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Abstract

Sum-Product Networks (SPNs) are a new model that join elements from deep learning and

probabilistic graphical models. They model a dataset through a hierarchical combination of mixtures

and factorizations of probability distributions. Since their appearance, SPNs have obtained state

of the art results in several machine learning areas. The literature about SPNs contains several

obsolete papers and has neither a survey nor an introductory work addressed to the new reader.

The main contribution of this work, the �rst survey about SPNs, aims to �ll this long-standing gap.

For this work, we have thoroughly reviewed most of the existing literature. The survey presents the

basic knowledge required to comprehend SPNs and then reviews how they learn their structure and

parameters from data, how they perform inference, where and how they have been applied, and how

they compare with other models. As an experimental contribution, the recent model of convolutional

SPNs has been applied to di�erent image classi�cation problems and compared with convolutional

neural networks.
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Chapter 1

General introduction and objectives

In 2011, Poon and Domingos presented a new algorithm for the Arti�cial Intelligence area [53].

Inspired in the arithmetic circuits of Darwiche [12], sum-product networks (SPNs) join elements

from deep learning and probabilistic graphical models, bringing onto the stage a generative algorithm

arrayed as a computational graph with a probabilistic interpretation in every one of its nodes, along

with the possibility of computing exact inference in linear time with respect to the number of links

of the network.

Since then, SPNs have performed very well on several machine learning tasks as image completion,

natural language processing, video categorization or medical image analysis [2, 7, 53, 59].

1.1 Motivation and objectives

The Research Center for Intelligent Decision-Support Systems (CISIAD) is a group with a long

research trajectory about probabilistic graphical models (PGMs) such as Bayesian networks and

in�uence diagrams. The appearance of SPNs is an opportunity to join this past experience on PGMs

with the present success of neural networks. This master thesis is the �rst step to open this new line

of research for the group. SPNs were born eight years ago so there are few published works. This

made us capable to be comprehensive, to read and understand most of them and to know about a

vast majority of the rest. We found that in spite of eight years of development, the literature lacked a

stepping stone to introduce the new reader into SPNs. Our main objective is to remedy that lack by

writing the �rst survey about SPNs as the main contribution of this master thesis. This is specially

relevant since several statements presented in the �rst published works are now obsolete. Moreover,

we provide in our survey original proofs that explain di�erent characteristics and algorithms of SPNs

without the help of interpretations based on other models (such as Bayesian networks or arithmetic

circuits), aiming to be self-contained. As an additional contribution, we complement the theoretical

survey with a practical application of one of the cutting-edge SPN-based models: convolutional SPNs

(ConvSPNs). ConvSPNs translate the advantages of the convolutional layer of neural networks using

1



2 1.2. Structure of this work

an SPN structure. They were presented at the end of February 2019 alongside an SPN python library

that implements them: LibSPN, developed by researchers of the University of Washington. Our �rst

step here was to understand the model and to get acquainted with the library. After that, we decided

to test ConvSPNs on the well-known task of image classi�cation, and compare their performance

with the model that inspired them: convolutional neural networks.

The main objective of this work is to understand sum-product networks both theoretically and

experimentally. The particular objectives can be summarized as follows:

1. Theoretical understanding

a) Study the two main basis of SPNs: deep learning and probabilistic graphical models.

b) Research the developments about SPNs in these eight years.

c) Write the �rst survey about SPNs.

2. Practical application

a) Understand and learn how to apply one of the current state of the art SPN algorithms.

b) Use it to solve image classi�cation tasks of di�erent di�culty.

c) Compare its performance with convolutional neural networks.

1.2 Structure of this work

Aside from this introduction, this work follows with two main sections. The �rst presents the �rst

survey about SPNs. The second describes the application of ConvSPNs. This work is organized as

follows.

This chapter introduces the work and its goals.

Chapter 2 contains the survey about sum-product networks. In the �rst section some preliminaries

are given to the reader. The next section explains what an SPN is and introduces several relevant

properties. The inference section shows the di�erent inference queries that an SPN can answer and

the works that delved on that area. The parameter learning section lay out the two main algorithms for

parameter learning: Expectation-Maximization (EM) and gradient descent, and the improvements

presented in the literature. The structure learning section presents the di�erent approaches to

automatic structure learning from data. Next the applications section reviews some of the most

relevant tasks solved with SPNs in areas such as video classi�cation or robotics. Finally, the last

sections brie�y comment the available software and di�erent extensions to SPNs.

Chapter 3 addresses the application of ConvSPNs to image classi�cation. The �rst section

presents a brief introduction to both convolutional neural networks and ConvSPNs, and the concepts

necessary to understand them. The methods section explains the experimental design and the
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choice of datasets. Then, the results section show accuracies and times for both ConvSPNs and

convolutional neural networks. Finally, the last section discusses those results.

The last chapter compares more generally SPNs with probabilistic graphical models and neural

networks. Then it presents the conclusions and points to several lines of future work.





Chapter 2

Sum-product networks: a survey

2.1 Preliminaries

Here we introduce relevant concepts useful for understanding this master thesis.

In this work we assume that every variable either has a �nite set of possible values (called states)

or is continuous, i.e., takes values in R.

2.1.1 Con�gurations of variables

We denote by a capital letter, V , a variable and by the corresponding lowercase letter, v, any value of

V . Similarly a boldface capital letter denotes a set of variables, V = {V1, . . . , Vn}, the corresponding
lowercase letter denotes any of its con�gurations, v = (v1, . . . , vn), and conf(V) is the set of all the

con�gurations of V. The empty set has only one con�guration, represented by �.

We denote by conf∗(V) the set of all the con�gurations of V and its subsets:

conf∗(V) = {x | X ⊆ V} . (2.1)

We can think of conf∗(V)\ conf(V) as the set of partial con�gurations of V, i.e., the con�gurations

in which only some of the variables in V have an assigned value.

If X ⊆ V, the projection of a con�guration v of V onto X, v↓X, is the con�guration of X such

that every variable V ∈ X takes the same value as in v. In order to simplify the notation, when X

has a single variable, V , we write v instead of (v) and v↓V instead of v↓{V }.

Given two con�gurations, x and y, of two disjoint sets, X and Y, the composition of them,

denoted by xy, is the con�guration of X ∪Y such that (xy)↓X = x and (xy)↓Y = y.

When X ⊆ V, a con�guration x is compatible with con�guration v if x = v↓X, i.e., if every

variable V ∈ X has the same value in both con�gurations. The con�guration of the empty set � is

compatible with every other con�guration.

5



6 2.1. Preliminaries

De�nition 1. For every value v of every variable V ∈ V we de�ne the indicator function, Iv :

conf(V) 7→ {0, 1}, as follows:

Iv(x) =

1 if V /∈ X ∨ v = x↓V

0 otherwise .
(2.2)

If all the variables in V are binary, then there are 2n indicator functions.

Example 2. Let V = {V0, V1}, such that the domains of these variables are {+v0,¬v0} and

{+v1,¬v1} respectively. I+v0(+v0,+v1) = 1, I+v0(¬v0,+v1) = 0, I+v0(+v0) = 1, I+v0(¬v0) = 0,

I+v0(+v1) = I+v0(¬v1) = 1, etc.

Indicators can be used to determine whether two con�gurations are compatible, i.e., whether

x = v↓X, as follows:

Proposition 3. If x and v are two con�gurations such that X ⊆ V, then

∏
V ∈V

Iv(x) =

1 if x = v↓X

0 otherwise ,
(2.3)

where v = v↓V for every V ∈ V.

The proof of all the propositions is in the section 2.9.

2.1.2 Probability distributions and probability functions

De�nition 4. A probability distribution de�ned on V is a function P : conf(V) 7→ R such that:

P (v) ≥ 0, (2.4)∑
v

P (v) = 1 . (2.5)

This de�nition can be extended so that P represents not only a probability distribution but also

all its marginal probabilities, as follows.

De�nition 5. A probability function de�ned on V is a function P : conf∗(V) 7→ R such that

the restriction of P to conf(V) is a probability distribution and for every con�guration x such that

X ⊂ V,

P (x) =
∑

v|v↓X=x

P (v) . (2.6)

This equation is the de�nition of marginal probability: P (x) is obtained by summing the proba-

bilities of all the con�gurations of V compatible with x. Because of Equation 2.3 it can be rewritten

as

P (x) =
∑
v

P (v)
∏
V ∈V

Iv(x) . (2.7)
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Proposition 6. If P is a probability function de�ned on V and X ⊂ V, the restriction of P to

conf(X) is a probability distribution for X.

It is possible to de�ne a new probability function as the sum or the product of other probability

functions.

Proposition 7. Let us consider n probability functions {P1, . . . , Pn} de�ned on the same set of

variables, V, and n weights, {w1, . . . , wn}, with wj ≥ 0 for every j, and
∑n

j=1wj = 1. The function

P : conf∗(V) 7→ R, such that for every con�guration of X ⊆ V

P (x) =
n∑
j=1

wj · Pj(x),

is a probability function. It is said to be a weighted average or a convex combination of probability

functions.

Proposition 8. Let {P1, . . . , Pn} be a set of probability functions de�ned on n disjoint sets of

variables, {V1, . . . ,Vn}, respectively. Let V = V1 ∪ . . . ∪Vn. The function P : conf∗(V) 7→ R,
such that for every con�guration of X ⊆ V

P (x) =
n∏
j=1

Pj(x) ,

is a probability function.

2.1.3 Basic de�nitions about graphs

Graphs have many applications in computer science. We describe here the type of graph used to

build SPNs.

A directed graph consists of a set of nodes and a set of directed links. When there is a link

ni → nj we say that ni is a parent of nj and nj is a child of ni; there cannot be another link from ni

to nj. Given a node ni, we denote by pa(i) the set of indices of its parents and by ch(i) the set of

indices of its children. For example, in Figure 2.2.1, ch(1) = {2, 3}. Node nk is a descendant of ni

if it is a child of ni or a child of a descendant of ni; we also say that ni is an ancestor of nk. The

set of descendants of ni is denoted by desc(ni).

A cycle of length l consists of a set of l nodes and l links {n1 → n2, n2 → n3, . . . , nl−1 →
nl, nl → n1}. A graph that contains no cycles, i.e., no node is a descendant of itself, is acyclic. An

acyclic directed graph (ADG) is rooted if there is only one node (the root, denoted by nr) having

no parents. Terminal nodes, also called leaves, are those that do not have children.

A directed tree is a rooted ADG in which every node has one parent, except the root. In this

work when we say �a tree� we mean �a directed tree�.
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Figure 2.1.1: Example of a Bayesian net.

2.1.4 Bayesian networks

A Bayesian network models the probability distribution of a set of random variables V through a

product of conditional distributions:

P (v) =
∏
i

P (vi|pa (Vi)) .

This product can be represented as a directed acyclic graph where each variable has a node assigned

and an incoming directed edge for each variable that conditions it, which in graph terminology are

called its parents. An example is represented on Figure 2.1.1.

2.1.5 MAP, MPE, and MAX inference

Let E and X be two disjoint subsets of V, where E is the set of variables of known values, the

evidence; and X is the set of variables whose values we want to know, the query. The probability

P (x | e) is relevant in practice when con�guration e denotes the evidence, i.e., the values observed

(for example, the symptoms and signs of a medical examination, the pixels in an image. . . ) and X

contains the variables of interest (the possible diagnostics, the objects that may be present in the

image. . . ). In this context P (x | e) is called the posterior probability.

Given e and X, the maximum a-posteriori (MAP) con�guration is

MAP(e,X) = argmax
x

P (x | e) .

Therefore, MAP inference divides the variables into three disjoint sets: observed variables (E),

variables of interest (X), and hidden variables (H = V \ (E ∪X)).

The most probable explanation (MPE) is the con�guration of X = V \ E that maximizes the

posterior probability:

MPE (e) = argmax
x

P (x | e) .
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MPE is a special case of MAP in which H = ∅, i.e., every variable that is not observed is a variable

of interest. In general, MAP inference is much harder than MPE.

Finally, MAX is a special case of MPE in which all the variables are of interest, i.e., X = V and

H = E = ∅. The MAX con�guration is the con�guration of X that maximizes the probability:

MAX (x) = argmax
x

P (x) .

2.2 Basic de�nitions of SPNs

2.2.1 Structure of an SPN

An SPN S consists of a rooted acyclic directed graph such that

� every leaf node is an indicator for a variable,

� all the other nodes are either of type sum or product,

� the parents of a sum node are all product nodes, and vice versa, and

� every link ni → nj outgoing from a sum node has an associated weight, wij ≥ 0.

Usually wij > 0. We will assume, unless otherwise stated, that all SPNs are normalized, i.e.,

∀i,
∑
j∈ch(i)

wij = 1 .

An SPN can be built bottom-up beginning with one-node sub-SPNs and joining them with sum

and product nodes. Virtually all the de�nitions of SPNs can be established recursively, �rst for one-

node SPNs (indicators), and then for sum and product nodes. Similarly, all the properties of SPNs

can be proved by structural induction.

If a leaf associated to variable V is a descendant of node ni, we say that V belongs to the scope

of ni, which is denoted by sc(ni). Alternatively, we can de�ne the scope recursively as follows: if ni

is an indicator node associated to variable V , then sc(ni) = {V }; if ni is a non-terminal node, its

scope is the union of the scopes of its children:

sc(ni) =
⋃

j∈ch(i)

sc(nj) . (2.1)

The scope of an SPN, denoted by sc(S), is the scope of its root, sc(nr). We also de�ne conf(S)
= conf(sc(S)) and conf∗(S) = conf∗(sc(S)). The variables in the scope of an SPN are sometimes

called model variables�in contrast with latent variables, which we de�ne below.

A sum node is complete if all its children have the same scope. An SPN is complete if all its

sum nodes are complete. (In arithmetic circuits this property is called smoothness.)

A product node is decomposable if its children have disjoint scopes. An SPN is decomposable if

all its product nodes are decomposable.
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Figure 2.2.1: An SPN whose scope contains three variables: A, B and C. The 6 leaf nodes in the
SPN, drawn like switches, are the indicators for these variables. They are the input of the SPN for
every con�guration of the variables (including partial con�gurations). The numbers in red are the
values Si(v) for v = (+a,+b,¬c).

