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Abstract 
 

Recent advances in information and communication technologies have led to the expansion 
of collaborative work. Complex problems in science, engineering, or business are being solved 
by teams of people working closely with one another. However, forming teams of experts is 
a computationally challenging problem that requires powerful solution techniques. A meta-
heuristic algorithm that incorporates some of the principles of quantum computing into an 
evolutionary structure is presented. The resulting Quantum Evolutionary Algorithm (QEA) 
has the ability to produce an adequate balance between intensification and diversification 
during the search process. Numerical experiments have shown that the QEA is able to 
significantly improve the quality of the solutions for hard instances of the team formation 
problem, particularly when compared to a standard genetic algorithm. The successful 
performance of the algorithm requires careful parameter tuning, as well as a mechanism to 
effectively share information across the population of candidate solutions. 
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1st Law of Computing: You cannot solve uncomputable or NP- hard problems 
efficiently unless you have a physical infinity or an efficient oracle. 
 

2nd Law of Computing: There are no physical infinities or efficient oracles. 
 

3rd Law of Computing: Nature is physical and does not solve uncomputable or 
NP-hard problems efficiently. 
 

Corollary: Nature necessarily solves uncomputable or NP-hard problems only 
approximately. 

 

 Göran Wending (2019)
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Chapter 1 Introduction 
 

1.1 Motivation and Objective 
 

Collaborative problem solving has been the subject of artificial intelligence research for almost 
half a century as reflected in the pioneering work of Newell and Simon (1972). Gradually, the 
focus of artificial intelligence research changed from trying to replicate human intelligence to 
augment human capabilities, both at individual as well as at the societal level. With 
advancements in computing and communication technologies, collectives of intelligent agents 
have been applied to problems in varied domains like optimisation tasks, the Web and social 
systems. As mentioned in Singh and Gupta (2009) and discussed furtherly in Easley and 
Kleinberg (2010), investigations in human computation, social computing and complex 
networks have also contributed to new results, tools and technologies for social and human 
problem solving.  

There are many dimensions in which the collective use of resources yields better solutions to 
a specific problem or task. In this sense, it must be noted that intelligence does not arise only 
in individual brains; it also arises in groups of individuals. This is a fundamental concept and 
is known as collective intelligence: groups of individuals acting collectively in ways that seem 
intelligent. The result that emerges from the synergistic aggregation of individuals’ potentials 
is larger than any individual’s potential or a mere sum of the individuals’ potentials.  

The so-called wisdom of crowds, discussed at length in Surowiecki (2004), is a simple idea 
that has profound implications: a large collection of people is smarter than an elite few at 
solving problems, fostering innovation, coming to wise decisions, and even deciding how our 
social and economic activities should be organised. In this regard, Theiner et al. (2009) and 
Wooley et al. (2015) show that groups of people can manifest cognitive capacities beyond the 
simple aggregation of their individual members. Awal and Bharadwaj (2018a) give an 
overview of the principles of collective intelligence and the concept of wisdom of crowds and 
highlight, for instance, how to maximize the potential of big data analytics in this context. 

Complex problems in science, engineering, or business are being solved by teams of people 
working closely with one another, each with the help of their network. As noted by Malone 
and Bernstein (2015), growing amount of scientific research is done, for instance, in an open 
collaborative fashion in projects sometimes referred to as “citizen science”. Collaborative 
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software design and prediction tasks are also examples of teams of people sharing their skills 
to perform a task or solve a problem.1 

Effective organisations must thus have a structure that fosters the efficient formation of teams 
to accomplish difficult tasks. In collaborative work, groups of agents must co-ordinate 
effectively to solve problems, allocate tasks across a distributed organisation and achieve 
collective goals. Team formation is essential in this regard. The success of a team of agents 
working collaboratively to solve a given task or problem will depend to a large extent on the 
amount of the so-called group collective intelligence. As noted in Wi et al. (2009), this is made 
of essentially two key components: one is knowledge competence, that is, the skills of each of 
the members of the team which depends on her inherent intelligence as well as knowledge 
gained from interacting with other members of her social network; the other component is 
collaboration competence which refers to how well those agents interact with each other.  

Two important issues associated with team members influence the success of a project: the 
expertise of team members and the quality of collaboration and communication among these 
people as a team. Regarding the first issue, a trend in this line of work is to model the problem 
as finding the optimal set of experts for the demanded functional requirements considering 
multiple aspects such as technical skills, cognitive characteristics, and personal motivation. 
Klug and Bagrow (2016), for instance, analyse how the team size, the way work is distributed 
among team members and the differences and similarities in the experiences and backgrounds 
of those team members affect the overall performance. Such studies emphasize only on 
properties of individual team members that are independent of the final team configuration. 
This type of problem has been applied, for instance, to team project selection. With their high 
potential, high motivation, great problem-solving ability and flexibility, project teams are 
important work structures for the business and scientific life. The success of these teams is 
highly dependent upon the people involved in the project team. This makes the project team 
selection an important factor for project success. 

Because of the increasing use of the Internet, online social networks of experts have become 
popular. Increasingly, businesses look for subject matter professionals to successfully 
complete tasks. Although these approaches largely ignore the role of social network 
information, such information should not be disregarded. The problem of team formation 

                                                             
1 An overview of this field is given in Franzoni and Sauermann (2014). Relevant applications include the study of 
climate change as described in Duhaime et al (2015) and the Polymath Project presented in Gowers and Nielsen 
(2009). Michelucci and Dickinson (2016) review applications in human-computer interaction. Nickerson (2015) 
illustrates applications in the field of collective design, where creative work is performed by thousands of people 
who interact through collective design systems. Kyriakou et al (2014) analyse open collaboration in hardware 
design. 
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should be extended to one in which the objective is to achieve an optimal allocation of agents 
or experts to specific tasks considering the interaction amongst team members.  

The social graph structure of the individuals needs to be modelled explicitly. In this sense, 
Chhabra et al. (2012) consider the problem where experts on different task types may have a 
synergistic effect on each other’s performance when they are allocated to the same project by 
fruitfully sharing information that could be valuable for different task types. The authors 
demonstrate that taking social network structure into account can have significant benefits in 
terms of the overall optimality of task allocation. Dykhuis et al. (2013) explored the 
performance of a simple, agent-based team-formation strategy in a variety of graph topologies 
and task structures. Even though they do not achieve optimal performance, small-world 
graph topologies, which reflect characteristics of real social networks, are efficient structures 
for team formation. Because they have a limited number of local connections, convergence is 
very fast, but because of the small-world structure, agents have quick access to a majority of 
the other agents, leading to efficient use of these few connections in finding effective solutions. 

The goal of the present research work is to develop a new method to form the best team of 
experts in a social network to accomplish a task in the most efficient manner. This problem is 
known in the literature as the Team Formation Problem in Social Networks (TFPSN). There 
are two main reasons that motivate the interest in this problem. First, it is very relevant as 
demonstrated by recent advances in information and communication technologies that have 
led to the expansion of collaborative work in many disciplines; second, it is computationally 
difficult and hence requires powerful solution techniques. 

 

1.2  Methodology 
 

Team formation is a well-known and widely studied combinatorial optimisation problem. The 
main reference in the field is the work of Lappas et al. (2009). These authors are the first to 
consider the problem of team formation within social networks. They defined the problem of 
team formation as follows: Finding a team of experts that not only cover the required skills of 
the task, but also the members can work effectively with each other. The social network is 
modelled as a graph where each node represents an expert, with one or more skills, and each 
edge is weighted by the collaboration cost between the two corresponding experts. These 
authors also proved that the problem of team formation is a complex one, and more 
specifically, an NP-hard. This means that no polynomial time algorithm exists that finds the 
optimal solution for all specific instances of this problem. 
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1.2.1 General Approach 

The TFPSN is a challenging problem that has been addressed in the literature from different 
angles, particularly using near-optimal methods. These algorithms produce high-quality 
solutions in a reasonable time for real-world applications, but there is no guarantee of 
discovering a global optimal solution. Within this approach, two categories of algorithms can 
be distinguished: approximation and metaheuristic algorithms. 

Approximation algorithms provide provable solution quality and provable run-time limits. 
Hence, the design and analysis of these algorithms involves a mathematical proof certifying 
the quality of the returned solutions in the worst case. This distinguishes them from heuristics, 
which find reasonably good solutions on some inputs, but provide no clear indication at the 
outset on when they may succeed or fail. Also, many metaheuristics implement some form of 
stochastic optimization, so that the solution found is dependent on the set of random variables 
generated. In contrast, approximation methods tend to be non-deterministic, although some 
algorithms incorporate random elements.  

In the context of the TFPSN, and following this pioneering work of Lappas et al. (2009), a vast 
literature has emerged where specific approximation algorithms are developed for specific 
formulations of the problem. The problem has been formulated in different ways depending, 
for instance, on the definition of the communication costs between experts, capacity or other 
constraints. As a result, numerous approximation algorithms have been proposed. In general, 
the processing of existing methods can be divided into two phases: take experts as search 
target, search the experts having the required skills as candidates firstly, and then select team 
members from the candidates based on their constraints. The constraints are used for 
measuring the effectiveness of teams. The constraints explored in the literature are based on 
the shortest path distances, density, and the cost of the minimum spanning tree of the 
subgraph induced by the team. The shortcoming of the two-phase algorithms is relatively 
poor time efficiency and their specificity to the problem at hand. 

As discussed in Bousaïd et al. (2013), an alternative way of effectively tackling the team 
formation problem is through metaheuristic methods. These are general-purpose algorithms 
that can be used to solve almost any optimization problem. Their global search capabilities, 
their flexibility, robust performance and adaptability are all considered as outstanding 
characteristics of these methods when searching for optimal solutions. Despite these 
advantages, there is considerable less amount of research applied in the context of the TFPSN. 
The present work aims at reducing this gap by applying to this problem state-of-the-art 
methods which are inspired on natural computation. 

 

 



 
 

 8 

MÁSTER UNIVERS ITARIO EN INTELIGENCIA ARTIFICIAL AVANZADA                                   UNED 

1.2.2 Natural Computing Approach 

Natural computing has established itself as a prominent paradigm in the domain of general 
purpose search and optimisation methods. Brabazon et al. (2015) survey the main 
developments in this field and note that, as our understanding of natural phenomena has 
deepened, so has our recognition that many mechanisms in the natural world parallel 
computational processes and can therefore serve as an inspiration for the design of problem-
solving algorithms (defined simply as a set of instructions for solving a problem of interest). 
Within the field of natural computing, Evolutionary Algorithms (EAs) are considered both by 
researchers and practitioners as effective optimisers. EAs have as their objective to mimic 
processes from natural evolution, where the main concept is survival of the fittest. Their 
applications range from academic research and industrial engineering to financial analysis 
and even art production. EAs define practical and robust optimization and search 
methodologies.  

The idea of a computer-simulated evolutionary process dates to the very dawn of digital 
computing, being introduced in the writings of Alan Turing in (1948, 1950). Originating from 
more traditional approaches to problem solving, EAs then developed into diverse branches. 
As described in Engelbrecht (2007), the main branches of this field are evolution strategies, 
evolutionary programming, genetic programming, differential evolution and genetic 
algorithms. The latter originate from the pioneer work of Holland (1975). As described in 
detail in Rowe (2015), these algorithms are inspired by concepts in evolutionary biology such 
as inheritance, mutation, selection, and crossover, in which a population of random 
chromosomes represents many possible solutions to the problem to be solved. 

Before converging to some optimum in the search space, EAs must evaluate an adequate 
number of candidate solutions whereby the low-fitness individuals are discarded and the 
high-fitness candidates are selected to generate new offspring. Therefore, an EA solving real-
world problems with polynomial complexity can be impractical due to costly fitness 
(function) evaluations. While EAs are effective at finding acceptable solutions, they need to 
be coupled with efficiency enhancement techniques to be competitive with other conventional 
optimizers. Conveniently, a large corpus of efficiency enhancement techniques exists for EAs, 
as discussed, for instance, in Luong et al. (2012). 

Another important aspect with EAs is the need to preserve the diversity of the population and 
thus avoid getting stuck at local optima. The trade-off between exploration and exploitation 
is a central theme in this field. EAs are characterized by the representation of the individual, 
the evaluation function representing the fitness level of the individuals, and the population 
dynamics such as population size, variation operators, parent selection, reproduction and 
inheritance, survival competition method. Crepinsek et al. (2013) note that, to have a good 
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balance between exploration and exploitation, these components should be designed 
properly. 

 

1.2.3 Quantum-Inspired Approach 

One line of research has attempted to improve the performance of EAs through the 
incorporation of quantum principles. This has led to the so-called quantum evolutionary 
algorithms (QEAs). Manju et al. (2014) provide a detailed review of applications within the 
field of computational intelligence, whereas Zhang (2011) presents a survey and empirical 
study of QEAs. This can be thought of as the result of combining the worlds of biological 
evolution and quantum systems. The term “inspired” must be stressed as these are algorithms 
that run on classical computers; interestingly, the use of computational paradigms with 
proximity to the quantum concepts will require less translation to quantum machine language 
when the quantum computers become available. 2  

QEAs can be regarded as a probabilistic system in which the probabilities related to each state 
are used to describe the behaviour of the system. The first application of these concepts was 
proposed by Narayanan and Moore (1996). The authors solved the traveling salesman 
problem in which the crossover operation was performed based on the concept of 
interference.3 

QEAs work with a quantum population. Each chromosome in the quantum population is 
represented as a string of quantum bits, also called as qubits, with the advantage that it can 
represent a linear superposition of states in the search space probabilistically. Superposition 
enables a quantum chromosome to store exponentially more data than a classical chromosome 
of the same size. Further, whereas an operation applied to a classical chromosome produces 
one result, in a quantum-inspired algorithm, an operation applied to the quantum 
chromosome produces a superposition of all possible results. Thus, the implicit parallelism in 
QEAs leads to better population diversity than in the classical representation. 

