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Abstract

The rental of the public system of shared bicycles is a service aimed at all citizens

of the city of Madrid and Barcelona, as an alternative element of clean transport that

contributes to a more sustainable mobility model and the promotion of more balanced

transport habits and healthy. Mobility services are increasingly based on technology

and data collection, not only directly related to mobility flows, but also to other variables

that affect it to a greater extent such as meteorology, pollution, strikes and temporary

events. Knowing where, when and how people move is key to matching supply with

demand. A better understanding of their behavior will allow us to better adapt these

transport systems and optimize resources. It is necessary to predict how the system

will behave to anticipate movements. Deep learning techniques have shown signifi-

cant improvements in prediction over traditional models, but some difficulties and open

questions remain regarding their applicability, accuracy, and ability to provide practi-

cal information. Our approach in this paper is based on comparing different models

capable of predicting at least 6 hours in advance which stations are likely to be full or

empty.
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1 INTRODUCTION

1 Introduction

The purpose of this first chapter is to give an overview of the problem and a descrip-

tion of the contents that are developed in this work. The objectives are presented, as

well as the analysis of the data, the methodology used and the results obtained.

1.1 Presentation

The city organizes its mobility through different transport systems that act individu-

ally, but which together form a mobility ecosystem. This is an ecosystem with great

imbalances by giving priority to some transport over others. A better understanding

of their behavior will allow us to better adapt these transport systems and optimize

resources. The city’s ecosystem is supported by a physical infrastructure such as

roads, bridges or tunnels. This infrastructure conditions movement flows within cities

and these investments in infrastructure are high, so design errors represent a great

economic and functional cost for citizens. In addition to the road, there are the stops

and routes made by public transport, which is the basis of mobility in any developed

city. This is more or less flexible depending on its type. For example, the route of

the bus and its stops is much more flexible than the subway, whose underground in-

frastructure represents a technical challenge and a large investment, so any errors

are difficult to correct or cannot be adapted to changing trends within the city it faces.

The technological infrastructure is also important, such as mobile phone towers, iden-

tification cameras for access control of certain areas, toll arches, access barriers or

communication of these systems.

The public bicycle-shared system rental is a service aimed at all citizens of the city

of Madrid and Barcelona, as an alternative element of clean transport that contributes

to a more sustainable mobility model and the promotion of more balanced and healthy

transport habits.

Mobility services are increasingly based on technology and data collection, not only

directly related to mobility flows, but also to other variables that affect it to a greater

extent such as weather, pollution, strikes, specific events or the day of the week and

the month. Knowing where, when and how people move is key to matching supply
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1.2 Precedents 1 INTRODUCTION

with demand. For this, it will be necessary to work with different data sources and

explore others, which are not so obvious at first, but which can give us the keys to

these behaviors.

The study focuses on the comparison of the cities of Madrid and Barcelona, which

together have more than 9,000 bicycles, 700 stations and 300,000 users. Based

on usage data and profiles from the public bicycle network in Madrid (BiciMad) and

Barcelona (Bicing), we developed a usage prediction model based on time, journeys

and climate conditions. The stations have a limited number of anchorages, around

20, where you can park your bicycles. Within the user experience, one of the biggest

frustrations is not being able to leave the bikes because the station is completely full or

not being able to have a bike because the station is completely empty. The municipali-

ties, which are responsible for the service, apply financial penalties to the operators in

the contracts every time these situations occur. To solve these problems, the operator

must balance the distribution of bicycles in the stations, moving vehicles from one sta-

tion to another. The constant flows of bicycles are conditioned by different variables

such as working hours, the weather, the day of the week or events, which makes it

necessary to predict how the system will behave in order to anticipate movements.

1.2 Precedents

Although the use of shared bicycles has been a reality for some time in different cities

around the world, it is in recent years and especially after the global pandemic caused

by Covid 19, when it has gained a relevant role. "Recent analysis on the micro-mobility

industry finds that, globally, it is set to become one of the most attractive forms of sus-

tainable mobility thanks to its convenience, affordability and safety. Comprising bike-

sharing, kick scooter sharing, and scooter sharing, the global micro-mobility market is

estimated to register 31.9 million vehicles by 2025, up from 20.5 million in 2020" [1].