Proposition 9. A product node ni is decomposable if and only if no node in the SPN is a descendant

of two di�erent children of ni.

In the rest of the work we will assume that all the SPNs are complete and decomposable.

2.2.2 Node values and probability distributions

De�nition 10 (Value Si(x)). Let ni be a node of S and x ∈ conf∗(S). If ni is an indicator Iv, then

Si(x) = Iv(x) ; (2.2)

if it is a sum node,

Si(x) =
∑
j∈ch(i)

wij · Sj(x) , (2.3)

and if it is a product node,

Si(x) =
∏

j∈ch(i)

Sj(x) . (2.4)
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De�nition 11 (Value S(x)). The value S(x) returned by the SPN is the value of the root, Sr(x).

Theorem 12. For a node ni in an SPN, the function Pi : conf(S) 7→ R, such that

Pi(x) = Si(x) ,

is a probability function de�ned on V = sc(ni).

Please note that Pi is de�ned on (the con�gurations of) the scope of ni while Si is de�ned on

the con�gurations of the scope of the network, conf∗(S).
The probability function P for the SPN is P (x) = Pr(x). The above theorem guarantees that

the SPN properly computes a probability distribution and all its marginal probabilities.

The proof of the theorem relies on the completeness and decomposability of the SPN. We explain

in the section 2.9 that the theorem would still hold if we replaced decomposability with a weaker

condition, consistency [53], but this would complicate the de�nition of SPN without contributing

any advantage in practice.

2.2.3 Selective SPNs

We introduce now a particular type of SPNs that have interesting properties for MPE inference and

parameter learning.

When computing S(x) for a given x ∈ conf∗(S), probability �ows from the leaves to the root

(cf. Def. 10). Equation 2.3 says that all the children of a sum node ni can contribute to Si(x).

However, ni may have the property that for every con�guration v ∈ conf(S) at most one child makes

a positive contribution, i.e., Sj(x) = 0 for the other children of ni. We then say that ni is selective

[49]. The formal de�nition is as follows.

De�nition 13. A sum node ni in an SPN is selective if

∀v ∈ conf(S),∃j∗ ∈ ch(i) | j ∈ ch(i), j 6= j∗ ⇒ Sj(v) = 0 . (2.5)

Please note that this de�nition says �conf�, not �conf∗�. Therefore even if ni is selective there

may be a con�guration x ∈ conf∗(S), x /∈ conf(S), such that several children of ni make positive

contributions to Si(x).

De�nition 14. An SPN is selective if all its sum nodes are selective.

Even though this property might seem odd, many SPNs built in practice are selective. (Arithmetic

circuits satisfying this property are said to be deterministic.)

Example 15. Given the SPN in Figure 2.2.1, we can check that if v = (+a,+b,¬c) then P2(v) =

0.36 and P3(v) = 0; i.e., Property 2.5 holds for this v with j∗ = 2. We can make the same check

for each of the 6 sum nodes and each of the 8 con�gurations of {A,B,C} in order to conclude
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that this SPN is selective. However, instead of making these 48 checks, we can apply the following

proposition, which o�ers a su�cient condition for an SPN to be selective.

De�nition 16. Let ni be a sum node having m children and V ∈ sc(ni) a variable with m states.

Let σ be a one-to-one function σ : {1, . . . ,m} 7→ ch(i). If for every m ∈ {1, . . . ,m} either

Ivj = nσ(j) or Ivj is a child of nσ(j), we then say that ni represents variable V .

Example 17. Node n14 in Figure 2.2.1 represents variable C, with σ(1) = 17, σ(2) = 18, be-

cause Ic1 = I+c = n17 = nσ(1), and Ic2 = I¬c = n18 = nσ(2). Nodes 15 and 16 also represent C for

the same reason.

Node n6 represents variable B with σ(1) = 8 and σ(2) = 9 because Ib1 = I+b is a child

of nσ(1) = n8 and Ib2 = I¬b is a child of nσ(2) = n9. For analogous reasons node n7 also represents B

and n1 represents A.

Proposition 18. If a sum node ni represents a model variable V , then ni is selective.

2.2.4 Induced trees

De�nition 19. Let S be an SPN and v ∈ conf(S) such that S(v) 6= 0. The sub-SPN induced by v,

denoted by Sv, is a non-normalized SPN obtained by removing every node ni such that Si(v) = 0

(and the corresponding links), every link ni → nj such that wij = 0, and then recursively all the

nodes without parents, except the root.

We denote by Sv(v) the value that Sv returns for v. Given that the �induction� of Sv only

removes the nodes that do not contribute to S(v), we have Sv(v) = S(v) = P (v).

Proposition 20. If S is selective, v ∈ conf(S), and S(v) 6= 0, then Sv is a tree in which every sum

node has exactly one child.

Example 21. Given the SPN in Figure 2.2.1 and v = (+a,+b,¬c), Sv only contains the links

drawn with thick lines in that �gure and the nodes connected by them. This graph is a tree because

the SPN is selective.

When an SPN is selective the set of trees obtained for all the con�gurations in conf(S) is similar

to the the set induced trees obtained by recursively decomposing the SPN, beginning from the root,

as proposed by Zhao et al. [72]. The next proposition is analogous to Theorem 2 in that paper.

Proposition 22. If S is selective, v ∈ conf(S), and S(v) 6= 0 then

S(v) =
∏

(i,j)∈Sv

wij , (2.6)

where (i, j) denotes a link.

Example 23. For the SPN in Figure 2.2.1, when v = (+a,+b,¬c) we have S(v) = w1,2 · w6,8 ·
w14,18 = 0.3 · 0.4 · 0.9 = 0.108.
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Figure 2.2.2: Augmentation of an SPN, assuming that ni is not selective in S. This process adds
an indicator Iz(j) for every child nj of ni. Node ni′ is added to restore the completeness of nl in S ′.

2.2.5 Augmented SPN

The augmentation of a non-selective SPN S [47, 50] consists in adding new variables, new nodes,

and new links in order to create a selective SPN S ′ that represents the same probability function. It

proceeds as follows.

Let ni be a non-selective sum node in S. In order to make it selective, we de�ne a new �nite-

states variable, Z. For every child nj we add a state, z(j), to Z; then if nj is a product node, we

add the indicator Iz(j) as a child of nj, as shown in Figure 2.2.2; if nj is a terminal node, we insert

a product node, make nj a child of the new node (instead of being a child of ni) and add Iz(j) as
the second child of the new node. In the resulting SPN, denoted by S ′, ni represents the variable Z
and is therefore selective.

However this transformation of the SPN may have caused an undesirable side e�ect. Let us

assume, as shown in Figure 2.2.2, that ni has a parent, nk, and nl is a parent of both nk and nk′ .

Even though nl was complete in S, the addition of Z has made this node incomplete in S ′ because
Z ∈ sc(ni), Z ∈ sc(nk), and Z ∈ sc(nl), but Z /∈ sc(nk′). It is then necessary to make Z ∈ sc(nk′)

in order to restore the completeness of nl. So we create a new sum node, ni′ and make it a parent

of all the indicators of Z, {Iz1 , . . . , Izm} (see again Fig. 2.2.2); the weights for ni′ can be chosen

arbitrarily provided that they are all non-negative and their sum is 1. If nk′ is a product node, then

we add ni′ as a child of nk′ . If nk′ is a terminal node, we insert a product node, making both ni′

and nk′ children of this new node. If nl has other children, such as nk′′ , we must repeat the same

process as for nk′ , as well as for the other sum nodes that are ancestors of ni in S.
After processing in the same way all the non-selective nodes, we obtain S ′, the augmented version

of S.1 Therefore, sc(S ′) = sc(S) ∪ Z, where Z contains one variable for each sum node that was

1In Peharz's [47] algorithm, the augmented version of an SPN the process of adding a new variable is performed
for every node, even for those that were already selective. In our de�nition of augmented network, it su�ces to add
a variable that was not selective in S; therefore the augmentation of a selective SPN does not add any node.
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not selective in S.

Proposition 24. If S ′ is the augmented version of S, then S ′ is selective and represents the same

probability function for sc(S), i.e., if x ∈ conf∗(S), then P ′(x) = P (x).

2.2.6 Weighted sums of conditional probabilities. Latent variables

Proposition 25. Let S be an SPN whose scope contains at least two variables, such that its root

is a sum node that represents variable V . We de�ne Ṽ = sc(ni) \ {V }, which is not empty. Then

for every j ∈ {1, . . . ,m} nσ(j) is a product node, Ivj is a child of nσ(j),

P (vj) = wi,σ(j) , (2.7)

if x̃ ∈ conf∗(Ṽ) and wi,σ(j) 6= 0 then

P (x̃|vj) =
∏

k∈ch(σ(j))\nk 6=Ivj

Sk(x) , (2.8)

where σ is the function that associates each value vj with child nσ(j)�cf. Def. 16. Given that

V /∈ sc(nk),

P (x̃|vj) =
∏

k∈ch(σ(j))\nk 6=Ivj

Sk(x̃) , (2.9)

This proposition is especially interesting when nr represents a variable V and each child nσ(j)

only has two children: Ivj and another node, say nk(j). Then Equation 2.3 can be rewritten as

P (x̃) =
∑
j

P (x̃|vj)︸ ︷︷ ︸
Sk(j)(x̃)

· P (vj)︸ ︷︷ ︸
wi,σ(j)

. (2.10)

In summary, when the root is a sum node and each of the children, nσ(j), has two children, Ivj
and nk(j), then Sk(j)(x̃) represents the conditional probability P (x̃|vj), where sc(nk) = Ṽ�which is

coherent with Theorem 12�and wi,σ(j) = P (vj).

Example 26. For the SPN in Figure 2.2.1 we have

P (a1) = P (+a) = w1,σ(1) = w1,2 = 0.3

P (a2) = P (¬a) = w1,σ(2) = w1,3 = 0.7 ;

for every x̃ ∈ conf∗(Ṽ) = {B,C}�for example, (+b,+c), (+b), or (+c)�

P (x̃|+a) =
∏

k∈ch(2)\nk 6=I+a

Sk(x) = S6(x̃)

P (x̃|¬a) =
∏

k∈ch(3)\nk 6=I¬a

Sk(x) = S7(x̃)
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and

P (x̃) = P (x̃|+a)︸ ︷︷ ︸
S6(x̃)

· P (+a)︸ ︷︷ ︸
w1,2

+ P (x̃|¬a)︸ ︷︷ ︸
S7(x̃)

· P (¬a)︸ ︷︷ ︸
w1,3

.

If every ancestor of a sum node ni represents a variable, then the above interpretation is still

valid for the context de�ned by the ancestors of ni, A. In this case Equation 2.11 becomes

P (x̃|a) =
m∑
j=1

P (x̃|vj, a)︸ ︷︷ ︸
Sk(j)(x̃)

· P (vj|a)︸ ︷︷ ︸
wi,σ(j)

. (2.11)

Example 27. Node n6 in Figure 2.2.1 represents variable B. Its only ancestor sum node, n1,

represents variable A. The path from the root to n6 de�nes the scenario {A = +a}. We have

sc(n6) = {B,C} and Ṽ = sc(n6) \ {B} = {C}. In this example Equation 2.11 instantiates into

P (c|+a) = P (c|+b,+a)︸ ︷︷ ︸
S14(x̃)

· P (+b|+a)︸ ︷︷ ︸
w6,8

+ P (c|¬b,+a)︸ ︷︷ ︸
S15(x̃)

· P (¬b|+a)︸ ︷︷ ︸
w6,9

.

In this section we have discussed the case in which every sum node represents a variable in sc(S).
In the previous one we showed how the addition of a new variable (its indicators, sometimes auxiliary

nodes, and some links) can turn a non-selective node into a selective; in the new SPN, S ′, this node
represents Z. The same procedure can be applied to any node that did not represent any variable

in the original network, S. Given that the two SPNs represent the same probability distribution�for

sc(S)�we can say that the variables added, Z, were latent in S and that the augmentation of the

SPN has just made them explicit variables (i.e., model variables) in S ′ [47, 50].

2.2.7 SPNs de�ned on continuous variables

It is possible to generalize SPNs by allowing each terminal node to represent a univariate probability

density p(v) for a continuous variable, V [50]. In this case,

Si(x) =

1 if V /∈ X

p(x↓V ) otherwise ,
(2.12)

where x ∈ conf∗(S). This terminal node plays a similar role to an indicator, Iv, for a �nite-states

variable V (cf. Eqs. 2.2 and 2.2). In both cases, the scope of the terminal node is {V } and Si(x) is
a non-negative real number. The main di�erences are that a terminal node for a continuous variable

is not associated to any particular value of V , and 0 ≤ Si(x) < +∞, while Iv(x) is either 0 or 1.

The distribution p can be a Gaussian [21, 60], Poisson [40] piecewise polynomial [41], etc.

SPNs can be further generalized by allowing each terminal node to represent a multivariate

probability density�for example, a multivariate Gaussian [16, 23].
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2.3 Inference

2.3.1 Marginal and posterior probabilities

As de�ned in the previous section, P (x) = S(x) = Sr(x). The value S(x) can be computed by an

upward pass from the leaves to the root in time proportional to the number of links in the SPN. If

X and E are two disjoint subsets of V, thenP (x | e) = S(xe)/S(e), where xe is the composition

of x and e. Therefore, any joint, marginal, or conditional probability can be computed with at most

two upward passes. Partial propagation, which only propagates from the nodes in X ∪ E, can be

signi�cantly faster [6].

2.3.2 MPE inference

The MPE con�guration for an SPN is (see Sec. 2.1.5)

MPE (e) = argmax
x

P (x | e) = argmax
x

P (x, e)

= argmax
x

S(xe) .

MPE inference, i.e., �nding the MPE for an SPN, is much harder than initially thought, except for

selective networks.

Let us assume that S is selective. Then X∪E = sc(S) implies that xe ∈ conf(S) and, because
of Proposition 20, the sub-SPN induced by xe is a tree in which every sum node has only one child.

Therefore, the MPE can be found by examining all the trees for the con�gurations xe in which e

is �xed and x varies. It is possible to compare those trees all at once with a single pass in S, by
computing Smax

i (e) for each node as follows:

� if ni is a sum node, then Smax
i (x) = maxj∈ch(i)wij · Smax

j (e) [instead of Eq. 2.3];

� otherwise Smax
i is computed as in the ordinary case (Eqs. 2.2, 2.4, and 2.12).

