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Abstract

This thesis has been developed in the context of the recently launched Euro-
pean Space Agency’s Gaia mission. The thesis has addressed the problem of
determining the probability distributions of the real physical parameters for a
variable star population, given their recovered values by the Data Processing
and Analysis Consortium (DPAC) from the telemetry of the satellite. These
recovered values are affected by a number of stochastic errors and systematic
biases due to the aliasing phenomenon as a product of the Gaia scanning law,
the optical and photometric resolution of the satellite and the algorithms used
in the recovery process. The purpose of the thesis has been to model the data
recovery process and infer the real distributions for the frequencies, apparent G-
magnitudes and amplitudes for a Large Magellanic Cloud (LMC) classic Cepheid
star population. A two level Bayesian graphical model was constructed with the
aid of a domain expert to model the recovery process and a Markov chain Monte
Carlo (MCMC) algorithm specified to perform the inference. The system was
implemented in the declarative BUGS language. The system was trained from
a set of recovered data from an artificially generated real distribution of LMC
Cepheids. The system was tested by comparing the parameters of the artificially
generated real distributions with the distributions inferred by the MCMC algo-
rithm. The results obtained have shown that the system remove successfully the
systematic biases and is able to infer correctly the real frequency distribution.
The results have also shown a correct inference for the real apparent magni-
tudes in the G band. Nevertheless, the results obtained for the case of the real
amplitude distribution have not allowed to establish significant conclusions.
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Chapter 1

Introduction

1.1 Background

1.1.1 The Framework

The framework of probabilistic graphical models (PGMs) in artificial intelligence (Pearl,

1988; Lauritzen, 1996) constitutes a powerful formalism for knowledge representation and

reasoning under uncertainty which combines graph and probability theory to construct

probabilistic expert systems whose dependency structure between variables can be graphi-

cally represented and visually analyzed. In particular, the sub-framework of directed acyclic

graphical (DAG) models, also known as Bayesian networks (Pearl, 1985) constitutes a con-

solidated formalism that has been traditionally and successfully applied to diagnostic prob-

lems in which it is necessary to represent causal or influence relationships between a set

of discrete (categorical) domain entities. From a statistical analysis perspective the above

classical DAG framework has been enriched, on the one hand, by the application of statis-

tical inference techniques for learning both the structure and the parameters (probabilities)

of the network (Spiegelhalter and Lauritzen, 1990; Cooper and Herskovits, 1992; Hecker-

man, 1996; Spirtes et al., 2000; Neapolitan, 2004). On the other hand, the ability of DAGs

to represent the repetitive pattern of samples generation in stochastic domains with ran-

dom variables belonging to different families and complex dependency relationships between

them has propitiated to use this knowledge representation formalism as a standard (basis)

for statistical inference. In particular, when the Bayesian paradigm1 for statistical inference
1Kuhn (2012).
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(Gelman and Shalizi, 2013) is applied, parameters to infer are represented explicitly in the

network as random variables with a distribution which represents the prior knowledge about

them and the inference is seen as the updating of this knowledge from concrete samples (the

evidence). This latter approach has been so-called the Bayesian graphical models (BGMs)

framework (Højsgaard et al., 2012) and nowadays is a growing area of research in many

domains. This new framework is supplemented by the use of Markov chain Monte Carlo

(MCMC) simulation techniques (Robert and Casella, 2004) in those situations in which

inference about parameters of interest is difficult or impossible to develop based in analytic

methods.

1.1.2 Astronomy: An Application Domain for Graphical Models

With the advent of the 21st century the domain of observational astronomy (Léna et al.,

2012) has experienced an authentic revolution due to a sustained increase in quality, com-

plexity, heterogeneity and volume of data (surveys) collected by a number of ambitious

terrestrial telescopes and space missions. This has enforced a paradigm shift in the way

to do astronomy and imposed the challenge of presenting all information to the researcher

in an organized, centralized, preprocessed and easily accessible way. Thus, the area has

become naturally an increasing application field for advanced techniques of statistics, data

mining and AI (Feigelson and Babu, 2003) and, in particular, Bayesian methods (Hobson

et al., 2010). The ultimate goal, if any exists in science, would be to have all significant

information from all surveys accessible in the form of astronomical virtual observatories

(AVOs) (Djorgovski et al., 2003; Solano, 2006; López Del Fresno et al., 2011).

1.1.3 The Mission

Gaia (Lindegren et al., 2008) is a recently launched space mission, by the European Space

Agency (ESA), whose main objective is to make a large-scale astronomical survey of about

one billion stars (≈1%) of our Galaxy and its Local Group. The satellite will scan the

entire sky from a Lissajous orbit around the Sun–Earth L2 Lagrangian point for about 5

years with an unprecedented precision (microarcseconds) in position and motion measures

(astrometry) for stars brighter than the 20th magnitude in the G band. It will also be

able to perform multi-epoch photometry, with a total mean of 70 transits per object, and

measurements of radial velocity, being the former suitable for studies of stellar variability.
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During its lifetime the satellite will send to ground stations a huge amount of raw data

(100TB) that shall be processed before becoming available to the research community in

the form of a true scientific archive. The complex task of designing and implementing such

archive and the tools to access it has been entrusted to a international software consor-

tium, named the DPAC (Data Processing and Analysis Consortium) (Mignard et al., 2008)

with the hardware support of six Data Processing Centres (DPCs) to develop their activ-

ities. The DPAC is composed by scientists, software engineers and academic institutions

from more than 20 countries and organized in nine Coordination Units (CUs) each dedi-

cated to a different aspect of the data processing. The Department of Artificial Intelligence

at UNED participates in three of these units: CU7 (Variability Processing), CU8 (Astro-

physical Parameters) and CU9 (Catalogue Access). In particular, CU7 is devoted to the

analysis and knowledge discovery related with variable astronomical sources and consists of

four working groups, involved in the development of the corresponding software packages.

These packages perform tasks of Characterization, Classification and Bias Estimation for

each recovered source and Statistical Quality Assessment (QA) for all sources (the complete

survey) recovered in each category.

1.2 Problem Statement, Objectives and Scope

Physical parameters recovered by CU7 from preprocessed data provided by other CUs for

each source belonging to a particular variable star survey are affected by a number of

stochastic errors and systematic biases. These errors and biases mainly arise due to the

way the satellite scans the sky, its optical and photometric resolution and the algorithms

used in the recovery process. Under these conditions, the quality of the recovered survey is

obviously degraded and the problem arises of how to rebuild, as far as possible, the actual

statistical distribution of the survey parameters. This problem statement suggests us that

its resolution could be addressed by means of the BGMs formalism and leads to state the

general objective of this thesis as follows:

• To develop a Bayesian graphical model for representing the (subject to biases) gener-

ative process of an output variable star survey in CU7 and inferring the parameters

of variables distributions in the input survey observed by Gaia.

In particular, we aim to achieve the following specific objectives:
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• To model the dependency structure between the input physical parameters amplitude,

frequency/period and apparent magnitude for a variable star observed by Gaia and

the corresponding output parameters recovered by CU7.

• To state a parametric model of the probabilistic density functions (PDFs) for the above

dependency structure, including an explicit representation of the biases associated to

the recovery process.

• To state a parametric model based in categories to constrain the probabilities of

correct/incorrect recovery for the frequency/period of a star.

• To represent the repetitive pattern associated to the generation of a sample of recov-

ered amplitudes, frequencies/periods and apparent magnitudes from the correspond-

ing input parameters.

• To infer the parameters (hyparameters) of the PDFs corresponding to the input physi-

cal parameters and the parameters of the submodel which constrains the probabilities

of categories of recovered frequencies/periods.

With regard to the scope of the thesis the first consideration that must be made is that Gaia

is not yet operational, forcing us to work with simulated data. Second, it should be noted

that inputs in CU7 are preprocessed (not raw) data consisting in an astronomical time series

for each star. Finally, we should note that QA is in the final phase of data analysis in CU7.

In this context we assume that inputs are the real physical parameters (frequency/period,

amplitude and mean apparent magnitude) which characterizes these time series but not the

time series themselves. Also and in particular, we circumscribe the analysis to a simulated

survey consisting in Cepheids variables stars from the Large Magellanic Cloud (LMC) to

which the Deeming algorithm for frequency/period recovery has been applied.

1.3 Methodology and Resources

To achieve the objectives stated in Section 1.2 we apply the classical methodology in the

Symbolic AI paradigm based on a top-down decomposition of the problem in terms of three

levels of abstraction: Computational Theory, Representation and Algorithm and Imple-

mentation (Marr et al., 2010; Mira and Delgado, 2001; Newell, 1982). This methodological
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approach, supplemented with specific aspects for the development of PGMs (Díez, 2010)

and an evaluation phase, is developed in the following stages:

1. Problem Analysis. This phase is developed with the aid of an expert in the astro-

physical domain and involves a manual selection (identification) of entities in the Input

and Output Representation Spaces associated with the problem we aim to solve, and

identification of transformations between them. The knowledge gathered in this stage

includes astrophysical laws, design features of the satellite, aspects of the processing

on CU7 and experimental results.

2. System Design. The qualitative and quantitative knowledge gathered in the first

stage is reduced to the Bayesian graphical model used as knowledge representation

formalism for the problem. An MCMC algorithm (a Gibbs sampling scheme) for the

inference mechanism is also specified.

3. System Implementation. The reduction to the programming language level is

made directly by using the BUGS (Lunn et al., 2009) declarative language. The

inference mechanism is activated by selecting the appropriated sampling algorithms

from a library accessible via the OpenBUGS software tool.

4. Evaluation. The model is trained from a sample of the output survey obtained by

CU7 applying its processing tools to a set of instances belonging to a simulated input

space. The convergence of MCMC chains for the induced parameters of the input

space is assessed. Finally, a comparison between the induced parameters and the real

(simulated) ones is done.

With regard to the resources employed in the thesis, besides the aforementioned Open-

BUGS environment used to implement the system, we use the statistic R environment (R

Core Team, 2013) for both phases of analysis and evaluation, including the CODA (Plum-

mer et al., 2006) package for MCMC chains analysis and diagnostic of convergence .

1.4 Thesis Structure

The rest of the work is organized as follows. In Chapter 2 we review the astrophysical

background underlying the problem posed in the thesis. It includes a general description of

5



the implied astrophysical entities, their physical parameters, the transformations between

their representation spaces and the errors and biases associated to these transformations.

In Chapter 3 we review the Bayesian graphical modeling framework in which is based the

model proposed in the thesis and its applications to the area of astrostatistics. In Chapter

4 we complete the analysis stage started in Chapter 2 and proceed to the system design and

implementation by using the mathematical and programing tools studied in Chapter 3. In

Chapter 5 we evaluate our model. Finally, in Chapter 6 we summarize the work, state our

conclusions and depict future lines of research.
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Chapter 2

Literature Review I: Astrophysical

Background

In this chapter we review the astrophysical framework underlying to the Bayesian graphical

model proposed in the thesis. It is structured in two sections as follows. Section 2.1

introduces the essential astrophysical concepts necessary to understand, from a general

perspective, the nature of the underlying entities, representation spaces and transformations

between them. Finally, Section 2.2 is devoted to particularize the analysis for the case of

Gaia and the processing tools developed in the CU7 for stellar variability studies.

2.1 Preliminary Concepts

In this section we review some basic concepts about photometry (Karttunen et al., 2007;

Ashdown and Eng, 2002) and digital signal processing theory (Proakis and Manolakis, 1996;

De Meyer, 2003) in the context of the observational astrophysical domain (Léna et al., 2012).

2.1.1 Photometric systems

Definition 2.1. (Spectral luminosity, intrinsic brightness). The intrinsic brightness

is the radiant energy per unit time (power) per unit bandwidth at a frequency ν:

Lν
[
W ·Hz−1 = J · s−1 ·Hz−1

]
= dQ

dtdν
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It is an intrinsic magnitude of the source independent of the distance from which the source

is observed.

Definition 2.2. (Spectral flux density, apparent brightness). The apparent bright-

ness is the spectral luminosity per unit area at a point on a surface:

Fυ
[
W ·m−2 ·Hz−1

]
= dLν

dA

It is an extrinsic magnitude of the source dependent of the distance from which the source

is observed.

Theorem 2.1. (Inverse square law). For a punctual source that radiates isotropically

(its radiation at a distance r is distributed evenly on a spherical surface S) the spectral flux

density Fv passing through S is directly proportional to the spectral luminosity Lν of the

source and inversely proportional to the square of r:

Fv =
´
S Fvds

4πr2 = Lν
4πr2 (2.1)

Definition 2.3. (Photometric filter). A photometric filter is a photoelectric device

used to allow to enter into the detector only a determinate wavelength band (the so called

passband) of the electromagnetic spectrum of the source.

Definition 2.4. (Photometric system, multicolor system). A photometric system is

a set of photometric filters. Relevant to our work is the Johnson-Cousins UBVRI broad-

band system (Bessell, 1990) with mean wavelengths from 361 (U, Ultraviolet) to 806 nm

(IC , Infrared) and 551 nm for the V (visible) passband. In the Johnson-Cousins system,

the zero magnitude are defined through Vega (mV = 0.030 mag for the V passband).

Definition 2.5. (Apparent magnitude). The apparent magnitude in the x-band is de-

fined by

mx = −2.5 · log10

(
Fx
Fx,0

)
(2.2)

, where Fx is the spectral flux density of the source for the x-band and Fx,0 is a normalizing

constant (zero-point) equal to the spectral flux density when mx = 0. It is a measure of the

apparent brightness of the source.
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In practice, the flux on the receptor is measured within a finite band of wavelengths

and modulated by a factor Rx (λ) due to the optical transmission of the instrument, its

sensibility in the band, etc. Therefore, a more realistic expression for Eq. 2.2 is

mx = −2.5 · log10

( ´
Rx (λ)Fλdλ´
Rx (λ)Fλ,0dλ

)
(2.3)

, with
´
Rx (λ) dλ = 1. For example, in the Johnson-Cousins UBVRI broad-band system

the zero magnitude for the V (visible) band (470-700 nm) is defined through Vega (α Lyr)

by (Bessell, 1990; Bessell et al., 1998)1

mV − 0.03 = −2.5 · log10

( ´
V (λ)Fλdλ´

V (λ)Fλ,α Lyrdλ

)
(2.4)

, being V (λ) the V-band filter sensibility curve.

Definition 2.6. (Absolute magnitude). The absolute magnitude in the x-band, denoted

by Mx, is defined (in a free space without stellar absorption) as the apparent magnitude

at a distance of 10 parsecs (1pc ≡ 206.26×103AU ≡ 3.26156 light years ≡ 30.857× 1015m)

from the source. It is a measure of the luminosity (intrinsic brightness) of the source.

Definition 2.7. (Distance module). Given a source at a distance r from the observer,

the distance module in the x-band is defined as the differencemx−Mx between the apparent

magnitude and the absolute magnitude of the source in the band.

Proposition 2.1. Given a source at a distance r from the observer, the distance modulus

in x-band is given by

mx −Mx = −5 + 5 · log (r) (2.5)

Definition 2.8. (Colour index). A colour index is the difference between two (apparent)

magnitudes for a determinate multicolor system.

Definition 2.9. (Colour–colour transformation). A colour-colour transformation an

expression that relates the colour indices of two different colour systems.
1Note that α Lyr has an V-mag equal to 0.03 but not equal to zero.
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2.1.2 Periodic Light Curves

Definition 2.10. (Astronomical light curve). An astronomical light curve is a contin-

uous function mx (t) which relates the apparent magnitude of an astronomical object (for

a frequency band x) with the time.

Definition 2.11. (Astronomical time series). An astronomical time series is a sample

{mx (tk)}ok=1 from an astronomical light curve mx (t) corresponding to a sequence {tk}ok=1

of o observation times (epochs).

Definition 2.12. (Periodic folded light curve model). A periodic folded light curve

model is a model of a periodic variable star light curve in the interval corresponding to one

period, defined by

mx (ϕ | S;mx, A, P ) (2.6)

where,

• The parameters mx, A and P are the mean apparent magnitude of the star, its (peak

to peak) variability amplitude around mx and its period, respectively.

• ϕ, verifying 0 ≤ ϕ ≤ 1, is the phase, i.e. the variation of time in one period, defined

as ϕ (t) = mod(t−t0,P )
P with t0 the reference epoch (e.g. t0 = 0 for the phase at origin).

• S is the shape of the curve in one period. S can be: i) a periodic function like e.g.

S (ϕ) = sin (ϕ) or ii) a template consisting in a (discrete) time series that provides

the magnitudes as a function of the phases, in which case a function S (ϕ) that can

be reconstructed by interpolation is assumed.

• A is the peak-to-peak amplitude, i.e. the difference between mmax
x (ϕ)−mmin

x (ϕ).

For our work are relevant the periodic light curves of a particular type of periodic

variable stars, namely the classic Cepheids. Their main characteristics and the particular

aspects of its processing in the context of the Gaia mission and the CU7 will be Studied in

Section 2.3.

2.1.3 The Sampling Process in the Temporal Domain

Consider a deterministic and strictly periodic light curve xinput (t) from a periodic variable

source. Seen by the telescope focal plane this deterministic temporal process becomes, in
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principle, in a continuous random (stochastic) process which we can model by

x (t) = xinput (t) + ε (t) (2.7)

, where ε (t) is the random noise due to the measurement error for the band (given in our

case by Eq.2.24) . Nevertheless, in practice, the telescope and particularly a large scale

survey like Gaia, only recover a discrete realization of the process which is a sample of

magnitudes {x (tk)}Nk=1 or astronomical time series with expression

x (tk) = xinput (tk) + ε (tk) (2.8)

In general, the sampling process can be summarized, in the temporal domain, by the

product

wN (t) · x (t) (2.9)

, wherewN (t) is a data window function defined by a finite combination of generalized

Dirac delta functions as

wN (t) =
N∑
k=1

δ (t− tk) (2.10)

Depending on the characteristics of the observation program, the amplitude ∆ti =

ti+1− ti of temporal intervals between successive samples may vary from the uniform (even)

case, with a sampling frequency fs = 1/∆t, to completely arbitrary values. There is also a

range of intermediate situations in which these amplitudes present certain patterns, say a

semi-regular sampling.

Keeping in mind the analysis of the periodicity of the light curve xinput (t) we can

“extend” the definition of a strictly periodic function to the stochastic case in Equation 2.7

by means of the following two definitions.

Definition 2.13. (weak stationary stochastic process). A stochastic process x (t) is

weak stationary if the two following conditions hold:

1. E [x (t)] = µ , ∀t

2. Cov [x (t) , x (t− τ)] = Cov [x (t+ l) , x (t− τ + l)] = γ (τ) ,∀t, l, τ

, that is, if the first order moment is constant for any time and the second order moments

depend on the lag between times.
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Definition 2.14. (autocorrelation). Given a weak stationary stochastic process x (t),

the autocorrelation function is defined by

ρx (τ) = Cov [x (t) , x (t− τ)]√
Cov [x (t) , x (t)] ·

√
Cov [x (t− τ) , x (t− τ)]

= γ (τ)
γ (0) (2.11)

, which is interpreted as the similarity between observations as a function of the time lag

between them.

