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Is Anisotropy Really the Cause of BERT
Embeddings not being Semantic?

Alejandro Fuster Baggetto Víctor Fresno Fernández

August 2022

Abstract

We conduct a set of experiments aimed to improve our understanding
of the lack of semantic isometry (correspondence between the embedding
and meaning spaces) of contextual word embeddings of BERT. Our empir-
ical results show that, contrary to popular belief, the anisotropy is not the
root cause of the poor performance of these contextual models’ embeddings
in semantic tasks. What does affect both anisotropy and semantic isometry
are a set of biased tokens, that distort the space with non semantic informa-
tion. For each bias category (frequency, subword, punctuation, and case),
we measure its magnitude and the effect of its removal. We show that these
biases contribute but not completely explain the anisotropy and lack of se-
mantic isometry of these models. Therefore, we hypothesise that the finding
of new biases will contribute to the objective of correcting the represen-
tation degradation problem. Finally, we propose a new similarity method
aimed to smooth the negative effect of biased tokens in semantic isometry
and to increase the explainability of semantic similarity scores. We con-
duct an in depth experimentation of this method, analysing its strengths and
weaknesses and propose future applications for it.

Keywords— semantic textual similarity, sentence embeddings, transformers, natural lan-
guage processing, deep learning
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1 Introduction
For years, natural language processing (NLP) was dominated by recurrent neural networks
(RNNs) and its variations like Long Short-Term Memory (LSTM) or Gated Recurrent
Unit (GRU) networks. The capacity of these autoregressive architectures for modelling
one dimensional sequences and keeping a relatively long (not as long like it is required in
some signal processing applications, for example) context made them especially suitable
for NLP.

One of the most common form in which we used to find these kind of models was
sequence to sequence. Used a wide variety of applications like machine translation (MT),
sequence to sequence models would typically consist on two separate RNNs: The first
one, called encoder, would process the entire input and encode it in a single vector, that
would be passed to the second one, called decoder, that would predict the output sequence.

Despite their success, these models have a drawback: The decoder usually lacks in-
formation for producing the whole output sequence, as all it is receiving is the last output
of the encoder.

The solution to this came in form of a mechanism called attention, that would allow
the decoder to look at each of the outputs of the encoder and assign then a weight for a
weighted sum at each decoding timestep. This way, the decoder would choose its own
context at each step considering the full input sequence.

This attention mechanism, that we now call encoder-decoder attention, perfectly com-
plemented sequence to sequence models, but soon researchers realized that RNNs them-
selves could be replaced by a variation of the attention mechanism called self-attention,
and that is how the transformer Vaswani et al. (2017) was introduced.

In each self-attention layer, each timestep has access to the whole input sequence,
which removes the necessity of carrying context vectors like RNNs do.

In spite of the substitution of RNNs for self-attention layers, the vanilla transformer
is still a sequence to sequence model, with an encoder, a decoder and an encoder-decoder
attention.

However, the application of transformers does not end in sequence to sequence tasks
like MT. Some transformer models like BERT, take just the encoder part for tasks like
classification, while others like GPT, take just the decoder part for generative tasks.

The success of transformer models is partially due by the fact that they scale very
well with their number of parameters and the size of the training dataset. The advances
in hardware acceleration have enabled the creation of big transformer models, that train
over large collections of unsupervised data for general language modeling tasks (LM) like
next token prediction or mask prediction. These models have shown impressive results
and generalization capabilities.

The Transformer architecture has had an enormous impact over Natural Language
Processing to the point that the state of the art on many downstream NLP tasks has been
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pushed by finetuning these models with a small supervised dataset.
Semantic text similarity (STS) is a regression task that consists on giving a semantic

similarity score between zero and five for a pair of sentences, where a score of zero means
that the two sentences have nothing in common semantically speaking, and a score of five
means that the two sentences mean the same or are paraphrases of each other.

STS is one of these tasks, where a new state of the art has been set by just adding a
linear layer on top of BERT Devlin et al. (2019) (a famous encoder transformer model
trained for masked language modelling) and finetuning it to get the similarity score of two
sentences concatenated with a separator.

However, this approach (called cross-encoder) has its own problems: Its inference
time is too long to be acceptable in a lot of applications. The reason for this is that it
performs full self-attention over the input, so it scales quadratically with the length of the
concatenation of both sentences. Most importantly, it has to reevaluate everything for each
pair of sentences, which stops applications like semantic search or semantic clustering
from being feasible.

In order to solve the problem of efficiency of cross-encoders, a lightweight approach
(called bi-encoder) consisting on obtaining the distance of two sentences in the embed-
ding space has emerged. In this case, each sentence is passed separately to the transformer,
which obtains a semantic embedding for it. Then, obtaining the similarity between sen-
tences is as simple as comparing their embeddings.

Unfortunately, this approach does not work well with embeddings obtained by vanilla
pretrained Transformers; Reimers and Gurevych (2019) showed that the average of the
output contextual BERT embeddings of the words in a sentence performs poorly as a
sentence embedding in semantic tasks. Even the average of the static Glove embeddings
Pennington et al. (2014) of the words in a sentence, often used as a weak baseline, results
in a more semantic sentence embedding, despite their lack of contextuality.

On the other hand, studying this mismatch between the word embedding and mean-
ing spaces, Gao et al. (2019) diagnosed high anisotropy in Transformer Language Models.
This means that the embeddings do not follow a uniform distribution with respect to di-
rection, or, what is the same, they concentrate in an hypercone instead of ocupying the
whole space. This behaviour is anomalous, as one expect transformer to try to make use
of all its representation power.

This anisotropy has been named as the representation degradation problem and could
be closely related with semantics to the point that some authors have tried to correct the se-
mantic isometry, understood as the correspondence between the meaning and embedding
spaces, of transformers by applying isotropy correction techniques Li et al. (2020); Su
et al. (2021). Other approaches, based on contrastive learning have also recently achieved
remarkable improvements in semantic isometry Zhang et al. (2021); Giorgi et al. (2021);
Yan et al. (2021); Gao et al. (2021).

Contrastive learning methods have been naturally successful in correcting embedding
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spaces because they pull together semantically similar sentences and push apart semanti-
cally dissimilar ones.

