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Resumen

El procesamiento de lenguaje natural (PLN) ha experimentado claros avan-

ces en los últimos años. Sin embargo, la mayoŕıa de mejoras y estudios se

han centrado en un selecto grupo de idiomas, siendo el inglés su principal

representante, ignorando cómo funcionan estos métodos en idiomas menos

privilegiados, que normalmente reciben el nombre de idiomas con pocos re-

cursos.

Este trabajo trata sobre idiomas con pocos recursos, y se centra en una

tarea central de PLN conocida como análisis sintáctico de dependencias; ésta

consiste en analizar automáticamente la estructura sintáctica de dependen-

cias de una oración, conectando sus palabras mediante relaciones asimétricas

binarias entre una palabra gobernante y una palabra subordinada sintácti-

camente. En concreto, nuestra contribución se encuentra en la intersección

entre la velocidad de análisis e idiomas con pocos recursos. En este contex-

to, recientemente se ha propuesto realizar el análisis de dependencias como

una tarea de etiquetado de secuencias. Este enfoque computa un árbol li-

nealizado de n etiquetas dada una frase de longitud n, y otorga una buena

relación entre velocidad y precisión. Además, ofrece una forma sencilla de

incorporar información sintáctica como una word embedding o caracteŕıstica

de entrada.

En primer lugar, comparamos el rendimiento de cinco linealizaciones pa-

ra análisis de dependencias como etiquetado de secuencias en escenarios con

pocos recursos. Estas linealizaciones pertenecen a diferentes familias y pro-

ponen formular el problema como: (i) seleccionar el gobernante sintáctico

para cada palabra, (ii) encontrar una representación de los arcos entre tokens

utilizando paréntesis equilibrados y (iii) asociar a cada token subsecuencias

de transiciones de un analizador basado en transiciones. Sin embargo, aún

existe poco conocimiento sobre cómo se comportan estas linealizaciones en

configuraciones con pocos recursos. En este trabajo, primero estudiamos su
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nivel de eficiencia, simulando configuraciones con datos restringidos partien-

do de un conjunto diverso de treebanks con muchos recursos. Los resultados

muestran que las codificaciones de selección del gobernante sintáctico son

más eficientes y obtienen mejores resultados en condiciones ideales (gold),

pero que esta ventaja se desvanece en favor de las estrategias de paréntesis

equilibrados cuando la configuración utilizada es más similar a una configu-

ración realista, como la esperada en idiomas con realmente pocos recursos.

En segundo lugar, proponemos un método basado en morfoloǵıa com-

binado con aprendizaje translingüe para intentar mejorar el rendimiento

del análisis de dependencias en idiomas con pocos recursos. Para ello, pri-

mero entrenamos un sistema de flexión morfológica para idiomas objetivo

con pocos recursos, y después lo aplicamos a treebanks con muchos recur-

sos de idiomas similares para crear un treebank flexionado translingüe (o

x-inflected treebank) que se asemeje al idioma con pocos recursos objeti-

vo. A continuación, utilizamos los treebanks flexionados para entrenar los

analizadores sintácticos de etiquetado de secuencias en dos escenarios: (i)

un escenario zero-shot (entrenando un modelo en el x-inflected treebank y

ejecutándolo sobre el idioma objetivo), y (ii) un escenario few-shot (entre-

nando un modelo utilizando un grupo compuesto por x-inflected treebank

junto con el treebank con pocos recursos y ejecutándolos sobre el idioma

objetivo). Nuestro objetivo es comprobar la utilidad del método propuesto

en situaciones con distinta disponibilidad de datos anotados. Los resultados

muestran que el método propuesto puede ser de ayuda en algunas situacio-

nes, pero se necesita estudiar más en profundidad para entender cómo los

distintos factores pueden afectar a los resultados y comprobar si estas ten-

dencias se mantienen usando otros paradigmas, como analizadores basados

en transiciones y basados en grafos.



Abstract

Natural Language Processing (NLP) has achieved clear improvements in

recent years. However, most improvements and studies have been centered in

a selected group of languages, being English its main representative, ignoring

how these methods perform on less privileged languages, usually labeled as

low-resource languages.

This work is on low-resource languages, and focuses on a core NLP task

known as dependency parsing; that consists in analyzing automatically the

dependency structure of a sentence, connecting the words of the sentence

in pairs by asymmetric relations between a parent word and a syntactically

subordinate word. More particularly, our contribution lies in the intersection

between fast parsing and low-resource languages. In this context, recent

work has proposed to cast dependency parsing as sequence labeling. This

approach computes a linearized tree of n labels given a sentence of length

n, and provides a good speed/accuracy trade-off. Also, it offers a näıve way

to infuse syntactic information as an embedding or feature.

First, we compare the performance of five linearizations for dependency

parsing as sequence labeling in low-resource scenarios. These linearizations

belong to different families and address the task as: (i) a head selection pro-

blem, (ii) finding a representation of the token arcs as bracket strings, or (iii)

associating transition subsequences of a transition-based parser to words.

Yet, there is little understanding about how these linearizations behave in

low-resource setups. Here, we first study their data efficiency, simulating

data-restricted setups from a diverse set of rich-resource treebanks. After

that, we test whether such differences manifest in truly low-resource setups.

The results show that head selection encodings are more data-efficient and

perform better in an ideal (gold) framework, but that such advantage greatly

vanishes in favour of bracketing formats when the running setup resembles

a real-world low-resource configuration.
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Second, we propose a morphology-based method combined with cross-

lingual learning to try to improve parsing performance for low-resource lan-

guages. To do so, we first train a morphological inflection system for low-

resource target languages, and then apply it to rich-resource treebanks from

similar languages, to create a cross-lingual inflected treebank (or x-inflected

treebank) that resembles the target low-resource language. Then, we use

these inflected treebanks to train sequence labeling parsers in two scenarios:

(i) a zero-shot scenario (training on the x-inflected treebank and testing on

the target language), and (ii) a few-shot scenario (training on a group of x-

inflected treebanks together with the low-resource treebank and testing on

the target language). Our goal is to test the usefulness of this method in si-

tuations with different availability of annotated data. The results show that

the proposed method can be helpful in some situations, but further work is

required to understand how different factors affect the results and check if

these trends hold when using other parsing paradigms, such as transition-

based and graph-based parsers.
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Chapter 1

Introduction

1.1. Motivation

Natural Language Processing (NLP) has achieved clear improvements in

recent years, thanks to aspects such as the availability of large annotated

datasets, high computational capacities, and the adoption of deep learning

models for processing natural texts. However, these improvements have been

centered in those languages with enough available data (both raw and an-

notated), known as rich-resource languages (RRLs), being English the most

representative one. This handful of languages represent only a tiny fraction

of the around 7 000 known languages in the world. Furthermore, these lan-

guages are from a reduced number of families and geographical areas, so

they do not account as a meaningful set of the world languages as a whole

and lack many existing typological features (Joshi et al., 2020).

In contrast, the vast majority of the world languages can be labeled

as low-resource languages (LRLs). This classification is imprecise, as many

groups of languages can fit this definition: e.g. less computerized languages,

less privileged languages, less studied languages, or languages that do not

have enough data to apply statistical methods successfully (Magueresse,

Carles, and Heetderks, 2020). For these reasons, methods and techniques

that work well for RRLs might not necessary perform the same way on

languages with smaller amounts of data or different typology. This, inter

alia, exemplifies the need to work on NLP besides the privileged group of

RRLs (Ruder, 2020).

This work on low-resource languages focuses on dependency parsing

(Kübler, McDonald, and Nivre, 2009; Mel’cuk and others, 1988), a core NLP



2 CHAPTER 1. Introduction

task. Dependency parsing consists in analyzing the dependency structure of

a sentence automatically. It is driven by the assumption that syntactic struc-

ture is made of words connected in pairs by asymmetric relations between a

parent word (head) and a syntactically subordinate word (dependent). Each

link has a dependency type assigned to it (e.g. subject or attribute), showing

the relationship type between both words.

Parsing has been traditionally helpful for different NLP tasks. Among

the different existing parsing representations, dependency parsing can be sui-

table for certain downstream tasks like sentiment analysis (Vilares, Gómez-

Rodŕıguez, and Alonso, 2017), text summarization (Balachandran et al.,

2020), machine translation (Aharoni and Goldberg, 2017) or question ans-

wering (Cao et al., 2019).

In this context, popular approaches such as graph-based parsers (Mar-

tins, Almeida, and Smith, 2013; Dozat, Qi, and Manning, 2017) or transition-

based parsers (Ma et al., 2018; Fernández-González and Gómez-Rodŕıguez,

2019) have achieved a performance comparable to expert human annotators

in certain domains like English news (Berzak et al., 2016).

Hence, recent effort has been directed to solve other parsing problems

too, such as parsing different domains or multi-lingual scenarios (Sato et al.,

2017; Song et al., 2019; Ammar et al., 2016), creating faster models (Volokh,

2013; Chen and Manning, 2014), designing low-resource and cross-lingual

parsing techniques (Tiedemann, Agić, and Nivre, 2014; Zhang, Zhang, and

Fu, 2019), or infusing syntactic knowledge into models (Strubell et al., 2018;

Rotman and Reichart, 2019).

Our contribution is located at the crossroads between fast parsing and

low-resource languages. Recent work has proposed different linearizations

to cast parsing as a sequence labeling task (Spoustová and Spousta, 2010;

Strzyz, Vilares, and Gómez-Rodŕıguez, 2019; Gómez-Rodŕıguez, Strzyz, and

Vilares, 2020; Li et al., 2018; Kiperwasser and Ballesteros, 2018). Broadly

speaking, sequence labeling is a prediction problem where every input token

is assigned one output label. Many NLP tasks like named entity recognition

or part-of-speech (PoS) tagging has been cast as a sequence labeling task

(Bohnet et al., 2018; Liu et al., 2018a; Ma and Hovy, 2016). Dependency

parsing can also be cast as a sequence labeling task, using encodings or linea-

rizations to represent the dependency tree. Sequence labeling models have

a few theoretical advantages over other parsing strategies like being simpler
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and faster than other parsing models such as (Ma et al., 2018; Kiperwasser

and Goldberg, 2016; Chen and Manning, 2014) while obtaining competiti-

ve results. Also, they allow to infuse syntactic information like any other

feature or embedding (Ma et al., 2019; Wang et al., 2019) and can be used

in any generic sequence labeling framework as any other sequence labeling

task such as those mentioned above. In this context, this problem has been

studied on English and multilingual setups, but there is a lack of knowledge

about how it performs on low-resource languages.

1.2. Proposal and objectives

The purpose of this work is to study the task of dependency parsing as a

sequence labeling task in low-resource setups. More particularly, the contri-

bution is twofold.

The first contribution focuses on the data-efficiency aspect, showing how

different linearization families require different amounts of data to start per-

forming competitively. In particular, we tested how well the selected enco-

dings performed with different quantities of annotated data, creating six

synthetic low-resource setups from a set of rich-resource treebanks and com-

paring the results. Then, we reproduced the previous experiment, but under

real low-resource conditions using a varied set of low-resource treebanks to

check whether the trends hold when the models are evaluated on real low-

resource languages.

The second contribution is a morphology-based method combined with

cross-lingual learning to improve the performance of dependency parsing

models for low resource languages. We trained a morphological inflection

system in a few low-resource target languages using data obtained from

UniMorph, and then applied it to source rich-resource treebanks from similar

languages to create a new cross-lingually inflected treebank. We will refer

to these treebanks as x-inflected treebanks. Then, we use the x-inflected

treebanks to train sequence labeling parsers to test the usefulness of the

proposed method in two different scenarios: (i) a zero-shot scenario when

no training data is available and (ii) a few-shot scenario when only a few

sentences are available.
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1.3. Structure of the document

The rest of the work is divided as follows. Chapter 2 describes core concepts

to contextualize and better understand this work. Chapter 3 discusses the

data efficiency of the existing linearizations for dependency parsing as se-

quence labeling. Chapter 4 proposes a technique based on using cross-lingual

morphological inflection to improve the results of low-resource dependency

parsing. Finally, Chapter 5 concludes the thesis and discusses future work.



Chapter 2

State of the art

In this chapter, we introduce the core concepts that are necessary to better

understand the thesis, and also to contextualize our work.