2.1.4 Analysis in the Frequency Domain

In the frequency domain, the sampling process of Equation 2.9 is represented by applying

the continuous Fourier transform (CFD)

XN (ν) =
+∞ˆ

−∞

x (t) · wN (t) ej2πνtdt =
N∑
k=1

x (tk) ej2πνtk (2.12)

, whose square |XN (ν)|2 = XN (ν) ·X∗N (ν) is the observed power.

Similarly, for the data window of Equation 2.10 we obtain the so called spectral window

WN (ν) =
N∑
k=1

+∞ˆ

−∞

δ (t− tk) ej2πνtdt =
N∑
k=1

ej2πνtk (2.13)

, and multiplying by its conjugate we obtain the power spectral window

VN (ν) = WN (ν) ·W ∗N (ν) = |WN (ν)|2 (2.14)

Finally, for the autocorrelation given by Equation 2.11 we obtain the power spectrum,

a real and even function function defined by

P (ν) =
+∞ˆ

−∞

ρx (τ) ej2πνtdt = 2
+∞ˆ

0

ρx (τ) cos tdt (2.15)

Then, it is possible to demonstrate Deeming (1975) that the observed power is propor-

tional to the convolution of the power spectrum of the stochastic process with the power
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spectral window

N−1E
[
|XN (ν)|2

]
= Var (x) · P (ν)⊗ γN (ν) = (2.16)

Var (x)
+∞ˆ

−∞

P (ν) γN
(
ν − ν ′

)
dν ′

, where γN (ν) = N−1VN (ν) is the power spectral window normalized such that γN (0) =

1.

Recalling the discrete Fourier transform (DFT) of Equation 2.12 the expression

p (ν) = 1
N
|XN (ν)|2 = 1

N

∣∣∣∣∣
N∑
k=1

x (tk) ej2πνtk
∣∣∣∣∣
2

(2.17)

is the so called periodogram. It is the tool that has been used to recover the frequen-

cies/periods of the simulated time series in the context of our work.

2.1.5 The Aliasing Phenomenon

This phenomenon arises in its more extreme expression in a scenario of even sampling. To

illustrate it, we consider then that for every k ∆tk = ∆t and tk = k∆t. We assume also that

N is odd and consider that sampling times are centered around t0 = 0. For simplicity, we

assume too that the signal x (t) is deterministic. In this latter case the equivalent expression

for Equation 2.16 is given by

XN (ν) = X (ν)⊗WN (ν) =
+∞ˆ

−∞

X (ν)WN

(
ν − ν ′

)
dν ′ (2.18)

With the imposed conditions, in the limit, for N → ∞, the data windows wN (t) =∑N/2
k=−N/2 δ (t− k∆t) tends, by proper definition, to a Shah function III (t; ∆t) =

∑
k∈Z δ (t+ k∆t),

that is, to an infinite comb of Dirac delta functions in the temporal domain with periodicity

equals to ∆t. Otherwise, the spectral window WN (ν), which is a real, odd and periodic

function, tends also to a Shah function, but now in the frequency domain and with period-
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icity ∆t−1. Finally, the convolution integral of Equation 2.18 acquires the form

XA (ν) = X (ν)⊗ III
(
ν; ∆t−1

)
=

+∞ˆ

−∞

X
(
ν ′
)∑
k∈Z

δ
(
ν + k∆t−1 − ν ′

)
dν ′ = (2.19)

∑
k∈Z

X
(
ν + k∆t−1

)
= X (ν) +

∑
k∈N+

[
X
(
ν − k∆t−1

)
+X

(
ν + k∆t−1

)]

, expression which says that the ideal process of obtaining an infinite number of samples

from a signal x (t) in the temporal domain is represented in the frequency domain by means

of an “alias” CFT XA (ν) which replicate the spectrum X (ν) of x (t) with periodicity equal

to the sampling frequency ∆t−1 in intervals [(2k − 1) νN , (2k + 1) νN ] with k ∈ Z and where

νN = 1
2∆t is the so called Nyquist frequency, Nevertheless, a perfect replication requires a

signal limited in Band for which its maximum frequency is lower than half of the sampling

frequency, that is νmax < νN. If these conditions do not hold, the aliasing phenomenon

arises.

To depict the problem, let us consider two even samplings, both with frequency ∆t−1 =

4KHz, for the signals x1 (t) = cos (2πν1t) and x2 (t) = cos (2πν2t). Let us assume, too, that

the respective frequencies of the signals are ν1 = 0.75 KHz and ν2 = 2.5 KHz. For both

cases the Nyquist band [−νN, νN] is the same and νN = 2 KHz. The respective scenarios in

the temporal domain are depicted in Figure 2.1a.

Now, let us to shift to the frequency domain. Taking into account that the CFT for a

signal x (t) = cos (2πν0t) is X (ν) = 1
2 [δ (ν − ν0) + δ (ν + ν0)] and particularizing Equation

2.19 we have that

XA (ν) =
∑
k∈Z

X
(
ν + k∆t−1

)
= (2.20)

∑
k∈Z

δ
(
ν − ν0 + k∆t−1

)
+ δ

(
ν + ν0 + k∆t−1

)

The corresponding scenarios in this latter domain are depicted in Figure 2.1b. We

conclude that:

• For x1 (t) = cos (2π0.75t) (left), XA (ν) = X (ν) within the Nyquist band [−νN, νN] =

[−2, 2] and consequently there is no aliasing.

• For x2 (t) = cos (2π2.5t) (right), −ν2 = −2.5 KHz and +ν2 = 2.5 KHz are outside of the
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Figure 2.1: Illustration of the aliasing phenomenon. See the text for a description.

Nyquist band but “folded” into the band. Therefore:

– ν′2 = 2.5 − k4 = −1.5 KHz (k = 1) (in red line) is an alias of the real frequency

ν2 = 2.5 KHz.

– −ν′2 = −2.5 + k4 = 1.5 KHz (k = 1) (in black line) is an alias of the real frequency

−ν2 = −2.5 KHz.

2.2 Gaia

2.2.1 Instrumentation and Observational Principle

We summarize the main characteristics of the Gaia payload and the way in which the

satellite scan the sky as follows:

• Gaia simultaneously observes the sky, by means of two telescopes, in two viewing

directions (a.k.a. fields of view, FoVs or lines of sight) separated by a basic angle of

106.5º.

• The light from both telescopes is combined into a common focal plane of 106 CCDs

and a total resolution of about one billion pixels. This focal plane is constituted by

three instruments: a sky mapper (SM), an astrometric field (AF), a blue (BP) and a

red (RP) photometer and a radial-velocity instrument (RVS).
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Figure 2.2: Focal Plane of Gaia. ©ESA

• The SM is composed by 14 CCDs arranged in two columns, each of them associated to

one FoV. So, the SM determines from what telescope the light of a source, transiting

the focal plane, is coming from. It detects objects up to 20th magnitude.

• The AF is composed by 63-1 CCDs arranged in a matrix of nine columns (strips). The

first strip serves for confirmation purposes, namely to discard out false detections and

to prevent for ulterior processing. If the object is accepted, eight additional measures

are done in the resting 8 strips. The basic measurements are done within a rectangular

1D data window, with the same center as the image, which traverses the focal plane in

an along-scan (horizontal) direction (AL). They compute the time when the window

is entering into each CCD strip and the pixel values (counts of photo-electrons). The

number of samples in the window varies from 6 to 18 depending on the magnitude

of the object. The information provided by this instrument is transmitted to ground

stations for further analysis about position of stars and stellar variability studies.It

is convenient, however, to note that there is also a movement perpendicular to the

AL displacement, namely in an across-scan direction (AC). If the pixel values are not

binned in this AC direction, a 2D data window is transmitted. In this 2D windows

are gathered 12 samples in the AC direction (for AF2-9).

• The mean number of transits of a detected object across the focal plane is expected

to be about 70 during the 5 years mission duration.
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Figure 2.3: The Gaia G-Band. Source: (Jordi, 2012).

• The satellite spins around its axis with a constant rate (rotational frequency) νs of

about 60 arcsec× s−1 ≡ 4 days−1 or, equivalently, with a rotational period of 6 hours.

• The spin axis maintains a fixed aspect angle of 45º with the Sun and precess around

the solar direction with a frequency νp of about 1/63 = 0.01587 days−1.

• Most of times, an object transiting through one FoV is measured again in the focal

plane after 106.5 or 360 − 106.5 = 253.5 minutes, which corresponds respectively to

the frequencies 24·60
106.5 ≈ 13.5211 days−1 and 24·60

253.5 ≈ 5.6805 days−1.

2.2.2 Photometric System, Error Model and Transformations

Gaia makes the astrometric observations and variability studies in the so called G-Band.

This broad passband uses unfiltered (white) light measured in the AF of the telescope

and goes from about 350 to 1000 nm (see (Jordi et al., 2010) and Figure 2.3). Unlike a

conventional magnitude system, like those expressed by Eqs. 2.3 and 2.4, in the G-band

system the fluxes are expressed directly as photo-electrons Nλ (per unit time per unit area

per unit wavelength) integrated over the G-band in the form (De Bruijne, 2003)

N
[
e−s−1m−2

]
=
ˆ
T (λ)QE (λ)Nλ (λ) dλ (2.21)
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Figure 2.4: Precision for one transit in logarithmic scale. Source: (Jordi et al., 2009).

, where T and QE denote, respectively, the total transmission of the telescope optics and

the CCD quantum efficiency. The G-magnitude system is formally defined (De Bruijne,

2003) (see also Jordi et al. 2006, p. 302) by

mG = −2.5 · log
(
N

N0

)
(2.22)

, where N0 denotes the flux N corresponding to an unreddened A0V star (like α Lyr) with

mV = 0.

The quality of the sampling process performed in the AF is determined by a number

of factors which cause an uncertainty in the measure of the G-magnitude. The magnitude

error or standard deviation for one transit has been modeled in (Jordi et al., 2010, 2009)

(see Figure 2.4) by

σtr
G(rec) = m· 1

√
nstrips

σ2
cal +

{
2.5 · log e ·

[
faper · fG +

(
bG + nAC · r2) · ns · (1 + ns/nb)

]1/2

faper · fG

}21/2

(2.23)

, with the following meaning for its parameters2:
2Quantities denoted by fixed-width fonts can be found in the Gaia parameters database

http://gaia.esac.esa.int/gpdb/index.php .
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• fG : Object flux within the G passband, computed by fG = N · texp, where N is

derived from Equation 2.22, by

mG,ZP −mG = 2.5 · log
(
N/N0

1/N0

)
⇒ N = 10

mG,ZP−mG
2.5

, wheremG,ZP = :Satellite:Magnitude_ZeroPoint and texp = :Satellite:CCD_ExposureTime

.

• faper: Light loss factor due to the ’aperture’ characteristics, faper ≤ 1, (= 0.9).

• bG: Sky background contribution assumed to be derived from nb background samples.

Telescope_Number indica el numero de espejos (fields of view) Computed as:

:Satellite:AF:Sky_NumberOfPhotoElectrons*:Satellite:Telescope_Number*

:Satellite:CCD_PixelAngularArea_MilliArcsecondSquare*:Satellite:CCD_ExposureTime

• r: Total detection noise per sample. Computed as :Satellite:AF:CCD_DetectionNoise_TypicalTotal

• ns: Number of samples of the object flux within the 2D window in the AL scan

direction,

ns =


18 mG ≤ 13

12 13 < mG ≤ 16

6 mG > 16

• nAC: Number of samples of the object flux within the 2D window in the AC scan

direction, (= 12).

• nb : Number of samples from the background (=6).

• σcal : Calibration error per observation (=30 mmag).

• nstrips: Averaged total number of CCD strips (columns) in the AF,
(

6·9+8
7 ≈ 8.86

)
.

• m : Safety margin of a 20% (m = 1.2) that accounts for sources of error not considered

explicitly in the equation.

At the end of mission the magnitude error is given by

σG(rec) = σtr
G(rec) ·

1
√
nobs

(2.24)
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Figure 2.5: Relation between G-V and V-I. Source: (Jordi, 2012).

, where nobs is the mean total number of transits (≈ 70), or equivalently, substituting

the parameter nstrips in Equation 2.23 by the mean total number of observations neff =

nobs · nstrips.

Finally, relevant to our work is also the colour-colour transformation between the G-

magnitude, the V (visual) magnitude and the Johnson-Cousins colour index mV − mIC

(Jordi et al., 2010) given by

mG−mV = −0.0257− 0.0924·(mV −mIC )− 0.1623·(mV −mIC )2 + 0.0090·(mV −mIC )3

(2.25)

, with an error of σ = 0.05 mag.

2.3 Cepheid Variable Stars and CU7

2.3.1 Cepheids Variable Stars

A variable star is a star whose brightness varies across the time. A particular class is

constituted by the pulsating stars in which these variations are the result of changes in the

star radius (Aerts, 2007). The changes in the star radius are described as pulsation modes.

In the simplest scenario, the so called fundamental mode, there exists a fixed (without

movement) node at the center of the star and an anti-node in its surface with presents the

maximum movement. In more complex scenarios the star pulsates also (or alternatively)

in modes of higher order, namely in the first, second, etc. overtones. In this thesis we

are interested in a particular type of pulsating stars, namely, the classic Cepheids. Classic

Cepheids, or type I Cepheids, are giants or supergiants stars of spectral types between F5
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and G5 which pulsate in the fundamental mode. In general, their pulsation period is in the

range from 1 to 50 days. Their name is derived from the prototypical star δ Cephei.

Recall (see e.g. Proakis and Manolakis (1996), Section 4.1.1) that for an orthogonal

basis {cos (kω0t+ φk)}k∈N+ the Fourier expansion of a real and periodic function x (t) is

given by

x (t) = α0 +
∑
k∈N+

αk cos (kω0t+ φk) (2.26)

, where α0 is the continuous component of the signal, the term into the summation are its

harmonic components, αk are the amplitudes and φk are the phase angles. It is verified that

α0 = c0 and αk = 2 |ck| with

ck = 1
T

ˆ T
2

−T2
x (t) e−jkω0tdt. (2.27)

Then, for a type I Cepheid we are saying that the predominant component is given by k = 1,

that is, by the first harmonic or fundamental mode of vibration.

Period-luminosity relation This fundamental relation was inferred by (Leavitt and

Pickering, 1912) from the study of 25 classic Cepheid of the SMC (Small Magellanic Cloud).

Is a linear relationship of the form

Mx = α+ β · log (P ) = (2.28)

β · log (P/10) + α+ 1

, where Mx is the absolute magnitude of the star and P its period in days, being the slope

β < 0. Its importance lies in that if the period of the star is known and one is able to

determine its absolute brightness then, by applying Equation 2.5, one can estimate the

distance to the star. Therefore, Cepheids allow to determine distances by photometry.

Important also are the period-colour and the period-luminosity-colour relationships

given, respectively, by

CI = α+ βlog (P ) (2.29)

Mx = α+ βlog (P ) + γ (CI) (2.30)
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The two former relations are relevant to our work, particularized for Cepheids of the

LMC (Large Magellanic Cloud), the V-Band and the colour indexmV −mIC in the Johnson-

Cousins UBVRI broad-band system. These latter relationships have been proposed by

(Sandage et al., 2004). It is customary to note that the above equations can be expressed

alternatively in terms of the logarithm of the frequency log (ν) = −log (P ). E.g., Equation

2.28 can be alternatively expressed as

Mx = α− β · log (ν) (2.31)

2.3.2 Variability Processing in CU7

In this sub-section we summarize some aspects of the variability processing in CU7 related

to our work. One of them are the folded light curve models (see Equation 2.6) for classic

Cepheids provided by the DPAC package Lcmodels (Mowlavi et al., 2011) which use the

templates given by (Bono et al., 2002) for the cepheids OGLE 56087 and OGLE 194103.

The utility of such light curve models is that, given a sequence a {tk}ok=1 of observation

times, it is possible to generate a simulated astronomical time series for the Cepheid light

curve which is done by the same package. In our case the sequence of observation times

depends in turn on the way that Gaia scans the sky, the Gaia’s scanning law (see Section

2.2.1). This dependence is modeled by the module Time Sampling Extraction of the Bias

Estimation package ((Moitinho et al., 2011)) which, provided with the celestial coordinates

of the star, generates such epoch sequences. The corresponding astronomical time series is

then generated by the Time Series Generator module of the same package (which calls the

Lcmodels package). It is important to note that the module Time Series generator can add

noise to the simulated time series defined by σ
(
mG(rec)

)
(see Equation 2.24)3.

Once the time series has been simulated starts a post-processing stage which is done by

the Characterization work group. First, a transformation to the frequency domain is done

to extract the period/frequency of the time series. This task is accomplished by the Period

Search package (Cuypers, 2013) by using the Deeming method (Deeming, 1975), that is,

by the periodogram of Equation 2.17. Then, an inverse transformation is done to return

to the time domain and adjust a polynomial to the time series. This fitting determines
3To be precise, the parameter that must be provided to the module is the signal-to-noise ratio SNR

defined by SNR = A/σ
(
mG(rec)

)
where A is the peak-to-peak amplitude of the light curve.
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the first terms of a Fourier series as triplets of the form amplitude-phase-order {(αk, φk, k)}

with indication of the residual. This latter task is performed by the Time Series Modeling

module (De Ridder et al., 2009) of the characterization package (Cuypers and Guy, 2011).

Note that the fitting is done to a discrete time series which is assumed to be periodic and

not to the corresponding continuous light curve. That is, the fitting is done by using an

expression similar to Equation 2.26 but with a finite number of terms.

2.3.3 The Aliasing Problem for Variable Stars in Gaia

We have stated the general objective of our work in Section 1.2. In particular, we aims

to explicitly represent in our model the biases associated to the recovery process of the

frequencies of our Cepheid population. Despite that the sampling performed by Gaia is not

even, the aliasing phenomena still occurs due to the temporal recurring patterns analyzed in

Section 2.2.1. The analysis of these patterns in the frequency domain is more complex that

for the even sampling. Such an analysis has been accomplished for Gaia in (Mignard, 2005)

demonstrating that some frequencies ν such that ν > ∆t−1
min, where ∆tmin is the minimal lag

between observations, can be successfully recovered. Otherwise, it has been showed (Eyer

et al., 2009; Eyer and Mignard, 2005) that the period recovery success rate for a variable

star depends on its ecliptic latitude and demonstrated that this dependence persists even

for normalized signal-to-noise ratios. The classical solution for the aliased frequencies has

been to discard them. For that, techniques that impose determinate constraints to accept as

valid a recovered frequency have been applied (Koen and Eyer, 2002). For the case of Gaia,

given that we know the regularities in its orbit, we could discard the corresponding aliased

frequencies in the periodogram. Nevertheless, with this option we may be introducing biases

in the real frequency distribution inferred by the model. Therefore, our proposal is to retain

the complete set of recovered frequencies and model the biases.
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Chapter 3

Literature Review II: Bayesian

Graphical Models

In this chapter we review the mathematical framework in which is based the model pro-

posed in this thesis and its applications to the area of astrostatistics. It is structured in

five sections as follows. Section 3.1 introduces the essential concepts about graphs and

probability distributions necessary to understand the Bayesian networks (BNs) knowledge

representation formalism. Section 3.2 is devoted to define that representation formalism.

