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Chapter 1

Introduction

1.1 Motivation

Probabilistic Graphical Models (PGMs), in particular Bayesian networks and

influence diagrams, were developed in the 1980’s by researchers in Artifi-

cial Intelligence, Mathematics and Economy with the purpose of solving problems

whose complexity exceeded the capacity of the methods existing so far. Nowa-

days, PGMs are applied to many areas and there exists an increasing interest in

the academic field as well as in the business world. PGMs allow to deal with

problems that could not be addressed with traditional probabilistic methods or

other artificial intelligence techniques.

Several Spanish research groups interested on PGMs arose independently in

different universities. The work on PGMs at UNED started in 1990 with (Dı́ez,

1994) PhD Thesis, which consisted of the construction of the expert system

DIAVAL, a Bayesian network for the diagnosis of heart diseases by echocardiog-

raphy.

The research of the CISIAD (Centro de Investigación sobre Sistemas In-

teligentes de Ayuda a la Decisión)1, has always been led by concrete medical

problems: the needs that have arisen when building diagrams has motivated the

development of new models, algorithms, and software tools, which have been later

applied to other problems, not only in medicine.

The main objective of this research was the building of an influence diagram

to make a cost-utility analysis for the total knee arthroplasty clinical process.

1CISIAD is a Research Center on Intelligent Decision-Support Systems, UNED dependent
center.

11



12 Chapter 1. Introduction

Figure 1.1: Phases in the development of this research.

The main motivation to build this diagram was to confirm two assumptions

of the expert who has collaborated in this research, Dr. Rubén Garćıa Fraile,

which are the following:

1. The main risk factors in order to suffer a perioperative infection after the

total knee arthroplasty are: (1) a high body mass index (BMI), (2) being

diabetic (diabetes mellitus), and (3) being allergic to antibiotics.

2. For the patients with these three risk factors, the arthroplasty led to a high

loss of health and money, because the removal of the prosthesis is needed if

the infection is present.

1.2 Objectives

Because of the needs described in the previous section, the objectives of this

research can be summarized as follows:

1. To build an influence diagram with super-value nodes representing the total

knee arthroplasty clinical process and diagnosis of perioperative prosthesis

infection, which we called ArthroNET.

2. To evaluate this diagram.

1.3 Methodology

The methodology followed for achieving the objectives can be divided into

three phases, as shown in Figure 1.1.

The first phase consists of building the influence diagram ArthroNET, with

the help of the orthopedic and trauma surgeon mentioned in Section 1.1. The
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second phase was the validation of the system, which led to the modification of

the diagram with the expert’s help in an iterative process. Finally, we could

evaluate the model and extract some results.

1.4 Organization of the research

This memory is structured in four parts:

1. Part I explains the motivation, objectives, and methodology of this research.

2. Part II reviews the state of the art of two kind of decision support systems:

(1) those related to knee arthroplasties, and (2) those based on influence

diagrams applied to clinical processes.

3. Part III presents the decision-support system for the diagnosis of total knee

arthroplasty perioperative infection.

4. Part IV shows the conclusions and some open lines for future research.
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State of the Art



Chapter 2

State of the Art

In this chapter we present the state of the art of (1) decision support systems

(DSS below) for total knee replacements and (2) influence diagrams applied

to medicine.

2.1 DSS for Total Knee Arthroplasty

There are few decision support systems for orthopedic surgery. Thereby, the

only work with the same objective as ours found at the date of this research

is (Hazen et al., 1998), demonstrating how to use influence diagrams augmented

by stochastic nodes to analyze a chain of decisions as to whether a patient should

proceed to total knee (or hip) replacement surgery or not. The objective of this

decision analysis was to calculate the expected costs and effectiveness of each

choice. The use of QALYs for the objective was important because an elderly

person undergoing joint replacement may not increase his/her life expectancy, but

the quality of life improvement can be considerable and, quite possibly, worth the

cost.

There is other non-influence diagram based support systems used to help or-

thopaedic surgeons. Nowadays, the School of Engineering Sciences of the Univer-

sity of Southampton is working on the Decision Support Software for Orthopaedic

Surgery project (DeSSOS), whose main objective is to develop both knowledge

and software tools providing decision support for orthopaedic surgeons involved in

knee arthroplasty. They are trying to offer pre- and intra-operative assistance to

determine the prosthetic configuration and position based on the data captured

15



16 Chapter 2. State of the Art

from each individual patient. Improving the effectiveness of total knee replace-

ment surgery will be done integrating kinematic models into the decision process,

so the best possible outlook is offered to the patient.

The same Bioengineering Department where DeSSOS was born, is carrying

out other research projects related to knee and hip replacement. Because of their

nature, we just want to mention three of them.

In (Strickland et al., 2010), explicit finite element (FE) and multi-body dy-

namics (MBD) models have been developed to evaluate total knee replacement

mechanics as a complement to experimental methods. In conjunction with these

models, probabilistic methods have been implemented to predict performance

bounds and identify important parameters, subject to uncertainty in component

alignment and experimental conditions. Probabilistic methods, such as advanced

mean value and response surface method, provide an efficient alternative to the

gold standard Monte Carlo simulation technique. The objective of the study was

to benchmark models from three platforms (two FE and one MBD) using va-

rious probabilistic methods to predict the influence of alignment variability and

experimental parameters on TKR mechanics in a simulated gait.

The second study, (Strickland et al., 2009), demonstrates conceptually how

probabilistic studies might further provide a framework to explore relationships

not just within but between multiple different activities, e.g. intra-operative pas-

sive laxity drawer loading and post-operative active gait. Two implants were

compared using simulated ISO-gait and passive laxity loading, with factors inclu-

ding mal-positioning and soft-tissue constraint varied using Monte Carlo analysis.

The results illustrate that correlations between different activities can be quanti-

fied; this demonstration study suggests further research is justified (with detailed

clinically representative models) to explore the relationship between passive and

active mechanics for specific in vivo conditions.

Polyethylene wear remains a clinically relevant issue affecting total knee re-

placement performance, with considerable variability observed in both clinical

retrieval and experimental wear studies. For this reason the objectives of the lat-

ter study, (Pal et al., 2008), were to develop a probabilistic wear prediction model

capable of incorporating uncertainty in component alignment, constraint and en-

vironmental conditions, to compare computational predictions with experimental

results from a knee wear simulator, and to identify the most significant parameters

affecting predicted wear performance during simulated gait. The study utilizes a
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previously verified wear model; the Archards law-based wear formulation repre-

sents a composite measure, incorporating the effects and relative contributions of

kinematics and contact pressure. Predicted wear was in reasonable agreement in

trend and magnitude with experimental results. After 5 million cycles, the pre-

dicted ranges (1–99%) of variability in linear wear penetration and gravimetric

wear were 0.13 mm and 25 mg, respectively, for the input variability levels evalua-

ted. Using correlation-based sensitivity factors, the coefficient of friction, insert

tilt and femoral flexionextension alignment, and the wear coefficient were identi-

fied as the parameters most affecting predicted wear. Comparisons of stability,

accuracy and efficiency for the Monte Carlo and advanced mean value probabilis-

tic methods are also described. The probabilistic wear prediction model provides

a time and cost efficient framework for evaluating wear performance, including

considerations of malalignment and variability during the design phase of new

implants.

