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Abstract
Noise pollution is the second most important environmental risk factor for health in Western

Europe. It affects a large amount of people, it can cause a wide range of serious illnesses, and it is
estimated to be the reason for 12000 premature deaths in Europe every year.

Barcelona is above the 75th percentile of European cities exposed to harmful road traffic noise
levels, and it is one of the most affected by nightly leisure noise. Several initiatives have been re-
cently developed to address this problem, following the European regulations on this matter. The
city provides a network of sensors to collect noise data at every minute all over the territory.

We use noise data from 2017 to 2021 from a significant point of Barcelona. We process this
information to transform it into an appropriate input for machine learning models, handling the miss-
ing values with the Prophet algorithm. Our multivariate time series problem is the following one:
predicting the hourly noise values of the following 10 hours based on the previous 48 hourly values
of noise and the values of weather and seasonal variables from the last hour.

We compare different modelling approaches, all of them introduced with a theoretical framework.
On the one hand, we use AutoML tools, such as TPOT and Keras, to determine optimal models
for our problem. On the other hand, we manually tune Recurrent Neural Networks (RNNs), Long
Short-Term Memory networks (LSTMs) and Gated Recurrent Units (GRUs), designed to perform
well on long sequences of data. A manually tuned neural network combining RNN, LSTM and GRU
layers outperformed all the other approaches with an average test RMSE of 3.412 dB(A) over all
prediction horizons.

Neural networks, though, are often considered black boxes, because they are so complex that
it is very hard for the developers to justify the decisions they make. Therefore, in this work there
is a theoretical introduction about the explainability of machine learning and deep learning models,
focused on SHAP (Shapley Additive explanation) values.

The Deep SHAP method is used to calculate the importance of the features on the predictions of
the RNN-LSTM-GRU model. The feature with the highest contribution to the output is a seasonal
variable informing the hour range of the day, followed by the noise in the three most recent hours.

Keywords: Noise pollution, Time Series, Barcelona, AutoML, LSTM, GRU, SHAP
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Chapter 1

Introduction

1.1 Context

1.1.1 Noise pollution

Environmental noise is a pollutant which highly affects the health and well-being of many human beings
and wildlife in general. It is the second most important risk factor for health in Western Europe, right after
air pollution. Therefore, in the last years noise pollution has become a huge social concern, specially in
urban areas, for both citizens and policymakers.

To give some perspective about the effect of noise pollution, at least 20% of the European Union
population live in areas in which traffic noise levels are considered harmful to health. One out of three
people in Europe are annoyed by noise during the day, and one out of five suffer from sleep disturbance
due to traffic noise. There is evidence that long-term exposure to high noise levels increases the risk of
developing cardiovascular diseases. These reasons explain why noise pollution is currently not only treated
as an environmental nuisance, but also as a threat to public health.

Namely, it is estimated that 113 million European individuals are affected by long-term traffic noise lev-
els above 55 dB(A). Besides, there are 22 million people who suffer chronic high annoyance and 6.5 million
people with chronic high sleep disturbance because of nightly noise levels above 50 dB(A). For example,
in Spain, 27.7% of the population suffer noise levels higher than 65 dB(A) and 30.5% of Spanish homes
reported to be annoyed by sounds coming from outside their housings.

Since 2002, the Environmental Noise Directive (END) considers noise pollution as a general problem
affecting most of the European citizens. Reducing environmental noise is one of the key goals under the
Seventh Environment Action Programme (7th EAP) developed in 2013. However, unlike other stressors
such as air pollutants, which are declining, the number of people exposed to high levels of noise has remained
stable since 2012 and is projected to increase due to the urban growth and an increasing demand for mobility.

1



2 1.1. Context

1.1.2 Health risks

In the past, noise pollution was related to health issues just for people exposed to high noise levels in their
work environment, and the focus was just on hearing impairment. Afterwards, those people were found
out to be affected by sleep disturbance, stress, headaches, cardiovascular diseases and, in consequence, a
higher mortality risk. Later studies showed that people with a long exposure to lower noise levels could
have similar health issues. Thus, environmental noise is not just a work problem affecting certain reduced
groups, but a public health concern affecting millions of people.

In Europe, long-term exposure to environmental noise causes a chronic high annoyance to 22 million
people and a chronic high sleep disturbance to 6.5 million people. Every year, noise pollution is estimated to
trigger 48000 new cases of ischaemic heart disease and to be the main reason of 12000 premature deaths.
Besides, aircraft noise impacts on school learning impairment of 12500 children.

The World Health Organisation (WHO) employs a measure called Disabled Adjusted Life Years (DALYs)
to quantify the burden of disease from environmental noise. It combines the years of life lost due to pre-
mature mortality with the ones lived in states of poor health or disability. It is estimated that DALYs lost
by noise pollution are 437000 years for sleep disturbance, 453000 years for annoyance, 156000 years for
heart disease and 75 years for cognitive impairment of children. Trying to avoid some double counting, the
results tentatively show that 1 million years of healthy life are lost every year due to health issues related
to environmental noise.

As the auditory system is analysing acoustic information all the time, even sleeping, arousal of the
autonomic nervous and the endocrine system can repeatedly generate temporal changes and biological re-
sponses, causing health effects in the long run.

1.1.2.1 Cardiovascular diseases

Epidemiological studies illustrate a higher risk of ischaemic heart disease (related to artery obstruction),
hypertension, high blood pressure and myocardial infarction for people exposed to long-term high road or
air traffic noise levels. Some studies set different thresholds of the noise level from which the health risk is
increased. For example, 65 dB(A) for ischaemic heart diseases, 50 dB(A) for myocardial infarction and 55
dB(A) for high blood pressure. All these chronic effects, of course, can lead to premature mortality.

Research suggests that the risk increase for a noise-induced cardiovascular disease is generally moder-
ated. However, it becomes quite important because of the large number of people experiencing that risk
and because the noise levels of exposure keep growing.
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1.1.2.2 Cognitive impairment in children

More than 20 studies have proved children to show difficulties on reading comprehension, memory and
attention when they suffer from high levels of noise either at school or home.

One of these studies took place in Munich when an airport was relocated in 1992. Before the relo-
cation, 9- to 10-year-old children with schools next to the airport presented deficits in long-term memory
and reading comprehension. Those effects disappeared, though, two years after the closure of that airport,
suggesting that cognition issues might be reversible if noise exposure ceases. Those same effects, though,
were developed by the children close to the new airport location after two years.

Another study, in Barcelona, showed that the exposure to traffic noise inside the classrooms can be
related to the increase of hyperactivity symptoms and attention deficit disorders.

1.1.2.3 Sleep disturbance

Noise from the environment can affect sleep by means of repeated arousal responses, sleep stage changes
or awakenings, causing sleep fragmentation. This implies cognitive function deterioration, daytime perfor-
mance and a higher risk of accidents. At long-term, it can end up with chronic sleep disturbance.

Under nocturnal noise exposure between 30 dB(A) and 40 dB(A), modest effects are observed to in-
crease: body movements, awakenings, self-reported sleep disturbance and arousals. Between 40 dB(A) and
55 dB(A), adverse health effects are reported, with people having to adapt their lives to cope with noise at
night. Over 55 dB(A), the situation is considered dangerous for public health, since annoyance and sleep
disturbance become frequent, and the evidence of cardiovascular diseases increases.

1.1.2.4 Tinnitus

Tinnitus is defined as the sensation of sound in absence of external sound sources. It can be caused by an
excessive noise exposure. It can cause sleep disturbance, cognitive effects (worse attention and concentra-
tion), anxiety, psychological distress, depression (even case reports of suicide), communication problems,
frustration, irritability, tension, inability to work, reduced efficiency and restricted participation in social life.

Hearing impairment is expected to happen above 75 dB(A), with leisure noise as the main source, since
it typically exceeds this threshold.

1.1.2.5 Annoyance

Noise annoyance is a term used to define the multifaceted answer of stress and discomfort caused by the
noise pollution. People annoyed by noise can experience a wide range of negative effects such as anger,
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disappointment, dissatisfaction, withdrawal, helplessness, irritation, depression, anxiety, distraction, insecu-
rity, agitation, exhaustion, personality disorder, mental disorder or suicide.

Exposure category Percentage of Percentage of Number of cases
Lden(dB(A)) population exposed population highly annoyed per million

< 55 50 2.77 13835
55-59 17 8.16 13868
60-64 19 12.96 24621
65-69 9 20.08 18068
70-74 4 30.25 12100
> 75 1 30.25 3025
Total 100 85517

Table 1.1: Highly annoyed people due to road traffic noise in the European Union

Finally, there is also scientific evidence regarding the harmful effects of noise pollution on terrestrial and
marine wildlife by reducing reproductive success and increasing mortality and emigration, resulting in lower
population densities.

1.1.3 Environmental noise policy context in Europe
In the European Union, the Environmental Noise Directive (END) is the legislative framework created to
achieve noise reduction. This law presents a common approach to prevent exposure to environmental noise
by requiring the member states to:

• Produce strategic noise maps every 5 years for all major roads, railways and airports, using common
noise indicators.

• Determine the number of people exposed to every noise source above the thresholds considered to
be harmful to health, which are 55 dB(A) during the day and 50 dB(A) during the night1.

• Prevent and reduce environmental noise in places where the exposure levels can be harmful to human
health.

• Preserve quiet areas by keeping a good acoustic environmental quality.

Nowadays, action plans generally include noise reduction targets -both the number of decibels and the
number of people exposed-, description of measures to achieve these goals, schedule of priorities, expected
costs of the measures, number of people expected to get benefit from them and roles in charge to implement

1It is worth to mention that the World Health Organization (WHO) establishes these harmful thresholds at 53
dB(A) during the day and 45 dB(A) during the night for traffic noise and does not provide a common threshold for
all noise sources.
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these measures.

Although some progress has been made on the data management, the implementation of these measures
has been too delayed. Besides, countries should use the same assessment methods. Actually, the number
of people exposed to high levels of noise (65 dB(A) during the day and 60 dB(A) at night) remained stable
between 2012 and 2017. However, in the places where measures were applied, the benefits outweighed the
costs.

1.1.4 Barcelona

In comparison to other European cities, Barcelona is found above the 75th percentile of cities with most
exposed population to harmful noise levels. The context is even worse for noise exposure at night, since it
is in the highest tiers of cities with population exposed to excessive nightly noise.

Road traffic is by far the main source of noise in Barcelona. 57% of the population are exposed to a
traffic noise level higher than the threshold that the World Health Organization (WHO) considers harmful
to health, both during the day (53 dB(A)) and the night (45 dB(A)). Namely, a 27% of the population
suffer noise much higher than these thresholds (more than 65 dB(A)).

Leisure noise is mainly concentrated on Friday and Saturday nights, affecting 3% of the population,
who is exposed to noise levels above 50 dB(A). There are some areas, though, such as Ciutat Vella, which
register annual averages higher than 60 dB(A) or even 70 dB(A) during these weekly periods. At minor
rates, noise from rail traffic only affects the 0.65% of the citizens and industrial or aircraft noise can be
negligible inside the city.

