𝑡 + 𝜎𝑆𝑖𝑑𝑍𝑖 (1) 

 

In this expression, 𝜇 is a constant representing the drift term, 𝜎 is a constant representing 

the volatility, and 𝑑𝑍𝑖 is a Wiener process. 

 

At time t, the investor establishes the investing strategy by deciding the number of units of 

each asset taking part in the portfolio: 𝑛𝑖(𝑡). Considering that this quantity is a function of time, 

the investor has the ability to rebalance the portfolio in each period. 

 

The market value of the portfolio in a certain period of time can be calculated as follows: 

 
𝑃(𝑡) = ∑ 𝑛𝑖(𝑡)𝑆𝑖(𝑡)

𝑛

𝑖=1

 (2) 

 

We define the natural log of the value of the portfolio: 𝐺 = 𝑙𝑛 𝑃(𝑡). Using the 

multidimensional version of Ito’s Lemma: 

 

𝑑𝐺 = (
𝜕𝐺

𝜕𝑡
+ ∑

𝜕𝐺

𝜕𝑆𝑖

𝜇𝑖𝑆𝑖

𝑛

𝑖=1

+
1

2
∑

𝜕2𝐺

𝜕𝑆𝑖𝑆𝑗

𝜎𝑖𝑆𝑖𝜎𝑗𝑆𝑗𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

) 𝑑𝑡 + ∑
𝜕𝐺

𝜕𝑆𝑖

𝜎𝑖𝑆𝑖𝑑𝑍𝑖

𝑛

𝑖=1

 (3) 

 

In this expression, 𝜌𝑖𝑗 is the correlation coefficient between 𝑑𝑍𝑖 and 𝑑𝑍𝑗. Given that 

𝐺 = 𝑙𝑛 𝑃(𝑡), it follows: 

 

 𝜕𝐺

𝜕𝑡
= 0; 

𝜕𝐺

𝜕𝑆𝑖

=
𝑛𝑖

𝑃
; 

𝜕2𝐺

𝜕𝑆𝑖𝑆𝑗

= −
𝑛𝑖𝑛𝑗

𝑃2
 (4) 

 

Using (4) in (3): 

 

 

𝑑𝐺 = (∑
𝑛𝑖

𝑃
𝜇𝑖𝑆𝑖

𝑛

𝑖=1

−
1

2
∑

𝑛𝑖𝑛𝑗

𝑃2
𝜎𝑖𝑆𝑖𝜎𝑗𝑆𝑗𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

) 𝑑𝑡 + ∑
𝑛𝑘

𝑃
𝜎𝑖𝑆𝑖𝑑𝑍𝑖

𝑛

𝑖=1

 (5) 

 

If the investor rebalances the portfolio every time in order to apply a constant proportions 

strategy, the weight of each of the assets is calculated as the proportion that the value invested 

in the asset represents into the whole value of the portfolio: 
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𝜔𝑖 =

𝑛𝑖𝑆𝑖

𝑃(𝑡)
; ∑ 𝜔𝑖 = 1

𝑛

𝑖=1

 (6) 

 

It can be noted that 𝜔𝑖 does not depend on t, since we assume that the investor can 

rebalance the portfolio continuously. Using (6) in (5): 

 

 

𝑑𝐺 = (∑ 𝜔𝑖𝜇𝑖

𝑛

𝑖=1

−
1

2
∑ 𝜔𝑖𝜔𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

) 𝑑𝑡 + ∑ 𝜔𝑖𝜎𝑖𝑑𝑍𝑖

𝑛

𝑖=1

 (7) 

 

The solution to this equation is: 

 

 

𝐺(𝑡) = 𝐺(0) + (∑ 𝜔𝑖𝜇𝑖

𝑛

𝑖=1

−
1

2
∑ 𝜔𝑖𝜔𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

) 𝑡 + ∑ 𝜔𝑖𝜎𝑖(𝑍𝑖(𝑡) − 𝑍𝑖(0))

𝑛

𝑖=1

 (8) 

   

Considering that 𝐺 = 𝑙𝑛 𝑃(𝑡), it follows: 

 

 

𝑙𝑛 (
𝑃(𝑡)

𝑃(0)
) = (∑ 𝜔𝑖𝜇𝑖

𝑛

𝑖=1

−
1

2
∑ 𝜔𝑖𝜔𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

) 𝑡 + ∑ 𝜔𝑖𝜎𝑖(𝑍𝑖(𝑡) − 𝑍𝑖(0))

𝑛

𝑖=1

 (9) 