First, in section 2.1 we introduce the preliminary concepts about NLP

to situate the reader in the project’s field. Then, section 2.2 introduces the

most relevant concepts about dependency parsing, including some state-of-

the-art work. Next, section 2.3 presents the task of sequence labeling and

relates it to dependency parsing. After that, section 2.4 introduces the task

of morphological inflection, which we will be using in Chapter 4. Finally,

section 2.5 comments related work in the field of low-resource parsing.

2.1. Preliminaries

Most tasks in NLP require some degree of preprocessing. In the case of

dependency parsing, the minimum required preprocessing steps are segmen-

tation and tokenization.

On the one hand, segmentation delimits the sentences that conform a

text. This task is not as trivial as it might seem at first glance; although

some languages like English include clear boundaries between sentences,

some marks could still be ambiguous, and there are languages like Thai that

do not mark sentences boundaries typographically, for instance.

On the other hand, tokenization identifies the elements that constitute

a sentence. These elements are usually referred as words or tokens, and that

is how we will be referring them in this work, although we are aware that

for some languages, such as Japanese, the concept of word is not that well-

defined and for instance the concept of phrasal units (bunsetsu) has a long
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Root Nunca hemos tenido ningún problema .

advmod

aux

root

det

obj

punct

Figure 2.1: Example of a parsed sentence from the SpanishGSD UD treebank.

tradition (Murawaki, 2019). Overall, although this is an easy task for most

languages, it is more challenging for those that do not use spaces as word

separators, like Chinese.

Once the text has been segmented and tokenized, we also can obtain

additional information that might benefit the parsing process. For instance,

one of the most common tasks is part-of-speech (PoS) tagging. PoS tagging

assigns a grammatical class (like a verb or noun) to every token in a sen-

tence. This task must deal with aspects like lexical ambiguity or multi-word

expressions, so systems must take into account the context of the whole

sentence.

2.2. Dependency parsing

Dependency parsing (Kübler, McDonald, and Nivre, 2009; Mel’cuk and

others, 1988) is the task of obtaining the syntactic structure of a natural lan-

guage sentence automatically. In dependency parsing, the main idea is that

the syntactic structure of a sentence is composed of dependency relations,

directed links from a leading word (head) to its syntactically subordinate

word (dependent), which have attached a dependency type that indicates the

grammatical relation between both terms. An example of a dependency tree

can be seen in Figure 2.2. In the figure, dependency relations are expressed

according to the Universal Dependencies (Zeman, Nivre, and others, 2020)

project, explained more deeply in 2.2.3, but there are different annotation

frameworks that could be also used (Nivre et al., 2007; Bejček et al., 2013).

Given a finite label set L = {l1, ..., l|L|}, a dependency graph for a sen-

tence S = w1, ..., wn is a labeled directed graph G = (V,A) where:

1. V ⊆ {0, 1, ..., n} is a set of nodes, where index 0 represents an artificial

root node that is usually added.
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2. A ⊆ V × L× V is a set of labeled directed arcs.

That is, a dependency graph G is a set of labeled dependency relationships

between the tokens in S. The tokens are represented by the nodes in V and

the relationships are represented by the arcs in A, so an arc (i, l, j) represents

a dependency relationship of the type r between the head token i and the

dependent token j, where i, j ∈ V and l ∈ L. The task of a dependency

parser consists in assigning an index 0, 1..., n to every token of the sentence

S.

The goal is that the output tree is well-formed, i.e. a tree that has the

following properties:

Root. The tree is rooted at node 0. This artificial node is the governor

of the sentence (i.e. it is the only node that does not have a head).

Connectedness. There is a path connecting every two tokens when

ignoring the direction of the edge.

Single-head. Every token (except the root node) has one and only

one head.

Acyclicity. It does not contain cycles.

A more restrictive type of trees are projective trees. A tree is said to be

non-projective if it contains two arcs i → j and k → l where min(i, j) <

min(k, l) < max(i, j) < max(k, l), and is called projective otherwise. In a

more graphical way, a (non-) projective tree is a tree whose dependency arcs

can (not) be drawn with none of them crossing. This can be seen in Figure

2.2.

In 2.2.1 and 2.2.2, for completeness, we briefly describe the two dominant

paradigms when it comes to train dependency parsers. Then, we introduce

the Universal Dependencies project in 2.2.3.

2.2.1. Transition-based parsers

Transition-based parsing algorithms define an abstract state machine where

each configuration holds a structured representation together with auxiliary

data structures. The system moves between states through shift-reduce ac-

tions or transitions until it finds a full parse. Although we are going to focus
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Root A hearing on the issue is scheduled today .

Root A hearing is scheduled on the issue today .

Figure 2.2: Examples of a projective and a non-projective sentence. Depen-
dency labels are omitted.

on dependency parsing, transition-based parsers can be used in other par-

sing problems such as constituency parsing (Liu et al., 2018b) or semantic

parsing (Liu et al., 2018b).

A transition-based dependency parser is defined as follows. Being S =

w1, ..., wn an input sentence, Pw is the set of possible well-formed depen-

dency graphs. Nivre (2008) defines a transition system as a quadruple Q =

(C, T, cs, Ct), where C is a set of configurations with at least a partially-built

parse Pc, T is a set of transitions, cs is an initialization function, and Ct ⊆ C
is a set of final configurations. Commonly, a (stack-based1) configuration is

defined by a triplet (σ, β,A), where σ is a stack of partially-processed tokens,

β is a buffer of unprocessed tokens and A is a set of dependency arcs for a

dependency graph G = (V,A).

A system obtains a parse Pcf ∈ Pw of a sentence S by applying a sequence

of transitions to an initial configuration cs(S) until a final configuration

cf ∈ Ct is achieved. To train such systems, an oracle is needed. Essentially,

an oracle is a function that takes a given configuration and produces the next

correct one. The Example 2.2.1 illustrates the parsing process of a sentence.

Example 2.2.1 (Arc-hybrid algorithm). The transitions defined for the

stack-based arc-hybrid algorithm are three:

Shift (SH). (σ, i|β,A)→ (σ|i, β, A). It moves the first word i from the

buffer to the stack.

1There are algorithms that employ other data structures. For example, the Covington
algorithm uses two lists instead of a stack (Nivre, 2008).
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Left-arc (LA). (σ|i, j|β,A) → (σ, j|β,A ∪ {(j, l, i)}). It eliminates the

word i from the stack and creates an arc with label l between the first

word of the buffer j as head and the word i as a dependent.

Right-arc (RA). (σ|i|j, β,A)→ (σ|i, β, A ∪ {(i, l, j)}). It creates an arc

between the second and the first word from the stack (i.e. i and j) and

removes the word j from the stack.

Using these transitions, the correct sequence of transitions to obtain a

dependency tree for the sentence ‘Nunca hemos tenido ningún problema.’

(Figure 2.2) using the arc-hybrid algorithm is represented in Table 2.1.

T σ β A
[Root] [Nunca,...,.] ∅

SH [Root, Nunca] [hemos, ..., .] ∅
SH [Root, Nunca, hemos] [tenido, ..., .] ∅
LA [Root, Nunca] [tenido, ..., .] A1 ={(tenido, aux, hemos)}
LA [Root] [tenido, ..., .] A2 = A1∪

{(tenido, advmod, Nunca)}
SH [Root, tenido] [ningún, ..., .] A2

SH [Root, tenido, ningún] [problema, .] A2

LA [Root, tenido] [problema, .] A3 = A2∪
{(problema, det, ningún}

SH [Root, tenido, problema] [.] A3

RA [Root, tenido] [.] A4 = A3∪
{(tenido, obj, problema)}

SH [Root, tenido, .] [ ] A4

RA [Root, tenido] [ ] A5 = A4∪
{(tenido, punct, .)}

RA [Root] [ ] A6 = A5∪
{(Root, root, tenido)}

Table 2.1: Correct sequence of transitions to obtain the dependency tree for
the sentence ‘Nunca hemos tenido ningún problema.’ using the arc-hybrid
algorithm.

2.2.2. Graph-based parsers

Graph-based parsers use standard algorithms for directed graphs and trees.

They define a space of possible dependency graphs for an input sentence, and

then assign a score to each possible candidate. The model is defined from

an analysis algorithm and a number of restrictions over the graph structure.

More formally, we define a graph-based parser using a model M(Γ,λ, h),
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being Γ a set of restrictions on allowed structures, λ a set of parameters and

h a fixed parsing algorithm.

The assigned score represents how likely is that the selected graph is the

correct one. There are different ways of scoring, depending on the algorithm

used by the model. After the model is generated, the analysis phase consists

in finding the graph with the highest score for the sentence. The score of a

dependency tree G = (V,A) ∈ G ∈ GS for a sentence S is:

score(G) = score(V,A) ∈ R

and represents how likely is for a tree to be the right parse for S. GS repre-

sents the space of dependency trees for a sentence S. The main property of

graph-based parsing systems is that the score is given by:

score(G) = f(ψ1, ψ2, ..., ψq) for all ψi in ΨG

being f a function over the subgraphs ψ and ΨG the set of the relevant

subgraphs of G.

A graph-based parsing system must define four things:

1. The definition of ΨG for a given dependency tree G.

2. The definition of the parameters λ = {λψ| for all ψ ∈ ΨG for all G ∈ GS

for all S}.

3. A method for learning λ from labeled data.

4. A parsing algorithm h(S,Γ,λ) = argmaxG∈GS
score(G).

2.2.3. Universal Dependencies

Universal Dependencies2 (Zeman, Nivre, and others, 2020, UD) is an open

community project with over 300 contributors that develops cross-lingual

consistent annotation between different treebanks. The annotation scheme

used is based on Stanford dependencies (De Marneffe and Manning, 2008),

Google universal part-of-speech tags (Petrov, Das, and McDonald, 2011),

and the Interset interlingua for morphosyntatic tagsets (Zeman, 2008). Its

2https://univeresaldependencies.org
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goal is to offer a useful linguistic representation for morphosyntactic re-

search, semantic interpretation and natural language processing across dif-

ferent languages. Thus, it uses simple surface representations that allow

easier parallelism between similar structures across such languages, overco-

ming differences in syntax and morphology.

The 2.7 version that is used for this work contains 183 treebanks for

104 languages, from dozens of linguistic families using several scripts. The

treebank sizes range from less than a hundred sentences and a thousand

tokens to almost 200 000 sentences and more than 3 million tokens.

The dependency treebanks use a revised version of the CoNLL-X

(Buchholz and Marsi, 2006) format, called CoNLL-U. CoNLL-U files are

plain text files (UTF-8) with three types of lines: comment lines starting

with ‘#’, blank lines separating sentences, and word lines that contain the

10 annotation fields of a token separated by single tab characters. Every

sentence is composed of one or more word lines. A word line contains the

following fields:

1. ID. The word index, an integer starting at 1. Multiword tokens may

have a range index (e.g. 2-3), while empty nodes can have a decimal

number bigger than 03.

2. FORM. The token form.

3. LEMMA. The lemma or stem of FORM.

4. UPOS. A universal part-of-speech tag.4 Same set of PoS tags for every

UD treebank.

5. XPOS. A language-specific part-of-speech tag.

6. FEATS. Universal or language-specific morphological features.5

7. HEAD. The index of the current word’s head. If the head is the dummy

root, it will be 0.

8. DEPREL. The dependency relation between the word and its head. It

can be root, language-specific or universal.6

3This is out-of-the-scope of this work.
4https://universaldependencies.org/u/pos/index.html
5https://universaldependencies.org/ext-feat-index.html
6https://universaldependencies.org/u/dep/index.html
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# sent_id = es-test-001-s295

# text = Nunca hemos tenido ningún problema.

1 Nunca nunca ADV _ Polarity=Neg 3 advmod _ _

2 hemos haber AUX _ Mood=Ind|Number=Plur|Person=1|Tense=Pres|VerbForm=Fin 3 aux _ _

3 tenido tener VERB _ Gender=Masc|Number=Sing|Tense=Past|VerbForm=Part 0 root _ _

4 ningún ninguno DET _ Gender=Masc|Number=Sing|PronType=Neg 5 det _ _

5 problema problema NOUN _ Gender=Masc|Number=Sing 3 obj _ SpaceAfter=No

6 . . PUNCT _ _ 3 punct _ _

Figure 2.3: A sentence extracted from the SpanishGSD corpus annotated in
CoNLL-U format.

9. DEPS. The enhanced dependency graph consisting in a list of HEAD-

DEPREL pairs.

