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Preface

This master thesis is presented in an article format with appendices to com-
plete it with the background information that it requires. It is also suple-
mented by our previous work which was published in the 8th International
Work-Conference on the Interplay Between Natural and Artificial Computa-
tion in 2019.

It is recommended for readers to start on appendices A, B, C, D and
optionally F before reading the article itself to learn or review concepts that
are assumed to be known in the article.
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convolutional neural networks.

Duque, P., Cuadra, J. M., & Rincón-Zamorano, M.

September 20, 2020

Abstract

There is a great interest in automating White Matter Hyperintensities (WMH)
segmentation due to their importance in the medical field as well as the great
amount of inter- and intra-observer variability that appears when it is man-
ually segmented in magnetic resonance imaging.

In this work we present a multistep tailored preprocessing consisting
mainly of brain extraction, intensity contrast enhancement, subject based
slice cropping and intensity standardization. The segmentation task is then
performed by a fully convolutional neural network with attention gates which
employs a customized loss function based on the dice similarity coefficient
and the F1 score.

Experimental results on the white matter hyperintensities segmentation
challenge [Kuijf et al., 2019] show that our proposed preprocessing improves
segmentation, that attention gated U-Net further improves segmentation
tasks compared to the original U-Net and our proposed loss function has
the potential to improve lesion-wise F1 on DSC based segmentations.
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1 Introduction

In the world around 15 million people have a stroke every year, from which
6 million die and 5 million are left permanently disabled. Approximately
35.6 million people worldwide suffer from dementia and is expected to keep
increasing [Wardlaw et al., 2015].

Cognitive impairment in older people alone or in combination with Alzheimer’s
disease contributes to substantial worsening of cognitive functions. This im-
pairment generally results in visible lesions on brain scanning [Wardlaw et al., 2015].

White matter hyperintensity (WMH) is a pathology in the brain of elderly
people which is related to cognitive impairment, dementia and increased
risk of stroke. The most sensitive modality for detecting WMH is through
magnetic resonance imaging (MRI). Since manual segmentation of WMH on
MRI has proven to be a user-biased and time consuming process as well
as presenting intra-observer variability [Rincón et al., 2017], automating this
process is consequently of great interest in the field and a great amount of
research has been dedicated during the last years.

Data is preprocessed based on a previous study of different preprocessing
methods applied to the particular problem of white matter hyperintensity
segmentation to boost the performance we are able to obtain using FConvNN
[Duque et al., 2019]. This is because MRI scanner might capture a great
amount of noise and artifacts during the scanning process. The ability to
correctly produce an image that maximizes the success of the segmentation is
key. This process is based on classical techniques used among other machine
learning use cases as well as some specific ones that are commonly applied
to MRI images and WMH segmentation.

We also present a modified version of the Attention Gated U-Net [Schlemper et al., 2019]
to perform white matter hyperintensity segmentation. The idea behind this
method is to combine the proven segmentation capabilities of fully convolu-
tional neural networks (FConvNN) [Christ et al., 2016] [Guerrero et al., 2018],
specifically those which follow a U-Net or similar architecture [Ronneberger et al., 2015]
[Milletari et al., 2016] with the ability of attention gates (AG) to leverage
salient regions in medical images [Schlemper et al., 2019].

In summary the main contributions of this paper are the following:

• Propose a tailored and improved preprocessing workflow for boosting
the performance that a CNN is able to achieve segmenting WMH. Con-
sisting in brain extraction, corregistration, contrast enhancement, sub-
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ject based slice cropping, intensity standardization and data augmen-
tation.

• Demonstrate how a loss function that combines lesion wise F1 and dice
similarity coefficient reach better all around results in later stages of
the training. This metric combines the segmentation power of the DSC
but boosts its overall performance around individual lesion metrics.

• Modify the attention gated U-Net to improve its efficiency for WMH.
Combined with all of the above to achieve a 0.079 rank (being 0 the
highest rank and 1 the lowest) in the WMH challenge specifically get-
ting great results in AVD, H95 and DSC metrics.

2 Related work

2.1 MRI preprocessing

Magnetic resonance imaging (MRI) differs from any other regular camera or
similar tools that produce the images generally used in computer vision and
therefore the way we preprocess this image will have to be tailored for MRIs
and specifically for WMH segmentation.

Automating segmentation tasks in medical images is a topic of research
that has seen a great increase over the last few years [Fourcade & Khonsari, 2019].
This is in most cases done by leveraging the power of fully convolutional
neural networks [Ronneberger et al., 2015] [Duque et al., 2019]. That is why
many efforts have gone into the preprocessing and enhancing of MRI im-
ages to allow CNNs to segment pathologies better [Duque et al., 2019]. This
is done mostly by removing noise elements that images may contain as
well as trying to enhance the features of the pathologies being studied.
For brain MRI the skull is in this case a source of noise since there is no
WMH present in it and its voxels have very high intensities, thus there have
been a few methods presented for creating brain masks to remove the skull
[Isensee et al., 2019] [Smith, 2002].

Bias field inhomogeneities correction is also something that is important
to do before feeding the images to any segmentation tool since the presence
of artifacts might create a great amount of false positives around the edges
of white matter and gray matter.
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Misalignment between different input images would generate unreliable
results consequently image coregistration between the types of MRI images
available is important to achieve good results.

Other pathologies may be present in different intensities ranges but in
the case of WMH it appears in hyperintense areas or at least in intense areas
where their surroundings are hypointense. Increasing the contrast between
these hyperintense and hypointense areas will greatly improve the segmenta-
tion ability of CNNs. We use the method proposed in [Khademi et al., 2009]
for enhancing contrast in FLAIR images.

Our previous study focuses on how combinations of these mentioned tech-
niques work with each other [Duque et al., 2019]. Main conclusions from that
study is that removing the skull, applying contrast enhancement and inten-
sity standardization greatly benefit segmentation performance. In this work
we further improve the cropping of slices.

2.2 Convolutional neural networks

Deep convolutional neural networks had a great success in a variety of prob-
lems like image classification [Krizhevsky et al., 2012] [Hershey et al., 2017]
[Yu et al., 2017], text classification [Wang et al., 2018] [Johnson & Zhang, 2015],
object instance segmentation [He et al., 2020], [Chen et al., 2019], malware
classification [Kalash et al., 2018] [Gibert, 2016], sequence modelling [Bai et al., 2018]
and medical image segmentation [Ronneberger et al., 2015] [Duque et al., 2019]
[Enokiya et al., 2018] [Schlemper et al., 2019] [Li et al., 2018b] [Guerrero et al., 2018]
[Christ et al., 2016].