 

Thus, the mean is: 

 

 

𝐸 (𝑙𝑛 (
𝑃(𝑡)

𝑃(0)
)) = (∑ 𝜔𝑖𝜇𝑖

𝑛

𝑖=1

−
1

2
∑ 𝜔𝑖𝜔𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

) 𝑡 (10) 

 

And the variance is: 

 

 

𝑉𝑎𝑟 (𝑙𝑛 (
𝑃(𝑡)

𝑃(0)
)) = ( ∑ 𝜔𝑖𝜔𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

) 𝑡 (11) 

 

If we consider the particular case when all the assets of the portfolio have the same drift 

and the same volatility: 

 

 
𝜇𝑖 = 𝜇; 𝜎𝑖 = 𝜎; 𝜔𝑖 =

1

𝑛
; ∀ 𝑖 = 1, … , 𝑛 (12) 
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Using (12) in (8): 

 

 

𝐺(𝑡) = 𝐺(0) + (𝜇 −
𝜎2

2𝑛2
∑ 𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

) 𝑡 +
𝜎

𝑛
∑(𝑍𝑖(𝑡) − 𝑍𝑖(0))

𝑛

𝑖=1

 (13) 

 

Given that 𝐺 = 𝑙𝑛 𝑃(𝑡), it follows: 

 

 

𝑙𝑛 (
𝑃(𝑡)

𝑃(0)
) = (𝜇 −

𝜎2

2𝑛2
∑ 𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

) 𝑡 +
𝜎

𝑛
∑(𝑍𝑖(𝑡) − 𝑍𝑖(0))

𝑛

𝑖=1

 (14) 

 

Therefore, the mean is: 

 

 

𝐸 (𝑙𝑛 (
𝑃(𝑡)

𝑃(0)
)) = (𝜇 −

𝜎2

2𝑛2
∑ 𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

) 𝑡 = (𝜇 −
𝜎2

2
(

1

𝑛2
∑ 𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

)) 𝑡 (15) 

 

And the variance is: 

 

 

𝑉𝑎𝑟 (𝑙𝑛 (
𝑃(𝑡)

𝑃(0)
)) = (𝜎2 (

1

𝑛2
∑ 𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

)) 𝑡 (16) 

 

Note that in (15) and (16): 

 

 1

𝑛2
∑ 𝜌𝑖𝑗

𝑛

𝑖,𝑗=1

 ≤ 1 (17) 

 

Now, we compare the variance of the portfolio with the variance of a single asset following a 

Geometric Brownian Motion: 

 

 
𝑉𝑎𝑟 (𝑙𝑛 (

𝑃(𝑡)

𝑃(0)
)) ≤ 𝑉𝑎𝑟 (𝑙𝑛 (

𝑆(𝑡)

𝑆(0)
)) = 𝜎2𝑡 (18) 

 

Consequently, the variance of the portfolio is lower than the one observed in the single 

asset. This result is a consequence of the diversification effect inherent to the portfolio building 

process. 

 

Also, we compare the mean of this portfolio with the mean of a single asset following a 

Geometric Brownian Motion: 
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𝐸 (𝑙𝑛 (

𝑃(𝑡)

𝑃(0)
)) ≥  𝐸 (𝑙𝑛 (

𝑆(𝑡)

𝑆(0)
)) = (𝜇 −

𝜎2

2
) 𝑡 (19) 

 

So, the drift of this portfolio is higher than the drift of the single asset, even in the case 

when all the assets included in the portfolio have the same drift. This greater drift observed in 

the portfolio is usually referred as volatility pumping, because the value directly depends on the 

volatility. The result is a consequence of the rebalancing strategy, allowing the investor to apply 

the basic principle of “buy low and sell high” every time that the portfolio is rebalanced, in order 

to preserve the constant proportions rule. So, this effect appears in every constant proportions 

strategy, given that the investor incorporates a minimum of two assets in the portfolio, and the 

fluctuations of prices over time are not identical from one asset to another [14]. 

 

2.2. Constant proportion portfolio insurance 
 

The constant proportion portfolio insurance is a strategy consisting on preserving the risk 

exposure of the portfolio on a certain value established as a multiple of the excess of the return 

over a minimum return level [15]. 

 

Suppose an investor that distributes the investment budget between a risky asset and a 

risk-free asset (a government bond, for example). This means that the investor is building a 

portfolio with only two assets. Consider that the drift of the risky asset is 𝜇 and its volatility is 

𝜎. Also, the drift of the risk-free asset is the risk-free rate r, and it has no volatility. Finally, the 

correlation coefficient between the two assets is null, since the risk-free asset is always 

uncorrelated with any risky asset.  