The Health Survey of Barcelona in 2016 reported that 47% of the respondents agreed that their neigh-
bourhood was very noisy, and 26% of them claimed their homes to be noisy from the outside. It is estimated
that in Barcelona 217000 people (16% of adults) suffer from severe noise annoyance and 60800 people (4%
of adults) suffer from severe sleep disturbance because of noise. The long-term exposure to road traffic
noise would cause 300 new cases of ischaemic heart diseases and 30 deaths per year could be attributed to
noise pollution.

1.1.4.1 System for surveillance of the health impact of environmental noise

In this context, the Barcelona Public Health Agency created the System for surveillance of the health impact
of environmental noise in Barcelona in order to assess, control and communicate the exposure, perception
and health risk of noise pollution. These are their main goals:

• Raising awareness about this environmental factor
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• Comparing the impact of noise pollution to other pollutants and to the noise pollution in other
territories

• Monitoring the health impact of the noise pollution in the city2

• Identifying vulnerable groups

• Designing measures to control the environmental noise and assessing the policies to control the traffic
in the city

It is highly recommended to drastically decrease the road traffic in Barcelona, and also try to minimise the
noise generated by the vehicles, either by using electric cars or covering the roads appropriately. The most
affected areas, such as Eixample, and the surroundings of schools should be prioritised. Leisure nightly
noise should be reduced as well, specially in Ciutat Vella. In addition, epidemiological studies related to
noise pollution should be promoted in order to improve the knowledge about health risks and to find the
appropriate noise thresholds for every situation.

1.1.4.2 New measures in 2022

In 2022, several new measures are being applied in order to reduce the noise pollution in Barcelona, focused
on prevention, mitigation and protection:

• Deployment of the Urban Mobility Plan (PMU) 2024, whose goal is that 81.5% of the journeys in
the city are made on foot, in public transport or by bike

• Reduction of the vehicle velocities from 50 km/h to 30 km/h

• Implementation of the Barcelona superblocks, which prioritise pedestrians

• Awareness-raising campaigns about the noise impact of motorbikes and also making compatible leisure
and sportive activities with the rest of the neighbours

• Control of the noise levels of loading and unloading activities and works

• Noise-radar system to detect vehicles exceeding the allowed noise levels

• Acoustic limitation to live music concerts in the street

• Assessment in certain special-regulation noise zones (ZARE), in which night noises are too high at
night. If any area exceeds 3 decibels the allowed noise levels, there will be grants to improve the
quality of its housings

• Pacification of the surroundings of schools

• Use of construction techniques to mitigate the sound levels of the roads
2Barcelona strategic noise map is created every 5 years by the City Council to follow European regulations. Most

recent edition is from 2017 (Ajuntament de Barcelona (2017))
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1.1.5 Sentilo
In Barcelona, data about noise pollution is gathered all over the city by means of a platform called Sentilo
which works with a network of sensors distributed at tenths of points of the territory, measuring the sound
levels registered every minute.

Sentilo is a platform based on sensors designed to build the Smart City architecture for any city or
organization based on openness and easy interoperability. It was sponsored by the Barcelona City Council
in 2011 to define a strategy to become a reference in the field of Smart Cities. Currently, Barcelona holds
the Smart Cities Expo World Congress, a global event for smart cities stakeholders, and it also leads the City
Protocol initiative to connect global cities in different projects and to face common challenges. Barcelona
has used different kinds of sensors to evaluate noise pollution, air contamination, traffic congestion and
even waste management.

Smart City solutions generally let their data and logics flow across different domains. However, many
sensor data solutions depend excessively on specific technologies, products or providers, making it impos-
sible to properly share the data. They can also cause duplicity and multiplicity of data and infrastructure,
which can increase investment and maintenance costs.

Thus, Sentilo is a cross-platform oriented infrastructure and data management service aimed for munic-
ipalities or organizations who need to process lots of data, share information among heterogeneous systems
and centralise a way to distribute homogeneous data across their systems. The platform Sentilo is released
as open-source and it is nowadays used by more than 10 cities and 15 companies, some of them leaders in
the Smart Cities field.

1.1.5.1 Technical details

Sentilo is a software architecture that isolates applications using the sensor data from the layer which
provides the data. It is based on open-source elements such as Redis, MySQL, Mongo, Hibernate, JSON
and JQuery. Its architecture is based on the following components:

• A front-end for message processing

• An administration console

• A memory database with high performance rates

• A non-SQL database to get a more flexible and scalable system

• A universal viewer

• A statistics module with basic performance indicators

• An extensible component architecture to enlarge the platform functionality



8 1.1. Context

The main features of this technology system are:

• High performance to deal with thousands of messages

• Modularity and extensibility to add functionalities

• Horizontal scalability

• Cross platform (Java, Redis and MongoDB)

• Simple REST interface to send and receive data, orders and alarms

• Triggers to generate alerts, calculations, stats or messages

• Frontend app

• Open source

Figure 1.1: Summary of the Sentilo platform architecture

1.1.6 Measurements
This section describes the sound and its measurements from a physical perspective. It will be useful to
understand later what is the meaning of the noise data gathered in this work.
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Noise is an acoustic signal made up of sound signals with different frequencies that vary their energy
according to time. It is formed by mechanical waves travelling through the air and causing slight pressure
changes in it. Since the auditory system works in a logarithmic way, sound pressure levels are quantified by
means of a logarithmic relation between an average value and a benchmark value. This relation is called
decibel (dB). Human beings can hear noises from 0 dB to approximately 140 dB.

Since not every frequency is perceived with the same intensity, we use equal-loudness contours to
represent the sound pressure levels of equal loudness for every frequency in the audible range. The Fletcher-
Munson curves were the first ones to be calculated, in this case experimentally.

Noise measurements are usually weighted in terms of frequency to adapt the environmental data to
what is experienced by the auditory system. The most common weighting filter is the A filter, resulting
from the Fletcher-Munson curve of 40 phons. Namely, the expression to weight the different frequency
components of an acoustic signal is the following one:

A(f) = 10 log
[

1.5623392 · f4

(f2 + 107.652652) (f2 + 737.862232)

]
+ 10 log

[
2.24288116 · f4

(f2 + 20.5989972) (f2 + 12194.222)

]
,

(1.1)
where f is the frequency in Hz.

Given this context, we can present now the most used noise indicators.

1.1.6.1 Sound pressure level (SPL)

The sound pressure level (SPL) obtains the intensity level generated by an instantaneous pressure sound
and it is defined as:

NPS = 10 log10
p2

p2
0
(dB), (1.2)

where p is the sound pressure and p0 is the minimal pressure variation that human beings can detect at 1
kHz, equal to 20 µPa.

1.1.6.2 Equivalent continuous sound pressure level (Leq)

Noise is usually assessed by averaging pressure levels during certain time intervals. The equivalent continuous
sound pressure level (Leq) is mathematically defined as:

Leq,T = 10 log10

(
1
T

∫ T

0

p(t)2

p2
0

dt

)
, (1.3)

where p(t) means the square root of the instantaneous sound pressure level and T is the time interval. This
indicator expresses the average noise energy during a certain time interval.
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1.1.6.3 Equivalent continuous weighted sound pressure level (LXeq)

It is based on the equivalent continuous sound pressure level, but it also uses a weighting filter. It is usually
used to create noise maps. Mathematically, it is defined as:

LXeq,T = 10 log10

(
1
T

∫ T

0

pX(t)2

p2
0

dt

)
, (1.4)

where pX(t) is the square root of the instantaneous weighted sound pressure level. It is measured in dB(X),
where X is the type of filter.

Hence, LAeq,T is the equivalent level of the average A-weighted sound energy within a time interval T .
This is the recommended indicator to measure continuous road traffic or industrial noises, since it allows to
quantify the acoustic energy during certain time periods.

1.1.6.4 Maximal noise index

To evaluate contexts with a few discrete events, it is recommended to calculate the maximal A-weighted
noise index (LA,max), which is the highest A-weighted sound pressure level registered during a certain
period. For instance, it is an appropriate indicator to assess the noise-induced sleep disturbance.

1.1.6.5 Long-term indicators

In order to assess the environmental noise, European laws usually recommend to average sound level pres-
sure indicators at long-term. The most common indicators are Ld, Le and Ln, defined as the average sound
level pressure calculated during all the morning periods (7h-19h), afternoon periods (19h-23h) and night
periods (23h-7h) of a whole year, respectively.

As a metric combining the former three, Lden is a noise indicator that works out LAeq in a 24-hour
period, penalizing 5 dB(A) the evening noises and 10 dB(A) the nightly ones. Its expression is the following
one:

Lden = 10 log10

[ 1
24

(
12 · 10

Ld
10 + 4 · 10

Le+5
10 + 8 · 10

Ln+10
10

)]
(1.5)

1.2 Motivation and goals
Noise pollution is an environmental risk factor for the health and well-being of the population, increasing
the chance to develop several serious illnesses that even cause premature deaths every year. These health
issues and discomfort affect mostly people living in urban areas. Environmental noise has not been studied
as in depth as air pollution, for instance, but recent studies are increasing the concern from citizens and
policymakers.

Barcelona is found in the highest quartile of European cities with most population affected by harmful
noise levels, and it is one of the most impacted by nightly exposure to noise pollution. Recently, several ini-
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tiatives have been developed to address this issue in the city, following European Union general regulations.
This new strategy includes data gathering, monitoring and descriptive analysis through noise sensors, public
health surveys about this topic and an action plan in 2022 focused on prevention, mitigation and protection.

Time series problems have been traditionally dealt with classical statistical methods such as ARIMA.
In the latest years, machine learning and deep learning techniques have started to be used as well, because
they make it easier to provide additional information to train the models beyond the target, achieving more
accurate predictions. These models can even be automatically selected by AutoML tools recently created
to optimise and automate the search for the optimal method for the data that is being used. In addition,
concrete deep learning techniques such as Recurrent Neural Networks (RNNs), Long Short-Term Memory
networks (LSTMs) and Gated Recurrent Units (GRUs) have been specifically designed to work with very
long sequences of values, managing to keep the track of the past information without letting it vanish from
the optimisation process.

Although deep learning models provide results which usually outperform simpler models, they are con-
sidered as black boxes. This means that they are so complex that it is very hard for the developers to justify
the decisions they make. This issue is very problematic because users are normally not keen on employing
methods they do not understand or trust. This is also raising awareness among policymakers, especially
with the EU General Data Protection Regulation (GDPR) legislated in 2018, which makes compulsory to
explain automated decisions to any interested third parties affected by them. There is a broad debate within
the Artificial Intelligence (AI) field about the proper way to address these problems.

A better understanding of a model can help us to comprehend the reason behind its predictions and
prevent it from failing in the future. However, at a technical level, model explainability is still a recent
research field with huge margin for improvement. Most used techniques involve approximating the models
at a local level with other simpler -and so, more interpretable- models or assigning values to all the features
depending on their importance for every prediction. Among all of them, SHAP values stand out as a very
common approach to give insights about model predictions.

Having stated the main motivations for this research, its main goals are the following ones:

• Process the data provided by noise sensors in Barcelona properly, combined with some other explicative
variables, so that it can be used as input for machine learning and deep learning models.