(Dong and Buxton, 2006), apply a Markov model to compare cost-effectiveness

of total knee replacement using computer-assisted surgery (CAS) with that of

total knee replacement using a conventional manual method in the absence of

formal clinical trial evidence. To this end, a structured search was carried out to

identify evidence relating to the clinical outcome, cost and effectiveness of total

knee replacement. Nine Markov states were identified based on the progress of

the disease after the surgery. Effectiveness was expressed in QALYs. Then, a

probabilistic sensitivity analysis was carried out using a Monte Carlo method.

The study concludes that compared with conventional total knee replacement,

computer-assisted total knee replacement is a cost-saving technology in the long-

term and may offer small additional QALYs.

2.2 Influence diagrams based systems applied to

clinical processes

Before listing the influence diagram applications, we offer a short description

of influence diagrams, extracted from (Luque Gallego, 2009).
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2.2.1 Influence diagrams

An influence diagram (ID) is basically a Bayesian network augmented with

decision nodes and value nodes. Thus, an ID consists of an acyclic directed

graph G = (V,E), where the set V has three types of nodes: chance nodes VC,

decision nodes VD and utility nodes VU.

As in Bayesian networks, chance nodes (drawn as circles) represent chance

variables, i.e., events which are not under the direct control of the decision maker.

Decision nodes (drawn as rectangles) correspond to actions under the direct con-

trol of the decision maker. Utility nodes (drawn as diamonds) represent the

expected benefit or loss, or more generally, the preferences of the decision maker.

Utility nodes can not be parents of chance or decision nodes.

(Tatman and Shachter, 1990) proposed an extended framework of IDs with

SVNs1. They distinguished two types of utility nodes: ordinary utility nodes,

whose parents are decision and/or chance nodes, and super value nodes (SVNs),

whose parents are utility nodes. We assume that there is a utility node U0 that

is a descendant of all the other utility nodes, and therefore has no children2.

There are three types of arcs in an ID, corresponding to the type of node they

go into. Arcs into chance nodes represent probabilistic dependency. Arcs into

decision nodes, named informational arcs, represent availability of information;

i.e., if there is an arc from a node X to a decision node D then the state of X is

known when the decision D is made. Arcs into utility nodes represent functional

dependency: arcs into ordinary utility nodes indicate the domain of the associated

utility function; arcs into an SVN U indicate that the associated utility function

is a combination (generally a sum or a product) of the utility functions of the

parents of U .

We assume that there is a path in the ID that includes all the decision nodes,

which induces a total order among the n decisions {D1, ..., Dn} and indicates the

order in which the decisions are made. Such order originates a partitioning of

VC into a collection of disjoint subsets, C0,C1, ...,Cn, where Ci contains every

chance variable C such that there is an arc C −→ Di but there is not an arc

1Super Value Nodes
2Clearly, an ID having only one utility node satisfies this condition by identifying such a

node with U0. An ID having several utility nodes assumes that the global utility is their sum,
and can be modified to fulfill that condition by adding a new node U0, of type sum, whose
parents are the original utility nodes. Therefore, this assumption does not restrict the types of
IDs that we can represent.
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C −→ Dj, j < i; i.e., Ci is the subset of chance variables known for Di but

unknown for any previous decision. This induces a partial order ≺ in VC ∪VD:

C0 ≺ D0 ≺ C1 ≺ ... ≺ Dn ≺ Cn (2.1)

The set of variables known to the decision maker when deciding on Dj is

termed the informational predecessors of Dj and is denoted iPred(Dj). By as-

suming the no-forgetting hypothesis, which states that the decision maker remem-

bers all previous decisions and observations, we have iPred(Di) ⊆ iPred(Dj) (for

i ≤ j). In particular, iPred(Dj) is the set of chance variables that occurs before

Dj under ≺, i.e., iPred(Dj) = C0 ∪ {D0} ∪C1 ∪ ... ∪ {Di?1} ∪Ci. If we have a

chance or decision variable X, two decisions Di and Dj such that i < j, and two

arcs X −→ Di and X −→ Dj, then the latter is said to be a no-forgetting arc.

The quantitative information that defines an ID is given by (1) assigning

to each chance node C a conditional probability potential p(C|pa(C)) for each

configuration of its parents, pa(C)3; (2) assigning to each ordinary utility node

U a potential ψU(pa(U)) that maps each configuration of its parents onto a real

number, and (3) assigning a utility-combination function to each SVN. Every

utility function ψU of a utility node U can finally be expressed as a function of

chance and decision nodes, termed the functional predecessors of U and denoted

by fPred(U). Thus, the functional predecessors of an ordinary utility node are

its parents, fPred(U) = Pa(U), and the functional predecessors of an SVN are

all the functional predecessors of its parents: fPred(U) = ∪{fPred(U ′)|U ′ ∈
Pa(U)}. In analogy with the terms of variable and node, we will use the terms

utility function and utility node interchangeably.

For example, in the ID in Figure 2.1 we have fPred(U1) = {X,D},
fPred(U2) = {T} and fPred(U0) = {X,D, T}. Similarly, considering that U0 is

a sum node, we have ψU0(T,X,D) = ψU1(T ) + ψU2(X,D).

In order to simplify the notation, we shall sometimes assume without loss of

generality that fPred(U) = VC ∪VD for every utility node U , i.e., U depends

on all the chance variables and decisions.

For each configuration vD of the decision variables in VD we have a joint

probability distribution defined over the set of random variables VC:

3We denote by Pa(X) the set of parents of X, and by pa(X) a configuration of the parents
of X.
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Figure 2.1: An ID of the test problem (Example 2.2.1).

P (vC : vD) =
∏

X∈VC

P (x|paC(X) : paD(X)) =
∏

X∈VC

P (x|pa(X)), (2.2)

where PaC(X) and PaD(X) denote the parents of X that are chance and decision

variables respectively, i.e., PaC(X) = Pa(X)∩VC, and PaD(X) = Pa(X)∩VD.

Equation 2.2 represents the probability of configuration vC when the decision

variables are externally set to the values given by vD. This notation, introduced

by (Cowell et al., 1999), is equivalent to the notation used by (Pearl, 1994); (Pearl,

2000), P (vC|do(vD))4.

A very simple example of ID is the test problem.

Example - Test problem A physician has to decide whether to treat or not

a patient, who may suffer from a disease (X). Before making this decision (D),

the physician can decide to perform a test (T). This test will produce the test

result (Y), which would help to determine whether the patient suffers from the

disease.

An ID for this decision problem is given in Figure 2.1. The decision node T

designates the decision about whether or not to perform the test. The chance

4P (vC : vD) should not be confused with P∆(vC|vD), which we will present further and that
is directly derived from the joint probability distribution P∆(vC,vD) by using equation 2.3 and
which only makes sense after selecting a strategy ∆. On the contrary, P (vC : vD) represents
the probability of vC if the actions given by vD are externally set, independently of the values
of the variables observed when making each decision.
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node Y represents the result of the test (if the test is performed). The utility

function associated with the utility node U1 encodes the cost of performing the

test. The decision D is the decision whether or not to treat for the disease.

