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Abstract

The estimation of hand position and orientation, pose, is of special interest in

many applications related to Human Robot Interaction, such as human activity

recognition, sign language interpretation, or as a human computer interface in

virtual reality systems, advanced entertainment games, gesture-driven interfaces,

and in teleoperated or in autonomous robotic systems.

This project focusses on the problem of hand pose estimation using convolutional

neural networks (CNN) from depth data. Recently, different CNN architectures

have been proposed in order to find an efficent and reliable methodolgy to re-

solve the complexity that involves the variablity in apperance of a hand, with

its gestures, changes of orientation, occlusions and so. The use of CNN opens

new opportunities for improvements in this research by providing the capability

of learning from many samples. This work pretends to advance a step further on

the hand pose estimation problem. With this aim, the hand pose estimation using

CNN by modifying the output data with a new representation of the hand pose is

proposed. An Euclidean Matrix Distance (EDM) is proposed as a hand pose rep-

resentation. This representation encodes structural information of the hand pose

and captures local correlations and dependecies between some hand keypoints.

To evaluate the performance of the proposed method, different CNN architectures

using EDM representation are explored and compared with the hand pose repre-

sentation defined by the position of hand keypoints in the 3D Cartesian coordinate

system.

Experimental results show that using EDM representation as target layer in the

convolutional network increases the performance of all the proposed architectures

in terms of mean square error, both in training and testing sets. As a conclusion,

this work shows that EDM representations help to reduce some ambiguities of

current hand pose estimation methods using a CNN, by incorporating structural

information of the hand and capturing keypoint/joint correlations. This research

also gives some insights to investigate in future advances in hand pose estimation

using CNN models and will help to explore new strategies for this problem.
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Chapter 1

Introduction

The availability of a reliable hand pose estimation is a high demand for multitude of

interactive applications as virtual reality systems, advanced entertainment games,

gesture-driven interfaces, and autonomous robotic systems.

Different approaches have been explored for capturing hand pose information.

Wearable devices as CyberGlove, 5DT Data Glove Ultra, X-IST Data Glove and

P5 Glove offer an occlusion-free hand pose estimation. They rely on exoskele-

ton devices endowed with sensors and covered with a glove. However they are

expensive and unwieldy, constraining the flexibility of hand movements. Lighter

approaches based on markers and computer vision have been implemented. They

rely on the inference of an approximate pose from the identification of retro-

reflective or color patterns attached to the hand, using intensity images extracted

from a single or multiple cameras. Despite this approach is lighter than wearable

devices, they do not offer enough usability due to the need of attaching marks to

the user’s hand, their cost is high, and they need multiple cameras to deal with

self-occlusions.

Some attempts to estimate hand pose by considering only markerless image in-

formation from a single camera have been made. One of the major challenges in

these strategies is the non-trivial task of extracting the hand pose from the back-

ground. Extensive computer vision research have been carried out over the past

years to deal with this problem. Fortunately, new inexpensive camera sensors that

provide intensity and depth information based on structured lighting or time-of-

flight technology reduce the complexity of background-foreground separation and

increase the reliability of the spatial information that can be extracted. This is

1



Introduction 2

one of the major reasons why hand pose estimation from intensity and/or depth

data is a trending topic in the computer vision community.

Two major complementary paradigms exist in vision-based hand pose estimation:

generative or discriminative. In the generative methods a hand model drives the

optimization of an objective function to recover the hand pose. The computational

load of the optimization process of these methods is high, resulting in low-rate

estimation systems, which have to be improved using expensive computation ac-

celeration units. On the other hand, discriminative methods perform a nonlinear

multiple regression that maps the observed data to its corresponding hand pose.

The evaluation of a regression function is usually much more time efficient than a

model based optimization.

Recently, discriminative models based on neural networks with new architectures

have emerged behind many state-of-the-art approaches, giving place to the concept

of Deep Learning. This new methodology outperforms other computing methods

in multiple domains as computer vision. It also reduces the need for feature engi-

neering and it can be implemented from different architectures that can be easily

adapted to new problems (transfer learning). Recently, several research works

have applied convolutional neural networks (CNN) to solve hand pose estimation.

In spite of that, the bound of the optimum solution that can be reached with this

kind of algorithms remains unanswered and still has to be largely analyzed. One

of the main reasons is the influence of the network architecture and available data

on the prediction performance.

Until now, different CNN architectures have been explored to resolve hand pose

estimation, as well as the processing of the input data for a better performance.

This work opens new research lines as the study of the influence in the performance

of modifying target representation from a hand representation space which encodes

geometrical properties, which by now remains to be explored.

1.1 Motivation

Our general motivation is to contribute to the research of a reliable solution to-

wards a low cost and markerless hand pose estimation. Concretely, our main goal

is to obtain a new approach of hand pose estimation from a single depth map of

the hand using Convolutional Neural Networks.
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1.2 Problem statement

The problem of the hand pose estimation is formulated as a non-linear regression

from a single depth image to a 3D representation of the hand shape or pose. It is

important to remark that in this work no temporal information of past or future

poses will be taken into account.

Given the following notation:

• Input data x ∈ RN×M is a N-by-M depth map where an element xu,v rep-

resents the distance from the reference of the camera to the point of the

surface captured by the depth sensor in the (u, v) image position.

• Target data y ∈ RK×3 is a hand pose representation described by K key-

points of the hand. An element yi ∈ R3 is the 3D position of the ”i” keypoint

referred to the center of mass of the hand Cref .

• A training dataset Dtrain = {xi, yi}Qi=1 is a set of Q correspondence pairs

(x, y) used in the learning phase.

