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Abstract

The objective of this thesis has been the implementation and comparison of
two algorithms for generating an elliptic curve over a finite field with a given
cardinality. The first one was proposed by Atkin and Morain in 1993 as part
of their widely known primality test. The second one comes from a technical
report by Agashe, Lauter and Venkatesan (2001). Both proposals are based on
the construction of the Hilbert class polynomial modulo a prime number and
the obtention of the j-invariant of the required elliptic curve as one of its roots.
Prior to the implementation of those algorithms, a study on their mathematical
background has been carried out. The two algorithms have been implemented
in Sage, which is an open source software aimed to the implementation of math-
ematical algorithms. In the performed experiments, the first method has clearly
outperformed the second one, in terms of running time.
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Nomenclature

Symbols

Z set of integer numbers
Zn set of integer numbers modulo n
Q set of rational numbers
Q algebraic closure of Q
R set of real numbers
C set of complex numbers
U(A) unities of ring A
〈x1, . . . , xn〉 ideal generated by x1, . . . , xn
A[X1, . . . , Xn] ring of polynomials in n variables X1, . . . , Xn and coefficients in A
E/K field extension E of K
[E : K] degree of E/K
P (α,K) minimum polynomial of α over K
K(α) field generated by α over K
G(E : K) automorphism group of E/K
∆[α1, . . . , αn] discriminant of the basis {α1, . . . , αn}
OK ring of integers of number field K
IK fractional ideals of K
PK principal fractional ideals of K
C(OK) ideal class group of OK

O order
dK discriminant of number field K
C(D) form class group of discriminant D
P1 projective line
P2(C) complex projective plane
[x, y, z] homogeneous coordinates of a projective point
L(D) linear space associated with divisor D
[ω1, ω2] lattice generated by ω1 and ω2

℘(z;L) Weierstrass ℘-function of lattice L
j(L) j-invariant of lattice L
HD(X) Hilbert class polynomial of discriminant D
E(K) points of elliptic curve E over K
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Introduction

Elliptic functions were deeply studied in the 19th century by very relevant math-
ematicians such as Abel, Jacobi and Weierstrass. From the so-called Weierstrass
℘-function and some properties involving its derivative, it could be seen that
elliptic functions are tightly related with elliptic (genus 1 complex) curves de-
fined over the complex numbers. Elliptic curves defined over finite fields were
also studied. For instance, in 1933, Hasse [11] presented a very important result
which bounds the number of points such a curve can have.

In the early 70s, the possibility to apply algebraic geometry to the con-
struction of error-correcting codes was discovered [10]. Goppa published several
papers about the construction of codes from algebraic lines and algebraic curves
defined over a finite field.

Later, during the mid-80s, several applications of elliptic curves defined over
finite fields were found. In 1985, Koblitz [14] and Miller [17] independently
proposed the use of elliptic curves in public key cryptography. The advantage
of elliptic curve cryptography comes from the fact that no sub-exponential time
algorithm is known for solving the elliptic curve discrete logarithm problem. As
a consequence, 160 bits long public keys are enough for obtaining the same level
of security than that provided by 1024 bits RSA keys, so that elliptic curve
cryptography can be implemented at a lower cost. Some years later, other
ways to use elliptic curves in cryptography appeared. For instance, in 2001,
Boneh and Franklin [3] suggested the use of the Weil pairing over elliptic curves
as a way to implement the so-called identity-based encryption. Cryptographic
protocols based on the use of elliptic curve cryptography have been proposed in
different areas such as: smart cards, RFID tags, vehicular ad-hoc networks and
electronic voting, among many others.

In a paper published in 1987 (the idea was announced two years before),
Lenstra presented the elliptic curve factorization method [15], a sub-exponential
running time algorithm for factoring integers. Nowadays, this algorithm is the
third-fastest known general purpose factoring algorithm while it is still consid-
ered the best one for integers with a not too large prime divisor.

In 1986, Goldwasser and Kilian [9] propose the use of elliptic curves for
primality testing, i.e. proving that a given (very large) integer is prime. That
algorithm works by performing several stages in which random elliptic curves
are generated until one with a specific cardinality is found. In 1993, Atkin
and Morain [2] enhance that algorithm by replacing the random search with an
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algorithm for building elliptic curves with a required cardinality.
The construction of elliptic curves with an appropriate cardinality is also

of great interest in cryptography. This is because the Pohlig-Hellman algo-
rithm [19] solves the discrete logarithm problem in a temporal cost that depends
on the largest prime dividing the order of the group the problem is defined in.
Hence, the security of discrete logarithm-based cryptography on elliptic curves
is given by the size of the largest prime factor dividing the cardinality of a
curve. As a consequence, algorithms to obtain elliptic curves whose cardinality
is divisible by a large prime factor are required.

More recently, hyperelliptic curves [16] (genus ≥ 2) have also been used in
the design of factorization algorithms and public key cryptography.

This thesis surveys the theory of complex multiplication on elliptic curves and its
application to the construction of elliptic curves defined over a finite field with
a given cardinality. Two algorithms have been implemented, tested and com-
pared. The first one was published in 1993 in a paper by Atkin and Morain [2]
as a part of a primality testing algorithm. The second one corresponds to a
proposal by Agashe, Lauter and Venkatesan [1] published in a technical report
in 2001. The underlying theory of both algorithms comes from complex elliptic
curves and complex multiplication. The resulting curves are obtained from the
roots of the so-called Hilbert class polynomial modulo a prime. The two studied
algorithms differ in the technique employed for constructing such polynomial.

This thesis is composed of seven chapters:

Chapter 1: The first chapter summarizes important concepts from group,
ring and field theory together with some elemental aspects about polyno-
mials. Its content is required for understanding the remaining parts of the
thesis.

Chapter 2: This second chapter is about number fields. Algebraic exten-
sions of the rational numbers appear in the study of complex multiplication
on elliptic curves, which is the underlying theory over which the two al-
gorithms implemented in this Master’s thesis hold. Important concepts
such as discriminant, ideal ramification and Hilbert class field are given.

Chapter 3: This chapter is an introduction to quadratic forms and the
composition operation which permits them to be endowed with an Abelian
group structure. A known isomorphism between the form class group and
the ideal class group of the ring of integers of an imaginary quadratic field
concludes the chapter.

Chapter 4: Here, several concepts about complex algebraic curves and
algebraic geometry are introduced. The possibility to associate the closed
points of the projective line or an algebraic curve with valuation rings is
explained. Other important concepts included are: divisor, function field
of a curve, genus and the Riemann-Roch theorem.
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Chapter 5: This chapter presents the so-called complex multiplication
theory. This theory, initially focused on elliptic curves defined over com-
plex numbers also embraces elliptic curves defined over finite fields and
is the core of the two algorithms implemented in this thesis. The most
relevant content presented in this chapter includes: lattice, homotheticity,
j-invariant, elliptic curve, complex multiplication and its relation with the
cardinality of elliptic curves defined over a finite field.

Chapter 6: This chapter is devoted to the implementation (in Sage) of
Atkin-Morain’s and Agashe-Lauter-Venkatesan’s algorithms for construct-
ing elliptic curves with a given cardinality. Results regarding the time
needed to construct such curves are included.

Chapter 7: The last part of the thesis includes a comparison of both
methods and some concluding remarks.

The two analyzed algorithms (and some parts of the studied background)
have been implemented in Sage [20]. Sage is an open source mathematics soft-
ware that combines various software packages into a common interface. The
author has chosen Sage because it provides the data types and related pro-
cedures required in this Master’s thesis: arbitrary precision real and complex
numbers, finite fields, polynomials, quadratic forms and elliptic curves (includ-
ing cardinality computation).
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Chapter 1

Elementary concepts

This chapter provides the elementary background required for understanding the
remaining parts that compose this work. It has been divided into four sections
where basic concepts about groups, rings, polynomials and fields are presented.
The content of this chapter has been extracted mainly from [5], [8], [18] and [23].

1.1 Groups

A group is an algebraic structure consisting of a non-empty set and a binary
internal operation that satisfies a certain set of conditions. As we will see in
Chapter 5, the points of an elliptic curve can be endowed with such a structure.
When the elliptic curve is defined over a finite field, its group structure has
applications in cryptography.

Other groups that are relevant for this Master’s thesis are: the automorphism
group of a field extension (Section 1.4), the ideal class group (Section 2.2) and
the form class group (Section 3.2).

Definition 1 (Group)
A group is a non empty set G endowed with a binary operation

G×G→ G : (a, b) 7→ ab

satisfying:

1. The operation is associative, (ab)c = a(bc), for each a, b, c ∈ G.

2. There exists an identity element u such that ua = a = au, for each a ∈ G.

3. For each element a ∈ G, there exists x ∈ G such that ax = u = xa. The
element x is the inverse of a and it is denoted a−1.

Definition 2 (Abelian group)
A group G is said to be Abelian if ab = ba for each pair a, b ∈ G.
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Example 1
The set of integers Z with the addition operation has an Abelian group structure.

Example 2
Excluding zero, the set of integers modulo a prime p, Z∗p = {1, . . . , p− 1} with
multiplication has an Abelian group structure.

Definition 3 (Group homomorphism)
A mapping f : G→ G′ between two groups G,G′ is a group homomorphism if,

f(ab) = f(a)f(b), ∀a, b ∈ G.

A group homomorphism f : G→ G′ further inducing a bijection between G
and G′ is said to be an isomorphism.

Example 3
Let R+ = {x ∈ R : x > 0}. Given g ∈ R+, the map

f : R→ R+ : x 7→ f(x) = gx

is an homomorphism between R with the addition operation and R+ with the
product operation. This is easy to check since, given a, b ∈ R,

f(a+ b) = ga+b = gagb = f(a)f(b).

Further, if g 6= 1, f is an isomorphism because f induces a bijection between R
and R+.

1.2 Rings

Rings are a fundamental algebraic structure in the study of complex multiplica-
tion on elliptic curves. For instance, the so called endomorphism ring of ordinary
elliptic curves (see Chapter 5) is part of that theory.

Other rings that are relevant for this Master’s thesis are: the ring of integers
of a number field (Section 2.1) and the valuation rings associated to algebraic
curves (Chapter 4).

Definition 4 (Ring)
A ring is a set A with an addition (+) and a product (·) operations satisfying:

1. A is a commutative group under addition.

2. A is associative under multiplication. That is, given x, y, z ∈ A,

x · (y · z) = (x · y) · z.
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3. A is distributive over addition. That is, given x, y, z ∈ A,

(x+ y) · z = x · z + y · z and z · (x+ y) = z · x+ z · y.

The identity element of addition is usually denoted 0A or simply 0. A ring
is said to be unitary if the product operation has an identity element in A∗ =
A\{0}. This identity element is denoted 1A or simply 1. A ring whose product
operation is commutative (x · y = y · x, for each pair x, y ∈ A) is said to be a
commutative ring.

From now on, the · symbol will be suppressed from those expressions where
it is not strictly necessary. For instance, we will write xy instead of x · y.

Example 4
The set of integers Z with the usual addition and product operations is a ring.

Example 5
The set of integers modulo an integer n, Zn, is a ring.

Definition 5 (Unity)
Given a ring A, x ∈ A is a unity if there exists some y ∈ A satisfying,

xy = yx = 1.

The element y is called the inverse of x and it is denoted x−1. The set of unities
of A is denoted U(A).

Example 6
In the ring Z15, the element 2 is a unity and 2−1 = 8. This is so because,

2 · 8 ≡ 1 (mod 15).

It is easy to see that the unities in Z15 are precisely those x ∈ Z15 satisfying
gcd(x, 15) = 1, hence,

U(Z15) = {x ∈ Z15 : gcd(x, 15) = 1}.

Definition 6 (Field)
A ring A whose elements in A∗ are all invertible is called a field.

More details about fields are given in Section 1.4.

Example 7
If p is prime, all the elements in Z∗p = {1, . . . , p− 1} are invertible. Let us take
an integer x ∈ Z∗p. Since p is prime and 1 ≤ x < p, then gcd(x, p) = 1. From
Bezout’s identity, there exist two integers a, b ∈ Z satisfying,

1 = ax+ bp.
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Hence,
ax ≡ 1 (mod p)

and a (mod p) is the inverse of x in Zp. Hence, U(Zp) = Z∗p and Zp is a field
provided that p is prime.

Definition 7 (Divisor of zero)
Given a ring A, x ∈ A∗ is a divisor of zero if there exists some y ∈ A∗ satisfying,

xy = 0.

Definition 8 (Integral domain)
An integral domain (or simply a domain) is a commutative ring without divisors
of zero.

Example 8
The ring Z15 is not an integral domain. We can easily check 3 is a divisor of
zero because

3 · 5 ≡ 0 (mod 15).

Example 9
If p is prime, Zp is an integral domain. Let us take an integer x ∈ Z∗p =
{1, . . . , p− 1}. If x were a divisor of zero, there would exist y ∈ Z∗p satisfying,

xy ≡ 0 (mod p),

in which case,
xy = kp, k ∈ Z.

Since neither x nor y are zero, k 6= 0. Then, x or y must be divisible by p which
is not possible because both x, y < p.

Definition 9 (Ideal)
Let A be a commutative and unitary ring. An ideal is a subset a ⊂ A satisfying:

1. a is a subgroup of A under addition.

2. Given x ∈ a and a ∈ A, the product xa ∈ a.

Being a a subgroup under addition requires 0 ∈ a. The subset {0} is an ideal
referred to as the trivial ideal. When a 6= A, a is said to be a proper ideal. An
ideal a is proper if and only if 1 /∈ a.

Example 10
A field K does not have proper ideals. Let a 6= {0} be an ideal of K, and let
x 6= 1 ∈ a. Since all the elements of K are invertible, then x−1 ∈ K and from
the definition of ideal 1 = xx−1 ∈ a so that a = K. Hence the only ideals of a
field K are the trivial one and K itself.
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Definition 10 (Ideal generated from a set)
Let A be a commutative and unitary ring, and let L be a subset of A. We define
the ideal generated by L as the minimal ideal of A containing all the elements
of L.

If L = {x1, . . . , xr} is a finite set, we say that the ideal a generated by L is
finitely generated and we denote it (following [23]) as a = 〈x1, . . . , xr〉. In this
case,

a =

{
r∑

k=1

akxk : a1, . . . , ar ∈ A

}
.

An ideal a that can be generated by one element, a = 〈x1〉 is said to be
principal and,

a = {ax1 : a ∈ A} = Ax1.

A ring whose ideals are all principal is called a principal ideal domain (PID).

Example 11
In the ring of integers Z, let a = 〈3, 5〉. Note that (−3) · 3 + 2 · 5 = 1 ∈ a. From
the definition of ideal, if 1 ∈ a, then for each a ∈ Z, 1 · a ∈ a, hence a = Z.
The ideal a can be expressed as a = 〈1〉 so that it is principal. The integers is
a principal ideal domain since it can be proven that

〈x1, . . . , xr〉 = 〈gcd(x1, . . . , xr)〉 .

Definition 11 (Addition and product of ideals)
Let A be a commutative and unitary ring, and let a, b ⊆ A be two ideals:

• a + b is the ideal whose elements are of the form x + y, with x ∈ a and
y ∈ b.

• a · b is the ideal whose elements are of the form x1y1 + . . . + xryr, with
x1, . . . , xr ∈ a and y1, . . . , yr ∈ b, being r ≥ 1.

Remark 1
We have just seen that ideals can be multiplied. Hence, we can ask ourselves
about the reverse operation, i.e. factorization. As we will see in Section 2.2,
this question will lead us to the definition of a key concept for this Master’s
thesis: the Hilbert class field.
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Definition 12 (Maximal ideal)
Let A be a commutative and unitary ring, and let a ⊆ A be an ideal. The ideal
a is said to be maximal if the following two equivalent conditions are satisfied,

1. The quotient A/a is a field.

2. a is a proper ideal and no other proper ideal strictly contains it.

Definition 13 (Prime ideal)
Let A be a commutative and unitary ring, and let a ⊆ A be an ideal. The ideal
a is said to be prime if the following two equivalent conditions are satisfied,

1. The quotient A/a is an integral domain.

2. a is a proper ideal and given x, y ∈ A, if xy ∈ a then x ∈ a or y ∈ a.

Lemma 1. A maximal ideal is always prime.

The reverse of the previous lemma is not true in general.

Example 12
In Z, the ideal a = 〈7〉 = 7 · Z is maximal. This is because, Z/a = Z/7Z ≈ Z7

is a field. From the previous lemma, I is also prime.

Example 13
In Z, the ideal a = 〈6〉 is not prime because 2, 3 /∈ a but 2 · 3 = 6 ∈ a.

Definition 14 (Local ring)
A ring is said to be a local ring if it has a unique maximal ideal.

Example 14
The set of integers Z is not a local ring since it has several maximal ideals such
as 〈2〉 or 〈3〉, for instance.

Example 15
Let d be a prime integer and let c ∈ Q. The rational number c can be expressed
in the form

c = dk
m

n
,

where k,m, n are integers with n > 0 and d - m, d - n. Here we can define the
mapping

v : Q\{0} → Z : c 7→ k.

The set R = {c ∈ Q\{0} : v(c) ≥ 0} ∪ {0} is a (discrete valuation) ring having
a unique maximal ideal given by m = {c ∈ Q\{0} : v(c) > 0} ∪ {0}. Hence, R
is a local ring. More details are given in Definition 17.
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Definition 15 (Noetherian ring)
A domain D is Noetherian if every ideal in D is finitely generated.

Example 16
A principal ideal domain, like Z, is always a Noetherian ring.

Proposition 1. The following conditions are equivalent for an integral domain
D:

1. D is Noetherian.

2. D satisfies the ascending path condition. That is, given an ascending
chaing of ideals:

a0 ⊆ a1 ⊆ . . . ⊆ an ⊆ . . .

there exists some N for which an = aN for all n ≥ N .

3. D satisfies the maximal condition: every non-empty set of ideals has a
maximal element (an element which is not properly contained in every
other element).

Definition 16 (Artinian ring)
A domain D is Artinian if for every chain of ideals:

a0 ⊇ a1 ⊇ . . . ⊇ an ⊇ . . .

there exists some N for which an = aN for all n ≥ N .

Example 17
The integers Z are not an Artinian ring. We can consider the chain of ideals

〈2〉 ⊇
〈
22
〉
⊇
〈
23
〉
⊇ . . . ⊇ 〈2n〉 ⊇ . . . .

This chain has an infinite amount of different ideals.