10. MISC. Other annotations.

Only FORM, LEMMA and MISC can have space characters. When there

is no information available, an underscore (‘ ’) is used, as a synonym of

the field being empty. UPOS, HEAD and DEPREL are only allowed to be

empty in the case of multiword tokens and empty nodes. An example of an

annotated sentence in CoNLL-U format is shown in Figure 2.3.

With respect to the evaluation, the parsing community typically uses

two metrics to measure the performance of a parser on a given test set:

Unlabeled Attachment Score (UAS) and Labeled Attachment Score (LAS)

(Nivre and Fang, 2017). The first evaluates the parser’s output considering

the number of words that have been assigned a correct syntactic head, igno-

ring the dependency type; while the second one requires that both elements

are correct.

2.3. Sequence labeling

Sequence labeling is a structured prediction problem consisting in assigning

a single output label from a fixed set to every input token of a given sequence.

This fast and simple arrangement is natural for many NLP tasks, such as

PoS tagging (Ma and Hovy, 2016), text chunking (Liu et al., 2018a) or

named-entity recognition (Lample et al., 2016).

Traditionally, sequence labeling used classical machine learning techni-

ques like hidden Markov models and conditional random fields, but in recent

years, deep learning models have improved the state-of-the-art performance
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(Akbik, Blythe, and Vollgraf, 2018; Bohnet et al., 2018), thanks to their

ability to learn complex features without the need of ‘hand-crafting’ them.

In the rest of this section, we explain how dependency parsing can be cast

as a sequence labeling task in 2.3.1, and we present our sequence labeling

framework in 2.3.2.

2.3.1. Dependency parsing as sequence labeling

To create a linearized tree for dependency parsing it is needed to assign

a discrete label (xi, li) to each token wi, where xi encodes a subset of the

arcs of the tree related to that token and li is the dependency type. Two

straightforward encodings are the absolute and relative positional encodings.

The former encodes the arcs by selecting the token’s head using its absolute

index as xi, while the latter encodes the arc through the relative distance

between the token and its head as xi. In this work, we will predict the

component labels xi and li semi-independently; this is explained in more

detail in 2.3.2, together with the sequence labeling framework.

Also, we will be using five different encodings from three different fami-

lies: a relative PoS tag index head-selection encoding, two bracketing-based

encodings and two mappings from transition-based algorithms (arc-hybrid

and Covington). These encodings are preferred over the näıve ones as they

have shown to perform better (Strzyz, Vilares, and Gómez-Rodŕıguez, 2019).

They are more thoroughly explained in 3.1.1.

As these labels are discrete elements, only labels seen in the training

data can be predicted. Still, it has been previously shown that the coverage

is almost complete and that this is not a problem to carry out dependency

parsing effectively, at least for rich-resource languages (Strzyz, Vilares, and

Gómez-Rodŕıguez, 2020).

2.3.2. Sequence labeling neural framework

Being w a sequence of words w1, w2, ..., wn, ~w is a sequence of word embed-

dings that will be used as the input to the models. A word embedding is

a vector representation of a word that is composed of real numbers. Words

with similar meaning are supposed to be close in the vector space. There

are two main types of word embeddings: (i) static word embeddings, created

using algorithms such as word2vec (Church, 2017) or GloVe (Pennington,

Socher, and Manning, 2014), or contextualized word embedding like those
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BiLSTM

w1

FF1 FFn

word, PoS, char

...

... TnT1

BiLSTM

BiLSTM

w2

FF1 FFn

word, PoS, char

...

... TnT1

BiLSTM

BiLSTM

w3

FF1 FFn

word, PoS, char

...

... TnT1

BiLSTM

BiLSTM

wm

FF1 FFn

word, PoS, char

...

... TnT1

BiLSTM

...

Figure 2.4: Framework used for MTL sequence labeling in this work.

created by ELMo (Peters et al., 2018) or BERT (Devlin et al., 2019). In this

work, we will use random initialized (static) word embeddings to represent

the input words.

To train our sequence labeling parsers, in this work we will use bidi-

rectional long short-term memory networks (Hochreiter and Schmidhuber,

1997; Schuster and Paliwal, 1997, biLSTM). BiLSTMs have showed to be a

strong baseline and have been used recently in many NLP tasks (Yang and

Zhang, 2018; Reimers and Gurevych, 2017).

Concretely, we use two layers of biLSTMs, and each hidden vector ~hi

from the last biLSTM layer (associated to each input vector ~wi) is fed to

separate feed-forward networks that predict the labels that compose the

linearization (i.e. xi and li), using softmaxes and a hard-sharing multi-task

learning (Caruana, 1997; Ruder, 2017, MTL). Multi-task learning consists

in sharing representations between related tasks.

We use a hard-sharing architecture (the hidden layers are shared between

all tasks, but the outputs are independent for each of them) as it is a standard

and easy form of MTL and it has been used in previous work related to

parsing as sequence labeling (Strzyz, Vilares, and Gómez-Rodŕıguez, 2019;

Strzyz, Vilares, and Gómez-Rodŕıguez, 2020). A diagram of the framework

is shown in Figure 2.4.
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2.4. Morphological inflection

Many languages express syntactic and semantic information through the va-

riation of word forms using modifications such as adding prefixes or suffixes

to a lemma (e.g. look → looking) or vowel mutation (e.g. sing → sang),

among others. This word generation process is known as morphological in-

flection. Automatic morphological inflection has become popular recently,

mainly due to the introduction of the SIGMORPHON shared tasks (Cotte-

rell et al., 2016; Cotterell et al., 2017; Cotterell et al., 2018; McCarthy et

al., 2019; Nicolai, Gorman, and Cotterell, 2020; Pimentel et al., 2021) and

the development of the UniMorph7 project. It consists in generating a word

form from a given a lemma and a set of morphological features. This task is

relevant to our work as inflected words carry morphosyntactic information

that can help parsers to learn the dependency structure of a sentence.

Morphological inflection has been considered a nearly-solved task, since

modern systems obtain accuracy scores higher than 90 %, even when only few

annotated examples (in the range of two hundred) are available. However,

Goldman, Guriel, and Tsarfaty (2021) recently showed that splitting the

training and test data by lemmas instead of by forms (i.e. no lemma that

appeared in the training set appears in the test one) drops the scores by an

average of 40 points. This is specially relevant in our experiments as most

lemmas are unknown to the model, so this could affect its performance as

we will see more thoroughly in 4. This work was released in August 2021,

contemporaneously to our results.

In the rest of this section, we introduce the UniMorph project in 2.4.1

and present the neural framework for morphological inflection used in this

work.

2.4.1. UniMorph

ºThe Universal Morphology project, better known as UniMorph (UM)

is a collaborative project focused on handling morphology in world’s lan-

guages. Its goal is to create a cross-lingual universal schema which allows to

identify an inflected word by its lemma and a morphological feature vector,

independently of the language.

The UM feature schema (Sylak-Glassman, 2016) is made of 23 dimen-

7https://unimorph.github.io/

https://unimorph.github.io/
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Lemma Features Form

V;3;PL;SBJV;PST;IPFV florecesen
V;1;PL;COND floreceriamos

florecer V;1;SG;IND;FUT florecerei
V;IND;PST;1;SG;IPFV florećıa
V;3;SG;IMP;NEG floreza

Table 2.2: Morphological inflection examples extracted from the Galician
UM data.

sions of meaning and over 212 features. The dimensions of meaning cover dif-

ferent morphological categories such as case, tense, number, part-of-speech,

gender or person. Every dimension can be represented by a number of values,

named features, ranging form 2 for finiteness to 39 for case. Some examples

are shown in Table 2.2. The features have a semantic meaning and are an

indivisible unit. This schema was built in a top-down fashion, surveying the

linguistic typology literature to find common features and identifying the

most common morphological features assigned to each part-of-speech tag.

The data has been used in the previously mentioned SIGMORPHON

shared tasks. It is obtained from the inflectional paradigms contained in

Wiktionary8, following a process of extraction and normalization (McCarthy

et al., 2020). There is also additional data obtained from converting other

morphological resources to the UM schema. The current data covers 118 lan-

guages from 16 major families and 2 isolated languages, Basque and Haida.

2.4.2. Morphological inflection neural framework

We used the model from Wu, Shapiro, and Cotterell (2018) that has been

used as baseline in the SIGMORPHON 2020 shared task 0 (Nicolai, Gor-

man, and Cotterell, 2020). It is a sequence-to-sequence model that uses a

hard monotonic attention mechanism to identify what parts of the input the

model should focus on to generate the correct output string.

2.5. Existing approaches to low-resource parsing

Low-resource parsing has been explored from perspectives such as unsuper-

vised parsing, data augmentation, cross-lingual learning, or data-efficiency

of models.

8https://www.wiktionary.org/

https://www.wiktionary.org/
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On unsupervised parsing, some authors have worked on generative mo-

dels to determine whether to continue or stop attaching dependents to a

token (Klein and Manning, 2004; Spitkovsky, Alshawi, and Jurafsky, 2010),

while others have studied how to use self-training for unsupervised parsing

(Le and Zuidema, 2015; Mohananey, Kann, and Bowman, 2020).

On data augmentation, there is work on using self-training to annota-

te extra data (McClosky, Charniak, and Johnson, 2006) and linguistically

motivated approaches to augment treebanks, such as using methods to re-

place subtrees within a given sentence (Vania et al., 2019; Dehouck and

Gómez-Rodŕıguez, 2020).

On cross-lingual learning, some authors have trained delexicalized par-

sers in a source rich-resource treebank that are then used to parse a low-

resource target language (Søgaard, 2011; McDonald, Petrov, and Hall, 2011).

Other works compared lexicalized and delexicalized parsers on low-resource

treebanks, depending on factors like the treebank size and the PoS tags per-

formance (Falenska and Çetinoğlu, 2017). Wang and Eisner (2018) created

synthetic treebanks that resemble the target language by permuting cons-

tituents of distant treebanks. Naseem, Barzilay, and Globerson (2012) and

Täckström, McDonald, and Nivre (2013) approached this issue from the mo-

del side, training on rich-resource languages in a way that the model learns

to detect the source language’s aspects that are relevant for the target lan-

guage. More recently, Mulcaire, Kasai, and Smith (2019) used a LSTM to

build a polyglot language model that was used to train a parser on top of it

that shows cross-lingual abilities in zero-shot setups.

On data-efficiency, there has been research about the impact of the use of

different amounts of data to alleviate the lack of annotated data or the poor

quality of it. For example, Lacroix et al. (2016) showed how a transition-

based parser with a dynamic oracle can be used without any modifications

to parse partially annotated data. This work found that this setup is useful

to train low-resource parsers on sentence-aligned texts, from a rich-resource

treebank to an automatically translated low-resource language, where only

precisely aligned tokens are used for the projection in the target dataset.

Lacroix, Wisniewski, and Yvon (2016) studied the effect that preprocessing

and post-processing have in annotation projection, concluding that quality

should prevail over quantity. Anderson and Gómez-Rodŕıguez (2020) sho-

wed that when distilling a graph-based parser for faster inference time, mo-
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dels with smaller treebanks suffered less. Dehouck, Anderson, and Gómez-

Rodŕıguez (2020) also distilled models for Enhanced Universal Dependencies

(EUD) parsing with diverse amounts of data, observing that less training

data usually means slightly lower performance while having better energy

consumption. Garcia, Gómez-Rodŕıguez, and Alonso (2018) showed that, in

Romance languages, picking samples from related languages and adapting

them to the target language is useful to train a model that obtains similar

performance as one trained on fully but limited manually annotated data.

Regarding constituent parsing, Shi, Livescu, and Gimpel (2020) studied the

role of the development data in unsupervised parsing. They mentioned that

many unsupervised parsers use the score on the development set to update

the hyper-parameters, and show that training a counterpart supervised mo-

del using a handful of samples from that development set can outperform

the results of the unsupervised setup. Finally, there is work describing the

impact of the size of the parsing training data on downstream tasks that

use syntactic information as part of the input (Sagae et al., 2008; Gómez-

Rodŕıguez, Alonso-Alonso, and Vilares, 2019).



Chapter 3

Data Efficiency of

linearizations

Part of the work of this chapter is published in (Muñoz-Ortiz,

Strzyz, and Vilares, 2021).

This chapter covers the first part of this work, studying how different de-

pendency parsing linearizations behave when facing different quantities of

data. The goal of this experiment is to get a better understanding about the

role of encoding selection in dependency parsing as a sequence labeling task

in low-resource setups.

