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Chapter 1

Introduction

Multisymplectic geometry [1�4] considers generalizations of symplectic manifolds1 called n-plectic mani-
folds. A di�erentiable manifoldM is n-plectic if it is equipped with a closed non-degenerate (n+1)-form,
which de�nes a n-plectic structure on M.

In symplectic geometry, one can equip the space of functions on a symplectic manifold with the
structure of a Poisson algebra by means of the symplectic form [5, 6]. It turns out that in multisymplectic
geometry, the n-plectic structure present on a n-plectic manifold gives the structure of Lie-n algebra to
a particular complex L constructed out of the complex of di�erential forms on the manifold [7�11]. Lie
n-algebras are particular instances of strongly homotopy Lie algebras [12], or L1-algebras, in which the
underlying complex is �nite. Therefore, we see that the familiar Poisson algebra appearing in symplectic
geometry extends to multisymplectic geometry in the form of an appropriate L1-algebra.

In symplectic geometry it is very important to consider symplectic manifolds admitting Lie-group
smooth actions that preserve the symplectic structure. These smooth actions are hence called sym-
plectic. Among all symplectic actions there exists a very important class which intuitively speaking is
characterized by being generated by Hamiltonian vector �elds and is hence called Hamiltonian. More
precisely, the action of a Lie group G, with Lie algebra g, on a symplectic manifold (M; !) is said to be
Hamiltonian if it admits a moment map, that is, a map [5, 6]:

� : M! g� ; (1.1)

such that the following conditions are satis�ed:

1. For each x 2 g, let

� �x : M! R ; given by �x(p) �< �(p); x >, where < �; � > is the natural pairing of g and g�.

� vx be the vector �eld generated by the one-parameter subgroup
�
etx j t 2 R

	
� G.

Then:

d�x = ��vx! ; (1.2)

that is, �x is a Hamiltonian function for the vector �eld vx.

2. The map � is equivariant with respect to the given action and the coadjoint action Ad� of G on
g�.

1A symplectic manifold is adi�erentiable manifold equipped with a closed non-degenerate two-form
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In particular, from its de�nition we see that if an action is Hamiltonian then its in�nitesimally gener-
ated by Hamiltonian vector �elds. The notion of Hamiltonian action on a symplectic manifold can be
equivalently de�ned2 in terms of a comoment map, that is, a Lie algebra homomorphism:

�� : g! C1 (M) ; (1.3)

such that d�� (x) = ��vx! ; x 2 g; vx 2 M. That is, �� (x) is the Hamiltonian vector �eld of vx 2
X(M). Associated to the Hamiltonian action of a Lie group G on a symplectic manifold (M; !) with
moment map � we can de�ne the concept of symplectic reduction or Marsden Weinstein quotient
[13]. Under some suitable assumptions, this construction gives a new smooth symplectic manifold out
of (M; !) as the quotient by G of the preimage of 0 2 g� by �.

Hamiltonian actions of a Lie group G on a symplectic manifold and the associated symplectic
reductions are of utmost importance in various areas of geometry and mathematical physics. For exam-
ple, the concept of moment map and symplectic reduction plays an important role in the description
of various moduli spaces of relevance in mathematics and mathematical physics. Particular instances
include the seminal description of �at connections on a Riemann surface given in reference [14], the
Donaldson�Uhlenbeck�Yau equations [15, 16] or the Einstein equations for Kähler metrics, see the
book [17] for more details and further references.

Remarkably enough, the notion of Hamiltonian action can be also de�ned for the action of a
Lie group acting on an n-plectic manifold by de�ning the so-called homotopy moment map [18], a
generalization of the comoment map construction (1.3) for n-plectic manifolds. Intuitively speaking, it
consists on a L1-morphism:

f : g! L ; (1.4)

that lifts, in a suitable sense, the map from g to the set of Hamiltonian vector �elds which is assumed to
exist from the onset. We can de�ne then, following [18], the Hamiltonian action of a Lie group G on a
n-plectic manifold as an action that preserves the n-plectic structure and in addition admits a homotopy
moment map.

This master thesis is devoted to the study of L1-morphisms between Lie-n algebras constructed
on n-plectic manifolds, as well as the study of homotopy moment maps on n-plectic manifolds equipped
with the Hamiltonian action of a Lie group.

One feature of multisymplectic geometry, is that it admits a natural operation which has no
counterpart in symplectic geometry, namely the wedge product: let (Ma; !a) be a na-plectic manifold,
and similarly let (Mb; !b) be a nb-plectic manifold. Then

( ~M; ~!) := (Ma �Mb; !a ^ !b) (1.5)

is also a multisymplectic manifold, since ! is a non-degenerate (na + nb + 2)-form. Notice that while
this structure is natural and always well-de�ned, the structure on ~M that is familiar from symplectic
geometry � namely the sum !a + !b � is of little use since it is not a form of well-de�ned degree except
in the case na = nb.

The main goal of this thesis is to show that both the L1-algebra of observables and homotopy
moment maps are well-behaved with respect to the above wedge product operation in multisymplectic
geometry.

More precisely, assuming that a Lie group GC , with Lie algebra gC , acts on (MC ; !C) with homo-
topy moment map fC : gC ! L1 (MC ; !C), for C = a ; b:

2For a connected Lie group G.
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1. We construct a homotopy moment map

F : ga � gb ! L1( ~M; ~!)

for the product manifold
�
~M; ~!

�
, out of the homotopy moment maps fC for the individual factors.

2. We construct an L1-embedding

H : L1(Ma; !a)� L1(Mb; !b)! L1( ~M; ~!)

from the direct sum of the L1-algebras of the factors, to the L1-algebra of the product manifold.

We will see that the two questions addressed above are closely related. Indeed, rather than approaching
directly question (2), we �rst construct F as in question (1), and using its explicit formula we are able
to make an educated guess for H as in question (2) so that the following diagram of L1-morphisms
commutes:

L1 (Ma; !a)� L1 (Mb; !b) L1
�
~M; ~!

�

ga � gb

fa � f b

H

F

(1.6)

We explicitly construct the homotopy moment map F out of fa and f b (see theorem 6.4.3), making use
of the machinery developed in [19, 20], and we compare our construction with the one given by [18] for
homotopy moment maps arising from equivariant cocycles. In addition, making an educated guess based
on the existence of F , we will explicitly construct the map:

L1 (Ma; !a)� L1 (Mb; !b)! L1
�
~M; ~!

�
; (1.7)

see theorem 6.6.2. The study of di�erentiable manifolds equipped with closed non-degenerate forms
can be justi�ed from di�erent points of views in mathematics as well as in physics. Standard motiva-
tions correspond to the important role that symplectic and multisymplectic manifolds play in classical
mechanics, classical �eld theory and also in the corresponding quantization procedures. In addition,
n-plectic manifolds3 may be physically relevant on another level: the space-time manifold that describes
the universe, at least up to some energy scale, could have the structure of an n-plectic manifold.

Such possibility naturally arises in Superstring Theory [21�31], a very promising candidate theory
for the quantum description of all the known interactions of nature. Superstring theory implies the
existence of several di�erential forms de�ned on the space-time manifold, some of them closed, corre-
sponding to �eld strengths of the Ramond-Ramond and the Neveu-Schwarz Neveu-Schwarz forms of the
corresponding Supergravity. Therefore the space-time manifold in Superstring theory is going to be at
least a pre-n-plectic manifold. The non-degeneracy properties of the forms will depend on the particular
solution to be considered.

3Maybe dropping the non-degeneracy condition on the (n+ 1)-form. The corresponding manifold is then called pre-n-
plectic. Note however that most of the results about n-plectic manifolds can be extended in a suitable way to pre-n-plectic
manifolds.
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The space-time that we observe is four-dimensional, yet Superstring theory predicts that the space-
time must be ten-dimensional. In order to �x this apparent contradiction, several mechanisms have been
proposed in the literature [32�37]. One of them, the Kaluza-Klein reduction [34], consists in assuming
that the space-time manifold M is locally the product of a four-dimensional non-compact manifold M4

and a six-dimensional compact manifold M6

M =M4 �M6 ; (1.8)

small enough to not be accessible in current high-energy experiments. Superstring theory constrains the
di�erent manifoldsM6 that we can consider as compact manifolds [37]. In particular, for supersymmetric
compacti�cations, the existence of one or several globally de�ned spinors on the compact manifold implies
the existence of globally de�ned forms, which, depending on the details of the compacti�cation, may be
closed and non-degenerate. As an example, we can consider M-theory [38], closely related to Superstring
Theory, which is a theory that predicts the space-time manifold to be eleven-dimensional. The �uxless
compacti�cation of such theory on a seven dimensional compact manifold M7 implies that M7 must be
a manifold of G2-holonomy [34, 39�41]. Therefore, it has a globally de�ned, closed and non-degenerate
three-form [42] and thus it is a two-plectic manifold.

It is worth pointing out that the interpretation of the Lie-n algebras associated to the space-
time manifold or the compacti�cation manifold is not known, and it would be interesting to �nd out
if it encodes any physical information about the theory itself. Notice that L1-algebras have appeared
already in Superstring Theory and Supergravity. For example, the algebra of states in the Fock space of
closed String Field Theory is a strongly homotopy Lie algebra [43]. For more applications of L1-algebras
to Superstring Theory and Supergravity the interested reader may consult [44�52]. It is clear then that
multisymplectic geometry and L1-algebras play an important role in theoretical physics and in particular
in Superstring Theory and Supergravity, and thus more e�ort is needed in order to uncover the role that
these mathematical structures play in the theories that describe the fundamental interactions of nature.

The outline of this work is as follows. In chapter 2 we introduce some background mate-
rial relevant for the rest of the paper, which includes basics of �ber bundles, Lie groups and Courant
algebroids. It is intended for non-experts, perhaps interested physicists, and therefore can be skipped
by experts. In chapter 3 we consider symplectic manifolds, moment maps and the Marsden-Weinstein
quotient. In chapter 4 we introduce some background on algebras, coalgebras and categories. In chap-
ter 5 we introduce L1-algebras and de�ne L1-morphisms in an independent way, not related yet to
multisymplectic geometry, giving explicit formulae relating L1[1]-algebras and L1-algebras. Chapter
6 contains the new results present in this thesis. We �rst introduce n-plectic manifolds and connect
them to L1-algebras. Then we introduce, closely following [18], the concept of homotopy moment map.
In section 6.2 we obtain speci�c conditions under which two n-plectic manifolds with strictly isomor-
phic Lie-n algebras are symplectomorphic. In section 6.3, we study the construction of an homotopy
moment map for a product manifold assuming that the factors are n-plectic manifolds equipped with
the corresponding homotopy moment maps. Then in section 6.5 we specialize to the case of iterated
powers of the same multisymplectic form, i.e. (M;!m), displaying explicit formulae for the case (M;!2)
and discussing Hyperkähler manifolds as an example. In section 6.6 we construct the L1-embedding H
(by L1-embedding we mean an L1-morphism whose �rst component H1 is injective). We do this in
theorem 6.6.2, using the formulae for F as a guide.



Chapter 2

Background material

In this section we introduce some basic material which will be used through the rest of the document.
Standard references for this chapter are [53�56].

2.1 Manifolds and Lie groups

A topological space M is said to be Hausdor� or T2 if for every pair points p ; q 2 M there exist
neighbourhoods U(p) ;U(q) of p and q, such that U(p) \ U(q) = f;g. In addition, M is a second-
countable space if it has a countable base, that is, if there exists a countable collection fUig

1
i=1 of open

sets such that any open set in M can be written as a union of open sets in the collection fUig
1
i=1. A

coordinate chart on M is a pair (U ; �), where U is an open subset of M and � is a homeomorphism of
U onto an open subset of Rn.

De�nition 2.1.1. Let M be a Hausdor�, second-countable, topological space. A di�erentiable struc-
ture on M is a collection of coordinate charts fU�; ��g�2I on M such that the following conditions
hold

1. M =
S
�2I U�

2. �� (U�) is an open set of Rn for all � 2 I and for each pair � ; � 2 I, �� � ��1� is a di�erentiable1

mapping of �� (U� \ U�) onto �� (U� \ U�).

3. The collection (U�; ��)�2I is a maximal family of open charts for which conditions 1 and 2 hold.
The family (U�; ��)�2I is then called the maximal atlas of M.

De�nition 2.1.2. A di�erentiable manifold of dimension n is a Hausdor�, second-countable, topolog-
ical space equipped with a di�erentiable structure of dimension n.

If M is a manifold, a local chart or local coordinate system on M is a pair (U�; ��) where � 2 I.
For every p 2 U� ; � 2 I, U� is called a coordinate neighbourhood of p and the numbers ��(p) =
(x1(p); : : : ;xn(p)) are the local coordinates of p. Condition 3 is not essential in the de�nition of a
manifold, since if only 1 and 2 are satis�ed, the family (U�; ��)�2I can be extended in a unique way to
a family of charts such that 1, 2 and 3 are ful�lled.

Since a manifoldM is locally homeomorphic to Rn, they share the same local topological properties. In
particular, manifolds are locally compact and locally connected. That means, respectively, that every
point p 2 M has a compact neighbourhood and a connected neighbourhood. Using that the topology
of M has a countable basis and it is locally compact, it can be shown that M is paracompact, that is,

1By di�erentiable we will always mean, unless otherwise stated, in�nitely di�erentiable or C1.
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every open cover of M admits a locally �nite re�nement. Paracompactness is a su�cient condition for
partitions of unit to exist, and therefore M admits a Riemannian metric, which implies in particular
that it is metrizable. Schematically we can write:

M : Hausdor� � T2 � locallyRn ! Paracompact and metrizable : (2.1)

In order to give some intuition or justi�cation to the various conditions included in the de�nition of a
manifold, let us take an example from Physics, in particular from General Relativity. In the context of
General Relativity, the space-time is usually described as an n-dimensional di�erentiable manifold M.
In that context, the Hausdor� condition is natural since it is experimentally observed. On the other
hand, the gravitational interaction is described by a Lorentzian metric g on M. The condition that
M is paracompact ensures the existence of a partition of unity, which in turn ensures the existence of
a Riemannian metric on M. When M is non-compact, it also ensures the existence of a Lorentzian
metric2, as required in General Relativity. The second-countable condition is a reasonable assumption
for topological spaces locally homeomorphic to Rn, since otherwise the space would not be adapted to
be locally like Rn. If we want to use M to describe the space-time, this is a very natural assumption
since it is experimentally observed that, at least at some scales, the space-time actually locally looks like
Rn.

A function f : M ! R is di�erentiable at p 2 U� � M if f � ��1� : �� (U�) � Rn ! R is
di�erentiable at ��(p) 2 Rn. A function f is called di�erentiable if it is di�erentiable at every point
p 2 M. We denote by C1(M) the set of di�erentiable functions from M into R and by C1(M; p) the
set of functions from M into R di�erentiable at p 2M.

Let M be a manifold with di�erentiable structure fU�; ��g�2I . There are three basic and equiva-
lent ways to de�ne the tangent space TpM of a di�erentiable manifold M at a point p 2M:

1. Let Tp be the set of all pairs (��; u), where p 2 U� and u 2 Rn. We de�ne an equivalence relation
� on Tp by declaring (��; u) � (�� ; v) if and only if :

d��(p)
�
�� � �

�1
�

�
(u) = v ; (2.2)

for every other coordinate chart (U� ; ��) such that p 2 U� . The equivalence class of (��; u) will
be denoted by [��; u]. The set TpM � Tp= � is then the tangent space at the point p 2 M. If
feig ; i = 1; : : : ; n; is the canonical basis of Rn we de�ne the partial derivatives respect to xi by:

@

@xi
= [��; ei] ; i = 1; : : : ; n : (2.3)

2. A curve in M is a map c : [0; 1]!M. A curve c is di�erentiable at t0 2 (0; 1) ; c(t0) 2 U� �M, if
�� � c : [0; 1]! R is di�erentiable at t0. Let be Tp the set of all the curves in M passing through
p 2 U�. We de�ne the following equivalence relation �: two curves c1(t) and c2(t) on M passing
through p are related by � if and only if:

@t (�� � c1) (t0) = @t (�� � c2) (t0) ; (2.4)

where t0 2 (0; 1) is a �xed real number. We denote by [c] the class of equivalence of c. Then the
tangent space is TpM� Tp= �.

3. A derivation at p 2M is a linear application D : C1(M)! R such that

D (fg) jp = f (p)D (g) jp + g(p)D (f) jp : (2.5)

2When M is compact, the topological obstruction for the existence of a Lorentzian metric is given by the vanishing of
its Euler characteristic.
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for every f; g 2 C1 (M; p). We denote the space of derivations at p 2M by Der (M; p). Then we
have TpM� Der (M; p).

Let M be a di�erentiable manifold of dimension n with atlas (U�; ��)�2I and let N be a di�eren-
tiable manifold of dimension m with atlas (V� ;  �)�2J . Let � be a mapping from M to N . The map �
it is said to be di�erentiable at a point p 2 U� if the map  � � � � ��1� : Rn ! Rm is di�erentiable at
��(p) 2 Rn. The map � is said to be di�erentiable if it is di�erentiable at every point p inM. The map
� is said to be a di�eomorphism if it is a di�erentiable biyective map with di�erentiable inverse. The
map � is said to be a local di�eomorphism if for every p 2M there exists an open set U 2 M containing
p such that � restricted to U is a di�eomorphism into its image, which is automatically open in N .

Let us de�ne �(p) := q 2 V� . The di�erential dp� of � at a point p 2 M is a linear map
dp� : TpM! TqN which can be naturally de�ned, for each of the equivalent de�nitions of the tangent
space introduced above, as follows:

1. dp� : [��; u] 7!
h
 �; d��(p)

�
 � � � � �

�1
�

�
(u)
i

2. dp� : [c] 7! [� � c]

3. dp� : D 7! ��D ; where ��D (h) = D (h � �) for every h 2 C1 (N ; q).

We are ready to introduce the tangent bundle of M, which is a special instance of vector bundle,
which will be de�ned in section 2.2. Let us consider the set

TM = f(p; v) : p 2M ; v 2 TpMg =
[
p2M

fpg � TpM : (2.6)

There is a natural projection map � : TM ! M given by �(p; v) = p for every (p; v) 2 TM. The
tangent bundle TM admits a natural topology and di�erentiable structure for which � is a continuous
and in fact smooth map. We topologize TM by taking as open sets the sets of the form ��1 (U�), where
U� � M is an open set of the maximal atlas of M. We de�ne a di�erentiable structure on TM by
de�ning on every open set ��1 (U�) the following coordinates ~��:

~��(p; v) = (��(p); dp��(v)) 2 R2n ; (2.7)

where p 2 U� �M and v 2 TpM. Therefore, TM is a 2n-dimensional manifold which is in particular a
vector bundle of rank n and �bre at a point p 2M given by the vector space TpM.

Smooth sections3 of TM are smooth maps v : M ! TM such that � � v(p) = p for all p 2 M.
A smooth vector �eld on M is a smooth section of TM, and the C1(M)-module of all vector �elds
in M is denoted by X(M). Vector �elds on a manifold M can be integrated along curves on M. Let
v 2 X(M) be a vector �eld on M and �x a point p 2 M. Then, there exists a positive number � and a
unique curve  : [��; �]!M with parameter t such that:

@tj0 = vjp ; (2.8)

and:

@t(t) = vj(t) ; (2.9)

for every t 2 (��; �). A vector �eld v 2 X(M) is said to be complete if the parameter of each integral
curve extends to (�1;1). A complete vector �eld v 2 X(M) generates a one-parameter family of
di�eomorphisms �t :M!M ; t 2 R, as follows. For each p 2 M and t 2 R, we de�ne �t(p) to be the
value in M at t of the unique integral curve of v passing through p at t = 0.

3See also de�nition (2.2.3).



16 CHAPTER 2. INTRODUCTION

De�nition 2.1.3. Let v 2 X(M) be a complete vector �eld on M. The one-parameter group of
di�eomorphisms f�tgt2R associated to v 2 X(M) is de�ned as:

�t : M ! M ;

p 7! vp(t) ; (2.10)

where vp : R !M is the unique smooth complete curve in M such that @tj0 = vjp and @t = vj(t).
Equivalently, we de�ne the �ow of the complete vector �eld v 2 X(M) as:

'v : R�M ! M ;

(t; p) 7! �t(p) ; (2.11)

Remark 2.1.4. It can be can be seen that the map R ! Di� (M) de�ned by t 7! �t is a group homo-
morphism. Therefore, every complete vector �eld on M de�nes a smooth action of R on M (see section
2.1.2 for more details).

At every point p 2M we denote the dual space of TpM as T �pM. Elements of T �pM are called one-forms
at the point p. Similarly, the dual bundle of TM is denoted by T �M. Sections of T �M one-form �elds
on M. They correspond simply to a smooth choice of one-form in T �pM at every point p 2 M. The
set of all the one-form �elds in M is denoted by 
1(M) or equivalently by �(T �M). Analogously, an

element Tp of (TpM)
s 

�
T �pM

�
r
is a (r; s) tensor4 and a section T of �

�
(TM)
s 
 (T �M)
r

�
is a

(r; s) tensor �eld on M.

Of utmost importance in di�erential geometry are the tensor algebra5 (T (M) ;
) and the exterior
algebra of di�erential forms (� (M) ;^). Let T(r;s) (M) denote the set of all tensor �elds on M of type
(r; s), and let 
k (M) denote the set of all k-form �elds on M. Then we have6

T (M) =
1X

r;s=1

T(r;s) (M) ; � (M) =
1X
k=1


k (M) : (2.12)

Note that the in�nite sum in the de�nition of � (M) is only formal; for �nite-dimensional manifolds
it will contain only a �nite number of terms. With this de�nition, �(M) is a Z-graded commutative
algebra.

There are several important operators that can be de�ned on T (M) and � (M). Here we will
consider the interior product �v, the exterior derivative or de Rham di�erential d and the Lie derivative
Lv ; v 2 � (TM).

The interior product �v The interior product �v : 
i (M)! 
(i�1) (M) is a �1 degree derivation on
the exterior algebra of di�erential forms � (M). It is de�ned to be the contraction of a di�erential form
with a vector �eld v 2M as follows:

(�v!)
�
v1; : : : ; v(i�1)

�
= !

�
v; v1; : : : ; v(p�1)

�
; 8 v1; : : : ; v(p�1) 2 X (M) : (2.13)

The interior product is the unique derivation of degree minus one on the exterior algebra such that on
one-forms corresponds to the natural pairing of one-forms and vectors.

4For the de�nition of tensor product see 4.1.9.
5For the de�nition of algebra see 4.1.1.
6For more details and general de�nitions, see section 4.1.
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The exterior derivative d The exterior derivative d is de�ned to be the unique R-linear mapping
d : 
i (M)! 
(i+1) (M) such that

� df is the di�erential of f for every function f 2 C1 (M).

� d � df = 0 for every function f 2 C1 (M).

� d (� ^ �) = d� ^ � + (1)p� ^ d�, where � is a p-form and � is any form.

Since the second de�ning property holds in more generality, that is, d � d� = 0 for any p-form �, it is
usually written as d2 = d � d = 0.

The Lie derivative Lv The Lie derivative can be de�ned acting on tensor �elds of any type (r; s),
that is, it has a well de�ned action on T (M). Intuitively, the Lie derivative Lv evaluates the change of
a tensor �eld along the �ow of the vector �eld v. It is de�ned point-wise as follows

(LvT)p =
d

dt

����
t=0

�
'(�t; p)�T't(p)

�
=

d

dt

����
t=0

('(t; p)�T)p ; (2.14)

where T is a (r; s) tensor �eld on M and p 2 M. It can be checked that with the de�nition (2.14) LvT
is again a (r; s) tensor �eld on M. We now give an algebraic de�nition. The algebraic de�nition for the
Lie derivative of a tensor �eld follows from the following four axioms

� Lvf = v(f) for all f 2 C1(M).

� The Lie derivative Lv obeys the Leibniz rule. That is, for any tensor �elds S and T, we have

Lv (S
 T) = (LvS)
 T+S
 (LvT) ; : (2.15)

� The Lie derivative, when applied to forms, obeys the Leibniz rule with respect to contraction

Lv(T(Y1; : : : ; Yn)) = (LvT)(Y1; : : : ; Yn) + T((LvY1); : : : ; Yn) + � � �+ T (Y1; : : : ; (LvYn)) (2.16)

� The Lie derivative, when applied to forms, commutes with the de Rham di�erential d, that is

[Lv; d] = 0 ; (2.17)

The Lie derivative Lv can be compactly written as

Lv = �v � d+ d � �v ; (2.18)

which is known as the Cartan formula.

2.1.1 Cartan calculus

Let us denote by X (M) the C1 (M)-module of vector �elds on M. Then

X� (M) =
dimMM
k=0

�kX (M) ; (2.19)
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is a graded commutative algebra, the so-called graded commutative algebra of multivector �elds, where
the corresponding algebra product is given by the wedge product, denoted by ^. X� (M) can be equipped
with a degree minus one Lie bracket [�; �] : X� (M)�X� (M)! X� (M) that satis�es the (graded) Leibniz
rule with respect to the algebra product, that is, the wedge product. [�; �] is given by

[u1 ^ � � � ^ um; v1 ^ � � � ^ vn] =
mX
i=1

nX
j=1

(�1)i+j [ui; vj ] ^ u1 ^ � � � ^ ûi ^ � � � ^ um ^ v1 ^ � � � ^ v̂j ^ � � � ^ vn ;

where u1^� � �^um ; v1^� � �^vn 2 X� (M) and [ui; vj ] is the standard Lie bracket of vector �elds. This is
the so-called Schouten bracket, and it makes (X� (M) ;^; [�; �]) into a particular instance of Gerstenhaber
algebra7.

We can de�ne also the interior product of any decomposable multivector �eld, say v1 ^ � � � ^ vn,
with any � 2 
�(M) is given by

�(v1 ^ � � � ^ vn)� = �vn � � � �v1�; (2.20)

where �vi� is the stands for the usual interior product of vector �elds and di�erential forms. The formula
for the interior product of any multivector can be obtained by extending using C1 (M) linearity.

The Lie derivative Lv of any di�erential form � along any given multivector �eld v 2 X� (M) can
be written in terms of the graded commutator of d and �v as follows

Lv� = d�v� � (�1)jvj�vd� ; (2.21)

where �v must be understood as a degree �jvj operator. We will need one more identity. Let u; v 2
X� (M). Then it can be proven that

�[u;v]� = (�1)(juj�1)jvjLu�v� � �vLu� : (2.22)

The graded commutative algebra of multivector �elds X� (M) together with the Schouten bracket is
therefore a particular instance of a Gerstenhaber algebra that can be constructed in any di�erential
manifold M.

2.1.2 Lie groups

De�nition 2.1.5. A Lie group is a smooth manifold G which is also an abstract group such that the
multiplication map � and the inverse map are C1-maps.

De�nition 2.1.6. A Lie subgroup H of a Lie group G is an abstract subgroup H � G such that the
canonical inclusion is an immersion.

Remark 2.1.7. The canonical injection is an embedding if and only if H is closed in G.