Section 3 describes the application of BNs to the problem of statistic inference under the

Bayesian paradigm, the so called Bayesian graphical models (BGMs) framework. Section

3.4 is devoted to the study of the framework for inference based in MCMC simulation tech-

niques. Finally, in Section 3.5 we review the recent literature about application of BGMs

to the area of astrostatistics.

3.1 Preliminary Concepts

In this Section we introduce some basic concepts about graphs and probability theory

necessary to understand the formalism of Bayesian networks that will be described in Section

3.2. Definitions about graphs are based in those provided in (Lauritzen, 1996, Chapter 2)

but we employ here an explicit notation based in indices. With regard to the concepts about

probabilistic measure and particularly about conditional independence we have based our

definitions in (Studenỳ, 2005).
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3.1.1 Graphs

Definition 3.1. A directed graph (DG) is a pair G = (V, E) of:

• A finite set V of indices, where each index is referred to as a vertex (node).

• A subset E ⊆ V × V in which each of its elements (i, j), called a directed edge (arc)

and denoted i→ j, verify that i 6= j ∧ (j, i) /∈ E .

Definition 3.2. Given a DG G = (V, E), a path from vertex i to vertex j, denoted s (i, j),

is a sequence {i = i0, ..., in = j} in V such that:

• For every k ∈ {1, .., n} : (ik−1, ik) ∈ E ∨ (ik, ik−1) ∈ E

• Nodes in the sub-sequence {i1, ..., in−1} are all distinct.

If the first condition of the definition is restricted to

• For every k ∈ {1, .., n} : (ik−1, ik) ∈ E

, the path s (i, j) is said to be a directed path. If additionally it holds that i = j then the

directed path s (i, j) is said to be a cycle.

Definition 3.3. A DG G = (V, E) is a directed acyclic graph (DAG) if it has no cycles.

Definition 3.4. Given a DAG G = (V, E) and a vertex j ∈ V :

• The set of parents of j, denoted by pa (j), is the set of nodes i for which there exists

an arc i→ j.

• The set of ancestors of j, denoted by an (j), is the set of nodes i such that there exists

a directed path s (i, j).

• The set of descendants of j, denoted by de (j), is the set of nodes i such that there

exists a directed path s (j, i).

• The set of non descendants of j, denoted by nd (j), is the set V \ de (j).
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3.1.2 Probability Distributions

Definition 3.5. (Random variable). Let (Ω,F , P ) be a probability space, X be a real

subset and X be a σ-algebra on X. Then, a function X : Ω→ X is a (real valued) random

variable if it satisfies

X−1 (B) = {w : X (w) ∈ B} ∈ F ,∀B ∈ X (3.1)

An example is the Borel σ-algebra B on R. Note also that X−1 (X ) is a σ-algebra, called

the σ-algebra generated by the r.v. X and denoted σ (X).

Definition 3.6. (Random vector). Let (Ω,F , P ) be a probability space and V a finite set

of indices such that |V | = n. A n-dimensional random vector is a collection XV = (Xi)i∈V
of random variables Xi : Ω→ Xi.

In practical applications the measurable space (Ω,F , P ) is often unspecified and the

interest lies in computing probabilities directly over events into X or into the product space

XV = ×i∈V Xi. The latter can be done by taking into account that (Ω,F , P ) induces via

X and XV , probability spaces on X and XV , namely (X,X , PX) and (XV ,XV , PXV ), with

XV = ×i∈V Xi, where the probability measures PX : X → [0, 1] and PXV : XV → [0, 1] are

defined, respectively, by

PX (B) = P
(
X−1 (B)

)
, ∀B ∈ X (3.2)

PXV (B) = P
(
X−1
V (B)

)
, ∀B ∈ XV (3.3)

Definition 3.7. (Marginal probability measure). Given a product space (XV ,XV , PXV )

and a subset of indices A ⊆ V , the marginal probability measure associated to XA = ×i∈AXi
is defined from PXV by

PXA (A) = PXV (A× XV−A) ,∀A ∈ XA (3.4)

Definition 3.8. (Conditional probability measure). Let A,C ⊆ V be disjoint sets of

indices. The conditional probability measure on XA given the σ-algebra XC is a function

PXA|XC : XA × XC → [0, 1] such that, for every A ∈ XA:

1. PXA|XC (A | ·) : XC → [0, 1] is a XC-measurable function.
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2. PXAC (A× C) =
´

C PXA|XC (A | x) dPXC (x) ,∀C ∈ XC .

In practical applications Definitions 3.7 and 3.8 are usually given in terms of pointwise

functions, namely, Lebesgue integrable probability density functions (PDF’s) or discrete

probability mass functions (PMF’s).

The important definition of conditional independence which follows was introduced by

(Dawid, 1979) with an affordable treatment which also can be found in (Lauritzen, 1996,

Chapter 2). A more formal approach is proposed and followed by (Dawid, 1980).

Definition 3.9. (Conditional independence). Let A,B,C ⊆ V be pairwise disjoint

subsets of indices. Random vectors XA and XB are conditionally independents given the

r.v. XC w.r.t. P, denoted by IP (XA, XB | XC), if for every A ∈ XA and B ∈ XB

PXAB |XC (A× B | x) = PXA|XC (A | x) · PXB |XC (B | x) , PXC − a.e. x ∈ XC (3.5)

In the particular case that C = ∅, Equation 3.5 defines the classic concept of indepen-

dence between XA and XB

PXAB (A× B) = PXA (A) · PXB (B) (3.6)

3.2 D-separation, Conditional Independence, and Bayes Nets

A probabilistic graphical model for DAG’s, the so called Bayesian network (Pearl, 1985),

is composed by a joint probability distribution defined over a set of variables whose inde-

pendence relationships are dictated by the topology of a directed graph. To understand

this representation formalism it is necessary to define clearly what topological properties

of a DAG correspond to the different forms of stochastic independence. In this Section we

review some definitions, introduced by (Pearl, 1988; Lauritzen, 1996), to establish such a

correspondence and define the representation formalism itself.

Definition 3.10. (Active path) Given a DAG G = (V, E), a subset C ⊂ V and two

nodes i and j of G such that {i, j} ⊂ V − C, a path s (i, j) is active given C, denoted by

¬IsG (i, j | C), when any of the following conditions holds:

• s (i, j) is an arc: i→ j or j → i.
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• s (i, j) is of the type i→ k → j (head-to-tail) or i← k → j (tail-to-tail), and k /∈ C.

• s (i, j) is of the type i→ k ← j (head-to-head) and k ∈ C or ∃l ∈ de (k) : l ∈ C.

• s (i, j) has more than three nodes and every subpath of s (i, j) is active given C.

Otherwise the path S (i, j) is inactive given C (or blocked by C), denoted by IsG (i, j | C).

Note that if C = ∅ head-to-tail or tail-to-tail paths are always active, i.e. ¬IsG (i, j),

and head-to-head paths are always inactive, IsG (i, j). So, to change the default status of a

path of three nodes we should include the intermediate node k in a set C located to the

right side of the bar, or in the case of a head-to-head path we could also change its status

including in C any of the descendants of k.

Definition 3.11. (d-separation between nodes) Given a DAG G = (V, E) and a subset

C ⊂ V , two nodes i and j of G are d-separated by C, denoted by IG (i, j | C), if all paths

between i and j are inactive given C. Otherwise it is said that the nodes are connected given

C, denoted by ¬IG (i, j | C).

Definition 3.12. (d-separation between sets of nodes) Given a DAG G = (V, E) and

a tern of pairwise disjoint node subsets A,B,C ⊆ V , subsets A and B are d-separated

(or blocked) by C, denoted by IG (A,B | C), if for every pair (i, j) ∈ A × B it holds

that IG (i, j | C). Otherwise, A and B are said to be connected given C, denoted by

¬IG (A,B | C).

Note that the above definition do not include the concept of probabilistic independence

at all. Nevertheless, it can be interpreted in a probabilistic sense by introducing the notion

of independence map for DAGs (Pearl, 1988).

Definition 3.13. ( I–map) Given a finite set of indices V , a DAG G = (V, E) and a r.v.

XV = (Xi)i∈V taking values in the probability space (XV ,XV , PXV ), G is an I-map of the

probability distribution P = PXV if for every tern of pairwise disjoints subsets A,B,C ⊆ V

it holds that

IG (A,B | C)⇒ IP (XA, XB | XC) (3.7)

To illustrate the sense of the latter definition let us to consider, for simplicity, an arbi-

trary DAG G of three nodes (variables) which is an I-map for a certain probability distri-

bution P . Then, for the three paths (substructures) of three nodes that may exist in G,

abstracting of node names we have:
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• A head-to-tail path i → k → j and an tail-to-tail path i ← k → j both verify,

by Def. 3.10, that IG (i, j | k). Then, in both cases, by Def. 3.13 it holds that

P (Xi, Xj | Xk) = P (Xi | Xk) ·P (Xj | Xk), i.e. Xi and Xj are conditionally indepen-

dent given Xk,

• A head-to-head path i → k ← j verify, by Def. 3.10, that IG (i, j), which is inter-

preted by applying Def. 3.13, as that Xi and Xj are marginally independent, i.e.

P (Xi, Xj) = P (Xi) · P (Xj).

Note that the precedent definition states a sufficient condition for conditional (or uncon-

ditional) independence but do not says nothing about what happens if the nodes are con-

nected. For an arc in the graph reflects a direct probabilistic dependency is required to state

a necessary condition for independence. This necessary condition is formalized by means of

the definition of independence map.

Definition 3.14. (Perfect I–map) Given a finite set of indices V , a DAG G = (V, E) and

a r.v. XV = (Xi)i∈V taking values in the probability space (XV ,XV , PXV ), G is a perfect

I-map of P = PXV or equivalently the pair (G, P ) satisfy the fidelity condition, if for every

tern of pairwise disjoints subsets A,B,C ⊆ V it holds that

IG (A,B | C)⇔ IP (XA, XB | XC) (3.8)

Definition 3.15. (Local Markov property) Given a DAG G = (V, E) and a probability

space (XV ,XV , P ), P satisfies the Local Markov Property w.r.t. G if for every node i ∈ V it

holds that

IP
(
Xi, Xnd(i) | Xpa(i)

)
(3.9)

, that is, Xi is conditionally independent of the set of its non descendent given its parents.

Definition 3.16. (Recursive factorization property) Given a finite set of indices V , a

DAG G = (V, E), a r.v. XV = (Xi)i∈V taking values in the probability space (XV ,XV , PXV )

and the tern (XV ,G, PXV ), the probability measure PXV satisfies the recursive factorization

property w.r.t. G if there exist σ-finite measures µi on Xi and functions ki : Xi×Xpa(i) → R+

such that

1.
´

Xi ki
(
yi, xpa(i)

)
dµi (yi) = 1, for every i ∈ V and xpa(i) ∈ Xpa(i).
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2. PXV has a density w.r.t. the product measure×i∈V µi given by p (x) =
∏
i∈V ki

(
xi, xpa(i)

)
.

Note that this definition connect with Def. 3.8 in the sense that ki is the density for a kernel

Ki : Xi × Xpa(i) → [0, 1] which corresponds, almost sure, to the conditional probability

measure on Xi given the σ-algebra Xpa(i).

Definition 3.17. (Bayesian network). A tern (XV ,G, PXV ) is a Bayesian network if it

satisfies any of the following properties, which are equivalent:

• G is an I-map of the probability distribution PXV .

• PXV satisfies the recursive factorization property w.r.t. G.

• PXV satisfies the Local Markov Property w.r.t. G.

The demonstration of the equivalence stated in the latter definition can be found in

(Lauritzen, 1996) (see Proposition 3.25 and Theorem 3.27).

As we can see by the latter definition, a Bayesian network need not necessarily satisfy

the fidelity condition stated by Def. 3.14. Keeping in mind the manual construction of a

model based in such a representation formalism this fact suggests us to be cautious with the

introduction of arcs between nodes, given that they should reflect only a direct probabilistic

dependence between them.

To end the present Section we review an independence property of BNs that will be

necessary to understand the MCMC sampling scheme that we will study in Section 3.4.5.

Definition 3.18. (Markov blanket). Given a finite set of indices V , a r.v. XV = (Xi)i∈V
taking values in the probability space (XV ,XV , P ) and a r.v. Xj , a Markov blanket for Xj

is any random subvector Xbl(j) such that

IP
(
Xj , XV−(bl(j)∪{j}) | Xbl(j)

)
(3.10)

, i.e., such that Xj is conditionally independent of all the other variables in XV given

Xbl(j).

Note that Equation 3.10 can be expressed, with a slight abuse of the notation, in terms

of PDFs f for P by

f
(
xj | xV−{j}

)
= f

(
xj | xbl(j)

)
(3.11)
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Proposition 3.1. Let (XV ,G, PXV ) be a Bayesian network and Xj be a component of XV .

Then, the random subvector Xbl(j)whose subset of indices is given by

bl (j) = pa (j) ∪ ch (j) ∪k∈ch(j) {pa (k) \ {j}} (3.12)

is a Markov blanket for Xj .

Corollary 3.1. Let (XV ,G, P ) be a Bayesian network, Xj be a component of XV and f be

a PDF for P. Then for every x ∈ XV it holds

f
(
xj | xbl(j)

)
∝ f

(
xj | xpa(j)

)
×

∏
k∈ch(j)

f
(
xk | xpa(k)

)
(3.13)

, i.e., the PDF of a random variable given its Markov blanket is proportional to the PDF

of the variable given its parents in G times the product of the PDFs of each child given its

respective parents.

3.3 Bayesian Graphical Models

3.3.1 Inference in a Classical Multinomial BN

To introduce the Bayesian graphical models framework let us start with the formulation of

a classic multinomial Bayesian network as a tern (X,G, p) where p (X) is the discrete PDF

for a categorical distribution which satisfies the recursive factorization property w.r.t. the

DAG G, namely

p (x) =
∏
i

p
(
xi | xpa(i);θi

)
(3.14)

, where p (xi | πi,θi) denotes the conditional PDF of the variable (node) Xi in G given a

determinate configuration xpa(i) of its parents. Note that we make explicit in this formula

the dependence of the family of PDFs on the parameter vector θi for all the possible parent

configurations. So, the distribution in the i-th node given the j-th configuration of its

parents is 1-Multinomial, Xi | xjpa(i) ∼M (1;θij), with parameters θij = (θijk)rik=1 where

θijk = p
(
Xi = xki | x

j
pa(i)

)
(3.15)

We can see that such a network has two elements: its structure, dictated by the DAG,
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and its parameters (probabilities). These two elements correspond to the two types of

knowledge (qualitative and quantitative) that the network encapsulates. They also depict

the two main stages followed in its construction. In the case of a network already built

and ready to make inferences, parameters are considered fixed and given by contingency

tables. The problem of probabilistic inference in the network is then posed as the problem

of computing the conditional posterior distribution of a set XI of variables of interest, given

a particular case xE of a set XE of observed variables (the evidence). By application of the

definition of conditional probability this is formulated as

p (xI | xE) = p (xI , xE)
p (xE) (3.16)

It is important to note that, although in the setting of the inference problem stated by

Equation 3.16 the definition of conditional probability is used, the term Bayesian network

does not necessarily imply a statistical Bayesian approach to solve the problem Korb and

Nicholson (2003). Really, if the two phases of construction of the net, qualitative (structure)

and quantitative (parameters), are done completely with the aid of an expert the inference

problem cannot even be considered a statistical inference problem.

3.3.2 BGMs as a Representation Language for Statistical Inference

When the formalism of Bayesian networks is used as a representation language to per-

form statistical inference within the Bayesian paradigm (Gelman et al., 2004; Gelman and

Shalizi, 2013), parameters of conditional distributions on each node are treated as random

variables (on equal footing with the rest of random variables in the network) and the evi-

dence is given by a set of independent samples1 from the observed variables. In the simplest

case we have a single parameter θ which parameterizes the distribution of a single observed

variable X and have a sample D = {xi}Ni=1 of X. So, the joint PDF of the network takes

the form

p (θ,D) = π (θ)
N∏
i=1

p (xi | θ) (3.17)

, where the product in the second term of the equation reflects the fact that samples xi are

conditionally independent given θ. Although simple, the model expressed by Equation 3.17
1But not necessarily identically distributed.
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Figure 3.1: Graphs associated to the BGMs given by Equations 3.17 (a) and 3.18 (b).
Rectangles indicate repeating patterns, by using the plate notation, and nodes enclosed in
double circle denote observations.

contains the two main types of knowledge that we can find encapsulated into a BGM. This

knowledge is a prior distribution π (θ) for the parameter and a component of likelihood. The

prior reflects our previous knowledge about the parameter before the sample is observed

and the likelihood give us the probability of observing the sample D given each value of θ.

Therefore, unlike a manually constructed classical BN, here the encapsulated quantitative

knowledge only includes the priors.

In a further level of complexity we can introduce the notion of hierarchy. This hierar-

chy, when applied to parameters, makes probabilities of the likelihood parameters depend

on other parameters in turn, namely hyperparameters with their corresponding hyperprior

distributions. When a hierarchy is used to model the generation of the observations, data

are grouped and the likelihood is subfactorized by subsets of parameters. An example of

BGM having these two types of hierarchy is

p (θ,σ,µ,D) = π (θ)
M∏
j=1

p (µj | θ)
Nj∏
i=1

p (xij | µj , σj) (3.18)

, where
∑M
j=1Nj = N and D = {Dj}Nj=1 with Dj = {xij}

Nj
i=1. For this second example the
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likelihood component is given by

L (σ,µ) =
M∏
j=1

Nj∏
i=1

p (xij | µj , σj) (3.19)

To understand in a simple way the independence properties of a BGM, it is customary

to draw the associated graph by using a plate notation to denote its repetition patterns. In

Figure 3.1 we depict the graphs corresponding to the BGMs of Equations 3.17 and 3.18.

We can see that for the graph in Fig. 3.1b data Dj inside the inner plate Nj , that is fixed j,

are all conditionally independent given (µj , σj) and parameters (µj , σj) are all conditionally

independent given the hyperparameter θ.

A BGM in which the notion of hierarchy is applied both to data and parameters, in

the sense depicted in the latter example, are also called a Hierarchical Bayesian Model (see

Gelman et al. 2004, Chapter 5). We prefer however the denomination of Bayesian graphical

model employed by (Højsgaard et al., 2012) which seems to us more general and accurate.

We can summarize the characteristics of the BGM representation language for statistic

inference as follows:

• The random nodes (variables) of the graph are classified in two categories: random

parameters and observed variables.

• A random parameter is a random variable in the graph whose values are unknown.

Otherwise a fixed parameter is a parameter whose values are known a priori.2

• The distribution of a random parameter is called the prior distribution for the pa-

rameter. The prior can be a conditional distribution, if the node has parents, or an

unconditional distribution if the parameter is an orphan node. This prior distribution

encodes the stochastic knowledge that we have about the parameter before the data

have been observed.