First, we simulate data-restricted setups from rich-resource treebanks

by dividing the treebanks in smaller sets and compare the obtained results

depending on the number of sentences used to train the models. Then, the

same encodings are tested on real low-resource treebanks to check if the

previous results hold when tested in more realistic conditions. The parsers

are tested in three different setups regarding the use of PoS tags as input:

using gold PoS tags, using predicted PoS tags and not using PoS tags at all.

This chapter is divided as follows. In 3.1, we present the existing families

of encodings to perform parsing as a sequence labeling task. Then, in 3.2,

we present the methodology and the results of the two experiments. Finally,

a conclusion can be found in 3.3.
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Root Ons demokrasie is gesond .
Our democracy is healthy

rph +1@NOUN +1@ADJ +1@ADJ -1@ROOT -1@AUX
rxb . <\ < </\\ >
2pb . . <\ . <. <\\ /* . >*

ahtb SH LA SH SH LA LA SH RA SH
ctb SH SH LA SH SH LA LA SH NOARC

NOARC RA RA

Figure 3.1: Example of the linearizations used in this work in a sentence
from the AfrikaansAfriBooms treebank. Dependency types are omitted for
simplicity.

3.1. Description

In this section, we first review the existing families of encodings for parsing

as sequence labeling and introduce the five encodings selected for these ex-

periments (3.1.1). Then, the sequence labeling framework used is presented

(3.1.2).

3.1.1. Selecting encodings

As seen in 2.3.1, there are multiple ways to linearize dependency trees in

the form of tuples (xi, li), where xi encodes a subset of the arcs related to

that token and li encodes its dependency type. In this subsection we explain

the encodings that are used in this work. We selected five representative

linearizations from the three existing encoding families. These are compared

in an example sentence in Figure 3.1. In what follows, the encoding families

are described along with the chosen linearizations.

Head-selection encodings

Head-selection encodings assign to every word a label xi that encodes its

head. The encoding process can be done by labeling the target word using

the absolute index of its head token or by using a relative index given by

the distance between the dependent and its head. The former method is
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done unequivocally, but for the latter we can use different techniques. For

example, considering only words which have a certain tag, using PoS tags

(Spoustová and Spousta, 2010; Strzyz, Vilares, and Gómez-Rodŕıguez, 2019)

or head-based tags (Lacroix, 2019). This family of encodings (in particu-

lar the relative index distance one) has also been used for seq2seq models,

although they did not succeed when it came to sequence labeling models (Li

et al., 2018).

In this work, we chose the relative PoS-based encoding (rph), as it has

been shown to outperform other linearizations of this family. In this enco-

ding, xi is portrayed as a tuple (pi, oi). When oi > 0, the head of wi is the

oith word to the right with a PoS tag pi. When oi < 0, the head of wi is the

|oi|th word to the left whose PoS tag is pi.

In addition to its performance, its main advantages are the ability of en-

coding any non-projective tree and its simplicity in creating a direct connec-

tion between the dependent and the head. However, the reliance on external

factors (in this case, PoS tags) force us to run an external tagger or having

gold information in order to reconstruct the trees.

Bracketing-based encodings

This family of encodings linearizes dependency arcs using a sequence of

bracket elements from a set B = {<,\,/,>} as labels. A balanced pair of

brackets (<,\) as the labels xi and xj means that there is an arc from

wj to wi−1. A balanced pair of brackets (/,>) in xi and xj represents a

right arc from wi−1 to wj . A token can have many outgoing arcs but only

one incoming arc, as a word can have many dependents but only one head.

The labels are then composed of several brackets that follow the expression

(<)?((\)*|*(/)*)(>)?.

This encoding is able to represent trees without the need of PoS tags or

any external feature. However, it is incapable of managing crossing arcs in

the same direction, though it can handle crossing arcs in opposite directions

as left and right are balanced independently. To solve that, Strzyz, Vilares,

and Gómez-Rodŕıguez (2020) propose adding a second independent plane in

order to be able to encode any 2-planar graph.

More in detail, a dependency graph (V,E) is k-planar for k ≥ 1 if its

edges can be divided in E1, ..., Ek planes in a way that edges belonging to

the same plane do not cross. For k = 1, the formed tree corresponds to
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Root A hearing is scheduled on the issue today .

Figure 3.2: Example of a 2-planar sentence. Black and red arcs below to the
first and second plane respectively.

a non-crossing dependency graph. For k ≥ 2, a k-planar graph is a graph

where if we assign arcs to two different planes, arcs in the same plane do

not cross. Figure 3.2 shows an example of a 2-planar sentence. The vast

majority of syntactic structures are 2-planar (Gómez-Rodŕıguez and Nivre,

2013; Gómez-Rodŕıguez, 2016), so introducing a second independent plane

is an effective way of being able to encode almost any dependency graph.

To do so, we need to introduce a different set of balanced brackets for each

plane. The arcs belonging to the second plane are marked with * and belong

to the set B∗ = {<*,\*,/*,>*}. A token wi can have assigned elements from

B and B* at the same time. As both planes are balanced independently,

they only match when they belong to the same plane.

In this work, we consider restricted non-projective (rxb) and 2-planar-

bracketing (2pb) encodings. There are many strategies to assign arcs to the

second plane (Strzyz, Vilares, and Gómez-Rodŕıguez, 2020). We chose a

so-called second-plane-averse greedy plane assignment, that assigns the arc

to the first plane when possible. If not possible, we assign the arc to the

second plane, and no plane if both planes are unavailable. This simple but

suboptimal assignment was chosen over the other proposed in the paper

(second-plane-averse plane assignment based on restriction propagation on

the crossing graphs) because, although theoretically it does not secure that

all the 2-planar trees are encoded due to its suboptimal assignations, in

practice these differences are negligible both in coverage and performance

(see Tables 2 and 6 from Strzyz, Vilares, and Gómez-Rodŕıguez (2020)).

Transition-based encodings

Transition-based parsing algorithms define an abstract state machine where

each configuration holds a structured representation together with auxiliary
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data structures. The system moves between states through shift-reduce ac-

tions or transitions until it finds a full parse. An introduction on how these

systems work has been explained in Section 2.2.1.

Gómez-Rodŕıguez, Strzyz, and Vilares (2020) presents a unified frame-

work to cast transition-based algorithms as a sequence labeling task for any

left-to-right transition system. These systems have a set of transitions that

read words from the input in a strictly left-to-right order, needing n of these

transitions to read a sentence of length n. This property can be used to

divide the n transition sequences in n labels and assign one label to each

word.

These encodings have been shown to perform worse than bracketing-

based encodings. However, we include them for completeness and to study

its convenience in low-resource setups. In this work, we consider mappings

from the projective transition-based algorithm arc-hybrid (ahtb)(Kuhlmann,

Gómez-Rodŕıguez, and Satta, 2011) and for the non-projective Covington

algorithm (ctb) (Covington, 2001).

3.1.2. Framework details

Each input vector ~wi is composed of a concatenation of a word embedding,

a character-level word embedding computed through a char-LSTM, and an

optional PoS tag embedding. We use a 2-task MTL setup for every encoding

seen in 3.1.1, except for the 2-planar bracketing encoding. One task predicts

xi to each encoding specifics, and the other one predicts the dependency

type li. For the 2-planar bracketing encoding we use a 3-task MTL setup

as it needs to compute the arcs from a second plane; the prediction of xi

is divided in two tasks, one that predicts the arcs from the first plane and

another one to predict those from the second one. We used a 3-task setup

instead a 2-task one, as it follows previous work and it establishes a fairer

comparison regarding label sparsity.

We decided not to use computationally expensive models like BERT

(Devlin et al., 2019) for several reasons. First of all, the experiments of this

work involve the training of 760 parsing models (see more details in 3.2),

which makes the training on BERT or similar models unfeasible. Also, there

are not specific-language or multilingual BERT models for all the languages

used. This could add uncontrolled variables that may impact the results

and the conclusions. In addition to this, there are controversies in literature
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about what makes a language help other under a BERT-based framework.

For example, Wu and Dredze (2019) concludes that sharing a lot of sub-

word chunks is important, while others state otherwise (Pires, Schlinger,

and Garrette, 2019; Artetxe, Ruder, and Yogatama, 2020). Lastly, even if

there were language-specific BERT models for every language, the data used

for their pretraining would add unwanted noise to our experiments.

3.2. Methodology and experiments

We made two experiments to test how the proposed encodings behave under

low-resource setups:

Experiment 1: Encodings’ data-efficiency (3.2.1). We simulate some

data-restricted setups to examine which encodings use data more ef-

ficiently. Our aim is to investigate if some of these linearizations are

learnable with less data or could perform better under the assumption

of larger data being available.

Experiment 2: Encodings’ performance on real LRLs data (3.2.2). We

test the encodings on real low-resource setups. This experiment aims to

check if the results of the previous experiment hold for authentic under-

resourced setups and to confirm which sequence labeling encodings

perform better under these conditions.

The languages used in the experiments come from a diverse sample of

language families and linguistic genera, use different script systems and have

different levels of non-projectivity. Table 3.1 shows information about the

selected treebanks.

Experimental setups

For both experiments, three experimental setups are considered:

1. Gold PoS tags setup. In this setup, the models are trained and execu-

ted considering an ideal framework which uses gold PoS tags as part

of the input. Encodings such as rph use PoS tags to rebuild the linea-

rized tree, so this scenario helps estimate the optimal data-efficiency

and learnability of these encodings under optimal but unrealistic con-

ditions.
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% Non-projective
treebank sentences Family Script
GermanHDT 6.76 IE (Germanic) Latin
CzechPDT 11.49 IE (West Slavic) Latin
RussianSynTagRus 7.53 IE (East Slavic) Cyrillic
Ancient ChineseKyoto 0.01 Sino-Tibetan Sinographs
PersianPerDT 14.22 IE (Iranian) Persian
EstonianEDT 3.22 Uralic Latin
RomanianNonstandard 5.43 IE (Romance) Latin
KoreanKaist 21.70 Korean Korean
Ancient GreekPROIEL 37.52 IE (Greek) Greek
HindiHDTB 13.60 IE (Indo-Aryan) Devanagari
LatvianLVTB 6.53 IE (Baltic) Latin
AfrikaansAfriBooms 22.23 IE (Germanic) Latin
CopticScriptorium 13.24 Afro-Asiatic Coptic
FaroeseFarPaHC 0.19 IE (Germanic) Latin
HungarianSzeged 27.10 Uralic Latin
LithuanianHSE 14.07 IE (Baltic) Latin
MalteseMUDT 3.86 Semitic Latin
MarathiUFAL 6.01 IE (Indo-Aryan) Devanagari
TamilTTB 1.67 Dravidian Tamil
TeluguMTG 0.15 Dravidian Telugu
WolofWTB 2.99 Niger-Congo Latin

Table 3.1: Percentage of non-projective sentences, linguistic family and script
for the selected treebanks used in both experiments.

2. Predicted PoS tags setup. As the previous setup does not reflect rea-

listic conditions, this setup executes the models using predicted PoS

tags. These are less helpful as their performance lowers, mainly when

there is little data available. The rph encoding is expected to suffer

more from this, as it needs the PoS tags to rebuild the tree from the

labels, and errors could propagate during decoding. To obtain the pre-

dicted PoS tags, we trained taggers for each treebank using the same

architecture and the same data used for the parsers.

3. No PoS tags setup. We train and execute the models without using

PoS tags as part of the input. The situation is unnatural for the rph

encoding as we still had to run the taggers to get the PoS tags to

rebuild the tree. Nevertheless, we include it for completeness and to

understand better how different families of encodings suffer from the

lack of PoS tags. This is an easy way to get simpler and faster models,

as the taggers do not need to be executed. Also, the input vectors and
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the models will be smaller, hastening the execution. This setup is most

relevant for low-resource languages, as PoS tags might no be available

or the taggers are not as accurate as needed in order to help deep

learning models (Zhou et al., 2020; Anderson and Gómez-Rodŕıguez,

2021).

3.2.1. Experiment 1: Encodings’ data-efficiency

Dependency parsing linearizations have been tested and compared in En-

glish and multilingual setups, but there is no work regarding how different

amounts of data can affect the behavior of the encodings. In this experi-

ment, we test the selected encodings in different sets with diverse quantities

of data and compare their results.