Remark 2.1.8. By Cartan's theorem, every closed subgroup of a Lie group is a Lie subgroup.

De�nition 2.1.9. For a Lie group G and an element g 2 G, left-translation Lg : G ! G and right-
translation Rg : G! G are smooth maps de�ned by:

Lg(h) = g � h ; Rg(h) = h � g ; 8h 2 G : (2.23)

The maps:

7See de�nition 4.1.13.
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L : g ! Lg ; R : g ! Rg ; (2.24)

are homomorphisms from G into the di�eomorphism group Di�(G) of G. In other words, we have:

(Lg)
�1 = Lg�1 ; Lg1 � Lg2 = Lg1g2 ; (2.25)

and similarly for Rg. Notice also that left and right translations commute.

Example 2.1.10. The group Gl(n;R) of n�n invertible real matrices is a real Lie group of dimensions n2.
Its di�erentiable structure its induced from the canonical one of Rn2 after identifying Mat(n;R) ' Rn2

and after noticing that by de�nition Gl(n;R) is an open subset of Rn2 of dimension n2.

De�nition 2.1.11. A vector �eld X 2 X (G) is called left-invariant if Lg�X = X for all g 2 G.
Likewise, a vector �eld X 2 X (G) is called right-invariant if Rg�X = X for all g 2 G.

We will denote the set of left-invariant vector �elds by XL (G)8. Standard addition of vector �elds and
scalar multiplication by real numbers make XL (G) into a real vector space.

Lemma 2.1.12. The vector space of left-invariant vector �elds XL (G) is closed under the Lie
bracket operation given by the standard commutator of vector �elds [�; �] : X(G)�X(G)! X(G) and
hence (XL(G); [�; �]) is a Lie sub-algebra of (X(G); [�; �]).

Proof. Follows from the identity:

Lg�[v1; v2] = [Lg�v1; Lg�v2] ; 8 v1; v2 2 X(M) : (2.26)

The vector space of left-invariant vector �elds XL (G) equipped with [�; �] is de�ned to be the Lie algebra
g := (XL (G) ; [�; �]) of G. Left-invariant vector �elds are completely determined by their value at one
point, say g0 2 G, since they can always be unambiguously reconstructed by left-translation, i.e.:

vLjg = (Lgg�10
)�v

L
g0 ; 8 vL 2 XL(M) ; (2.27)

where g 2 G. Since Lie groups have a distinguished point, namely the identity element e 2 G, left-
invariant vector �elds XL (G) can be canonically identi�ed with elements of the vector space TeG. The
tangent space at the identity TeG equipped with the binary operation induced by the standard bracket
[�; �] of left-invariant vector �elds is isomorphic to the Lie algebra g of G. This in turn proves that
the dimension of the Lie algebra g is equal to the dimension of G. Similar remarks apply to set of
right-invariant vector �elds XR (G). Under some hypothesis, Lie algebras determine completely the
corresponding Lie group.

Theorem 2.1.13. Every �nite-dimensional real Lie algebra g is isomorphic to the Liea algebra
of some real Lie group G. If G is connected and simply connected then g determines G up to
isomorphism of Lie groups.

This is the so-called Lie's third theorem, and its proof can be found for example in reference [57]. For
general Lie groups we have the following theorem.

Theorem 2.1.14. Two Lie groups are locally isomorphic if and only if their Lie algebras are
isomorphic.

Proposition 2.1.15. Any Lie group G is parallelizable, that is TG ' G� g.

8In the following discussion, similar remarks apply to the set of right-invariant vector �elds. It is standard in the
literature to consider left-invariant vector �elds.
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Proof. A basis ei, i = 1; : : : ; n, of g and extending it over G by left-translation, we obtain n everywhere
non-zero and independent vector �elds on G.

De�nition 2.1.16. A one-parameter subgroup of a Lie group G is an injective smooth homomor-
phism � : (R;+)! G.

Hence, � : R ! G is a smooth curve that satis�es �(s+ t) = �(s)�(t) and �(0) = e. For example, eit is
a one-parameter subgroup of the circle S1 = U(1).

De�nition 2.1.17. We make the following de�nitions:

� Let x 2 g. We de�ne vx 2 XL(G) as the unique left-invariant vector �eld on G such that:

vxje = x : (2.28)

� A one-parameter subgroup generated by an element x 2 g is the homomorphism �x : R ! G
de�ned as:

�x : R ! G ;

t 7! 'vx(t; e) ; (2.29)

where 'vx(t; e) denotes the �ow associated to vx 2 XL(G). For simplicity we will sometimes denote
'vx by 'x.

� The exponential map Exp of G is the map:

Exp: g ! G ;

x 7! 'vx(1; e) : (2.30)

We will sometimes denote Exp(x) by ex.

Proposition 2.1.18. Let g 2 G. The following equalities hold:

'x(t; g) = gExp(tx) ; Exp((t+ s)x) = Exp(tx)Exp(sx) ; (2.31)

where t; s 2 R.

Proposition 2.1.19. The map � 7! (d�)j0(1) de�nes a one-to-one correspondence between one-
parameter subgroups of G and TeG.

Proposition 2.1.20. Let G be a compact and connected Lie group. Then the exponential map
Exp: g! G is surjective.

We de�ne now the adjoint representation of a Lie group. Every Lie group acts on itself by conjugation.
Given an element g 2 G, we de�ne the conjugation map Cg as follows:

Cg : G ! G

h 7! ghg�1 : (2.32)
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The tangent map of Cg : G ! G is an un-based morphism of the tangent bundle TG whose evaluation
at a point h 2 G is a linear map of the form:

(dCg) jh : ThG! Tghg�1G : (2.33)

Therefore, for each g 2 G, (dCg) je : TeG ! TeG is an endomorphism of the tangent space of G at the
identity which can be seen to be an automorphism. In addition, (dCg) je is compatible with the Lie
bracket in TeG ' g and therefore is a Lie-algebra automorphism of g.

De�nition 2.1.21. We de�ne the adjoint representation Ad: G! Gl(g) of G as:

Ad: G ! Gl(g) ;

g 7! Adg � (dCg) je : (2.34)

Hence, the adjoint representation of G assigns to every element g 2 G an element of Gl (g) and therefore
is a representation of G on the vector space g. The adjoint representation ad of g on itself can be obtained
from the adjoint representation of G as follows:

adx(y) =
@

@t

����
t=0

Adetx(y) ; x; y 2 g : (2.35)

One can show that adx(y) = [x; y] ; 8 x; y 2 g.

2.1.3 Lie group actions on a manifold

In this section we consider the left action of a Lie group G on a di�erentiable manifoldM. Right actions
are de�ned similarly.

De�nition 2.1.22. A left action of a Lie group G on a manifold M is a di�erentiable map:

�: G�M ! M

(p; g) 7! �(g; p) ; (2.36)

satisiedfying the following conditions:

� For every p 2M we have �(e; p) = p.

� For every g1; g2 2 G and for every p 2M we have �(g2;�(g1; p)) = �(g2g1; p).

In order to simplify the notation we will sometimes denote �(g; p) = g � p, where p 2M and g 2 G.

Remark 2.1.23. For g 2 G �xed, we denote by �g : M!M the map de�ned as:

�g : M ! M ;

p ! �g(p) = �(g; p) : (2.37)

For each g 2 G, �g is a di�eomorphism with inverse given by ��1g = �g�1 .

Example 2.1.24.
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The map �: G � G ! G given by l(g; h) = Lg(h) is an example of left action of G onto itself.
Given a left action �: G�M!M and a �xed point p 2M,

De�nition 2.1.25. Let �: G ! M ! M be a left group action. The isotropy group of � on p is
de�ned to be

Gp = fg 2 G : g � p = pg : (2.38)

It can be seen that Gp is a closed subgroup of G and hence it is a Lie subgroup of G by Cartan's
theorem. In addition, for every other point q 2 M, Gq and Gp are conjugate to each other in G. Let
�: G�M!M be a left group action.

De�nition 2.1.26. The orbit of G through p 2M is Op = f�(g; p) j g 2 Gg.

De�nition 2.1.27. An action �: G�M!M is said to be:

� transitive if Op =M ; 8 p 2M.

� free if Gp is trivial 8 p 2M.

� locally free if Gp is discrete 8 p 2M.

� e�ective if for each g 2 G there exists a p 2M such that g � p 6= p.

De�nition 2.1.28. Let �: G�M!M be a left group action. If the di�erentiable map P : G�M!
M�M de�ned by (g; p)! (�(g; p); p) is proper, the action is said to be proper9.

De�nition 2.1.29. Let g be a Lie algebra. A Lie algebra action of g on a smooth manifold M is a
smooth vector bundle map:

g�M ! TM ;

(x; p) 7! (p; vx;p) ; (2.39)

such that the associated map g! X(M) given by � 7! vx, where vxjp = vx;p, is a Lie-algebra homomor-
phism.

Proposition 2.1.30. Let G be a Lie group with Lie algebra g. For any action �: G�M!M of
a Lie group G on a manifold M the induced map:

g ! X(M) ;

x 7! vx ; (2.40)

where:

vxjp =
d

dt

�
e�tx � p

�
jt=0 ; (2.41)

is a Lie algebra action of g on M. In addition, for g 2 G we have:

g�vx = vAdgx : (2.42)

If G is simply connected and M is compact, then the converse is also true, and every g-action on M
integrates to a G-action.

9A map of topological spaces is said to be proper if inverse images of compact subsets are compact.
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Example 2.1.31. If v is a complete vector �eld on M, then

� : R ! Di� (M)

t 7! �t ; (2.43)

is a smooth action of R on M.

Let � be the orbit equivalence relation on M de�ned by

p � q , p; q 2 Op : (2.44)

The space of orbits M= �:= M=G is called the orbit space of the G-action � on M. The orbit space
M=G can be a very sick space, and in general it will not be a manifold. In fact, it may not be even a
Hausdor� topological space. However, there are some simple conditions which guarantee that M=G can
be equipped with a unique smooth structure such that the canonical map � : M !M=G is a smooth
map of manifolds. Let then:

� : M ! M=G

p 7! Gp : (2.45)

be the canonical projection. We can equip M=G with the weakest topology for which � is continuous,
namely, U �M=G is open if and only if ��1 (U) is open in M. This is the so-called quotient topology.

Proposition 2.1.32. If �: G�M!M is free and proper then M=G is Hausdor�.

Theorem 2.1.33. Let �: G �M ! M be a free and proper group action. Then, there exists a
unique smooth structure on M=G such that:

� the induced topology is the quotient topology and M=G is a smooth manifold.

� the projection � : G!M=G is a submersion.

� dimM=G = dimM� dimG.

Remark 2.1.34. If G is compact, every smooth action �: G�M!M is proper.

2.2 Locally trivial di�erentiable �ber bundles

In this section we are going to introduce the concept of locally trivial di�erentiable �ber bundle. Di�er-
entiable �ber bundles are in particular manifolds, i.e., they are manifolds equipped with a very particular
extra-structure. We start with the de�nition of locally trivial di�erentiable �ber bundle, to which we
will refer simply as a �ber bundle.

De�nition 2.2.1. Let F , M and E be di�erentiable manifolds and let � : E ! M be a di�erentiable
surjective map. The quadruple (E ; �;M;F) is a locally trivial di�erentiable �bre bundle if for every
p 2 M there is an open set U containing p and a di�eomorphism � : ��1 (U) ! U � F such that the
following diagram commutes
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��1 (U) U � F

U

�

�
pr1

where pr1 is the proyection on the �rst factor. E is the total space, M is the base space, F is the typical
�bre and � is the bundle projection. For each p 2 M, the set Ep � ��1 (p) is the �bre over p, which is
di�eomorphic to F . The maps � : ��1 (U) ! U � F are called the local trivializations of the bundle.
Such a local trivialization must be of the form � =

�
���1(U);�

�
where

� : ��1 (U)! F ; (2.46)

is a di�erentiable map such that

�j Ep : Ep ! F ; (2.47)

is a di�eomorphism. The pair (U ; �), where � is a local trivialization over the open set U �M is called
a bundle chart. A family (U�; ��)�2I such that (U�)�2I is a cover of M is a bundle atlas. Given two
di�erent bundle charts (U�; ��) and (U� ; ��) such that U� \ U� 6= ; we have the overlap map

�� � �
�1
� : U� \ U� �F ! U� \ U� �F ; (2.48)

which can be written as follows

�� � �
�1
� (p; q) = (p;���(p)(q)) ; p 2M ; q 2 F ; (2.49)

where ��� : U� \ U� ! Di� (F) is given by

p 7! ���(p) = ��j Ep � �
�1
�j Ep

: (2.50)

The functions ��� are called the transition maps, and satisfy

� ���(p) = IdDi�(F) ; p 2 U� ;

� ���(p) = ���(p)
�1 ; p 2 U� \ U� ;

� ���(p) � ��(p) � ��(p) = IdDi�(F) ; p 2 U� \ U� \ U ;

for all � ; � ;  2 I. The characterization just given of the transition maps as a map to the di�eomorphisms
of F can be usually restricted to a map onto a lie group G acting on F by a particular action 	 : G�F !
F . The reader is invited to consult [54, 58] for more details.

De�nition 2.2.2. Let �1 = (E1; �1;M1;F1) and �2 = (E2; �2;M2;F2) di�erentiable �bre bundles. A
morphism from �1 to �2 is a couple of maps F : E1 ! E2 and f : M1 ! M2 such that the following
diagram commutes
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E1 E2

M1 M2

F

�1

f

�2

If F and f are di�eomorphisms, then (F; f) : �1 ! �2 is a bundle isomorphism.

De�nition 2.2.3. A di�erentiable global section of a �bre bundle � = (E ; �;M;F) is a di�erentiable
map � :M! E such that ��� = IdM. A di�erentiable local section over an open set U is a di�erentiable
map � :M! U such that � � � = IdU .

The set of di�erentiable sections of � is denoted by � (�) or � (E). Notice that a �bre bundle may not
have any global section.

De�nition 2.2.4. Let V be a �nite dimensional vector space over the complex or real numbers. A
smooth vector bundle with typical �bre V is a �bre bundle (E ; �;M; V ) such that

� for each p 2M we have that Ep = ��1(p) is a vector space isomorphic to V .

� for every p 2M there exist a bundle chart (U�; ��) containing p such that

�j Ep : Ep ! V ; (2.51)

is a vector space isomorphism, where � =
�
���1(U);�

�
.

The typical example of vector bundle is the tangent bundle TM over a manifold M. The notion
of bundle morphism, given in de�nition (2.2.2) specializes to vector bundles by requiring Fj��11 (p) :

��11 (p)! ��12 (f(p)) to be linear.

Given two vector bundles �1 : E1 !M and �2 : E2 !M, we can de�ne the Whitney sum bundle
�1 � �2 : E1 � E2 !M such that the �bre at a point p 2M is given by (E1 � E2)p = E1 p � E2 p.

The pull-back of a vector bundle � : E ! M by a smooth map f : N ! M, where N is a
di�erentiable manifold, is the vector bundle (f�E) over N de�ned as follows

f�E = f(q; e) 2 N � E j f(q) = �(e)g � N � E ; (2.52)

and equipped with the subspace topology and the projection map pr1 : f
�E ! N given by the projection

onto the �rst factor

pr1(q; e) = q : (2.53)

Notice that the following diagram commutes
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f�E E

N M

pr2

pr1

f

�

where pr2 is the projection on the second factor. If (U ; �) is a local trivialization of E , then
�
f�1 (U) ;  

�
is a local trivialization of f�E where

 (q; e) = (q;pr2 (�(e))) ; 8 (q; e) 2 f�E : (2.54)

Therefore, the �bre at a point q 2 N is given by

(f�E)q = Ef(q) : (2.55)

A section � 2 � (E) induces a section f�� 2 � (f�E) de�ned by f�� = � � f .

Example 2.2.5. As an example of pull-back of a vector bundle we are going to consider the pull-back of
the tangent bundle TM of a di�erentiable manifold M. Let N be a di�erentiable manifold and let

f : N !M (2.56)

be a map. The pull-back bundle is de�ned as follows

f�TM = f(q; e) 2 N � TM j f(q) = �(e)g � N � TM : (2.57)

Notice that the following diagram commutes

f�TM TM

N M

pr2

pr1

f

�

Notice that in general f�TM is not equal to TN . Only when f is a di�eomorphism we have f�TM '
TN .

2.3 Courant algebroids

In this section we consider a particular type of vector bundle called Courant algebroid. A Courant
algebroid is, roughly speaking, an extension of the tangent bundle of a smooth manifold M by means
of an extrinsic vector bundle E ! M equipped with a non-degenerate symmetric bilinear form and a
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bracket satisfying a particular relaxed version of the standard condition of anitsymmetricity, Leibniz rule
and Jacobi identity.

The canonical example of Courant algebroid was �rst introduced by T. Courant in reference [59]
in order to obtain a uni�ed description of pre-symplectic and Poisson structures in Dirac's theory of
constrained mechanical systems. Courant algebroids were then abstractly de�ned for the �rst time by
Liu, Weinstein and Xu in reference [60], and by know there are several equivalent de�nitions of Courant
algebroids available in the literature. Here we will use the de�nition given in reference [61] by �Severa:

De�nition 2.3.1 ([61]). A Courant algebroid (E; h�; �i; [�; �]; �) over a manifold M consists of a vector
bundle E !M together with a nondegenerate symmetric bilinear form h�; �i on E, a (Dorfman) bracket
[�; �] on the sections �(E), and a bundle map � : E ! TM such that the following properties are satis�ed,
for e1; e2; e3 2 �(E) and � 2 C1(M):

(C1): [e1; [e2; e3]] = [[e1; e2]; e3] + [e2; [e1; e3]],

(C2): �([e1; e2]) = [�(e1); �(e2)],

(C3): [e1; �e2] = �(e1)(�)e2 + �[e1; e2],

(C4): �(e1)he2; e3i = h[e1; e2]; e3i+ he2; [e1; e3]i,

(C5): [e1; e2] + [e2; e1] = ��dhe1; e2i.

The map � : E ! TM is usually called the anchor map. Notice that given an Courant algebroid E, we
can always identify E� ' E by using the bilinear h�; �i and hence we obtain a map:

�� : T �M ! E ; (2.58)

dual to � : E ! TM . This is the map appearing in item C5 of de�nition 2.3.1. The bracket in De�nition
2.3.1 goes under the name of Dorfman bracket [�; �]. It satis�es the Jacobi identity, namely item C1, but
fails to be antisymmetric, and relates to the skew-symmetrized Courant bracket [[�; �]], by

[�; �] = [[�; �]] + ��dh�; �i : (2.59)

The de�nition in the original reference [60], di�ers from de�nition 2.3.1 in the bracket used (see also
[62]). An explicit example of Courant algebroid is now in order.

Example 2.3.2. The simplest example of Courant algebroid is the standard Courant algebroid E =
TM � T �M over a manifold M , equipped with the standard Dorfman bracket:

[v1 + �1; v2 + �2] = [v1; v2]L + Lv1�2 � �v2d�1 ; v1; v2 2 X(M) ; �1; �2 2 
1(M) ; (2.60)

and the standard symmetric pairing:

hv1 + �1; v2 + �2i =
1

2
(�v1�2 + �v2�1) ; (2.61)

where [�; �]L denotes the standard Lie bracket on X(M). The anchor map � : E ! TM is simply the
obvious projection on the tangent bundle.

It was noticed in reference [61] that one can twist the standard Dorfman bracket by using a closed
three-form H as follows:

[v1 + �1; v2 + �2]H = [v1; v2]L + Lv1�2 � �v2d�1 + �v1�v2H ; (2.62)

and still obtain a Courant algebroid in TM �T �M , with the same anchor and symmetric product. This
way, it is obtained the so-called H-twisted standard Courant algebroid. The standard Courant algebroid
is, as we will see in a moment, the prototype of an exact Courant algebroid.
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De�nition 2.3.3. [61] A Courant algebroid (E; h�; �i; [�; �]; �) over M is exact if and only if the following
sequence of vector bundles

0! T �M
��
�! E

�
�! TM ! 0 ; (2.63)

is exact.

De�nition 2.3.4. [61] A splitting of an exact Courant algebroid (E; h�; �i; [�; �]; �) over a manifold M is
a map of vector bundles s : TM ! E such that

1. � � s = ITM ,

2. hs(v1); s(v2)i = 0 for all v1; v2 2 X(M).

De�nition 2.3.4 means that a splitting of an exact Courant algebroid is an isotropic splitting of the
sequence of vector bundles 2.63. Notice that �� (T �M) \ s (TM) = f0g. The exactness condition in the
de�nition 2.3.3 forces ��(T �M) to be isotropic in E and thus the symmetric pairing h�; �i is bound to
be of split signature. If s is an splitting, then for every two-form b 2 
2(M) we can construct another
splitting s0 as follows

s0(v) = s(v) +
1

2
��b(v) ; (2.64)

and in fact every two splittings of a Courant algebroid di�er by a two-form on M in this way [63]. In
other words, the space of splittings of a Courant algebroid is an a�ne space modeled on 
2(M). Given
an exact Courant algebroid (E; h�; �i; [�; �]; �), any isotropic splitting s : TM ! E, has an associated
three-form curvature :

H(v1; v2; v3) = h[[s(v1); s(v2)]]; s(v3)i ; v1; v2; v3 2 X(M) : (2.65)

It can be proven that given another splitting s0 then the corresponding three-form:

H 0(v1; v2; v3) = h[[s0(v1); s
0(v2)]]; s

0(v3)i ; v1; v2; v3 2 X(M) : (2.66)

is related to H as follows:

H 0 = H + db ; (2.67)

where s0 � s = b 2 
2(M). As observed �rst by �Severa [61], given an exact Courant algebroid
(E; h�; �i; [�; �]; �), the class [H] 2 H3(M) does not depend on the splitting. It is called the �Severa class
of the exact Courant algebroid and its importance steams from the fact that it classi�es exact Courant
algebroids up to isomorphism. In other words, two exact Courant algebroids are isomorphic if and only
if they have the same �Severa class.

Notice that for an exact Courant algebroid (E; h�; �i; [�; �]; �), any isotropic splitting s : TM ! E
determines an isomorphism

s+
1

2
�� : TM � T �M ! E;

and the trasported bracket and pairing are given by 2.62 and 2.61, respectively. Therefore, exact Courant
algebroids over a manifold M can be always modeled by the corresponding generalized tangent bundle
TM � T �M equipped with the standard symmetric pairing and the H-twisted Courant bracket 2.62.
Exact Courant algebroids are intimately related to two-plectic manifolds (see section 6 for more details)
as they are canonically equipped with a closed three-form, its �Severa class.



Chapter 3

Symplectic Geometry

Symplectic geometry/topology is a classical and well-established branch of di�erential geometry/topology,
with its roots and original motivation lying in the mathematical description of classical mechanical sys-
tems as well as in their quantization. Symplectic manifolds are also interesting mathematical objects by
themselves, and play a crucial role in many di�erent areas of physics and mathematics. Symplectic ge-
ometry is nowadays a very active research �eld, with applications extending through numerous branches
of geometry, topology and theoretical physics. The goal of this chapter is to introduce the concept of
(co)moment map [64, 65] and symplectic reduction [66]. References for this chapter include [5, 6, 67].

3.1 Symplectic vector spaces

The simplest type of symplectic manifold is a symplectic vector space. In addition, the tangent space
of every symplectic manifold is canonically a symplectic vector space. Therefore, it is reasonable to
consider in some detail symplectic vector spaces before dealing with general symplectic manifolds.

De�nition 3.1.1. Let V be a vector space. The pair (V; !) is a symplectic vector space if ! 2 �2V � is
non-degenerate, that is, if the kernel:

ker! � fv 2 V j !(v;w) = 0 ; 8w 2 V g ; (3.1)

is trivial.

Remark 3.1.2. Symplectic vector spaces must be even-dimensional, since a symplectic form on an odd-
dimensional vector space necessarily has a kernel.

A morphism of symplectic vector spaces (V1; !1) and (V1; !1) is a linear map F : V1 ! V2 that
preserve the corresponding symplectic structures, namely that satisfy F �!2 = !1. Two symplectic vector
spaces (V1; !1) and (V1; !1) are said to be symplectomorphic if there exists an injective and surjective
morphism between them.

Example 3.1.3. The canonical example of symplectic vector space consists of R2n, for some n 2 N, with
basis fe1; : : : ; en; f1; : : : ; fng equipped with the bilinear form ! given by:

!0 (ei; ej) = 0 ; !0 (fi; fj) = 0 ; !0 (ei; fj) = �!0 (fj ; ei) = �ij : (3.2)

The two-form ! 2 �2(R2n)� is a symplectic structure on R2n. Every symplectic vector space is non-
canonically symplectomorphic to

�
R2n; !

�
for the appropriate n.

Example 3.1.4. Let E be a complex vector space of dimension n, equipped with a complex, positive
de�nite inner product h : E �E ! C. Then E, taken as a real vector space, equipped with the bilinear
form ! = =m(h), is a symplectic vector space. The condition h (v1; v2) = h (v2; v1) translates into the
antisymmetry of ! = =m(h) as a real form on V .

29
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De�nition 3.1.5. Let (V; !) be a symplectic vector space. The symplectic complement of a linear
subspace W � V with respect ! is de�ned to be:

W! = fv 2 V j !(v;w) = 0 ; 8w 2Wg : (3.3)

Remark 3.1.6. The symplectic complement W! need not be transversal to W .

De�nition 3.1.7. Let W � V a vector subspace of a symplectic vector space (V; !).

� W is isotropic if W �W!.

� W is coisotropic if W! �W .

� W is symplectic if W \W! = f0g.

� W is Lagrangian if W =W!.

Remark 3.1.8. We have that W is isotropic if and only if !jW = 0. In addition W is symplectic if and
only if !jW is non-degenerate.

Lemma 3.1.9. Let (V; !) be a symplectic vector space. Then, for any vector subspace W � V we
have:

(W!)! =W ; dim W + dimW! = dimV : (3.4)

Proof. The symplectic form ! de�nes an isomorphism of vector spaces ~! : V ! V � given by v 7! �v!.
It follows that ~!(W!) =W?, where W? denotes the annihilator of W in V �. The result follows.

The following is the main theorem on symplectic vector spaces.

Theorem 3.1.10. Let (V; !) be a symplectic vector space of dimension 2n. Then, there exists a
basis (e1; : : : ; en; f1; : : : ; fn) of V such that:

! (ei; ej) = 0 ; ! (fi; fj) = 0 ; ! (ei; fj) = �! (fj ; ei) = �ij : (3.5)

Such basis is called a symplectic basis. Moreover, there exists a symplectomorphism from (V; !)
to (R2n; !0).

Proposition 3.1.11. A two-form ! on V is non-degenerate if and only if !n is non-zero.

Proof. If ! is non-degenerate then clearly !n 6= 0. Let now assume that !n is non-degenerate. Then,
given a v 2 V we have �v!n = n�v! ^ !

n�1 6= 0 and the result follows.

Lemma 3.1.12. Any isotropic subspace W � V is contained in a Lagrangian subspace. Moreover,
any basis of a Lagrangian subspace can be extended to a symplectic basis of (V; !).