Different changes in trends have favored cities to become aware of the importance of

mobility in cities. These trends are framed in different areas such as social, economic,

infrastructure or cultural. With the new generations, habits are being changed from the

ownership of assets to the use and enjoyment of services. As this is a new trend, it is

not very clear if it is driven by the greater difficulty of access to different goods such as
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1.3 State of the Art 1 INTRODUCTION

motor vehicles and / or a temporary behavior conditioned by the lack of responsibilities

and obligations that will grow with the increase of members in the family. The growth

trend of cities in the face of rural depopulation or the development of technology that

makes the use and payment of new forms of transport more accessible in its different

modes such as shared transport. What seems like a fact rather than a trend is that

governments, administrations and those responsible for public transport and mobility

in cities have incorporated the shared bicycle service as one more mode of transport

that helps solve the increasingly growing problem congestion in cities. The concentra-

tion of the population in cities requires different solutions to help mitigate the problems

caused by displacement and its high cost, both economically and in terms of time and

health caused by high rates of pollution. Shared bicycle systems are here to stay and

now we have to understand the habits of use and the parameters that will allow us

to locate the stations in an efficient way and balance the distribution of bicycles in the

stations. In addition, we need to know what other variables influence usage patterns in

order to develop predictive models that allow us to optimize and improve the service.

1.3 State of the Art

Many studies have been conducted using available data to analyze bike sharing sys-

tems [12, 14, 18]. The main problem is that aggregate data was available in general,

while it was not common to access individual data that reflected origin-destination jour-

neys, availability of vehicles at stations or type of user (sporadic, regular or intensive).

The difficulty of accessing these data [13] has conditioned the type of studies on mere

descriptive analyzes until recent years where techniques with a predictive approach

based mainly on time series and crossing data that could influence behaviors such

as the weather [21, 23, 26], the level of congestion in the city, pollution [15] or other

sociodemographic conditions [19, 20]. Bagus and Purnama published in 2015 one

of the first articles [2] that attempts to develop a predictive model of use favored by

availability of origin-destination vector data in a disaggregated form, contrary to what

had been available until now. Once they have defined the typology of users, spatial

analysis and route estimation, they apply a Markov-based model to predict the next

destination station for the user. The results of this study are promising. Seguí and

8



1.4 Objectives 1 INTRODUCTION

Mateu [3] asses three components: The evolution of the modal distribution and its

relationship with bicycle traffic, the territorial coverage of the system and its operation

and, finally, the characteristics, profile and the motivations of the users. This is a very

descriptive work that, as a handicap, uses the origin-destination matrices in an ag-

gregate way, which makes it difficult to assign the route individually. In any case, this

does not prevent us from analyzing the growth and movement flows that make up the

bicycle ecosystem in the city of Palma.

Finally, Ali and Mahmood [4] review 26 articles from two perspectives: the first, the

use of deep learning architecture and the second, all the data collected by various de-

vices such as sensors, IoT or GPS, revealing that the LSTM (Long Short-Term Mem-

ory) of neural networks is the most used architecture for the prediction of traffic flows.

Regarding Spatio-temporal forecasting, an open research field whose interest is grow-

ing exponentially.

Rodrigo de Medrano and José L. Aznarte in their work [5] focus on creating a com-

plex deep neural framework for spatio-temporal traffic forecasting. His proposal is

based on an interpretable attention-based neural network in which several modules

are combined in order to capture key spatio-temporal time series components. This

article serves as the basis for the present study and the performance of time series by

neural networks.

1.4 Objectives

The objective of this master´s thesis is the comparison of different predictive models

of neural networks on the data of two cities (Madrid and Barcelona) according to their

usage habits in a time series format and adding climatological factors such as temper-

ature, rain and wind. It seeks to understand what conditions determine the mode and

intensity of use and if they can be extrapolated to other cities. For this, our approach

is based on building a model capable of predicting at least 6 hours in advance which

stations are likely to fill or empty.

9



1.5 Thesis overview 2 DATA ANALYSIS AND DESCRIPTION

1.5 Thesis overview

After an introduction where we locate the scope of this work, background, state of

art and objectives, we proceed to describe and analyze the sources and quality of

the data that we are going to have. These are the key to the development of this

work. We continue with the methodology, breaking down how the different variables

become part of the process and which are the models that will allow us to develop

our predictive algorithm. Once the model is established, we will comment on what is

the social impact and the use that should be given and how it improves the current

methods used. The expected results and how to present it are also discussed.

2 Data analysis and description

As we have previously commented, the challenge we face is to demonstrate which

model performs best when predicting station availability and whether there are other

factors that influence user habits. For this, we will use a time series based on the

use data of the shared bicycle systems of Madrid and Barcelona. In addition, as

exogenous factors, we will add climatological variables such as rain, temperature and

wind. The distinction of the nature of the two types of data is important because, while

usage data is the basis for model performance, the true influence of climatological

data on forecasting models and the impact on improving the model are an unknown

that we hope to be able to solve throughout this study.