 

If we establish that 𝜔1 is the weight of the risky asset in the portfolio, and 𝜔2 is the weight 

of the risk-free asset, it follows that: 

 

 𝜔1 + 𝜔2 = 1 ⇒ 𝜔2 = 1 − 𝜔1 (20) 

 

According to (8), the mean of this portfolio is: 

 

 
𝐸 (𝑙𝑛 (

𝑃(𝑡)

𝑃(0)
)) = (𝑟 + 𝜔1(𝜇 − 𝑟) −

𝜔1
2𝜎2

2
) 𝑡 (21) 

 

In addition, the variance of this portfolio depends only on the risky asset: 
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𝑉𝑎𝑟 (𝑙𝑛 (

𝑃(𝑡)

𝑃(0)
)) = (𝜔1

2𝜎2)𝑡 (22) 

 

We use 𝑆 to represent the price of the risky asset, and 𝐵 to represent the price of the risk-

free asset. If we consider that 𝑛𝑆 is the number of units of the risky asset taking part in the 

portfolio, and 𝑛𝐵 is the number of units of the risk-free asset, the value of the portfolio at any 

time 𝑡𝑖 is: 

 

 𝑃(𝑡𝑖) = 𝑛𝑠(𝑡𝑖−1) · 𝑆(𝑡𝑖) + 𝑛𝐵(𝑡𝑖−1) · 𝐵(𝑡𝑡−1) · 𝑒𝑟(𝑡𝑖−𝑡𝑖−1) (23) 

 

In this type of portfolio, the investor needs to establish two additional parameters. First, 

the investor establishes a floor, that is, the minimum guaranteed return the investor wishes to 

get from the portfolio. Second, the investor establishes a multiplier, that is, a coefficient that 

collects the investor’s risk profile, presenting higher values for more aggressive investors. 

 

If we use 𝐹 to represent the floor, and 𝑀 to represent the multiplier, when the investor is 

rebalancing the portfolio at a certain time 𝑡𝑖, the units invested in the risky asset are: 

 

𝑛𝑆(𝑡𝑖) = 𝑀(𝑡𝑖) (max (
𝑃(𝑡𝑖)

𝑆(𝑡𝑖)
− 𝐹(𝑡𝑖), 0)) (24) 

 

And the units invested in the risk-free asset are: 

 

 
𝑛𝐵(𝑡𝑖) =

𝑛𝐵(𝑡𝑖−1) · 𝐵(𝑡𝑡−1) · 𝑒𝑟(𝑡𝑖−𝑡𝑖−1) − (𝑛𝑆(𝑡𝑖) − 𝑛𝑆(𝑡𝑖−1))𝑆(𝑡𝑖)

𝐵(𝑡𝑖)
 (25) 

 

As a result, each time the portfolio is rebalanced, the investor assures that the risk 

exposure remains at the level determined by the multiplier, investing more in the risky asset as 

the value of the portfolio rises above the floor, and investing more in the risk-free asset when 

the value of the portfolio decreases. 

 

2.3. Leveraged exchange traded funds 
 

Leveraged exchange traded funds are fresh, popular and novel investment instruments that 

allow an investor to obtain a certain multiple of the daily return of the reference index [16]. The 

most common multiples are 2x, 3x and 5x, representing the double, triple and quintuple of the 

daily return. In these funds, once the investor has placed the investment compromise, the fund 

manager borrows the complementary amount required to obtain the offered return. Thus, for 

each monetary unit compromised by the investor, the fund manager borrows one additional 

monetary unit in a 2x fund, two additional monetary units in a 3x fund, and 4 additional 
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monetary units in a 5x fund. Consequently, these products can be considered a special case of a 

constant proportion portfolio insurance product with the following particularities: 

- 𝐹(𝑡𝑖) = 𝐹 = 0, that is, the minimum guaranteed return is null and remains constant 

from one period to another. 

- 𝑀(𝑡𝑖) = 𝑀 > 1, that is, the multiplier allows the investor to get a multiple of the daily 

return, and remains constant from one period to another. 

- 𝑛𝐵(𝑡𝑖) < 0, that is, the number of units of the risk-free asset is negative, which 

represents borrowing or negative investing. 