The quotient of every coisotropic subspace W � V by its symplectic complement canonically yields a
new symplectic vector space. This construction is usually called symplectic reduction.

Lemma 3.1.13. Let (V; !) be a symplectic vector space and let W � V be a coisotropic subspace.
Then the following hold:

� The quotient ~V �W=W! carries a canonical symplectic structure induced by !.
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� If L � V is a Lagrangian subspace of V , then:

~L = (L \W �W!) =W! ; (3.6)

is a Lagrangian subspace of ~V .

Given a symplectic vector space (V; !), the group of automorphisms that preserve ! is denoted
by Sp (V ), which is a closed Lie subgroup of Gl (V ), the group of automorphisms of V . Since every
symplectic vector space (V; !) is symplectomorphic to (R2n; !0), it is enough to consider the later case,
which shows that:

Sp(V ) ' Sp(2n;R) '
n
A 2 Gl(R2n) ' Gl(2n;R) j A�!0 = !0

o
: (3.7)

In particular, equation (3.7) clearly shows that Sp(2n;R) is a closed Lie subgroup of Gl(2n;R). Let J0
denote the complex structure on R2n associated to !0 by means of the standard euclidean metric on
R2n. The complex structure J0 on R2n allows for the following standard identi�cation:

(R2n; J0) ' (Cn; i) : (3.8)

Let us denote by N (V ) � �2V � the subspace of non-generate two forms in �2V �. The fact that every
symplectic vector space is symplectomorphic to the canonical example

�
R2n; !0

�
implies that Gl(V )

acts transitively on N (V ). Since, every non-degenerate two-form is stabilized by Sp(V ), we obtain the
following di�eomorphism:

N (V ) '
Gl(V )

Sp(V )
: (3.9)

We have:

dim Sp(V ) =
n(n+ 1)

2
; dim N (V ) = dim Gl(V )� dim Sp(V ) =

n(n� 1)

2
; (3.10)

and hence N (V ) is of the same dimension of �2V �. In particular, N (V ) is open in �2V �. The Lie
algebra sp(V ) of Sp(V ) is given by the endomorphisms A 2 gl(V ) such that:

!(A �; �) + !(�; A �) = 0 : (3.11)

3.2 Symplectic manifolds

De�nition 3.2.1. A symplectic manifold (M; !) is a real manifold equipped with a smooth, point-wise
non-degenerate , global section ! of �2T �M. Therefore, at every point p 2 M, TpM is a symplectic
vector space equipped with the symplectic form !jp.

Given two symplectic manifolds (M1; !1) and (M2; !2), a symplectomorphism is a di�eomorphism F :
M1 ! M2 such that F �!2 = !1. The group of symplectomorphisms of a symplectic manifold (M;!)
onto itself is denoted by Symp (M; !). The non-degeneracy of ! has very important consequences on
the geometry and topology of a symplectic manifold (M; !), for instance:

� Every symplectic manifold is orientable, with volume form given by the Liouville form

�L =
!n

n!
6= 0 ; (3.12)

where 2n is the dimension of M.
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� Every symplectic manifold is almost-complex, namely it admits almost-complex structures.

� There exists a canonical isomorphism between the vector �elds and one-forms on M, given by

~! : X (M) ! 
 (M)

v 7! �v! : (3.13)

Example 3.2.2. The simplest example of symplectic manifold is a Riemann surface equipped with its
volume form, which is clearly non-degenerate and closed. A symplectomorphism is then just a volume-
preserving di�eomorphism.

We denote by XSym (M) the set of all vector �elds in M that preserves !, that is

Lv! = d�v! + �vd! = d�v! = 0 ; (3.14)

where we have used (2.18). An element of XSym (M) is called a symplectic vector �eld, and generates
symplectomorphisms through the corresponding �ow. As already mentioned, due to the non-degeneracy
of !, for every one-form � 2 
 (M) there exists a unique vector �eld v 2 X (M) such that:

�v! = � : (3.15)

In particular, for any function f 2 C1 (M) there exists a unique vector �eld vf 2 X (M) such that

�vf! = �df : (3.16)

�vf is the so-called Hamiltonian vector �eld associated to f . The space of vector �elds satisfying equation
(3.16) for some function f 2 C1 (M) is denoted by XHam (M), the space of hamiltonian vector �elds.

Proposition 3.2.3. Every Hamiltonian vector �eld is a symplectic vector �eld. That is

XHam (M) � XSym (M) : (3.17)

Proof. Given a Hamiltonian vector �eld vf respect to some function f 2 C1 (M), we have, using
Cartan's identity (2.18), Lvf! = d2f = 0.

Therefore, from Eq. (3.14) and (3.16) respectively, we see that �v! is closed for a symplectic vector �eld
and exact for a hamiltonian vector �eld. Restricting ~! in Eq. (3.13) to the set of hamiltonian vector
�elds XHam (M) we obtain a new isomorphism

!jXHam : XHam (M)! B1 (M) ; (3.18)

where B1 (M) = 
1 (M) \ Im d is the space of exact one-forms. Similarly, restricting ~! to the set of
symplectic vector �elds XSym (M) we obtain another isomorphism

!jXSym : XHam (M)! Z1 (M) ; (3.19)

where Z1 (M) = 
1 (M) \ Ker d is now the space of closed one-forms. Therefore, the quotient of
symplectic and hamiltonian vector �elds is just the �rst de Rham cohomology group:

H1 (M) =
XSym (M)

XHam (M)
: (3.20)

Therefore, the following exact sequence of vector spaces holds
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0! XHam (M)! XSym (M)! H1 (M)! 0 : (3.21)

Hence, if H1 (M) = 0, every symplectic vector �eld is Hamiltonian.

Proposition 3.2.4. Given two symplectic vector �elds vf1 ; vf2 2 XSym (M) we have that [vf1 ; vf2 ] is
Hamiltonian, with Hamiltonian function !(vf1 ; vf2).

Proof. Let vf1 ; vf2 2 XSym (M). Then we have

d! (vf1 ; vf2) = divf2 ivf1! = Lvf2 ivf1! � ivf2divf1! = iLvf2 vf1
! = �i[vf1 ;vf2 ]

! : (3.22)

Therefore, [XSym (M) ;XSym (M)] � XHam (M), and in particular XHam (M) is an ideal in the Lie algebra
XSym (M), and the quotient Lie algebra is abelian. Hence, 3.21 is an exact sequence of Lie algebras,
where H1 (M) carries the trivial Lie algebra structure.

Consider now the following surjective map

h : C1 (M) ! XHam (M)

f 7! vf : (3.23)

The kernel of h is the space Z0 (M) = H0 (M) of locally constant functions. Therefore, we can write
the following exact sequence of vector spaces

0! Z0 (M)! C1 (M)! XHam (M)! 0 : (3.24)

It is possible to de�ne a Lie algebra structure on C1 (M) such that (3.24) is an exact sequence of Lie
algebras.

De�nition 3.2.5. Let (M; !) be a symplectic manifold. The Poisson bracket of two funcions f; g 2
C1 (M) is de�ned as

ff; gg = !(vf ; vg) : (3.25)

The Poisson bracket is anti-symmetric. Using Cartan's identity (2.18), the Poisson bracket can be
rewritten as follows

ff; gg = Lvf g = �Lvgf : (3.26)

Therefore, if ff; gg = 0, then f is constant along solution curves of vg and vice-versa.

Proposition 3.2.6. The Poisson bracket de�nes a Lie algebra structure into C1 (M;R). The map

C1 (M) ! X (M)

f 7! vf ; (3.27)

is a Lie algebra isomorphism, that is

vff;gg = [vf ; vg] : (3.28)
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Proof. We have to prove that the Poisson bracket satis�es the Jacobi identity. This follows from

ff; fg; hgg = Lvf fg; hg = ! ([vf ; vg] ; vh) + ! (vg; [vf ; vh]) =

!
�
vff;gg; vh

�
+ !

�
vg; vff;gg

�
= fh; ff; ggg+ fg; ff; hgg : (3.29)

Equation (3.28) is a particular instance of proposition 3.2.4.

Proposition 3.2.7. The algebra (C1 (M;R) ; f�; �g) is a Poisson algebra1.

Proof. We have to proof that the Poisson bracket satis�es equation (4.36). Indeed we have

ffg; hg = �Lvh(fg) = �Lvh(f)g � fLvh(g) = �ff; hg g � f fg; hg : (3.30)

We will de�ne now submanifolds of a symplectic manifold (M; !) that can be de�ned in a natural
way using the symplectic form !.

De�nition 3.2.8. A submanifold Q �M is is called fsymplectic; isotropic; coisotropic; Lagrangiang if
for every q 2 Q the tangent space TqQ is respectively fsymplectic; isotropic; coisotropic; Lagrangiang.

Example 3.2.9. Given a symplectic manifold (M; !) the manifoldM�M is a symplectic manifold with
symplectic form �! � !. For every p 2 M, the manifold M� p or p �M is symplectic, whereas the
diagonal of M�M is Lagrangian.

As an application of the previous example we have the following result.

Proposition 3.2.10. Let (M; !) be a symplectic manifold and let f : M!M be a di�eomorphism.
Then f is a symplectomorphism if and only if:

graph(f) = f(p; f(p)) j p 2Mg �M�M ; (3.31)

is a Lagrangian submanifold of (M�M;�! � !).

3.3 Moment maps and symplectic reduction

Let (M; !) be a symplectic manifold. In this section we will consider the G-action �: G�M!M of a
Lie groupG on a symplectic manifold (M; !). As usual, for every g 2 G we de�ne �g := �(g; �) : M!M
and we denote the fundamental vector �eld associated to the G-action � as follows:

vxjp =
d

dt

�
e�tx � p

�
jt=0 ; x 2 g ; p 2M : (3.32)

De�nition 3.3.1. The G-action � is said to be symplectic if the Lie group G acts on (M; !) by
symplectomorphisms, i.e., if for all g 2 G we have:

��g! = ! : (3.33)

Proposition 3.3.2. Let � a symplectic G-action on (M; !), and let f; h 2 C1(M) functions such
that:

��gf = f ; ��gh = h ; 8 g 2 G : (3.34)

1See de�nition 4.1.14.
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Then ��g ff; gg = ff; gg. In addition, let Op be the orbit of the G-action passing through p 2M2 and
let i : O ,!M be the canonical inclusion. Then, i�! is a constant-rank two-form on O invariant
under the restricted action �jO : G�O ! O.

Proof. Since �g is a di�eomorphism for every g 2 G, the �rst statement simply follows from the identity:

��g ff; gg =
n
��gf;�

�
gg
o
: (3.35)

To prove the second statement notice that the canonical injection i : O ,!M satis�es:

�g � i = (�jO)g � i : (3.36)

Hence:

i�! = i���g! = (�jO)
�
gi
�! ; (3.37)

and we conclude.

Proposition 3.3.3. If the G-action � on M is symplectic, the corresponding fundamental vector
�eld vx, x 2 g is locally hamiltonian. Conversely, if G is connected and for every x 2 g the vector
�eld vx is locally Hamiltonian then the corresponding G-action � is symplectic.

Proof. The �ow of vx is given by:

'(t; p) = e�tx � p : (3.38)

The fact that � is symplectic implies that ��
e�tx

! = !, which is equivalent to Lvx! = d�vx! = 0. For
the converse, it is enough to notice that since G is connected ever element g 2 G can be written as a
�nite product on elements of the form exi , where xi 2 g.

The assumption in proposition 3.3.2 may be too restrictive. For example, if the G-action � has a dense
orbit in M, the only G-invariant functions are constants. The following is a local version of 3.3.2 and
follows by direct computation.

Proposition 3.3.4. Let � be a G-symplectic action. Let U � M be an open set in M. If f; g 2
C1(U) are locally invariant, namely:

Lvxf = 0 ; Lvxh = 0 ; 8 x 2 g : (3.39)

Then ff; gg is also locally invariant, i.e., Lvx ff; gg = 0.

De�nition 3.3.5. The action � is said to be weakly Hamiltonian if it is symplectic and in addition
vx 2 XHam(M) for every x 2 g.

Let � be a symplectic action. Then � is weakly Hamiltonian if and only if there exists a basis fxig of g
such that the corresponding fundamental vector �elds vxi are Hamiltonian. We have then:

�vxi! = �dfvxi ; (3.40)

for a unique (up to a constant) function fvxi 2 C
1(M). For simplicity we will usually denote fvxi by

fxi . The Hamiltonian function ��(x) of any element x = �ixi 2 g is now given by:

��(x) = �ifxi : (3.41)

2For simplicity we will sometimes omit the subscript specifying the point.
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We obtain then a linear map �� : g! C1(M) de�ned by sending every x 2 g to its Hamiltonian function
��(x) := �x 2 C1(M), which is unique up to the addition of a constant. We will call �� : g! C1(M)
the weakly comoment map associated to the weakly Hamiltonian action �.

De�nition 3.3.6. A weakly Hamiltonian action � is said to be Hamiltonian if it admits a weakly
comoment map that is a Lie-algebra morphism from (g; [�; �]) into the Poisson algebra (C1(M); f�; �g).

Remark 3.3.7. A weakly Hamiltonian action need not be Hamiltonian. Let � be a weakly Hamiltonian
action, and let �� : g ! C1(M) be a weakly Hamiltonian comoment map for �. Then, there exists a
unique map:

� : g� g! R ; (3.42)

satisfying:

��([x; y])� f��(x); ��(y)g = � (x; y) ; (3.43)

for every x; y 2 g. The map � satis�es in addition:

� ([x; y]; z) + � ([y; z]; x) + � ([z; x]; y) = 0 : (3.44)

Therefore � is a Lie algebra cocycle. Changing �� modi�es � by a coboundary and hence every weakly
Hamiltonian action de�nes a Lie algebra cohomology class [� ] 2 H2(g;R).

De�nition 3.3.8. A weakly Hamiltonian action � is is said to be Hamiltonian if [� ] = 0. In that case
�� : g! C1(M) is called the comoment map associated to �.

Proposition 3.3.9. Let � be a Hamiltonian action with comoment map �� : g ! C1(M). We
have:

��(Adg x) = ��(x) � �g ; g 2 G ; x 2 g ; (3.45)

Therefore, a comoment map can be understood as a lift of the g-action x 7! vx:

(C1(M); f�; �g)

g (XHam (M) ; [�; �])

�

v�

where � denotes the canonical map sending each function to its unique hamiltonian vector �eld. In
section 6.6.2 we will generalized the comoment map construction to the case of Lie groups acting on
multisymplectic manifolds by multisymplectomorphisms.

De�nition 3.3.10. Let (M; !) be a symplectic manifold and G a connected Lie group with Lie algebra
g. Let us denote by g� the dual vector space of g and assume that:

�: G�M!M ; (3.46)
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is a symplectc G-action on (M; !). Given x 2 g, the action � induces a g-action x 7! vx by symplectic
vector �elds. The G-action � is said to be Hamiltonian if there exists a map:

� : M! g� ; (3.47)

satisfying the following conditions:

1. For every x 2 g the corresponding vector �eld vx satis�es:

d�x = ��vx! ; (3.48)

Here �x : M ! R is the function �x := �(x) on M given by the natural pairing of g and g�.
Therefore, vx must be Hamiltonian with Hamiltonian function given by �x.

2. � : M! g� is equivariant with respect to the given action � and the coadjoint action Ad� of G on
g�, namely:

� � �g = Ad�g � � ; g 2 G : (3.49)

(M; !;G; �) is then called a HamiltonianG-space with moment map �. We have de�ned, forG connected,
Hamiltonian actions as actions admitting a moment maps because if they are Hamiltonian and G is
connected then a moment map is equivalent with a comoment map. Therefore the de�nition is, for
G connected, equivalent to de�nition 6.1.13. If G is not connected, then the existence of moment map
implies the existence of a comoment map but the existence of a comoment map only implies the existence
of a moment map for the connected component of the identity in G.

Example 3.3.11. As an example let us consider let us consider the in�nite-dimensional space of con-
nections on the trivial principal bundle P = � �G, where � is a compact Riemann surface and G is a
compact Lie group [14]. The space A = 
1(�; g) of connections on P can be identi�ed with one-forms on
� taking values on g3. It can be seen that A is an in�nite-dimensional Kähler manifold, with symplectic
form and Kähler structure given by:

!jA(�; �) =
Z
�
< � ^ � > ; � 7! �� ; �; � 2 TAA ' 
1(�; g) : (3.50)

where A 2 A and < �; � > is an invariant inner product on g. Since we assume P to be a trivial principal
bundle, the gauge group is given by G = Map(�;G) and it acts as usual on connections:

u � A = u�1Au+ u�1du : (3.51)

Hence, we have an action �: G � A ! A which in fact preserves the Kähler structure on A and is
Hamiltonian. For every x 2 Lie(G) ' 
0(�; g), the in�nitesimal action is given by:

Lie(G)�A ! TA ;

(x;A) 7! (A; dAx) ; (3.52)

where dA : 
0(�; g) ! 
1(�; g) denotes the connection induced by A on the trivial adjoint bundle of
algebras. At each A 2 A the corresponding comoment map is given by:

��jA(x) =
Z
�
< FA; x > ; x 2 Lie(G) ; (3.53)

3Strictly speaking, A is an in�nite-dimensional a�ne space modelled on 
1(�; g).
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where FA 2 
2(�; g) denotes the curvature of A 2 A. The associated moment map is thus given by:

� : A ! 
2(�; g) ;

A 7! FA ; (3.54)

where we have used Lie(G)� ' 
2(�; g).

3.3.1 Symplectic reduction

One of the most important applications of the existence of a moment map is the canonical construction
of a symplectic submanifold of the given symplectic manifold, which in addition is of physical importance
in the description of the phase space of mechanical systems as symplectic manifolds. This construction
is usually named in the literature as symplectic reduction or Marsden-Weinstein quotient [13].

Let (M; !) be a symplectic manifold admitting a moment map � : M ! g� for the action � of a
Lie group G. We de�ne:

M0 = fp 2M j �(p) = 0g : (3.55)

If 0 2 g� is a regular value, namely if d�p : TpM0 ! g� is surjective for every p 2 M0, then M0 is
a closed submanifold of M. Using that he moment map is equivariant and that 0 is a �xed point of
the coadjoint action of G we conclude that G preserves M0, and therefore �: G �M ! M induces a
G-action �0 : G�M0 !M0 on M0. Therefore, we can de�ne the orbit space by this action:

MG
0 =M0=G ; (3.56)

which in general is not guaranteed to be a smooth manifold unless the action satis�es some particular
conditions, for example being free and proper. We will consider only the case in which:

� The value 0 2 g is regular and hence M0 �M is a closed submanifold of M.

� The group G acts freely and properly on M0, so M0=G is again a manifold.

Under the two assumptions stated above we have the following result.

Proposition 3.3.12. The submanifold M0 � M is coisotropic and the corresponding isotropic
foliation is given by the orbits of the G-action �0 : G�M0 !M0. The quotient:

M==G :=M0=G ; (3.57)

is a symplectic manifold of dimension dim M==G = dim M� 2 dim G.

De�nition 3.3.13. The quotient M==G is called the Marsden-Weinstein quotient.



Chapter 4

Homological algebra

In this chapter we will consider various aspects of homological algebra and category theory. The main
goal of this chapter is to introduce some of the background that will be needed through the rest of the
document as well as to present some results of intrinsic interest. Homological algebra theory studies
homology (or co-homology) in an abstract setting, that is, on abstractly de�ned complexes (or co-
complexes), and it is intimately related to category theory, which provides the natural language where
to pose and solve many of the relevant problems.

4.1 Graded algebras and coalgebras

The purpose of this section is to introduce the elements of graded algebra theory that will be needed
through the rest of the letter. Graded algebra theory simply refers to the study of algebraic structures
in a graded vector space.

4.1.1 Graded algebras

We begin with a series of de�nitions increasing step by step the structures involved. We begin by the
simple de�nition of an algebra.

De�nition 4.1.1. A real algebra (V; �) is a real vector space V space equipped with a bilinear product
V � V ! V , denoted by � or concatenation of elements.

We require the product � of an algebra to be inner. It may have, however, other properties. For example,
if x1 �x2 = x2 �x1 for all x1; x2 2 V the algebra (V; �) is said to be commutative. If x1 �(x2 �x3) = (x1 �x2)�x3
for all x1; x2; x3 2 X then the algebra is said to be associative. If the algebra V contains an identity, that
is, an element e 2 V such that e � x = x � e = x for all x 2 V then it is said to be unital. A real algebra
such that the product is associative and has an identity is therefore a ring that is also a vector space,
and it is called a unital associative algebra.

De�nition 4.1.2. Let G be an abelian group. A G-graded vector space V over R is a collection (Vg)g2G
of vector spaces over R.
The homogeneous elements of degree g 2 G of a G-graded vector space V are the elements of Vg. In
this work we will consider exclusively G = Z-graded vector spaces V =

L
i2Z Vi. The grade of an

homogeneous element x 2 V is denoted by jxj, and of course, since we will consider only Z-graded vector
spaces, we will always have jxj 2 Z.

De�nition 4.1.3. A real graded algebra is a real graded vector space V =
L

i2Z Vi equipped with a
bilinear product V � V ! V which will be denoted by � or concatenation of elements, such that:

Vi � Vj � Vi+j : (4.1)

39
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De�nition 4.1.4. A real graded Lie algebra is a real graded algebra (V; �) equipped with a bilinear
product [�; �] : V � V ! V such that the following axioms are satis�ed:

1. [�; �] respects the grading of V , that is, [Vi; Vj ] � Vi+j .

2. If x1; x2 2 V are homogeneous elements then

[x1; x2] = �(�1)jx1jjx2j [x2; x1] : (4.2)

That is, [�; �] is antisymmetric in the graded sense, i.e., it is graded antisymmetric.

3. If x1; x2; x3 2 V then:

(�1)jx1jjx3j[x1; [x2; x3]] + (�1)jx1jjx2j[x2; [x3; x1]] + (�1)jx2jjx2j[x3; [x1; x2]] = 0 : (4.3)

That is, [�; �] satis�es the graded Jacobi identity.

Equation (4.2) is just the graded version of the antisymmetric Lie bracket of a not-graded Lie algebra.
Analogously, Eq. (4.3) is just the graded version of the Jacobi identity for not-graded Lie algebras.
When V is concentrated in degree zero, a real graded Lie algebra is just an ordinary real Lie algebra.
Let us consider now a simple example taken from physics.

Example 4.1.5. Supersymmetry algebra. The Super-Poincaré algebra sp is, in physical terms, an
extension of the Poincaré algebra by fermionic generators that obey anti-commutation relations. We
denote by Mab the generators of the Lorentz group, by Pa the generators of translations and by Q�

the fermionic generators, which are Spin (1; 3) spinors of de�nite chirality. They obey the following
(anti)-commutation relations:

[Mab;Mcd] = �Meb�v (Mcd)
e
a �Mae�v (Mcd)

e
b (4.4)

[Pa;Mcd] = �Pe�v (Mcd)
e
a (4.5)

[Q�;Mab] = �s (Mab)
�
� Q

� (4.6)n
Q�; Q�

o
= i

�
aC�1

���
Pa ; (4.7)

where �v denotes the vectorial representation, �s denotes the spinorial representation and C is the
charge conjugation matrix. The anticommutator f�; �g is de�ned as

n
Q�; Q�

o
= Q�Q� + Q�Q�. The

Super-Poincaré algebra gets beautifully described as a particular instance of Z2 = Z=2Z1 graded Lie
algebra sp = sp0 � sp1 with bracket [�; �]Z2 . The elements of sp0 are called even and correspond to the
bosonic generators Mab and Pa of the algebra. The elements of sp1 are called odd and correspond to
the fermionic generators of the algebra Q�. In particular, we have:

[x1; x2]Z2 = � [x2; x1]Z2 ; 8 x1; x2 2 sp0 ; (4.8)

[x1; x2]Z2 = � [x2; x1]Z2 ; 8 x1 2 sp0 ; 8 x2 2 sp1 ; (4.9)

[x1; x2]Z2 = [x2; x1]Z2 ; 8 x1; x2 2 sp1 : (4.10)

Therefore, equation (4.8) corresponds to the commutators (4.4) and (4.5) in the Super-Poincaré algebra,
equation (4.9) corresponds to the commutator (4.6) in the Super-Poincaré algebra, and equation (4.10)
corresponds to the anti-commutator (4.7) in the Super Poincaré algebra.

1The de�nition of Z2-graded space can be obtained from the de�nition of Z-graded vector space by simply substituting
Z by Z2.
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De�nition 4.1.6. Let (V; �) be a graded algebra. A homogeneous linear map d : V ! V of grade jdj
on V is called a homogeneous derivation if d(x1 � x2) = d(x1)x2 + �jx1jjdjx1 � d(x2), where � = �1 and
x1; x2 2 V are homogeneous elements. A graded derivation is sum of homogeneous derivations with the
same �. In the context of graded algebra, the choice � = �1 is the most natural one, since it takes into
account the graded structure of the algebra.

De�nition 4.1.7. A real di�erential graded Lie algebra is a real graded Lie algebra (V; �) equipped with
a degree �1 (depending on chain or cochain complex convention) derivation d : V ! V that satis�es:

1. d � d = 0. Therefore d gives V the structure of a chain (jdj = �1) or cochain complex (jdj = 1).

2. d[x1; x2] = [dx1; x2] + (�1)jx1j[x1; dx2], where x1 and x2 are homogeneous elements of V .

Given two homogeneous elements x1; x2 2 V of an arbitrary graded algebra (V; �), in principle x1 � x2
and x2 � x1 are di�erent elements of (V; �) not related in any particular way. However, if for every pair of
homogeneous elements x1; x2 2 V the following holds:

x1 � x2 = (�1)jx1jjx2jx2 � x1 ; (4.11)

then (V; �) is said to be a graded commutative algebra. Analogously, if

x1 � x2 = �(�1)jx1jjx2jx2 � x1 ; (4.12)

holds, then the algebra (V; �) is said to be a graded anti-commutative algebra. This procedure can be
generalized by de�ning the Koszul sign. Let x1; : : : ; xn be elements of a symmetric graded algebra (V; �)
and � 2 �n a permutation. The Koszul sign �(�) = �(�;x1; : : : ; xn) is de�ned by the equality:

x1 � � �xn = �(�;x1; : : : ; xn)x�(1) � � �x�(n) ;

which holds in the free graded commutative algebra generated by V , with product denoted by concate-
nation of elements. The Koszul sign can be equivalently de�ned using an antisymmetric graded algebra
(V; �) as follows:

x1 � � �xn = (�1)��(�;x1; : : : ; xn)x�(1) � � �x�(n) ;

Given � 2 �n, (�1)� denotes the usual sign of a permutation. Notice that �(�) does not include the
sign (�1)�. For example, given x1; x2; x2 2 V , where (V; �) is free graded commutative algebra, we have:

x1 � x2 � x3 = �(3; 2; 1;x1; x2:x3)x3 � x1 � x2 ; �(3; 2; 1;x1; x2:x3) = (�1)jx3jjx2j+jx3jjx1j : (4.13)

We say that � 2 �p+q is a (p;q)-unshu�e if and only if � is a permutation of a set of (p+ q) elements
such that �(1) < � � � < �(p) and �(p + 1) < � � � < �(p + q). The set of (p; q)-unshu�es is denoted by
Sh(p; q). For example, Sh(2; 1) is the set of cycles f(1); (23); (123)g.