• A test dataset Dtest = {xi, yi}Ri=1 is a set of R correspondence pairs (x, y)

used in the test phase.

• A CNN regression model is defined asML, where L is the layer architecture

of the network.

• An objective function L(ŷ, y) where ŷ =ML(x) defines the quality of ŷ → y

correspondence.

Then, the problem statement is to obtain an adequate CNN regression modelML

that minimizes L(ŷ, y). The mathematical formulation of this problem is described

by the equation 1.1.

argmin
ML

R∑
i=1

L(ML(xi), yi) (1.1)

where (xi, yi)
R
i=1 ∈ Dtest.

Obviously, the exploration of the complete space to resolve this problem is un-

reachable. So, the best-of-fit search process depends on the experience of the
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designer and of previous work results. Furthermore, a set of layer parameters θw

have to be learned and a set of hyperparameters of the learning process θh have

to be optimized for a given model. So, the process mathematically formulated in

equation 1.2 is performed by the different model proposals.

argmin
θw,θh

Q∑
i=1

L(ML(xi), yi) (1.2)

where (xi, yi)
Q
i=1 ∈ Dtrain. Again, the exploration of all combinations in 1.2 is

intractable and only a set of different hyperparameter configurations is considered.

1.3 Hypothesis

Following our motivation and related works (see chapter 3), our contribution is

based on the following hypothesis:

”Representing the target space of the hand pose by a model that encodes hand

key-point dependencies improves the performance of the CNN regression problem

statement formulated in 1.1.”

This is based on the fact that we do not need to explicitly modify our CNN network

to model the underlying joint dependencies.

1.4 Objectives

Our overall objective is to justify and validate our hypothesis in section 1.3. So,

our main objective is to obtain and evaluate a hand pose representation Γ that

captures richer information about pairwise correlations between the position of K

hand joints:

Γ : RK×3 → V ∗ (1.3)

In order to reach our objective, the following specific objectives have been defined:

• To study current approaches on hand pose estimation from depth data using

CNNs.
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• To identify a hand pose representation that encodes its geometrical depen-

dencies.

• To select an appropriate dataset for our experimentation.

• To design and select different CNN architectures and evaluate their perfor-

mance using or not the selected hand pose representation.

• To evaluate and compare the obtained results.

1.5 Methodology

In other to fulfill the above mentioned objectives, the next methodology is pre-

sented.

As a first step, previous works of hand pose estimation with CNN from single

depth data will be reviewed. Due to the novelty of this topic, the scope of this

review will embrace the majority of articles from the most relevant international

conferences and journals in computer vision. The contribution of each article will

be classified and analyzed. Also, from the same source different methods to encode

3D data structures with underlying 3D information in a plain representation will be

explored in order to identify the appropriate hand pose representation. Concretely,

this work will only focus on 3D representations that can be used by a CNN learning

approach. One or more representations analyzed will be selected as candidate

according to a best-of-fit features for the objective of this work. Furthermore, a

public hand pose dataset will be obtained from the review of open-access sources.

The selection of this dataset will be guided through aspects as quality of images,

quantity of information and the number of other approaches that use it.

The second step will consist in the design of the CNN structure. For that, different

CNN layers and structures will be analyzed from works founded on the previous

step plus articles dealing with convolutional neural network topics. Some of them

will be analyzed as candidates of the final architecture of this work. This analysis

will comprise the computation of different tests of these designs with the selected

dataset, 3D representations as well as the tuning of CNN learning parameters.
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The last step will comprise the evaluation of obtained results through the evalua-

tion of the performance of the different experimentation and the comparison with

the result of other approaches in the literature.

1.6 Document structure

The structure of this document is as follow. First, the review of related works in

hand pose estimation from detph images by using CNN is presented in chapter

2. After that, materials and methods used to perform this study are described

in chapter 3. Then, the implementation process of the experimentation part is

explained in chapter 4. Results from the experimentation are presented and dis-

cussed in chapter 5. Finally, a general conclusion of this work and future work

can be shown in chapter 6.



Chapter 2

Literature review

With the emergence of low cost depth sensors([15]), hand pose estimation from

depth images has received much attention, having been a topic of study for several

years [20]. Nevertheless, this research is still challenging due to the complex and

dexterous nature of hand articulations and their multiple degrees of freedom.

Several discriminative methods have been developed with acceptable results to

resolve hand pose estimation from depth images. Among them, the random forest

and its variants have proved to be reasonably accurate and fast. Following a

previous work [17], the effectiveness of the use of random forest to directly regress

hand joint angles from depth images is presented in [25]. The authors train a

Random Decision Forest classifier to classify pixels into hand parts and infer the

3D hand pose estimation using the mean shift algorithm.

The outstanding performance of convolutional networks in computer vision ap-

plications from depth data as [5] has motivated the use of CNN for hand pose

estimation. In [21] a CNN is employed for the first time with this purpose. Au-

thors use CNN for feature extraction with the generation of heat-maps of hand

joints. In order to map depth images to poses, the 2D locations of joints from

heat-maps are predicted. After that, an extra model-based inverse kinematics

procedure to recover the entire 3D pose from depth images is required due to the

problem of joint occlusions. The entire pipeline is shown in figure 2.1.

7
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Figure 2.1: Hand pose with heat-maps and inverse kinematics pose recovery
pipeline from [21]

In [14] three different CNN network architectures for hand pose estimation by

directly regressing 3D joint locations are evaluated. The first one is a simple

shallow network which consists of a single convolutional layer, a max-pooling layer,

and a single fully-connected hidden layer, as shown in figure 2.2 (a). The second

is a deeper network with three convolutional layers followed by max-pooling layers

and two fully-connected hidden layers, as shown in figure 2.2 (b). The last CNN

is a multi-scale approach with several down-scaled versions of the input image as

inputs to the network. It consists of a convolutional and max-pooling layer for

each scale in parallel, and a single fully-connected hidden layer, as shown figure

2.2 (c). The results of this work depicts that the multi-scale approach performs

better than a deep architecture, which in turn performs better than the shallow

one.