Despite their good results, these techniques have also their own problems. The main
difference between these methods is how they perform the selection of the positive (se-
mantically similar) and negative (semantically dissimilar) pairs necessary for training,
and there is where the main difficulty is. For example, Zhang et al. (2021) used back
translation from English to German to obtain augmented views of a sentence, or Giorgi
et al. (2021) used near text spans in a document as positive samples. Finally, Gao et al.
(2021) used dropout as a data augmentation technique for the unsupervised model, and
the NLI dataset Bowman et al. (2015) annotations for the supervised model. Despite their
originality, all of these approaches have different weaknesses, and they are not easily im-
proved, as authors just find better ways of creating positive and negative pairs, without
really building on top of previous work.

These contrastive bi-encoder models achieve unprecedented results in terms of se-
mantics, but we don’t fully understand the root cause of the lack of semantic isometry
observed in pretrained Transformer Language Models. We think that any finding in this
area can be very relevant and open new paths of research that can lead to future improve-
ments in bi-encoder methods.

Our main aim in this paper is the improvement of our understanding of the BERT
embedding space, and the relationship between semantics and isotropy through empirical
results. After our experimentation, we conclude that there is not enough evidence to say
that anisotropy is the root cause of the lack of semantic isometry of BERT embeddings,
while some biases seem to affect both isotropy and semantic isometry. We call bias to
any information from a sentence that is encoded in the embedding space and that is not
relevant to its meaning, such as the length of a sentence.

This paper is structured as follows. In Section 2 we cover the related work. Next, in
Section 3 we describe the experiments conducted and present their corresponding result
analysis. Next, in Section 4 we draw our conclusions, derived from our empirical results
and in section 5 we leave some ideas for future work. Finally, in Section 6 state the
limitations of this work.

2 Related work
The anisotropy found by Gao et al. (2019) in Transformer-based Language Models has
been called the representation degradation problem. This problem is produced by the
combination of the Zipfian nature of natural language, which means that the frequency of
the tokens follows a zeta distribution, and the log-likelihood loss function used to train .
This degradation makes the most frequent tokens to concentrate in a cone in the embed-
ding space, having a more sparse space for infrequent ones, which decreases isotropy.
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Contrastive learning methods seem to correct anisotropy to some extent while greatly
improving the semantic isometry. This could make us think that the anisotropy was, in
fact, part of the semantics problem.

However, Jiang et al. (2022) realized, through a series of experiments, that there exist
certain biases in the BERT model, and that anisotropy is not always equivalent to poor
semantic isometry. Although the insights by Jiang et al. (2022) are certainly interesting,
they seem to contradict at some degree previous works like Gao et al. (2019); Ethayarajh
(2019); Li et al. (2020), that attribute the lack of semantics of transformer embeddings to
anisotropy.

On the other hand, Luo et al. (2021) and Kovaleva et al. (2021) had found that a big
portion of the anisotropy of BERT comes from outlier dimensions, related with positional
information. Indeed, there are few dimensions in BERT embeddings whose module is
disproportionally high in comparison with the other dimensions. These outlier dimensions
distort the cosine distance, reducing isotropy. Whether or not these dimensions affect
semantic isometry is still not verified, but their origin seems to be found in positional
encoding, which could mean that there exist a positional bias in these models.

By clustering the transformer token embeddings and standardizing each cluster, Cai
et al. (2020) showed that, despite the model having global anisotropy, each cluster in the
embedding space is isotropic, and that this local isotropy could be enough for Transformer
models to achieve their full representation power. This hypothesis is supported by recent
empirical results from Ding et al. (2022), who show that isotropy correction techniques
don’t improve results in most semantic tasks.

If, like Cai et al. (2020) claims, the anisotropy comes from the existence of differ-
ent clusters, and these clusters encode non-semantic information like token frequency,
these clusters could be matched with the biases described by Jiang et al. (2022) and the
representation degeneration by Gao et al. (2019), that describes the frequency bias.

As we can see, in the literature there is no consensus in which is the cause of the poor
performance of Transformer embeddings in semantic tasks and there is also no consensus
about the reasons for the anisotropy observed in these embedding spaces. This chaos is
amplified by the fact that there is not a standard method for evaluating anisotropy; for
example, Ethayarajh (2019) evaluates it at the word level, while Jiang et al. (2022) does it
at the sentence level, by averaging the word embeddings. We therefore find that there is
room for research on these aspects.

3 Experimentation and results
Our experimentation proceeds as follows: First, we make an exploratory analysis to bet-
ter understand the magnitude of the different biases studied. Next, we compare several
configurations (pooling strategies, models, bias removal, etc.) in terms of isotropy and
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semantic isometry. Finally, we propose a new sentence similarity metric, that we call
pairwise similarity, and that works at the token level, which allows us to better understand
the nature of BERT’s embedding space.

In our experiments, we try the following BERT variants: BERT-base-uncased, BERT-
base-cased, unsupervised-SIMCSE-base, and supervised-SIMCSE-base. We include a
cased model in order to compare it with its uncased counterpart and to study the case bias
reported by Jiang et al. (2022). We also include both supervised and unsupervised variants
of SIMCSE Gao et al. (2021), as it is a popular contrastive learning bi-encoder model that
achieves state-of-the-art results in semantic tasks. It is interesting to see how much does a
successful model actually increase isotropy to understand to what extent is the anisotropy
related with the poor performance of the non fintuned bi-encoders.

Finally, note that all the models analysed share the BERT base architecture. Although
this choice might seem arbitrary, we base it in the fact that different studies like Gao et al.
(2019); Ethayarajh (2019); Kovaleva et al. (2021) have shown that different Transformer-
based Language Models have similar behaviours regarding low isotropy and poor se-
mantic isometry, even when they differ in number of parameters, architecture or learning
objective.

3.1 Exploratory analysis of biases
The length of a sentence or the frequency of its tokens are examples of well-known bi-
ases, as they are non-semantic information encoded in the embedding space. Four kinds
of biases are defined by Jiang et al. (2022): frequency, case, subword and punctuation.
We understand as subwords, the pieces of words generated by the BERT tokenizer when
it encounters out of vocabulary words. For example, the word "embedding" could be
splitted in the subwords "#em", "#bed", "#ding". The nature of out of vocabulary words is
varied. Sometimes they are named entities, while other times they are uncommon words
or variations of other words like the plural of a noun or the past form of a verb.

All of the aforementioned biases could partially overlap with token frequency. For
example, lowercase tokens are much more frequent than uppercase ones, some punctua-
tion marks like "," and ".", are more common than normal words, and some subwords like
"#s" (from plural) are extremely frequent as well, so everything could come down to the
explanation given by Gao et al. (2019), of very frequent tokens being grouped in a cone
due to the combination of the Zipf distribution of frequency in natural language and the
log-likelihood loss function used in training.