If V is a graded vector space, then sV denotes the suspension of V , and s�1V denotes the desus-
pension of V , de�ned respectively by:

(sV )i = Vi�1 ;
�
s�1V

�
i
= Vi+1 : (4.14)

Another very used notation for the (de)suspension of a graded vector space V is:

s�kV = V [�k] : (4.15)
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Sometimes we will write s�1x where x is an homogeneous element of a given graded vector space V .
The meaning of such expression can be understood as follows. Let us assume that x 2 Vi ; i 2 Z. Then
we have:

s�1x 2 s�1 (Vi) =
�
s�1V

�
i�1

; (4.16)

since
�
s�1V

�
i�1 = Vi.

De�nition 4.1.8. A morphism f from a Z-graded vector space V to a Z-graded vector space W is a
collection of linear maps (fi : Vi !Wi)i2Z.

Hence, it is implicitly assumed in the de�nition that a morphism preserves the grading, that is, that
jf(x)j = jxj 2 Z. It is said then that f is homogeneous of degree zero. An isomorphism of graded vector
spaces is a morphism f whose components fi are isomorphisms of vector spaces. It is possible, of course,
to consider maps that do not preserve the grading. The degree of a map f is denoted by jf j. If a map
f : V !W of graded vector spaces has degree jf j = k ; k 2 Z, then we have

f (Vi) � Vi+k ; 8 i 2 Z : (4.17)

The set of all morphisms from a graded vector space V to a graded vector space W is denoted by
Hom(V;W ). Notice that Hom(V;W ) is itself a graded vector space with homogeneous component
Hom(V;W )i i 2 Z given by the set of components fi : Vi !Wi ; f 2 Hom(V;W ).

De�nition 4.1.9. Let F (V �W ) the free vector space over R whose generators are the points of V �W ,
where � stands for the Cartesian product 2 The tensor product is de�ned as a certain quotient vector
space of F (V �W ). Consider the subspace R of F (V �W ) generated by the following elements3

(v1; w) + (v2; w)� (v1 + v2; w) ;

(v;w1) + (v;w2)� (v;w1 + w2) ;

c � (v;w)� (cv; w) ;

c � (v;w)� (v; cw) ; (4.18)

where v; v1; v2 2 V ; w;w1; w2 2W ; and c 2 R. The tensor product is then de�ned as the vector space

V 
W � F (V �W )=R : (4.19)

The tensor product of two vectors v and w is denoted by the equivalence class v 
 w 2 ((v;w) + R),
where v 
 w 2 V 
W . The principal e�ect of taking the quotient by R in the free vector space is that
the following equations hold in V 
W

(v1 + v2)
 w = v1 
 w + v2 
 w ;

v 
 (w1 + w2) = v 
 w1 + v 
 w2 ;

cv 
 w = v 
 cw = c(v 
 w) : (4.20)

The tensor product of two graded vector spaces V and W is de�ned to be another graded vector space
V 
W with grading

2The Cartesian product V �W is the set of pairs (v;w) ; v 2 V ;w 2 W , which is itself a vector space, although here it
is considered merely as a set.

3To simplify the notation, we denote by (v;w) the element 1 � (u;w) 2 F (V �W ).



4.1. GRADED ALGEBRAS AND COALGEBRAS 43

(V 
W )i =
M

i=j+k

Vj 
Wk ; i = j + k : (4.21)

The tensor product can be also applied to morphisms f; g 2 Hom(V;W ), and it is given by

(f 
 g) (v 
 w) = (�1)jgjjf jf(v)
 g(w) : (4.22)

De�nition 4.1.10. Let V be a graded vector space. The tensor algebra T (V ) is the graded vector
space given by the collection of vector spaces

T (V )m =
M
k�0

M
j1+���+jk=m

Vj1 
 � � � 
 Vjk ; m 2 Z : (4.23)

For k = 0 the corresponding summand is set to be equal to R.
Every component T (V )m can be decomposed with respect to the tensor product degree 
 as follows

T k (V )m � T (V )m \ V 
k ; k � 1 : (4.24)

For k = 0 we have T 0 (V ) = R. The degree of an element x1 
 � � � 
 xk 2 V1 
 � � � 
 Vk is de�ned as
jx1 
 � � � 
 xkj =

Pk
i=1 jxij.

The vector space T k (V )m carries two natural actions, even and odd, of the group �k of permutations
of a set of k elements. The even representation intuitively corresponds to the elements of T k (V )m
symmetric in the graded sense. It is de�ned by

� � (x1 
 � � � 
 xk) � (�1)jxijjx(i+1)jx1 
 � � � 
 x(i+1) 
 xi 
 � � � 
 xk ; (4.25)

where � is the transposition of the i'th and the (i + 1)'th element. Similarly, the odd representation
intuitively corresponds to the antisymmetric elements of T k (V )m in the graded sense. It is de�ned by

� � (x1 
 � � � 
 xk) � �(�1)jxijjx(i+1)jx1 
 � � � 
 x(i+1) 
 xi 
 � � � 
 xk ; (4.26)

where � is the transposition of the i'th and the (i + 1)'th element. Notice that the even as well as the
odd representations can be de�ned for an arbitrary element � 2 �k as follows

� � (x1 
 � � � 
 xk) � � (�;x1; � � � ; xk)x�(1) 
 � � � 
 x�(k) ; (4.27)

for the even representation and

� � (x1 
 � � � 
 xk) � (�1)�� (�;x1; � � � ; xk)x�(1) 
 � � � 
 x�(k) ; (4.28)

for the odd representation.

De�nition 4.1.11. Given a graded vector space V , the graded symmetric algebra S(V ) of V is the
graded vector space whose elements are the invariants or the even representation of � on T (V ) with the
inherited grading.

De�nition 4.1.12. Given a graded vector space V , the graded antisymmetric algebra �(V ) of V is
the graded vector space whose elements are the invariants or the odd representation of � on T (V ) with
the inherited grading.

We will denote by Sk (V ) and �k (V ) the homogeneous elements of degree k of S (V ) and � (V ) respec-
tively.

We can extend the action of s�1 to the tensor product of an arbitrary number of graded vector
spaces V1; : : : ; Vk as follows
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s�k : V1 
 � � � 
 Vk ! s�1V1 
 � � � 
 s�1Vk

x1 
 � � � 
 xk 7! (�1)
Pk

i=1
(k�i)jxijs�1x1 
 � � � 
 s�1xk : (4.29)

Notice that the sign (�1)
Pk

i=1
(k�i)jxij can be understood by considering s�1 as an odd element which

requires the introduction of the sign (�1)jxij every time it jumps over xi when acting on x1 
 � � � 
 xk.
s�k is an isomorphism of vector spaces which is not an isomorphism of graded vector spaces, since it
does not preserve the grading. De�ning now deck : V


k
! V 


k
by

deck (x1 
 � � � 
 xk) � (�1)
Pk

i=1
(k�i)jxijx1 
 � � � 
 xk ; (4.30)

we obtain the so-called décalage-isomorphism between s�kSk (V ) and �k
�
s�1V

�
. The décalage-isomorphism

preserves the grading and therefore s�kSk (V ) and �k
�
s�1V

�
are isomorphic not only as vector spaces

but also as graded vector spaces.

Since it will be useful later, we will rewrite now the Koszul sign �
�
�; s�1x1; : : : ; s

�1xn
�
in terms

of � (�;x1; : : : ; xn). In order to do so, we notice that if (x1; : : : ; xk) 2 �kV then

(x1; : : : ; xk) = (�1)�� (�;x1; : : : ; xk)
�
x�(1); : : : ; x�(k)

�
; (4.31)

and therefore

s�k ((x1; : : : ; xk)) = (�1)�� (�;x1; : : : ; xk) s
�k
��
x�(1); : : : ; x�(k)

��
; (4.32)

which implies, using equation (4.29)

(�1)
Pk

i=1
(k�i)jx�(i)j(�1)�� (�;x1; : : : ; xk) �

�
�; s�1x1; : : : ; s

�1xk
� �
s�1x1; : : : ; s

�1xk
�

= (�1)
Pk

i=1
(k�i)jx�(i)j

�
s�1x1; : : : ; s

�1xk
�
: (4.33)

Hence we conclude

�
�
�; s�1x1; : : : ; s

�1xk
�
= (�1)

Pk

i=1
(k�i)(jxij+jx�(i)j)(�1)�� (�;x1; : : : ; xk) : (4.34)

We �nish this section by de�ning two speci�c kind of algebras that we will �nd later. When we introduce
the Cartan calculus in section 2.1.1, we will encounter a particular instance of Gerstenhaber algebra,
which is de�ned as follows

De�nition 4.1.13. A Gerstenhaber algebra is an associative and commutative graded algebra (V; �)
equipped with a degree -1 bilinear map [�; �] : V ! V such that the following conditions hold

1. [x1; x2] = �(1)(jx1j�1)(jx2j�1)[x2; x1] ; for any two homogeneous elements x1; x2 2 V . That is, the
bilinear map is antisymmetric in the graded sense in s�1V .

2. [x; �] is a derivation on V of degree jxj � 1 for every x 2 V .

3. The bilinear map obeys

[x1; [x2; x3]] = [[x1; x2] ; x3] + (1)(jx1j�1)(jx2j�1) [x2; [x3; x1]] ; (4.35)

which becomes the graded Jacobi identity on s�1V .
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From the de�nition In the context of symplectic geometry in section 3.2 we will �nd a particular example
of a Poisson algebra, whose de�nition is given by

De�nition 4.1.14. A Lie algebra (X; �; [�; �]) is called a Poisson algebra if X has a commutative, asso-
ciative algebra structure such that

[x1x2; x3] = x1 [x2; x3] + [x1; x3]x2 ; (4.36)

for all x1; x2; x3 2 X.

4.1.2 Graded coalgebras

Coalgebras are structures that are dual, in the category-theoretic sense of reversing arrows, to algebras.
An algebra (V; �) is, as explained in section 4.1.1, a vector space equipped with a product �, which de�nes
the following application

� : V 
 V ! V

(x1; x2) 7! x1 � x2 : (4.37)

Therefore, we should expect a coalgebra C to be equipped with some map in the opposite direction

C ! C 
 C : (4.38)

The precise de�nition goes as follows.

De�nition 4.1.15. A graded coalgebra (C;�) is a graded vector space C equipped with a linear map
�: C ! C 
 C, the so-called comultiplication, such that

�(Ci) �
M

j+k=i

Cj 
 Ck : (4.39)

A coalgebra (C;�) is said to be coassociative if the following condition holds

(�
 id)� = (id
�)� : (4.40)

Equation (4.40) is just the coalgebra version of the associativity condition for an algebra. Similarly, we
can de�ne a cocommutative coalgebra by imposing the dual condition of commutativity in an algebra.
Indeed, if (C;�) is a coalgebra, let us denote by T : C
C ! C the twist map T (x
 y) = (�1)jxjjyjy
x.
It is said that (C;�) is cocommutative if and only if T �� = �. As well as a the concept of indentity
can be de�ned for algebras, we can introduce a similar structure for coalgebras, called the identity.

De�nition 4.1.16. A counit for (C;�) is a linear map � : C ! R such that (�
 id)� = (id
 �)� = id.

In order to elucidate the structure present in a coalgebra, the following commutative diagrams may be
illustrative
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C C 
 C

C 
 C C 
 C 
 C

�

�

�
 id

id
�

C C 
 C

C 
 C R
 C ' C ' C 
 R

�

�

�
 id

id
id
 �

Diagram (4.1.16) is the dual, in the category-theoretic sense of reversing arrows, of the analogous diagram
that express associativity of algebra multiplication. Diagram (4.1.16) is the dual, in the same sense as
before, of the analogous diagram expressing the existence of an identity in a unital algebra.

De�nition 4.1.17. A coalgebra (C;�) with counit � is coaugmented if and only if it can be equipped
with an injective linear map

R ,! C (4.41)

1 7! 1C (4.42)

such that � (1C) = 1 and �(1C) = 1C 
 1C . We can write in that case �C = ker � so that we have
C ' R� �C as vector spaces.

Intuitively, if a coalgebra C admits a coaugmentation, then it contains a copy of R. For a given coaug-
mented coalgebra, we de�ne the reduced comultiplication ��: �C ! �C 
 �C as follows

��c = �c� c
 1C � 1C 
 c: (4.43)

The equation above makes �C into a coalgebra with no counit. We denote now the reduced diagonal

by �(n). It can be recursively de�ned as follows

��(0) = id

��(1) = �� (4.44)

��(n) =
�
��
 id
(n�1)

�
� ��(n�1) : �C ! �C
(n+1) :

It can be shown by induction that we can rewrite ��(n) as

��n =
�
��(n�1) 
 id

�
� �� : (4.45)
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A coaugmented coalgebra (C;�; �; 1C) has always a canonical �ltration4 which can be de�ned recursively
as follows

F0C = R � 1C (4.46)

FkC =
�
x 2 �C j ��x 2 Fk�1C 
 Fk�1C

	
; (4.47)

and it is connected if and only if

C =
[
FkC : (4.48)

If (C;�; �; 1C) is connected, it can be proven that the coaugmentation 1C is unique 5.

Example 4.1.18. Graded symmetric algebra. Let V be a graded vector space. Then the the graded
symmetric algebra is given by

S(V ) = R�
1X
k=1

SkV = R� �S(V ) (4.49)

is a coaugmented cocommutative coalgebra in a natural way. The comultiplication � is de�ned as
the unique morphism of algebras such that �(v) = v 
 1 + 1 
 v holds for all v 2 V , assuming that
�(1) = 1 
 1. The counit is de�ned as the projection S (V ) ! R, and the coaugmentation is given by
the inclusion R ,! S (V ). The reduced comultiplication �� on �S(V ) can be given explicitly by

��(v1 � v2 � � � � � vn) =
X

1�p�n�1

X
�2Sh(p;n�p)

� (�)
�
v�(1) � v�(2) � � � � � v�(p)

�



�
v�(p+1) � v�(p+2) � � � � � v�(n)

�
; (4.50)

where � denotes the symmetrized tensor product. That is, if v1; � � � ; vp 2 V are p 2 N homogeneous
elements then we have

v1 � � � � � vp =
1

p!

X
�2�p

v�(1) 
 � � � 
 v�(p) : (4.51)

The following lemma, which we extract from [69], will be needed in order to properly rewrite L1-
morphisms.

Lemma 4.1.19. If v1 � v2 � � � � � vn 2 �S (V ), and 1 � p � n� 1 then

��p (v1 � � � � � vn) =

k1+k2+���+kp+1=nX
k1;k2;:::;kp+1�1

X
�2Sh(k1;k2;:::;kp+1)

� (�) v�(1) � � � � � v�(k1)


 v�(k1+1) � � � � � v�(k1+k2) 
 v�(k1+k2+1) � � � � � v�(k1+k2+k3) 
 � � �


 v�(m�kp+1+1) � � � � � v�(n) ; (4.52)

and in particular we have

��(n�1) (v1 � � � � � vn) =
X
�2Sn

�(�)v�(1) 
 v�(2) 
 � � � 
 v�(n) : (4.53)

4A �ltration is an indexed set Si of sub-objects of a given algebraic structure S, with the index i taking values in a
totally ordered set I, subject to the condition that if i � j in I then Si � Sj .

5 See proposition 3.1 in section B3 of reference [68]
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Proof. See lemma A.1 in [69].

Lemma 4.1.19 implies that ker ��(k) = �S��k (V ) for k � 0 and also that

�S (V ) =
[
n

ker ��(n) : (4.54)

The �ltration FnS (V ) corresponds, for n � 1, to the �ltration on �S (V ) de�ned by ker ��(n). This proves
that S(V ) is a connected coalgebra.

In order to de�ne L1-algebras and L1-algebra morphisms, the concepts of coalgebra di�erential
and coalgebra morphism are going to prove essential.

De�nition 4.1.20. A codi�erential of degree one on a coalgebra (C;�) is a linear map Q : Ci ! Ci+1

satisfying

Q �Q = 0 ; (4.55)

and the coLeibniz identity

�Q = (Q
 id)� + (id
Q)� : (4.56)

In the case of a codi�erential Q de�ned on connected coalgebra (C;�; �; 1C), we require an additional
condition, namely

Q(1C) = 0 : (4.57)

A codi�erential de�ned on a connected coalgebra (C;�; �; 1C) is uniquely given by its restriction to �C,
which satis�es the coLeibniz identity with respect to ��.

Let us consider the particular case C = �T (V ). Given a codi�erential Q on �T (V ), consider the
restrictions

Qm = Qj �T m(V ) : �T
m (V )! �T (V ); 1 � m <1 ; (4.58)

so that Q =
P1

k Qk, and the projections

Qk
m = pr �T k(V ) �Qm : �T m(V )! �T k(V ) : (4.59)

Then, the following proposition holds.

Proposition 4.1.21. A coderivation Q of �T (V ), respectively �S (V ), is uniquely determined by the
collection Q1

i ; i 2 N+ by the formula

Qm (x1 
 � � � 
 xm) = Q1
m(x1 
 � � � 
 xm) +

m�1X
i=1

X
�2Sh(i;m�i)

�(�)Q1
i

�
x�(1) 
 � � � 
 x�(i)

�

 x�(i+1) 
 � � � 
 x�(m) ; (4.60)

Proof. See lemma 2.4 in [12] or appendix A in [69].

De�nition 4.1.22. A morphism between connected coalgebras (C1;�1; �1; 1C1) and (C2;�2; �2; 1C2) is
a degree zero linear map F : C1 ! C2 satisfying

�2 � F = (F 
 F ) �� ; (4.61)
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�1 = �2 � F : (4.62)

We have that, since R is a �eld, F automatically preserves the coaugmentations. Therefore, it can be
uniquely determined by its restriction to �C. Hence, morphisms between such coalgebras correspond to
degree zero linear maps F : �C1 ! �C2 that satisfy ��2 � F = (F 
 F ) � ��1. The condition (4.62) is just
the dual of the condition

� (1X1) = 1X2 ; (4.63)

where Xi ; i = 1; 2

Proposition 4.1.23. Let (C;�; �; 1C) be a connected coalgebra and let f : �C ! V be a degree zero
linear map from �C = ker � to a graded vector space V . Then, there exists a unique morphism
of connected coalgebras F : C ! S (V ) such that prV � F j �C = f , where prV : S (V ) ! V is the
corresponding proyection.

Proof. See references [68] and [70].

Since it will be important in chapter 5 for the study of L1 algebras, let us consider the particular case
when �C = �S (V ). We de�ne then the degree zero linear map

F 1 : �S (V1)! V2 ; (4.64)

where V1 and V2 are graded vector spaces. Additionally, we de�ne the restrictions F 1
k as follows

F 1
k = F 1j �Sk(V1) ; (4.65)

and hence

F 1 =
1X
k

F 1
k : (4.66)

Then, the following corollary of proposition 4.1.23 holds

Corollary 4.1.24. Let V1 and V2 be graded vector spaces and let F 1 : �S (V1) ! V2 be a degree zero
linear map. There exists then a unique morphism of coalgebras

F : S (V1)! S (V2) ; (4.67)

such that it satis�es prV2 � F j �S(V2) = F 1, where prV2 is the corresponding projection to V2.

The construction of the coalgebra morphism F for this particular case can be found in proposition A.2
of [69].

4.2 Categories and complexes

De�nition 4.2.1. A category C is:

� A collection of objects Ob(C). Writing X 2 Ob(C) denotes that X is an object in the category C.

� For any pair of objects X;Y 2 Ob(C) there is attached a set HomC(X;Y ) which is the set of
morphisms between these two objects. We denote a morphism � 2 HomC(X; y) by an arrow
� : X ! Y .



50 CHAPTER 4. INTRODUCTION

� For any three objects X;Y; Z we have composition of morphisms:

HomC(X;Y )�HomC(Y; Z) ! HomC(X;Z)

(�;  ) 7!  � � : (4.68)

We require that this composition is associative. Here we use that the morphisms between objects
form a set and in a set we know what equality between elements means.

� For any object X 2 Ob(C) we have a distinguished element IdX 2 HomC(X;X), which is an
identity on both sides under the composition.

Remark 4.2.2. The de�nition of category given above is not fully general, since we assume that for every
two objects X;Y 2 Ob(C), HomC(X;Y ) is a set. The class of categories we have de�ned are usually
known in the literature as locally small categories.

Remark 4.2.3. Given a category C, we are not assuming that the collection Ob(C) is a set. This means
that we do not have the notion of equality of two objects. Although we cannot say when two objects in
C are equal, we can say when they are isomorphic: two objects X;Y 2 Ob(C) are isomorphic if we can
�nd two arrows � : X ! Y and  : Y ! X such that IdX =  � � and IdY = � � . However, in general
it may be possible to �nd many such isomorphisms and hence we may have many choices to identify
them.

Categories are ubiquitous in mathematics. We present now three simple examples.

Example 4.2.4. The category Set of of sets where the arrows are arbitrary maps of sets.

Example 4.2.5. The category V ectdK of d-dimensional vector spaces over a given �eld K where the arrows
are K-linear maps.

Example 4.2.6. The categoryModA of modules over a ring A where the arrows consist of A-linear maps.
Likewise, we can also de�ne the category of abelian groups Ab, where the morphisms are homomorphisms
of groups.

Example 4.2.7. The category Top of topological spaces where the arrows are given by continuous maps.

In the category V ecdK all the objects are isomorphic. Since the isomorphism is not unique, we cannot
identify them and therefore we can not de�ne a notion of equality. However, if we consider the category
of framed d-dimensional vector spaces over K, namely vector spaces equipped with an indexed basis,
then the isomorphism between two d-dimensional framed vector spaces is unique, and hence we can
de�ne the notion of equality.

Remark 4.2.8. Note that the axioms of a category C do not imply that the elements in HomC(X;Y )
are actual maps between sets (preserving the appropriate additional structure).

Given a cateogry C it is sometimes convenient to de�ne the opposite category Copp as a category whose
objects are the same as those of C and such that, for every X;Y 2 Ob(Copp) we have:

HomCopp(X;Y ) = HomC(Y;X) : (4.69)

We introduce now the notion of functor of categories, which loosely speaking can be understood as an
extension of the notion of maps between sets to the realm of categories.

De�nition 4.2.9. Let C1 and C2 be categories. A covariant functor F : C1 ! C2 from C1 to C2 is a
rule that:

� Assigns to every object X 2 Ob(C1) an object F (X) 2 Ob(C2).
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� For every two objects X;Y 2 Ob(C1) it induces a map:

FX;Y : HomC1(X;Y )! HomC2(F (X); F (Y )) ; (4.70)

which respects the identity elements and composition.

A covariant functor preserves the direction of the arrows. On the other hand, a contravariant functor is
de�ned as a covariant functor which reverses the direction of the arrows.

Any object X 2 Ob(C) in a category C de�nes a functor hX from C to the category Set by
assigning to every object Y 2 Ob(C) the object hX(Y ) = HomC(X;Y ) 2 Ob(Sets). Likewise, to every
arrow � : Y ! Z hX assigns the arrow:

hX(�) : HomC(X;Y )! HomC(X;Z) ; (4.71)

by composition. We present now two classical examples of functors.

Example 4.2.10. There is a contravariant functor from the category of d-dimensional K-vector spaces
V ectdK into itself. It sends every vector space V 2 Ob(V ectdK) to its dual vector space V � 2 HomK(V;K)
and it sends every linear map to its dual linear map. Since the dual of a linear maps goes in the opposite
direction, this is a contravariant functor.

Example 4.2.11. A very interesting example of functor is given by the singular Homology functor
F : Top ! Ab, from the category of topological spaces Top to the category of abelian groups Ab, with
arrows given by group morphisms. To every topological space X 2 Top, F (X) 2 Ab is the singu-
lar Homology group H�(X;Z) of X. A continuous map f : X ! Y for X;Y 2 Ob(Top) induces an
homomorphism f� : F (X) = H�(X;Z) ! F (Y ) = H�(Y;Z) and hence the assignment to the singular
Homology group to a topological space is indeed a functor.

De�nition 4.2.12. Let C1 and C2 be categories and let F : C1 ! C2 and H : C1 ! C2 be functors.
A natural transformation T : F ! H from F to H which assigns to every object X 2 Ob(C1) a
morphism T (X) : F (X) ! H(X) such that for every morphism f : X ! Y , where Y 2 Ob(C1), the
following diagram commutes:

F (X) H(X)

F (Y ) H(Y )

F (f)

T (X)

T (Y )

H(f)

Given a natural transformation T : F ! H, if there is a natural inverse transformation T �1 then we say
that T is a natural isomorphism and hence for any object X 2 Ob(C1) we have that F (X) is isomorphic
to H(X). This isomorphism is canonical for every object X 2 Ob(C1) and it involves no choices.

Let C be a category and let F : C ! Set be a functor into the category of sets and maps. We may
wonder about the possibility of representing the category C in terms of F and set. This gives rise to
the concept of representable functor.

De�nition 4.2.13. Let C be a category and let Set be the category of sets and maps. For each object
X 2 C we de�ne the hom functor Hom(X; �) : C ! Set to be the functor that maps an objects Y 2 C
to the set Hom(X;Y ).
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De�nition 4.2.14. A functor F : C ! Set is said to be representable if it is naturally isomorphic to
the hom functor Hom(X;�) for some object X 2 C. In that case, a representation of F : C ! Set is a
pair (X;T ), where T : Hom(X;�)! F is a natural isomorphism.

De�nition 4.2.15. An object 0 2 Ob(C) in a category C is called the zero object if, for all X 2 Ob(C),
there are two unique arrows 0! X and X ! 0. For X;Y 2 Ob(C), an arrow X ! Y is called the zero
morphism if it factorizes X ! 0! Y .

De�nition 4.2.16. Let C be a category and let f : X ! Y be an arrow, where X;Y 2 Ob(C). We say
that k : K ! X is the kernel of f if f � k = 0 and, for any other morphism k0 : K 0 ! X such that
f � k0 = 0 there exists a morphism h : K 0 ! K such that k0 = k � h.

The cokernel of f : X ! Y is a dual element to the kernel, namely it is a morphism k� : Y ! K� such
that k� � f = 0 and for any other morphism k�0 : Y ! K�0 satisfying k�0 � f = 0 there exists a morphism
h : K� ! K�0 such that k�0 = h � k�.

4.2.1 Homological algebra

The chain complex is the basic structure of homological algebra. It is de�ned as follows

De�nition 4.2.17. A chain complex C is a sequence (C�; d�) of abelian groups and group homomor-
phisms

C� : � � � �! Cn+1
dn+1
�! Cn

dn�! Cn�1
dn�1
�! � � � ; (4.72)

such that

dn � dn+1 = 0 : (4.73)

The abelian groups Ci ; i 2 Z are the so-called i-chains and the homomorphisms di are called the
so-called boundary maps.