Definition 17 (Discrete valuation)
A discrete valuation of a field K is a mapping v : K∗ → Z such that for all
x, y ∈ K∗, we have,

1. v(xy) = v(x) + v(y),

2. v(x+ y) ≥ min(v(x), v(y)).

The set consisting of 0 and all x ∈ K∗ such that v(x) ≥ 0 is the discrete
valuation ring associated to v. A valuation ring is a local ring whose unique
maximal ideal is composed of 0 together with all x ∈ K∗ such that v(x) > 0.
As we will see in Chapter 4, valuation rings are used in the study of algebraic
curves.
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Example 18
The mapping v : Q\{0} → Z in Example 15 is a discrete valuation of Q.

Example 19

Let a ∈ Fqm , m ≥ 1 and let f = p(X)
q(X) be a rational function in Fq(X). We can

represent f as

f =
r(X)

s(X)
(X − a)e

so that r, s, (X − a) are coprime polynomials in Fqm [X]. Here we can define the
valuation va(f) = e. In this particular example, the valuation ring (also called
a place) of va is the set

R =

{
f =

p(X)

q(X)
∈ Fqm(X) : q(a) 6= 0

}
,

and the maximal ideal of R is

m =

{
f =

p(X)

q(X)
∈ Fqm(X) : q(a) 6= 0, p(a) = 0

}
.

Definition 18 (Ring homomorphism)
A ring homomorphism between two rings A,B is a function f : A→ B satisfying,

1. f(x+ y) = f(x) + f(y), x, y ∈ A,

2. f(xy) = f(x)f(y), x, y ∈ A,

3. f(1A) = 1B .

The kernel of a ring homomorphism f : A→ B is the ideal defined as

ker f = {x ∈ A : f(x) = 0}.

Definition 19 (Ring homomorphism types)
Let f : A→ B be a ring homomorphism. We say that:

1. f is an epimorphism, if it is exhaustive,

2. f is a monomorphism, if it is injective,

3. f is an isomorphism, if there exists an homomorphism g : B → A so that

g ◦ f = IdA and f ◦ g = IdB .
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Definition 20 (Module)
Let R be a ring. An R-module is an additive Abelian group M , together with
an operation R×M →M such that for all r, s ∈ R and x, y ∈M , we have:

1. r(x+ y) = rx+ ry,

2. (r + s)x = rx+ sx,

3. (rs)x = r(sx),

4. 1R · x = x.

Example 20
The Gauss integers Z[i] = {m+n

√
−1 : m,n ∈ Z} with the addition operation

have a Z-module structure.

1.3 Polynomials

The algorithms implemented in this Master’s thesis ([1] and [2]) permit to obtain
an elliptic curve defined over a finite field with a given amount of points (elliptic
curves are explained in Chapters 4 and 5). As we will see in Chapter 6, the
elliptic curves with the required cardinality are obtained after computing the
roots of a certain polynomial. Some basic definitions about polynomials are
next given in this section. A wider introduction to polynomials can be found
in [8].

Definition 21 (Polynomial)
A polynomial in n variables X1, . . . , Xn and coefficients in a commutative and
unitary ring A is an expression of the form:

f =
∑

v=(v1,...,vn)

avX
v1
1 · · ·Xvn

n ,

where the coefficients av ∈ A are all zero except for a finite amount.

Example 21
The expression f = X3Y 2 − 4X2 + 3Y is a polynomial in two variables X,Y
and coefficients in Z.

Remark 2
Given a bivariate polynomial like the one in the previous example, the set of
points (x, y) satisfying f(x, y) = 0 compose a plane affine algebraic curve. More
details are given in Chapter 4.

Definition 22 (Degree of a polynomial)
The degree of a polynomial f =

∑
v=(v1,...,vn)

avX
v1
1 · · ·Xvn

n is defined as

deg f = max{d : ∃ av 6= 0, with v1 + . . .+ vn = d}.
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Example 22
The degree of f = X3Y 2 − 4X2 + 3Y is deg f = 5.

Definition 23 (Homogeneous polynomial)
A nonzero polynomial P (X1, . . . , Xn) in n variables is homogeneous of degree d
if

P (λX1, . . . , λXn) = λdP (X1, . . . , Xn).

for all λ.

Polynomials can be added and multiplied forming a ring.

Definition 24 (Polynomial addition and product)
Given two polynomials f =

∑
v avX

v1
1 · · ·Xvn

n and g =
∑
v bvX

v1
1 · · ·Xvn

n , their
addition is given by

f + g =
∑
v

(av + bv)X
v1
1 · · ·Xvn

n ,

and their product is

f · g =
∑
v

 ∑
λ+µ=v

aλbµ

Xv1
1 · · ·Xvn

n .

Example 23
Let f = X3 +XY and g = X2 + Y , then,

f + g = X3 +X2 +XY + Y,

and
f · g = X5 + 2X3Y +XY 2.

Definition 25 (Polynomial ring)
Given a commutative and unitary ring A, the set of polynomials in n vari-
ables X1, . . . , Xn and coefficients in A endowed with the addition and product
operations is a commutative and unitary ring denoted as A[X1, . . . , Xn].

Proposition 2. The polynomial ring A[X1, . . . , Xn] is an integral domain if
and only if A is an integral domain.

Since A[X1, . . . , Xn] is a ring, some of its elements are invertible (unities).
If A is an integral domain, it turns out that U(A[X1, . . . , Xn]) = U(A).

Definition 26 (Irreducible polynomial)
A polynomial f ∈ A[X1, . . . , Xn] is irreducible when it can not be expressed as
a product of two (non-unity) polynomials g, h ∈ A[X1, . . . , Xn].
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Example 24
The polynomial f = X2 − Y 2 is reducible because,

X2 − Y 2 = (X + Y )(X − Y ).

Example 25
The polynomial f = X5 + 5X4 + 10X3 + 20X + 10 is irreducible in Q[X]. This
can be easily proven through Eisenstein’s criterion [8, p.144].

Definition 27 (Polynomial evaluation)
Let A be a unitary and commutative ring and let X1, . . . , Xn be n variables.
Given a ring B having A as a subring and considering n elements x1, . . . , xn ∈ B,
we define the evaluation in x1, . . . , xn as the mapping A[X1, . . . , Xn]→ B given
by

f =
∑
v

avX
v1
1 . . . Xvn

n 7→ f(x1, . . . , xn) =
∑
v

avx
v1
1 . . . xvnn .

Definition 28 (Polynomial root)
A root of a polynomial f ∈ A[X] is a number x satisfying f(x) = 0.

Example 26
Number 1 is a root of f = X3 −X2 +X − 1 defined in Z[X].

Example 27
The polynomial f = X2 + 2 is irreducible in Z5. If it were reducible, it could
be expressed as a product

f = (X − a)(X − b), a, b ∈ Z5,

so that a would be a root of f . We can see f has no roots in Z5 by evaluating
it in each element of Z5 and checking the result is not 0 in any case.

1.4 Fields

Fields are the basic algebraic structure over which algebraic curves (Chapter 4)
are constructed. In this Master’s thesis, we have focused on a particular type
of algebraic curves, namely elliptic curves. The theory of number fields (Chap-
ter 2), including the Hilbert class field, is fundamental for the study of complex
multiplication on elliptic curves. This section provides a basic introduction to
fields.

Definition 29 (Field)
A ring K is said to be a field when K∗ = K\{0} is a group under the product
operation.
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The previous definition is equivalent to saying that a field is a unitary ring K
such that U(K) = K∗. That is, all its non-zero elements are invertible (unities).

Fields whose product operation is commutative are said to be commutative.

Definition 30 (Finite field)
A field is said to be finite when its cardinality (or order) is finite.

Definition 31 (Field characteristic)
Given a field K, we consider the mapping:

φ : Z+ → K : n 7→ 1K + . . .+ 1K︸ ︷︷ ︸
n times

.

If the previous mapping is injective, we say K has characteristic 0. Otherwise,
let p be the smallest positive integer, other than 0, such that φ(p) = 0. Then
we say K has characteristic p.

The characteristic of a field K is either zero or a prime number. Note that
the characteristic of a finite field can not be zero.

Example 28
The characteristic of Q, R and C is 0.

Example 29
The characteristic of Zp, p prime, is p.

Definition 32 (Prime subfield)
Given a finite field K, the kernel of φ is an ideal 〈p〉 of Z, being p a prime
number. Hence, K has a subfield that is isomorphic to Z/ 〈p〉 ≈ Zp. This is the
prime subfield of K.

In Section 1.2 a definition of ring homomorphism has been given together
with an statement about its kernel being an ideal. Since a field does not have
proper ideals, a homomorphism f : K1 → K2 between two fields can only be
the zero-map (when ker f = K1) or a monomorphism (when ker f = {0}).

Definition 33 (Field extension)
Let K, E be fields. It is said that E is an extension of K, represented by E/K,
when there exists a field monomorphism j : K → E.

In such a case, K is isomorphic to j(K) so that K can be identified with
j(K), a subfield of E.
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Example 30
The complex numbers C are an extension of R. In this case, a field monomor-
phism j : R→ C is given by

j : R→ C : x 7→ x.

Remark 3
Sometimes a field monomorphism is called an embedding. In the previous ex-
ample, the real numbers R are embedded in C by j.

Definition 34 (Homomorphism)
A homomorphism from an extension E1/K over E2/K is a field homomorphism
φ : E1 → E2 such that, when restricted to K, φ is an identity mapping from K
to K.

When the previous homomorphism provides a bijection between E1 and E2

it is said to be an isomorphism. Moreover, if E1 = E2 we refer to it as an
automorphism. The set of automorphisms of a field extension E/K, under
the composition operation, has a group structure. This group is denoted by
G(E : K).

Example 31
If we consider the extension C/R, the conjugation mapping z = x + iy to
z = x− iy is an automorphism C/R→ C/R. The conjugation and the identity
mappings compose the automorphism group G(C : R) which is isomorphic to
Z2.

Proposition 3. Let E/K be a field extension. Then E has a vector space
structure over K.

Example 32
Let us consider the extension C/R. It is known that a complex number z ∈ C
is of the form z = x+ iy, with x, y ∈ R. Hence complex numbers have a vector
space structure over R of dimension two and basis {1, i}.

Definition 35 (Degree of a field extension)
Let E/K be a field extension. The degree, denoted [E : K], of such an extension
is defined to be dimK E, when E is considered a vector space over K.

Let K be a finite field and let F be its prime subfield. Then K/F is a field
extension and K has a vector space structure over F . Let p be the cardinality
of F and m = [K : F ]. Then the cardinality of K is pm. Hence, any finite field
has a prime-power cardinality. Moreover, any two finite fields with the same
number of elements are know to be isomorphic. Let p be a prime and m ≥ 1,
the unique finite field having cardinality pm is usually denoted Fpm .
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Example 33
The extension C/R has degree 2.

Example 34
Let us consider the polynomial f = Xp2 −X defined over Zp. All the elements

α ∈ Fp2 satisfy that xp
2

= x, hence, each of the p2 elements in Fp2 is a root of
f . In this way, f can be expressed as

f =
∏
α∈Fp2

(X − α),

and Fp2 is the splitting field of f . Generalizing this idea, any finite field Fpm
can be defined as the splitting field of polynomial Xpm −X defined over Zp.

Definition 36 (Finite extension)
A field extension whose degree is finite is said to be a finite extension.

Example 35
The extension C/R is finite.

Definition 37 (Subextension)
Let E/K be a field extension. Then, L/K is a subextension of E/K if E is an
extension of L.

A subextension of E/K is said to be proper if it is different from E/K and
K/K.

Definition 38 (Subextension generated from a subset)
Let E/K be a field extension, and let A = {ai : i ∈ I} ⊂ E be non-empty.
The field generated by A over K, denoted K(A) is the smallest subfield of E
containing both K and A. In this case we say that L is generated by A over K.

Definition 39 (Finitely generated extension)
A field extension L/K is finitely generated when L is generated over K by a
finite set.

Definition 40 (Simple extension)
A field extension L/K is simple when L is generated over K by a set containing
one element.

Example 36
Let us consider R/Q. We can take A = { 3

√
7} ⊂ R. Then Q( 3

√
7)/Q is a simple

field extension.
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Let E/K be a simple field extension, that is, E = K(α) for some α ∈ E.
Let us consider the following homomorphism:

K[X]→ E : f 7→ f(α),

and let I be its kernel. We say that α is:

1. Transcendental: if I = {0}, that is, α is not root of any polynomial with
coefficients in K.

2. Algebraic: if f(α) = 0 for some non-null polynomial in K[X].

When α is algebraic, by evaluating X = α we get an epimorphism

K[X]→ E,

whose kernel is generated by an irreducible polynomial f . By taking f to be
monic, we get the following important definition.

Definition 41 (Minimum polynomial)
Let α be an algebraic element over a field K. We define the minimum polynomial
of α over K as the unique monic irreducible polynomial in K[X] having α as a
root. Such a polynomial is denoted P (α,K).

Given a field extension E/K with E = K(α), the degree of P (α,K) coincides
with the extension degree [E : K]. That is,

degP (α,K) = [E : K].

Moreover, if degP (α,K) = n then {1, α, . . . , αn−1} is a basis of E over K.

Example 37
The minimum polynomial P ( 3

√
7,Q) is X3 − 7. The elements of Q( 3

√
7) are of

the form,
q1 + q2

3
√

7 + q3(
3
√

7)2, q1, q2, q3 ∈ Q.

Example 38
A cyclotomic field is of the form Q(ζ), with ζ = e2πi/m (ζ is a primitive complex
m-th root of unity). When m is an odd prime, the minimum polynomial of ζ
over Q is

P (ζ,Q) =
Xm − 1

X − 1
= Xm−1 +Xm−2 + . . .+X + 1.

Hence, Q(ζ)/Q is a degree m− 1 extension.

Example 39
We know from a previous example that f = X2 + 2 is an irreducible polynomial
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in Z5. Let α be a root of f (in some extension of Z5). Then Z5(α)/Z5 is a
degree 2 field extension. The field Z5(α) can be considered a dimension 2 vector
space over Z5 so that its cardinality is 52. Hence, Z5(α) is isomorphic to F52 .
Its elements are of the form

m+ nα : m,n ∈ Z5.

Theorem 1. If E/K is a finite extension of fields of characteristic 0, then it
is simple algebraic. That is, E = L(α) for some α ∈ E. Such an element α is
said to be a primitive element of the extension.

Given a finite extension E/K, when it is simple, we have E = K(α) and
there exists the minimum polynomial P (α,K). We know α is a root of P (α,K),
but the minimum polynomial may have other roots in E. The amount of roots
of P (α,K) is [E : K] at most (the degree of P (α,K)).

Let {α, α2, . . . , αr} ⊂ E be the roots of P (α,K) in E. An automorphism
φ : E/K → E/K is determined by the value where α is mapped to by φ. Hence,
the cardinality of the automorphism group G(E : K) corresponds to the amount
of different roots of P (α,K) in E.

Example 40
Let us consider Q( 3

√
7)/Q. The minimum polynomial of 3

√
7 over Q is

P (
3
√

7,Q) = X3 − 7.

This polynomial has only one root over Q( 3
√

7), namely 3
√

7, but its has two

other roots in C. They are ω 3
√

7 and ω2 3
√

7, being ω = ei
2π
3 , both of them falling

outside Q( 3
√

7). Hence

G(Q(
3
√

7) : Q) = {Id}.

Definition 42 (Galois extension)
A finite extension E/K is called a Galois extension when the cardinality of
G(E : K) is [E : K].

Example 41
The extension Q( 3

√
7)/Q is not a Galois extension.

Example 42
An extension of the form Q(ζ)/Q, with ζ = e2πi/m, m an odd prime, is a Galois
extension. The roots of its minimum polynomial

Xm−1 +Xm−2 + . . .+X + 1

are ζk, for k = 1, . . . , (m− 1), each of them falling in Q(ζ).

Definition 43 (Abelian extension)
A Galois extension E/K whose automorphism group is Abelian is called an
Abelian extension.
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Example 43
The extension Q(e2πi/5)/Q is a Galois extension. Moreover, its automorphism
group has cardinality four, so that it is Abelian (see [5, Ex.2]). Hence, the
extension is Abelian.

Definition 44 (Separable extension)
An algebraic extension E/K is separable when for every α ∈ E, the minimum
polynomial P (α,E) is separable (its roots are distinct).

We finish this chapter providing some examples of sets having a field struc-
ture.

Example 44
Let us consider an irreducible polynomial f ∈ Q[X] with deg f ≥ 1. Since f is
irreducible, it has no roots in Q but it has at least one root α ∈ C. In this way,
Q(α)/Q is a field extension of degree deg f . The field Q(α) is called a number
field. More details about number fields are given in Chapter 2.

Example 45
An algebraic number is a number that is a root of a non-zero polynomial in one
variable with rational coefficients. The set of algebraic numbers endowed with
the usual addition and product operations has a field structure. This field is
usually denoted Q. The field Q is known to be the algebraic closure of Q.

Example 46
Let f ∈ C[X,Y ] be an irreducible polynomial, and consider the curve

C : f(x, y) = 0.

Any complex rational function

R(x, y) = P (x, y)/Q(x, y),

where P and Q are polynomials, is declared to be zero whenever P but not Q
is divisible by f . We place in one class all the rational functions which differ by
zero from a given one. This collection of equivalence classes is a field, which is
an extension of the field of complex numbers. This is the function field of the
curve C. More details will be given in Chapter 4.
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Chapter 2

Number fields

Algebraic extensions of Q are fundamental in the study of complex multipli-
cation on elliptic curves. This chapter provides a brief introduction to those
aspects of number fields that are the required background for Chapter 5. For a
complete account of number fields the reader is referred to [6] and [23].

2.1 Algebraic numbers

Definition 45 (Algebraic number)
A complex number is algebraic if it is the root of a non-zero polynomial with
coefficients in Q.

Example 47
Any number α ∈ Q is algebraic because it is the root of the linear polynomial
X − α.

Example 48

Numbers
√

3
2 , 4
√
−5 are algebraic because they are a root of X2− 3

2 and X4 +5,

respectively.

The set Q of algebraic numbers is a subfield of C. Next we focus our attention
on a particular type of subfields of Q.

Definition 46 (Number field)
A number field is a subfield K of C such that [K : Q] is finite.

Example 49
The set of algebraic numbers Q is not a number field, since [Q : Q] is not finite.

From its definition, the elements of a number field are all algebraic so that
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K ⊆ Q. A number field K is a finite extension of the rational numbers Q, hence
K = Q(α1, . . . , αn) for some finite set of algebraic numbers α1, . . . , αn. Since Q
has characteristic 0, Theorem 1 states that any number field K is a primitive
extension of Q. Hence, K = Q(θ) for some algebraic number θ.

