
UNIVERSIDAD NACIONAL DE EDUCACIÓN
A DISTANCIA

MASTER THESIS

A New Spatio-Temporal Neural
Network Approach for Traffic

Accident Forecasting

Author:
Rodrigo de Medrano
López

Supervisor:
José Luis Aznarte

Mellado, PhD

A thesis submitted in fulfillment of the requirements
for the degree of MSc. Advanced Methods in Artificial Intelligence

in the

Departament of Artificial Intelligence

September 13, 2019

https://www.uned.es/universidad/
https://www.uned.es/universidad/
http://www.ia.uned.es/


ii

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

Abstract
ETS de Ingeniería Informática

Departament of Artificial Intelligence

MSc. Advanced Methods in Artificial Intelligence

A New Spatio-Temporal Neural Network Approach for Traffic Accident
Forecasting

by Rodrigo de Medrano López

Traffic accidents forecasting represents a major priority for traffic govern-
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Chapter 1

Introduction

Through this first chapter, a general vision of the problem will be of-
fered and its importance will be highlighted. Objectives and previous
research on the topic are also discussed. At the end, there is a brief
overview of the thesis.

1.1 Presentation

Nowadays, the urbanization trend around the globe has introduced new op-
portunities and issues in the cities. One of the most important aspects of the
modern society is related to the use of motorized vehicles as a method of
transport. Although very efficient in several ways [13], motor vehicles imply
problems related to traffic and health care. For example, pollution and traffic
accidents are some of the principal causes of death in cities all over the world
[8, 28].

This is the reason why the scientific interest for traffic accidents has in-
creased in the past decades, and proposing solutions is a crucial issue for the
sake of improving transportation and public safety. Being capable of under-
standing and reducing accidents has become an important commit in many
cities, as they not only cause significant life losses, but also property and eco-
nomic ones [21].

In this work, an effort will be put to study the traffic accident phenomenon
in the city of Madrid. This has been the subject of several lines of research in
the past, although most previous studies on traffic accident prediction con-
ducted by domain researchers simply applied classical prediction models on
limited data without addressing many challenges properly, thus leading to
unsatisfactory performances. For instance, the imbalanced severity classes,
non-linear relationship between dependent and independent variables or
spatial heterogeneity are usual problems to deal with in order to improve
previous results in the field. In addition, traffic accidents show a potential
problem when using quantitative methodologies for their prediction: there is
a great dependence between accidents and human behaviour, being distrac-
tions or merely human actions cause of almost 60% of deadly traffic accidents
in Spain [10] (and even a larger percentage for non-deadly accidents).

Although predicting the exact space-temporal position of accidents is out
of the scope with actual techniques due to its complexity [17, 34], much
progress might be done by characterizing important parts of the problem.
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Trying to reduce the dimensionality of the space as much as possible, discov-
ering relevant features or improving previous models are some examples of
what can be done to provide insight in this particular problem.

In this context, this work presents the problem as a spatio-temporal series
in which traffic intensity and meteorological variables play a central rol in
predicting values for the traffic accidents series. For this purpose, we pro-
pose a new model, called XSTNN (from Exogenous Spatio-Temporal Neural
Network) and consisting of a deep learning approach for traffic accident re-
gression based on spatio-temporal data. The model, which is an extension
of the one proposed by Ziat et al. [37] (Spatio-Temporal Neural Network,
STNN) through the addition of external variables, is based on partitioning
space into grid cells and taking advantage of the spatial relations existing
in the series. A number of urban and environmental variables such as traf-
fic intensity, rainfall, temperature and wind are collected and map-matched
with each grid cell. Given the number of accidents as well as the other urban
and environmental features at each location, we learn a model to forecast the
number of accidents that will occur in each grid cell in future timesteps.

By presenting the number of traffic accidents as a spatio-temporal series
and learning how to model it, it is possible (for example) to increase emer-
gency service’s response time, focus the efforts to avoid potential dangers,
create real-time safe routes recommendation systems and, in short, reduce
the losses that were discussed at the beginning. To the best of our knowl-
edge, this is the first work that tackles the traffic accident forecast problem in
the city of Madrid.

1.2 Motivation

The urban context is a perfect example of a complex system. Although it has
been analyzed for years from different perspectives [2], there is still plenty
of research and debate about every topic and decision related to them. In
general, cities are the perfect stage for (at this moment) unpredictable events.
This, together with the fact that every aspect has often a big impact on the
everyday life, makes cities an interesting area of study.

As it was noted in the previous section, in the specific case of traffic ac-
cidents two potential problems are noteworthy: an extraordinary loss of re-
sources and the worsening of traffic flow. As the complex system a city is,
both issues might affect in the short and long term: for example, by the de-
crease of productivity (traffic jam) or the cost of medical care for severely
injured people respectively. In any case, traffic accidents are a matter of cap-
ital importance nowadays.

Based on this last premise, previous studies have shown a strong depen-
dency between time [34] or space [6] and collisions, but focused in one at
a time. Researches pointing out the relation between time and space and
the importance of using both are scarce, and they usually use classical ap-
proaches. Notwithstanding, few works have used more sophisticated tools
based in Artificial Intelligence. Hence, this work propose the use of both
modern and classical methodologies such as Recurrent Neural Networks
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(RNN), Gradient Boost methods, linear and naive models to gain insight in
the spatio-temporal study of the field.

Besides, a significant portion of the factors that contribute to collision-risk
are straightforward. Most would expect that busy, in poor condition, high-
speed roads endure a disproportionate number of automobile collisions. What
is not straightforward, however, is how those variables influence the system.
For this purpose, this works set the hypothesis that meteorological and traffic
features are also relevant. To test these hypothesis, weather and traffic flow
variables will be used.

1.3 Previous work

Although very much studied, traffic accidents have been treated mostly in a
”classical” context, by simply using statistical analysis in an attempt to un-
derstand better the phenomenon and the circumstances surrounding them.
Examples that illustrate this situation can be found in [1, 14, 24]. There also
are several works dealing with these methodologies and their typical issues,
as for example [15, 17]. A long list of studies tackle the issue from the severity
of the injuries perspective. Within this last group, [20, 19] are some examples.
Although instructive, most of these previous research fail to be able to apply
all this knowledge to predict future events.

In a closer line to our work, during the last decade a considerably number
of Artificial Intelligence-based approaches have appeared, taking advantage
of the large datasets which are available nowadays. We can cite [3, 11, 12, 35]
as examples. As a first glance in the matter, these works provide new tools
for solving the problem, but they lack relevant information in their analysis.
In order to get more sophisticated and precise systems, last researches focus
their efforts in new models as Variational Autoencoders and Deep Neural
Networks for detecting and understanding better traffic accidents [36, 25,
32].

Until now, the references presented here were all lumped under the same
hypothesis: ignoring the importance of the spatial dimension in the traffic ac-
cidents forecasting. However, a number of studies have pointed out how rel-
evant this variable is in order to get appropriate results [31, 23, 6]. Since then,
more and more researches focus their efforts in the spatio-temporal (and not
just temporal) prediction problem. We can cite [30, 22, 33] as some of the most
relevant works, some of them being classified under the label of deep learn-
ing. Specifically, some of these last references point at exogenous variables
as helpful in the forecast process.