Analogously, one can de�ne a co-complex by a simple relabelling of the i-chains and the homo-
morphisms di as follows

De�nition 4.2.18. A cochain C is a sequence (C�; d�) of abelian groups and group homomorphisms

C� : � � � �! Cn�1 dn�1
�! Cn dn

�! Cn+1 dn+1
�! � � � ; (4.74)

such that

dn � dn�1 = 0 : (4.75)

The abelian groups Ci ; i 2 Z are the so-called i-co-chains and the homomorphisms di are called the
so-called coboundary maps.

In this letter we will use the cochain notation. From equation (4.75) we immediately deduce that

Bi = Im di�1 � Zi = Ker di ; i 2 Z ; (4.76)

where Ker and Im respectively denote the kernel and image of the given map. Since subgroups of abelian
groups are normal, we can de�ne a new group by taking the corresponding quotient. We de�ne this way
the ith-cohomology group as follows

Hi (C) =
Zi

Bi
; i 2 Z : (4.77)
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A cochain is called an exact sequence if all its cohomology groups are zero. The cochain groups Ci may
be endowed with extra structure; for example, they may be vector spaces or modules over a �xed ring
K. In that case, the coboundary operators must preserve the extra structure if it exists; for instance,
they must be linear maps or homomorphisms of K-modules.

Let C = (C�; d�C) and D = (D�; d�D) be cochain complexes. A morphism F : C� ! D� between
C and D is a family of homomorphisms of abelian groups F i : Ci ! Di ; i 2 Z that commute with the
co-boundary operators, that is

F i+1 � diC = diD � F
i ; i 2 Z : (4.78)

A morphism of chain complexes induces a morphism FH of their homology groups, consisting of the
homomorphisms F i

H ; i 2 Z de�ned by

F i
H ([x]) =

h
F i (x)

i
; 8[x] 2 Hi (C) ; i 2 Z : (4.79)

A morphism F such that FH is an isomorphism, that is, that induces an isomorphism in cohomology,
is called a quasi-isomorphism. The prominent example of cochain that will appear in this letter is the
L1-algebra, which we will introduce in chapter 5. For L1-algebras we will need to introduce a less
restrictive concept of morphism, which is adapted to the structure present in L1-algebras.

Suppose that there exists a map f : X ! Y between two objects X and Y . Then, Homological
algebra studies the relation, induced by the map f , between chain complexes (or co-complexes) associated
with X and Y and their homology (or cohomology).

Example 4.2.19. Given a manifold M we can construct the complex

Ci � 
i (M) ; (4.80)

where 
i (M) denotes the set of i-forms on M6. The co-boundary operator is the exterior derivative
di : 
i (M)! 
i+1 (M). The corresponding cohomology is the de-Rham cohomology

Hi (M) =
Ker di

Im di�1
: (4.81)

The de-Rahm cohomology groups give important information about the manifold where it is de�ned.
For instance, the zero cohomology group H0 (M) of any di�erentiable manifold M is given by

H0 (M) ' Rn ; (4.82)

where n is the number of connected components of M. This can be easily seen from the fact that any
function f 2 C1 (M) such that df = 0 is constant on each of the connected component ofM. Therefore,
the dimension of the H0 (M) gives the number of connected componentes of M.

Example 4.2.20. Lie Algebra Cohomology. Let g be a Lie algebra. We de�ne the following cochain
complex C = (C�; ��)

Ci � �ig� ; (4.83)

with coboundary operator �k : Ck ! Ck+1 given by

�kc (x1; � � � ; xk) =
X

1�i<j�k

(�1)i+jc ([xi; xj ]; x1; : : : ; x̂i; : : : ; x̂j ; : : : ; xk) ; (4.84)

6See section 2.1 for more details.
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for all x1; � � � ; xk 2 g. Notice that we interpret an element c 2 Ci as an alternating i-linear operator
c : g�k ! R. � is in fact a coboundary operator; it can be checked that �2 = 0. We can introduce now
the Lie algebra cohomology groups, or Chevalley cohomology groups, of g using (4.77)

Hi (g;R) �
Ker �i

Im �i�1
: (4.85)

which in fact contain the same information as the de-Rham cohomology groups of G, in the following
sense

Theorem 4.2.21. If g is the Lie algebra of compact connected Lie group G, then

Hi (g;R) = Hi
deRham (G) : (4.86)



Chapter 5

L1-algebras

In this section we review L1-algebras and explicitly describe general L1-morphisms. An L1-algebra
structure on graded vector space L can be de�ned to be a collection of skew-symmetric maps flk : L
k !
Lg1k=1 with jljk = k� 2 which satisfy a rather complicated generalization of the Jacobi identity. We will
therefore start with a more elegant description, given in terms of coalgebras, and prove its equivalence
to the previous characterization.

5.1 Basic de�nitions

De�nition 5.1.1. An L1[1]-structure on a graded vector spaceM is a choice of degree one codi�erential
Q on the coalgebra

C(M) = �S (M) : (5.1)

Theorem 5.1.2. An L1[1]-structure on a graded vector space M , that is, a choice of degree one
codiferential Q on �S(M), uniquely determines a family of degree one linear maps�

mk : �S
k(M)!M

�
k2N+

; (5.2)

such that

X
r+s=k

X
�2Sh(r;s)

�(�)m(s+1)

�
mr

�
x�(1) 
 � � � 
 x�(r)

�

 x�(r+1) 
 � � � 
 x�(k)

�
= 0 : (5.3)

where �(�) = �(�;x1; : : : ; xr) and x1; : : : ; xk 2 M . Conversely, any such family (mk)k2N+ of degree
one linear maps uniquely determines a degree one codi�erential Q on �S(M).

Proof. Given a codi�erential Q on �S(M), consider the restrictions

Qk = Qj �Sk(M) : �S
k(M)! �S(M); 1 � k <1 ; (5.4)

so that Q =
P1

k Qk, and also the projections

Qk
m = pr �Sk(M) �Qm : �Sm(M)! �Sk(M) : (5.5)

It follows from proposition 4.1.21 that Q can be uniquely determined by the collection of maps

Q1
k = prM �Qk : �S

k(M)!M; k � 1 : (5.6)

55
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The complete coderivation Q can be written as

Qm (x1 � � � � � xm) = Q1
m (x1 � � � � � xm) + (5.7)

m�1X
i=1

X
�2Sh(i;m�i)

� (�)Q1
i

�
x�(1) � � � � � x�(i)

�
� x�(i+1) � � � � � x�(m) ; (5.8)

for any xi 2M . De�ning now the maps (mk)k2N+ as follows

�
mk = Q1

k : �S
k(M)!M

�
k2N+

; (5.9)

the condition Q�Q = 0 is equivalent to the generalized Jacobi identity (5.3) for the collection (mk)k2N+ .
In particular, it implies that l1 is degree one di�erential on L. On the other hand, let us assume that
�S(M) is equipped with set of degree one maps

�
mk : �S

k(M)!M
�
k2N+

; (5.10)

obeying equation (5.3). Taking the (mk)k2N+ as the
�
Q1
k

�
k2N+ components in Lemma 2.4 in [12] we

conclude that there exists a unique codi�erential Q in �S(M) such that its
�
Q1
k

�
k2N+ restrictions are

given by the (mk)k2N+ maps.

Hence, an L1[1]-structure on a graded vector space M can be equivalently de�ned in terms of a degree
one coderivation Q on C(M) or in terms of a family of morphisms

�
mk : S

k(M)!M
�
k2N+

obeying

(5.3). An L1-structure is related to an L1[1]-structure by a degree shift in M . In particular, an L1-
structure on a graded vector space L is nothing but an L1[1]-structure on the graded vector space
M = s�1L.

De�nition 5.1.3. An L1-structure on a graded vector space L is an L1[1]-structure on the graded
vector space s�1L.

An equivalent, more practical, de�nition is the following

De�nition 5.1.4 ([12]). An L1-algebra is a graded vector space L together with a collection

n
lk : L


k ! Lj1 � k <1
o

(5.11)

of graded skew-symmetric linear maps with jlkj = 2 � k such that the following identity is satis�ed for
1 � m <1

X
i+j=m+1 ;
�2Sh(i;m�i)

(�1)� �(�) (�1)i(j�1) lj
�
li(x�(1); : : : ; x�(i)); x�(i+1) ; : : : ; x�(m)

�
= 0 : (5.12)

Proof. Let us prove the equivalence of both de�nitions. If we consider an L1[1] structure on s�1L then
condition (5.3) can be written as

X
r+s=k

X
�2Sh(r;s)

�(�)m(s+1)

�
mr

�
s�1x�(1) 
 � � � 
 s

�1x�(r)
�

 s�1x�(r+1) 
 � � � 
 s

�1x�(k)
�
= 0 : (5.13)

where �(�) = �
�
�; s�1x1; : : : ; s

�1xk
�
and x1; : : : ; xk 2 L. Using equation (4.29) it can be proven that
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mr

�
s�1x�(1) 
 � � � 
 s

�1x�(r)
�
= (�1)

Pr

i=1
(r�i)jx�(i)jmr � s

�r
�
x�(1) 
 � � � 
 x�(r)

�
: (5.14)

Using now equation (5.14) together with the following commutative diagram

�k (L) L

Sk
�
s�1L

�
s�1L

s�k

lk

mk

s�1

we obtain

mr � s
�r
�
x�(1) 
 � � � 
 x�(r)

�
= s�1 � lr

�
x�(1) 
 � � � 
 x�(r)

�
: (5.15)

Therefore

m(s+1)

�
mr

�
s�1x�(1) 
 � � � 
 s

�1x�(r)
�

 s�1x�(r+1) 
 � � � 
 s

�1x�(k)
�
=

(�1)
Pr

i=1
(r�i)jx�(i)j+

Pk�r+1

i=1
(k�r+1�i)j~xijs�1 � l(s+1)

�
lr
�
x�(1) 
 � � � 
 x�(r)

�

 x�(r+1) 
 � � � 
 x�(k)

�
;(5.16)

where

~x1 = lr
�
x�(1); : : : ; x�(r)

�
; ~xi = x�(r�1+i) ; 2 � i � k � r + 1 : (5.17)

Since

jlr
�
x�(1); : : : ; x�(r)

�
j = 2� r +

rX
i=1

jx�(i)j ; (5.18)

we have

k�r+1X
i=1

j~xij = 2� r +
kX
i=1

jx�(i)j ; (�1)
Pr

i=1
(r�i)jx�(i)j+

Pk�r+1

i=1
(k�r+1�i)j~xij = (�1)(k�r)r+

Pk

i=1
(k�i)jx�(i)j :

(5.19)

Finally, using equation (4.34) together with equation (5.19) in equation (5.3), we obtain equation (5.12).

Therefore, any L1-algebra (L; lk) corresponds to a certain kind of graded co-algebra C(s�1L) equipped
with a co-derivation Q which satis�es the identity

Q �Q = 0 : (5.20)
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As we have seen, this identity is the origin of equation (5.12). It is easy to see that for small values of m
that equation (5.12) is a generalized Jacobi identity for the multi-brackets flkg. For k = 1, it implies
that the degree one linear map l1 satis�es

l1 � l1 = 0 (5.21)

and hence every L1-algebra (L; lk) has an underlying cochain complex (L; d = l1). For k = 2 we have
that [�; �] = l2 is a degree zero linear map that satis�es

d [x1; x2] = [dx1; x2] + (�1)jx1j [x1; dx2] : (5.22)

Hence l2 can be interpreted as a bracket, which is skew symmetric

[x1; x2] = �(�1)jx1jjx2j [x2; x1] ; (5.23)

but does not satisfy the usual Jacobi identity.

De�nition 5.1.5. A Lie n-algebra is a L1-algebra (L; flkg) such that the corresponding graded vector
space L is concentrated in degrees 0;�1; : : : ; 1� n.

Notice that if (L; flkg) is a Lie n-algebra, simply by degree counting then lk = 0 for k > n+1. Therefore,
a Lie 1-algebra is nothing but a Lie algebra.

5.2 L1-morphisms

The notion of L1-morphism will be essential in this work. We now give [12] a naive de�nition of what
could be an L1 �morphism.

De�nition 5.2.1. If (L1; l1k) and (L2; l2k) be L1-algebras then a degree zero linear map f : L1 ! L2 is
a strict L1-morphism if and only if the following holds

l2k � f

k = f � l1k 8k � 1 : (5.24)

The de�nition above however does not re�ect the higher structure which resides within the theory in
a natural way. Actually, there is a better de�nition, see Remark 5.3 of [12], which uses the previously
mentioned relationship between L1-algebras and di�erential graded coalgebras. This turns out to give
to the collection of morphisms between two L1-algebras the structure of a simplicial set, see reference
[71], which therefore permits to consider homotopies among morphisms, homotopies among homotopies
et cetera. As we did when we de�ned L1-algebras, we de�ne �rst a morphism of L1[1]-algebras. The
corresponding de�nition for L1-algebras can then be obtained by a degree shift in L.

De�nition 5.2.2. An L1[1]-morphism between L1[1]-algebras (M1;m1
k) and

�
M2;m2

k

�
is a morphism

F [1] :
�
C(M1); Q1

�
!
�
C(M2); Q2

�
between the corresponding underlying di�erential graded coalgebras.

F [1] is thus a morphism between the graded coalgebras C(M1) and C(M2) such that

F [1] �Q1 = Q2 � F [1] : (5.25)

As it turns out, an L1[1]-morphism F [1] between (M1;m1
k) and (M2;m2

k) corresponds to an in�nite
collection of symmetric, degree zero, `structure maps'

F [1] =
�
fk[1] : S

k
�
M1

�
!M2 1 � k <1

�
; (5.26)

and such that a given compatibility relation with the multi-brackets must be satis�ed. More precisely,
the following proposition holds.
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Proposition 5.2.3. Let (M1;m1
k) and (M2;m2

k) be L1[1]-algebras. A morphism from (M1;m1
k) to

(M2;m2
k) is a family of morphism

F [1] =
�
fk[1] : S

k
�
M1

�
!M2 1 � k <1

�
; (5.27)

such that

X
r+s=k

X
�2Sh(r;s)

� (�;x1; : : : ; xk) fs+1[1]
�
mr

�
x�(1); : : : ; x�(r)

�
; x�(r+1); : : : ; x�(k)

�
=

kX
l=1

X
j1+���+jl=k

X
�2�k

� (� ;x1; : : : ; xk)

l!j1! : : : jl!
nl
�
fj1 [1]

�
x�(~k1+1); : : : ; x�(~k1+j1)

�
; : : : ; fjl [1]

�
x�(~kl+1); : : : ; x�(~kl+jl)

��
;(5.28)

where ~k1 = 0 and ~ks =
Ps�1

i=1 ji ; 1 < s � l.

Proof. See chapter 2 of [72].

The corresponding notion of morphism of L1-algebras goes as follows

De�nition 5.2.4. An L1-morphism F between L1-algebras (L1; l1k) and
�
L2; l2k

�
is a morphism F :

�
C(s�1L1); Q1

�
!�

C(s�1L2); Q2
�
between their corresponding di�erential graded coalgebras. F is hence a morphism be-

tween the graded coalgebras C(s�1L1) and C(s�1L2) such that

F �Q1 = Q2 � F : (5.29)

As in the L1[1] case, the notion of L1-morphism corresponds to an in�nite family of maps, which in
this case are skew-symmetric structure maps

F =
�
fk : �

kL1 ! L2 1 � k <1
�
; (5.30)

where jfkj = 1�k. Here again the family of maps have to satisfy a somewhat complicated compatibility
relation involving the multi-brackets. Such compatibility relation can be obtained from equation (5.28)
by means of the following commutative diagram

�k
�
L1
�

L2

Sk
�
s�1L1

�
s�1L2

s�k

fk

f [1]k

s�1

by performing the corresponding degree shift in L1 and L2.

We see that, particular, the degree zero map f1 is a morphism between the corresponding complexes
(L1; l11) and (L2; l21)

f1 � l
1
1 = l21 � f1 : (5.31)
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As it happens for L1[1]-morphisms, the compatibility relation between the family of maps (fi)i�1 and
the multibrackets precisely corresponds in the language of coalgebras to equation (5.29). It can be easily
seen that strict morphisms as de�ned in 5.2.1 correspond to the case given by fi = 0 for i � 2. L1-
morphisms can be composed in the standard sense, and therefore it is possible to consider the category
of L1-algebras without explicit use the higher structure present in L1-morphisms.

We de�ne now the notion of L1-quasi-isomorphism. This de�nition naturally re�exts the homo-
topical structure that exists between morphisms.

De�nition 5.2.5. Let (fk) : (L1; l1k)! (L2; l2k) be an L1-algebra morphisim. Then we say that (fk)k�1
is an L1-quasi-isomorphism if and only if the corresponding morphism of complexes

f1 : (L
1; l11)! (L2; l21) (5.32)

induces an isomorphism on the cohomology of the underlying complexes

H� (f1) : H
�
�
L1
� �=
�! H�

�
L2
�
: (5.33)

5.2.1 Morphisms from Lie algebras to L1-algebras

Since it will be useful in chapter 6, we will consider L1-algebra morphisms whose sources are simply
Lie algebras (g; [�; �]). In that case the conditions that the components of the morphism must satisfy are
extremely simpli�ed and the resulting expression can be indeed used for practical purposes. We will
assume also that the image (L; lk) of the L1-algebra morphism is a Lie-n algebra such that

8 i � 2 li (x1; : : : ; xi) = 0 whenever
iX

k=1

jxkj < 0 : (5.34)

This is indeed the relevant case for Lie-n algebras arising from n-plectic manifolds, as we will see in
chapter 6. The relevant proposition is then the following

Proposition 5.2.6. Let (g; [�; �]) be a Lie algebra and let (L; lk) is a Lie n-algebra that satis�es the
property (5.34). Then a collection of n anti-symmetric maps

fm : g
m ! L; jfmj = 1�m; 1 � m � n ; (5.35)

can be taken to be the components of an L1-morphism (fk)k�1 : g! L if and only if 8xi 2 g

X
1�i<j�m

(�1)i+j+1fm�1 ([xi; xj ] ; x1; : : : ; bxi; : : : ;cxj ; : : : ; xm) (5.36)

= l1fm (x1; : : : ; xm) + lm (f1(x1); : : : ; f1(xm)) : (5.37)

for 2 � m � n and

X
1�i<j�n+1

(�1)i+j+1fn ([xi; xj ] ; x1; : : : ; bxi; : : : ;cxj ; : : : ; xn+1) = ln+1 (f1(x1); : : : ; f1(xn+1)) : (5.38)

Proof. See appendix A.5 of [18]



Chapter 6

Multisymplectic Geometry

6.1 Multisymplectic manifolds

We will closely follow [18]. For more details about Multisymplectic Geometry the interested reader can
consult [1�4, 10].

De�nition 6.1.1. A di�erentiable manifold M is said to be n-plectic or multisymplectic if it is
equipped with an (n+ 1)-form ! 2 
n+1 (M) such that it is both closed:

d! = 0 ; (6.1)

and non-degenerate:

8 p 2M 8 u 2 TpM; �u! = 0) u = 0 : (6.2)

If ! is an n-plectic form on M, then we call the pair (M; !) an n-plectic manifold. More generally, if
! is closed, but not necessarily non-degenerate, then we call (M; !) a pre-n-plectic manifold. We will
only deal with n-plectic manifolds, although most of our results can be straightforwardly extended to
the pre-n-plectic case.

Remark 6.1.2. A 1-plectic manifold is simply a symplectic manifold.

De�nition 6.1.3. Given two n-plectic manifolds (M1; !1) and (M2; !2), a di�eomorphism F : M1 !
M2 is said to be a multisymplectic di�eomorphism if F �!2 = !1.

De�nition 6.1.4. Given an n-plectic manifold (M; !), an (n � 1)-form � 2 
n�1 (M) is said to be
Hamiltonian if and only if there exists a vector �eld u� 2 X (M) such that:

d� = ��u�! : (6.3)

We say then that u� is a Hamiltonian vector �eld corresponding to �. We respectively denote by

n�1
Ham (M) and XHam (M), the set of Hamiltonian (n� 1)-forms and the set of Hamiltonian vector �elds

on an n-plectic manifold, which are real vector spaces. Note that, due to the non-degeneracy of !, for
every Hamiltonian form there is a unique Hamiltonian vector �eld associated.

De�nition 6.1.5. A vector �eld u on a n-plectic manifold (M; !) is a local Hamiltonian vector �eld
if and only if

Lu! = 0 ; (6.4)

We denote by XHam (M) the vector space of local Hamiltonian vector �elds.

61
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Please notice that equation (6.4) is equivalent to

div! = 0 : (6.5)

Hence, for Hamiltonian vector �elds iu! is an exact n-form while for locally Hamiltonian vector �elds
iu! is a closed n-form, which can be always locally written in terms of an exact form, justifying name
local Hamiltonian vector �eld. If H1

dR (M) = 0 both de�nitions of course coincide.

De�nition 6.1.6. Let (M; !) be a n-plectic manifold. Given �; � 2 
n�1
Ham (M), we de�ne the bracket

f�; �g to be the (n� 1)-form given by

f�; �g = �u� �u�! ; (6.6)

where u� and u� respectively stand for the Hamiltonian vector �elds for � and �.

Proposition 6.1.7. Let (M; !) be an n-plectic manifold and let u1; u2 2 XHam (M) be local Hamil-
tonian vector �elds. Then [u1; u2] is a global Hamiltonian vector �eld with

d�u1^u2! = ��[u1;u2]! ; (6.7)

and thus XHam (M) and XHam (M) are Lie subalgebras of X (M).

Proof. Let u1; u2 be locally Hamiltonian vector �elds. Then by equation (2.22),

Lu1�u2! = �[u1;u2]! : (6.8)

Using now equation (2.21),

Lu1�u2! = �u1d�u2! + d�u1�u2! : (6.9)

However �u1d�u2! = 0, since d�u2 = Lu2 � �u2d.

Proposition6.1.7 implies in particular that if u� and u� are respectively Hamiltonian vector �elds
for � and �, then [u�; u� ] is a Hamiltonian vector �eld for f�; �g. Notice that the bracket de�ned in
6.1.6 is skew-symmetric but it fails to satisfy the Jacoby identity. In particular we have1

f�1; f�2; �3gg � ff�1; �2g ; �3g � f�2; f�1; �3gg = �d�v�1^v�2^v�3! : (6.10)

Therefore, the space 
n�1
Ham (M) of Hamiltonian forms equipped with the bracket f�; �g is not a Lie algebra

unless n = 1, which is the well-know symplectic case. Hence, we cannot straightforwardly extend the
Poisson structure present in the set of functions on a symplectic manifold to the set of Hamiltonian
forms on a multisymplectic manifold. Nonetheless, equation (6.10) shows that f�; �g fails to satisfy the
Jacobi identity by an exact form, which suggests the existence of an underlying n-Lie algebra structure of
which 
n�1

Ham (M) would be part of. Roughly speaking, if we identify the interior product of k Hamiltonian
vector �elds with ! as lk acting on the corresponding k Hamiltonian forms, then equation 6.10 is the
condition that l2 and l3 have to obey if they are part of an Lie-n algebra.

We present now a theorem that gives a natural L1-structure, in particular a n-Lie algebra structure,
on di�erential forms, extending the bracket f�; �g on 
n�1

Ham (M). See theorem 5.2 in [11] and theorem 6.7
in [73]. A detailed exposition can be found in [10].

1See proposition 3.5 in reference [10].



6.1. MULTISYMPLECTIC MANIFOLDS 63

Theorem 6.1.8. Let (M; !) be an n-plectic manifold . Then there exists a Lie n-algebra L1(M; !) =
(L; flkg) with underlying graded vector space

Li =

(

n�1
Ham (M) k = 0;


n�1+k (M) 1� n � k < 0 ;
(6.11)

and maps
n
lk : L


k ! Lj1 � k <1
o
de�ned as follows

l1 (�) = d� ; (6.12)

if j�j < 0 and

lk (�1; : : : ; �k) =

(
�(k)� (u�1 ^ � � � ^ u�k)! if j�1 
 � � � 
 �kj = 0;

0 if j�1 
 � � � 
 �kj < 0 ;
(6.13)

for k > 1, where u�i is the Hamiltonian vector �eld associated to �i 2 
n�1
Ham (M) and �(k) =

�(�1)
k(k+1)

2 .

We can extend de�nition 6.1.6 and de�ne a k-ary bracket in L (M; !) as follows

fx1; : : : ; xkg = lk (x1; : : : ; xk) ; x1; : : : ; xk 2 L (M; !) : (6.14)

Please notice that in the n = 1 case, the underlying complex is simply the vector space of Hamiltonian
functions C1 (M). The only non-zero bracket is therefore l2 = f�; �g, which is simply a Lie bracket.
We thus recover the Lie algebra which underlies the usual Poisson algebra that can be constructed for
symplectic manifold. As explained in section 3.2, in that case there is a well-de�ned surjective Lie algebra
morphism

� : C1 (M)� XHam (M) ; (6.15)

which send a function to its (unique) Hamiltonian vector �eld. If M is connected, it can be shown that
� �ts in the following short exact sequence

0! R! C1 (M)
�
�! XHam (M)! 0 : (6.16)

Equation (6.16) is the so-called Kostant-Souriau central extension, see references [74, 75]. The Kostant-
Souriau central extension characterizes,up to isomorphism, the Lie algebra of C1 (M) as follows: it is
the central extension, which can be shown to be unique, given by the symplectic form, evaluated at
p 2M. The higher analog of the central extension (6.16) is given by the cochain map

� : L (M; !)� XHam (M) ; (6.17)

which is trivial en all degrees but zero. In degree zero it assigns to every Hamiltonian form � its unique
Hamiltonian vector �eld. The map � �ts hence in the following short exact sequence

0! ~
! L (M)
�
�! XHam (M)! 0 : (6.18)

Here ~
 stands for the cocomplex

~
 = C1 (M)! 
1 (M)! � � � ! 
n�1
cl (M) ; (6.19)
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where 
n�1
cl (M) is the set of closed (n � 1)-forms in M and the coboundary operator is the de Rahm

di�erential. We introduce a further sequence of operations on L, which turns out to be very handy for
the purposes of this note.

Remark 6.1.9. The operations [: : : ]k on L we introduce now are labelled by integers k � 0, unlike the op-
erations appearing in theorem 6.1.8. The multilinear maps [: : : ]k are closely related to the multibrackets
of L1(M;!): for k � 1,

[�1; : : : ; �k]k = f�1; : : : ; �kgk � �k;1d�1 ;

where � denotes the Kronecker delta. In particular, for k � 2, [: : : ]k and f: : : gk agree, while [�]1 vanishes
if j�j < 0 and equals �d� when j�j = 0. We also have [1]0 = �!.

Explicitly, the operations [: : : ]k are given as follows:

De�nition 6.1.10. Let (M;!) be a n-plectic manifold. Let L denote the graded vector space underlying
L1(M;!).