2.1 Data presentation

The time window chosen for this study is from March 2019 to February 2020, try-

ing to avoid the impact that the COVID 19 pandemic produced on the use of these

systems. We consider that the stoppage of the service during the following months

and the subsequent irregular use caused by the different restrictions could translate

into erratic behaviors within the time series. Although a study period of several years

would be desirable to obtain optimal results, we are conditioned by the obtaining of the

data and the computational capacity, so we consider that the established space of a

10



2.1 Data presentation 2 DATA ANALYSIS AND DESCRIPTION

full year is sufficient for the purpose of this study.

The magnitude of the data used also recommends the containment of temporal

space. The size of the databases used are made up of more than 15 million time

steps (one for each movement) in Barcelona and more than 5 million time steps for

the city of Madrid.

Next, we proceed to describe the different databases and their sources:

- Bicycle-shared usage data in Madrid: Provided by Portal de datos abiertos del

Ayuntamiento de Madrid.1 The data about the BiciMAD service is offered in JSON for-

mat, a lightweight text format for data exchange that is widely used today and widely

adopted as an alternative to XML. The information presented is relative to the move-

ments of the bicycles. Being understood as movement, the transfer of a bicycle from

a station of origin to a station of destination. This information includes data related to

the movement itself (departure station or destination station) and data related to the

user who performs the movement, duly anonymized to allow statistical studies, without

being able to know any specific data about the user. Also included are the movements

of bicycles carried out by company personnel, for example, to transport bicycles to

stations where a higher demand is expected or to carry out a repair. That is why we

speak of "movements" and not "trips".

This data set presents the day-by-day disaggregated information on:

- Users: New daily registrations in the system in its two modalities (annual and oc-

casional subscriptions).

- 03/31/2017 id: Movement identifier.

- user day code: User code. For the same date, all the movements of the same user

will have the same code, in order to be able to carry out statistical studies of the daily

trends of the users.

- idunplug station: Number of the station from which the bike is unhooked.

- idunplug base: Number of the base from which the bike is unhooked.

- idplug station: Number of the station where the bike is hooked up.

- idplug base: Number of the base where the bike is attached.

- unplug hourTime: Time zone in which the bicycle is unhooked. For reasons of
1https://datos.madrid.es/portal/site/egob/
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anonymity, the start time of the movement is provided, without the information of min-

utes and seconds. All movements started during the same time will have the same

starting data.

- travel time: Total time in seconds, between unhooking and hitching the bike.

- track: Detail of the route made by the bicycle between the starting station and the

destination station, in GeoJSON format. If it exists, it will contain a "FeatureCollection"

element which in turn will contain a "Features" element of type list.

- Bicycle-shared usage data in Barcelona: Provided by Open Data BCN.2

The dataset Bicing service use of the city of Barcelona is available in Json format or

CSV and it includes:

- Users: New daily registrations in the system in its two modalities (annual and oc-

casional subscriptions).

- 03/31/2017 id: Movement identifier.

- user day code: User code. For the same date, all the movements of the same user

will have the same code, in order to be able to carry out statistical studies of the daily

trends of the users.

- idunplug station: Number of the station from which the bike is unhooked.

- idunplug base: Number of the base from which the bike is unhooked.

- idplug station: Number of the station where the bike is hooked up.

- idplug base: Number of the base where the bike is attached.

- unplug hourTime: Time zone in which the bicycle is unhooked. For reasons of

anonymity, the start time of the movement is provided, without the information of min-

utes and seconds. All movements started during the same time will have the same

starting data.

- travel time: Total time in seconds, between unhooking and hitching the bike.

- geometry: Indicates the position of the bike and contains:

- type: Type of the position.

- coordinates: Longitude and latitude coordinates of the position.

- type: type of element.

- Weather data in Madrid and Barcelona: Provided by Agencia Estatal de Meteo-
2https://opendata-ajuntament.barcelona.cat/es/us-servei-bicing
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2.2 Data cleaning 2 DATA ANALYSIS AND DESCRIPTION

rología - AEMET.3

Weather observations consist of daily temperature in Celsius degrees, wind speed

measured in km/h, daily rainfall in mm. Weather information is taken from a single

station.