• For the set of observed variables exist a sample of observations which is independent

but not always identically distributed. This sample constitutes the evidence and is
2

– With the intention of simplifying the interpretation of the models proposed in this thesis, the fixed
parameters normally will not be elicited in the corresponding graphs. Remark that this can vary
depending on the source.
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called the data.

• The conditional distribution of the data given their parent parameters is called the

likelihood of the model. As the sample is a set of fixed values, the likelihood is a

function of the data’s parent parameters.

• Parameters, prior distributions and data can be organized into a hierarchy dictated

by the structure of the graph. If the parents of a random parameter are also random

parameters they are called hyperparameters. The corresponding distributions for the

hyperparameters are called hyperpriors. The hierarchy reaches its top level when the

conditional distribution of a random parameter depends only on fixed parameters.

As a summary, the representation framework adopted in this work can be represented by

BGM=BN+Bayesian Statistical Framework (3.20)

3.3.3 The Inference Problem in a BGM

The inference problem in a BGM is the problem of updating our prior knowledge about

some parameter (or parameters) of interest in the light of the evidence provided by the data

(our statistical sample). This problem reduces to computing the posterior distribution of

the parameter given the data, which presents two major difficulties. For example, for the

model given by Eq. 3.17 by application of the Bayes Theorem, and for the only parameter

we could be interested in, we have

p (θ | D) ∝ π (θ) p (D | θ) = π (θ)
N∏
i=1

p (xi | θ) (3.21)

, that is, the posterior for θ is known up to the normalizing constant p (D) =
´
θ π (θ) p (D | θ) dθ

that (i) must somehow determined. Now, for the two levels model given by Eq. 3.18 we

can obtain the joint posterior distribution for all parameters by

p (θ,σ,µ | D) ∝ π (θ)
M∏
j=1

p (µj | θ)
Nj∏
i=1

p (xij | µj , σj) (3.22)

But here we could be interested only in the marginal a posteriori for a determinate param-

eter, namely in p (θ | D). Therefore this latter case presents the additional difficulty of (ii)
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marginalizing over the remaining (nuisance) parameters:

p (θ | D) =
ˆ

(σ,µ)
p (θ,σ,µ | D) d (σ,µ) (3.23)

To summarize, in a general setting we will have a partition (Θ,D) = (Φ,Λ,D) of the

variables in the network where Φ and Λ are, respectively, the set of parameters of interest and

the nuisance parameters, being the objective to determine p (Φ | D) somehow marginalizing

over Λ, that is,

p (Φ | D) =
ˆ

Λ
p (Φ,Λ | D) dΛ ∝

ˆ
Λ
p (Φ,Λ,D) dΛ (3.24)

In Section 3.4 we will see how that this task can be accomplished by application of MCMC

simulation techniques. The BGM framework is thus completed by adding to Equation 3.20

the term

+MCMC Inference (3.25)

3.4 Inference by MCMC Methods

Recall from Section 3.3.3 that we can partition variables in the network as (Θ,D) =

(Φ,Λ,D). Recall also that the inference objective is to obtain the posterior distribution

p (Φ | D) for parameters of interest taking into account the presence of the set Λ of nuisance

parameters in whose posterior distribution we are not interested. An easy-to-implement

strategy to do this is to use a grid search where the posterior distribution in Equation 3.24

is estimated by a discrete approximation. The method has the following characteristics:

i) the range of values for each parameter in Θ is divided into a number of discrete levels,

ii) the joint density distribution to the right in Equation 3.24 is evaluated for every dis-

crete combination of values of Θ, ii) the posterior density p (Φ,Λ | D) for every combination

is estimated by applying the discrete Bayes Theorem; and iii) the marginal distribution

p (Φ | D) is computed by marginalization. Nevertheless, this brute-force method is inef-

ficient on a high-dimensional parameter space. In these latter cases, a better alternative

is to use Markov chain Monte Carlo (MCMC) simulation techniques (Gentle et al., 2012;

Roberts and Rosenthal, 2004; Robert and Casella, 2004; Neal, 1993).
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3.4.1 Markov Chains

We dedicate this subsection to expose some basic concepts and results necessary to under-

stand the fundamentals of the sampling algorithms described in the next subsections. The

material presented here can be found in (Robert and Casella, 2004). We start with the

definition of a transition kernel, concept which is the basis to define the temporal evolution

of a Markov chain.

Definition 3.19. (Transition kernel). Given a topological space X ⊆ Rd and the Borel

σ-algebra B (X) induced on X, a transition kernel is a function K defined on X × B such

that

1. ∀x ∈ X, K (x, ·) is a probabilistic measure.

2. ∀A ∈ B, K (·, A) is a measurable function.

The first condition of the preceding definition defines the conditional probabilities of jump-

ing in one step from a source, punctual and given state x to all the possible destination

states or sets A ∈ B (X). The second condition guaranties that the probability of these

jumps can be evaluated for any source point x of the space X. In the particular case that

X is finite, with cardinality m the kernel is an m-by-m transition matrix with one row

per source (2nd condition) and where the sum of the elements of each row, the transition

probabilities, equals to 1 (1st condition).

Usually the kernel is defined by means of a density k (x, y)(w.r.t. the standard Lebesgue

measure in Rd) by

K (x,A) =
ˆ
A
k (x, y) dy (3.26)

Now, a Markov chain is defined as a temporal sequence of random variables dictated

by a transition kernel which additionally verifies the Markov. This property says “the past

and the future states of the sequence are conditionally independent given its present state”.

Definition 3.20. (Markov chain). Given a topological space(X,B (X)) and a transition

kernel K defined on X × B, a Markov chain is a temporal sequence
{
X(t)

}
t∈N

of random

variables taking values in X such that

P
(
X(t+1) ∈ A | x(t)

)
=
ˆ
A
K
(
x(t), dx

)
(3.27)
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P
(
X(t+1) ∈ A | x(t)

)
= P

(
X(t+1) ∈ A |

{
x(k)

}t
k=0

)
(3.28)

Really, to complete the preceding definition it is necessary to specify the “initial state”

of the chain. It can be stated by means of a marginal distribution µ for X0, or by means of

the Dirac mass δx0 if the chain is started deterministically to a value X0 = x0.

Definition 3.21. (Invariant probability measure). A probability measure π is invari-

ant (or stationary) w.r.t. a Markov chain
{
X(t)

}
t∈N

with transition kernel K (·, ·) if

π (A) =
ˆ

X
K (x,A)π (dx) , ∀A ∈ B (X) (3.29)

, which implies, ∀t ∈ N, that if X(t) ∼ π then X(t+1) ∼ π.

Theorem 3.1. (Roberts and Rosenthal, 2004) If a Markov chain on a state space with

countable generated σ-algebra is φ-irreducible and aperiodic, and has a stationary distribu-

tion π (·), then for π-a.e. x ∈ X,

lim
t→∞

∥∥∥Kt (x, ·)− π (·)
∥∥∥ = 0 (3.30)

3.4.2 General Scheme of Inference

The general idea behind the MCMC methods to sample the posterior distribution for pa-

rameters of interest Φ in Θ = (Φ,Λ) taking into account the presence of the set Λ of nuisance

parameters can be summarized in the following steps:

1. Construct a Markov chain
{

X(t)
}
t∈N

such that:

(a) The distribution of Θ | D be invariant w.r.t. the chain
{

X(t)
}
t∈N

and

(b) The chain be ergodic, i.e. it converges to the distribution of Θ | D independently

of its initial state.

2. State some criteria of convergence for the chain.

3. If the convergence has been reached in the step n0, discard the first n0 − 1 elements

of the chain (burn-in phase), make Θ(n) := X(n+n0) and take the new chain
{

Θ(n)
}

as a sample for Θ | D.

4. Estimate Φ | D taking the subsample
{

Φ(n)
}
into

{
Θ(n)

}
.
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3.4.3 The Metropolis-Hastings Algorithm

Let be Θ a random vector with support a set X ⊆ Rd whose PDF π (θ) = f(θ)
k , so

called the target distribution, is known up to the normalizing constant k. The objective of

the Metropolis-Hasting (MH) algorithm (cited by Chib and Greenberg, 1995) is to generate

samples of π (θ). For that, it generates a Markov chain from a conditional density q (y | θ),

so called the proposal distribution, and from an acceptance probability function α (θ,y).

The proposal distribution is defined to be easy to simulate and the acceptance probability

is defined such that the detailed balanced condition (see below) is verified by the transition

kernel of the chain. In each step the algorithm generates a candidate y for the next state of

the chain, given its present state θ, which is accepted or rejected depending of the value of

α (θ,y). If rejected the chain remains in the present state θ; if accepted the chain transitions

to y.

For a transition K (θ, dy) with θ /∈ dy, let us express the kernel density by

k (θ,y) = q (y | θ)α (θ,y) (3.31)

and assume that k (θ,θ) = 0. If it is verified that π (θ) q (y | θ) > π (y) q (θ | y), it means,

roughly speaking, that the chain transitions more often from the state θ to the state y than

from the state y to the state θ. Therefore, to compensate this fact, we set α (y,θ) = 1, and

derive α (θ,y) imposing the detailed balanced condition, namely

π (θ) q (y | θ)α (θ,y) = π (y) q (θ | y)α (y,θ) = π (y) q (θ | y) (3.32)

⇒ α (θ,y) = π (y) q (θ | y)
π (θ) q (y | θ)

Note that if π (θ) q (y | θ) < π (y) q (θ | y) the transition always is accepted and in this

case it holds that α (θ,y) = 1. Therefore, the algorithm defines the acceptance probability

by

α (θ,y) = min
[
π (y) q (θ | y)
π (θ) q (y | θ) , 1

]
(3.33)

To complete the kernel definition rest to express the probability r (θ) of a transition

K (θ, dy) when θ ∈ dy, that is, the probability that the transition not to be accepted and

the chain remains in the present state, which is given by
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r (θ) = 1−
ˆ

X
q (y | θ)α (θ,y) dy (3.34)

Therefore the transition density for the MH algorithm is given by

k (θ,y) = q (y | θ)α (θ,y) + δθ (y) r (θ) (3.35)

, where δθ (y) is the Dirac delta function.

The detailed balance condition 3.32 guarantees that π (θ) is invariant w.r.t. to the

Markov chain defined by Eq. 3.35 (see e.g. Chib and Greenberg, 1995). Otherwise, a

sufficient conditions for ergodicity can be found in Gentle et al. (2012).

3.4.4 Slice Sampling

Let be θ a random variable whose PDF π (θ) = f(θ)
k is our target distribution. To sample

π (θ) it is introduced an auxiliary random variable υ such that π (θ) is the marginal in θ of

a joint distribution defined by

(θ, υ) ∼ U {(θ, υ) : 0 < υ < f (θ)} (3.36)

The idea in to generate a Markov chain whose stationary distribution is equal to the

distribution in Equation 3.36. For that, in the simplest version of this family of algo-

rithms (Neal, 2003), for the t-th iteration a transition from the state
(
θ(t), υ(t)

)
to the state(

θ(t+1), υ(t+1)
)
is done in two following steps

1. By sampling υ(t+1) from

υ | θ(t) ∼ U
[
0, f

(
θ(t)
)]

(3.37)

2. By sampling θ(t+1) from

θ | υ(t+1) ∼ U
[
υ(t+1), f (θ)

]
(3.38)

The transition density is then given by

k
(
θ, υ; θ′, υ′

)
= p

(
υ′ | θ

)
· p
(
θ′ | υ′

)
(3.39)
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3.4.5 The Gibbs Sampler

The Gibbs sampling algorithm can be considered as a particular case of MH (see Robert and

Casella, 2004, Theorem 10.13). In the context of our work it is better seen as an algorithmic

scheme that acts as a container for other univariate sampling algorithms. This is is in fact

the approach followed by BUGS (see Lunn et al. (2012), Sec. 4.2). The algorithmic scheme

uses a Markov chain whose transition density is given by the product of the full conditional

densities for the BN parameters, that is, the product of the densities for each parameter

given the rest of parameters and the data, namely

k
(
θ,θ′

)
=

P∏
k=1

p
(
θk | θ

(t+1)
1 , ..., θ

(t+1)
k−1 , θ

(t)
k+1, ..., θ

(t)
P , D

)
(3.40)

, where we have assumed that the network has P random parameters once its basic struc-

ture has been replicated. At first glance may seem that estimation of the joint posterior

distribution for parameters by means of the kernel in Eq. 3.40 is computationally very

expensive. Nevertheless the cost is significantly reduced if each full conditional is computed

conditioning only by its Markov blanket. Therefore, accordingly to Eq. 3.11 and Cor. 3.1,

we have that p
(
θk | θ

(t+1)
k , ..., θ

(t+1)
k−1 , θ

(t)
k+1, ..., θ

(t)
N , D

)
can be reduced for every k to

p (θk | bl (θk)) ∝ f (θk | pa (θk))×
∏

v∈ch(θk)
f (v | pa (v)) (3.41)

Sometimes it is possible to obtain a closed form for the conditional PDFs in Eq. 3.41, by

using conjugate distributions, making possible a direct sampling. If that is not possible, the

distribution shall be simulated using some MCMC algorithm like 1D MH. Whatever the

case, at the end of the t-th cycle the algorithm will provide a single sample
(
θ

(t+1)
1 , ..., θ

(t+1)
P

)
from the joint posterior distribution.

3.4.6 Convergence Criteria

3.4.6.1 Autocorrelation function

Given a realization
{
x(t)

}n
t=1

of a Markov chain the sample autocorrelation function ρ̂ (k) is

defined as

ρ̂ (k) = γ̂ (k)
γ̂ (0) (3.42)
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, where k is the time lag between observations (k < n) and γ̂ (k) is the sample autocovariance

function, given by

γ̂ (k) = 1
n− k

n−k∑
t=1

(
x(t) − µ̂

) (
x(t+k) − µ̂

)
(3.43)

, where µ̂ = 1
n

∑n
t=1 x

(t) is the mean.

3.4.6.2 Corrected Gelman and Rubin statistic

Unlike the autocorrelation function, this statistic (Brooks and Gelman, 1998) gives a mea-

sure of the degree of convergence to the stationary distribution taking into account a number

of realizations of the stochastic process. The idea underlying the method is to compare the

total sample variance of the Markov chain (within and between realizations) with the vari-

ance between realizations. Assuming m realizations
{
x

(t)
j

}n
t=1

of the Markov chain, let us

define first the following estimators:

• µ̂j = 1
n

∑n
t=1 x

(t)
j as the sample mean of the j-th realization,

• µ̂ = 1
m

∑m
j=1 µ̂j as the overall sample mean,

• γ̂W0i = 1
n−1

∑n
t=1

(
x

(t)
i − µ̂i

)2
as the sample variance within j-th realization,

• γ̂W0 = 1
m

∑m
j=1 γ̂

W
0j as the mean of intra-variances,

• γ̂B0 = n
m−1

∑m
j=1 (µ̂j − µ̂)2 as the sample variance between realizations.

Then, given the sample variance of the “stationary distribution” by

γ̂0 =
(

1− 1
n

)
γ̂W0 + 1

n
γ̂B0 (3.44)

and corrected, taking into account the sampling variability of µ̂, by

V̂ = γ̂0 + 1
mn

γ̂B0 (3.45)

, the expression for the corrected Gelman and Rubin statistic3, is

ρ̂c = d+ 3
d+ 1

V̂

γ̂W0
(3.46)

3Named also as corrected scale reduction factor (CSRF) or shrink factor.

42



Journal No IF T P Q
Monthly Notices of the Royal Astronomical Society 5 5.521 56 9 Q1

Physical Review D 1 4.691 56 14 Q2
Annals of Applied Statistics 1 2.237 117 10 Q1
The Astrophysical Journal 4 6.733 56 6 Q1

Statistical Analysis and Data Mining 1 - - - -
Astronomy and Astrophysics 1 5.084 56 11 Q1
Statistical Methodology4 1 - - - -

Table 3.1: Impact factor for the scientific journals in which the articles discussed in Section
3.5 have been published. Meaning of Abbreviations: No = number of analyzed papers
published in the journal, IF = ISI Impact Factor (2012), T = Total of journals in the
category (56 for astronomy & astrophysics and 117 for statistics & probability) , Q =
Quartile for the journal.

, where d = 2V̂ 2/v̂ar(V̂ ) are the degrees of freedom, estimated by the method of mo-

ments, of a Student t
(
µ̂, V̂ , d

)
used to construct a Bayesian credible interval for the target

distribution, which is assumed to be Gaussian.

3.5 Hierarchical Bayesian Models in Astrostatistics

In last few years there has been a marked increase on interest in the use of the Bayesian

graphical modeling framework in the area of astrostatistics (Loredo, 2013). This fact is

reflected by the increasing number of publications about this topic in journals with impact

factor such as those listed in Table 3.1. We have focused our revision mainly to the two

last years trying to classify the papers according to the astrophysical problem to which they

address.

Celestial mechanics Hogg et al. (2010) proposes a two level hierarchical model to infer

the parameters of the eccentricity distribution of a population of binary stars (or exoplanet)

affected by a single companion. The evidence is given by a number of radial velocity

measurements for each observed object. The likelihood for a determinate radial velocity

measure is Gaussian parametrized by the sum between the overall binary system velocity,

common for all measures for a given star, the radial velocity equation for the star, applied

to the measure, and a noise component. The radial velocity equation for each star is made

to depend deterministically on its velocity amplitude, period, orbital phase, eccentricity
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and longitude of perihelion and the noise variance is decomposed into two terms, one for

the measure and an overall term for the star. In such a way the likelihood component for

the set of measures for a determinate star depends on seven bottom level parameters. In

turn, the authors propose two alternative top level parametrizations for the distribution of

eccentricities with their corresponding priors.

Distance estimation/interstellar extinction maps Distance is a fundamental prob-

lem in astronomy whose resolution is necessary to understand the structure and evolution

of stellar populations. There exist multiple factors with affect the correct determination of

distances. One of them is the interstellar extinction. Sale (2012) proposes a two level hierar-

chical model which combines distance-extinction relationship (top level), stellar parameters

(bottom level) and multiband photometry observations for the star population associated

to a determinate sightline of our Galaxy.

Stellar formation and evolution Barentsen et al. (2013) use a Bayesian network to

infer masses, ages and mass accretion rates for stars in a star-forming region. The observa-

tions are spectral energy distributions (SEDs) in 2 broad bands and 2 narrow band filters

collected form two different photometric surveys. Kelly et al. (2012) develop a hierarchical

Bayesian model to infer the parameters of IR (infrared) SEDs of dust emission from ob-

served flux densities. Stein et al. (2013) propose a Bayesian graphical model for inferring

the relationship between the initial mass of a Sun-like star and its final mass as a white

dwarf.

Black holes and active galactic nuclei Hemberger et al. (2013) employ the Bayesian

graphical modeling framework to infer fitting formulae for the final spin and gravitational

energy radiated by a blank hole as a function of its initial spin. They use a simulated sample

of black holes. Kelly et al. (2013) employ a two-level model to estimate the high-frequency

X-ray power spectral density (PSD) for an active galactic nucleus (AGN) given a dataset

consisting in two time series of photon counts (a count for the source and the other for the

background) for a determinate AGN.