Then the algorithm backtracks from the root to the leaves, selecting for each sum node the child that

led to Smax(e); if a terminal node Iv is selected, the value of V in MPE (e) is v; if a terminal node for

a probability density function p(v) is selected (cf. Sec.2.2.7), then the value of V is argmaxv p(v).

This way the algorithm returns MPE (e) ∈ X. This algorithm was proposed by Poon and Domingos

[53] and later called Best Tree (BT) in [37].

Peharz [50, Theorem 2] proved that when a network is selective, BT computes the true MPE.

However, when a network is not selective, the sub-SPN induced by xe ∈ conf(S) is not necessarily a
tree, so the value Smax(e) computed by BT may be di�erent from maxx P (x | e) and, consequently,
the con�guration returned by BT�which only considers the probability that �ows along trees with

one child for each sum node�may be di�erent from the true MPE. Therefore, even though the
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MPE can be found in time proportional to the size of the graph when the SPN is selective, MPE is

NP-complete for general SPNs [47, Theorem 5.3].

2.3.3 MAX and MAP

Exact MAP inference for SPNs is NP-hard because it includes as a particular case MPE (see

Sec. 2.1.5), which is NP-complete. Nevertheless, Mei et al. [37] have recently proposed several

algorithms that are very e�cient in practice. First they presented an algorithm for the MAX problem

in general SPNs. Then they proved that every MAP problem for SPNs can be reduced to a MAX

problem for a new SPN obtained in linear time. This way they were able to exactly solve MAP

problems for SPNs with up to 1, 000 variables and 150, 000 links.

Third, they proposed several approximate MAP solvers that trade accuracy for speed, obtaining

excellent results. In particular, they extended the BT method to the MAX problem for non-selective

SPNs. This extension, called K-Best Tree (KBT), selects the top K trees with the largest output.

Then, the corresponding con�gurations are obtained (by backtracking) and evaluated in the SPN.

The one with the largest output is the approximate solution to the MAX problem. Note that, for

K = 1, KBT reduces to BT.

2.4 Parameter learning

Parameter learning consists in �nding the optimal parameters for an SPN given its graph and a

dataset. In generative learning the most common optimality criterion is to maximize the likelihood

of the parameters given a dataset, while in discriminative learning the goal is to maximize the

conditional likelihood for each value of a variable C, called the class.

2.4.1 Maximum likelihood estimation (MLE)

Let D = {v1,v2, . . . ,vT} be a dataset of T independent and identically distributed (i.i.d.) instances.

We denote by W the set of weights of the SPN, acting as conditioning variables, and by LD(w) the

logarithm of the likelihood, i.e., the probability of the database given w:

LD(w) = logP (D|w)

=
T∑
t=1

logS(vt|w) . (2.1)

Therefore the con�guration of parameters that maximizes the likelihood is

argmax
w

P (D|w) = argmax
w

LD(w)

= argmax
w

T∑
t=1

logS(vt|w) , (2.2)
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subject to wij ≥ 0 and
∑

j∈ch(i)wij = 1.

2.4.1.1 MLE for selective SPNs

When the SPN is selective and S(v) 6= 0, then the weights of the sum nodes can be estimated in

closed form by applying MLE [49]. In this case, Equations 2.6 and 2.1 imply that

logS(vt|w) =
∑

(i,j)∈Svt

logwij , (2.3)

and

LD(w) =
T∑
t=1

logS(vt|w) =
∑

wij∈W

nij · logwij , (2.4)

where nij is the number of instances in the dataset for which (i, j) ∈ Svt . The only constraint

is
∑

j∈ch(i)wij = 1 for every i, which implies that the parameters for one node can be optimized

independently of those for other nodes. The solution to this problem is:

ŵij =
nij∑

j′∈ch(i) nij′
. (2.5)

There is a special case in which
∑

j∈ch(i) nij = 0. This occurs when Si(v
t) = 0 for every t, i.e.,

when none of the instances in the dataset propagates through the sum node ni. In this case, the

weights of this node can be set uniformly:

∀j ∈ ch(i), ŵij =
1

|ch(i)|
.

Alternatively, it is possible to use a Laplace-like smoothing parameter α in all cases:

ŵij =
nij + α∑

j′∈ch(i)(nij′ + α)
. (2.6)

Usually 0 < α ≤ 1.

The nij's can be computed by having a counter for every weight. For each instance vt in the

dataset we compute S(vt) and then backtrack from the root to the leaves: for each product node

we select all its children and for each sum node ni we select the only child for which Sj(v
t) > 0 and

increase by 1 the counter nij.

2.4.1.2 Partial derivatives of S

We explain now how to compute the value S∂i (x) for every node, which will be used by the GD and

EM algorithms described below. It is de�ned as follows:

S∂i (x) =
1

S(x)
· ∂S
∂Si

(x) . (2.7)
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For the root node we have

S∂r (x) =
1

S(x)
· ∂S
∂Sr

(x) =
1

S(x)
. (2.8)

If nj is not the root,

S∂j (x) =
1

S(x)
· ∂S
∂Sj

(x)

=
1

S(x)
·
∑
i∈pa(j)

∂S

∂Si
(x) · ∂Si

∂Sj
(x)

=
∑
i∈pa(j)

S∂i (x) ·
∂Si
∂Sj

(x), (2.9)

where pa(j) is the set of indices for the parents of nj. If ni is a sum node,

∂Si
∂Sj

(x) = wij ; (2.10)

if it is a product node,
∂Si
∂Sj

(x) =
∏

j′∈ch(i)\{j}

Sj′(x) . (2.11)

Therefore, after computing the value Si(x) for every node with an upward pass, the S∂i (x) values

can be computed by a downward pass�also in linear time�which is similar to backpropagation for

neural networks.

2.4.1.3 Gradient descent

Standard gradient descent Gradient descent (GD), a well known optimization method, was

proposed for SPNs for both generative and discriminative models in [53] and [20], respectively.2 In

the �rst case, the algorithm is initialized by assigning an arbitrary value to each parameter, ŵ
(0)
ij and

in every iteration this value is updated as follows, in order to increase the likelihood of the model:

ŵ
(s+1)
ij = ŵ

(s)
ij + γ

∂LD(w)

∂wij
, (2.12)

where γ is the learning rate (a hyperparameter).

Because of the de�nition of LD(w),

∂LD(w)

∂wij
=

T∑
t=1

∂ logS

∂wij
(vt) ,

2The method is commonly called �gradient descent� when its goal is to minimize a quantity�for example, the
classi�cation error in neural networks. In this case it would be more appropriate to call it �gradient ascent� because
the goal is to maximize the likelihood. However, we follow in this work the standard terminology for SPNs.



20 2.4. Parameter learning

and

∂ logS

∂wij
(vt) =

1

S(vt)
· ∂S
∂wij

(vt)

=
1

S(vt)
· ∂S
∂Si

(vt) · ∂Si
∂wij

(vt) ,

which together with Equations 2.7 and 2.3 leads to

∂ logS

∂wij
(vt) = S∂i (v

t) · Sj(vt) (2.13)

and, �nally,

∂LD(w)

∂wij
=

T∑
t=1

S∂i (v
t) · Sj(vt) .

This equation allows us to perform each iteration of GD in time proportional to the size of the SPN

and the number of instances in the database.

Stochastic gradient descent In this version of GD the parameters are updated for each instance

of the dataset, i.e.,

ŵ
(s+1)
ij = w

(s)
ij + γ

∂ logS

∂wij
(vt) (2.14)

for every instance, until the algorithm converges.

Hard gradient descent One typical problem of GD for deep networks is that it su�ers from the

vanishing gradients problem: the deeper the layer, the lower the contribution of its weights to the

model output, so the in�uence of the parameters in the deepest layers may be imperceptible. The

hard version of GD solves this problem by replacing the sum nodes of the SPN with max nodes

and reparametrizing the weights so that the gradient of the log-likelihood function remains constant.

This method was introduced for SPNs by Gens and Domingos [20] for discriminative learning.

2.4.1.4 Expectation-Maximization (EM)

Standard EM The EM algorithm was designed to estimate the parameters of a statistical model

when the dataset is incomplete, i.e., when there are missing values. In particular, it can be used to

learn the parameters of S ′, the augmented version of S. In this case the dataset is incomplete because

it only contains the model variables, i.e., those in sc(S), not the latent variables Z. Additionally, the
dataset may have other missing values. We denote by Ht the variables missing (hidden) in the t-th

instance of the database, i.e., Ht = sc(S ′) \Vt, with Z ⊆ Ht.

In this case, if we had a complete database we would be able to estimate the parameters of S ′, as
in Section 2.4.1.1. Alternatively, if we knew the parameters, we might generate a complete database.

The EM algorithm proceeds by iteratively applying two steps. The E-step (expectation) computes

the probability P (ht|vt) for each con�guration of the variables missing in vt in order to impute the
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missing values. In practice, instead of assigning a single value to each missing cell, we create a virtual

database in which all the con�gurations of Ht are present, each with probability P (ht|vt). The M-

step (maximization) uses this complete virtual database to adjust the parameters of the model by

MLE, as in Section 2.4.1.1. The two steps are repeated until the parameters (the weights) converge.

The problem is that initially we have neither a complete database nor parameters for sampling

the values of the missing variables. The algorithm can be initialized by assigning arbitrary values to

the parameters or by assigning arbitrary values to the variables in Z. Unfortunately, a bad choice of

the initial values may cause the algorithm to converge at a local maximum of the likelihood, which

may be quite di�erent from the global maximum.

The nij required by the M-step is computed by counting the number of cases in the database for

which the link (i, j) belongs to the tree induced by vtht (cf. Sec. 2.4.1.1):

nij =
T∑
t=1

∑
ht|(i,j)∈S′

vtht

P ′(ht|vt) . (2.15)

We prove in the section 2.9 that

nij =
T∑
t=1

wij · S∂i (vt) · Sj(vt) . (2.16)

The weights can then be computed with Equation 2.5 or 2.6. The time required by each iteration

of EM is proportional to the size of the network and the number of instances in the dataset.

Hard EM EM algorithm needs the value of ∂S/∂wij, which may be very small when the link

(ni, nj) is in a deep position, i.e., far from the root, which implies that this algorithm may su�er

from the vanishing gradients problem in the same way as GD. To avoid it, Poon and Domingos [53]

proposed a hard version of EM for SPNs that selects for each hidden variable H ∈ Ht the most

probable state. Thus, in the E-step of each iteration, every instance of the dataset contributes to

the update of just one weight per sum node, instead of contributing to all of them proportionally.

Hsu et al. [23] proposed a variant of hard EM for SPNs with Gaussian leaves. This method

proceeds top-down and decides which child gets the contribution from the sum node. For that,

it departs from the top sum node and distributes the instances among its children by maximum

likelihood. The next sum nodes receives only the data from their parents and distributes it in the

same fashion. This way it updates the weights of the sum nodes locally. The process is similar to the

automatic parameter learning in LearnSPN (cf. Sec. 2.5.2). They also provide formulas to update

the parameters of Gaussian leaves.

2.4.1.5 Comparison of MLE algorithms

The application of the EM to SPNs has been justi�ed with di�erent mathematical arguments. Peharz

[47] exploited the interpretation of the sum nodes in the augmented network as the sum of conditional
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probability functions (cf. Sec. 2.2.6). Zhao et al. [72], using a uni�ed framework based on signomial

programming, designed two algorithms for learning the parameters of SPNs: sequential monomial

approximations (SMA) and the concave-convex procedure (CCCP). GD is a special case of SMA,

and in the case of SPNs, CCCP leads to the same algorithm as EM, in spite of being very di�erent in

general. Their experiments proved that EM/CCCP converges much faster that the other algorithms,

including GD. In turn, Desana and Schnörr [16] derived the EM algorithm for SPNs whose leaf nodes

may represent complex probability distributions.

In discriminative learning neither EM nor CCCP have a closed form expression for updating the

weights [20]. Rashwan et al. [57] addressed this problem with the extended Baum-Welch (EBW)

algorithm, which transforms the parameters of the network using a transform that increases the value

of the likelihood function monotonically. In the generative case, this transformation coincides with

the update formula of EM/CCCP (the M-step), while in the discriminative case it provides a method

to maximize the (conditional) likelihood function with a closed form formula. They also adapted this

method to SPNs with Gaussian leaves.

Both the algorithm of Desana and Schnörr and EBW outperformed GD and EM in a wide variety

of datasets.

2.4.2 Semi-supervised learning

Trapp et al. [63] introduced a safe semi-supervised learning algorithm for SPNs. By �safe� they

mean that the model performance can be increased but never degraded by adding unlabeled data.

They extended the EM to generative semi-supervised learning and de�ned a discriminative semi-

supervised learning approach. They also introduced the maximum contrastive pessimistic algorithm

(MCP-SPN), based on [33], for learning safe semi-supervised SPNs. Their results we competitive

with those of purely supervised algorithms.

2.4.3 Approximate Bayesian learning

There are alternative methods for learning the parameters of an SPN based on approximate Bayesian

techniques, such as Bayesian moment matching [58] and collapsed variational inference [69], which

are not as exposed to over�tting as GD or EM. Both Bayesian methods start with a product of

Dirichlet distributions as a prior; the posterior distribution P (wij | D) is a mixture of products of

Dirichlets, which is computationally intractable. In both works the solution applied was to approxi-

mate that distribution with a single product of Dirichlet distributions. Rashwan et al. [58] applied

online Bayesian moment matching (oBMM), which approximates the posterior distributions of the

weights by computing a subset of their moments and �nding another distribution from a tractable

family that matches those moments. In this case, it su�ced to match the �rst and second order

moments of the distribution. The experiments showed that this approach outperforms SGD and

online EM. This method has also been adapted to SPNs with Gaussian leaves by Jaini et al. [26].
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In the same vein, Zhao and Gordon [70] presented an optimal linear time algorithm for computing

the moments in SPNs with general directed acyclic graph structures, based on the mixture of trees

interpretation of SPNs. This provides an e�ective method to apply Bayesian moment matching to a

broad family of SPNs.