The chance node X represents the presence of the disease. The utility function

associated with the utility node U2 specifies the health state of the patient as a

function of the treatment and the disease. The SVN U0 represents the health

state as a sum of the cost of the test (U2) and the health state of the patient after

being treated (U1).

The directed path from T toD indicates that the physician decides on T before

deciding on D. The informational arc from Y to D specifies that the test result is

known before deciding on D. On the other hand, as there is no informational arc

from X to either of the decision nodes, the state of X is observed (sometimes)

after deciding on D. The parents of U1 and U2 are the variables in the domains

of their respective utility functions. Thus, the parents of U0 are both the parents

of U1 and U2. The utility function of U0 can therefore be expressed in terms of

pa(U1) ∪ pa(U2) = {T,X,D}.
Finally, with respect to the states of the variables in the ID in Figure 2.1,

decision T has two states, +t and ¬t, and the result of the test (Y ) has three

states: +y, ¬y and no-result. Thus, the probability distribution of Y has to reflect

that the result of the test is only available if the physician decides to perform it.

Policies and strategies

A stochastic policy for a decision D is a probability distribution defined over D

and conditioned on the set of its informational predecessors, PD(d|iPred(D)). If

PD is degenerate (consisting of ones and zeros only) then we say that the policy

is deterministic.

A strategy ∆ for an ID is a set of policies, one for each decision, {PD|D ∈
VD}. If every policy in the strategy ∆ is deterministic, then ∆ is said to be

deterministic; otherwise ∆ is stochastic. A strategy ∆ induces a joint probability

distribution over VC ∪VD defined as follows:

P∆(vC,vD) = P (vC : vD)
∏

D∈VD

PD(d|iPred(D))

=
∏

C∈VC

P (c|pa(C))
∏

D∈VD

PD(d|iPred(D)). (2.3)
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Let I be an ID, ∆ a strategy for I and r a configuration defined over a set

of variables R ⊆ VC ∪ VD such that P∆(r) 6= 0. The conditional probability

distribution induced by the strategy ∆ given the configuration r, defined over

R′ = (VC ∪VD)\R, is given by:

P∆(r′|r) =
P∆(r, r′)

P∆(r)
. (2.4)

For example, in the ID in Figure 2.1 we have:

P∆(vC,vD) = P (x) · P (y|t, x) · PT (t) · PD(d|t, y), (2.5)

where PT and PD are the policies contained in strategy ∆. If we have R = {T, Y },
then the conditional probability distribution induced P∆(r′|r) is:

P∆(r′|r) = P∆(x, d|t, y) =
P∆(x, d, t, y)

P∆(t, y)
. (2.6)

Thus, the conditional probability distribution P∆(x, d|t, y) in Equation 2.6

represents the posterior probability of x and d, given the values t and y.

Using the distribution P∆(r′|r) defined in Equation 2.4 we can compute the

expected utility of U under the strategy ∆ given the configuration r as:

EUU(∆, r) =
∑
r′

P∆(r′|r)ψU(r, r′). (2.7)

For the terminal utility node U0, EUU0(∆, r) is said to be the expected utility of

the strategy ∆ given the configuration r, and denoted by EU(∆, r). For example,

in the ID in Figure 2.1, if we have R = {T, Y }, then the expected utility of the

strategy ∆ given the configuration r = {t, y} is as follows:

EUU(∆, r) =
∑
x

∑
d

P∆(x, d|t, y) · ψU0(x, y, d, t) =

=
∑
x

∑
d

P∆(x, d, t, y)

P∆(t, y)
(U1(x, d) + U2(t)). (2.8)

We define the expected utility of U under the strategy ∆ as EUU(∆)

= EUU(∆,�), where � is the empty configuration. We have that
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EUU(∆) =
∑
vC

∑
vD

P (vC,vD)ψU(vC,vD). (2.9)

We also define the expected utility of the strategy ∆ as EU(∆) = EUU0(∆).

An optimal strategy is a strategy ∆opt that maximizes the expected utility:

∆opt = arg max
∆∈∆∗

EU(∆), (2.10)

where ∆∗ is the set of all the strategies for I. Each policy in an optimal strategy

is said to be an optimal policy. The maximum expected utility (MEU) is

MEU = EU(∆opt) = max
∆∈∆∗

EU(∆). (2.11)

The evaluation of an ID consists of finding the MEU and an optimal strategy,

composed by an optimal policy for each decision. It can be proved (Cowell et al.,

1999) that

MEU =
∑
c0

max
d0

...
∑
cn−1

max
dn−1

∑
cn

P (vC : vD)ψU0(vC,vD). (2.12)

An optimal policy δDi
is therefore a function that maps each configuration

of the variables in iPred(Di−1), i.e., those at the left of maxDi
in the above

expression, onto the value di of Di that maximizes the expression at the right of

Di (in the case of a tie, any of the values of Di that maximize that expression

can be chosen arbitrarily):

δDi
(iPred(Di)) = arg max

di∈Di

∑
ci

max
di+1

...
∑
cn−1

max
dn

∑
cn

P (vC : vD)ψU0(vC,vD).

(2.13)

For instance, the MEU for the ID in Figure 2.1 is

MEU = max
t

∑
y

max
d

∑
x

P (x) · P (y|t, x) · (U1(x, d) + U2(t)), (2.14)

and an optimal policy δD is

δD(b) = arg max
d∈D

∑
x

P (x) · P (y|t, x) · (U1(x, d) + U2(t)). (2.15)
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There can be more than one optimal strategy for an ID. However, we can

always find a deterministic optimal strategy. The literature about IDs usually

assumes that the strategies in IDs are deterministic. We will also assume in this

memory that the strategies are deterministic, except when we point out that they

can also be stochastic.

2.2.2 Applications

In this section we describe several clinical decision support systems, all of them

based on influence diagrams. In contrast with the small number of decision

support systems for orthopaedic surgery mentioned in the previous section, there

are many based on influence diagrams systems used in many other clinical spe-

cialities.

We highlight the work (Luque Gallego, 2009), whose objectives were (1)

to develop a variable-elimination algorithm for influence diagrams with super-

value nodes, and to compare it with the arc-reversal algorithm by (Tatman and

Shachter, 1990), (2) to have explanation capabilities and sensitivity analysis tools

for influence diagrams with super value nodes, (3) to develop an anytime algo-

rithm for unconstrained influence diagrams, and (4) to build and evaluate a deci-

sion support system for the mediastinal staging of non-small cell lung cancer. The

latter objective was satisfied by an influence diagram built using Elvira (Elvira

consortium, 2002), a free-software package developed as a joint project of several

Spanish universities5.

Going back to the first medical influence diagrams, we must mention (Provan

and Clarke, 1993), where the authors addressed the problem of diagnosis in do-

mains with continuously changing data. To address that task, a dynamic influence

diagram was built, as well as an updating system. Later, these were used to cons-

truct a decision-theoretic model to diagnose acute abdominal pain, a domain in

which the findings evolve during the diagnostic process. The system constructs

a parsimonious influence diagram, and then dynamically updates it, rather than

building a new network from scratch for every time interval. In addition, the

system contains algorithms for testing the sensitivity of the constructed networks

system parameters.