1.4 Objectives

The main objectives of this research are:

• To explore existing methodologies and propose new ones for forecast-
ing traffic accident spatio-temporal series.
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• To provide a practical case study in the city of Madrid.

In the course of this project, it is expected that, pursuing these goals, we
may offer new information and perspectives in the use of spatio-temporal
neural models for traffic accidents prediction.

1.5 Problem formulation

Given a spatial grid S, where each grid is represented as si, and a timestep
tj, we aim to learn a model to predict the number of accidents in each grid si
during each time slot tj. This mean that a spatio-temporal sample writes as
x(si; tj) : j = 1, ..., T; i = 1, ..., S.

More precisely, we propose that each grid si represents a neighborhood
of Madrid as it is expected that each neighborhood presents different pe-
culiarities that might be related to traffic accidents. Moreover, we use an
hour as the length of our timestep tj. Without loss of generality, other values
could be chosen for si and tj. We work with data from year 2018 for both
the training and validation sets. Only in-city accidents are treated, as road
accidents present different peculiarities. Chapter 2 reiterates and expands all
these ideas.

1.6 Thesis overview

This work is subsequently organized as follows:

• Chapter 2 introduces data description along with the respective clean-
ing and pre-processing work in order to boost its predictive nature and
improve the performance of the models that will be presented in Chap-
ter 3.

• Chapter 3 attempts a review of existing models capable of dealing with
traffic accidents prediction. The advantages and drawbacks of these
models are pointed out, and an extension of a previous Artificial Neural
Network (ANN) based model is presented, along with a discussion of
its advantages with respect to existing methods.

• Chapter 4 explains the experiments undergone to test our proposal.

• In Chapter 5 the results acquired using the approaches of Chapter 3,
data explained in Chapter 2 and settings exposed in Chapter 4 are shown.

• Finally, Chapter 6 concludes this work, points out the main contribu-
tion of this work, discusses ways in which the problems of our system
can be addressed, and presents possible future work.

As an addendum, in appendix A we provide information about Madrid
neighborhoods as they will represent our spatial grid.
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Chapter 2

Data analysis and description

Along this second chapter, a presentation and examination of the data is
provided. In order to get a precise vision of it, data will be cleaned and
several analysis will be performed.

As it was established on the first chapter, the problem we are trying to
tackle will be treated as a spatio-temporal series problem. For this reason, the
data used in the regression needs to adapt to both the spatial and temporal
dimensions of the series. In this section, the data and its properties will be
presented, and it will be shown that its nature is appropriate for the proposed
theoretical framework.

At this point, it is necessary to distinguish two types of datasets that will
have a different impact and nature on our study: the main dataset is the
traffic accident one, as it will be the base of the regression problem. The re-
maining data (traffic and weather data) is expected to contribute to the per-
formance of the different models, but it will be used as exogenous variables
respect to the series.

As it may be seen, the accidents themselves form the time series. Mean-
while, the rest of the data intends to improve the performance of the different
models used.

2.1 Data presentation

Now it is time to present all the data that has been used. As previously ad-
vanced, there are three sources or datasets. For each one of them, a summary
of their variables and the granularity of their spatio-temporal information are
shown.

• Traffic accident data: Provided by Portal de datos abiertos del Ayuntamiento
de Madrid 1, it summarizes all the information related to car crashes in
the city of Madrid. Specifically, for every accident it shows physical
location (although not geographical), date (year, month and day), time
(hour), sex and severity for each person involved and several meteoro-
logical conditions. The last two variables of this dataset were not taken
in consideration, as they were not relevant or there were better sources

1https://datos.madrid.es/portal/site/egob/

https://datos.madrid.es/portal/site/egob/
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for them (specifically Weather data later in this same section). For ex-
ample, sex can be relevant when making statistics of the phenomena,
but irrelevant when trying to predict new accidents.

Spatial information is presented as city addresses (street and number
or intersection), while temporal information is limited to the hour in
which the accident was reported.

• Traffic data: As before, provided by Portal de datos abiertos del Ayun-
tamiento de Madrid 1. This dataset contains historical data of traffic mea-
surement points in the city of Madrid. The measurements are taken
every hour at each point, including traffic intensity in number of cars
per hour and average speed in m/s. Some other traffic parameters, al-
though unused in this project, are present in this set too.

Spatial information is given with the coordinates (longitude and lati-
tude) of measurement points, while temporal information is taken ev-
ery 15 minutes.

• Weather data: Weather data was provided by the Red Meteorológica Mu-
nicipal2. Weather observations consist of hourly temperature in Celsius
degrees, solar radiation in W/m2, wind speed measured in ms-1, wind
direction in degrees, daily rainfall in mmh-1, pressure in mbar, degree
of humidity in percentage and ultraviolet radiation in mWm-2 records.

Weather information is taken along six different stations. It is reported
hourly.

Given the nature of the project, spatio-temporal granularity is of special
relevance since it limits the scope of the prediction. For example, any model
which uses the traffic accident dataset will present automatically a systematic
error due to poor precision in spatio-temporal data collection.

In addition, there is one more dataset which is necessary in this project.
As it was pointed out in Section 1.3, the choice of spatial zones is of great
importance. Not only the election of the spatial mesh is important, but it
should be clear that a model with similar spatial relations to the real ones
will be more willing to correctly capture the dynamics of the series. Usually,
and for simplicity, the spatial grid is formed by uniform squares [22, 33] (fig-
ure 2.1a) or by road segments and intersections [6, 30]. For a more realistic
model, it has been decided to use Madrid neighborhoods as spatial zones
(figure 2.1b). Although this decision might introduce extra difficulties in the
work, the unique properties demographically and economically speaking of
neighborhoods are expected to be beneficial. This extra dataset (geographi-
cal format) can be found in Portal de datos abiertos del Ayuntamiento de Madrid 1

again. Spatial relations chosen for this work will be described in Section 4.4.
Lastly, and as it was pointed out previously, some variables from the origi-

nal datasets were not relevant. Nevertheless, all the features used throughout
this work have been indicated.

2http://www.mambiente.madrid.es

http://www.mambiente.madrid.es
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(A) A classical squared grid for spatial
zones.

(B) Our proposed mesh grid for spatial
zones based on Madrid neighborhoods.

FIGURE 2.1: Two mesh grid choices for a spatial problem in the
city of Madrid.

2.2 Data cleaning

During this section, we present the actual cleaning work that was necessary
to work through the data. It is worth noting that only the year 2018 will be
modeled.

For every particular dataset, we have the following aspects.

• Traffic accident data: Firstly, Google Maps Api 3 was used for geocod-
ing the adresses provided in the dataset. Specifically, coordinates in
longitude and latitude so all the data presents the same format.

Secondly, a neighborhood is assigned to each crash.

Thirdly, each accident was repeated for every person involved. In this
work, it is only important the number of accidents without further in-
formation about the event. For this reason, this repetition was elimi-
nated.

No missing values were reported.

• Traffic data: In regards to traffic intensity, it is worth highligthing that
is the only set that does not present its information hourly, but every 15
minutes. In order to have a final homogeneous dataset, average over
every entire hour is calculated. Note that typical deviation of traffic
intensity over and hour represents less than 10% of the real values on
average.

In addition, the average of the traffic intensity is taken for each neigh-
borhood as if every measurement point was a different sample from
the same phenomenon for every zone. Once more, the standard devia-
tion that results from this decision is less than 5% respect to the mean,

3https://cloud.google.com/maps-platform/

https://cloud.google.com/maps-platform/
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showing that there is a predisposition to have similar traffic conditions
for each neighborhood.