Earliest improvements in hand pose estimation from CNN regression are mainly

focused on the treatment of the input data that includes data transformation,

data refinement or data retrieval. The input data transformation has been

applied in [24]. In this work, a method to mitigate hand space variability due

to global rotation during both the training phase and run-time is proposed. The

main idea is that the ambiguity inherent in rotational variant features can be

overcome by derotating the hand image to a canonical pose instead of augmenting

a dataset with all variations of the rotational degrees of freedom as is commonly

done. With this approach, the rotation is learnt using a deep convolutional neural

network (CNN) in a regression context to predict full 3 DOF hand orientation of

a given depth image. The results demonstrate a significant improvement in the

per-frame part hand detection by reducing the variance of the pose space. The

result of this algorithm so called DeROT is shown in figure 2.3
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Figure 2.2: Different CNN architectures from [14]. (a) Shallow network, (b)
deeper network and (c) multi-scale architecture

Figure 2.3: Input data transformation of the Derotation CNN from [24].

An input data refinement by incorporating semantic information from segmen-

tation maps in the original depth images is presented in [13]. To create segmen-

tation maps, this method uses a CNN segmentation learner that combines deep

networks and patchwise nearest neighbor search (NN-search). The NN-search is

performed in a patch space corresponding to semantic segmentation learned by

deep networks. This segmentation maps are combined with raw depth data to

perform intermediate representation, which is used by a regression learner to de-

termine joint positions. The regression learner is a CNN with an architecture
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that resembles an inception unit, where several parallel feature extractors capture

information at different levels of localization from the same input convolutional

layer. This pipeline is shown in figure 2.4. This study demonstrates that the

additional structured information of this representation provides important cues

for joint regression which leads to lower errors. They also show how their baseline

CNN regression architecture outperforms other architectures, as those used in [14].

Figure 2.4: Input data augmentation with intermediate representation
pipeline from [13].

An input data retrieval is applied in [9] with the extraction of the projection

of the three orthogonal planes of 3D coordinates from depth images, as shown in

figure 2.5. Each projection is fed into a separate CNN to generate a set of 2D

heat-maps for hand joints following a similar pipeline than in [21]. Experimental

results of this approach show that it can better exploit depth cues to recover

fully 3D information without model fitting. The results also demonstrate a good

performance and generalization that outperforms state-of-art methods, evaluated

on public datasets.

Another improvement focussed on the exploitation of 3D information of depth

images has been explored. From [9], the lost of certain information with the pro-

jection from 3D to 2D heat-maps space is highlighted. So, same authors propose

in [8] a new type of improvement in hand pose estimation from CNN: the use of

CNN architectures that can learn 3D information from depth maps. Concretely,

they propose the use of a 3D-CNN architecture that can capture the 3D spatial

structure of the input and can accurately regress full 3D hand pose. Due to the

fact that the computational complexity increases with 3D-CNNs, the projection

of input data to a volumetric representation called Directional Truncated Signed

Distance Function (D-TSDF) is used. This transformation permits the increase
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Figure 2.5: Input data transformation proposed in [9].

of the regression performance in order to work in real-time. The entire pipeline

is shown in figure 2.6. Experimental results of this work show that this approach

outperforms actual state-of-the-art methods on two public hand pose datasets,

and its implementation is very efficient, running at over 215 fps on a standard

computer with a single GPU.

Figure 2.6: Input data transformation an pipeline proposed in [8].

The use of a 3D-CNN architecture to exploit the 3D spatial structure of depth data

is also used in [6]. In contrast to [8], this approach transforms a depth map into a

truncated signed distance function (TSDF) and feeds it into the TSDF refinement

network, which removes the artifacts caused by noisy and missing depth. The
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refined TSDF is then fed into the 3D pose network to estimate the 3D location

of each hand skeleton joint in relation to its center of mass. As the input and

computation are in 3D, the system learns 3D context for pose estimation, and

therefore does not require any post-processing to integrate context in predefined

hand model, and thus runs efficiently. The entire pipeline is shown in figure 2.7.

Figure 2.7: Input data transformation and pipeline proposed in [6].

Following new architectures to capture 3D information from depth maps, a new

approach derived from ensemble methods is proposed in [10]. In this work, a tree-

structured Region Ensemble Network (REN) is proposed. In REN, the convolution

outputs (feature maps) are partitioned into regions and the results from multiple

regressors in each region are integrated in an ensemble feature. This ensemble

feature is used with n extra regression layers to infer hand pose, as shown in figure

2.8.

Figure 2.8: Input data transformation and pipeline proposed in [10].
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Other approaches have been mainly focused on the exploitation of the prior

knowledge of hand geometry. In [27], a model based deep learning approach

that includes a prior kinematics of the hand is presented. For that, an end-to-end

learning using the non-linear forward kinematic layer in a CNN similar to [14] is

implemented. With this approach, the prior knowledge of hand kinematics is fully

exploited with a simple and efficient learning step, avoiding the inconvenient and

sub-optimal post processing of validating the resulting hand pose. In figure 2.9,

the model based deep hand pose learning is shown.

Figure 2.9: CNN model based deep hand pose learning proposed in [27].