Traditional computer vision techniques based in extracting features such
as borders, corners, SIFT/SURF or any other custom feature to then train
a machine learning model on those have been replaced by the effectiveness
of convolutional neural networks. One of the first cases when CNN clearly
achieved lower error than other solutions was in the classification of ImageNet
[Krizhevsky et al., 2012] when they were able to lower the test set error rates
from 45.7% from previous methods (SIFT + FVs) to 37.5% in the top-1 and
from 25.7% to 17.0

Initial solutions to attempt to solve the problem of WMH segmentation
were based on manual and tailored feature extraction which was then fed into
some machine learnirng classifier such as a support vector machine, like the
one shown in [Rincón et al., 2017] but most recent publications in the field
have been focused on the used of CNN [Li et al., 2018a] [Li et al., 2018b] or
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the preprocessing of the data to then feed it to a CNN [Duque et al., 2019]
[Isensee et al., 2019].

The problem of image segmentation and specifically medical image seg-
mentation has found great results by using U-shaped or V-shaped fully convo-
lutional neural network architectures. These networks were named after such
shapes, U-Net [Ronneberger et al., 2015] and V-Net [Milletari et al., 2016],
which have seen multiple successors and modifications that improve their per-
formance for certain use cases [Li et al., 2018a] [Oktay et al., 2018]. These
architectures consist in a contracting path on the left which extracts most
features on different levels of sizes and a reconstructing path that upsamples
the image to be able to produce a full size segmentation output image as
shown in the original diagram of the U-Net in Figure 1. The U-Net was
originally presented with a weighted crossentropy as loss function, but later
uses for segmentation generally include a Dice similarity coefficient as loss
function since it has proven great results for this problem [Li et al., 2018a]
[Duque et al., 2019].

Figure 1: Original U-Net [Ronneberger et al., 2015]

Multiple of the top solutions in the WMH segmentation challenge base
their solution on the U-Net architecture [Li et al., 2018a] [Kuijf et al., 2019].

2.3 Attention gates

Attention mechanisms have been around for some years but their usage has
increased over time obtaining great results in different fields such as machine
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translation [Vaswani et al., 2017], sentence classification [Liu et al., 2019], im-
age classification [Wang et al., 2017], for generative adversarial networks [Zhang et al., 2019]
and model interpretation [Serrano & Smith, 2020] [Wiegreffe & Pinter, 2020].

Attention has shown great ability to focus on specific features or parts
of images to highlight the most important ones based on a context vector
and therefore not focusing on the irrelevant features that may be present in
the image. This is done by building a mask by combining lower level tensor
which has a smaller size and better feature representation with the current
level tensor. A full walkthrough of the attention gates structure is explained
in apendix C.

One of the other reasons attention mechanisms have had so much success
is their ability to be added as modules to existing network architectures im-
proving their already great results. A good example of this is how attention
gates were added to the U-Net architecture resulting in the Attention Gated
U-Net [Oktay et al., 2018] improving the already field dominating results of
U-Net [Ronneberger et al., 2015] architectures in medical image segmenta-
tion.

Attention gates build a mask to filter features in a image and then apply
such mask to both highlight most usefull features while reducing the impact
of non important ones.

3 Methodology

3.1 Dataset

We use the publicly available dataset from the MICCAI White Matter Hy-
perintensities challenge [Kuijf et al., 2019] to train and test our methods. It
consists in 60 cases. For each subject, a 3D T1-weighted volume, and a 2D
multi-slice FLAIR volume were provided. FLAIR images had the following
acquisition characteristics: Utrecht (3T Philips Achieva, voxel size: 0.96 0.95
3.00 mm3, image resolution: 240 240 48, TR/TE/TI: 11000/125/2800 ms),
Singapore (3T Siemens TrioTim, voxel size: 1.00 1.00 3.00 mm3, image
resolution: 252 232 48, TR/TE/TI: 9000/82/2500 ms) and Amsterdam
(3T GE Signa HDxt, voxel size: 0.98 0.98 1.20 mm3, image resolution:
132 256 83, TR/TE/TI: 8000/126/2340ms). T1 and FLAIR images were
aligned using elastix [Klein et al., 2010] [Shamonin et al., 2014] by the chal-
lenge organizers and bias correction was applied by using the SPM12 software
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[Friston et al., 1994]. WMH were manually segmented by experts and this
ground truth were used for training and testing. All subjects MRIs were
applied a mask to remove the face and therefore the identity from the image.

Ground truth images contain a third label different from WMH and non
WMH tagged as “other pathology” which was removed during the prepro-
cessing stage for training.

Working solutions are submitted in a docker image [Merkel, 2014] and
blind tested against a dataset containing unseen data from the three scanners
that were available in the training set as well as data from two other unseen
scanners.

Metrics evaluated on the blind test data are the following: dice, haus-
dorff distance (modified, 95th percentile), average volume difference (in per-
centage), sensitivity for individual lesions (in percentage), F1-score for in-
dividual lesions. A final metric is obtained by averaging the previous five
in order to be able to rank all solutions submitted to the WMH challenge
[Kuijf et al., 2019]. In appendix D all metrics are explained in detail.

3.2 Preprocessing stages

The first step in the preprocessing is to generate the brain mask using HD-
BET [Isensee et al., 2019] from the T1 image. In a previous work [Duque et al., 2019]
we used the method explained in [Smith, 2002] but more recent work pro-
posed in [Isensee et al., 2019] has proven better results basing their method
en neural networks as well.

Then T1 images are co-registered to the FLAIR space to be able to gener-
ate a brain mask for FLAIR images as well. This was done using BRAINFit
and BRAINResample modules from 3DSlicer [Fedorov et al., 2012].

A non linear contrast enhancement transformation is run on the FLAIR
image to enhance areas where WMH is present, this has shown an improve-
ment in DICE compared to not using this technique [Duque et al., 2019].
Figure 2 and 3 show the result of applying contrast enhancement to both big
and small lesions respectively. Brain masks are then applied to both T1 and
FLAIR images by simply multiplying both matrices to the mask.

