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Abstract

Fake news are purposefully designed to be misleading, and their success depends mostly on their read-
ers [OG17]. Due to the nature of social networks, fake news can be quickly propagated, potentially
causing a great damage to the society. Moreover, sociological phenomena like echo chambers or po-
larization [Sil+16], and psychological factors like confirmation bias [Del+16] or overconfidence to be
fooled by fake news !, create the perfect playground for misinformation [Tac+17] [Del+18]. Platforms
have recently adopted measures > to discourage users sharing content without reading it first, but these
measures are still not fully enforced and easy to bypass. An automatic fake news detection system that
blocks or warns users about possibly misleading information will be needed in the near future, espe-
cially with the high volume of information that is shared through these websites.

Several models have been proposed to detect fake news by analyzing linguistic features [HA 17] [Pot+17]
[BS19] [KGN21], but these are often not enough [Shu+18] to distinguish fake news from real ones. Re-
search is now focusing on including user engagement information to existing content-based models
[RSL17] [Del+18] [SML19]. Some systems have been proposed that only use information from these
engagements [Tac+17]. Part of the research has focused on creating training datasets [SW 18] [Shu+18]
for this task, crawling news from fact-checking websites and fetching user engagements using the public
APIs offered by social networks.

In this work, we develop and test different fake news detection systems using information from news
articles and user engagements in social networks. Two different architectures are used. The main one is
based on Deep Learning, and can process news content and user engagements. The second one is based
on well-known algorithms like logistic regression, SVM, random forest, LightGBM or XGBoost; it can
only process news content and is used as a performance baseline for our Deep Learning models.

We use the FakeNewsNet dataset [Shu+18], which contains real and fake news from two fact-checking
sources. For each news piece, this dataset contains the scraped news article, as well as tweets and
retweets related to each news, and user profiles of the users involved in these tweet, including the user’s
timeline, followers and followees, although not all this information will be used.

Our work starts with an exploratory data analysis on the train set, where we highlight the main charac-
teristics of the dataset. Then, we carry out a series of tests on both architectures, taking news from each
set of news, with different subsets of features and with various textual representation techniques. Ad-
ditionally, we perform an ablation test on the Deep Learning architecture, to understand how individual
features behave and how do they complement each other.

Our results clearly show that our architecture is able to capture much information from user engage-
ments, and that including user interactions gives better results than models using only information from
news articles.

"https://www.journalism.org/2016/12/15/many-americans-believe-fake-news-is-sowing-confusion/
Zhttps://techcrunch.com/2020/09/24/twitter-read-before-retweet/
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With this work, our main contribution is a Deep Learning architecture capable of handling varying-
length sequences of engagements for each piece of news, while also extracting all the information from
them without padding or truncating to fixed-size sequences. We take advantage of recent innovations
in frameworks like Tensorflow to process non-tabular-shaped data, which allows to directly include
unaggregated features, minimizing the preprocessing required before the input data is fed to the model.
This architecture can perform complex summarizations, such as a trainable recurrent layer that takes
a sequence of user engagements in the same order as they were published, and outputs a vector that
summarizes the whole user engagement sequence.
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Chapter 1

Introduction

Fake news are news intentionally created to be misleading or deceptive. They are designed to spread
misinformation, and their success depends almost entirely on their readers, who have the power of shar-
ing them, or stopping them [OG17]. Social networks are currently the most powerful ally of fake news:
an unsupervised, unregulated space where information can be globally, instantly accessed and people
tend to spend only a few seconds on each post. They are a perfectly-tailored propagation media to
spread misinformation [Tac+17] [Del+18]. Of course, due to their size, social networks will still be
unsupervised in the near future, at least not by humans. Hence, the solutions are (1) educate users on
how to distinguish fake news from real news, or (2) develop a fake news detection system that is able to
block fake news or warn users about a possible lack of veracity.

According to a survey ! conducted by Pew Research Center in the United States in December 2016
(after the U.S. election), 64% adults say fabricated news stories cause a great deal of confusion about
the basic facts of current issues and events. Moreover, 39% feel very confident that they can recognize
fabricated news and another 45% feel somewhat confident. The survey also reveals that 23% say they
have ever shared a made-up news story, with 14% of respondents saying they shared a story they knew
was fake and 16% having shared a story they later realized was fake. Another survey 2 conducted by
Ipsos for BuzzFeed News a few days earlier revealed that 75% of respondents who recognized a fake
news story from the U.S. election still viewed the story as somewhat or very accurate.

It is clear, then, that people overestimate their ability to distinguish fake news, and it is remarkable that
some readers purposefully shared fake news. In fact, social networks boost the effect of echo cambers
and group polarization, particularly in politics [Sil+16]: the more a user reads comments or news from
a page, the more news they will receive from that page in the next days. Users are pushed further and
further until they are polarized enough to share fake news, even if they know they are not true. In partic-
ular, this process ends up clustering users [RSL.17] in groups where all participants share the same bias
[Del+16].

Some measures have been taken recently to encourage users to read news articles before sharing them
3 4 or to warn users about old articles that might be falsely spread as recent news 5. However, these
measures have a limited effect, since platforms do not force users to read the articles yet. Even if users
had to read those articles, this measure would not be effective for polarized users [Sil+16], who would
surely agree with the content of any news they share. Therefore, it is still necessary to implement some
kind of fake news detection system.

"https://www.journalism.org/2016/12/15/many-americans-believe-fake-news-is-sowing-confusion/
Zhttps://www.buzzfeednews.com/article/craigsilverman/fake-news-survey
3https://techcrunch.com/2020/09/24/twitter-read-before-retweet/
“https://techcrunch.com/2021/05/10/facebook-pop-up-read-before-you-share/
Shttps://www.theverge.com/21304173/facebook-o0ld-news-articles-warning-notification-time
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2 Chapter 1. Introduction

There exist several fact-checking agencies © in many countries, whose job is to read all news and judge

whether they are true or not. However, their journalists have to perform the fact-checking manually, and
given the increasing rate of published news, they can only analyze the most popular ones.

An automatic fake news detection system is needed. Several models have been proposed to detect fake
news by analyzing linguistic features, not only using news articles and titles, but also the writing style,
complexity, punctuation, capitalization and semantic meaning [HA17] [Pot+17] [BS19] [KGN21]. Al-
though linguistic features like these contain information that differentiates fake and real news [HA17],
they are often not enough to detect fake news [Shu+18]. Therefore, the next step is to include features
about user engagement in social networks [RSL17] [Tac+17] [Del+18] [SML19], especially with sur-
veys like mentioned above proving that a large fraction of users are unable to detect fake news and that
there exist groups of people who consciously share fake news.

In this work, we develop and test different fake news detection systems using information from news
articles and user engagements in social networks. Two different architectures are used. The main one is
based on Deep Learning, and can process news content and user engagements. The second one is based
on well-known algorithms like logistic regression, SVM, random forest, LightGBM or XGBoost; it can
only process news content and is used as a performance baseline for our Deep Learning models.

We use the FakeNewsNet dataset [Shu+18], which contains real and fake news from two fact-checking
sources. For each news piece, this dataset contains the scraped news article, as well as tweets and
retweets related to each news, and user profiles of the users involved in these tweet, including the user’s
timeline, followers and followees, although not all this information will be used.

Our work starts with an exploratory data analysis on the train set, where we highlight the main charac-
teristics of the dataset. Then, we carry out a series of tests on both architectures, taking news from each
set of news, with different subsets of features and with various textual representation techniques. Ad-
ditionally, we perform an ablation test on the Deep Learning architecture, to understand how individual
features behave and how do they complement each other.

Our main contribution with this work is a Deep Learning architecture that is capable of handling varying-
length sequences of engagements for each news piece, while also extracting all the information from
them without padding or truncating to fixed-size sequences. Our approach is somewhat similar to
[RSL17] and [SML19]. However, we take advantage of Tensorflow’s Ragged Tensors 7 introduced
a few years ago, to process non-tabular-shaped data, which allows to directly include unaggregated
features, so that no preprocessing has to be done before the input data is fed to the system. While
existing models propose to aggregate user engagements in temporal windows, our architecture can pro-
cess individual engagements. Moreover, our architecture can include complex summarizations, such as
a trainable recurrent layer that takes a sequence of user engagements in the same order as they were
published, and outputs a vector that summarizes the whole user engagement sequence. This might be
particularly interesting for early fake news detection.

Shttps://en.wikipedia.org/wiki/List_of_fact-checking_websites
"https://wuw.tensorflow.org/guide/ragged_tensor
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1.1

Objectives

Our main goal is to check whether including user engagements in our models results in a performance
improvement with respect to using only news articles, and what features contribute most to that im-
provement. We break this general goal into a set of specific goals:

1.2

Study how are features correlated between them and with news labels.

Create a Deep Learning fake news detection system that can use all the information available
from news content and user engagements, and can handle varying-length sequences of user en-
gagements without padding or truncating to a fixed length.

Test fake news detection models using different textual representation techniques, including Vec-
tor Space Models and pretrained embeddings like Word2Vec or BERT.

Study the performance impact of each feature depending on their type (numerical, categorical,
textual) and origin (news, user engagement, user profile).

Document Structure

The structure of this document is as follows:

We start in chapter 2 by reviewing the state-of-the-art fake news detection models, especially
some of the few systems that include user engagements.

In chapter 3, we explain the reasons why we decided to use the FakeNewsNet dataset and we
carry out an exploratory data analysis and a study on the correlation between features and with
news labels.

We explain in chapter 4 the two architectures mentioned above, leaving the implementation details
in appendix A.

Next, we present all the experiments and analyze our results in chapter 5. We include there the
main results (F1 scores on the test set), and leave the rest (accuracy, precision-recall AUC and
ROC AUC) in appendix B.

Finally, we gather the most relevant conclusions and mention possible future work in chapter 6.






Chapter 2

State of the Art

Traditional fake news detection models used to focus on news linguistic features. Many of them relied
on news text representations using Vector Space Models or pretrained embeddings like Word2Vec or
GloVe, although other linguistic features are commonly used, like writing style, complexity, punctua-
tion, capitalization and semantic meaning [HA17] [Pot+17] [BS19] [KGN21]. However, due to the de-
ceiving nature of fake news, linguistic features are sometimes unable [Shu+18] to detect fake news, and
hence, research started shifting towards studying user behavior [RSL17] [Tac+17] [Del+18] [SML19].
Fake news are usually targeted [Del+16] to a specific public, and therefore, studying which, how and
how much users react to news is key to understanding fake news propagation. The question, then, is
how to use user information, and how to integrate it with news features.

Depending on whether models use news or user features, they can be classified [OG17] as content-based
(textual and non-textual features from news), network-based (connections between users), user-based
(user information) or hybrid. State-of-the-art models are in the hybrid class, although their advances
come mainly from new user-based approaches, which are then merged with traditional content-based
models. Therefore, advances in linguistic-related models are also important to the fake news detection
task, and we must review the most recent innovations in textual representations.

Another important question is how and where to obtain training data from. The main issue is that most
social networks currently sell their public data, and have paid subscriptions or small rate limits. There-
fore, their Terms of Use are usually very strict, and do not allow to directly share any data. Instead,
researchers willing to share a dataset usually rely on comment and user identifiers, and develop a set of
tools that lets other people replicate the dataset. Although this approach allows the dataset to grow, data
is subject to change over time, and most importantly, can become unavailable in the future, especially
with recent privacy policies in areas like the European Union, which have made more difficult to obtain
unaggregated data. As a consequence, datasets for this task are scarce and usually very small, with a
few exceptions, and are subject to substantial change over time.

This chapter is divided in three sections. In section 2.1, we review the state-of-the-art fake news detec-
tion models, especially those which have successfully combined news and user features. We explore
in 2.2 the most recent advances in textual representations, and finally, we discuss in section 2.3 the
available datasets.

2.1 Fake News Detection Models

In this section, we review the most interesting and recent fake news detection models, especially the
few that include user engagements. Most architectures use a small amount of information from user
interactions. Namely, they apply a singular value decomposition to the news-user incidence matrix, like
the CSI [RSL17] and SAF [SML19] models, and append some other information like the frequency



6 Chapter 2. State of the Art

and delay of engagements and some representation of the engagement content. There is still a lot of
room for improvement regarding what features can be used for this task, with the additional difficulty of
modeling the one-to-many news-engagements relationship, and it is even more difficult to find a suitable
model for the underlying user network.

Capture-Score-Integrate In words of the authors of [RSI.17], features can be divided in three groups:
text (news content), response (user engagements) and source (news origin characteristics). They devel-
oped a new model called Capture-Score-Integrate (CSI), which they state is the first model using the
three types of features, and showed that it performs significantly better than previous state-of-the-art
models in datasets with user reactions from Twitter and Weibo. The model consists on a Capture mod-
ule, which extracts information from the news text and user engagement (fext and response), a Score
module that evaluates the news target public (source), and the Integrate module, that integrates both
modules and does the classification. These modules are built as follows:

* Capture. In essence, this module is just a LSTM recurrent layer whose input is a sequence of
vectors containing information from news or user engagements in a temporal window. For each
non-empty temporal window, its associated vector contains the number of engagements, the av-
erage delta time between engagements, the average user vector representation and the average
textual representation of the engagements (or the article, if it is the first window). User repre-
sentations are obtained from a binary incidence matrix between users and news (which users are
related to which news), as a result of the singular value decomposition of that incidence matrix.
Textual representations are obtained using doc2vec on each news article or engagement text. As
we can see, although it is true that the model does use the response part, the information obtained
from users is limited to an incidence matrix and the delay and frequency of engagements.

* Score. This module consists on two stacked fully connected layers, the first one with the hyper-
bolic tangent as activation function, and the second one using the sigmoid function. Firstly, a
user graph is constructed by computing the number of times a pair of users comment in the same
article, and then a vector representation for each user is obtained by computing the singular value
decomposition of this matrix. The matrix of user representations is used as input to the Score
module (note that this matrix does not depend on the news piece) and, in the end, a score between
0 and 1 is obtained for each user. Again, the information extracted from the source part is just the
user engagement graph, ignoring all the features of each user.

 Integrate. This module glues the previous modules and computes the final prediction. The output
of the Capture module goes through a fully connected layer with hyperbolic tangent activation,
and the resulting vector is concatenated with the average score of the users who engaged with
the given news piece. This vector, then, is passed to a final dense layer with sigmoid activation,
which predicts the news label.

Notice how, even with such little information from the response (a binary news-user incidence matrix
and the frequencies and delays of engagements) and source features (a user coincidence graph), the CSI
model is able to outperform previous state-of-the-art models.

User-based Facebook Hoax Detector The authors of [Tac+17] propose a model that only uses the
binary incidence matrix between posts and users who liked each post to predict whether each post is a
hoax. The dataset, described in section 2.3, consists on posts from either science pages (considered as
non-hoax) or conspiracy pages (considered as hoax), and the set of users who liked each post. Using
only the incidence matrix of the training set, they train a logistic regression or a harmonic boolean label
crowdsourcing algorithm, which, as the authors state, is commonly used to correct bias effects in polls,
for instance.
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In the logistic regression setting, the goal is to learn the weights w, associated to each user. On the
other hand, the harmonic boolean label crowdsourcing algorithm described in the article is an iterative
process. The core of the algorithm is to model the probability of a post i being non-hoax as the mean
of a beta distribution with parameters o;, B3;, this is, p; = Ot,-?—iﬁ,-' Similarly, the probability of a user u
being truthful (to prefer non-hoax posts) is modeled as the mean of a beta distribution with parameters
oy, By. The parameters o are linked to the number of non-hoax posts liked by each user (or the number
of truthful users that liked a post), while parameters 8 are connected to the number of hoax posts (or
the number of untruthful users who liked them). The algorithm requires to know the ground truth of a
small set of hoax and non-hoax posts, and assigns initial values o, B, to each user, knowing which of
them liked each starting post. Then, the algorithm updates the values of the parameters ¢;, 3; based on
the mean of the distribution of each user. These two steps are repeated until convergence is reached (the
authors only needed five iterations).

The authors claim that the model achieves more than 99% accuracy on the test set, even when using
1% of training data. However, the dataset assumes that the posts from each page are all hoaxes or all
non-hoaxes, which does not hold in practice. This assumption greatly simplifies the task, especially
considering that users who like a page, usually like all of its posts indiscriminately. If those pages
were assumed to contain both hoaxes and non-hoaxes, the model accuracy could drop significantly. In
short, the authors of this article have only proved that, if a certain publisher is publishing only hoaxes
or only non-hoaxes, then their model is capable of distinguishing which type of content is distributing.
However, their results confirm that users tend to create groups where participants are more prone to like
hoaxes.

Social Article Fusion Following the core principles of the CSI model [RSL.17], the creators of the
FakeNewsNet dataset [Shu+18] also defined a model [SML19] named Social Article Fusion (SAF) that
uses news features and user engagements. As in the CSI model, SAF is divided in two modules that are
joined to form the complete system:

¢ News content (SAF /S). This module follows an autoencoder structure, where the decoder and
encoder are formed using recurrent layers (the article does not clarify which type of recurrent
layers, though). News text is vectorized (presumably using a Vector Space Model) and passed
to the encoder, which tries to learn a lower dimensional representation, and the decoder tries to
reconstruct the original text. The last hidden state of the encoder is used later as the news features
to the classifier head.

* Social engagements (SAF /A). As in the Capture module of CSI, the binary incidence matrix of
news and user engagements is computed and decomposed by its singular values to obtain a user
representation, which is joined with the textual content of the engagement, and presumably other
features (the article does not mention explicitly all the features that are used here). The sequence
of vectorized engagements is passed to a LSTM layer, and the last hidden state is passed to the
classifier head, representing the information from social engagements.

* Classifier head. Finally, the latent news text representation and the social engagement vector are
concatenated and passsed to connected to a fully connected layer, and the softmax activation is
computed to obtain the final predictions.

To train the model, the authors set the model loss to be the sum of the loss of the autoencoder plus
the loss of class label predictions, with an extra regularization term. Both losses are computed as the
cross-entropy between the true word (or news label) and the predicted one.

The authors tested this model on the FakeNewsNet dataset in [Shu+18], using only SAF /A, SAF /S or
the whole SAF, and compared them with other algorihtms like SVM, logistic regression, naive Bayes
or CNN (all these using only news text). They showed that SAF achieves better results than SAF /S
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and the other content-based algorithms, and that using the user-based SAF /A model gives reasonable
results. This means that user engagements actually give extra information. However, as we pointed in
the CSI model [RSL17], it uses little information about the engagements (presumably, only the text, the
SVD user vector and perhaps the number and delay of engagements).

Deep Diffusive Network This model, introduced in [Zha+18], exploits the relationship between news
creators (the person who claims the statement contained in the article), news articles and news subjects
(topics). They show that Deep Diffusive Network outperforms similar models that also depend on this
relationship. It does not include user engagements, though, but its graph-based structure makes it rather
unique for this task.

Each news article has a textual content and a credibility label. Similarly, each creator is given a descrip-
tion (a short sentence with the most relevant background or job) and a credibility label, and each subject
is given a textual description and a credibility label. The article does not clarify how are assigned these
two credibility labels.