For all k � 0, we de�ne the multilinear maps [: : : ]k : L
k ! 
n+1�k(M) as follows:

[�1; : : : ; �k]k =

(
0 if j�1 
 � � � 
 �kj � �1;

&(k)�(v�1 ^ � � � ^ v�k)! if j�1 
 � � � 
 �kj = 0;

6.1.1 Homotopy moment maps

Let G denote a Lie group and g its Lie algebra. Let �: G �M !M denote a left-action of G on the
n-plectic manifold (M; !). That is, G acts on � 2 
� (M) from the left through the inverse pullback:

g � � 7! ��g�1� ; (6.20)

where �g : M ! M denotes the di�eomorphism that corresponds to g through the action �. The
corresponding in�nitesimal action of the Lie algebra g is denoted by the map:

v� : g! X (M) ; x 7! vx ; (6.21)

where:

vxjp =
d

dt
exp(�tx) � pjt=0 8p 2M : (6.22)

The vector �eld v� is usually denoted in the literature as the fundamental vector �eld associated to
the G-action � on M.

In the context of symplectic geometry, we can equivalently write a moment map � : M ! g�

as a comoment map, namely a Lie algebra morphism �� : g ! C1 (M); see section 3.2 for more
details. We will introduce in this section, closely following the seminal paper [18], the natural analog in
multisymplectic geometry of the comoment map used in symplectic geometry. It is the so-called map.

Remark 6.1.11. Let us recall the de�nition of moment and comoment map. Let (M; !) be a symplectic
manifold equipped with a G-action �. A moment map � : M! g� is a G-equivariant g�-valued smooth
function on M. The moment map � has to satisfy a particular condition respecto to !. This notion
can be also expressed as a comoment map, which is nothing but a Lie algebra homomorphism � : g !
(C1 (M) ; f; g) from the Lie algebra g of G, to the Poisson algebra on C1(M) that can be associated to
the symplectic form.
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De�nition 6.1.12. Let G be a Lie group with Lie algebra g. Let (M; !) be an n-plectic manifold which
is equipped with a G-action � preserving ! and such that the corresponding g-action x 7! vx is through
Hamiltonian vector �elds. A homotopy moment map is a L1-algebra morphism f : g ! L(M; !)
making commutative the following diagram:

L (M; !)

g XHam (M)

�

v�

f

Hence, f is a lift of v� : g ! XHam (M) in the category of L1-algebras. This lift corresponds to an
L1-morphism:

(fk)k�1 : g! L1 (M; !) ; (6.23)

that in addition is required to satisfy:

� �vy! = d (f1(y)) for all y 2 g : (6.24)

Notice that the condition ��vy! = d(f1(y)) implies that vy is the unique Hamiltonian vector �eld for
f1(y) 2 
n�1

Ham (M). In addition, using proposition 5.2.6, we can rewrite the conditions on the components
(fk)k�1 : g


k ! L (M; !) of the L1-morphism as follows:

X
1�i<j�k

(�1)i+j+1fk�1 ([yi; yj ] ; y1; : : : ; byi; : : : ;cyj ; : : : ; yk) (6.25)

= dfk ((y1; : : : ; yk) + �(k)�(v1 ^ � � � ^ vk)! ; (6.26)

for 2 � k � n plus

X
1�i<j�n+1

(�1)i+j+1fn ([yi; yj ] ; y1; : : : ; byi; : : : ;cyj ; : : : ; yn+1) = �(n+ 1)� (v1 ^ � � � ^ vn+1)! : (6.27)

Here vi stands for the vector �eld associated to yi via the g-action. Please notice that the theorem 6.1.8
implies in particular that L1 (M; !) satis�es 5.34.

Notice also that proposition 6.1.7 implies in particular that v[x;y] = [vx; vy] is a Hamiltonian vector
�eld for

ff1(x); f1(y)g = l2 (f1(x); f1(y)) : (6.28)

In general, the map f1 : g! 
n�1
Ham (M) will not preserve the bracket on g, i.e., we will have

f1 ([x; y]) 6= ff1(x); f1(y)g : (6.29)

This is nice property should be expected, since the Lie bracket of g satis�es the Jacobi identity but f�; �g
does not.
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De�nition 6.1.13. Let (M; !) be an n-plectic manifold. The action of a Lie group G on (M; !) is said
to be Hamiltonian if an homotopy moment map for such action exists.

6.2 Multisymplectic di�eomorphisms and n-algebra morphisms

In this section we are going to study the relation between strict morphisms of L1-algebras and multi-
symplectic di�eomorphisms of the corresponding multisimplectic manifolds. That is, we want to know
under which conditions, if any, we can conclude that a strict morphism of Lie n-algebras � : L (M1; !1)!
L (M2; !2) induces a multisymplectic di�eomorphism between the corresponding n-plectic manifolds
(Ma; !a), a = 1; 2. We know that in the symplectic case the answer is positive: two symplectic manifolds
with corresponding isomorphic Poisson algebras are symplectomorphic. We will see that in the n-plectic
case the answer is also positive, at least for a special class of n-plectic manifolds, those which are locally
homogeneous with respect to the multisymplectic form. Hence, at least in those cases, the L1-algebra
constructed on a multisymplectic manifold is powerful enough to contain important information about
the manifold itself and its di�erential structure.

Let � : L (M2; !2) ! L (M1; !1) be an strict Lie n-algebra morphism and let us write � =
(�1�n; : : : ; �0), where �i : Li (M2; !2)! Li (M1; !1) ; i = 1� n; : : : ; 02.

In order to relate strict Lie n-algebra morphisms and multisymplectic di�eomorphisms, we need
�rst the existence of � to imply the existence of a di�eomorphism F : M1 ! M2, which then must be
checked to be a multisymplectic di�eomorphism. This is easily achieved by making use of the following
lemma

Lemma 6.2.1. Let Ma ; a = 1; 2 ; be di�erentiable manifolds and  : (C1 (M2) ; �) ! (C1 (M1) ; �)
an algebra morphism, where � denotes the usual multiplication of functions. Then  = F �, where
F : M1 ! M2 is a smooth map. In addition, if  is an algebra isomorphism then F is a
di�eomorphism.

Proof. See theorem 4.2.36 in reference [76].

Hence, assuming that �1�n : C1 (M2) ! C1 (M1) is an algebra isomorphism from fC1 (M2) ; �g to
fC1 (M1) ; �g, we can conclude the existence of a di�eomorphism F from M1 to M2 such that:

�n�1 = F � : (6.30)

Since � is an strict Lie n-algebra morphism, it preserves the maps flakgk=1;:::;n+1 of the corresponding
Lie n-algebra3:

d2 � � = � � d1 ; (6.31)

�2�k � l
2
k (�1; � � � ; �k) = l1k (�0 � �1; : : : ; �0 � �k) ; 8 �1 ; : : : ; �k 2 
n�1

Ham (M2) ; k = 2; : : : ; n+1 :
(6.32)

Using now the de�nition (6.14) of the L1-algebra maps lk, as well as (6.30), we obtain:

F �
n
�21; � � � ; �

2
n+1

o
2
=
n
�0 � �

2
1; � � � ; �0 � �

2
n+1

o
1
; 8 �21 ; : : : ; �

2
n+1 2 
n�1

Ham (M2) : (6.33)

2For the precise de�nition of strict morphism of L1-algebras see 5.2.
3Notice that la1 = da.
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Assuming in addition that �i = F � ; i = 1� n; : : : ; 0 ; it can be proven that the initial set-up consisting
of two n-plectic manifolds and a strict Lie-n algebra morphism � is equivalent, in a precise sense to be
speci�ed in a moment, to considering a unique manifold M equipped with two n-plectic structures !1
and !2 such as l1k = l2k ; k = 1; � � � ; n + 1. Notice that the condition �0 = F � is non-trivial, since for
arbitrary di�eomorphisms we would have

F � : 
n�1
Ham (M2)! 
n�1 (M1) ; (6.34)

and we are requiring

F � : 
n�1
Ham (M2)! 
n�1

Ham (M1) : (6.35)

We will assume then that the Lie-n algebra morphism is given by � = F �, where F : M1 ! M2

is a di�eomorphism, and conclude then that F must be a multisymplectomorphism by studying the
equivalent case of a unique manifold M1 equipped with two multisimplectic structures !1 and !2, such
that the corresponding Lie-n algebras are equal. Let us �rst prove the equivalence of both cases.

Proposition 6.2.2. Let (Ma; !a) ; a = 1; 2 ; be n-plectic manifolds, fL (Ma; !a) ; l
a
kg denote the

corresponding Lie n-algebras and � :
�
L (M2; !2) ; l

2
k

	
!

�
L (M1; !1) ; l

1
k

	
a strict Lie n-algebra

morphism such that:

�i = F � : Li (M2; !2)! Li (M1; !1) ; i = 1� n; : : : ; 0 ; (6.36)

where F : M1 ! M2 is a di�eomorphism. Then, F is a multisymplectic di�eomorphism if and
only if

�
L (M1; !1) ; l

1
k

	
=
n
L (M1; ~!1 � F �!2) ; ~l

1
k

o
implies !1 = ~!1:

Proof. If F :M1 !M2 is a multisymplectomorphism, then F �!2 = !1 and therefore
�
L (M1; !1) ; l

1
k

	
=n

L (M1; ~!1) ; ~l
1
k

o
since ~!1 = !1, which in turn implies ~l1k = l1k ; k = 1; � � � ; n+ 1.

On the other hand, if
�
L (M1; !1) ; l

1
k

	
=
n
L (M1; ~!1 � F �!2) ; ~l

1
k

o
implies !1 = ~!1:, then !1 =

F �!2 and therefore F is a multisymplectomorphism.

In other words, proposition 6.2.2 simply states that the following diagram of strict-isomorphisms of
L1-algebras commutes:

L (M1; F
�!2)

L (M1; !1) L (M2; !2)

Id

�

F �

Therefore, we will consider the equivalent situation of a unique manifold M equipped with two multi-
symplectic structures !1 and !2. Before proving the main result of this section, namely theorem 6.2.7, it
is necessary to introduce the concept of locally homogeneous manifold and the lemma 6.2.5 of reference
[2].

De�nition 6.2.3. Let M be a di�erentiable manifold. Consider p 2 M and a compact set K 2 M
such that p 2 K�4. A local Liouville or local Euler-like vector �eld at p, with respect to K, is a

4K� denotes the interior of K.



68 CHAPTER 6. INTRODUCTION

vector �eld �p on M such that supp�p � fq 2Mj�p(q) 6= 0g � K, and there exists a di�eomorphism
� : (supp�p)� ! Rn such that ���p = �, where � = xi @

@xi
is the standard Liouville or dilation vector

�eld in Rn.

De�nition 6.2.4. A di�erential form ! 2 �
�
�(n+1) (T �M)

�
is said to be locally homogeneous at

p 2 M if, for every open set U containing p, there exists a local Euler-like vector �eld �p at p with
respect to a compact set K � U such that:

L�p! = f! ; f 2 C1 (M) : (6.37)

The form is said to be locally homogeneous if it is locally homogeneous for all p 2M.

Obviously, out of supp�p , the function f vanishes. A pair (M; !) where ! is locally homogeneous n-
plectic form is called a locally homogeneous n-plectic manifold. As examples of homogeneous n-plectic
manifolds we can �nd symplectic manifolds and multicotangent bundles and in fact any oriented manifold
equipped with its volume form.

The following lemmas5 will play an important role in the proof of theorem 6.2.7.

Lemma 6.2.5. Let (M; !) be a locally homogeneous n-plectic manifold. Then, the family of hamil-
tonian vector �elds span the tangent bundle of M. That is

TpM = span
n
vp j v 2 � (TM) ; iv! = d�v ; �v 2 


(n�1)
Ham (M)

o
: (6.38)

Proof. Let (M; !) be a locally homogeneous n-plectic manifold, and let vp 2 TpM be any vector at
p 2 M. Let U be a contractible open neighborhood of p, which can be shrink in order to be contained
in a coordinate chart U�, with coordinates ��. In lemma 4.5 of reference [2], it was proven the existence
of a vector �eld vU on U , such that supp vU � U is compact, vU jp = vp and

d�vU! = 0 ; (6.39)

that is, �vU! is closed. vU can be extended trivially to all M by de�ning a vector �eld v 2 � (TM) as
follows:

vjp = vU jp ; p 2 supp vU ; vjp = 0 ; p =2 supp vU ; (6.40)

We will prove now that v is a Hamiltonian vector �eld on M. �vU! is a closed n-form with compact
support in U , that is [�vU ]! 2 H

n
C (U). In addition, we can choose U � U� such that

U ' Rd ; d = dimM : (6.41)

Therefore Hn
C (U) ' Hn

C

�
Rd
�
where Hn

C

�
Rd
�
denotes the n-th compactly supported cohomology group

of Rd. Noticing that n < d we conclude that

Hn
C (U) ' Hn

C

�
Rd
�
' f0g : (6.42)

Hence, there exist a (n� 1)-form �U 2 
n�1 (U) with compact support contained in U such that

�vU! = d�U : (6.43)

5Lemma (6.2.5) is actually is a small generalization of lemma 4.5 in [2].
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Now, extending �U trivially to a (n� 1)-form � 2 
n�1 (M) as follows

�jp = �U jp ; p 2 supp�U ; �jp = 0 ; p =2 supp�U ; (6.44)

we see that

�v! = d� : (6.45)

Therefore, v is a Hamiltonian vector �eld inM that can be build as to give any vector vjp = vp at p 2M.
We conclude then that TpM is generated by Hamiltonian vector �elds on M evaluated at p 2M.

Lemma 6.2.6. Let M be a multisymplectic manifold equipped with two n-plectic structures !1 and
!2 such that the corresponding Lie-n algebras are equal, namely L (M; !2) = L (M; !1). Let us
assume that at least one of the n-plectic structures, say !1, is locally homogeneous. Then

v1� = v2� ; 8 � 2 

(n�1)
Ham (M) ; (6.46)

where va� ; a = 1; 2 is the Hamiltonian vector �eld of � respect to !a, that is

d� = �va�!a ; a = 1; 2 : (6.47)

Proof. Let � 2 

(n�1)
Ham (M) and let va� the Hamiltonian vector of � respect to !a. Since by assumption

L (M; !2) = L (M; !1), we can write

l12 (�; �) = l22 (�; �) ; 8 �; � 2 

(n�1)
Ham (M) ; (6.48)

which, in turn, implies

!1
�
v1�; v

1
� ; : : :

�
= !2

�
v2�; v

2
� ; : : :

�
; 8 �; � 2 


(n�1)
Ham (M) ; (6.49)

where va� is the Hamiltonian vector �eld of � associated to !a. Using now that

d� = ��v1�!1 = ��v2�!2 ; 8� 2 

(n�1)
Ham (M) ; (6.50)

we can rewrite equation (6.49) as follows

!1
�
v1�; v

1
� ; : : :

�
= !1

�
v1�; v

2
� ; : : :

�
; 8 �; � 2 


(n�1)
Ham (M) ; (6.51)

The non-degeneracy of !1 together with lemma 6.2.5 �nally implies

v1� = v2� ; 8 � 2 

(n�1)
Ham (M) : (6.52)

Theorem 6.2.7. Let M be a di�erentiable manifold equiped with two multisimplectic structures
!1 and !2, such that at least one of them is locally homogeneous. Then L (M; !2) = L (M; !1) if
and only if !1 = !2.

Proof. If !1 = !2 it is obvious that L (M; !2) = L (M; !1). On the other hand, let us assume that
L (M; !2) = L (M; !1). In particular, the underlying complex and the multilinear brackets constructed
from !1 and !2 must be equal. We can write then

l1(n+1)

�
�1; : : : ; �(n+1)

�
= l2(n+1)

�
�1; : : : ; �(n+1)

�
; 8 �1; : : : ; �(n+1) 2 


(n�1)
Ham (M) ; (6.53)
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and therefore

iv�1^���^v�(n+1)!1 = iv�1^���^v�(n+1)!2 ; 8 v�1 ; : : : ; v�(n+1) 2 XHam (M) ; (6.54)

where we have used lemma 6.2.6 in order to use the same Hamiltonian vector �elds for !1 and !2.
Evaluating now 6.54 point-wise we obtain, using lemma 6.2.5

iv1^���^v(n+1)!1jp = iv1^���^v(n+1)!2jp ; 8 v1jp; : : : ; v(n+1)jp 2 Tp (M) : (6.55)

We conclude hence that !1jp = !2jp for all p 2M and therefore !1 = !2.

From theorem 6.2.7 and propostion 6.2.2 we immediately conclude the �nal result of this section, namely

Theorem 6.2.8. Let (Ma; !a) ; a = 1; 2 ; be locally homogeneous multisymplectic manifolds, let
fL (Ma; !a) ; l

a
kg denote the corresponding L1 algebras and let � :

�
L (M2; !2) ; l

2
k

	
!
�
L (M1; !1) ; l

1
k

	
an strict L1-isomorphism such that

�i = F � : Li (M2; !2)! Li (M1; !1) ; i = 1� n; : : : ; 0 ; (6.56)

where F :M1 !M2 is a di�eomorphism. Then, F is also a multisymplectic di�eomorphism, that
is, F �!2 = !1.

Proof. Direct consequence of proposition (6.2.2) and theorem (6.2.7).

6.3 Product manifolds and Lie n-algebra morphisms

Consider two multisymplectic manifolds (Ma; !a) ; a = 1; 2; where !a is an na-plectic structure de�ned
on Ma. The goal of this section is, roughly speaking, to study the relation between the na-Lie algebra
L (Ma; !a) constructed overMa and the Lie-n algebra L (M; !) constructed over the product manifold,
M = M1 � M2, equipped with the n = (n1 + n2 + 1)-plectic structure ! = pr�1!1 ^ pr�2!2. Here
pra :M!Ma denotes the canonical projection.

Finding such a relation is relevant for at least two reasons. First, it help us to understand how
n-plectic Lie algebras are related to the corresponding multisymplectic manifolds in a deeper way, since
it give us information about how they behave when some operation is performed in the manifold, in this
case the cartesian product. Secondly, it is relevant in order to construct an homotopy moment map6 for
the product manifold, assuming the homotopy moment maps for (M1; !1) and (M2; !2) exist. Indeed,
let Ga be a Lie group with Lie algebra ga. Let (Ma; !a) be a na-plectic manifold equipped with a Ga

action which preserves !a and such that the in�nitesimal ga action is via Hamiltonian �elds. Let us
assume that the corresponding homotopy moment maps exist and are given by fa : ga ! L (Ma; !a). In
that case, if H : L (M1; !1)�L (M2; !2)! L (M; !) is a L1-morphism, then the composition of f1�f2
and H is a very reasonable homotopy moment map candidate for the product manifold G1�G2 	 (M; !).
To obtain H by brute force seems to be a very involved task to perform in general. It will turn out to be
easier to directly construct an L1-morphism F from g1 � g2 to (M1 �M2; !), making use of fa, which
can also be used to make an educated guess for H, as it is illustrated by the following diagram:

6See section 6.1.1.
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L (M1; !1)� L (M2; !2) L (M; !)

g1 � g2

f1 f2

H

F

Since it will be useful in the following, let us remember that the tangent bundle of the product manifold
M can be written as follows7

TM = pr�1TM1 � pr�2TM2 ; (6.57)

and therefore

� (TM) = � (pr�1TM1)� � (pr�2TM2) : (6.58)

In particular, it holds pr�a� (TMa) � � (pr�aTMa) � � (TM). The �rst task is now to check that ! is
indeed an n-plectic structure on M, provided !a is an na-plectic structure on Ma. It is straightforward
to see that ! is closed

d! = pr�1d!1 ^ pr2!2 + (�1)n1pr�1!1 ^ pr�2d!2 = 0 : (6.59)

To see that it is non-degenerate, let us assume that there exists a vector �eld v 2 � (M) such that
iv! = 0. There exist then sections Xa 2 � (pr�aTMa) such that:

v = X1 �X2 ; (6.60)

and therefore:

�v! = �vpr
�
1!1 ^ pr�2!2 + (�1)n1+1pr�1!1 ^ �vpr

�
2!2 ; (6.61)

implies va = 0 and v = 0 since !a is non-degenerate. Let us consider now X�a 2 XHam (Ma) =
�Ham (TMa) and construct the vector �eld

X� = pr�1X�1 + pr�2X�2 : (6.62)

We have then

iX�! = �d [pr�1�1 ^ pr�2! + pr�1!1 ^ pr�2�2] = �d� ; (6.63)

and hence X� is a hamiltonian vector �eld for ! with hamiltonian (n1 + n2)-form �, which is of course
de�ned up to a closed form. Therefore we have

pr�1�Ham (TM1) + pr�2�Ham (TM1) � �Ham (TM) : (6.64)

The following example shows that in general

pr�1�Ham (TM1) + pr�2�Ham (TM1) 6= �Ham (TM) : (6.65)

7See section 2.2.
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Example 6.3.1. LetMa = R2 with coordinates (x1a; x
2
a) equipped with the volume form !a = fa dx

1
a^dx

2
a,

where fa 2 C1
�
R2
�
is a no-where vanishing, non-constant, di�erentiable function. Then

M = R4 ; ! = f1f2 dx
1 ^ � � � ^ dx4 (6.66)

where the coordinates of R4 are denoted by (x1; : : : ; x4). Then

X� = �
1

f1f2

@

@x1
; � = x2dx3 ^ dx4 ; (6.67)

is a Hamiltonian vector �eld which cannot be written as a sum of Hamiltonian vector �elds X�a of
(R2; !a).

We are going to de�ne now two applications h
 and hX as follows

h
 : 
n1�1
Ham (M1)� 
n2�1

Ham (M2) ! 
n1+n2
Ham (M)

�1 � �2 7! pr�1�1 ^ pr�2!2 + pr�1!1 ^ pr�2�2 ; (6.68)

hX : XHam (M1)� XHam (M2) ! XHam (M)

X�1 �X�2 7! pr�1X�1 + pr�2X�2 ; (6.69)

which make the following diagram commutative


n1�1
Ham (M1)� 
n2�1

Ham (M2) 
n1+n2
Ham (M)

XHam (M1)� XHam (M2) XHam (M)

j

h


hX

k

Here j (�1 � �2) = X�1 �X�2 and k(�) = X�. The vector space XHam (M1)�XHam (M2) over the real
numbers R can be endowed with an R-linear Lie bracket

[�; �]0 : XHam (M1)� XHam (M2)� XHam (M1)� XHam (M2)! XHam (M1)� XHam (M2) ; (6.70)

de�ned as

[X�1 �X�2 ; X�1 �X�2 ]0 = [X�1 ; X�1 ]1 � [X�2 ; X�2 ]2 ; (6.71)

where [�; �]a : XHam (Ma) � XHam (Ma) ! XHam (Ma) is the canonical Lie brackets de�ned on X (Ma)
and evaluated on XHam (Ma). It can be easily seen that hX preserves the Lie bracket, that is

hX
�
[X�1 �X�2 ; X�1 �X�2 ]0

�
= [hX(X�1 �X�1); hX(X�2 �X�2)] : (6.72)

Similarly, 
n1�1
Ham (M1)� 
n2�1

Ham (M2) can be endowed with a bracket
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f�; �g0 : 

n1�1
Ham (M1)� 
n2�1

Ham (M2)� 
n1�1
Ham (M1)� 
n2�1

Ham (M2)! 
n1�1
Ham (M1)� 
n2�1

Ham (M2) (6.73)

de�ned as follows

f�1 � �2; �1 � �2g0 = f�1; �1g1 � f�2; �2g2 ; (6.74)

where f�; �ga : 
na�1
Ham (Ma) � 
na�1

Ham (Ma) ! 
na�1
Ham (Ma) is the canonical Hamiltonian bracket de�ned

on 
na�1
Ham (Ma). However, in this case, h
 does not preserve the bracket f�; �g0, namely

h
 (f�1 � �2; �1 � �2g0) = fh
(�1 � �2); h
(�1 � �2)g+ (�1)n1d [pr�1�1 ^ pr�2d�2 � pr�1�1 ^ pr�2d�2] :
(6.75)

As we have previously stated, the goal of this section is to relate the na-Lie algebras L (Ma; !a) con-
structued over (Ma; !a) to the (n1 + n2 + 1)-Lie algebra L (M; !) constructed over (M; !). More
precisely, we want to construct an Lie-n algebra morphism from L (M1; !1) � L (M2; !2) to L (M; !).
To construct such morphism, h
 is going to be extremely relevant. The idea is to use h
 as the very
�rst component of the L1-algebra morphism H. This suggested by the fact that h
 fails to preserve
the bracket f�; �g0 by an exact form, something that is characteristic of the corresponding component
in a L1-morphism. Assuming therefore that H1 = h
, we expect to obtain the form af all the other
components of H by imposing the de�ning and consistency conditions that H has to obey, namely (6.25)
and (6.27). However, this is an extremely involved procedure, so we have been able to check it only in
the simplest case, where (Ma; !a) are both symplectic spaces. In any case, let us stress that we expect
the procedure to hold in full generality.

6.3.1 (Ma; !a) Symplectic manifolds

Since (Ma; !a) is a 1-plectic manifold, we have that (M; !) is a 3-plectic manifold. Consequently, the
cochain complex L of the Lie 3-algebra L (Ma; !a) is given by

L : C1 (M)! 
1 (M)! 
2 (M)! 
3
Ham (M) ; (6.76)

where the coboundary operator is the usual de Rham exterior derivative. On the other hand, the cochain
complex La which underlies the 1-Lie algebra L (Ma; !a) is simply

La : C
1 (Ma) : (6.77)

In this simpler situation, L (M1; !1) � L (M2; !2) is just a regular Lie-algebra, so we can apply pro-
postion 5.2.6 in order to obtain the remaining components of the L1-morphism H from the Lie algebra
L (M1; !1)� L (M2; !2) to the 3-Lie algebra L (M; !). H consists of three maps

Hk : [C
1 (M1)� C

1 (M2)]

k ! L ; k = 1; 2; 3 : (6.78)

Please notice that we are imposing H1 = h
. The two remaining components will be �nd by imposing
the de�ning conditions of a L1 morphism on H, which in proposition 5.2.6 have been adapted and
simpli�ed to the case of a Lie algebra as the domain of the morphism. As expected, the procedure is
consistent and H2 and H3 can be determined, making H into an honest L1-morphism. They are given
by8

8In equation (6.80) we have omitted the pr�a in order to make more readable the expression.
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H2 (f1; f2; g1; g2) =
1

2
(pr�1f1 ^ pr�2dg2 � pr�1df1 ^ pr�2g2 � pr�1g1 ^ pr�2df2 + pr�1dg1 ^ pr�2f2) ; (6.79)

H3 (f1; f2; g1; g2; h1; h2) =
1

2
(f1 fg2; h2g+ f2 fg1; h1g � g1 ff2; h2g � g2 ff1; h1g+ h1 ff2; g2g+ h2 ff1; g1g) ;

(6.80)

for all fa; ga; ha 2 C1 (Ma) ; a = 1; 2. As explained in section 6.1.1, in order for H to be an homotopy
moment map we have to check that

� �vx! = d (f1(x)) ; (6.81)

which holds by equation (6.63). Therefore, we have constructed explicitly a Lie-n algebra morphism
from L (M1; !1) � L (M2; !2) to L (M; !), and we expect the same procedure to hold in the general
case. However, it turns out to be too involved to be carried out explicitly and a di�erent approach is
needed.