Some kind of normalization of voxel intensities is a must for gradient
descent methods such as the ones applied in the optimization of CNNs in
order to work properly, however standardization has proven to be a much
better scaling technique before feeding images to CNNs [Duque et al., 2019].
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(a) Original image (b) Contrast enhanced image

Figure 2: Contrast enhancement results for large lesions

(a) Original image (b) Contrast enhanced image

Figure 3: Contrast enhancement results for small lesions
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All voxel values are standardized to a distribution with zero mean and unit
variance.

For each subject, slices from the top and bottom part of the head were
removed since the slices out of the brain cannot contain WMH and the top
and bottom areas of the brain rarely contain them. We first remove all non
brain slices by using the brain mask. Of the remaining slices we removed
dn ∗ 0.05e slices from the top and dn ∗ 0.12e from the bottom where n is the
number of axial view slices of each subject in the original full image. Images
from all scanners were padded and cropped to achieve a slice shape of (200,
200).

In previous solutions of our method we simply cropped the top and bot-
tom slices based on a percentage of the total amount of axial view slices
which worked well in the Utrecht, Singapore and Amsterdam datasets (3T
Philips Achieva, 3T Siemens TrioTim and 3T GE Signa HDxt scanners re-
spectively) but performed badly on other scanners. Our current solution is
much more robust with a wider range of scanners that add more neck slices.
Also it allows for a tailored crop for each patient, since our method works in
two dimension each patient can have a different number of slices processed
both for training and predictions.

3.3 Data augmentation

Medical datasets are generally small given how expensive it is to label images,
therefore data augmentation is a great tool to enlarge the amount of training
data available.

All slices that contain any level of WMH in the training set were aug-
mented 6 times. The first five were done by applying random affine data
transformations where values were picked from a normal distribution within
the following ranges; for rotations with [−30◦, 30◦] angles, shifts applied to
both the x and y axis [-30%, 30%] of the total width and height, respec-
tively, zoom on both axes with values in the ranges [0.9, 1.2] and shears in
the range [-0.2, 0.2]. The sixth augmentation was done by applying all 5
transformations to each slice to further improve generalization.

A comparison of applying the same data transformations to the dataset
but generating just 2 new slices per original slice against generating 6 as
stated above can be shown in figure 4. Data augmentation does not only
improves training metrics but it greatly improves validation metrics.
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(a) DSC in the training set per epoch (b) DSC in validation set per epoch

Figure 4: Comparison between x2 augmentation and x6 augmentation. DSC
values shown do not represent the performance of the final model but it is
simply a comparison between the mentioned techniques.

3.4 Network architecture

The proposed solution uses a fully convolutional neural network based on the
attention gated U-Net architecture [Schlemper et al., 2019], figure 5 shows
the overall structure of the network. An overview of the main layers of
CNNs is explained in appendix B.

Figure 5: Original Attention U-Net [Oktay et al., 2018]

Our proposed attention gated U-Net has three levels instead of four (see
Figure 1 for original U-Net), which means it has only three pooling layers
in the contracting path and three transposed strided convolutions (instead
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(a) DSC in the training set per epoch (b) DSC in the validation set per epoch

Figure 6: Comparison between our attention gated U-Net (blue) and our
modified U-Net (orange/yellow). DSC values shown do not represent the
performance of the final model but it is simply a comparison between the
mentioned techniques.

of upsampling layers) in the expanding path. This allowed us to reduce the
number of parameters while keeping the same performance since the focus
on small features in obtained thanks to the increased convolution kernel size
and an initial stack of convolutions. All convolutional kernels are increased
to size 11 to capture richer local data besides convolutions within the at-
tention gates. RELU activations are used in all convolution layers. Within
the attention gates convolution kernels are (5, 5) besides the obvious (1, 1)
convolutions. Pooling layers are kept of (2, 2). There is an initial stack of 5
convolutions before the U-Net pattern of two convolutions and pooling starts
then that pattern is applied three times in the contracting path. Initialization
of all convolutional kernels is done by using the He normal [He et al., 2015]
besides in the attention gates in which we use the Glorot or Xavier uniform
[Glorot & Bengio, 2010].

In the reconstruction path of the U-Net is where attention gates are lo-
cated. Reconstruction upsampling are always done by using (2, 2) strided
transposed convolutions (sometimes wrongly referred as deconvolutions) to
match the (2, 2) pooling on the downsampling path. Attention gates use
batch normalization at the end of their process.

We compared our previous solution which followed a U-Net architecture
but without attention mechanisms and showed that attention gates boost
performance in terms of DSC for white matter hyperintensities segmentation
as it is shown in Figure 6.
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3.5 Training

For most medical segmentation tasks the negative value of the Dice Similarity
Coefficient (DSC) has become the standard loss function [Li et al., 2018a]
[Duque et al., 2019] due to the very high imbalance that the classes within
problems present [Li et al., 2018a] [Duque et al., 2019]. However this loss
function has shown to struggle for certain metrics such as lesion-wise recall
and F1 as it gives importance to big lesions and makes smaller ones irrelevant.
When it comes to medical image segmentation lesion-wise recall and F1 are
important, regardless of the size of the blobs. In late stages of training
capturing small blobs makes no difference in terms of DSC and therefore
blob wise recall and precision could be not well optimized if their size is not
relevant.

In this work we propose a combination of a DSC and lesion blob F1 loss
function. The idea behind this is to first optimize based on DSC and as this
metric reaches better results start giving more weight to the F1 score. It is
important to know that a metric based on F1 alone would not be possible
as it is not differentiable and optimizing only for precision or recall could
result in all white or black images as prediction. A comparison of DSC and
F1 metrics for both loss functions can be found in figure 7

f1 weighted DSC loss = −(DSC + F1×DSC × weight)

Where weight is a fixed parameter which was set to 1.7 experimentally.
Lower values of this weight made it just perform similarly to a regular DSC
loss function. Lesion-wise recall and lesion wise precision are calculated using
2D connected components as units since our method is two dimensional as
shown below:

recall =
|connG × Pred|

NG

precission =
|connG × Pred|

NPred

Where connG represents the 2D connected components of the ground
truth, then it is multiplied to the prediction and the cardinality of unique tags
is obtained which leaves us with the number of correctly predicted individual
lesions. NG is the total amount of unique lesions in the ground truth and
NPred is the total amount of unique lesions predicted. F1 score can be then
calculated using precision and recall.
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F1 =
2× precision× recall

precision + recall

Network is trained for 40 epochs with a learning rate of 0.0001 with the
Adam optimizer [Kingma & Ba, 2015]. All models were trained on a Nvidia
GTX 1080. Learning rate is kept low as previous work has proven that
higher learning rates makes training to stuck during the first few epochs
[Duque et al., 2019] [Li et al., 2018a].