As mentioned above, Zhao et al. [69] addressed the problem by applying collapsed variational

Bayesian inference (CVB-SPN). This approach treats the dataset as partial evidence, whose missing

values correspond to the latent variables of the SPN. They assumed that the missing data of each

instance are not independent of the missing data of the other instances, and marginalized these

variables out of the joint posterior distribution (the �collapse� step). Then, they approximated this

distribution with the product of the Dirichlets that maximize some evidence lower bound of the log-

likelihood function of the dataset (the �variational inference� step). The experiments showed that

the online version of CVB-SPN outperforms oBMM in many datasets.

2.4.4 Deep learning approach

Peharz et al. [52] considered a special class of SPNs, which they called random SPNs, and trained

them with automatic di�erentiation, stochastic GD, and dropout, using GPU parallelization. The

resulting model was called RAT-SPN. Its classi�cation accuracy, measured on the MNIST images

and other databases, was comparable to that of deep neural networks, with the advantages of being

a probabilistic generative model, such as interpretability and robustness to missing features.

2.5 Structural learning

Structural learning consists in �nding the optimal (or near-optimal) graph of an SPN. Most of the

algorithms for this task require some computation of probabilities during the process.

2.5.1 First structure learners

BuildSPN, by Dennis and Ventura [13] was the �rst algorithm of this kind. It looks for subsets

of highly correlated variables; introduces latent variables to account for those dependences; these

variables generate sum nodes and the process is repeated recursively looking for the new latent

variables.

BuildSPN and the hand-coded structure of Poon and Domingos [53], both designed for image

processing, assumed neighborhood dependence. In order to overcome that limitation, Peharz et

al. [48] proposed an algorithm that subsequently combines SPNs of few variables into larger ones

applying a statistical dependence test.
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Figure 2.5.1: The LearnSPN algorithm recursively creates a product node when there are subsets
of (approximately) independent variables and a sum node otherwise, grouping similar instances.
(Reproduced from [21] with the authors' permission).

BuildSPN was also critiqued by Gens and Domingos [21] because (1) the clustering process

may separate highly dependent variables, (2) the size of the SPN and the time required can grow

exponentially with the number of variables, and (3) it requires an additional step to learn the weights.

2.5.2 LearnSPN

It is common in machine learning to see a dataset as a data matrix whose columns are attributes

or variables and whose rows are observations or instances. The LearnSPN algorithm [21] recursively

splits the variables into independent subsets (thus �chopping� the data matrix, as shown in Figure

2.5.1) and then clusters the instances (thus �slicing� the matrix). Every �chopping� creates a product

node and every �slicing� a sum node, as indicated in Algorithm 2.1. There are two base cases:

1. When the piece of the data matrix produced by �chopping� contains a single column (i.e., one

variable) the algorithm creates a terminal node with a univariate distribution using MLE.

2. When the piece of the data matrix produced by �slicing� contains several columns with relatively

few rows, the algorithm applies a naïve Bayes factorization over those variables. This is like

�chopping� that piece into individual columns, which will be processed as in the base case 1.

LearnSPN can be seen as a framework algorithm in the sense that it does not specify the proce-

dures for splitting independent subsets of variables (splitVariables in Algorithm 2.1) and clustering

similar instances (clusterInstances in that algorithm). Originally Gens and Domingos [21] chose the

G-Test for splitting and hard incremental EM for clustering.

Splitting the variables (�chopping�) only considers pair-wise independences. The process departs

from a graph containing a node for each variables and no links. It randomly selects one variable
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Algoritmo 2.1 LearnSPN(T,V, α,m)

Input: a data matrix with T instances over the variables in V; m: minimum number of instances
to allow a split of variables; α: Laplace smoothing parameter
Output: an SPN S with sc(S) = V
if |V| = 1 then
S ← univariateDistribution(T,V, α)

else if |T | < m then
S ← naïveFactorization(T,V, α)

else
{Vj}Cj=1 ← splitVariables(T,V, α)
if C > 1 then
S ←

∏C
j=1 LearnSPN (T,Vj, α,m)

else
{Ti}Ri=1 ← clusterInstances(T,V)

S ←
∑R

i=1
|Ti|
|T | LearnSPN (Ti,V, α,m)

return S

and adds an edge to the �rst other variable deemed dependent by the G-test, then moves to that

variable, and iterates until no new variable can be linked to this component of the graph. At the end,

if this component has gathered all variables only one component is generated; then the clustering

concludes and the algorithm clusters instances instead.

Clustering similar instances (�slicing�) is achieved by the hard EM algorithm assuming a naïve

Bayes mixture model, where the variables are independent given the cluster Ci. Formally:

P (v) =
∑
i

P (ci)
∏
j

P (vj|ci) .

This particular model produces a clustering that can be chopped on the next recursion. This version

of LearnSPN forces a clustering in the �rst step, without trying a split.

2.5.3 ID-SPN and other algorithms

Later, Peharz et al. [49] proposed a structure learner that searches for structures within the space

of selective SPNs and showed that it is competitive with LearnSPN.

Rooshenas and Lowd [60] observed that PGM learners usually analyze direct interactions (depen-

dencies) between variables while previous SPN learners analyze indirect interactions (dependencies

through a latent variable). The indirect-direct SPN (ID-SPN) structure learner combines both meth-

ods. Their initial idea is that any tractable multivariate distribution that can be represented as an

arithmetic circuit or an SPN can be the leaf of an SPN without losing tractability. With this idea

they learn arithmetic circuit Markov networks (ACMN) [34], which are roughly Markov networks

learned as arithmetic circuits. ID-SPN begins with a singular ACMN node and tries to replace it with

a mixture (yielding a sum node) or a product (yielding a product node), similar to the cluster and

split operations in LearnSPN. If a replacement increases the likelihood, it is saved and the algorithm
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recurs on the new ACMN leaves, until the likelihood does not increase. This top-down process

represents the learning of indirect interactions, while the creation of ACMN leaves represents the

learning of direct interactions. This algorithm outperforms all previous algorithms and is currently

the state of the art. However, ID-SPN is slower and more complex than LearnSPN, and has many

more hyperparameters to tune, which requires a random search in the space of hyperparameters

instead of grid search.

Adel et al. [1] pointed out that previous work had only compared algorithms on binary datasets.

They designed SVD-SPN, which proceeds by �nding rank-1 matrices. This allows the algorithm to

cluster and split at the same time, producing optimal data matrix pieces. It operates recursively,

like LearnSPN, but constructing the SPN from the rank-1 submatrices extracted. It also considers

a multivariate base case when the variables in the pieces of the data matrix are highly correlated.

In this case a sum node is created with as many children as instances in the piece of the matrix;

each child is a product node of all the variables in the matrix. In their experiments, the results of

SVD-SPN were similar to those of LearnSPN an ID-SPN for binary datasets, but it outperformed

them in multiple-category datasets, such as Caltech-101, and is 5 times faster.

2.5.4 Improvements to LearnSPN

Even though LearnSPN is not the best performing algorithm, it is still widely used for its simplicity

and modularity [6] and has led to several variants.

2.5.4.1 The algorithm of Vergari et al.

Vergari et al. [66] proposed three modi�cations to LearnSPN:

1. Binary splits. Every split cuts the data matrix into only two pieces. This avoids creating too

complex structures at early stages (common when learning from noisy data) and favors deep

structures over shallow ones. This is not a limitation in the number of children of product

nodes because consecutive splits can be applied if necessary.

2. Chow-Liu trees (CLTs) in the leaves. The naïve Bayes factorization used as base case of

LearnSPN (see Algorithm 2.1) can be replaced by the creation of Chow-Liu trees [9], which

are equivalent to tree-shaped Bayesian networks or Markov networks. Every tree is built by

linking the variables with higher mutual information until there is a path between every pair

of variables. CLTs are more expressive than naïve Bayes factorization (which is a particular

case of CLT) without adding computational complexity. LearnSPN stops earlier when using

CLTs as leaves because each tree can accommodate more instances, thus yielding simpler SPN

structures (with fewer edges) with lower risk of over�tting.

3. Bagging. �Bagging�, a technique used to build random forests, consists in taking several random

samples from a dataset, each consisting of several instances, and building a classi�er for each
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Figure 2.5.2: Bagging in SPNs.

sample. The overall classi�cation can be the average of the outputs of the individual classi�ers

(in the continuous case) or the mode (in the discrete case). In SPN learning, it extracts�with

replacement�n samples of the dataset and produces a sum node with n children, setting every

weight to 1/n, as shown in Figure 2.5.2. Each child represents each individual classi�er and the

sum node averages the n results. Since the network size would grow exponentially if bagging

were applied before every clustering, it is only applied before the �rst LearnSPN operation,

which is a clustering, in order to achieve the widest e�ect on the resulting structure.

The experiments with these modi�cations showed that binary splits yield deeper and simpler

SPNs and generally reduces the number of edges and parameters. Using Chow-Liu trees attains the

same e�ect and generally increases the likelihood. Bagging also increases the likelihood, specially in

datasets with a low number of instances. Using Chow-Liu trees and bagging, LearnSPN achieved

the same performance as ID-SPN.

2.5.4.2 Beyond tree SPNs

One of the main disadvantages of both LearnSPN and ID-SPN is that they always produce trees

(except when the leaves are Markov networks). In order to generate more e�cient SPNs, Dennis and

Ventura [14] designed SearchSPN, an algorithm that produces SPNs in which nodes may have several

parents. It selects the product node that contributes less to the likelihood and searches greedily for

candidate structures using modi�ed versions of the clustering methods of LearnSPN. The resulting

likelihood is signi�cantly better than that of LearnSPN for the majority of datasets and comparable

with that of ID-SPN, but on average the execution is 7 times faster and the number of nodes 10

times smaller.

In the same vein, Rahman and Gogate [56] created a post-processing algorithm that, after

applying LearnSPN with CLTs in the leaves, merges similar sub-SPNs. Similarity is measured with

a Manhattan distance; if two sub-SPNs are closer than a certain threshold, the pieces of the data

matrix from which they come are combined and the algorithm chooses the sub-SPN with higher

likelihood for the combined data. This modi�cation of LearnSPN increases the likelihood and reduces

the number of parameters of the SPN; additionally, it dramatically increases the learning time for
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some datasets. In combinations with bagging, it outperformed other algorithms�including ID-SPN

[60]�for high-dimensional datasets.

2.5.4.3 Further improvements to LearnSPN

As mentioned in Section 2.4.1.5, Zhao et al. [72] showed that learning the parameters with the

CCCP algorithm improves the performance of LearnSPN.

Di Mauro et al. [18] proposed approximate splitting methods to accelerate LearnSPN, thus

trading speed for quality (likelihood).

Butz et al. [6] studied the di�erent combinations of algorithms for LearnSPN. They compared

mutual information and the G-test for splitting and with k-means and Gaussian mixture models for

clustering. The best results were obtained when using the G-test and either k-means or Gaussian

mixture models, both for the standard LearnSPN and for the version generating CLTs in the leaves.

Liu et al. [32] proposed a clustering method that decides the number of instance clusters adap-

tively, i.e., depending on each piece of data matrix evaluated. Their goal was to generate more

expressive SPNs, in particular deeper ones with controlled widths. When compared with standard

LearnSPN, LearnSPN with binary splits [66], and LearnSPN with approximate splitting [18], their

method achieved better likelihood in 20 binary datasets and generated deeper networks (i.e., more

expressive SPNs) while maintaining a reasonable size.

2.5.4.4 LearnSPN with piecewise polynomial distributions

In Section 2.2.7 we mentioned that SPNs can be integrated into SPNs by having leave nodes that

represent probability density functions. If a function belongs to a family of probability distributions

(Gaussian, Poisson, etc.), its parameters can be estimated with standard statistical techniques.

However, there are at least two variants of LearnSPN in which the user does not need to specify

a parametric family for each leave representing a numeric variable: they used instead piecewise

polynomial distributions. These algorithms can be applied to mixed datasets, i.e., those containing

both discrete and continuous data.

Molina et al. [41] proposed an algorithm for learning mixed SPN (MSPNs), whose leaves can

represent not only indicators (for �nite-states variables) but also piecewise polynomial distributions

(for numeric variables). The operations of decomposition (splitting) and conditioning (clustering)

are based on the Hirschfeld-Gebelein-Rényi maximum correlation coe�cient.

Independently, Bue� et al. [4] developed LearnWMISPN, an algorithm that combines LearnSPN

with weighted model integration (WMI) in order to build SPNs whose leave nodes can also represent

piecewise polynomial distributions. The order of each polynomial is determined using the Bayesian

information criterion (BIC). A preprocessing step transforms �nite-states, categorical, and contin-

uous features into a binary representation before applying LearnSPN. The corresponding inference
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algorithm can answer complex conditional queries involving both intervals for continuous variables

and values for discrete variables.

2.5.5 Online structural learning

The algorithms presented so far need the entire dataset to produce a structure. However, it may

happen that the dataset is so big that the computer has not enough memory to store it at once, or

the data arrive constantly (for example, information for product recommendation). In these cases

the learning algorithm must be able to update the structure instead of learning it from scratch every

time new data arrives.

In this context, Lee et al. [31] designed a version of LearnSPN where clustering (slicing) is

replaced by online clustering, so that new sum children can be added when new data arrive, while

product nodes are unmodi�ed.

Later Dennis and Ventura [15] extended their SearchSPN algorithm [14] to the online setting.

The online version is as fast as the o�ine version working only on the current batch and the quality

of the resulting SPN is the same.

Hsu et al. [23] created oSLRAU, an online structure learner for Gaussian leaves (oSLRAU) which

begins with a completely uncorrelated SPN structure that is updated when the arriving data reveals

a new correlation. The update consists in replacing a leaf with a multivariate Gaussian leaf or a

mixture over its scope.

Jaini et al. [25] proposed an algorithm, Prometheus, whose �rst concern is to avoid the correla-

tion threshold parameter, for that instead of creating a product node it creates a mixture of them

representing di�erent subset partitions. The way the partitions are created allows them to share

subsets, which in the structure is re�ected as sharing children, overcoming the restriction to trees

on the way. This is in some sense similar to bagging in sum nodes (cf. Sec. 2.5.4) and makes the

algorithm robust in low data regimes. However, the complexity of the algorithm grows with the

square of the number of variables. In order to extend it to high-dimensional datasets, the authors

created a version that samples in each step from the set of variables instead of using all of them.