The proposed model follows a graph structure: each article, creator or subject has a node, with each
creator linked to one or more articles and each article connected to one or more subjects. Each node
contains an inner model where inputs are fed to a Hybrid Feature Learning Unit (HFLU) layer, followed
by a Gated Diffusive Unit (GDU) layer, which outputs a state vector. These custom layers are created
as follows:

* HFLU. This layer takes as input the text string of a news article, creator or subject, and extracts
features in two different ways. Firstly, a vocabulary (different for each type of node) is used to
represent the given string with a bag-of-words Vector Space Model. Secondly, a RNN layer is
used on the tokenized string and the final hidden state is obtained. Finally, both representations
are concatenated and passed to the GDU.

* GDU. This layer is depicted in the article with a flow diagram, showing a structure similar to a
LSTM cell. The inputs are the HFLU output and the output of other GDU layers connected to the
current node. All the outputs from creator GDU layers are averaged, and separately, the outputs
from subject GDU layers are also averaged. A GDU consists on four gates (forget, adjust and two
selection gates). The first one can modify the subject averaged input, while the second changes
the creator average vector. The first selection gate controls how much information from the new
subject vector is introduced (and how much is discarded from the old vector). Similarly, the other
selection gate controls the creator vector. The final hidden state vector is computed as the sum of
the four open-close combinations of both selection gates.

Each pair of connected nodes output their states to the other node, as inputs to the GDU layer. From
each node, the final hidden state goes through a dense layer (same weights within each type of node)
and a prediction vector is computed with a softmax activation. The objective function is to minimize
the sum of losses of the nodes (plus a regularization term), with each node loss being the cross-entropy
between predicted and true labels, and the model is trained using backpropagation.

Hybrid Fake News Detector The authors of [Tac+17] created this model in [Del+18], which applies
a user-based method if the news post (the post that links to the news article) has at least A user likes, or
a content-based method otherwise. They tested the model (with A = 3) using the dataset from [Tac+17],
and also the PolitiFact and BuzzFeed collections from FakeNewsNet [Shu+18], showing results com-
parable to [Tac+17] in its dataset (99.1% accuracy with 10% train size), and much better than other
state-of-the-art models in both FakeNewsNet news sets, especially in the PolitiFact collection (92.1%
F1 score). The architecture of content-based and user-based model is the following:
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* Content-based. The content-based model starts by concatenating the text of the news post with
the title and text preview of the link, and with the scraped news article (FakeNewsNet news are
already scraped during the download process). Then, each word of the concatenated string is
stemmed, the string is represented as a TF-IDF vector, and logistic regression is used to obtain a
predicted label.

* User-based. The user-based model is exactly the same as in [Tac+17]. Two different machine
learning algorithms are tested: logistic regression and harmonic boolean label crowdsourcing.

Note that only one of those models is used for each news piece. As an interesting novelty, the authors
developed a Facebook bot that takes as input the URL of a Facebook post, applies the corresponding
model depending on the number of likes, and returns a prediction.

2.2 Textual representations

BERT and BERT-based models like SentenceBERT are currently the state-of-the-art regarding textual
representation, and have dethroned popular techniques like Word2Vec [Mik+13] or GloVe [PSM14],
which had previously proved better than traditional Vector Space Models. We describe both models in
the following paragraphs.

2.2.1 BERT

Bidirectional Encoder Representations from Transformers [Dev-+18] was designed to be pretrained once
and fine-tuned for each task. The architecture of BERT is a chain of Transformer models [Vas+17]. Each
Transformer model follows an encoder-decoder style, built using multi-head attention layers (also called
self-attention layers) and fully connected layers. Multi-head attention layers are a concatenation of mul-
tiple attention layers. The encoder consists on a multi-head attention layer and a fully connected layer.
The decoder receives the encoder output and the output of a masked multi-head attention layer which
reads the outputs of previous positions. Then, the decoder continues with a non-masked multi-head
attention layer and a fully connected layer. It is worth mentioning that the encoder and decoder inputs
go through an initial embedding, which also uses positional encoding, and that the result of each multi-
head attention and fully connected layer is always summed with their input, and then, normalized.

The authors tried different BERT sizes, changing the number L of Transformer blocks, the size H of
multi-head attention and fully connected layers, and the number A of heads in multihead layers. The
main BERT model is BERT-base, which has L = 12, H = 768 and A = 12. Therefore, BERT base con-
sists on 12 Transformer blocks, where fully connected and multi-head attention layers have 768 hidden
cells and the attention layers concatenate the output of 12 attention layers of size 64 each.

BERT is pretrained on unlabeled data, trying to optimize for two tasks at the same time:

* Masked Language Modeling. Some tokens are masked and BERT tries to guess the tokens.

* Next Sentence Prediction. BERT has to decide if the second sentence immediately follows the
first.

It accepts either one or two input sequences, so it can be directly used for tasks like Question Answering.
The first token is always a [CLS] token. Then come the tokens from the first sentence. If two sentences
are passed, a special [SEP] token is used to separate them, and finally the tokens of the second sentence
are added. Masked words are tokenized as [MASK].

The ultimate goal is to obtain a representation for each token. These representations are the last hidden
states corresponding to each token. In particular, the [CLS] token representation is used in the NSP
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task and can interpreted as a sentence-level representation, although the authors state that without fine-
tuning, it is not a meaningful representation of the sentence, since it is trained for the NSP task.

BERT has two main advantages:

* Deeply bidirectional context. Previous models used a left-to-right approach. Some of them
concatenated left-to-right and right-to-left representations, but were not able to interact between
them. However, BERT can use a bidirectional context, since the Masked Language Modeling
task is not trivial when both sides of the word are known, unlike other tasks. The authors state
that not using bidirectional context might harm performance for token-level tasks like Question
Answering.

* Minimal changes to adapt for a specific task. Once BERT is pretrained, it is only needed to
fine-tune the model for the task at hand.

2.2.2 SentenceBERT

As we mentioned above, BERT’s [CLS] token could be used as a sentence-level embedding, after
fine-tuning is performed. Other researchers tried to use the average token embedding as sentence em-
beddings. SentenceBERT [R(G19] is a modification of the original BERT model to obtain sentence
representations that are semantically meaningful with respect to the cosine similarity, this is, such that
similar sentences obtain similar representations. The authors carried out tests using the [CLS] token,
the average of token embeddings and the max pooling of token representations, showing that Sen-
tenceBERT obtains much better results. It is surprising that, in some cases, taking the average token
embedding or the [CLS] token from the original BERT model performed worse than taking the aver-
age GloVe embeddings (see table 5 in [RG19]). Finally, they show that SentenceBERT performs better
taking the mean pooling or the [CLS] token embedding than the maximum pooling.

2.3 Datasets

In this section, we explore the most relevant datasets in the fake news detection context. As we explained
earlier, one of the problems with datasets that contain social information is that platforms usually do
not allow to directly share the dataset. Instead, the authors can only share tools to download the dataset,
which allows the dataset to grow over time, but has a major disadvantage: when platforms change their
Terms of Use, and it happens quite frequently, parts of the dataset or even the entire dataset might be
inaccessible from that moment. For instance, Freedom’s Daily, one of the nine Facebook pages from the
BuzzFace dataset, is no longer accessible. Platforms might also limit download speed, especially those
which have paid subscriptions that allow higher rate limits. These are some reasons why these datasets
were so scarce and small until recent years.

Let us describe the most relevant datasets available:

2.3.1 CREDBANK

The CREDBANK dataset [MG15] was built from tweets collected between October 2014 and February
2015. The authors tracked more than 1 billion tweets (1% of all tweets) into a real-time topic-modeling
system based on Latent Dirichlet Allocation, grouping the tweets into categories (using the top three
topics from LDA) that may or may not represent an event. A group of people was asked to manually
label these groups as events or non-events. Then, these annotators were asked to assess the credibility
of these events, giving them a rating from -2 (certainly inaccurate) to +2 (certainly accurate). In total,
1.049 categories were labeled as events. A final Twitter search was carried out to find more tweets
related to these events.
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In the repository description, the authors state that the dataset contains 169 million streaming tweets,
grouped in more than 1.300 labeled events, and another 80 million tweets from the final search. There-
fore, we assume that these are only the tweets categorized as events, and that the public dataset is a bit
larger than the dataset described in the article, since it contains more events.

2.3.2 BuzzFeedNews

BuzzFeed journalists [Sil+16] analyzed 2.282 Facebook posts fed from 9 known political Facebook
pages (3 left-biased, 3 right-biased and 3 mainstream) from September 19-23, 26 and 27, 2016 (six
weeks before the 2016 U.S. elections). Some posts contained links to the news article, while some oth-
ers were videos. They fact-checked every post and classified them as mostly true, mostly false, mixture
of true and false or no factual content if it had no factual claims.

The article shows that all left-biased and right-biased pages published a high number of mostly false
or partly false posts, while mainstream sources only published a few partly false posts, the majority
of them related to the same story. Regarding user engagement, posts that were mostly false or partly
false were shared much more frequently than mostly true posts. An important remark is that many posts
categorized as no factual content, such as pictures or videos, were politically biased and generated high
user engagement. Another interesting point is that right-biased posts almost never contained references
to mainstream sources (they mention that, even when news came from a mainstream page, they usually
linked to right-biased sites), whereas left-biased posts often contained links to mainstream pages. As
the article explains, these crossed references, combined with the feed algorithms used by Facebook or
Google (which are based on previous searches), generate a cycle that results in group polarization.

The dataset gathered by Buzzfeed journalists contains, for each post, the Facebook ID of the post and
the poster, the rating given to the post and information about user engagements (shares, reactions, com-
ments), although the posts themselves can be downloaded using the Facebook Graph API.

2.3.3 Some Like It Hoax

This dataset [Tac+17] consists on all the Facebook posts fed from 18 selected scientific Facebook pages
(whose posts are considered non-hoax) and another 14 conspiracy Facebook pages (categorized as hoax)
from July 1st, 2016 to December 31, 2016. At the time it was published, the dataset contained 15.500
posts involving more than 900.000 users. The authors provide a set of scripts to download the dataset
using Facebook’s Graph API. This dataset was tested in [Tac+17] using only information from the users
who liked each post, showing extremely good results even when training with a tiny portion of users.

2.3.4 BuzzFace

Published in 2018, this dataset [SW 18] is an extension of BuzzFeedNews containing all the replies from
the original Facebook posts. The authors provide a set of scripts to download the trees of Facebook posts
(with all metadata) that arise from the original fact-checked posts, and they also provide tools to down-
load and scrape the news articles contained in the original posts. By trees we mean the entire discussion
threads starting with each post, not only the direct replies to the post. In total, there are 1.7 million
posts. If the news site has Disqus comments or embedded tweets, they can also be downloaded.

At the time this dataset was published, it was the most extensive dataset containing social information
from Facebook. Moreover, as the authors state, they multiplied by 400 the number of Facebook com-
ments contained by the previous state-of-the-art dataset in news veracity assessment. They also mention
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that the only relevant datasets that they found contained Twitter posts. One of them could be the CRED-
BANK dataset, mentioned above.

2.3.5 FakeNewsNet

This dataset [Shu+18] contains real and fake news from two fact-checking sources: PolitiFact (948
news with text) and GossipCop ! (21.714 news with text). For each piece of news, the dataset contains
the scraped news article, as well as tweets and retweets related to each news, and user profiles of the
users involved in these tweet, including the user’s timeline, followers and followees. Many news have
associated images and videos, and some news contain only non-textual content. Almost two million
tweets are related to the included news, and more than a billion users form the complete follower net-
work, with around half a million users that posted at least one tweet. Moreover, the dataset contains
spatiotemporal information about many tweets, users and news. The authors provide some scripts to
download the collection, with the possibility of downloading specific parts of it (for example, only news
and tweets or only data from PolitiFact). The total size of the dataset is huge, and it would take a long
time to download all of it.

IThe authors clarify that fake gossip news are extracted from GossipCop, but real news are extracted from E! Online.



Chapter 3

FakeNewsNet Dataset and Analysis

We saw in chapter 2 that including information from user engagements in content-based models has
proved useful for the fake news detection task. After all, fake news are usually targeted to a specific
public and the ultimate goal is to reach as much people and generate as many engagements as possible.
Knowing information about the users that comment those news can give insights both on the target pub-
lic of the news and on whether bot accounts are being used.

From now on, we will focus on the FakeNewsNet dataset. We will explain the reasons that motivated
us to use this dataset in section 3.1. Next, we will cover, in section 3.2, the structure of the dataset
and the resulting files. Thirdly, we will explain in 3.3 the process we followed to read the dataset and
the extracted features. We will also discuss in 3.4 the cleaning and feature engineering process that we
followed to mitigate some problems that came up as we explored the dataset. Then, in section 3.5, we
will summarize the available features and split the data into separate train, validation and test sets. Next,
we will carry out in section 3.6 an explorative data analysis on the train set, and finally, we will analyze
the correlation between features, especially with class labels, in section 3.7.

3.1 Why FakeNewsNet?

We described in section 2.1 the available datasets that we found and were suitable to study the fake news
detection problem. We finally decided to use the FakeNewsNet dataset, due to the following reasons:

* Since one of the goals is to compare the performance when social data is used, we need to have
the tweets or posts related to each news, so we discarded the BuzzFeedNews dataset.

* Facebook’s Graph API rate limits are much more strict than Twitter API rate limits. For instance,
Facebook allows to lookup 200 posts per hour and per user (we would count as one user when
downloading the datasets), while Twitter allows to lookup 900 tweets per 15 minutes and user,
and we can easily multiply this number by using up to 10 keys with the same Twitter developer
account. Therefore, we decided to avoid using the BuzzFace dataset (it would take us 8.500 hours
to download the entire dataset) and the Some Like It Hoax dataset (it would take 75 hours to
download the 15.500 posts but another 5.000 hours if we wanted the user profiles).

* We decided not to use the CREDBANK dataset because the news associated with the events are
not directly available (we would have to manually review each event to find the associated news),
and because it would take a very long time to download the entire dataset with the current rate
limits (more than 2.000 hours to download just the 80 million tweets from the final search).

Moreover, the fact that FakeNewsNet has news from two different sources will allow us to compare
model performances between both sources, so it is like having two datasets in one. Another nice feature
is that the news scraping algorithms shared by the dataset authors also try to fetch the original news
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article from the archive and the wayback machine, in case the original website is not available.

3.2 Dataset structure and features

We followed the instructions given in the GitHub repository (see [Shu+18]) to download the dataset.
The download process took more than 2 days to complete, spending most of the time downloading Twit-
ter data. During the process, we requested multiple Twitter API access tokens to speed up the download.

Note. During the download process, we found that downloading the retweets, followers and followees
parts of the dataset would be impossible. With a limit of 900 tweets per 15 minutes and key, down-
loading the retweets would take around 8.333 hours with 10 API keys, and the followers and followees
have a much more strict limit of 15 users per minute and key. Therefore, we decided to only use the
news, tweets, user profiles and user timelines for both FakeNewsNet sources. Unrelated to these
rate limits, we also decided not to use the pictures and movies contained in the articles and tweets,
although we will extract some information from the URLs. However, even with these restrictions, there
is plenty of information to train fake news detection models.

The dataset follows a folder structure similar to figure 3.1. The upper levels are organized by source
and label. Under each group, news are organized in distinct folders, each containing a file named news
content. json, that contains the scraped news article, and the tweets folder, under which are stored
the related tweets in separate JSON files. User profiles and user timelines are stored in the top-level
user_profiles and user_timeline_tweets folders, respectively. Twitter-related files are named
with the identifier of the tweet or user.

Twitter-related files revolve around the Tweet ! object model and the User % object model. Note that the
Tweet object contains a User object with information about the user that posted the tweet. Furthermore,
if a tweet quoted another previous tweet, the quoted Tweet object will be contained contain in the reply-
ing Tweet.

To sum up, we have four different types of files:

News files containing scraped fields from the original news articles.

Tweet files containing information about each Tweet.

User profiles files containing information about each User.

User timeline files containing the most recent Tweets of the user, up to 200 Tweets.

It is important to be aware that the fields recorded in each type of file are not the same for all news. For
instance, some news have metadata fields that are not present in other news, and some might contain
incorrectly scraped fields. In the case of Twitter files, apart from the fact that many tweets do not quote
previous tweets, some fields like possibly_sensitive or has_extended_profile are not present in
all tweets or users, respectively, possibly because they were recently added to the Tweet object, while
some fields referring to the user’s status seem to be deprecated and might not be available in recent user
profiles.

Ihttps://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-model/tweet
Zhttps://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-model/user
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—— gossipcop
— fake
—— gossipcop-1
news content.json
tweets
886941526458347521. json
|E 887096424105627648. json

— real

—— gossipcop-2
news content. json
tweets

— politifact
—— fake
— politifact-1
I: news content.json
tweets

— real
politifact-2
I: news content.json
tweets

—— user_profiles
—— 374136824 . json
— 937649414600101889. json

L— user_timeline_tweets
— 374136824 . json
— 937649414600101889. json

Figure 3.1: FakeNewsNet folder structure.

3.3 Reading and feature extraction

For each type of file (news, tweets, user profiles and user timelines) we will proceed as follows:

1. Iterate over all files to check which fields are present in all files. For the sake of simplicity, we
will discard the fields that are not present in all files, although we could keep these fields and deal
with empty values in the model’s preprocessing pipeline.

2. Manually check if the remaining fields contain duplicated information, need some feature extrac-
tion technique or have a constant value.

3. Read the files applying the necessary feature extraction and save the information to disk.

In the following subsections, we will explain, for each type of file, which fields are available in all files,
which are not available in some files and which fields will be retained. Our goal is to have a set of
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scalar fields for each type file, so we can store the information in separate tables, with each news being
connected to a number of tweets and each tweet related to a Twitter user. News and tweets can be joined
using the news identifier given by the dataset, while tweets and users can be joined by the user identifier,
which is also contained in the Tweet objects.

Note. Some fields are not scalars, but dictionaries or lists. Whenever we come across a dictionary,
we will drop it and keep only its inner fields. We will name those inner fields by concatenating the
dictionary name and the field name with double underscores. Lists will be treated differently in each
case, sometimes concatenating the values and sometimes counting the number of elements or taking the
most frequent value.

3.3.1 News

We list, in table 3.1, the fields that were missing in at least one file and, in table 3.2, those that were
found in all news files. All the missing fields are related to metadata, mainly referring to Facebook and
Twitter. Note that the fields in table 3.2 already contain some metadata information, like publish_date.
Overall, we consider that we are keeping most of the available information and dropping the missing
fields will not have a big impact, since we will use tweets and users’ information from Twitter data.

Fields
meta_data__language
meta_data__news_keywords
meta_data__robots
meta data__og__image _identifier
meta_data__og__image__width
meta_data__og__image__height
meta_data__twitter__url
meta_data__fb__admins
meta_data__fb__pages
meta_data_msvalidate.O1
meta_data__viewport
meta_data__og__description
meta_data__fb
meta_data__description
meta_data__og__site_name
meta_data__og__type
meta_data__og__url
meta_data__og__title
meta_data__twitter
meta_ data__twitter__title
meta_data__twitter__description
meta_data__twitter__image
meta_data__og__image
meta_data__og

Table 3.1: News fields not present in all files.

Following the remarks in table 3.2, we dropped the fields top_img, keywords, canonical_link,
meta_data, source and summary, since they contain no information or the information they give is
already in another field. In the case of top_img, the reason is that we are not using the images.