Finally, another approach that relies on the change of the target space is

performed in [18]. In this work, the target space is changed to activation features

by quantifying the joint angles, which are used in a CNN classification task. After

that, activation features are used in a collaborative spatio-temporal manner to

estimate pose parameters using efficient nearest neighbor search and a matrix

completion model.



Chapter 3

Methodology Design

This chapter contains material and methods to carry out the objectives of this

work. First, the dataset and the baseline hand representation are presented. After

that, a new hand representation by encoding geometrical dependencies of baseline

keypoints is detailed. Finally, a method to perform an adequate experimentation

of our CNN designs is explained.

3.1 Dataset

In order to achieve a good performance, considering the wide variety of config-

urations and perspectives in which a hand can be visualized, the estimation of

its pose using convolutional neural networks requires a training with a large data

set. In addition, a public dataset is preferred because it allows us to compare our

performance with respect to previous works, as well as to reproduce them.

In this work, the NYU Hand Pose Dataset (NYU) is used for our experimental

part. This dataset is presented in [21] and used to train a CNN for a continuous

pose recovery of human hands. This dataset consists of images with depth and

color data generated using three RGBD cameras separated by approximately 45

degrees surrounding the user from the front. It also contains synthetic depth data

generated by a public library called LibHand. This data is a noise and artifact

free version of the real depth data.

The data is annotated with the ground truth of each hand pose obtained by a

model-based hand tracking and Particle Swarm Optimization. These annotations

14
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contain image position (u, v, d) of 36 key-points of the hand, including each joint

of the hand.

Images in NYU dataset are separated into a training and test set. Both sets

include three classes of images: depth, color and synthetic images. The training

set includes 72757 frames for each class. So, a total of 654813 images (72757

frames × 3 classes × 3 camera views) are supplied. The testing set contains 8252

frames per class with a total of 74268 images (8252 frames × 3 classes × 3 camera

views). Samples from training set are from a single user and samples from test set

are from two different subjects. An example of one sample of this dataset can be

seen in figure 3.1

Figure 3.1: Sample of NYU Hand dataset. Each sample contains RGB, depth
and synthetic images from three different views.

3.2 Hand representation baseline

The data annotation of the NYU hand dataset is a set of hand keypoints that de-

fines a particular pose of the hand. For comparison purposes, the set of keypoints
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of our baseline pose representation is the same as in [21, 14, 27]. This represen-

tation consists in 14 key-points and its configuration is shown in figure 3.2. In

this figure, ’T’, ’I’, ’M’, ’R’, ’P’ denote ’Thumb’, ’Index’, ’Middle’, ’Ring’, ’Pinky’

fingers and ’TIP’, ’DIP’ are ’tip finger’, ’proximal interphalangeal’ respectively.

Figure 3.2: Hand representation baseline

Each keypoint ji from keypoint set J = {ji}14i=1 is annotated with its 3D coordi-

nates ji = (xi, yi, zi). These coordinates are described in millimeters and they are

referenced from the center of mass of the hand.

3.3 Geometrical hand representation

Representing a hand pose by encoding geometrical relations between hand key-

points have been explored in our previous work [23], where a geometrical represen-

tation by encoding correspondences between pose keypoints is presented. These

correspondences are computed by the areas of the triangles formed by three key-

point relations. Furthermore, different geometrical features from 3D coordinates

of keypoints were explored as point-to-point, point-to-line and point-to-plane ge-

ometrical relations. These relations were tested and evaluated for human action

recognition purposes.
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However, the majority of these approaches can not be applied for our regression

problem statement due to the difficulty to go back from geometrical features to

the original 3D coordinate space of baseline keypoints.

In spite of that, geometrical relations of 3D points through pairwise distances

can be applied with the Euclidean Distance Matrix (EDM). The process of ex-

tracting the original keypoint configuration from EDM has been largely explored

for the development of a number of tools as multidimensional scaling (MDS)[16],

reconstruction of the 3D shape of molecules [26] or sensor network localization [7].

In addition, one of the principal motivations for the use of EDM is the good results

presented in [12], which uses the EDM representation for the 3D pose retrieval from

intensity images using deep learning.

Consider a collection of n points in a 3-dimensional Euclidean space X ∈ R3×n,

X = [x1, x2, ..., xn], xi ∈ R3. Then the squared distance between xi and xj is given

as equation 3.1, where ‖.‖ denotes the Euclidean norm.

dij = ‖xi − xj‖2 (3.1)

The euclidean distance matrix is an exhaustive table of distance-square dij between

pairs from a list of n points. Each point is labelled ordinally, hence the row or

column index of an EDM, i, j individually addresses all the points in the list.

Consider the following example of an EDM for the case N = 3:

D = [dij] =


d11 d12 d13

d21 d22 d23

d31 d32 d33

 (3.2)

Matrix D has N2 entries but only N(N1)/2 pieces of information.

The EDM representation has interesting features over vector representations that

are suited for our problem:

• Encode structural information of the pose. This representation pro-

vides implicit model constraints through distance information.
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• Capture correlations. EDM captures pairwise correlations and dependen-

cies between all keypoints.

• Rotation and translation invariance. The EDM representation is in-

variant to in-plane image rotations and translations.

3.4 Network architecture

The performance of convolutional neural networks is critically sensitive to the

architecture design. Determining a proper architecture is a challenge because

many structural hyperparameters are involved and it is not well understood how

these hyperparameters interact with each other to influence the accuracy of the

resulting model [11]. There is no mathematical formulation for calculating the

appropriate hyperparameters for a given dataset. These hyperparameters include

number of convolutional and fully-connected layers, location and size of pooling

layers, the number of filters, stride movement, and size of fully-connected layers.