(a) DICE similarity coefficient per epoch
in the training set.

(b) F1 score per epoch in the training set.

Figure 7: adaptive weighted loss function (seagreen) compared to DSC loss
function (fuchsia).

For comparing own different methods a train, validation and test split
patient wise was done on each dataset with a common seed across trainings.
For each dataset containing 20 patients, 16 were used for training, 3 for
validation and 1 for testing. Best performing model was then trained on the
totality of the dataset.

3.6 Postprocessing

In order to produce an image which size matches the input all the cropping
and padding has to be reversed. All slices are cropped or padded back us-
ing 0 value to their original shape. Removed slices are replaced with slices
of value 0 by calculating again the gap between the original image and the
brain mask. Finally adding as many slices that were removed from both the
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top and the bottom of the image.

4 Results

The results provided in this section are the ones produced by the blind test
run by WMH challenge organizers [Kuijf et al., 2019]. Our method ranks
20th out of the 43 total submissions at the moment of writing this article.
Specifically it excells in AVD, our best ranking metric, followed by Hausdorff
distance and DSC.

DSC H95 (mm) AVD (%) recall f1
Utrecht (n=30) 0.75 9.42 27.55 0.76 0.6

Singapore (n=30) 0.81 6.15 15.60 0.71 0.68
AMS GE3T (n=30) 0.78 6.12 18.93 0.71 0.69

AMS GE1.5T (n=10) 0.77 10.58 13.98 0.73 0.74
AMS PETMR (n=10) 0.63 22.29 116.95 0.79 0.33

weighted average 0.76 8.90 28.83 0.73 0.63
rank [0..1] 0.079 0.074 0.016 0.220 0.230

Table 1: Results from the blind test.

For DSC our solution achieves a weighted average of 0.76, performing best
for the Utrecht dataset and worst for the AMS PETMR. For H95 we reach an
average of 8.90, being GE3T our best dataset for this metric with 6.12 and
22.29 for AMS PETMR as our worst case. In the case of AVD our solutions
does best at AMS GE1.5T with 13.98 and worst for AMS PETMR with
116.95, being in this case a extreme outlier compared to the rest of datasets.
For recall we perform best for AMS PETMR with 0.79 but in this case is a
sign of oversegmentation and that is why the rest of metrics are worse for
this dataset. Our best F1 metric is for the AMS GE1.5T dataset with 0.74
and our worst for AMS PETMR with 0.33 as part of the oversegmentation
problem stated before.

As it can be seen on both Table 1 and Figure 8 our method performs great
across all scanners on DSC. But when it comes to the rest of the metrics,
except for recall, it underperforms for the AMS PETMR dataset due to the
oversegmentation it produces.
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(a) Dice Similarity Coefficient (b) Absolute percentage volume differ-
ence

(c) Hausdorff distance (d) Lesion recall

(e) Lesion F1

Figure 8: Boxplots for all five metrics for each of the datasets tested against.
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Our solutions performs best in absolute percentage volume difference and
hausdorff distance (95p) excelling in the Utrech, Singapore, AMS GE3T and
AMS GET 1.5T datasets in terms of the ranking provided by the challenge.

In Figure 10 shows segmentation examples for three subjects in the three
available datasets. Segmentation is good in many areas but it still strugles
with some of the small blobs as well as certain edges of bigger ones.

5 Discussion and future work

There is still room for improvements in a few areas. First of all our solution
does not work great on all scanners and it underperforms in the AMS PETMR
where it oversegments getting too many false positives. This could be caused
by multiple factors like the preprocessing either not removing correctly neck
or skull areas, the contrast enhancement could be over-highlighting parts
that are not WMH or the model is creating the false positives itself by being
overfitted to the other tree scanner types. Artifacts could also be a cause of
oversegmentation in this specific scanner.

F1 and recall lesion metrics are the other two in which we could find
improvements for our current solution. In order to improve recall a greater
amount of small lesions need to be targeted, as bigger lesions are generally
reached. However, this has to be balanced with not over-segmenting since we
are also trying to improve F1 by reducing the false positives that we currently
have. Giving more weight in our loss function to F1 part of it during late
stages of the training could be an option. Adaptive weighted loss function
has a great potential to deliver great results in segmentation tasks but more
research will be conducted along this line to explore how to better optimize
it.

Reviewing that the preprocessing never fails to highlight small lesions
could be another path into improving recall. Since failing to properly pre-
process lesions of all size would result in only segmenting big lesions and
therefore bad recall and F1 results.

It is a non trivial problem to find the best architecture and set of hy-
perparameters for very deep neural networks as the one we are using in
this problem. Newer techniques such as Network Architecture Search (NAS)
could help us find an even more optimal architecture for this specific problem
and datasets. This would allow us to further explore better optimization for
all metrics including the ones that our method already performs well.
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(a) Patient from Utrecht dataset

(b) Patient from Singapore dataset

(c) Patient from GE3T dataset

Figure 9: Preprocessing and segmentation results for holdout patients in each
of the datasets. From left to right, original FLAIR, original T1, processed
FLAIR, processed T1, ground truth and model segmentation.
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(a) Utrecht dataset (b) Singapore dataset

(c) Amsterdam dataset

Figure 10: Examples of segmentation results for each of same three hold
out patients shown in figure 9. Green shows true positives, red means false
positives and yellow false negatives.

Generally solutions perform better on average when an ensemble of net-
works is used instead of a single one, this helps reduce both false negatives
and false positives. Using the same network in an ensemble of 3 or 5 units and
then using voting mechanisms to get final predictions could improve overall
results across different metrics.

6 Conclusion

In conclusion we found that preprocessing is key for achieving good results in
WMH. Data augmentation does also benefit the improvement of the results.
Our tailored slices cropping improves the performance of our method across
scanners.

U-Net architectures clearly can achieve great results for WMH segmen-
tation. On top of that Attention Gated U-Net can even improve such results
even further. Fully optimizing an architecture to a specific problem is very
challenging and our research will continue also in this direction.
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DICE similarity coefficient is a great choice for loss function in segmenta-
tion tasks but it lacks the ability to take in consideration small lesions which
might be irrelevant in terms of amount of voxels. Our proposed adaptive
weighted loss function has all the benefits from a regular DSC loss function
but also takes into account smaller lesions once it reaches a good optimiza-
tion in terms of DSC. However, further research has to be conducted along
this line to fully optimize and explore this kind of loss function potential.
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Appendices

A Magnetic resonance imaging

MRI scanners use powerful magnets to produce a very strong magnetic field
that makes protons in the body to align with that field, the protons are
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stimulated and spin out of equilibrium straining against the pull of magnetic
field. Then the MRI sensors are able to detect the energy released as the
protons realign with the magnetic field [?]. Depending on the environment
and chemical aspects of the molecules the time it takes the protons to realign
and the amount of energy released may vary.