Missing values represent a small percentage of the dataset (∼ 0.8%), be-
ing replaced by the average of traffic intensity from all adjacent neigh-
borhoods at the same time.

• Weather data: While the real data was taken in six subestations in the
city of Madrid, our own data consists of average hourly variables from
those six substations. Although this decision could be seen as a loss of
information, this approximation is enough for a first insight. Also, as-
signing different meteorological variables for each accident depending
on its location supposes an extra difficulty when using a spatial mesh
(the six subestations) different from the one used in this work (neigh-
borhoods of Madrid).

Missing values were a small percentage (< 0.1%), so they were replaced
by the average of the previous and the next value for each feature.

There are some other general aspects that are worth to mention. For ex-
ample, only accident in urban roads are considered, as other types of roads
present different properties that may affect the series. Some neighborhoods
(three in particular) do not present traffic or accidents data so they were re-
moved, giving a final number of 131 neighborhoods. Finally, for generating
the dataset that will feed the different models all the features are condensed
as elements of a matrix. In this matrix, every row intends to be a temporal
step while every column represents a different neighborhood. A scheme of
this final dataset is presented in table 2.1.

Palacio Embajadores ... Corralejos
01/01/2018, 00:00

Number of accidents, traffic conditions, weather01/01/2018, 01:00
...

31/12/2018, 23:00

TABLE 2.1: Scheme of the final-cleaned dataset used in this
project.

In summary, at this point we have information related to the number of
traffic accidents (including 0), traffic condition and weather for every neigh-
borhood every hour. All this together forms the basis for the spatio-temporal
regression problem that this work tries to cover.

2.3 Data analysis

Although stochastic by nature, traffic accidents show some properties that
make them suitable for a spatio-temporal series approach. Through this sec-
tion, a time and spatial analysis of the series is carried out, pointing out its
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FIGURE 2.2: Total number of accidents for each timestep in
Madrid.

main characteristics. Then, we go deeper in understanding the relations be-
tween the main series (car crashes) and the exogenous variables (traffic and
weather).

In all cases, analysis have been done for the same data extract that will be
used in the experiments. To be more precise and as a reminder, 131 neigh-
borhoods of Madrid and year 2018.

2.3.1 Time series study

First, some basics statistics are presented before (table 2.2) and after normal-
izing (table 2.3) from the entire series for the traffic accidents dataset (no spa-
tial grid considered). Usually, normalize is considered a good practice for the
sake of facilitating and balancing the calculations in the different models. For
this work, each series was rescaled between 0 and 1. Remark again that the
time series is studied in Madrid, without any spatial differentiation.

Statistics without normalizing
Min. : 0

1st Qu. : 0
Median : 1

Mean : 1.074
3rd Qu. : 2
Max. : 11

TABLE 2.2: Dataset
statistics before

reescaling

Statistics having normalized
Min. : 0

1st Qu. : 0
Median : 0.091
Mean : 0.098

3rd Qu. : 0.182
Max. : 1

TABLE 2.3: Dataset
statistics after

reescaling

From this tables it is easy to see how infrequent accidents are. In this
context, and from the frequentist probability point of view, the odds of an
accident taking place anytime in an hour and at any neighborhood is about
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FIGURE 2.3: Periodicities of the traffic accidents series. (a)
Number of accidents depending on day of the week. Weekends
present less number of accidents. (b) Number of accidents for
each month. August seems to be safer. (c) Number of accidents
depending on hour of the day. In this case we have the most

clear difference.

0.8%. For this reason (among other peculiarities introduced in Chapter 1),
traffic accidents series are considered specially difficult to forecast.

For a deeper insight in the matter, figure 2.2 offers the total number of
accidents per timestep (hour) during a four week period(in order to facilitate
its comprehension and clarity). In this plot, some tendencies can be observed,
although it is not clear how the series is distributed over time.

As we have just seen, our series is not a classical time series. Nevertheless,
by making a deeper analysis of the data it is possible to find some character-
istic periodicities that reveal a hidden time dependence in traffic accidents.
Fig. 2.3 shows a clear pattern that depends on several time dimensions.

These figures establish a relation between time and accidents, contribut-
ing to reinforce the idea of treating our data as a time series. Moreover, they
let us understand better the phenomenon: the number of accidents is directly
related to the schedules of daily life in Madrid. They reach their highest
levels during the week, coinciding with daily commuting. On the contrary,
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August, nights and weekends usually carry less displacements, with the re-
spective decrease in the likelihood of traffic accidents happening.

Now that the time dependency of the series has been established, some
usual time series analysis is provided. For this analysis, a 24 timestep fre-
quency has been considered, meaning that the series is expected to be re-
peated every 24 hours:

• Trend: Although there are no proven ”automatic” techniques to iden-
tify trend components in the time series data, as long as the trend is
monotonous (consistently increasing, decreasing) or stable that part of
data analysis is typically not very difficult. In our specific case, the se-
ries is stable.

• Seasonality: Seasonal dependency (seasonality) is another general com-
ponent of the time series pattern. Seasonal patterns of time series can
be examined via correlograms. The correlogram (autocorrelogram) dis-
plays graphically and numerically the autocorrelation function (ACF),
that is, serial correlation coefficients (and their standard errors) for con-
secutive lags in a specified range of lags. Concretely, a stationary time
series will have the autocorrelation fall to zero fairly quickly but for a
non-stationary series it drops gradually. Figure 2.4 illustrate this idea,
showing a clear fall to zero as a proof of a some-stationary series for our
problem.

FIGURE 2.4: Autocorrelation of the time series associated to
traffic accidents in Madrid.

It is recalled again that, until now, the data aggregate for the entire city of
Madrid has been used. If each neighborhood is treated as a different series, as
will be done in this work, each of these will have a different temporal behav-
ior. However, this initial analysis lets us understand better the phenomenon.
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2.3.2 Spatial series study

As we did in the previous section, spatial dependency can be seen by plot-
ting the total number of accidents for each spatial zone. For a more clear
insight, at first districts are used instead of neighborhoods (as there are only
21 of them). These districts are the next level in territorial division policy
in Madrid, gathering neighborhoods with similar characteristics. Figure 2.5
shows this spatial dependency.

FIGURE 2.5: Total number of accidents by district of Madrid.

From this last figure it should be clear that different districts (and, in con-
sequence, neighborhoods) present different peculiarities that might be re-
lated to traffic accidents. The conclusion from this analysis is double: not
only exist a clear dependency, but the election of the neighborhoods as spa-
tial zones that was made before shows to be relevant. Moreover, the fact
of using a known grid is expected to guarantee a better understanding and
extrapolation of the results.

For a more concise analysis, figure 2.6 illustrates the same idea discussed
before but for our own mesh grid: Madrid neighborhoods. Usually, the high-
est traffic accident region lies in the major commercial and business areas.

2.3.3 Relations between datasets

Lastly, we defend the election of the external data that will feed the models:
traffic and weather data. Several studies conclude that there is a clear relation
between those variables and traffic accidents [6, 16].
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FIGURE 2.6: Total number of accidents by neighborhoods of
Madrid.

In figure 2.7, the Pearson correlation coefficient is represented for each
exogenous variable respect to traffic accidents. This magnitude lets us have
a better understanding of the linear association between datasets.