2.2 Data cleaning

Next, we are going to describe the cleaning work carried out in the different databases:

- Databases of the BiciMad and Bicing bicycle-shared systems: Once the databases

have been downloaded from the different sources in monthly files in Json and csv for-

mat, we integrate them into a single annual database. This gave us two databases of

more than 15 million time steps in Barcelona and more than 5 million in Madrid with

more than 20 variables each. For the description of the habits of use we handle more

variables than for the temporary matrix of availability of stations, such as the distance

traveled and the time used, frequency of use according to the day of the week, monthly

and yearly in Barcelona. For Madrid we will be able to discriminate by time of use and

the frequency of use according to the day of the week, monthly and yearly.

2.3 Data analysis

In this section we are going to make a description of the habits of use of the citizens

of the shared bicycle systems in Madrid and Barcelona. As we can see is that the use

in the two cities decreases on weekends compared to the use during the working days

of the week. On the other hand, the busiest day of the week in Barcelona is Thursday

as it is shown in figure 1, while in Madrid it is Monday as it is shown in figure 2.
3http://www.aemet.es/es/datos abiertos/AEMET OpenData
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2.3 Data analysis 2 DATA ANALYSIS AND DESCRIPTION

Figure 1: Use by day of the week. Bicing Figure 2: Use by day of the week. BiciMad

Likewise, the peak hours of the day in the two cities are between 6:00 a.m. and 9:00

a.m. and between 5:00 p.m. and 7:00 p.m., which correspond to the entry and exit of

working hours (Showing figure 3 and figure 4). This gives us indications of the reason

for the majority use is for commuting to work.

Figure 3: Use by time of day. Bicing Figure 4: Use by time of day. BiciMad

In the case of Barcelona, we see how use decreases in the months of March, August

and December, which are the months that coincide with holiday periods (Showing

figure 5 and figure 6).

14



2.4 Weather analysis 2 DATA ANALYSIS AND DESCRIPTION

Figure 5: Use according to month. Bicing Figure 6: Use according to month. BiciMad

The distribution of the duration of the trips in both cities are similar and are around a

range of 400 and 600 seconds (Showing figure 7 and figure 8).

Figure 7: Duration of trips. Bicing Figure 8: Duration of trips. BiciMad

Most trips in Barcelona cover a distance of between 1 and 3 kilometers as shown in

figure 9.

2.4 Weather analysis

Of the multiple climatological variables provided by the AEMET stations, we are

going to focus on temperature (Showing figure 10 and figure 11), rainfall (Showing

figure 12 and figure 13) and wind speed (Showing figure 14 and figure 15). All of them

are variables that, with some logic, should influence [10] the behavior of users when

15
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Figure 9: Distance of trips Bicing

making the decision to use the bicycle or not.

Figure 10: Temperature. Barcelona Figure 11: Temperature. Madrid

As is well known, the weather is seasonal, repeating its parameters annually and its

characteristic behavior can be seen in each season.

Figure 12: Rainfall. Barcelona Figure 13: Rainfall. Madrid
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2.5 Availability matrices 3 FORECASTING MODELS

Figure 14: Speed wind. Barcelona Figure 15: Speed wind. Madrid

2.5 Availability matrices

When constructing our matrices, we do not take into account their spatial situa-

tion [11] because we do not consider it relevant for obtaining our goals.

For the temporary availability matrix we use 4 variables that are station id of depar-

ture, time of departure, station id of arrival and time of arrival. In addition, we group

the movements for each hour of the day, in such a way that each station will give us

a net integer number that indicates the number of bicycles that have left during that

hour minus the number of bicycles that have arrived. We group in an hour because

we understand that it is the appropriate interval to predict the behavior of each station

and to foresee if it is necessary for an operator to come to take or collect bicycles. For

the Bicing matrix we used 8766 timesteps x 439 stations, presented in table 1, and for

the BiciMad matrix we used 8766 timesteps x 169 stations.

3 Forecasting models

3.1 Introduction

The first challenge we face is choosing the models that we are going to confront in

order to understand which ones work best for this specific problem [17, 24]. A first

premise is to understand that each model has a series of advantages and disadvan-

tages that will indicate the suitability of that model for that specific database and certain

objectives. Choosing the right model is one of the skills that every data scientist must

17



3.1 Introduction 3 FORECASTING MODELS

Table 1: Movements matrix

Stations

Timesteps 1 2 3 ... 495 496 prec tmax velmean

01/03/2019 0:00 3 0 0 ... 0 0 0.0 15.3 2.8

01/03/2019 1:00 0 -3 0 ... 0 0 0.0 15.3 2.8

01/03/2019 2:00 4 1 -1 ... 0 0 0.0 15.3 2.8

01/03/2019 3:00 0 -1 0 ... 0 0 0.0 15.3 2.8

01/03/2019 4:00 0 0 -1 ... 0 0 0.0 15.3 2.8

... ... ... ... ... ... ... ... ...