For having a perception of how severe are each of these biases in semantic and non-
semantic embedding spaces, we sample 1000 random sentences from the Wikipedia cor-
pus and we plot the distributions of the similarities between pairs of embeddings of differ-
ent kind of tokens. For all the plots we use cosine as the similarity metric and the last layer
word embeddings from BERT-base-uncased and unsupervised-SIMCSE-base, except for
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the case bias, where we only use BERT-base-cased. We expect to find lower biases for
SIMCSE, as its semantic isometry has been shown to be higher than the non finetuned
BERT.

3.1.1 Frequency bias

For the Frequency bias, we first decided to compare the most frequent tokens with less
frequent ones. Howver, we finally opted to use a list of stopwords instead. The reason for
this is that we saw that the list of the most frequent tokens is mainly formed by stopwords,
punctuation symbols and some very common nouns like "man" or "woman". We treat
punctuation symbols as a separate category because, despite some of them being very
frequent, we do not want to preassume that there is not a bias by punctuation mark, as
this would contradict the literature. On the other hand, nouns like "man" or "woman" are
very frequent, but, as nouns, have an intrinsic meaning, unlike stopwords, that only have
meaning in a context and whose contribution is predominantly syntactic. In section 3.2 we
remove the biased tokens to see the effect in isotropy and semantic performance and we
think that removing nouns, even if they are frequent and biased, can be more detrimental
to the meaning of the sentence than removing stopwords. For these reasons, from this
point on, we will be using stopwords as a synonym of very frequent tokens.

In Figure 1 we see that, even in the last layer of BERT, where stopwords are supposed
to be very contextual, as proved by Ethayarajh (2019), the average similarity between
these words is still slightly higher than the similarity between stopwords and less frequent
words, or between less frequent words. This confirms the frequency bias and relates it
with the fact that frequent tokens are concentrated in a cone in the vector space, while less
frequent tokens are more sparse. We can also see that this gap is reduced for the SIMCSE
model, that seems to have corrected most of this bias trough contrastive learning.

3.1.2 Subword bias

The contrary happens in the case of subword bias. In the Figure 2 we can see that the
subword bias, understood as the gap of the green distribution (similarity between pairs of
stopwords) and the other two, is significantly higher in the SIMCSE model, despite its
overall average cosine similarity being smaller (or more isotropic) than in the base model.

3.1.3 Punctuation bias

The case of punctuation marks is a little bit trickier. For the base model, punctuation
marks tend to be more sparse in average than whole words, as we can deduce in Fig-
ure 3 by the high variance of the green distribution in the base model, that represents
the distance between punctuation marks. Furthermore, we can see a cluster at the right
that reaches very high similarities, being some of them near one. Although these high
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Figure 1: Average cosine similarity between stopwords and other tokens from
uncased BERT (top) and unsupervised SIMCSE (bottom)
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Figure 2: Cosine similarity between words and subwords from uncased BERT
(top) and unsupervised SIMCSE (bottom).

11



similarities between contextual embeddings are somewhat surprising, it all could come
down to frequency. Some punctuation marks, like comas or dots, are extremely frequent,
while others like exclamation or question marks are also relatively frequent, and others
are very infrequent, like asterisks or slashes. All of this, combined with the representation
degradation problem (or frequency bias) that we have discussed before, is, most likely,
what generates the high variance of the distribution defined by cosine similarity between
punctuation marks, with lower values for infrequent tokens and higher values for more
frequent ones. On the other hand SIMCSE managed to solve the subword bias to a certain
extent, although there are still relatively high similarities for some pairs of punctuation
marks.

3.1.4 Case bias

Finally, the case bias is also non trivial. In the Figure 4 can be observed that the distance
between uppercase words follows a multimodal distribution, with small peaks in high
similarity. This could be explained because there are two types of uppercase tokens. One
is the named entities, and the other is tokens that lay at the beginning of a sentence. Ob-
viously these two groups are not mutually exclusive, as we can have a named entity in the
beginning of a sentence. Both types of tokens have varied frequencies. For example, there
are very common named entities like months, days, or names of countries or celebrities.
There are also words that are very common as sentence beginners like "The". We think
that the small peaks in the right of the distribution could be due to these high frequency
tokens.

In general, the distance between lowercase words is smaller. This is expected, as these
tokens are usually more frequent than uppercase ones.

3.1.5 Experiment conclusions

Take into account that most of these points are just hypothesis that would explain the re-
sults, but that require verification. What we can conclude with certainty, though, is that, in
the non finetuned BERT models there is indeed such thing as frequency, case, and punc-
tuation biases, while in SIMCSE we can find a certain degree of subword bias. These
biases mean that a set of tokens sharing a non semantic property are situated in a cone in
the embedding space, apart from the rest of tokens that don’t meet these properties, much
like the clusters described by Cai et al. (2020). The mere fact that the different colors for
each plot don’t completely overlap and that they are sometimes multimodal supports this
claim. In SIMCSE, a model with a good performance in semantic tasks, we can see that,
in general, there is a better overlap of the different distributions. Furthermore, the distri-
butions tend to have a lower variance and and be centered close to zero. The mean value
of the distribution being around zero tells us that these models are more isotropic. How-
ever, we think that this is not the important point. Even if the distribution was centered
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Figure 3: Cosine similarity between punctuation marks and other tokens from
uncased BERT (top) and unsupervised SIMCSE (bottom)
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Figure 4: Cosine similarity between uppercase and lowercase words from cased
BERT.

in 0.8, that would only increase anisotropy and would mean that all the embeddings lay
in a narrow cone, which, by itself, should not be problematic to semantics. What can be
detrimental to the semantic performance of the model is the existence of biased clusters
in the space, that would distort it with non semantic information. However, if the space
was semantic and not biased, being concentrated in a narrow cone would, by definition,
decrease the isotropy and potentially the representation power of the model, but should
not distort the semantic isometry. If a pair of tokens is semantically closer than other, this
relation would be kept even if we reduce the angle of the representation cone.

Therefore, one of our main claims is that anisotropy is not harmful for semantics
unless it is produced by a bias. This is, anisotropy is not a problem if it is the same for all
tokens.

If this is true, then isotropy correction techniques should not increase the performance
in semantic tasks of these models, which has been empirically proved by Ding et al.
(2022); Jiang et al. (2022).

In the next set of experiments, we further support this idea through empirical evidence.
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3.2 Isotropy vs semantic isometry
We combine and extend the experiments from Ethayarajh (2019); Jiang et al. (2022) re-
garding isotropy and semantic isometry evaluation in BERT; as already mentioned, we
understand semantic isometry as the correspondence between the spaces of embedding
and meaning.