FIGURE 2.7: Correlation diagram of traffic accidents respect to
exogenous variables.

Although a linear relation is not entirely representative of how two vari-
ables depend on each other (this relation could be not linear), diagram 2.7
lets us confirm that the chosen exogenous variables are relevant for the tar-
get feature.

Solar radiation has shown to be relevant in previous studies [30], due to
its relation to the day-night cycle and the loss of visibility by sunlight. In
the concrete case of traffic data, plotting traffic intensity against same time
intervals that figure 2.3 reveal a similar pattern. Figure 2.8 illustrate this idea.
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(A) Intensity of traffic depending on day
of the week. Weekends present less traffic.

(B) Intensity of traffic for each month.

(C) Number of accidents depending on hour of the day. In this case we have the
most clear difference.

FIGURE 2.8: Periodicities of the traffic series.

This last figure reflect how similar are both series. It should not be a sur-
prise: the more intensity of traffic (number of vehicles per hour), the more
number of traffic accidents we would expect to happen.
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Chapter 3

Models for spatio-temporal series
regression

This chapter reviews the models used along this thesis. After a quick
look at notation, Section 3.2 presents a deep neural network approach
for spatio-temporal series. Section 3.3 describes a new model based on
the previous one created for this project. Finally, Section 3.4 explains the
rest of the proposed models that will form the baseline.

3.1 Notation

Let us first introduce the notation that will be used throughout this chapter.
We denote n as the number of series, T their length and m the dimensionality
of them. In our specific domain, there will be as many series (n) as spatial
zones. Moreover, m = 1 as every series will be composed of only one dimen-
sion: traffic accidents.

If we call X as the values of all the series between instants 1 and T, then X
is a tensor in RT×n×m. At last, Xt ∈ Rn×m is a tensor that denotes the values
of all the series at time t.

3.2 The STNN model

Proposed by Edouard Delasalles, Ali Ziat, Ludovic Denoyer and Patrick Gal-
linari [37], the STNN model is a deep neural network approach capable of
learning temporal and spatial dependencies through a structured latent space.
Our model preserves this nature but it is an improvement from the point
of view of its usability, allowing us to make use of external (or exogenous)
variables. Concretely, the model learns these spatio-temporal dependencies
through a structured latent dynamical representation, while a decoder pre-
dicts the observations from the latent space.

3.2.1 The main idea

If we do not consider spatial relations, the problem is equivalent but sim-
pler. This allows us to present the model in an easier way without loss of
generality.
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Let Zt be the latent representation, or latent factors, of the series at time t.
The model has two principal components: the dynamic function (denoted as
g), and the decoder function (called d). The first one is in charge of controlling
the dynamics of the system, calculating the next latent state based on the
previous one: Zt+1 = g(Zt). The second one is a decoder which maps latent
factors Zt onto a prediction of the actual series values at time t: X̃t = d(Zt),
X̃t being the prediction computed at time t.

As it should be clear, the parameters of both functions (g and d) are learned
so that the essence of the series is captured. Unlike usual neural networks,
the latent representation Zt is treated as a parameter too, distinguishing this
model and making it more flexible than usual recurrent neural networks.

Having been presented, the next step is defining the learning problem. As
it was established before, two mapping functions (g and d) together with the
latent factors Zt are learned from data. Consequently, the loss function that is
proposed gathers all these elements. Let L(g, d, Z) be this objective function:

L(d, g, Z) =
1
T ∑

t
∆(d(Zt), Xt) + λ

1
T

T−1

∑
t=1
||Zt+1 − g(Zt)||2 (3.1)

In this expression, the first term tries to measure how well the decoder
works, while the second term captures the ability of the model to capture the
dynamics of the series via the latent space. The hyperparameter λ needs to
be fixed for every problem, and contribute to balance the importance of this
second term.

As usual in neural networks, the problem to tackle is minimizing the loss.
In mathematical terms:

d∗, g∗, Z∗ = arg min
d,g,Z
L(d, g, Z) (3.2)

Inference is done by calculating new latent factors via the g function as
much steps as necessary. Formally, if the learned vector is ZT, the latent
space at time T + τ will have this form:

Z̃τ = g ◦ g ◦ . . . ◦ g(ZT) = g(τ)(ZT) (3.3)

In summary, the network learns the dynamic of the series via a latent
representation (function g), how to translate from this latent space to our
series (function d) and the latent structure itself (Zt). Hence, it is capable of
predicting new steps of the series by applying the dynamic function as many
times as required.

Lastly, the learning problem can be solved with Stochastic Gradient De-
scent (SDG) algorithms, samplying a pair (Zt, Zt+1) and updating the three
set of parameters described before according to the gradient of (3.1).

3.2.2 Application to spatio-temporal series

Until now, we have just explained the model without any spatial component
or the form of g and d. The idea behind the spatial component is to consider
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each zone as a different series with its own latent representation at each time
step. For a latent space dimension of N, Zt is a n× N tensor such that Zt,i ∈
RN is the latent factor of series i at time t. Thus, we have the following
relations:

d : Rn×N → Rn×m (3.4a)

g : Rn×N → Rn×N (3.4b)

Not only each spatial zone has a series, but spatial information is inte-
grated in the dynamic component of the model through a matrix W ∈ Rn×n

+
that shares information between all the zones. Although this matrix will be
provided in the relevant parts of this work, the actual model is also capable of
learning or refining it by defining W elements as actual learnable parameters.

The latent representation of each series at time t + 1 depends on the pre-
vious state of all the series (included itself). Hence, we can separate the cal-
culation of a new state by two different sources: intra-dependency in the
first term of the right-hand side of (3.5) and inter-dependency in the second
term. The first one aims to get the dynamic of each series as an individual
entity, whereas the second one is devised to exploit spatial relations between
all series. This way, the model considers a different temporal series in each
spatial zone while keeping information about the spatial relation between all
of them. Formally, the dynamic model g(Zt) is designed as follows:

Zt+1 = h(ZtΘ(0) + WZtΘ(1)) (3.5)

In this last equation, h is a nonlinear function (h = tanh in this project)
and Θ denotes a parametrized function Θ ∈ RN×N. In this case, Θ will be
a linear function or a multilayer perceptron (MLPs), although could be any
parametrized function - see Section 4.3. Figure 3.1 shows a diagram of the
model.

FIGURE 3.1: Architecture of the STNN model as described in
Section 3.2.2.
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At the end, the optimization problem can be written as:

d∗, Z∗, Θ(0)∗, Θ(1)∗ = arg min
d,Z,Θ(0),Θ(1)

1
T ∑

t
∆(d(Zt), Xt)

+ λ
1
T

T−1

∑
t=1
||Zt+1 − h(ZtΘ(0) + WZtΘ(1))||2 (3.6)

This is a modified extract of the real and complete model. For a deeper and broader
lecture about the STNN model, we reference again [37].

3.3 The XSTNN model

The main limitation of the STNN is that it is not able to take into account the
exogenous variables which might be related to the process being modelled
and which could enrich the internal representation and, thus, improve the
predictions. In this section, a new model called XSTNN that aims to resolve
this problem is proposed. Based on the STNN, we introduce exogenous vari-
ables as extra information that might be beneficial for the performance of the
spatio-temporal regression. Thus, the new model is expected to retain all the
benefits of the STNN but improving it by providing extra knowledge to the
system.