Solar physics Asensio Ramos and Arregui (2013) propose a hierarchical model to infer

the parameters of solar coronal loops. In this model the data are constituted by a set
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of temporal series giving the motion of the apex for each observed coronal loop. The

continuous curves corresponding to those time series have an oscillatory component which

is parametrized by means of its amplitude, the density contrast between the tube and

the environment, the transverse inhomogeneity length scale, etc. (1st level). The prior

distributions of the latter physical parameters are made to depend, in turn, on a set of

hyperparameters (2rd level) whose posterior distributions are the object of inference.

Ultra-high energy cosmic rays Soiaporn et al. (2013) propose a three level hierar-

chical Bayesian framework to assess the association between ultra-high energy cosmic rays

(UHECRs) and candidate source populations. The levels of parameters (distributed over

a space of association graphs) include, from top to down, source properties, cosmic ray

production and cosmic ray propagation; plus an traditional level of observables (detection

and measurement).

Gravitational wave astronomy Adams et al. (2012) propose a hierarchical model to

infer the spatial distribution and the chirp mass distribution of the white dwarf binaries

population in the Milky Way. They use data provided by a space based gravitational wave

detector, namely by the future LISA mission. The datum for a single source includes a

waveform plus a realization of the LISA instrument noise. The likelihood for the white

dwarf binary signal is Gaussian parameterized by the frequency of the source, its distance,

its mass, the angles of inclination, polarization and phase and sky location parameters

(bottom level). In turn, for the galaxy shape, authors employ a bulge plus disk model

consisting in a mixture of two distributions with four top level parameters. The model is

completed with three additional hyperparameters for the chirp mass distribution.

Cosmological parameters Brewer et al. (2014) propose a two level hierarchical model

to test the hypothesis that the stellar initial mass function (IMF) may vary within and

between galaxies. March et al. (2011) and Weyant et al. (2013) present Bayesian hierarchical

models to infer cosmological parameters from Type Ia supernovae data. Martinez (2013)

proposes a two level hierarchical model to infer the overall distribution of masses for a dwarf

spheroidal galaxies population, belonging to our Local Group, in the context of the Λ-CDM

cosmological paradigm. In this model data are constituted by a set of triples, one for each

galaxy, of the observed values for its half-light radius, the mass enclosed within the half-light
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radius (or equivalently, the velocity dispersion), its total luminosity and the corresponding

errors. Likelihood component for each dwarf galaxy is parameterized by a bottom level

of parameters which are its maximum circular velocity, the radius corresponding to this

velocity and its real luminosity. For these parameters are assumed linear relationships

which are parameterized taking into account four theoretical models for the underlying

dark matter density profiles.
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Chapter 4

A Bayesian Graphical Model for

Frequency Recovery

This chapter covers the three former stages of the general methodology for constructing

our BGM, proposed in Section 1.3. It is structured in five sections as follows. Section

4.1 describes our methodological approach. Section 4.2 is devoted to the domain analysis.

Sections 4.3 is devoted to the BGM construction. Section 4.4 specifies the MCMC algorithm

used for inference. Finally, Section 4.5 treats some relevant aspects of our implementation

in the BUGS language.

4.1 Methodology

As we saw in Chapter 3 the construction of a BGM involves the inclusion of both qualitative

and quantitative information. The quantitative information corresponds to priors being the

rest of this type of information gathered by inference. Inference consists in determining

the posterior distributions for parameters of interest given the data. It is carried out by

means of a determinate algorithm that we must specify once constructed the graphical

model. Taking into account these considerations we can summarize our methodology in the

following four stages:

1. Domain Analysis. We select, with the aid of the domain expert, a set of relevant

variables to the problem that we want to solve. This task is done from a simulated data

base composed of real attributes of a population of periodic variable stars, and from
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information related to the Gaia mission design, and the CU7 software that process

the raw Gaia data. We seek dependence relationships between the selected variables.

We also try to identify, in our role of external observer of the domain, the presence

of implicit variables associated to the data, e.g. categories linked to determinate

values of other variables. The objective of this first stage is to acquire the knowledge,

analytical whenever possible or otherwise experimental, needed for the completion of

the model we are constructing.1

2. Definition of the structure, priors and factorization of the model. From the

knowledge gathered in the first stage we proceed to construct the graphical model.

This construction begins with a qualitative stage in which we specify the nodes, the

probabilistic dependencies (arcs) of each node given its parents, the functional forms

of these dependencies and the type of distribution of each (non-orphan) node given

its parents. It is followed by a quantitative phase in which we specify our prior

knowledge (or lack thereof) about the numerical parameters of the distributions of

the orphan nodes in the graph and other fixed parameters associated to non-orphan

nodes. Finally, we specify the factorization of the joint probability density function

associated with the model.

3. Inference Algorithm.We specify an MCMC algorithm which consist in a Gibbs

sampling scheme. This scheme samples, in each iteration, the marginal posterior

distribution of parameters that are the focus of inference given the data.

4. Implementation. We implement the model constructed in the second stage using

the declarative BUGS language.
1

(a) It is important to clarify that although we can inject the generic form of the distribution of a real
attribute in the model, e.g. a mixture of Gaussian distributions, we can not inject the exact values of
the parameters of this distribution. The distribution of these parameters is the inference target and
their values can only be used for evaluation purposes as we will see in the next chapter.
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4.2 Domain Analysis

4.2.1 Database of Simulated Cepheids

Our starting point is a database with 36 attributes and N=36688 instances corresponding

to a simulated sample of the classical LMC cepheids population. Three CU7 working groups

have been involved in the generation of the database. These groups have tried to reproduce

a process that begins with the collection of the light emitted by each periodic variable source

by means of the CCDs in the Gaia astrometric field and ends with the extraction of a set of

attributes of the sources from the gathered light. We have been forced to work with data

generated with a simulated process because during the development of this thesis the Gaia

mission was not yet operational . At knowledge level and according to the role played in

the recovery process, we can establish a first classification of the database attributes in the

following three categories:

Real attributes. These attributes correspond mainly to the parameters of the light curve

of a periodic variable star observed by Gaia at a given position of the sky. They can in turn

be classified as direct measurements or derived measurements. Direct measurements are the

equatorial coordinates (α, δ) of the source and its ecliptic latitude β. Derived measurements

are the trigonometric parallax π, the mean apparent magnitude mG of the light curve mG (t)

in the G Band, the peak-to-peak amplitude A of the light curve, its periodicity P in days

(equivalent to its frequency ν = 1
P

[
d−1]), its distance r, the interstellar extinction EV

and the colour index mV −mIC
2. The values of all these attributes have been generated

artificially by the QA working group (García Sedano, 2012) from the knowledge existing in

the astrophysical literature specialized in the study of the LMC Cepheid population. At

this input level3, although not included explicitly in the database, it is customary to take

into account the existence of a complete model of the source light curve mG (t) involved in

the simulation process (see Section 2.3.2).
2The Gaia colour index is obtained by subtracting the magnitudes in its two photometric filters as

mGB −mGP , but we have not been provided with simulations of this parameter.
3Keeping in mind the suitability of analyzing an information processing system as a set of transformations

between representation spaces (see e.g. Mira and Delgado, 2009, Section 2), we will use interchangeably the
terms “real attribute” and “input attribute” and we will do the same with the terms “recovered attribute”
and “output attribute”.
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Satellite attributes. These attributes are related to the way in which Gaia collects

the input attributes and include the number of observations or transits o of the source, the

photometric error σmG associated to its mean apparent magnitude mG and the parallax

error σπ. The photometric measurement error, simulated by the QA group based on Jordi

et al. (2009), constitutes only a first source of error in the recovery process. As we saw

in Section 2.2.1, the telescope only take a finite number of measurements according to the

so-called scanning law. These brightness measurements represent a discrete time series

{mG (tk)}ok=1 sampled from the continuous light curve mG (t). This sampling procedure

constitutes a potential source for systematic biases due to the sampling regularities. To

analyse these potential biases, the BE group has simulated a sequence of observation epochs

{tk}ok=1 for every source given its celestial coordinates and the scanning law and generated

the corresponding magnitude measurements. Unfortunately only the parameter o has been

retained in the database which constitutes a crude approximation of the way in which the

satellite scans the sky.

Recovered attributes. These database attributes correspond to the information (the

evidence) recovered from the simulated astronomical time series {mG (tk)}ok=1 and include:

the recovered mean apparent magnitude mG,rec of the light curve of the source, the recovered

peak-to-peak amplitude Arec of its variability, the recovered period Prec (or, equivalently,

the recovered frequency νrec = 1
Prec

) and the results of a polynomial fit of the time series

consisting in the first terms of a Fourier series as triplets in the form amplitude-phase-order

{(Arec,j , φrec,j , j)} with indication of the residual. It is important to remark that the only

telescope output is the photometric time series (not included in the database used in this

work) and that the output attributes listed therein are the product of a post processing

stage applied by the Characterization software package (see Section 2.3.2).

4.2.2 Analytical Relations between Attributes

The domain expert proposed the development of a model to infer the real distributions

of several attributes, namely, the peak to peak amplitude, the (decimal) logarithm of the

frequency and the apparent G-magnitude, from the values recovered by Gaia. For each

of these attributes we have a pair (Vinput, Vrec) constituted by the input (real) attribute

and its corresponding recovered (output) attribute. We show the empirical distributions
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Figure 4.1: Real and recovered marginal distributions of amplitudes, apparent G magnitudes
and frequencies. Solid lines depicted in blue represent the PDF of real (input) amplitude,
and apparent G magnitude distributions estimated from the corresponding input histogram.
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of these pairs in Figure 4.1. We can see that: i) the recovered amplitude distribution

becomes slightly shifted to the left as compared to the input one; ii) the distributions in the

pair (mG,input,mG,rec) are quite similar; and iii) three sub distributions (peaks) of output

frequencies appear which were not found in the input distribution. In principle we know the

analytical PDF family for the Vinput attributes because we know how their samples have

been generated. However, problems arise when the input distribution depends on other

variables not explicitly included in the model.

Input frequency distribution This marginal distribution has been sampled from a

mixture of five normal distributions parametrized by the QA group from Antonello et al.

(2002) by

f (log (ν)) ≈ 0.12 · N (−1, 0.35) + 0.11 · N (−0.64, 0.05) + (4.1)

0.42 · N (−0.62, 0.22) + 0.10 · N (−0.54, 0.05) + 0.25 · N (−0.48, 0.05)

This PDF is depicted with red lines in the left column of Fig. 4.1.

Input amplitude distribution The input sample is shown in the top center of Fig.

4.1 and the marginal distribution represented with a solid blue line. This distribution has

been simulated from the frequency using the OGLE III catalog4. This dependence on the

frequency has been modelled analytically as

f (A | log (ν)) =


N (−0.5 · log (ν) + 0.2, 0.15) log (ν) < −1

N (0.7, 0.15) log (ν) > −1
(4.2)

Input apparent G-magnitude distribution The apparent G-magnitudes have been

generated by García Sedano (2012) from the apparent magnitudes mV and the colour index

mV −mIC based on (Jordi et al., 2010). The two latter variables depend in turn, respectively,

on the interstellar extinction EV , the distance r and the absolute magnitude MV , and from

the decimal logarithm of the frequency log (ν). Finally. both the colour index mV −mIC

and the absolute magnitudes MV depend on log (ν) (Sandage et al., 2004). The relations
4http://ogledb.astrouw.edu.pl/~ogle/CVS/ceph_query.html
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between all these variables are given by the following Equations:

mG = mV − 0.0257− 0.0924·(mV −mIC )− 0.1623·(mV −mIC )2 + 0.0090·(mV −mIC )3

(4.3)

mV = EV +MV + 5 (log (r)− 1) (4.4)

f (mV −mIC | log (ν)) =


N (−0.315 · log (ν) + 0.380, 0.1) log (ν) < −1

N (−0.160 · log (ν) + 0.501, 0.1) log (ν) > −1
(4.5)

f (MV | log (ν)) =


N (2.567 · log (ν)− 1.634, 0.1) log (ν) < −1

N (2.963 · log (ν)− 1.335, 0.1) log (ν) > −1
(4.6)

Although there is no available information about the dependence MG | log (ν) in the

literature, we can assume that its PDF family is the same as the family of the PDF expressed

by Eq. 4.6. Otherwise if we consider Eq. 4.4 but applied to the G-magnitude and leaving

out the extinction we have

mG = MG + 5 (log (r)− 1) (4.7)

So if we put together the two precedent hypotheses we have a way to model a dependence

mG | log (ν) , log (r).

Distance distribution This distribution has been generated by means of a successive

number of deterministic relations that take into account the Geocentric equatorial coor-

dinates (α0, δ0, r0) of the LMC center and an random spatial model of the galaxy as an

exponential disk. We have designed and implemented an extended BGM in BUGS which

includes a complete parameterization for distances. Nevertheless, the final version of our

BGM presented in this thesis does not include such a parameterization. This is due to

the fact that the extended model does not converge. A possible cause could be that we

assume that the ecliptic latitudes β are constants (see Equation 4.23). But β is related with

the Cartesian Geocentric equatorial coordinates (x′i,y′i, z′i) of the stars, which are random

variables in the extended model. We refer readers interested in this extension to Appendix

A, after reading Section 4.3.
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Number of transits and ecliptic latitude Let us now analyze the role of the number of

transits o, a satellite attribute according to the classification of Section 4.2.1. This variable

is the size of the time series {mG (tk)}ok=1, i.e the size of the sub-sample taken from each

astronomical source and depends on (is an effect of ) its equatorial coordinates (α, δ). It

is beyond the scope of this thesis to model and parametrize this dependence, which would

involve modelling the generation of the complete epoch sequence {tk}ok=1 for each source

taking into account the Gaia scanning law, process which is entrusted to BE. Anyway it

is necessary to select some attribute to model the cause of systematic biases due to the

sampling regularities. An option is to include the coordinates (α, δ) taken as constants in

the model. The second option is to include the ecliptic latitudes β (also as constants). The

influence of β over the rate of correct detection of periodic signal by Gaia has been studied

by (Eyer and Mignard, 2005). In that article we see that, for high values of β, like of the

LMC sources, the relation between the rate of correct detentions and β is approximately

linear with a negative slope. Therefore, will adopt the latter strategy and study the influence

of β over the output attributes through experiments.

Recovered G-magnitude distribution The recovered mean apparent G-magnitudes

has been generated by QA from the input G-mag by

f (mG,rec | mG) = N
(
mG, σG(rec)

)
(4.8)

with

σG(rec) = σtr
G(rec) ·

1
√
nobs

(4.9)

, where σtr
G(rec) is the magnitude error or standard deviation for one transit and nobs is the

mean total number of transits (≈ 70) at the end of the mission (see Section 2.2.2). The error

model expressed by Equations 4.8 and 4.9 assumes homokedasticity within each time series.

This is only an approximation because the real time series are naturally heteroskedastic.

But given the lack of detailed information about the series, we can only incorporate average

apparent magnitudes and uncertainties per source to our models. The models are only

heteroskedastic in the sense that these averages are per time series, and not for the entire

set of sources.

Finally, for both the output amplitudes and frequencies we do not know the analyti-
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Figure 4.2: Dispersion graphs comparing input and recovered values for frequency and
amplitude.

cal expression of their conditional distributions given the input variables and the ecliptic

latitude. Therefore we must infer them from the analysis of their empirical distributions.

experimental analysis from their empirical distributions. We will do it in the following

sub-sections.

4.2.3 Global Analysis for Recovered Parameters

Description Our objective is to obtain a first approximation of the relationship between

the input and recovered values for frequency and amplitude from the visual inspection of

the dispersion graphs of these two pairs of variables.

Results and commentary Figure 4.2 shows the scatter plots of these two parameters.

The most complex pattern is shown by the relation between the recovered and input fre-

quency, depicted in the sub-figure to the left of Fig. 4.2, where we can see that pairs (ν, νrec)

mostly fall in three zones: near the identity straight line νrec = ν and near straight lines

νrec = ±ν + b with b approximately equal to 12 or 28. We will assess the details of the

distribution over these lines in Section 4.2.4.
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For the relation between recovered and input amplitudes we found that 36580 of the

36645 instances of the LMC database fall in the 2x2 square to the right of Fig. 4.25. We

see that the distribution Arec | A is skewed in the sense that, if we fix a value for the input

amplitude, the recovered amplitude falls over the semi plane Arec < A with higher frequency

(density) than over the semiplane Arec > A. This bias is coherent with the fact that the

peak to peak amplitude extracted from a discrete and noiseless time series associated to

each astronomical object is necessarily lower than the amplitude of its (continuous) light

curve. We will get more insight on the concrete form for this bias in Section 4.2.5.

4.2.4 Detailed Analysis of Recovered Frequencies

4.2.4.1 A taxonomy for recovered frequencies

Description In this sub-section we have two objectives: i) to obtain a more detailed

description, also by means of visual inspection, of the relationship between the input and

recovered values of the frequency, focusing in the neighbours of the straight lines νrec = ν

and νrec = ±ν+b with b near 12 or 28 and ii) in case of encountering a pattern which allows

us to classify the pairs (ν, νrec) in categories, do this classification within some predefined

error margin, account the proportions of each class/category and represent the classes. For

that:

1. We make dispersion graphs for pairs (ν, νrec) for each of the three zones discovered in

the experimental analysis performed in Section 4.2.3.

2. We postulate the hypothesis that most of the recovered frequencies either are correctly

recovered frequencies that fall in the identity straight line νrec = ν, either are aliased

frequencies that fall in any of the straight lines of expression νrec = ±ν + b, with

b 6= 0 and not necessarily exactly equal to 12 or 28. Then we try to find concrete

expressions for b from our knowledge about some regularities in the Gaia scanning

law. For the latter purpose we generate a prototypical spectral window corresponding

to an hypothetical source with ecliptic latitude in the LMC range and depict it with

two levels of detail.

3. It is considered that a frequency νrec is recovered in a straight line νrec = ±ν+ b if the
5We do not include in the graph the remaining 65 pairs (A,Arec) which correspond to recovered amplitudes

in the range (2, 2412035].
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slope ±k2 No %
1 +2 1248 3.41
1 −2 1218 3.32
1 +7 76 0.21
1 −7 103 0.28
1 +9 180 0.49
1 −9 187 0.51
±1 Rest up ±19 275 0.75

Total 3287 8.97
(a) Substructure for k1 = 0.

slope ±k2 No %
1 +1 49 0.13
-1 +1 51 0.14
1 −1 76 0.21
-1 −1 64 0.17
±1 Rest up ±19 69 0.19

Total 309 0.84
(b) Substructure for +k1 = +3.

slope ±k2 No %
1 +1 108 0.29
-1 +1 113 0.31
1 −1 60 0.16
-1 −1 78 0.21
1 +3 105 0.29
-1 +3 79 0.22
1 −3 190 0.52
-1 −3 164 0.45
±1 Rest up ±19 330 0.90

Total 1227 3.35
(c) Substructure for +k1 = +7.