MRI machines can produce a set of 2D images which if the distance
between them is short, can be seen as 3D images.

Although there is a wide variety of MRI types, in this work we use fluid
attenuated inversion recovery (FLAIR) and T1-weighted images. FLAIR is a
special kind of inversion recovery sequence with a long inversion time which
removes the cerebrospinal fluid (CSF) in the resulting images. In FLAIR
images, grey matter could appear brighter than white matter and CSF is
dark/black. This is the most useful kind of MRI for detecting WMH as it
appears hyper intense. The timing of radiofrequency pulse sequences used
to make T1 images produces them to highlight fat tissue in the body and for
this specific purpose it is great for differentiating tissues in the brain.

B Convolutional neural networks

Convolutional neural networks are a main component of the Deep Learning
field. They rely on a set of different layers which mainly are convolutional
layers and pooling layers. The learning and optimization process occurs in
the convolutional layer.

This kind of neural networks work very well with images because they
rely on the matrix shape of images to apply discrete convolution as their
main operation, however they can be applied to any kind of input data as
long as its first reshaped to fit into the network.

B.1 Image representation

Images are stored in memory as N-channels matrices, where a gray image
would simply have one channel being each pixel value the intensity of that
pixel and color images would have generally 3 channels each one representing
a different color, and the pixels of each channel representing the intensity of
that color. Most common color image representation is RGB (red, green,
blue) however there are other representations such as HSL (hue, saturation,
lightness) and HSV (hue, saturation, value). Actual values can have a variety
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of ranges depending of the data type of the image, but a very common one
is for it to have [0, 255] range.

In 11a a representation of a gray image is shown and 11b explains an
RGB image.

(a) Gray image representation
(b) RGB image representation

Figure 11: General cases of image representation and storage.

MRI are single channel images and we use FLAIR and T1 images types
which are stack as channels for the network input, therefore our network
input is composed of two single channel images that creat a 2-channel image.

B.2 Convolution layer

Convolution layers can have an input of a image of shape H ×W with any
number of channels, which leaves us with an image of H ×W × C. They
then apply a convolution on a kernel of Kh × Kw to generate the output
of the layer, even though generally kernels are squared (for 2 dimensional
convolutions) it is not technically enforced.

Two dimensional convolution is defnied as:

y[i, j] =
∞∑

h=−∞

∞∑

w=−∞

K[h,w]İ[i− h, j − w]

Where y is the output image, i and j are the coordinates of the image, K
refers to convolution kernel and I is input image.

To illustrate this with a example, if the kernel has size 3 × 3 then the
indices would range from -1 to 1 as shown in the formula below:
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y[i, j] = K[−1,−1]I[i + 1, j + 1] + K[−1, 0]I[i + 1, j] + K[−1, 1]I[i + 1, j − 1]+

K[0,−1]I[i, j + 1] + K[0, 0]I[i, j] + K[0, 1]I[i, j − 1] + K[1,−1]I[i− 1, j + 1]+

K[1, 0]I[i− 1, j] + K[1, 1]I[i− 1, j − 1]

Kernels is moved throughout the image as a sliding window convolving
at each of the pixels. This way it generates an new output image. Figure 12
shows an illustration of the convolution formulas with a graphical example.
The values of this kernels are parameters of the network and therefore what
is optimized during training.

Figure 12: Convolution operation

Convolutional layers are highly customizable and the main parameters in
which one can modify it are number of filters, kernel size, strides, padding,
activation and kernel initializers. The number of filters/kernels is just the
number of different filters that will be involved in the layer and its size the
size of all of the kernels in such layer. The other parameters are explained
below.

B.2.1 Padding

If no padding is applied to the convolution, the result image will be smaller
than the input image as shown in 12, more specifically it will be reduced by
2bK

2
c on both dimensions (assuming the kernel is squared).

Generally deep learning frameworks such as Tensorflow [Abadi et al., 2015]
will have two options for this parameter, ”valid” will apply no padding at all
and ”same” will make the necessary padding (top, bottom, left and right) to
mantain the original image input size.
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B.2.2 Strides

Stride is the number of pixels shifts over the input matrix. Non strided
convolution works as explained before, what is also referred to as a stride
of value 1. N value strides make to shift the kernel N pixels each time a
convolution is applied, the greater N is the smaller the output matrix will
be. A graphical representation of strided convolution with strides value 2
can be seen in Figure 13

Figure 13: Example of convolutions with strides value 2.

B.2.3 Activation layer

After the convolution is applied on the data a non linear activation function
is applied to modify the output of the layer. There are a great amount
of activation functions [Goyal et al., 2020] that have been used in different
neural networks for many use cases, but one of the most common ones for
convolutional layers is the rectified linear.

ReLu(z) = max(0, z)

A graphical view of the function as well as an example of an output and
its corresponding input can be found in Figure 14.

B.2.4 Kernel initializer

Kernels are optimized during the training process but they need to be ini-
tialized before training starts. This initialization is made randomly but
there are an infite ways of initializing them. The one that was used for
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(a) ReLu function
(b) Example of input and output of a ReLu acti-
vation function.

Figure 14: Rectified Linear Unit (ReLU)

the original U-Net [Ronneberger et al., 2015] and that has shown great re-
sults [Li et al., 2018a] [Duque et al., 2019] in very deep convolutional neural
networks is he normal [He et al., 2015].

B.2.5 Transposed convolution

Transposed convolution is the transposed operation of the convolution, it is
intended to undo or reverse the effect of the convolution. It was initially
proposed in [Zeiler et al., 2010] and has been wrongly referred to as decon-
volution in its initial work and other ocasions. The literature and also the
deep learning frameworks that implement this layer have been correcting this
naming since.

Many of the parameters that can be configured in the convolution layer
can be also modified for the transposed convolution layer but they have
a different effect. For example strided transposed convolutions will make
output image greater than the input image, as opposed to strides in regular
convolution which would make the output image compared to the input.
Strided transposed convolution layers are used in this work in replacement of
upsampling layers since they add a learning component to the upsampling in
exchange for computational cost (it adds more parameters to the network).