Overall, the model is the same as the STNN. Both the optimization prob-
lem and the training (loss function, learning algorithm, inference, etc) are
applicable to the XSTNN model.

Now, let us consider a set of exogenous variables, Λ. This variables are
temporal series, so they can be treated on the same way we did previously,
meaning that Λt denotes the slice of Λ at time t. As in Section 3.2, we will
denote Z as the latent space, X as the value of the own series and X̃ being
the prediction of the STNN. There are several ways in which Λ could be
introduced. We remark three options:

• Construct a new neural network that includes X̃ and Λ as inputs, gen-
erating the value of the final series as output. This output would be
compared with the real value of the series.

• After using equation (3.5) but before decoding the latent space, change
its value using Λ. This might be done with a linear mapping or a MLP.

• Change equation (3.5) so that the latent space is modified directly by Λ.

Because of the nature of the model, we believe that the last option is the
most appropriate one. By introducing Λ in the estimation of Zt, the model
learns the dynamics taking into account external information too. As the
premise of this work is to assume that exogenous variables might change the
dynamic of the series, learning to mold the system in function of both meets
our requirements the best.



3.3. The XSTNN model 19

Once the main idea has been explained, it is necessary to answer some
other questions. Specifically, there are a few alternatives for reconstruct equa-
tion (3.5) in the way is intended. Moreover, a discussion about what time step
to use with Λ is desirable: when computing Zt, both Λt and Λt+1 might be
beneficial. The first one represents the idea of a previous state having an ef-
fect on the next one, whereas the second option symbolizes the conception of
an actual state modifying the series.

Let us now introduce some possibilities. First, if exogenous data does not
present spatial dependency, it can be more efficient to avoid the use of spatial
relations for Λ. This version writes:

Zt+1 = h(ZtΘ(0) + WZtΘ(1) + ΛtΘ(2)) (3.7)

On the contrary, when exogenous variables may exhibit spatial depen-
dency, the same treatment that Z has will be provided to Λ. This notion is
captured as follows:

Zt+1 = h(ZtΘ(0) + WZtΘ(1) + ΛtΘ(2) + WΛtΘ(3)) (3.8)

A diagram that represents this last option is presented in figure 3.2.

FIGURE 3.2: Architecture of the XSTNN model as described in
Section 3.3.

3.3.1 Limitations

Before explaining the rest of the models, we would like to point out the two
principal limitations of our model:

• Using an specific matrix W for a concrete problem means that, for dif-
ferent circumstances (for example, a different spatial grid), a retraining
is needed.
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• Both the dynamic and the decoder functions are stationary, meaning
that they do not change over time. In [37] a method to tackle this prob-
lem is proposed.

3.4 Other models

For the sake of testing the new model, not only the base STNN but other
methods are proposed for comparison. Through this section a few guidelines
of these new methodologies are given. All of them are well known in the field
of Data Science and statistics, consequently they only will be introduced and
contextualized in our problem.

3.4.1 Mean

A simple-naive model which forecast new values of the series using the mean
of past values from the same series. In other words, it uses the values of the
T′ training timesteps for computing the mean which will be used as the value
of any new prediction. Formally:

X̄T′ =
1
T′ ∑t

Xt (3.9)

where X̄T′ denotes the mean computed for T′ timesteps.

3.4.2 Persistence

The second simple-naive model which will be used in this project. In this
case, the last value for each series (each neighborhood) is used for making
the prediction, assigning it for all forecasted timesteps (T′). It writes as:

X̃T′ = XT (3.10)

where T is the last timestep from which we know the series value and X̃T′

denotes the prediction as previously.

3.4.3 Linear regression

The core idea behind linear regression is to obtain a line that best fits the data.
The best fit line is the one for which total prediction error (all data points) are
as small as possible. Typically, is described as follow:

y = Xβ (3.11)

where y, X and β are matrix denoting response variables, regressors and
regression coefficients respectively.

Compared with the rest of the models, a change of notation has been in-
troduced. Concretely, y is the value of the series, while X represents all the
variables explained in Chapter 2 (time, space, traffic and meteorology).
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Although simple, its capability of forecasting relies in the fact that a linear
relation between y and X is expected.

3.4.4 XGBoost

Tree-Based Models create a single (e.g. for CART) or many (e.g. Random
Forest or XGBoost) decision trees which create conditional ”splits” in the data
to arrive at their predictions. For the models which create many trees, the
model averages the predictions of all the trees to create its final prediction.
These models are very robust and perform quite well in several applications
[18].

Particularly, XGBoost was proposed by Tianqi Chen [5]. It is based on the
concept of Gradient Boosting (GB): while SGD optimize the parameters of
some fixed architecture, GB does not assume any fixed architecture learning
both, the function that best approximate the data and its parameters. Usually,
for regression problems RMSE and regularization are used as loss functions.
When the model to fit is bounded to tree models, they are called Gradient
Boosted Trees. Specifically, XGBoost is one of the fastest implementations of
gradient boosted trees.

It does this by tackling one of the major inefficiencies of gradient boosted
trees: considering the potential loss for all possible splits to create a new
branch (especially if you consider the case where there are thousands of fea-
tures, and therefore thousands of possible splits). XGBoost works over this
inefficiency by looking at the distribution of features across all data points
in a leaf and using this information to reduce the search space of possible
feature splits.

However, this kind of algorithms tend to overfit, so a correct adjustment
of their parameters through a parameter-tuning process is necessary.
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Chapter 4

Experimental settings

In this chapter we describe the decisions taken and experiments con-
ducted in order to evaluate the performance of the several approaches
introduced in Chapter 3.

4.1 Introduction, purpose and organization

In tune with the nature of this project, the proposed experiments for this
thesis tries to evaluate the actual performance of several methodologies for
spatio-temporal regression in the special case of traffic accidents. Therefore,
the different models presented in Chapter 3 will be trained and evaluated
in the dataset advanced in Chapter 2. All these methods will be tested in a
spatio-temporal context, with the same conditions in terms of space zones
and timesteps. In addition, all aspects concerning to the experiments must
be as similar as possible among all approaches. In case any model needs a
different treatment for any detail, it will be indicated.

In practice, we proceed as follows:

• Firstly, an architecture is chosen for every model when necessary. For
that end, an hyper-parametrization (neural models) and parameter tun-
ing (XGBoost) is executed. The validation scheme used along this pro-
cedure is explained in Section 4.2.

• Secondly, the training is conducted. The STNN and XSTNN models
use spatial dependencies by nature. XGBoost can make use of neigh-
borhoods as a variable, and naive models needs to be executed in every
spatial zone as a different series. Again, the final result is evaluated
using the validation scheme presented in Section 4.2.

To evaluate the accuracy and precision of the prediction, we selected Mean
Absolute Error (MAE) and Bias as our metrics. In a spatio-temporal context
[29], they are defined as:

MAE =
1

TS

T

∑
j=1

S

∑
i=1
| xsi;tj − x̃si;tj | (4.1)

Bias =
1

TS

T

∑
j=1

S

∑
i=1

(xsi;tj − x̃si;tj) (4.2)
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where, as it was defined in Section 1.5, x(si; tj) : j = 1, ..., T; i = 1, ..., S is a
spatio-temporal sample from the real series, x̃(si; tj) makes reference to the
predicted series, S is the total number of spatial grids and T the total number
of timesteps.