6.4 Product homotopy moment maps

Since �nding H explicitly seems to be a too complicated task to be performed by brute force, in this
section we are going to pursue a di�erent goal. We are going to build an L1-morphism from9 ga � gb
to L (M =Ma �Mb; ! = pr�a!a ^ pr�b!b), assuming that there exist homotopy moment maps fC for
GC 	 (MC ; !C) ; C = a; b . Here gC is the Lie algebras of the Lie group GC . The L1-morphism
F will give us an homotopy moment map for the product manifold in terms of homotopy moment
maps of the factors. Besides, F may give us also the opportunity to make an educated guess for H :
L (Ma; !a)� L (Mb; !b)! L (M; !).

Hence, let (MC ; !C) ; C = a ; b ; be a n-plectic manifold and let GC be a Lie group, with Lie
algebra gC , which acts on (MC ; !C) in a Hamiltonian way, with corresponding homotopy moment map
fC : gC ! L1 (MC ; !C). Then G � Ga �Gb acts on the (na + nb + 1)-plectic manifold10

(M �Ma �Mb ; ! � !a ^ !b) :

The main theorem of this section is Theorem 6.4.3, where from the above data we explicitly construct a
homotopy moment map F : ga 
 gb ! L1(M;!).

6.4.1 The construction of F

We �rst recall a few facts from [18] [20]. Let (M;!) be a n-plectic manifold, and G a Lie group acting
on M preserving !. The manifold M and the Lie algebra g give rise to a double complex:

K := (^�1g� 
 
(M); dg; d) ;

where dg is the Chevallier-Eilenberg di�erential of g and d is the de Rham di�erential of M . We consider
the total complex with di�erential:

dtot := dg 
 1 + 1
 d :

9In this section we are going to use a di�erent notation, more suitable for the expressions that we will �nd. a and b are
not indices but labels that denote di�erent objects.

10We will slightly abuse the notation, denoting a di�erential form on MC and its pullback to Ma �Mb, via the canonical
projection, by the same symbol.
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Hence, on an element of ^kg� 
 
(M), dtot acts as dg + (�1)kd.

For any G-invariant � 2 
N (M) de�ne:

�k : ^k g! 
N�k(M); (x1; : : : ; xk) 7! �(v1 ^ � � � ^ vk)� ;

and:

~� :=
NX
k=1

(�1)k�1�k : (6.82)

Since each �k can be viewed as an element of ^kg� 
 
N�k(M), it follows that � can be viewed as an
element of K of total degree N . It turns out that ~! is dtot-closed, as a consequence of the fact that ! is
a closed form. The link to homotopy moment maps is given by [18, Prop. 2.5], which we reproduce for
the reader's convenience:

Proposition 6.4.1. Let ' = '1 + � � �+ 'n, with 'k 2 ^kg� 
 
n�k(M). Then: dtot' = e! iff

fk := &(k)'k : ^
k g! 
n�k(M);

for k = 1; : : : ; n, are the components of a homotopy moment map for the action of G on (M;!).

Now we apply the previous machinery to the manifolds Ma;Mb;Ma � Mb and the data given at the
beginning of this section. For each of these three manifolds we obtain a double complex, which we will
denote by (Ka; d

a
tot), (Kb; d

b
tot) and (K; dtot) respectively.

Lemma 6.4.2. Let 'C 2 KC be of degree nC. If dCtot'
C = f!C for C = a; b, then dtot' = !̃a ^ !b

where:

' =
1

2
(�'af!b + (�1)naf!a'b) + ('a!b + (�1)na+1!a'

b) 2 K :

Proof. First notice that:

!̃a ^ !b = �f!af!b + f!a!b + !af!b : (6.83)

This is a consequence of: c!ac!b = !̂a ^ !b for c!C := !C � f!C .
Now we exhibit dtot-primitives for each of the three summands in eq. (6.83).

dtot('
af!b + (�1)na+1f!a'b) = datot'

af!b + (�1)na'adbtotf!b + (�1)na+1datotf!a'b + f!adbtot'b
= 2f!af!b ;

where in the last equation we used our assumption and dCtotf!C = 0, which holds by [18].

Further
dtot('

a!b) = datot'
a!b + (�1)na'adbtot!b = f!a!b;

where in the last equation to compute dbtot!b = 0 we have to enlarge the double complex Kb to include
^0(gb)

� 
 
(Mb) �= 
(Mb).

Similarly,
dtot((�1)

na+1!a'
b) = !af!b:

Applying Prop. 6.4.1, the dtot-primitive of !̃a ^ !b obtained in Lemma 6.4.2 allows us to construct a
homotopy moment map for the g action on (M;!a ^ !b):
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Theorem 6.4.3. Let GC be a Lie group with Lie algebra gC, where C = a; b. Let (MC ; !C) be
a nC-plectic manifold equipped with a GC action admitting a homotopy moment map fC : gC !
L1 (MC ; !C). Then the action of Ga�Gb on (M;!) := (Ma�Mb; !a^!b) admits a homotopy moment
map with components determined by graded skew-symmetry and the formulae (k = 1; : : : ; n1+n2+1)

Fk : (ga � gb)

k ! L1 (M;!)�

x1a; : : : ; x
m
a ; x

1
b ; : : : ; x

l
b

�
7! cam;l f

a
m

�
x1a; : : : ; x

m
a

�
^ �1;:::;l!b (6.84)

+ cbm;l �1;:::;m!a ^ f
b
l

�
x1b ; : : : ; x

l
b

�
;

where m; l � 0 with m+ l = k, xia 2 ga and xib 2 gb. Here we de�ne fa0 = f b0 = 0 and:

�1;:::;i !C = �
�
vfC1 (x1C)

^ � � � ^ vfC1 (xiC)

�
!C :

The coe�cients are de�ned as follows for all m � 1; l � 1:

cam;l =
1

2
&(m+ l)&(m)(�1)(na+1�m)l ; (6.85)

cbm;l =
1

2
&(m+ l)&(l)(�1)(na+1�m)(l+1) ; (6.86)

and:

cam;0 = 1 ; cb0;l = (�1)(l+1)(na+1) :

Recall that &(k) = �(�1)
k(k+1)

2 .

Remark 6.4.4. The formula for Fk simpli�es once written using the operations [: : : ] introduced in Def.
6.1.10:

Fk(x
1
a; : : : ; x

m
a ; x

1
b ; : : : ; x

l
b) =

dcam;l f
a
m

�
x1a; : : : ; x

m
a

�
^
h
f b1(x

1
b); : : : ; f

b
1(x

l
b)
i

+ dcbm;l

h
fa1 (x

1
a); : : : ; f

a
1 (x

m
a )
i
^ f bl

�
x1b ; : : : ; x

l
b

�
;

where for all m � 1; l � 1:

dcam;l = �
1

2
(�1)(na+1)l ; (6.87)

dcbm;l = �
1

2
(�1)(na+1)(l+1)+m ; (6.88)

and:

dcam;0 = �1 ; dcb0;l = �(�1)(l+1)(na+1) :

This is a straightforward consequence of &(m)&(l)&(m+ l) = �(�1)ml for all integers m; l � 0.
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Proof. Prop. 6.4.1 and Lemma 6.4.2 deliver a homotopy moment map F : ga � gb ! L1(Ma �Mb; !)
whose components Fk, for k = 1; : : : ; na + nb + 1; are given by:

Fk = &(k)'k ;

where:

' =
1

2
(�'af!b + (�1)naf!a'b) + ('a!b + (�1)na+1!a'

b) : (6.89)

Let us point out that:

'k 2 �k (g�a � g�b)
 
(na+nb+1�k) (Ma �Mb) :

In order to prove the theorem we just have to write Fk using equation (6.89) and fak = &(k)'ak, f
b
k =

&(k)'bk. We do so evaluating the components of F on elements of ga and of gb.

We have:

Fm(x
1
a; : : : ; x

m
a ) = &(m)'m(x

1
a; : : : ; x

m
a ) = &(m)'am(x

1
a; : : : ; x

m
a ) ^ !b

= fam(x
a
1; : : : ; x

a
m) ^ !b ;

using that 'am = &(m)fam in the last equality. In the second equality we used eq. (6.89) (notice that on
the r.h.s. of eq. (6.89), only the summand 'a!b gives a contribution). We conclude that:

cam;0 = 1 ; m � 1 :

Let us take now:

Fl(x
1
b ; : : : ; x

l
b) = &(l)'l(x

1
b ; : : : ; x

l
b) = &(l)(�1)na+1(!a'

b
l )(x

1
b ; : : : ; x

l
b)

= (�1)na+1(!af
b
l )(x

1
b ; : : : ; x

l
b)

= (�1)(na+1)(l+1)!a ^ f
b
l (x

1
b ; : : : ; x

l
b) :

The last equality holds since11, if we pick a basis f�big of g
�
b and write f bl as a sum of terms of the form

�bi1 ^ � � � ^ �
b
il

 � 2 �l (g�b)
 
(nb�l) (Mb), then:

(1
 !a)(�
b
i1 ^ � � � ^ �

b
il

 �) = (�1)(na+1)l�bi1 ^ � � � ^ �

b
il

 (!a ^ �) :

We obtain:

cb0;l = (�1)(na+1)(l+1) ; l � 1 :

For m; l � 1 consider:

Fm+l(x
1
a; : : : ; x

m
a ; x

1
b ; : : : ; x

l
b)

=&(m+ l)'m+l(x
1
a; : : : ; x

m
a ; x

1
b ; : : : ; x

l
b)

=&(m+ l)
1

2

�
�'am(f!b)l + (�1)na(f!a)m'bl� (x1a; : : : ; xma ; x1b ; : : : ; xlb)

=&(m+ l)
1

2

�
�&(m)(�1)l�1fam!b

l + (�1)na(�1)m�1&(l)!a
mf bl

�
(x1a; : : : ; x

m
a ; x

1
b ; : : : ; x

l
b) ;

11We are slightly abusing the notation by denoting the product of two elements in the double-complexes KC or K and
the wedge product of forms simply by juxtaposition.
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where in the last equality we used eq. (6.82). We have:

�'amf!bl = (fam!b
l)(x1a; : : : ; x

m
a ; x

1
b ; : : : ; x

l
b) = (�1)(na�m)lfam(x

1
a; : : : ; x

m
a ) ^ !b

l(x1b ; : : : ; x
l
b) ;

using fam 2 �g�a 
 
na�m (Ma) and !bl 2 �lg�b 
 
 (Mb). Therefore:

cam;l =
1

2
&(l+m)&(m)(�1)(na+1�m)l :

Similarly,

�'amf!bl = (!a
mf bl )(x

1
a; : : : ; x

m
a ; x

1
b ; : : : ; x

l
b) = (�1)(na+1�m)l!a

m(x1a; : : : ; x
m
a ) ^ f

b
l (x

1
b ; : : : ; x

l
b) ;

using !am 2 �g�a 
 
na+1�m (Ma) and f bl 2 �lg�b 
 
 (Mb). Hence:

cbm;l =
1

2
&(l+m)&(l)(�1)(na+1�m)(l+1) :

Example 6.4.5. We spell out the homotopy moment map constructed in theorem 6.4.3 in the case that
Ma and Mb are symplectic manifolds, i.e. na = nb = 1. In that case fa : ga ! C1(Ma) is an ordinary
comoment map, just like f b, and (M;!) is a 3-plectic manifold. One obtains:

F1(xa � xb) = fa(xa) � !b + !a � f
b(xb)

F2(xa � xb; ya � yb) =
1

2

�
�fa(xa) � �v

fb(yb)
!b + �vfa(xa)!a � f

b(yb)
�
� (x$ y)

F3(xa � xb; ya � yb; za � zb) = �
1

2

�
fa(xa) � �v

fb(yb)
^v

fb(zb)
!b + �vfa(xa)^vfa(ya)!a � f

b(zb)
�
+ c:p:

where xC ; yC ; zC 2 gC for C = a; b and �c.p.� denotes cyclic permutations of x; y; z.

6.4.2 Non-associativity of the construction

The construction of homotopy moment maps for product manifolds given in theorem 6.4.3 is not asso-
ciative.

More precisely: for C = a; b; c let GC be a Lie group with Lie algebra gC , acting on a nC-plectic
manifold (MC ; !C) with homotopy moment map fC : gC ! L1 (MC ; !C). Denote by fa � f b the
homotopy moment map for the action of Ga �Gb on (Ma �Mb; !a ^ !b) constructed in theorem 6.4.3.
Then

(fa � f b) � f c 6= fa � (f b � f c) ; (6.90)

as one can see from a straightforward computation using the fact that cam;l = �1
2 for m � 1; l � 1.

Indeed, the construction of the dtot-primitives done in lemma 6.4.2 is also not associative: denote
by 'C the elements of KC corresponding to the homotopy moment maps fC (via proposition 6.4.1). If
we denote by 'a � 'b the dtot-primitive of !̃a ^ !b constructed in Lemma 6.4.2, then ('a � 'b) � 'c and

'a � ('b � 'c) are di�erent12 primitives for ˜((!a ^ !b) ^ !c) = ˜(!a ^ (!b ^ !c)). The di�erence between
these two primitives is:

12One could hope that rede�ning 'a � 'b by adding a real multiple of dtot('
a'b) to it might remove this issue, but this

is not the case.
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1

4
(�'af!bf!c + f!af!b'c) = dtot

�
�
1

4
'af!b'c� :

Hence the two homotopy moment maps appearing in eq. (6.90) are inner equivalent in the sense of [18,
Remark 7.10]. This notion of inner equivalence is the one that arises naturally considering the complex
^�1(ga � gb � gc)

� 

(Ma �Mb �Mc), and can be characterized as equivalence of L1-morphisms (see
[18, Prop. A2]).

Under quite restrictive conditions, there is another way to construct homotopy moment maps for
product manifolds, which does have the property of being associative in the sense above.

Remark 6.4.6. Given an action of Ga on the na-plectic manifold (Ma; !a), the theorem [18, Theorem
6.8] provides a map:

�Ma : fClosed extensions of !a in CGa(Ma)g ! fHomotopy moment maps for (Ma; !a)g;

where CGa(Ma) = (Sg�a

(Ma))
Ga is the Cartan model for the equivariant cohomology of the Ga action

on Ma (it is a di�erential graded algebra).

This map is not surjective in general [18]. It is also not injective in general: by the formulae in [18,
Thm. 6.8] it is clear that, if ga is a abelian Lie algebra, then the component lying in (S2g�a



na�3(Ma))
Ga

of a closed extension  a can not be recovered from the homotopy moment map �Ma( 
a).

However, in the cases in which �Ma and �Mb
are injective13, one can carry out the following

construction:

if homotopy moment maps fC for (MC ; !C) arising from closed extensions in the Cartan model
(C = a; b) are given, then

�Ma�Mb
( a �  b) (6.91)

is a homotopy moment map for (Ma �Mb; !a ^ !b), where  C is determined by �MC
( C) = fC , and

the dot denotes the product in the Cartan model CGa�Gb
(Ma�Mb). This prescription has the property

of being associative, in the sense above, for the simple reason that the algebra structure in the Cartan
model is associative.

In the special case of symplectic manifolds (Ma; !a) and (Mb; !b), the injectivity assumption is
satis�ed. The above prescription (6.91) delivers a homotopy moment map H for (Ma �Mb; !a ^ !b),
which as expected is di�erent from the one F obtained in Ex. 6.4.5: we have H1 = F1, H2 = F2, but

H3(xa � xb; ya � yb; za � zb) =
2

3
F3(xa � xb; ya � yb; za � zb)

�
1

6

�
fa(xa)f

b([yb; zb]) + fa([ya; za])f
b(xb) + c:p:

�
where xC ; yC ; zC 2 gC for C = a; b.

6.5 Application: homotopy moment maps for iterated powers (M;!m)

In Section 6.4 we have shown how to build a homotopy moment map for the product manifold of two
multisymplectic manifolds, assuming that a homotopy moment map for the individual manifolds exist.
Here we apply this construction to some speci�c examples of geometrical interest: powers of closed forms
and Hyperkähler manifolds.

13The same prescription does not seem to work without the injectivity assumption, for in that case it seems to depend
on the choice of  a and  b. In view of the formulae in [18, Thm. 6.8], the technical reason behind this is the following: if
P a
2 2 S

2g�a is a quadratic polynomial on the Lie algebra ga, then the total skew-symmetrization of P a
2 ([�; �]; [�; �]) : g


4
a ! R

does not seem to be determined by the total skew-symmetrization of P a
2 (�; [�; �]) : g


3
a ! R.
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6.5.1 Restrictions

Let G be a Lie group with Lie algebra g, acting on a n-plectic manifold (M;!) with homotopy moment
map f : g ! L1(M;!). One obtains new actions, either restricting to a Lie subgroup of G or to an
invariant submanifold of (M;!). We display homotopy moment maps for both cases.

Lemma 6.5.1. Let H � G be a Lie subgroup, and denote by j : h ,! g the inclusion of its Lie
algebra. The restricted action of H on (M;!) has homotopy moment map f � j : h! L1(M;!).

Proof. The Lie algebra morphism j is in particular an L1-morphism, so f � j also is. Since eq. (6.24)
holds for all x 2 g, in particular it holds for all x 2 h.

Lemma 6.5.2. Let N
i
,! M a G-invariant submanifold of M . Then the action G 	 (N; i�!) is

Hamiltonian with homotopy moment map i� � f : g! L1 (N; i�!).

Proof. According to de�nition 6.1.12, we have to show that

fN := i� � f : g! L1 (N; i�!)

is an L1-morphism such that

� �(vx)N i
�! = dfN1 (x) ; 8 x 2 g; (6.92)

where (vx)N , which is a generator of the action on N , denotes the restriction of the vector �eld vx to N .

Eq. (6.92) follows simply by applying the pullback i� to Eq. (6.24). To show that fN is an
L1-morphism, let us introduce the following L1-subalgebra of L1 (M;!):

LN (M;!) = C1 (M)� 
1 (M)� � � � � e
n�1
Ham (M) ;

where:

e
n�1
Ham (M) =

n
� 2 
n�1

Ham (M) : 9 a Hamiltonian vector �eld of � tangent to N
o
:

Since L1 (M;!) and LN (M;!) are equal in every component except for the degree zero component, in
order to see that LN (M;!) is really a L1-subalgebra of L1 (M;!), we only have to check that the binary
bracket l2 of L1 (M;!) restricts to e
n�1

Ham (M). This is indeed the case since given any two Hamiltonian
forms � and � and respective Hamiltonian vector �elds v�; v� , a Hamiltonian vector �eld for l2(�; �) is
given by the Lie bracket [v�; v� ], which of course is tangent to N whenever both v� and v� are.

Notice that the homotopy moment map f : g! L1 (M;!) takes values in LN1 (M;!), that is,

fk(x) 2 L
N (M;!) ; 8 x 2 g
k k � 1 : (6.93)

To prove this, since L1 (M;!) and LN (M;!) are equal in every component but the zero one, we have
to check equation (6.93) only in the k = 1 case, that is, we have to prove that

f1(x) 2 e
n�1
Ham (M) ; 8 x 2 g :

It holds since a Hamiltonian vector �eld of f1(x) is the generator of the action vx, which is tangent to
N by assumption.

Next, notice that the pullback of forms

i� : LN1 (M;!)! L1 (N; i�!)
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is14 a (strict) L1-morphism, as a consequence of the facts that i� commutes with the de Rham di�erential
and due to the de�nition of e
n�1

Ham (M). We conclude that i� �f : g! L1 (N; i�!) is a homotopy moment
map.

6.5.2 Actions on (M;! ^ !)

Let us consider two multisymplectic manifolds (MC ; !C) ; C = a; b. We assume that there is a Hamil-
tonian action of a Lie group GC 	 MC with corresponding homotopy moment map fC : gC !
L1 (MC ; !C). By theorem 6.4.3 we know that there is also a Hamiltonian action:

Ga �Gb 	 (Ma �Mb; !a ^ !b) ; (6.94)

with homotopy moment map F given by theorem 6.4.3.

Assume now that Ga = Gb =: G, whose Lie algebra we denote by g. One can restrict the action
(6.94) to the diagonal �G = f(g; g) : g 2 Gg of G�G:

�G 	 (Ma �Mb; !a ^ !b) : (6.95)

By Lemma 6.5.1, a homotopy moment map for this action is:

F � j : �g! L1 (Ma �Mb; !a ^ !b) ;

where
j : �g = f(x; x) : x 2 gg ! g� g (6.96)

is the inclusion. By the isomorphism G ' �G; g 7! (g; g) we can view eq. (6.95) as an action of the Lie
group G, and j as a map g ' �g! g� g.

Now we specialize even further, taking Ma =Mb =:M , !a = !b =: ! and fa = f b.

The diagonal �M of M �M is invariant under the action of �G. Therefore, using the inclusion

i : �M ,!M �M (6.97)

and the identi�cation M ' �M we obtain by restriction an action of G on M :

G ' �G 	 (�M; i� (! ^ !)) ' (M;! ^ !) :

Of course, this is interesting only when ! has even degree, for otherwise ! ^ ! = 0. Lemma 6.5.2 states
that this action is Hamiltonian with homotopy moment map given by

i�F � j : g! L1 (M;! ^ !) ;

where F is as in theorem 6.4.3.

Remark 6.5.3. If an action G 	 (M;!) is Hamiltonian, then the action G 	 (M;!m) ; m 2 N ; is also
Hamiltonian. This follows from a slight variation of the above reasoning, allowing !a and !b to be
di�erent.

Remark 6.5.4. The above reasoning also leads to the following more general statement. Consider again,
for C = a; b, actions GC 	MC with corresponding homotopy moment maps fC . Assume now that there
is a manifold B and GC-equivariant submersions �C : MC ! B. Then the diagonal action of G on the

14However the map L1 (M;!)! L1 (N; i�!) given by pullback of forms is not an L1-morphism. This is the reason we
need to introduce LN1 (M;!).
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�ber product Ma �B Mb = (�a � �b)
�1(�B), endowed with the pullback by the inclusion of !a ^ !b,

admits a homotopy moment map.

The special case Ma =Mb = B with �a = �b = Id delivers (M;!^!). Another interesting special
case arises when �C : MC ! B are principal GC-bundles (in that case the action on B is trivial).

Making more explicit the formula for i�F � j, we obtain:

Proposition 6.5.5. Let G be a Lie group with Lie algebra g, and �x an action of G on an n-plectic
manifold (M;!) with homotopy moment map f : g! L1(M;!), where n is odd. Then the G action
on (M;! ^ !) has a homotopy moment map, with components (k = 1; : : : ; 2n+ 1)

g
k ! L1 (M;! ^ !)

x1 
 � � � 
 xk 7! 2
kX

m=1

X
�2Shm;k�m

(�1)�cam;k�mfm
�
x�(1); : : : ; x�(m)

�
^ ��(m+1);:::;�(k)!: (6.98)

Remark 6.5.6. The above double sum consist of 2k � 1 summands.

Proof. Fix k � 1 and x1 ^ � � � ^ xk 2 ^kg. Notice that:

j(x1) ^ � � � ^ j(xk) 2 ^k(g� g)

is the sum of 2k monomials in a natural way. For instance, introducing the notation j(x) = xa� xb, one
has j(x1) ^ j(x2) = x1a ^ x

2
a + x1a ^ x

2
b + x1b ^ x

2
a + x1b ^ x

2
b . Let X denote one of these monomials, let m

be the number of elements in X decorated by the index �a�, and l := k �m.

If m = 0 or l = 0, it is clear by Thm. 6.4.3 that (i�(Fk))(X) = F (X) ^ !.

Hence we consider only the case that m; l 6= 0. X can be written as

(�1)�x
�(1)
a ^ � � � ^ x

�(m)
a ^ x

�(m+1)
b ^ � � � ^ x

�(k)
b

for a unique � 2 Shm;l. By theorem 6.4.3 we have:

Fk(X) = (�1)�
h
cam;l fm

�
x
�(1)
a ; : : : ; x

�(m)
a

�
^ ��(m+1);:::;�(k)! (6.99)

+ cbm;l ��(1);:::;�(m)! ^ fl
�
x
�(m+1)
b ; : : : ; x

�(k)
b

� i
:

Denote by Y the monomial obtained from X interchanging each index �a� with the index �b�. Notice
that Y can be written as

(�1)�x
�(1)
a ^ � � � ^ x

�(l)
a ^ x

�(l+1)
b ^ � � � ^ x

�(k)
b

for a unique � 2 Sh(l;m). One can check that the �rst summand of Fk(X) in eq. (6.99) agrees exactly
with the second summand of Fk(Y ). Hence:

(i�(Fk))(X + Y ) = 2
h
(�1)�cam;l fm

�
x�(1); : : : ; x�(m)

�
^ ��(m+1);:::;�(k)!

+ (�1)� cal;m fm
�
x�(1); : : : ; x�(l)

�
^ ��(l+1);:::;�(k)!

i
:

Pairing two by two as above all the summands of m(x1) ^ � � � ^m(xk) and summing up, we see that
(i�(Fk) � j)(x

1 ^ � � � ^ xk) equals the expression given in the statement of this proposition.

Not all the homotopy moment maps for (M;! ^!) arise from homotopy moment maps for (M;!)
as in Prop. 6.5.5, as the following example shows.



6.5. APPLICATION: HOMOTOPY MOMENT MAPS FOR ITERATED POWERS (M;!M ) 83

Example 6.5.7. Consider the symplectic manifold M := S1 � S1 � S1 �R with canonical �coordinates�
�1; �2; �3; x4, and symplectic form ! = d�1^d�2+d�3^dx4. The action of the circle onM with generator
@
@�1

is by symplectomorphisms, but does not admit a moment map since d�2 is not exact.

On the other hand ! ^ ! = 2d�1 ^ d�2 ^ d�3 ^ dx4 is exact with invariant primitive (for instance,
as primitive take �2x4d�1 ^ d�2 ^ d�3). Therefore by [18] there is a homotopy moment maps for ! ^ !,
constructed canonically using this primitive.

6.5.3 Hyperkähler manifolds

The results in this subsection are closely related to Martin Callies' results in [77].

De�nition 6.5.8. A Hyperkähler manifold is a Riemannian manifold (M; g) equipped with three
complex structures Ji : TM ! TM ; i = 1; 2; 3 ; which satisfy the quaternionic relations J2i = J1J2J3 =
�1 and are covariantly constant with respect to the Levi-Civita connection r associated to g, that is,
rJi = 0 ; i = 1; 2; 3 : We say then that (g; J1; J2; J3) is a Hyperkähler structure on M .

As a consequence of the de�nition of Hyperkähler manifold, M is also equipped with three symplectic
two-forms !i ; i = 1; 2; 3 ; as follows

!i (u; v) = g (Jiu; v) ; u; v 2 X(M) ; i = 1; 2; 3 :

Remark 6.5.9. Notice that !i is non-degenerate as a consequence of g and J being non-degenerate and
it is closed as a consequence of Ji being covariantly constant. In fact, we have r!i = 0 for i = 1; 2; 3.