28/02/2020 19:00 -5 1 0 ... -1 -7 0.0 17.5 3.6

28/02/2020 20:00 1 3 0 ... 1 -1 0.0 17.5 3.6

28/02/2020 21:00 2 0 1 ... -1 4 0.0 17.5 3.6

28/02/2020 22:00 -5 4 -3 ... -2 -5 0.0 17.5 3.6

28/02/2020 23:00 3 -5 5 ... -2 8 0.0 17.5 3.6

develop in order to truly benefit from a database.

ANN (artificial neural networks) are inspired by the biological neural networks of the

human brain. To do this, they try to replicate the elements and behavior of the brain

and neurons. These behaviors include learning through experience, generalizing from

previous examples to new examples and abstracting the main characteristics of a se-

ries of data that apparently do not present common or relative aspects. Another is the

adaptation of their behavior depending on the environment. They are shown a set of

inputs and adjusted to produce consistent outputs.

In the neural network, the process element acts as a neuron and is a simple process-

ing unit that receives and combines signals from and to other neurons. Showing in

figure 16.

18



3.1 Introduction 3 FORECASTING MODELS

Figure 16: Artificial neuron model

The vector representation of an artificial neuron is: NET = X * W where NET is the

output, X the input vector and W the vector of weights. The process element has mul-

tiple inputs that it combines as a sum. Each input has a Wi weight that is adjusted

automatically as the neural network learns. This is modified by an activation function,

which keeps the set of output values in a certain range, usually (0,1) or (-1,1) and

giving an output value. This output can be connected in turn to the inputs of other

artificial neurons, forming what we call a neural network. These process elements are

organized in groups called levels or layers forming a sequence. There are two layers

that connect with the outside, which are the input and the output and the rest of the

intermediate layers are called hidden.

The artificial neural network as well as biological networks learn by repetition, that is

why better results are achieved the larger the database to train and the more times we

train it. Showing figure 17.

- Forward propagation: It is the process that goes forward, starting with neurons in the

input layer and ending in neurons in the output layer. In this process, each neuron per-

forms a weighted sum of all the inputs according to some weights, passes the result

through an activation function and generates the result, which is passed on to the next

layer. This process is repeated until the last layer of neurons that returns us the result

of the network.

- Backpropagation: From the result of the cost function, the backpropagation algorithm

tries to determine how much fault each of the neurons has on an error committed iter-

atively from the last layer to the first.
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Figure 17: Learning process of a neural network

3.2 Dense Neural Network (DNN)

A DNN is actually a fully connected Artificial Neural Network (ANN). The dense layer

is a neural network layer that is deeply connected, which means that each neuron in

the dense layer receives information from all the neurons in its previous layer. In the

background, the dense layer performs matrix-vector multiplication. The values used

in the array are actually parameters that can be trained and updated with the help of

backpropagation. The output generated by the dense layer is a dimensional vector

"m". Therefore, the dense layer is basically used to change the dimensions of the

vector. Dense layers also apply operations like rotation, scaling, translation on the

vector. With respect to the learning process, DNNs use a cascade of multiple layers

of nonlinear processing units for feature extraction and transformation. They can learn

in supervised (e.g., classification) and/or unsupervised (e.g., pattern analysis) man-

ners [7].

The size of a DNN must be adjusted according to the characteristics of each problem,

due to the limited computational power available. In this study, we used fully con-

nected, dense neural layers where the output of one layer serves as the input to the

next.

Although DNNs are based on simple mathematical operations, models that are ob-
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tained by combining neurons with non-linear activations in several hidden layers can-

not be evaluated with a mathematical formula. This property of the DNN is called lack

of transparency by Roscher [6]. We understand by transparency if the processes that

extract the parameters of the model from the training data and generate labels from

the test data can be clearly described and motivated by the designer of the approach.

3.3 Convolutional Neural Network (CNN)

CNN is a type of Artificial Neural Network with supervised learning that processes

its layers to identify different characteristics in the inputs that make it able to identify

objects. Convolutions are really good at detecting simple structures in an image, and

then putting those simple functions together to build even more complex functions. In a

convolutional network, this process occurs over a series of many layers, each of which

performs a convolution on the result of the previous layer. For this, CNN contains

several specialized hidden layers with a hierarchy: this means that the first layers can

detect lines, curves and are specialized until they reach deeper layers that recognize

complex shapes such as a face or the silhouette of an animal, as well as patterns of

behavior of a time series such as our case in this study.