QEAs have been applied in multiple domains, particularly to solve difficult combinatorial 
optimisation problems. Han and Kim (2000, 2002) were the first to implement a QEA that 
works with a quantum population comprising of binary observation quantum chromosomes 
with each chromosome represented as a string of qubits. The authors investigated the 
applicability of QEAs to the well-known difficult combinatorial optimization problem, the 0-

                                                             
2 Yingchareonthawornchai et al. (2012) present a first attempt to programming a genetic algorithm in a quantum 
computer. 

3 Du and Swamy (2016) provide a description of the main quantum concepts such as interference and 
superposition.  
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1 knapsack problem. This has been a benchmark problem widely used to test the properties 
of different QEAs as discussed in Patvardhan et al. (2016).  

There is ample evidence that quantum-inspired evolutionary algorithms display better 
convergence and search abilities than the classical evolutionary methods, giving better 
solutions in shorter time. They attribute the global search ability of QEAs to the diversity 
generated by the intrinsic probabilistic representation. As discussed in Platel el at (2009), 
QEAs can be regarded as a kind of Estimation of Distribution Algorithm. These algorithms 
replace the traditional reproduction mechanism of EAs, i.e. genetic operators, with 
probabilistic model estimation, followed by sampling individuals from the estimated model. 
Hauschild and Pelikan (2011) provide a survey of this field of research.   

Another important feature of QEAs is their ability to explore the search space even with a 
small number of individuals and achieve a proper balance between exploration and 
exploitation. However, and despite their numerous advantages, QEAs face some 
shortcomings common to many EAs. Improving the performance of these algorithms has thus 
been an active field of research as evidenced by the work of Tarayani and Akbarzadeh (2014).  

 

1.3 Contribution of this Work 
 

As discussed in the previous section, one of the main characteristics of QEAs is their ability to 
produce an adequate balance between intensification and diversification during the search 
process. This property helps to deal with difficult problems like the one considered here, in 
which there are usually many local optima.  

The main contribution of the present work is the application and evaluation of methods based 
on QEAs to the TFPSN. Specifically, a QEA is applied and contrasted to a canonical genetic 
algorithm. A series of numerical experiments based on synthetic data is carried out to assess 
the suitability of the proposed method. The results show that the QEA is able to significantly 
improve the quality of the solution when compared to a standard genetic algorithm.   

 

1.4 Organisation of the Thesis 
 

The present thesis is organised as follows. Chapter 2 provides a formal definition of the 
problem object of study. Chapter 3 then presents a detailed review of the literature on methods 
for tackling the TFPSN. Chapter 4 describes the QEA that is used to solve the TFPSN. Chapter 
5 presents the results of a series of numerical experiments and tests aimed at evaluating the 
performance of the QEA described in the previous chapter. Finally, Chapter 6 provides some 
concluding remarks and possible extensions of the work described in this thesis.  
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Chapter 2 Team Formation Problem in 
Social Networks 
 

This chapter provides a formal definition of the Team Formation Problem in Social Networks 
(TFPSN). Essentially, given a social network of experts and a collaborative task that requires 
a set of skills, the team formation problem aims at finding a team of experts who can cover all 
the required skills and communicate with one another in an effective manner.4  

 

2.1 Intuitive Description 
 

To illustrate the problem, we borrow the example discussed in Wang et al. (2015). The authors 
consider a social network represented by a graph as the one shown in Figure 2.1. The graph, 
denoted as G(V,E), is composed of a set V of nodes (experts) and a set E representing the links 
between the experts. In the example considered here, the network is formed by six experts 
denoted as V = {v1, . . . , v6}. Each expert is associated with a specified set of skills. For instance, 
expert four, v4, has two skills which are denoted as s4 and s5 respectively.  

The edges of the graph have an associated value or weight that represents a measure of the 
collaboration between the experts. This has different interpretations depending on the specific 
problem considered. For instance, Lappas et al. (2009) define these weights as communication 
costs between experts. In this way, a low-weight edge between nodes vi and vj implies that the 
two experts, vi and vj, can collaborate or communicate more easily than candidates connected 
with a high-weight edge. These weights can be instantiated in different ways in different 
application domains. For example, in a company, the weight between two employees may 
correlate to the length of the path from one employee the other through the organizational 
chart. In a scientific research community, the weight between two scientists is related to the 
total number of publications they have co-authored. Interpersonal relationships among 
individuals can also be used to calculate the weights. 

The collaboration cost between two experts, vi and vj, is represented as the weight of edge 
(vi,vj). Note that this cost is not necessarily calculated along the shortest path between the 

                                                             
4 It must be emphasised that the notion of communication is wide and generally reflects the degree in which two 
experts can collaborate effectively. Hence, these two terms, communication and collaboration, will be used 
interchangeably. 
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experts, that is, along the path between them with a minimum number of edges. For example, 
the collaboration cost between experts v1 and v3 is 0.2 in Figure 2.1; however, if the cost 
between expert 1 and expert 3 was higher than 0.4, it would be preferable to follow the route 
via expert 2, as it would be cheaper than the direct one.  

 

 
Figure 2.1 A Social network of experts and their collaboration costs 

 

Consider the problem in which, given a task T with five required skills {s1, s2, s3, s4, s5}, the aim 

is to find a team of experts, denoted by X ⊆V, that collectively cover all the required skills 
with the least collaboration cost. In this problem, two of the teams that cover all the required 
skills are X1 = {v1, v2, v3, v4} and X2 = {v3, v4, v5, v6} (see Figure 2.1). However, the solution 
provided by the algorithms will ultimately depend on the cost function specified for a team.  

In the literature, two popular metrics of collaboration cost for a team are the diameter distance 
and the Steiner distance. These will be formally defined later in this chapter, but the former is 
the maximum collaboration cost among the cheapest paths between any two experts in the 
team, whereas the latter is the cost of the minimum spanning tree for the subgraph 
corresponding to the chosen team, that is, the sum of the collaboration costs of all the edges 
in the mentioned minimum spanning tree.5  

One can observe that the collaboration cost of team X1 under the diameter distance is 0.8, since 
this is the maximum among the cheapest costs between any two experts in X1, which is 

                                                             
5 A spanning tree of an undirected graph is a subgraph that is a tree (any two vertices are connected by exactly one 
path) and contains all the nodes of the undirected graph. In a weighted graph, a minimum spanning tree is a 
spanning tree with minimum weight, where the weight of a tree is calculated as the sum of its edges' weights. 
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associated to the experts v2 and v4 in this case: the shortest path is {(v2,v3), (v3,v4)} and the 
corresponding cost is 0.2 + 0.6 = 0.8.  

The Minimum Spanning Tree of the graph representing team X1 in Figure 2.2 is given by 
{(v1,v2), (v1,v3), (v3,v4)}, resulting in a cost under the Steiner distance of 1 = 0.2 + 0.2 + 0.6.  

 

Team X1         Team X2 

 
 

Figure 2.2 Two feasible teams for the task T= {s1, s2, s3, s4, s5} 

 

The collaboration cost of team X2 under the diameter and Steiner distances is 0.9 = 0.6 + 0.2 + 
0.1 corresponding to the subgraph {(v3,v4), (v4,v5), (v5,v6)}. Hence, team X1 has the lower 
collaboration cost according to the diameter distance, while team X2 has the lower collaboration 
cost according to the Steiner distance. It is clear thus that, in the formulation of the TFPSN, the 
way the cost function is defined is critical. There is an ample literature on this subject as 
reviewed in Chapter 3.   

As noted above, the collaboration (communication) cost associated to the link between any 

two experts vi and vj, denoted by eij Î E, can be defined in different ways depending on the 
nature of the problem. One possible definition is given by the following expression: 

 

𝑒() = 1 −
+𝑠(𝑣() ∩ 𝑠1𝑣)2+
+𝑠(𝑣() ∪ 𝑠1𝑣)2+
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where 𝑠(𝑣() represents the set of skills of expert 𝑣(. Formally, the weights on the edges 
represent pairwise Jaccard distances between the skills of all pairs of connected nodes. The 
intuition is, for instance in a network of scientist co-authoring papers, to represent how many 
papers both authors have written together out of all the papers published by the authors. 

 

2.2 Formal Definition 
 

To formalise the TFPSN, we first introduce some notation and definitions. There is a collection 
of N candidate experts, V = {v1, . . . , vN} and a set of M specified skills S = {s1, . . . , sM}. Each 

expert vi is associated with a set of skills s(vi) ⊆ S. The set of experts having skill sj is denoted 

as C(sj), where C(sj) ⊆ V.  A task T is modelled by a set of required skills, that is, T = {sT(1), . . . , 

sT(k)} ⊆ S. A team of experts X ⊆ V is said to be feasible for task T, if and only if the experts in X 

collectively cover all the required skills, that is, T ⊆ ∪45∈7 s(vi). 

The collaboration cost is represented through the closeness of the experts in a social network 
G(V,E). Without loss of generality, the graph G can be assumed to be connected as it is always 
possible to transform any subgraph to a connected one where there is a path between every 
pair of vertices.6 The collaboration cost of two experts, vi and vj, is given by the cheapest path 
between them, denoted as sp(vi,vj). Table 2.1 summarises the notation for this problem. 

 

 

 

 

 

 

 

 

 

Table 2-1 Notation for the TFPSN 

 

                                                             
6 In this case, by simply adding edges with a very high weight between every pair of nodes belonging to different 
connected components. Note that this very high weight is a number higher than the sum of all pairwise cheapest 
paths in G. 

Notation Definition 
V A set of experts 

G(V,E) Experts social network 
S Set of skills 
T A task with required skills 
X Experts team 

C(si) A set of experts skilled in si 
s(vi) Skills of expert vi 

eij Edge between experts  vi and vj 

sp(vi,vj) Cheapest cost between experts vi and vj 
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It is now possible to formally define the TFPSN as follows: Given a social network of experts 
denoted by the undirected weighted graph G(V,E) and where the experts are associated with 
specified skills in S, the TFPSN is to find the team of experts X ⊆ V that can collectively cover 
all the required skills for task T with the lowest collaboration cost. 

The problem statement above is relatively general and hence does not explicitly mention the 
form of the collaboration cost function. The following are examples of this cost function which 
are widely used in the literature: 

Diameter Distance: is defined as the maximum collaboration cost among the cheapest paths 
between any two experts in the team X, that is,  

 

Cc-D(X) = max
4;,4=∈>

𝑠𝑝1𝑣@, 𝑣A2. 

 

Steiner Distance: is denoted as Cc-ST(X) and represents the weight cost of the minimum 
spanning tree for the subgraph G’ ⊆ G formed by team X.  

 

Sum of Distances: is defined as the sum of all cheapest paths between any two experts in team 
X, that is,  

Cc-SD(X) =∑ 𝑠𝑝1𝑣(, 𝑣)245,4C∈7 . 

 

From a practical point of view, the TFPSN can be solved in two steps. First, a series of P teams 
of experts, corresponding to feasible solutions, is obtained. The collection of these sets is 
denoted by X={X1,…,Xp}. The next step consists of checking which one of the sets in X 
minimizes the collaboration cost. That is,  

 

𝑋∗ = 𝑎𝑟𝑔min
75∈𝑿

𝐶𝑐(𝑋() 

subject to 

∀𝑠( ∈ 𝑇, ∃𝐶(𝑠() ∉ ∅ 
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The candidate solutions for this problem can be encoded in a binary form, so that its 
representation is adequate for the application of genetic algorithms, as shown in detail in 
Chapter 4. 

Lappas et al. (2009) showed that the TFPSN is NP-hard. They also showed that this is an 
instance of the set cover problem. This problem is one of the classical problems in complexity 
theory and computer science.7 This is regarded as one of the most important discrete 
optimization problems because it can be formulated as a model for various real-life problems, 
such as vehicle routing, resource allocation, scheduling problem, or facility location problem.  

Given that the problem is proved to be NP-hard, approximate algorithms need to be 
considered. For instance, Beasley et al. (1996) present a genetic algorithm to tackle this 
problem.  

                                                             
7 Formally, given a group of sets, denoted by N, let X be the union of all the sets. An element is covered by a set if 
the element is in the set. A cover of X is a group of sets from N such that every element of X is covered by at least 
one set in the group. The set cover problem is to find a cover of X of minimum size. For instance, let N={{1,2,3}, {2,3}, 
{3,4}, {4,5}}. The union of these sets is X={1,2,3,4,5} which can be achieved by the set {{1,2,3}, {4,5}} whose size is 2. 
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Chapter 3 Review of the Literature 
 

The TFPSN belongs to a class of complex combinatorial problems that require the use of 
computational methods that cannot in general guarantee the optimality of the solution as 
exhaustive search is not feasible. As a result, algorithms that provide a reasonable good 
solution are required. These inexact (or sub-optimal) methods can be subdivided into two 
categories: approximation algorithms and metaheuristic methods. 

As shown in Figure 3.1, on the one hand, there is a set of algorithms, referred to as 
approximation algorithms, that provide “close” to optimal solutions. These are efficient 
deterministic algorithms that find reasonable solutions to NP-hard problems, such as the 
TFPSN, with provable guarantees on the distance of the returned solution to the optimal one. 
One approach to design approximation algorithms is through greedy methods that make the 
choice that seems to be the best at each step. This means that a locally-optimal choice is made 
in the hope that this choice will lead to a globally-optimal solution, which is not always the 
case. Section 3.1 presents some approximation algorithms applied in the context of the TFPSN. 