For isotropy evaluation, we sampled 10,000 random sentences from the Wikipedia
corpus and compute the cosine similarity between them in the embedding space. For
semantic isometry, we used the test set from the semantic textual similarity benchmark
(STSB) Cer et al. (2017) and compute the Spearman correlation between the cosine sim-
ilarity obtained for each pair of sentence embeddings and their annotation. We conduct
the following experimentation for all the layers of each model, as the literature tell us that
different layers store different kinds of information.

3.2.1 Pooling comparison

First, we compare different pooling strategies for the bert-base-uncased model. We use
both the average of all the word embeddings in a sentence, and the CLS embedding
as pooling strategies for obtaining sentence-level embeddings. Reimers and Gurevych
(2019) pointed out that the CLS is substantially worse than the token average in seman-
tic tasks for the non finetuned BERT models. However, we still think that it is worth to
include this strategy in our experimentation, especially to see how it behaves in terms of
isotropy.

Additionally, we include "none" pooling, that simply takes the word embeddings in-
stead of pooling them into a sentence embedding, thus allowing the isotropy evaluation
at the word level, like it was done by Ethayarajh (2019). Here, we are computing the
cosine similarity between pairs of token embeddings, instead of sentence embeddings.
This can only be done for isotropy, as the benchmark for semantic isometry (STSB) is
only available between pairs of sentences. We can see the results of this experiment in
Figure 5.

First of all, as it was previously stated, we can observe that the semantic isometry of
CLS pooling is much worse than the one of average pooling, despite being much more
isotropic than the average pooling.

On the other hand, tokens (none pooling) are not that anisotropic in bert-base-uncased,
reaching only average similarities lower than 0.3. Ethayarajh (2019) showed higher
anisotropy for the contextual word embeddings, but that is because they used bert-base-
cased, which, as we will see, has a higher anisotropy than its uncased counterpart.

Finally, the average pooling is highly anisotropic and has an overall decreasing trend
with the layers, which confirms the results of Jiang et al. (2022). This higher anisotropy at
the first layers can be caused by the stopwords; the contextuality in the first layers is low,
which means that the self-similarity (understood as the similarity of the embeddings for
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the same token in different contexts) is high, and this, combined with the high frequency
of these tokens, can have a big effect on the average, moving it towards the high frequency
cone, and increasing the average similarity between sentence embeddings in lower layers.

The isotropy results in the last layer for the "none" pooling (or token level isotropy)
are consisten with the results showin in 3.1, with the average being near 0.2.

3.2.2 Model comparison

For this experiment, we fix the pooling method to the average and we compare the dif-
ferent models studied in terms of isotropy and semantic isometry. For Bert-base-cased,
we input uncased text for it to have the same input as the other models. We study the
difference of using cased and uncased text in a later experiment. Results are shown in
Figure 6.

It is interesting to see how BERT-base-cased performs clearly better in STSB than
bert-cased, while being around 50% more anisotropic.

In addition, we observe that the supervised variant of SIMCSE, the model with the
best semantic isometry of the ones analysed, has an anisotropy only slightly below the
one of bert-base-uncased, the less semantic model, and far above the unsupervised variant
of SIMCSE.

These observations reinforce our hypothesis that, contrary to popular belief, the anisotropy
is not the cause of the poor performance of pretrained Transformer embeddings in seman-
tic tasks.

One final trend that can be observed here is that, although one might expect the em-
beddings from finetuned models to be more semantic that their non finetuned counterparts
across all the layers, SIMCSE models have very similar isotropy semantic isometry to the
ones of the base models in the lower layers. Taking unsupervised SIMCSE as an exam-
ple, its semantic isometry starts decreasing after the first layer as in the base models. It is
only around the 9th layer when its embeddings make a big shift towards a more semantic
space, as it is reflected in the plot. Indeed it seems that the contrastive learning is mainly
acting over the last few layers.

This can make sense if we consider that the semantic information is already present
in these transformer language models and that contrastive learning is basically removing
all the non semantic information (noise, biases, syntax, etc), and extracting the semantic
one so that it can be reflected through cosine similarity. We hypothesise that the base Bert
model contains semantic information because we have seen it achieve remarkable results
in semantic tasks, like in the case of cross-encoders in semantic textual similarity, by just
finetuning the model with a small dataset.
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Figure 5: Average cosine similarity (top) and accuracy in STSB (bottom) for dif-
ferent pooling strategies.
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Figure 6: Average cosine similarity (top) and accuracy in STSB (bottom) for dif-
ferent models.
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3.2.3 Bias removal

To continue with our experimentation, we try removing different sets of output token em-
beddings related to the biases that we are studying to see how they affect to the isotropy
and semantic isometry of the model. Therefore, we apply a similar approach to coun-
terfactual invariance in causal inference Feder et al. (2021). Specifically, we remove
the embeddings from stopwords, subwords, and punctuation marks, with the objective
of highlighting the frequency, subword, and punctuation biases reported by Jiang et al.
(2022). We also remove CLS, and SEP, as we have seen that the CLS embedding has poor
semantic isometry, and SEP should not contain any relevant information in inferences
with a single sentence. It is important to note that we do not remove these tokens from the
input sentence, as that could affect the ability of a Language Model, trained with syntac-
tically correct sentences, to understand it. Instead, we remove the embedding after it has
been computed by the model, just before the pooling step, like it is performed by Jiang
et al. (2022); Yan et al. (2021). That way, we can see how much are each of these token
categories contributing to the low isotropy and semantic isometry observed in BERT, and
whether or not they are causes to the lack of them.

Again, for these experiments we use average pooling. For the sake of simplicity in
the figure, we only display the curves for Bert-base-uncased and unsupervised SIMCSE,
but the ideas extracted from these experiments also apply to the other models. We show
a curve for the removal of each of these categories of tokens individually and for all of
them combined to see how the improvements stack and how far we can arrive in terms of
semantic performance with this method. The results are shown in Figure 7.

For the most part, we see that the removal of these tokens, individually and combined,
improves the results over the semantic similarity benchmark (STSB) to different extents
in the lower layers of both bert-base-uncased and unsupervised-SIMCSE.

The fact that the effect of removing these tokens is very similar in the first 9 layers of
both models, reinforces our claim that contrastive learning is mainly modifying the last
part of the network.