(Quaglini et al., 1994) built an influence diagram for assessing GVHD (Graft-

5http://www.ia.uned.es/˜elvira/
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versus-host disease) prophylaxis after bone marrow transplantation in children.

The qualitative structure of the model and the conditional probabilities were first

derived by combining literature results with a medical expert’s judgement. More

specifically, probabilities were initially assigned as ranges rather than as point

values; then, they were updated, by using a learning algorithm, as new cases

became available.

Several researches from the Artificial Intelligence Department of the Polytech-

nic University of Madrid made an influence diagram to treat the neonatal jaundice

(Ŕıos-Insua et al., 1998). Aside from the inherent difficulties of constructing the

diagram (structure, conditional probabilities and utility functions), the large size

of the net (the last version contains 59 nodes) increased the computation to obtain

the treatment policy.

(Sanders et al., 2000) describes a system that enables developers and users to

create, disseminate and tailor clinical practice guidelines using normative decision

models. The system, called ALCHEMIST, analyses a decision model, creates a

clinical practice guideline in the form of an annotated algorithm, and displays

the optimal strategy. In the pilot evaluation, the ALCHEMIST guidelines met

established criteria for quality and compared favorably with United States clinical

practice guidelines.

In (Sharma et al., 2001), the authors created cost-utility Markov models to

determine the cost-effectiveness of photodynamic therapy under two different sce-

narios. The analysis was performed from the perspective of a for-profit third-party

insurer. Decision analyses were performed by incorporating data from the Treat-

ment of Age-Related Macular Degeneration with Photodynamic Therapy Study,

expected longevity data, and patient-based utilities. Cost-effective models were

then created by incorporating incremental medical costs. Various sensitivity anal-

yses were carried out to determine the robustness of the models. A Monte Carlo

simulation was also used to determine whether there was a significant difference

in quality-of-life adjusted years gained between photodynamic therapy and the

placebo.

Another interesting influence diagram is that used as a basis in (Garside et al.,

2004) in order to assess the cost-effectiveness of the second-generation surgi-

cal treatments for heavy menstrual bleeding (microwave and thermal balloon

endometrial ablation) compared with existing endometrial ablation techniques

(transcervical resection and rollerball, alone or in combination) and hysterec-
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tomy. It was performed through a Markov cost-utility model, developed using

spreadsheet software. Transition probabilities, costs and quality of life data were

obtained from a systematic review of effectiveness undertaken by the authors,

from published sources, and expert opinion. Cost data were obtained from the

literature and from a National Health Service trust hospital. All methods compa-

risons were carried out from the perspective of health service payers. The effects

of uncertainty were explored through extensive one-way sensitivity analyses and

Monte Carlo simulation.

Later, (Meyer et al., 2004) tried to incorporate clinically relevant factors such

as patient-specific and dosimetric information as well as data from clinical trials

in the decision-making process for the selection of prostate intensity-modulated

radiation therapy plans. Their approach was to incorporate the decision theoretic

concept of an influence diagram into the solution of the multiobjective optimiza-

tion inverse planning problem. An influence diagram based on a Bayesian network

with 18 nodes was designed to model the decision process for plan selection. The

model possessed nodes for clinical laboratory results, tumour grading, staging

information, patient-specific information, dosimetric information, complications

and survival statistics from clinical studies. A utility node was utilized for the

decision-making process. At the end of the research, the authors established the

influence diagram successfully ranked the plans based on the available informa-

tion. Sensitivity analyses were used to judge the reasonableness of the diagram

and the results.

(Uber, 2006) made a study to improve the efficacy of Ventricular Assisted

Devices (VAD) therapy. The study focused on the specific decision of whether a

Left Ventricular Assist Device (LVAD) or Biventricular Assist Device (BiVAD) is

appropriate. A hierarchical decision model was constructed using an influence dia-

gram of clinical risk factors derived through interviews with expert cardiologists

and cardiac surgeons. Most of the variables were summarized by two independent

criteria: risk of surgery and risk of right ventricular failure. These risks were com-

puted from various patient demographics, tests, and hemodynamics using expert

physician-selected weighted linear and weighted non-linear relationships. The

model was validated with retrospective data from patient records at University

of Pittsburgh Medical Center for patients implanted after 1990 and explanted

before 2006. A nonlinear numerical optimizer was used to improve the model pa-

rameters to optimize the agreement with eventual outcomes. In conclusion, the
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decision model provided a more aggressive use of biventricular assistance, which

retrospectively would have benefited patients who required a Right Ventricular

Assist Device (RVAD) at a later date, but would have unnecessarily implanted

RVADs in some patients that survived with an LVAD alone.

In the same year (Duriseti et al., 2006) examined the cost-effectiveness of

a quantitative D-dimer assay for the evaluation of patients with suspected pul-

monary embolism in an urban emergency department by a sequential decision

model, modelled on the basis of an influence diagram.

(Tung et al., 2008) examined whether screening for diabetic retinopathy among

Chinese people with type 2 diabetes was economically feasible and clinically ef-

fective. In this study, a decision analysis using a Markov decision model was

constructed to compare different screening regimes for diabetic retinopathy with

a no-screening group. Finally, one-way sensitive analyses were conducted on the

individual estimates to assess the impact on costs, effectiveness, and utility of

screening for diabetic retinopathy.

Subsequently, (Coon et al., 2008) demonstrated how to evaluate the effective-

ness and cost-effectiveness of surveillance for hepatocellular carcinoma using a

decision-analytic model. To conclude the list, we must cite (Kongnakorn et al.,

2009), a study where an influence diagram was used to evaluate the economic im-

plications of results obtained by the Stroke Prevention by Aggressive Reduction

in Cholesterol Levels trial.

We could not finish this section without naming the most important groups

dedicated to researching on Bayesian networks, those from the Aalborg University

in Denmark and Pav́ıa University, Italy. Some studies from the first are (Olesen

et al., 2009), (Murley et al., 2005) and (Ege et al., 2000). The latter has deve-

loped several Bayesian networks and influence diagrams to optimize the uremic

anemia therapy, monitoring, childhood leukemia, hemodialysis, diabetes, AIDS,

treatment of bone marrow transplanted children, nephritis, primary gastric lym-

phoma, idiopathic deep vein thrombosis and splenectomy inter alia; as shown in

(Consonni et al., 2004), (Arcaini et al., 2009), (Bergamaschi et al., 2000) and

(Berzuini and Allemani, 2004), inter alia.
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Chapter 3

Application: Perioperative

infection of a total knee

arthroplasty

3.1 Introduction

The most common reason for knee arthroplasty failure is a non–infectious

origin aseptic loosening. The second cause is a loosening of septic origin.

The hip, unlike the knee, has a better blood supply and better protection of the

soft tissues (Ayers et al., 1997), (Segawa et al., 1999), so the infection is more

common in knee prostheses than in the hip. The factors that influence their

appearance are different, grouped into those due to the patient and those due

to the operating room environment and the surgeon. The number of infections

has declined in recent years, in global terms, but the specific mechanism for why

some patients are infected, and the cause of infection in a given situation, are in

most cases unknown (Hanssen et al., 1996).

The occurrence of infection after total knee replacement should be minimized,

because it is a very serious complication. Knowledge of risk factors is essential

for prevention and early diagnosis is the key to effective treatment.