• Choose the best modelling approach by comparing the optimal choices from AutoML tools with
other specific neural networks -RNNs, LSTMs and GRUs- that, theoretically, are specially designed
to perform well in multivariate time series problems.

• Provide an explanation for the predictions of the best model by using SHAP values and give insights
to understand what are the features that have the highest influence on them.
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1.3 Literature review
The field of research about noise pollution has usually been related to the use of traditional time-series
methods, despite in the latest years several models of machine learning started to deal with this problem
as well. Even more recently, complex deep learning models such as Recurrent Neural Networks (RNNs),
Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units (GRUs) have arisen as the most
accurate models to study very long sequences of data. Papers about this topic are generally considered
from two perspectives: either they try to correlate the levels of noise pollution with adverse health effects
over the population or they try to build predictive models to rise alarms about high levels of noise to rise
alarms in certain industrial or urban areas.

It is quite remarkable the substantial number of studies carried out by Julio D́ıaz and Cristina Linares
in the city of Madrid, using time-series methods to link traffic noise with daily mortality and cardiovascular,
respiratory and diabetes-related diseases in the elderly. We mention some of their investigations:

• Using time-series analysis methods like ARIMA and Poisson regression, they showed that between
1995 and 1997 increases of road traffic noise levels by 1 dB(A) during the day were related to a rise
of admissions in the Hospital Gregorio Marañón of Madrid by 5.1%, excluding accidents and labours,
regardless the amount of air pollutants.

• Using Case-Crossover time series analysis from 2003 to 2005, they showed that the rise of the road
traffic noise levels by 1dB(A) was related to the increase of the relative risk (RR) of mortality due to
cardiovascular diseases by 6.6% for people over age of sixty-five. A similar study conducted from 2001
to 2009 proved that increasing daily noise levels by 0.5 dB(A) could increment myocardial infarctions
by 7% and mortality due to cardiovascular diseases by 3% for this group of people.

• Using Case-Crossover time series analysis from 2003 to 2005, they also showed that an increment of
1 dB(A) in road traffic noise levels could rise the risk of mortality by respiratory causes by 4% for
people older than sixty-five, regardless the chemical pollution. Similarly, data collected from 2001 to
2009 allowed to prove that this same group of people suffered an 8% more of pneumonia and 3.5%
more of mortality due to respiratory issues when noise levels were 0.5 dB(A) higher.

• From 2001 to 2009, nightly noise levels increments of 0.5 dB(A) were statistically significant to
explain a rise of 4% of mortality due to diabetes for the whole population.

• From 2003 to 2005, they researched about the environmental causes of the mortality for people over
sixty-five years old. Results indicated that every year 312 defunctions could be avoided if the average
noise levels were lowered by 0.5 dB(A), objective that could be accomplished by having a 12% of
electric cars. These conclusions were regardless the effects by air pollutants.

Other researchers have developed complex machine learning and deep learning models to predict noise
levels in the recent years. For example, S.K. Tiwari, L.A. Kumaraswamidhas, C. Gautam and N. Garg
presented in 2022 an ensembled model based on an auto-encoder concatenated to a LSTM to solve the uni-
variate time-series environmental noise prediction in 7 Indian cities. They transformed the time-series data



Chapter 1. Introduction 13

into supervised learning format (input-output pair), also min-max normalizing all variables in the interval
[0,1]. The proposed model could extract correlations from past day and night noise data and outperformed
other techniques like support vector machines (SVM), RNNs or a single LSTM, with a root-mean-square
error (RMSE) of 0.563 dB(A).

On the other hand, Q. Zeng, Y. Liang, G. Chen, H. Duan and C. Li predicted in 2021 the noise levels
in a chemical industry park in Shadong Province, China. They considered a multivariate problem involving
wind speed, vehicle flow and close noise data based on wind direction at every instant. The proposed model
combined LSTM and Prophet, using multi-station noise as regression variables for the Prophet model. They
resampled the data from 30-second to 10-minute intervals and used the 3σ criterion to deal with data close
to 0dB, by assuming that any point outside of the (u – 3σ, u + 3σ) interval -being u the mean value of
noise and σ its standard deviation- is not a random error but a gross error, and in the paper it is replaced
by the mean value. The RMSE and MAE was reduced by 32.2% and 23.3%, respectively, thanks to this
technique, obtaining 0.53 dB and 0.46 dB, respectively, for the test data and outperforming traditional
prediction methods.

In 2020, P.J. Wen and C. Huang analysed the noise equivalent level (Leq) at the National Synchrotron
Radiation Research Center (NSRRC) of Taiwan using a gradient boosting model (GBM). They included the
previous two minutes of noise data for every sequence, and also additional features like the day of the week,
the hour of the day and whether the day was a holiday, a Saturday or a Sunday. The results obtained a
RMSE of predicted harmful noise minor to 1 dB(A) and a coefficient of determination (R2) greater than 0.7.

Also in 2020, J.M. Navarro, R. Mart́ınez-España, A. Bueno-Crespo, R. Mart́ınez and J.M. Cecilia used
a LSTM to predict near-time future noise values, in terms of both pressure and loudness, for different
time period ranges from 1 min to 60 min. The proposed model outperformed classical statistical models,
achieving a mean squared error (MSE) lower than 4.3 dB for sound pressure and below 2 phons for loudness.

Finally, in 2014, N. Genaro exhaustively collected data in Granada and developed an artificial neural
network model to predict the noise in that city, getting no instances with more than a 5% of error and
outperforming classical mathematical models. The defined training process is claimed to be fast enough to
be suitable for real-time uses. Besides, a principal component analysis (PCA) was carried out to select the
most relevant features among 25 variables.

1.4 Structure of the thesis
In this section, we will briefly describe the most relevant parts of this work. This document is structured as
follows.

Chapter 1 gives the whole background behind the problem we want to solve. We present the noise
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pollution and its related health risks and the European environmental noise policy. We then focus on the
case of Barcelona, presenting its particularities and how the noise data is gathered there. Besides, we also
introduce the physical ways to measure the sound. Finally, we review the existing literature to give an
overview of similar studies performed in the past.

Chapter 2 describes all the methods performed to gather and process noise and meteorological infor-
mation to transform it in a set of data useful to become the input of machine learning models or neural
networks. This includes the imputation of missing values, the aggregation and scaling of the original val-
ues, the creation of new features, the reshaping of the data to be used in a supervised machine learning
framework and the management of train, validation and test sets.

Chapter 3 gives a theoretical context about the predictive approaches that will be used in this work. It
introduces AutoML techniques, such as TPOT and Autokeras, and also some neural networks designed to
perform well on time series problems, like Recurrent Neural Networks (RNNs), Long Short-Term Memory
networks (LSTMs) and Gated Recurrent Units (GRUs). Afterwards, all these approaches are presented in
the context of this specific case of study, describing how they are used with our data. Finally, the error
metric choice is discussed, and all the performances are compared to select the optimal model.

Chapter 4 provides a theoretical framework to discuss model explainability and specifically SHAP values
are introduced. Then, these are applied to the best detected model to provide insights about the way
predictions are made.

Finally, chapter 5 discusses the entire work, providing conclusions as a review. It also describes next
steps that could be performed to improve and extend the scope of this study.



Chapter 2

Data sources and processes

2.1 Data sources and data gathering
Any project in the field of data science mainly relies on the possibility to get appropriate data sources with
good data quality. The success of machine learning or time series models mainly depend on the availability of
suitable data rather than the choice of the algorithm or the parameters. Thus, to develop a model capable of
predicting the noise pollution in Barcelona, it became crucial to find the appropriate data series to work with.

2.1.1 Noise Data
Information gathered by Sentilo platform described in the section 1.1.5 can be consulted at real time in
a webpage (Ajuntament de Barcelona (2013)) based on an interactive map that shows all the available
sensors. Once a sensor is selected, the latest measures are graphically shown, among some other general
statistics. This interface, despite being quite user-friendly, is not useful in terms of academic research
because any model dealing with this prediction problem needs a long sequence of data to be trained on.

With the purpose of obtaining a long enough sequence of environmental noise data, we contacted the
Environmental Assessment and Management Department of the Environmental Quality and Energy Services
Management of the City Council of Barcelona to request data from four different sound stations of the city
during five consecutive years, namely from 2017 to 2021, for academic research purposes. The four sensors
had the same brand (CESVA TA120) and the selection process took into account three main criteria:

• The initial date of the data series informed on the website had to be prior 2017

• The sound sensor had to be relatively close to a weather station to have the possibility to develop a
multivariate time series problem involving meteorological features

• The location of the noise station had to be meaningful for some reason

Taking all these considerations into account, the four requested data series were in the locations shown in
Table 2.1.

15
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Location Sensor code Singularity
Lleó Street, corner with TA120-T241007 Next to a motorway

Isaac Newton Street
Maquinista Street with TA120-T241005 Close to Camp Nou
Joan de Borbó Avenue (F.C. Barcelona stadium)

Passeig de Gràcia TA120-T240426 City Centre + road traffic
streetlight with AP22
Passeig de Sant Joan TA120-T240992 City Centre + road traffic

streetlight with AP-PSJ-01 T2,
Llobregat side

Table 2.1: Noise sensors where we requested data from.

In fact, the main goal is to develop a model just for one of those locations. The reason to ask for more
choices was to have some backup in case one of them turned out to be infeasible due to lack of information
or poor-quality data.

After iterating communications during a month to wait for certain administrative issues and extraction
processes, the data was finally shared. The submission of the data was done in a compressed folder, with
a directory for every sensor containing one csv-format file per day of collected data. Every file contained
noise level entries for every minute within that 24-hour period. Noise was measured using the equivalent
continuous A-weighted sound pressure level (LAeq,T ) indicator, which measures the equivalent level of the
average A-weighted sound energy within a minute and it is recommended to measure continuous environ-
mental noise, as explained in section 1.1.6. Barcelona City Council also confirmed then that the first two
stations (TA120-T241007 and TA120-T241005) did not have data available for 2017 and most of 2018, so
they had to be discarded from the beginning.

It is worth to mention that the public administration discards any data entry when it is raining, without
replacing it by anything else. The reason to do so, according to their answer, is that they are usually
interested in the noise generated by a certain source, like the road traffic or the leisure events, so the rain
supposes an alteration to this analysis, for example by modifying the noise of the tyres in the road. They
claimed, though, that the measures from the sensors when it rains were equally valid. As in this project we
want to study the noise pollution from a complete point of view, considering all the sources, we decided to
keep the measures within rain periods because they were simply another factor of noise.

2.1.2 Meteorological variables
To potentiate the power of the model and the completeness of this study, we decide to use a multivariate
approach, which means that some other features beyond the target are added to improve the capabilities
of the model and to make the interpretability of the model easier to understand.
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When dealing with environmental prediction problems, one of the most common choices is to use me-
teorological variables, since, despite not being especially noisy by themselves, they highly affect all the
activities in the city, including the noisiest factors of Barcelona like the road traffic and the leisure activities.