 

As a result, using expression (24), now the number of units invested in the risky asset can 

be calculated as follows: 

 

 
𝑛𝑆(𝑡𝑖) = 𝑀 (max (

𝑃(𝑡𝑖)

𝑆(𝑡𝑖)
, 0)) (26) 

 

There are two versions of these leveraged exchange traded funds. On one hand, we have the 

bull version, which allows the investor to get a multiple of the positive daily return of the 

reference index, that is, in expressions (21) and (22), 𝜔1 has a positive value. And, on the other 

hand, there is the bear version, which allows the investor to obtain a multiple of the negative 

daily return of the reference index, that is, in expressions (21) and (22), 𝜔1 has a negative value. 

 

2.4. Covered call writing 
 

The covered call writing strategy consists on selling call options on owned assets, with a 

strike price just above its current market value, and given that the number of calls is not higher 

than the number of assets owned. This is a usual rebalancing strategy carried out by fund 

managers, since it allows getting a superior return due to the call premium when the prospects 

anticipate a stagnation or decrease of the underlying asset price in the short term [17]. 

 

Following Forsyth [13], we begin by considering the well-known put-call parity driven out 

from the Black-Scholes formula to value a European option [2]: 

 

 𝐶(𝑡) − 𝑃(𝑡) = 𝑆 − 𝐾𝑒−𝑟(𝑇−𝑡) (27) 

 

In this expression, 𝐶(𝑡) represents the price of the call option, and 𝑃(𝑡) stands for the price 

of the put option, both on the same underlying asset, with the same strike price, and the same 

expiration date. 

 

Rearranging in (27), we get: 



CHAPTER 2.   INVESTMENT PORTFOLIO REBALANCING 
 

 

 

10  

 

 𝑆 − 𝐶(𝑡) = 𝐾𝑒−𝑟(𝑇−𝑡) − 𝑃(𝑡)  (28) 

 

Note that 𝑆 − 𝐶(𝑡) represents the covered call writing strategy: owning a stock whose 

market value is 𝑆 and selling a call option. According to (28), this is equivalent to sell a put and 

invest the amount 𝐾𝑒−𝑟(𝑇−𝑡) in a risk-free asset, which allows the investor to obtain the quantity 

𝐾 at the expiry date with no risk exposure. So, under these circumstances, the put option will 

never be exercised and, as a consequence, the investor obtains an extra profit derived from the 

option premium. 

 

2.5. Stop-loss 
 

The stop-loss strategy consists on establishing a floor price for the value of an owned asset, 

so that, if the market value of the asset falls below the floor, a sell order is submitted to the 

market. Then, the investor takes the amount resulting from the sale and puts it into a risk-free 

asset during the remaining investment period. This is referred as the pure stop-loss strategy, 

and it is another common rebalancing strategy used in order to provide some sort of insurance 

by establishing a limit for losses and, as a result, limiting the risk of a downturn in the portfolio 

value. There is another version of this strategy called stop-loss start-gain. In this variation, the 

sell order is combined with a buy order, so that once the asset has been sold under the same 

circumstances described for the pure stop-loss strategy, a new buy order is placed and it will be 

executed if the market value of the asset rises over the floor price. Acting this way, the portfolio 

can still benefit from the rise potential [18]. 

 

The hedging result of this strategy is quite similar to the one obtained when operating with 

options, using the floor as the strike price. Thus, the stop-loss order can be assimilated with a 

long position in a put contract, and the start-gain order can be assimilated to a long position in a 

call contract. The main difference between these comparable strategies relates to their 

respective costs. Thus, the options strategy has a superior initial cost derived from the premium. 

However, in the stop-loss strategy there is also a hidden cost, since once the order is submitted 

to the market, it is executed at the price showing in the order book, which will not match exactly 

the floor, so that difference constitutes the cost of the operation. 

 
  



 

11  

 

 

 

 

 

 

 

3 
MONTE CARLO METHODS AND FINANCIAL APPLICATIONS 

 

 
The Monte Carlo methods constitute a wide set of algorithms extensively used for 

optimization and numerical integration, based on repetitive random sampling in order to 

conquer numerical outcomes. Therefore, they are close to one of the most famous results of 

probability theory, the law of large numbers, which is a theorem stating that once a certain 

experiment is repeated a large number of times, the average of the results gets close to the 

expected value, and the approximation turns to be better as the number of repetitions increases 

[19]. Given a certain random variable (𝑋), assuming that a sequence of independent events 

following its distribution can be generated (𝑋1, 𝑋2, … , 𝑋𝑛), and supposing that 𝑓 satisfies 

𝐸(|𝑓(𝑋)|) < ∞, the following holds: 