Because of this uncertainty and the variety (and costs) of tests to diagnose the

perioperative prosthesis infection, we have developed a decision support system

for total knee arthroplasty. The system basically consists of an influence diagram.

We have relied on the expert advice of Dr. Rubén Garćıa Fraile, orthopedic

29
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surgeon at the Hospital Cĺınico Universitario, in Valladolid (Spain).

3.2 Statement of the problem

3.2.1 Epidemiological importance

The frequency of deep infection after total knee replacement varies from 0.5%

to 5%, mainly due to several risk factors. Infection depends mainly on the

amount and virulence of the bacteria that contaminate the surgical wound, and

the patient’s immune capacity to eliminate them. It is estimated that the cost

of treatment of prosthetic infection, either hip or knee, is more than e 50,000

(Hanssen et al., 1996). The knowledge of the factors that contribute to the

infection onset is essential to develop a preventive school discipline, intraoperative

and postoperative; such discipline should cover all the surgical team, and must

be very important to educate all of them. Prosthetic infection is not only an

economic issue, there is also the health cost of the patient because of his suffering,

the limb function and even the risk of death must be considered. Therefore the

prophylaxis, early diagnosis and adequate treatment are the priorities of all the

equipment engaged in surgical knee replacement.

3.2.2 Impact

Although infection rates have dropped significantly since the first knee im-

plants were made, it seems to be a handicap to overcome, because the rate

of deep infection remains constant between 1% and 2% (Hanssen et al., 1996).

The frequency of infection after total knee arthroplasty published in a set of

18,794 cases from the Mayo Clinic, collected between 1969 and 1996, was 2.5%.

In this set, the infection rate reached 5.6%, and 2% for primary prosthesis (Rand,

1993). The lowest infection rate known is 0.5% (Insall, 1986).

3.2.3 Risk factors

There are many studies relating a higher rate of periprosthetic infection with

rheumatoid arthritis. In a series of 4,240 replacements, the number of

infection episodes was 2.6 times higher in patients with rheumatoid arthritis than

in those with osteoarthritis (Hanssen et al., 1996). In another series of 4,171 cases,



3.2. Statement of the problem 31

0.9% of patients diagnosed with deep periprosthetic infection evolved into knee

osteoarthritis, compared with 2.2% of patients with rheumatoid arthritis (Wilson

et al., 1990).

In another study of 425 male patients with polyarticular rheumatoid arthritis,

17 (4%) had deep infection after total knee arthroplasty (Wilson et al., 1990).

Another review made in Sweden, with 12,118 knee replacements followed for six

years, the number of infection was 1.7% for knee osteoarthritis and 4.4% for

rheumatoid arthritis (Gristina, 1994). These studies have also found a greater

infection incidence in patients with diabetes mellitus, being more predisposed

than those with rheumatoid arthritis (Bengtson et al., 1989), (England et al.,

1990).

Patients with diabetes mellitus have up to 7% risk of infection and complica-

tions in wound healing (England et al., 1990). Poor nutrition is another factor

that predisposes to infection: both undernutrition and obesity are considered im-

portant. Urinary tract infections, oral corticosteroid therapy and psoriasis have

been also described as risk factors, among others. Patients with psoriasis evolve

up to 7% of infections after knee arthroplasty (Stern et al., 1989).

It is often impossible to know the cause of infection in a given situation,

because the intimate mechanisms of bacterial colonization are unknown. The

development of an infection depends on three main factors: the quantity and

virulence of the organism, the type of wound and the patient’s response capability

(Poss et al., 1984). The origin of the infection may be in the preoperative period,

in the surgical procedure itself or in the postoperative period.

The operations carried out previously in the area are also important. (Wilson

et al., 1990), in a review of patients with knee osteoarthritis, compared knees with

no previous surgery (which had an infection in 0.3% of cases) with those operated

before (which had an infection in 1.4% of cases). These numbers increased if the

previous surgery had been a knee replacement, and even more if there was a

history of previous infection. The size and type of implant is also important, as

well as the use of structural bone.

Advanced age, wear particles and extended preoperative admission are also

risk factors for infection. In a set of 23,649 interventions, the rate of infections

was 1.1% in patients admitted the day of surgery, while in those admitted two

weeks before the surgery was 4.3% (Hanssen et al., 1996). The environment and

the discipline of surgery are also important, the number of people who are in
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it, the preparation of the surgical field, laminar flow, the surgical team gowns,

gloves, masks, air exchange and ultraviolet light are factors to consider. The

greatest source of bacteria in the operating room comes from people who are

inside. Compared with an empty operating room, the number of colonies is

thirty times greater in a busy one.

Shaving the surgical field should be performed immediately before the begin-

ning of the intervention (Garner, 1986), because otherwise small skin lesions may

serve as a gateway to the bacteria. Prolonged use of the vacuum cleaner can be a

source of infection (Mangram et al., 1999); probably attracting airborne particles

contaminated the instruments’s tip. The role of laminar airflow is controversial.

The flow can be vertical or horizontal; it seems logical that the horizontal system

is not effective in knee arthroplasty, because of the allocation of the surgical team

in, and the particles detached from the surgeon and assistants. Laminar airflow

seems to decrease the pollution of the instruments of the operating table (Ritter

et al., 1973). Another factor that serves to control the antiseptic atmosphere

surgery is ultraviolet light. However (Salvati et al., 1982) found an increased

incidence of periprosthetic infection in relation to the horizontal laminar air flow,

but subsequent studies (Rand, 1993) comparing series of arthroplasties performed

with and without laminar flow found no differences in the infection rate.

The strongest impact factor as a source of deep infection is the surgical tech-

nique and the professional preparation of the surgical team (Kolmos et al., 1997).

The treatment of soft tissue, hemostasis, time of exposure, careful closure plans,

the use of road appropriate approach and incision, and the prevention of tissue

necrosis areas positively influence risk reduction. The implant type to use de-

cision is also important; the old large hinge type prosthesis with metal-metal

friction torque favored the infections, probably due to the wear of metal particles

that cause metalosis and particulate synovitis.

Several experimental studies evaluate the susceptibility to infection, linking it

to different materials (Steckelberg and Osmon, 1994): polyethylene, steel, cobalt

chromium, polymethylmethacrylate, which have been mentioned as inhibiting

factors on in vitro chemotaxis, phagocytosis and have the ability to destroy bac-

teria in polymorphonuclear leukocytes. Biomaterials create an area of immune

incompetence (Carbonell et al., 2005), probably due to lack of vascularization; the

higher risk of immune incompetence comes from the stainless steel and chromium-

cobalt alloys (Ampuero et al., 2000).
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3.2.4 Infectious complications prophylaxis

The reduction of risk factors is the main way to prevent periprosthetic in-

fection in knee arthroplasty. Adequate preoperative antibiotic therapy is

the most effective way to reduce postoperative infection (Hanssen et al., 1996),

(Lotke, 1992). Currently there is consensus on the systematic use of preoperative

antibiotics before tourniquet inflation in knee arthroplasty. However, controversy

exists with respect to the antibiotic to be used (Steckelberg and Osmon, 1994),

and length of administration (van Kasteren et al., 2007).