Next, we recall the concept of monomorphism (see Definition 19) and apply
it to number fields. The following theorem (see [23]) is fundamental for defining
the concept of conjugates, which are in turn the basis for a very important
concept in number field theory: the discriminant.

Theorem 2. Let K = Q(θ) be a number field of degree n over Q. Then there
are exactly n distinct monomorphisms σi : K → C (i = 1, . . . , n). The elements
σi(θ) = θi are the distinct zeros in C of the minimum polynomial of θ over Q.

Definition 47 (Conjugates)
Given a number field K, [K : Q] = n, and α ∈ K, the elements σi(α) for
i = 1, . . . , n are called the K-conjugates of α.

Example 50
Let K = Q( 3

√
7) (see Example 40). The minimum polynomial of 3

√
7 over Q

is X3 − 7. The roots over C of this polynomial are { 3
√

7, ω 3
√

7, ω2 3
√

7}, with

ω = e
2πi
3 .

Hence, the K-conjugates of 3 + 2 3
√

7 are:

σ1(3 + 2
3
√

7) = 3 + 2
3
√

7

σ2(3 + 2
3
√

7) = 3 + 2ω
3
√

7

σ3(3 + 2
3
√

7) = 3 + 2ω2 3
√

7

This example shows that the K-conjugates of α ∈ K may not lie in K.

Definition 48 (Discriminant of a basis)
Let K = Q(θ) be a degree n number field, and let {α1, . . . , αn} be a basis of K
as a vector space over Q. We define the discriminant of this basis to be

∆[α1, . . . , αn] = {det[σi(αj)]}2.

Example 51
Let K = Q( 3

√
7). We can take {1, 3

√
7, ( 3
√

7)2} as a basis of K over Q. Let us
compute the discriminant of this basis:∣∣∣∣∣∣
1 3

√
7 ( 3

√
7)2

1 ω 3
√

7 ω2( 3
√

7)2

1 ω2 3
√

7 ω( 3
√

7)2

∣∣∣∣∣∣
2

=
(
7(3ω2 − 3ω)

)2
= 72·32·(ω2−ω)2 = 72·32·(−3) = −1323.
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Example 52
Let K = Q(

√
−15). The pair {1,

√
−15} is a basis of K over Q so that we can

compute its discriminant which is∣∣∣∣1 √
−15

1 −
√
−15

∣∣∣∣2 =
(
−2
√
−15

)2
= −60.

Another basis of K over Q is given by {1, 1+
√
−15
2 }. The dicriminant of this

basis is ∣∣∣∣∣1 1+
√
−15
2

1 1−
√
−15
2

∣∣∣∣∣
2

=
(
−
√
−15

)2
= −15.

This example shows that the discriminants of different basis of the same field
extension do not necessarily agree. As we will see later, this is not the case for
integral basis.

Definition 49 (Algebraic integer)
A complex number θ is an algebraic integer if there is a monic polynomial p(T )
with integer coefficients such that p(θ) = 0.

Theorem 3. The algebraic integers form a subring of the field of algebraic
numbers.

Let B be the set of algebraic integers. For any number field K we write

OK = K ∩B.

That is, OK is the set composed of the algebraic integers of K. The set OK is
called the ring of integers of K. The ring OK will be denoted O when the field
K is clear from the context.

Example 53
We have that OQ = Z. First of all, α ∈ Z is a root of the monic polynomial
with integer coefficients X − α, hence, Z ⊆ OQ.

Reversely, let us assume α = a
b is an algebraic integer in Q. Then, its

minimum polynomial in Q[X], X − a
b , must have integer coefficients, which

happens only when b divides a, so that α ∈ Z, and OQ ⊆ Z.

Proposition 4. Let K be a number field.

1. OK is a subring of C whose field of fractions is K.

2. OK is a free Z-module of rank [K : Q].
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Definition 50 (Integral basis)
Let O be the ring of integers of K. We say that {α1, . . . , αs} is an integral basis
for K (or for O) if and only if αi ∈ O,∀i, and every element of O is uniquely
expressible in the form

a1α1 + . . .+ asαs,

for rational integers a1, . . . , as, i.e. ai ∈ Z,∀i.

Definition 51 (Discriminant of a number field)
Let O be the ring of integers of K. The discriminant of K is defined as the
discriminant of any integral basis for O. This value does not depend on the
choice of such a basis.

Example 54
Let K = Q( 3

√
7). We will ask Sage for an integral basis for K.

sage: Q=PolynomialRing(QQ,’x’)

sage: x=Q.gen()

sage: K.<t>=NumberField(x^3-7)

sage: K.integral basis()

[1, t, t^2]

The result states that, given a primitive element t of the extension Q( 3
√

7)/Q,
then {1, t, t2} is an integral basis. In this way, taking t = 3

√
7, we get that

{1, 3
√

7, ( 3
√

7)2} is an integral basis. Its discriminant has been computed in Ex-
ample 51 (being −1323) so that the discriminant of Q( 3

√
7) is −1323.

Definition 52 (Quadratic field)
A quadratic field is a number field K of degree 2 over Q.

We know that K = Q(θ) where θ is an algebraic integer. Since the degree
of K is two, θ must be the root of an irreducible monic degree 2 polynomial

X2 + aX + b, a, b ∈ Z.

Thus,

θ =
−a±

√
a2 − 4b

2
.

If a2 − 4b = r2d with r, d ∈ Z and d is squarefree, then,

θ =
−a± r

√
d

2
,

and we conclude that Q(θ) = Q(
√
d). Hence, quadratic fields are those of the

form Q(
√
d) for d a squarefree rational integer. The set {1,

√
d} is a basis for
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K so that the elements of Q(
√
d) are of the form

r + s
√
d, r, s ∈ Q.

Definition 53 (Real/Imaginary quadratic field)
If d > 0, the field K is said to be a real quadratic field. Otherwise (d < 0), we
say that K is an imaginary quadratic field.

Let α = r + s
√
d ∈ Q(

√
d). Such a value can be expressed as α = a

c + b
c

√
d,

with a, b, c ∈ Z, c > 0 and no prime divides all of a, b, c. Then, α is an integer
if the coefficients of its minimum polyonomial (X −α)(X − σ2(α)) are integers.
That is, (

X −

(
a+ b

√
d

c

))(
X −

(
a− b

√
d

c

))
=

= X2 − 2a

c
X +

a2 − b2d
c2

,

has integer coefficients, so that both 2a
c and a2−b2d

c2 are integers.

If a and c have some common prime factor p, then a2−b2d
c2 being an in-

teger requires that p also divides b which contradicts our assumption that
gcd(a, b, c) = 1. Hence a and c are comprime and 2a

c can only be an inte-
ger if c = 1 or c = 2. In the former case, the minimum polynomial always has

integer coefficients. If c = 2, both a and b must be odd and a2−b2d
4 is an integer

if and only if

a2 − b2d ≡ 0 (mod 4).

If both a and b are squarefree, we have that a2 ≡ b2 ≡ 1 (mod 4) and

0 ≡ a2 − b2d ≡ 1− d (mod 4),

so that d ≡ 1 (mod 4). In this way:

1. If d 6≡ 1 (mod 4) then c = 1 and the algebraic integers of K = Q(
√
d) are

of the form a+ b
√
d. We conclude that {1,

√
d} is an integral basis for OK

and OK = Z[
√
d].

2. If d ≡ 1 (mod 4) then, we can have c = 2 so that {1, 12 + 1
2

√
d} is an

integral basis for OK and OK = Z[ 12 + 1
2

√
d].

It is worth noting that, given K = Q(
√
d), we can describe its ring of integers

as

OK = Z[wK ], wK =
d+
√
d

2
.

Let us now compute the discriminant of such integral basis (the discriminant
of Q(

√
d)):
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1. If d 6≡ 1 (mod 4),

∆[1,
√
d] =

∣∣∣∣1 √
d

1 −
√
d

∣∣∣∣2 = (−2
√
d)2 = 4d.

2. If d ≡ 1 (mod 4),

∆

[
1,

1

2
+

1

2

√
d

]
=

∣∣∣∣1 1
2 + 1

2

√
d

1 1
2 −

1
2

√
d

∣∣∣∣2 = (−
√
d)2 = d.

Note that the discriminant of a quadratic number field satisfies either d ≡ 0
(mod 4) (the former case above) or d ≡ 1 (mod 4) (the latter case above).

Example 55
The number field Q(

√
−15) is an imaginary quadratic field. Since −15 ≡ 1

(mod 4), its discriminant is dQ(
√
−15) = −15 and {1, 1+

√
−15
2 } is a basis of its

ring of integers OQ(
√
−15). Then,

OQ(
√
−15) =

{
m+

(
1 +
√
−15

2

)
n : m,n ∈ Z

}
.

Remark 4
Let us consider the polynomial f = X2 + 2 defined in Z5 and let α be a root
of f (in some extension of Z5). In Example 39 we saw that {1, α}, is a basis of
F52 over Z5. The discriminant of such a basis can be computed exactly in the
same manner it is done for number fields:

∆[1, α] =

∣∣∣∣1 α
1 −α

∣∣∣∣2 = (−2α)
2

= 4α2 = 4 · (−2) = 4 · 3 = 2.

2.2 Ideals

Ideals in the ring of integers of a number field can be uniquely decomposed as a
product of prime ideals. The way in which ideals factorize over extended fields
will leads us to introduce the Hilbert class field, which is fundamental for the
methods that have been implemented in this Master’s thesis. Fractional ideals
are also introduced in this section.

Theorem 4. The ring of integers OK in a number field K is a Dedekin domain,
which means that,

1. OK is integrally closed.

2. OK is Noetherian, i.e., given any chain of ideals a1 ⊆ a2 ⊆ . . ., there is
an integer n such that an = an+1 = . . ..

3. Every nonzero prime ideal of OK is maximal.
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Dedekin domains have a very important property: unique factorization for
ideals. This is stated in the following corollary.

Corollary 1. If K is a number field, then any nonzero ideal of OK can be
written as a product

a = p1 · · · pr
of prime ideals, and the decomposition is unique up to order. Furthermore, the
pi’s are exactly the prime ideals of OK containing a.

Definition 54 (Ideal norm)
Let K be a number field, OK its ring of integers, and let a be an ideal in OK .
The norm of a is defined to be,

N(a) = |OK/a|.

The ideal norm can also be seen as N(a) = n when aa = 〈n〉, with n ∈ Z and a
denoting the complex conjugate of a.

The ring of integers of a number field is not always a principal ideal domain.
Nevertheless, its ideals are either principal or generated by a two elements set.

Example 56 ([23], Exercise 5.2)
The ring of integers of K = Q(

√
−5) is OK = Z[

√
−5]. Now we will show that,

in Z[
√
−5], the ideal 〈2〉 decomposes into p2 = 〈2〉 where p =

〈
2, 1 +

√
−5
〉
.

The elements in p are of the form

2z1 + z2(1 +
√
−5), z1, z2 ∈ Z[

√
−5].

Hence, from the definition of product of ideals, the elements in p2 are generated
by adding elements of the form

(2z1 + z2(1 +
√
−5))(2z3 + z4(1 +

√
−5)), z1, z2, z3, z4 ∈ Z[

√
−5]. (2.1)

Operating, we get

4z1z3 + 2(1 +
√
−5)(z1z4 + z2z3) + (−4 + 2

√
−5)z2z4 =

= 2
(
2z1z3 + (1 +

√
−5)(z1z4 + z2z3) + (−2 +

√
−5)z2z4

)
.

In this way, the elements in p2 are an addition of numbers of the form
2(k1 + k2

√
−5), with k1, k2 ∈ Z so that p2 ⊆ 〈2〉.

So as to prove that p2 =< 2 > we will show that 2 ∈ p2. In equation 2.1 we
can take z1 = 0, z2 = 1, z3 = 1, z4 = −1 and we get 6 ∈ p2. In a similar fashion,
by taking z1 = 1, z2 = 0, z3 = 1, z4 = 0 we get 4 ∈ p2. And from the definition
of ideal, if 4, 6 ∈ p2 then 2 = 6 − 4 ∈ p2, hence 〈2〉 ⊆ p2 and we conclude that
p2 = 〈2〉.
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We can check it in Sage:

sage: Q.<T>=PolynomialRing(QQ,’T’)

sage: K.<x>=NumberField(T^2+5)

sage: I=K.ideal(2)

sage: I.factor()

(Fractional ideal (2, x + 1))^2

Note that the ideal 〈2〉 is principal while
〈
2, 1 +

√
−5
〉

is not. From some

known results about ideal norms, it can be proven that
〈
2, 1 +

√
−5
〉

can not
be principal.

Finally, we see that N(p) = 2 since p = p and p2 = 〈2〉. Note that

2− (1 +
√
−5) = 1−

√
−5 = 1 +

√
−5,

hence, 〈
2, 1 +

√
−5
〉

=
〈
2, 1−

√
−5
〉

=
〈
2, 1 +

√
−5
〉
.

If p is a prime ideal in OK it can not be further factored in OK . Nevertheless,
that is not the case if we consider a finite extension L of K. If p is an ideal
of OK then pOL is and ideal of OL and can be uniquely be decomposed as a
product of prime ideals,

pOL = Pe1
1 · · ·Peg

g .

We say that a prime ideal p of OK ramifies in L if any of the ramification indices
ei are greater than 1.

Example 57
The ring of integers of Q is Z. The ideal 〈2〉 is prime in Z, but as we have seen
in the previous example, it ramifies in the ring of integers of Q(

√
−5), namely,

in Z[
√
−5] since,

〈2〉 =
〈
2, 1 +

√
−5
〉2
.

On the other side, the ideal 〈3〉 does not ramify in Z[
√
−5] since in this case,

〈3〉 =
〈
3, 1 +

√
−5
〉 〈

3, 2 +
√
−5
〉
.

We can check it in Sage:

sage: Q.<T>=PolynomialRing(QQ,’T’)

sage: K.<x>=NumberField(T^2+5)

sage: I=K.ideal(3)

sage: I.factor()

(Fractional ideal (3, x + 1)) * (Fractional ideal (3, x + 2))

44



Definition 55 (Fractional ideal)
A fractional ideal is a nonzero finitely generated OK-submodule of K. Such an
ideal can be written in the form αa where α ∈ K and a is an ideal of OK .

Remark 5
Given a number field K, its ring of integers OK is a Dedekin domain and
fractional ideals have unique factorization into prime ideals (the powers may be
negative). Given a prime ideal p and a fractional ideal a, the function vp(a)
that returns the power of p that appears in the factorization of a is a discrete
valuation (see Definition 17). The discrete valuation vp(a) tells us about the
ramification of the prime p.

Example 58
Let us consider the following set:

I =

{
3

2
m+

3

2

√
−5n : m,n ∈ Z

}
.

This set can described as{
1

2
3(m+

√
−5n) : m,n ∈ Z

}
=

{
1

2
3z : z ∈ Z[

√
−5]

}
=

1

2
〈3〉 .

Since 1
2 ∈ Q(

√
−5) and 〈3〉 is an ideal of its ring of integers we conclude I ∈

IQ(
√
−5).

The set of all fractional ideals of K is denoted by IK . The set IK is a group
under multiplication of ideals. We distinguish the subgroup of IK composed
of principal fractional ideals and denote it by PK . Now we can provide the
following definition.

Definition 56 (Ideal class group)
Let K be a number field and let IK and PK be the set of fractional ideals and
its subgroup of principal fractional ideals, respectively. The ideal class group
C(OK) is defined to be the quotient IK/PK .

Remark 6
The ideal class group can also be defined by considering that two fractional
ideals A,B ⊂ K are equivalent when there exist r, s ∈ K so that rA = sB. The
ideal class group corresponds to the quotient set of that equivalence relation.

By defining the class product as the class of the product of two ideals, ideal
classes have a group structure under multiplication whose identity element is the
class of principal ideals (which contains OK). It can be proven that the ideal
class group is generated by ideals whose norm is less or equal than 2

π

√
|D|,

where D is the discriminant of the number field K.
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Example 59
The ring of integers of Q is Z which is known to be a principal ideal domain.
Hence all the ideals of Z are principal and so are the fractional ideals of Q.
Hence IQ = PQ and the quotient C(OQ) = IQ/PQ is isomorphic to {0}.

Example 60
In the ring of integers of K = Q(

√
−5), the ideal I =

〈
2, 1 +

√
−5
〉

generates

the ideal class group since its norm N(I) = 2 is not larger than 2
π

√
20 ≈ 2.84.

In this example, C(OK) is isomorphic to Z2 since, as we saw in Example 56,
I2 = 〈2〉 in Z[

√
−5].

Example 61
In the ring of integers of K = Q(

√
−15), we have that

〈2〉 =

〈
2,

1 +
√
−15

2

〉〈
2,

1−
√
−15

2

〉
.

In this example, 〈2〉 and OK are in the same ideal class since 1
2 〈2〉 = 〈1〉 =

OK which is the identity element of C(OK). Moreover,
〈

2, 1+
√
−15
2

〉
and〈

2, 1−
√
−15
2

〉
are in the same class which we denote by J . Then, J2 is the

identity element of C(OK).

Theorem 5. Given a number field K, there is a finite Galois extension L of
K such that:

1. L is an unramified Abelian extension of K.

2. Any unramified Abelian extension of K lies in L.

Definition 57 (Hilbert class field)
The field L of Theorem 5 is called the Hilbert class field of K.

Example 62
Let K = Q(

√
−15). We will use Sage to compute the Hilbert class field L of K.

sage: K.<t>=QuadraticField(-15)

sage: L=K.hilbert class field(’u’)

sage: L

Number Field in u with defining polynomial x^2 - x + 1 over

its base field

We can see X2−X + 1 is the minimum polynomial of L over K. Hence, the
Hilbert class field L is a degree 2 extension of K and the automorphism group
G(L : K) is isomorphic to Z2.
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Lemma 2. Let L/K be a Galois extension, and let p be a prime ideal of OK

which is unramified in L. If P is a prime ideal of OL containing p, then there
is a unique element σ ∈ G(L : K) such that for all α ∈ OL,

σ(α) ≡ αN(p) (mod P),

where N(p) = |OK/p|.

Definition 58 (Artin symbol)
Let L/K be a Galois extension and let P be a prime ideal of OL. The unique
element σ related to OL of Lemma 2 is called the Artin symbol and is denoted
by ((L/K)/P).

Definition 59 (Artin map)
The Artin symbol defines a homomorphism, called the Artin map,(

L/K
·

)
: IK → G(L : K).