The only set of tokens whose removal does not improve the semantic isometry is
subwords. We can see that removing subwords is slightly detrimental in both models.
This was predictable if we think that subwords are sometimes the result of words with a
high semantic load, that are outside of the vocabulary for being very specific. Following
the example given above, the word "tofu" is out of the vocabulary and is splitted in "#to",
and "#fu". Even if these two pieces don’t make sense separately, the attention mechanism
of transformers combines both to get the meaning of the whole word. If we were to
remove these two subwords from a sentence, it would probably have a high negative effect
on its meaning. In fact, the low impact of removing subwords that we see in the figure,
is only due to these tokens being relatively infrequent. Furthermore, our experiments in
Section 3.1 showed that the subwords are not biased in the base model, but they are in
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SIMCSE. However, this bias does not seem to be affecting SIMCSE, as the removal of
subwords also decreases semantic performance in this model.

In the upper layers of the base model, the improvement in semantic isometry is still
significant, while in the SIMCSE model, the curves converge. This second part is sur-
prising, because the SIMCSE model has been finetuned for taking into account all the
tokens, including stopwords, punctuation marks, subwords, CLS and SEP. However, the
removal of these tokens only decreases the Spearmann correlation with the STSB gold
standards in 0.005. We were expecting a higher drop, especially for the removal of the
stopwords. This can indicate that the average contribution of these tokens to the semantics
of a sentence is, in general, low, even in contextual word embeddings. However, probably
the information given by these tokens has already been distributed throughout the layers
via self-attention, so the invariance of the semantic isometry despite their removal from
the final average does not necesarily imply that they are not being taken into account for
obtaining the sentence meaning.

On the other hand, removing the biased tokens decreases anisotropy, but we can see
this decrement is significant only in lower layers, especially for stopwords. This con-
firms our statement before about the high anisotropy of initial layers in average pooling
being partially due to the high frequency of low contextual stopword embeddings. In the
higher layers of the base model, the slight increase in isotropy does not correspond in
magnitude to the big increase in semantic performance. Even in the lower layers, where
these two metrics improve, this only confirms that biases can generate anisotropy, but not
necessarily the other way around.

To sum up, we have rejected subword bias and confirmed frequency and punctuation
bias. Nonetheless, we still don’t know if the punctuation bias is just due to the high
frequency of some of the punctuation marks. If this was the case, there would be no such
think as a punctuation bias, as it would just be contained in the frequency bias. We know
that removing frequent punctuation marks would improve the semantic isometry, but we
want to know if all the improvement of removing punctuation marks comes from there, or
if removing less frequent punctuation marks also contributes to the overall score.

For this, we have elaborated the following list of frequent punctuation marks: [".",",","’","-
",":"], and removed their output embeddings before the average, as we have done with
stopwords and punctuation marks. The results were the same between the removal of all
punctuation marks to the removal of the most frequent ones. However, this experiment
is not conclusive because the infrequent punctuation marks will have less of an impact
on overall scores due to their low frequency in the dataset that we are using. Instead,
we should make a test set by choosing sentences that contain plenty of these infrequent
punctuation marks, so their effect becomes noticeable. Due to time constraints, we leave
this experimentation as future work.
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Figure 7: Average cosine similarity (top) and accuracy in STSB (bottom) for the
removal of different kind of tokens.
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3.2.4 Case removal

With our next experiment we want to test how much is the information of the case con-
tributing to the fact that the bert-base-cased has a way superior semantic isometry than
bert-base-uncased. We try inputting the text to bert-base-cased in its original form with
uppercase words and converted to lowercase. The results are shown in Figure 8.

We can see that the uncased word embeddings are slightly more anisotropic than
the cased ones. This was expected, given the results of the previous section, when we
analyzed the case bias. Furthermore, the anisotropy when using a cased input is still
much higher than the one of the uncased model. We can confirm this by looking at the top
plot of Figure 1, that was made with bert-base-uncased and Figure 4, that was made with
bert-base-cased. The distributions present in the second figure have higher values than the
ones from the first figure.

This can make sense if we consider that, during the cased model training, most of the
lowercase tokens were probably grouped in a cone, separated from the uppercase ones,
while for the uncased model, this process did not happen because all the tokens were
processed as lowercase.

This is another example where more anisotropy does not mean worse semantics. In
this case, the more anisotropic variant happens to be more semantic.

What was unexpected to a certain degree is the big drop in semantic isometry when
using cased text. This model has been trained with cased text; the fact that its embeddings
are much more semantic with uncased text further proves the idea of biases being a big
part of the lack of semantic isometry of contextual word embeddings, and that there could
be other unknown biases responsible for this.

This big increase in semantic isometry when using the cased model with uncased
text is not reflected in any way in the isotropy, which remains roughly the same. This
dissonance between both metrics adds evidence in the direction of demonstrating our
hypothesis of anisotropy not being the root cause of the lack of semantic isometry.

3.3 Pairwise similarity
In previous experiments we have seen how, in the base BERT models, none of both simple
pooling strategies give satisfactory results for semantic similarity. In the case of the aver-
age pooling we hypothesize that part of the problem is that averaging a sequence of token
embeddings that contain biased tokens could be distorting the sentence embedding. For
confirming that this is the case, we design the following alternative strategy for computing
the similarity that was inspired by the attention mechanism, the basic building block for
transformers.
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Figure 8: Average cosine similarity (top) and accuracy in STSB (bottom) for bert-
base-cased with cased and uncased text.
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3.3.1 The method

Given a pair of sentences, instead of trying to directly obtain the sentence embeddings
and computing the similarity between them, we keep the contextual word embeddings for
both sentences and compute the cosine similarity between each pair of word embeddings.
We arrive to a matrix like the one shown in Figure 10, whose values are in the range [-1,1].
We then obtain the maximum values for each row and for each column. These values try
to represent the alignments between the tokens of both sentences. Finally, we multiply
each of these "alignment" similarity scores by the modules of the two token embeddings
involved in it, and compute the average of these values to obtain the similarity score of
both sentences.

The reason of computing the alignments from the cosine similarities is that we want
to know which tokens are semantically present in both sentences, independently of their
semantic weight.

However, as we described above, to obtain the final score, we first multiply the align-
ments by the embeddings’ modules because they represent the amount of information of
the tokens, while the angles represent their meanings. If we discarded the module infor-
mation, we would be giving the same weight to a match in the word "is", than to a match
in the word "tofu", while their contribution to the overall meaning of the sentence is very
different, being, of course, the second one much more relevant. To sum up, if two sen-
tences contain the word "tofu" they are probably more similar between them than if they
both contain the word "is".

Recapitulating the explanation at the beginning of this section, the idea behind this
method is that, by not averaging the word embeddings in a sentence, we are avoiding part
of the negative effect of biases on semantic performance.