For a great visual resource for visualizing convolution and transposed con-
volution with its many configurations of parameters please refer to [Dumoulin & Visin, 2016]
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B.3 Pooling layer

Pooling layers are used to reduce the size of the image and therefore the
amount of data/features in them, in a selective way. Pooling is applied to
each subsection of the image in which an operation is made to generate the
output pixel for this section. The size of this subsection is given by the value
specified for this parameter, all pooling layers in this work were 2× 2.

The most common operations for pooling layers are max, min, mean,
median and sum but there is no technical restriction and other operations
could be applied. Figure 15 shows an example of an average and max pooling,
the latter is the one used in this work for all pooling layers since our objective
is to keep the pixels with the highest intensities in order to segment white
matter hyperintensities.

Figure 15: Average and max pooling operation

The other operations would be applied in the same way shown in 15 but
with the new operation of choice.

C Attention gates

Attention is a way to highlight certain activations of a network and discard
the ones that are less relevant for the problem at hand. There are two
types of attention, hard and soft, in this work we only make use of the
latter. Hard attention can only focus on one part of the image and is non
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differentiable and therefore needs to be applied along with other learning
component such as reinforcement learning. Soft attention on the other hand
is in fact differentiable and can highlight multiple parts of the image, which
means in can be back propagated in a neural network.

Figure 16: Attention gate diagram [Oktay et al., 2018].

Following the naming in Figure 16, attention gates take two inputs, the
original tensor x and the tensor g from the next lowest layer of the network.
Since g comes from a lower layer has a smaller dimensions and better feature
representation.

First x goes through a strided convolution which reduces its size to the
same as g, the latter goes through a 1x1 convolution to adapt de number
of filters in a way that it fits the ones x has, once both steps are done they
are added element wise. This produces aligned weights to be larger while
unaligned become smaller which is then passed through a ReLu activation
to remove negative values. Since we are looking to have a single channel for
this mask, we will do make a 1x1 convolution to colapse all channels into
one. The last step to produce the attention coefficients is to scales the range
of the values to [0, 1] where values close to 1 will indicate relevant features
and values close to 0 the opposite. This is done with the help of a sigmoid
layer.

Once attention coefficients are ready they are upsampled to have the same
size as the original input x and then they are both multiplied elementwise
which produces the filtering based in the relevance found in the attention.

34



D WMH evaluation

In this section G refers to the ground truth and Pred to the prediction mask.

D.1 Dice Similarity Coefficient

The DSC is one of the main metrics in this type of segmentation problems and
the negative value of the DSC (DSC loss function) has become one of the most
used loss functions for this type of tasks [Li et al., 2018a] [Duque et al., 2019]
[Oktay et al., 2018].

DSC =
2× |G ∩ Pred|
|G|+ |Pred|

DSCloss = −2× |G ∩ Pred|
|G|+ |Pred|

Where the intersection between the ground truth and the prediction is
done by multiplying both prediction and ground truth mask, the number of
voxels in this intersection is counted, multiplied by two to then be divided
by the amount of voxels in G plus the ones in the prediction.

D.2 Hausdorff distance (95th percentile)

H(G,P ) = max{supinfd(x, y)
x∈Gy∈Pred

, supinfd(x, y)
y∈Gx∈G

}

In the challenge it is used a robust version that calculates the 95th per-
centile instead of the maximum which would be the 100th percentile.

D.3 Average volume difference

Average volume differences is a comparison between the amount of voxels
that are marked as WMH in the prediction mask and the ones present in the
ground truth regardless if they are a true or false positive.

AVD =
|VG − VPred|

VG

Where |x| represents in this case absolute value and not cardinality. It is
a great sanity check for comparing the number of voxels predicted as WMH
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compared to the gold standard. Systems that overpredict would be equally
penalized that the ones that underpredict assuming the difference is the same.

D.4 Recall for individual lesions

Recall is calculated based on individual lesions and not on individual vox-
els, therefore first the individual lesions have to be calculated, this is done
with 3D connected components. The number of individual lesions that are
correctly detected is divided by the number of lesions present in the ground
truth image. Note that a single voxel of intersection would consider the lesion
as correctly detected.

recall =
|connG × Pred|

NG

Where connG is the connected components and |x| represents cardinality
in this case. The connected components matrix is then projected into the bi-
nary prediction matrix. The number of distinct correctly detected connected
components is then divided by the total amount of connected components
present in the ground truth.

D.5 F1 for individual lesions

F1 for individual lesions is calculated in a similar fashion as recall but for
the F1 score.

F1 =
|connG × Pred|

NPred

Where NPred is the total number of predicted individual lesions. Note
that the cardinality is calculated only taking into account the amount of
unique lesions.

E Code

The code that is submitted to the WMH challenge is provided in the follow-
ing repository and will be added to the SIMDA research group website.
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https://github.com/pabloduque0/WMH_AttGatedUnet_CustomLoss

Commands to run and execute predictions for new images are provided
in the README of the repository.

F Previous work
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and Mariano Rincón-Zamorano

Departamento Inteligencia Artificial, UNED, Madrid, Spain
pablo.duque55@gmail.com, {jmcuadra,esterjimenez,mrincon}@dia.uned.es,

http://simda.uned.es/

Abstract. Automatic segmentation of brain white matter hyperinten-
sities (WMH) is a challenging problem. Recently, the proposals based
on Fully Convolutional Neural Networks (FCNN) are giving very good
results, as it is demostrated by the top WMH challenge architectures.
However, the problem is non completely solved yet. In this paper we ana-
lyze the influence of preprocessing stages of the input data on a fully con-
volutional network (FCNN) based on the U-NET architecture. Results
demostrate that standarization, skull stripping and contrast enhance-
ment significantly influence the results of segmentation.

Keywords: White matter hyperintensities ·
Fully Convolutional Neural Networks · U-NET ·
Contrast enhancement · Normalization · Standardization

1 Introduction

The presence of leukoaraiosis or white matter hyperintensities (WMH) in the
brain of elderly individuals is linked to increased risk of stroke, cognitive impair-
ment, dementia and ultimately, death. Magnetic resonance imaging (MRI) is by
far the most sensitive modality for detecting WMH and MRI is consequently a
very central diagnostic procedure in the elderly population. Manual WMH seg-
mentation is very time-consuming and prone to user-bias, which has resulted in
several attempts to generating automated analysis tools for WMH segmentation
[1–3].