Next, Theorem 6 states that the Artin map provides and isomorphism be-
tween the ideal class group of a number field K and the automorphism group
of L/K, being L the Hilbert class field of K. More details are given in [6].

Theorem 6. If L is the Hilbert class field of a number field K, then the Artin
map is surjective, and its kernel is the subgroup PK of principal fractional ideals.
Thus, the Artin map induces an isomorphism

C(OK) ∼ G(L : K).

Proof sketch. By [6, Theorem 8.2] we have that given a number field K, an
Abelian extension E/K, and a modulus m (when K is purely imaginary, a
modulus can be regarded simply as an ideal of OK) divisible by all primes of
K that ramify in E, then the Artin map Φm is surjective (Φm is the Artin map
restricted to primes not dividing m). Since the Hilbert class field L is unramified,

if we take E = L then m = 1 and the Artin map

(
L/K
·

)
is surjective.

It is known that if L is the Hilbert class field of a number field K, and p is a
prime ideal of K, then p splits completely in L if and only if p is a principal ideal.
It is also known that an ideal p splits completely if and only if ((L/K)/p) = 1.
Hence, the kernel of the Artin map consists of the principal ideals of K, namely
PK .

We conclude that G(L : K) is isomorphic to C(OK) = IK/PK .

2.3 Orders in imaginary quadratic fields

As we will see in Section 5.2, orders in imaginary quadratic fields appear when
studying lattice homotheticity and complex multiplication. Such orders are
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briefly introduced in this section.

Definition 60 (Order in a quadratic field)
An order O in a quadratic field K is a subset O ⊂ K such that,

1. O is a subring of K containing 1.

2. O is a finitely generated Z-module.

3. O contains a Q-basis of K.

The ring of integers OK is an order in K and any order O of K satisfies
O ⊂ OK , hence OK is the maximal order of K. The following lemma addresses
how the orders of a quadratic field K are.

Lemma 3. Let O be an order in a quadratic field K, then,

O = Z + fOK ,

where f = [OK : O] is the index of O in OK . This value is referred to as the
conductor of the order.

Example 63
The set

O = Z + 2OQ(
√
−15) =

{
m+ (

√
−15)n : m,n ∈ Z

}
= Z

[√
−15

]
is an order in Q(

√
−15). Its conductor is 2.

Definition 61 (Discriminant of an order)
The discriminant of an order O in a quadratic field K is D = f2dK , where f is
the conductor and dK is the discriminant of the field K.

Example 64
The discriminant of an order in a quadratic field is computed in the same manner

as it was described in page 38. Since {1, 1+
√
−15
2 } is a basis for OQ(

√
−15) (see

Example 52) then, {1,
√
−15} is basis for O = Z+2OQ(

√
−15) whose discriminant

is ∣∣∣∣1 √
−15

1 −
√
−15

∣∣∣∣2 = (−2
√
−15)2 = 22(−15).

As expected, the result is of the form f2dK with f = 2 and dK = −15 (K =
Q(
√
−15)).

Since an order O has a ring structure, it can contain ideals.
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Definition 62 (Proper ideal of an order)
Let O be an order in a quadratic field an let a be an ideal of O. The ideal a is
said to be proper when

O = {β ∈ K : βa ⊂ a}.

Fractional ideals of an order are defined as a subset of K which is a nonzero
finitely genereated O-module. Hence, every fractional ideal is of the form αa,
where α ∈ K∗ and a is an O-ideal.

Definition 63 (Ideal class group of an order)
Given an order O, we denote I(O) the set of proper fractional O-ideals, and
P (O) ⊂ I(O) the subset composed of those that are principal. The ideal class
group of the order O is the quotient,

C(O) = I(O)/P (O).
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Chapter 3

Quadratic forms

In this chapter we will see that there exists a particular type of quadratic forms
that can be endowed with a group structure: the so called form class group.
The importance of this group comes from the fact that it is isomorphic to
the ideal class group of the ring of integers of an imaginary quadratic field
(see Theorem 8). This isomorphism is the core of Atkin-Morain’s method for
constructing Hilbert class polynomials (Section 6.1). The concepts and results
of this chapter have been extracted mainly from [4] and [6].

3.1 Basic concepts

Definition 64 (Binary quadratic form)
An integral quadratic form in two variables is an expression,

f(x, y) = ax2 + bxy + cy2, a, b, c ∈ Z.

If coefficients a, b, c are relatively prime, f(x, y) is said to be primitive. An
integer m is represented by a form f(x, y) if there exist two integers x′, y′ satis-
fying,

m = f(x′, y′).

If x′, y′ are relatively prime, we say that m is properly represented by f(x, y).
Two forms f(x, y) and g(x, y) are properly equivalent when,

f(x, y) = g(px+ qy, rx+ sy), p, q, r, s ∈ Z, ps− qr = 1.

Example 65
Let us consider f(x, y) = 34x2 − 45xy + 15y2. This quadratic form is primitive
since

gcd(34,−45, 15) = 1.

We can see f(x, y) properly represents 1 and 4 since, 1 = f(2, 3) and 4 = f(1, 2).
The integers p = 2, q = 1, r = 3 and s = 2 satisfy ps− qr = 1, and,
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f(2x+y, 3x+2y) = 34(4x2+4xy+y2)−45(6x2+7xy+2y2)+15(9x2+12xy+4y2) =

= x2 + xy + 4y2 = g(x, y).

Hence, f(x, y) and g(x, y) are properly equivalent. As a consequence, the sets of
integers represented by both forms coincide. For instance, g(x, y) also represents
1 and 4, since 1 = g(1, 0) and 4 = g(0, 1).

Definition 65 (Discriminant)
The discriminant of a quadratic form f(x, y) = ax2 + bxy+ cy2 is defined to be,

D = b2 − 4ac.

The discriminant is tightly related to proper equivalence in the sense that two
properly equivalent quadratic forms have the same discriminant. The converse
is not necessarily true.

Since D = b2 − 4ac, we get b2 = D + 4ac, and b2 ≡ D (mod 4). If b ≡ 0, 2
(mod 4) then D ≡ b2 ≡ 0 (mod 4) while if b ≡ 1, 3 (mod 4) then D ≡ b2 ≡ 1
(mod 4). Hence the discriminant of any quadratic form satisfies that,

D ≡ 0, 1 (mod 4).

Given a form f(x, y) = ax2 + bxy + cy2, we can see that

4af(x, y) =

= 4a2x2 + 4abxy + 4acy2 = 4a2x2 + 4abxy + (b2y2 − b2y2) + 4acy2 =

= (4a2x2 + 4abxy + b2y2)− y2(b2 − 4ac) =

= (2ax+ by)2 −Dy2.

Here we can distinguish two cases:

• D > 0: the quadratic form represents both positive and negative integers.

• D < 0: the quadratic form represents only positive integers (if a > 0) or
only negative ones (if a < 0). In the former case f(x, y) is definite positive.

Definition 66 (Reduced form)
A primitive positive definite form f(x, y) = ax2 + bxy+ cy2 is said to be reduced
if,

|b| ≤ a ≤ c, and b ≥ 0 if either |b| = a or a = c.

Theorem 7. Every primitive positive definite form is properly equivalent to a
unique reduced form.
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An algorithm for computing the reduced equivalent form is described in [4,
Chap.5].

By considering the proper equivalence relation, primitive positive definite
forms can be grouped into equivalence classes containing a unique reduced form
each.

Example 66
Let f(x, y) = 34x2 − 45xy + 15y2 and g(x, y) = x2 + xy + 4y2.

We have seen that both forms are properly equivalent. It is easy to check
that both forms have the same discriminant. In effect, the discriminant D of
f(x, y) is,

D = (−45)2 − 4 · 34 · 15 = −15

while that of g(x, y), D′, is,

D′ = 12 − 4 · 1 · 4 = −15.

Both quadratic forms are definite positive. Form g is reduced.

Next we will see that once the discriminant D < 0 has been fixed, the number
h(D) of equivalence classes of primitive positive definite forms of discriminant
D is finite. The number h(D) is the class number.

Let f(x, y) = ax2 + bxy + cy2 be a form of discriminant D < 0. If f is
positive definite then 1 ≤ a while if f is reduced then b2 ≤ a2 and a ≤ c, so that

−D = 4ac− b2 ≥ 4a2 − a2 = 3a2.

In this way, 1 ≤ a ≤
√

(−D)/3. For a fixed D < 0, there are only finitely many
integers a satisfying the previous inequality. A reduced form satisfies |b| ≤ a so
that for each a the amount of such b values is also finite. Finally, given a pair
a, b, there is at most one value for c satisfying D = b2 − 4ac (such an integer c
may not exist). Hence, the number of reduced primitive positive forms having
discriminant D < 0 is finite.

Example 67
There are two different reduced primitive positive forms of discriminant D =
−15. They are:

x2 + xy + 4y2, 2x2 + xy + 2y2

We can check it in Sage:

sage: BinaryQF reduced representatives(-15,primitive only=True)

[x^2 + x*y + 4*y^2, 2*x^2 + x*y + 2*y^2]

Note that the number of forms obtained in this example coincides with
the degree of the extension L/Q(

√
−15) where L is the Hilbert class field of
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Q(
√
−15) that was computed in Example 62 (p. 46). This is a particular example

of an important statement resulting from Theorems 6 and 8 which is the basis
of Atkin-Morain’s method for generating elliptic curves with a given cardinality.
That method is studied in Section 6.1.

Example 68
There are four different reduced primitive positive forms of discriminant D =
−56. They are:

x2 + 14y2, 2x2 + 7y2, 3x2 − 2xy + 5y2, 3x2 + 2xy + 5y2

We can check it in Sage:

sage: BinaryQF reduced representatives(-56,primitive only=True)

[x^2 + 14*y^2, 2*x^2 + 7*y^2, 3*x^2 - 2*x*y + 5*y^2,

3*x^2 + 2*x*y + 5*y^2]

We got four quadratic forms. We can now check the degree of the extension
L/Q(

√
−56), where L is the Hilbert class field of Q(

√
−56) is four:

sage: K.<t>=QuadraticField(-56)

sage: L=K.hilbert class field(’u’)

sage: L

Number Field in u with defining polynomial x^4 + 2*x^3 + x^2 +

2*x + 1 over its base field

The set composed of quadratic form equivalence classes with discriminant
D is denoted C(D). We can take the unique reduced form in each class as a
representative for that class. Next we will see that this set can be endowed with
a group structure.

3.2 Form class group

Definition 67 (Quadratic form composition)
If f(x, y) and g(x, y) are primitive positive definite forms of discriminant D, a
form F (x, y) of the same type is their composition provided that

f(x, y)g(z, w) = F (B1(x, y; z, w), B2(x, y; z, w)),

where

Bi(x, y; z, w) = aixz + bixw + ciyz + diyw, i = 1, 2.
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When the previous expressions satisfy

a1b2 − a2b1 = f(1, 0), a1c2 − a2c1 = g(1, 0)

the composition is said to be direct.

Lemma 4. Assume that f(x, y) = ax2+bxy+cy2 and g(x, y) = a′x2+b′xy+c′y2

have discriminant D and satisfy gcd(a, a′, (b+b′)/2) = 1. Then there is a unique
integer B modulo 2aa′ satisfying,

B ≡ b (mod 2a)

B ≡ b′ (mod 2a′)

B2 ≡ D (mod 4aa′).

Definition 68 (Dirichlet composition)
Let f(x, y) = ax2+bxy+cy2 and g(x, y) = a′x2+b′xy+c′y2 be primitive positive
definite forms of discriminant D < 0 which satisfy gcd(a, a′, (b+b′)/2) = 1. The
Dirichlet composition of f(x, y) and g(x, y) is the form

F (x, y) = aa′x2 +Bxy +
B2 −D

4aa′
y2,

where B is the integer determined by Lemma 4.

Let D ≡ 0, 1 (mod 4) be a negative discriminant. The set C(D) is finite and
its cardinality is h(D). The Dirichlet composition induces a well-defined binary
operation on C(D) which makes C(D) into a finite Abelian group. The identity
element of C(D) is the class containing the form

x2 − D

4
y2, if D ≡ 0 (mod 4),

x2 + xy +
1−D

4
y2, if D ≡ 1 (mod 4).

Example 69
Taking D = −15, we know that

C(−15) = {x2 + xy + 4y2, 2x2 + xy + 2y2}

The class of x2 + xy + 4y2 is the identity element of C(−15) and the class
of 2x2 + xy + 2y2 must have order 2, hence C(−15) is isomorphic to Z2.

Remark 7
Note that in Example 62 we concluded that the automorphism group of the
extension L/Q(

√
−15) being L the Hilbert class field of Q(

√
−15) was also

isomorphic to Z2. Theorem 6 together with the forthcoming Theorem 8 will
serve us to state that both groups are always isomorphic. The Atkin-Morain [2]
method implemented in Section 6.1 employs this isomorphism for constructing
the Hilbert class polynomial from quadratic forms.
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Remark 8
In Section 6.1 we will see how Atkin-Morain’s method constructs a Hilbert class
polynomial by making use of the elements in an appropiate form class group.

Example 70
Let us take D = −56. In this case,

C(−56) = {x2 + 14y2, 2x2 + 7y2, 3x2 − 2xy + 5y2, 3x2 + 2xy + 5y2}.

The class of x2 + 14y2 is the identity element of C(−56). Let f(x, y) =
2x2 + 7y2 and g(x, y) = 3x2− 2xy+ 5y2. Now we will compute the composition
of f(x, y) and g(x, y). In this example, the value B = 4 satisfies the conditions
of Lemma 4:

4 ≡ 0 (mod 4),

4 ≡ −2 (mod 6),

16 ≡ −56 (mod 24).

Once B is know, we compute the Dirichlet composition of f(x, y) and g(x, y):

F (x, y) = 6x2 + 4xy + 3y2.

The obtained form F is not reduced since the coefficients a = 6 and c = 3 do
not satisfy a ≤ c. The integers p = 0, q = −1, r = 1 and s = 1 satisfy that
pr − qs = 1 and

F (px+ qy, rx+ sy) = F (−y, x+ y) = 3x2 + 2xy + 5y2.

In this way, the Dirichlet composition of the classes represented by 2x2 + 7y2

and 3x2 − 2xy + 5y2 generates as a result the class of 3x2 + 2xy + 5y2.
We can check it in Sage:

sage: f=BinaryQF([2,0,7])

sage: g=BinaryQF([3,-2,5])

sage: f*g

6*x^2 + 4*x*y + 3*y^2

sage: (f*g).reduced form()

3*x^2 + 2*x*y + 5*y^2

It could happen that two quadratic forms f(x, y) = ax2 + bxy + cy2 and
g(x, y) = a′x2 + b′xy + c′y2 with the same discriminant D < 0 do not satisfy
the condition of Lemma 4 (gcd(a, a′, (b + b′)/2) = 1). In that case, prior to
composing both forms, we would have to find a quadratic form g′(x, y) = a′′x2+
b′′xy + c′′y2 properly equivalent to g(x, y) satisfying gcd(a, a′′) = 1. Now, the
forms f(x, y) and g′(x, y) meet the requirement of Lemma 4 so that they can

56



be composed. As a result we would obtain a quadratic form belonging to the
class of the composition of f(x, y) and g(x, y). Such a quadratic form g′(x, y) is
guaranteed to exist.

Example 71
Let f(x, y) = 3x2 − 2xy + 5y2 and g(x, y) = 3x2 + 2xy + 5y2. These forms do
not satisfy the condition of Lemma 4 since,

gcd

(
3, 3,

−2 + 2

2

)
= 3 6= 1.

Nevertheless, we can take integers p = 3, q = 5, r = 1 and s = 2 which
satisfy ps− qr = 1 and we can compute

g′(x, y) = g(3x+ 5y, x+ 2y) = 182x2 + 140xy + 27y2.

The form g′(x, y) is properly equivalent to g(x, y). The forms f(x, y) and g′(x, y)
do satisfy the condition of Lemma 4. In this case, B = 868 and we can apply
Dirichlet composition obtaining as a result,

546x2 + 868xy + 345y2.

This form is not reduced. Its reduced equivalent form is x2 + 14y2 which is a
representative of the identity class in C(−56). Hence, f(x, y) and g(x, y) are
inverses of each other.

We can check it in Sage:

sage: f=BinaryQF([3,-2,5])

sage: g=BinaryQF([3,2,5])

sage: (f*g).reduced form()

x^2 + 14*y^2

Example 72
Let us consider again the group:

C(−56) = {x2 + 14y2, 2x2 + 7y2, 3x2 − 2xy + 5y2, 3x2 + 2xy + 5y2}.

This group is Abelian, hence it can be isomorphic to Z4 or Z2 × Z2. Let us
check it.

We take the class of f(x, y) = 3x2 − 2xy + 5y2 and check its order:

f(x, y) ∗ f(x, y) = 2x2 + 7y2.

We compute also,

f(x, y) ∗ f(x, y) ∗ f(x, y) = 3x2 + 2xy + 5y2.
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Finally,
f(x, y) ∗ f(x, y) ∗ f(x, y) ∗ f(x, y) = x2 + 14y2

Hence, C(−56) has an order 4 element, so that it is isomorphic to Z4. We can
check it in Sage:

sage: f=BinaryQF([3,-2,5])

sage: (f*f).reduced form()

2*x^2 + 7*y^2

sage: (f*f*f).reduced form()

3*x^2 + 2*x*y + 5*y^2

sage: (f*f*f*f).reduced form()

x^2 + 14*y^2

3.3 Forms and ideals

This section is devoted to present Theorem 8 (see [6]) which is of great impor-
tance since it provides a method for generating the elements of the ideal class
group of the ring of integers of an imaginary quadratic field of discriminant dK
from the elements of the form class group of the same discriminant.

Theorem 8. Let K be an imaginary quadratic field of discriminant dK < 0.
Then,

1. If f(x, y) = ax2 + bxy+ cy2 is a primitive positive definite quadratic form
of discriminant dK , then[

a,
−b+

√
dK

2

]
=

{
ma+ n

−b+
√
dK

2
: m,n ∈ Z

}
is an ideal of OK .

2. The map sending f(x, y) to
[
a, −b+

√
dK

2

]
induces an isomorphism between

the form class group C(dK) and the ideal class group C(OK).