This algorithm can treat discrete, continuous, and mixed datasets. Their experiments showed that

this algorithm surpasses both LearnSPN and ID-SPN in the three types of datasets. It is also robust

in low data regimes, achieving the same performance as oSLRAU with only 30-40% of the data.

2.5.6 Learning with dynamic data

Data are said to be dynamic when all the variables (or at least some of them) have di�erent values

in di�erent time points�for example, Income-at-year-1, Income-at-year-2, etc. The set of variables

for a speci�c time point is usually called a slice. The slice structure, called template, is replicated

and chained to accommodate as many time points as necessary. The length of the chain is called

the horizon.
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With this setting in mind, Melibari et al. [39] proposed dynamic SPNs (DSPNs), which extend

SPNs in the same way as dynamic Bayesian networks extend Bayesian network, as well as a local-

search structure learner. It generates an initial template SPN and searches for neighboring structures

trying to maximize the likelihood. The neighbors come from replacing product nodes. These nodes

represent a speci�c choice of factorization of the variables in its scope; so the algorithm searches

over other choices of factorizations and updates the structure if a better one is found. This algorithm

outperforms non-dynamic algorithms, such as LearnSPN, and other models, such as dynamic Bayesian

networks and recurrent neural networks.

Later, Kalra et al. [27] extended oSLRAU to the dynamic setting by unrolling the SPN to match

the length of the chain to the horizon, with shared weights and a shared covariance matrix, to decide

when a new correlation requires a change in the template. This algorithm surpassed that of Melibari

et al. [39] and hidden Markov models in 5 sequential datasets, and recurrent neural networks in 4

out of those datasets.

2.5.7 Relational data learning

Nath and Domingos [43] introduced relational SPNs (RSPNs), which generalize SPNs by modeling

a set of instances jointly, allowing them to in�uence each other's probability distributions, as well as

modeling probabilities of relations between objects. Their LearnRSPN outperformed Markov Logic

Networks in both running time and predictive accuracy on three datasets.

2.5.8 Bayesian structure learning

We mentioned in Section 2.2.4 that every SPN can be represented as sum of induced trees [72].

With this idea in mind, Trapp et al. [64] designed a Bayesian non-parametric extension of SPNs

based on in�nite sum-product trees and showed that it yields higher likelihood than in�nite Gaussian

mixture models.

Later, Trapp et al. have proposed another Bayesian approach that avoids the main criticism that

these authors cast over the other learning algorithms: that the global goal of structure learning is

not declared�put another way, the lack of a principled criteria for deciding what a �good� structure

is. The solution they propose decomposes the problem into two phases: �nding a graph and learning

the scope-function, ψ, which assigns to each node its scope. The function ψ and the parameters of

the model are learned jointly using Gibbs sampling. The Bayesian nature of this approach reduces

the risk of over�tting, waives the necessity of a separate validation set to adjust the hyperparameters

of the algorithm, and allows the learning SPN structures robustly under missing data.



Chapter 2. Sum-product networks: a survey 31

2.6 Applications

SPNs have been used for a wide variety of applications, from toy problems to real-world challenges.

2.6.1 Image processing

2.6.1.1 Image reconstruction and classi�cation

Poon and Domingos, in their seminal paper about SPNs [53], applied them to image reconstruction,

using a hand-designed structure that took into account the local structure of the image data. They

tested their method on the datasets Caltech-101 and Olivetti. Then Gens and Domingos [20] used

a di�erent hand-made structure for image classi�cation on the datasets CIFAR-10 and STL-10.

2.6.1.2 Image segmentation

Image segmentation consists in labeling every pixel with the object it belongs to. Yuan et al. [68]

developed an algorithm that scales down every image recursively to di�erent sizes and generates

object tags and unary potentials for every scale. Then, it builds a multi-stacked SPN where every

stack has a bottom and a top SPN. The bottom SPN works on a pixel and its vicinity, going from

the pixel to bigger patches. Product nodes model correlations between patches while sum nodes

combine them into a feature of a bigger patch. When the patch is as big as the pixel in the next

scaled image, the results are introduced in the top SPN alongside the unary potentials and the tags

of that scale. This process is stacked until the �patch� treated is the whole image. Multi-stacked

SPNs have been especially e�ective for handling occlusions in scenes.

Rathke et al. [59] have done medical image segmentation of OCT scans of retinal tissue. They

�rst built a segmentation model for the health model and for every pathology and then added to the

list typical shape variations of the retina tissue for some pathology-speci�c regions. The resulting

SPN selects candidate regions (either healthy or unhealthy) and �nds the combination of them that

maximizes the likelihood. After a smoothing step a complete segmentation of the retina tissue is

obtained, as well as the diagnosis and the a�ected regions. This method achieved state-of-the-art

performance without needing images labeled by pathologies.

2.6.1.3 Activity recognition

Wang and Wang [67] addressed activity recognition on still images. They used unsupervised learning

and a convolutional neural network to isolate parts of the images, such as a hand or a glass, and

designed a spatial SPN including the spatial indicator nodes �above�, �below�, �left�, and �right� for

the product nodes to encode spatial relations between pairs of these parts. They �rst partitioned the

image to only consider local part con�gurations. Its SPN structure has two components: the top

layers represent a partitioning of the image into sub-images where product nodes act as partitions
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and sum nodes as combinations of di�erent partitions, while the bottom layers represent the parts

included in each sub-image and their relative position using the spatial indicator nodes. In this sense

the SPN �rst learns spatial relations of isolated parts in sub-images and then learns correlations

between sub-images. They compared it with other current activity recognition algorithms and found

spatial SPNs to be the best among them. Spatial SPNs also allow to discover discriminant pairs of

parts for a class.

Amer and Todorovic [2] worked on activity localization and recognition in videos. They combined

SPNs with a counting grid model that treats a video as a three-dimensional grid (height-width-time)

where visual words lie; a visual word is meaningful piece of an image, previously extracted with

a neural network. Every grid position represents a cube on the multidimensional space and has a

histogram of visual words associated. This is called a bag of words. To construct the SPN, each

bag of words is treated as a variable with two states: foreground and background, which means

two indicator nodes per variable. Product nodes represent a combination of sub-activities into a

more complex activity (for example, �join hands + separate hands = clap�) and sum nodes represent

variations of the same activity. An SPN is trained for every activity in a supervised context, in

which the foreground and the background values are known, and in a weakly supervised context,

in which only the activity is known. The structure is a near-completely connected graph, pruned

after parameter learning. Parameter learning consists in iteratively learning with gradient descent

the weights of the SPN from the parameters of the bag of words and then variational learning of the

parameters of the bag of words from the weights of the SPN. The weakly supervised setting achieved

precision of only 1.6 to 3 % worse than the supervised setting. This approach in general achieved

better performance than state-of-the-art algorithms on several action-recognition datasets.

2.6.1.4 Robotics

Pronobis et al. [55] designed a probabilistic representation of spatial knowledge called DASH (Deep

Spatial A�ordance Hierarchy), which encodes several levels of abstractions using a deep model

of spatial concepts and can model knowledge gaps and a�ordances. Knowledge is modeled by a

Deep Generative Spatial Model (DGSM) which uses SPNs for inference across di�erent levels of

abstractions. SPNs �t naturally with DGSM because latent variables of the former are internal

descriptors in the latter. The authors tested it in a robot equipped with laser-range sensor.

Zheng et al. [73] designed Graph-Structured Sum-Product Networks (GraphSPNs) for structured

prediction. Their algorithm learns template SPNs and makes a mixture over those templates (a

template distribution), which can be applied to graphs of varying size re-using the same templates.

The authors applied them to model large scale, global semantic maps of o�ce environments with a

exploring robot, thus surpassing the classical approach based on undirected graphical models (Markov

networks).

The authors pointed as future direction that both works can be joined into a complete robotic
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hierarchical model.

2.6.2 NLP and sequence data analysis

Peharz et al. [51] applied SPNs to modeling speech by retrieving the lost frequencies of telephonic

communication (arti�cial bandwidth extension). In this problem tractable and quick (real-time)

inference is essential. They used a hidden Markov model (HMM) to represent the temporal evolution

of the log-spectrum, clustered the data using the Linde�Buzo�Gray algorithm and trained an SPN for

each cluster. The SPNs model each cluster and can be used to retrieve the lost frequencies by MPE

inference. This model has achieved better results than state-of-the-art algorithms both objectively,

with a measure of log-spectral distortion, and subjectively, through listening tests.

In language modeling, Cheng et al. [7] used a discriminative SPN [20] which takes vectors with

the information of previous words as leaf nodes and computes the probability of the next word.

They have obtained empirically better performance than classic methods for language modeling like

feedforward neural networks or recurrent neural networks.

Later, Melibari et al. [39] used dynamic SPNs (DSPNs) to analyze di�erent sequence datasets.

Unlike dynamic Bayesian networks, for which inference is generally exponential in the number of

variables per time slice, inference in DSPNs has linear complexity. They compared their approach

with �ve other methods, including HMMs and neural networks with long short-term memory (LSTM).

DSPNs were superior in four out of the �ve datasets examined.

2.6.3 Other applications

Butz et al. [5] used Bayesian networks to recognize independences through 3,500 datasets of soil

bacteria and combined them into an SPN in order to e�cient compute conditional probabilities and

the MPE.

Nath and Domingos [44] used relational SPNs for fault localization, i.e. �nding the most probable

location of bugs in computer source code. The networks were trained on a corpus of previously

diagnosed buggy programs and learned to identify recurring patterns of bugs. They could also

accept clues about bug suspicion from other bug detectors, such as Tarantula.

2.7 Software for SPNs

Every publication about SPNs contains some experiments, and in many cases the source code is

publicly available. The web page https://github.com/arranger1044/awesome-spn contains

many references about SPNs, classi�ed by year and by topic; the section �Resources� includes links

to talks and tutorials, the source code for some of those publications and several datasets commonly

used for the experiments. Most of the software is written in Python or C++.

https://github.com/arranger1044/awesome-spn
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In particular, there are two projects that aim to develop comprehensive, simple, and extensible

libraries for SPNs, written in Python and using TensorFlow as a backend for speeding up some

operations. One of them is LibSPN,3 initiated by Andrzej Pronobis at the University of Washington,

Seattle, WA [54]. It implements methods for inference (marginal and conditional probabilities, and

approximate MPE), parameter learning (batch and online, with gradient descent and hard EM), and

visualization of SPNs. It lacks algorithms for structural learning, but it allows building convolutional

SPNs with a layer-oriented interface [65]. The SPNs, stored as Python structures, are compiled into

TensorFlow graphs for parameter learning and inference; for this purpose LibSPN has implemented

in C++ and CUDA some operations that cannot be ful�lled e�ciently with native TensorFlow

operations. Several tutorials in Jupyter Notebook are available at its website. It has been used

mainly for computer vision and robotics [55, 65, 73].

The other library is SPFlow4, whose development is led by Alejandro Molina at the University of

Darmstadt, in Germany. Most of the contributors belong to di�erent universities in Germany, Italy,

United Kingdom, and Canada [42]. It implements methods for inference (marginal and conditional

probabilities, and approximate MPE), parameter learning (with gradient descent) and several struc-

tural learning algorithms, can be extended and customized to implement new algorithms. SPNs are

usually compiled into TensorFlow for fast computation, but they can also be compiled to C, CUDA,

or FPGA code.

There also exist some smaller libraries of interest, such as SumProductNetworks.jl for Julia,5

which implements inference and parameter learning, and The Libra Toolkit [35],6 a collection of

algorithms written in OCaml for learning several types of probabilistic models, such as BNs, SPNs,

and others, including the ID-SPN algorithm [60].

2.8 Extensions of SPNs

In the last years there have been some extensions of SPNs to more general models. In this section

we brie�y comment some of them.

Sum-product-max networks (SPMNs) [38] generalize SPNs to the class of decision making prob-

lems by including two new types of nodes: max nodes and utility nodes. The solution of these

networks provides a decision rule that maximizes the expected utility in linear time.

In credal sum-product networks (CSPNs) [36] the weights of each sum node have not a �xed

value, but they can vary in some set (product of probability simplexes) in such a way that each choice

of the weights de�nes an SPN.

3https://www.libspn.org.
4https://github.com/SPFlow/SPFlow.
5https://github.com/trappmartin/SumProductNetworks.jl
6http://libra.cs.uoregon.edu

https://www.libspn.org
https://github.com/SPFlow/SPFlow
https://github.com/trappmartin/SumProductNetworks.jl
http://libra.cs.uoregon.edu
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Sum-product graphical models (SPGMs) [17] join the semantics of graphical models with the

evaluation e�ciency and expressiveness of SPNs by allowing the nodes associated to variables to

appear in any part of the network, not only in the leaf nodes, like usual nodes in graphical models.

Sum-product-quotient networks (SPQNs) [62] introduce quotient nodes, which take two inputs

and output their quotient, allowing these models to represent conditional probabilities explicitly.

Tensor SPNs (tSPNs) [28] provides a tensor approach to SPNs. This model has generally many

fewer parameters and allows faster inference and a deeper and more narrow neural-network architec-

ture with little loss of modeling accuracy.

Convolutional sum-product networks (ConvSPNs) [65] exploit the inherent structure of spatial

data in a similar way to convolutional neural networks by using the sum and product operations of

SPNs.

Submodular sum-product networks (SSPNs) [19] are an extension of SPNs for scene understand-

ing in which the weights can be de�ned by submodular energy functions.

Compositional kernel machines (CKMs) [22] are a model closely related with SPNs which have

been successfully applied to image processing tasks, mainly object recognition.

Conditional sum-product networks (CSPNs) [61] extend SPNs to conditional probability distri-

butions. For that, their leaf nodes represent normalized univariate conditional distributions and

they include a new type of node, called gating node, which computes a convex combination of the

conditional probability of its child nodes with non-�xed weights.

2.9 Proofs

This section contains the proofs of all the propositions and the theorem. Recall that we denote by

� the only con�guration of the empty set.