To sum up, we keep the fields in table 3.3, applying the preprocessing specified to the right of each field.
Note that we have added three more fields that will be extracted from the absolute paths: news (news
identifier), label (real or fake) and source (GossipCop or PolitiFact).
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Fields Remarks
url -
text Some news contain only images or videos and others are not available
images List of article’s images URLs
top-img Main image’s URL. Many images are not available
keywords Always empty
authors List of sentences describing the author or media
canonical link | Either coincides with url or is empty or less useful than url
meta_data Dictionary containing metadata fields
title -
movies List of embedded videos’ URLs
publish_date Timestamp of the publish date
source url up to the suffix part
summary Always empty

Table 3.2: News fields present in all files.

Fields Feature extraction
url Get the domain, subdomain and suffix
text -
images Count and get the most frequent domain, subdomain and suffix
authors Concatenate all sentences with whitespaces
title -
movies Count and get the most frequent domain, subdomain and suffix
publish _date | Convert timestamp to datetime
news Extract from absolute path
label Extract from absolute path
source Extract from absolute path

Table 3.3: News fields and their feature extraction.

3.3.2 Tweets

We show, in table 3.4, the fields that were missing in some files and, in table 3.5, those that were found
in all news files. Most fields refer to the quoted tweet (not all tweets are replies of previous tweets).
The extended_entities fields are only used when media is shared natively inside Twitter, not with a
link. The withheld fields are used when a tweet has been withheld due to a DMCA complaint, when
the tweet violates any copyright. The scopes fields are used only for Twitter’s Promoted Products to
indicate who should receive the tweet. The field possibly_sensitive is used to indicate whether a
link in the tweet might contain sensitive media. Finally, the field has_extended_profile indicates
whether the user’s status contains media shared natively (using Extended entity objects), although this
field is currently deprecated.

Finally, we finally the fields shown in table 3.6, with the specified feature extraction. Following the
remarks in table 3.5, we drop the fields as explained below. Note that, as with the news, we add a news
field, with the news identifier for each tweet, so that we can join news and tweets later on.

* We drop all the user fields except user__id. We will read the user profiles from their JSON files.

» Next, we drop the fields entities (it is a dictionary, we will use the inner fields), contributors,
favorited and retweeted (all values are empty), as well as the identifiers in string format:
id_str, in_reply_to_status_id_str and in_reply_to_user_id_str. We do not need the
in_reply_to_screen_name and in reply_to_status_id fields either, because we will only
use them to know whether the tweet is a reply or not.

* We drop the fields geo and coordinates, since Place contains the same or more information.
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Fields
extended_entities
extended_entities__media
quoted_status_id
quoted_status_id_str
quoted_status
quoted_status__created_at
quoted_status__id

quoted_status__lang
withheld_scope

withheld _copyright
withheld_in_countries
scopes

scopes__place_ids
user__entities__url
user__entities__url__urls
user__profile_banner_url
possibly_sensitive
user__has_extended_profile

Table 3.4: Tweet fields not present in all files.

Fields Remarks
created._at -
id Tweet ID as a 64-bit integer
id_str Tweet ID as a string
text -
truncated -
entities Dictionary to describe entity objects

entities__hashtags
entities__symbols
entities__user mentions
entities__urls

source

in reply_to_status_id
in_reply_to_status_id_str
in reply_to_user_id
in_reply_to_user_id_str
in reply_to_screen_name
user

user__id

user__id_str

user__translator_type
geo
coordinates
place
contributors
is_quote_status
retweet_count
favorite_count
favorited
retweeted

lang

List of Hashtag objects

List of Symbol objects

List of User Mention objects
List of URL objects

Utility to post the tweet

Empty unless the tweet is a reply
Empty unless the tweet is a reply
Empty unless the tweet is a reply
Empty unless the tweet is a reply
Empty unless the tweet is a reply
Dictionary holding user data
User ID as a 64-bit integer

User ID as a string

Coordinates from where the tweet was posted
Coordinates from where the tweet was posted
Place object chosen by the user as its location
Always empty

Always empty
Always empty

Table 3.5: Tweet fields present in all files.
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Fields

Feature extraction

created_at

id

text

truncated
entities__hashtags
entities__symbols
entities__user_mentions
entities__urls
source
in_reply_to_user_id
user__id

place
is_quote_status
retweet_count
favorite_count
lang

news

Concatenate text with whitespaces

Concatenate text with whitespaces

Count

Count and get the most frequent domain, subdomain and suffix
Get the source name using regular expressions

Check if the tweet is a reply

Get the country

Extract from absolute path

Table 3.6: Tweet fields and their feature extraction

3.3.3 User profiles

Table 3.7 shows the fields that were missing in some files, and table 3.8 contains the fields found in
all user profiles. Most fields refer to the status, which is the tweet users might choose to put in their
user profile header. All these fields are similar to those of a Tweet object. Other missing fields are op-
tional profile customizations like entities__url__urls (related to entities__description__urls),
profile_banner_url (URL pointing to the user’s banner image), withheld_in_countries (if the
user profile is under a DMCA complaint), statuses_count (number of tweets published by the user)
or has_extended_profile (related to media shared natively into their profile, similar to the extended
Tweet fields).

Fields
withheld_in _countries
entities__url
entities__url__urls
profile_banner_url
statuses_count
status
status__created_at
status__id

status__lang
has_extended profile

Table 3.7: User fields not present in all files.

We drop missing fields, and some other fields as per the remarks in table 3.8:

* Fields that contain the same or less information than others: id_str, url, profile_location,
profile _background_image url https, and
profile_image url_https.

* Fields that are always empty or constant: utc_offset, time_zone, lang, contributors_enabled,
following, follow_request_sent, notifications.
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* We drop the entites and entites__description__url since we are keeping the inner field
entites__description__urls.

The feature extraction process in this case is much shorter, since most of the fields store scalar values.
The only feature extraction we need is to get the most frequent domain, subdomain and suffix from

entities__description__urls.

entities__description
entities__description__urls
protected

followers_count
friends_count

listed_count

created_at

favourites_count

utc_offset

time_zone

geo_enabled

verified

lang

contributors_enabled
is_translator
is_translation_enabled
profile_background_color
profile_background_image_url
profile_background_image url https
profile_background_tile
profile_image url
profile_image url_https
profile_link color
profile_sidebar_border_color
profile_sidebar_fill _color
profile_text_color
profile_use_background_image
default_profile
default_profile_image
following
follow_request_sent
notifications
translator_type

Fields Remarks
id User ID as a 64-bit integer
id_str User ID as a string
name User name
screen _name User alias, they are unique but may change
location User location
profile location Either coincides with location or is empty
description -
url URL provided by the user, within Twitter’s domain
entities Dictionary

Dictionary

Original URLSs provided by the user

If the user has chosen to protect their tweets
If the account is verified (blue tick)

Always empty
Always empty

Always empty
Always false

Like the previous but with HTTPS

Like the previous but with HTTPS

If the user has not change the theme or background
If the user has not uploaded a profile image
Always false

Always false

Always false

Table 3.8: User fields present in all files.

3.3.4 User timelines

We found that Twitter user timelines are limited to the 200 most recent tweets. It is likely that the last
200 tweets of each user are not related to the news in the dataset, since the news are mostly from 2016
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to 2019. Therefore, we decided to only count the number of tweets for each user’s timeline and take
that number as a measure of how active the user has been. Real users should have exactly 200 tweets
whereas bots might have less than 200 tweets, since each one might be used to post only a few tweets.
Therefore, we restrict the user timeline information to this measure of activity and include it as
another feature of user profiles.

3.4 Cleaning and feature engineering

After reading the data and extracting all the useful features, we continued cleaning the dataset a bit more
and crafting some new features. We came across some issues with some news being unavailable, for
instance, and here we will explain how we dealt with these issues.

Cleaning

* Firstly, we keep only news that have both text and title. On the one hand, the dataset purposedly
contains news with pictures or movies only, but we are focusing on the text, so we decide to
remove these news. On the other hand, some news are unavailable or incorrectly scraped, with
an empty text field and usually a generic sentence describing the media in the title field.
Furthermore, some news are unreachable because of cookie pop-ups. These news have an empty
title field and a cookie warning message in the text field, containing the usual message asking
to accept the website’s cookies. We did not notice any of these problematic news having both
fields filled in, so we decided to remove any news with an empty text or title field.

* Next, we remove any tweet that is not related to the remaining news, and all the tweets that
were published more than a day before the piece of news they are related to. All the tweets
have an UTC datetime and many news have a publish datetime (without a specified timezone). We
noticed that the publish datetime of some news was posterior to the post times of some tweets,
which should not be possible, so either the publish date is wrongly scraped or the news was
updated. Therefore, we decided that these tweets should be removed, so that all the tweets are
related to the possibly updated version of the news. However, many tweets were published only a
few hours before the news, due to their timezone not being the UTC timezone. We finally decided
to leave a 1-day margin for this special case. Tweets related to news without a publish date were
not removed either.

* Thirdly, we remove the user profiles of users that do not own any of the remaining tweets, as
we are only interested in the users that posted at least one tweet.

Feature engineering

* Firstly, we compute, for each piece of news, the number of tweets related to it. It is reasonable
to think that fake news have more tweets related to them.

* Secondly, we compute, for each tweet, the time difference between this tweet and the previous
tweet of the same news. If there is no previous tweet related to the same news, we compute the
difference between the tweet posting date and the news publish date. We should expect that fake
news have smaller time differences, as the content should be more engaging.

* Finally, we compute, for each tweet, the time difference between the tweet posting date and
the user creation date. This could be an indicator on whether the user is a bot account.
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3.5 Final fields. Train, validation and test sets

At this point, we have a clean dataset containing the fields specified in tables 3.9, 3.10 and 3.11. Index
columns are not shown in these tables: news are indexed by the news identifier extracted from the
absolute paths, while tweets and users are indexed by their id and user__id, respectively. Note that we
have added a prefix to each field to indicate whether the feature refers to news, tweets or user profiles.
It will be quite helpful later on when using all the features, since many of them have similar names.

Fields Types
news__text string
news__title string
news__source category
label int32
news__num_images float32
news__num movies float32
news__publish date_datetime | float32
news__authors_text string
news__url__subdomain category
news__url__domain category
news_url__suffix category
news__images__subdomain category
news__images__domain category
news__images__suffix category
news_movies__subdomain category
news_movies__domain category
news_movies__suffix category
news__num_tweets float32

Table 3.9: News final fields.

Fields Types
tweet__created_at float32
tweet__text string
tweet__truncated category
user__id int64
tweet__is_quote_status category
tweet__retweet_count float32
tweet__favorite_count float32
tweet__lang category
tweet__news category
tweet__entities__urls__subdomain category
tweet__entities__urls__domain category
tweet__entities__urls__suffix category
tweet__is_reply category
tweet_num entities__user mentions | float32
tweet_num entities__urls float32
tweet__country category
tweet__source_name category
tweet__entities__hashtags__text category
tweet__entities__symbols__text category
user__time user_created_to_tweet float32
tweet__time delta float32

Table 3.10: Tweet final fields.
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Fields Types
user__name category
user__screen _name string
user__location category
user__description string
user__protected category
user__followers_count float32
user__friends_count float32
user__listed count float32
user__created._at float32
user__favourites_count float32
user__geo_enabled category
user__verified category
user__is_translator category
user__is_translation_enabled category
user__profile_background_color category
user__profile_background_image_url category
user__profile_background tile category
user_profile_link_color category
user__profile_sidebar_border_color category
user__profile_sidebar_fill_color category
user__profile_text_color category
user__profile_use_background_image category
user__default_profile category
user__default_profile_image category
user__translator_type category
user__entities__description__urls__subdomain | category
user__entities__description__urls__domain category
user__entities__description__urls__suffix category
user__timeline_length float32

Table 3.11: User final fields.

Note. Not all these fields will be used as features. For instance, news, tweet and user identifiers are
only kept to be able to join them later on. Absolute datetimes like news__publish date_datetime
will not be used since, as we will see in 3.6, they introduce a bias that could make models perform
better just by looking at the publish date, therefore exploiting a weakness of the dataset. We will later
specify which features are excluded for training.

As a preparation for chapters 4 and 5, we have standardized the internal types of each field. Each
field belongs to one of these groups:

* Numerical. We store numerical fields as 32-bit floating-point numbers, except the user and tweet
identifiers (which are the user and tweet index fields, respectively), which are stored as 64-bit
integers. Datetimes and timestamps are converted to 32-bit floating-point numbers and considered
numerical features.

» Categorical. Categorical fields are stored as strings, replacing missing values by empty strings.

* Textual. Textual fields are stored as strings, except tweet__entities__symbols__text and
tweet__entities__hashtags__text. These two features were created as concatenation of the
text values they contained, but the former contains only 22 different values while the latter is
mostly empty and 95% of the values correspond to 29 categories, so they are considered as cate-
gorical features.

* The label column, which contains the class label, will be stored as a 32-bit integer, using O for
real news and 1 for fake news.
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Finally, we split the dataset into a train set (80% news), validation set (10% news) and test set
(10% news), by randomly shuffling and splitting the set of news, stratified by source (GossipCop or
PolitiFact) and label (real or fake). The reasons for those decisions are the following:

* We chose the 80-10-10 proportions because there is a lot of information, so we can afford to have
separate validation and test sets with moderate size.

* News are shuffled because there is no need to make a chronological split. We assume that the
underlying properties of real and fake news and their tweets have not changed during the period
covered by the dataset. Therefore, training a model on newer news should not make it perform
better in older news.

* We stratify by label to have a similar class distribution in all the sets. The decision to stratify by
source is technical, since it allows us to keep a single set of train, validation and test sets. Instead
of having two separate sets for each source and split, we can have one set and filter by source to
obtain the corresponding set for that source.

We show in table 3.12 the number of news by source, split and class label. We see that the stratification
proportions are correct.

real fake
source split

GossipCop train 11898 3799
val 1488 475
test 1487 475

PolitiFact train 349 299
val 43 38
test 44 37

Table 3.12: News by source, split and class label.

3.6 Exploratory data analysis

In this section, we carry out an exploratory data analysis on the training set, to familiarize ourselves
with the data and to look for class biases and other possible issues we might have to deal with later on.

3.6.1 News features

We start by counting the number of news for each source and label. As we can see in figure 3.2a, we
have many more news from GossipCop than from PolitiFact, and figure 3.2b shows that GossipCop
news are strongly unbalanced, with almost 76 % of them being real news, while the PolitiFact col-
lection is much more balanced. We will have to keep in mind this bias.

However, there are many news with no related tweets. As we can see in figure 3.3a, 3.236 GossipCop
news have no associated tweets, and 167 PolitiFact news are in the same situation. Note that the class
distribution changes noticeably in the PolitiFact collection.
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Figure 3.2: News by label and source.
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Figure 3.3: News with at least one tweet by label and source.

If we take a look at the publish date, which is not available for all news, we see in figure 3.4 that
GossipCop news were mostly published between 2016 and 2018, and the same distribution is followed
by real and fake news (recall that there are more real news). However, PolitiFact real news were made
available more or less uniformly between 2006 and mid 2017, while fake news were published between
2014 and 2019, with a distribution similar to GossipCop fake news. This means that if we included
the news publish datetime, a model could correctly guess the news class by looking at the publish date,
which does not make sense since fake news exist since long ago, so we should exclude this feature
when training models.
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Figure 3.4: News by publish date.



26 Chapter 3. FakeNewsNet Dataset and Analysis

Let us take the most frequent media sources (by looking at the URL domain) and see if there are
differences regarding real and fake news publish datetimes in each media. We can see in picture 3.5
that most GossipCop sources have published mainly real news, but have a small fraction of fake news.
However, hollywoodlife has published fake news, mostly. Regarding PolitiFact news, we notice that
sources like nytimes or whitehouse have published almost no fake news, while news extracted from the
archive were mostly fake, and it could be the reason why they were removed from the website. It is also
curious that washingtonpost and archive have that high rate of fake news, especially compared to the
GossipCop collection. To sum up, we see that the URL domain might be a useful feature to detect
which media are more prone to publishing fake news, although it could be that the PolitiFact news
collected by the dataset are not a representative sample from the real political news. We also notice here
the importance of recovering news from the archive.

News by publish date and media

news__source = gossipcop news__source = politifact
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usmagazine —A—
dailymail —4
washingtonpost —é é Label
I real
archive —e . | I fake
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nytimes 4 . )
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= )

politifact
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Figure 3.5: News by publish date and media. Areas represent relative frequency within each media.

Another detail that caught our attention was that, as seen in figure 3.6, there are some GossipCop
news that contain more than 400 pictures. We know that FakeNewsNet authors used scraping tools to
automatically extract features from news websites, but this is a strangely high number of pictures, even
considering that the article might contain links to related news in a sidebar or at the end of the article.
However, the distribution is similar for both real and fake news, so this number could be less useful
than knowing the publishing media, for instance.
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Figure 3.6: News by number of pictures. Each half-violin represents a normalized distribution function.
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3.6.2 Tweet features

Let us put our attention now to the related tweets. As we can see in figure 3.7a, there are almost one
million tweets related to training news, and PolitiFact news have many more tweets per news. It is also
noticeable that in the GossipCop collection, fake news have more tweets in average than in PolitiFact
news.
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(a) Total count. (b) Average tweets per news.

Figure 3.7: Tweets by label and source.

However, if we look further than just the average number of tweets, we can see in figure 3.8 many
interesting facts that rebate the previous remarks. For instance, we notice that the median number of
tweets per news in GossipCop fake news is lower than in real news, and the upper tail is both wider
and longer, which ends up raising the average number of tweets. Curiously, the opposite situation is
observed in PolitiFact news, with the upper tail being stronger for real news, although the median
number of tweets is almost equal in both classes. We also notice that PolitiFact news have many more
tweets compared to GossipCop news, and some PolitiFact news even have more than 10.000 news.
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Figure 3.8: Number of tweets per news.

Looking at the publish date of tweets, we can see in figure 3.9 that all the tweets were published before
2019. However, we saw in figure 3.4 that some news were published in 2019, so this means that some
news might be modified or corrected. Recall that in section 3.4, we removed tweets posted more than a
day before than the associated news, but we did not remove any news, simply because we cannot be sure
whether the presence of associated tweets is because that piece of news has been modified or the tweets
were wrongly associated to the news. Therefore, this is a problem we could only avoid by manually
reviewing all the news.
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Regarding the tweet distribution, we notice a high increase in tweets related to GossipCop fake
news at the end of 2017, whereas real news had a stable flow of tweets since 2016. Tweets related to
PolitiFact also have a similar flow of tweets, with most tweets published in 2017.

Tweets by publish date
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Figure 3.9: Tweets by publish date.

We were curious to see whether fake news had a smaller delay between the news publishing and the first
tweet. Figure 3.10 proves us partly wrong, as it clearly shows that 50% gossicop real news had its first
tweet published in the first 10 minutes, while the wait time was 4 hours in fake news. PolitiFact
news had much longer news-to-tweet times for real news, up to 1 month to cover the first 75%, although
fake news follow a trend similar to GossipCop’s. Recall that some PolitiFact real were published
long ago, which explains these big differences.
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Figure 3.10: Delay betweet news and first tweet.