 

 

 

 

 

 

 

 

Figure 3.1 Classification of optimisation algorithms 

 

Section 3.2 focus on metaheuristic methods. A metaheuristic is a general algorithmic 
framework which can be applied to different optimisation problems with relatively few 
modifications to make them adapted to a specific problem. These algorithms use a certain 
trade-off of randomization and local search. Quality solutions to difficult optimisation 
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problems can be found in a reasonable amount of time, but there is no guarantee that optimal 
solutions can be reached. Some of the most prominent metaheuristic algorithms are inspired 
in nature, such as evolutionary algorithms or simulated annealing. The former constitute 
examples of global, population-based algorithms, whereas the latter illustrates a single-point 
local solution method. 

 

3.1 Review of Approximation Methods 
 

The discussion so far has put forward the importance of studying the formation of groups of 
agents or teams considering the relationship amongst the members of the teams. The question 
is how to form those teams in an optimal manner. The response to this question will depend 
on what the specific objective to achieve is, specifically, how the model is formulated.  

The literature on the TFPSN has grown significantly in recent times, giving rise to several 
approximate algorithms that are able to tackle the problem effectively. Each formulation 
focuses only on a subset of design criteria such as skill coverage, social compatibility, 
economy, skill redundancy, etc. Depending on the specific formulation of the problem, a cost 
function is defined. This cost function could be defined relative to different elements, such as, 
collaboration costs, personal costs, number of skilled experts, capacity constraints, balance of 
workload, team leadership, skilfulness, or amount of tasks performed. Wang et al. (2015) 
compare state-of-the-art team formation algorithms. They propose a benchmark that enables 
fair comparison amongst these algorithms and then implement these algorithms using a 
common platform and evaluate their performance using several real datasets. 

Lappas et al. (2009) were the first to consider the team formation problem in the presence of a 
social network of individuals. They explicitly introduced communication costs and studied 
two instances of this problem depending on the way those costs were considered: the diameter 
distance and the minimum spanning tree communication cost. They addressed the problem of 
forming a team of skilled individuals to perform a given task, while minimising the 
communication cost among the members of the team. The authors analysed the problem 
rigorously by showing that, in both instances of the cost function, it is NP-hard. They 
presented accordingly approximation algorithms for the solution of the problem. The authors 
also carried out experiments and illustrated that their problem definitions, as well as the 
algorithms, work well in practice and give useful and intuitive results. 

Li et al. (2015) extend the original team formation problem to a generalised version in which 
the number of experts selected for each required skill is also specified. The proposed teams 
need to contain an adequate number of experts for each required skill. The authors develop 
two approaches for this problem. Firstly, they devise a density-based seed selection strategy 
as well as a novel grouping-based method to compose the team for generalised tasks. 
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Rangapuram et al. (2015) generalised even further the TFPSN to accommodate realistic 
scenarios. In particular, these authors considered the inclusion of a pre-designated group of 
experts, restrictions in the size of the team as well as incompatibility constraints between 
experts. 

The issue of the team leader has also been considered in the definition of the TFPSN. Kargar 
et al. (2011) introduced the problem of finding a team of experts with a leader who is 
responsible for monitoring and co-ordinating the project, and thus a different communication 
cost function was used. To solve this problem, an exact polynomial algorithm was proposed. 
They showed that the total number of teams may be exponential with respect to the number 
of required skills. Teng et al. (2014) consider the problem of choosing multiple leaders 
organised into a hierarchy where each leader is responsible for only a limited number of team 
members. In this paper, the authors propose the team formation problem with the 
communication load constraint in social networks. The communication load constraint limits 
the number of team members a leader communicates with. More recently, Shi et al. (2017) 
argue that, as the number of required skills increases and the team grows, a single leader is 
not sufficiently capable of administering a large project, since the leader may not have enough 
time to communicate with all the team members. Therefore, the team would be divided into 
smaller sub-teams, each of them with a leader. They propose three basic algorithms, and 
explore a self-organising mechanism to determine the role of everyone in a team (as a leader 
or as a member).  

Another topic analysed in the literature is the consideration of personnel costs. These are 
defined as the number of skills the expert is responsible for in the project. The more skills the 
expert has in the project, the more responsibility he or she has and, as a result, the higher is 
the associated cost. In a series of papers, Kargar et al. (2012) and Kargar et al. (2013a, 2013b) 
studied the problem of finding an affordable and collaborative team from an expert network 
that minimises two objectives: the communication cost amongst team members and the 
personnel cost. They propose an approximation algorithm based on converting the input 
graph with both node and edge weights into a graph with weights on edges only. The 
methods the authors propose are based on either iteratively replacing cheapest experts with 
more expensive ones to improve the combined cost or incrementally adding experts with 
minimum cost contribution.  

Other formulations include capacity constraints. In this case, for a given task, the goal is to 
find a team of users from the social network who are socially effective in terms of collaboration 
and a division of the task among team members so that no user is overloaded by the 
assignment, that is, no user is assigned task beyond her capacity. Datta et al. (2012) presented 
several algorithms to solve the TFPSN taking into consideration these type of capacity 
constraints. They presented an approach that attempts to find teams that are socially close as 
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well as division of the task so that no user is overloaded by the assignment. Anagnostopoulos 
et al. (2012) studied a version of the TFPSN considering both the team communication 
overhead and workload balancing.  

Time limits have also been considered when formulating the TFPSN. In this case, the objective 
is to find a team that not only covers the skills that the task requires but also that completes 
the different tasks in the specified time. For instance, Yang and Hu (2013) propose a standard 
to measure the cost of team building containing both the communication cost and the time. 
They present two approximation algorithms to solve the problem and provide experimental 
evidence based on real datasets showing satisfactory results.  

Recently, Fathian et al. (2018) have proposed an optimization model for the formation of a 
reliable team of experts, who have a certain number of skills and form part of a collaboration 
network. The proposed mathematical model maximized team reliability by considering the 
probability of unreliable experts that may leave the team and proposed a backup for each 
unreliable member.  

 

3.2 Review of Metaheuristic Methods 
 

The approximation methods discussed in Section 3.1 tend to be problem specific and thus 
cannot easily be applied to alternative specifications of the problem. Hence, it would be 
desirable to consider other more wide-ranging methods. As discussed in Chapter 2, the 
TFPSN is a difficult combinatorial optimisation problem. Hence, the use of metaheuristic 
algorithms constitutes an alternative approach to solving this problem.  

 
3.2.1 Evolutionary Algorithms 
 

Evolutionary algorithms, as described in Bäck et al. (2000), Eiben et al. (2003) and de Jong 
(2006), are a class of metaheuristic methods which have been shown to be powerful 
optimisation techniques that can be applied to an ample spectrum of cases. Moreover, the 
team formation problem becomes much more challenging in a large social network. With a 
linear increase in experts, the number of combinations to check grows exponentially. At the 
same time, the best connected experts, which are usually also the best skilled ones, display an 
increasing number of relations. Consequently, checking for recommendations becomes 
computationally expensive.  

In this section, we review some of the main references in the literature that have applied 
metaheuristic evolutionary methods. In this context, the team formation problem is defined 
as finding the best match of experts to required skills considering multiple dimensions from 
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technical skills, cognitive properties and personal motivation. These papers largely focus on 
properties of individual experts that are independent of the resulting team configuration. For 
instance, Agustin-Blas et al. (2011) considered a genetic algorithm (GA) to tackle the team 
formation problem. Their focus was on solving grouping problems in which several items had 
to be assigned to a set of predefined groups or teams. Interestingly, they consider a variable-
length encoding approach which is particularly suitable for this type of problems. To enhance 
population diversity, they consider an island model.8 A similar evolutionary approach was 
used by Strnad and Guid (2010). In this case, the objective of their model is to produce a group 
of teams which maximizes the expected utilization of available technical and functional 
capacities described by fuzzy values, that is, vague or imprecise inputs. This is particularly 
appealing in contexts where the problem statement and expert requirements are uncertain 
such as R&D activities. Pitchai et al. (2016) developed a Quantum-based GA to identify near 
optimal teams that optimises a fuzzy criterion, obtained from initial team requirements. The 
efficiency of the proposed design was tested on a variety of artificially constructed instances. 
The authors showed that results of the proposed optimisation algorithm are practical and 
effective. 

Probably, one of the first papers to explicitly consider social interactions within the team 
formation problem is Dorn et al. (2011).  The authors apply GAs and simulated annealing for 
determining effective workforces which provide sufficient skill coverage while achieving 
adequate team connectivity.9 The authors also show that such team configurations promise 
higher probability of success in future collaborations compared to team arrangements that 
neglect social relations and account for individual skills only. The authors consider load 
constraints that determine the short-term availability of users. Experts that are not available 
cannot become part of a new team. Instead of eliminating them from the candidate set, the 
authors let them act as referees by applying their social network for recommending other 
experts of their respective fields. The use of implicit recommendations of collaboration 
partners help to deal with sparsely connected networks.  

Awal and Bharadwaj (2014) addressed the TFPSN by proposing a novel way to quantify and 
optimise a team’s collective ability to solve a specific task. They presented a GA that 
maximises the collective abilities of teams. This is defined as an aggregate measure of 

                                                             
8 Island Models are a popular and efficient way to implement a genetic algorithm on both serial and parallel 
machines. In a parallel implementation of an Island Model each machine executes a genetic algorithm and 
maintains its own subpopulation for search. The machines work in consort by periodically exchanging a portion 
of their population in a process called migration. See Whitley et al. (1999) for a detailed exposition. 
 
9 Simulated annealing is an optimisation method inspired by the physical process of heating a material and then 
slowly lowering the temperature to decrease defects. The extent of the search is based on a probability distribution 
with a scale proportional to the temperature. The algorithm accepts all new points that lower the objective, but 
also, with a certain probability, points that raise the objective in order to avoid local optima. 
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collective intelligence, rather than the individual abilities of the team members. The authors 
quantify this measure by introducing a collective intelligence index for the team. This index 
is defined as a linear combination of an expertise score and a trust-based collaboration score. 
A series of experimental results reveal that the collective intelligence index increases as the 
sparsity level of the graph decreases, indicating that well-connected experts are more suited 
to achieving successful collaborations and may enhance the learning capabilities of the experts 
through knowledge sharing.  

In a subsequent paper, Awal and Bharadwaj (2018b) considered the TFPSN in more realistic 
settings where the team composition must satisfy certain constraints. The authors show that, 
in some cases, only a few suitable experts having high reputation in the team is sufficient to 
complete the task. The authors also showed that not all experts having high reputation or 
expertise are always needed to form a successful team. They proposed a GA to study the 
problem and introduced risk estimation strategies to determine the suitability of a team for a 
given task. The experimental results establish that their proposed model is useful in practical 
scenarios and discovers more coherent and collectively intelligent teams having low inherent 
risks. 

Other relevant contributions include Zamudio et al. (2016) who apply a GA to select 
committees with independent members in social networks. Pendharkar (2013) proposes a GA-
based intelligent agent that learns a team member’s preferences from past actions, and 
develops a team co-ordination schedule by minimising schedule conflicts between different 
members serving on a virtual team.  Esgario et al. (2019) proposed an evolutionary approach 
to solve the Team Formation Problem based on sociometry, which is a qualitative method for 
measuring social relationships in order to form teams with high cohesion in a reduced time. 
The genetic operators were adapted to deal with the constraints of the problem. In addition, 
the penalty method was used to force the algorithm to find feasible solutions. 

 
3.2.2 Other Metaheuristic Methods 
 

The discussion so far has focused on application of evolutionary algorithms to solve the 
TFPSN. However, it is worthwhile commenting on other metaheuristic approaches that have 
recently been applied in this context. El-Asmawi et al. (2018), for instance, have proposed a 
particle swarm optimization algorithm (PSO) for solving the TFPSN. These algorithms are 
inspired by the social foraging behaviour of some animals such as the flocking behaviour of 
birds and the schooling behaviour of fish. PSO shares many similarities with evolutionary 
computation techniques such as GAs. The system is initialised with a population of random 
solutions and searches for optima by updating generations. The goal of the algorithm is to 
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locate the optima in a multi-dimensional space.10 The authors modified the standard PSO 
algorithm to ensure the consistency of the capabilities and the skills to perform the required 
project.  The results presented by the authors indicate that the algorithm could obtain 
promising solutions to difficult instances of the problem in a reasonable timeframe. 

Basiri et al. (2017) proposed a swarm-based algorithm which simulates the brain drain 
phenomenon. Brain drain refers to the international transfer of human capital and 
considerably applies to the migration of highly educated persons from developing to 
developed countries. The initial population is divided into some collections which are called 
countries. There is a social network in each country which specifies each individual 
neighbour. The individuals try to discover increasingly better regions of the search space. An 
unhappy individual which has not had any progress during previous iterations, will try to 
change its current position and go somewhere else better than the source country. This 
migration affects the future migration flow of the individual’s neighbours within the social 
network. The results presented by the authors demonstrate the effectiveness and superiority 
of the proposed algorithm in comparison with the standard evolutionary algorithms.  

  

                                                             
10 Specifically, the algorithm is executed like a simulation, advancing the position of each particle in turn based on 
its velocity, the best known global position in the problem space and the best position known to a particle. Over 
time, through a combination of exploration and exploitation of known good positions in the search space, the 
particles cluster or converge together around an optimum. 
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Chapter 4 Design of a Quantum 
Evolutionary Algorithm for the Team 
Formation Problem in Social Networks 
 

This chapter formally introduces the evolutionary algorithm that we use to solve the TFPSN. 
In order to provide a context to the exposition, the first section introduces the common 
elements that characterise evolutionary algorithms in general. The second section presents in 
some detail the canonical version of QEAs. The main concepts and notation are described first, 
whereas a step-by-step description of the algorithm is given next. The third section describes 
how the TFPSN can be addressed within the framework of the canonical QEA. 