In this work, a similar architecture of Deep-Prior approach presented in [14] has

been considered as a baseline for our design. This architecture has also been

used as a baseline in [27]. This architecture consists of three convolutional layers

followed by max-pooling layers and three fully-connected layers. The last fully-

connected layer is the regression layer. All convolutional layers use Rectified Linear

Unit(RELU) activation functions. The baseline architecture is shown in figure 3.3.

Figure 3.3: CNN architecture baseline
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From the baseline architecture, different hyperparameters related to the network

architecture that have been explored are:

• Number of convolutional layers. With this hyperparameter, the deep

of the network has been tested. From a configuration baseline with three

layers, other options with more convolutional layers have bee tried.

• Number of fully connected layers. The possibility of different non-linear

combinations have been explored with a variation of the number of FC layers.

Some variations with only one layer have been added.

From these hyperparameters, the set of architectures explored in this work in

order to get an appropriate CNN model is presented in table 3.1. Three different

design patterns of CNN architectures for each output target (3D Pose and EDM)

are considered. The first design is the CNN architecture baseline. The second

network has six convolutional layers and only one fully connected. A the third

network has six convolutional layers with two fully connected layers.

All nets take an 128 × 128 depth image as input and have three pooling layers.

Fully-connected layers have 4096 hidden units as baseline network in [27]. Similarly

to [14], CNN configurations stack 3× 3 convolutional kernels with zero-padding 1

and stride of 1 such that convolutions preserve the spatial extent of feature maps.

In order to prevent overfitting, the dropout regularization technique has been used

([19]. At each training iteration, a dropout layer randomly removes some nodes in

the network along with all their incoming and outgoing connections. Dropout can

be viewed as a form of averaging multiple models (“ensemble”), technique which

shows better performance in most machine learning tasks. Dropout can be applied

to hidden or input layers. In this work, a dropout layer has been included after

each fully-connected layer.
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Table 3.1: CNN architectures considered in this work. We denote convolu-
tional layers with ”convi” which denotes the i-th convolutional layer. We denote
pooling layers with ”max-pooling”. Fully-connected layers are denoted with FC.



Chapter 4

Implementation

This chapter describes the implementation steps followed to achieve the method-

ology described in chapter 3. First, the data processing applied to the dataset

to perform our experimentation is described. Secondly, the procedure to obtain

the Euclidean Distance Matrix from baseline as well as the backward procedure

are explained. Thirdly, the procedure to train our CNN models with different

hyper-parameters is shown. Finally, the evaluation method of the trained models

is presented.

4.1 Data Preprocessing

The data from the NYU hand dataset has to be preprocessed in order to meet our

requirements for hand pose estimation. Depth images of this dataset samples the

whole human body and the background, as can be seen in figure 4.1. Commonly,

a hand detection step is required for a hand pose estimation ”in the wild”. In this

work the detection process is already assumed since NYU dataset provides us with

the position of the center of the hand.

The hand data preprocessing is similar as in previous works [14, 27]. A fixed-size

3D cube patch centered on the provided center of the hand is used to extract

hand information from the whole depth data. This patch is converted from 3D

real world coordinates to depth image coordinates, assuming that depth values are

z-coordinate values of the real world space. Assuming the pinhole camera model,

the conversion from real world to image coordinates is given by formula 4.1. The

21
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Figure 4.1: Depth image of the dataset in the RGB channel

inverse transformation is derived from the same relation. The result of this process

is shown in figure 4.2.


u

v

d

 =
1

Z


fx 0 cx

0 fy cy

0 0 1



X

Y

Z

 (4.1)

where f = (fx, fy) is the camera focal length and c = (cx, cy) is the optical center.

Figure 4.2: Depth hand data extracted from 3D cube patchin RGB channel

Depth images store the most significant bits of the 12 bits depth data in the

green channel and the least significant bits in the blue channel. In order to obtain

the complete depth information, a rectification step is performed by bit shifting

the green channel to the left 8 bits and adding it to the blue channel. As a

result, integers of depth values in millimeters are given. For convenience, units are

transformed to centimeters.
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Since depth and ground truth of hand pose keypoints in the dataset are a set of

absolute positions in the whole image, the transform of them into relative positions

with respect to the center of the hand is needed. This transformation is indicated

below:


x′j

y′j

z′j

 =


1/k 0 0

0 1/k 0

0 0 1/k



xj − xc
yj − yc
dj − dc


where xj, yj, zj and x′j, y

′
j, z
′
j are denoted as original position and normalized po-

sition of the point j, respectively. Furthermore, xc, yc, zc is the absolute position

of hand’s center and k is the length of the half of the cube of the hand’s bound-

ing box. As a result, each point position is normalized in the range of [1,1] with

respect to the center of the hand and bounding box size.

From the centering and normalizing process, depth images of 128x128 size are

obtained, scaling ground truth key-points accordingly. Finally, the extraction of

the subset of hand pose keypoints based on our baseline hand pose representation

is performed. A depth image and keypoints of the entire process is shown in figure

4.3.

Figure 4.3: Depth image and keypoints used as data
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4.2 Euclidean Distance Matrix

There are two principal EDM-related tasks: a forward and inverse tasks. The

forward task is to compute the EDM from a set of points X in order to obtain

our new target representation of the CNN. This is a simple task implemented by

applying equation 3.1 to determine D from the baseline representation 3.2. The

inverse task is to reconstruct the original point set from EDM. Given a subset of all

the pair-wise distances between a set of points in a fixed dimension, the question

is: can we estimate the relative positions of all the unknown points accurately?