Data

We chose 11 rich-resource treebanks from UD2.7 (Zeman, Nivre, and others,

2020) with more than 10 000 training sentences: GermanHDT, CzechPDT,

RussianSynTagRus, Classical ChineseKyoto, PersianPerDT, EstonianEDT,

RomanianNonstandard, KoreanKaist, Ancient GreekPROIEL, HindiHDTB and

LatvianLVTB. We considered training subsets of 100, 500, 1 000, 5 000 and

10 000 samples to simulate data-restricted setup, plus the total training set

for comparison. The training sets were shuffled before the division.

Setup

To compare the data-efficiency of the selected encodings we considered the

rph encoding as the reference and as an a priori upper bound, since it has

showed the strongest performance in previous work for multi-lingual setups

(Strzyz, Vilares, and Gómez-Rodŕıguez, 2019; Gómez-Rodŕıguez, Strzyz,

and Vilares, 2020). Then, we calculate the difference of the average UAS

of the 11 treebanks between the rph and the other encodings for every setup

and training set. The goal is to know how the linearizations behave under

limited data and how this trend evolves as more data becomes available.

Finally, we show the UAS for the models trained on the whole treebanks.

We also computed the statistically significant difference between the rph

and the rest of encodings using the p-value (p < 0.05) of a paired t-test

on the scores distribution, following recommended practices for dependency
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parsing (Dror et al., 2018). In this work, UAS is reported over LAS as the

linearizations differ on how they encode the dependency arcs and not their

types. Table 3.2 shows the PoS taggers average performance.

# Sentences Average accuracy%

100 57.08
500 81.24
1 000 85.03
5 000 90.90
10 000 92.77

Low-resource 85.03

Table 3.2: Average accuracy of the taggers for the splits of the rich-resource
treebanks and the full low-resource treebanks.

Results

Tables 3.3, 3.4 and 3.5 show the difference of the average UAS for each

encoding with respect to the rph for the gold PoS tags, predicted PoS tags

and no PoS tags setups, respectively.

For the gold PoS tags setup, we can see how the rph encoding outper-

forms both the bracketing (rxb and 2pb) and the transition-based (ahtb and

ctb) encodings, for all the training splits. However, this gap narrows as the

number of training sentences increases. This suggests that, under an ideal,

gold environment, the rph encodings exploit limited data better than the

bracketing and transition-based encodings.

# Sentences rph rxb 2pb ahtb ctb

100 68.34 -2.15 -2.42 -5.82 -9.96
500 76.94 -1.58 -1.5 -5.21 -9.35
1 000 80.29 -1.42 -1.43 -5.16 -8.9
5 000 86.54 -1.16 -1.26 -3.62 -7.04
10 000 88.26 -0.8 -0.72 -3.52 -5.67

Table 3.3: Average UAS difference for the subsets of the rich-resource tree-
banks under the gold PoS tags setup. Blue (see next tables too) and yellow
cells show the UAS increase and decrease with respect to the rph encoding,
respectively.

For the predicted PoS tags setup, the differences narrow and the previous

tendency starts to disappear. For the sets of 100, 5 000 and 10 000, the relati-
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ve PoS-based encoding slightly outperforms the bracketing-based and clearly

outperforms the transition-based encodings. However, both bracketing en-

codings obtain a higher average UAS than the rph for the 1 000 sentences

set and the 2pb also performs better for the 500 sentences set. The rph is the

one encoding that suffers most the degrading quality of the PoS tags. This

suggests that the quality of the PoS taggers used can influence significantly

its performance. This may also indicate that the use of bracketing-based

encodings is preferable in this range as they seem able to take advantage of

the available information more than the rph, which suffers from inaccurate

PoS tags. Finally, we can observe too that all the scores drop significantly

with respect to the previous setup, mainly when little data is available.

# Sentences rph rxb 2pb ahtb ctb

100 41.87 -0.42 -0.19 -1.9 -3.59
500 63.45 -0.01 0.14 -1.96 -5.73
1 000 68.10 0.25 0.17 -2.44 -5.53
5 000 78.56 -0.62 -0.63 -2.53 -5.44
10 000 82.29 -0.37 -0.36 -2.49 -4.44

Table 3.4: Average UAS difference for the subsets of the rich-resource tree-
banks under the predicted PoS tags setup.

Lastly, the tendency reverses when no PoS tags are used. Bracketing-

based encodings obtain better results than the relative PoS-based one for

every amount of training samples. The gap narrows as the number of sen-

tences increases. The transition-based encodings also clearly outperform the

rph for the 100 sentences setup, and the ahtb slightly surpasses the relative

PoS-based encoding too for the 500 and 1 000 sentences scenario. It is also

worth noting that the bracketing-based and the transition-based encodings

obtain better UAS for 100 sentences than in the predicted PoS tags scenario

(44.79 in and 41.80 in average for the bracketing-based and transition-based

encodings respectively in the no PoS tags setup, versus 41.57 and 39.13 in

the predicted PoS tags setup), probably due to the poor performance of the

taggers with scarce data. The advantage in favour of bracketing lineariza-

tions for the predicted and no PoS tags setups for low-resource languages

will be further discussed in 3.2.2.

Tables 3.6, 3.7 and 3.8 show the UAS values obtained when training on

the full training sets of the rich-resource treebanks for the gold PoS tags,

predicted PoS tags, and no PoS tags setups, respectively. The objective is
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# Sentences rph rxb 2pb ahtb ctb

100 35.60 9.06 9.31 7.57 4.83
500 58.63 3.04 2.45 0.99 -2.26
1 000 63.99 3.59 3.42 0.83 -2.24
5 000 75.57 1.47 1.55 -0.19 -3.07
10 000 79.90 1.22 1.54 -0.87 -2.93

Table 3.5: Average UAS difference for the subsets of the rich-resource tree-
banks under the no PoS tags setup.

to see if some of the encodings are able to perform on par with the relative

PoS-based encodings under large quantities of data, since the previous re-

sults show that the UAS difference diminishes when the number of training

sentences increases. Although the gap between encodings shrinks, rph still

outperforms the rest of the encodings when PoS tags are used in almost

every treebank, being the difference statistically significant in most of them

when using gold tags. Also, as expected, bracketing-based encodings and

even the ahtb obtain higher UAS values than the rph when no PoS tags are

used as part of the input.

rph rxb 2pb ahtb ctb

grc 83.09 79.89−− 81.7− 78.57−− 79.86−−

lzh 90.21 89.56− 89.24− 89.04−− 89.18−

cs 91.61 90.49−− 90.91−− 88.18−− 85.64−−

et 85.62 84.79− 84.91− 81.86−− 81.11−−

de 96.69 95.95−− 96.38−− 95.15−− 86.51−−

hi 94.69 94.09−− 94.43− 93.05−− 85.02−−

ko 87.26 86.24−− 86.52− 85.68−− 84.06−−

lv 85.3 83.88− 84.01− 80.88−− 81.38−−

fa 92.61 92.07− 92.44− 90.45−− 87.09−−

ro 90.49 89.68− 89.63−− 87.39−− 86.38−−

ru 91.23 90.1−− 90.1−− 88.19−− 84.96−−

Avg 89.89 88.79 89.12 87.13 84.65

Table 3.6: UAS for the rich-resource treebanks, using the whole training set
and the gold PoS tags setup. The red (- -) and green cells (++) show that a
given encoding performed worse or better than the rph model, and that the
difference is statistically significant. Lime and yellow cells mean that there is
no a significant difference between a given encoding and the rph, appending
a + or a − when they performed better or worse than the rph.
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rph rxb 2pb ahtb ctb

grc 80.2 77.61−− 79.21− 76.49−− 77.71−

lzh 79.93 79.8− 79.42− 79.41− 79.54−

cs 90.04 88.93−− 89.34−− 86.67−− 84.25−−

et 81.07 80.36− 80.34− 77.71−− 76.95−−

de 95.85 95.14−− 95.54−− 94.34−− 85.79−−

hi 92.22 91.76− 92.21− 90.72−− 83.24−−

ko 84.25 83.44− 83.42− 82.98−− 81.25−−

lv 70.65 71.98++ 71.08+ 68.9− 68.97−

fa 90.39 89.8− 90.32− 88.27−− 85.28−−

ro 87.32 86.64− 86.49− 84.44−− 83.5−−

ru 88.71 88.13− 88.24− 85.93−− 82.96−−

Avg 85.51 84.87 85.06 83.26 80.86

Table 3.7: UAS for the rich-resource treebanks, using the whole training set
and the predicted PoS tags setup.

3.2.2. Experiment 2: Encodings’ performance on real LRLs

This experiment aims to check if the results obtained in 3.2.1 for the artificial

low-resource datasets that we created hold when tested in real low-resource

treebanks. Low-resource treebanks may present other problems in addition

to the lack of data, such as the lack of sentence diversity or erroneous anno-

tation, so different encodings might behave differently in these situations.

Data

We used 10 of the smallest treebanks in terms of training sentences

(discarding code switching treebanks or small treebanks of rich-resource

languages) that had a development set: LithuanianHSE, MarathiUFAL,

HungarianSzeged, TeluguMTG, TamilTTB, FaroeseFarPaHC, CopticScriptorium,

MalteseMUDT, WolofWTB and AfrikaansAfriBooms. Table 3.9 shows the sizes

of the treebanks used, that range between 153 and 1350 training sentences,

most being around or between 500 and 1 000.

Setup

We run the second part of the experiment described in 3.2.1 for the low-

resource treebanks to check if the trends observed in the previous expe-

riments hold when facing a real low-resource setup, and therefore if the
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rph rxb 2pb ahtb ctb

grc 77.84 77.41− 79.16+ 75.64− 76.99−

lzh 79.99 81.02+ 80.75+ 81.11++ 81.42++

cs 88.67 88.2− 88.64− 85.8−− 84.23−−

et 77.85 79.69++ 79.99++ 77.15− 76.27−

de 94.51 95.09++ 95.41++ 94.18− 83.54−−

hi 89.43 91.7++ 91.98++ 90.72++ 82.86−−

ko 79.39 82.18++ 82.15++ 81.88++ 80.3++

lv 62.56 71.17++ 72.38++ 66.78++ 69.38++

fa 89.14 90.39++ 90.48++ 88.49− 84.54−−

ro 85.28 86.41+ 86.94++ 84.25− 83.04−−

ru 83.35 83.98++ 84.5++ 83.42++ 80.26−−

Avg 82.55 84.29 84.76 82.67 80.26

Table 3.8: UAS for the rich-resource treebanks, using the whole training set
and the no PoS tags setup.

Treebank # Sentences

AfrikaansAfriBooms 1 315
CopticScriptorium 1 089
FaroeseFarPaHC 1 020
HungarianSzeged 910
LithuanianHSE 153
MalteseMUDT 1 123
MarathiUFAL 373
TamilTTB 400
TeluguMTG 1 051
WolofWTB 1 188

Table 3.9: Number of training sentences for the low-resource treebanks.

conclusions are similar.

Results

Tables 3.10, 3.11, 3.12 show the UAS for each encoding and treebank for

the gold PoS tags, the predicted PoS tags and the no PoS tags setups,

respectively. These results help to elaborate on the conclusions obtained in

the previous experiment.

As in 3.2.1, when gold PoS tags are available, the rph performs better

than the other representations except for Telugu, which appears to be an
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rph rxb 2pb ahtb ctb

af 88.02 85.7−− 85.48−− 81.84−− 78.6−−

cop 88.73 88.43− 88.72− 85.5−− 84.35−−

fo 84.04 83.76− 84.09+ 81.78−− 79.53−−

hu 79.75 76.14−− 76.13−− 71.66−− 64.27−−

lt 51.98 50.28− 50.19− 45.0− 46.6−

mt 81.81 81.05− 80.82− 76.78−− 74.98−−

mr 77.43 76.46− 75.97− 76.94− 73.54−

ta 74.96 73.1− 71.9− 71.74− 66.01−−

te 90.01 91.26+ 90.43+ 90.01+ 89.46−

wo 86.19 84.64−− 84.51−− 80.65−− 77.43−−

Avg 80.29 79.08 78.82 76.19 73.48

Table 3.10: UAS for the low-resource treebanks for the gold PoS tags setup.

outlier.