 

 
lim

𝑛→∞
(|

1

𝑛
∑ 𝑓(𝑋𝑖)

𝑛

𝑖=0

− 𝐸(𝑓(𝑋))|) = 1 ⇒  
1

𝑛
∑ 𝑓(𝑋𝑖)

𝑛

𝑖=0

⟶ 𝐸(𝑓(𝑋))  (29) 

 

As a consequence, the error can be computed as follows [20]: 

 

 
𝜖𝑛 =

1

𝑛
∑ 𝑓(𝑋𝑖)

𝑛

𝑖=0

− 𝐸(𝑓(𝑋)) (30) 

 

Monte Carlo methods are extensively used in finance to simulate the different paths that a 

certain financial magnitude can follow according to different uncertainty sources framed into a 

stochastic model. This approach results helpful in analyzing different financial problems 

regarding financial derivatives valuation, investment decisions and portfolio management 

[21,22]. 
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4 
DATA AND SUMMARY STATISTICS 

 

 
The stock data used in this research come from the official source INFOBOLSA, a company 

owned by Bolsas y Mercados Españoles (BME) and Deutsche Börse. The sample contains data 

from seven companies from different industries taking part in the IBEX-35 stock index. The 

selected companies are: 

 

- TELEFÓNICA (TEL), from the telecommunications industry. 

- BBVA (BBV), from the banking industry. 

- IBERDROLA (IBE), from the electrical industry. 

- ACS (ACS), from the construction industry. 

- INDITEX (IND), from the textile industry. 

- REPSOL (REP), from the petroleum industry. 

- MAPFRE (MAP), from the insurance industry. 

 

For each one of these companies, the daily close price during a 3-year period is collected, 

resulting in 765 observations for each company, that is, 255 observations per year. 

 

Total observations 765 

Time in years 3 

Number of steps (total observations per year)  255 

Time step between observations in years (n) 0.00392157 

 

TABLE 4.1. Summary of parameters for the collected data 

 

The last close price of the series is selected as the spot price to be used as the starting point 

for the simulation (𝑆0): 
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Company Spot 

TEL 13.750 

BBV 9.372 

IBE 6.013 

ACS 31.400 

IND 29.075 

REP 18.215 

MAP 3.391 

 

TABLE 4.2. Spot price for the selected companies 

 

Representing by 𝑆𝑡 the close price at a certain time 𝑡, the natural log of the stock return at 

that moment is computed as follows: 

 

 
𝑅𝑖𝑡 = ln (

𝑆𝑡

𝑆𝑡−1

) ;  𝑖 = 1, … ,7; 𝑡 = 2, … ,765 (31) 

 

The average (𝜇𝑖) and standard deviation (𝜎𝑖) of the return for each company is calculated. 

In order to accomplish the calibration of the stochastic model for each one of the companies, the 

volatility is computed as follows: 

 𝜎𝑖

√𝑛
;  𝑖 = 1, … ,7 (32) 

 

In addition, the drift is estimated as follows: 

 

 𝜇𝑖

𝑛
+

𝜎𝑖
2

2𝑛
;  𝑖 = 1, … ,7 (33) 

 

The results of the drift and volatility calibration are shown in Table 4.3: 

 

Company Volatility Drift 

TEL 0.23460293 0.16022780 

BBV 0.30028668 0.30188555 

IBE 0.24763297 0.26631424 

ACS 0.31587918 0.38850286 

IND 0.24543137 0.30221156 

REP 0.28789559 0.20376467 

MAP 0.32839495 0.26143924 

 

TABLE 4.3. Drift and volatility for the selected companies 
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In addition, the covariance is also estimated: 

 

 𝜎𝑖𝑗

𝑛
;  𝑖, 𝑗 = 1, … ,7 (34) 

  

The results are shown in Table 4.4: 

 

 

TEL BBV IBE ACS IND REP MAP 

TEL 0.055039 0.056962 0.049004 0.044640 0.028665 0.052636 0.049624 

BBV 0.056962 0.090172 0.057424 0.059614 0.037961 0.066662 0.067700 

IBE 0.049004 0.057424 0.061322 0.049279 0.028233 0.055223 0.053590 

ACS 0.044640 0.059614 0.049279 0.099780 0.030779 0.052906 0.062150 

IND 0.028665 0.037961 0.028233 0.030779 0.060237 0.035908 0.033889 

REP 0.052636 0.066662 0.055223 0.052906 0.035908 0.082884 0.062095 

MAP 0.049624 0.067700 0.053590 0.062150 0.033889 0.062095 0.107843 

 