This problem involves solving a hard non-convex optimization problem that can

be formulated as the following error minimization problem:

argmin
x1,...,xn

∑
p,q

|dp,q − ˆEDM(X)p,q| (4.2)

where ˆEDM(X)p,q is the noisy matrix estimated by the CNN from an image

input. In this work, solvable Semidefinite Programming relaxation of 4.2 has been

applied, as in [12]. For that, the SDPT3 Semidefinite programming solver [22] has

been used.

4.3 Training process

The training process of the convolutional neural network is implemented through

a backpropagation algorithm. In this process, the model adjusts its filter weights

in order to minimize the amount of prediction error. The weight adjustments are

driven by a gradient descent optimization algorithm. There are three variants of

gradient descent, which differ in how much data are used to compute the gradient

of the objective function:

• Batch gradient descent.The gradients are calculated for the whole dataset

to perform just one update. The decreased update frequency results in a

more stable gradient error. This algorithm can be very slow and is intractable

for datasets that do not fit in memory.

• Stochastic gradient descent. The gradients are calculated for each train-

ing example. It is therefore usually much faster and can also be used to learn
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online. However, the stochastic gradient descent (SGD) performs frequent

updates with a high variance that causes the objective function to fluctuate

heavily and this complicates the convergence to the exact minimum. How-

ever, it has been shown that when we slowly decrease the learning rate, SGD

shows the same convergence behaviour as batch gradient descent.

• Mini-batch gradient descent. The gradients are calculated for every

mini-batch of n training examples. This variant reduces the variance of the

parameter updates, which can lead to more stable convergence. It seeks to

find a balance between the robustness of stochastic gradient descent and the

efficiency of batch gradient descent. It is the most common implementation

of gradient descent used in the field of deep learning. To calculate mini-batch

gradient updates, SGD usually is employed.

In this work, the training process is driven by a mini-batch with stochastic

gradient descent algorithm with momentum. In this process, next hyper-

parameters have to be considered:

• Learning Rate. This term determines the step size of the weight updates

in the direction of the gradient. A learning rate that is too small leads to

slow convergence, while a learning rate that is too large can hinder conver-

gence and cause the loss function to fluctuate around the minimum or even

diverge. Also, adapting the learning rate for this procedure can increase per-

formance and reduce the training time. This is called learning rate annealing

or adaptive learning rates.

• Momentum term. Basically, the momentum term increases updates for

dimensions whose gradients point in the same directions and reduces updates

for dimensions whose gradients directions diverge. As a result, we gain faster

convergence and reduced oscillation.

• Number of epochs. This term determines how many times the algorithm

is going to run over the entire training set. The number of epochs affects

directly (or not) the result of the training step (with just a few epochs you

can reach only a local minimum, but with more epochs, you can reach a

global minimum or at least a better local minimum). Common number of

epochs ranges between 50 and 100.
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• Batch size. This term defines the number of samples that has to be propa-

gated through the network. Common mini-batch sizes range between 50 and

256, but this number can vary for different applications.

In our experimentation, each CNN model has been trained with 100 epochs and a

batch size of 256 training samples per iteration. On each mini-batch step, samples

are shuffled. An adaptive learning rate by a step decay is used. In this strategy,

the learning rate is reduced in function of the number of epochs. In our case, the

decay is performed with a factor of 0.25 every time the algorithm achieves 25% of

epochs.

The values of the learning rate, momentum and dropout probabilities are sensitive

hyperparameters that affect the optimization as well as the generalization of the

model. Different values for these hyperparameters can lead to overfitting, under-

fitting or divergence issues. So, an optimization process is required in order to see

which values provide the highest performance of the network. In order to choose

a set of optimal values of these hyperparameters, the common hyperparameter

optimization methods are:

• Manual exploration. This method selects the best configuration among a

set that is design manually through a large number of choices.

• Exhaustive grid search. In this method, some sets of values are defined for

each hyperparameter and the cartesian product between all sets is computed.

So, all possible combinations of hyperparameter values between the values of

the sets are tested. This method is very time-consuming because it increases

exponentially with the number of hyperparameters.

• Random search. This method proposes to sample independently each

hyperparameter from a different distribution. The number of experiments

is defined and different values of hyperparameters are sampled from the

hyperparameter distributions for each experiment. In [2] the authors show

that this method searches effectively the hyperparameter space and requires

less computation time than the exhaustive grid search method.

Since the number of hyperparameters in CNN becomes big, grid search becomes

so inefficient. Usually, random search is applied for hyperparameter optimization

in CNN models.
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In this work, the experimentation has been performed in a pipeline of two steps:

• Architecture selection. In this step, the network architectures described

in table 3.1 are evaluated. Due to the number of models to evaluate and

the time-computing limitation, in this step a manual exploration has been

selected. Several experiments to evaluate the best performing architecture

have been carried out. For that, values from related works [14, 27] have been

taken as initial reference of the possible range for each hyperparameter.

• Representation performance. In this step, the best performing architec-

tures for each output representation from the previous step is fine tuned and

compared. For that, a random search to select good settings for the learn-

ing rate, the momentum term and dropout probability has been applied. A

cross validation to find an appropriate set of values is applied. This method

runs multiple hyperparameter settings and selects the best one based on its

performance on the validation set.

For the random search scheme, the Hyperopt framework presented in [3] has been

used. To run hyperopt, an objective function, the parameter space, the number of

experiments to run and optionally set a constructor to keep the experiments have

to be defined. There are both continuous and categorical methods to describe the

parameters. The function to minimize takes hyperparameter values as input and

returns a score, that is a value for error to minimize. This means that each time

the optimizer decides on which parameter values it likes to check, it trains the

model and predicts targets for a validation set (or do cross-validation). Then, the

prediction error is computed and the algorithm selects which values to check and

the cycle starts over. Hyperopt offers four distribution options: uniform, normal,

log-uniform and log-normal.