If ai 2 R ; i = 1; 2; 3 ; with
P3

i=1 a
2
i = 1, then

P3
i=1 aiJi is a complex structure un M , and g is Kähler

respect to it, with Kähler form
P3

i=1 ai!i. Hence, a Hyperkähler manifold M is equipped with a sphere
of complex structures and Kähler forms.

A Hyperkähler manifold can be also characterized as a 4k-dimensional (real) Riemannian manifold
with Riemannian holonomy contained in Sp(k), where k � 1. Since Sp(k) � SU(2k), every Hyperkähler
manifold is Calabi-Yau and Ricci-�at. Notice that the natural representation of Sp(k) on R4k preserves
three complex structures Ji ; i = 1; 2; 3 ; that satisfy the quaternionic relations J2i = J1J2J3 = �1.

It turns out that


 :=
3X
i=1

!i ^ !i

is a 3-plectic form.

The following Lemma follows immediately from de�nition 6.1.12 using equations (6.25) and (6.27)
(or alternatively from proposition 6.4.1).

Lemma 6.5.10. Suppose we are given an action of a Lie group H on a manifold N preserving
n-plectic forms 
1 and 
2, with homotopy moment maps F 1 and F 2 respectively. Then the action
of H on (N;
1 +
2) has homotopy moment map F 1 + F 2.

Proposition 6.5.11. Let G be a Lie group acting on the Hyperkähler manifold M . Assume that
(M;!i) admits an equivariant moment map f i, for i = 1; 2; 3. Then the G action on the 3-plectic
manifold (M;
) admits a homotopy moment map, constructed canonically out of f1; f2; f3.

Proof. Since f i is a moment map for !i, Prop. 6.5.5 provides a homotopy moment map F i for !i ^ !i,
for i = 1; 2; 3. A homotopy moment map for 
 is then given by F 1 + F 2 + F 3, by Lemma 6.5.10.

Not all homotopy moment maps for 
 arise from moment maps for the !i, as the following variation
of Ex. 6.5.7 shows.
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Example 6.5.12. Consider the Hyperkähler manifold R4 with the canonical metric and the complex
structures J1; J2; J3 given by quaternionic multiplication by i; j; k 2 H = R4. Dividing by the lattice
Z3 � f0g we obtain a Hyperkähler structure on M := S1 � S1 � S1 �R (the product of the 3-torus with
the real line), on which we have induced �coordinates� �1; �2; �3; x4. The symplectic structures on M
associated to the distinguished complex structures are:

!1 = d�1 ^ d�2 + d�3 ^ dx4; !2 = d�1 ^ d�3 � d�2 ^ dx4; !3 = d�1 ^ dx4 + d�2 ^ d�3:

The action of the circle on M with generator @
@�1

preserves each !i, however !1 and !2 have no moment
map for this action. On the other hand, it is easily computed that 
 :=

P3
i=1 !i ^ !i = 6d�1 ^ d�2 ^

d�3 ^ dx4, and 
 admits a homotopy moment map as we explained in Ex. 6.5.7.

6.6 Embeddings of L1-algebras associated to closed di�erential forms

Let (MC ; !C) be a nC-plectic manifold, C = a ; b. We consider the na + nb + 1-plectic manifold

(M �Ma �Mb; ! � !a ^ !b) :

Being (MC ; !C) a nC-plectic manifold, it is equipped with a Lie nC- algebra L1(MC ; !C), constructed
exclusively out of !C and the de Rahm di�erential d. The purpose of this section is to �nd an L1-
morphism

H : L1(Ma; !a)� L1(Mb; !b) L1(Ma �Mb; !a ^ !b) (6.100)

whose �rst component is an embedding. We will exhibit such a morphism in Thm. 6.6.2.

Remark 6.6.1. As in the previous section, we will slightly abuse notation, denoting a di�erential form
on MC and its pullback to Ma �Mb, via the canonical projection, by the same symbol. Similarly, given
a vector �eld on MC , we denote by the same symbol its horizontal lift to the product manifold Ma�Mb.

Further, we denote by la and lb the multi-brackets of L1(Ma; !a) and L1(Mb; !b) respectively,
and by l the multi-brackets of L1(M;!).

6.6.1 The construction of H and its properties

The source of H is L1(Ma; !a) � L1(Mb; !b), which, being a direct sum of L1-algebras,is itself an
L1-algebra. We spell this out, assuming nb � na. The underlying complex is

C1(Mb)! � � � ! C1(Ma)� 
nb�na(Mb)! � � � ! 
na�1(Ma)� 
nb�1(Mb):

Its multibrackets labk (for k � 1) are de�ned by

labk (�1 � �1; : : : ; �k � �k) = lak (�1; : : : ; �k)� l
b
k (�1; : : : ; �k)

where �1 � �1; : : : ; �k � �k 2 L1(Ma; !a) � L1(Mb; !b). Notice that L1(Ma; !a) � L1(Mb; !b) is a
Lie N -algebra, where N :=Maxfna; nbg, while L1(M;!) - the target of H - is a Lie (na+nb+1)-algebra.

We now argue that there is a natural candidate for the �rst component of an L1-morphism as in
(6.100).

Given � 2 
na�1
Ham (M)Ma and � 2 
nb�1

Ham (M)Mb, take Hamiltonian vector �elds X� and X� for
them, and consider X� +X� on Ma �Mb. It is again a Hamiltonian vector �eld, since

�(X�+X�)! = �d [� ^ !b + !a ^ �] :
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Hence there is a well-de�ned map

h : 
na�1
Ham (Ma)� 
nb�1

Ham (Mb) ! 
na+nb
Ham (M)

�� � 7! � ^ !b + !a ^ � : (6.101)

Endow 
na�1
Ham (Ma) � 
nb�1

Ham (Mb) with the bracket lab2 , i.e., the sum of the binary brackets la2 and lb2 on
the two factors. Denoting all binary brackets by f�; �g to ease the notation, we have

h
�n
�1 � �1; �2 � �2

o�
=
n
h(�1 � �1) ; h(�2 � �2)

o
+ (�1)nad [�1 ^ d�2 � �2 ^ d�1] :

That is, h does not preserve the binary brackets on the nose, but just up to an exact term. This a
characteristic feature of the �rst component of an L1-morphism. Indeed, in Thm. 6.6.2 we extend
h to an L1-morphism from L1(Ma; !a) � L1(Mb; !b) to L1(M;!). The concrete expression of the
L1-morphism is motivated by the results of Section 6.4 and in particular by Theorem 6.4.3.

We will use the square brackets introduced in Def. 6.1.10, for C = a; b. Recall that [: : : ]Ck is de�ned
for all k � 0, and that it vanishes unless all entries have degree zero (i.e., are Hamiltonian forms). Recall
also that [ 1]C0 = �!C and that for k � 1, by Remark 6.1.9,

[�1; : : : ; �k]
C
k = f�1; : : : ; �kgC � �k;1dC�1 ; C = a; b ;

where f�1; : : : ; �kgC is the k-bracket of L1(MC ; !C) and dC is the de Rahm di�erential on MC .

Theorem 6.6.2. Let (MC ; !C) be nC-plectic manifolds. There is an L1-morphism:

H : L1(Ma; !a)� L1(Mb; !b) L1(Ma �Mb; !a ^ !b)

whose �rst component is injective. The components of H will be denoted by Hl (l � 1). They are
determined by graded skew-symmetry and the requirement that:

Hk+m(�1; : : : ; �k; �1; : : : ; �m) = tam;j�1j
�k;1�1 ^ [�1; : : : ; �m]

b
m (6.102)

+ tbk;j�1j�m;1[�1; : : : ; �k]
a
k ^ �1 ; (6.103)

where k+m � 1, �1; : : : ; �k 2 L1(Ma; !a), �1; : : : ; �m 2 L1(Mb; !b), [ 1 ]
C
0 = �!C and the coe�cients

are, for all i � 0:

tam;i = �
1

2
(�1)m(na+1+i) ; m � 1 (6.104)

tbk;i = �
1

2
(�1)i(na+1)+k ; k � 1

and:
ta0;i = �1; tb0;i = � (�1)i(na+1) :

Above, � denotes the Kronecker delta, and j�1j refers to the degree15 of �1 as an element of
L1(Ma; !a).

15This di�ers by na � 1 from the degree of �1 as a di�erential form.
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Remark 6.6.3. Notice that H, applied to a family of elements lying in (L1(Ma; !a) � f0g) [ (f0g �
L1(Mb; !b)), vanishes unless: either exactly one element is of the form ��0 and the remaining elements
have degree zero, or exactly one element is of the form 0 � � and the remaining elements have degree
zero.

Remark 6.6.4. The �rst component H1 is clearly injective for it is given by

H1(�) = � ^ !b and H1(�) = (�1)j�j(na+1) !a ^ �;

where � 2 L1(Ma; !a) and � 2 L1(Mb; !b).

The restriction of H1 to L1(Ma; !a) � f0g is a strict morphism. This can be seen using Remark
6.6.3, since the higher components of H vanish if all entries lie in L1(Ma; !a)�f0g, or alternatively it can
be seen directly using Lemma 6.6.7 below. The same holds for the restriction of H to f0g�L1(Mb; !b).

Remark 6.6.5. Recall that the composition  �� of two L1-morphisms is given by ( ��)k =
Pk

l=1

P
k1+���+kl=k� l�

(�k1
� � �
�kl). Possibly up to signs, the L1-morphism H given Thm. 6.6.2 has the following property:
for any action of a Lie group GC on (MC ; !C) with homotopy moment map fC (C = a; b), one has

F = H � (fa � f b);

where F is the homotopy moment map constructed in Thm. 6.4.3 out of fa and f b. In other words, the
diagram (6.3) commutes.

Example 6.6.6. Let na = nb = 1. That is, (Ma; !a) and (Mb; !b) are symplectic manifolds, and so (M;!)
is a 3-plectic manifold. Consequently, the cochain complex L underlying the Lie 3-algebra L1 (M;!) is

C1 (M)! 
1 (M)! 
2 (M)! 
3
Ham (M) :

On the other hand, L1 (Ma; !a)�L1 (Mb; !b) = C1 (Ma)�C
1 (Mb) is just a Lie-algebra. The higher

components of the L1-embedding of theorem 6.6.2 read

H2 (fa � fb; ga � gb) =
1

2
(fa ^ dgb � dfa ^ gb � ga ^ dfb + dga ^ fb) ;

H3 (fa � fb; ga � gb; ha � hb) =
1

2
(fa fgb; hbg2 + fb fga; hag2 � ga ffb; hbg2 (6.105)

�gb ffa; hag2 + ha ffb; gbg2 + hb ffa; gag2) ; (6.106)

for all fC ; gC ; hC 2 C1 (MC) ; C = a; b : Notice that since L1 (Ma; !a) � L1 (Mb; !b) is a Lie algebra,
we can use formulae (6.25) and (6.27) to double-check that H is indeed an L1-morphism.

6.6.2 The proof

We now turn to the proof of Thm. 6.6.2. We will use repeatedly the following Lemma.

Lemma 6.6.7. For all �1; : : : ; �k 2 L1(Ma; !a) and �1; : : : ; �m 2 L1(Mb; !b), where k;m � 0 and
k +m � 1, we have

[�1!b; : : : ; �k!b; !a�1; : : : ; !a�m]k+m = �(�1)m(na+1)[�1; : : : ; �k]k ^ [�1; : : : ; �m]m :

Proof. We may assume that all the � and � have degree zero, for otherwise the equation is trivially
satis�ed. It is straightforward to verify that the Hamiltonian vector �eld of �!b (w.r.t !a ^ !b) equals
the Hamiltonian vector �eld X� of � (w.r.t !a), and the exactly analogous statement holds for !a�. The
statement of the lemma follows from

�(X�1 ^X�2 ^ � � � ^X�m)(!a ^ !b) = (�1)m(na+1�k)�(X�1 ^ � � � ^X�k)!a ^ �(X�1 ^ � � � ^X�m)!b

together with the identity &(k)&(m)&(k +m) = �(�1)km.
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According to the conditions that an L1-morphism has to obey (see for instance [20, Def. 2.4]),
we have to check that the following relation holds for all N 2 N>0 and for all ~x = (x1; : : : ; xN ) 2
(L1 (Ma; !a)� L1 (Mb; !b))


N :X
i+j=N+1

(�1)i(j�1)
X

�2Shi;j�1

(�1)��(�; ~x)Hj

�
labi

�
x�(1); : : : ; x�(i)

�
; x�(i+1); : : : ; x�(N)

�
(6.107)

=
NX
`=1

X
N1+���+N`=N
N1�����N`

(�1)(`;
~N)

X
�2Sh<N1;:::;N`

(�1)��(�; ~x)�
�
�; ~H

�

l`
�
HN1(x�(1); : : : ; x�(N1)); : : : ; HN`

(x�(N�N`+1); : : : ; x�(N))
�
:

Here

� (`; ~N) � `(`�1)
2 +N1(`� 1) +N2(`� 2) + � � �+N`�1.

� Sh<N1;:::;N`
� ShN1;:::;N`

is the set of (N1; : : : ; N`)-unshu�es such that

�(N1 + � � �+Ni�1 + 1) < �(N1 + � � �+Ni�1 +Ni + 1) whenever Ni = Ni+1:

� ~H =
�
HN1 ; : : : ; HN`

; x�(1); : : : ; x�(N)

�
and � is the permutation of f1; : : : ; `+Ng sending ~H to�

HN1 ; x�(1); : : : ; x�(N1); : : : ; HN`
; x�(N�N`+1); : : : ; x�(N)

�
:

As usual, (�1)� denotes the sign of the permutation � and �(�; ~x) denotes the Koszul sign.

Remark 6.6.8. Notice that on the l.h.s. of eq. (6.107), the sign of the summand corresponding to
i = N; j = 1 is +1 (since the only permutation appearing is the identity).

On the r.h.s., the sign of the summand corresponding to l = N is +1. Indeed N1 = � � � = Nl = 1, so
that (`; ~N) = +1, � = id, and allHNi

have degree zero. Further, the sign of the summand corresponding
to ` = 1 is also +1, since (1; ~N) = +1, � = id and � = id.

Proof of Thm. 6.6.2. Let C = a; b. We �rst check that Hj has degree 1� j. For j = 1 this is clear. For
j = k+m � 2, we use that [: : : ]Cm, as an operation on L1(MC ; !C), has degree 2�m. Hence, for instance,
if the elements �1; �1; : : : ; �m all have degree zero, then H1+m(�1; �1; : : : ; �m) = �1

2�1[�1; : : : ; �m]
b
m is

the product of a na � 1 and (nb � 1) + (2�m) form, that is, a na + nb �m form, which therefore is an
element of L1(Ma �Mb; !a ^ !b) of degree �m = 1� (1 +m) = 1� j :

The rest of the proof is devoted to checking that H is an L1-morphism. Our strategy is as follows.
We propose an educated ansatz for H depending on some arbitrary parameters and then we will impose
on it the L1-morphism conditions (6.107). Equations (6.107) will turn out to be an over-determined
system of equations for the parameters of the ansatz, and we will show that a solution is given by eq.
(6.104).

The ansatz is the following: for the �rst component of H,

H1(�) = sa0;j�j� ^ (�!b); H1(�) = sb0;j�j(�!a) ^ � :

For the higher components of H, i.e. for k +m � 2, Hk+m(�1; : : : ; �k; �1; : : : ; �m) equals:

sam;j�1j

2
�k;1�1 ^ [�1; : : : ; �m]

b
m +

sbk;j�1j
2

�m;1[�1; : : : ; �k]
a
k ^ �1 ; (6.108)

where �1; : : : ; �k 2 L1(Ma; !a) and �1; : : : ; �m 2 L1(Mb; !b) are homogeneous elements of their respec-
tive graded spaces. Here sam;j�1j

depends on the number of �'s and the degree of �1. It cannot depend on
the number of �'s since if there is more than one the corresponding term in (6.108) is zero, and it cannot
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depend on the degree of the �'s since if j�1 
 � � � 
 �mj < 0 then the corresponding term in (6.108) is
again zero. A similar discussion applies to sbk;j�1j.

We now apply condition (6.107) to our ansatz for H and elements �1; : : : ; �k; �1; : : : ; �m. We are
going to consider six di�erent cases depending on k and m, namely fk � 1;m = 0g, fk = 0;m � 1g,
fk = 1;m = 1g, fk > 1;m > 1g, fk = 1;m > 1g and fk > 1;m = 1g. We will use repeatedly Remark
6.6.3 and the fact that for i � 2 the multibrackets li vanish unless all entries have degree zero.

Case fk � 1;m = 0g.

This case will allow us to calculate sa0;i; i � 0. The condition (6.107) evaluated on �1; : : : ; �k 2
L1(Ma; !a) reads

H1 (l
a
k (�1; : : : ; �k)) = lk (H1 (�1) ; : : : ; H1 (�k)) ; (6.109)

as one sees using Rem. 6.6.3, together with Remark 6.6.8 to determine the signs.

Using now that:

H1 (l
a
k (�1; : : : ; �k)) = �sa0;2�k+j�j l

a
k (�1; : : : ; �k) ^ !b ; (6.110)

lk (H1 (�1) ; : : : ; H1 (�k)) = (�sa0;j�1j) : : : (�s
a
0;j�kj

) lak (�1; : : : ; �k) ^ !b ; (6.111)

where j�j = j�1 
 � � � 
 �kj and using Lemma 6.6.7 in the second equation when k � 2, we conclude that
we can choose sa0;i = �1 for all i � 0.

Case fk = 0;m � 1g.

This case will allow as to calculate sb0;i; i � 0. The condition (6.107) evaluated on �1; : : : ; �m 2
L1(Mb; !b), similarly to the case above, reads:

H1

�
lbm (�1; : : : ; �m)

�
= lm (H1 (�1) ; : : : ; H1 (�m)) : (6.112)

Using now that:

H1

�
lbm (�1; : : : ; �m)

�
= �sb0;2�m+j�j !a ^ l

b
m (�1; : : : ; �m) ; (6.113)

lm (H1 (�1) ; : : : ; H1 (�m)) = (�sb0;j�1j) : : : (�s
b
0;j�mj

)(�1)m(na+1) !a ^ l
b
m (�1; : : : ; �m) ; (6.114)

where j�j = j�1 
 � � � 
 �mj and using Lemma 6.6.7 in the second equation when m � 2, we conclude
(taking m = 1) that equation (6.109) implies:

sb0;1+j�j = (�1)(na+1)sb0;j�j

and therefore sb0;i = (�1)i(na+1) sb0;0 ; i � 0. Plugging this into into eq. (6.112) it can be easily veri�ed
that eq. (6.112) is solved by:

sb0;i = � (�1)i(na+1) ; i � 0 :

Case fk = 1;m = 1g.

This case will allow as to �nd sa1;i and sb1;i for i � 0. The condition (6.107) evaluated on �; �,
where � 2 L1(Ma; !a) and � 2 L1(Mb; !b), reads:

�H2 (l
a
1(�); �)� (�1)j�jH2

�
�; lb1(�)

�
= l1 (H2(�; �)) + l2 (H1(�); H1(�)) : (6.115)

(The l.h.s. corresponds to the summand i = 1; j = 2 in (6.107), and the signs for the r.h.s. follow from
Remark 6.6.8.) Recall that by ansatz (6.108), for all A 2 L1(Ma; !a) and B 2 L1(Mb; !b) we have
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H2(A;B) =
sa1;jAj
2

A ^ [B]b1 +
sb1;jBj
2

[A]a1 ^B:

In order to solve equation (6.115) we have to analyze the di�erent cases in terms of the degree of � and
�. If j�j = j�j = 0 the l.h.s. of (6.115) is zero while the r.h.s. is

�
sa1;0
2
d� ^ d� � (�1)na

sb1;0
2
d� ^ d� + (�1)nad� ^ d� ;

as one sees using Lemma 6.6.7. Hence we can take:

sa1;0 = (�1)na ; sb1;0 = 1: (6.116)

Now, if j�j = 0 and j�j < 0 the �rst and fourth term in equation (6.115) vanish, and that equation
translates into

�
sb1;j�j+1

2
[�]a1 ^ l

b
1(�) = (�1)na

sb1;j�j
2

[�]a1 ^ l
b
1(�) ;

implying that sb1;j�j+1 = (�1)na+1sb1;j�j : Together with equation (6.116) this implies �nally that

sb1;i = (�1)i(na+1) ; i � 0 :

By means of a completely analogous calculation for the case j�j < 0 and j�j = 0 we obtain sa1;j�j+1 =
�sa1;j�j, so we can choose

sa1;i = (�1)na+i ; i � 0 :

Lastly, the case j�j < 0 and j�j < 0 is trivial since both sides of equation (6.115) vanish.

Case fk > 1;m > 1g.

This case will allow as to �nd sak;i and s
b
m;i for i � 0 and k;m > 1. The condition (6.107) evaluated

on (�1; : : : ; �k; �1; : : : ; �m), where �1; : : : ; �k 2 L1(Ma; !a) and �1; : : : ; �m 2 L1(Mb; !b), reduces to

(�1)kmHm+1 (l
a
k(�1; : : : ; �k); �1; : : : ; �m) + (�1)kHk+1

�
�1; : : : ; �k; l

b
m(�1; : : : ; �m)

�
(6.117)

=lk+m (H1(�1); : : : ; H1(�k); H1(�1); : : : ; H1(�m)) ;

where in the l.h.s. only the summands corresponding to i = k and i = m appear by Rem. 6.6.3, and for
the r.h.s. we use Remark 6.6.8 to determine the signs (a term involving l1 does not appear, again due
to Rem. 6.6.3).

From de�nition 6.1.12 it can be seen that equation (6.117) is only non-trivial if16 j�j = j�j = 0.
Therefore, we will assume henceforth that this is the case. The two terms on the l.h.s. of equation
(6.117) can be written as follows:

Hm+1 (l
a
k(�1; : : : ; �k); �1; : : : ; �m) =

sam;2�k

2
[�1; : : : ; �k]

a
k ^ [�1; : : : ; �m]

b
m ; (6.118)

Hk+1

�
�1; : : : ; �k; l

b
m(�1; : : : ; �m)

�
=
sbk;2�m

2
[�1; : : : ; �k]

a
k ^ [�1; : : : ; �m]

b
m : (6.119)

16The fact that necessarily j�j = 0 was already used to determine the sign of the second term on the l.h.s. above.
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By Lemma 6.6.7, the r.h.s. of equation (6.117) can be written as:

lk+m (H1(�1); : : : ; H1(�k); H1(�1); : : : ; H1(�m)) = �(�1)m(na+1) [�1; : : : ; �k]
a
k ^ [�1; : : : ; �m]

b
m :(6.120)

From the last three equations we obtain:

(�1)km
sam;2�k

2
+ (�1)k

sbk;2�m
2

= �(�1)m(na+1) ;

which is solved by

sam;i = �(�1)m(na+i+1) ; sbk;i = �(�1)i(na+1)+k ; m; k > 1 ; i � 0 :

Cases fk = 1;m > 1g and fk > 1;m = 1g.

Notice that this point we have already explicitly solved all the parameters sam;i and sbk;i for all
k;m � 0 and i � 0. Although this was obtained by separately analyzing di�erent cases given by
di�erent values of k and m, the result be summarized in a single formula, namely

sam;i = �(�1)m(na+i+1) ; sbk;i = �(�1)i(na+1)+k ; m; k � 0 ; i � 0 : (6.121)

However, there remain two cases to be solved, namely fk = 1;m > 1g and fk > 1;m = 1g. Notice that
we do not have any parameter left to be �xed, so checking those cases is really a constraint.

We consider �rst the case fk = 1;m > 1g. At �rst, we also assume m > 2. The condition (6.107)
evaluated on (�; �1; : : : ; �m) reads

(�1)mHm+1 (l
a
1(�); �1; : : : ; �m) +

X
1�p<q�m

(�1)p+qHm

�
�; lb2(�p; �q); �1; : : : ;

c�p; : : : ;c�q; : : : �m)�
(6.122)

+H2((l
b
m(�1; : : : ; �m); �)

= lm+1 (H1(�); H1(�1); : : : ; H1(�m)) + l1(Hm+1(�; �1; : : : ; �m)) :

(On the l.h.s. the �rst term corresponds to i = 1 in eq. (6.107), the second to i = 2, and the
third to i = m; not other values of i contribute by Remark 6.6.3. On the r.h.s. only the terms
corresponding to lm+1 and l1 appear since the multibrackets of L1(Ma �Mb) with two or more entries
vanish unless all the entries have degree zero, and the signs are given by Remark 6.6.8.) We may assume17

j�1j = � � � = j�mj = 0, for otherwise both sides of the above equation vanish by Remark 6.6.3.

The �rst term on the l.h.s. of eq. (6.122) reads

(�1)m
sam;j�j+1

2
la1(�) ^ [�1; : : : ; �m] : (6.123)

The second term on the l.h.s. equals

sam�1;j�j
2

� ^ d[�1; : : : ; �m] : (6.124)

17This assumption was already used to determine the sign of the second term on the l.h.s. above.
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To see this, we use the computationX
1�p<q�m

(�1)p+q[lb2(�p; �q); �1; : : : ;
c�p; : : : ;c�q; : : : ; �m] (6.125)

=&(m� 1)
X

1�p<q�m

(�1)p+q�(Xlb2(�p;�q)
^X�1 ^ � � � ^

dX�p ^ � � � ^
dX�q ^ � � � ^X�m)!b

=&(m� 1)(�1)md�(X�1 ^ � � � ^X�m)!b

=d[�1; : : : ; �m]:

where we used [18, Lemma 9.2] in the second equality and &(m� 1)&(m) = (�1)m.

The third term on the l.h.s. reads

�
sb1;2�m

2
[�] ^ [�1; : : : ; �m]�

sa1;j�j
2

� ^ [lbm(�1; : : : ; �m)]; (6.126)

where the second summand vanishes because of the assumption m > 2.

The �rst term on the r.h.s. of eq. (6.122), using Lemma 6.6.7 and �sA0;0 = �sb0;0 = 1, equals

� (�1)m(na+1)[�] ^ [�1; : : : ; �m] : (6.127)

The last term on the r.h.s. is

sam;j�j

2
l1(� ^ [�1; : : : ; �m]) =

sam;j�j

2

�
d� ^ [�1; : : : ; �m] + (�1)na�1�j�j� ^ d[�1; : : : ; �m]

�
: (6.128)

The term in (6.124) cancels out with the second summand in (6.128). Further, using that l1��[�] =
d� by Remark 6.1.9 and the fact that [�] vanishes if j�j 6= 0, one check that the term (6.123) minus one

half the term (6.127) equals
sa
m;j�j

2 d� ^ [�1; : : : ; �m], which is exactly the �rst summand in eq. (6.128).
Finally, the term (6.126) cancels out with one half the term (6.127).

Now, if k = 1;m = 2, then the term (6.124) is omitted (because the summand i = 2 on the l.h.s.
of condition (6.107) is already given by the term (6.126)), and in (6.126) the second summand no longer
vanishes. We conclude that the case fk = 1;m > 1g indeed works out with the choice of parameters
given in (6.121).

One check in a similar way that the same holds for the case fk > 1;m = 1g. This concludes the
proof that H, as de�ned in the statement of the theorem, is an honest L1-morphism.
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