 

4.1 Evolutionary Algorithm 
 

Evolution is to be understood as an optimisation process where the aim is to improve the 
ability of a system to survive in dynamically changing and competitive environments. 
Evolutionary processes represent an archetype whose application transcends their biological 
root. These processes can be distinguished by means of four key characteristics, which are: 

i. a population of entities; 

ii. mechanisms for selection; 

iii. the generation of variety; and 

iv. retention of fit forms. 

In biological evolution, species are positively or negatively selected depending on their 
relative success in surviving and reproducing in the environment. Differential survival, and 
variety generation during reproduction, provide the engine for evolution, as illustrated in 
Figure 4.1. 

The selection step is a pivotal driver of EAs. The step is biased to preferentially select better 
(or fitter) members of the current population. The generation of new individuals creates new 
members which bear some similarity to their predecessors but are not identical to them. 
Hence, each individual represents a trial solution in the environment, with better individuals 
having increased chance of influencing the composition of individuals in future generations. 
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This can be considered as a search process, where the objective is to continually improve the 
quality of individuals in the population.   

 

 

 

 

Figure 4.1 The evolutionary cycle 

 

EAs can thus be broadly characterized formally as follows: 

 

𝑥[𝑡 + 1] = 𝑟 X𝑣1𝑠(𝑥[𝑡])2Y, 

 

where x[t] is the population of encodings at time step t, s(.) is the selection operator for mating, 
v(.) is the random variation operator (crossover and mutation) and r(.) is the replacement 
selection operator.  

An important step in the design of an EA is to find an appropriate representation of candidate 
solutions. The efficiency and complexity of the search algorithm greatly depends on the 
representation scheme. In genetics, a strong distinction is drawn between the genotype and 
the phenotype; the former contains genetic information, whereas the latter is the physical 
manifestation of this information. Both play a role in evolution as the biological processes of 
diversity generation act on the genotype, while the ‘worth’ or fitness of this genotype in the 
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environment depends on the survival and reproductive success of its corresponding 
phenotype. 

The classical representation scheme for GAs is binary vectors of fixed length. In the case of an 
n-dimensional search space, each individual consists of n variables with each variable 
encoded as a bit string. If variables have binary values, the length of each chromosome is n 
bits.  

Inspired by the concept of quantum computing, QEAs are designed with a novel Q-bit 
representation, a Q-gate as a variation operator, and an observation process. Like 
conventional evolutionary algorithms, QEAs are characterised by the representation of 
individuals, population diversity, and the use of a fitness evaluation mechanism.  

Unlike the conventional framework for evolutionary algorithms, QEAs describe individuals 
through a Q-bit representation. By employing an observation process, the algorithm connects 
the Q-bit representation with the candidate solutions. Another key element is the use of the 
so-called Q-gates as an evolutionary operator to obtain fitter individuals.  

 

4.2 The Quantum Evolutionary Algorithm 
 

This section describes the canonical QEA introduced by Han and Kim (2002). We first focus 
on the Q-bit representation, and then the main elements of the algorithm are explained. In 
order to describe the QEA, it might be useful to introduce some basic concepts of quantum 
computing.  

The smallest unit of information stored in a two-state quantum computer is called a quantum 
bit or qubit.11 This may be in the “0” state, in the “1” state, or in any superposition of the two. 
The state of a qubit can be represented using the so-called ket notation as: 

 

|Ψ⟩ = 𝛼|0⟩ + 𝛽|1⟩, 
 

where 𝛼 and 𝛽 are the real and complex components of the complex number 𝛼 + 𝛽𝑖, whose 
modulus is equal to 1, and that determines the probability amplitudes of the corresponding 
states.  

The value |𝛼|a gives the probability that the qubit will be found in the “0” state, and |𝛽|a gives 
the probability that the qubit will be found in the “1” state. Normalization of the state to unity 

guarantees that |𝛼|a + |𝛽|a = 1. The state of a qubit can be changed by the operation with a 

                                                             
11 In the quantum computing literature, the basic unit of information is referred to as qubit, whereas in the 
evolutionary computing literature it is represented as Q-bit. The latter will be used in this thesis. 
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quantum gate. As shown later, this is an important element that will influence the search 
process in the optimization algorithm. 

 

4.2.1 Quantum-bit Representation 
 

In a QEA, encoding the solutions onto chromosomes is based on the probabilistic Q-bit 
representation. Formally, a Q-bit is defined as a pair of real numbers (α, β) written as a column 
vector:  

d
α
βe. 

A Q-bit may be in the “0” state, in the “1” state, or in a linear superposition of the two. A string 
of Q-bits gives rise to a Q-bit individual. This is defined as:  

d
𝛼f 𝛼a … 𝛼h
𝛽f 𝛽a … 𝛽he, 

where |𝛼(|a + |𝛽(|a = 1 for 𝑖 = 1,2, … ,𝑚. The Q-bit representation has the advantage that it can 
implement a linear superposition of states.  

To illustrate these ideas, let us consider the context of the TFPSN. Assume that we have three 
experts, hence 𝑚 = 3. Each expert can or cannot be chosen to participate in the team. If an 
expert is chosen to form part of the team, it is assigned a value of “1”, whereas it is assigned 
“0” in the case of not being chosen. In this example, an individual (set of three experts) has 

2l = 8 possible values: 

|000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩, |111⟩. 
 

The first value (or state) encodes a solution where no expert is chosen, while in the last one all 
three experts are selected to participate in the team. Next, let us assume that there is a Q-bit 
with three pairs of amplitudes such as: 

d
𝛼f 𝛼a 𝛼l
𝛽f 𝛽a 𝛽le = n

f
√a

f
√a

f
a

f
√a

pf
√a

√l
a

q. 

The case |000⟩ has an amplitude coefficient given by the product 𝛼f𝛼a𝛼l which, according the 

values above, is equal to  f
r
= f

√a
f
√a

f
a
.   
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The case |011⟩ has an amplitude coefficient defined by the product of 𝛼f𝛽a𝛽l, which is equal 

to p√l
r
= f

√a
pf
√a

√l
a

.  A similar process can be followed for the other possible cases. Altogether, 

the individual can be represented as: 

 

|Ψl⟩ =
1
4 |000

⟩ +
√3
4 |001⟩ −

1
4 |010

⟩ −
√3
4 |011⟩ +

1
4 |100

⟩ +
√3
4 |101⟩ −

1
4 |110

⟩ −
√3
4 |111⟩ 

 

In the process of observation, each of the eight states can be selected with an associated 
probability. These probabilities are given by the square value of the amplitude coefficients. 
Respectively, these are equal to: 

1
16 ,

3
16 ,

1
16 ,

3
16 ,

1
16 ,

3
16 ,

1
16 ,

3
16. 

 

Evolutionary computing with Q-bit representation is characterised by featuring more 
population diversity than other representations, since it can represent a linear superposition 
of states probabilistically. While only one Q-bit individual is enough to represent eight states, 
in binary representation an individual can only represent one of the possible eight states: 

 

(000), (001), (010), (011), (100), (101), (110), and (111). 
 

The Q-bit representation differs from others considered, for instance, in genetic algorithms, 
such as binary, integer or floating representations. Figure 4.2 provides an illustration in this 
regard.  
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Figure 4.2 Different types of representations for individuals in GAs 

 
 

4.2.2 Main Components of QEAs 
 

 

Before presenting the details of the QEA designed in the present work, it would be helpful to 
provide an overview of the main components. This is illustrated in Figure 4.3, that shows the 
pseudo-code for the canonical version of the algorithm.  

The first step corresponds to the initialisation phase. A set of Q-bit individuals, denoted by 

𝑄(𝑡), is thus generated, usually by means of a random generating process. This represents the 
initial population. Next, the population o Q-bit individuals is subject to a measurement 
procedure that results in an observed population, that is denoted by 𝑃(𝑡). Each element in this 

set corresponds to a binary chromosome. This is evaluated and the best solution in 𝑃(𝑡)	are 
then stored. In that sense, the algorithm can be thought of following an elitist strategy.  

Binary 

Integer

Floating

Quantum

0 1 0 1 0

2 4 7 1 9

4.3 6.2 1.9 8.4 0.2

0 1 0 1 0
1 0 1 0 1
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Figure 4.3 Pseudo-code for the QEA 

 

The algorithm then enters a loop until a termination condition is satisfied. In each iteration (or 

generation), the set 𝑄(𝑡)	of Q-bits is updated. Recall that the Q-bits provide a probabilistic 
representation of states. Hence, the algorithm updates these probabilities so that the 
likelihood of observing states that are close to the best ones observed so far increases. This is 
achieved through the use of quantum rotation gates, which is explained in section 4.3.2.3.  

The algorithm thus probabilistically moves the search towards the best solutions, which act 
as attractors. The choice of these attractors is also a critical component of the algorithm and is 
specified through the so-called migration strategies, detailed in section 4.3.2.4.  

Figure 4.4 describes the block diagram of a QEA. It is also useful to represent the main steps 
of a conventional GA, as this will be used for comparison in the next chapter. In the canonical 
GA, the decision variables (genes) of a problem are coded in binary to form a chromosome. In 
the GA algorithm of Figure 4.5, five important operations can be identified: initialization, 
evaluation, selection, variation, which includes mutation and crossover operations, and 
replacement.  

At generation t = 0, the initial population 𝑃(𝑡) is created at random, uniformly distributed 

over the entire search space. Next, 𝑃(𝑡) is evaluated according to a criteria (fitness function) 
and the promising solutions are selected. These candidate solutions are varied to generate 
new solutions sharing similarities with the original ones, but they are novel in some way. The 

 

1: procedure QEA 
2: t ← 0 
3:  initialise Q(t) 
4: obtain initial P(t) by observing Q(t) states 
5: evaluate P(t) 
6: select best solution in P(t) and store in B(t) 
7: while (not-termination condition) do 
8:  obtain P(t) by observing Q(t-1) states 
9:  evaluate P(t) 
10:  select best solution in P(t) and store in B(t) 
11:  update Q(t) using quantum gates U(t) 
12:  retain best solutions applying migration M(t) 
13:   t ← t+1 
14: end while 
15: end procedure 
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new solutions replace the previous population and the iteration counter is updated (t ← t + 
1). Operations from evaluation to replacement are iterated until the stop criterion is met. 

 

 

 

Figure 4.4 Block diagram for the QEA 
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Figure 4.5 Block diagram for the canonical GA 
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4.3 The QEA for the TFPSN 
 

The next subsections explain in some detail the several steps involved in the implementation 
of the QEA. 
 

4.3.1 Initialisation 
 

The QEA maintains a population of Q-bit individuals, 𝑄(𝑡) = {𝒒fy , 𝒒ay , … , 𝒒zy } at generation t, 

where n is the size of the population and 𝒒)y  is a Q-bit individual defined as: 

𝒒)y = |
𝜶)y

𝜷)y
� = |

𝛼)fy 𝛼)ay … 𝛼)hy

𝛽)fy 𝛽)ay … 𝛽)hy
�, 

where m is the size of the encoded solution, that is, the genotype. The basic steps of the 
initialisation process are summarised as follows:  

• Step 1 Initial Values: One common approach to setting initial Q-bit values is to assign the 

same probability to each state. In this case, 𝜶)� = 𝜷)� for j = 1,…,n and each element is equal 

to 1 √2⁄ . Accordingly, the initial Q-bit population is: 
 

𝑄(0) = {𝒒f�, 𝒒a�, … , 𝒒z�}, 
 

where each initial Q-bit 𝒒)� = 𝒒� for j = 1,…,n and all Q-bit individuals are equal, hence:  

 

𝒒𝟎 = |1 √2⁄ 1 √2⁄ … 1 √2⁄
1 √2⁄ 1 √2⁄ … 1 √2⁄

�. 

 

• Step 2 Initial Observation: This step makes binary solutions by observing the states of the 

initial population, 𝑄(0), of Q-bits. The set of observations are stored in: 
 

𝑃(0) = {𝒙f�, 𝒙a�, … , 𝒙z�}, 
 

where each of the n elements 𝒙)� of 𝑃(0) represents a binary solution (string) of length m, 

which is formed by choosing either 0 or 1 for each bit i = 1,…,m using the probability, either 

+𝛼)(+
a or +𝛽)(+

a, of each Q-bit 𝒒)� for j = 1,…,n. The precise observation procedure will be 

described in detailed in Step 5. 
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• Step 3 Initial Evaluation: Each binary solution 𝒙)� is evaluated to give its level of fitness 

which is denoted as 𝐹)� = 𝐹1𝒙)�2 for j = 1,…,n. The set of function evaluations is stored at 

 

𝐹(0) = {𝐹f�, 𝐹a�, … , 𝐹z�}. 
 

• Step 4 Initial Selection / Retention: The initial best solutions are then selected among the 

observed binary solutions, 𝑃(0). These are stored into the set: 
 

𝐵(0) = {𝒃f�, 𝒃a�, … , 𝒃z�}. 
 

As this is the first generation, all individuals of the population are selected meaning that 

𝐵(0) = 𝑃(0) and 𝒃)� = 𝒙)� for j = 1,…,n. Additionally, the overall best solution in 𝐵(𝑡), 

denoted by 𝒃, that is,  
 

	𝒃 = arg	max{𝐹(𝒃f�), 𝐹(𝒃a�), … , 𝐹(𝒃z�)} 
 

is also stored (retained). 
 

It is important to highlight the role of the selection / retention process. These elements will 
play the role of attractor for the algorithm. The choice of the attractor will influence the speed 
of convergence of the algorithm.  

There are several options for the choice of the attractor. For instance, one could consider a 
global attractor that is used by all the individuals in the population. In this case, the element 

candidate solution 𝒃 would act as the global attractor. Another possibility is to assign to each 
individual its own attractor. In this case, each individual j = 1,…,n would have a specific 

attractor, in this case, this would be 𝒃)�. 