Despite the existing weather stations of Barcelona are integrated within the Sentilo network, there was
no need to request this data to the public administration because the meteorological data can be found near
real-time updated in the Open Data Catalogue from the Catalan government (Portal de dades obertes de la
Generalitat de Catalunya (2019)). This data, at National level, is part of the Automatic Weather Stations
Network (XEMA) from the Meteorological Service of Catalonia (Meteocat). There was a single available
file which was quite heavy -more than 30 GBs- because it contained data from all the 233 weather stations
of Catalunya from 2009 to 2022. In section 2.2, we will explain how we treated such a big file.

As mentioned before, all the noise sensors were chosen to be found relatively close to some weather
station in Barcelona. As we already discarded two out of the four sensors due to lack of data, the weather
stations close to the remaining noise sensors were the ones described in Table 2.2:

Location Weather Station Code Close noise sensors Number of available variables
Zoo X2 TA120-T240426 6

TA120-T240992
El Raval X4 TA120-T240426 16

TA120-T240992

Table 2.2: Weather stations close to the requested non-discarded noise sensors.

Considering that both potential noise sensors were relatively close to either weather station, the big
difference in the number of available variables and the fact that the six variables included for the X2 station
were also included in the X4 one, there was no doubt in using the variables coming from the weather station
located in El Raval (X4). The variables are registered in 30-min time intervals, so they need to be aligned
with sensor data at the preprocessing stage. The variables informed for X4 weather sensor are listed in the
Table 2.3.

Having described the data sources that were used to develop this work, in section 2.2 we will describe
the methods used to clean and transform them in order to get a suitable dataset which can be used by
prediction models.

2.2 Data processing
In projects involving the use of data, it is not only important to count with the appropriate sources, but also
to transform their data into a proper format to provide the models information they can understand. Tasks
such as cleaning, transforming and complementing the raw data are performed during the preprocessing
stage. In this case, all the procedures were performed using Python 3.8 in JupyterLab.
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Variable name Original variable code Description Units
temperature 32 Average temperature ºC

temperature min 42 Minimum temperature ºC
temperature max 40 Maximum temperature ºC

rain 35 Precipitation mm
rain 1min max 72 Maximum precipitation mm

in 1 minute
relative humidity 33 Relative humidity %

relative humidity min 44 Minimum relative humidity %
relative humidity max 3 Maximum relative humidity %

atm pressure 34 Atmospheric pressure hPa
atm pressure min 2 Minimum atmospheric pressure hPa
atm pressure max 1 Maximum atmospheric pressure hPa
irradiance global 36 Solar irradiance W/m2

wind speed 10m 30 Wind speed at 10m height m/s
wind gust 10m max 50 Maximum wind gust m/s

at 10m height
wind 10m direction 31 Wind direction at 10m height º

wind gust 10m max direction 51 Direction of the maximum º
wind gust at 10m height

Table 2.3: Meteorological variables included in the X4 weather station.

2.2.1 Noise variables
As explained in section 2.1.1, noise data was delivered in a compressed folder, with a directory for each
requested sensor and a file for every day of collected data. In those files, there were some rows with meta-
data information and then one sound measure per minute. At first, some adjustments to the structure
of the delivery needed to be done. Some concrete files were renamed due to wrong naming structure.
Some other files were placed in the wrong folders and were deleted. The information provided related to
the rain registers was discarded as well because, as explained in the section 2.1.1, we decided to keep all
the measures and we also had the rain information from another source. Finally, some adjustments were
considered since some files contained additional empty columns.

The files, besides the time and the noise measure, also contained two more columns called overload and
underange. The former identified a wrong register due to the presence of a noise peak and the latter meant
that the noise was under the threshold of the device capabilities, so it was unfeasible to determine it. Never-
theless, since those two columns were set to False in the whole set of available data, they were just discarded.

The mechanism to join all the data coming from different files within a certain folder was based on
creating a base structure indexed with all the minutes from 01/01/2017 to 31/12/2021 and then iteratively
reading the useful content of the files and keep attaching the measurements to the structure. The procedure
also removed duplicated data because there was some overlapping content in certain files.
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2.2.1.1 Aggregation

One of the most important decisions made during the preprocessing stage was aggregating the measures,
originally in 1-minute time period, to a 1-hour time interval. This logic relied on the fact that, functionally,
it seems not useful to have a model that can predict the noise levels of the next minutes in a city, whereas
forecasting for the next hours allows the possibility to the local administration to apply certain temporary
policies to mitigate this effect or to protect the well-being of the people living in those locations. In addi-
tion, having a sequence of 1-minute data for 5 years could have been too heavy in terms of storage and
computational time.

Another key decision was the way of aggregating the data. Our two main options were computing either
the maximum or the average of all the minute-by-minute measures. Despite one might expect the averaged
data be much smoother, maybe being able to achieve better prediction results, globally it showed similar
standard deviation parameters than the maximized data, although it is true that the latter presented more
peaks at very concrete instants of time. However, the maximum aggregation was much more understand-
able in our business use-case. If we are trying to detect noise levels that can be upsetting to the population
within the next hours, it is sensible to focus on the noise peaks we can detect in that period. Using the
average aggregation could certainly mitigate situations in which we have just very concrete undesirable
peaks of noise surrounded by more normal sound levels, so we would be missing valuable information. This
reasoning led us to aggregate the data using the maximum sound level detected in the minute-by-minute
measures during that hour.

2.2.1.2 Missing values

Data collecting processes can be affected by specific technical malfunctions which temporarily prevent them
from generating new entries. Devices can even be momentarily unavailable due to software updates. In the
case of our noise data, we found some gaps in the time sequence, sometimes even affecting a whole day.
Namely, the percentage of informed minutes was 91.97% for the TA120-T240426 device and 94.45% for
the TA120- 240992 device. This significant difference was the reason to decide to use for our model the
sensor TA120- 240992, located in Passeig de Sant Joan streetlight with AP-PSJ-01 T2, Llobregat side.

The problem of handling the missing values in a sequence of time series data has no obvious solution.
The seasonal pattern of the entries, together with the fact that sometimes we had a whole day without any
information, makes the most common methods practically useless, because we couldn’t just inform the null
values with some linear interpolation, forward fill or backward fill, because we wouldn’t be respecting the
properties of the data. Non-linear interpolations were not working either.

A good alternative we found to deal with missing values is Prophet, the time-series forecasting module
for Python and R created by Facebook, which is very robust to missing data, shifts in trend and outliers.
One good thing about the models returned by Prophet algorithms is that they do not only generate fore-
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Figure 2.1: Location of the data sources in the city of Barcelona, labelled accordingly.

casting values in the future, but they also apply the model learned from the data to the past, so it is capable
to plot values in instants that were not originally informed in the input data. To exemplify how this method
works, we show in Figure 2.2, in blue, the sequence of data from 15/01/2021 to 01/03/2021. We see that
there were three gaps of information within that period. In orange, we can check how Prophet handled
these missing values. It is true that it is not feasible for the Prophet model, without any regressors. to
generate noise peaks by itself, but it successfully respects the seasonal pattern of the data, outperforming
other techniques mentioned before.

2.2.1.3 Lagged variables

If we want to use machine learning or deep learning models to predict the noise pollution in Barcelona, the
time series problem must be interpreted as a supervised learning problem. To do so, we need to reshape
the available sequence of time series data into pairs of input and output shorter sequences. On the one
hand, time series problems are based on a long list of values ordered by a time index. On the other hand,
a supervised learning problem uses input and output patterns, such that a model can learn how to predict
the output patterns from the input ones.

For instance, as a very basic example, we could use the observation from the last time step, y(t − 1),
as the input to predict the observation at the current time step, the output y(t). In practical terms, we
use the shift() function in pandas to push the values some steps backwards to generate the new inputs.
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Figure 2.2: Imputation of missing noise values from 15/01/2021 to 01/03/2021. In blue, the values
taken from the data source. In orange, the missing values computed by the Prophet algorithm.

For every instant, these former values that happened immediately before and that can be used as input are
normally called lagged variables. In our case, we decide to use the past two days of noise data, plus some
other features at present, to predict the noise level in the future. Therefore, we will use 48 lagged variables
in total, from y(t − 48) until y(t − 1).

The same procedure used to generate the past lagged values of noise data can also be used to generate
future values. Hence, the problem can predict not only the noise at the current time, but at a certain longer
future horizon. The output doesn’t need to necessarily be a single target value, but a target sequence of
noise data. For example, in our case the model is intended to predict the noise pollution for the next 10
hours, with a target from y(t) until y(t + 9).

2.2.1.4 Additional note about noise above thresholds

To understand how necessary it is to limit the exposure of the population to the noise pollution, we can
check the ratio of values in our data that are above the noise thresholds considered harmful to health.
According to the END, these reference values are 55 dB(A) during the day (from 8h to 22h) and 50 dB(A)
at night (from 23h to 7h). If we look at the original measures, taken every minute, a 94.1% of them are
over these thresholds. If we do the same exercise but with the data aggregated at hourly level, the 100%
of the values are considered harmful to health.
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2.2.2 Meteorological variables

As we stated in section 2.1.2, the weather data source was obtained in a single file with more than 30
GBs that contained information about 233 weather stations in Catalunya from 2009 to 2022, with variables
informed on a 30-minute basis. Besides the difficulty of storage of such a big file, we needed an approach to
efficiently read from this source and selecting just the entries from the X4 weather station from 2017 to 2021.

In order to deal with such problem, we use dask, a Python’s library based on pandas which is designed
to work with very big datasets by performing computations in parallel before finally transforming the objects
into a pandas dataframe. Using dask functionalities, we read the original file and we applied a pipeline
of transformations involving filtering the weather station, date range and variables we needed, dropping
unnecessary columns and renaming some others. Similarly as how PySpark works, these instructions are
performed with lazy evaluation, since we finally transform the dataset into a pandas dataframe and the
whole pipeline is computed.

Later, we pivoted the object to transform a row-based dataset -with an already acceptable size- to a
column-based one, with one variable per column. The original codes of the variables were renamed to
more understandable names, as shown in Table 2.3. Next, an aggregation was performed to transform the
30-minute time intervals into 1-hour intervals, to align these explicative variables with our target. The type
of aggregation depended on each variable, and it is summarized in Table 2.4.

Type of aggregation Affected variables
Average temperature, rain, relative humidity,

atm pressure, irradiance global, wind speed 10m
Maximum temperature max, rain 1min max, relative humidity max,

atm pressure max, wind gust 10m max
Minimum temperature min, relative humidity min, atm pressure min

First wind 10m direction, wind gust 10m max direction

Table 2.4: Type of aggregation performed in every meteorological variable.

Finally, we also checked the percentage of informed entries for every variable. There were just a 0.24%
of missing values, so we handled missing values by applying the Prophet algorithm separately for each one,
like we did for the noise data.

2.2.3 Seasonal variables

The activity in a city like Barcelona can significantly vary depending on the moment of the week. Road
traffic is usually higher in working days, while there’s often much more leisure activities in weekends or
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holidays. Thus, it makes sense to provide this information to the model, so it can learn from it.