Proof of Proposition 3. Let x = v↓X. If V ∈ X, then x↓V = (v↓X)↓V = v↓V = v and Iv(x) = 1. If

V /∈ X, then Iv(x) = 1. Therefore
∏

V ∈V Iv(x) = 1.

Let x 6= v↓X. Then there exists a V ∈ X such that x↓V 6= (v↓X)↓V = v↓V = v, which implies

that Iv(x) = 0 and
∏

V ∈V Iv(x) = 0.

Proof of Proposition 6. It is clear that P (x) ≥ 0. Because of the de�nition of P (x),∑
x

P (x) =
∑
x

∑
v|v↓X=x

P (v) .

Given that each con�guration of V is compatible with one con�guration of X, we have∑
x

P (x) =
∑
v

P (v) = 1 .
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Before proving Propositions 7 and, we introduce a new proposition.

Proposition 28. Let P be a function P : conf∗(V) 7→ R that satis�es Equation 2.6. If P (�) = 1,

then
∑

v P (v) = 1.

Proof. Because of Equation 2.6, with X = ∅, we have

P (�) =
∑

v|v↓∅=�

P (v) .

Taking into account that the empty con�guration is compatible with every con�guration of every

set,

P (�) =
∑
v

P (v) ,

which proves the proposition.

Proof of Proposition 7. We also have

P (x) =
n∑
j=1

wj · Pj(x) =
n∑
j=1

wj ·
∑

v|v↓X=x

Pj(v)

=
∑

v|v↓X=x

n∑
j=1

wj · Pj(v) =
∑

v|v↓X=x

P (v) ,

which proves that P satis�es Equation 2.6. It is clear that P (v) ≥ 0 for all v ∈ conf(V) and,

because of Proposition 28,

∑
v

P (v) = P (�) =
n∑
j=1

wj · Pj(�) =
n∑
j=1

wj = 1 ,

which completes the proof.

Proof of Proposition 8. When n = 1 the proof is trivial because P = P1. When n = 2 we have, for

every con�guration x, with X ⊆ V,∑
v|v↓X=x

P (v) =
∑

v|v↓X=x

P1(v
↓V1) · P2(v

↓V2) .

Given that V1 ∪ V2 = V and V1 ∩ V2 = ∅, every con�guration of V can be obtained from a

combination of two con�gurations, v = v1v2, wherev1 = v↓V1 and v2 = v↓V1 . The conditionv↓X =

x�the compatibility of x with v�can be decomposed into two conditions: v↓X1

1 = x↓X1 and

v↓X2

2 = x↓X2 , where X1 = V1 ∩X and X2 = V2 ∩X . Therefore,∑
v|v↓X=x

P (v) =
∑

v1|v↓X1=x↓X1

∑
v2|v↓X2=x↓X2

P1(v1) · P2(v2) .
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The property V1 ∩V2 = ∅ also implies that P1(v1) does not depend on v2 and vice versa, so

∑
v|v↓X=x

P (v) =

 ∑
v1|v1=x↓X1

P1(v1)

 ·
 ∑

v2|v2=x↓X2

P2(v2)

 .

The fact that P1 is a probability function implies that

P1(x
↓X1) =

∑
v1|v1=x↓X1

P1(v1)

and the de�nition X1 = V1 ∩X implies that x↓X1 = x↓V1 . Therefore∑
v|v↓X=x

P (v) = P1(x
↓V1) · P2(x

↓V2) = P (x) ,

which proves that P satis�es Equation 2.6. It is clear that P (v) ≥ 0 for all v ∈ conf(V) and,

because of Proposition 28, ∑
v

P (v) = P (�) = P1(�) · P2(�) = 1 ,

which completes the proof for n = 2. As a consequence, if P1(x
↓V1)·. . .·Pn−1(x↓Vn−1) and Pn(x

↓Vn)

are probability functions for disjoint Vj's, then P1(x
↓V1) · . . . ·Pn(x↓Vn) is also a probability function,

which proves Proposition 8 for any value of n.

Please note that if two probability functions are de�ned over non-disjoint sets of variables, their

product is not necessarily a probability function. Consider the following counterexample: V1 = V2 =

{V }, P1(+v) = P1(¬v) = P2(+v) = P2(¬v) = 0.5. Then P (+v) = P1(+v) · P2(+v) = 0.25,

P (¬v) = 0.25, and P (+v) + P (¬v) 6= 1.

Proof of Proposition 9. Let nj and nj′ be two di�erent children of ni. If desc(nj) ∩ desc(nj′) = ∅,

then sc(nj) ∩ sc(nj′) = ∅, i.e., their scopes are disjoint.

Reciprocally, if a node nk is a descendant of both nj and nj′ then sc(nk) ⊆ sc(nj) ∩ sc(nj′),

which implies that the scopes are not disjoint because, by the de�nition of scope, sc(nk) 6= ∅.

Proof of Theorem 12. Let ni be a terminal node, i.e., the indicator associated to value v0 of a

�nite-states variable V ; it is then the indicator Iv0 . Then sc(ni) = {V }, Pi(v) = Si(v) = Iv0(v)
and Pi(�) = Si(�) = 1. Pi is a probability distribution de�ned on sc(ni) = {V } because Pi(v) =
Si(v) = Iv0(v) ≥ 0 for every value v and

∑
v Pi(v) =

∑
v Iv0(v) = Iv0(v0) = 1. When X ⊂ V then

X = ∅; Equation 2.6 holds because Pi(�) = Si(�) = 1 and∑
v|v↓∅=�

Pi(v) =
∑
v

Pi(v) = Pi(v0) = 1 .

Therefore Pi is a probability function in this case.
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Let ni be a non-terminal node. We assume that Pj is a probability distribution for each of its

children, nj. If ni is a sum node then Pi is a probability function because of Proposition 7, with

V = sc(ni) = sc(nj). The completeness of the SPN guarantees that ni and all its children have

the same scope. If ni is a product node then Pi is a probability function because of Proposition 8,

with Vj = sc(nj). The decomposability of the SPN guarantees that the Vj's are disjoint and the

de�nition of sc(ni) ensures that
⋃
j Vj = V = sc(ni).

Proof of Proposition 18. Let v ∈ conf(S). There is an integer j∗ such that vj∗ = v↓V . Let

j ∈ ch(i), j 6= j∗. If Ivj = nj then Sj(v) = Ivj(v) = 0. If Ivj is a child of nj, then nj is a

product node and the contributions of the other children of nj are multiplied by 0, which implies

that Sj(v) = 0.

Proof of Proposition 20. Selectivity implies that if ni is a sum node in S and Si(v) 6= 0, then it has

exactly one child nj such that Sj(v) 6= 0 and wij > 0 (which implies that this link has not been

removed), so in Sv every sum node ni has exactly one child. Every node in Si(v) other than the

root has at least one parent�otherwise, it would have been removed. A node cannot have more

than two or more parents because, being in a rooted graph, they should have a common ancestor

having two or more children, but this is impossible because each sum node has exactly one child and

two di�erent product nodes cannot have a common descendant (cf. Proposition 9).

Proof of Proposition 22. We begin by considering the case in which S only has one terminal node,

nr = Iv. The scope of S is {V }. If S(v) 6= 0, there are only two possibilities: either v = � or

v = (v). In both cases, S(v) = 1. Given that Sv contains one node and no links, the right hand

side of Equation 2.6 is 1, so that equation holds. Let us assume that the proposition holds for all

the descendants of a node nk. If Sk(v) 6= 0, Equation 2.6 holds when nk is a sum node (with only

one child, because of Proposition 20) as well as when it is a product node.

Proof of Proposition 24. Every node ni that was not selective has been made selective by the addition

of variable Z and its indicators. If a node ni′ was added to restore the completeness of the SPN, it

is also selective because all its children, being indicators of Z, have the same scope (see Fig. 2.2.2).

If x ∈ conf∗(S), then Iz(x) = 1 because V /∈ X and S ′i′(x) = 1, which implies that every node

existing in S has the same value in S ′.

Proof of Proposition 25. Let j ∈ {1, . . .m}. Since nr represents variable V , either Ivj = nσ(j) or Ivj
is a child of nσ(j)�see De�nition 16. In the �rst case, we would have sc(nσ(j)) = {V } and the

completeness of S would imply that sc(nr) = sc(nr) = {V }, in contradiction with the assumption

that sc(S) has at least to variables. Therefore Ivj must be a child of nσ(j), a product node, and

Sσ(j)(x) = Ivj(x) ·
∏

k∈ch(σ(j))\nk 6=Ivj

Sk(x) ,
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where x ∈ conf∗(S). Let x be the composition of vj and any x̃ ∈ conf∗(Ṽ). Then

Sσ(j)(vjx̃) = Ivj(vj) ·
∏

k∈ch(σ(j))\nk 6=Ivj

Sk(x̃) ,

=
∏

k∈ch(σ(j))\nk 6=Ivj

Sk(x̃) .

In contrast, when j′ 6= j we have Iv′j(vj) = 0 and Sσ(j′)(vjx̃). Since nr is a sum node,

P (vjx̃) =
m∑
j′=1

wi,σ(j′) · Sσ(j′)(vjx̃)

= wi,σ(j) ·
∏

k∈ch(σ(j))\nk 6=Ivj

Sk(x̃) .

In particular, if x̃ = � then Sk(�) = 1 for every k and

P (vj) = wi,σ(j) .

If wi,σ(j) 6= 0,

P (vj|x̃) =
P (vjx̃)

P (vj)
=

∏
k∈ch(σ(j))\nk 6=Ivj

Sk(x̃) .

Now, before proving Equation 2.16, we introduce an auxiliary proposition.

Proposition 29. If S is selective, v ∈ conf(S), S(v) 6= 0, and (i, j) ∈ Sv, then

S(v) = wij ·
∂S(v)

∂wij
. (2.1)

Proof. Equation 2.6 implies wij 6= 0 (because S(v) 6= 0) and

∂S(v)

∂wij
=
S(v)

wij
.

Proof of Equation 2.16. Given that vtht is a complete con�guration of sc(S ′), i.e., vtht ∈ conf(S ′),
and S ′ is selective, Proposition 29 implies that

S ′(vtht) = wij ·
∂S ′(vtht)

∂wij

and

P ′(ht|vt) = S ′(vtht)

S ′(vt)
= wij ·

1

S ′(vt)
· ∂S

′(vtht)

∂wij
.
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So Equation 2.15 can be rewritten as

nij =
T∑
t=1

wij ·
1

S ′(vt)
·

∑
ht|(i,j)∈S′

vtht

∂S ′(vtht)

∂wij
.

If link (i, j) does not belong to the tree induced by vtht then ∂S ′(vtht)/∂wij = 0, so the inner

summation in the previous expression can be extend to all the con�gurations of Ht:

nij =
T∑
t=1

wij ·
1

S ′(vt)
·
∑
ht

∂S ′(vtht)

∂wij
.

Given that S ′(vt) =
∑

ht S
′(vtht), we have

nij =
T∑
t=1

wij ·
1

S ′(vt)
· ∂S

′(vt)

∂wij
.

Because of Proposition 24, S ′(vt) = S(vt) and

nij =
T∑
t=1

wij ·
1

S(vt)
· ∂S(v

t)

∂wij

=
T∑
t=1

wij ·
1

S(vt)
· ∂S(v

t)

∂Si
· ∂Si(v

t)

∂wij
.

This result, together with Equations 2.7 and 2.3, leads to Equation 2.16.



Chapter 3

Image classi�cation with convolutional

SPNs

Convolutional SPNs (ConvSPNs) are an extension of SPNs (cf. Section 2.8) that translate the

convolutional layers of the neural networks into an SPN valid structure. The application proposed

here aims to extend the work of Wolfshaar et al. [65] to di�erent image classi�cation problems and

compare its performance with the model from which they are born: convolutional neural networks

(CNNs). We chose to work with ConvSPNs since they have shown better performance than any other

pure SPN approach to image classi�cation tasks [65]. In the next section we provide a background

of both CNNs and ConvSPNs.

3.1 Background

3.1.1 Convolutional neural networks

The challenges of arti�cial vision gave rise to a special class of neural network inspired in the

processing that happens at the visual cortex: CNNs. The biologic inspiration is found in Hubel and

Wiesel's work [24] and is based on primate visual cortex structure. CNNs �rst came to the scene in

1989 in the work of LeCuN to process grid-like topological data (image and time series) [30]. CNNs

are currently one of the best models for understanding images and have obtained state-of-the-art

results on image detection, recognition, segmentation and retrieval [10]. At present, most of the

front-runners of image processing competitions are employing deep CNN-based models.

In a structural sense, CNNs are neural networks that leverage through special layers the fact that

the input is an image. The base intuition of deep learning algorithms is to solve machine learning

tasks by constructing complex features from simpler features in a layered fashion. CNNs do the same

using image subsections as features, and solve image tasks by constructing complex subsections (such

as faces or doors) from simpler and smaller ones (such as edges, corners or color gradients). This is

done through local connectivity, which will be explained below.

41
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The special layers that provide convolutional networks with this power are convolutional layers

and pooling layers.

3.1.1.1 Convolutional layers

The intuition of convolution is a moving window passing over an image and computing the overlap

between itself and the image at each point. This is done by element-wise multiplication of two

matrices. In CNNs, the moving window is called �lter and the area it passes over is the image.

Both of them are represented by three-dimensional matrices, being the dimensions width, height and

channels. The channels are used to encode the color of a pixel into numbers. For example, the

famous RGB encoding stands for three channels: red, green and blue. The transparency of an image

is also a channel, commonly called �alpha channel�. So the dimension of a full HD color image is

1920x1080x3. The �lter is a matrix with typically smaller width and height but the same number

of channels as the image it passes over. When the �lter is applied to a section of the image (the

receptive �eld), it outputs a value. Then it is applied to adjacent sections of the image and the

outputs of every application can be ordered into a new image, see Figure 3.1.1. It is called �lter

since it outputs a new image from the initial one, like �lters of image edition programs. The value

the �lter outputs says how much the �lter is activated on each image subsection. Because of this,

the image generated by the �lter is called activation map since it measures spatially how the �lter

is activated.

Figure 3.1.1: A convolutional application of a �lter.