There are other possibilities that could also be considered. For instance, one could divide the 
population into smaller groups that share the same attractor, or there could design situations 
where attractors are exchanged amongst groups. This will be discussed in section 4.3.2.4 on 
migration strategies.  
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4.3.2 Main Loop 
 

Once initial values and parameters are set, then the algorithm enters into a loop over 
generations, indexed by t. The loop keeps going until a termination condition is met. Each 
step of the loop can be associated to an evolutionary cycle.  

In each generation, the process involves observing the current population of Q-bit individuals, 
evaluating the observed solutions, selecting and retaining the best ones and updating the 
population of Q-bit individuals for its use at the next iteration.  

 

4.3.2.1 Evaluation 

In this step, a population of candidate solutions is obtained by “measuring” the Q-bit 
individuals. This is expressed formally as: 

• Step 5 Observation: At each iteration in the loop, a set 𝑃(𝑡) of candidate binary solutions 
is formed by making an observation of the Q-bit individuals computed in the previous 
iteration, 𝑄(𝑡 − 1).  

 
One of the distinctive elements of quantum computing is the collapse or realisation of states 
through the process of observation. In the canonical QEA, this is achieved through the 
following process:   

a) For every bit 𝑥)(y  with i = 1,…,m in the binary string 𝒙)y with j = 1,….,n, a random 

number, denoted as r, is generated from the range [0,1); 
 

b)  If r < +𝛽)(+
a then the bit of the binary string is set to 1, otherwise it is set to 0.  

 
Thus, a binary string of length m is formed from the Q-bit individual, which represents a 
potential solution observed from the j-th Q-bit individual.  

 

• Step 6 Evaluation: Each observed string in 𝑃(𝑡) is then evaluated and the corresponding 

fitness value obtained. This is denoted as 𝐹)y = 𝐹1𝒙)y2 for j = 1,…,n. The set of function 

evaluations is stored at 
 

𝐹(𝑡) = {𝐹fy, 𝐹ay,… , 𝐹zy}. 
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4.3.2.2 Selection 

Once the elements of the population have been observed and evaluated, a selection 
mechanism takes place in order to identify the fittest individuals: 

 

• Step 7 Selection: Each candidate solution 𝒙)y in 𝑃(𝑡), with j = 1,….,n, and the corresponding 

previous best solutions 𝒃)ypf stored in 𝐵(𝑡 − 1) are compared and the better ones are saved 

into 𝐵(𝑡). The overall best solution in 𝐵(𝑡)	is also stored as b. 
 

This selection mechanism resembles an elitist procedure in conventional GAs. The best 
solution is chosen as an attractor. 

 

4.3.2.3 Variation 

A key element of the QEA is the process that updates the population of Q-bit individuals. This 
is very important as it will determine the search carried out by the algorithm and thus the 
process for getting closer to fitter solutions. Indeed, as noted by Zhang et al. (2011), compared 
with binary, numeric and symbolic representations, the Q-bit representation can achieve a 
linear superposition of states given its probabilistic approach.  

Using a Q-gate as a variation operator, instead of crossover, recombination and mutation 
operators, the basic QEA can find the optimal or close-to-optimal solutions with a small 
number of individuals, even with a single individual via multiple observations of the system.  

 

• Step 8  Update: The current population of Q-bit individuals is updated by applying Q-

gates to obtain a new set 𝑄(𝑡). A Q-gate is a variation operator of quantum evolutionary 
algorithms. By this operation, the probabilities of the updated Q-bit must satisfy the 
normalisation condition.  

 
In the canonical QEA, the update is implemented through a rotation gate.12 To understand 
this concept, it must be noted that the Q-bits can be represented using a polar coordinate 

system. Two elements are needed for this purpose: an angular coordinate, denoted as 𝜃, and 
a radial coordinate which is equal to one in this case. Figure 4.6 shows the representation of a 
Q-bit individual.  

                                                             
12 The rotation operator can be identified with the quantum principle of interference. See Lahoz-Beltra (2016) for 
an exposition on this topic. 
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The idea of the rotation update is to change the direction of the Q-bit individual, that is, the 

angle 𝜃, so that the chance of observing a state eventually leading to a fitter solution increases. 
Hence, the key design problem in QEAs is the choice of the rotation angle. It must be noted 
that rotation value plays the role of an “evolution rate”. This parameter also plays a significant 
role in determining the convergence of the algorithm. Consequently, when setting the rotation 
angle, one should avoid assigning too high or too low values. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Polar plot for a Q-bit individual 

 

Figure 4.7 illustrates the mechanics of the vector rotation. Given an initial state characterised 

by the vector (𝛼�, 𝛽�) and the associated angle 𝜃� we have that: 𝛼� = cos 𝜃� and  𝛽� = sin 𝜃�. 

This vector is then rotated by a magnitude equal to ∆𝜃 leading to the new vector (𝛼f, 𝛽f) with 

an associated angle 𝜃f = 𝜃� + ∆𝜃.  

Each component of the new, rotated vector can be expressed as 𝛼f = cos 𝜃f and 𝛽f = sin 𝜃f or 

equivalently as 𝛼f = cos(𝜃� + ∆𝜃) and 𝛽f = sin(𝜃� + ∆𝜃). Taking into consideration the 
following trigonometric identities: 

cos(𝜃� + ∆𝜃) = cos(𝜃�) cos(∆𝜃) − sin(𝜃�) sin(∆𝜃) 

and 

sin(𝜃� + ∆𝜃) = sin(𝜃�) cos(∆𝜃) + cos(𝜃�) sin(∆𝜃). 

 

|0⟩ = �
1
0� 

|1⟩ = �
0
1� 

𝛼 
𝜃 

𝛽 
|ψ⟩ = 𝛼|0⟩ + 𝛽|1⟩ = �

𝛼
𝛽� 
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Figure 4.7 Polar plot of vector rotations 

 

Hence, carrying out the substitutions, the new vector coordinates can be expressed as: 

𝛼f = 𝛼� cos(∆𝜃) − 𝛽� sin(∆𝜃) 

and 

𝛽f = 𝛽� cos(∆𝜃) + 𝛼� sin(∆𝜃). 

 

More generally, for each element of each Q-bit 𝒒()y = �𝛼()y , 𝛽()y �
� with j = 1,…,n and i = 1,…,m, 

the following update procedure is used to obtain the Q-bit  𝒒()y�f = �𝛼()y�f, 𝛽()y�f�
� : 

|
𝛼()y�f

𝛽()y�f
� = 𝐺()y (𝜃) |

𝛼()y

𝛽()y
�, 

where 𝐺()y (𝜃) is a Q-gate defined by the rotation matrix 

𝐺()y (𝜃) = |
cos 𝜃()y −sin 𝜃()y

sin 𝜃()y cos 𝜃()y
�, 

and 𝜃()y  is an adjustable rotation angle.  

The objective of the rotation is to obtain a higher probability of generating solution strings 
which are similar to the best solution in subsequent iterations. There are two elements to take 
into account in this process: the direction and the size of the angle rotation. Formally, the 
rotation angle is expressed as follows: 

 

𝛼f 
𝜃� 

𝛽f 

𝛼� 

𝛽� 

𝜃f 
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𝜃()y = 𝑠1𝛼()y , 𝛽()y 2∆𝜃()y  

where 𝑠1𝛼()y , 𝛽()y 2 denotes the direction of the rotation, which depends on the location 

(quadrant) of the Q-bit in the polar coordinate system; and, the size of the rotation, which is 

denoted by ∆𝜃()y .     

Figure 4.8 illustrates a polar plot of the rotation gate for a Q-bit individual. The idea of the Q-
Gate is to update the elements of a Q-bit string so that they move towards the best solution, 
which acts as an attractor in this process. The specific choice of attractor will depend on the 
migration strategies selected as described below in sub-section 4.4.5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Polar plot of the rotation gate for a Q-bit individual 

 

 

In order to help understand the process, let us consider a maximisation problem with a 

candidate solution vector 𝒙)y and the corresponding attractor 𝒃)y, the update process involves 

analysing each element of 𝒙)y. For instance, the case where 𝑥)(y = 1 and 𝑏)(y = 0, if the objective 

function value of the best solution is better than the objection function value of the current 

solution, that is, 𝐹1𝒃)y2 ≥ 𝐹1𝒙)y2, then: 

 

|0⟩ 

|1⟩ 

−1 

1 

−1 1 

𝒒()y = �𝛼()y , 𝛽()y �
�  
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(i) If the Q-bit is located in the first or the third quadrant in Figure 4.6, that is, both 𝛼()y  

and 𝛽()y  have the same sign either positive or negative, then the value of the rotation 

angle should be set to a negative value (move towards the x-axis) so that the 

probability of 𝒒()y  to collapse to the state |0⟩ is increased. 

 
(ii) If the Q-bit is located instead in the second or the fourth quadrant in Figure 4.6, the 

angle should be increased, that is,  moved counter clock-wise towards the x-axis so 

that the probability of 𝒒()y  to collapse to the state |0⟩	 is increased. 

 

Next, consider the case when 𝑥)(y = 1 and 𝑏)(y 10 and as before 𝐹1𝒃)y2 is better than 𝐹1𝒙)y2, then: 

 

(i) If the Q-bit is located in the first or the third quadrant in Figure 4.6, then the angle 

should be increased, that is, rotated towards the y-axis, so that the probability of 𝒒()y  to 

collapse to the state |1⟩	is increased. 
 

(ii) If the Q-bit is located in the second or the fourth quadrant in Figure 4.6, then the angle 
should be reduced, that is, moved counter clock-wise in order to increase the 

probability of 𝒒()y  to collapse to the state |1⟩. 

 

Table 4.1 presents a general look-up table for the QEA with the information on the direction 
of movement of the rotation angle for all the possible cases. For each of these cases, it is 
necessary to determine the size of the rotation. This is an important aspect of QEA that 
requires particular attention as described, for instance, in Mani et al. (2017).  

It must be pointed out that the specific magnitude of the rotation angle will depend on the 
problem considered. The magnitude of the rotation angle also influences the speed of 
convergence of the algorithm. Depending on the value considered for this parameter, the 
solutions may diverge or converge prematurely to a local optimum.  
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Table 4.1 General Look-up table for the QEA 
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4.3.2.4 Retention 
QEAs use the current best solution to control different searching directions. The best solutions 
are kept so that in next iterations the likelihood of moving towards fitter solutions is increased. 
These retained best solutions act as an attractor.  

Recall that each candidate solution vector 𝒙) has associated a corresponding attractor 𝒃). The 
question thus is how to determine these focal points. There are different approaches to 
determine the attractors.  One approach assigns a common attractor to all the individuals in 
the population. This is called global migration, as all the elements of the set B(t) “migrate” to 
this point of reference. 

Another approach consists of assigning to each individual in the population its own attractor. 
In this context, every solution 𝒙) is compared, by means of objective function evaluations, to 
the corresponding attractor. If the resulting value is better, then the attractor is replaced by 
the current candidate solution. The process is repeated in each iteration until the termination 
condition is met. This approach is known as individual migration. 

The two approaches discussed above will be considered in Chapter 5 when performing the 
evaluation of the QEA in the context of the TFPSN. Hence, the migration step could be 
formally stated as follows: 

 

• Step 9 Migration: This step includes individual and global migrations, where a migration 

is defined as the process of copying either 𝒃)y in 𝐵(𝑡) or b to 𝐵(𝑡). A global migration is 

realized by substituting b for all the solutions in 𝐵(𝑡), and an individual migration is 

realized for each solution in 𝐵(𝑡), that is, by substituting the better one between the current 

solution and the attractor 𝒃)y. 

 

It must be pointed out that there are other migration strategies. For instance, one method 
consists of forming sub-groups within the population. Accordingly, each of these groups 
would have their own attractor. In each iteration, the previous group-wide attractor is 
compared to each element of the group. If any of the candidate solutions has a better fit than 
the current attractor, this solution would become the new attractor for the group.  
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Other strategies would involve situations where attractors are exchanged amongst groups. 
These type of approaches are known as local migrations where only a small amount of 
information needs to be exchanged between multiple subpopulations.13  

Alternative migration strategies can be illustrated following Nakayama (2006). Specifically, 
Figure 4.9 shows the local migration whereby each of the two sub-groups that divide the 
population have their own attractor and this is the one used only for the individuals in that 
sub-group; Figure 4.10 illustrates the case of global migration where there is a unique attractor 
that is used for all individuals in the population. 

 

 

 

 

Figure 4.9 Illustration of a local migration strategy 

 

 

 

                                                             
13 Because of this property, QEAs are suitable for parallel implementation and have the potential to greatly reduce 
the communication and synchronization costs. 
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the frequency with which the individual fitness is calculated
reaches to a given frequency. We did the same experiments
30 times using each technique for each problem.

Figure 9 shows the evolution of the fitness and the proba-
bility amplitudes of 100 qubits of an individual as a function
of generations in the KP with N = 100 items, where the
shading colors show the strengths of the probability ampli-
tude. In the initial stage of the search, the shading colors
look gray and blurred which means that the probabilities are
near 0.5. In the final stage of the search, the shading colors
look black and white which means that the probabilities are
near 0 (white) or 1 (black).