TABLE 4.4. Covariance data for the selected companies 

  

The correlation coefficient is also computed, and the results are provided in Table 4.5: 

 

Correl TEL BBV IBE ACS IND REP MAP 

TEL 1.000000 0.808560 0.843506 0.602378 0.497839 0.779315 0.644113 

BBV 0.808560 1.000000 0.772234 0.628476 0.515075 0.771090 0.686526 

IBE 0.843506 0.772234 1.000000 0.629988 0.464540 0.774595 0.658986 

ACS 0.602378 0.628476 0.629988 1.000000 0.397007 0.581764 0.599137 

IND 0.497839 0.515075 0.464540 0.397007 1.000000 0.508189 0.420465 

REP 0.779315 0.771090 0.774595 0.581764 0.508189 1.000000 0.656786 

MAP 0.644113 0.686526 0.658986 0.599137 0.420465 0.656786 1.000000 

 

TABLE 4.5. Correlation data for the selected companies 

 

Finally, data from the whole IBEX-35 stock index are also collected computing its 

logarithmic return using expression (31), and the estimation of its drift and its volatility is also 

carried out using expressions (32) and (33) respectively: 
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Drift 0.21740117 

Volatility 0.18717144 

 

TABLE 4.6. Drift and volatility for the stock index 
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5 
  VISUAL BASIC CODE FOR MONTE CARLO SIMULATION 

 

 
For the purpose of this research, a specific program using Visual Basic is deployed. Visual 

Basic is an event driven programming language developed by Microsoft®, which in combination 

with the spreadsheet application Excel® has been reported to be a useful tool for financial 

applications [23]. 

 

Focusing on the constant proportions strategy, two different scenarios will be considered: 

first, the heterogeneous profile scenario, where each one of the stocks involved in the portfolio 

presents different drift and volatility; and second, the homogeneous profile scenario, where all 

the stocks taking part in the portfolio have the same drift and volatility. 

 

In this experiment, the spreadsheet is used to store the initial values needed for the 

simulation. These initial values are: 

 

- Number of steps and time step shown in Table 4.1 

- Spot price of the stocks shown in Table 4.2 

- Drift and volatility of the stocks shown in Table 4.3 

- The number of assets to include in the portfolio and the number of simulations to 

accomplish, stablished manually as shown in Figure 5.1: 

 

 

 

FIGURE 5.1. Basic data for simulation 

 

- The initial weigh of each asset in the portfolio, as shown in Figure 5.2. This is 

computed by making the calculation expressed in (6), once the initial number of units 

of each asset to include in the portfolio have been manually introduced: 
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FIGURE 5.2. Initial weights in the portfolio 

 

The spreadsheet is also the destination of the program outcome, consisting on the average 

and standard deviation of the simulation results, as shown in Figure 5.3: 

 

 

 

FIGURE 5.3. Preview of simulation results 

 

As a previous step for the simulation, a program for accomplishing the Cholesky 

decomposition is built, since it is later used in order to generate correlated random variables 

from the correlation matrix showed in Table 4.5. The code of this program is the following: 

 

 

 

FIGURE 5.4. Dimensioning variables for Cholesky decomposition 

 

The program begins by dimensioning the required variables for the data and results of the 

Cholesky decomposition. 

 

 

 

FIGURE 5.5. Resizing variables for Cholesky decomposition 

 

Next, the multidimensional variables used to store matrix data are resized. 
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FIGURE 5.6. Feeding variables for Cholesky decomposition 

 

The program gets basic data referred to the spreadsheet, and it also cleans up the space 

where the result is going to be located. 

 

 

 

FIGURE 5.7. Feeding matrix for Cholesky decomposition 

 

This loop gets the correlation matrix data from the spreadsheet and it initially assigns null 

value to all the elements of the resulting matrix. 

 

 

 

FIGURE 5.8. Calculus for Cholesky decomposition 

 

This peace of code shows some nested loops that make the necessary calculations in order to 

get the Cholesky decomposition result. 

 

 

 

FIGURE 5.9. Transferring results of Cholesky decomposition 

 

Finally, the results of the Cholesky decomposition are transferred to the spreadsheet, as 

shown in Figure 5.10: 
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FIGURE 5.10. Results of the Cholesky decomposition 

 

 

5.1. Heterogeneous profile scenario 
 

In this section, the program used to simulate the constant proportions strategy under the 

heterogeneous profile scenario is reported. 