3.3.2 Comparison with bias removal

To prove this hypothesis, we compared the semantic isometry obtained by this method to
the one achieved in Section 3.2 by removing the biased tokens. These results are shown
in Figure 9, and they are very interesting.

Our hypothesis seems to validate to some degree in lower layers. There, the pairwise
similarity obtains similar results (although slightly worse) than the removal of all biased
tokens in both models. In addition, we see that, in lower layers, the combination of both
techniques only obtains a slight improvement, much lower than the addition of the indi-
vidual improvements of both techniques. This indicates that there is an overlap between
these two methods, and that, with the pairwise similarity, we are at least smoothing the
influence of the biases over the semantic isometry of the model.

All of this is true for the lower layers, but completely changes in the last layers. Here
we are talking about the base model, as we already know that, due to the way it was
trained, the best performance for SIMCSE in the last layers is obtained without doing any
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changes. In the last layers of bert-base-uncased, the pairwise similarity, not only does not
improve, but is actually slightly detrimental to the semantic isometry. In this case, the
combination of both techniques basically overlaps with the removal of biased tokens. For
some reason, the high context in more advanced layers is invalidating our hypothesis. In
the next section, we will analyse some examples to try to understand this behaviour.

3.3.3 Analysis of alignment matrices

We think that the main value of pairwise similarity is not the increase in semantic isometry
of the lower layers shown before, but the fact that it enables a deeper study of each pair
of sentences, which helps us understand its outcome. When pooling with the average and
doing the cosine similarity between sentence embeddings, a lot of information is lost in the
process and it is difficult to know where an unexpected similarity score is coming from.
As we are going to see, in comparison, pairwise similarity is much more explainable.

We applied this method to a random pair of sentences extracted from the STSB test
set. These two sentences happen to be the following: "One woman is cutting a block
of tofu into small cubes", "One woman is slicing some tofu". The annotated similarity
score for these pair of sentences is a 4 in a scale from 1-5, which, according to STSB
Cer et al. (2017) means "The two sentences are mostly equivalent, but some unimportant
details differ". The only semantic difference between these two sentences is that the first
one contains the information about the shape of the resulting tofu (small cubes), while the
second one does not give this information.

In Figure 10 and Figure 11 we show the alignment matrix of this method for the mod-
els bert-base-uncased and unsupervised SIMCSE respectively. The values of the align-
ment matrices are obtained via cosine similarity, so they are in the range [-1,1]. However,
due to the general lack of isotropy of these models that we have discussed earlier, we do
not obtain scores lower to -0.2, so we set as as a lower bound for the color map of the
figures in order to increase visibility.

In addition, for both models we obtain the alignment matrix for the first and last layers
(0 and 12), in order to analyse the difference between static and contextual embeddings.

The first thing we notice in these figures is that, in both cases, the similarity values
are generally higher in the contextual embeddings than in the static ones, especially for
tokens that should be semantically unrelated. This is even more substantial in the case of
SIMCSE, were pairs of tokens like "one" and "is", have a similarity of 0.76 while "slicing"
and "cutting", that are synonyms and that are even being used in the same context, have
a score of 0.72. One could try to blame the representation degradation problem for this,
but we are talking about SIMCSE, a model that has a good semantic performance, a low
frequency bias and a very low anisotropy in its last layer, has we have seen in previous
experimentation. We started this experiment with a preconceived idea of how the contex-
tual embeddings are, and these results change it completely. We thought that contextual
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Figure 9: Accuracy in STSB for bert-base-uncased and unsupervised SIMCSE
with bias removal, pairwise similarity and both
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embeddings would be similar to word embeddings but with the disambiguation of pol-
ysemous words, and perhaps the incorporation of some relevant stopwords’ information
into the words they reference, like "into" in "cutting". However, we didn’t think that the
context would be a subcone in the space and that all the embeddings in the same context
would be located there, despite their individual meaning. In fact, once created the con-
text, the individual words are not that important, as they are all inside that cone. We can
see that, even if we remove the word "slicing", that is crucial for the meaning of the first
sentence, this information has already been used in the creation of the context and there
are a lot of other tokens inside this context, including the CLS, that have high similarities
with tokens from the other sentence, so the overall similarity score would not decrease
significantly.

Now there is no question of why this pairwise similarity gave poor semantic results
in the upper layers. In these layers, the influence of the context is so strong that it doesn’t
make sense to look at the similarities between individual tokens.

To end our observations about the results of the last layer, we see that, comparing both
models, there is a noticeable difference in the similarities of the CLS and "." tokens. The
base model fails to include them in the context. It is interesting to see how they achieve
very high scores with the CLS and "." tokens of the other sentence respectively, but they
achieve low similarity scores with the rest of the tokens. This can be explained by the
biases that are more present in the base model than in the SIMCSE one. In Section 3.1 we
saw that there are clusters in the space that contain punctuation marks. The embeddings
of "." here seem to be sharing one of them. About the CLS, in Section 3.2 we saw that it is
anisotropic, which means that its self-similarity is high. We did not measure the isotropy
of CLS in SIMCSE models, but, for what we have seen with the average pooling, the
anisotropy of CLS is likely low in the last layers. The SIMCSE model not only places
CLS in insde the context, but in the center of it, being one of the tokens with higher
similarity with all the other ones.

About the results in the first layer, as expected, they are extremely similar for both
models. As we have pointed our before, in lower layers there is no context, so self-
similarity is high or words, which, in this case, results in very high scores for the words
that are repeated in both sentences. On the other hand, we see a score of 0.46 between
"slicing" and "cutting", which is not bad, but that gets distorted by scores like the 0.43
between "of" and ".", that are spurious and due to the representation degradation problem.

Given these results, our next idea was to see what would happen with these matrices
if we passed a pair of sentences with a very similar syntax and words. Theoretically, we
should be able to fool the static embeddings, that do not distinguish between the mul-
tiple meanings of words, while SIMCSE contextual embeddings should be able to pass
the test by placing both context far away from each other and giving a low similarity
score. Therefore, we analyse the following pair of sentences, designed as an adversarial
test: "One woman is cutting a block of tofu into small cubes", "One woman is buying
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Figure 10: Cosine similarity between the token embeddings of the adversarial
sentence pair from the first (top) and last (bottom) layers of bert-base-uncased
model
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Figure 11: Cosine similarity between the token embeddings of the original sen-
tence pair from the first (top) and last (bottom) layers of the SIMCSE model
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a block of apartments", both of which follow the structure "One woman is X a block of
Y". The alignment matrices corresponding to this experiment are located in Figure 12 and
Figure 13.