4.2 Comparison between IGA and QEAPS
The proposed QEAPS is compared with IGA. Since IGA

avoids the premature convergence at the initial stage in
CGA, and carries out the search while keeping a diversity
of the group. it is an algorithm for discovering the solution
with the quality better than CGA. The experimental results
of IGA were taken from our paper [13]. The population is 50
in QEAPS, and the upper limit of the evaluation frequency
is 250,000 time in order to use the same experimental con-
ditions with the paper [13]. The number N of items is 500.
The averages mf of the fitness of the best solution as a
function of evaluation frequency in QEAPS and IGA are
shown in Figure 10. As seen in Figure 10, IGA improved
the quality of the discovered best solution by increasing the
island number, but the fitness is lower than the optimum
solution. However, it should be noted that QEAPS can dis-
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cover the solution of the quality which is optimum solution
or is equivalent to optimum solution. The qubits in QEAPS
are considered to discover the solution with the good qual-
ity in order to accumulate the information of good items
with high values for the weights on continuing the search.
As well as Ant Colony Optimization [17, 18] which accumu-
lates pheromone in effective partial routes, the affirmative
feedback on the good partial solution is considered to con-
tribute to the improvement on the search performance even
in QEAPS.

4.3 Comparison between QEA and QEAPS
The proposed QEAPS is compared with QEA in the search

performance. Regarding evaluation criteria, we focus on the
discovery rate Opt[%] of the optimum solution per trial num-
ber, the average fitness mf and standard deviation σf of the
best solution obtained in each trial, and the average mt of
evaluation frequency which discovered the optimum solution
in each trial. The upper limit of evaluation frequency is set
to N × 103 as a termination condition of the search.

As a function of the individual total numbers, Opt, mf ,
σf , and mt are shown in Figure 11. The error bars shown in
Figure 11(b), (d) and (f) are the confidence interval with the
degree of reliability 95%. According to the discovery rates
Opt seen in Figure 11(a), (c) and (e), QEAPS can show a
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reaches to a given frequency. We did the same experiments
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bility amplitudes of 100 qubits of an individual as a function
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shading colors show the strengths of the probability ampli-
tude. In the initial stage of the search, the shading colors
look gray and blurred which means that the probabilities are
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of the group. it is an algorithm for discovering the solution
with the quality better than CGA. The experimental results
of IGA were taken from our paper [13]. The population is 50
in QEAPS, and the upper limit of the evaluation frequency
is 250,000 time in order to use the same experimental con-
ditions with the paper [13]. The number N of items is 500.
The averages mf of the fitness of the best solution as a
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cover the solution of the quality which is optimum solution
or is equivalent to optimum solution. The qubits in QEAPS
are considered to discover the solution with the good qual-
ity in order to accumulate the information of good items
with high values for the weights on continuing the search.
As well as Ant Colony Optimization [17, 18] which accumu-
lates pheromone in effective partial routes, the affirmative
feedback on the good partial solution is considered to con-
tribute to the improvement on the search performance even
in QEAPS.

4.3 Comparison between QEA and QEAPS
The proposed QEAPS is compared with QEA in the search

performance. Regarding evaluation criteria, we focus on the
discovery rate Opt[%] of the optimum solution per trial num-
ber, the average fitness mf and standard deviation σf of the
best solution obtained in each trial, and the average mt of
evaluation frequency which discovered the optimum solution
in each trial. The upper limit of evaluation frequency is set
to N × 103 as a termination condition of the search.

As a function of the individual total numbers, Opt, mf ,
σf , and mt are shown in Figure 11. The error bars shown in
Figure 11(b), (d) and (f) are the confidence interval with the
degree of reliability 95%. According to the discovery rates
Opt seen in Figure 11(a), (c) and (e), QEAPS can show a
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Figure 4.10 Illustration of a global migration strategy 

 

Finally, it must be pointed out that the binary solutions in 𝑃(𝑡) are discarded at the end of the 

iteration. This is so because the candidate solutions for the next generation,	𝑃(𝑡 + 1), will be 
produced by observing the updated Q-bit.  
 

4.3.3 Termination 
 

Until the termination condition is satisfied, the algorithm is iteratively running in the while 
loop. Whereas standard evolutionary algorithms generally use the maximal number of 
generations as a termination condition, QEAs could employ a Q-bit convergence termination 
criterion due to its probability-based representation of the individuals. For instance, the 
following condition can be applied: 

 

• Step 10 – Termination: The algorithm finalises the search of solutions whenever the 
following condition is met:  
 

Prob(𝐛) > 𝛾�, 
where 
 

Prob(𝐛) =
1
𝑛
���𝑝)(

h

( f

¡
z

) f

 

with 
 

𝑝)( = ¢
+𝛼)(+

a
if 𝑏( = 0

+𝛽)(+
a

if 𝑏( = 1
 

 
 

and 𝑏( is the i-th bit of the best solution b.  
 

The probability Prob(𝐛) represents the average convergence of all Q-bit individuals to the best 

solution. The parameter 𝛾� will determine the time to achieve convergence. It is usually set to 
a value above 0.9. The termination condition gives a clear meaning to how much closely Q-bit 
individuals converge to either 0 or 1. 
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Having reached this point and taking into consideration the exposure of the algorithm 
presented in the preceding sections, the general process of the QEA can be summarised as in 
Figure 4.11. 

 

 

Figure 4.11 Overall structure of QEAs as described in Han and Kim (2002) 

 

4.4 Formulation of the TFPSN in the context of the QEA 
 

This section describes how the TFPSN can be adapted for its solution by the QEA described 
above. There are two main elements in this regard. The first one is the representation of the 
problem, while the second component is related to the design of the fitness function. 

4.4.1 Representation of the Problem 
 

In order to guide the exposition, the examples illustrated in Figure 2.1 will be taken as 
reference. In that example, a network was formed by six experts V = {v1, . . . , v6}. Hence, each 
candidate solution in this example would be represented by a vector of size 6, where each 
component would be either 1 or 0 depending on whether an individual is chosen or not to 
form part of the team: 
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𝑥f 𝑥a 𝑥l 𝑥r 𝑥¤ 𝑥¥ 
 

where 𝑥( is a binary variable. In this particular example, two possible teams could be formed 
for a given task T that required five skills {s1, s2, s3, s4, s5}. These teams were X1 = {v1, v2, v3, v4} 
and X2 = {v3, v4, v5, v6}. Hence, the solutions could be represented as follows: 

 

1 1 1 1 0 0 
 

and 

0 0 1 1 1 1 
 

 

Recall that the aim of the TFPSN is to find a team of experts denoted by X ⊆V, that collectively 
cover all the required skills with the least collaboration cost. It could be the case that one 
particular person has more than one of the required skills. Without loss of generality, we will 
assume that each individual has only one skill. In the case of a person having, for instance, 
two skills, we could consider this as two “separate” individuals.14 

 

4.4.2 Definition of the Fitness Function 
 

Once the possible solutions have been represented, the next step for the specification of the 
TFPSN is the calculation of the fitness function. In this case, the function represents the 
communication costs amongst the members of the team. The collaboration cost is represented 
through the closeness of the experts in a social network G(V,E). The collaboration cost of two 
adjacent experts, vi and vj, is given by the cheapest path between them, denoted as sp(vi,vj).  

As described in Section 2.2, there are several specifications widely used in the literature. In 
the present application, the following two will be considered: 

 

Cc-D(X) = max
4;,4=∈>

𝑠𝑝1𝑣@, 𝑣A2 

                                                             
14 In the case that these skills can be used simultaneously in the given problem, we would assume zero collaboration 
cost between the two-person representation of this particular expert. However, in those cases where the expert can 
only provide one single skill at a time, then a very large collaboration cost would be assumed. 
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and 

Cc-SD(X) =∑ 𝑠𝑝1𝑣(, 𝑣)245,4C∈7 . 

 

The first one is the diameter distance, which is defined as the maximum collaboration cost 
among the cost of the cheapest paths between any two experts in the team X. The second 
represents the sum of distances that measures the sum of all the cheapest paths between any 
two experts in team X.  

The next chapter describes the results corresponding to a numerical evaluation of this 
problem. 
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Chapter 5 Evaluation  
 

This chapter presents the results from a numerical evaluation of the algorithm described in 
the previous chapter. A key issue in designing a good evolutionary algorithm is the 
management of the exploration versus exploitation balance. A good algorithm must use, or 
exploit, already discovered fit solution encodings, while not neglecting to continue to explore 
new regions of the search space which may contain even better solution encodings. This will 
be one of the focus of the evaluation. 

One possible way of measuring the degree of diversity is through the analysis of convergence 
of the population. Morrison and De Jong (2002) proposed the use of pair-wise distance metrics 
to this end. One metric that is commonly used is the so-called Hamming distance which, 
essentially, involves counting up which set of corresponding digits or places are different, and 
which are the same. It measures the minimum number of substitutions required to change 
one string into the other, or the minimum number of errors that could have transformed one 

string into the other.  Given two vectors of dimension n, 𝑥f and 𝑥a, the Hamming distance 
between these two vectors is defined as follows: 

Hamming(𝑥f, 𝑥a) = 	
1
𝑛
�𝑑(

z

( f

 

where  

𝑑( = ¨
0	if	𝑥f( = 𝑥a(

1	if	𝑥f( ≠ 𝑥a(
 

 

In order to carry out the numerical analysis, a set of synthetic data is generated first. Several 
instances of the TFPSN are considered whose complexity is defined by the number of experts 
as well as the number of required skills. Once the pool of experts is generated, an analysis is 
performed for a baseline GA and a QEA.15 

 

                                                             
15 Numerical results were obtained using Matlab R2015b running on a 2 Ghz. Intel Core 2 Duo MacBook computer 
using OS X 10.6 with 8 GB of RAM.  
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5.1 Experimental Setup 
 

In order to carry out the numerical experiments, several pools of experts were constructed. It 
was assumed that each expert had one skill only and that completing a given task requires 
having, at least, one expert for each of the required skills. It must be pointed out that an expert 
that has none of the required skills will not be considered in the pool of potential candidates. 
In this regard, one could think about a situation whereby two experts that have never 
collaborated before use a common past collaborator as a “connector”. However, if this third 
party has none of the required skills for the task at hand, he or she will not be considered in 
the pool of potential team members. Also, isolated experts, that is, experts that have 
collaborated with none of the other experts before will not be considered as suitable 
candidates. This is a common assumption in the literature as presented, for instance,  in 
Lappas et al. (2009).16  

Next, for each pool of experts that satisfies the required set of skills, a collaboration network 
(a graph) is randomly generated. This is expressed as an adjacency matrix, where each entry 
indicates the direct collaboration cost between any two experts in the pool. The costs are 
obtained through pseudorandom values drawn from the standard uniform distribution over 
the open interval (0,1). Figure 5.1 illustrates an instance of a pool of experts generated using 
the procedure described above. In this case, all experts are connected amongst themselves and 
the values of each arch represent the corresponding collaboration cost.   

In order to make the problem more realistic, it is assumed that not all experts are connected, 
that is, they have never worked together or they are incompatible. This is achieved by 
considering a threshold for the collaboration cost. If this cost turns out to be above a given 
value, then it is assumed that the experts are totally disconnected. Figure 5.2 illustrates this 
case, where expert 3 is only able to collaborate with expert 2 hence the latter can only be in a 
team where the former also forms part of.  

 

                                                             
16 This might seem as a restrictive assumption, however, the aim of the TFPSN is to highlight the potential benefits 
of working in collaboration with other experts.   



 
 

 50 

MÁSTER UNIVERS ITARIO EN INTELIGENCIA ARTIFICIAL AVANZADA                                   UNED 

 

Figure 5.1 Randomly generated pool of 10 experts 

 

 

Figure 5.2 Sparse graph with 10 experts and a cost threshold of 0.6 
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The difficulty of the problem grows exponentially with the number of experts. As illustrated 
in Figure 5.3, the resulting graph can be very dense and complex.  

  

Figure 5.3 Graph of a pool consisting of 30 experts 

 

Another factor that determines the difficulty of the problem refers to the number of skills 
required for solving a given task. It must be reiterated that each expert has one skill only, but 
in the pool of experts, there could be several experts with the same skill.  

For the numerical evaluation carried out in this work, several configurations of the TFPSN are 
considered. These versions of the problem differ on the number of available experts, as well 
as on the number of required skills. Table 5.1 provides the specific instances considered. 
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Problem Number of Available 
Experts 

Number of Required 
Skills 

1 
50 

10 

2 5 

3 
100 

20 

4 5 
5 

300 
30 

6 5 
 

Table 5-1 Configurations of the TFPSN considered in the analysis 

 

 

5.2 Evaluation of a Genetic Algorithm 
 

In order to establish a reference for the evaluation of the QEA in the context of the TFPSN, a 
standard genetic algorithm is considered first. There are three key elements that define the 
algorithm: parent selection based on the tournament method; variation generation through 
single-point crossover and bit-flip mutation; retention based on elitism where the best 
individuals are kept in the population of candidate solutions and all the rest are replaced. 
Table 5.2 lists the key parameters for this algorithm whose values are discussed below. 

 

Parent Selection 
Method Tournament 

Size (𝑛yª) 10% and 30% 

Variation 

Crossover 
Operator Single point 

Rate (𝑝«) 0.6 and 0.9 

Mutation 
Operator Uniform Bit-flip 

Rate 0.01 and 0.1 

Retention 
Method Elitism 

Size Best individual 
 

Table 5-2 Parameter values for the baseline genetic algorithm 
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5.2.1 Configuration of the Parameter Values 
 

Regarding parent selection, the parameter to choose is the tournament size, denoted as 𝑛yª. 

This parameter represents a group of 𝑛yª individuals randomly chosen from the population, 

where 𝑛yª < 𝑛, and n is the total number of individuals in the population. The fitness of the 

selected 𝑛yª individuals is compared and the best individual from this group is selected and 
returned by the operator. Provided that the tournament size is not too large, tournament 
selection prevents the best individual from dominating, thus having a lower selection 

pressure. On the other hand, if 𝑛yª is too small, the chances that bad individuals are selected 
increase. There are several methods to choose the tournament size. One common approach is 

to assume a fixed tournament size. If 𝑛yª = 𝑛 then the best individual will always be selected. 