Since the same �lter passes over many di�erent places of the image, it can �nd a discriminative

feature independently of its position in the image. As an example, if a �lter is looking for the shape

of an ear, it would not mind where that ear is on the image. This is the translation invariance
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property of CNNs and it is achieved through weight sharing. The numbers in the �lter matrix are

the weights of the �lter. An application of a �lter is represented by a neuron (with the receptive �eld

as input and the result of the convolution as output) so all the applications of the same �lter should

share weights. The fact that a neuron is connected only to a speci�c subsection of neurons (the

ones representing the receptive �eld) and not the whole previous layer is called local connectivity.

Since a �lter outputs only one number per application, the output image of a �lter has only one

channel. However, it is common for convolutional layers to apply several �lters to its input. In this

case each �lter output represents a channel and the complete output has as many channels as �lters

in the previous convolutional layer. Channels in the initial input image represent a speci�c encoding

of the image information, while in the subsequent convolutional layers they represent the number of

�lters applied by that layer.

Note in Figure 3.1.1 that the output is 2 pixels shorter and 2 pixels more narrow. This happens

because the �lter cannot be applied to the corners of the image. Sometimes that reduction is not

desirable. To solve that, padding is added to the borders. The most usual padding is adding �lter

size - 1 pixels to every border so that the output image preserves the size of the input image.

3.1.1.2 Pooling layers

The other most important operation is pooling. Pooling is basically down-sampling. As an example,

an image of 200x200 pixels is reduced to 100x100. To achieve that, one possibility is to take every

2x2 square and set a 1x1 value. The criterion for choosing the value de�nes the type of pooling.

Max pooling chooses the maximum value and is the most widely used criterion. Average pooling

takes the average of the pooled values. Pooling layers comes from the intuition that once we know

a speci�c feature is in the image (the �lter outputs a high value) only its location relative to other

high-valued features is important. Size reduction, therefore, does not a�ect the result.

A convolutional neural network consists typically of alternating convolution and pooling layers.

3.1.1.3 Additional concepts

There are some extra concepts which are important for CNNs and ConvSPN. One of them is the

stride, the stride is the distance between �lter applications. In Figure 3.1.1 the stride used is 1.

A pixel in the center will contribute to nine �lter outputs, each time in a di�erent relative position

with respect to the �lter. If the goal is to have each pixel contributing to one and only one output

in Figure 3.1.1 four �lter applications are needed. This means the �lter will move three pixels from

one application to the next so the stride will be 3. However, stride is rarely increased since it returns

fairly less information. In the example proposed, a stride of 3 will return a 2x2 image instead of the

4x4 one showed in Figure 3.1.1.

The other relevant concept is dilation. Dilation can be used to cover a larger receptive �eld

without enlarging the �lter. This is showed in Figure 3.1.2.
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Figure 3.1.2: Dilation in CNNs. An example showing the di�erent receptive �elds for dilation values
of 1, 2 and 3.

A dilation of 2 will cover an area of 5x5 with a �lter of 3x3 by setting every pixel-wise application

two pixels away from its neighbors.

A convolutional neural network also includes the typical layers and operations of general neural

networks. In particular, the dropout operation and the batch normalization operation. The

dropout operation goes through the neurons of a fully-connected or dense layer and chooses to

remove each neuron with a probability called dropout rate. This is a regularization technique that

decreases over�tting. The batch normalization subtracts the mean of each batch from each instance

in that batch and then divides it by the variance of the batch. This speeds up learning.

3.1.2 Convolutional sum-product networks

Convolutional sum-product networks (ConvSPNs) aim to encode the spatial properties of CNNs

in SPN architectures. Those properties are translation invariance through weight sharing and

local connectivity, which provides the layered organization of the visual information typical of

convolutional deep learning.

In a ConvSPN, an SPN node represents a pixel in one channel, while a cell refers to a pixel in

all its channels, a pixel itself. Nodes of the same cell have the same scope, i.e., leaf nodes of the

same cell represent the same variable or variables. This means that the scope does not change when

the channel is di�erent but it does change when we move to another pixel either in the vertical or

the horizontal axis.

The objective of ConvSPNs is to translate the convolution operation to SPN sum and product

nodes satisfying completeness and decomposability. This produces three types of layers: local sum

layers, convolutional product layers, and depth-wise convolutional depth layers.

For sum layers to satisfy completeness the children of a sum node should come from the same

pixel but from di�erent channels. Taking nodes from di�erent pixels will mean having children with

di�erent scopes, which rends the sum node incomplete. In order to avoid it, sum nodes are chosen

to take as children every node in the pixel cell. This is like a convolutional layer with a 1x1 �lter,

which we will call a local sum layer. Weight sharing can be optionally used here.
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A convolution operation is a weighted sum in CNNs. For product layers to compute a weighted

sum they are made to propagate log-probabilities. Using logarithnms, the products are converted into

sums and a product node will be equivalent to a weighted sum with weights being either one or zero.

Since a product now represents a convolution, a product node represents an application of one �lter.

That means that a �lter is represented by height∗width product nodes. To satisfy decomposability, a

product node can only have as children one node per pixel (i.e. one channel per pixel). The number of

possible product nodes accounting for that restriction are height∗width∗ (pixels in �lter)input channels.

Since a �lter is represented by height∗width products, the number of �lters (and the name of output

channels) of a product layer is (pixels in �lter)input channels. We want to use the higher number of

products to give the model the maximum capacity, but that will make channels grow exponentially

layer after layer, demanding a lot of computational resources. The authors of ConvSPNs then propose

two di�erent types of convolutional product layers: normal convolutional product layers, which use

the maximum number of products, and depth-wise convolutional product layers, with as many input

channels as output channels. This means height ∗width ∗ input channels product nodes in the layer.

The �rst one is typically used only with few input channels.

At this point, we have three di�erent types of layers. Now, we should be careful when stacking

layers. Sum layers do not change the scope of the output pixels with respect to the scope of the

input pixels, so they can be stacked without additional considerations, but product layers do, so we

should take into account decomposability when stacking layers.

The authors here proposed two stacking processes [65] for product layers:

1. Non-overlapping product layers. This stacking process consists on setting the stride of product

layers as big as the �lter size. This way, in any output image every pixel will have a unique

scope, so the next �lters will not be able to select pixels with shared scope, and decomposability

will be preserved. This method will drastically reduce the size of the input, since width and

height will be divided by the �lter size. For that reason another stacking process is proposed.

2. Wicker layers. The wicker stacking process is created to allow a stride of 1. Using a stride of

1 means adjacent output pixels will share part of their scope. The next layer should select a

further pixel to preserve decomposability. This is achieved with a exponentially growing dilation

rate. This dilation selects the nearest nodes that do not overlap in scope.

In any process, layers will be stacked until all product nodes have all variables in its scope. The last

product layer stacked may need special padding to guarantee that.

These two architectures are actually the two extremes of several possibilities. From the wicker

architecture with stride 1 and dilation growing exponentially, the stride can be increased and the

dilation changed accordingly. This can be done for every possible stride between 1 and the �lter size,

and then the dilation will be 1 every layer and we are in the case of non-overlapping products.

Also, mixed structures beginning with non-overlapping layers and changing to wicker layers any-

time are also valid. An example of a structure of this type is represented in Figure 3.1.3. However,
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a non-overlapping layer cannot follow a wicker layer since the array of scopes produced by a wicker

layer will produce undecomposable products in the next non-overlapping layer.

The �nal architecture of a ConvSPN will consist of alternating sum and product layers until all

nodes in a product layer have the same scope, then a layer of sums with as many sums as classes to

classify and a �nal sum root which will represent a latent variable that selects the class.

While the number of layers is a free parameter in CNNs, in ConvSPNs there is far less �exibility.

The number of product layers in a complete wicker architecture is the whole part of the logarithm

in base kernel size of the maximum of the width and the height. The total number of layers is the

number of product layers, plus one sum layer for every product layer plus the root. For example,

an image of 28x28 processed with a �lter size of 2 in every product layer will have blog2 28c = 5

product layers and a total of 11 layers. Changing from wicker layers to non-overlapping layers does

not modify the number of total layers of the net.

To sum up:

� There are three type of layers: local sum layers, convolutional product layers, and depth-wise

convolutional depth layers.

� A ConvSPN structure alternates sums and products, beginning preferably with a product layer.

� The number of layers is �xed given the image resolution and the �lter size.

� The �rst product layer can be a non-overlapping layer, a half-wicker, or a wicker layer.

� Once a wicker or half-wicker layer has been added, the next product layers can only be wicker

layers.

� When every product of a product layer has the full scope, any structure is completed by stacking

a last sum layer with as many sums as classes and the a sum node as root.

3.2 Methods

The goal of these experiments is to apply ConvSPNs to several datasets for image classi�cation and

compare their results with the state of the art algorithm on the area: CNNs.

The chosen datasets aim to cover di�erent problems ranging in di�culty, data availability, number

of classes and type of image. Here I present a summary of the datasets:

� Infected malaria cells discrimination. This dataset presents a medical problem with a su�cient

amount of data and the most simple classi�cation: infected or non-infected. Extracted from

Kaggle.

� Intel scenery classi�cation. This dataset proposes a classi�cation of di�erent types of places

under 6 categories: buildings, forest, glacier, mountain, sea and street. Extracted from Kaggle.
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Figure 3.1.3: An example of a ConvSPN structure. Each block represents a layer. This is a mixed
structure where the �rst two product layers are stacked in a non-overlapping fashion (scarlet or darker
if black and white) and the rest of them in a wicker fashion (blue or lighter if dark and white). The
only possible modi�cation to this structure is stacking more non-overlapping layers that replace the
upper wicker layers.
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� Emotion generation dataset. This dataset is made to classify photos into the emotions they

generate on the viewer, with eight possibilities: awe, anger, amusement, contentment, excite-

ment, fear, disgust and sadness. It is a di�cult problem with a small number of instances.

Extracted from http://www.imageemotion.org.

In Table 3.1 we show the characteristics of every dataset and the train-validation-test split chosen.

Table 3.1: Characteristics of the datasets used in the experiments. When the image size is preceded
by �around�, it means the images where of di�erent size and the dimensions provided are the means
by dimension.

Classes Image size Instances Train Validation Test
Infected malaria cells 2 around 150x150x3 27.558 20.000 3.500 4.058
Intel scenery classi�cation 6 150x150x3 17.034 14.034 1.685 3.000
Emotion generation 8 around 440x440x3 806 646 80 80

The Intel scenery classi�cation already provided a train and a test set. We have used the test

set as is, and extracted the validation set from the provided train set. Since the emotion generation

dataset is very small and the representation of the di�erent emotions is unbalanced, we create

manually the validation and test sets so that each emotion appears the same number of times. The

size of the validation and test sets are between 10% and 20% of the whole dataset.

Taking into account the limitations of our hardware, the images of every dataset had been

downscaled to 64x64x3.

We have classi�ed the three datasets using CNNs implemented in Keras and the ConvSPNs

implemented in LibSPN (cf. Section 2.7). LibSPN allows to construct the structure of ConvSPNs

layer by layer with the knowledge of the scope restrictions mentioned above.

Some images from the malaria dataset are shown in Figure 3.2.1.

Figure 3.2.1: Some images from the malaria dataset. The two on the left are infected cells and the
one on the right is uninfected.

Some images from the Intel scenery dataset are shown in Figure 3.2.2.

Some images from the emotion generation dataset are shown in Figure 3.2.3.

http://www.imageemotion.org
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Figure 3.2.2: Some images from the Intel scenery dataset. Tags from left to right: a forest, a sea
and a mountain.

Figure 3.2.3: Some images from the emotion generation dataset. Tags from left to right: awe, fear
and amusement.

3.2.1 Structure and hyperparameter tuning for convolutional SPNs

As was explained in Section 3.1.2, a ConvSPN structure must satisfy the scope restrictions of validity

when choosing and stacking layers. For every experiment we choose the �lter size of every layer as

2x2 since it is the one that uses the most information of the images. With that set, for 64x64 images

every structure will have 15 layers. Four di�erent structures are tested for each of the three datasets,

the mixed structures with one, two, three, and four non-overlapping layers followed by as many pure

wicker layers as necessary. The one with two non-overlapping layers is shown in Figure 3.1.3.

The optimizer used is always AMSGrad since Wolfshaar et al. found it works better in general

[65].

For hyperparameter tuning, we performed a random search of 50 con�gurations over the param-

eters organized in Table 3.2. Every con�guration results are averaged over ten runs.
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Table 3.2: Grid of hyperparameters for ConvSPNs. The random search selects a number of channels
and use it for every layer of that type. Scale initialization is the initial mean value of the weights.

Parameter Search space
Learning rate {0.05, 0.01, 0.005, 0.001, 0.0005}
Channels of product wicker layers {16, 32, 64}
Channels of product non-overlapping layers {16, 32, 64}
Batch size {16, 32, 64, 128}
Scale initialization {0.5, 0.1, 0.05}

3.2.2 Structure and hyperparameter tuning for CNNs

To classify the three datasets with CNNs, we use the Keras python library. For hyperparameter

tuning we use Hyperas and Hyperopt libraries.

The procedure to choose the structures was the following: we started with the CNN structure

given in [8, Listing 5.5] and tested some variations of it with extra convolutional layers and fully

connected layers. An example of these structures is shown in Figure 3.3.1. We keep the best

performing structure from them. Then, we replaced the convolutional part of that structure with

the VGG16 network with freezed weights and compared the performance of both networks on each

dataset. We kept the best of both. We use VGG16 to test the performance of a pretrained model

on these datasets. More powerful models are not necessary since the results obtained with these

structures are conclusive.

For every structure, the �lter size is set to 2x2, the activation function used in the dense layers

is the ReLU and the stride of every convolutional layer is 1.

For each structure, we performed hyperparameter tuning through a random search of 50 con�g-

urations over the values of the parameters organized in Table 3.3. Every con�guration results are

averaged over ten runs.

Table 3.3: Grid of hyperparameters for CNNs. The random search selects a number of channels per
layer. The same happens with dropout rates. The square brackets means that the value is selected
from the continuous interval between those values.