First, we manually elaborated a list with all the Bank holidays in Barcelona from 2017 to 2021 in order
to build a variable called ind holidays to identify all the hours belonging to a Bank holiday. Similarly, we
created a variable called ind weekend to be able to distinguish Saturdays and Sundays from the rest of the
days of the week. What is more, as we wanted this information not only to be useful to describe those days,
but also the afternoons, evenings and nights before them, we altered both variables to also be active after
15h of the day before. The way to understand this is that, from the moment most people finish working,
their behaviour is different since they do not need to work the following day.

Another important factor to consider is that urban activity is completely different based on the hour
of the day. To discover the seasonal pattern within a day, we decided to analyse the sequence of data
compared to the minimum noise level registered in that day. This is useful because we are avoiding that
trend components affect our study of the seasonality. Then, we averaged this difference grouping by the
hour of the day. In Figure 2.3 we can see this analysis applied just to the training data. We found out
that there were three very different ranges in daily seasonality terms. Hence, we created a variable called
hour range that accounts for this factor: it is equal to 0 from 2h to 6h, it is equal to 1 at 0h, 1h, 7h or 23h
and it is equal to 2 otherwise.

Figure 2.3: Daily seasonality of the training data. Namely, it is the average noise difference regarding
the minimum of the day per each hour of the day.
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2.2.4 Train, validation and test split

In every machine learning model, we need to split the dataset into a training part, where the model can
learn from the data in order to choose the best algorithm and the best parameters to face the problem, and
a testing part to evaluate the performance of the chosen model. In time series problems, the split of the
data is normally performed sequentially, in the sense that the values of the past are the ones that should
help to predict the future, not all the way round. It is usually a good practice to consider an additional
dataset, the validation dataset. In the sages where we decide the best model and tune the hyperparame-
ters, we will be using the train set to train and the validation set to evaluate the results. Once the final
model is decided, we will train it in the whole train and validation datasets to finally evaluate it in the test set.

We decide to use a 70% of the dataset for the train set (hourly noise data from 01/01/2017 at 0h to
28/06/2020 at 18h), a 20% for the validation set (from 28/06/2020 at 19h to 27/06/2021 at 10h) and a
10% for the test set (from 27/06/2021 at 11h to 31/12/2021 at 23h).

2.2.5 Feature scaling

Since all the features that we use to feed the model can take very different scales of values, the algorithm
could misunderstand that the variables with larger numbers are more important than the ones with smaller
ones. In order to provide a fair framework among all variables, numerical features are usually scaled to the
same range.

We scaled all features and the target to the range [-1, 1] by using the MinMaxScaler provided by the
scikit-learn Python’s library. This class transforms the values of every column proportionally within the
desired range. It is the most common choice because it preserves the shape of the dataset without any
distortion. Other options like StandardScaler or RobustScaler are preferred in case we know the data distri-
bution is normal or there are lots of outliers, respectively. The range is chosen to be [-1, 1] because LSTM
networks -the most common deep learning models for time series problems- expect data to be within the
scale of its activation function, which is usually the hyperbolic tangent, whose output values range from -1
to 1.

It is important to fit the scaler class just in the train dataset and then using it to transform the valida-
tion or test dataset, because otherwise we could contaminate the experiment with knowledge from the test
dataset, giving unfair advantage to the model and increasing the risk of overfitting. So, the scaling stage
will be performed after splitting the dataset in train, validation and test sets. It is also recommended to
use two different scaler objects, one for the input and another one for the output.

Finally, we will have to use an inverse method to transform the predictions back to their original scale.
Error metrics, actually, are always calculated in the original scale to give a better idea of the usefulness of
the model.
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To sum up, we have built a final dataset to use it as input of our prediction models that contains 67
features: 48 lagged noise variables (y(t − h), h = 1, . . . , 48), 16 meteorological variables and 3 seasonal
variables. On the other hand, there is a target that contains 10 columns to take into account the predictions
in the following 10 hours: y(t + h), h = 0, . . . , 9.
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Chapter 3

Predictive models

In the chapter 2, we described the information sources we gathered and we detailed all the procedures
applied to the available data to generate a suitable dataset to feed machine learning models. Now, in this
chapter, we will introduce the methods we will use to predict the noise in the city of Barcelona.

3.1 Modelling theoretical context
In order to solve this time series problem, we will generate different models through the following approaches
and compare their performance on the data:

• An optimal model generated by TPOT, an AutoML tool based on scikit-learn

• An optimal model generated by AutoKeras, an AutoML tool based on Keras and therefore specialized
in neural networks

• Two manually tuned models based on Long Short-Term Memory networks (LSTMs), Recurrent Neural
Networks (RNNs) and/or Gated Recurrent Units (GRUs), which are deep learning models that are
expected to work well on long sequences of data

In this section, we will first describe from a theoretical point of view these AutoML tools and specialized
models by giving the proper context. Later on, in section 3.2, we will explain how we have used them all
to train and select models capable of predicting the noise pollution in Barcelona.

3.1.1 AutoML tools
The term AutoML refers to tools designed to automate the several stages of a machine learning problem,
including data processing, feature engineering, model selection and hyperparameter tuning. There are some
AutoML tools which focus on concrete parts of this pipeline and some others that cover the whole process
end to end.

27
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These tools are becoming more and more popular because they are supposed to allow to train models
with good performance to users with limited coding knowledge or data science experience to satisfy their
business or academic needs. Of course, it is true that it takes very long to manually search through all
possible algorithms and hyperparameters, evaluate them on the training and validation sets and think about
useful additional criteria to select the best model for an application. Nevertheless, it is worth to mention
that these tools cannot solve business or academic problems on their own, because professional expertise is
still needed to gather the appropriate data sources, design the experiment, process the data and take into
account any insightful reason to select or discard a model suggested by the tool.

3.1.1.1 TPOT

Tree-based Pipeline Optimization Tool (TPOT) is an open-source Python library which performs AutoML
processes optimising machine learning pipelines by means of genetic programming. TPOT is designed to
explore thousands of possible pipelines smartly to find the one that fits best the data of the problem. In
addition, it is capable to generate the Python code from the optimal choice so as the developer can use it
later. The library is based on scikit-learn functionalities, both for data transformations and machine learning
algorithms.

TPOT is based on a tree-shaped structure which represents most parts of the general pipeline for
machine learning problems. As we can see in Figure 3.1, it includes feature selection, feature processing,
feature construction, model selection and hyperparameter tuning. A stochastic global optimisation process
based on a genetic programming algorithm finds the tree structure that performs best in the given dataset.

Figure 3.1: Representation of a typical machine learning pipeline and the stages of the pipeline which
are automated by TPOT.

Genetic programming is a type of evolutionary algorithm (a subset of machine learning) that is used to
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find solutions to problems that cannot be directly solved by humans. It is inspired by the Natural Selection,
and it generates solutions to optimisation problems in computer science. In the case of Machine Learning,
it selects the best algorithm with its optimal hyperparameters.

It is worth to mention that TPOT has several built-in configurations which are handful because they
are supposed to perform well for certain types of machine learning problems. One of these configurations is
TPOT NN, based on neural networks written in PyTorch. Unfortunately, TPOT NN currently only supports
classification problems, so we will not be able to use it in our regression problem.

3.1.1.2 AutoKeras

AutoKeras is an open-source Python library used to perform AutoML processes based on neural network
architectures. It is based on the framework Keras -specifically, the tf.keras API provided by TensorFlow 2 -
and automatically searches the optimal layers and hyperparameters of deep learning models.

In the case of neural networks, AutoML involves Neural Architecture Search (NAS) algorithms, which
means that it looks for the optimal architecture and hyperparameters to train the model that achieves the
best performance, under the necessary constraints, fitting the data of the problem.

The API is based on the scikit-learn design, so it is easy to use, since the user only needs to specify
the location of the data and the number of models to try. The approach is simple and effective, and it can
be used for a wide range of machine learning problems, including structured classification and regression
datasets.

In our case, we will use the built-in configuration StructuredDataRegressor, which is flexible in terms of
data format. This operator can be applied to our dataset without much effort. The only drawback is that
AutoKeras does not include recurrent, LSTM or GRU cells, which are the structures expected to perform
best when dealing with prediction of multivariate long time series, as we have in our problem. This is why
we will also manually tune some models involving these types of layers.

3.1.2 Models for time series problems
In this section, the most suitable machine learning methods to predict long time series are described. In all
cases, they are neural networks within the field of deep learning.

3.1.2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a kind of neural network architecture especially useful to deal with
sequential data such as texts or numerical time series. Whereas traditional neural networks struggle to
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persist the information at long term, RNNs contain recurrent units, which are cycles or loops that allow
to feed the network with both the output of the previous time step and the input of the current one. If
we unroll the hidden layers of the network, as in Figure 3.2, we can easily see that the hidden state is
recurrently passed to the next step together with the input of the current one.

RNNs have been successfully applied to problems related with speech recognition, language modelling,
translation, image captioning and time series.

Figure 3.2: Unrolled RNN with X(t) as input at time t, H as the hidden layer and h(t) as its output
at time t.

Nevertheless, for very long sequences, it is difficult that the hidden state can retain information from
much prior stages. At every step, the backpropagation through time (BPTT1) process updates the gradient,
which can potentially vanish. When this happens, the contributions of the far earliest states are lost in the
process.

RNNs, though, are still very useful for tasks where only recent information is required to compute the
present value. However, when the gap between the relevant values and the places where they are needed
become large, RNNs cannot connect those elements. In order to solve the vanishing gradient problem, other
networks such are LSTMs and GRUs have been created.

3.1.2.2 Long Short-Term Memory Networks

Long Short-Term Memory networks (LSTMs) are an adapted version of the RNNs which are designed to be
able to deal with long range dependencies by retaining useful information about previous data to improve
the generation of new points. Like RNNs, LSTMs are based on a chain-like structure, but every repeating
block consists of three additional layers, called gates, which act as filters to decide the contributions to keep

1Backpropagation Through Time (BPTT) is a specific training algorithm that minimise the loss function of
recurrent neural networks by iteratively unrolling the network, calculating and accumulating errors along all time steps
and rolling-up the network and updating its weights.
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and the ones to discard.

We will describe the architecture of these networks to understand why they can keep the information at
long term. First, the horizontal line shown at the top of the diagram of Figure 3.3 is called cell state and it
is thought to run through the entire chain with few modifications. In addition, the LSTM has three gates
that can remove or add information to the cell state. These gates are neural networks including sigmoid
activation and a pointwise multiplication operator. The three gates included in any LSTM represent three
steps of the training process and are called forget gate, input gate and output gate.

Figure 3.3: LSTM structure showing the four interacting layers in every repeating cell of the network.

In every cell, the first step involves the use of the forget gate, which determines -as its name states-
the information that should be forgotten from the cell state. The sigmoid activation function gives values
between 0 and 1. An output close to 0 means that some component is considered irrelevant, and one close
to 1 is related to information important enough to keep. This behaviour is applied to the cell state by
means of a pointwise multiplication.

Next, the network decides what information to include in the cell state. There is a double component to
do so, the new memory network and the input gate. On the one hand, the new memory network establishes
the update degree of every component of the long-term memory (cell state) given the new data. On the
other hand, the input gate identifies the elements of the new memory vector which are important enough
to be added, acting as a filter, like the forget gate, by means of the sigmoid function and the pointwise
multiplication.