Category No %
Perfect recovery 31677 86.44

Aliases in Sub-Tables a to c 4823 13.16
Not classified 145 0.40

Total 36645 100
(d) Totals.

Table 4.1: Statistics of correctly recovered and incorrectly recovered (spurious) frequencies.

inequality |±ν + b− νrec| < 0.005 holds, i.e. when the absolute error is lower than a

0.5%.

Results and commentary The spectral window to use for comparison purposes is de-

picted in Figure 4.3 and the results of the experiment are presented in Figure 4.4 and Table

4.1.

We find that most of the pairs (νinput, νrec) fall on straights lines of the form:

νrec = ±νinput ± k1νs ± k2νp (4.10)

, where k1 ∈ {0, 3, 7}, k2 ∈ {0, ..., 19}, νs ≈ 1/0.25 = 4d−1 is the rotational frequency

of the satellite and νp = 1/63d−1 is its precessional frequency. For taxonomic purposes we

will refer to each of these lines as a locus/category of recovered frequencies. Moreover, if

we fix k1, we find a local loci substructure centered around the line νrec = ±νinput± k1νs by
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(c) Substructure with symmetry axis at ν = 12.0232.
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(d) Substructure with central axis at ν′ = 27.9853
and ν′′ = 28.0011.

Figure 4.3: Prototypical spectral window for a LMC astronomical source. Sub-Figure a)
depict a global perspective of the windows showing the existence of substructures of sam-
pling frequencies for multiples of the Gaia’s rotational frequency approximately equal to
4d−1. Sub-Figures b) to d) depict each substructure in detail showing its symmetry and
the separation between peaks equal to a precessional frequency of 1/63d−1.
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Figure 4.4: Detailed dispersion graphs comparing input and recovered values of frequen-
cies and classes. Classification of correctly recovered and incorrectly recovered (spurious)
frequencies.
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varying k2. Therefore, with the exception of the straight line with equation νrec = νinput all

these loci are of spurious (aliased) frequencies6.

Let us now to examine in detail the three scenarios found. The first scenario, depicted

in the top row to the left of Fig. 4.4 with the associated reference spectral window zoomed

in Fig. 4.3b, corresponds to the local substructure around the identity line νrec = νinput

(k1 = 0). Here, as we collect in Table 4.1c and 4.1a, we find that a 86.44% of the total

number of frequencies in the database are “perfectly” recovered in that line, and a 8.22%

are recovered in some alias with expression νrec = +νinput ± k2νp with ±k2 ∈ {±2,±7,±9}.

In the sub-figure of Fig. 4.4 the identity line is depicted in dark red and the aliases are

depicted in degraded colour. Note that the distance νP = 1/63d−1 between parallel straight

lines is equal to the spacing between peaks in the zoomed spectral window. Also, the most

frequent aliases correspond to the peaks with highest amplitudes in ν = 2 ·νp and ν = 9 ·νp.

The second scenario, depicted in the top row to the right of Fig. 4.4 with the associated

reference spectral window zoomed in Fig. 4.3c, corresponds to the local substructure around

the straight lines νrec = ±νinput + 3νs. In this case we observe a local symmetry in the

spectral window around ν = 3νs = 12.0232 with νs = 4.0077 and the same separation

between peaks νp = 1/63d−1 that in the first scenario. This symmetry axis is depicted as a

dark red line in Fig. 4.3c and in the corresponding sub figure of Fig. 4.4 (for positive and

negative slopes). We find that this second scenario is one order of magnitude less probable

that the first, being in it only a 0.84% of the total number of recovered frequencies, mainly

for ±k2 ∈ {±1} (see Table 4.1b).

Finally, the third scenario is depicted in the bottom row of Fig. 4.4 with the associated

reference spectral window zoomed in Fig. 4.3d, In this case we appreciate in the spectral

window two central axis (depicted in dark red): i) ν ′ = 7ν ′s = 27.9853 with ν ′s = 3.9979

and ii) ν ′′ = 7ν ′′s = 28.0011 with νs = 4.0002, separated by νp = 1/63d−1 being the window

peaks also spaced by νp. In the corresponding sub-figure of Fig. 4.4 we observe that the

straight lines with negative intercept are distributed as νrec = ±νinput + 7ν ′s − k2νp while

the straight lines with positive intercept are distributed as νrec = ±νinput + 7ν ′′s + k2νp. In
6Note that some of the lines in Eq. 4.10 actually could not to appear in the dataset for the complete

range of νinput, because only are recovered positive frequencies; e.g., the line νrec = νinput + k1νs − k2νp can
only appear when the condition νinput > −k1νs + k2νp holds, the line νrec = −νinput − k1νs − k2νp never
can appear and the line νrec = +νinput + k1νs + k2νp always appears. Note otherwise that the recovered
frequencies of the form νrec = +νinput ± ... and νrec = −νinput ± ..., with with nonzero intercept, are aliased
of νinputand −νinput respectively.
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this scenario are recovered as aliases, with ±k2 ∈ {±1,±3}, a 3.35% of the total number of

recovered frequencies (see Table 4.1c).

4.2.4.2 Dependence on the ecliptic latitude

Description The experiment objective is to analyze the proportions (percentages) of

frequencies recovered in each locus νrec = ±νinput ± k1νs ± k2νp when we fix the values of

the ecliptic latitude β. For that:

1. We consider loci in the two more frequent scenarios according to the results of the

experiment of sub-section 4.2.4.1, namely, the substructures for k1 ∈ {0, 7}.

2. The values of β are binned in ten intervals
[
βi1, β

i
2
]
(i ∈ {1, ..., 10}) with the same

number of instances fi (νrec) in each.

3. We compute the proportions of each locus for the i-th bin as the quotient between

the number of frequencies in the j-th locus f ji (νrec) (for the interval) and the total

number of frequencies (instances) fi (νrec) in the interval. Then we make dispersion

graphs of the pairs
(
βi1+βi2

2 ,
fji (νrec)
fi(νrec)

)
for each locus. Therefore, considering the more

frequent loci and fixed the i-th bin we have
∑
j
fji (νrec)/fi(νrec) ≈ 1.

4. It is considered that the frequency νrec of a star is recovered in the locus νrec =

±νinput±k1νs±k2νp if the inequality |±νinput ± k1νs ± k2νp − νrec| < 0.005 holds, i.e.

when the absolute error is lower than a 0.5%.

Results and Commentary The results of the experiment are presented in Figure 4.5.

We find that for a perfect recovery, depicted in the sub-figure on the bottom row to the

left, the proportion of recovered frequencies increases linearly with β. Otherwise, fixed a

substructure k1 of aliased frequencies proportion of recovered frequencies decreases linearly

with β with a slope more pronounced as |k2| increases. This suggest us to model the

probability of recovery of an input frequency in a determinate locus (category) by means of

a logistic regression submodel with β as covariate.
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Figure 4.5: Proportions of recovered frequencies versus ecliptic latitude.

62



4.2.5 Detailed Analysis of Recovered Amplitudes

4.2.5.1 Loci and amplitude relationship

Description The experiment objective is to get insight in the form of the conditional

distribution for the recovered amplitude given an input amplitude. Moreover, we try to

check the hypothesis that recovered amplitudes are also subject, like recovered frequencies,

to the influence of the ecliptic latitude. Therefore this suggests us to analyze the relationship

between loci of frequencies and pairs (Ainput, Arec). For that we make dispersion graphs of

these pairs for the most frequent loci in Table 4.1.

Results and Commentary The results of the experiment are presented in Figure 4.6.

We find that for a perfect recovery, depicted in the sub-figure on top row to the left, the

distribution Arec | A is skewed in the sense that we conclude in the experiment of Section

4.2.3 with a central parameter approximately equal to the input frequency, although we can

also appreciate in this first scenario a superimposed horizontal fringe whose ordinates do

not seem to depend on the input amplitude. Otherwise, for loci of aliased frequencies we

observe that skewness increases as the input frequency does according to a certain slope to

be determined.

4.2.5.2 Parameter estimation for dependence on real amplitudes

In light of the results of the experiment of sub-section 4.2.5.1 we try now to obtain concrete

values of parameters for the dependence Arec | Ainput given a determinate locus. For this

purpose we assume the homoscedasticity hypothesis for errors and fit two linear regression

models

Arec,i = βj1Arec,i + βj0 + εji , j = 1, 2

, the former for the identity locus and the latter for loci νrec = ±νin + 7νs − 3νp 7. For the

identity locus we assume for the error component a skewed Student t distribution (Azzalini

and Genton, 2008) with one degree of freedom, that is, a skewed Cauchy distribution ε1i ∼

st (0, ω, α, 1) where ω and α denote respectively the shape and scale parameters. We fit

that regression model by using the SN package (Azzalini, 2013). Otherwise, for the locus
7We only select one locus of aliased frequencies (and its symmetric) bearing in mind the implementation

and evaluation of our BGM model.
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Figure 4.6: Loci and amplitude relationship.
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Locus β0 β1 ω α

νrec = νin 0.0037 0.9993 0.0204 -2.3953
νrec = ±νin + 7νs − 3νp -0.008440 0.749224 0.0266 0

(a) Parameter estimations.

Locus β0 β1 ω α

νrec = νinput 0.0004 0.0006 0.0002 0.0418
νrec = ±νin + 7νs − 3νp 0.009162 0.012588 - -

(b) Errors.

Table 4.2: Results of fitting Cauchy regression models for recovered amplitudes.

νrec = ±νin + 7νs − 3νp we assume that ε2i ∼ t (0, ω, 1) and use the HETT package (Taylor,

2012) for fitting.

Results and Commentary The results of the experiment are presented in and Table

4.2. We will use these data below to parameterize the conditional Arec | Ainput.

4.3 BGM Construction

In the present section we develop the qualitative phase of our BGM construction in conso-

nance with the suggestions of the domain expert and the experimental results obtained in

Sections 4.2.3 to 4.2.5. Simultaneously we include the quantitative information correspond-

ing to our prior knowledge about fixed parameters in the model.

4.3.1 Graph Structure

The graph structure of our model is depicted in Figure 4.7. In the figure we mainly include

the nodes that are random variables not computed deterministically given their parents.

This is done to facilitate the ulterior task of factorizing the joint probability distribution

associated to the graph. We summarize in Table 4.3 a description of the meaning of the

nodes/variables/parameters in the graph and their type of distribution (see Section 4.3.2).

We group the nodes in the graph into subvectors following an approximate hierarchy.

This hierarchy distinguish between the evidential nodes, the rest of nodes (attributes) which

replicate with the rectangle in Fig. 4.7 and the nodes outside the rectangle. In our case this

is better than perform a strictly hierarchical grouping because e.g. we have orphan nodes

located in different graph levels. We also distinguish, within the hierarchy, four classes of
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nodes by their level/type of knowledge seen from the perspective of the external observer.

According to these criteria we have:

1. A bottom level constituted by the evidential nodes which represent the observed vari-

ables in the sample:

D = (νrec,i, Arec,i,mGrec,i) (4.11)

These nodes are denoted with double circles. They are the output/recovered frequency

νrec,i, amplitude Arec,i and apparent G-magnitude mGrec,i for the i-th star. They are

enclosed by a rectangle (a plate) which is replicated as many times (N ) as there are

stars in the sample.

2. A first level of random parameters hierarchy:

θ1 =
(
log (νi) , Ai,mG,i, Tνrec,i , Tνi

)
(4.12)

We have two classes of nodes at this level. The set of input nodes is constituted by the

real frequency log (νi) (in logarithmic scale), the real peak-to-peak amplitude Ai and

the real apparent G-magnitude mG,i of the i-th star. The categorical nodes Tνrec,i and

Tνi indicate the distribution to which a node belongs when the node is modeled by

a mixture of distributions. Tνi is associated with the logarithm of the real frequency

for the i-th star and Tνrec,i is associated with its recovered frequency and recovered

amplitude. All the nodes at the first level of random parameters hierarchy replicate

with the plate. They depend on (but not only on) non informative orphan nodes

which are outside the plate.

3. A top level of of random parameters hierarchy (hyperparameters):

θ2 = (aA, bA, µA, τA,aG,bG, τG, µν ,θν , τν ,ων ,wν ,Λ) (4.13)

This class is composed by of all the orphan nodes in the graph. We only have a vague

(or non informative) prior knowledge about the distributions of these orphan nodes.

The nodes denoted by a and b represent slopes and intercepts for the conditional

distributions of the real amplitude and apparent G-magnitude given the logarithm of

the frequency. The nodes denoted by τ represent precisions (the inverse squares of
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log(ν i)

 Ai  mG,i 

ν rec,i

βi

 Tν(rec),i 

 Arec,i  mG(rec),i 

 Tν,i 

Λ[M,2] 

b[M] 

 τν  ων   μν    θν  

  wν 

 τG  aG  bG  τA  aA  bA   μA  

Figure 4.7: Graph structure of our proposed BGM. The arcs depicted in green correspond to
a submodel which discriminate (classify) each recovered Frequency and Amplitude according
to the ecliptic latitude of the corresponding astronomical source. The rest of arcs correspond
to a hierarchical model by means of which the observed values are generated from the real
ones. Note the basic structure enclosed in a rectangle which is repeated (replicated) N times
(using the plate notation) to account the complete set of observations. Fixed parameters
are not included in the graph, with the exception of the ecliptic latitude (βi) and the
intercepts vector b for categories of aliased frequencies. See the text and Table 4.3 for node
descriptions.

standard deviations). The nodes denoted by µ represent means. The nodes denoted by

Λ represent coefficients of a multinomial logistic regression submodel with the ecliptic

latitude β as a predictor. The rest of nodes are associated with the parameterization

of the real frequency distribution followed in the work.

4.3.2 Distributions, Parameterizations and Priors

4.3.2.1 Input frequencies

Taking into account that we know the analytical PDF form for log (νi) (Section 4.2.1, Eq.

4.1), we parametrize the (decimal) logarithm of the input frequencies by means of a mixture
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Node Description Type of
distribution

τG Precision Gamma NI prior
aG Slopes Gaussian NI prior
bG Intercepts Gaussian NI prior
mG,i Input apparent G magnitude Gaussian
mG,rec,i Recovered apparent G magnitude Gaussian
µA Mean Gaussian NI prior
τA Precision Gamma NI prior
aA Slope Gaussian NI prior
bA Intercept Gaussian NI prior
Ai Input amplitude Gaussian
Arec,i Recovered amplitude Mixture of

skewed Cauchy
wν Mixing proportions. Gamma NI prior
Tνi Category of log (νi) Categorical
µν Mean Non informative
θν Mean Perturbations Gaussian NI prior
τν Precision Non informative
ων Precision Perturbations Uniform prior

log (νi) Input frequency
[
d−1]. Mixture of

Gaussian
Λ Logistic R. coefficients Student t prior

Tνrec,i Category of νrec,i Categorical
νrec,i Recovered frequency Mixture of

Gaussian

Table 4.3: Description of parameters. Meaning of Abbreviations: NI = non informative
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of Gaussian distributions, but considering only three components

f (log (νi) | Tνi , µν ,θν , τν ,ων) = (4.14)

δ1
Tνi

N (µν , τν) + δ2
Tνi

N
(
µν +

√
τ−1
ν θν1, τνω

−2
ν1

)
+

δ3
Tνi

N
(
µν +

√
τ−1
ν θν2 +

√
τ−1
ν ων1θν2, τνω

−2
ν1 ω

−2
ν2

)

where:

• The three Kronecker deltas δjTνi indicate the Gaussian component to which log (νi)

belongs according to the value of the parameter Tνi distributed as

p (Tνi) = Cat (3, wν1, wν2, wν3) (4.15)

Therefore δjTνi = 1 denotes that the categorical variable Tνi takes the value “j”, i.e.

log (νi) belongs to the j-th component, with probability (mixing proportion) wνj .

• Parameters µν and τν denote, respectively, the mean (location parameter) and the

precision (inverse square of the scale parameter) of the first component of log (νi).

• Parameters (θν1, θν2) and (ων1, ων2) denote, respectively, perturbation parameters

which affect the mean and the scale parameter of a given component to obtain the

mean and scale parameter of the following component (Robert and Mengersen, 1999).

• For parameters wν , µν , θν , τν and ων we take the following non informative priors:

p (wν) = Dir (1, 1, 1)

p (µν) = N (0, 0.001) (4.16)

p (θνj) = N (0, 0.01)

p (τν) = Gamma (0.001, 0.001)

p (ωνj) = U (0, 1)

The use of the three former priors guarantees that the full conditional distribution

of the node is available in closed form (see Section 4.4). The Dirichlet prior p (wν)

with parameters (1, 1, 1) is equivalent to a uniform distribution over the constrained

69



hiperparameter space of Tνi . The Gaussian priors p (µν) and p (θνj) are proper priors

which approximate a flat prior over R. The Gamma prior p (τν) with the parameters

shape and rate both equal to 0.001 is a weakly informative prior which verifies that

E (τν) = 1 and Var (τν) = 10−3/10−6 = 1000. Finally, the uniform prior p (ωνj)

represents our lack of knowledge about the residual variance of a Gaussian component

relative to the variance of the preceding component.

4.3.2.2 Input amplitudes

Taking into account that we also know the analytical PDF form for Ai | log (νi) (Eq. 4.2),

we parametrize the input amplitude as

f (Ai | log (νi) , aA, bA, µA, τA) = (4.17)

1{log(νi)<−1}N (aA · log (νi) + bA, τA) + 1{log(νi)>−1}N (µA, τA)

where:

• 1S denotes the indicator function of the subset S, i.e. 1S (x) =


1 x ∈ S

0 x /∈ S
.

• Parameters aA and bA are, respectively, the slope and the intercept of the regression

line of A on log (ν) when log (ν) < −1.

• Parameter µA denotes the mean of the amplitude when log (ν) > −1.

• Parameter τA denotes the precision, which we take equal for both distributions (con-

ditional and unconditional) .

• For parameters aA , bA , λA and τA we take the following non informative priors:

p (aA) = N (0, 0.001)

p (bA) = N (0, 0.001) (4.18)

p (µA) = N (0, 0.01)

p (τA) = Gamma (0.001, 0.001)
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For all these priors the full conditional distribution of the node is available in closed

form. The Gaussian priors are proper priors which approximate a flat prior over R.

The Gamma prior p (τA) has been selected taking into account the same considerations

that for p (τν).

4.3.2.3 Apparent magnitudes in the G Band

Taking into account Eq. 4.7 but discarding the distance r we parametrize this node as

f (mG,i | log (νi) , aG1, bG1, aG2, bG2, τG) = (4.19)

1{log(νi)<−1}N (aG1 · log (νi) + bG1, τG) + 1{log(νi)>−1}N (aG2 · log (νi) + bG2, τG)

with the prior distributions

p (aG1) = N (0, 0.001)

p (aG2) = N (0, 0.001) (4.20)

p (bG1) = N (0, 0.001)

p (bG2) = N (0, 0.001)

p (τG) = Gamma (0.001, 0.001)

For all these priors the node’s full conditional distribution is available in closed form.