Parameter Search space
Optimizer {SGD, RMSprop, Adam}
Learning rate [0.001, 0.0001]
Channels of convolutional layers {32, 64, 128, 256}
Neurons of dense layers {512, 256, 128, 64, 32}
Dropout rates [0, 1]
Batch size {32, 64}
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3.3 Results

We compare CNNs and ConvSPNs through the accuracy and time elapsed of the best structures

found for each model with their respective con�guration of hyperparameters.

3.3.1 CNN structures

The convolutional neural network structure chosen for the malaria dataset is represented in Figure

3.3.1.

The convolutional neural network structure chosen for the Intel scenery classi�cation dataset is

the one leveraging VGG16 and is represented in Figure 3.3.2.

The convolutional neural network structure chosen for the emotion generation dataset is repre-

sented in Figure 3.3.3.

3.3.2 ConvSPN structures

As was mentioned in Section 3.2.1, the structures texted are mixed ConvSPN structures with one,

two, three, and four non-overlapping layers followed by as many pure wicker layers as necessary. The

structure who provided better results for each dataset is indicated by its number of non-overlapping

layers in Table 3.4.

3.3.3 Hyperparameter tuning

The best con�gurations of parameters and its associated ConvSPN structure found for each dataset

by the random search are organized in Table 3.4.

Parameter Malaria Intel scenery Emotion generation
Number of non-overlapping layers 2 2 1
Learning rate 0.005 0.01 0.01
Channels of product non-overlapping layers 16 64 32
Channels of product wicker layers 32 16 16
Batch size 64 64 32
Scale initialization 0.1 0.1 0.05
Epochs 20 30 40

Table 3.4: Best hyperparameters for ConvSPNs.

The best con�gurations of parameters found for each dataset by the random search are organized

in Table 3.5.



52 3.3. Results

Figure 3.3.1: Convolutional neural network structure found for the malaria cell dataset represented
with Keras. Conv2D represents a typical convolutional layer, MaxPooling2D representsa typical max
pooling layer, Flatten converts a multidimensional output to a unidimensional input apt for a fully
connected neural network. Dense represents a fully-connected layer. Dropout represents a dropout
operation applied to the next dense layer. The last number inside each parenthesis is the input or
output channels respectively.
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Figure 3.3.2: Convolutional neural network structure found for the Intel scenery classi�cation dataset
represented with Keras. VGG16 is the pretrained network. Flatten converts a multidimensional output
to a unidimensional input apt for a fully connected neural network. Dense represents a fully-connected
layer. Dropout represents a dropout operation applied to the next dense layer. BatchNormalization
standarizes (dividing by the variance instead of the standard deviation) the dataset batch-wise.
Activation represents the activation function of the dense layer, separated from it to introduce batch
normalization. The last number inside each parenthesis is the input or output channels respectively.
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Figure 3.3.3: Convolutional neural network structure found for the emotion generation dataset rep-
resented with Keras. Conv2D represents a typical convolutional layer, MaxPooling2D a typical max
pooling layer, Flatten converts a multidimensional output to a unidimensional input apt for a fully
connected neural network. Dense represents a fully-connected layer. Dropout represents a dropout
operation applied to the next dense layer. The last number inside each parenthesis is the input or
output channels respectively.
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Parameter Malaria Intel scenery Emotion generation
Optimizer Adam Adam Adam
Learning rate 0.0008 0.001 0.0009
First dropout rate 0.35 0.2 0.65
Second dropout rate 0.25 0.3 0.31
Batch size 64 32 32
Epochs 20 30 40

Table 3.5: Best hyperparameters for CNNs.

3.3.4 Accuracies and times

The results of both models for the malaria dataset are shown in Table 3.6. We observe that CNN

results are notably better and that the ConvSPN over�ts. The CNN is also faster.

Table 3.6: Accuracies and times for the malaria dataset.

CNN accuracy ConvSPN accuracy
Train 0.9886 ± 0.0061 0.9944± 0.0037
Validation 0.9563 ± 0.0019 0.8866± 0.0084
Test 0.9561 ± 0.0014 0.8895± 0.0077
Time per run (s) 322± 3 1597± 12

The results of both models are shown in Table 3.7. In this case CNN results are also notably

better. Both models over�t. The CNN is also faster.

Table 3.7: Accuracies and times for the Intel classi�cation dataset.

CNN accuracy ConvSPN accuracy
Train 0.9911 ± 0.0018 0.9967± 0.0007
Validation 0.8433 ± 0.0032 0.6794± 0.0067
Test 0.8429 ± 0.0049 0.6951± 0.0088
Time per run (s) 322± 3 2599± 13

The results of both models are shown in Table 3.8. We observe that the accuracies are very low

and dispersed for both models. Both models have similar accuracies so there is no winner this time.
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Table 3.8: Accuracies and times for the emotion generation dataset.

CNN accuracy ConvSPN accuracy
Train 0.9851 ± 0.0133 0.8550± 0.0822
Validation 0.2387 ± 0.0407 0.2388± 0.0308
Test 0.2037 ± 0.0252 0.2063± 0.0430
Time per run (s) 27± 0 225± 3

3.4 Discussion

From the results we see that CNNs clearly surpass ConvSPNs in two of the three classi�cation

tasks, while in the emotion generation dataset neither of them achieves satisfying results. This

was expected, since ConvSPNs are a subclass of CNNs that lose �exibility to accommodate the

completeness and decomposability properties of SPNs. Unfortunately, the advantages of imposing

these restrictions (namely, to get a generative convolutional model) do not have any positive e�ect

in a classi�cation task.

In train set accuaracy both models are similar (the di�erence in train accuracy in the emotion

dataset vanished if the ConvSPN ran for more epochs). That means that ConvSPNs can model

without problems the train set, however, they do not generalize well and over�t notably. During

hyperparameter tuning, it has been observed that con�gurations with less model capacity (fewer

channels, for example) improved slightly the performance of the ConvSPNs on both the validation

and the test set.

The emotion generation dataset is a special case where the results are neither decisive nor

satisfactory. Both models struggle to deliver a result better than the one obtained when classifying

two of the eight labels correctly. This is because the problem is fairly di�cult, tagging photos by

emotions and the dataset provided is fairly small (around 100 images per emotion).

Aside from the accuracy, CNNs work a lot faster (around 5 to 8 times faster) than ConvSPNs in

spite of using structures far more complex than those of the ConvSPN, both in depth and width.

In depth, all the structures of ConvSPNs counted with seven convolutional layers (a convolutional

layer in a neural network is equivalent to a product and a sum layer in a ConvSPN) while the

convolutional neural network used �ve convolutional layers plus three dense layers.

In width, ConvSPNs only used up to 64 channels while CNNs of 256 channels where tested. The

limit on this was set by the hardware we were using. The memory available was able to allocate 256

channels for a convolutional neural network but not for a ConvSPN.

This is also expected since Keras is a widely used and supported library. It has years of develop-

ment and has been specially designed to work with neural network. It also counts with additional

libraries that automatically run a random hyperparameter search. LibSPN, on the other hand, has

been available only for months and it is yet a work in progress. At the same time, it does not count

with the same human and monetary resources.
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Conclusions and future work

In this chapter we compare SPNs with models from the two areas they originate: probabilistic

graphical models and deep learning. Then we conclude and point to some lines of future work.

4.1 Comparison with related models

4.1.1 SPNs vs. probabilistic graphical models

SPNs are similar to probabilistic graphical models (PGMs), such as Bayesian networks (BNs) and

Markov networks (also called Markov random �elds) [29, 45], in their ability to compactly represent

probability distributions. The main di�erence is that in a PGM every node represents a variable and,

roughly speaking, links represent probabilistic dependencies, while in an SPN every node represents

a probability function. Every BN can be decomposed into an SPN, as shown in Figure 4.1.1. The

reader may wonder: if inference in BNs in NP-complete [11] and all known algorithms have worst-

case exponential complexity, how can SPNs do inference in linear time? The answer to this paradox

is that the size of an SPNs obtained from a BN may grow exponentially with the number of variables,

so that from the point of view of inference is in general worthless to convert a BN into an SPN.

Conversely, an SPN can be converted into a BN in time and space proportional to the network

size using algebraic decision diagrams (ADDs) [71] and the variable elimination algorithm can be

used to recover the original SPN.

Even though SPNs are not more tractable than PGMs in general, a great di�erence arises when

learning the models from data: while learned PGMs are usually intractable�except for small problems

or for speci�c types of models with limited expressiveness, such as the naïve Bayes�the algorithms

presented in Section 2.5 can build tractable SPNs that yield excellent approximations both for gen-

erative and discriminative tasks.

In contrast, BNs can be built from causal knowledge elicited from human experts and there is

a lot of recent research on building causal BNs from experimental and/or observational data, under

certain conditions [46]. It is also possible to combine knowledge and data, and even to build BNs

57
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Figure 4.1.1: The weights in Figure 2.2.1 can be understood as conditional probabilities. This SPN
represents a probability distribution with context-speci�c independence: B and C are conditionally
independent given ¬a. The Bayesian network on the left represents the same probability distribution,
but its graph does not show the context-speci�c independence.

interactively [3]. Additionally, the independences in a BN or in a Markov model are easier to read

than those in an SPN.

Therefore each type of model has advantages and disadvantages, and the choice for a real-world

application must take into account the size of the problem, the amount of knowledge and data

available, and the explanations that are required.

4.1.2 SPNs vs. neural networks

As mentioned in the introduction, SPNs can be seen as a particular type of feedforward neural

networks because there is a �ow of information from the input nodes (the leaves) to the output

node (the root), but we have reserved the term �neural network� (NN) for those models composed

of layers of standard arti�cial neurons.

The main di�erence is that SPNs have a probabilistic interpretation as a hierarchical combination

of mixtures and factorizations of probability distributions, while standard NNs do not. Inference is

also di�erent, in SPNs computing a posterior probability requires two passes and �nding an MPE

requires a backtrack from the root to the leaves. Additionally, SPNs can do inference with partial

information (i.e., when the values of some of the variables are unknown), while in a NN it is necessary
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to assign a value to each input node.

From the point of view of parameter learning, NNs are usually trained with gradient descent or

variations thereof, while SPNs can also be trained with several probabilistic algorithms, such as EM

and Bayesian methods (cf. Sec. 2.4).

When building practical applications the main di�erence is the possibility of determining the

structure of an SPN from the available data algorithmically. In contrast, NN are usually designed

by hand, and it is then necessary to try di�erent architectures of di�erent sizes and learn di�erent

hyperparameters for them, in a trial-and-error approach, until a satisfactory model is found. For this

reason, the NNs that have succeeded in practical applications are usually very big and training them

requires huge computational power. There are some recent proposals to learn the structure of NNs

using evolutionary computation, which yields more e�cient NNs, but this also requires tremendous

computational power.

In spite of these advantages, NNs are still superior to SPNs in many tasks. For example, in 2012

an SPN by Gens and Domingos achieved a classi�cation accuracy of 84% for the CIFAR-10 image

dataset, one of the highest scores so far, but after that year, several deep NNs have improved that

result by far, reaching an impressive 99% accuracy.1

4.2 General conclusions

SPNs have been applied to the same tasks as neural networks, mainly image and natural language

processing, which exceeded by far the capabilities of PGMs, sometimes showing superior results [39].

The progress made in this subarea since 2011 make them a very promising tool for addressing some

of the current challenges of arti�cial intelligence, but they are yet a young model with a long way to

go.

In the survey part of this work we have tried to o�er a gentle introduction to SPNs, collecting

information that is spread in many publications and presenting it in a coherent framework, trying

to keep mathematical complexity to the minimum necessary for describing with rigor the main

properties of SPNs, from their de�nition to the algorithms for parametric and structural learning.

After comparing them with related models, such as PGMs and neural networks, we have reviewed

several applications of SPNs in di�erent domains, some extensions, and the main software libraries

for SPNs. It also provides original proofs and interpretations that complement the original ones and

provide the reader with di�erent approaches to the same concepts.

We intend to submit the survey contained in Chapter 2 to the journal IEEE Transactions on

Pattern Analysis and Machine Intelligence in a few weeks. We sent a draft to several experts on

the �eld which had a great reception among them. Pedro Domingos (University of Washington),

the father of SPNs, provided detailed comment beginning with: �The survey looks great�. Robert

1See https://paperswithcode.com/sota/image-classification-on-cifar-10.

https://paperswithcode.com/sota/image-classification-on-cifar-10
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Peharz, IP of a research proyect about SPNs, (University of Cambridge) is yet to comment on it but

says: �Interesting, and a good idea to write a survey�. Andrezj Pronobis (University of Washington),

cocreator of ConvSPNs and LibSPN, also says: �I'm really happy to see an up to date survey about

SPNs being developed�, Pascal Poupart (University of Waterloo, Canada), IP of a research proyect

about SPNs and collaborator in SPFlow, says: �Writing a survey about SPNs is a great idea!� and

Alejandro Molina, co-creator of SPFlow, (Technical University of Darmstadt) says: �It looks pretty

good. Really nice work!�.

4.3 Future work

General lines for future research are developing better learning algorithms, applying SPNs to new

problems in di�erent domains, generating didactic content to bring SPNs to a wider public, building

causal SPNs from data or further developing robust and user-friendly software to work with SPNs.

Future work to bring SPNs to a wider public can be the creation of practical content like Jupyter

notebooks to learn about SPNs through using them.

In the context of the practical application there exist some other lines of future work.

Image classi�cation is a task where convolutional neural networks excel and the only one we tried.

A possibility is to extend this comparison to di�erent image tasks like object segmentation, object

detection or image style transfer.

Extending this analysis to generative tasks like image generation or completion is even more inter-

esting. In the discussion of the experimental work we mentioned that restricting convolutional layers

because of the scope was not bene�cial. In this case, these restrictions transform a discriminative

model (CNNs) into a explicit generative model (SPNs). On one hand, we expect improved perfor-

mance on generative tasks. On the other hand, ConvSPNs will compete with implicit generative

models like GANs.

We aimed to test bigger databases like Food101 during our experiments, but the hardware at

our disposal, in particular, the memory resources did not allow us to. Another future prospect is to

improve in that aspect and be able to run bigger and longer experiments.

Finally, testing other promising extensions of SPNs is another possibility, an example is composi-

tional kernel machines (CKM). Gens and Domingos [22] claim that �we present results [...] that show

a CKM trained on a CPU can be competitive with convnets trained for much longer on a GPU�.
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