And if we take a closer look at which tools were used to publish tools, we discover in figure 3.11 that
GossipCop real news might be using automated tools based on IFTTT and dlvr.it to comment their
news and gain visibility. It could also be that some websites have an embedded Twitter section below
the article where readers can directly write their reactions as a tweet.
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Figure 3.11: Most frequent tweet sources.

Regarding tweet languages, we can see in figure 3.12 that most of them are written in English, although
there are some tweets written in other languages such as Japanese or Spanish.
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Figure 3.12: Most frequent tweet languages.

Similarly to languages, figure 3.13 shows that the most common tweet origins are English-speaking
countries, especially the United States. However, most tweets have this property empty, and it is
interesting to note that, in the GossipCop collection, the country is specified in many more fake
news tweets than those related to real news, even though there are many more tweets from real
news.
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Figure 3.13: Most frequent tweet countries.
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Next, we will see how are tweets distributed with respect to the number of likes. We can see in figure
3.14 that most tweets have less than 10 likes, although there are many tweets in both collections with
more than 100 and 1.000 likes, which was to be expected. However, we did expect that most tweets
would have more than 10 likes, and we can see that, in the GossipCop collection, tweets from real news
have less likes than those from fake news, which might be a consequence of using automated tools to
publish tweets.

Tweets by number of likes
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Figure 3.14: Tweets by number of likes.

Figure 3.15 shows a similar behaviour with respect to the number of retweets, although we can see that
generally tweets have many more likes than retweets.
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Figure 3.15: Tweets by number of retweets.

3.6.3 User profile features

Finally, we will take a look at features corresponding to the tweet authors. Figure 3.16 shows, for each
label and source, the number of users that commented at least one news that belongs to that block. We
see that, in the GossipCop collection, there are many more users involved in fake news than in real news,
while the opposite is observed in PolitiFact.

We can see in figure 3.17 the distribution of user creation date. We can see that in the GossipCop
collection, there are more users involved in fake news tweets than in real news, which suggest that
most real news tweets are published using a small set of accounts, and might be explained by the
use of automated tools like IFTTT. We also notice that there are some important spikes in 2013 and
2016 in the real news part, which might be connected to the previous observation, while all the other
distributions are more or less uniform, with an initial spike in 2008, when Twitter became popular.
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Figure 3.16: Users by label and source.
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Figure 3.17: Tweets by user creation date.

It is interesting to plot the user creation dates depending on whether the profile has been modified or
all the settings have been unaltered. Figure 3.18 shows that, in both collections, most recent accounts
have the default profile settings, with an important spike in 2016, especially related to real news. On
the other hand, the number of created accounts with customized profiles has been going down since
2013, which might be the actual trend for non-bot users, because Twitter’s popularity has decreased in
recent years. Therefore, we consider this feature might be quite useful to distinguish if a user corre-
sponds to a real person or not, and therefore might help detecting fake news.

Tweets by user creation date and default profile
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Figure 3.18: Tweets by user creation date and default profile.

Another measure we can analyze is the time from the user creation until each tweet was published. If
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bots are being used, we should expect shorter times. Figure 3.19 shows a natural increase each year,
which is to be expected when users publish tweets regularly, but we notice that in GossipCop real
news, the median time to tweet is stabilized from 2016 to 2018, which indicates that many new
accounts were created in that period, and this could be linked to the use of bots. Furthermore, the
opposite situation happens with fake news, with a considerable increase from 2016 to 2017, which might
also indicate that bot accounts had been previously used and they were no longer needed. Regarding
PolitiFact news, we notice that from 2016 to 2018, the increase has been slightly lower for fake news,
which might also indicate the use of bots.
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Figure 3.19: Time from user creation to tweet.

Let us now analyze some features of the user profiles. Figure 3.20 shows that many users do not have a
specified location, but those who had this field filled in are mostly from regions of the United States.
However, unlike what we saw in figure 3.13, there are more real news’ tweets with this property filled
than fake news’ tweets.
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Figure 3.20: Tweets by user location.

Looking at figure 3.21, we see that users that posted tweets about GossipCop real news in 2017 and
2018 had very few liked tweets, which could be explained by the spike of users created in 2016, which
also had the default user profile options. This phenomenon is also partially observed in GossipCop fake
news, where the lower 50% also have few liked tweets. Users that posted in PolitiFact news appear to
have more reasonable numbers.
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Tweets by number of user liked tweets (outliers removed)
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Figure 3.21: Tweets by number of user liked tweets. Outliers have been removed for clarity.

However, if we look at the number of user friends in figure 3.22, we do not see such differences as with
the number of liked tweets. Perhaps these bots or fake accounts try to simulate that they are real by
engaging other users and adding other accounts as friends, to have credible statistics, but did not even
try to simulate a normal behaviour with respect to other tweets.

Tweets by number of user friends (outliers removed)
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Figure 3.22: Tweets by number of user friends. Outliers have been removed for clarity.

3.7 Feature correlation

To finish this chapter, we compute feature correlations on the training set to gain more insights on how
the features are correlated and, especially, if any of them has a greater correlation with class labels that
might be especially useful when training models.

Each feature is considered as numerical, categorical or textual, following the feature types in tables
3.9, 3.10 and 3.11. We firstly compute the correlations of numerical and categorical features, and then
analyze textual features separately. News label will be considered here as a categorical feature.

We will compute a correlation matrix for news features, another for tweet features and another
for user profile features. Furthermore, we will compute the correlations separately for GossipCop and
PolitiFact news. To compute tweet and user feature correlations, we will consider each tweet as an
independent sample (as if each tweet was related to a different piece of news). We are aware that this
assumption does not hold, since tweets are obviously not independent, but we have no other option if
we want to use all the information available. Our goal is just to obtain an insight on possible interesting
correlations.
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For each pair of features, we will compute one of the following correlation measures, depending on the
type of each feature.

* Numerical-numerical. We compute Spearman’s correlation coefficient, which is simply Pear-
son’s correlation applied to the ranks of the samples instead of their values. This correlation
measure captures monotonic correlations, whereas Pearson’s coefficient measures linear correla-
tion. It is more informative than Pearson’s correlation because we saw that many features have an
exponential scaling.

* Numerical-categorical. We use the correlation ratio. Given a numerical feature X and a cate-
gorical feature Y, the correlation ratio of X and Y is defined as:
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where

and with y,; being the value of the i-th observation in the group X = x, and n, the number of
observations in that group. As we can see, the correlation ratio computes the weighted dispersion
of the group averages divided by the total dispersion. When all the group averages coincide with
the global average, the correlation ratio will be 0, meaning that knowing the measurements X
gives no information about which groups Y they belong to. The maximum value is 1, when all
the measurements are equal for each group, therefore knowing X completely determines Y.

» Categorical-categorical. We compute Theil’s U statistic, also known as the uncertainty coeffi-
cient. This measure computes how much information is gained about one feature when the values
of another feature are known. More precisely, given two features X,Y, we define:

where
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are the entropy of Y and the conditional entropy of Y given X. Looking at the formula, we see
that the statistic computes the entropy decrease in ¥ when X is known. For instance, if X defines
a finer partition than Y, then U(Y|X) = 1, because X gives all the information about Y. And if
X defines a random partition, then we should obtain U (Y |X) ~ 0, since no new information is
gained.

Note that Spearman’s correlation coefficient is symmetrical, this is, the value does not change if we
swap the features. Correlation ratio needs to specify which feature is the categorical and which is the
numerical, so we will assign the same value to each pair, independently of the order. However, Theil’s
U is not symmetrical. We will follow the convention that the cell (i, j) of the correlation matrix contains
the U statistic of the i-th feature given the j-th feature, assuming that both are categorical. In other
words, we compute the statistic of the row features given the column features.
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3.7.1 Numerical and categorical features

Let us begin with GossipCop news features. We see in figure 3.23 that there are two big groups of
correlated features, the top left involving the URL parts of media images and their main address (which
usually coincide because many websites host their images in their own domain), and the bottom right
with features about the embedded movies. The number of tweets and publish datetimes are left apart
and only have small correlation with other features. Regarding news labels (first row), we see that
features are not correlated with the label, except the domain and subdomain of URL and images,
and the number of tweets. This does not mean that there is no connection between other features and
news labels, but it might be more complex than a monotonic or linear correlation.
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Figure 3.23: Feature correlation in GossipCop news.

Regarding PolitiFact news, figure 3.24 shows a similar situation, with the same two groups of correlated
variables (with a different ordering, though), but we notice that the features that were correlated with
news labels in the GossipCop collection are now even more correlated. This means that knowing
the publishing media gives more knowledge about the label, or in other words, the proportions of real
and fake news for each media are more extreme than in GossipCop news.

Moving to GossipCop tweet features, figure 3.25 shows that these features are much less correlated.
There is a group of highly correlated features, involving the URLSs contained in the tweet entities. Re-
garding news labels, we see that they are mostly correlated with the features in this group, with the
number of user mentions, with the tweet source and with the hashtags contained in the tweet. This
means that the features given by Twitter to enrich the text and engage with other users, and the
tools used to publish the tweet are also important.

PolitiFact tweet features behave in a similar fashion, as we can see in figure 3.26, with the URL entities
highly correlated between themselves and with the news labels. However, user mentions and tweet
sources are less correlated, perhaps indicating that less engagement is used in this collection.
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Feature correlation in politifact news
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Figure 3.24: Feature correlation in PolitiFact news.

Feature correlation in gossipcop tweets
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Figure 3.25: Feature correlation in GossipCop tweets.
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Feature correlation in politifact tweets
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Figure 3.26: Feature correlation in PolitiFact tweets.

Feature correlation in gossipcop user profiles
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Figure 3.27: Feature correlation in GossipCop users.
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We continue with GossipCop user profiles in figure 3.27. There is a large group of highly correlated
features, some of them about user statistics and some other about profile customization. This might be
related to figure 3.18, when we saw that many users have never modified their profiles and might be bot
accounts. Regarding class labels, we see that user names are highly correlated with news labels, which
indicates that many users have a tendency to post mostly on fake news or mostly on real news.
However, we will not use user names to train models, because it does not make sense to classify news
as fake or as real depending on a name. We will instead use profile features. Another feature that is
correlated with news labels is the user location, but we have to keep in mind that this field is not exactly
categorical, as each user is free to input any text string. Therefore, we should take this correlation with
caution. As we will see in chapter 4, we will limit categorical features to the 100 most frequent values,
which should solve this problem. The remaining features are correlated very little to labels.

Finally, figure 3.28 shows that PolitiFact user profile features have similar correlations, although the big
group that we saw in figure 3.27 is now scattered, meaning that profile customization might give less
insights in this collection. Features other than user names and locations are even less correlated with
news labels.

Feature correlation in politifact user profiles
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Figure 3.28: Feature correlation in PolitiFact users.
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3.7.2 Textual features

To finish this section, we will analyze the correlation of textual features with news labels. Following the
steps below, we will obtain a correlation measure for each token present in each feature, and we
will plot the 50 most relevant tokens. We will apply the process for each collection separately.

1. For each textual feature, we will tokenize each text string and compute the TF-IDF representation
of each sample. The tokenization will consist on lowercasing, removing punctuation and splitting
by whitespaces, except for the tweet text, where we will use nltk.tokenize.TweetTokenizer
and a regular expression to remove URLs.

2. Next, for each textual feature and token, we will compute the correlation ratio of the news labels
(acting as categories) and the token’s TF-IDF vector (numerical measurements). At the end, we
will have vector for each feature, with each cell measuring the correlation of each token with the
class labels. If a token does not appear in a feature, its value will be undefined.

3. We will keep only tokens appearing at least in the news text, tweet text or user description. We
do this because these are the most important textual features.

4. Finally, we set undefined values to 0, divide each value by the maximum of its feature, compute
the harmonic mean across features and take the 50 tokens with highest harmonic mean. We use
the harmonic mean because we are more interested in tokens that are present in most features,
rather than features that are very important only in one feature.

As we see in figure 3.29, relevant tokens are quite different for each collection. GossipCop’s most
important tokens include words related to:

¢ Celebrities: mel, tamara, hillary, campbell, sabrina.
 Fashion: skin, glow, stellar, diy.
¢ United States’ locations: nashville, coast, ohio, utah.
While PolitiFact tokens include words associated with:
* Famous politicians: clinton, biden, barbara, nancy.
e Communication: facebook, press, mail, news.
* Political terms: bureau, syrian, country, work, politics, staff, declaration.

Furthermore, the importance distribution across features is different in each collection. Figure 3.29a
shows that, in the GossipCop collection, tokens are mostly important in one or two features each, but
not in the others, and some tokens are relevant only in the tweet text or user description (for instance,
mel, glow, nashville, troian, fox and stellar). However, most tokens in the PolitiFact collection (figure
3.29b) are important in all the news textual features but not in tweets or user descriptions (except clinton,
facebook, ross, press and staff) This indicates that tweets and user descriptions might be more
useful in the GossipCop collection.
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Chapter 4

System Architecture

In chapter 3, we downloaded the FakeNewsNet dataset and, after some cleaning and feature engineer-
ing, we ended with a train, validation and test set of news. Each piece of news is associated with a
number of tweets, and we extracted the most relevant information from news, their related tweets and
the users that posted each tweet. Next, we carried out an exploratory data analysis on the train set,
where we noticed that tweets and user profiles might contain useful information to detect fake news.
This exploratory analysis, along with the feature correlation matrices, highlighted some features with
high class bias that might lead to spurious models, like the news publish date in the PolitiFact collection.

In this chapter, we define the architecture of the fake news detection systems that we test in chapter 5.
We use a Deep Learning architecture that is capable to handle the one-to-many relationship between
news and tweets. Moreover, we will see that the proposed architecture is very flexible and extensible,
and can be a starting point to create more powerful models upon the state-of-the-art models mentioned
in section 2.1. The two main goals of our architecture are:

* Handling varying-length sequences of tweets without the need of padding or truncating, and being
able to apply reduction operations more complex than the sum or mean. In other words, our archi-
tecture accepts non-tabular input data, as long as the structure is known. In particular, it is possible
to include trainable recurrent layers that extract information from ordered tweet sequences.

* Being able to choose the text representation technique and the subset of features that are used as
input data, in a way that allows to fairly compare the results of different combinations. We use
Vector Space Models (bag of words, frequency count and TF-IDF) and pretrained word embed-
dings: Word2Vec (see [Mik+13]) and SentenceBERT (see [Dev+18], [RG19]).

We will firstly train some well-known non Deep Learning algorithms, using only news features, to
obtain an initial performance baseline. We will spend much less time on these models (we will not
perform hyperparameter searches, for instance), since we only want to have some metrics of what can
be achieved with standard non Deep Learning algorithms, beyond a dummy baseline.

This chapter is split in two sections: section 4.1 explains the non Deep Learning architecture, while
section 4.2 describes the Deep Learning architecture. The actual implementation of each architecture
(frameworks, packages) will be described with detail in appendix A.

4.1 Non Deep Learning

As explained earlier, we train non Deep Learning models to obtain a performance baseline of what can
be achieved with standard classification algorithms. Here we only describe the architecture, the imple-
mentation details are left in appendix A.1.
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Note. As we explain in the appendix, the architecture is implemented as a pipeline of two steps, the
first being the preprocessing and textual vectorization procedure and the second being the classification
algorithm. However, we will describe the preprocessing process assuming that it is a separate step that
is performed before training the algorithms.

We want to test well-known non Deep Learning classification algorithms trained on news from each
source separately, using different subsets of features and different textual representation techniques. In
other words, we want to try a list of combinations based on the following choices:

* Source: GossipCop or PolitiFact.
* Feature type: only numerical, only categorical, only textual or all features.
» Textual representation: bag of words, frequency count or TF-IDF.

¢ Classification algorithm: logistic regression, linear SVM, radial basis function SVM, random
forest, LightGBM or XGBoost.

The rest of the section explains each part of the architecture, in order. Firstly, we explain in 4.1.1
the input data used for fitting and evaluating models. Then, we describe the preprocessing and textual
representation techniques in 4.1.2. We finish in 4.1.3 by listing the classification algorithms considered
for testing.

4.1.1 Input data

We use as input data the train and test sets of news obtained in section 3.5, with the news features spec-
ified in table 3.9. Tweets and user profiles are not used with non Deep Learning models. Models
are fit using the training set and evaluated on the test set. The field 1abel contains the target labels, and
represents news veracity, with real news encoded as 0 and fake news as 1.

Note. The validation set is not used, since we do not perform hyperparameter tuning. However, we do
not introduce these news in the train or test set because we want to train and test all the models using
the same sets, and we use the validation set in the deep learning architecture.

During each train-test process, we train using training news from GossipCop or from PolitiFact,
and evaluate using test news from the same source. We do not use both sources at the same time,
because there are many more news from GossipCop, so the results would be similar to using GossipCop
only.

Furthermore, we want to test models trained on subsets of features depending on their type: only
numerical features, only categorical features, only textual features or all features.

Excluded features
The following features from table 3.9 are excluded from the fitting and evaluating process:

* news__source. Contains the news source (GossipCop or PolitiFact). Since we train separately
on both sources, this feature is constant on each source and can be removed.

* news__publish date_datetime. We exclude publish datetimes because they are not available
for all news and because class bias is very high with respect to the publish date, especially in the
PolitiFact collection. More precisely, we assume that there will always coexist real and fake news
in a similar proportion and, therefore, models should not use absolute datetimes to take advantage
of the dataset’s class bias with respect to publish dates. We do not deny that there might exist a
time-dependent class bias, but we assume that the bias found in the exploratory data analysis is
only observed in this dataset.
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4.1.2 Preprocessing and textual representation

Before fitting and evaluating, both the train and test set need to undergo a preprocessing process where:

* Numerical features are centered and scaled. This is required when using algorithms like logistic
regression and support vector machines, that can be affected by feature scale, and does not harm
with random forest or tree-based gradient boosting methods.

» Categorical features are encoded as one-hot vectors (also called dummy features). This is the
usual way of encoding categorical features.

» Textual features are represented as vectors. In this non Deep Learning architecture, we only use
Vector Space Models, where we first tokenize the original strings and then represent each string as
a vector. We tokenize strings by lowercasing, removing punctuation and splitting by whitespaces,
and then compute one of the following representations (we test the effect of using each one of
these representations in chapter 5):

— Bag of words. Also called binary vectorization. Indicates the presence or absence of each
token in the vocabulary, in the given string.

— Frequency count. Indicates the frequency count of each token.

— TF-IDF. Indicates the frequency count of each token, multiplied by a correction factor in-

versely proportional to the number of strings where that token appears.

We create the vocabulary using the 5.000 most frequent tokens, which seemed a reasonable size
during our initial tests. Each textual feature has its own vocabulary.

Note. The preprocessing steps use only the train set to compute mean and variance of numerical fea-
tures, find the categorical features’ values and create textual features’ vocabulary. The test set is only
transformed using the information contained in the train set, so that no information is leaked to the
model.

4.1.3 Classification algorithms

We want to obtain a baseline using different classification algorithms. We consider this selection to
be sufficiently varied, since it contains some of the most used and successful algorithms. The selected
algorithms are:

¢ Logistic regression.
* Support vector machines. Using the linear kernel and the radial basis function kernel.
* Random forest.