Proof sketch. Since dK < 0, the polynomial f(x, 1) = ax2 + bx + c has τ =
−b+
√
d

2a ∈ h as a root and
[
a, −b+

√
dK

2

]
= [a, aτ ] = a[1, τ ] with τ ∈ K which is

an ideal of OK [6, p.137].
By [6, p.138], we get that if f(x, y) and g(x, y) are two forms of the same

discriminant and τ, τ ′ are their respective roots, then f(x, y) and g(x, y) are
properly equivalent if and only if [1, τ ] = λ[1, τ ′] for some λ ∈ K∗. Hence,
the map sending f(x, y) to a[1, τ ] induces an injection C(D) → C(OK) which
is known to be surjective. Moreover, the Dirichlet composition of f(x, y) and
g(x, y) corresponds to the product of their corresponding ideal classes, so that
C(dK) and C(OK) are isomorphic.
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Example 73
Let us consider the imaginary quadratic field K = Q(

√
−15). Since −15 ≡

1 (mod 4), its discriminant is dK = −15 and its ring of integers is OK =

Z
[
1+
√
−15
2

]
.

We know from previous examples that the form class group of discriminant
−15 has cardinality two, being x2 + xy + 4y2 and 2x2 + xy + 2y2 the reduced
forms representing each of the two equivalence classes in C(−15).

Then, the ideal class representatives of C(OK) are given by{[
1,
−1 +

√
−15

2

]
,

[
2,

1 +
√
−15

2

]}
.

Note that,
[
1, −1+

√
−15

2

]
=
[
1, 1+

√
−15
2

]
= Z

[
1+
√
−15
2

]
= OK is the identity

element of C(OK).

Remark 9
From theorems 6 and 8 we can conclude that the form class group C(D) is
isomorphic to the automorphism group G(L : Q(

√
D)) with L being the Hilbert

class field of Q(
√
D).

Example 74
From Remark 9 and Example 69 we get that G(L : Q(

√
−15)) is isomorphic to

Z2, being L the Hilbert class field of Q(
√
−15).

This was already stated in Example 62 due to the simplicity of this group.

Example 75
From Remark 9 and Example 72, G(L′ : Q(

√
−56)) is isomorphic to Z4, being

L′ the Hilbert class field of Q(
√
−56).

Remark 10
The isomorphism commented in Remark 9 is of capital importance since it
provides a method for constructing Hilbert class polynomials (as explained in
Section 5.2). This is precisely what one of the steps of the Atkin-Morain method
(implemented in Section 6.1) does.
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Chapter 4

Algebraic curves

This chapter is composed of two sections. The first one provides an overview of
complex algebraic affine and projective curves. The second one is an introduc-
tion to algebraic geometry. Their content comes mainly from [13] and [18].

4.1 Complex algebraic curves

This section presents some basic concepts about algebraic curves defined over the
complex numbers together with the projective plane and some results involving
complex projective algebraic curves of degree three. These curves are the core
of the theory of complex multiplication, as we will see in Chapter 5. The reader
is referred to [13] for more details.

Definition 69 (Complex algebraic curve in C2)
Let P (X,Y ) be a nonconstant polynomial with complex coefficients. The com-
plex algebraic curve in C2 defined by P is

C = {(x, y) ∈ C2 : P (x, y) = 0}.

Example 76
The set C = {(x, y) ∈ C2 : x2 − 3xy + 2y2 = 0} is a complex algebraic curve
defined by X2 − 3XY + 2Y 2.

Remark 11
If a polynomial P (X,Y ) factors as P (X,Y ) = Q(X,Y )R(X,Y ), then the curve
defined by P is the union of the curves defined by Q and R.

Definition 70 (Components of a curve)
Given a polynomial P (X,Y ), the curves defined by its irreducible factors are
said to be the components of the curve defined by P .
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Example 77
The curves C1 = {(x, y) ∈ C2 : x−y = 0} and C2 = {(x, y) ∈ C2 : x−2y = 0}
are the components of curve C in Example 76.

Definition 71 (Degree of a curve)
The degree of a curve C defined by P (X,Y ) is the degree of P .

Definition 72 (Singular point)
A point (a, b) ∈ C is called a singular point of C if

∂P

∂X
(a, b) = 0 =

∂P

∂Y
(a, b).

The curve C is called nonsingular if its set of singular points is empty.

Example 78
The point (0, 0) is a singular point of C = {(x, y) ∈ C2 : x2 − 3xy + 2y2 = 0}.
This is because (0, 0) ∈ C and it is a zero of the two partial derivatives of
P = X2 − 3XY + 2Y 2:

∂P

∂X
= 2X − 3Y and

∂P

∂Y
= −3X + 4Y.

Definition 73 (Complex projective plane)
The complex projective plane P2(C) is the quotient of C3\{0} under the equiv-
alence relation

(x, y, z) ∼ (λx, λy, λz), λ ∈ C∗.
The equivalence class of a point (x, y, z) is denoted by [x, y, z].

Let us now define the following subset of P2(C):

U = {[x, y, z] ∈ P2(C) : z 6= 0},

and consider the mapping φ : U → C2 defined as

φ[x, y, z] 7→
(x
z
,
y

z

)
.

The mapping φ is a homeomorphism between U and C2, hence, C2 is embedded
in P2(C).

The points in the complement of U in P2(C), i.e. {[x, y, z] ∈ P2(C) : z = 0}
are the points at infinity.

Definition 74 (Complex projective curve in P2(C))
Let P (X,Y, Z) be a nonconstant homogeneous polynomial in three variables
with complex coefficients. The projective curve C̃ defined by P is

C̃ = {[x, y, z] ∈ P2(C) : P (x, y, z) = 0}.
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Remark 12
Given a projective curve C̃ in P2(C) defined by an homogeneous polynomial
P (X,Y, Z) we can compute its intersection with C2 by considering its points
[x, y, z] satisfying z 6= 0. This intersection is a curve C defined by the polynomial
in two variables P (X,Y, 1).

Remark 13
Let Q(X,Y ) be a polynomial of degree d given by,

Q(X,Y ) =
∑
r+s≤d

ar,sX
rY s

and let C be the affine curve defined by Q. The curve C is the intersection of
C2 with the projective curve C̃ defined by the homogeneous polynomial

ZdQ

(
X

Z
,
X

Z

)
=
∑
r+s≤d

ar,sX
rY sZd−r−s.

Example 79
Let us consider the affine curve defined by polynomial

Q(X,Y ) = Y 2 − 4X3 + g2X + g3,

that is,

C = {(x, y) ∈ C× C : y2 = 4x3 − g2x− g3}.

Now we can construct the projective curve C̃ from the polynomial

Z3Q

(
X

Z
,
Y

Z

)
= Y 2Z − 4X3 + g2XZ

2 + g3Z
3.

This curve is given by

C̃ = {[x, y, z] ∈ P2(C) : y2z = 4x3 − g2xz2 − g3z3}.

We can identify the points [x, y, z] ∈ C̃ with z 6= 0 with the points (x, y) ∈ C
via the homeomorphism

φ([x, y, z] =
(x
z
,
y

z

)
.

The curve C̃ has an additional point at infinity which is [0, 1, 0].

Remark 14
In Section 5.3 we will see that the points of an elliptic curve can be endowed
with an Abelian group structure in which the point at infinity is the identity
element.
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The next proposition is an important result regarding the topology of com-
plex projective curves. It includes the definition of genus:

Proposition 5. A nonsingular complex projective curve of degree d in P2(C)
is topologically a sphere with g handles, where the genus g satisfies the degree-
genus formula

g =
1

2
(d− 1)(d− 2).

Remark 15
The genus of a nonsingular cubic curve (its degree is d = 3) is g = 1. Hence,
such curves are topologically a torus.

Prior to the end of this section, we focus our attention on a particular type
of projective curves, which are those defined by a degree three polynomial. The
following result [13, Ex. 3.11] is of great importance for Chapter 5 since it
introduces the so called Weierstrass equation of an elliptic curve.

Proposition 6. A nonsingular projective curve of degree three is equivalent
under a projective transformation to one defined by

Y 2Z = 4X3 − g2XZ2 − g3Z3,

where (g2)3 − 27(g3)2 6= 0.

4.2 Algebraic geometry

In this section, some basic concepts about algebraic geometry are introduced.
The possibility to associate the closed points of the projective line or an algebraic
curve with valuation rings is explained. For a complete account on algebraic
geometry, the reader is referred to [18].

4.2.1 The projective line

We begin by recalling the concept of valuation previously introduced in Def-
inition 17 for the particular case G = Z, in which case it is called a discrete
valuation.

Definition 75 (Valuation)
Let K be a field and let G be a totally ordered Abelian group. A valuation of
K with values in G is a map v : K∗ → G such that for all x, y ∈ K, x, y 6= 0,
we have

1. v(xy) = v(x) + v(y),

2. v(x+ y) ≥ min(v(x), v(y)).
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The set R = {x ∈ K : v(x) ≥ 0}∪{0} is called a valuation ring of v and the
subset m = {x ∈ k : v(x) > 0} ∪ {0} is the only maximal ideal of R, therefore
(R,m) is a local ring. The quotient R/m, which is a field (m is maximal, see
Definition 12), is called the residue field.

Next, some examples are given. The first one, was already given in Exam-
ple 19 (p. 26).

Example 80

Let a ∈ Fqm , m ≥ 1 and let f = p(X)
q(X) be a rational function in Fq(X). We can

represent f as

f =
r(X)

s(X)
(X − a)e

so that r, s, (X − a) are coprime polynomials in Fqm [X]. Here we can define
the discrete valuation va(f) = e. In this particular example, the valuation ring
(also called a place) of va is the set

R =

{
f =

p(X)

q(X)
∈ Fqm(X) : q(a) 6= 0

}
,

and the maximal ideal of R is

m =

{
f =

p(X)

q(X)
∈ Fqm(X) : q(a) 6= 0, p(a) = 0

}
.

Example 81
Let p(X) ∈ k[X] be an irreducible polynomial. We can define a discrete valua-
tion associated to p(X) as

vp : k(X)∗ → Z

f 7→ e,

where f is represented as a quotient of polynomials

f =
r(X)

s(X)
p(X)e

where r, s and p are relatively prime polynomials.

Example 82
If in the previous example we take p(X) = X2 + 3 ∈ Z5[X], then the associated
valuation ring R can be described as

R =

{
r(X)

s(X)
: r, s ∈ Z5[X], r, s coprime, and (X2 + 3) - s

}
.
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Definition 76 (Closed points of the affine line)
Let k = Fq be a finite field. The monic irreducible polynomials in k[X] of degree
d in the indeterminate X will be called the closed points of the affine line A1(k)
rational over k and of degree d.

Definition 77 (Degree of a point)
If the closed point P ∈ A1(k) corresponds to the polynomial f(X) and deg f = d,
we will write

degP = deg f = d.

Example 83
The degree 1 points of A1(Z5) correspond to the degree 1 polynomials in Z5[X].
They are:

{X, X + 1, X + 2, X + 3, X + 4}.

The degree 2 points of A1(Z5) are the irreducible degree 2 polynomials in
Z5[X]. They are:

{X2 + 2, X2 + 3, X2 +X + 1, X2 +X + 2, X2 + 2X + 3, X2 + 2X + 4,

X2 + 3X + 3, X2 + 3X + 4, X2 + 4X + 1, X2 + 4X + 2}.

Next we will see that we can associate each closed point of the affine line
with a discrete valuation ring. The following definition is possible since the ring
of polynomials k[X] is a unique factorization domain.

Next, for each closed point of A1(k) we define the following discrete valuation
that takes as input an element of the field of rational functions of k, i.e. k(X).

Definition 78 (Valuation of a closed point of A1(k))
Let P ∈ A1(k) and let p(X) be the monic irreducible polynomial corresponding
to P . The valuation vP is defined as in Example 81 considering the polynomial
p(X).

Example 84
Let us consider the closed point P ∈ A1(Z5) corresponding to polynomial X2+3.
Next, let f be the following rational function in Z5(X):

f =
X5 +X4 +X3 +X2 + 4X + 4

X2 + 1

In this case vP (f) = 2 since,

f =
(X + 1)

(X + 2)(X + 3)
(X2 + 3)2.
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Definition 79 (Valuation ring of a closed point of A1(k))
Let P ∈ A1(k), the discrete valuation ring associated to P is

RP = {f ∈ k(X) : vP (f) ≥ 0},

whose maximal ideal is

mP = {f ∈ k(X) : vP (f) > 0},

and the residue class field associated to P is RP /mP .

Example 85
If P ∈ A1(Z5) corresponds to polynomial X2 + 3, then the valuation ring RP
is, as we saw in Example 82:

RP =

{
r(X)

s(X)
: r, s ∈ Z5[X], r, s coprime, and (X2 + 3) - s

}
,

the maximal ideal of RP is

mP =

{
r(X)

s(X)
: r, s ∈ Z5[X], r, s coprime, and (X2 + 3) | r

}
,

and the corresponding residue class field is

kP = RP /mP =

{
aX + b

s(X)
: a, b ∈ Z5, and (X2 + 3) - s

}
.

Definition 80 (Projective line P1(k))
The projective line P1(k) is obtained by adding to the affine line A1(k) a point
at infinity. That is,

P1(k) = A1(k) ∪ {∞}.

Remark 16
The projective line P1(R) is topologically equivalent to a circle.

Remark 17
The projective line P1(C) is topologically equivalent to a sphere, known as the
Riemann sphere.

Previously, we have associated a polynomial to each closed point of A1(k).
The projective line has an additional point at infinity. Next we will assign a
rational function to it. More precisely,

p∞(X) = 1/X.
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Definition 81 (Valuation of the point at infinity)
Let f(X) = s(X)/r(X) be the quotient of two polynomials in k[X]. We define
the valuation v∞ as

v∞(f) = deg r − deg s.

The discrete valuation ring associated to ∞ is

R∞ = {f ∈ k(X) : v∞(f) ≥ 0}.

Example 86
Let us consider the point at infinity in P1(Z5), and let

f =
X5 +X4 +X3 +X2 + 4X + 4

X2 + 1
.

Then v∞(f) = −3.

Theorem 9. The only discrete valuations of k(X) are vP where P is a monic
irreducible polynomial in k[X] and v∞.

From the previous theorem, if we consider a finite field k, the closed points
on the projective line P1(k), rational over k, correspond in a one-to-one manner
to the discrete valuations of k(X), the field of rational functions in the tran-
scendental element T . Rational functions play a fundamental role in the theory
of algebraic curves. As we will see next in Definition 84, employing divisors we
will be able to associate a set of points of the projective line (valuation rings)
to any given rational function.

Definition 82 (Divisor on the projective line)
A divisor on the projective line P1(k) is a formal sum of points with integral
coefficients. Hence, a divisor D is an expression of the form

D =
∑
P

mPP,

where the sum is over all closed points of P1(k), and the integers mP are all,
except for a finite number, equal to 0.

Example 87
Let the closed points P,Q ∈ P1(Z5) correspond to X2+3 and X+1, respectively.
Then,

D = 3P + 2Q

is a divisor on P1(Z5).

Given two divisors D and D′, we say that D ≥ D′ if all the corresponding
coefficients satisfy mP ≥ nP .
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Definition 83 (Degree of a divisor)
Let D =

∑
P mPP be a divisor on P1(k). The degree of D is the integer

degD =
∑
P

mP degP.

Example 88
Let the closed points P,Q ∈ P1(Z5) correspond to X2+3 and X+1, respectively.
If D = 3P + 2Q, then

degD = 3 degP + 2 degQ = 3 · 2 + 2 · 1 = 8.

Definition 84 (Divisor associated to a rational function)
Given a rational function f ∈ k(X) we define the divisor associated to f as

(f) =
∑
P

vP (f)P.

Example 89

Let us consider the rational function f = X5+X4+X3+X2+4X+4
X2+1 in Z5(X). Since

f =
(X2 + 3)2(X + 1)

(X + 2)(X + 3)
,

then,
(f) = 2P +Q−R− T − 3∞,

where P,Q,R, T are closed points corresponding to X2 +3, X+1, X+2, X+3,
respectively.

Definition 85 (Principal divisor)
A divisor D which is of the form D = (f) for some rational function f is called
principal. The degree of a principal divisor is 0.

Definition 86 (Linear space associated with a divisor)
Let D be a divisor on P1(k). The linear space associated with D is

L(D) = {f ∈ k(T ) : (f) +D ≥ 0} ∪ {0}.

We define l(D) = dimk L(D).

Theorem 10. Let D be a divisor on P1(k). We have l(D) = degD + 1.

4.2.2 Algebraic curves

We have just seen how to associate the points of the projective line to valuation
rings. In this section, we will do the same considering the points of an algebraic
curve.
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Definition 87 (Plane affine algebraic curve)
Let k be a field, and let f be a polynomial in k[X,Y ]. A plane affine algebraic
curve is given by:

C = {(x, y) ∈ K2 : f(x, y) = 0}

where K is an algebraically closed extension of k.

Definition 88 (Coordinate ring of a curve)
Let f be a polynomial in k[X,Y ] which is absolutely irreducible (it remains
irreducible over any finite extension of k). Under this condition, the curve

C : f(x, y) = 0

is connected. Let us denote by 〈f〉 the principal ideal in k[X,Y ] generated by
f . The coordinate ring of the curve C is defined as

R = k[X,Y ]/ 〈f〉 .

Definition 89 (Function field of a curve)
Let R be the coordinate ring of the curve C. The field of fractions of R is the
function field K = k(C) of the curve C.

Remark 18
An alternative definition (focused on complex numbers) of the function field of
a curve was given in Example 46. We recall it here in a more general form. Let
f ∈ k[X,Y ] be an irreducible polynomial, and consider the curve

C : f(x, y) = 0.

Any rational function

R(X,Y ) = P (X,Y )/Q(X,Y ),

where P and Q are polynomials, is declared to be zero whenever P but not Q
is divisible by f . We place in one class all the rational functions which differ by
zero from a given one. This collection of equivalence classes is a field. This is
the function field of curve C.

Example 90
Let us consider the polynomial f = Y 2 − Y −X2 − 2 defined over Z5, and let
C be the curve defined by f . In the function field of C, the rational functions

R(X,Y ) = 3X2 + Y,

and
R′(X,Y ) = 2X2 + Y 2 − 2,

are in the same class.
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The following definition is a generalization of Definition 76.

Definition 90 (Closed point of a curve)
A discrete valuation ring (Rv,mv) of the function field K = k(C) is called a
closed point of C.

Definition 91 (Degree of a closed point)
Let Pv = (Rv,mv) be a closed point of curve C. If kv = Rv/mv denotes the
residue class field of Pv then we define the degree of Pv as

deg(Pv) = [kv : k].