For the first layer, as expected, we clearly fool the models into high similarity align-
ments by using the same words.

For the last layer, it is not that simple. We believe that we have managed to fool both
models to a certain degree, as both still assign relatively high scores to alignment pairs of
tokens, even when they are not related in context. Of ocurse, SIMCSE, the more semantic
model, has lower scores for this sentence pair than the base model, so it has been able to
better differentiate between meanings here.

3.3.4 Analysis of pairwise similarities

Despite some interesting information being extracted from the alignment matrix, we also
want to compute the final similarity score for each of this cases. This score is not only
influenced the strength of the alignments but also the modules of the tokens forming them.
We have not conducted any experimentation to explore the modules in different tokens,
layers, or models, and we leave that as a future work. For now, lets just assume that the
module is related with the amount of information of the word, as it has been shown by the
literature.

We obtained the similarity scores for each case, but they don’t make sense in an
absolute scale. We can get a number like 150, but we don’t know if that is actually a lot
or not. The scores make sense relative to each other. For measuring to what extent did
our adversarial example fool each of the models, we tried a third sentence pair, whose
semantic similarity score should be similar to the adversarial one. If the adversarial pair
obtains a higher score, we will know that we were able to fool the models by repeating
words and syntactic patterns. The pair of sentences is the following: "One woman is
cutting a block of tofu into small cubes", "One woman buys a house". We call this pair
"non related" as it does not have in common nor the syntax nor the meaning. The pairwise
similarity scores for each and the other pairs are shown in Table 1.

In this case we can quantify some of the observations made earlier.
The results of the first layer extremely similar between both models, with SIMCSE

always rating a little bit lower. The first layers get fooled by the adversarial example, that
achieves a similarity score that is similar to the original one, far above the non related
example.

In the last layer, SIMCSE is more accurate than the base model, as it has a higher
score for the original pair, and a lower one for the adversarial and non related pairs than
bert-base-uncased. In addition, reading this numbers, we can confidently say that the
last layers of both models have been partially fooled by the adversarial example. Even
SIMCSE, that is a state of the art bi-encoder model for unsupervised semantic textual
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Figure 12: Cosine similarity between the token embeddings of the adversarial
sentence pair from the first (top) and last (bottom) layers of bert-base-uncased
model
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Figure 13: Cosine similarity between the token embeddings of the adversarial
sentence pair from the first (top) and last (bottom) layers of the unsupervised
SIMCSE model
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original adversarial non related
similar meaning yes no no
similar syntax no yes no

number of repeated words 5 7 4
bert-base-uncased (first layer) 162.2 157.17 125.5
bert-base-uncased (last layer) 180.84 159.2 136.8

unsup-simcse (first layer) 159.84 154.97 123.69
unsup-simcse (last layer) 188.77 142.52 114.19

Table 1: The pairwise similarity scores of the different pairs of sentences, for the
different models and layers tested.

similarity, gives a score to the adversarial example that sits around the middle point of
the range between the non related and the original scores. If we assume that the SIMCSE
rated correctly the original and non related pairs with their scores corresponding with a
4 and a 0 in a scale of 0-5, the adversarial example score would be around a 2, which
in STSB Cer et al. (2017) means "The two sentences are not equivalent, but share some
details", were it should be a 0, that means "The two sentences are completely dissimilar".
This gives us faith in that there is still a large margin for improvement in this field.

4 Conclusions
In this paper we carry out a set of experiments intended to confirm and measure known
biases, and to understand their impact over anisotropy and semantic isometry in finetuned
and non finetuned BERT models.

In our results we have not found a clear correlation between isotropy and semantic
isometry. In fact, models or pooling methods with a higher anisotropy are sometimes
more semantic than others that are more isotropic. However, there is a correlation between
the biases and the semantic isometry. These biases are present in the embedding space,
making it encode information that is not semantic, like the frequency of a token or its
case. This non semantic information distorts the cosine similarity, which leads to poor
performance on semantic tasks.

Due to this cosine similarity distortion, biases naturally contribute to anisotropy, so
there is, in fact, sometimes certain correlation between isotropy and semantic isometry.
But this correlation is spurious and comes from both the anisotropy and poor semantic
isometry being a consequence of a high bias. We don’t think that there is a causality
relation between isotropy and semantic isometry. This means that isotropy correction
methods will not achieve substatial improvements over their base models, which has been
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recently proved by Ding et al. (2022). Therefore, it could be said that assuming that the
lack of isotropy of the embedding spaces is the cause of the lack of semantics is a post-hoc
fallacy.

Methods that correct the embedding space to a certain degree, like the ones based on
contrastive learning, also decrease anisotropy as side effect of removing biases, but we
can’t expect it to work the other way around, which is, to remove biases by increasing
isotropy, as we could just be opening the general cone, while keeping the same islands
with the same biases inside.

We have proposed a new similarity method that we call "pairwise similarity" aimed
to alleviate the effects of biases in semantic performance. This method improves the
semantic isometry of the BERT model in lower layers to a similar extent that the manual
bias removal moethod does. However, this improvement is not produced in upper layers
as well. As we have deduced from our experimentation, the reason for the lack of success
of pairwise similarity on upper layers is the contextuality of these layers, for which it does
not make sense to compare the words individually between them.

Our experimentation with pairwise similarity brought us to the conclusion that the
models tested, including SIMCSE, can be fooled by repeating words and syntactic pat-
terns. This opens a gap between the state of the art AI techniques and human performance
in semantic tasks. We think that there is still a relevant margin of improvement in language
understanding.

5 Future work
There are small extensions that can be done to this work, that have already been intro-
duced in their related sections, like doing a more conclusive experiment for checking if
the punctuation bias is just a subset of the frequency bias or if if has its own entity and
causes. Another experiment in the line of this work would be to repeat the experimenta-
tion but separating the cased tokens in two categories: "named entities" and "beginning of
sentence".

One of the techniques we used in this work was bias removal, but despite its suc-
cess, we are still far away from state-of-the-art unsupervised contrastive learning models
(around 0.1 below in STSB). We think that this could indicate that there are a series of
biases that we still don’t understand. One promising path for future work, taking into
account the results from Luo et al. (2021) and Kovaleva et al. (2021), could be to try
to find a positional bias, and a way to correct it. Maybe, we could find that the bias of
some punctuation marks is also positional, as ".", or "?" are always located at the end of a
sentence.