Convolutional neural networks are distinguished from other neural networks by their

superior performance with input from image, voice, or audio signals. They have three

main types of layers, which are (Showing figure 18.4):

- Convolutional layer.

- Pooling layer.

- Fully-connected (FC) layer.

4https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/
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Figure 18: Process of a Convolutional Neural Network

The convolutional layer is the first layer of a convolutional network. While convolu-

tional layers can be followed by additional convolutional layers or grouped layers, the

fully connected layer is the final layer. With each layer, CNN increases its complexity,

identifying larger portions of the image. The previous layers focus on simple features,

such as colors and borders. As the image data progresses through the CNN layers, it

begins to recognize larger elements or shapes of the object until it finally identifies the

desired object or pattern.

3.4 Long Short Term Memory (LSTM)

Recurrent neural networks, RNN, are a type of network capable of recognizing and

predicting data sequences over time, such as texts, genomes, spoken speech or nu-

merical series. The definition of recurrent is based on loops that allow the exit of the

network or a part of it at a given moment to serve as an entrance to the network itself

at the next moment. The operation can be described as a multilayer perceptron with a

single hidden layer where the output of the perceptron is used as input in the following

evaluation. This recurrence in the network architecture is the property that allows the

network to "remember" information over time. As we add layers to it, its modeling ca-

pacity will grow so that it will be able to recognize larger sequences with less and less

22



3.4 Long Short Term Memory (LSTM) 3 FORECASTING MODELS

error.

LSTMs are a special type of recurring networks [16, 22]. While standard recurring

networks can model short-term dependencies (close relationships in the time series),

LSTMs can learn long dependencies, so it could be said that they have a longer-term

"memory". LSTMs were introduced by Hochreiter and Schmidhuber (1997) [8], and

were later refined and popularized.

The LSTM contains its information in memory in the sense that a neuron in an LSTM

can read, write, and erase information from its memory. The neuron decides whether

to store or eliminate information inside (opening the door or not to store), based on the

importance it assigns to the information it is receiving. The importance assignment

is decided through the weights, which are also learned by the algorithm. That is, you

learn over time what information is relevant and what is not (Showing figure 19.5)

Figure 19: Process of a LSTM

In an LSTM neuron there are three gates to these information "cells": input gate,

forget gate, and output gate. These doors are in charge of deciding whether or not a

new entry is allowed, the information is eliminated or it is allowed to affect the exit in

the current time step. The gates in an LSTM are analogous to a sigmoid shape, which

means that they go from 0 to 1. The fact that they are analogous to a sigmoid activation
5https://https://ichi.pro/es/lstm-networks-una-explicacion-detallada/
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function allows them to be incorporated into the Backpropagation process. Vanishing

Gradients problems are solved through LSTM because it keeps the gradients steep

enough and therefore the training is relatively short and the precision high.

3.5 Gated Recurrent Unit (GRU)

GRU layers appeared in 2014 by Kyunghyun Cho [9] et al and use the same prin-

ciple as LSTM, but are simplified so that their performance is on par with LSTM but

is more computationally efficient and relatively new in comparison. Like LSTM, GRU

uses gates to control the flow of information. The GRU architecture offers some im-

provements over LSTM. Another interesting aspect of GRU is that, unlike LSTM, it

does not have a separate cell state (Ct). It only has a hidden state (Ht). Due to the

simpler architecture, GRUs are faster to train.(Showing figure 20).

Figure 20: LSTM and GRU comparison

3.6 Persistence Model

The naive forecast or persistence algorithm is the most cost-effective prediction

model and provides a benchmark against which to compare more sophisticated mod-

els. This prediction method is suitable for time series. The naive forecast method uses

the value at the previous time point (t - 1) to predict the expected result at the next time

point (t + 1).

ŷt+1 = yt

If the time series under study shows seasonality, the seasonal approach of the naive

method may be more appropriate, thus being the predictions the same as the previous

season.
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ŷt+1 = yt−m

The persistence model does not present statistical, mathematical or computational

difficulties, however, given the non-linear nature of some time series such as the use of

the bicycle service, it is necessary to complement it with other more robust prediction

models.

3.7 Autoregressive Model

This method models [25] the next instant in a time series or sequence as a linear

function of the observations in the previous time instants. The model notation needs to

specify the order of the model p as a parameter in the autoregression function AR(p).

For example, AR(1) is a first-order autoregression model.

yt = c + Φ1yt−1 + Φ2yt−2 + ... + Φpyt−p + εt

where εt is the white noise, Φi are coefficients and c a constant.