¢ Gradient boosting methods. LightGBM and XGBoost algorithms are used.

4.2 Deep Learning

The Deep Learning architecture is a deep neural network that contains a mechanism to handle the one-
to-many news-tweets relationship. The actual implementation is explained in appendix A.2.

Note. As we explain in the appendix, the preprocessing and textual vectorization are implemented as the
initial part of the deep neural network, although in this section, we will just assume that preprocessing
is performed before training the deep network.
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The core idea is that, when the (preprocessed) data enters the network, news features are concatenated
with a vector, computed by the deep network, that is a summarization of related tweets and the user
profiles of the authors of those tweets. This summarization or reduction can be a trainable part of the
network, unlike usual reductions like the mean or maximum, and can handle varying-length sequences
of tweets without padding or truncating to a fixed length. This allows representing all the information
associated to a piece of news as a one-dimensional vector. These vectors are then passed to a prediction
head composed of several dense layers with regularization, and the network ends with a one-cell dense
layer with sigmoid activation function, which outputs the probability of the news being fake.

We want to test our Deep Learning architecture training on news from each source separately, using dif-
ferent subsets of features based on their type and origin, and different textual representation techniques.
We will try a list of combinations based on the following choices:

Source: GossipCop or PolitiFact.

Feature type: only numerical, only categorical, only textual or all features.

» Feature origin: news, tweets, user profiles, news and tweets, news and user profiles or all of
them.

Textual representation: bag of words, frequency count, TF-IDF, Word2Vec or SentenceBERT.

In the rest of the section, we explain each part of the architecture, following the data flow order. We
start by explaining the input data in 4.2.1. Next, we describe the preprocessing process and textual
representation techniques in 4.2.2. We continue with the summarization of tweets and user profiles in
4.2.3, and the prediction head in 4.2.4. Finally, we describe the training and evaluation process in 4.2.5

4.2.1 Inputdata

We use as input data the train, validation and test sets obtained in section 3.5, with the features specified
in tables 3.9 (news), 3.10 (tweets) and 3.11 (user profiles). Target labels are contained in label, with
real news encoded as O and fake news as 1. As in the non Deep Learning architecture, we will only
use news from one source at a time, and the 80-10-10 proportions are preserved because the splits are
stratified by label and source.

Note. The validation set is only used to tune the classification threshold. We do not perform any other
hyperparameter tuning, although we did some initial tests to find a set of hyperparameters adequate to
carry out all the covered combinations in similar conditions.

Due to the high amount of Twitter data, we will only use up to the first 100 tweets (in chronologi-
cal order) for each piece of news. We saw in the exploratory data analysis in 3.6.2 that some news
have more than 10.000 tweets, which needs a lot of computational power when using SentenceBERT.
However, 92% news have at most 100 related tweets, and we consider that it is a reasonable trade-off
between performance and resources.

We are interested in testing models trained on subsets of features depending both on their type (nu-
merical, categorical, textual) and on their origin (news features, tweet features, user profile features).

Note. Whenever we include tweet or user profile features, we will not train with news that have no
associated tweets. However, as mentioned in chapter 5, when using only news features, we will try both
using only news with tweets and using all news, to check if there is any difference in results.



Fake News Detection - Mario Pérez Madre 45

Excluded features

The following features from tables 3.9, 3.10 and 3.11 are excluded from the whole process:

news__source. Same reason as in 4.2.1.
news__publish date_datetime. Exactly asin 4.2.1.

tweet__created_at. Tweet posting dates. We replace this feature by tweet__time delta,
which contains the time difference between consecutive tweets of the same news, or between
news and first tweet, if it is the first tweet. The reason is that we do not want the model to
decide news veracity based on absolute datetimes. We do not deny that there might exist a time-
dependent class bias, but we assume that the bias found in the exploratory data analysis is only
observed in this dataset.

user__id. Contains the user identifiers. It is needed to join the tweet with its author, but we must
exclude it, since we want the model to detect fake news depending on the user profile features,
rather than the identifier.

tweet__news. Contains the news identifiers. Used to join news and tweets, and it is excluded for
the same reason as user__id.

user__name. User name. Does not have to be unique, but certainly has almost unique values, and
we do not want the model to use this feature.

user__screen name. User screen name. Must be unique, and is excluded for the same reasons
as user__name.

user__created_at. User creation datetimes. We drop this feature and, instead, include the fea-
ture user__time_user_created_to_tweet, which calculates the time difference between user
creation and tweet publish datetimes. The reasons explained with tweet__created_at apply
here, too.

4.2.2 Preprocessing and textual representation

Before training deep neural networks, the train, validation and test sets need to go through a preprocess-
ing process where:

Numerical features are centered and scaled. This is not required by neural networks, but might
improve convergence speed and numerical stability.

Categorical features are encoded as one-hot vectors. We will limit each one-hot encoding to
only distinguish between the 100 most frequent values in the train set for that feature. The
problem lies mostly in user profile features, where some categorical features have more than
10.000 different values and may reduce the usefulness of other features.

Textual features are encoded as vectors. We use both Vector Space Models and pretrained word
embeddings. We can choose the representation technique, but the same technique will be used
for all the textual features. Vector Space Models and Word2Vec embeddings will be preceded
by a tokenization process similar to the non Deep Learning architecture: lowercasing, removing
punctuation and splitting by whitespaces. They will also need to create a vocabulary for each fea-
ture, which will be limited to the 5.000 most frequent tokens. On the other hand, SentenceBERT
contains its own tokenization and does not need to manually create a vocabulary. We will test the
following textual representations in chapter 5:

— Bag of words. Vector Space Model indicating the presence or absence of each token in the
vocabulary.
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— Frequency count. Vector Space Model containing the frequency count of each token.

— TF-IDF. Vector Space Model that represents each string as the frequency count of each
token, multiplied by a correction factor inversely proportional to the number of strings where
that token appears.

— Word2Vec. We use Google’s Word2Vec pretrained word embeddings. Specifically, we
use word2vec-google-news-300, which contain vector representations of length 300 that
have been trained on text from Google News. Since there might be tokens that are in the
features strings but not in Word2Vec’s vocabulary, we need to first obtain the vocabulary of
each feature in the training set and then select the 5000 most frequent tokens that are also in
Word2Vec’s vocabulary. Furthermore, we need to generate two random vectors for out-of-
vocabulary tokens and empty strings, respectively. Note that Word2Vec assigns a vector to
each token in the string. To obtain a sentence representation, we will compute the mean
of token representations.

— SentenceBERT. There are several variations of SentenceBERT. We use the one based on
BERT base model, trained on Natural Language Inference data, and taking as sentence
representation the mean of token embeddings. SentenceBERT is a deep neural network
itself, and has its own tokenization process. We use SentenceBERT to obtain a sentence
representation of each string. Each string will be summarized as a vector of length 768.

Note. As in the non Deep Learning architecture, these preprocessing steps use only the train set to
compute mean and variances, find the categorical values and create vocabularies. The validation and
test sets are only transformed using the information contained in the train set.

4.2.3 Handling one-to-many news-tweets relationship

We handle the one-to-many relationship between news and tweets by summarizing the sequence of user
engagements into a fixed-size vector, in a similar way as in [RSL17] and [SML19]. However, we take
advantage of the advances in Tensorflow that allow to process non-tabular data, so that no reshaping has
to be done before passing the data to the system.

For instance, the authors of [RSL17] and [SML19] propose to aggregate user engagements in temporal
windows, and also need to compute the singular value decomposition of coincidence matrices which
indicate what users comment on what news, or how many times two users posted a comment on the
same news piece. Therefore, these systems are using much less information than our architecture, and
they are losing information due to the aggregation in temporal windows.

In contrast, our architecture takes as input the whole, unaggregated sequence of user engagements, and
applies a summarization layer that can be as complex as desired. In the implementation we test in
chapter 5, which is described in detail in appendix A.2.2, we firstly concatenate the vector containing
tweet features with the user profile features of the user who published the tweet. Then, we compute
the feature-wise mean of the concatenated vectors, and we append the resulting vector to the news
features. This final vector contains all the information from that news piece and its user engagements.

However, we can also apply more complex summarizations, like a recurrent layer that takes the or-
dered sequence of user engagements and outputs a vector representation of the whole sequence. In fact,
we initially used a LSTM layer instead of the feature-wise mean, which could be potentially powerful
to understand the engagement flow.

Using a summarization in this way, we can handle varying-length sequences of tweets without padding
or truncating any sequence. What is more, our approach can be generalized to include any informa-
tion stored hierarchically, as long as we know the structure. For instance, if we had information about
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the followers of each user, we would have a list of user profiles for each tweet author (therefore a
varying-length list of varying-length lists of user profiles, for each piece of news), and could apply a
summarization that includes information from followers. However, the computational power required
grows exponentially, so it would be necessary to optimize the architecture by limiting the model com-
plexity or using less features.

Our approach is also very flexible, in the sense that there are multiple ways of processing user engage-
ments to obtain a summarized vector representation. For instance, we could have considered that each
news has a sequence of tweets and a set of users, summarize both parts separately and then join the
summarized vectors. In this case, the summarized vector from user profiles is obtained independently
from the tweet features and with no temporal information with respect to the interaction order, there-
fore obtaining a representation of the involved users independently of their tweets. This summarization
might be able to extract even more information, since user features are not masked by tweet features
and vice versa, and could be useful to cluster the set of users depending on the type of news they engage
with, similar to the coincidence matrix used by [RSL17] and [SML19] but using much more information
about users.

4.2.4 Prediction head

The prediction head consists on a number of interleaving dense and dropout layers, followed by a final
dense layer with one cell and sigmoid activation. The output is interpreted as the probability of the news
being fake.

After some initial tests, we decided to settle with a prediction head with two dense-dropout blocks, fol-
lowed by the final one-cell dense layer. The dense layers have 48 cells each, with /2 regularization and
SELU activation function, while the dropout layers have a dropout rate of 0.2. We use this prediction
head in all tests.

Note. We achieved similar results with 64-cell dense layers, and with dropout rates slightly lower or
higher. The regularization and activation are not decisive either, with similar results using no regu-
larization or the RELU activation. Adding more dense-dropout blocks did not improve significatively,
although the model did perform a bit worse with only one block, and when dropout layers were not
used.

4.2.5 Training and evaluation
The training and testing procedure will be the following:
1. Select the input data (source and features) and the textual representation technique.

2. Fit the deep neural network for a number of epochs using the training set. In our initial tests, 10
epochs were enough for all combinations to converge.

3. Compute the predictions for the validation set, calculate the precision-recall curve (from now
on, PR curve) and choose as optimal classification threshold the lowest value that maximizes F1
score.

4. Evaluate the model in the test set using this optimal threshold.

Note. As explained in the appendix A.2, we would have liked to use early stopping techniques to stop
training when model’s performance in the validation set no longer improves. However, this was not
possible due to technical reasons.
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We train the deep neural networks using the binary cross-entropy loss, since this is a two-class classi-
fication problem with 0-1 labels. We use a batch size of 32, except when using SentenceBERT, where
we use 16 samples per batch. We use the Adam optimizer with a learning rate of 0.001, which seems
a reasonable choice and reaches convergence in all the combinations with consistent results. We tried
SGD and Adadelta optimizers, and the results were similar.



Chapter 5

Experiments and Results

We explained in chapter 4 our Deep Learning architecture, which can mix news features with tweet and
user profile information and is capable of extracting information from the whole sequence of user en-
gagements by fully handling the natural one-to-many relationship between news and tweets. Although
our focus is on this architecture, we also briefly described a non Deep Learning architecture that we use
to obtain a performance baseline beyond a dummy baseline. Moreover, it will serve to highlight some
trends that will be ultimately confirmed by our Deep Learning models.

In this chapter, we describe, in section 5.1, the tests that we have carried out using news from each col-
lection in the FakeNewsNet dataset and trying different subsets of features and different vectorization
techniques. Then, we analyze, in section 5.2 the obtained results and discuss the reasons of those results
and whether the particularities observed in the exploratory analysis are connected to the results.

The main goal of the experiments is to check whether using information from tweets and user
profiles helps improve the performance of the tested models. Implicitly, this is related to the ques-
tion of whether the proposed architecture is adequate for this task. We are also interested to see how
each textual representation technique behaves, and finally, whether categorical and numerical features
are useful along with textual features.

We only include in this chapter the main results, mostly the F1 scores obtained in the test set. Other
measures such as accuracy, precision-recall AUC and ROC AUC can be seen in appendix B.

5.1 Experiments

We carried out a series of experiments, changing the input data and the textual representation technique.
We firstly tested the non Deep Learning architecture, to obtain a performance baseline, and then the
Deep Learning architecture. Finally, we performed an ablation test for the Deep Learning architecture,
to understand which features are contributing more to the model.

The following subsections explain the combinations tested for each architecture. Each architecture has a
different set of choices to be made (news source, features used, textual representation), and each choice
has a set of possible values. We tested each possible combination 5 times, using the same train,
validation and test sets all the time, to obtain comparable results.

Note. Recall that the Deep Learning architecture is designed to discard news without associated tweets,
although it can use all news if only news features are included. We already saw in figure 3.3 that the
class distribution in the subset of news with tweets was slightly different with respect to the whole set.
We need to check if there are significative differences between using all news or news with tweets. We
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will do so in the non Deep Learning experiments.

For each training-testing process, we train the model in the training set, and evaluate in the test set, ac-
cording to what we explained in chapter 4. With the Deep Learning architecture, we use the validation
set to optimize the classification threshold, as explained in 4.2.5.

Regarding performance measures, the task of detecting fake news is a binary classification problem.
The goal is to detect as many fake news as possible, without marking real news as fake. In other words,
we want to achieve a high sensibility (or recall) with high specificity, often focusing in the former, since
it is usually considered more important to block fake news. However, both measures are insensitive to
class bias, which is especially present in the GossipCop collection, with 75% real news. Therefore, it
is more informative to compute the precision (or positive predictive value), which is sensitive to class
bias. For this reason, we decided to focus on the F1 score, which is the harmonic mean of precision
and recall, and will be our main performance measure. We also compute the accuracy and, in the
Deep Learning architecture, the precision-recall AUC and ROC AUC, to obtain an overall measure
considering all possible classification thresholds.

5.1.1 Non Deep Learning

The tested combinations are selected by choosing a value for each of these choices:
1. Source:

(a) GossipCop.
(b) PolitiFact.

2. Feature type:

(a) Only numerical features.
(b) Only categorical features.
(c) Only textual features.

(d) All features.

3. Textual representation:

(a) Bag of words.
(b) Frequency count.
(c) TF-IDFE.

4. Classification algorithm:

(a) Logistic regression.

(b) Linear SVM.

(c¢) Radial-basis-function SVM.
(d) Random forest.

(e) LightGBM.

(f) XGBoost.

Note. When textual features are not used, the textual representation choice is ignored.

For instance, one combination could be to use GossipCop news, using only textual features, with TF-IDF
representation and LightGBM as the classification algorithm. Another combination could be to select
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PolitiFact news, using only categorical features (hence, we ignore the textual representation choice) and
fitting a logistic regression.

We carried out the experiments twice: firstly, using all news, and then, using only news which
have associated tweets. The results using only news with tweets will tell if there are significative dif-
ferences when the rest of news are dropped, as it is the case with the Deep Learning architecture.

To sum up, there are 96 different combinations, each one is tested five times, and they are carried out
twice. Therefore, we did a total of 2-96 -5 = 960 different experiments.

5.1.2 Deep Learning
Combinations are selected by choosing a value for each of these choices:
1. Source:

(a) GossipCop.
(b) PolitiFact.

2. Feature type:

(a) Only numerical features.
(b) Only categorical features.
(c) Only textual features.

(d) All features.

3. Feature origin:

(a) News.

(b) Tweets.

(c) User profiles.

(d) News and tweets.

(e) News and user profiles.

(f) News, tweets and user profiles.
4. Textual representation:

(a) Bag of words.
(b) Frequency count.
(¢) TF-IDE.

(d) Word2Vec.

(e) SentenceBERT.

Note. Again, when textual features are not used, the textual representation choice is ignored. Feature
origin refers to whether we use features from the news, from the tweets or from the user profiles.

We carried out extra experiments using news features from all news, to check if there are significative
differences with respect to using news with tweets.

There are 144 different combinations and each one is tested five times, so we did a total of 168 -5 = 840
different experiments.
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Finally, we performed an ablation test for each FakeNewsNet collection, using all features from all
origins. Firstly, for each available feature, we fit a model using only that feature on the train set, find
the optimal classification threshold on the validation set and evaluate the model on the test set. Then,
we sort the features by their test F1 score in ascending order and fit models incrementally adding the
features one by one, to see whether they improve model performance.

5.2 Main results

In this section, we present the main results obtained from the experiments described above. We start in
5.2.1 by calculating a dummy performance baseline. Then, we show in 5.2.2 the performance baselines
obtained with the non Deep Learning architecture. We continue in 5.2.3 discussing the results obtained
with the Deep Learning architecture. Finally, we analyze in 5.2.4 the ablation test performed with the
Deep Learning architecture.

By main results, we mean the F1 scores obtained from the evaluation in the test set of each combination.
As we explained earlier, our main performance measure is the F1 score, which we consider adequate to
the problem. We leave in appendix B the test accuracy scores with both architectures, and the precision-
recall and ROC AUCs obtained with the Deep Learning architecture.

All the scores here and in the appendix are numbers between O and 1, with 1 being the optimal per-
formance. We will show all the measures multiplied by 100, since they are usually published in this
format in the literature and it makes them easier to read.

5.2.1 Dummy baseline

We show in table 5.1 the performance measures that would be obtained by a dummy classifier that only
knows the prior class distribution of the train set. Recall that the train, validation and test sets are
stratified by class labels, so the prior distributions coincide. We also consider the subset of news
with tweets, which is used by the Deep Learning architecture.

Real news (%) Fake news (%) \ Dummy F1 score Dummy accuracy

GossipCop  All news 75.8 24.2 38.9 75.8
With tweets 74.6 254 40.5 74.6
PolitiFact  All news 53.7 46.3 63.2 53.7
With tweets 46.6 53.4 69.6 53.4

Table 5.1: Dummy performance baseline.

Note that, since the F1 score depends on the sensibility, this measure is maximized when all news are
predicted as fake. Hence, the optimal F1 score is the harmonic mean of the fake class prevalence and 1.
Therefore, the higher the prevalence of fake news, the higher the F1 score baseline. On the other hand,
the maximum accuracy is obtained when the dummy model assigns all news to the majority class, and
therefore coincides with the prevalence of the greater class.

We must keep these baselines in mind when discussing the results. Observe that in the PolitiFact collec-
tion, which is almost balanced, the dummy F1 score baseline is 69.2 when using only news with tweets,
which certainly would seem high in other situations.

Moreover, our PolitiFact dummy scores are even better than the results obtained by the FakeNewsNet
dataset authors in [Shu+18] on trained models. However, in [Del+18], the authors reported F1 scores
of 90 and more, which are coherent with our dummy scores and with the results that we present in this
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chapter. Therefore, either the original dataset suffered important changes when it was published,
or the results in [Shu+18] were not correctly reported. As a consequence, the results shown in this
chapter are not directly comparable to the scores reported in [Shu+18], although they seem to be in line
with the results in [Del+18].