Following the indications described in [2], the parameters of the random search

process have been established. The algorithm samples 50 different hyperparameter

combinations. For the sample distribution for the learning rate and momentum,

a uniform distribution has been defined. For the dropout probability, a uniform

distribution in the linear scale has been established. The initial ranges of these

distributions have been obtained from the previous experimentation step. Con-

cretely, a range between 0.001 and 0.01 for learning rate search, a range between
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0.0 and 1.0 for the dropout probability and a range between 0.75 to 1.0 for the

momentum.

For cross validation, the training set is splited in training and validation sets.

The CNN models are trained with the training set and the selection of the best

hyperparameters from random search is based on the performance on the validation

set. A 3-fold cross validation is performed. So, the validation set size is the 25%

of the training set size and (75%) is selected as training set. Data is sampled from

a uniform distribution.

4.4 Implementation tools

This work has been implemented in Python language using Tensorflow [1]. Tensor-

Flow is a software library for numerical computation of mathematical expressional,

using data flow graphs. Nodes in the graph represent mathematical operations,

while the edges represent the multidimensional data arrays (tensors) that flow be-

tween them. It was created by Google and tailored for Machine Learning. In fact,

it is being widely used to develop solutions with Deep Learning.

Tensorflow have been used from a high-level neural networks API called Keras

[4]. This API is written in Python and capable of running on top of TensorFlow,

CNTK, or Theano. It was developed with a focus on enabling fast experimenta-

tion.

The experimentations have been running on an Intel Xeon equipped with an

NVIDIA Titan X Pascal GPU, driven by 3584 NVIDIA CUDA cores running

at 1.5GHz with 12 GB of GDDR5X memory. TITAN X packs 11 TFLOPs of

brute force.

4.5 Evaluation

Two evaluation metrics have been established. The first is the average Euclidean

distance between the ground truth joint location and the predicted joint location

over samples of the test set, for each join. This metric is also called per-joint error

averaged.



Implementation 29

The second evaluation metric measures the fraction of test set samples for which

each predicted joint is below a maximum Euclidean distance between the ground

truth and the predicted joint locations. This metric is called success-rate.
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Experimental Results

This chapter presents the experimental results of this work. A self-comparison

between different convolutional neural networks is analyzed. Also, a comparison

with related state-of-art methods is presented.

5.1 Comparison between CNN architectures

For a self-comparison between the CNN architectures introduced in 3.1, results

from the first experimentation step described in section 4.3 are analyzed. The

experimental results of this part are separated into two main groups: results from

PoseNet and results from GeoNet networks. PoseNet architectures have an output

layer aimed to perform a regression process from depth images to XYZ hand

keypoints, while GeoNet nets have an output layer designed to perform a regression

from depth images to EDM representations. The performance of each network is

measured by the Mean Square Error (MSE) between the predicted joint positions

and the ground truth in the training and validation processes respectively.

In table 5.1, MSE results of the best performance from each PoseNet architec-

ture are presented. These results indicate a better performance of the PoseNet3

architecture than PoseNet2. PoseNet2 and PoseNet3 have the same architecture,

but PoseNet2 has only one fully connected layer. This implies that additional

layer lets the network learn more sophisticated combinations of features that help

to achieve better performance. The significant difference between MSE values of

PoseNet2 indicates the lost of expressiveness of the network. This point out that

30



Experimental Results 31

our problem need a minimum of two fully-connected layers to learn non-linear

combinations of the obtained features in order to minimize the prediction error.

Also, the great difference between training and validation MSE indicates a lost of

generalization.

The best combination of hyperparameters of PoseNet3 was 0.02 for learning rate,

0.9 for the momentum and 0.1 for dropout probability.

Architecture Training Error Validation Error
PoseNet1 0.00359 0.00435
PoseNet2 0.00478 0.00641
PoseNet3 0.00268 0.00331

Table 5.1: Mean square error of PoseNet architectures over the training and
validation sets.

The Mean Square Error between the predicted joint positions and the ground truth

in the training and validation steps of each GeoNet network is presented in table

5.2. Results indicate the same effect related to the depth size and the number of

fully connected layers. So, the third network GeoNet3 is also the better network

over the rest of architectures. Also, GeoNet2 results are worse than the rest of

GeoNet networks. The best combination of hyperparameters of PoseNet3 was 0.01

for learning rate, 0.9 for the momentum and 0.05 for dropout probability.

Architecture Training Error Validation Error
GeoNet1 0.00329 0.00405
GeoNet2 0.00448 0.00611
GeoNet3 0.00198 0.00246

Table 5.2: Mean square error of GeoNet architectures over the training and
validation sets.

An extra experimentation by adding one pooling layer after each convolutional

layer has been added. Results demonstrates a degradation of the performance in

training and validation test sets. This result depicts an information loss due to an

excessive down-sampling of feature maps.

From table 5.1 and 5.2 a preliminary comparison about the two output represen-

tations indicates a better performance of EDM representation in terms of MSE

error. However, the performance is very sensitive to hyperparameter values and

in the first part of the experimentation, these values have been find by manual

exploration. In order to perform a more accurate comparison about target repre-

sentation, PoseNet3 and GeoNet3 have been fine tuned in the next experimentation
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step described in section 4.3. This experimentation optimizes hyperparameter val-

ues of PoseNet3 and GeoNet3 with a random search with 3-fold cross validation.

As a result, best hyperparameters settings for PoseNet3 are 0.0093 for the learning

rate, 0.97 for the momentum and 0.04 for the dropout probability. For GeoNet3

best hyperparameter settings are 0.009 for learning rate, 0.98 for the momentum

and 0.025 for the dropout probability.