The perfect antibiotic prophylaxis must be that one that uses an antibio-

tic which has excellent in vitro activity against staphylococci and streptococci,

possess a large tissue penetration, has a long plasma half-life, is no toxic and

has an affordable price (Fitzgerald and Thompson, 1983). The first-generation

cephalosporins have been studied extensively and have proven their efficacy. Com-

pared with other antimicrobial agents, they have a long plasma half-life, low toxi-

city and a moderate price. For patients with hypersensitivity to cephalosporins,

vancomycin is the best alternative. The administration of antibiotic prophylaxis

should be before tourniquet inflation and the skin incision. It should be per-

formed by intravenous infusion 30 to 60 minutes before the surgery, to allow the

antibiotic to get a right tissue penetration. In long procedures, another dose

should be given if the operating time exceeds twice the plasma half-life of the

antibiotic or when there is large blood loss during surgery (Martin, 1994).

There are protocols (Windsor et al., 1990) that recommend a single preope-

rative dose followed by two or three post-operative doses, in order to reduce the

risk of selection of resistant organisms and toxicity. The proven efficacy is the

same as long length protocols. The use of cement with antibiotics, particularly

gentamicin, has proven effective in experimental models and has been used widely

as prophylaxis. Its use in revision surgery is commonly accepted. However, its

use in primary implants continues to cause controversy today. Also among the

disadvantages of using antibiotic cement the possible allergy reactions and the

selection of resistant bacterial strains.

Frequently intraoperative irrigation prevents the tissue drying and reduces

bacterial colonization (Moran et al., 2007). Copious washing without excessive

pressure that can damage tissue, is a good way to decontaminate the wound.

Chlorhexidine is not disabled in the wound and applied in 0.05% solution via

washing syringe washing is a proven antiseptic effectiveness (Blom et al., 2004).
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Many successful procedures end in failure during the postoperative period due

to the lack of control over the patient. The patient’s position in bed should avoid

the appearance of scars. Possible hematomas, draining systems, the pressure

bandage and the administration of antibiotic protection to prevent bacterial co-

lonization must be monitored. Blood stream infection should be considered: the

use of catheters can be a source of bacterial contamination, as well as the use of

urinary catheters. Both should be removed as soon as possible. In patients with

knee arthroplasty to be subjected to dental or endoscopic manipulation or inter-

ventions in the genitourinary tract, antimicrobial prophylaxis is recommended in

the postoperative period, but unlike the current antibiotic prophylaxis protocols

for exogenous implants in other areas surgery (prosthetic heart valves, endovas-

cular devices etc.) it is still a controversial issue in orthopedic surgery, although

it is widely documented (Poss et al., 1984).

In order to reduce the possibility of deep periprosthetic infection, it is impor-

tant to carefully apply the principles of infection control, such as optimizing the

wound environment (please see Table 3.1). This way the patient response can be

improved, minimizing bacterial contamination in the preoperative, intraoperative

and postoperative periods.

3.2.5 Microbiology

The most frequently isolated pathogenic bacteria in deep periprosthetic infec-

tions are gram positive. (Wilson et al., 1990) have identified gram-positive

cocci Staphylococcus aureus in 63% of infections. (Schoifet and Morrey, 1990)

have reported that these germs are responsible for 58% of infections. Staphy-

lococcus epidermidis is responsible for a large number of cases. (Rand, 1993),

collecting data from 16 sets, has shown that 57% of knee prosthesis infections

are caused by gram-positive cocci Staphylococcus aureus type and 30% by gram-

positive cocci Staphylococcus epidermidis type. (Rand, 1993) determined that

13% of cases were due to gram-negative and streptococci were the cause of 8% of

infections. Anaerobes represent only 4%, as shown in Table 3.2.

Staphylococcus epidermidis has a great ability to grip to polyethylene (Gristina,

1994). There is a close relationship between bacterial resistance to antibiotics and

the ability of bacteria to produce an adhesion to and colonization of the implant

surface. The bacteria adhere forming a very persistent and difficult to eradicate
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Preoperative Intraoperative Postoperative

Bacteria Skin ulcers
Prolonged hospitali-
zation
Antibiotic prophy-
laxis
Shaving of the field

Surgical staff
Right sterilization
Masks and suits
Washing
Surgery time
Aspirator
Gloves and cloths
Laminar flow

Dental or urological
procedures
Intraurethral
catheter
Catheters and blood-
stream infections

Patients Diabetes mellitus
Rheumatoid Arthri-
tis
Psoriasis
Corticotherapy
Obesity or malnutri-
tion
Systemic disease
Advanced age

Systemic diseases
Alcoholism
Smoking

Wound Previous surgery
Previous infection
Poor wound healing
Vascular deficit

Duration
Technique
Correct sutures
Antibiotics in cement
Bone graft
Haemostasis
Drains

Skin necrosis
Hematoma
Suture dehiscence
Wear particles
Loosening of prosthe-
sis

Table 3.1: Factors influencing the development of periprosthetic infection
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Single germ

Staphylococcus epidermidis 18
Staphylococcus aureus 9
Other coagulase-negative staphylococci 1
Escherichia coli 1
Peptostreptococcus spp. 1
Streptococcus spp. 1

Mixed flora

Actinomyces and mycobacteria 1
Coliforms and Staphylococcus epidermidis 1
Enterococci and Staphylococcus epidermidis 1
Staphylococcus epidermidis and other coagulase-negative staphylococci 1
Staphylococcus epidermidis and mycobacteria 1
Staphylococcus epidermidis and Serratia spp. 1

Table 3.2: Bacteria found in 37 infected knee prosthesis

glycoproteins layer. This layer is called slime, and makes the dissemination of the

antibiotic extraordinarily difficult. The most virulent pathogens are methicillin-

resistant staphylococci, gram-negative, group D streptococci, enterococci and

glycocalyx-producing microorganisms. The least virulent are methicillin sensitive

staphylococci, generally anaerobic cocci and streptococci not group D (Hanssen

et al., 1996). The assessment of virulence and antibiotic sensitivity will be very

important to ask ourselves about the proper treatment.

Patients with active chronic fistulas develop mainly mixed infections caused

by bacteria association. The emergence of resistant bacteria is associated with

rescue attempts using antibiotics indiscriminately.

3.2.6 Diagnosis

Infection after knee arthroplasty can be divided into three types according to

the time of appearance: type I include infections in the first two months post

surgery, the type II presentation occurs somewhere between 2 and 24 months

after surgery, and type III infection occurs after 24 months (Rand, 1993). From a

practical standpoint, they can be divided into early and late (Insall, 1986). Early

infections appear during the three months after surgery and acutely. Late infec-

tions appear over three months after the surgery and chronically. The main causes

of early appearance of infection is intraoperative contamination (Morrey et al.,
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1987), problems in wound healing (Johnson and Bannister, 1986), hematoma

(Saleh et al., 2002), prolonged maintenance of drainage systems (Weiss et al.,

1993), and the presence of superficial inflammation (Johnson and Bannister, 1986)

of the surgical wound (sometimes difficult to distinguish from deep infection).