5.2.2 Non Deep Learning

Firstly, we show the results using all news, and then using only news with tweets. Recall from section
4.1.1 that numerical features store the number of images, movies and tweets of each news, categorical
features contain information from the URLs of the domain and textual features are the title, text and
author description of the news articles.

Using all news

We can see in figure 5.1 the test F1 scores of non Deep Learning algorithms using all features (remember
that we repeat each combination 5 times). We highlight the dummy F1 baselines shown in table 5.1 with
a red dashed line.

Test F1 scores (all news, non Deep Learning)
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Figure 5.1: Test F1 scores by text vectorization and algorithm (all news, non DL vs DL).

There are quite a few interesting points to discuss:

* LightGBM and XGBoost achieve the best performance. The other algorithms also perform rea-
sonably, all of them being clearly above the baselines. In the GossipCop collection, logistic
regression leads SVM and random forest, although their performance is very similar. With Poli-
tiFact news, however, random forest is slightly better than logistic regression, and SVM performs
really well with the radial-basis-function kernel and bag-of-words Vector Space Model.

* The bag-of-words representation performs better than frequency count and TF-IDF, with most
algoritms. The differences are greater in the PolitiFact collection, especially when using radial-
basis-function SVM and XGBoost. TF-IDF obtains lower scores in most cases.

» Note the high variance of random forest F1 scores in the PolitiFact collection. Recall that random
forest selects only a portion of features for each fitted tree.

Overall, we obtain reasonable results with the proposed algorithms. However, SVM models might
need a bit of hyperparameter tuning, and it is also likely that the results obtained by RBF SVM with
bag-of-words representations can be replicated by the other SVM models after a hyperparameter search.
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Observe that our test F1 scores in the GossipCop collection are a bit better than the performance ob-
tained by FakeNewsNet authors in [Shu+18], (they reported an F1 score of 59.5 for SVM and 64.6 for
logistic regression). However, in the PolitiFact collection, our results are much better than in FakeNews-
Net article (they reported F1 scores of 65.9 for SVM and 63.3 for logistic regression). As we explained
above, other authors [Del+18] report some results similar to ours, so these differences might be due to
a change in the dataset. We remark once more that the scores presented here were obtained in the
test set.

We show in table 5.2 the average test F1 scores by text vectorization technique and algorithm, as in
figure 5.1. We highlight the best score within each set of news.

Algorithm LR LIN-SVM RBF-SVM RF LGBM XGB
Source Vectorization
GossipCop Bag of Words | 68.4 66.3 64.4 61.0 732 724
Frequency 66.3 62.9 63.1 627 709 712
TF-IDF 65.7 63.6 64.1 622 705 709
PolitiFact ~ Bag of Words | 89.2 79.8 91.4 88.9 947 96.1
Frequency 88.9 83.1 80.6 88.2 946 92.1
TF-IDF 86.1 81.1 77.9 89.8 91.7 89.2

Table 5.2: Average test F1 score by text vectorization and algorithm (all news, non DL vs DL).

Let us now compare the usefulness of each type of feature. We can see in figure 5.2 the test F1 scores
by algorithm and feature type. We show only the scores when textual features are encoded with the bag-
of-words Vector Space Model, since we saw in figure 5.1 that it performs better and more consistently.

Test F1 scores (all news, non Deep Learning)

source = gossipcop

50 Feature type
45 Numerical
A e e Sttt Categorical
source = politifact Textual

100 All

95

90

85

80

75

70

B e e e

60

55

50

45

40

LR LIN-SVM RBF-SVM RF LGBM XGB

Figure 5.2: Test F1 scores by feature type and algorithm (all news, non DL vs DL).

We see that numerical and categorical features are much less informative than textual features,
but the performance using all features is better than using only textual features. FakeNewsNet
authors only used textual features in their non Deep Learning models, so this could be another factor
that explains the performance difference between our results and theirs.

As an interesting detail, in the PolitiFact collection, SVM with linear kernel performs better using only
textual features than using all features, and its performance is on par with with radial-basis-function
SVM. It is also worth mentioning that, in the GossipCop collection, using only numerical features gives
almost no information to the models, except when using a random forest.
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We summarize the average test F1 scores by feature type in table 5.3.

Algorithm LR LIN-SVM RBF-SVM RF LGBM XGB

Source Feature type

GossipCop Numerical 40.2 40.3 43.7 477 405  40.7
Categorical | 54.4 50.2 53.5 534 512 50.1
Textual 64.1 62.6 63.5 578 687 674
All 68.4 66.3 64.4 61.0 732 724

PolitiFact =~ Numerical 68.3 68.3 69.1 792 769 769
Categorical | 76.4 72.3 72.1 75.8 68.8 73.1
Textual 89.5 87.5 87.0 90.7 933 909
All 89.2 79.8 914 88.9 947 96.1

Table 5.3: Average test F1 score by feature type and algorithm (all news, non DL vs DL).

Using news with tweets

We repeat the same analysis but using only news that have associated tweets. We can see in figure 5.3
that the test F1 scores when using only news with tweets are similar to using all news. However, we
must keep in mind that, as we showed in table 5.1, the F1 score baselines are also higher than when
using all news.
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Figure 5.3: Test F1 scores by text vectorization and algorithm (non DL vs DL).

The remarks made when using all news are still valid, although we notice the following differences:

* In the GossipCop collection, F1 scores are similar compared to using all news, but there is a slight
decrease in performance in all models.

* In the PolitiFact collection, SVM with linear kernels have improved greatly, from F1 scores in the
80-82 range to 90-92. We also notice a performance decrease in LightGBM and XGBoost. Fur-
thermore, the bag-of-words representation technique has seen a small reduction in performance,
while TF-IDF has improved a bit, especially in XGBoost, and frequency count does not change.

* It seems that news with tweets are more challenging, and that is why the bag-of-words Vector
Space Model is most affected, since it gives less information. Also, simpler models like logistic
regression have smaller performance decreases, which indicates that more complex models
like XGBoost are overfitting the train set.
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We gather in table 5.4 the average test F1 scores by text vectorization and algorithm, shown in figure
5.3.

Algorithm LR LIN-SVM RBF-SVM RF LGBM XGB
Source Vectorization
GossipCop Bag of Words | 69.0 65.8 62.5 61.5 720 70.1
Frequency 66.9 64.3 61.7 622 720 693
TF-IDF 66.4 63.9 60.5 625 713 70.0
PolitiFact ~ Bag of Words | 90.4 93.0 88.3 88.6 912 914
Frequency 89.2 90.4 77.6 88.7 943 93.0
TF-IDF 87.9 92.5 80.0 89.8 941 94.1

Table 5.4: Average test F1 score by text vectorization and algorithm (non DL vs DL).

Finally, we show in figure 5.4 the test F1 scores by feature type, when using only news with tweets.
As we did earlier, we only present the results when textual features are encoded using the bag-of-words
model, since it obtains good results and is consistent across most combinations.
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Figure 5.4: Test F1 scores by feature type and algorithm (non DL vs DL).

Figure 5.4 shows a picture similar to figure 5.2. However, there are some differences:

* In the GossipCop collection, these results are very similar with respect to using all news, but we
notice a small drop in all models. Categorical features are less informative now, and numerical
features are still of little use except with radial-basis-function SVM and random forest.

» Within PolitiFact, we notice an increase in performance when using textual or all features, and a
decrease when using numerical or categorical features. Logistic regression and both SVM obtain
F1 scores close to the dummy baseline when using numerical features, and categorical features
are less informative with SVM and LightGBM. SVM with linear kernel does now obtain proper
results when using all features.

We collect in table 5.5 the average test F1 scores by feature type and algorithm, presented in figure 5.4.
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Algorithm LR LIN-SVM RBF-SVM RF LGBM XGB

Source Feature type

GossipCop  Numerical 434 44.8 46.2 476 447 453
Categorical | 53.4 52.0 534 543 506 50.6
Textual 63.5 61.3 61.6 571 685 674
All 69.0 65.8 62.5 615 720 70.1

PolitiFact ~ Numerical 72.2 72.2 73.2 81.8 857 828
Categorical | 81.6 83.1 77.9 81.7 773 80.0
Textual 89.2 87.3 85.0 89.6 932 89.2
All 90.4 93.0 88.3 88.6 912 914

Table 5.5: Average test F1 score by feature type and algorithm (non DL vs DL).

5.2.3 Deep Learning

We will now present the main results of the Deep Learning architecture, and see if using information
from tweets and user profiles helps improve performance. As with the non Deep Learning architecture,
we will firstly show a comparison by text vectorization, and then by feature type.

Figure 5.5 shows the test F1 scores by text vectorization technique and features used. We can quickly
see that the performance in the GossipCop collection improves greatly when adding tweet and
user profiles information, compared to using only news content. It also improves a bit in the PolitiFact
colletion, but the F1 scores were already very high.
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Figure 5.5: Test F1 scores by text vectorization and feature origin (DL).

We notice some important aspects that are worth mentioning:

» Tweets and user profiles contain a lot of information, especially in the GossipCop set of news. We
see that using only tweets or user profiles is much more informative than using the news them-
selves. This has to be related with what we saw in the exploratory data analysis (see section 3.6):
many user accounts that posted comments about real news still had the default profile options. We
also observed a large number of tweets whose source was related to automation tools like IFTTT

or dlvr.it. Our hypothesis is that:

— When using only tweet features, our architecture is able to easily detect if the news are real
by looking at the tweet source. If tweets source is IFTTT or dlvr.it, they are more likely
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related to real news.

— When using only user profiles, the model looks especially at the user profile customization
options, and if users have not changed the default options, news are more likely to be real.

Therefore, our architecture might actually be exploiting the fact that GossipCop real news
seem to use bot accounts, which is unexpectedly not as common within fake news, and therefore
is able to detect real news rather than fake news.

* PolitiFact news, however, did not show such extreme particularities in the exploratory data anal-
ysis, and that might be why using only user profile information gives worse F1 scores. Therefore,
it might be the case that, in general, user information is very useful, but not as useful as it
shows in the GossipCop collection.

* Using only tweet features gives very good results in both collections, even though PolitiFact-
related tweets were also not showing the particularities observed in GossipCop tweets, like tweet
sources related to automation tools. This means that, even without strange phenomena like bot
tweets seemingly more related to real news than fake news, tweets contain a lot of information
useful to detect fake news, maybe more than user profiles.

* It is interesting to see that, in the GossipCop collection, mixing news features with tweets or
user profiles decreases the model performance, especially when using Vector Space Models.
However, if we mix all three, F1 scores raise again.

* Regarding textual representations, we see a high variability depending on the chosen technique.
Overall, Vector Space Models seem to perform very well in all the combinations, although
bag-of-words has a small advantage over frequency count and TF-IDF. On the other hand,
Word2 Vec struggles a bit with GossipCop using only news and PolitiFact using only user profiles,
but it performs well in both collections when using all features. SentenceBERT is a bit behind
in most combinations, although it excels in PolitiFact tweets, and performs well in GossipCop
with all features. All things considered, Word2Vec seems to be the strongest technique if all
features are used.

We expected to obtain better results using Word2Vec and, especially, SentenceBERT. It seems that Vec-
tor Space Models perform well because it is more important to detect certain words than to understand
the meaning of each sentence. It could also happen that this dataset is biased in some sense, and the
performance in other datasets is actually lower, especially considering that automation tools and bot
accounts seem to be more common in real news than in fake news. Keep in mind that the test set is a
representative set of the whole dataset, but the FakeNewsNet dataset itself might not be a repre-
sentative subset of the whole set of news and their user engagements. In other words, it is possible
to obtain really good F1 scores in an independent test set and, at the same time, obtain worse results in
other datasets.

We have identified some possible explanations on why the performance of Word2Vec and SentenceBERT
is lower than ideal:

¢ Word2Vec has its own vocabulary set, and some tokens used by our Vector Space Models
are not in its vocabulary. Therefore, our architecture cannot use that information, and that might
lead to worse performance. However, it is striking that Word2Vec performs so badly when using
only GossipCop news, since news articles should contain common tokens. One solution could be
to use the same tokenization than Word2Vec. Another would be to raise the vocabulary size.

* SentenceBERT might need to be fine-tuned to unlock its potential. Recall from section 2.2
that the original BERT was designed to be fine-tuned for each specific task and, although Sen-
tenceBERT was specifically fine-tuned to obtain sentence representations, it might be necessary
to fine-tune SentenceBERT on a subset of news before using it.
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We show in table 5.6 the mean test F1 scores from figure 5.5. The best scores for each source and
column are highlighted.

Feature origin | News Tweets Users News+Tweets News+Users All

Source Vectorization

GossipCop Bag of Words 67.3 92.1 91.9 85.4 87.8 89.8
Frequency 67.2 92.2 92.6 80.0 83.5 86.0
TF-IDF 67.3 84.4 92.4 75.4 82.2 84.0
Word2Vec 53.8 91.2 89.8 89.4 89.6 91.4
SentenceBERT | 61.1 87.8 88.2 81.9 87.2 87.9

PolitiFact ~ Bag of Words 93.3 93.6 87.6 95.9 95.3 95.6
Frequency 91.7 90.6 84.8 92.4 90.5 90.4
TF-IDF 89.3 90.3 85.3 93.0 92.0 92.6
Word2Vec 90.8 87.5 77.0 95.8 87.7 93.3
SentenceBERT | 85.1 95.4 74.3 89.4 85.8 86.8

Table 5.6: Average test F1 score by text vectorization and feature origin (DL).

We can compare the first column of table 5.6, which contains the results when only news features are
used, with the results of non Deep Learning algorithms in table 5.4. We see that our Deep Learning
architecture performs roughly at the same level as the proposed non Deep Learning models (and well
above the F1 score baselines), although a bit worse than the best-performing LightGBM algorithm (F1
score of 72.0 on the GossipCop collection, 94.3 on the PolitiFact collection). All the Vector Space Mod-
els perform equally well using the Deep Learning architecture, but TF-IDF performs a bit worse than
bag-of-words or frequency count in the PolitiFact source, following the remarks made in subsection
5.2.2. However, it is clear that the non Deep Learning architecture cannot compete when we add tweet
and user information to our Deep Learning model.

Regarding the usefulness of each type of feature, figure 5.6 shows the test F1 scores by feature type
and feature origin. Textual features have been represented using the bag-of-words Vector Space Model,
since it was the most consistent technique.
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Figure 5.6: Test F1 scores by feature origin and feature type (DL).

We can draw some conclusions from this chart, in line with what we have already discussed:
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¢ In the GossipCop collection, categorical features from tweets and user profiles obtain very
high F1 scores. Note that the tweet source and most profile customization features are categorical
and, as we explained, there is a connection between these features and the class labels. Also, nu-
merical features from tweets and user profiles seem to be very informative, especially when
using both tweets and user profiles (number of likes, retweets, friends, followers, delay be-
tween tweets, time from user creation to tweet). Regarding textual features, the user description
obtains the highest F1 score, much higher than the tweet texts.

* Within the PolitiFact collection, news textual features are the most important features, and
it seems that user descriptions and tweet texts are much less informative. Numerical features from
news or user profiles are almost useless (recall the dummy F1 score is 69.6), but those from tweets
obtain higher F1 scores. Categorical features do not have the same power as in the GossipCop
collection, but they are not useless either.

* An important remark is that, in the GossipCop collection, there are three combinations leading
the results (tweets categorical, users categorical and users numerical), while in the PolitiFact
collection, the effect of the different feature types are additive. Note how using all the features
from tweets or user profiles gives much better results than each type of feature alone. This might
indicate that the F1 scores obtained in the GossipCop collection are exceptional, and are
due to the particularities already highlighted (bot or automated accounts used massively by
real news). We cannot reject this hypothesis using the PolitiFact set either, since the scores are
very high even when using non Deep Learning algorithms, so we would have to test our Deep
Learning architecture with other datasets.

Finally, we show in table 5.7 the mean test F1 scores from figure 5.6.

Feature origin | News Tweets Users News+Tweets News+Users All

Source Feature type

GossipCop  Numerical 41.5 64.3 62.5 64.0 62.3 70.7
Categorical 52.8 91.1 914 90.5 89.9 93.2
Textual 66.5 79.2 93.2 72.3 84.9 85.6
All 67.3 92.1 91.9 854 87.8 89.8

PolitiFact =~ Numerical 70.1 84.0 68.5 83.7 69.8 85.2
Categorical 80.3 84.2 80.5 90.6 88.4 91.4
Textual 93.8 85.1 78.7 93.1 95.3 914
All 93.3 93.6 87.6 95.9 95.3 95.6

Table 5.7: Average test F1 score by feature origin and feature type (DL).

If we compare the results of this architecture using only news features (first column) with the results of
non Deep Learning models (shown in table 5.5), we see that the remarks in 5.2.2 also apply to the Deep
Learning architecture. Using only numerical features gives F1 scores close to the dummy baseline (40.5
in GossipCop, 69.6 for PolitiFact), while using categorical features gives better results, in the range
of non Deep Learning algorithms. It is worth mentioning that in the PolitiFact collection, the best F1
score is achieved when only textual features are used, and it is better than the 93.2 points obtained by
LightGBM.

5.2.4 Deep Learning Ablation test

Finally, we present the results of the ablation tests using the Deep Learning architecture. GossipCop
and PolitiFact news are analyzed separately, following the methodology explained in section 5.1.2. In
this case, we show the results when textual features are encoded using Word2Vec, because we saw in
figure 5.5 that it performs better than the other techniques when using all features on the GossipCop
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collection, and excels when we mix news text with tweet and user information, meaning that it is the
most versatile representation technique.

Figure 5.7 shows the test F1 scores for each source, with features ranked in ascending order. Blue bars
indicate the test F1 score for each feature alone, while orange bars represent the F1 score using that
feature and all above. We highlight the dummy F1 score baselines (see table 5.1) with a red dashed line.
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Figure 5.7: Ablation test F1 scores (DL). Textual features are vectorized with Word2 Vec.

Let us analyze the ablation test results within each news source:

* GossipCop. We see that all the features up to news__num movies obtain F1 scores similar to the
dummy baseline (40.5), which means that they carry almost no information to detect fake news.
Some of these features are the number of favorites and retweets of each tweet, the tweet language
(most tweets are in english) or the number of friends of each user. On the other hand, features
below news__title obtain F1 scores greater than 60. This group includes features like news text
and several profile customization features. Finally, features below tweet__text obtain F1 scores
higher than 80. All of them are profile customizations, except the tweet source name and the
domain of tweet entities.

Overall, we see that the most performing features are the user description (textual), user profile
customization categories (categorical) and the tweet source name (categorical). Then, we drop
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down to news text and title (textual). This is coherent with figure 5.6, where we saw that tweet
categorical features were very powerful, and user profile categorical and textual features too. This
reinforces the hypothesis that our architecture is exploiting the connection between real news and
user accounts with little profile customization. Note that the accumulative models perform better
than each individual feature until the tweet text. The remaining features perform better alone than
with all the previous features, which indicates that those features are exploiting that connection

PolitiFact. Most features have F1 scores a bit better than the dummy baseline (69.6). Note that the
highest F1 score is obtained by news__text, with a score close to 90. As we saw in figure 5.6, the
performance was very high just using textual features from news, so it is not surprising to see that
the news text obtains such a high F1 score. However, contrary to the GossipCop collection, within
the features with highest F1 score, the accumulative models perform better than each feature
alone. We see that the user description is not as informative as in the GossipCop collection, and
the profile customization features are in the 70-80 range. Numerical features like the time from
user creation to the tweet publish date obtain higher performance than in GossipCop.