4.3.2.4 Recovered frequencies

Taking into account the experimental results of sub-section 4.2.4.1 we parametrize each

recovered frequency as a mixture of Gaussian distributions where the mean of each com-

ponent represent the straight line (locus) in which the input frequency has been recovered,

i.e. the identity locus or some locus of spurious (aliased) frequencies. For each recovered

frequency we assign a categorical variable for each existing locus. In the present paragraph

we present the parametrization νrec,i | log (νi) , Tνrec,i (red arcs in Fig. 4.7 ) leaving for the

next epigraph the parameterization for the categories Tνrec,i whose parameters correspond
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to the mixing proportions of the mixture. The former parametrization is done as

f
(
νrec,i | log (νi) , Tνrec,i

)
= (4.21)

δ1
Tνrec,i

N
(
10log(νi), τνrec

)
+

M∑
j=2

δjTνrec,i
N
(
(−1)j−1 10log(νi) + bj , τνrec

)

where:

• N
(
aj10log(νi) + bj , τνrec

)
, with aj = (−1)j−1 for j ∈ {1, ...,M}, is a Gaussian com-

ponent corresponding to the conditional distribution νrec,i | νi of the recovered i-th

frequency given the i th real frequency when the frequency is recovered over the j th

locus νrec = ajν + bj .

• We assume a fixed number of components: the identity locus andM−1 loci of spurious

components with predefined slopes and intercepts. The sub index j = 1 correspond

to the identity locus (the first term of the second member of Eq. 4.21) with slope

a1 = 1 and intercept b1 = 0. Otherwise the spurious components, j ∈ {2, ...,M}, are

defined with alternating slopes -1 o +1 depending on the exponent in aj = (−1)j−1

for accounting the symmetry of the power spectrum. Each pair of symmetric spurious

components shares the same intercept, i.e. bj+1 = bj when jmod2 = 0, which is

modeled as a constant.

• The Kronecker deltas δjTνrec,i
indicate the Gaussian component to which νrec,i be-

longs according to the value of the parameter (categorical variable) Tνrec,i . There-

fore δjTνrec,i
= 1 denotes that the categorical variable Tνrec,i takes the value “j”, i.e.

that νrec,i belongs to the j-th component with some probability (mixing proportion)

πij = wjνrec,i which is different (in principle) for each recovered frequency (see the next

paragraph below).

• The precision τνrec = 10000 is assumed to be constant (and equal) for all components.

4.3.2.5 Categories of recovered frequencies

A determinate value j ∈ {1, ..,M} of the categorical node Tνrec,i indicates that the the i-th

frequency has been recovered in the j-th locus (Gaussian component), which is done with a

certain probability πij . Taking into account the experimental results of sub-section 4.2.4.2

72



we make depend πij on the ecliptic latitude βi and parametrize this dependence by means of

a multinomial logistic regression submodel using the softmax function as transfer function.

Thus, we model the conditional distribution for Tνrec,i as

p
(
Tνrec,i | {λj}

M
j=2

)
= (4.22)

Cat
(
M,

{
πij
(
β′i,λj

)}M
j=1

)

with

πij
(
β′i,λj

)
= eλ

T
j ·(1,β′i)∑M

l=1 e
λTl ·(1,β′i)

(4.23)

where

• We rescale the predictor of the logistic regression submodel by substracting the mean

and dividing by two times the standard deviation, i.e.β′i = βi−β
2·sd(β) where βi are the

ecliptic latitude values. This guaranties that the mean and the standard deviation of

β′i are respectively 0 and 0.5.

• The hyperparameter vectors λj = (λ0j , λ1j) for j ∈ {2, ...,M} contain the coefficients

of the logistic regression submodel. Determining the distributions of these coefficients

is one of the goals of the inference. We assign them the weakly informative priors

p (λkj) = t (0, 1/2.52, 7), k ∈ {0, 1}. This election provide a minimal prior information

to constrain the range of coefficients λkj once the covariate βi has been rescaled

(Gelman et al., 2008). This approximation is used to enhance the convergence rate of

our model.

• We assume λ1 = 0, which implies considering the identity locus as the reference

category.

It is customary to express Eq. 4.23 in the alternative form

ln
(
πij
πi1

)
= λj · (1, βi) = λ0j + λ1jβi (4.24)

to better understand the role of the identity locus in the model. The logarithms to the left

of the expression are so-called the logits. They express the relation (in logarithmic scale)

between the probability of recovery the i-th frequency in the j-th spurious component and

the probability of recovery that frequency in the identity locus. So, the logit variation is
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determined by the variation of the predictors modulated by the model coefficients (Gelman

et al. (2004), Chapter 16, Section 7, p. 430).

4.3.2.6 Recovered amplitudes

Taking into account the experimental results of sub-section 4.2.5.2, we model the conditional

distribution for the recovered amplitude Arec,i by means of a mixture of two skewed Student

t distributions (Azzalini and Genton, 2008) with location parameters ξ1 = Ai and ξj =

0.749 ·Ai,∀j = 2, ..,M and scale ω, shape α and degrees of freedom ν parameters taking as

constants as follows

f
(
Arec,i | Ai, Tνrec,i

)
= (4.25)

δ1
Tνrec,i

ST (Ai, 0.020,−2.395, 1) +
M∑
j=2

δjTνrec,i
ST (0.749 ·Ai, 0.0266, 0, 1)

Note that priors included here are not quite realistic and really slope, intercepts, and the

rest of fixed parameters of Student t should be included as random parameters in future

versions of our model.

4.3.2.7 Recovered apparent magnitudes

We parameterize the distribution of the i-th recovered apparent G magnitude by means of a

Gaussian distribution with mean mG,i and standard deviation σG(rec),i = f (Gi) computed

deterministically using Equation 4.9 (Jordi et al., 2007)8:

f (mGrec,i | mG,i, ri) = N
(
mG,i, σG(rec),i

)
(4.26)

4.3.3 Factorization

In this subsection we present the factorization of the joint probability density function

associated to the graph of Fig. 4.7. According to the classification of the nodes described

in Section 4.3.1, now we can factorize the joint PDF in the following three factors:
8In the final implementation in BUGS presented in the thesis we have temporally deactivated this func-

tionality and assumed an homoscedasticity hypothesis for errors.
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1. The conditional distribution of the data given their parents9

p (D | θ1) =
N∏
i=1

f1
(
νrec,i | log (νi) , Tνrec,i

)
· (4.27)

f2
(
Arec,i | Ai, Tνrec,i

)
· f3 (mGrec,i | mG,i)

This is the likelihood of the data under the model which, fixed the data, is a function

L (θ1) of the parameters.

2. The conditional distribution of the first level of random parameters given the param-

eters of the top level

p (θ1 | θ2) =
N∏
i=1

g1
(
Tνrec,i | {λj}

M
j=2

)
· (4.28)

g2 (Ai | log (νi) , aA, bA, µA, τA) · g3 (mG,i | log (νi) ,aG,bG, τG) ·

g4 (log (νi) | Tνi , λν ,θν , τν ,ωυ) · g5 (Tνi | wν)

which corresponds to a first level of prior distributions.

3. The distribution of the top level parameters (hyperparameters, orphan nodes)

p (θ2) = h1 (aA) · h2 (bA) · h3 (µA) · h4 (τA) · h5 (aG) · h6 (bG) · (4.29)

h7 (τG) · h8 (wν) · h9 (µν) · h10 (θν) · h11 (τν) · h12 (ων) · h13 (Λ)

This factor corresponds to a top level of prior distributions (hyperpriors). Parameters

for hyperpriors are fixed and not explicitly included in the graph.

Finally the complete PDF factorization is given by

p (θ,D) = p (D | θ) · p (θ) = (4.30)

p (D | θ1) · p (θ1 | θ2) · p (θ2)

9Note that although Tνi is not included in the set of parents, the three evidential nodes Di =
(νrec,i, Arec,i,mGrec,i) are conditionally independent of Tνi given their parents. Therefore it holds that
p (Di | pa (Di)) = p (Di | θ1).
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Node Sampler Node Sampler
τG Conjugate gamma wν Conjugate Dirichlet
aG Conjugate Gaussian Tνi Discrete slice
bG Conjugate Gaussian µν Conjugate Gaussian
mG,i Conjugate Gaussian θν Conjugate Gaussian
µA Conjugate Gaussian τν Slice
τA Conjugate gamma ων Slice
aA Conjugate Gaussian log (νi) Metropolis 1D
bA Conjugate Gaussian Λ Metropolis 1D
Ai Metropolis 1D Tνrec,i Categorical

Table 4.4: Samplers used to estimate the full conditional distribution for parameters of the
BGM proposed in this thesis. With the exception of wν , for parameters which are random
vectors the sampler is applied independently to each component.

4.4 Inference Algorithm

Given the model proposed in Section 4.3 we have to sample the joint posterior distribution

for its 22 + 5N parameters, namely

π∗ (θ) = π (θ | D) ∝ L (θ1) · p (θ1 | θ2) · p (θ2) (4.31)

, where N is the sample size of the data D, and then marginalize over the nuisance parame-

ters to obtain the posterior distribution for the parameters of interest. Our focus mainly are

in the hyperparameters of real frequencies, amplitudes and apparent G-magnitudes inside

the vector θ2 of the top level of random parameters hierarchy. Therefore we are interested

in the marginal a posteriori π∗ (θ2). The marginalization to obtain samples form this latter

distribution can be accomplished by the general MCMC procedure depicted in Section 3.4.2.

This procedure retains only the values of θ2 once a sample for the joint posterior has been

obtained and discards the rest10.

As we saw in Section 3.4.5, the joint posterior distribution in Eq. 4.31 can be efficiently

sampled by means of a Gibbs sampling scheme. In each iteration, this algorithm traverses

the graph in topological order and sample the full conditional distribution of each node,

given the data and the most recent values of the rest of nodes, using its Markov Blanket.

In BUGS we only have, in principle, to declare the graph and let the software to determine

the best sampling algorithm for each node11. We include in Table 4.4 the complete list of
10In the OpenBUGS graphical interface this is easily accomplished by the option

Inference->Samples->Sample Monitor Tool.
11Note that in BUGS it is not necessary to implement the inference mechanism because it is incorporated
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sampling algorithm used to compute the full conditional distribution for parameters of the

proposed BGM. The list corresponds to the default samplers taken by OpenBUGS, with

the exception of the categorical sampler for Tνrec,i forced by us. We exemplify only the full

conditional distribution sampling in two scenarios, one for node τG and the other for the

set of nodes {log (νi)}. For that, we assume the following topological ordering for the graph

depicted in Fig. 4.7:

ων � τν � τG � τA � θν � µA � µν � bG � bA � aG � aA � wν (4.32)

�
i
Tνi � Λ �

i
Tνrec,i �

i
log (νi) �

i
mG,i �

i
Ai

and assume too that we are it the t-th iteration of the sampling algorithm. Then, in the

third step of this iteration we have to sample τ (t)
G according to

τ
(t)
G ∼ π (τG | bl (τG)) ∝ h7 (τG) ·

N∏
i=1

g3
(
m

(t−1)
G,i | log (νi)(t−1) ,a

(t−1)
G , b

(t−1)
G , τG

)

, which can be done from a closed form for the posterior PDF, namely a conjugate Gamma.

Otherwise, for the same t-th iteration, the 16-th step is developed by cycling across the set

{log (νi)} and sampling each node by

log
(
ν

(t)
i

)
∼ π (log (νi) | bl (log (νi))) ∝

g4
(
log (νi) | T (t)

νi , µ
(t)
ν ,θ

(t)
ν , τ

(t)
ν ,ω(t)

ν

)
· g2

(
Ai | log (νi) , a(t)

A , b
(t)
A , µ

(t)
A , τ

(t)
A

)
·

g3
(
m

(t−1)
G,i | log (νi) ,a(t)

G ,b(t)
G , τ

(t)
G

)
· f1

(
νrec,i | log (νi) , T (t)

νrec,i

)

, which can be done by the 1D Metripolis Hasting algorithm given that a closed form for

the posterior PDF is unknown.

4.5 Implementation

4.25, 4.3

Given that BUGS is a declarative language, implementation of equations in Section

4.3.2 should be, in principle, quite straightforward. Nevertheless, we have been faced to

in the software tool. Nevertheless it is important to deepen some degree in the third stage of the methodology
proposed in Section 4.1 taking in mind future implementations on R or Java.
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some problems. The main difficulty has been to code the mixtures of distributions which

constitute the cornerstone of our work and, in particular, the sampling mixtures of distribu-

tions which are not included in the list of standard distributions in the open-source version

of the language OpenBUGS12 v. 3.2.2 employed in the thesis. To model the likelihood

for such a sampling distribution we have used the so-called Serguei Smirnov’s zeroes trick

(Smirnov, 2001). The trick takes into account that the likelihood of observing a zero for an

exponential distribution with rate parameter λ is given by f (0) = λ. So, we can introduce

an array of zeroes as dummy data and make λ to be the likelihood of the distribution by

means of which we generate our real data. For example, by Equation 4.25 we model the

conditional distribution of the recovered amplitude Arec,i | Ai, Tνrec,i as a mixture of three

skewed Cauchy distributions whose mixing proportions are given by the probability of each

locus T jνrec,i of frequency. According to (Azzalini and Genton, 2008, expr. (4), page 109),

the PDF for a skewed Cauchy can be derived from the univariate standard Student t PDF

and its distribution function13, which have allow us to develop the following code segment:

1 # #Sergue i Smirnov ’ s z e r o e s t r i c k

2 dummy[ i ] <− 0

3 dummy[ i ] ~ dexp ( l i k e l i h o o d . recA [ i ] )

4 norm . recA [ i ]<−(recA [ i ]−A[ i ] ) / s c a l e . recA [ i ]

5 # CDF f o r a skewed Cauchy d i s t r i b u t i o n

6 arg . cd f [ i ]<−shape . recA [ i ] ∗ norm . recA [ i ] ∗ sq r t (2/(1+pow(norm . recA [ i ] , 2 ) ) )

7 # Like l i hood f o r a skewed Cauchy d i s t r i b u t i o n

8 l i k e l i h o o d . recA [ i ]<−(2/ s c a l e . recA [ i ] ) ∗1/( p i ∗(1+pow(norm . recA [ i ] , 2 ) ) )

∗0.5∗(1+ arg . cd f [ i ] / s q r t (2+pow( arg . cd f [ i ] , 2 ) ) )

9 # s c a l e and shape parameters f o r the i−th recovered amplitude

10 s c a l e . recA [ i ] <− c s c a l e . recA [T. recNu [ i ] ]

12Available in http://www.openbugs.net .
13Taking the degrees of fredom to one.

78



Chapter 5

Model Evaluation

This chapter is entirely devoted to develop the fourth stage of the general methodology,

for constructing our BGM, proposed in Section 1.3, namely, the model evaluation. It is

structured in six sections as follows. Section 5.1 summarizes the methodological stages we

follow. Section 5.2 describes the preparation of a sample of observed variables to train the

model. Section 5.3 is devoted to the model training. In Section 5.4 we analyze the model

convergence. Section 5.5 is devoted to the estimation and analysis of the posterior distri-

butions for the parameters of interest. Finally, in Section 5.6 we compare the parameters

inferred by our model with the real ones.

5.1 Methodology

We summarize our methodology in the following five stages:

1. Preparation of the Training Set. We prepare a training set from the complete

sample of observed variables bearing in mind that we want to evaluate the capacity

of our model to infer the real distributions of frequencies and amplitudes in front of

an extreme scenario of systematic biases in the recovered data.

2. Model Training. We train1 the model with the OpenBUGS MCMC engine in two
1Some remarks about terminology. The use of the term “model training” must be understood here in

the context of the Bayesian statistical learning where we aim to learn the posterior values for a number of
parameters in the model given the evidence. The evaluation of the model in the thesis is done by comparing
those posterior values with the real ones which in our case are available. In future implementations, by using
as data the real values provided by Gaia, evaluation mechanism should be changed to the use of posterior
predictive distributions.
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stages, the former for convergence analysis and the latter to obtain a set of samples

for parameters of interest.

3. Convergence Diagnosis. We use two criteria to evaluate the convergence: the

autocorrelation function (ACR) and the corrected GR statistic.

4. Estimation of Posterior Distributions. We analyze the samples and estimated

densities for posterior distributions of parameters of interest.

5. Comparisons with Real Parameters. We compute summary statistics for es-

timated posteriors distributions, construct infered PDFs for input distributions and

compare them with real input distributions whenever possible.

5.2 Preparation of the Training Set

We have prepared the training set, i.e. a subsample T  D of recovered parameters, taking

into account the following strategies:

1. To use a reduced number M of aliased loci components. First, if we include

in the model several loci from the same substructure, the model does not work well.

This happens, in particular, for the substructure around the identity line. Second, the

size of internal data structures generated when the model is compiled in OpenBUGS

grows considerably when we increase the number M of spurious components and the

software tends to be unstable2.

2. To increase the proportions of the aliased loci. The proportions of most loci of

aliased frequencies, even when the complete database (36645 instances) is considered,

are negligible (see Tab. 4.1). The model is able to infer the real distributions of

frequencies, amplitudes and apparent G-magnitudes if we maintain these proportions

in the training set3. Nevertheless, we are interested in evaluating the effectiveness of

our model to infer those real distributions in front of an extreme scenario of systematic

biases in the recovered data. This alternative scenario could occur for other stellar
2

(a) At least in the platform on which we have installed the software (see Section 5.3 bellow)

3We have confirmed this fact by performing additional experiments not included in this work.
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populations to which our model would be applicable, although that is not the case for

the analyzed Cepheids population.

3. To employ a relatively small sample size N . First, if we want to increase the

proportions of aliased loci (2nd strategy) in the sample we must decrease the number

of samples in the identity line. Second, the size of data structures generated when

the model is compiled in OpenBUGS also grows considerably when we increase the

sample size.

Based on the considerations of the previous paragraphs we have constructed a dataset

T = {(Arec,i, νrec,i,mG,rec,i)}854
1  D composed of 500 randomly (without replacement) selected

instances from the locus νrec = νin and all instances (354) from the locus νrec = ±νin +7νS−3νp.

Figure 5.1 shows the systematic biases for the empirical frequency distribution (histogram)

vs the real one (its PDF) and for the empirical conditional distributions of the recovered

amplitude given the input amplitude for the three locus, identity and νrec = ±νin + 7νS − 3νp,

whose observed parameters are included in the training set.

5.3 Model Training

We have trained the model from T using the OpenBUGS MCMC engine configuring the

samplers as was indicated in Table 4.4. We have divided the training in two stages and

generated three Markov chains (more properly realizations) in each, with a total of 30000

iterations. We have used the first stage, consisting of 20000 iterations, as a burn-in phase,

being the corresponding realizations discarded after used for convergence evaluation. There-

fore, we obtain 10000 samples from the second stage of each realization (30000 in total). We

will assume that these samples were drawn from the posterior distribution of the parameters

of interest4.

We have executed OpenBUGS v. 3.2.2 over a Windows 7 OS in an Intel Core i7 machine

at 2.67 GHz with 6.00 Gb of RAM employing a single core5. The total running time of the

simulation process inverted by our desktop computer has been of 68.7 min. with a total of
4We monitor the mixing proportions, means and standard deviations of each Gaussian component of the

logarithm of the frequency distribution log (ν). Obtaining these parameters from those in Equation 4.14 by
deterministic relationships is straightforward.