Symptoms are pain, fever and joint swelling with local inflammation, often

accompanied by laboratory abnormalities during the acute phase, with high sedi-

mentation rate, leukocytosis and neutrophilia (not usually seen neither leukocyto-

sis nor neutrophilia when the infection becomes chronic). Early administration of

antibiotics may mask the syndrome, making diagnosis difficult and the isolation

and identification of the germ, usually done by puncture aspiration. C-reactive

protein, although rises because of surgery, is also a good indicator of infection, if

it remains high over than three weeks after surgery (Greidanus et al., 2007).

In this period oral antibiotics should not be given. In case of persistent ab-

normal serous drainage from the wound is indicated to take shots for bacteriolo-

gical analysis, to identify the germ, perform antibiograms, intravenous antibiotic

treatment establishment and maintaining regular physical measures of rest, tip

elevation and delay the rehabilitation treatment.

If drainage persists for over eight or ten days, debridement surgery or re-

covery can be evaluated (Esler et al., 2003), consisting of abundant washing

of the joint replacement polyethylene implants with sterile cleaning brush and

chlorhexidine. This option requires a prolonged use of postoperative selective

antibiotics administered intravenously.

There is consensus in the international literature about the importance of

avoiding early postoperative empirical antibiotics that are not conducive to solve

the problem, but to postpone it and make it worse, as well as making the diag-

nosis difficult. A persistent fever of unclear origin during the postoperative knee

replacement should always be investigated by blood-screening formula, count, se-

dimentation rate, C reactive protein, biochemical tests and urinalysis with urine

cultures, chest X-ray study and blood cultures obtained during the acute febrile

phase.

Following the first three months late chronic infection can be caused by intra-

operative contamination by bacteria of low virulence or blood stream infection

due to a distant focus. Dental manipulations and interventions on the genitouri-

nary tract are the most common causes of bacterial bloodstream (Berbari et al.,

2010), (LaPorte et al., 1999). There are many possibilities and exceptional cases
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have been reported about hematogenous periprosthetic knee infection caused by

Brucella mellitensis (Malizos et al., 1997). Faced with a knee replacement that

evolves satisfactory and begins to manifest painful symptoms without previous

trauma should be ruled out as the first possibility of septic loosening. Early

diagnosis in these situations is the best guarantee to minimize complications.

The exploration and clinical history provide initial information on the diagno-

sis of infectious complications in knee replacement. The review of the graphs of

temperature, drainage notes, observations on the development of scar appearan-

ce, personal history and predisposing factors identification, knee mobility, type

and timing of pain, inflammation and fistulae must be reviewed by the surgeon

during the postoperative period.

Additional tests are sometimes an essential aid, but do not replace careful

study of the history and proper physical examination.

The final diagnosis is made during the intervention, using the shots for biopsy

and bacteriology (culture deferred). Sometimes in a knee replacement, the diag-

nosis of prosthetic mobility due to low aggressiveness germs must be done after

several days of culture with appropriate technics at the microbiology department.

Laboratory diagnostic tests

The most commonly used laboratory tests in patients with suspected infection of

total knee prostheses are blood count, sedimentation rate and C reactive protein.

The rise in the number of leukocytes or neutrophils rarely appears in an infected

arthroplasty in a chronic phase. When the formula is already altered, the infection

is evident and the diagnosis is facilitated by the clinic.

Acute phase reactants are a type of positively charged macromolecules, which

are synthesized in the liver in response to inflammatory states, on more acute

phase reactants, higher agglutination of erythrocytes and higher sedimentation

rate. The sedimentation rate is higher in the infected cases than in non-infected,

but can produce false positives and negatives. The sedimentation rate may remain

elevated for three months or more after surgery. If the sedimentation rate is

elevated after six months and in the absence of another outbreak, its positive

predictive value is 80%.

C-reactive protein is an acute phase reactant, synthesized in the liver. In

normal situations, there are only negligible traces. An increase of this protein

is a nonspecific way to detect tumors or acute inflammatory processes. After



3.2. Statement of the problem 39

surgery, its number remains elevated and returns to normal after two or three

weeks. A persistent elevation beyond that time, at least 10 mg / l, can make

us think about infection. Serial blood cultures may be helpful to identify the

pathogen in cases of bacteremia.

Scintigraphy

Scintigraphy has been widely used for the diagnosis of periprosthetic infection,

although its precise value remains controversial. Technetium-99m methylene

diphosphonate was first used in the 70s as a marker of bone activity. The in-

fection can accelerate bone activity, but this activity is also accelerated in aseptic

loosening. The specificity of this test is not good, especially in the tibia during

the first year because the bone metabolism could be increased even in the absence

of infection (Lotke, 1992). It can also give a false negative if there is insufficient

blood supply (Wegener and Alavi, 1991). The gallium-67 citrate is a radioiso-

tope which accumulates in areas of inflammation. Using sequential technetium-

gallium is safer for the diagnosis of infection. The Indium-111 leukocyte marker

is used for diagnosis in terms of increased vascularity and accumulation of blood

cells, but its role is not well defined. Other radionuclides have been used, such

as immunoglobulin-G labeled with radioisotopes, its role similar is to that of

Indium-111 (see Figure 3.1).

Scintigraphic studies are currently over-utilized in the study of prosthetic knee

pain. They provide by themselves enough data to help us make decisions about

the treatment to choose. In those cases where the components are properly en-

gaged it would be best to use sequential technetium-99m (see Figure 3.2) labeled

leukocytes with indium-111. Sequential method sensitivity is 33% and specificity

is 86% (Levitsky et al., 1991).

Radiological study

Radiography is routinely done for any knee pain after prosthetic replacement,

although in the early phase of infection it is rare to get information from them.

The appearance of a complete radiolucency is suspicious for infection (see Figu-

re 3.3). Many radiological findings, such as loosening, osteolysis and endosteal

scalloping are common in septic loosening. The quick changes with respect to

previous X-ray control, with periostitis and periosteal new bone formation, with

or without loosening, are almost pathognomonic of infection.
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Figure 3.1: Scintigraphic image (Gallium 67) of an infected knee arthroplasty.

Figure 3.2: Scintigraphic image (Technetium 99) of an infected knee arthroplasty.
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Figure 3.3: Radiographic images of an infected knee arthroplasty. Image on
the left shows femoral periprosthetic radiolucency and periosteal growth, indirect
signs of infection; while the right image shows the postoperative control after the
replacement.

Joint aspiration

The aspiration of the joint and its cultivation is the most simple, important and

standard to determine the existence of a deep infection. It provides information

about the sensitivity of germs to antibiotics. It is also possible to perform a cell

count: a cell count higher than 25,000 cells/ml. is suggestive of infection. Per-

forming a gram stain type, only 25% of infected knee aspirations offer a positive

result.

Glucose and synovial fluid proteins can also be measured (Insall, 1986). In-

fectious processes decreases glucose and increase protein, both contained in the

synovial fluid; if this happens, we should suspect the existence of infection. The

specificity of synovial aspiration is 97% and the sensitivity is 67% (Levitsky et al.,

1991).

A negative result could not exclude the diagnosis because the infection may

be located at a point that is not in contact with the synovial fluid (false negative).