Another path that we could follow in the future is the one of studying the module of
token embeddings. We have centered most of our work in measuring cosine similarity of

34



embeddings for checking the isotropy of a model or the semantic similarity between sen-
tences, but we have neglected the modules of these embeddings. The modules of the token
embeddings have a paramount effect on its average, which is then used as the sentence
embedding. Understanding which words in which contexts have a bigger module can
provide us with new insights about the representation degradation problem in transformer
models.

Finally, even if our pairwise similarity metric does not work in higher layers of pre-
trained models, there exists the option of retraining a state of the art contrastive learning
model like SIMCSE with it. It may work, or nor. That is something that we cannot know
in advance, but if it worked, it would be a more explainable and controllable method for
computing the similarity of two sentences than just using the cosine similarity between
the average embeddings. There are other variants that could be tried here as well, like,
instead of computing the alignment only between single tokens, adding also bigrams and
trigrams. This could help to get the full meaning of subwords that have been splitted for
being out of vocabulary or phrasal verbs, for example.

6 Limitations
The main limitation to be mentioned in relation to this work is that we do not produce any
improvement over the state of the art in unsupervised nor supervised semantic sentence
embeddings. Rather than that, we have focused our research on trying to improve our
understanding of BERT embeddings space, and how their isotropy correlates with their
semantic isometry. We hope that our results will give some valuable insights to other
researchers. Part of our experimentation was already done by Ethayarajh (2019) and
Jiang et al. (2022), however, they both used different models and pooling strategies, so
their results seem contradictory. Part of our contribution is to match these results and
give a more complete picture of the problem, hypothesising that the finding of new biases
could contribute to the objective of understanding the lack of semantics in Transformer
Language Models.

7 Acknowledgements
Thanks to my thesis director Víctor Fresno Fernández, that has helped me in all the stages
of this work, that include, but are not limited to, hypothesis creation, experimentation
design and results analysis. Thanks to Voicemod S.L., the company in which I work, for
allowing me to carry out this work during my working hours. I hope that this research can
contribute to the creation of future products in Voicemod.

35



References
Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015.

https://doi.org/10.18653/v1/D15-1075 A large annotated corpus for learning natural
language inference. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 632–642, Lisbon, Portugal. Association for
Computational Linguistics.

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth Church. 2020.
https://openreview.net/forum?id=xYGNO86OWDH Isotropy in the Contextual
Embedding Space: Clusters and Manifolds.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. 2017.
https://doi.org/10.18653/v1/S17-2001 SemEval-2017 Task 1: Semantic Textual Simi-
larity Multilingual and Crosslingual Focused Evaluation. In Proceedings of the 11th
International Workshop on Semantic Evaluation (SemEval-2017), pages 1–14, Van-
couver, Canada. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
https://doi.org/10.18653/v1/n19-1423 BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational
Linguistics.

Yue Ding, Karolis Martinkus, Damian Pascual, Simon Clematide, and Roger Wattenhofer.
2022. https://aclanthology.org/2022.insights-1.1 On Isotropy Calibration of Trans-
former Models. In Proceedings of the Third Workshop on Insights from Negative Re-
sults in NLP, pages 1–9, Dublin, Ireland. Association for Computational Linguistics.

Kawin Ethayarajh. 2019. https://doi.org/10.18653/v1/D19-1006 How Contextual are
Contextualized Word Representations? Comparing the Geometry of BERT, ELMo,
and GPT-2 Embeddings. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 55–65, Hong Kong, China.
Association for Computational Linguistics.

Amir Feder, Katherine A. Keith, Emaad Manzoor, Reid Pryzant, Dhanya Srid-
har, Zach Wood-Doughty, Jacob Eisenstein, Justin Grimmer, Roi Reichart, Mar-
garet E. Roberts, Brandon M. Stewart, Victor Veitch, and Diyi Yang. 2021.

36



http://arxiv.org/abs/2109.00725 Causal inference in natural language processing: Es-
timation, prediction, interpretation and beyond. CoRR, abs/2109.00725.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. 2019. Representation
Degeneration Problem in Training Natural Language Generation Mod-. page 14.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
https://doi.org/10.18653/v1/2021.emnlp-main.552 SimCSE: Simple Contrastive
Learning of Sentence Embeddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 6894–6910, Online and
Punta Cana, Dominican Republic. Association for Computational Linguistics.

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader. 2021.
https://doi.org/10.18653/v1/2021.acl-long.72 DeCLUTR: Deep Contrastive Learning
for Unsupervised Textual Representations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
879–895, Online. Association for Computational Linguistics.

Ting Jiang, Shaohan Huang, Zihan Zhang, Deqing Wang, Fuzhen Zhuang, Furu Wei,
Haizhen Huang, Liangjie Zhang, and Qi Zhang. 2022. http://arxiv.org/abs/2201.04337
PromptBERT: Improving BERT Sentence Embeddings with Prompts.
arXiv:2201.04337 [cs]. ArXiv: 2201.04337.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. 2021.
https://doi.org/10.18653/v1/2021.findings-acl.300 BERT Busters: Outlier Dimensions
that Disrupt Transformers. In Findings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3392–3405, Online. Association for Computational
Linguistics.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. 2020.
https://doi.org/10.18653/v1/2020.emnlp-main.733 On the Sentence Embeddings from
Pre-trained Language Models. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 9119–9130, Online. Asso-
ciation for Computational Linguistics.

Ziyang Luo, Artur Kulmizev, and Xiaoxi Mao. 2021.
https://doi.org/10.18653/v1/2021.acl-long.413 Positional Artefacts Propagate Through
Masked Language Model Embeddings. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers), pages 5312–5327,
Online. Association for Computational Linguistics.

37



Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014.
https://doi.org/10.3115/v1/D14-1162 Glove: Global Vectors for Word Represen-
tation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for
Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. https://doi.org/10.18653/v1/D19-1410 Sentence-
BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. 2021. Whitening Sentence Repre-
sentations for Better Semantics and Faster Retrieval.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html Attention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, Wei Wu, and Weiran Xu.
2021. http://arxiv.org/abs/2105.11741 ConSERT: A Contrastive Framework for Self-
Supervised Sentence Representation Transfer. arXiv:2105.11741 [cs]. ArXiv:
2105.11741.

Yan Zhang, Ruidan He, Zuozhu Liu, Lidong Bing, and Haizhou Li. 2021.
https://doi.org/10.18653/v1/2021.acl-long.402 Bootstrapped Unsupervised Sentence
Representation Learning. In Proceedings of the 59th Annual Meeting of the Associ-
ation for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 5168–5180, Online.
Association for Computational Linguistics.

38