We set up the neural networks experiments on Google Colab 1. For the
other three models, a external machine proportionated by Departamento de
Inteligencia Artificial, UNED 2 was used. The STNN and the XSTNN 3 were
built upon PyTorch. The Mean, Persistence, linear regression and XGboost
models are built upon R, the last one made use of the package xgboost[5].

4.2 Validation

In time series, some typical validation methods are not recommended. Con-
cretely, when dealing with this type of data, traditional schemes like cross-
validation (k-fold) or holdout should not be used for two reasons:

• Temporal dependencies: With time series data, particular care must be
taken in splitting the data in order to prevent data leakage. For exam-
ple, it could happen that the test set is a predecessor of the train set.
Additionally, our proposed model has as central axis of its functioning
the learning of the temporal dynamics of the series, lacking sense to test
a set of data prior to the trained one.

• Arbitrary choice of Test Set: The choice of the test set is fairly arbitrary,
and that choice may mean that the test set error is a poor estimation of
error on an independent test set.

To validate the different proposed methodologies, a time series cross-
validation scheme called rolling origin is used [26]. Rolling origin is an eval-
uation technique according to which the forecasting origin is updated suc-
cessively and the forecasts are produced from each origin. This technique
allows obtaining several forecast errors for time series, which gives a better
understanding of how the models perform. There are different options of
how this can be done, showing figure 4.1 the one we have chosen for this
work.

Notice that in this figure 4.1 and in our proposal for the validation scheme,
several models are trained for each method presented in Chapter 3. These
models have an increasing in-sample size. However, and as it was pointed
out before, it is not the only way. Another option is the constant in-sample
validation, meaning that the train set has always the same size and its origin
changes at the same time as the test set does.

Furthermore, if the train set origin is always the same (as we did), this
could be considered as a rolling origin with a constant holdout sample size.
Otherwise, it is called non-constant holdout sample size.

1https://colab.research.google.com/
2http://www.ia.uned.es/
3Code available at https://github.com/rdemedrano/xstnn

https://colab.research.google.com/
http://www.ia.uned.es/
https://github.com/rdemedrano/xstnn
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FIGURE 4.1: An example of rolling origin cross-validation for
time series. Blue dots represent the train set, whereas red dots

show the test set. Figure from [7].

In general, this validation scheme is considered robust and an almost un-
biased estimation of the true error [7]. Nevertheless, its computational cost
and the need to train several models are its disadvantages.

4.2.1 Setup for the experiments

Let us now describe how the previous procedure is applied in our own ex-
periments. Consider the following steps:

1. The traffic accidents dataset is splitted in 10 successive sets, that is to
say, starting all sets from 1 of january of 2018 at 00:00, each of those ten
sets end at a different date between 14 of february at 23:00 and 31 of
december at 18:00. To consider: all datasets are equally spaced and a
minimun of 45 days has been set for training.

2. As a test set, we consider predictions within a + 5 horizon. For a train
set of T timesteps, this means that the evaluation of the quality of the
model will be made over T + 1 to T + 5 timesteps.

3. Finally, the 10 split sets are trained and validate over T + 1 to T + 5
timesteps. The final error is the average of all validations. The datasets
have been chosen with the purpose that different hours and week days
are tested for a more complete and extensible validation.

Again, this procedure is equivalent for all models presented in Chapter 3.
At this point, it should be clear that the total error for the entire space

throughout the complete test time interval is the average of each error over
T + 1 to T + 5 timesteps. Solely comment that a different error is calculated
for every neighborhood, being the total error for a timestep T the average of
all spatial grids at that same time T.
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4.3 Hyper-parametrization and parameter tuning

In order to achieve the best possible results on our model, and also on our
baselines, we grid-searched hyper-parameters on each model. Hence, each
hyper-parameter is selected by the cross-validation approach presented be-
fore. First, we will present both the possibilities and chosen values. After
that, we will discuss some of the elections. We detail below the values tested
for each hyper-parameter in table 4.1:

STNN

Learning rate 0.0001, 0.003, 0.01, 0.1, 1
λ 0.001, 0.01, 0.1, 1, 10
nz 1, 2, 3, 5, 10

g(Z) Linear, MLP(2,2), MLP(5,5), MLP(10,10), MLP(20,20)
Minibatch size 128, 256, 512, 1024

Dropout 0, 0.25, 0.35, 0.5, 0.8

XSTNN

Learning rate 0.0001, 0.003, 0.01, 0.1, 1
λ 0.001, 0.01, 0.1, 1, 10
nz 1, 2, 3, 5, 10

g(Z) Linear, MLP(2,2), MLP(5,5), MLP(10,10), MLP(20,20)
Minibatch size 128, 256, 512, 1024

Dropout 0, 0.25, 0.35, 0.5, 0.8

XGBoost

Number of rounds 40, 60, 80, 100, 120
Max. depth 1, 5, 10, 15, 20

η 0.0001, 0.001, 0.01, 0.1, 1
γ 0, 1, 2, 3, 4

Min. child weight 0, 0.5, 1, 1.5, 2
Subsample 0, 0.2, 0.5, 0.7, 1

TABLE 4.1: Values tested for each hyper-parameter. nz is the
dimension of the latent space. The remaining variables were

presented in Chapter 3 or are commonly used parameters.

After the validation process, the values that have been chosen as the best
alternative are presented in table 4.2.

Let us point out that, although MAE has been the principal metric, com-
putational cost has been determinant too. It is the case of, for example, mini-
batch size and g(Z): despite the fact that several values exhibited similar
or slightly better performance, the computational effort introduced by them
makes these hyper-parameters worse candidates.

Specially intriguing is the fact of a linear function being capable of mod-
eling the dynamics of the system g(Z) with such a good performance. It is
expected that, with enough computational resources, a deeper MLP could
overperformed the linear function. Additionally, new functions that repre-
sent the dynamics could be proposed as was mentioned in Chapter 3.

As it can be seen from table 4.2, the λ parameter is smaller in the case
of the STNN. This means that this model will be more permissive with the
dynamic’s part of the loss in (3.1).
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STNN

Learning rate 0.01
λ 0.01
nz 2

g(Z) Linear
Minibatch size 512

Dropout 0.25

XSTNN

Learning rate 0.01
λ 0.1
nz 2

g(Z) Linear
Minibatch size 512

Dropout 0.35

XGBoost

Number of rounds 80
Max. depth 15

η 0.1
γ 1

Min. child weight 1
Subsample 0.7

TABLE 4.2: Values chosen for each hyper-parameter.

Lastly, both models show a good performance with nz = 2, allowing us
to reckon that there is no need of a specially high multi-dimensional latent
space for traffic accidents.

It is important to point out that both neural model uses same optimizer
parameters. Concretely, an early-stopping approach using Adam optimizer
with the settings: β1 = 0.0, β2 = 0.999, ε = 10−9 and wd = 10−6 for both
methodologies.

4.4 Spatial relations

To close this chapter, let us discuss the election for spatial relations of the
model. Explained in Chapter 3, equations (3.5) and (3.8) precise spatial infor-
mation summarised in a matrix W. As this matrix will content all the infor-
mation related to spatial zones and their relation, it is important to construct
it in a way that let us gain (or not lose) as much knowledge as possible.