Finally, the output gate is in charge to be sure that only relevant information is added to the output,
by determining the new hidden state based on the newly updated cell state, the previous hidden state and
the new input data.

All the steps explained above are repeated many times, one per time step. Since the output of this
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procedure is still a hidden state, at the end LSTM networks use a linear layer to transform it into the real
output of the process.

In the case of our problem, we will be designing LSTMs with a many-to-many configuration, which
means that they use a sequence of values (the lagged noise variables and the weather and seasonal variables)
to predict another sequence of values (the next 10 noise values).

3.1.2.3 Gated Recurrent Units

Gated Recurrent Units (GRUs) are another adaptation of the RNN architecture in order to overcome the
vanishing gradient problem. The design of their network is very similar to the LSTM, but since they are
more recent, they can be considered as a simplified version of the LSTMs and thus are faster to train. GRUs
also control the flow of data through gates, but instead of three gates, they only contain two: the reset
gate and the update gate. These gates are two vectors that define what information to keep in the output
and what information to exclude. Another remarkable difference is that it does not use any cell state, but
it only presents the hidden state. Hence, like RNNs, at every timestamp, it takes an input and the previous
hidden state and it generates a new hidden state for the current timestamp.

Figure 3.4: Detailed version of a Gated Recurrent Unit cell.

The mechanism behind the GRU is a two-step process. First, the update gate is responsible for long-
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term memory, which means that it determines what are the contributions from previous steps that are
worth to pass along to the future. It is equivalent to the output gate in LSTM units. Secondly, the re-
set gate accounts for short-term memory of the network (the hidden state) by deciding how much past
information will be forgotten. Hence, it can mitigate the effect the previous data has on the current val-
ues of the sequence. It is analogous to the combination of the input gate and the forget gate in LSTM units.

With this mechanism, GRUs are capable to reduce the effect of the vanishing gradient problem, because
they don’t reset the information every time they get a new input, so they can keep the relevant information
from the past and join it to the current data of the network. Like LSTMs, when properly trained, they
perform excellently even in complicated problems.

3.2 Training and model selection
In this section, we will describe how we used the different approaches described in the section 3.1 to generate
machine learning models capable to deal with the noise prediction problem in Barcelona.

The input of any possible model will be the dataset we have previously generated. As a brief reminder,
this dataset contains 67 features: 48 lagged noise variables, 16 meteorological variables and 3 seasonal ones.
The target consists of a sequence of 10 values containing the following 10 hours of noise to predict. Both
the features and the target have been normalised to share the same scale, which is [−1, 1]. The 70% of
the available data is used for training purposes (hourly noise data from 01/01/2017 at 0h to 28/06/2020
at 18h), the 20% is used to validate the training process (from 28/06/2020 at 19h to 27/06/2021 at 10h)
and the remaining 10% is used to evaluate the models (from 27/06/2021 at 11h to 31/12/2021 at 23h).

We remind that when selecting the best models for every approach, we will be using the train set to
train the models and the validation set to evaluate their performance. Once the optimal models are selected
for every approach, we will train them again using both the train and validation sets altogether and we will
evaluate them using the test set to get their final performance and to be able to compare their results. This
comparison will be presented in section 3.2.7.

3.2.1 Baseline

In general, it is not trivial to know at first sight whether a performance obtained by one model is good
or not. In machine learning projects, it is very common to use a baseline model, which is a very simple
approximation that can give us a reference to the worst performance we should get. The baseline, actually,
sets the threshold to be improved by any model we would like to use.

In time series problems, a very common baseline is to consider that our predictions will be equal to the
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latest available training value of the series. In our case, mathematically, that will mean the following:

y(t − 1) = y(t + h), ∀h = 0, . . . , 9 (3.1)

This rather simple approach, though, is sometimes surprisingly difficult to overcome, specially for the closest
prediction horizons. We will check its performance in section 3.2.7.

3.2.2 TPOT

The AutoML tool TPOT has a very simple usage as long as you have generated a proper dataset to feed
it. It is used by means of a Python library called tpot. In our case, we employed the TPOTRegressor
class, which according to the official documentation, performs an intelligent search over machine learning
pipelines that can contain supervised regression models, pre-processors, feature selection techniques and
any other estimator or transformer within the scikit-learn API, and their hyperparameters. In addition, the
user can even guide this search by tweaking some parameters. It is worth to mention that in our case we
will carry out the optimisation process using the negative mean squared error as scoring function.

Although it is true that we could have trusted AutoML tools to perform the pre-processing steps of our
problem, we decided to take care of these stages of the process manually because the data generally needs
to be interpreted in the right way by the data scientists according to their business or academic needs.
However, AutoML tools can be very useful to try the data in a wide range of models and hyperparameters
on its own, a task that would be very time-consuming for a human.

Supervised machine learning methods like the ones used by TPOT needed a single target to work with,
so we needed to adapt the methodology to be able to generate predictions for the next 10 values of the
sequences. As we considered it would not make sense for TPOT to make 10 different searches to generate
10 different models, one per prediction horizon, we decided to use the closest target, y(t), to choose the
optimal model, and then train this same optimal model, separately, 10 different times iterating on the target
column, to be able to generate proper predictions for every prediction horizon. Fortunately, one of the great
advantages of TPOT is that, after having selected the optimal model, it provides the Python code so as
the developer can run it at later stages. This was very handy in our case because we just needed to run the
same code 10 different times.

After several tests and iterations, the final optimal pipeline chosen by TPOT was very simple, containing
the following steps:

• Reading the input data

• Applying a scikit-learn class called SimpleImputer, which just imputes missing values with the median
strategy
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• Defining a XGBoost machine learning model, namely the XGBRegressor, with the parameters specified
in table 3.1

• Training the model

• Generating the predictions, based on the validation or testing data

In section 3.2.7, we will compare the performance of such boosting model with other deep learning
methods we will introduce next.

XGBRegressor parameter Value
learning rate 0.1
max depth 3

min child weight 7
n estimators 100

n jobs 1
objective reg:squarederror

subsample 0.55
verbosity 0

Table 3.1: Optimal values for the XGBRegressor parameters, chosen by TPOT.

3.2.3 AutoKeras
As it happens with TPOT, AutoKeras is also an AutoML quite easy to use. Since AutoKeras is based on
deep learning models that can be applied to completely different situations, it contains classes designed to
specifically work on tasks such as image classification/regression, text classification/regression, structured
data classification/regression or time series forecasting. Contrary to what one could think at first sight, the
class TimeSeriesForecaster is designed to be used with a sequence of time series data, with no regressors
and in the original array format. Since we transformed our time series problem into a supervised learning
problem to be able to use the richer multivariate approach, the class that suits our needs is the Structured-
DataRegressor instead.

The main difference compared to TPOT is that we will not obtain Python code lines now, but a model
object that we will save and load if we want to use it again. One huge advantage of using neural networks in
our problem is that they can directly manage the fact of having a sequence of values as a target, following
the many-to-many approach. We only require that the last dense layer of the network uses 10 neurons
instead of 1. This strategy will be used here as well as in the next two networks we will manually tune.

All in all, the optimal neural network selected by AutoKeras contains 9 layers, mostly alternating dense
and ReLU layers. Besides, there is a multicategory encoding in the beginning, followed by a normalisation
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layer, and at the end a dropout followed by a dense layer. The main aspects of this model are summarised in
the Table 3.2. It contains 24337 parameters in total, 24202 of which trainable and 135 non-trainable. The
metric used during the backpropagation through time (BPTT) optimisation process was the mean squared
error.

Layer Type Output Shape Number of parameters
InputLayer [(None, 67)] 0

MultiCategoryEncoding (None, 67) 0

Normalization (None, 67) 135

Dense (None, 32) 2176

ReLU (None, 32) 0

Dense (None, 512) 16896

ReLU (None, 512) 0

Dropout (None, 512) 0

Dense (None, 10) 5130

Table 3.2: Details of the optimal model selected by AutoKeras.

3.2.4 LSTM
It is important to remind that AutoKeras selects an optimal neural network based on different kinds of
layers, but among those candidates there are not recurrent layers, LSTMs or GRUs, which are the ones
expected to work best from a theoretical point of view. This is the reason we wanted to manually tune
some models based on these structures to compare it to the algorithms supposed to be optimal among all
the other options.

The next model we propose is a basic LSTM model, composed of two LSTM layers of 50 neurons,
followed by a dropout and a final dense layer with 10 neurons to allow the model to forecast values for the
10 horizon targets. Details of the model are shared in Table 3.3. It contains 44310 parameters in total, all
of them trainable. The loss function used in the optimisation process was the mean squared error.
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Layer Type Output Shape Number of parameters
LSTM (None, 1, 50) 23600

LSTM (None, 50) 20200

Dropout (None, 50) 0

Dense (None, 10) 510

Table 3.3: Details of the LSTM model.

It is worth to mention that neither the increase of the number of LSTM layers nor the number of neurons
could significantly improve the performance of this model. The use of the dropout layer indeed improved
the obtained metrics, whereas more dense layers made no difference and ReLU layers made the training
much more unstable. Using bigger batch sizes or number of epochs was not useful as well. It is important
to mention that the parameter return sequences must be set to True in all the LSTM layers of the model
except the immediately previous to the final dense layer. Otherwise, dimensions do not properly fit, causing
the model to fail.

3.2.5 RNN, LSTM and GRU combined

In the model selection stage, we also tried to use GRUs and RNNs instead of LSTMs, as well as combining
all of them. Performance of the model rarely improved the LSTM model of the section 3.2.4, but we found
a configuration that could compete quite well against it.

The last model we suggest is a combination of the three kinds of layers supposed to work well for long
sequences of data. It contains 6 layers of 50 neurons each: two simple RNN layers, two GRUs and two
LSTMs -in that order-, followed by a dropout and a 10-neuron dense layer. Details of the model can be
found in Table 3.4. It contains 82460 parameters in total, all of them trainable. Again, the chosen loss
function was the mean squared error.

3.2.6 Error metric

In any project involving predictive models, the choice of the metric error is not a minor issue at all. First, it
is worth to mention that although we trained the models over scaled features and targets, it would not give
us any valuable information to study the errors in the normalised scale, since they would be meaningless
to understand how good or bad is our model in relation to the purpose of the problem. Instead, once the
models are trained, we apply the inverse information with the scaler object we used to normalise the data.
So, it is very important to store the scikit-learn scaler objects when they are created to be able to retrieve
them afterwards.
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Layer Type Output Shape Number of parameters
SimpleRNN (None, 1, 50) 5900

SimpleRNN (None, 1, 50) 5050

GRU (None, 1, 50) 15300

GRU (None, 1, 50) 15300

LSTM (None, 1, 50) 20200

LSTM (None, 50) 20200

Dropout (None, 50) 0

Dense (None, 10) 510

Table 3.4: Details of the RNN-GRU-LSTM model.