 

 

 

FIGURE 5.11. Multidimensional variables in the heterogeneous scenario 

 

The code begins defining the multidimensional variables needed for the latter simulation. 

 

 

 

FIGURE 5.12. Positional variables in the heterogeneous scenario 

 

Next, the positional variables are defined, used to signal some key positions in the 

spreadsheet, and they are also fed with their initial values. 
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FIGURE 5.13. Unidimensional variables in the heterogeneous scenario 

 

Some unidimensional variables are also defined and their initial values are immediately 

assigned. 

 

 

 

FIGURE 5.14. Resizing multidimensional variables in the heterogeneous scenario 

 

The multidimensional variables previously defined are now resized according to their 

respective requirements. 

 

 

 

FIGURE 5.15. Collecting stock parameters in the heterogeneous scenario 

 

This loop collects the drift, volatility and weight of each asset taking part in the portfolio 

from the spreadsheet. 

 

 

 

FIGURE 5.16. Iterations-loop in the heterogeneous scenario 

 

The main loop of the code, which will make one execution by iteration, is defined and it 

starts by collecting the initial value of the portfolio. 

 

 

 

FIGURE 5.17. Collecting stock values in the heterogeneous scenario 

 

This next loop collects the initial spot price and number of units for each asset included in 
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the portfolio. 

 

 

FIGURE 5.18. Steps-loop in the heterogeneous scenario 

 

A secondary loop is initialized in order to be executed for each time step. 

 

 

 

FIGURE 5.19. Random variation in the heterogeneous scenario 

 

In this loop, four different actions are executed for each asset in the portfolio: 

 

- The Box-Muller transform is used to generate a set of independent random numbers. 

- The results of the Cholesky decomposition are used to transform the previous set of 

independent random numbers into a set of correlated random numbers. 

- Using the correlated random numbers, the next spot price for each of the assets is 

generated. 

- The generated prices for the assets are aggregated to get the new value of the portfolio. 

 

 

 

FIGURE 5.20. Portfolio rebalancing in the heterogeneous scenario 

 

Using the new spot price for each asset, and the new portfolio value, the number of units to 

include in the portfolio in order to preserve the constant proportions premise is calculated. 

 

 

 

FIGURE 5.21. Aggregating simulation results in the heterogeneous scenario 

  

The simulation results are aggregated in order to compute the results at the end of the 

program. 
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FIGURE 5.22. Transferring simulation results in the heterogeneous scenario 

 

Finally, the average and standard deviation of the simulation results are calculated and 

transferred to the spreadsheet. 

 

5.2. Homogeneous profile scenario 
 

The homogenous profile scenario and the heterogeneous profile scenario share the most 

part of the data and the code. So, this section reports the main differences compared to the 

previous section. 

 

When it comes to the initial data, the only difference concerns the drift, the volatility and 

the weights of the stocks included in the portfolio. The values estimated for the IBEX-35 stock 

index and reported in Table 4.5 are used for all the stocks. 

 

Regarding the code, the main difference in shown in Figure 5.23: 

 

 

 

FIGURE 5.23. Collecting stock values in the homogeneous scenario 

 

When collecting the initial stock values, instead of the loop showed in Figure 5.17, the 

values are collected in unidimensional variables in order to use the same values for all the 

stocks. 
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6 
RESULTS OF THE MONTE CARLO SIMULATION 

 

 
In this section, the main results driven out from the accomplished simulations are reported. 

A separate analysis for the heterogeneous profile scenario and the homogeneous profile scenario 

is presented.  

 

6.1. Heterogeneous profile scenario 
 

As a first approximation, six portfolios with different sizes are constructed. For each of 

these portfolios, the mean and standard deviation is analytically computed for comparison 

purposes using expressions (10) and (11), respectively. 

 

Assets Mean Std. Dev. 

2 0.20810834 0.2601308 

3 0.22038214 0.24600959 

4 0.25352598 0.24411147 

5 0.26103494 0.22665497 

6 0.24491504 0.23039421 

7 0.24302839 0.23332484 

 

TABLE 6.1. Mean and standard deviation in the heterogeneous profile scenario 

 

A graph with this data is provided in order to get a better approximation: 
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FIGURE 6.1. Mean and standard deviation in the heterogeneous profile scenario 

 

As the number of assets taking part in the portfolio increases, the average return tends to 

get higher, as a result of the “volatility pumping” effect. In addition, the standard deviation 

tends to get lower, as a consequence of the diversification effect. 