For this reason, it has been decided to use the inverse of spatial distance
as the main metric. Thus, all zones are in some way related but in a bigger
degree the closer they are. The precise matrix is illustrated in figure 4.2.

Notice matrix W is normalized by row in order to avoid vanishing or
exploding problems. If not, it would be possible a highly predominance of
certain zones over the rest, creating decompensations in the predictions.

Other options for this matrix could be a simple adjacency matrix (1 if two
spatial zones are colliding, 0 in any other case) or a representation of a graph
structure.
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FIGURE 4.2: Spatial relations used during the experiments.
Representation of matrix W.
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Chapter 5

Results and discussion

The following chapter presents results and discussion on the different
experiments and settings exposed in Chapter 4.

Before explaining the results, we will establish what questions we wish
to answer. They are stated as follow: (1) Are the results of the proposed
model better when compared with benchmark methods, including classical
predictive models, tree-based models and STNN? (2) Is our proposed model
capable of managing different spatial regions or timesteps? (3) Do the fore-
casting results make sense? Does our model provide more insights on the
problem? (4) Are the predicted accident locations correlated with the ground
truth spatially?

Through this questions, we expect to evaluate if the XSTNN model sup-
poses a step forward in the prediction of traffic accidents.

5.1 General results

In order to identify in a quantitative way the performance of the different
models and baselines, table 5.1 provides the average prediction error for
T + 1 to T + 5. From this first insight it should be clear that both STNN and
XSTNN outperform the other models. As Mean model, Persistence model
and XGboost were trained taking into account the existence of a spatial grid
but without establishing relations between them, these results confirm that
making use of prior spatial information is beneficial for the regression prob-
lem. Beyond that, the XSTNN presents a better performance than its base
model, the STNN.

Model MAE Bias
XSTNN 0.0041± 0.0006 −0.0006± 0.0004
STNN 0.0045± 0.0006 −0.0004± 0.0006

XGBoost 0.0052± 0.0006 0.0004± 0.0006
Linear regression 0.0050± 0.0006 0.0002± 0.0007

Mean 0.0052± 0.0007 0.0003± 0.0007
Persistence 0.0055± 0.0008 0.0006± 0.0007

TABLE 5.1: Performance for T + 1 to T + 5 traffic accident re-
gression.
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For a more detailed vision, Fig. 5.1 shows the distribution of the metrics
and the average error by timestep. From this figure, same conclusions can be
extracted as before: the XSTNN model presents a better general behaviour
compared to the rest of the models. Again, the fact of introducing spatial
knowledge to the problem stands as an appropriated approach for this par-
ticular series, and our results reinforce the idea that introducing exogenous
variables is favorable for the regression problem. However, it is worth not-
ing that there is not a clear relation between errors and timestep. Although
an increment on the error by timestep in the prediction is usually expected
(cumulative error), the randomness of traffic accidents do not let us extract
clear conclusions from this aspect.

FIGURE 5.1: Forecasting performance (MAE and bias) of the
different models by timestep together with the calculated dis-

tributions.

5.2 Reasoning in an spatio-temporal dimension

Beyond the quantitative analysis, now we show some accomplishments from
our proposed model respect to the STNN. For that purpose, we will take a
deeper look into a concrete example, without loss of generality.

Let us introduce the following situation: we forecast the accident regres-
sion series from 17 p.m. to 21 p.m. on a Wednesday. From Fig. 2.3 we know
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this situation corresponds to a high risk circumstance for traffic accidents to
happen. In this context, Fig. 5.2 illustrate a comparison of our two principal
models with a levelplot (time in x axis, neighborhoods in y axis and coloured
by traffic accidents). The relation between neighborhoods and their corre-
spondent number can be found in Appendix A. Let us expose several ideas:

FIGURE 5.2: A practical example of the operation of both net-
works, XSTNN and STNN, for a same situation. From 17 p.m.

to 21 p.m. on a Wednesday.

First of all, and unfortunately, the regression problem is far from being
solved. A comparison of colorbars from both, STNN and XSTNN predic-
tions, with the ground truth corroborates this statement. As Chen et. al. has
documented, after some analysis of traffic accident data, it is difficult to pre-
dict whether traffic accidents will happen or not directly, because complex
factors can affect traffic accidents, and some factors, such as the distraction
of drivers, cannot be observed and collected in advance [4]. Nevertheless,
our XSTNN model has proved to be a new step in the right direction, outper-
forming the rest of baselines models (table 5.1).

Secondly, the next natural question that rises is about the reason of this
improvement. Again, Fig. 5.2 sheds light on this matter. Whereas the STNN
quickly truncates its values close to 0 for every neighborhood and timestep,
the XSTNN takes some risks and it is able to differentiate between time in-
tervals and spatial zones. As the most likely situation is having no accidents
for each hour and neighborhood, both networks have values approaching to
0 as outputs.

Certainly, taking more risks does not ensure a better performance in the
regression problem. It is necessary that the model manages to elucidate
which time intervals and neighborhoods are more important for the prob-
lem that we have in hand as a function of past events. In this concrete case,
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the model has learned to prioritize neighborhoods from 1 to 80, as they report
a vast majority of the total number of traffic accidents in the city of Madrid.
Besides, the XSTNN reveals a negative trend over the hours as we would
expect.

As XSTNN learns better to distinguish between time ranges and spatial
zones, it is possible to find other situations in which, again, this model offers
more information and assimilates the system’s dynamics in a better way. For
example, and to corroborate that the XSTNN behaves better in a variety of
situations, Fig. 5.3 gives evidence of a totally different state on a Sunday
from 6 a.m. to 10 a.m. In this context, we will expect a higher risk at last late
hours and at past 9 a.m., the XSTNN correspondingly adapting its output
to this situation. On the contrary, the STNN is not capable of learning the
corresponding dynamic. Unlike previously (Fig. 5.2), this time the XSTNN
takes less risks and its output is closer to 0 as we would expect less accidents
on a Sunday morning that a Wednesday on the evening as before.

FIGURE 5.3: A practical example of the operation of both net-
works, XSTNN and STNN, for a same situation. From 6 a.m. to

10 a.m. on a Sunday.

5.3 Spatial dependency

Through the previous discussion in Section 5.2, we have pointed out how the
XSTNN infers properties based on the time condition and the concrete spacial
zone. For this last case, Fig. 5.4 offers an analysis of spatial risk for each
neighborhood. Both series, the real and the predicted ones were reescaled
for a direct comparison between them. This way, it is clear that the XSTNN
is capable of reasoning in both dimension, temporal and spatial.
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FIGURE 5.4: Spacial risk in the same scale for the ground truth
(left) and the XSTNN (right).

In summary, the XSTNN reports a better understanding and learning of
the dynamic of the system, being more flexible and creative in its prediction.
These features translate into a better performance than their direct rivals and
let us answer the questions we established at the beginning of this chapter in
a positive way.

5.4 Feature importance

With respect to feature importance, the XGBoost method lets us get insight
from this matter in a simple way. By plotting the contribution from every
variable to the final tree, we can see these results. Concretely, Fig. 5.5 shows
this idea.

Although this last figure reveals an expected dependency on spatial lo-
cation and traffic intensity, the XGBoost method is relying primarily on fea-
tures that are closely associated with the traffic condition, resting importance
from the rest of variables. While decisions like those might oversimplify the
model, Fig. 5.5 supports our initial hypothesis of the importance that exter-
nal variables and a good spatial distribution might have in the modeling of
traffic accidents.