Once we have decided to represent the performance metric in the original scale, it is also good to point
out that all our training processes have used the mean squared error in the optimisation stage. This gives
a good clue that we should check this metric to evaluate the selected models. The mean squared error
(MSE) averages the squares of the differences between the predictions and the actual values. The only
drawback of the MSE is that it is expressed in square units, so it might be not very intuitive to interpret
when related to our data. Hence, finally, we decided to use the root mean squared error (RMSE) to be
able to express it in the same units as the data, which are dB(A). Mathematically:

RMSE =

√√√√∑T
t−1

(
ˆy(t) − y(t)

)2

T
, (3.2)

where t is the time step, T the total number of time steps, y(t) the actual value of the target at time
step t and ˆy(t) is the prediction of the model at time step t.

3.2.7 Model comparison
We have selected four candidate optimal models to solve the noise prediction problem in Barcelona. As a
brief recap:

• A XGBRegressor, chosen by TPOT

• A neural network based on dense and ReLU layers, chosen by AutoKeras

• A LSTM neural network, manually tuned
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• A neural network concatenating RNNs, LSTMs and GRUs, manually tuned

As we said in section 3.2.6, the chosen error metric is the root mean squared error (RMSE). We expect
the performance of the models to drop as the horizon prediction becomes large. We can first see the
comparison between the chosen optimal models and the baseline model in Figure 3.5. It is clear that any
of the candidate models is much better than the baseline, not only because the first prediction error is ap-
proximately a 26% lower than the one obtained by the baseline, but also because the baseline model drops
its performance over the prediction horizons much more than any other candidate model. The baseline
average RMSE over all horizons is 5.598 dB(A).

Figure 3.5: Performance of the candidate models over the prediction horizons, with the main goal to
compare them to the baseline model. The error metric used is the root mean squared error (RMSE),
evaluated in the test set. The unit of this metric is dB(A).

If we forget the baseline now and we zoom the plot a little bit, we can see the comparison between
candidate models summarised in a very clear way in Figure 3.6. All models have an acceptable performance,
but the best of them is the RNN-LSTM-GRU neural network, which has the minimal error in all the horizon
windows. Its average RMSE over all horizons is 3.412 dB(A). Slightly above, we can find the LSTM neural
network and the XGBRegressor chosen by TPOT, which have very similar performances, both with an
average RMSE of 3.421 dB(A) over all horizons. The worst performance is offered by the neural network
selected by AutoKeras, which has an average RMSE of 3.460 dB(A) over all horizons.

It is also noticeable in the pattern of the plotted lines, that there is an increasing error for prediction
horizons from 0 to 4, then the error decreases a little bit until 7 and then it gets bigger again. This might
be related to some effect of the seasonality of the data.
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Figure 3.6: Performance of the candidate models over the prediction horizons. The error metric used
is the root mean squared error (RMSE), evaluated in the test set. The unit of this metric is dB(A).

After having compared the error metrics, it seems that the best model to choose to deal with the noise
prediction problem in Barcelona is our manually tuned RNN-GRU-LSTM model.

Model Average RMSE over all prediction horizons (dB(A))
RNN-LSTM-GRU 3.412
LSTM 3.421
XGBRegressor (TPOT) 3.421
Neural network (AutoKeras) 3.460
Baseline 5.598

Table 3.5: Average RMSE of the candidate models over all prediction horizons, in ascending order.



Chapter 4

Model explainability

4.1 Theoretical context
Predictive models which solve real-world problems cannot be fully understood by just giving a performance
metric on a test dataset. In many cases, the task to analyse is not well-known enough or there could be
potential risks if significant mistakes are made by the model. What is more, there might be people affected
by the decisions of a machine learning model, therefore having the right to ask why the output of the model
is one or another. In fact, several regulations and laws have been recently approved to start to control these
issues, like the EU General Data Protection Regulation (GDPR). Thus, data scientists don’t only have to
design models with high accuracy, but also have to be able to justify the decisions these models make.

Simpler models are much easier to explain and this is why they are sometimes chosen, even at the
expense of losing accuracy. However, current applications require a lot of data and need to be dealt with
more complex models, such as machine learning or deep learning methods. These models can achieve very
good results, but they are normally considered black boxes, because the developers can rarely explain the
reasons behind the predictions they make.

The term interpretability is usually defined as the degree to which a human can understand the cause of
a decision that a model makes. Generally, a simple model can be explained by itself, because it follows clear
rules, or it is based on clear relations between variables. However, frameworks beyond three dimensions are
difficult to understand by humans. Therefore, complex models need help from other specific methods to be
properly understood.

Global interpretation of a machine learning model gives insights about the more important features that
affect on the prediction output and about the existing interactions among them. There are some methods
that work by changing the input of any supervised learning model and measure the changes produced in the
prediction output. Nevertheless, a global understanding is hard to achieve in practice, and we usually try to
explain just certain parts of the model. Other approaches work by returning data instances as explanations,
for example trying to justify what the model predicts for a particular input. At a local level, predictions may
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only depend linearly or monotonously on some features. Therefore, local approaches are often considered
to be more interpretable than the global ones.

4.1.1 Additive feature attribution method

Nowadays, many of the tools used for model explainability are based on the additive feature attribution
method. We will explain it mathematically. Let f be a prediction model and let x be a single input, so
f(x) is a prediction we want to locally explain with another model g. Local explanation methods assign
simplified entries x′ to the original input through a mapping function x = hx(x′), trying to ensure that
g(z′) ≈ f(hx(z′)) whenever z′ ≈ x′. These models follow the additive attribution method, which is
described as a linear function of binary variables:

g(z′) = ϕ0 +
M∑

i=1
ϕiz

′
i, (4.1)

where M is the number of features, z′ ∈ {0, 1}M and ϕi ∈ R. The explanation model assigns an effect
ϕi to every feature and it sums all these contributions to approximate the output f(x) of the original model.

4.1.2 SHAP values

SHAP (Shapley Additive explanation) is likely the most common approach to deal with model explainability.
It is a unified approach to explain the output of any machine learning or deep learning model by connecting
game theory with local explanations based on the additive feature attribution method. SHAP describes
the influence of every input variable in the final predictions by comparing what the model returns with or
without that feature. Besides, this method is applied in every possible order, since the order in which we
take the features could affect the outcome of the model.

SHAP values can be considered a unified measure of feature importance. Following the mathematical
notation we introduced before, they are calculated by defining fx(S) = f(hx(z′)) = E [f(x)|xs], where S

is the set of non-zero indexes in z′ and E[f(x)|xs] is the expected value of the function conditioned on a
subset S of the input features. SHAP are a combination of game theory, classic Shapley values and these
conditional expectations to assign weights ϕi to every feature with the following combinatorial equation:

ϕi =
∑

S⊆N\{i}

|S|!(M − |S| − 1)!
M ! [fx(S ∪ {i}) − fx(S)], (4.2)

where N is the set of all input features.



Chapter 4. Model explainability 43

4.1.3 Deep SHAP

One of the approximation methods inside SHAP is Deep SHAP, which is specifically designed to perform
fast for deep learning algorithms, supporting TensorFlow and Keras models. Thus, it is the one we will use
in our problem.

Deep SHAP is based on Deep Learning Important FeaTures (DeepLIFT), which is an explainability
method used in Deep Learning that assigns an importance score to the feature inputs for a given output.
It decomposes the predictions into specific inputs by propagating backwards the contribution of all the
neurons in the network and comparing the activation of each neuron with its activation in a reference state.
It approximates Shapley values assuming that input features are independent and that the predictive model
is linear.

Deep SHAP uses a distribution of background samples instead of a single reference value. It uses Shap-
ley equations to linearize separate components of the network and it combines them altogether to work out
SHAP values for the whole network. These SHAP values sum up to the difference between the expected
model output on the background samples and the current model output (f(x) − E[f(x)]).

4.2 SHAP values to explain RNN-GRU-LSTM predictions

In this section, we will use SHAP values to provide a better understanding of the model we selected as
optimal for this problem, which is the neural network combining recurrent layers, GRUs and LSTMs we
presented in the previous chapter. Namely, we will follow the approach Deep SHAP, appropriate for deep
learning models. The main goal of this study is to understand the most relevant features for the model
and under what conditions they make the prediction to increase or decrease. A better understanding of
the model can help us to detect any inconsistency and to prevent it from failing in the future. In order to
simplify the analysis, it has been decided to just study the explainability of the model for the target in the
first prediction horizon of the target, y(t).

SHAP can be applied to our problem using a Python library called shap. The class we use for this task,
the DeepExplainer, is fed with the already trained model and the train and validation sets altogether, so it
learns from a dataset of 39267 observations and 67 features. Next, it calculates the SHAP values for all
the instances of the test set, which consists of 4363 observations and 67 features.

It is important to remind that our model was trained over scaled features and targets in the interval
[−1, 1], so resulting SHAP values are also scaled. Since SHAP values are the contributions that we assign
to the features to modify the target, they will normally have values close to 0, either positive or negative.
We could not simply use the inverse process of the scaler object we used to normalise the data, because
it would just detect values within the interval [−1, 1] and would transform them into values in the scale of
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target, that is, the noise pollution. Therefore, we use the following method to solve the scaling issues:

• The scaled expected value1 is added to the also scaled SHAP values. Thus, the SHAP values have
now an appropriate magnitude to be used for the scaler.

• The scaler applies the inverse transformation to both the expected value and the modified SHAP
values.

• The expected value in its natural scale is subtracted from the SHAP values which were also in the
target scale, finally obtaining the contribution of every feature to the target in every observation.

One of the best advantages of the shap library is that it provides a wide variety of graphs to explain the
model, both globally and locally. This allows us to get a complete view of how our model works.

4.2.1 Local insights
We will start by looking at some individual predictions, arbitrarily chosen, to check how the RNN-GRU-
LSTM model generates them. For example, we start by looking at the Figure 4.1. This kind of graph is
called force plot and it shows how the different features push the output of the model from the base value
of the model, which is 69.62 dB(A), to the actual prediction for this observation. Features in red contribute
increasing the target value and the ones in blue contribute decreasing it.

Figure 4.1: Individual prediction (27th of June of 2021 at 3h) generated by the RNN-GRU-LSTM
model explained using Deep SHAP. Red features contribute the target to increase and blue ones
make it decrease.

The first observation (Figure 4.1) is the first instance of the test set, and it corresponds to the 27th of
June of 2021 at 3h. We can see that since it is a nightly value, the feature hour range, which takes the
value 0, has a big negative contribution to the outcome, making it decrease almost three points, with an
associated SHAP value of -2.67 dB(A). We can see that other relevant contributions are the immediate
previous noise value (y(t−1)), and also the noise values at the same time the day before (y(t−24)) and the
day before that (y(t − 48)), which were all smaller than the base value and caused the target to decrease.
On the other hand, features like the noise two hours before (y(t − 2)), which was higher than the base
value, and the flag that informs the timestamp to be part of the weekend (ind weekend = 1) pushed the
outcome to increase.

1The expected value or base value is provided by the DeepExplainer and represents the average prediction of our
model on train data. As all the other information provided by our model, it is originally normalised in the interval
[−1, 1].
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The second observation (Figure 4.2) corresponds to the 16th of November of 2021 at 18h. In this case,
hour range takes the value 2 since it is a daily value and it is again the most important feature, making
the output to increase by 1.58 dB(A). Other positive contributions are the two immediate prior noise values
(y(t − 1) and y(t − 2)). On the other side, variables referring to the wind are the ones which try to make
the prediction lower.