5Currently OpenBUGS for Windows does not allow to be directly executed simultaneously in several
cores preventing a way to parallelize MCMC chains.
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N Chains Mem. (Mb) Time (sec.)
1354 1 20.989 38
1354 3 21.399 115
2708 1 46.452 79
2708 3 46.867 241
5416 1 76.439 210
5416 3 74.788 618

Table 5.1: Empirical study of scalability for different sample size N and number of simulated
chains after the 500 first iterations.

20.71 Mb of allocated memory for data structures generated by OpenBUGS once the model

has been compiled.

Although a theoretical analysis of scalability of the proposed solution is beyond to the

scope of this thesis, we can not fail to make an empirical study, however modest, which is

included in this Section given its brevity. Table 5.1 shows the allocated memory just after

model compilation and the consumed time after 500 first iterations for three different size

samples N generating one and three chains in each. From the table becomes apparent that

the temporal complexity order is linear both in N and the number of simulated chains.

5.4 Convergence Diagnosis

To evaluate the convergence within and between the three chains we respectively use the

sample autocorrelation function (ACR) and the corrected GR statistic (see Section 3.4.6)

applied both to the first 20000 iterations of the algorithm. Both analysis are done with

the aid of the CODA package once chains has been imported in R , after being exported

by OpenBUGS. For convergence within chains we compute and plot the ACR up to 200

lags. For convergence diagnosis between chains we compute and plot the evolution of the

shrink factor (corrected GR statistic) and do the same with the upper bound of a credible

interval (at 95%) for it. Given that we are mainly interested in the posterior distributions

for parameters of input frequencies, amplitudes and apparent G-magnitudes and and for

the sake of conciseness we only present the graphs for these eighteen parameters.

The results of the analysis are depicted in Figures 5.2 to 5.5. Since the ACR function

should decrease to zero as the lag increases and the upper bound for corrected scale reduction

factor (CSRF) should approach unity if the chain is reaching its stationary distribution, we

conclude that the worst scenario (high autocorrelation) is depicted by chains for parameters
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Figure 5.2: Autocorrelation plots (left) and posterior distributions (right) for parameters of
log (ν) (i).
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Figure 5.3: Autocorrelation plots (left) and posterior distributions (right) for parameters of
log (ν) (ii).
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Figure 5.4: Autocorrelation plots (left) and posterior distributions (right) for parameters of
apparent G magnitude.
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Figure 5.5: Autocorrelation plots (left) and posterior distributions (right) for parameters of
amplitude.
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of the second Gaussian component of log (ν), namely the mixing proportion wν2, the mean

µν2 (second and bottom rows of Fig. 5.2) and the standard deviation σν2 ( third row

of Fig. 5.3). In particular, chains for σν2 depict the worst behavior with a minimum

value for the ACR after 200 lags of about 0.9 and a value for the CSRF of 1.25 after the

20000 iterations. In contrast, the best scenario is depicted by chains for parameters of

the conditional distributions of apparent G-magnitude and amplitude given the frequency,

showed respectively in Figs. 5.4 and 5.5, in particular for the slope aG2, the intercept bG2

and the mean µA. For these three latter parameters, which correspond to log (ν) > −1,

the ACR value is nearly zero after lags greater than 50. In the best scenario, values of the

CSRF are at the end of simulation all bounded by 1.03. Finally, the behavior of chains for

standard deviations σG and σA is also satisfactory.

5.5 Posterior Distributions for Parameters of Interest

In this Section we present and analyze the samples of posteriors distributions for parameters

of interest and estimations of their PDFs6. Results are depicted in Figures 5.6 and 5.7, for

parameters of logarithm of the frequency, and in Figures 5.8 and 5.9 for parameters of

apparent G-magnitude and amplitude, respectively. In the left column of each figure we

depict the trace plots for the last 10000 iterations of the three simulated chains. In the right

columns we depict the corresponding estimated densities from the total of 30000 samples

for each parameter.

Let now start by analyzing first the best scenario. This is depicted in Figs. 5.8 and

5.9 by samples and posterior densities for parameters (aG2, bG2, σG) and (µA, σA) of the

respective conditional distributions mG | log (ν) and A | log (ν) when log (ν) > −1. We

see that each individual sample (chain) is well mixed, that is, they traverse quickly the

corresponding posterior parameter space, and this space also seems to be the same for

three chains. Moreover, there is no evidence of trends in the three time series for these

five parameters. All these fact are consistent with our analysis of convergence summarized

in the previous Section. The corresponding posterior densities are well centered Gaussian

distributions.

At the opposite end, the worst scenario is depicted by samples and estimated posterior
6For the sake of conciseness we postpone the presentation of associated statistics to Tables 5.2 and 5.3

in Section 5.6.
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densities for parameters of the first and second Gaussian component of log (ν). As we can

see in corresponding rows of Fig. 5.6 and Fig. 5.7, individual chains for mixing proportions,

means and standard deviations of these components did not mix well and present evident

trends that correspond to the high autocorrelation detected in the previous Section. An

extreme case is presented for σν2, where chains become separated from each other and the

samples we have obtained neither are independent nor belong all to the same parameter

space. The corresponding densities clearly show a significant skewness to the right in the

mixing proportion and mean densities of the second component, and the presence of local

extrema in the posterior density of σν2.

5.6 Comparison with Real Parameters

The main objective of this Section is to evaluate the ability of the model developed in

Chapter 4 to retrieve the real distributions of frequencies, amplitudes and apparent G-

magnitudes of the simulated Cepheids population given their recovered values in the train-

ing set T = {(Areci, νrec,i,mG,rec,i)}854
1  D. Recall from Section 4.2.2 that real theoretical

distributions of log (νin) and Ain | log (νin) are, respectively, a mixture of five Gaussians

and a Gaussian distribution with mean independent of log (νin) if log (νin) > −1 or a linear

combination of log (νin) elsewhere. Also, we do not have analytical expression for the real

PDF of mGin | log (νin). To achieve this objective:

1. We compute summary statistics, namely the mean and the 2.5%-97.5% percentiles,

from the samples of posterior distributions for the parameters of interest inferred by

our model.

2. We compare the former posterior means with the parameters of the the real theoretical

distributions.

3. We construct and depict theoretical distributions using the posterior means and com-

pare them with: i) the empirical distribution in the set I =
{

(νi, Ai,mG,i)input
}854

1
and ii) the real theoretical distributions.

The results of our analysis are shown in Tables 5.2 to 5.3 and Figure 5.10. For the decimal

logarithm of the frequency log (ν) we have tried to aid comparison in Table 5.3 by present-

ing posterior parameters in increasing order by means. Even so, it is difficult to make a
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Figure 5.6: Trace plots and posterior distributions for parameters of log (ν) (i).
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Figure 5.7: Trace plots and posterior distributions for parameters of log (ν) (and ii).
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Figure 5.8: Trace plots and posterior distributions for parameters of the apparent G mag-
nitude.
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Figure 5.9: Trace plots and posterior distributions for parameters of the amplitude.
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correspondence with the real parameters given that the real frequency has five Gaussian

components. So, it is better to examine directly the comparison graph in the top row to

the left of Figure 5.10. There we can see that fitting of the PDF for log (ν) with only three

components, depicted with the dotted blue line, is quite satisfactory and reconstruct the

input PDF (solid red line) successfully.

With respect to the posterior parameters of the conditional distribution mGin | log (νin)

we only dispose of the empirical distribution in I for comparison. The top rows of Table 5.3

shows that the interquartile range for each parameter is satisfactorily narrow. The bottom

row of Fig. 5.10 show the two regression lines

mG,i =


aG1 · log (νi) + bG1 log (ν) < −1

aG2 · log (νi) + bG2 log (ν) > −1
(5.1)

, where the two error bars indicate a one (plus/minus) inferred standard deviation σG for

the corresponding conditional density of mG,i. We see that the fitting to the empirical

distribution in I is successful.

For parameters of the conditional distribution Ain | log (νin) we have constructed the

two regression lines

Ai =


aA · log (ν) + bA log (ν) < −1

µA log (ν) > −1
(5.2)

The central rows of Tab. 5.2 and the top row to the right of Fig. 5.10 show that the system

underestimates the true value of the mean µA when log (νin) > −1.

The last objective of this Section is to evaluate the ability of the multinomial logistic

regression submodel given by Equation 4.23 to constrain the mixing proportions of the

mixtures of distributions which model recovered frequencies and amplitudes (Equations 4.21

and 4.25). Recall that parameters λβj , j ∈ {1, 2}, represent the slopes for the standardized

ecliptic latitude β′ for each aliased component and λ0j represent the intercepts. We see in the

bottom rows of Tab. 5.3 that the interquartile range for λβj is too wide. Nevertheless, the

decrements of the corresponding logits are significant. For example, for a unitary increment

in β′ the ln
(
πi2
πi1

)
decreases on average by -0.766, which corresponds to a new value of the

(πi2/πi1) ratio equal to 46.5% of the initial ratio.
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Inf. Pa-
rameter

Posterior
Mean

2.5%-97.5%
Percentiles

Real
value

Real pa-
rameter

wν2 0.027 0.014,0.046 0.126 wν1
- - - 0.109 wν2
wν1 0.405 0.322,0.502 0.419 wν3
wν3 0.568 0.465 ,0.656 0.104 wν4
- - - 0.247 wν5
µν2 -1.502 -1.607 ,-1.365 -0.989 µν1
- - - -0.643 µν2
µν1 -0.659 -0.710 ,-0.614 -0.618 µν3
µν3 -0.525 -0.537 ,-0.512 -0.536 µν4
- - - -0.476 µν5
σν2 0.136 0.095 ,0.204 0.355 σν1
- - - 0.049 σν2
σν1 0.284 0.245 ,0.326 0.225 σν3
σν3 0.090 0.077,0.103 0.046 σν4
- - - 0.048 σν5

Table 5.2: Summary statistics of posterior distributions for parameters of the decimal loga-
rithm of the frequency log (ν) and comparison with its real parameters. w, µ and σ denote,
respectively, mixing proportions, means and standard deviation of each Gaussian compo-
nent.

Parameter Posterior
Mean

2.5%-97.5%
Percentiles

Real
value

aG1 2.551 2.221 ,2.909 -
bG1 16.762 16.38 ,17.17 -
aG2 3.013 2.962 ,3.063 -
bG2 17.161 17.130 ,17.190 -
σG 0.099 0.094,0.105 -
aA -0.4317 -0.671 ,-0.209 -0.5
bA 0.2848 -0.018 ,0.572 0.2
µA 0.6197 0.578,0.661 0.7
σA 0.1501 0.142,0.159 0.15
λ02 -1.132 -1.314 ,-0.955 -
λ03 -0.981 -1.156 ,-0.816 -
λβ2 -0.766 -1.140 ,-0.395 -
λβ3 -0.743 -1.091 ,-0.385 -

Table 5.3: Summary statistics of posterior distributions for the rest of parameters of in-
terest and comparison with its real parameters when proceed. a, b and σ denote, respec-
tively, slopes, intercepts and standard deviations for conditional distributions of apparent
G-magnitude G and amplitude A given the decimal logarithm of the frequency; and λ
denote coefficients of the logistic regression submodel with covariate the rescaled ecliptic
latitude β′.
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Figure 5.10: Real versus estimated marginal distributions for frequencies and conditional
distributions of apparent G-magnitude and amplitude given the the frequency. The esti-
mated regression lines for A and mG given log (ν) are constructed from posterior means
in Table 5.3. Their cut-point is at log (ν) = −1. The error bars indicate a one (plus/mi-
nus) inferred standard deviation (σA or σG) for the corresponding Gaussian conditional
distribution.
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Chapter 6

Summary and Conclusions

6.1 Conclusions

In this thesis we have presented a two-level BGM to infer the true distributions of the

physical parameters amplitude, frequency and apparent G-magnitude of the LMC classical

Cepheid population from their observed values by the Gaia satellite (after processed by the

CU7 software of the DPAC). We have modeled the real frequencies (in logarithmic scale)

by means of a mixture of Gaussian distributions with a fixed number of components. We

have used piecewise linear models (with a fixed knot value depending on the frequency)

to model the dependency of the real amplitudes and G-magnitudes on the logarithm of

the real frequency. We have modeled the observed amplitudes and frequencies by mean

of mixtures of distributions with some fixed parameters. We have considered in our BGM

the photometric measurement error in the Gaia broad G-band and tackled the aliasing

problem in the frequencies recovery which arises as a product of the Gaia scanning law.

We have modeled the recovery probabilities of aliased frequencies by means of a logistic

regression submodel using the ecliptic latitude as a predictor. The model has not addressed

completely the aliasing problem because we have only used some predefined configurations

of aliased data and discarded the rest. Furthermore, we have restricted to a very narrow

range of ecliptic latitudes in which the relationship between the recovery probability of

aliased frequencies and the ecliptic latitude is monotone.

We have used and algorithm based in MCMC simulation techniques for the inference,

due to the complexity of the problem parameter space. We have performed the evaluation

of the model with simulated data given that the Gaia mission was not yet completely
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operational. We have obtained a successful approximation for the distribution of the real

frequencies once the model has been trained. We have obtained also good results in the

estimation of the conditional distributions of real G-magnitudes. Unfortunately, our results

have also shown a significant bias in the estimation of the conditional amplitude distribution

for one of the ranges of the piecewise linear model.

6.2 Future Work

We summarize some possible extension for our model and future investigation lines as

follows:

• To include a parameterization for distances (see Section 4.2.2 and Appendix A). For

that, we should consider that the coordinates of the stars are observed variables (data)

and are not constants as we have assumed for the ecliptic latitude in the model

presented in this thesis. At present, we are interested in an investigation line which

proposes us the construction of a simpler BGM which includes such a parameterization

for a RR Lyrae star population gathered from the OGLE III catalog.

• To model a number of parameters considered fixed in our model as random param-

eters. This includes the hyperparameters for the skewed Student t distributions in

the mixture for the recovered amplitude of Equation 4.25 and the intercepts for the

spurious components in the mixture for the recovered frequencies of Equation 4.21. It

also includes the number of Gaussian components for the distributions of the real and

recovered frequencies. Finally, it includes the cut-point log (ν) = −1 of the piecewise

linear models for the real amplitudes and G-magnitudes.

• To analyze other Cepheids populations, e.g. those of our Galaxy. This implies also to

revise the logistic regression submodel used to model the dependency of the recovery

probability of aliased frequencies on the ecliptic latitude.

• To change and enhance the evaluation methodology of the model. The key point here

is that we have used the real (but simulated) values of the parameters of interest for

comparisons. These parameters actually are the focus of the inference and will not

be available when we work with a sample provided by Gaia. An option is to use
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the posterior predictive distribution to check if the inferred parameters are discrepant

with the observations in systematic ways.

• To search for an alternative parameterization for the probabilities of the loci of re-

covered frequencies. The logistic regression submodel, with the ecliptic latitude as a

covariate, imposes severe constraints on those probabilities. This fact influences in

turn on the model of recovered frequencies as a mixture of Gaussians. Perhaps it

would be better to use non-informative priors for the recovery probabilities of each

star.

• To integrate the model into the software of CU7. This line implies to implement the

model in the Java language.
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Appendix A

A Modified BGM with

Parameterization for Distances

Recall from Section 4.2.2 that the starting point for this parameterization is the determin-

istic relation

mG = MG + 5 (log (r)− 1) (A.1)

Absolute Magnitudes in G Band Taking into account Eq. 4.4 applied to the absolute

G-magnitude and Eq. 4.7 we parametrize this node as

f (MG,i | log (νi) , aG1, bG1, aG2, bG2, τG) = (A.2)

1{log(νi)<−1}N (aG1 · log (νi) + bG1, τG) + 1{log(νi)>−1}N (aG2 · log (νi) + bG2, τG)

with the prior distribution

p (aG1) = N (0, 0.001)

p (aG2) = N (0, 0.001) (A.3)

p (bG1) = N (0, 0.001)

p (bG2) = N (0, 0.001)

p (τG) = Gamma (0.001, 0.001)

Distance We compute the decimal logarithm log (ri) of the distance deterministically

from the distribution of Cartesian Geocentric equatorial coordinates of the LMC sources,
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distribution that in turn depends (also deterministically) on a model of the galaxy as a (ran-

dom) exponential disk whose parameters are our inference focus. In the present paragraph

we present the parametrization for log (ri) leaving for the next epigraph the parameteri-

zation for the disk exponential model. The logarithm of the distance log (ri) is computed

as

log (ri) = log
(∥∥(x′i,y′i, z′i)∥∥2

)
(A.4)

where

• (x′i,y′i, z′i) are the Cartesian Geocentric equatorial coordinates of the LMC sources

computed as (
x′i,y′i, z′i

)
= (xi, yi, zi) · T t +

(
x′0, y

′
0, z
′
0
)

(A.5)

• (x′0, y′0, z′0) = (3.29, 17.59,−46.69) are the Cartesian Geocentric equatorial coordinates

of the disk center equivalent to the spherical equatorial coordinates (α0, δ0, r0) =

(1.39,−1.20, 50).1

• The transformation matrix T correspond to the composition of rotations2

rot+z′′
(
α0 −

π

2

)
◦ rot−x′

(
δ0 + π

2

)
◦ rot+z′ (θ) ◦ rot

−
x (i) (A.6)

, with θ = 0.51rad (position angle) and i = 0.54rad (inclination angle), and is given

by

T =


0.94 −0.25 −0.22

0.28 0.95 0.15

0.17 −0.21 0.96

 (A.7)

• (x, y, z) are the Cartesian coordinates of the disk exponential model.

Radial distance and height To parametrize the proper Cartesian coordinates (xi, yi, zi)

of the disk we first compute the third coordinate zi deterministically as

zi = (−1)Bi · hi (A.8)
1Angles and distances are expressed respectively in rad and kpc.
2The super-indexes ’+’ and ’-’ denote, respectively, clockwise and counterclockwise rotations.
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where:

• Bi = Bern (0.5) is a semi-cylinder indicator, with values 0 or 1 for a point above or

below the disk plane, respectively.

• hi is the the height above (or below) the plane of the disk (always positive). For this

variable we assign the exponential distribution

p (hi | hz) = Exp (1/hz) (A.9)

• hz is the scale height of the disk. For this vertical scale factor we take the non

informative prior

p (1/hz) = Gamma (0.001, 0.001) (A.10)

Secondly we compute deterministically the two first Cartesian coordinates as

xi = Ri · cos (ϕi) (A.11)

yi = Ri · sin (ϕi)

where:

• Ri is the radial distance from the disk center (measured in the plane of the disk). For

this variable we assign the exponential distribution

p (Ri | hR) = Exp (1/hR) (A.12)

• hR is the radial scale length. For this radial scale factor we take the non informative

prior

p (1/hR) = Gamma (0.001, 0.001) (A.13)

• ϕi is the position angle drawn in the plane of the disk, for which we assign the prior

p (ϕi) = U (0, 2π)
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