Chapter 6

Conclusions and Future work

In this work, we have tested various fake news detection systems, both based on Deep Learning and on
several well-known algorithms, on two sets of news about different topics. We have tried using only
news content and including user engagements. Moreover, we have tested different textual representa-
tions, based on Vector Space Models, Word2Vec and SentenceBERT. We have also tried using different
subsets of features, including an ablation test on each set of news.

We have found that adding information from user engagements greatly improves the results with
respect to using only news content. In the GossipCop collection, features related to user profile cus-
tomization contributed most to the final performance, especially the user description, with some tweet
features like the URLSs linked and the tweet source being very relevant. With PolitiFact news, the most
relevant feature was the news text, although user engagement features like tweet text or user customiza-
tion were still important and contributed to the final model.

These results agree with our findings in the exploratory data analysis, which shows that GossipCop
real news must be using automated tools or bot accounts to publicize their news, rather than fake news.
We also found that this was connected to a high increase in the number of users with the default profile
options. Our feature correlation study confirmed what we found in the data analysis and also revealed
that features like the news publishing media or the number of tweet user mentions and links are corre-
lated with news labels.

Regarding these particularities of FakeNewsNet, it might be the case that FakeNewsNet is not a repre-
sentative dataset of the whole set of news, tweets and users. After all, the test split on which we evaluate
our models is a representative subset of FakeNewsNet, but if FakeNewsNet is not representative of the
real set of existing news and user engagements, it is possible to obtain really good F1 scores in the test
set and, at the same time, obtain worse performance in other datasets.

However, even if the effect of adding user engagements is overestimated in the GossipCop collection,
we can see in the ablation test results (see figure 5.7) that some user profile features are also among
the most relevant in the PolitiFact collection. Moreover, observe in figure 5.6 that all types of features
contribute equally in this collection when using only tweet information, and perform even better when
combined, as opposed to the GossipCop collection, where there is a leading type of feature. This sug-
gests that there is indeed an improvement when user engagements are included in the model, although
perhaps smaller than observed in our tests.

It is worth mentioning that our results in the PolitiFact collection are similar to those in [Del+18]. Recall
that those results did not coincide with the results reported in the original article [Shu+18]. We believe
that either the publicly available FakeNewsNet dataset is different from the dataset used in [Shu+18] or
the dataset authors tested their models under different conditions.
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Regarding textual representation techniques, our experiments show that Vector Space Models out-
performed Word2Vec and SentenceBERT, especially the bag-of-words model. As we discussed in
section 5.2, this means that it is more important to detect certain words than to understand the meaning
of sentences, as it happens in tasks like spam detection. However, Word2Vec performed best in the
GossipCop collection when using all features, suggesting that is the most versatile model. And Sen-
tenceBERT performed best when using PolitiFact tweets, suggesting that understanding the meaning is
more important in some topics. Overall, according to our results, the best option is to use the bag-of-
words model, Word2Vec or a fine-tuned SentenceBERT.

Our results also prove that different types of features perform better in different parts of the dataset.
We found that numerical features from news gave poor results, but numerical features from tweets and
users gave results comparable to using all the information from news, especially in the GossipCop col-
lection. We saw in the ablation test that features like the number of mentions in a tweet, the number of
followers of a user or the number of links in the tweet were among the most relevant features.

Looking at categorical features, our results say that they are very relevant in the GossipCop collection,
since they contain the information related to the tweet source and user profile customization, both par-
ticularly characteristic of GossipCop news. These features are still quite relevant within PolitiFact news,
but they do not perform so well.

Concerning textual features, the most important text features in the GossipCop collection were the user
description and the tweet text, while in the PolitiFact set, news text was the most informative. The con-
tent of GossipCop articles gave worse results than the text from related tweets or the user descriptions,
contrary to what we observed in PolitiFact news. This suggests that the performance of content-based
models might be strongly dependent on the topic.

If we look at our results using non Deep Learning algorithms, we see that LightGBM performed better
than the other algorithms, and even a bit better than our Deep Learning architecture using only news
features. XGBoost was closely behind, and logistic regression also obtained good results. We noticed
that SVM models might need hyperparameter tuning, and random forest results performed a bit worse
than the rest, perhaps because each tree is fitted with a random subset of features, and we have explained
that detecting certain words is key to obtain better results. This might be the same reason that simpler
representation techniques like bag-of-words VSM perform so well.

To finish our work, we propose some future work that might be worth exploring. Firstly, it would
be interesting to test our architecture in other datasets with different label granularity, news from other
sources, topics and languages, and user engagements from other platforms. This could also require to
make some changes in the architecture, like using a multilingual textual representation technique (there
are multilingual BERT models, for instance) and standardizing the set of features from user engage-
ments so that all of them are available from the APIs of all platforms involved.

Another line of work could be to train fake news detection models using a train set composed of news
from one source (or topic) and evaluating on news from other source, and study the performance impact
and which features are more relevant for each source. This should tell how generalizable the model is.

Finally, we believe that it could be useful to test our architecture in the context of early fake news
detection, including only user engagements up to a short period of time since news were published. It
might be possible to build a fake news detector capable of extracting information from short-term user
engagements more efficiently, so that it only needs to see the initial reaction to distinguish between fake
and real news.
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Appendix A

Architecture implementation

This appendix contains the implementation of the architectures described in chapter 4. The non Deep
Learning architecture is built mainly using Scikit-learn, while the Deep Learning architecture is a
Tensorflow Functional model. We describe the former in section A.1 and the latter in A.2.

A.1 Non Deep Learning

The non Deep Learning architecture is built upon the Scikit-learn framework. Based on this framework,
we use the classification algorithms described in section 4.1 to have a baseline to which we can compare
other models later on.

Pipeline
preprocessor: ColumnTransformer
news_text_vectorizer news_title vectorizer news_authors_text_vectorizer one_hot_encoding scaler

ngideectorizerE ‘Tfideectorizerg ‘Tfideectorizerg §0neH0tEncoderE §Standard5ca1er‘

'LGBMClassifie

Figure A.1: Scikit-Learn model example.

The general structure of each model is a Pipeline object that performs two steps. This structure takes
advantage of the tools within Scikit-learn and makes the testing process a bit easier.

1. Preprocessing and text vectorization. A ColumnTransformer object that applies the correspond-
ing preprocessing to each column. This object allows to apply different preprocessing steps to
different sets of columns. The steps are specified as a list of tuples, with each tuple containing the
name of the step, the step to apply and the affected columns.

* Numerical features are centered and scaled using StandardScaler. We can directly pass all
the numerical features to the same StandardScaler and it will automatically handle each
feature independently.

e Categorical features are encoded wusing OneHotEncoder with the parameter
handle unknown=’ignore’, since we might come across with values in the test set that
have not been seen in the train set. Again, we can pass all the categorical features to the
same encoder and they will be treated independently.

» Textual features are tokenized and vectorized using either CountVectorizer with parameter
binary=True (bag of words) or binary=False (frequency counts), or TfidfVectorizer (TF-
IDF). In all cases, we will use the max_features=5000 parameter to limit the vocabulary
to the 5000 most frequent tokens. Furthermore, each feature will have its own vectorizer,
since the vocabulary is not be shared between features.
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2. Classification. We use the following implementation of the classification algorithms:

* Logistic regression. We use the LogisticRegression implementation of Scikit-learn with pa-
rameter max_iter=500, since the algorihtm would sometimes not converge with the default
100 iterations.

e Support vector machines. We use LinearSVC for the linear kernel SVM algorithm and
SVC for the radial basis function kernel. Both are implemented in Scikit-learn.

* Random forest. Implemented in Scikit-learn as RandomForestClassifier.

* LightGBM. Using the official 1ightgmb Python package, which includes the LGBMClas-
sifier class following Scikit-learn’s design.

* XGBoost. Similarly, we use the XGBClassifier estimator contained in the official xgboost
package.

Models are fed from two different pandas’s dataframes: one containing training news (when training)
and another with test news (when evaluating). These dataframes were stored at the end of section 3.5,
from the training and test splits, respectively. Categorical features are stored as pandas categorical type,
and we checked that there is no data leaking from the test set, so that the model has no information on
possible values that are not in the train set.

A.2 Deep Learning

The Deep Learning architecture is implemented using Tensorflow’s Functional API and Sequential API.
We take advantage of Tensorflow’s features like the Dataset API and ragged tensors, which are crucial
to handle the news-tweets one-to-many relationship.

This section is structured as follows: we explain in subsection A.2.1 how we use Tensorflow’s Dataset
API and ragged tensors that will serve to feed the models both in training and evaluation. Then, we
describe in A.2.2 the construction of the Functional model, specifying which layers are used in each
part. Finally, we explain in subsection A.2.3 the modifications we had to make to use SentenceBERT,
since BERT models are very resource-demanding and we could not embed SentenceBERT inside our
Functional model.

A.2.1 Input Data. Datasets and ragged tensors

Each piece of news is associated to a variable number of tweets and each of the tweets is enriched
by adding information about the user that posted the tweet. We join news and tweets using the news
identifiers, and tweets and user profiles by the user’s Twitter ID. The main problem we have to figure
out is how to handle this one-to-many relationship between news and tweets. We have two options:

* Padding and truncating to a fixed number of tweets. We could pad all the news to have exactly
100 related tweets (or any other number, but as we explained earlier, we are limiting ourselves
to 100 tweets). Then, we would only have to add dummy tweets that contain no information or
truncate up to these many tweets.

* Handle varying-length sequences of tweets. This would natively accept any number of tweets
for each piece of news and could even improve model’s throughput, since no useless information
is added.

Apart from this, we have another issue: we have to somehow join news, tweets and user profiles to-
gether before feeding the data to the model. This is, we have to create a dataset containing batches
of samples, each sample being a piece of news along with the related tweets and users’s information
(from now on, whenever we mention the word sample, we will refer to this). Note that, at this point,
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the information is stored as separated pandas’s dataframes (stored after the train-validation-test split in
section 3.5), and we have to end up with a joint dataset containing all the information for each sample.
Furthermore, our goal is to create this dataset in such a way that we can later choose which features
we want to use, since part of our tests will consist on comparing models that use different subsets of
features.

After some research, we found that tf .RaggedTensor could be a solution to properly handle varying-
length sequences, so we decided to explore this possibility and try to build the models without adding
dummy tweets. A RaggedTensor is a Tensor that has at least one uniform dimension and one or more
ragged dimensions. The outermost dimension is always uniform by definition, since a Tensor is a list
of elements. Any other dimension whose size is always the same for each element is a uniform dimen-
sion, as opposed to ragged dimensions, whose size is variable. In our case, the ragged dimension will
be the tweet dimension.

Once the first question is clear, we have to find a way to join news, tweets and user profiles to cre-
ate a tf.Dataset. Again, after spending some time finding possible solutions, we decided to use
Dataset.from _generator to create a Dataset from a generator function that yields one sample
at a time. This function needs as arguments the generator function and the output signature of the
dataset, which we explain below. However, using generators (which are actually the bottleneck) reduces
the model’s throughput, since it will be called many times to obtain the samples, and to obtain each
sample we have to find which tweets are related to each piece of news. We will solve this problem by
saving the dataset to disk, so that we only have to join news, tweets and user profiles once.

* Generator. To yield samples, we will simply iterate through the set of news, finding the tweets
associated to each one of them. For each piece of news, the generator will find the tweets related
(inner join with the news identifier), and then the user profiles of the tweet poster (inner join
with the tweet ID), and will yield a dictionary with feature names as keys. News features’ keys
will store the value itself as the key’s value, whereas tweet and user features will contain a one-
dimensional Tensor with the values of that feature for each of the associated tweets. Outputting
the samples as dictionary will allow us to easily handle the features by name instead of by index.
Note that all the tweet and user features will contain the values in the same order as the tweets,
despite following a column-style design.

Note. From now on, our Datasets will not contain news, tweet or user identifiers, since they are
no longer needed.

* Output signature. This argument describes the shape of the yielded elements. In our case, it will
be a dictionary with feature names as keys and TensorSpec objects as values. Each TensorSpec
needs to specify the shape and the dtype of the stored value. News features will have shape=(),
since they store scalar values, while tweet and user features will have shape=(None, ), as they
contain a variable-size one-dimensional Tensor. The dtype will always be either tf.float32
(numerical features), tf.string (textual and categorical features) or tf.int32 (target labels),
following the type of feature as explained in tables 3.9, 3.10 and 3.11.

We create three separate Datasets, each one of them containing only samples from the training,
validation and test sets of news, respectively. Then, we save the three Datasets to disk, using the
experimental function Dataset.save. To load the Datasets later, we use Dataset.load, passing as
argument the same output signature we used to create each Dataset.

Furthermore, note that due to the inner joins used in the generator, news without tweets will not be con-
tained in the Datasets. We will create three separate Datasets (train, validation, test) containing
all news and only news’ features, following the same procedure described above but modifying the
generator to only output news features. During the tests, we will mainly focus on the Datasets that
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contain also tweets and user profiles, but these other Datasets will be useful to see whether the ob-
served differences in the results come from using only news with tweets.

Note. We checked that each of these Datasets contain only news from the corresponding set of news
(train, validation or test). We ensured this by having different generators instead of a function that takes
a dataframe as argument, since the Dataset calls the generator when samples are required and this
would not be ensured otherwise.

Preparing Datasets for training

At this point, we already have our Datasets full of samples, but we still have to apply some steps like
separating the target label and optimizing for performance. We follow these steps in order:

¢ Filter news source. We are testing the model with news from each source separately. There-
fore, we need to exclude news from the source we are not training on. We do this by using
Dataset.filter combined with tf.strings.regex_full match on the field news__source.

* Set news label as target. We remove the target label from the features and output each sample
as a tuple (features, label).

* Make batches of samples. Using Dataset.dense_to_ragged_batch, we split the set of sam-
ples in groups of batch size news and join them into dictionaries whose values are Tensors with
an extra dimension. News features will be gathered in a one-dimensional Tensor, while tweet
and user features will be transformed into a two-dimensional RaggedTensor, with the second
dimension ragged. Each element of the batched Dataset will be a dictionary containing the
features of as many news as the batch size, except the last batch, which might have less news.

Note. We cannot use Dataset . batch because it does not support creating RaggedTensors yet.

* Dataset optimizations. Using Dataset.cache creates a cache that speeds up second and suc-
cessive readings, while Dataset.prefetch preloads the next batch while the current batch is
being processed.

A.2.2 Functional model

We use Tensorflow’s Functional API to build the architecture. Most of the layers used come from
tf .keras, although we also need some Tensorflow native layers. We first define the input layers,
which depend on what features we want to use. Then we define the preprocessing for each feature,
including the representation technique of textual features. Next, we explain how to reduce the tweets
dimension, to finally pass the summarized vectors to a prediction head, which will output the probability
of news being fake.

Input layers

For each feature we want to use, we create an Input layer with parameters:
* name=<feature name>.

* dtype=<feature dtype>,according to the feature type in tables 3.9, 3.10 and 3.11. Categorical
features will be treated as strings, since Tensorflow does not support pandas categorical type.

* shape=() for news features, otherwise shape=(None,).

* ragged=False for news features, else ragged=True.

We use the name property because this allows us to take the values by key from the dictionaries fed by
the Dataset. This helps handling such a high number of features.
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Preprocessing and textual representation

Each feature has a preprocessing sequence with one or more preprocessing layers, which we chain
sequentially from the feature’s input layer. All the layers that need to adapt (fit some parameters
according to data) will be adapted independently and using only the training Dataset. All the layers
used here will be set as non-trainable.

* Each numerical feature is centered and scaled using a Normalization layer.

* Each categorical feature is encoded by combining a StringLookup layer with a tf.one_hot
operator. We will specify the StringLookup parameter max_tokens=100 to limit to the 100 most
frequent values, and in the one-hot layer we will specify the parameter depth=<StringlLookup
vocabulary size>, to match the lookup vocabulary size (might be lower than 100).

» Textual features are encoded using either a Vector Space Model (bag-of-words, frequency count
or TF-IDF), or pretrained word embeddings (Word2Vec or SentenceBERT). Each feature will
have its own chain of layers, which means that there is not a shared vocabulary, for instance. We
can choose which technique to apply, but the same technique will be used for all the features.

— Bag of words. We use a TextVectorization layer with parameters: max_tokens=5000,
output_mode=binary, pad_to_max_tokens=False. With these settings, this layer will
tokenize the text (lowercase, remove punctuation and split by whitespaces) and return the
bag-of-words representation of the string. When calling the adapt method, it will create
the vocabulary, retaining the 5000 most frequent tokens at most (some features might have
less than 5000 different tokens). This vocabulary will then be used to compute the string
representation when the layer is used in the model.

— Frequency count. We use the same layer and arguments as in the bag-of-words model, but
changing to output_mode=count, to return frequency counts instead of zeros and ones.

— TF-IDF. Same as in the above cases but using output_mode=tf-idf.

— Word2Vec. We use gensim to download the weights from Google’s Word2Vec model
(specifically, word2vec-google-news-300), decompress the file and load it using
gensim.models.KeyedVectors.load Word2Vec_format. Since there might be tokens
that are in the feature’s strings but not in Word2Vec’s vocabulary, we first obtain the feature’s
vocabulary in the training Dataset and select the 5000 most frequent tokens that are also in
Word2Vec’s vocabulary. The preprocessing layers will consist on a TextVectorization
layer to tokenize the text and assign an integer index to each token, combined with an
Embedding layer to obtain the vector associated with each token, and then we will use
tf.reduce_mean to average the representations of the string’s tokens.

% TextVectorization will have arguments max_tokens=None, output_mode=’int’
vocabulary=<vocabulary created previously>. We cannot set a limit on the
number of tokens because the vocabulary does not coincide with Word2Vec’s vocabu-
lary.

* The Embedding layer will have arguments input_dim=5000, output_-dim=300,
weights=<created weight matrix>. 300 is the size of vector representations in
this Word2Vec model. The weight matrix will be a bidimensional numpy array with the
i-th row containing the Word2Vec representation for the i-th word in our vocabulary.
Notice that the TextVectorization will add two extra tokens for out-of-vocabulary
tokens and empty tokens. We will set these as two randomly-generated vectors.

+ Computing the average with tf.reduce mean will give us a vector representation for
each string.
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— SentenceBERT. We explain how we use SentenceBERT in subsection A.2.3 since it was
very resource-demanding and we considered more appropiate to compute the sentence rep-
resentations and save them in a new Dataset.

Note. Tweet and user features need an extra detail. Normalization and TextVectorization layers
are unable to output RaggedTensors yet, but we found a nice workaround that solves this problem
quite easily. RaggedTensors are actually a list of values stored in a specified order, and this order can
be saved in various formats. For our case, the easiest to handle is the nested row lengths format, which
in our case simply stores the number of tweets for each piece of news. We wrote a custom layer that
takes the flat values of a RaggedTensor, applies the layer to the flat values and then reshapes the values
into the original shape. This means that Normalization will compute the mean and standard deviation
from numerical features as if all tweets formed a set instead of being nested inside different news, and
TextVectorization will vectorize the strings all at once, which actually does not break any rule at
all. Every time one of these layers is used with tweet or user features, we will apply the wrapper
on the layer.