From the results of the second part of the experimentation, an evaluation with

metrics described in section 4.5 has been performed. Results of this evaluation are

presented in figure 5.1 and 5.2. These results have been performed from optimized

models PoseNet3 and GeoNet3 and trained models from the first experimental

step.

Figure 5.1 illustrates the success-rate, where the horizontal axis represents the

distance threshold in millimeters and the vertical axis represents the fraction of

frames (%) for which the squared error for each keypoint is below the distance

threshold.

Figure 5.1: Success Rate of the proposed CNN architectures.

Figure 5.2 illustrates the mean joint error where the horizontal axis represents the

different keypoints, and the vertical axis represents the mean error per keypoint

across the test set. The rightmost bars show the mean error per keypoint averaged
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over all keypoints. The description for keypoints abbreviations are: pinky (P), ring

(R), middle (M), index (I), thumb (T), wrist (W), palm center (C). For all fingers,

the indices 1 and 2 refer to the tip finger and proximal interphalangeal respectively.

The index 3 refers to the lower joint, only used in the thumb finger. For the wrist,

the indices 1 and 2 refer to the left and right wrist position respectively.

Figure 5.2: Mean Joint Error of the proposed CNN architectures.

As shown in figure 5.1, the success rate of GeoNet3 is higher with respect to the

PoseNet3 network. In figure 5.2, GeoNet3 has a lower mean joint error averaged

over all joints as well as lower error in each joint separately than PoseNet3.

Despite the slight variation between results of GeoNet3 and PoseNet3, the EDM

target representation of GeoNet3 seems to be better to create correspondences be-

tween feature maps and Euclidean distances than XYZ positions of hand keypoints.

This result confirms that target representations with geometrical correspondences

help to reduce the ambiguity of the pose estimation problem by incorporating

structural information of the hand and capturing keypoint/joint correlations.

5.2 Comparison with state-of-art

In this section, the GeoNet3 network is compared with three state-of-the-art meth-

ods applied on the same NYU hand pose dataset. The first method is the CNN

proposed in [21]. The second method is the CNN baseline described in [14]. The

third method is the CNN proposed in [27].

Tompson et al. [21] use a convolutional network with 2 convolutional layers to infer

2D joint positions. Oberweger et al. [14] incorporate a convolutional network with
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three convolutional layers to infer 3D joint positions by introducing the pose prior

layer. Zhou et al. [27] use the same network as in [14] but a hand model layer is

added.

As shown in figure 5.3, the success rate of our approach outperforms [21] and [14]

and achieves approximately similar accuracy with [27]. The average error over all

joints in figure 5.4 shows a good performance over all approaches, but our proposed

architecture GeoNet3 outperforms these approaches both in terms of average error

over all joints and in mean error per joint. Despite the efforts of these approaches

to improve the accuracy of the predictions by involving extra steps, they are not

sufficient to learn good mappings from input images to 3D hand poses. Their lim-

ited performance is mainly due to the depth of their architectures. Our approach

takes two main advantages over the other approaches: a large convolutional net-

work architecture and a good generalization performance thanks to the benefits of

mapping to the EDM space.

Figure 5.3: Success Rate of optimized GeoNet3 and related state-of-art CNN
architectures.
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Figure 5.4: Mean Joint Error of optimized GeoNet3 and related state-of-art
CNN architectures.



Chapter 6

Conclusion

In this project, the problem of hand pose estimation with convolutional neural

networks from depth data has been studied. Two main contributions to this prob-

lem have been achieved. First, different convolutional neural network architectures

from a network baseline in order to find the better prediction performance of hand

pose estimation have been evaluated. Concretely, the importance of the depth

of the network and the use of polling layers have been analyzed. Furthermore,

an optimization with a random search and cross validation in order to find the

best setting of the hyperparameters of the network has been performed. In our

experimentation, the deeper network has been the best performing architecture

and the correlation of the depth of the network and the network performance has

been observed. As a conclusion, the depth of the network is and important factor

towards more accurate hand pose estimation. The 3D hand pose estimation con-

stitutes a high complexity problem that requires large deep models that can learn

appropriate features from depth images to the target space. Also, the allocation

and number of pooling layers is another important factor in the network perfor-

mance due to the effect of an information loss caused by a high downsampling at

the last layers.

The second contribution is related to the research about the effect of the output

space or target representation in the network performance. For that, a new 3D

pose representation that encodes geometrical relations between keypoints of the

hand has been proposed. The challenge to find a model representation that can

be transformed from 3D coordinates of hand keypoints in the real world and go

back has been faced. As a result, the Euclidean Distance Matrix (EDM) has been
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proposed due to the feasibility to retrieve the original keypoint configuration with

semidefinite programming. Furthermore, this representation encodes structural

information of the pose and captures local correlations and dependencies between

hand keypoints. The different network architectures have been compared with

3D coordinates of hand keypoints (baseline) and EDM representation from 3D

coordinate keypoints respectively. Experimental results showed that EDM repre-

sentation as output layer in the convolutional network increases the performance

of all proposed architectures in terms of mean square error in training and testing

sets. Also, best results in success-rate and error per keypoint can be appreciated.

As a conclusion, the EDM representation as output of the convolutional network

leverages more useful information for more accurate hand pose estimation. This

result confirms that target representations with geometrical correspondences help

to reduce some ambiguities of the pose estimation problem by incorporating struc-

tural information of the hand and capturing keypoint/joint correlations.

In a future work, the predictive performance of complex networks as residual

networks, Region Ensemble networks or 3D Convolutional Neural Networks with

EDM representations will be explored.
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