 

Focusing on the 3-asset portfolio, several simulation experiments are carried out, with the 

following results: 

 

 

  

TABLE 6.2. 3-asset portfolio simulation in the heterogeneous profile scenario 

 

These data show that the Monte Carlo simulation is a suitable methodology for the purpose 

of this research, as it approximates well to the analytical result, and the error tends to decrease 

as the number of iterations increases. These data are represented in the following graph: 
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  Mean Std. Dev. 

Iterations Simulation Error Simulation Error 

500 0.23253333 1.215119E-02 0.26336331 1.735373E-02 

750 0.22923937 8.857230E-03 0.25653174 1.052216E-02 

5,000 0.2164948 3.887349E-03 0.24890342 2.893835E-03 

30,000 0.21960175 7.803976E-04 0.24565907 3.505185E-04 

50,000 0.21988049 5.016585E-04 0.24586863 1.409561E-04 
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FIGURE 6.2. 3-asset portfolio simulation in the heterogeneous profile scenario 

 

Similar simulation experiments are performed with the other defined portfolios, in order to 

explore how the Monte Carlo methodology behaves with portfolios of different sizes. The following 

set of graphs represents the mean value for the first 500 iterations of the simulation experiment: 

 

 

  

FIGURE 6.3. n-asset portfolio simulation in the heterogeneous profile scenario 

 

These graphs show that the algorithm needs a larger number of iterations to converge around 

the exact value as the number of assets included in the portfolio increases, as a consequence of the 

higher uncertainty introduced in the portfolio. 
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6.2. Homogeneous profile scenario 
 

Following a similar approach that the one exposed in the previous scenario, the analytical 

solution for the mean and the standard deviation is computed for comparison purposes, using 

expressions (14) and (15), respectively: 

 

Assets Mean Std. Dev. 

2 0.16580183 0.2067347 

3 0.16656308 0.20301903 

4 0.16860542 0.19269677 

5 0.1708002 0.18094885 

6 0.17066271 0.18170711 

7 0.17102422 0.17970656 

 

 TABLE 6.3. Mean and standard deviation in the homogeneous profile scenario 

 

The “volatility pumping” effect and the diversification effect arise again, even more clearly 

than in the previous scenario, as it can be seen in the next graph: 

 

 

 

FIGURE 6.4. Mean and standard deviation in the homogeneous profile scenario 

 

Turning the sights towards the 3-asset portfolio, the simulation experiments deliver the 

following results: 
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  Mean Std. Dev. 

Iterations Simulation Error Simulation Error 

750 0.14811498 1.844810E-02 0.20657221 3.553183E-03 

1,500 0.15782783 8.735248E-03 0.20595867 2.939642E-03 

7,500 0.16754441 9.813301E-04 0.2008839 2.135128E-03 

15,000 0.16579539 7.676877E-04 0.20117947 1.839559E-03 

50,000 0.16667656 1.134770E-04 0.20263181 3.872231E-04 

 

 TABLE 6.4. 3-asset portfolio simulation in the homogeneous profile scenario 

 

The Monte Carlo simulation provides a suitable estimation of the exact result, and the error 

decreases as the number of iterations increases, as it is shown in this graph: 

 

 

 

FIGURE 6.5. 3-asset portfolio simulation in the homogeneous profile scenario 

 

Accomplishing a similar procedure with all the other defined portfolios, the results for the 

mean corresponding to the first 500 iterations are shown in these graphs: 
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FIGURE 6.6. n-asset portfolio simulation in the homogeneous profile scenario 

 

The conclusion is similar to the one extracted from the heterogeneous profile scenario, since 

the convergence is later achieved as the number of assets in the portfolio tends to be higher. 
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T
hese are the main conclusions driven out from this research: 

1. Monte Carlo methods result helpful for the valuation of 

investment portfolio rebalancing strategies, with very promising 

outcomes. 

 
2. The results of the Monte Carlo simulations converge very rapidly 

to the exact analytical solution when increasing the number of 

iterations. 

 
3. The results of the Monte Carlo simulations are consistent when 

varying the number of assets in the portfolio. 

 
4. The results of the Monte Carlo simulations highlight the existence 

of the volatility pumping effect, which has already been 

analytically stablished. 

 
5. The results of the Monte Carlo simulation demonstrate the 

existence of the diversification phenomenon, which has already 

been predicted by the financial theory. 

 
 

 Future research should enlarge the scope of this investigation, by 

considering the application of the Monte Carlo methods to different 

investment portfolio rebalancing strategies, with the aim of developing 

useful tools for academics and financial practitioners. 
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