Since the function field K = k(C) of a curve is the field of fractions of
the coordinate ring k[X,Y ]/ 〈f〉, any element g ∈ K can be represented as a
quotient

g =
A(X,Y )

B(X,Y )
, A,B ∈ k[X,Y ].

Let P = (α, β) so that f(α, β) = 0. With the point P we can associate the
ring

R =

{
g ∈ K : g =

A(X,Y )

B(X,Y )
, B(α, β) = 0

}
and

m =

{
g ∈ R : g =

A(X,Y )

B(X,Y )
, A(α, β) = 0

}
If (α, β) is a simple (non-singular) point of C, then the pair (R,m) is a

discrete valuation ring and Pv = (R,m) is the closed point corresponding to
P = (α, β).

Conversely, if Pv = (Rv,mv) is a closed point of degree one, the maximal
ideal mv as an ideal in k[X,Y ]/ 〈f〉 must be of the form mv = 〈X − α, Y − β〉,
with α, β ∈ k and f(α, β) = 0. When P = (α, β) is not a simple point, there
may be several closed points on k(C) corresponding to P .

Our objective is to view an algebraic curve C as a covering of the projective
line P1. The following theorem addresses the extension of valuation rings in the
function field of P1 to the function field of curve C.

Theorem 11. Let K be the function field of a curve C, and let k be the field
of constants. Let A be a subring of K containing k and mA an ideal in A, such
that, mA 6= A, {0}. Then there exists a valuation ring B of K with maximal
ideal mB and satisfying mA ⊂ mB ∩A.

Let K be the function field of a curve C defined over a field k, and let A
be a valuation ring in K (a point of C) such that k ⊂ A, then A ∩ k(X) is a
valuation ring of k(X) so that it is a point of P1(k).
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Reversely, given a valuation ring in k(X) (a point of P1(k)), Theorem 11
states that it can be extended to a valuation ring of K which is associated to a
point of a curve C with function field K.

Example 91
Let us consider again the polynomial f = Y 2−Y −X2−2 defined over Z5, and
let C be the curve defined by f . In Z5, the points of C are:

{(0, 2), (0, 4), (2, 3), (3, 3)}

Now, we extend Z5 by considering a root α of X2 + 2, that is Z5(α). Here, the
points of C are:

{(0, 2), (0, 4), (1, 2α+ 3), (1, 3α+ 3), (2, 3), (3, 3), (4, 2α+ 3), (4, 3α+ 3),

(α, 0), (α, 1), (α+ 2, 2α+ 4), (α+ 2, 3α+ 2), (α+ 3, 2α+ 2), (α+ 3, 3α+ 4),

(2α, α+3), (2α, 4α+3), (3α, α+3), (3α, 4α+3), (4α+2, 2α+2), (4α+2, 3α+4),

(4α+ 3, 2α+ 4), (4α+ 3, 3α+ 2), (4α, 0), (4α, 1)}

Definition 92 (Divisor on a curve)
A divisor on a curve C, rational over k, is a formal linear combination

D =
∑
P

mPP,

of closed points P with integral coefficients mP all of which, except for a finite
number, are zero. The set of all divisors on a curve C is denoted by Div(C).
The degree of a divisor D is defined as

degD =
∑
P

mP degP.

Definition 93 (Divisor of a function and divisor of a differential)
The divisor of a function f ∈ K(C) is

(f) =
∑
P

ordP (f)P.

The divisor of a differential ω ∈ ΩC is

(ω) =
∑
P

ordP (ω)P.

Definition 94 (Canonical class)
Let C be a curve, the canonical class is the set of divisors

W = {(ω) ∈ Div(C) : ω ∈ ΩC}.
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Definition 95 (Genus of a curve)
Let C be a curve and let ω ∈ ΩC . Let degω = 2g − 2. We define the genus of
C to be g.

This section is concluded with the statement of the Riemann-Roch theorem.
The reader is referred to Definition 86 for a definition of function l.

Theorem 12. Let D be a divisor on a curve C of genus g and W = (ω) the
divisor of a differential. Then we have

l(D) = degD + 1− g + l(W −D).
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Chapter 5

Elliptic complex curves

Elliptic curves defined over finite fields are widely used in cryptography and
primality testing. In cryptography, we need elliptic curves with a cardinality
divisible by a large prime, so that algorithms for finding such curves are required.
In this thesis two algorithms for finding elliptic curves with a given cardinality
have been studied. Both of them are based on computing the roots of the Hilbert
class polynomial modulo a prime. The underlying theory of these methods comes
from elliptic curves defined complex numbers. This chapter is an introduction
to elliptic functions and complex multiplication. The last section is devoted to
curves over finite fields. The reader is referred to [6] and [12] for a more detailed
exposition.

5.1 Lattices

This section is devoted to the introduction of some basic concepts: lattice,
elliptic function and j-invariant.

Definition 96 (Lattice)
We define a lattice as an additive subgroup L of C which is generated by two
complex numbers ω1 and ω2 which are linearly independent over R. It is denoted

L = [ω1, ω2] .

Example 92
The lattice L = [3, i] is the following set of complex numbers:

L = {3m+ in : m,n ∈ Z} .

Definition 97 (Homothetic lattices)
Two lattices L and L′ are said to be homothetic if there is a nonzero complex
number λ such that L′ = λL. Homotheticity is an equivalence relation.
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Example 93
Lattices L = [2 + i, 3− i] and L′ = [−1 + 2i, 1 + 3i] are homothetic since

L = {(2 + i)m+ (3− i)n : m,n ∈ Z}

and by taking λ = i, we get

iL = {(2 + i)im+ (3− i)in : m,n ∈ Z} =

= {(−1 + 2i)m+ (1 + 3i)n : m,n ∈ Z} = L′.

The generators of both lattices are shown graphically in Figure 5.1. The genera-
tors of homothetic lattices define parallelograms having the same shape (maybe
at a different scale).

Figure 5.1: Generators of lattices L (left) and L′ (right) plotted as vectors over
C and the parallelograms they define.

Definition 98 (Elliptic function)
An elliptic function for a lattice L is a function f(z) defined on C, except for
isolated singularities, which satisfies the following two conditions:

1. f(z) is meromorphic on C.

2. f(z + ω) = f(z) for all ω ∈ L.

Definition 99 (Weierstrass ℘-function)
Given a lattice L and z ∈ C\L, we define the Weierstrass ℘-function as,

℘(z;L) =
1

z2
+

∑
ω∈L−{0}

(
1

(z − ω)2
− 1

ω2

)
.
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The function ℘(z;L) is elliptic for L and has double poles at the points of
L. When the lattice L is fixed, we will write ℘(z) instead of ℘(z;L).

The next theorem is of great importance since, as we will see in Section 5.3,
it provides a way to relate lattices and algebraic curves defined over the complex
numbers.

Theorem 13. The Weierstrass function ℘(z) satisfies the following differential
equation

℘′(z)2 = 4℘3(z)− g2(L)℘(z)− g3(L),

where

g2(L) = 60
∑

ω∈L−{0}

1

ω4
,

and

g3(L) = 140
∑

ω∈L−{0}

1

ω6
.

Next, we introduce the concept of j-invariant of a lattice. Its importance
arises from the fact that it permits to determine whether two lattices are ho-
mothetic or not.

Definition 100 (j-invariant)
The j-invariant of a lattice L is defined as

j(L) = 1728
g2(L)3

g2(L)3 − 27g3(L)2
.

Theorem 14. Given two lattices L and L′, then j(L) = j(L′) if and only if L
and L′ are homothetic.

Given a lattice L = [ω1, ω2], we can take λ = ω−11 . Then,

L′ = λL = [1, ω−11 ω2] = [1, τ ],

with τ ∈ C\R. In a similar manner, we can take λ = ω−12 and, in this case,

L′′ = λL = [ω1ω
−1
2 , 1] = [1, ω1ω

−1
2 ] = [1, τ−1].

The lattices L,L′ and L′′ are homothetic and either τ or τ−1 is in the upper half
plane h = {z ∈ C : Im(z) > 0}. Hence, any lattice L is homothetic to a lattice
of the form [1, τ ] with τ ∈ h. For such a τ value, we define

j(τ) = j([1, τ ]).

Example 94
The lattice L = [2 + i, 3− i] in Example 93 is homothetic to

(3− i)−1L =

[
2 + i

3− i
, 1

]
=

[
1,

1

2
+

1

2
i

]
= [1, τ ],
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with τ = 1
2+ 1

2 i ∈ h. The generators of the resulting lattice are shown graphically
in Figure 5.2.

Figure 5.2: Generators of a lattice of the form [1, τ ], with τ ∈ h.

Let us now consider the modular group SL(2,Z) composed of all the 2 × 2

matrices with coefficients in Z and determinant 1. Given γ =

(
a b
c d

)
∈

SL(2,Z), the action of γ on τ ∈ h is defined as

γτ =
aτ + b

cτ + d
.

This action is well defined (an element τ ∈ h is mapped to h) and the lattices
[1, τ ] and [1, γτ ] are known to be homothetic. Further, two lattices [1, τ ] and
[1, τ ′] are homothetic if and only if there exists some γ ∈ SL(2,Z) satisfying
that τ ′ = γτ (see [6, p.221]).

Remark 19
From Theorem 14 and the previous explanation we conclude that given τ, τ ′ ∈ h,
there exists γ ∈ SL(Z, 2) with γτ = τ ′ if and only if j(τ) = j(τ ′).

Example 95 ([6], Exercise 10.17)
Let ω = e2πi/3, and let L = [1, ω]. Now we will show that g2(L) = 0 which
implies that j(ω) = 0.

The complex number ω can be represented as ω = −1
2 + i

√
3
2 . Now we will

show that L′ = ωL = L. We have that

L′ = ωL = ω[1, ω] = [ω, ω2] =

[
−1

2
+ i

√
3

2
,
−1

2
− i
√

3

2

]
.

We will prove L = L′ by showing that the two generators of L, namely 1, ω are
in L′ and the two generators of L′, namely ω, ω2 are in L. Since ω is a generator
of both L and L′ we simply have to prove that 1 ∈ L′ and ω2 ∈ L. We can
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easily see that 1 ∈ L′ since:

1 = −

(
−1

2
+ i

√
3

2

)
−

(
−1

2
− i
√

3

2

)
= (−1)ω + (−1)ω2 ∈ L′.

In a similar way we can see ω2 ∈ L:

ω2 =

(
−1

2
− i
√

3

2

)
= −1−

(
−1

2
+ i

√
3

2

)
= (−1)1 + (−1)ω ∈ L.

Once we have proven L = L′, we get

g2(L) = g2(L′) = g2(ωL) =
1

ω4
g2(L) = ω−1g2(L).

Since ω−1 6= 1 we conclude g2(L) = 0.
We can check it in Sage. The result is not exactly 0 due to roundoff inaccu-

racies.

sage: elliptic j((-1+i*sqrt(3))/2)

-1.03244741666549e-44 - 1.75569396057967e-47*I

The following Theorem (see [6, p.220]) is of great importance. One of its
consequences is that the minimum polynomial of the j-invariant of a proper
fractional ideal of an order in an imaginary quadratic field has integer coeffi-
cients. This theorem shows that a link between the theory of quadratic fields
and the theory of elliptic functions does exist. More aspects of the relation
between both theories will be presented in the next section.

Theorem 15. Let O be an order in an imaginary quadratic field, and let a be
a proper fractional O-ideal. Then j(a) is an algebraic integer of degree h(O).

Proof sketch. Let α be a proper O-ideal which is primitive (it is not of the
form dp where d > 1 is an integer and p is a proper O-ideal). It is known that
αa is a cyclic sublattice of a of index m = N(α). Then,

0 = Φm(j(αa), j(a)) = Φm(j(a), j(a)),

so that j(a) is a root of Φm(X,X) which has integer coefficients (Φm(X,Y ) is
the m-th modular polynomial). Further, by taking α so that m = N(α) is not
a perfect square (such an α always exists), the leading coefficient of Φm(X,X)
is ±1 so that j(a) is an algebraic integer. For more details, see [6].
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Remark 20
The elements composing an ideal in an imaginary quadratic field can be consid-
ered as the elements of a lattice. This fact permits to associate a j-invariant to
ideals which is precisely what has been done in the previous theorem.

5.2 Complex multiplication

The theory of complex multiplication provides a link between lattices and orders
in imaginary quadratic fields. This section is a brief introduction to complex
multiplication.

Theorem 16. The Weierstrass function ℘(z) satisfies the following addition
law

℘(z + w) = −℘(z)− ℘(w) +
1

4

(
℘′(z)− ℘′(w)

℘(z)− ℘(w)

)2

,

provided that z, w /∈ L and z + w /∈ L.

Remark 21
The previous theorem is of great importance since, as we will see at the end of
Section 5.3, it allows to endow the points of an elliptic curve with an addition
operation that provides a group structure.

By means of some elementary calculus, we can see that,

℘(2z) = lim
w→z

℘(z + w) = lim
w→z

(
−℘(z)− ℘(w) +

1

4

(
℘′(z)− ℘′(w)

℘(z)− ℘(w)

)2
)

=

lim
w→z

−℘(z)− ℘(w) +
1

4

(
℘′(z)−℘′(w)

z−w
℘(z)−℘(w)

z−w

)2
 = −2℘(z) +

1

4

(
℘′′(z)

℘′(z)

)2

.

From Theorem 13 we know that,

℘′(z)2 = 4℘3(z)− g2℘(z)− g3.

Now we derivate that expression with respect to z,

2℘′(z)℘′′(z) = 12℘2(z)℘′(z)− 1

2
g2℘
′(z),

and we obtain,

℘′′(z) = 6℘2(z)− 1

2
g2.

Finally, we obtain that,

℘(2z) = −2℘(z) +
(12℘(z)2 − g2)2

16(4℘(z)3 − g2℘(z)− g3)
.
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Hence, ℘(2z) is a rational function in ℘(z). By induction, one can show that for
any positive integer n, ℘(nz) is also a rational function in ℘(z). The following
theorem (see [6, p.209]) addresses for which complex numbers α ∈ C, ℘(αz) is
a rational function in ℘(z) and its relation with orders in imaginary fields.

Theorem 17. Let L be a lattice, and let ℘(z) be the ℘-function for L. Given
α ∈ C− Z, the following statements are equivalent:

1. ℘(αz) is a rational function in ℘(z).

2. αL ⊂ L.

3. There is an order O in an imaginary quadratic field K such that α ∈ O
and L is homothetic to a proper fractional O-ideal.

Remark 22
As a consequence of the previous theorem, if an elliptic function has multiplica-
tion by some α ∈ C−Z, then it has multiplication by an order O in an imaginary
quadratic field. Since the elements in O−Z are not real, we talk about complex
multiplication. Note that the inclusion αL ⊂ L is always satisfied when α ∈ Z.

Example 96
Let us consider the lattice L = [2, i]. This lattice does not have complex mul-
tiplication by i =

√
−1 since 1 ∈ iL = [−1, 2i] = [1, 2i] but 1 /∈ L, hence

iL 6⊂ L.

Example 97
Let us consider L = [2, i] again. This lattice has complex multiplication by 2i.
This is because 2iL = [4i,−2] = [2, 4i] ⊂ [2, i] = L.

As a consequence, L has complex multiplication by complex numbers in the
set O = {m+ (2i)n : m,n ∈ Z}. The set O is the order with conductor 2 in
Z[i], i.e. the ring of integers of Q(i).

Given an order O in an imaginary quadratic field, it is known [6, Ex. 10.15]
that two proper fractional O-ideals are homothetic as lattices if and only if they
determine the same class in the ideal class group C(O). This consideration
together with Theorem 17 permits to enunciate the following corollary.

Corollary 2. Let O be an order in an imaginary quadratic field. Then there
is a one-to-one correspondence between the ideal class group C(O) and the ho-
motheticity classes of lattices with O as their full ring of complex multiplication.

The last part of this section presents some results relating the j-invariant of
a lattice with Hilbert class fields.

Theorem 18. Let O be an order in an imaginary quadratic field K, and let a
be a proper fractional O-ideal. Then the j-invariant j(a) is an algebraic integer
and K(j(a)) is the ring class field of the order O.
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Corollary 3. If K is an imaginary quadratic field, then K(j(OK)) is the Hilbert
class field of K.

Given an order O in an imaginary quadratic field K, HO(X) denotes the
monic minimal polynomial of j(O) over Q. Since j(O) is an algebraic integer,
HO(X) has integer coefficients. The equation HO(X) = 0 is called the class
equation. When O = OK , for some imaginary quadratic field K, HO(X) is
called the Hilbert class polynomial (see Definition 57).

Since an order O is determined by its discriminant D, sometimes HD(X) is
written instead of HO(X).

Proposition 7. Let O be an order in an imaginary quadratic field K, and let
ai, i = 1, . . . , h be the ideal class representatives. Then the class equation is
given by the formula,

HO(X) =

h∏
i=1

(X − j(ai)).

Remark 23
This formula is employed by the methods implemented in Section 6 for con-
structing Hilbert class polynomials.

Example 98
Let K = Q(

√
−15). From Example 73, we know the ideal class representatives

of C(OK) are given by{[
1,
−1 +

√
−15

2

]
,

[
2,
−1 +

√
−15

2

]}
.

From the j-invariants j1, j2 of the lattices related to each class representative
we will be able to compute the Hilbert class polynomial for the ring of integers
of K = Q(

√
−15) as,

HOK (X) = (X − j1)(X − j2).

Regarding
[
1, −1+

√
−15

2

]
, its j-invariant is j

(
−1+

√
−15

2

)
.

Regarding the ideal
[
2, −1+

√
−15

2

]
when considered as a lattice, it is homo-

thetic to
[
1, −1+

√
−15

4

]
, so that its j-invariant is j

(
−1+

√
−15

4

)
.

Both computations are shown next:

sage: elliptic j((-1+sqrt(-15))/2)

-191657.832862547 + 1.34167142884203e-10*I
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sage: elliptic j((-1+sqrt(-15))/4)

632.832862547208 + 1.06470772211784e-13*I

Next we show the commands required to compute the Hilbert class polyno-
mial for the ring of integers of K = Q(

√
−15). As it can be seen, the obtained

polynomial does not have integer coefficients due to the limited accuracy of
computations. To solve it, we have rounded the coefficients of the obtained
polynomial to their closest integers.

sage: Q=PolynomialRing(QQ,’x’)

sage: x=Q.gen()

sage: H=(x-elliptic j((-1+sqrt(-15))/2)) *

(x-elliptic j((-1+sqrt(-15))/4))

sage: H

x^2 + (191025.000000000 - 1.34273611115879e-10*I)*x -

1.21287375000000e8 + 6.44999077307861e-8*I

sage: HH=x^2 + int(H[1].real())*x + int(H[0].real())

sage: HH

x^2 + 191025*x - 121287375

As a result, we have obtained that for K = Q(
√
−15),

HOK (X) = X2 + 191025X − 121287375.