On the other hand, if 𝑛yª = 1, random selection is obtained. Perhaps the most common 

approach is to choose a binary tournament where 𝑛yª = 2. However, there are other 
alternative methods that try to improve the performance of the GA by specifying a more 
sophisticated mechanism for determining the tournament size. For instance, Vajda et al. (2008) 
review tournament size methods such as Time-varying deterministic and Self-adaptive.  

In the present work, we will analyse the effect of different tournament sizes on the results of 
the TFPSN. The tournament size will be expressed as a percentage of the total population, 
which remains fixed in the GA considered here, instead of an absolute value. Specifically, the 
values considered for 𝑛yª will range between 10% and 40%. It must be pointed out that, in the 
experiments, the population was equal to 50 individuals and thus the tournament size was 
formed by integer numbers. 

Crossover allows for the inheritance of groups of “good genes” or building blocks by the 
offspring of parents, thereby encouraging more intensive search around already discovered 
good solutions. In terms of single-point crossover, the parameter to be chosen, denoted as 𝑝« 
is set at the start of the GA. The crossover mechanism works as follows: For each pair of 
selected parents, a random number is generated from the uniform distribution in the open 

interval (0,1), If this value is  lower than 	𝑝«, crossover is applied to generate two new children; 
otherwise crossover is bypassed and the two children are clones of their parents. Crossover 

rates are typically selected from the range 𝑝« ∈ (0.6, 0.9). 

The mutation operator plays also a relevant role as it can potentially uncover useful novelty.17 

The parameter to choose is the rate or probability of mutation, denoted as 𝑝h. If a very high 
rate is applied, the selection and crossover operators can be overpowered and the GA will 

                                                             
17 In contrast, crossover, if applied as a sole method of generating diversity, ceases to generate novelty once all 
members of the population converge to the same genotype. 
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effectively resemble a random search process. Conversely, if a high selection pressure is used, 
a higher mutation rate will be required in order to prevent premature convergence of the 
population. In setting an appropriate rate of mutation, the aim is to select a rate which helps 
generate useful novelty but which does not rapidly destroy good solutions before they can be 
exploited through selection and crossover. For each gene, a random number is generated from 
the uniform distribution in the interval (0,1). The binary gene is changed if this random 

number is less than 	𝑝h. In general, the values chosen for  𝑝h tend to be low, in the range that 
allows from a gene per population to a gene per individual to be mutated. 

 

5.2.2 Results 
 

Based on the parameterisation discussed above, a series of simulations were performed. The 
results are summarised in Table 5.3 for the specific parameter configuration where the 
tournament size 𝑛yª = 25%, the cross over rate 𝑝« = 0.75, and, the mutation rate  𝑝h = 0.05. 
For each version of the problem, 20 simulations were carried out, and statistical measures over 
the best fitness values at the final generation were taken. The size of the population was set to 
50 individuals and the maximum number of generations to 1500. 

 

TFPSN Best Collaboration Cost (sum of distances) Hamming 
Distance 

Team 
Size / 
Skills Problem Dimension Min Max Median Std. Dev. 

1 50-10 19.16 22.87 20.36 1.12 0.27 10/10 

2 50-5 0.79 1.93 0.99 0.33 0.2 5/5 

3 100-20 117.57 137.55 127.87 5.42 0.3 20 / 20 

4 100-5 1.81 4.43 2.82 0.58 0.18 5/5 

5 300-30 884.58 1211.11 1087.1 85.76 0.27 52/30 

6 300-5 255.59 449.09 376.43 64.27 0.24 32/5 
 

Table 5-3 Results for the baseline genetic algorithm  

  

The results show that the GA achieves a relative good performance for small-size problems. 
For instance, Problem 1 consists of 50 experts with 10 skills. In this case, the algorithm finds a 
team with the desired number of skills and there are no duplicated roles, that is, each member 
of the team has different skills. The collaboration cost is low with a median value over the 
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simulations of 20.36. The corresponding standard deviation is also low. Similarly, the median 
Hamming distance, which is considered to be a measure of diversity, turns out to be low. A 
similar pattern is observed for Problems 2 to 4.  

Figure 5.4 illustrates the progress curve for Problem 1. The GA converges relatively quickly 
to an optimal solution in terms of minimum collaboration cost. Figure 5.5 shows the evolution 
of the Hamming distance, which measures the diversity in the population. The results indicate 
after an initial and significant drop, the degree of diversity is relatively stable. However, it can 
be observed that there are some fluctuations that can be interpreted as relative explorations 
of the solution space.  

Certainly, as the number of experts and/or the number of required skills increase, the 
collaboration cost is higher and the algorithms show more variability over simulations. The 
standard deviation increases, notably for Problem 3 which tries to form teams of 20 experts. 
However, in all three cases, the GA finds a team with the minimum necessary number of 
members.  

 

 

 

Figure 5.4 Problem 1: Progress Curve 
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Figure 5.5 Problem 1: Hamming distance 

 

 

As the complexity of the problem increases, the GA algorithm has difficulty in forming good 
teams. For instance, for Problem 6, where there is a pool of 300 experts to form teams with 5 
skills, the algorithm achieves at best a team with 32 members. Hence, there is a duplicity of 
skills which obviously is not desirable from a cost minimisation perspective. The results also 
show a large variability over simulations as reflected in the relatively high standard deviation.  

A similar result is observed for Problem 5, where the number of required skills is set to 30. 
Figure 5.6. shows the progress curve representing the evolution of the fitness value (in this 
case, the collaboration cost) for successive generations. In this case, the collaboration costs falls 
significantly in the first few generations, but remains relatively flat thereafter. The Hamming 
distance, shown in Figure 5.7, displays a similar pattern. However, in comparison with the 
results of Problem 1, the observed reduction in the amount of diversity is less pronounced in 
the initial phases (generations) of search process.   

The results discussed above correspond to a baseline parameterisation. However, given the 
complexity of the problem at hand, it might be necessary to consider alternative parameter 
values. Choices for the selection strategy, the design of mutation and recombination operators, 
and the replacement strategy, determine the balance between exploration and exploitation. 
Selection and crossover tend to promote exploitation of already-discovered information, 
whereas mutation tends to promote exploration.  
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Figure 5.6 Problem 5: Progress curve 

 

Figure 5.7 Problem 5: Hamming distance 
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The results shown in Figure 5.8 correspond to Problem 5, a relatively complex version of the 
TFPSN. In this case, one can observe that the GA obtains better results, as measured by lower 
collaboration costs, when the tournament size is high. This means that the algorithm favours 
selection pressure, as better solutions tend to be chosen. This is shown in Figure 5.9 in terms 
of an inverse relationship of the tournament size with the Hamming distance: high 
tournament size results in lower diversity, as measured by the Hamming distance. 

 

Figure 5.8 Problem 5: Best cost for different Tournament sizes 
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Figure 5.9 Problem 5: Hamming distance vs. Tournament size 
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Figure 5.10 Problem 5: Best cost for different Crossover rates 

 

Figure 5.11 shows the corresponding Hamming distance. As expected, the degree of diversity 
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Figure 5.11 Problem 5: Hamming distance vs. Crossover rate 

 

 

Figure 5.12 Problem 5: Best cost for different Mutation rate 
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Figure 5.13 Problem 5: Hamming distance vs. Mutation rate 

 

In summary, the GA is able to find relatively good solutions to the TFPSN for versions of the 
problem which are of a relatively moderate complexity. As expected, the performance 
deteriorates when the size of the problem is high. The results could be improved, for the 
particular case analysed here, when more selection pressure is incorporated into the genetic 
algorithm. 

 

5.3 Evaluation of the QEA 
 

This section analyses the performance of the QEA applied to the synthetic dataset described 
in Section 5.1. A key element of the QEA is the process to updating the Q-bits. This is very 
relevant as it will drive the search carried out by the algorithm and thus the process for getting 
closer to fitter solutions. 

As in the case of the GA, the size of the population was set to 50 individuals and the maximum 
number of generations to 1500. A total number of 20 simulations were performed for each 
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5.3.1 Baseline Specification 
 

First, a baseline version of the QEA was considered. There are two main components that 
characterise the algorithm, namely, the parameterisation of the rotation angle and the choice 
of an attractor, that is, the migration strategy. Regarding the latter, the baseline version of the 
QEA adopts a local approach whereby each Q-bit individual has its own attractor and no 
information is shared across individuals.  

Regarding the parameterisation of the rotation angle, the specific values assigned depend on 
the problem considered and some experimentation might be required. Following Han et al. 
(2002), in this version of the QEA, the rotation angle is updated only in two cases as described 
in Table 5.4.  

The typical values considered in the literature for the rotation parameter, denoted by 𝜃, are in 

the range of (0.001, 0.08). However, as noted above, this critically depends on the particular 
problem addressed. Hence, in order to obtain reference values for the TFPSN, a detailed 
analysis has been performed.  

Firstly, it is considered the situation where the Q-gate rotation angle is fixed, that is, 𝜃f = 𝜃a. 
For the numerical analysis, the version corresponding to Problem 4 of the TFPSN as described 
in Section 5.1 is taken as reference. This model consists of pools of 100 experts with the 
objective of forming teams consistent of, at least, 5 different skills.   

 

Case 𝒙𝒋𝒊 𝒃𝒋𝒊 𝒇1𝒙𝒋2 ≥ 𝒇1𝒃𝒋2 ∆𝜽 

1 0 0 False 0 

2 0 0 True 0 

3 0 1 False 𝜃f𝜋 

4 0 1 True 0 
5 1 0 False −𝜃a𝜋 
6 1 0 True 0 

7 1 1 False 0 

8 1 1 True 0 
 

Table 5-4 Look-up table for baseline QEA with rotation parameters 𝜃f and	𝜃a 
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The results summarised in Table 5.5 show a high dependency of the QEA on the specific 

parameter considered for the rotation angle 𝜃. The best minimum cost achieved by the 
algorithm indicates that the best solution is obtained with a relatively high parameter value. 
In the particular case considered here it is 𝜃 = 0.071. However, relatively good results are 

obtained also with a much lower value of the rotation angle, for instance 𝜃 = 0.01. Hence, a 
further analysis of this parameter is required. 

 

Rotation 
Angle 𝜃 0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

Minimum 
Cost 89.94 2.89 4.30 5.91 22.88 22.07 37.97 2.18 47.71 

 

Table 5-5 Problem 4: Minimum cost with rotation parameters 𝜃f = 𝜃a 

 

First, it must be noted that the objective of the rotation update is to change the direction of the 
Q-bit, in order to increase the chance of observing a particular state and, thus, obtaining fitter 
solutions. This parameter also influences the speed of convergence. Figure 5.14 illustrates this 
feature of the algorithm for different values of the rotation parameter. Specifically, 

𝜃 = {0.001, 0.01,				0.02,				0.03,				0.04				0.05				0.06				0.07				0.08}. 

The results obtained show that the speed of convergence increases the higher is the rotation 
angle. For relatively low rotation values, such as 𝜃 = 0.001, the algorithm progresses relatively 
slowly. In contrast, for high values, premature convergence is more likely. 
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Figure 5.14 Problem 4: Convergence QEA for different rotation parameters  
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Figure 5.15 Problem 4: Minimum cost for varying rotation parameters 𝜃f and 𝜃a 

 

 

Figure 5.16 Problem 4: Contour plot for varying rotation parameters 𝜃f and 𝜃a 
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The results confirm that the choice of the parameter values for the rotation angle is very 
relevant for the outcome of the QEA. In the specific version of the TFPSN considered here, the 
best results measured in terms of best minimum collaboration cost correspond to lower values 

of the rotation parameter 𝜃f and higher of the parameter 𝜃a.  

The behaviour of the QEA is, however, not uniform in the sense that there are also other areas 
of the parameter space where lower costs can also be achieved. Table 5.6 provides the specific 

numerical values in this regard. For instance, the best overall solution is achieved when 𝜃f =

0.07 and  𝜃a = 0.05. In this case, the collaboration cost for Problem 4 of the TFPSN is 0.3, which 
is significantly lower than the result obtained with the version of the genetic algorithm of 
Section 5.2. In that case, the best minimum cost obtained was 1.81. 

 

             𝜽𝟏     
   𝜽𝟐 0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

0.001 84.5 441.8 426.5 416.8 395.1 416.5 413.7 393.7 413.0 

0.01 1.9 2.1 63.3 225.6 234.9 276.9 286.5 42.4 270.3 

0.02 2.0 1.9 2.4 53.4 108.2 140.0 171.2 9.4 214.9 

0.03 2.3 1.9 1.1 11.2 39.0 58.8 109.3 2.7 120.7 

0.04 2.0 1.5 2.2 2.9 23.2 21.6 63.9 3.0 67.3 

0.05 2.2 2.5 1.1 2.3 2.9 19.1 36.6 0.3 29.9 

 

Table 5-6 Problem 4: minimum cost varying rotation parameters 𝜃f and 𝜃a 

 

5.3.2 Time-varying Q-Gate Rotation Angles 
 

From the analysis above, one can conclude that the baseline version of the QEA is able to 
achieve good results provided that a careful choice of the rotation parameters is carried out. 
However, the parameter in the look-up table was kept fixed throughout the entire execution 
of the algorithm. This could constraint the performance of the QEA.  
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A possible way to overcome these limitations is through the use of a dynamic mechanism for 

the rotation parameter. In this regard, one could take an interval (𝜃h(z, 𝜃h·¸), so that the 
rotation angle is allowed to vary within that range according to some pre-defined rule. For 
instance, the following expression could be considered: 

 

𝜃)y = 𝜃h·¸ − (𝜃h·¸ − 𝜃h(z)𝐷)y, 

 

where 𝐷)y  is a variable that measures the degree to which the changing rotation angle varies 

between the lower and upper bounds. As described in Wang et al. (2014), one simple option 
is to adjust the rotation angle by applying a factor defined as the ratio of t, the number of the 

current generation, over  𝑡h·¸ ,  which denotes the total number of generations considered in 
the QEA. That is, 

𝐷)y =
𝑡

𝑡h·¸. 