4 Experimental settings

4.1 Experimental design

In order to choose the model that best suits our interests, we must be able to use

the tools and their metrics that allow us to compare these models in the same order of

magnitude.

The reasons why we want to evaluate the predictive capacity of a model are:

- We want to estimate, in a generalized way, the predictive capacity of our model for

future data.

- Increase the predictive capacity by adjusting the learning algorithm and selecting the

best model given a starting hypothesis.

- Identify the best ML (Machine learning) algorithm that best fits our case, through the

comparison of several algorithms.

Estimating model behavior is one of the biggest challenges in ML.
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4.2 Validation

After choosing and generating the models and verifying the fit method used, we must

evaluate the ability of the models to predict the target variable. For the evaluation,

you can use some method called resampling, among which are cross-validation and

Bootstrap. These methods allow us to fit the models as many times as necessary using

subsets of the training data. For this study, the method chosen is cross validation.

There are, within the model, two types of error that we must differentiate, such as

the training error rate, which is the average error of the model when predicting based

on the subset of data dedicated to training. By using already manipulated data, you

overestimate the measure of the prediction. And the test error rate that gives us the

average of the prediction on the subset of the data dedicated to the test. This is more

reliable since it predicts new observations using known predictors but not the response

variable.

The problem is being able to access new data sets with which to quantify the error. If

they are quantitative variables, the error is measured by mean square error (MSE). If

they are qualitative variables, for classification, the measurement is the proportion of

incorrect variables over the total set of predictions. For this study and the evaluation

of the models, we will focus on Mean Absolute Error(MAE), defined as the number of

all correct predictions divided by the number of examples in the database.

MAE =
1

n

n∑
i=1

|xi − x̂i|

The K-Fold Cross-Validation method is an iterative process. It consists of dividing the

data into k groups of approximately the same size. k-1 groups are used to train the

model and one of the groups is used as a test, this process is repeated k times us-

ing a different group as a test in each iteration. The process generates k estimates

of the test error, the average of which is used as the final estimate. In this case we

use the version called “rolling origin” according to which the forecasting origin is up-

dated successively and the forecast are produced from each origin, showing figure 21.
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Figure 21: K-fold Cross-Validation

Two advantages of the K-Fold Cross-Validation method are considered, which are

necessary less computational requirements and a better balance between bias and

variance.

4.3 Hyper-parametrization and parameter tuning

To achieve the best possible results in our model, and also in our baselines, we

look for hyperparameters in each model. Therefore, each hyperparameter is selected

using the cross-validation approach presented above. After evaluating different values

in different parameters, we present the chosen values. In table 2 and 3 we detail below

the tested values for each hyperparameter.

Table 2: Characteristics of experimentation with Bicing

Model Time/epochs Layers Units Epochs Batch Kernel Params

DENSE 3.53 5 100 100 64 - 523.839

CNN 49.23 3 100 100 64 (5,5) 154.468

LSTM 5.05 2 100 100 64 - 342.242

GRU 8.30 5 100 100 64 - 388.439

4.4 Model evaluation

To assess whether one method is a better fit than another, the variances associated

with the estimates of the predictability obtained through the validation metrics must be
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Table 3: Characteristics of experimentation with BiciMad

Model Time/epochs Layers Units Epochs Batch Kernel Params

DENSE 2.82 5 100 100 64 - 226.569

CNN 26.64 3 100 100 64 (5,5) 124.498

LSTM 5.42 2 100 100 64 - 205.469

GRU 11.26 5 100 100 64 - 280.169

taken into account and whether there is sufficient evidence of superiority. They must

be models trained on the same data, same partitions and same order.

5 Results and discussion

In this chapter we describe the decisions taken and experiments conducted in order

to evaluate the performance of the several approaches introduced in chapter 3. Before

explaining the results, we must establish what questions we want to answer. And they

would be these:

- What models are more accurate to predict the state of the stations?

- Do the models improve by adding meteorological variables?

- Is there a correlation between cycling and weather conditions?

- Which models predict best with an erratic time series due to exceptional conditions

like COVID 19?

Through these questions we will try to evaluate the results of the experimentation.