Sage provides a procedure that generates the Hilbert class polynomial given
the discriminant of K. We can use it to check our computations:

sage: hilbert class polynomial(-15)

x^2 + 191025*x - 121287375

5.3 Elliptic curves over complex numbers

Theorem 13 states that the Weierstrass ℘-function satisfies a differential equa-
tion. That equation provides a link between lattices and a particular type of
algebraic curves, i.e. elliptic curves.

Definition 101 (Elliptic curve over C)
An elliptic curve E over C is an equation of the form

Y 2 = 4X3 − g2X − g3,

where g2, g3 ∈ C and 4 = g32 − 27g23 6= 0.
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Remark 24
Curves of this form were introduced in Example 79.

Remark 25
This equation is known as the Weierstrass equation of E. The condition 4 6= 0
is for ensuring the curve does not have singular points.

Definition 102 (E(C))
Given an elliptic curve E over C, we define E(C) to be the set of solutions

E(C) = {(x, y) ∈ C× C : y2 = 4x3 − g2x− g3} ∪ {∞}.

Remark 26
The extra point {∞} appears when the elliptic curve is considered in the pro-
jective space P2(C) (see Section 4.1).

Let L ⊂ C be a lattice. Theorem 13 states that its ℘(z)-function satisfies

℘′(z)2 = 4℘3(z)− g2(L)℘(z)− g3(L).

Hence, when z /∈ L, the pair (℘(z), ℘′(z)) satisifies the equation

Y 2 = 4X3 − g2(L)X − g3(L).

This provides a well-defined mapping

(C− L)/L→ E(C)− {∞}.

By sending z ∈ L to ∞, we obtain a bijection,

C/L ≈ E(C).

We can see that the differential equation of the ℘-function of a lattice gives
us an elliptic curve. The following proposition states that every elliptic curve
over C arises from a unique ℘-function.

Proposition 8. Let E be an elliptic curve over C given by equation

Y 2 = 4X3 − g2X − g3, g2, g3 ∈ C, g32 − 27g23 6= 0,

then there is a unique lattice L ⊂ C such that,

g2 = g2(L), g3 = g3(L).

Since an elliptic curve E over C is uniquely related to a lattice L, we can
define its j-invariant as j(E) = j(L). More precisely,
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Definition 103 (j-invariant)
Given an elliptic curve E : Y 2 = 4X3−g2X−g3, the j-invariant of E is defined
to be the number

j(E) = 1728
g32

g32 − 27g23
.

Definition 104 (Isomorphic elliptic curves)
Two elliptic curves E : Y 2 = 4X3 − g2X − g3 and E′ : Y 2 = 4X3 − g′2X − g′3
are isomorphic over C if there is a nonzero c ∈ C such that

g′2 = c4g2,

g′3 = c6g3.

Let us consider a point (x, y) ∈ E(C), i.e. it satifies the curve equation
y2 = 4x3 − g2x− g3. Multiplying both sides of the equation by c6 we get

c6y2 = 4c6x3 − g2c6x− c6g3

so that
(c3y)2 = 4(c2x)3 − (c4g2)(c2x)− (c6g3)

and
(c3y)2 = 4(c2x)3 − g′2(c2x)− g′3.

As a consequence, if (x, y) ∈ E(C) then (c2x, c3y) ∈ E′(K). The mapping
sending (x, y) to (c2x, c3y) induces a bijection E(C) ≈ E′(C).

Moreover, it is easy to check that two isomorphic elliptic curves E, E′ satisfy
that j(E) = j(E′).

The following proposition summarizes the relation between elliptic curve
isomorphy, lattice homotheticity and equality of j-invariants.

Proposition 9. Let E and E′ be elliptic curves corresponding to lattices L and
L′ respectively. The following statements are equivalent:

1. E and E′ are isomorphic over C,

2. L and L′ are homothetic,

3. j(E) = j(E′).

Remark 27
From the previous theorem and Remark 19, we can state that two elliptic curves
are isomorphic if and only if their corresponding lattices are related by the action
of some γ ∈ SL(2,Z).

Definition 105 (Endomorphism ring of an elliptic curve)
Let E be an elliptic curve over C that corresponds to the lattice L. We define

EndC(E) = {α ∈ C : αL ⊂ L}.

85



Remark 28
EndC(E) is a subring of C that includes Z. We say that E has complex multi-
plication if Z 6= EndC(E). The curve E has complex multiplication if and only
its corresponding lattice L does, in which case, EndC(E) is an order O in an
imaginary quadratic field.

From Theorem 16 we know the Weierstrass ℘-function satisfies an addition
law. Next we will see that this can be translated into an addition operation over
the points of an elliptic curve. This operation endows the points of an elliptic
curve with an Abelian group structure. Moreover, the elliptic curve may be
defined over any field K (not necessarily C).

Definition 106 (Addition operation)
Let E : Y 2 = 4X3−g2X−g3 be an elliptic curve over K and let P1, P2 ∈ E(K).
The addition P1 + P2 ∈ E(K) is defined as follows:

1. If P1 =∞ then P1 + P2 = P2.

2. If P2 =∞ then P1 + P2 = P1.

3. If P1, P2 6=∞ let P1 = (x1, y1), P2 = (x2, y2).

(a) If x1 6= x2, then P1 + P2 = (x3, y3) with,

x3 = −x1 − x2 +
1

4

(
y1 − y2
x1 − x2

)2

,

y3 = −y1 − (x3 − x1)

(
y1 − y2
x1 − x2

)
.

(b) If x1 = x2 and y1 6= y2 then P1 + P2 =∞.

(c) If x1 = x2 and y1 = y2, then P1 + P2 = 2P1 = (x3, y3) with,

x3 = −x1 − x2 −
1

16

(
12x21 − g2

y1

)2

,

y3 = −y1 − (x3 − x1)

(
12x1 − g2

2y1

)
.

Theorem 19. If E is an elliptic curve over a field K, then E(K) is a group
under the binary operation defined above. The identity element is ∞.

Remark 29
Given an elliptic curve Y 2 = 4X3−g2X−g3, defined over a field of characteristic
different from 2 and 3, we can divide both sides of the equation by 4 obtaining(

Y

2

)2

= X3 − g2
4
X − g3

4
,
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so that by replacing Y
2 7→ Y , − g24 7→ a and − g34 7→ b, we get

Y 2 = X3 + aX + b.

Elliptic curves given in this form are widely employed in the literature (the
software Sage uses this form). The j-invariant of an elliptic curve E in this
form is computed as,

j(E) = 1728
4a3

4a3 + 27b2
.

Remark 30
A more general form for elliptic curves is given by the following expression [22,
Chap.3]:

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

If the curve is defined over a field of characteristic different from 2, replacing
Y 7→ 1

2 (Y − a1X − a3) gives an equation of the form

E : Y 2 = 4X3 + b2X
2 + 2b4X + b6,

with b2 = a21 + 4a2, b4 = 2a4 +a1a3 and b6 = a23 + 4a6. If further, the character-
istic of the underlying field is different from 2 and 3, then replacing X 7→ X−3b2

36

and Y 7→ Y
216 yields an equation of the form

E : Y 2 = X3 − 27c4X − 54c6.

This form coincides with that given in Remark 29.

5.4 Elliptic curves over finite fields

Next, some results involving elliptic curves defined over a finite field Fq are
presented. We will assume Fq has characteristic greater than 3, that is, q = pm,
p > 3.

A first consequence of defining elliptic curves over finite fields is that the set
E(Fq) becomes finite. The following theorem due to Hasse [6, p.315] bounds
such a cardinality.

Theorem 20. If E is an elliptic curve over Fq, then

q + 1− 2
√
q ≤ |E(Fq)| ≤ q + 1 + 2

√
q.

Remark 31
In the construction of algebraic geometric codes over elliptic curves defined over
Fq, one is interested in finding curves with many rational points, i.e. curves
whose cardinality is close to q + 1 + 2

√
q.

When elliptic curves are going to be used for discrete logarithm-based cryp-
tography, one needs elliptic curves whose cardinality is divisible by a large prime.
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Definition 107 (Trace)
Let E be an elliptic curve defined over a finite field Fq so that |E(Fq)| = q+1−t.
The value t is known as the trace of Frobenius of curve E.

Example 99
Let us consider the elliptic curve E : y2 = 4x3 − x− 1. The set E(Z19) is

E(Z19) = {(3, 3), (3, 16), (4, 2), (4, 17), (5, 0), (8, 5), (8, 14), (11, 7),
(11, 12), (14, 6), (14, 13), (17, 8), (17, 11),∞}.

The cardinality is |E(Z19)| = 14, and the trace of Frobenius is t = 6.

Remark 32
If the curve E in the previous example is considered over F192 , by extending Z19

with a root α of X2 + 18X + 2, the cardinality |E(F192)| is 364. For instance,
the points (α+ 17, 3), (α+ 17, 16) are in E(F192) but not in E(Z19).

Next, Theorem 21 addresses how the endomorphism ring of an elliptic curve
defined over a finite field is.

Theorem 21. If E is an elliptic curve over Fq, then the endomorphism ring
EndFq (E) is either:

1. An order in an imaginary quadratic field, in which case E is said to be
ordinary.

2. An order in a quaternion algebra, in which case E is said to be supersin-
gular.

When elliptic curves are defined over a finite field, the j-invariant alone
no longer determines whether two curves are isomorphic or not. The next
proposition addresses this issue for ordinary curves (those whose trace t 6= 0).

Proposition 10. Let E and E′ be elliptic curves over Fp. If E is ordinary,
then E and E′ are isomorphic over Fp if and only if j(E) = j(E′) and |E(Fp)| =
|E′(Fp)|.

Remark 33
The j-invariant of an elliptic curve defined over a finite field (of characteristic
6= 2, 3) given in Weierstrass form is computed using the same formula as for
complex numbers.

Remark 34
When two elliptic curves E and E′ defined over Fp satisfy j(E) = j(E′) but
|E(Fp)| 6= |E′(Fp)|, then it is know that if |E(Fq)| = q + 1− tE and |E′(Fq)| =
q + 1− tE′ then tE + tE′ = 0.
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Remark 35
Given an ordinary elliptic curve E defined over Zp with trace t, the endomor-

phism ring of E is known to be an order in the ring of integers of Q(
√
D) with

D = t2−4p. Furthermore, if D is a fundamental discriminant (it is not divisible
by any square of an odd prime) then the endomorphism ring of E is the ring of
integers of Q(

√
D).

We will focus our attention on ordinary curves. When defined over a prime
field Fp, such curves are easy to characterize. The following theorem character-
izing supersingular curves serves to that end.

Theorem 22. An elliptic curve E defined over Fp, p > 3 is supersingular if
and only if

|E(Fp)| = p+ 1.

Ordinary elliptic curves over finite fields have, like elliptic curves over C with
complex multiplication, an endomorphism ring that is an order in an imaginary
quadratic field. Next we will see both types of curves are deeply related.

Definition 108 (Curves with good reduction)
Let K be a number field and let E be an elliptic curve

E : Y 2 = 4X3 − g2X − g3, g2, g3 ∈ K.

Let p be a prime ideal in OK and suppose that g2, g3 can be written in the form
α/β, with α, β ∈ OK and β /∈ p. Defining [g2] and [g3] in OK/p we obtain that

E : Y 2 = 4X3 − [g2]X − [g3]

is an elliptic curve over the finite field OK/p. We call E the reduction of E
modulo p, and we say that E has good reduction modulo p.

Remark 36
As pointed out in [2, Section 4.2], an elliptic curve defined over Zp can be
described as the reduction modulo p of an elliptic curve E(C) with complex
multiplication by an order of a quadratic field. Let D < 0 be a fundamental
discriminant and let p ∈ Z so that 4p = t2 −Du2 for some integers u and t. If
HD(X) is the Hilbert class polynomial of Q(

√
D) then all the roots of HD(X)

(mod p) lie in Zp and they correspond to the j-invariant of elliptic curves defined
over Zp whose cardinality is either p+ 1− t or p+ 1 + t.

Remark 37
The previous remark is the basis of the methods implemented in Chapter 6.
Both methods aim to construct polynomial HD(X) (mod p) and obtain elliptic
curves with a required cardinality from its roots.

The Atkin-Morain method obtains HD(X) (mod p) by first computing the
Hilbert class polynomial HD(X) from ideal class representatives of C(OK), K =
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Q(
√
D), using the formula indicated in Proposition 7. The required ideal class

representatives are obtained making use of the bijection stated in Theorem 8
which permits to compute them from the classes composing the form class group
of discriminant D, C(D). The amount of such forms is finite as explained in
Section 3.1. This method is explained in more detail in Section 6.1.

The Agashe-Lauter-Venkatesan method uses a different approach. The poly-
nomial HD(X) (mod p) is computed using the Chinese Remainder Theorem
from a set of polynomials HD(X) (mod pi), being pi primes of the form 4pi =
t2i −D. Each polynomial HD(X) (mod pi) is computed taking into account that
its roots are the j-invariants of elliptic curves in Zpi whose cardinality is either
pi + 1− ti or pi + 1 + ti. This technique is explained in Section 6.2.
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Chapter 6

Construction of elliptic
curves with a given
cardinality over a finite field

In this chapter the Atkin-Morain (Section 6.1) and the Agashe-Lauter-Ventakesan
(Section 6.2) algorithms for finding an elliptic curve with a given cardinality
(not necessarily maximal) are explained and analyzed in terms of running time.
Each algorithm is first explained, next, a detailed example is provided and fi-
nally, some figures showing its running time are given. The two algorithms will
be compared in Chapter 7.

6.1 Atkin-Morain’s method

In [2], Atkin and Morain present a method, based on the theory of complex
multiplication, for constructing an elliptic curve with a given cardinality. The
method computes the Hilbert class polynomial HD(X) for a certain discriminant
D and then reduces it modulo a prime p. The roots of the resulting polynomial
provide the j-invariant of elliptic curves with the desired cardinality.

The algorithm takes as input a prime finite field Fp and the desired car-
dinality N for the curve to be constructed. From Theorem 20 we know the
cardinality N should satisfy N = p+ 1− t with |t| ≤ 2

√
p.

For simplicity, the (negative) integer D = t2 − 4p is assumed to be a funda-
mental discriminant which is equivalent to requiring that it is not divisible by
any square of an odd prime and satisfies D ≡ 1 (mod 4) or D ≡ 8, 12 (mod 16).
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6.1.1 Method steps

The algorithm is composed of the following steps:

1. Generate a list L containing all the primitive, reduced, positive definite
binary quadratic forms of discriminant D.

As explained in Section 3.1, the amount of such forms, denoted h(D) (class
number), is finite.

2. For each quadratic form fi = aix
2 + bixy + ciy

2 ∈ L, compute the j-
invariant

ji = j

(
−bi +

√
D

2ai

)
.

Theorem 8 states there is a bijection between the forms in L and the
elements that compose the ideal class group C(OK) with K = Q(

√
D).

More precisely, the form fi generates the ideal

Ii =

[
ai,
−bi +

√
D

2

]
.

The ideal Ii can be considered as a lattice which is homothetic (see Sec-
tion 5.1) to lattice a−1Ii being

a−1i Ii =

[
1,
−bi +

√
D

2ai

]
.

Since homothetic lattices have the same invariant,

ji = j(Ii) = j(a−1i Ii) = j

(
−bi +

√
D

2ai

)
.

The j-invariants ji are computed numerically so that the amount of preci-
sion becomes a crucial issue. In [2], it is stated that the largest coefficient
of HD(X) is upperbounded by

B =

(
h
bh/2c

)
e
π
√
−D

∑
1
ai

where the sum is taken over the integers ai so that aix
2 + bixy+ ciy

2 ∈ L.
As a consequence, around log2B bits of precision are enough. In our
implementation, dlog2Be+ 32 bits of precision have been taken.

3. Compute the Hilbert class polynomial HD(X) as,

HD(X) =
∏

(X − ji) .
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This step computes the Hilbert class polynomial HD(X) from the j-
invariant of the lattices associated to the representatives of the ideal class
group C(OK) (see Proposition 7). Due to roundoff inaccuracies, some co-
efficients of the computed polynomial may not be integer numbers. If this
happens, the non-integer coefficients have to be rounded to their closest
integer.

4. Find a root j of HD(X) (mod p) and compute the elliptic curve

E : y2 = x3 + 3kx+ 2k,

where

k =
j

1728− j
.

The cardinality |E(Zp)| may either be (p+ 1− t) (desired cardinality) or
(p+1+ t). In the former case we are done, otherwise, we try with another
root of HD(X) (mod p).

6.1.2 Detailed example

Next we will construct an elliptic curve over Z50021 of cardinality N = 50467. In
this particular example, equation N = p+1−t yields t = 455 and D = t2−4p =
−2059. The value D factors as −2059 = −29 · 71 so that it is a fundamental
discriminant. Computations have been carried out using 364 bits of precision.

1. In the first step, generate the list L containing all the primitive, reduced,
positive definite binary quadratic forms of discriminant D.

The quadratic forms composing L are shown in Table 6.1. As it can be
seen, L contains eight quadratic forms, hence the class number h(−2059) =
8.

Form Expression
f1 x2 + xy + 515y2

f2 5x2 − xy + 103y2

f3 5x2 + xy + 103y2

f4 11x2 − 3xy + 47y2

f5 11x2 + 3xy + 47y2

f6 17x2 − 7xy + 31y2

f7 17x2 + 7xy + 31y2

f8 25x2 + 21xy + 25y2

Table 6.1: Primitive, reduced, positive definite binary quadratic forms of dis-
criminant D = −2059.

2. The second step is devoted to the computation of the j-invariants ji of
the lattices arising from the ideal class associated to each form fi. As said
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before, computations have been done employing 364 bits of precision. The
results are shown (truncated) in Table 6.2.

j-invariant Value
j1 −8.132450466(. . .) · 1061 −1.52000683(. . .) · 10−63i
j2 1.949853265(. . .) · 1012 −1.416651320(. . .) · 1012i
j3 1.949853265(. . .) · 1012 +1.416651320(. . .) · 1012i
j4 278940.314457048(. . .) −321054.961057362(. . .)i
j5 278940.314457048(. . .) +321054.961057362(. . .)i
j6 1954.81612413973(. . .) −4171.95604291573(. . .)i
j7 1954.81612413973(. . .) +4171.95604291573(. . .)i
j8 30.8936540456884(. . .) −3.6831015(. . .) · 10−117i

Table 6.2: j-invariants of the lattices associated to the representatives of the
ideal class group C(OK), with K = Q(

√
−2059).