When using predicted PoS tags, in this case the bracketing-based enco-

dings perform consistently better for most of the treebanks, although the

difference is not statistically significant. This reinforces the results from Ta-

ble 3.4, as most of them are in or close to the range (between 500 and 1 000

training sentences) where the bracketing encodings outperformed the rph in

3.2.1. Still, the advantage of bracketing encodings is more evident in real

low-resource setups than in simulated environments.

Finally, for the no PoS tags setup, the bracketing-based encodings avera-

ged more than 3 points than the relative PoS-head selection encoding, which

performance is surpassed even by the encodings of the transition-based fa-

mily on many of the treebanks.

These results suggest that the bracketing-based encodings are the

most suitable linearizations for real low-resource sequence labeling parsing.

Furthermore, this might be an indication that we have to be extremely ca-

reful when running experiments on artificial low-resource setups, because

as observed in this work, this may lead to incomplete or even misleading

conclusions. Also, it is worth mentioning that the results obtained in the

no PoS tags setup are only slightly worse (less than 1 UAS point in ave-

rage) than those in the predicted PoS tags setup when using bracketing

and transition-based encodings, while being simpler and faster to train and

execute.
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rph rxb 2pb ahtb ctb

af 81.84 80.29− 79.9− 77.3−− 73.61−−

cop 85.77 86.25+ 85.92+ 83.14−− 81.84−−

fo 77.04 76.97− 77.52+ 75.23− 74.24−

hu 70.52 68.51− 68.77− 64.98−− 58.37−−

lt 30.28 34.53+ 33.11+ 31.23+ 29.91−

mt 74.6 75.64+ 75.07+ 71.17−− 70.35−−

mr 66.99 67.96+ 67.23+ 68.93+ 67.23+

ta 57.11 60.73+ 57.57+ 58.77+ 55.51−

te 86.41 87.93+ 87.93+ 86.96+ 86.69+

wo 76.88 76.4− 76.3− 73.24−− 70.84−−

Avg 70.74 71.52 70.93 69.10 66.86

Table 3.11: UAS for the low-resource treebanks for the predicted PoS tags
setup.

rph rxb 2pb ahtb ctb

af 79.86 80.78+ 80.07+ 75.47−− 73.76−−

cop 84.36 85.76+ 85.13+ 83.07− 81.28−−

fo 73.98 77.08++ 77.04++ 75.07+ 73.67−

hu 63.63 65.21+ 64.8+ 62.04− 56.17−−

lt 26.89 34.62++ 35.38++ 34.06++ 32.92+

mt 70.95 75.5++ 75.3++ 71.69+ 70.32−

mr 64.08 66.75+ 67.96+ 69.66+ 64.56+

ta 52.79 60.03++ 56.61+ 59.58++ 54.95+

te 85.44 88.49+ 88.63+ 87.1+ 86.82+

wo 73.11 77.17++ 76.95++ 74.01+ 70.86−

Avg 67.51 71.14 70.79 69.18 66.53

Table 3.12: UAS for the low-resource treebanks for the no PoS tags setup.

3.3. Conclusion

In this chapter, we have studied sequence labeling encodings for dependency

parsing in low-resource setups. First, we explore which encodings are more

data-efficient under different scenarios that include the use of gold PoS tags,

predicted PoS tags and no PoS tags as part of the input. By restricting trai-

ning data for rich-resource treebanks, we observe that although bracketing

encodings are less data-efficient than head-selection ones under ideal condi-

tions, this disadvantage can vanish when the input conditions are not gold

and data is limited. Second, we studied their performance under the same
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conditions, but on truly low-resource languages. These results show more

clearly the advantage of bracketing encodings over the rest of the encoding

families when training data is limited and the quality of external factors

(such as PoS tags) is poor (as a consequence of the low-resource nature of

the problem).



Chapter 4

Cross-lingual morphological

inflection

In this chapter, we present the second part of the work. We propose a data-

augmentation technique for low-resource parsing, that in this work we will

apply only to sequence labeling parsing, building on top of the work of

Chapter 3, although it should be applicable to any parsing paradigm. More

particularly, the method consists in taking a pair of related languages, a sour-

ce rich-resource language and a target low-resource language, and training

a morphological inflection system or inflectioner in the target language to

transform a treebank in the (related) source language into (something that

should resemble) the target language.

The system inflects the lemmas of the rich-resource treebank as they

would be inflected in the low-resource language, using its morphological fea-

tures. This creates a new hybrid treebank between the two languages that

is then used to train a dependency parser for the low-resource language. As

both languages are related, the treebanks are expected to share a certain

amount of lemmas and morphological features that will ease the transfor-

mation process. We are going to refer to these treebanks as cross-lingual

inflected treebanks or x-inflected treebanks. This process can be seen as

a kind of word-level translation using the lemmas and morphological infor-

mation contained in the treebanks, that allow for automatic cross-lingual

dependency annotation.

The main idea behind this technique is that inflected words carry syn-

tactic information, thus training dependency parsers using the x-inflected
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treebanks can add some information from the target language into the sour-

ce treebank. In this chapter, we want to check whether this technique can

improve the performance on target low-resource languages. To evaluate the

method, we propose two experiments for each target treebank:

1. We test this method on a zero-shot setup, i.e. the model is tested on

a language without seeing any sentence in that language before. We

evaluate two models against the target treebank: one trained with the

source treebank and one trained with the x-inflected treebank, and

check whether our method helps improving the results.

2. We test this method on a few-shot setup, i.e. the model has only seen

a few sentences in the language it is being tested on. We evaluate

three models against the target treebank: one only trained in the low-

resource target treebank, one trained in the target treebank together

with some related rich-resource treebanks, and one trained in the tar-

get treebank together with some related x-inflected rich-resource tree-

banks. We compare the results and see if and when our methods can

outperform a model trained only in the original low-resource treebank.

This chapter is organized as follows. In 4.1, we describe the process

followed to create the x-inflected treebanks. In 4.2, we describe the zero-

shot and the few-shot experiments in 4.2.1 and 4.2.2, respectively.

4.1. Description

In this section we describe the process to apply our method and create the

x-inflected treebanks. The proposed method requires four steps:

1. Select the treebanks.

2. Train a morphological inflectioner in the target language using UM

data.

3. Transform UD morphological features into UM features.

4. X-inflect the source language treebank using the trained system.

Figure 4.1 shows a diagram resuming all the steps required to create the

x-inflected treebanks.
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Figure 4.1: High-level architecture to create the x-inflected treebanks.

4.1.1. Selecting the treebanks

Although this technique can be applied to any pair of languages, in practice,

the availability of resources in UD and UM to implement it limits the number

of options. In what follows, we are going to see the three main aspects that

we must take into account when selecting the treebanks:

1. Availability of related rich-resource language. There has to be a rich-

resource UD treebank from a language that is similar enough to our

target language. To find suitable auxiliary languages, we chose close

languages from a phylogenetic point of view, being preferable those

languages that share the smallest common phylogenetic group with

the target treebank. To better understand this, we show the phylo-

genetic tree for Germanic languages in Figure 4.2. Faroese shares the

West Scandinavian genus with Icelandic and Norwegian, so these two

languages would be the first options as source languages. After that,

the following languages to be taken into account would be Danish and

Swedish, as they and Faroese share the North Germanic genus. After

those, any other Germanic language such as English or German would

be the next option, and so on. We selected the languages through a

manual search of the available resources in both UD and UM together

with an exploration of their phylogenetic trees.

2. Availability of data annotated with morphology. We have to take in-

to account some aspects regarding morphology information, both for

the target and the source language. On the one hand, for the sour-

ce language the UD treebank must be annotated with morphological
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features (the FEATS field from 2.2.3) so the UD information can be

transformed into UM format and their lemmas and feats can be used

as a proxy for inflection. On the other hand, for the target langua-

ge, there must be enough data available in UM in order to train a

morphological inflection model with enough accuracy. This narrows

the number of languages we can use, as they must have a reasonable

number of resources on UM while at the same time being low-resource

on UD (for the purpose of our work).

3. Use of morphological inflection. The chosen languages must use

morphological inflection at least to a certain degree so their lemmas

can be x-inflected into new forms. Intuitively, this method should be

more useful for more heavily inflected languages (e.g. Hungarian or

Latin), as they encode more syntactic information through inflection,

that can be transmitted by our method.

Due to the mentioned constraints, we are mostly restricted to Indo-

European and Uralic languages, as most other families do not have feasible

combinations of languages that match our requirements. Some others, as

Semitic languages, while making an extensive use of morphology inflection

to form new words and being present on both UD and UM, they use several

scripts that usually do not mark vowels, making transliteration hard and

unreliable. Therefore, we leave them out of the scope of this work, but we

believe they would be worth studying in future work.

4.1.2. Training a morphological inflection system

To train the systems, we first downloaded the available UM data for the

target language, shuffled it and split it 80-10-10 into a training set, a deve-

lopment set and a test set, respectively. In the case of languages containing

different files for different dialects, we concatenated all the forms into one

file prior splitting. The neural framework used is the one described in 2.4.2.

Table 4.1 shows information about the UM data used to train the morpho-

logical inflection systems.

4.1.3. Converting UD features to the UM schema

Once we have trained a inflectioner in the target language using the UM

data, we need to convert the features of the source treebank from the UD
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Figure 4.2: Phylogenetic tree for Germanic languages (Encyclopædia Bri-
tannica, 1998).

.

schema to the UM schema. Although both UD and UM schemata are univer-

sal and cross-lingual, and therefore both could be used for this task, there

are several reasons why we have chosen to use UM over UD. First, com-

bining two different resources can help compensating the lack of resources

in UD; some resources have few annotated sentences in UD, but they have

more annotated data in UM (e.g. Hungarian). Second, UM morphological

data is more abundant and complete for most languages than the data of

the UD treebanks, containing more inflected forms per lemma. Third, we

ran preliminary experiments for our task to select which features to use,

and parsing results were considerably worse when using UD features that

those obtained using UM, for most of treebanks, even considering that the

conversion of the features between schemata is not perfect and might cause

some information loss.

To convert the features from the UD feature schema to the UM feature

schema, we use the converter described in (McCarthy et al., 2018). In a

ideal situation this conversion should be an easy task. The approach used by

the converter starts by creating a language-independent mapping between

both schemata. Still, annotation errors, disagreements and missing values

in both schemata complicate this process, so a post-editing of the output

is included to improve the results. The post-editing is an iterative process

consisting in analyzing those forms and lemmas that are present in UD and

UM, comparing their annotations, and creating rules to refine the mappings



40 CHAPTER 4. Cross-lingual morphological inflection

Language Parts-of-speech Lemmas Forms

Galician Verbs 486 36 801
Livvi Nouns, verbs, adjectives 23 920 1 003 197
Faroese Nouns, verbs, adjectives 3 077 45 474
Latin Nouns, verbs, adjectives 17 214 509 182
Hungarian Nouns, verbs, adjectives 13 989 490 394
Czech Nouns, verbs, adjectives 5 125 134 527
Lithuanian Nouns, verbs, adjectives 1 458 136 998
Slovenian Nouns, verbs, adjectives 2 535 60 110
Welsh Verbs 183 10 641
North Sami Nouns, verbs, adjectives 2 103 62 677

Table 4.1: Information about the UM data for the low-resource languages
used to train the inflectioner. Livvi data is composed of several dialects; we
mixed all of them in one file.

Form Lemma UD Features UM Features
Omor̂ıră omor̂ı Mood=Ind|Number=Plur|Person=3| PST;3;IND;PFV;V;PL

Tense=Past|VerbForm=Fin
fiiul fiu Case=Acc,Nom|Definite=Def| NOM/ACC;DEF;SG;N

Gender=Masc|Number=Sing
stăp̂ınului stăpân Case=Dat,Gen|Definite=Def| DAT/GEN;DEF;SG;N

Gender=Masc|Number=Sing
de de AdpType=Prep|Case=Acc ADP;ACC
lucrători lucrătoe Case=Acc,Nom|Definite=Ind| INDF;NOM/ACC;PL;N

Gender=Masc|Number=Plur

Table 4.2: Morphological features expressed in the UD schema and
the UM schema (after conversion) for a sentence extracted from the
RomanianNonstandard UD treebank.

between schemata. This process changes from language to language, and it

is not available for all languages.

The converter translates all the morphological features contained in the

UD treebank from the UD schema to the UM schema. An example of con-

version for a sentence of the RomanianNonstandard UD treebank is shown in

Table 4.2.