Recently, solutions based on Fully Convolutional Networks (FCNN) are giv-
ing very good results as shown by the first positions in the WMH challenge [3].
Nevertheless, there are still problems to solve such as the great inter- and intra-
observer variability, so a systematic study of the phases of the problem solution
is necessary. In this context, this paper focuses on the analysis of input data
preprocessing and its influence on a FCNN based on the U-Net [4].

c© Springer Nature Switzerland AG 2019
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2 Materials and Methods

2.1 Dataset

In all reported experiments, we relied on the publicly available dataset from the
MICCAI WMH Challenge [3], organized as a joint effort of the UMC Utrecht,
VU Amsterdam and NUHS Singapore for benchmarking methods for automatic
WMH segmentation. It consists in 60 cases, 20 from each one of the three cen-
tres. For each subject, a 3D T1-weighted volume, and a 2D multi-slice FLAIR
volume were provided. FLAIR images had the following acquisition characteris-
tics: Utrecht (3T Philips Achieva, 0.96× 0.95 × 3.00, 240 × 240 × 48), Singapore
(3T Siemens TrioTim, 1.00 × 1.00 × 3.00, 252 × 232 × 48) and Amsterdam (3T
GE Signa HDxt, 0.98× 0.98 × 1.20, 132 × 256 × 83). T1 and FLAIR images were
aligned using elastix [5,6] and bias correction was applied by using the SPM12
software [7]. WMH were manually segmented by experts and this masks were
used for training and testing.

All slices were set to 240 × 240. Slices were conveniently cropped or padded
to keep the center of the image. Top and bottom slices are removed to reduce
noise since there is no white matter in such slices of the brain. We opted to
remove the bottom 6 slices and the top 4 slices.

2.2 Preprocessing

Apart from the initial basic preprocessing performed by the WMH challenge
organizers, we aimed to analyze how different transformations of the input data
impact and facilitate machine learning with FCNNs.

Skull Stripping. The MRI modalities currently used to segment WMH are (1)
FLAIR, where WMH appear as hyperintensities, and (2) T1, where tissues are
distinguishable. In this sense, T1 gives complementary and necessary information
for the segmentation task as hyperintesities in the FLAIR image may correspond
also to artifacts in the GM-CSF interface, the skull or infarcted tissue. A first
preprocessing step that can remove a lot of noise by focusing the analysis on
the area of interest is to remove the skull using a mask. FSL-BET [8] was used
to obtain the brain mask in T1, and it was applied to both input volumes
afterwards.

Normalization. FLAIR and T1 images have different scales and intensity lev-
els and are subject and machine dependent, so a normalization process is very
necessary for the correct functioning of deep learning algorithms. Due to the
high intersubject intensity variance, three different types of normalization were
applied on a per-case basis instead of applying it directly to the entire dataset.

Generally, not normalizing images at all leads to the network not being able
to converge properly, or to very unstable results. A very simple way to nor-
malize data is to linearly move all intensities to range [0, 1] with the min-max
normalization.
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x′ =
x − min(x)

max(x) − min(x)
(1)

As both volume inputs, FLAIR and T1, present a leptokurtic distribution
with extreme outliers, a min-max normalization can squeeze the data in very
low ranges as shown in Fig. 1. In order to spread the range of intensities as
much as possible to allow the network to differentiate hypointense pixels from
hyperintense ones we can use quantile normalization.

x′ =

⎧
⎪⎨
⎪⎩

0 if x < P0.5

1 if x > P99.7

else x−P0.5

P99.7−P0.5

(2)

where Pn is the percentile n. It is a non-linear transformation that cuts the ends
of the distribution while preserving linearity in the central region (an example
is shown in Fig. 1).

Fig. 1. FLAIR intensity distribution before and after applying quantile normalization.

Standardization. Standardization is one of the most common feature scal-
ing techniques in machine learning. It is also widely used in fully convolutional
networks as well as in similar segmentation problems. In this case, the linear
transformation rescales the distribution to have zero mean and a standard devi-
ation of one.

x′ =
x − mean(x)

σ

Contrast Enhancement. There exists a large inter- and intra- observer vari-
ability in the manual delineation of WMH. This makes the gold standard used
for training not very precise and therefore, to obtain precise results by automatic
segmentation becomes difficult [1].
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In MRI brain images, several problems can lead to erroneous segmentation
or pixel classification errors [9]. These problems can be: average partial volume,
noise overlap and intensity of adjacent tissue classes and for WMH in FLAIR
images a lower contrast may appear at the edge while in the center of the region
a higher contrast [10]. To avoid these problems, a better separation between
the pathology and the background of the image can be achieved using contrast
enhancement techniques. A review on contrast enhancement techniques, not only
subscribed to MRI, can be found in [11], for a review in MRI field see [10].

In our work we use the technique developed in [9] to improve the contrast
of WMH in FLAIR images. This technique uses an estimate of the WMH edge
magnitude and the intensity values combined through several transformations
to highlight WMH, see Fig. 2. All the transformations are only calculated from
the characteristics of each slice of the image, so they are adaptive. The technique
achieves an average contrast improvement of 41.1% in the experiments performed
in the original work.

Fig. 2. Contrast enhancement: original FLAIR (left), edge map (center) and enhanced
FLAIR (right).

2.3 Fully Convolutional Neural Network (adapted U-Net)

In this work we propose a deep learning approach using a FCNN that follows
the U-Net architecture [4]. Due to the non-isotropic voxel size of the FLAIR
volumes, we applied a two dimensional approach, analising the volume slice by
slice from the axial view. The FCNN was feeded with two input channels, one
corresponding to FLAIR information and the other to the T1.

In order to obtain good results, deep learning techniques usually apply data
augmentation when the dataset in small batches, which allows the model to
converge and generalize better. In our case, to triple the dataset, we applied
affine data transformations, such as rotations on [−30◦, 30◦] angles, shifts on
both the x and y axis [−30%, 30%] of the total width and height, respectively,
zoom on both axes in the ranges [0.9, 1.2] and shears in the range [−0.2, 0.2].
Actual values where picked randomly from a normal distribution.



456 P. Duque et al.

The U-Net is a fully convolutional neural network. It has a contracting path
on the left side and a expanding path on the right, giving it a U shape. The
contracting follows a more conventional structure of two convolutions followed
by a pooling layer, this process repeats four times. As the expanding path up-
samples the feature maps it is concatenated with the respective level of the
contracting path, then two convolutions are applied. This process is also repeated
four times.