5.1 General results and feature importance

What can be seen when observing the results obtained is that, for this specific case,

models based on neural networks work better. Within the four models, it is the con-

volutional model and the Dense model that have slightly better performance than the

recurring models (GRU and LSTM). This can be seen more clearly in the Bicing mod-

els in Barcelona presented in figure 22 and figure 23 and its comparison in table 4
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Figure 22: Bicing Models

Table 4: MAE Bicing and BiciMad

Meteo t + 6 Bicing BiciMad

Model Median MAE Mean MAE Median MAE Mean MAE

CNN 10.03 10.44 9.09 9.66

GRU 11.97 11.66 9.31 9.98

DENSE 9.77 10.42 9.19 9.8

LSTM 12.41 11.93 9.43 10.05

PERSISTENCE 24.51 24.60 10.96 10.61

ARIMA 14.36 13.04 9.91 14.31
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Figure 23: BiciMad Models

The Persistence and Arima models perform significantly worse. However, as we can

see in the tables, despite having a good performance, the convolutional network takes
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a much longer calculation time than the rest of the models. From a performance point

of view, we should go for any of the others. This leads us to wonder how to achieve

better performance of the convolutional network, so we tried a new experiment that

consists of comparing the two best networks (Dense and CNN) and with a similar

behavior so far, in the 12-month situation before the Covid Pandemic (March 2019 to

February 2020) with the case in which we include the 6 months after (March 2019

to August 2020). With this, what we intend is to stress the model since the time

series behaves erratically with a month without movements (since March 14, 2020)

and a subsequent recovery of services in a staggered manner. It is in this case when

we can appreciate the virtues of the neural network in all its dimension, improving

performance compared to Dense. (Showing figure 24 and table 5)

Figure 24: Comparison of models precovid vs postcovid
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Table 5: MAE Bicing. Covid vs 12 months

Bicing Model Median MAE Mean MAE

Covid CNN 11.04 10.84

DENSE 11.40 11.22

12 months CNN 9.61 10.11

DENSE 9.62 10.04

But following this reasoning, we think that we should compare the matrices with the

meteorological variables versus the matrices without them. Logically, the meteorolog-

ical variables should give better results. (Showing figure 25, figure 26 and table 6).

Figure 25: Comparison of models Bicing meteo vs no meteo
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Table 6: MAE Bicing and BiciMad 12 months

12 months Bicing BiciMad

Model Median MAE Mean MAE Median MAE Mean MAE

CNN 9.61 10.11 8.84 8.80

GRU 11.29 11.31 8.96 9.03

DENSE 9.62 10.04 8.81 8.83

LSTM 11.79 11.59 9.03 9.16

Figure 26: Comparison of models Bicing meteo vs no meteo

What may seem surprising to us, which is that the matrices work better without the

meteorological variables, finds its logic in that having daily meteorological data and

repeating it 24 hours a day (as if the meteorological conditions of wind, rain or temper-
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ature remained unchanged at throughout the day), not only is it not an advantage, but

quite the opposite, since it gives erroneous information when it comes to correlating

uses with weather conditions.

5.2 Conclusions

In this work we set ourselves as objectives:

- The comparison of different predictive models of neural networks on the data of two

cities (Madrid and Barcelona) according to their usage habits in a time series format

and adding climatological factors such as temperature, rain and wind.

- Identify the best ML algorithm that best fits our case, through the comparison of

several algorithms.

- To build a model capable of predicting at least 6 hours in advance which stations are

likely to fill or empty and evaluate the predictive capacity of the model.

We can consider that the objectives have been met and that the lessons learned are:

- The hyperparameterization of the models to be able to compare them in a fair way is

essential for the data obtained to be reliable and to avoid any biases or a directing of

our research.

- Neural networks have obtained better results but have required greater computational

capacity. Depending on the precision we need, it may be more efficient to use linear

regressions that lose precision but gain speed and save computational capacity, as we

can see in our ARIMA model.

- The use of meteorological variables should help our model, the wind and rain being

more decisive in extreme situations, but for this it is necessary to have the complete

series of data.

- Although a priori, we could think that recurring networks should behave better than

convolutional ones, the fact that CNN is able to compete with Dense with almost three

times fewer parameters (and therefore less biased to overtraining and better capacity

to generalization) requires us to open our minds to predetermined ideas.
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5.3 Further developments

For future developments we should be able to obtain conclusive results on the in-

fluence of meteorological variables, as well as find other types of variables that can

condition the behavior of cyclists such as pollution, points of interest such as restau-

rants, museums and shows and the temporary events that occur in the city such as

sporting events.

We also propose to use a database with a longer period of time, between 3 and 5

years, where the models can test their performance with greater reliability.

The stations of origin or destination of the vehicles that operated in each station were

not within the scope of the study, but it would be very interesting to add these data to

the matrices to analyze the behavior of the models and check if it gives greater robust-

ness to the resulting forecasts. In addition, it would provide information on the flow of

movements of cyclists and their behavior within the city.
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