Reducing and concatenating features

Note that while news features have two dimensions (first dimension was created when we batched the
Dataset, the second one is the feature dimension), tweet and user features have an extra dimension in
the middle, corresponding to the number of tweets each news has. Furthermore, this second dimension
is not uniform. We must apply some kind of reduction to summarize the information given by
tweets and user profiles. Our goal is to reduce the tweet dimension to have a bidimensional non-
ragged Tensor that will be passed to the prediction head. To do that, we follow the steps below:

* Concatenate news features on the last axis. With a Concatenation layer, we concatenate the
news features on the second dimension. This is not mandatory, we could do this right before the
prediction head along with the other features, but we no longer need to know where each input
comes from. This is not related with the reduction, but we must mention here because we apply
it at this point.

* Concatenate tweet and user features on the last axis. Again, we can skip this but we no longer
need the origin of each column. The last axis here is the third dimension.

* Apply a reduction layer on the concatenated tweets and user features. We use
tf.reduce_mean on the second axis (tweet dimension) although, as explained in 4.2.3, we exper-
imented with a more complex reduction involving an LSTM layer dealing with RaggedTensors.
Finally, after many tests, we decided to simplify this stage and just take the average of each
feature in the tweet dimension, but we mention this as a remark that more complex reduc-
tions can be applied, and this is something unique to this architecture. We also did some tests
taking the maximum with tf.reduce_max, and the results were similar to taking the average.

¢ Concatenate all the features on the last axis. After the reduction, we can concatenate the
resulting features on the second axis to obtain a non-ragged bidimensional Tensor with a fixed
shape for all the batches. This Tensor will be passed to the prediction head.

Prediction head

We use a Sequential model built with a number of interleaving Dense and Dropout layers. A final
Dense layer called prediction with one output cell and sigmoid activation will output the prediction for
each piece of news, which will be interpreted as the probability of the news being fake (remember that
we are coding fake news as ones and real news as zeros).

After some experimentation, we decided to settle with a prediction model with two Dense and Dropout
layers, excluding the final Dense layer, as in figure A.2. The middle Dense layers will have arguments
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[ dense_input: InputLayer | [ dense: Dense | [ dropout: Dropout | [ dense_1: Dense | [ dropout_L: Dropout | [ prediction: Dense |
[ float32 [ 7] floatz T float32 | float32 | float32 | float32 |

Figure A.2: Tensorflow prediction head.

n_neurons=48, activation=selu, kernel _regularizer=12 and the Dropout layers will have
dropout_rate=0.2. These settings will be used throughout all the tests.

Compiling the model

Finally, we compile the models using the BinaryCrossentropy loss, since this is a two-class classification
problem with binary labels. Adam optimizer with learning rate=0.001 will be used throughout all
the tests (we have tried SGD and adadelta optimizers, and the results were similar). We will not use any
metric other than the model’s loss, since we are primarily interested in the test set results and we will
use a custom function to log the results.

Tensorflow callbacks

Tensorflow metrics are computed batchwise and the average across batches is computed at the end of
each epoch. However, we are interested in computing metrics using exactly the same model and using
all the samples at once, which can only be achieved using a custom Callback. We wrote a custom
Callback which we will use during the training phase to compute the model performance in the
validation Dataset after each epoch. More precisely, we will compute the accuracy and F1 score
using 0.5 as the classification threshold, the AUC for the PR and ROC curves, the optimal threshold for
both curves, and the precision, recall, F1 score and accuracy using both optimal thresholds. We define
the optimal threshold for the PR curve as the lowest value that maximizes F1 score, and for the ROC
curve as the threshold whose point in the ROC curve is closest to (0, 1). We will also compute all these
measures during the evaluation in the test Dataset, taking as optimal thresholds the ones computed
in the validation Dataset. All these measures will be logged using a CSVLogger callback.

Note. We tried to use the EarlyStopping callback to stop the training when the validation measures (in
particular the F1 score with the optimal PR threshold) stop improving but, unfortunately, did not found
any way to watch measures created by another Callback. It seems that only metrics are supported.
Therefore, we decided to train the models to a fixed number of epochs, which will be specified in
the testing experiments explained in chapter 5.

To sum up, the complete model has a structure similar to figure A.3. User features are not included
in the figure, they would be treated like tweet features and concatenated in the concatenate_tweets
layer, which would be called concatenate_tweets_users.

A.2.3 Modifications to use SentenceBERT

When we started using BERT models to obtain sentence representations, we began by embedding the
original BERT model (obtained from Tensorflow Hub) along with the preprocessing steps, replacing
the TextVectorization layers or the Embedding with Word2Vec weight matrix. However, we soon
realized that this approach would not be viable, because each epoch would take more than 20
hours if we were using all the text features from news, tweets and user profiles. And of course, the
hardware requirements were very high, although reasonable using cloud computing. BERT models are
quite heavy, and we have more than a million tweets in total. Embedding BERT inside the Functional
model is possible if using only news features, but with tweets and user profiles it would take a very long
time to train.

We experimented using smaller BERT models. Several BERT models have been published, having ei-
ther smaller representation sizes (hidden layers with fewer cells) or less transformer blocks. We tried
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Figure A.3: Tensorflow model with news and tweet features.

several models, and found that the smaller ones were fast enough to train an epoch in 30 minutes, but
we were not completely satisfied.

We also had to decide what should we take as the sentence representation, since BERT models output
one vector for each token. Several possibilities have been considered (see [RG19], table 6), such as
the representation of the [CLS] token or the mean across all non-empty tokens. BERT models from
Tensorflow Hub contain a pooled output that could be used as a sentence representation, although it is
not clear how it is computed.

Finally, we decided to use SentenceBERT-Mean, which is the base BERT model that has been
trained on Natural Language Inference data to obtain sentence representations by taking the
mean of token embeddings, and try to save a copy of the Datasets after vectorizing the text fea-
tures. This process would take a long time, but we would only have to do it once, and then we could
load the Dataset with all the textual features already vectorized, and build the entire model as we have
explained in subsection A.2.2 but without any textual vectorization. We believe this is a reasonable
approach, since embedding a small BERT model inside our Functional model would need to vectorize
the strings on each epoch of each model fit.

Finally, we needed to use cloud computing, and it took 50 hours to obtain the train, validation and
test Datasets vectorized and saved to disk using Azure ML on a standard NC6 instance with a
Tesla K80 GPU.
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Figure A.4: Desired Tensorflow model with embedded SentenceBERT. Only news features are shown.

In the next paragraphs we will explain how we used the SentenceBERT model to preprocess the Datasets
and the modifications needed in the model structure explained in subsection A.2.2 to use these repre-
sentations as input instead of raw text.

Using SentenceBERT

We mentioned earlier that several BERT models are available in Tensorflow Hub. Unfortunately, Sen-
tenceBERT is not one of them, but it is available in HuggingFace’s transformers model repository (see
[Wol+20]). This repository contains many pretrained BERT models for both Pytorch and Tensorflow.
For instance, there were other BERT models pretrained to use the [CLS] token as the sentence repre-
sentation, and other variations with different model sizes and tokenizations, models better suited for
multilingual texts and so on. Some models were designed for Pytorch, but the transformers package
contains some tools that allow to use Pytorch models on Tensorflow and viceversa.

We use the model sentence-transformers/BERT-base-nli-mean-tokens, which was designed
for Pytorch, and we load it wusing TFAutoModel.from pretrained with parameter
from pt=True. This BERT model does not contain the standardization and tokenization steps, but
we can use a model available in Tensorflow Hub for their BERT models. The final mean pooling is also
not included, and we had to write a custom function to do it. These details are mentioned in the model’s
information in the repository.

To be exact, we build a Tensorflow Functional model following these steps:

» Download BERT preprocessor from Tensorflow Hub '. This preprocessor is a Tensorflow
model that contains the standardization and tokenization for BERT models, which is exactly the
same that uses SentenceBERT.

* Apply the preprocessor on an Input layer with parameters shape=(), dtype=tf.string.
We will obtain three outputs named input_ids, attention mask and token_type_ids.

* Apply SentenceBERT on the preprocessor outputs. Note that SentenceBERT input names are
slightly different to the preprocessor outputs. We can pass the layers as a dictionary.

Current URL: https://tfhub.dev/tensorflow/BERT _en_uncased_preprocess/3
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¢ Compute the mean of non-empty token representations. The first output of SentenceBERT
contains the token embeddings. We will multiply the embeddings by the attention mask (to
skip empty tokens), sum the embeddings and divide by the number of non-empty tokens (or 10"
if there are none).

We perform the processing in Azure ML Studio, on an NC6 instance equipped with a Tesla K80 GPU:
for each of the train, validation and test Datasets, we batch the Dataset (the optimal size is 32), and
use Dataset.map to preprocess each batch. The output for each batch (dictionary storing Tensors
or RaggedTensors) will be another dictionary with the same keys, and the values will be either the
same (for non-textual features) or the output of the Functional model we just created (for textual
features). Then, we unbatch the Dataset with Dataset.unbatch and we save the Dataset using
tf.data.experimental.save and copy the folder to the output folder.

To use the vectorized Datasets, we need to load them with tf.data.experimental.load, using
a slightly modified version of the output signature we used when we created the original Datasets
from a Python generator in A.2.1. To be precise, we have to change the TensorSpec objects by
RaggedTensorSpecs for each textual feature, with parameters shape=(768,), dtype=tf.float32.

Also, in the classification model, we have to remove the preprocessing steps for textual features, and
modify the Input layer of these features, setting the parameters shape=(768,),

dtype=tf.float32, and setting ragged=True for tweets and user profiles’ textual features.

Note. 768 is the size of BERT base embeddings.



Appendix B

Result Tables

This appendix contains the results of the experiments that were carried out in chapter 5. The results in
terms of F1 scores were already shown in section 5.2, we include here the results obtained in the test set,
in terms of accuracy and, for the Deep Learning architecture, also the precision-recall AUC and ROC
AUC. All the scores are multiplied by 100, as in section 5.2. We follow a structure similar to section 5.2.

Most of the discussion in section 5.2 is still valid when looking at the accuracy or the AUCs. Some
remarks do not hold, since a model might have high accuracy and low F1 score if precision is low.
When needed, we will make the necessary remarks.

B.1 Non Deep Learning

We leave here the average test accuracy scores obtained when using all news, first, and when using
only news with tweets, later. Recall that, in tables B.2 and B.4, textual features are encoded using the
bag-of-words Vector Space Model, since we saw in subsection 5.2.2 that it performs better and more
consistently than the other representation techniques.

B.1.1 All news

All the remarks made in 5.2.2 are still valid. However, table B.2 shows more clearly that numerical
features are not very useful.

Algorithm LR LIN-SVM RBF-SVM RF LGBM XGB
Source Vectorization
GossipCop Bag of Words | 85.0 83.6 86.6 855 89.0 88.7
Frequency 83.7 81.3 86.3 86.0 88.0 88.1
TF-IDF 83.2 81.8 86.5 85.7 879 88.0
PolitiFact ~ Bag of Words | 90.1 81.7 92.6 89.1 951 96.3
Frequency 90.1 84.4 82.7 88.4 951 926
TF-IDF 87.7 83.5 74.1 90.1 92,6 90.1

Table B.1: Average test accuracy by text vectorization and algorithm (all news, non DL vs DL).
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Algorithm LR LIN-SVM RBF-SVM RF LGBM XGB

Source Feature type

GossipCop  Numerical 75.8 75.8 75.8 7777 787  78.8
Categorical | 82.7 79.7 82.9 82.7 828 827
Textual 82.9 81.3 86.3 84.6 873 869
All 85.0 83.6 86.6 855 89.0 887

PolitiFact ~ Numerical 67.9 67.9 69.1 827 815 815
Categorical | 74.1 70.9 70.4 73.1 642  69.1
Textual 90.1 88.1 88.9 914 938 914
All 90.1 81.7 92.6 89.1 951 963

Table B.2: Average test accuracy by feature type and algorithm (all news, non DL vs DL).

B.1.2 News with tweets

The remarks about the comparison by text vectorization and algorithm are still valid. However, in
table B.4, we notice that, in the PolitiFact collection, when using numerical or categorical features, the
accuracy increases with respect to using all news (table B.2). Also, logistic regression and both SVM
obtain a mean accuracy higher than the dummy baseline, which means that low precision is penalizing
their F1 scores.

Algorithm LR LIN-SVM RBF-SVM RF LGBM XGB
Source Vectorization
GossipCop Bag of Words | 84.8 82.1 85.6 85.0 879 §7.1
Frequency 83.3 81.1 85.4 852 87.7 86.7
TF-IDF 83.1 80.8 84.9 852 87.6 87.1
PolitiFact ~ Bag of Words | 88.9 92.1 85.7 86.3 90.5 905
Frequency 87.3 88.9 69.8 86.7 93.7 92.1
TF-IDF 87.3 91.7 73.0 87.9 937 93.7

Table B.3: Average test accuracy by text vectorization and algorithm (non DL vs DL).

Algorithm LR LIN-SVM RBF-SVM RF LGBM XGB

Source Feature type

GossipCop Numerical 74.8 74.8 74.8 76.7 78.8 78.8
Categorical | 81.8 79.7 82.1 824 819 819
Textual 81.6 79.4 85.1 83.6 86.5 859
All 84.8 82.1 85.6 85.0 879 87.1

PolitiFact =~ Numerical 68.3 68.3 69.8 819 857 84.1
Categorical | 77.8 79.4 73.0 76.8 73.0 74.6
Textual 87.3 854 81.0 87.6 921 873
All 88.9 92.1 85.7 86.3 90.5 905

Table B.4: Average test accuracy by feature type and algorithm (non DL vs DL).
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B.2 Deep Learning

We leave here the average test accuracy scores, precision-recall AUCs and ROC AUCs obtained with
our Deep Learning architecture. All the remarks made in 5.2.3 are still valid here. Recall that, in tables
B.8, B.9 and B.10, textual features are encoded using the bag-of-words model, as we saw in 5.2.3 that

it obtains good results and is consistent across most combinations.

Feature origin | News Tweets Users News+Tweets News+Users All

Source Vectorization

GossipCop Bag of Words 82.7 96.0 95.7 92.5 93.7 94.8
Frequency 84.3 96.0 96.1 90.2 91.7 92.9
TF-IDF 84.0 92.2 96.1 87.8 91.1 92.0
Word2Vec 78.2 95.5 94.5 94.3 94.4 95.4
SentenceBERT | 77.9 93.8 93.8 90.8 93.3 93.7

PolitiFact ~ Bag of Words 93.0 93.0 85.7 95.6 94.9 95.2
Frequency 90.8 89.5 81.3 91.1 88.9 88.9
TF-IDF 87.9 90.2 83.5 92.1 90.8 91.7
Word2Vec 89.5 87.0 74.0 95.2 87.0 92.7
SentenceBERT | 83.8 94.9 71.1 88.6 84.4 87.0

Table B.5: Average test accuracy by text vectorization and feature origin (DL).

Feature origin | News Tweets Users News+Tweets News+Users All

Source Vectorization

GossipCop Bag of Words 76.2 98.0 95.9 92.9 94.1 96.0
Frequency 76.1 97.9 96.3 89.0 88.8 91.3
TF-IDF 76.1 91.9 95.6 84.2 89.5 91.1
Word2Vec 61.7 97.1 93.1 95.9 93.1 96.7
SentenceBERT | 71.5 94.4 93.0 91.6 94.3 95.0

PolitiFact ~ Bag of Words 99.4 98.6 96.0 99.6 99.5 99.6
Frequency 91.4 98.3 93.4 91.7 92.5 88.8
TF-IDF 92.5 97.3 85.4 93.1 89.4 92.6
Word2Vec 89.7 92.5 81.8 96.6 90.9 96.4
SentenceBERT | 96.4 97.7 74.8 97.2 96.0 97.2

Table B.6: Average test PR AUC by text vectorization and feature origin (DL).
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Feature origin | News Tweets Users News+Tweets News+Users All

Source Vectorization

GossipCop  Bag of Words 86.4 99.2 98.4 96.4 97.5 98.2
Frequency 85.5 99.2 98.6 93.9 94.3 95.7
TF-IDF 86.7 96.7 98.5 91.4 95.2 96.0
Word2Vec 76.6 98.9 97.6 98.7 98.0 99.0
SentenceBERT | 83.3 97.2 97.5 96.0 97.7 97.9

PolitiFact ~ Bag of Words 99.3 98.4 94.7 99.6 99.4 99.5
Frequency 94.2 98.0 93.1 94.1 94.2 93.1
TF-IDF 934 97.4 87.2 94.9 92.6 94.6
Word2Vec 92.6 93.7 81.4 97.0 93.5 96.6
SentenceBERT | 95.3 97.9 78.1 96.4 95.0 96.6

Table B.7: Average test ROC AUC by text vectorization and feature origin (DL).

Feature origin | News Tweets Users News+Tweets News+Users All

Source Feature type

GossipCop  Numerical 29.0 80.1 78.7 79.9 79.0 84.9
Categorical 79.6 95.4 95.4 95.0 94.6 96.4
Textual 83.3 89.4 96.5 86.1 92.1 92.6
All 82.7 96.0 95.7 92.5 93.7 94.8

PolitiFact ~ Numerical 54.0 79.4 61.3 79.0 60.3 81.9
Categorical 74.6 84.4 76.5 90.5 86.3 90.8
Textual 93.3 82.2 77.5 92.7 94.9 90.8
All 93.0 93.0 85.7 95.6 94.9 95.2

Table B.8: Average test accuracy by feature origin and feature type (DL).

Feature origin | News Tweets Users News+Tweets News+Users All

Source Feature type

GossipCop  Numerical 29.7 67.4 64.1 67.8 64.0 72.5
Categorical 61.4 96.6 94.2 96.4 95.4 974
Textual 75.0 87.1 95.7 81.3 91.7 92.7
All 76.2 98.0 95.9 92.9 94.1 96.0

PolitiFact ~ Numerical 63.4 90.5 63.3 86.6 63.7 83.4
Categorical 89.2 94.0 83.8 96.4 94.1 98.5
Textual 98.6 91.9 87.7 98.2 98.9 98.3
All 99.4 98.6 96.0 99.6 99.5 99.6

Table B.9: Average test PR AUC by feature origin and feature type (DL).

Feature origin | News Tweets Users News+Tweets News+Users All

Source Feature type

GossipCop  Numerical 554 82.8 82.0 83.1 82.1 86.0
Categorical 76.6 98.7 97.9 98.9 98.4 99.1
Textual 85.4 93.7 98.5 89.5 96.5 96.7
All 86.4 99.2 98.4 96.4 97.5 98.2

PolitiFact =~ Numerical 63.7 91.0 66.5 90.1 66.1 87.2
Categorical 86.2 93.9 86.5 96.6 94.7 98.3
Textual 98.5 90.5 85.8 97.8 98.6 98.0
All 99.3 98.4 94.7 99.6 99.4 99.5

Table B.10: Average test ROC AUC by feature origin and feature type (DL).
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