4.1.4. Transforming the treebank

Once the features of the source treebank are expressed in the UM schema,

and the morphological inflection system is trained, it is time to inflect its

lemmas using the inflectioner. For this process we only considered those

lemmas whose part-of-speech is contained in the UM data of our target

language, as indicated in Table 4.1.
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Lemma UM Features Output form Original form
omor̂ı PST;3;IND;PFV;V;PL Omoraērunt Omor̂ıră
fiu NOM/ACC;DEF;SG;N fius fiiul
stăp̂ınului DAT/GEN;DEF;SG;N stipin stăpân
de ADP;ACC de de
lucrătoe INDF;NOM/ACC;PL;N lucrōtōribus lucrători

Table 4.3: Cross-lingual inflection of a sentence of the RomanianNonstandard

treebank using an inflectioner trained in Latin UM data.

We use the morphological features (expressed in the UM schema) and

the lemma from the source treebank as input, and the inflectioner generates

new inflected forms as an output string that should resemble the inflected

term in the target language. These forms replace the original forms in the

source UD treebank. Table 4.3 shows an example of an x-inflected sentence.

4.2. Metholodogy and experiments

To test the proposed method, we performed two experiments:

Experiment 1. We compare the results obtained by a parser trained

using the original source treebank and the x-inflected source treebank

to see if our approach could improve the results in a zero-shot setup,

for a number of target low-resource treebanks.

Experiment 2. We created groups of languages that include a target

low-resource language and a few rich-resource languages from the sa-

me phylogenetic group. Then, we train our sequence labeling parsers

on three different types of data: (i) the target low-resource treebank,

(ii) the target low-resource treebank merged with the related sour-

ce languages treebanks without x-inflecting them, and (iii) the target

low-resource treebank merged with the x-inflected source treebanks.

Regarding the use of PoS tags, we used the predicted PoS tag setup from

the previous chapter, described in section 3.2, and the encoding used is the

2-planar bracketing encoding, described in 3.1.1. The sequence labeling fra-

mework used to train the parsers is the one used in Chapter 3 and described

in 2.3.2.
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4.2.1. Experiment 1: Zero-shot setup

We evaluate our method in a zero-shot setup, testing two different models

trained on related languages on the same target low-resource treebank: one

trained on the original source treebank, and another one trained on the

x-inflected treebank. The goal of this experiment is to check whether this

method can improve the performance of parsers when there is no available

training data, but there is a related language with a more complete UD

treebank and enough UM data to train a morphological inflection system

in the target language and use it to transform the related rich-resource

treebank.

Data

We chose 10 low-resource treebanks: GalicianTreeGal, LivviKKPP,

FaroeseFarPaHC, LatinPerseus, HungarianSzeged, CzechCLTT, LithuanianHSE,

SlovenianSST and WelshCCG and North SamiGiella, and 21 rich-resource

treebanks: EstonianEDT, FinnishTDT, NorwegianBokmaal, NorwegianNynorsk,

IcelandicIcePaHC, SwedishLinES, DanishDDT, PolishLFG, SlovakSNK,

FrenchGSD, ItalianISDT, RomanianNonstandard, CatalanAnCora, SpanishAnCora,

PortugueseBosque, LatvianLVTB, BulgarianBTB, CroatianSET, SerbianSET,

IrishIDT and Scottish GaelicARCOSG. Tables 4.4 and 4.5 show information

about the low-resource and rich-resource treebanks, respectively. Target

treebanks can be matched with several source treebanks and vice versa,

depending on availability of resources. Although Latin and Czech cannot

be considered low-resource languages, as they have more rich-resource

treebanks in UD, we decided to include these treebanks as a zero-shot

setup to provide a sample as diverse as possible taking into account the

strict conditions the treebanks must follow. As explained before, the

requirements of the resources needed, limits us to the Indo-European and

Uralic families, but that still offers diverse linguistic genera and diverse

degrees of morphological inflection.

Results

The results for these zero-shot experimental setup are shown in Table 4.6,

and show different trends: some languages present only improvements over

the corresponding model trained on the original source treebank, some only
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Treebank # Training sent. # Test sent.

GalicianTreeGal 600 400
LivviKKPP 19 106
FaroeseFarPaHC 1 020 301
LatinPerseus 1 334 939
HungarianSzeged 910 449
CzechCLTT 860 136
LithuanianHSE 153 55
SlovenianSST 2 078 1110
WelshCCG 704 953
North SamiGiella 2 257 865

Table 4.4: Low-resource treebanks used in both experimental setups.

decreases, and some others offer a mix depending on the source treebank.

Overall, in the case of UAS we see that the method improves the zero-

shot performance for 14 pairs of languages and causes losses for 13; while

for LAS the improvements are a bit higher, improving the results for 16

language pairs against 11 pairs that obtained a worse performance.

On the one hand, for two languages, Faroese and Lithuanian, the model

trained on every x-inflected treebank obtains a better result than using the

original one. We could only pair Lithuanian with one language, but Faroese

is paired with different languages, obtaining improvements for all of them.

On the other hand, the use of our method decreases the score for all language

pairs for Galician and Slovenian. In the case of Galician, the score differences

with the model trained on the original source treebanks are small. This might

be because the UM Galician data only includes information about verbs, and

hence the number of x-inflected forms is smaller than for other languages.

In the case of Slovenian, however, these differences are larger, indicating a

poor transformation process. The cause of these results is not clear to us, as

there are many factors that come into play. Yet, we have a few hypotheses

about the poor behaviour in this case, such as: (i) badly annotated UM

data or UD features, (ii) an incorrect translation between schemata or (iii)

a bad selection of languages. Another possible reason is that morphological

inflection systems generalize poorly when facing unseen lemmas, as pointed

by Goldman, Guriel, and Tsarfaty (2021). This work is contemporary to

ours so we did not take that into account when doing the experiments, but

we believe this is worth exploring in future work.

For the rest of the languages, there are pairs that have positive results
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Treebank # Training sentences Post-editing

FinnishTDT 12 217 Yes
EstonianEDT 24 633 No
NorwegianBokmaal 15 696 Yes
NorwegianNynorsk 14 174 Yes
IcelandicIcePaHC 34 007 No
DanishDDT 4 383 Yes
SwedishLinES 3 176 Yes
PolishLFG 13 884 Yes
SlovakSNK 8 483 Yes
FrenchGSD 14 449 Yes
ItalianISDT 13 121 Yes
RomanianNonstandard 24 121 Yes
CatalanAnCora 13 304 Yes
SpanishAnCora 14 305 Yes
PortugueseBosque 8 328 Yes
LatvianLVTB 10 156 Yes
BulgarianBTB 8 907 Yes
CroatianSET 6 914 No
SerbianSET 3 328 No
IrishIDT 4 005 Yes
Scottish GaelicARCOSG 1 990 No

Table 4.5: Rich-resource treebanks used in both experimental setups. The
availability of a custom post-editing for a language does not assure a good
conversion of features from UD to UM, it is just an improvement over the
automatic one.

and pairs that have negative results. The case of Hungarian is worth remar-

king: while the Finnish x-inflected treebank scores 30 points more than the

original one, the Estonian transformed treebank performs slightly worse than

its original source counterpart. Hungarian is just slightly related to Finnish

and Estonian, while Finnish and Estonian are closely related between them.

The three languages make a strong use of suffixation to encode morphosyn-

tactic features, which may explain the great boost in performance that the

transformation gives to the Finnish trained model, as the x-inflected forms

encode more morphosyntactic information. However, this boost does not oc-

cur in the case of Estonian. This might be due to differences in annotations

between both treebanks or problems in translating schemata, since Estonian

does not have a custom post-editing procedure (see Table 4.5). The effect

of the conversion between schemata is something we would like to study in
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Target Source Trans. UAS LAS
Galician Catalan No 41.21 24.56

Yes 39.76 (-1.45) 21.44 (-3.12)
Portuguese No 57.96 49.21

Yes 57.77 (-0.19) 47.20 (-2.01)
Spanish No 55.99 38.73

Yes 55.91 (-0.08) 38.03 (-0.70)
Livvi Finnish No 36.69 22.58

Yes 43.55 (+6.86) 28.76 (+6.18)
Estonian No 35.01 17.47

Yes 34.48 (-0.53) 21.10 (+3.63)
Faroese Danish No 20.12 8.20

Yes 27.61 (+7.49) 13.30 (+5.10)
Icelandic No 59.79 50.28

Yes 60.99 (+1.20) 51.35 (+1.07)
Bokmaal No 10.24 5.34

Yes 22.27 (+12.03) 12.18 (+6.84)
Nynorsk No 25.49 15.18

Yes 29.08 (+3.59) 16.32 (+1.14)
Swedish No 19.24 5.06

Yes 25.73 (+6.49) 7.66 (+2.60)
Latin Catalan No 16.20 6.74

Yes 21.00 (+4.80) 9.52 (+2.78)
French No 21.10 8.71

Yes 16.93 (-4.17) 6.74 (-1.97)
Italian No 18.71 9.44

Yes 17.63 (-1.08) 7.63 (-1.81)
Romanian No 19.85 8.42

Yes 29.17 (+9.32) 10.53 (+2.11)
Spanish No 16.29 6.80

Yes 19.00 (+2.71) 7.20 (+0.40)
Hungarian Finnish No 25.80 7.11

Yes 56.28 (+30.48) 33.04 (+25.93)
Estonian No 28.67 9.49

Yes 26.93 (-1.74) 8.82 (-0.67)
Czech Polish No 28.11 18.56

Yes 16.48 (-11.63) 7.68 (-10.88)
Slovak No 33.37 26.80

Yes 35.81 (+2.44) 27.60 (+0.8)
Lithuanian Latvian No 29.62 12.08

Yes 33.96 (+4.34) 15.85 (+3.77)
Slovenian Bulgarian No 30.15 14.01

Yes 26.70 (-3.45) 12.05 (-1.96)
Croatian No 35.82 20.29

Yes 30.09 (-5.73) 15.74 (-4.55)
Serbian No 35.85 18.59

Yes 26.17 (-9.68) 12.89 (-5.7)
Welsh Irish No 42.83 14.86

Yes 34.18 (-8.65) 11.74 (-3.12)
S. Gaelic No 25.92 8.79

Yes 26.93 (+1.01) 10.03 (+1.24)
North Sami Finnish No 21.30 6.25

Yes 18.21 (-3.09) 6.35 (+0.10)
Estonian No 26.36 9.03

Yes 28.12 (+1.76) 10.52 (+1.49)

Table 4.6: Results for Experiment 1. The numbers between parentheses re-
present the score difference between the model trained on the x-inflected
treebank and the original source one.
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the future.

4.2.2. Experiment 2: Few-shot setup

Secondly, we test our method in a few-shot setup, combining a low-resource

treebank with a group of source languages from the closest phylogenetic

group available, as explained in Section 2.2.1. We compare the results obtai-

ned on the test set of the low-resource treebank by three different parsers:

A parser trained only on the low-resource treebank.

A parser trained on the phylogenetic group, without x-inflecting the

source treebanks.

A parser trained on the phylogenetic group, x-inflecting the source

treebanks using our method.

The goal of this experiment is to check whether we are able to outper-

form sequence labeling parsers trained on a low-resource treebank by joining

it with rich-resource treebanks of similar languages that have been trans-

formed using the proposed method. Also, we want to measure if grouping

a low-resource treebank with a group of related rich-resource treebanks can

improve the parsing results; and although this idea is not new (Vilares,

Gómez-Rodŕıguez, and Alonso, 2016; Ammar et al., 2016), it has not been

tested for sequence labeling parsing.

Data

We selected 10 phylogenetic groups of languages consisting of a low-resource

and a few rich-resource treebanks:

Ibero-Romance. Galician (LR), Spanish, Catalan1 and Portuguese

(RR).

North Germanic. Faroese (LR), Norwegian (Bokmaal), Norwegian

(Nynorsk), Swedish and Icelandic (RR).

Finno-Ugric. Hungarian (LR), Finnish and Estonian (RR).

West Slavic. Czech (LR), Polish and Slovak (RR).

1The classification of Catalan as an Ibero-romance language is still discussed (Porras,
2014; Juge, 2007).
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South Slavic. Slovenian (LR), Bulgarian2, Croatian and Serbian (RR).

Romance. Latin (LR), Spanish, Romanian, French, Catalan and Italian

(RR).

Baltic. Lithuanian (LR), Latvian (RR).