Nevertheless, it is important to point out that feature importance not
necessarily manifest a direct relation between the predictor and the predic-
tion. In our case, while temperature or solar radiation might be seen as
important contributors, it is more likely that day-night cycle, season, time
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of the day or the fact that the sun could be in driver’s eyes are the real
causes/explanations.

FIGURE 5.5: Feature contribution by type of data.

5.5 Reproducibility

As it was pointed out in Section 4.1, the code for our model is available at
https://github.com/rdemedrano/xstnn. An example of its use can be found
there too. Also, Chapter 4 explains in detail all the experimental process to
obtain our results.

https://github.com/rdemedrano/xstnn
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Chapter 6

Conclusions, contributions, future
research and ethical aspects

Through this work, a new approach for spatio-temporal series forecasting
called XSTNN has been proposed. The problem of traffic accidents predic-
tion was tackled by this new neural network model, showing a better per-
formance than the rest of baselines models. Although traffic accidents re-
gression is challenging due to several difficulties, the XSTNN has proved to
stand out for its capability of providing a deeper insight in the problem se-
ries. Thus, this thesis demonstrate that spatio-temporal neural networks are
a promising field for traffic accident prediction in the future.

We would like to remark our two principal objectives, established in Sec-
tion 1.4:

• To explore the existing methodologies and propose new ones for fore-
casting traffic accident spatio-temporal series.

• To provide a practical case study in the city of Madrid.

In general, these objectives can be considered fulfill. After applying two
new neural models that had never been used in traffic accidents, one of which
was proposed for this concrete work, we have now a deeper insight of this
phenomenon in the city of Madrid adapting the network to the rhythms of
life and particularities of this city.

As future lines of research that are direct extensions of this project, there
are several paths that could be followed both for new spatio-temporal models
and traffic accidents prediction:

• The XSTNN model might be extended by introducing more temporal
terms from exogenous series for updating the latent space, as this could
be beneficial. This way, more complicated time-relations could be ex-
plored.

• In the same way, several spatial relations might be used at once, im-
proving the learning of the spatial dimension.

• Given that exogenous variables have shown to be helpful, future work
in this model can be extended to incorporate other features that are not
necessarily series, like economic or demographic variables.
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Nevertheless, the study of traffic accidents might be expanded in much
more fronts. As it was established in Section 1.1, human factors (as distrac-
tions or consumption of alcoholic substances) represent a major number of
accident’s causes, meaning that a complete forecasting system might need to
include them in its dynamic. Although driver monitoring systems like [9,
27] are not new (and even some of them are commercially available), most
of them show an error rate too high to be fully useful in real life. More-
over, this kind of systems are usually focused in several variables (frequently
physicals, as open-eyes or hands on the steering wheel) but lack informa-
tion on other relevant aspects, such as the possibility of having used illegal
substances or the increase in driver fatigue.

As it has just been explained, driver monitoring systems try to avoid fu-
ture accidents, but a continuous monitoring might be beneficial for the sake
of forecasting the odds of traffic accidents happening in function of human
behaviour.

6.1 Ethical aspects

Lastly, we would like to provide some insight in the ethical and social reper-
cussions that traffic accidents research (as this project) could have and that
should be covered in the near future:

• First, there is a close relation between accidents and criminalization. It
is very common to prevent accidents by criminalizing certain ways of
acting, as speed limits or the use of cell phones while driving. While
these measures might be beneficial, it is important to understand and
analyse with caution the results obtained in order to avoid mistakes
by criminalizing conducts that might not be part of the problem. For
example, Section 5.4 shows that temperature might be related with ac-
cidents, but this relation is probably due to the day-night cycle, making
no sense to take action depending on whether there is more tempera-
ture or less.

• By improving accidents prediction, an emerging view that a major role
can and should be played by institutions is reasonable, implying that
it is unclear how much responsability each part should take (drivers
and prediction models owners). Simplifying, it could be argued that if
some institution find a particular future situation risky and at the end
an accident happens, this institution should have taken steps for the
accident not to happen.

• Finally, and closely related to the use of driver monitoring systems, the
knowledge of someone’s situation (use of cell phone, drunkenness...)
from a gadget could be seen as a violation of their privacy. However, it
could be recognised that the degree of risk associated with driving may
imply that the expectation of privacy on the road is not reasonable, as
it would be in our homes.
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Appendix A

Madrid neighborhoods

In the following table, a correspondence between name and numeration for
Madrid neighborhoods is given:

Number Name
1 Palacio
2 Embajadores
3 Cortes
4 Justicia
5 Universidad
6 Sol
7 Imperial
8 Acacias
9 Chopera
10 Legazpi
11 Delicias
12 Palos de Moguer
13 Atocha
14 Pacífico
15 Adelfas
16 Estrella
17 Ibiza
18 Jerónimos
19 Niño Jesús
20 Recoletos
21 Goya
22 Fuente del Berro
23 Guindalera
24 Lista
25 Castellana
26 El Viso
27 Prosperidad
28 Ciudad Jardín
29 Hispanoamérica
30 Nueva España
31 Castilla
32 Bellas Vistas
33 Cuatro Caminos
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34 Castillejos
35 Almenara
36 Valdeacederas
37 Berruguete
38 Gaztambide
39 Arapiles
40 Trafalgar
41 Almagro
42 Rios Rosas
43 Vallehermoso
44 El Pardo
45 Fuentelareina
46 Peñagrande
47 Pilar
48 La Paz
49 Valverde
50 Mirasierra
51 El Goloso
52 Casa de Campo
53 Argüelles
54 Ciudad Universitaria
55 Valdezarza
56 Valdemarín
57 El Plantío
58 Aravaca
59 Cármenes
60 Puerta del Angel
61 Lucero
62 Aluche
63 Campamento
64 Cuatro Vientos
65 Águilas
66 Comillas
67 Opañel
68 San Isidro
69 Vista Alegre
70 Puerta Bonita
71 Buenavista
72 Abrantes
73 Orcasitas
74 Orcasur
75 San Fermín
76 Almendrales
77 Moscardó
78 Zofío
79 Pradolongo
80 Entrevías
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81 San Diego
82 Palomeras Bajas
83 Palomeras Sureste
84 Portazgo
85 Numancia
86 Pavones
87 Horcajo
88 Marroquina
89 Media Legua
90 Fontarrón
91 Vinateros
92 Ventas
93 Pueblo Nuevo
94 Quintana
95 Concepción
96 San Pascual
97 San Juan Bautista
98 Colina
99 Atalaya

100 Costillares
101 Palomas
102 Piovera
103 Canillas
104 Pinar del Rey
105 Apostol Santiago
106 Valdefuentes
107 San Ándres
108 San Cristobal
109 Butarque
110 Los Rosales
111 Los Ángeles
112 Casco Histórico de Vallecas
113 Santa Eugenia
114 Ensanche de Vallecas
115 Casco Histórico de Vicálvaro
116 Valdebernardo
117 Valderribas
118 Cañaveral
119 Simancas
120 Hellín
121 Amposta
122 Arcos
123 Rosas
124 Rejas
125 Canillejas
126 Salvador
127 Alameda de Osuna
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128 Aeropuerto
129 Casco Histórico de Barajas
130 Timón
131 Corralejos
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