Figure 4.2: Individual prediction (16th of November of 2021 at 18h) generated by the RNN-GRU-
LSTM model explained using Deep SHAP. Red features contribute the target to increase and blue
ones make it decrease.

4.2.2 Global insights

However, it is not enough to check random individual predictions which, despite having reasonable be-
haviours, cannot be directly extrapolated to the whole test set. Fortunately, SHAP provides some graphics
to easily explain the impact of the features over the target at a global level.

Figure 4.3 is a summary plot in its bar version. There, we can easily see the features with higher
contribution to the predictions, but with SHAP coefficients expressed with absolute values. By far, the
most relevant feature is hour range, which accounts for the daily seasonality of the data. After that, it
makes sense to find the three immediate noise values before the target (y(t − 1), y(t − 2) and y(t − 3)).
It is worth to mention that very high on the list we can find y(t − 24) and y(t − 48), which are the noise
values at the same time of the target but the day before and the day before that, respectively. It is a
very good signal that these two features are quite relevant to the model, among all other lagged noise
variables. On the other hand, it is noticeable that, among all weather variables, the most relevant one is
relative humidity max. Finally, the feature related to the moment of the week of the measure, ind weekend,
is also important. Since there are just few holidays on the calendar every year, it makes sense we don’t find
the seasonal variable ind holidays on the top of the list.

Figure 4.4 is analogous to the previous one, but now the summary plot is found in its dots version. It
also shows the most important features of the model, ordered by their impact on the output. However, this
representation gives some additional clues. Since, for every feature, the SHAP value of every observation
is plotted, we can check the proportion of instances that make every feature to increase or decrease the
output. Besides, there is an extra dimension to analyse, because the colour red indicates a high value of
the feature for the observation represented by that point, whereas the blue represents a low value instead.
Based on that, we can clearly see that when hour range equals 2 (from 8h to 22h), its contribution makes
the output to increase. However, when it equals 1 (0h, 1h, 7h or 23h), it makes the output lower and, when
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Figure 4.3: Bar graph showing the features of the model RNN-GRU-LSTM ordered by the absolute
SHAP values averaged over all the instances of the test set.

it equals 0 (from 2h to 6h), even lower. On the other hand, all the lagged noise variables work as expected,
making the target increase when they are high and making the opposite when they are low. It is curious
that when the feature ind weekend equals 0 (Monday to Friday), it barely affects the prediction, but when
equals 1 (Saturday and Sunday) it can either increase or decrease the target. Finally, it is also noticeable
that temperature min works differently from the rest of the features: when the minimal temperature is
higher, the target noise is lower, and vice versa.
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Figure 4.4: Summary plot of the most important features of the RNN-GRU-LSTM model, showing
them ordered by their absolute impact in the predictions. For every feature, its associated SHAP
value of every instance is plotted as a dot in the graph, sometimes accumulated vertically to show a
higher density of points. The observations on the right of the vertical axis have contributions for the
corresponding feature that make the output increase. The ones on the left behave in the opposite
way. Red colours imply high values of the features, and blue colours imply low values for them.
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Chapter 5

Conclusions and future work

5.1 Conclusions
Although noise pollution is the second most important risk factor for health in Western Europe, it has not
been generally given the importance it deserves. Unlike air pollution, whose risks for the human health
and environment are generally well-known, general public have normally been unaware of the dangers to be
exposed at long-term to high noise levels.

After some recent studies, noise pollution has shown to be a bigger problem than one might expect due
to the large amount of people affected, the wide range of illnesses it can cause and the gravity of them,
being even responsible for premature deaths. In Europe, long-term exposure to environmental noise causes
a chronic high annoyance to 22 million people and a chronic high sleep disturbance to 6.5 million people.
Every year, it is estimated to cause 48000 new cases of ischaemic heart disease and to be the main reason
of 12000 premature deaths. In addition, aircraft noise impacts on school learning impairment to 12500
children. Therefore, noise pollution is starting to become a serious public concern for both citizens and
policymakers.

Most of the work available in the literature studies the environmental noise with classical time series
descriptive analysis, calculating the affectation it can have to develop certain illnesses in specific places.
Some predictive models have been developed as well, mainly in industrial environments.

Barcelona, one of the European cities most affected by road traffic and nightly leisure noise, provides
an ideal framework for predicting the noise pollution. First, it owns a network of sensors spread all over the
city called Sentilo, which allows to exploit this very valuable information with a lot of applications to be
used for. What is more, due to recent policies in the European Union, a new action plan to decrease noise
levels is being applied in 2022 in Barcelona and noise pollution is a trending topic at a local level.

With the help of the Barcelona City Council, we were able to gather noise measures every minute during
5 years in a significant point of the city. However, it might not make sense to build a model to determine
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the environmental noise of the next minute in a certain urban area. Therefore, we opted to aggregate the
data at hourly level. It is also worth to mention that Prophet algorithm turned out to be very useful to
handle missing values for seasonal data.

Besides, we also gathered meteorological information and we considered variables related to the weather,
as well as some extra variables with seasonal information, such as the time of the day, the fact of being at
the weekend or the bank holidays. The inclusion of these features transformed our univariate problem into
a multivariate problem. We performed several tests on neural networks and the training errors were lower
when considering the additional features.

One of the trickiest parts when dealing with time series data is that if you want to use machine learn-
ing or deep learning models, you need to reshape the data into a supervised learning paradigm. This is
usually done by creating lagged variables based on the target, but you could use lagged features as well.
This means that, unlike ARIMA or Prophet which are trained based on a long sequence of data, machine
learning models are trained with thousands of instances of shorter sequences. Besides, you can also create
horizon variables to predict more than just the next value at every time. Namely, in our problem we were
predicting the hourly maximum noise within the next 10 hours, based on the hourly noise values from the
last 48 hours and the meteorological and seasonal features from the last hour.

In terms of modelling, it has been very interesting to compare different approaches and check the best
one. On the one hand, we used neural networks which are specifically designed to perform well on long
sequences of data: Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs) and
Gated Recurrent Units (GRUs). On the other hand, we used two AutoML tools that were able to choose op-
timal models, but they were not considering the three types of networks we just mentioned: TPOT included
a wide range of machine learning models and Autokeras chose between certain kinds of neural networks.
Beforehand, it should not be that clear whether a specific network manually tuned would outperform other
theoretically worse options but optimally selected by automatic tools.

All the options had a very good performance when compared to the baseline model, which had an
average RMSE -the error metric we decided to use in this problem- of 5.598 dB(A) over all prediction
horizons. The optimal choice by Autokeras was a neural network based on dense and ReLU layers, with
an average RMSE of 3.460 dB(A) over all prediction horizons. From TPOT side, a boosting model was
selected, specifically an XGBRegressor, with an average RMSE of 3.421 dB(A) over all prediction horizons.
This same performance was shown by a manually tuned LSTM, which was the third model we took under
consideration. Finally, a manually tuned neural network that combined RNN, LSTM and GRU layers was
able to outperform all the other options with an average RMSE of 3.412 dB(A) over all prediction horizons.
The RNN-LSTM-GRU network was chosen as our optimal model.

These error metrics have a magnitude which is acceptable when compared to other works in the litera-
ture and it is compatible with the purpose of the model, which intends to predict if certain noise thresholds
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are overcome or potentially compare several points of the city.

However, a single test metric is rarely enough to explain the good or bad behaviour of a model. One of
the main parts of this work explained the importance of providing additional tools to better understand the
predictions of machine learning and deep learning models. Users will only use applications if they understand
and trust them. People has the right to know, as well, the reason behind some automated decisions that
can affect their lives. We have focused on SHAP (Shapley Additive explanation) and its Deep Shap method.

Thus, SHAP values have been calculated to explain the feature importance for the predictions made
by our RNN-LSTM-GRU model. Some additional steps were needed in order to revert the fact that the
model worked with scaled features and target. We have provided some meaningful insights that show that
the feature with most influence in the model is, by far, a seasonal variable informing the hour range of the
day, which means that it was a good decision to include it1. Other features with high contributions to the
model output were the three latest hours of data, which makes total sense, but it is worth to mention that
the noise measure from 24 and 48 hours before were also very important, which can be understood as the
model reflecting well the seasonality of the data. The variable informing the presence of the weekend was
also considerable. Among all the meteorological variables, the maximum relative humidity had the greatest
contribution.

5.2 Future work
Noise pollution is starting to be considered as a public concern and European cities have improved their
data management about it. However, there is a clear delay on the implementation of laws to accomplish
the goals of the Environmental Noise Directive (END) of the European Union. Unlike other stressors such
as air pollutants, which are declining, the number of people exposed to high levels of noise has remained
stable since 2012 and is expected to increase in the future. Thus, one of the goals of this research is raising
awareness about the importance of mitigating the noise exposure to the population by explaining the health
risks related to it.

At a technical level, it is remarkable that all the optimal models had very similar error metrics. Therefore,
under the actual conditions, we might have reached a milestone very difficult to improve just by selecting
another model or further retuning its hyperparameters. Instead, it is more likely to upgrade performance by
adding other significant features. For instance, we could add data related to the COVID pandemic and the
several lockdowns which took place since March 2020, so the model could better understand some signifi-
cant changes that happened in several short periods of time. It could be also very beneficial to include data
from road traffic, which is the most important noise factor in Barcelona, but we would need further steps
to properly gather, manage and process it. It could also be interesting to add information about tourism,

1There might be a feature with a very high importance causing the model to make something not intended,
but in this case we consider it as a good decision accounting that we stated before that the multivariate approach
outperformed the univariate one
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which is essential to reflect the activity in a city like Barcelona. There could be, as well, other encoded
seasonal variables, such as the month of the year, the day of the week or the hour of the day.

Either by adding more variables or not, the model should be more sensible and easier to explain by ap-
plying, before training, some prior process related to the selection of variables, such as Principal Component
Analysis (PCA). If there are features that are too correlated, it is more difficult for the model to find out
the most meaningful relations to generate the target.

Another interesting point to test could be increasing the number of lagged noise variables and the
number of the horizon to predict and check how it affects to the performance of our model. For example,
if we were using a whole week of lagged hourly noise variables and a whole day as the hourly horizon to
predict, could we improve our model in the closest horizons? And what about the furthest ones?

The last technical point in which this research could be widened is the consideration of other explain-
ability techniques beyond SHAP values to understand how our model makes the predictions. Getting more
insights on this matter could be very valuable for public institutions and the research field.

At a business level, there exist multiple advantages of knowing in advance which will be the noisiest
areas in a city. As we explain in this work, the Sentilo framework provides a huge amount of valuable noise
data all over the city. With proper access to all of it, we could extend this study to other points of the
city, and that would be even more insightful. The predictive model could generate alerts when certain noise
thresholds were expected to be overcome. Then, the public institutions could apply short-term actions to
mitigate these effects, like decreasing the traffic speed limits in certain streets, redirecting the traffic to
other areas or sending police officers to control specific activities.

Actually, with all the Sentilo data available, there exists a wide range of applications both in descriptive
and predictive analysis, mainly to detect the most endangered areas to take further action on them.
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