3. Next, compute the Hilbert class polynomial

H−2059(X) =
∏

(X − ji) ,

which is a monic degree eight polynomial

H−2059(X) = X8+a7X
7+a6X

6+a5X
5+a4X

4+a3X
3+a2X

2+a1X
1+a0.

The values of the coefficients ai are shown in Table 6.3.

a7
8132450466169941169637006546375923632836825064114986736
1173504

a6
−317141747616659344947748020214200609962251521536086891
769742607211342856192

a5
4724002964020315156143187259614324998239809746059904153
54208529387103805312618953965568

a4
−265404438026451640991322555394438190750016288796322384
211040885419900295058559623516500525056

a3
8649819909224108953676771230198029757082859326272817089
7256449244680855228593363778346517782331392

a2
−342342670048086209880261896954335258835452878801433679
150675349095070316347093698798115959196050522112

a1
1824291952089881900027334206261814738869090207478311873
577753102655469161007885650926863964874474159865856

a0
−560348566845899270784145913586860244273035920211916975
01854403158323415669675351642993565296157109470101504

Table 6.3: Coefficients of the Hilbert class polynomial H−2059(X).
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4. Next, reduce the coefficients of H−2059(X) modulo 50021. The resulting
polynomial is:

X8 + 42643 ·X7 + 33275 ·X6 + 30118 ·X5 + 47201 ·X4

+38641 ·X3 + 15977 ·X2 + 1744 ·X + 2331.

In Z50021, the reduced polynomial has eight roots. They are:

{48195, 42016, 39886, 34827, 14497, 13532, 11348, 3161}.

By taking, for instance, the root j = 42016, one obtains the curve

y2 = x3 + 10138x+ 12186

whose cardinality in Z50021 is precisely 50467, as desired.

6.1.3 Running time

Our implementation of Atkin-Morain’s method has been tested on a computer
with an Intel Xeon processor running at 3.16 GHz. The algorithm has been
run so as to generate elliptic curves over Zp being p = 10000019. Cardinalities
N = p + 1 − t associated to fundamental discriminants D = t2 − 4p have been
chosen. Figure 6.1 shows the running time as a function of the absolute value
of D, i.e. |D|. The values taken for D are between −32392 and −39983947. An
irregular behaviour with a tendency to obtain larger running times for larger
values of |D| can be observed. The longest running time was obtained for D =
−37491020 in which around 10 hours and a half were taken by the algorithm.

The results of the same experiments are depicted in Figure 6.2 but in this
figure, the running time is represented as a function of the precision required
for the j-invariants computation (step 2 in Section 6.1.1). A strong relation
between arithmetic precision and running time can be observed.

6.2 Agashe-Lauter-Venkatesan’s method

In [1], Agashe, Lauter and Ventakesan provide an alternative method for gen-
erating elliptic curves over a finite field Zp with a desired cardinality. That
proposal computes the Hilbert class polynomial HD(X) modulo a set of small
primes and, after that, by using a modified version of the Chinese remainder
theorem, HD(X) (mod p) is computed. Elliptic curves with the desired cardi-
nality are obtained from the roots of HD(X) (mod p). When compared to [2],
the method in [1] employs only arithmetic over the integers so that it is not
necessary to consider accuracy issues as it happens when employing numerical
methods over C.

95



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0  5e+06  1e+07  1.5e+07  2e+07  2.5e+07  3e+07  3.5e+07  4e+07

T
im

e
(s

)

Discriminant (abs.val.)

Figure 6.1: Running time of Atkin-Morain’s method as a function of the absolute
value of the discriminant D.

6.2.1 Method steps

As in Section 6.1, let N = p+1−t be the desired cardinality and let D = t2−4p
be a fundamental discriminant. The algorithm is as follows:

1. Compute the class number h = H(D).

2. Generate a list L containing all the primitive, reduced, positive definite
binary quadratic forms of discriminant D.

3. Compute

B =

(
h
bh/2c

)
e
π
√
−D

∑
1
ai

where the sum in the above expression is taken over the integers ai so that
the quadratic form aix

2 + bixy + ciy
2 ∈ L.

The value B is an upper bound for the size of the coefficients of the class
polynomial.

4. Generate a collection of distinct primes {pi}, each satisfying 4pi = t2i −D,
for some integer ti. Generate enough primes pi so that their product
exceeds 2B. Let S be a list containing all such primes.

5. For each pi ∈ S, let j run through all possible j-invariants over Zpi and
store in a list Si those j-invariants that correspond to a curve having
pi + 1− ti or pi + 1 + ti points. There are exactly h such j values.
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Figure 6.2: Running time of Atkin-Morain’s method as a function of the preci-
sion (in bits) of the arithmetic computations over C.

6. For each prime pi ∈ S, form the polynomial HD(X) (mod pi) as,

HD(X) (mod pi) =
∏
jk∈Si

(X − jk) (mod pi).

7. Using the modified chinese remainder theorem [1, Sec.5.], compute the
coefficients of HD(X) (mod p) using the coefficients of HD(X) (mod pi)
for all pi ∈ S.

8. Obtain a curve with the required cardinality from a root ofHD(X) (mod p)
(like in Section 6.1).

6.2.2 Detailed example

Next, as it was done in Section 6.1.2, an elliptic curve over Z50021 of cardinality
N = 50467 will be computed. Let us remember that, in this case, D = t2−4p =
−2059.

1. The first step is devoted to computing the class number, that is h(−2059) =
8.

2. The list L of quadratic forms is exactly the same obtained in Section 6.1.2.

3. Next, compute the upper bound B. In this example, the obtained value
is:
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B = 3433809930248709500944328896618288206971117779475657658
7821681102284232957288854807512082022682027738347712647.

4. The third step is devoted to constructing the list S of small primes. The
constructed list is:

S = {521, 557, 571, 587, 647, 787, 821, 857, 977, 1021, 1217, 1327, 1571,
1637, 1847, 1997, 2237, 2677, 3167, 3271, 3821, 4297, 4421, 4547,
4937, 6367, 6521, 7321, 7487, 8171, 8887, 9257, 12071}.

The primes in S are of the form 4pi = t2i −D. For instance,

4 · 521 = 52 − (−2059).

5. Next, for each prime pi ∈ S, compute the j-invariants corresponding to
curves defined over Zpi having either pi + 1− ti or pi + 1 + ti points. The
results are shown in Table 6.4.

6. After that, for each prime pi ∈ S, compute HD(X) (mod pi). The gener-
ated polynomials are in Table 6.5.

7. Next, compute HD(X) (mod p). The resulting polynomial is:

X8 + 42643 ·X7 + 33275 ·X6 + 30118 ·X5 + 47201 ·X4

+38641 ·X3 + 15977 ·X2 + 1744 ·X + 2331.

As expected, this is exactly the same polynomial obtained in Section 6.1.2.

8. Finally, take a root j of HD(X) (mod p) corresponding to the j-invariant
of some curve whose cardinality is 50467. That is the case for j = 3161
which generates the curve

y2 = x3 + 16573x+ 42777.

6.2.3 Running time

Our implementation of Agashe-Lauter-Venkatesan’s method has been tested on
the same computer used in Section 6.1.3. In this case, curves over Zp with
p = 10007 have been generated. Several cardinalities have been chosen with
the associated fundamental discriminants between −28 and −15692. The spent
running time as a function of the absolute value of the discriminant is depicted in
Figure 6.3. Similarly as it happened with Atkin-Morain’s method, an irregular
behaviour in which larger discriminants tend to produce a larger running time
can be observed.

Although our experiments have generated curves over a quite small prime
field (p = 10007), the observed running times are rather large. For instance,
the execution on D = −8699 took almost 11 hours, while that on D = −15692
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Prime pi j-invariants
521 108 115 133 144 174 369 384 438
557 2 14 61 116 307 441 470 517
571 20 154 156 170 216 356 365 485
587 15 110 192 201 277 328 485 543
647 168 175 296 349 365 401 534 642
787 46 71 203 224 239 569 595 784
821 61 80 92 356 363 467 722 725
857 242 298 422 449 607 762 764 810
977 39 342 439 509 537 607 623 759
1021 28 56 187 262 294 340 637 1003
1217 150 442 585 681 744 857 953 1216
1327 138 276 283 524 861 898 931 1028
1571 101 638 963 1118 1273 1322 1516 1568
1637 430 556 710 1052 1245 1269 1367 1449
1847 56 81 169 387 641 736 1213 1750
1997 234 344 688 938 1243 1328 1372 1476
2237 106 430 947 1288 1516 1563 1662 2206
2677 142 416 611 867 1481 1520 1522 2563
3167 388 504 682 1046 2127 2209 2235 3145
3271 515 770 1225 1519 1751 1897 2301 2960
3821 539 642 2214 2308 2393 2695 2815 3264
4297 631 2546 2923 3069 3113 3833 3914 4013
4421 192 591 1012 1383 3222 3846 4029 4315
4547 1037 2457 2654 3459 3524 3817 4423 4433
4937 446 583 1147 1247 2572 3156 4045 4329
6367 113 231 1335 1525 1564 4886 4938 5455
6521 98 176 780 1393 1760 1798 5341 6436
7321 357 1000 1764 3269 3482 3847 3937 4169
7487 1364 1969 3779 3894 5464 6768 6943 7010
8171 561 1130 2967 3156 3327 7424 7452 7728
8887 52 514 865 1365 3094 3283 3710 4318
9257 590 636 1850 2483 2643 3081 5276 6474
12071 1071 5549 5649 5897 6620 6810 8837 10304

Table 6.4: Table of primes pi and the j-invariants for constructing HD(X)
(mod pi) , being D = −2059.
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Prime pi HD(X) (mod pi)

521 X8 + 219X7 + 476X6 + 37X5 + 100X4 + 235X3 + 260X2 + 199X + 159
557 X8 + 300X7 + 433X6 + 450X5 + 498X4 + 262X3 + 50X2 + 367X + 139
571 X8 + 362X7 + 313X6 + 6X5 + 407X4 + 497X3 + 332X2 + 522X + 429
587 X8 + 197X7 + 140X6 + 121X5 + 535X4 + 508X3 + 525X2 + 572X + 14
647 X8 + 305X7 + 624X6 + 106X5 + 472X4 + 72X3 + 130X2 + 194X + 483
787 X8 + 417X7 + 362X6 + 53X5 + 142X4 + 258X3 + 625X2 + 421X + 161
821 X8 + 418X7 + 211X6 + 606X5 + 23X4 + 229X3 + 607X2 + 184X + 417
857 X8 + 788X7 + 612X6 + 277X5 + 676X4 + 672X3 + 773X2 + 532X + 314
977 X8 + 53X7 + 964X6 + 850X5 + 508X4 + 633X3 + 542X2 + 574X + 609
1021 X8 + 256X7 + 636X6 + 111X5 + 276X4 + 440X3 + 402X2 + 360X + 737
1217 X8 + 457X7 + 1048X6 + 466X5 + 960X4 + 2X3 + 779X2 + 333X + 904
1327 X8 + 369X7 + 1132X6 + 851X5 + 851X4 + 97X3 + 792X2 + 862X + 1216
1571 X8 + 927X7 + 1218X6 + 913X5 + 959X4 + 1201X3 + 265X2 + 302X + 922
1637 X8 + 107X7 + 1214X6 + 510X5 + 1131X4 + 947X3 + 1004X2 + 1037X + 900
1847 X8 + 508X7 + 421X6 + 1447X5 + 1788X4 + 513X3 + 155X2 + 913X + 1451
1997 X8 + 365X7 + 94X6 + 1458X5 + 701X4 + 696X3 + 1663X2 + 748X + 1664
2237 X8 + 1467X7 + 1329X6 + 680X5 + 1996X4 + 188X3 + 326X2 + 1325X + 1718
2677 X8 + 1586X7 + 2182X6 + 2522X5 + 426X4 + 890X3 + 901X2 + 128X + 1462
3167 X8 + 332X7 + 1558X6 + 2500X5 + 711X4 + 2631X3 + 2947X2 + 1915X + 2898
3271 X8 + 146X7 + 2135X6 + 2810X5 + 3052X4 + 801X3 + 2061X2 + 672X + 2750
3821 X8 + 2235X7 + 3621X6 + 518X5 + 2526X4 + 1473X3 + 2514X2 + 3681X + 1367
4297 X8 + 1740X7 + 4006X6 + 3198X5 + 628X4 + 1787X3 + 4146X2 + 1314X + 186
4421 X8 + 3515X7 + 1708X6 + 2432X5 + 3364X4 + 19X3 + 4363X2 + 3299X + 1694
4547 X8 + 1478X7 + 557X6 + 547X5 + 4216X4 + 4199X3 + 931X2 + 122X + 2603
4937 X8 + 2223X7 + 2283X6 + 3633X5 + 3014X4 + 1441X3 + 1038X2 + 895X + 2929
6367 X8 + 5421X7 + 3063X6 + 4934X5 + 5408X4 + 3086X3 + 3209X2 + 2378X + 4026
6521 X8 + 1781X7 + 3020X6 + 4001X5 + 6251X4 + 4299X3 + 4662X2 + 3795X + 1481
7321 X8 + 138X7 + 40X6 + 86X5 + 4768X4 + 5552X3 + 2218X2 + 5144X + 2932
7487 X8 + 244X7 + 1323X6 + 2129X5 + 2433X4 + 6188X3 + 4478X2 + 3403X + 482
8171 X8 + 7110X7 + 5721X6 + 442X5 + 1707X4 + 2076X3 + 7975X2 + 5261X + 5130
8887 X8 + 573X7 + 1259X6 + 1137X5 + 1257X4 + 6273X3 + 3973X2 + 2349X + 1179
9257 X8 + 4738X7 + 1098X6 + 7341X5 + 1995X4 + 4749X3 + 6734X2 + 4637X + 1513
12071 X8 + 9618X7 + 3291X6 + 26X5 + 4751X4 + 4781X3 + 8312X2 + 3824X + 6102

Table 6.5: Polynomials HD(X) (mod pi), being D = −2059.
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took more than 38 hours. Such a large running time is due to the elevated
computational cost of Step 5. This step is run for each of the primes in the
collection {pi} generated in Step 4. For each prime pi, this step iterates O(pi)
times with each iteration requiring the computation of the cardinality of an
elliptic curve. The computational cost of the other steps is negligible.
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Figure 6.3: Running time of Agashe-Lauter-Venkatesan’s method as a function
of the absolute value of the discriminant D.

Again, we have depicted the spent running time as a function of the size of
the largest coefficient of the Hilbert class polynomial HD(X). In this case, we
observe again some tendency to obtain larger running times for larger polyno-
mial coefficients, but the relation between both parameters looks more irregular.
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Figure 6.4: Running time of Agashe-Lauter-Venkatesan’s method as a function
of the size (in bits) of the largest coefficient of HD(X).
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Chapter 7

Method comparison and
conclusion

7.1 Method comparison

So as to compare the two implemented methods, some of the experiments carried
out with Agashe-Lauter-Venkatesan’s method in the previous chapter have been
repeated using Atkin-Morain’s method. The results are shown in Table 7.1
which shows that, according to our implementation, Atkin-Morain’s method is
much faster than Agashe-Lauter-Venkatesan’s. As a particular example, the
experiment on D = −15692 took around one second and a half with Atkin-
Morain’s whereas it took more than 38 hours with Agashe-Lauter-Venkatesan’s.
The running time of both methods grows very fast with the absolute value of
discriminant D in such a way that both algorithms are only feasible for reduced
values of |D|.

The cost of both algorithms depends on the largest coefficient of the Hilbert
class polynomial HD(X), which is upperbounded by

B =

(
h
bh/2c

)
e
π
√
−D

∑
1
ai

where the sum in the above expression is taken over the integers ai such that
the quadratic form aix

2 + bixy + ciy
2 is primitive, reduced, positive definite of

discriminant D (h is the class number H(D)). The required precision for com-
plex number arithmetic of Atkin-Morain’s algorithm, and the amount of small
primes taken by Agashe-Lauter-Venkatesan’s grow with B. Since B grows ex-
ponentially with |D|, both algorithms have a running time which is exponential
with |D|.

In [1] it is stated that generating random curves until one with the required
cardinality is found is asymptotically more efficient that complex multiplication
methods. It is also pointed out that complex multiplication methods are better
that random curve generation just in some situations, like when the curve is
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Discriminant Time (AM) Time (ALV)
-3164 1.5 26939
-6172 1.18 1028
-8699 1.27 39134

-12472 1.38 3972
-15692 1.58 137282

Table 7.1: Comparison of the time spent (in seconds) by Atkin-Morain’s (AM)
and Agashe-Lauter-Venkatesan’s (ALV) algorithms for some discriminants D.

defined over a large finite field yet the discriminant D is relatively small. The
results obtained in this thesis agree with that statement.

7.2 Conclusion

The objective of this thesis has been the implementation of two algorithms for
constructing elliptic curves with a given cardinality. Both algorithms are based
on the theory of complex multiplication on elliptic curves. The thesis begins
by reviewing some elementary mathematical background on groups, rings, fields
and polynomials. After that, some chapters devoted to provide some more deep
content on number fields, quadratic forms, algebraic curves, elliptic functions
and complex multiplication have been provided. Finally, the two implemented
algorithms have been explained together with a detailed example of each one,
and results regarding their running time.

The obtained results show that algorithms based on the construction of the
Hilbert class polynomial HD(X) are constrained by its exponentially (with |D|)
large coefficients. As a consequence, the studied algorithms are only practi-
cal for generating elliptic curves with a relatively small complex multiplication
discriminant, D.

The two studied algorithms have analogous (yet much more complicated)
versions for constructing genus 2 curves with a given number of points on its
Jacobian. The genus 2 version of Atkin-Morain’s generates the Igusa class poly-
nomials of a quartic (degree four) complex multiplication field K by evaluating
the modular invariants of all the abelian varieties of dimension 2 with complex
multiplication by K. Regarding Agashe-Lauter-Venkatesan’s, its genus 2 gener-
alization first computes the Igusa class polynomials modulo some small primes
and later, the Igusa class polynomial is computed using the Chinese Remainder
Theorem. Some additional difficulties like the need to compute the endomor-
phism ring of Jacobians of genus 2 curves have to be dealt with. The reader is
referred to [7, 21] for more details.
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