Celtic. Welsh (LR), Irish and Scottish Gaelic3 (RR).

Finnic. Livvi (LR), Finnish and Estonian (RR).

Finno-Permic. North Sami (LR), Finnish and Estonian (RR).

We considered different group sizes and different degrees of phylogenetic

closeness for completeness. For the low-resource target treebanks that did

not have a development set, we used 20 % of the sentences of the training

set to create a development set to train the low-resource parser.

Results

The results of this experiment are shown in Table 4.7. The scores obtained

are in line with those obtained in the previous experiment. There are three

groups out of ten where the model trained on the x-inflected treebanks out-

performs the non-inflected group and the model trained on the low-resource

treebank; for two of them (North Germanic and Baltic), all their language

pairs obtained improvements when applying our method in the previous ex-

periment. For the other (Finnic), our method also improved all the zero-shot

scores except UAS for one pair.

From the seven treebanks where our method is not able to increase the

results, in three of them (Finno-Ugric, Romance, and Finno-Permic), the x-

inflected group obtains a better score than the original group, but worse than

the low-resource treebank alone. This maybe indicates that the x-inflection

process might be beneficial, but the grouping is not, as adding the selected

treebank does not help the learning process. A couple questions that arise

from this are: (i) whether it is a good idea to group all the proposed lan-

guages, (ii) and under which criteria should we group the treebanks. The

opposite happens for the four remaining cases (Ibero-Romance, West Slavic,

2Script converted to latin.
3Larger than the Welsh treebank one, but not truly rich-resource.
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Group Model UAS LAS

Ibero-Romance LR treebank 71.30 63.29
Original 81.17 74.21
Transformed 80.88 (-0.29) 73.90 (-0.29)

North Germanic LR treebank 77.58 71.89
Original 83.78 80.06
Transformed 85.23 (+1.45) 81.14 (+1.08)

Finno-Ugric LR treebank 66.92 58.47
Original 54.45 43.47
Transformed 59.70 (-7.22) 48.84 (-9.63)

West Slavic LR treebank 72.43 66.78
Original 76.84 71.84
Transformed 71.87 (-4.97) 66.88 (-4.96)

South Slavic LR treebank 59.44 50.29
Original 67.89 59.47
Transformed 55.57 (-12.32) 44.34 (-15.13)

Romance LR treebank 51.98 38.81
Original 33.69 22.80
Transformed 49.69 (-2.29) 36.16 (-2.65)

Baltic LR treebank 29.62 12.08
Original 34.72 18.77
Transformed 37.64 (+2.92) 23.02 (+6.69)

Celtic LR treebank 78.21 65.23
Original 80.35 67.92
Transformed 76.25 (-4.10) 58.32 (-9.60)

Finnic LR treebank 9.48 2.55
Original 40.39 24.53
Transformed 53.83 (+13.44) 38.91 (+14.38)

Finno-Permic LR treebank 54.38 44.47
Original 48.05 38.87
Transformed 50.25 (-4.13) 39.69 (-4.78)

Table 4.7: Results of Experiment 2. Bold numbers represent the best result
for each LR treebank. The numbers between parentheses represent the score
difference between the x-inflected group and the best or second best result,
depending on which model obtains the best result.

South Slavic and Celtic); the grouping process improves the scores but the

x-inflection does not.

For simplicity, we decided to merge all the source treebanks from each

phylogenetic group, instead of selecting only those that obtained good zero-

shot results in the previous experiment. However, this is a suboptimal stra-
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tegy, as seen in the results of this second experiment; it may would be better

to mix x-inflected and not-inflected treebanks depending on their results in

the zero-shot setup. The grouping process is harder to control, as it is not

clear which criteria to follow when using auxiliary languages for transfer

learning, and which number of languages would be optimal to group. We

plan to study these aspects in future work.

4.3. Conclusion

In this chapter, we proposed a data augmentation technique to improve the

performance of dependency parsers for low-resource languages. We trained

a morphological inflection system using UM data of a low-resource target

language, and then apply it to a UD rich-resource treebank from a similar

language to create a cross-lingually inflected treebank more similar to the

target language.

Following the work of Chapter 3, we used the x-inflected treebanks to

train sequence labeling parsers on two different experiments: one testing its

applicability in a zero-shot setup when no UD training data is available,

and one testing its applicability in a few-shot setup when only a small UD

training treebank is available. For both experiments, we need that the target

languages have enough UM data to train a morphological inflectioner and

related languages with rich-resource treebanks in UD.

The results show that this method improves the parsing results for some

particular situations. However, further work is needed to better understand

how different factors determine the usefulness of the methods, and if the ob-

served results are reproduced when testing on models following other parsing

paradigms like transition-based and graph-based parsers.





Chapter 5

Conclusion and future work

In this chapter, we discuss the findings of the work and propose some possible

future lines of research.

5.1. Conclusion

The field of NLP has significantly advanced in the last decade, thanks to

the use of deep learning models and the increase in the availability of data

and the computing power. Yet, although these models obtain high accuracy

in many tasks, they need annotated data to perform competitively, which is

only available for a reduced number of the so-called rich-resource languages.

Thus, most of the improvements and studies have been focused on these

languages, which are not a representative sample of the human languages.

Furthermore, deep learning models often require high volumes of data to

be trained. Due to this, most human languages are being ignored by the

advances of NLP, keeping millions of people away from their advantages

and ignoring a lot of typological features when designing the systems. These

aspects, among others, encourage us to study low-resource languages.

In the context of dependency parsing and NLP, this work has made

two contributions: (i) studying the behaviour of different linearizations for

dependency parsing as sequence labeling in low-resource languages, and

(ii) proposing a cross-lingual method that uses morphological inflection for

data-augmentation of related (rich-resource) treebanks, given a target low-

resource treebank.

Regarding the first part of our work, we compared five different enco-

dings from three different families, considering experiments that use gold
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PoS tags, predicted PoS tags and no PoS tags as input. We selected a head

selection encoding that uses a relative index distance and a PoS tag to en-

code the arcs, two bracketing-based encodings, that encode the dependency

arcs using bracketing strings, and two mappings from two transition-based

parsing algorithms (the arc-hybrid and non-projective Covington). To test

this, we carried out two experiments. First, we restricted the training data

for rich-resource treebanks, observing that head selection encodings are mo-

re efficient under ideal conditions. However, this advantage disappears when

input data is not gold. The relative PoS-tag-based head selection encoding

needs PoS tags in order to rebuild the dependency tree, hence using predic-

ted PoS tags reduces its accuracy, specially in low-resource setups. Second,

we repeated the experiments under real low-resource conditions. The results

confirm more clearly the trend observed in the first experiment, reinforcing

the utility of bracketing encodings in low-resource situations.

With respect to the second part, we presented a cross-lingual method

that uses morphology inflection and it is essentially a data-augmentation

approach. The main idea was that given a target low-resource language, a

few related (rich-resource) languages are selected and transformed (based

on their lemmas and morphological features) into a hybrid treebank, that

we named x-inflected treebanks, that ideally should resemble and look si-

milar to the target low-resource language. The results obtained show that

this method can improve the results of dependency parsers in some parti-

cular low-resource situations, both for zero-shot and the few-shot scenarios.

However, due to the large amount of factors that comes into play, further

work is needed to understand better in which conditions and situations this

method improve the performance of the parsers.

5.2. Future work

As mentioned during this work, we believe there is space for improvement,

specially regarding Chapter 4.

First, notice that the proposed method is a data-augmentation approach,

that works directly on the treebanks, but it is not really restricted to de-

pendency parsing as a sequence labeling task. Then, next logical step of the

work introduced in Chapter 4 would be to study how it performs when used

together with other parsing paradigms, such as transition-based or graph-
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based parsing. Note that this could be a first attempt to verify whether the

trends (i.e. that a x-inflected treebank obtains better or worse performance

than the baseline) are consistent across different parsers, and would help

discard/confirm a potential reason that would explain the variability of the

method across different treebanks and languages, i.e. the suitability of the

underlying parsing model.

Another aspect that should be further studied is the behaviour of the

morphological inflection system when facing unseen lemmas. As contempora-

neously introduced in the work by Goldman, Guriel, and Tsarfaty (2021), the

performance of morphological inflection systems drops dramatically when fa-

cing lemmas that have not been seen during the training phase, specially

for low-resource languages. This problem is of vital importance for the task

of morphological inflection, but it takes an extra dimension in our case, as

most of the lemmas we are inflecting have not been seen by the models

(we are just expecting they are similar to some lemmas of the target low-

resource language), and some of the UM sets used to train the inflectioners

have modest amounts of data. A step in this direction could be splitting

the UM data in such a way that lemmas that appear in the training set

do not appear in the development and test sets. This could help see if the

morphological inflectioner generalizes worse/better and creates x-inflected

forms that resemble less/more those of the target language.

A third interesting research line would be the study of this method for

other language families, such as Semitic languages, which make an extensive

use of morphological inflection and have enough resources in UD and UM to

apply this method. However, most of these languages use different scripts,

usually abjads, a type of alphabetic script that omits some or all vowels.

Transliteration between scripts can then lose some information, so it must

be carried out very carefully. Related to this last point, UD and UM are

projects that are in constant expansion. Therefore, it is likely that in the

future more resources will be available for more languages, and more options

for combinations could be explored.

Overall, the factor or combination of factors that make the data-

augmentation technique successful or not remains an open question. Typo-

logical databases such as WALS (Dryer and Haspelmath, 2013) or URIEL

(Littell et al., 2017) to measure the similarity of languages might be useful

for this. We decided not to rely on them in this work due to data disagree-
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ment between resources; suitable language pairs suggested by the WALS or

URIEL data did not meet our requirements, and languages that met our

requirements do not have enough data in these databases to find suitable

partners. However, the growing availability of data in these resources might

make this solution feasible in the future.
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Rodŕıguez. 2021. What taggers fail to learn, parsers need the most.

arXiv preprint arXiv:2104.01083.

[Artetxe, Ruder, and Yogatama2020] Artetxe, Mikel, Sebastian Ruder, and



56 Bibliography

Dani Yogatama. On the cross-lingual transferability of monolingual re-

presentations. In Proceedings of the 58th Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 4623–4637, Online, July.

Association for Computational Linguistics.

[Balachandran et al.2020] Balachandran, Vidhisha, Artidoro Pagnoni,

Jay Yoon Lee, Dheeraj Rajagopal, Jaime Carbonell, and Yulia Ts-

vetkov. 2020. Structsum: Incorporating latent and explicit sentence

dependencies for single document summarization. ArXiv e-prints, pages

arXiv–2003.
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[Dehouck and Gómez-Rodŕıguez2020] Dehouck, Mathieu and Carlos Gómez-
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nald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret. The CoNLL

2007 shared task on dependency parsing. In Proceedings of the 2007

Joint Conference on Empirical Methods in Natural Language Proces-

sing and Computational Natural Language Learning (EMNLP-CoNLL),

pages 915–932, Prague, Czech Republic, June. Association for Compu-

tational Linguistics.

[Pennington, Socher, and Manning2014] Pennington, Jeffrey, Richard So-

cher, and Christopher D Manning. Glove: Global vectors for word repre-

sentation. In Proceedings of the 2014 conference on empirical methods

in natural language processing (EMNLP), pages 1532–1543.

[Peters et al.2018] Peters, Matthew E, Mark Neumann, Mohit Iyyer, Matt

Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.

2018. Deep contextualized word representations. arXiv preprint ar-

Xiv:1802.05365.

[Petrov, Das, and McDonald2011] Petrov, Slav, Dipanjan Das, and Ryan

McDonald. 2011. A universal part-of-speech tagset. arXiv preprint

arXiv:1104.2086.

[Pimentel et al.2021] Pimentel, Tiago, Maria Ryskinàı, Sabrina MielkeZ, Shi-
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kim Nivre. Treebank translation for cross-lingual parser induction. In

Proceedings of the Eighteenth Conference on Computational Natural Lan-

guage Learning, pages 130–140.

[Vania et al.2019] Vania, Clara, Yova Kementchedjhieva, Anders Søgaard,

and Adam Lopez. A systematic comparison of methods for low-resource

dependency parsing on genuinely low-resource languages. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Pro-

cessing and the 9th International Joint Conference on Natural Langua-

ge Processing (EMNLP-IJCNLP), pages 1105–1116, Hong Kong, China,

November. Association for Computational Linguistics.
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