The U-Net was originally designed for multi class classification and a softmax
activation layer was used in the last layer. However, here we are using a sigmoid
as the final activation function due to the binary nature of the segmentation
problem. On the other hand, the weighted cross entropy loss function proposed
for the U-Net was not the proper choice for this problem due to how highly
unbalanced our data is (only 0.17175% were WMH voxels). Instead the Dice
Similarity Coefficient was used as the loss function for training the network.
This metric is widely used as loss function for similar binary segmentations [12].

The loss function used was the negative Dice Similarity Coefficient:

DSCloss = −2 ×
∑N

n=1 |pn ◦ gn| + s
∑N

n=1 |pn + gn| + s

where ◦ is the element-wise product of two matrices (also represented as inter-
section since we are using binary matrices), |x| is the sum of values of matrix x,
pn and gn stand for predicted segmentation and ground truth, respectively, and s
stands for smoothing and assures that there will be no division by 0. Generally s
is set to 1.0, however it can have a big influence in the average when the number
of non-zero pixels is low (which happens often in these datasets). So we lowered
s to 0.01.

The learning rate was set to 0.000001 to guarantee convergence. Related work
[13] set a higher learning rate but they also conclude that with high learning rates
the U-Net gets stuck at a low level of DSC loss and is not able to converge in
multiple trainings. For a learning rate of 0.01, the DSC value will not surpass
0.01.

All convolution kernel sizes were changed to 5× 5 instead of the original 3× 3,
to capture richer local data. All maxpoolings are kept as 2× 2 with a stride of
2 × 2.

The original study for the U-Net proposes initializing weights from a trun-
cated Gaussian distribution centered on 0 with a standard deviation of:

stdv =

√
2

N
(3)

where N is the number of inputs from the previous layer. We used this initial-
ization, which granted more stability across trainings than the Glorot uniform,
also named Xavier uniform [14], which is set as default in the Keras framework.

Since the batch size and learning rate affect the gradient, we set batch size
to 30 to guarantee convergence given the selected learning rate.
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The number of epochs was cut to 35 to prevent the model from over-fitting.
We used 81.6% of the combined datasets for training. Another 15% of the data
for testing during training and evaluating our method. The 3.4% left is used for
validating predictions visually and generating output images.

The network was trained on Amazon Web Services (AWS). Out of their GPU
portfolio we chose the p2.xlarge EC2 instance, which suited our needs for this
task. The average training time was 10 h, however this time was lower on the
trainings with only one channel. We used the Keras implementation of the Adam
optimizer [15] for stochastic gradient based optimization.

3 Experimental results

Table 1 shows the results, ordered by DICE, after training for the different pre-
processing configurations. It can be observed that the best data normalization
is given by standardization. Only one of the configurations with standardiza-
tion is not found in the first ranking positions, probably due to an error during
conduction of the experiment.

Secondly, the use of a brain mask and the contrast enhancement technique
have a significant influence in the results.

Finally, since normalization serves to put all variables on the same scale and
thus facilitate that all entries have the same influence on the solution, and that,
in our case, roughly, we could say that the FLAIR image provides Information
about the WMH and the T1 image on the type of tissue, it might be interesting to
weight the FLAIR image more than the T1 image. To evaluate this hypothesis,
three experiments with different influence of T1 were performed: (1) T1 with
the same weight as FLAIR (T1 = yes), (2) T1 weighted to 0.1 w.r.t. FLAIR
(weighted 10%) and (3) eliminating T1 of the input data (T1 = No). The results
obtained (first three configurations of the Table 1 do not support this hypothesis,
since the difference between them is not significant. It is necessary to carry out
more experiments to analyze if the T1 image has any significant influence in
the segmentation, since the brain mask could also be obtained from the FLAIR
image.

Figure 3 shows the results obtained with the FCNN in three slices with differ-
ent load of WMH. It can be observed that detection of WMH is quite consistent
except for the smaller ones.

4 Discussion

Input data normalization by standardization is a determining factor in the
improvement of results. This may be motivated because the distribution of inten-
sities in each case (volume, subject) is dominated by the number of tissue voxels
of WM and GM, independently of the WMH load, which approximates a normal
distribution. By standardizing the intensities of voxels within each case, we are
normalizing with respect to the mean and the variance and, therefore, improving
the correlation of the different tissues between cases.
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Table 1. Segmentation performance of the FCNN trained on the WMH challenge input
data with different preprocessing. tables.

Mask Flair T1 Normalization DSC

Brain Enhanced Yes Standardization 81.30

Brain Enhanced Weighted 10% Standardization 81.05

Brain Enhanced No Standardization 81.02

No Enhanced Yes Standardization 79.49

Brain Original Yes Standardization 78.29

No Original Yes Standardization 76.81

No Enhanced Yes Min max 76.72

Brain Enhanced Yes Min max 76.34

Brain Enhanced Yes Quantile 74.89

No Enhanced Yes Quantile 73.04

Brain Original Yes Quantile 72.70

Brain Original Yes Min max 69.72

No Original Yes Quantile 69.12

No Original Yes Min max 66.89

Brain Original Weighted 10% Standardization 64.04

Brain Original Yes Min max 51.80

Fig. 3. Segmentation results on three slices from different subjects. True positive vox-
eles are shown in white or yellow colors, false positive voxels in red color and false
negative voxels in green color. (Color figure online)

With the results obtained from the first three configurations of Table 1 we
could conclude that the information introduced by T1 for the segmentation of
the WMH is scarce, but it will be necessary to carry out more experiments to
assess if the improvement is statistically significant.

5 Conclusions

In this work we analyze the use of different preprocessing techniques to improve
automatic WMH segmentation based on multicontrast MRI analysis with
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FCNNs. The biggest improvement is obtained by (1) using per-case standard-
ization to normalize the data because it improves tissue intensity correlation
between cases and (2) focusing the analysis in the brain removing the skull, and
(3) applying a non-linear transformation that enhances WMH contrast.

The tests with FCNNs are very costly temporally and computationally (10 h
on average per training), but it is demonstrated that the results obtained are
competitive with the methods found in the state of the art.

In this paper we use a non-linear transformation that increases the contrast
in WMH, which improves the performance of convolutional networks and at
the same time poses a way of reducing the inter- and intra-observer variability.
The use of more precise references would allow the system to also increase its
precision.
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