 

In order to assess the adapting approach for the rotation parameter, we consider the case 

where 𝜃f ∈ (0.01, 0.015) and the parameter varies according to the rule describe above. The 

other rotation parameter, 𝜃a, is kept fixed at 0.35. Problem 4 is chosen as the reference model. 
The results, shown on the first row of Table 5.7, indicate that the algorithm achieves a good 
solution in terms of low costs. Specifically, the minimum collaboration cost obtained is 0.55, 
which is below those obtained with the standard parameterisation of the Genetic Algorithm 
presented in section 5.2 which, for convenience, are reproduced in Table 5.7.  

 

TFPSN 
Problem 4 

Collaboration Cost (sum of distances) Hamming 
Distance 

Team Size / 
Skills Min Max Median Std. Dev. 

QEA 0.55 2.92 2.59 0.79 0.04 5 / 5 

GA 1.81 4.43 2.82 0.58 0.18 5 / 5 
 

Table 5-7 Problem 4: minimum cost with varying rotation as in Wang et al. (2014) 

 

In terms of the dynamics, Figure 5.17 shows that the algorithm approaches a solution 
relatively quickly and remains in that region thereafter. Hence, it is important that the 
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algorithm focus the search on a good solution since, as the algorithm progresses, the size of 
the rotation angle decreases and the algorithm gets stuck in that region , as shown in Figure 
5.18.  

 

 

Figure 5.17 Problem 4: Progress Curve QEA with time-varying 𝜃f and fixed  𝜃a 

 

The evolving approach above for the rotation angle is relatively simple and mechanistic. In 
particular, it did not take into account information on the evolution of the search itself. In 
order to investigate alternative strategies for the evolution of the rotation parameter, we 
follow Lahoz-Beltra (2016). In this set-up, the factor that controls the degree to which the 
changing rotation angle varies between the lower and upper bounds is defined as: 
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Figure 5.18 Problem 4: Convergence QEA with time-varying 𝜃f and fixed  𝜃a 

 

 

𝐷)y =
+𝐹1𝒙)y2 − 𝐹1𝒃)y2+

𝐹y . 

where 

𝐹y = max º1,max
∀)∈z

»+𝐹1𝒙)y2 − 𝐹1𝒃)y2+¼½. 

 

 

The objective of this evolving approach is to progressively reduce the size of the rotation angle 
as the candidate solutions approach their respective attractors. The results are shown in Table 
5.8 together with those of the GA for reference. We observe that the minimum cost for the 
particular simulations performed is lower than in the case of a GA. 

When comparing with the results using the mechanistic rule of Wang et al. (2014), we observe 
that the QEA reached a best minimum cost with this mechanistic rule than with the adaptive 
method of Lahoz-Beltara (2016). However, the median cost across simulations is lower in the 
latter.   
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TFPSN 
Problem 4 

Collaboration Cost (sum of distances) Hamming 
Distance 

Team Size / 
Skills Min Max Median Std. Dev. 

QEA 1.33 2.50 1.94 0.38 0.04 5 / 5 

GA 1.81 4.43 2.82 0.58 0.18 5 / 5 
 

Table 5-8 Problem 4: minimum cost with varying rotation as in Lahoz-Betra (2016) 

 

From the discussion above, parameter tuning is an important part in the design of the QEA as 
it affects the efficacy of the search process.18 In fact, most of the effort in designing these 
algorithms is spent in parameter tuning. It is a difficult optimization problem in itself as it is 
usually poorly structured, ill-defined and complex in nature. In addition, the best set of 
parameter values can be guaranteed to be found only after exhaustive search in the entire 
parameter-space, however, such a strategy may not be feasible in practice due to the large 
amount of resources and time consumed. 

 

5.3.3 Analysis of Convergence  
 

In the analysis presented so far, the QEA migration strategy (choice of attractor) was defined 
local in the sense that each Q-bit individual had its own attractor. Accordingly, when a new 

attractor 𝑏( is chosen in the search space, the corresponding Q-bit is slightly moved toward 
this point until a better solution is found. The question then is what if not better solution is 
found during this move. In this case, the algorithm is trapped and converges prematurely to 
this point. Hence, the use of a local attractor strategy may cause premature convergence where 
the algorithm is stuck in a local optimum. The only opportunity for an individual to escape 
from this attractor is that a mechanism is in place so that it can be replaced with a better 
attractor produced elsewhere. Otherwise, it is possible that the choice of a good but sub-
optimal attractor is irreversible. The probabilistic model becomes unable to produce solutions 
different from the attractor and, therefore, the QEA can be trapped. Hence, the bad choice of 
an attractor can quickly become irreversible.  

QEAs are prone to prematurely converge, suffering mostly by the phenomenon of hitchhiking 
as experimentally shown in Platel et al. (2007). Hitchhiking corresponds to the increase in 

                                                             
18 In general, the parameter tuning methods have been categorized as Sampling Methods, Model Based Methods, 
Screening Methods and Meta-Evolutionary Methods. These approaches are described in Mani (2017). 
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frequency of a “bad” allele at a given locus in the population due to the presence of nearby 
highly fit alleles on the same chromosomes. As a consequence, the eventual better alleles at 
the same locus (as the hitchhiking allele) tend to disappear in the population and there is no 
way for the evolutionary process to retrieve them.  

Following Lee and Lin (2017), one way of quantifying possible premature convergence of the 
algorithm is by calculating the mean square deviation (MSD) of each individual attractor with 
respect to the global attractor. This measure is defined according to the following expression: 

𝑀𝑆𝐷y =
1
𝑁
�Á

𝐹1𝒃)y2 − 𝐹(𝒃𝒕)
𝑭y Ä

a

,
z

) f

 

where 

𝑭y = max º1,max
∀)∈z

»+𝐹1𝒃)y2 − 𝐹(𝒃𝒕)+¼½. 

 

The results shown in Figure 5.19 corresponding to Problem 4 of the TFPSN indicate that the 
algorithm converges relatively quickly towards the global optimum. This could be a sign of 
premature convergence. 

 

Figure 5.19 Problem 4: MSE Curve for QEA with time-varying 𝜃f and fixed  𝜃a 
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In order to further analyse this extent, we compute the 75% and 25% quantiles corresponding 
to the empirical distribution of the attractors at each point in time (generation). Figure 5.20 
shows the results which again may suggest the existence of premature-convergence. In this 
case, it would be advisable to apply some mechanism to scape possible local optima. 

 

 

Figure 5.20 Problem 4: Quantiles for QEA with time-varying 𝜃f and fixed  𝜃a 
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population. In this case, the information about the search space collected during evolution is 
not kept at the individual level but continuously renewed and periodically shared among the 
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search space. 
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The results have been computed for all versions of the TFPSN and summarised in Table 5.9. 
In all cases considered, the QEA has been able to form teams with exactly the same size as the 
number of required skills. This is in contrast with the results obtained with the baseline GA 
where, for the more complex instances of the TFPSN, the teams corresponding to the best 
solutions were relatively large. Specifically, for Problem 5 the ratio of size to skill was 52/30 
and 32/5 for Problem 6.  

 

TFPSN Best Collaboration Cost (sum of distances) Hamming 
Distance 

Team 
Size / 
Skills Problem Dimension Min Max Median Std. Dev. 

1 50-10 19.16 25.78 22.14 2.7 0.07 10/10 

2 50-5 0.79 2.65 1.05 0.81 0.03 5/5 

3 100-20 111.03 125.84 120.19 5.03 0.05 20 / 20 

4 100-5 0.29 1.84 1.05 0.46 0.03 5/5 

5 300-30 271.94 296.57 286 6.95 0.04 30/30 

6 300-5 0.14 2.04 0.87 0.62 0.02 5/5 

 

Table 5-9 Results for QEA with global attractor and adaptive parameters 𝜃fand 𝜃a 

 

When analysing the results in terms of best minimum collaboration cost, it is interesting to 
note the following: For Problems 1 and 2,  which can be considered as “easy” problems, both 
the QEA and the GA achieve the same solution. However, as the complexity of the TFPSN 
increases, the QEA provides better results. Figure 5.21 shows the ratio of best minimum cost 
between the QEA and the GA. For Problem 3, which could be considered still relatively easy, 
the ratio is 96%. However, for really complex versions of the TPPSN, the improvement shown 
by the QEA is dramatic. For instance, Problem 6, the costs corresponding to the best team 
obtained by the QEA is 0.1% that of the best minim cost achieved by the reference GA.  
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Figure 5.21 Best collaboration cost: comparison QEA vs. GA 

 
The results presented above show the importance of sharing information across the 
population. In this section, we have implemented a global migration strategy. This means that 
at each generation, the overall best solutions is transmitted to all individuals that use it as an 
attractor. However, if a suboptimal solution is propagated to the global level, then this 
solution starts to attract the entire population. As long as no better solution is found, all the 
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Chapter 6 Concluding Remarks and Future 
Research 
 

The present work studies the application of a class of evolutionary algorithms to solving the 
Team Formation Problem in Social Networks. Team formation is a well-known and widely 
studied combinatorial optimisation problem. Essentially, it entails finding a team of experts 
that not only cover the required skills of a given task, but also the members can work 
effectively with each other. The social network is modelled as a graph where each node 
represents an expert, with one or more skills, and each edge is weighted by the direct 
collaboration cost between the two corresponding experts. The problem has been shown to be 
complex, belonging to the NP-hard class. Hence, no polynomial time algorithm exists that 
finds the optimal solution for all specific instances of this problem. 

The approach considered here is inspired in the quantum processes of superposition. QEAs 
use Q-bits to represent the individuals, and searches for the optimum by observing the 
quantum states. It can work with small population sizes without running into premature 
convergence. A feature of QEAs is their ability to explore the search space even with a small 
number of individuals and to properly balance between exploration and exploitation.  

The numerical analysis shows that the version of the QEA used in this work was able to solve 
relatively simple instances of the TFPSN in line with the performance of the reference GA. 
Indeed, for more difficult versions of the problem, the QEA yielded significantly better results. 
Accordingly, the algorithm was able to achieve solutions (form teams of experts) that not only 
satisfied the required skills but also produced combinations with much lower collaboration 
costs than the reference GA. These results are particularly interesting as the QEA has only one 
evolutionary parameter, namely the gate rotation angle, versus the three evolutionary 
operators of the baseline GA: tournament size, crossover and mutation rate. 

One key element for the successful performance of the QEA was precisely the 
parameterisation of the gate rotation angle. A detailed analysis was conducted and different 
methods considered. The use of a time-varying approach whereby the magnitude of the 
rotation was made dependent on the distance of the solution to the attractor was shown to 
generate the best results. All in all, this work has provided evidence that the QEA is a feasible 
candidate to tackling difficult combinatorial optimisation problems.  
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The analysis conducted in this work was based on synthetic datasets. Hence, a possible 
extension would consist of conducting an empirical investigation using some reference data 
sets. Research experiments in this area are typically performed on collaboration networks 
databases such as IMD, that considers links amongst film actors, and DBLP, that contains 
collaborations amongst scientists. 

Certainly, the baseline QEAs has some limitations and the application to difficult problems as 
the one considered here may require further extensions. As discussed in this work, QEAs are 
prone to premature convergence when the algorithm is trapped in a local optimum. This could 
be linked to the fact that the baseline QEA is an elitist algorithm. The exploration of the search 
space is driven by attractors corresponding to the best solution found either at the individual, 
local, or global level. If a suboptimal solution is propagated to the global level, then this 
solution starts to attract the entire population. As long as no better solution is found, all the 
probabilistic models converge towards this global attractor. The probabilistic model becomes 
unable to produce solutions different from the attractor and, therefore, the QEA can be 
trapped. Hence, the bad choice of an attractor can quickly become irreversible. 

Accordingly, one aspect of the algorithm that could be enhanced is related to the structure of 
the population and how the information is shared across individuals or groups of individuals. 
For instance, the use of combinatorial graphs that limit the speed and the way information 
spreads could allow competing solutions to have more time to mature. Bryden et al. (2006) 
show that the use of graphs is a computationally inexpensive method of obtaining a globally 
acceptable level of trade-off between exploration and exploitation. There are two main 
approaches to modelling decentralized populations which can be summarised as follows:  

(1) Coarse-grained algorithms (also known as Distributed Evolutionary Algorithms) are 
characterized by partitioning of the population into several subpopulations or islands, each 
of which runs independently and where individual exchanges among the islands occur with 
a given frequency;  

(2) Fine-grained or Cellular Evolutionary Algorithms where, in the basic setup, individuals 
are placed on a toroidal grid. Every individual has a neighbourhood, and an individual can 
only interact with individuals belonging to its neighbourhood. An individual has its own pool 
defined by neighbouring individuals and, at the same time, an individual can belong to 
several pools. The connections among neighbourhoods help the algorithm exploit possible 
solutions, and the overlapped small neighbourhoods help the algorithm explore the search 
space. Alba and Dorronsoro (2008) provide a detailed analysis of this type of algorithms. 
Dorronsoro et al. (2013) and Burguillo et al. (2018) present methods to enhance their 
performance.  
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Cellular structures have been applied to QEAs showing good results. Tayarani et al. (2008), 
Qi (2015) and Mani (2017) are also relevant examples within this line of research.19 Hence, the                                                                                                                                                                                                                                                                    
application of these other approaches to the TFPSN constitutes an interesting research avenue. 

 

  

                                                             
19 Gupta et al. (2017) proposed a single-population fine-grained approach that is suited for massively parallel 
computations. The authors apply this approach to community detection in social networks. 
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