The use of local anesthetics, which can be bacteriostatic, or even the use of

intraarticular saline wash, may promote the occurrence of false negatives. How-

ever, the most common cause of false negatives is the administration of oral

antibiotics. When the result is negative, the re-aspiration, without antibiotics,

saline and no local anesthetic, could provide a sensitivity of 75% and a specificity
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Figure 3.4: Microscopic image of frozen section. Numerous polymorphonuclear
in periprosthetic infection.

of 96% (Barrack et al., 1997).

Intraoperative diagnosis

The leukocyte count, obtained from the synovial fluid by opening the joint capsule

using a needle and syringe is important; if the percentage of neutrophils is greater

than 80%, the liquid is considered to be septic (septic arthritis) (Spangehl et al.,

1999). The gram stain and culture during the intervention is very important. The

shots taken in the pseudocapsule, in the bone-prosthesis and in parts with more

inflammatory appearance, should be sent to the laboratory. If there is only growth

in a sample of three, the result is negative; if there is growth in more than one

third of the samples, the diagnosis of infection is considered positive. Gram stain

produces a high percentage of positive results. The presence of microorganisms

on gram stain is evidence of infection. However the absence of microorganisms

does not exclude the possibility of infection.

In the intraoperative analysis, a sample of tissue from the synovial surface

is taken (see Figure 3.4), from an area that seems more inflamed. The result is

considered suggestive of bacterial infection when in a field there are at least five
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polymorphonuclears (Fehring and McAlister Jr, 1994). The study of intraopera-

tive samples by freezing has a sensitivity of 84% and a specificity of 95%. If the

number of polymorphonuclears per field is ten, the specificity increases to 99%,

positive predictive value being 89%.

Polymerase chain reaction

It is a technology that investigates the presence of bacterial remains by specific

DNA copies. These findings take about six hours to complete (Levine et al., 1995).

The presence of traces of bacteria is demonstrated by the fact that the bacteria

infecting the knee have a specific DNA polymorphism. Its sensitivity, specificity

and predictive value have been reported as 100% (Levine et al., 1995). Additional

advantages of this technology are that: (1) previous taking of antibiotics does not

alter the results and (2) its running time is lower (cultures take five to six days).

Its main disadvantage is that it does not provide information on in vitro sensitivity

to antibiotics.

The sample may be contaminated, thus producing false positives. There may

be remains of bacterial DNA and absence of infection, a situation described as

defeated infection, producing a false positive. The technique is complex and

requires a highly qualified research team, not always available.

3.2.7 Treatment

The frequency of knee deep infection has decreased over the past decade

in relative terms. It has increased in absolute numbers, because many

more patients have access to the arthroplasty, and the population at risk has

grown exponentially. It is important to distinguish between deep and superficial

infection, because the former one has a bad prognosis and requires aggressive

surgical and specific antibiotic treatment, while the latter is usually benign and

restricted in time.

Gustilo classification (Segawa et al., 1999), see Table 3.3, provides a guideline

for therapeutic action to follow in the presence of an infectious complication in

total knee arthroplasty, relating chronology, clinical laboratory tests and thera-

peutic options.

Removal and replacement of the prosthesis offers several alternatives. The

replacement could be performed immediately in a single surgical time, in a two-
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TYPE 1 TYPE 2 TYPE 3 TYPE 4

Time of onset Positive in-
traoperative
culture

Early post-
operative
infection

Acute
hematoge-
nous infection

Late chronic
infection

Definition Two or more
positive cul-
tures during
the interven-
tion

The infec-
tion appears
in the first
month after
the surgery

Arthroplasty
previously
well, which is
infected by
hematoge-
nous spread

Indolent
chronic clini-
cal. Infection
which takes
more than a
month

Treatment Specific
antibiotics

Debridement
and prosthe-
sis retention

Debridement.
Retention or
removal of
prosthesis

Removal of
prosthesis

Table 3.3: Gustilo classification of chronology, clinical appearance and treatment
of infection in knee arthroplasty

stage intermediate way or delayed in two stages.

The extraction and rescue is the only choice when the failure of the surgery is

absolute. Other alternatives are the resection arthroplasty, the arthrodesis and

the amputation.

The conservation of the prosthesis is rarely indicated in deep infection. It is a

reasonable option in the early diagnosed infected arthroplasty, produced by a low

pathogenic microorganism, for example staphylococci, whose antibiograms show

sensitivity to penicillin. This conservation requires selective antibiotic, closely

monitored with serial punctures, joint aspirations until the disappearance of the

general syndromic manifestations, inflammatory local clinic, the negativization

of direct diagnostic microbiological tests and blood tests. The results of these

alternatives are often disappointing: it is effective in only 15% of cases (Ayers

et al., 1997). The lack of response to this treatment requires a more aggressive

surgical option.

With the rise of endoscopic techniques, intraarticular arthroscopic lavage has

proven to be a better choice than traditional cleaning performed by puncture,

since itis done in a way more plentiful and aggressive. However, synovectomy

and endoscopic debridement is always less complete than the one made open.

The replacement of the polyethylene is another option.

The surgical debridement with retention of the cemented materials and extrac-

tion of polyethylene requires that the femoral and tibial components are closely
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bonded. Later the stability of the joint and the absence of osteolysis or loose-

ning must be checked. The presence of periosteal reaction or positive cultures for

aggressive bacteria contraindicates the retention of the components when they

are firmly attached.

The results of debridement with prosthesis retention published in the inter-

national literature vary. In a study of 43 months follow-up is described a 45%

failure rate, the microorganism Staphylococcus aureus is the one having the worst

prognosis (Thornhill, 1995). Some publications have found a rate of recurrent in-

fection of 77% in 8 years of follow up in 31 infected arthroplasties treated through

prosthetic retention with positive cultures for Staphylococcus aureus. The maxi-

mum success rate for prosthetic retention is 26% (Ayers et al., 1997).

These numbers are directly related to bacterial adhesion and glycocalyx layer

(Ampuero et al., 2000), (Gristina, 1994). There are encouraging results in novel

sets that publish the use of rifampicin in combination with oral fluorinated

quinolones (England et al., 1990). The high tissue penetration of these antibio-

tics eliminated intracellular inclusions of staphylococci (Ampuero et al., 2000),

(Drancourt et al., 1993).

Replacement at one-time or two-stage intermediate way are therapeutic op-

tions that leverage the use of cement as a dispenser of local antibiotics by dilution

through the porosity of the polymer. This property was described in (Buchholz

et al., 1981). It also allows to extend the prophylaxis in primary surgery, to treat

deep periprosthetic infection its use is fundamental for the one-time replacement.

(Fitzgerald and Thompson, 1983), (Salvati et al., 1986) and other authors

have published their experience with one-time replaced infected arthroplasty, also

using cement with gentamicin. Their results contraindicate the replacement at

one-time when there is an active fistula, a gram negative, mixed flora presence or

intraarticular pus during surgery. A correct immune status of the patient is also

essential for the prosthetic replacement at one-time.

The advantages of one-time replacement are: a single surgical procedure,

shorter hospitalization, better soft tissue status and availability of a wider range

of alternatives in case of treatment failure.

The technique requires: aggressive and thorough debridement, wide synovec-

tomy, resection of inflamed or necrotic tissue, removal of prosthesis and cement

diaphysis with great care, abounding cleaning, reimplantation of prosthetic mate-

rial with cement and antibiotics, specific intravenous antibiotics for 4 to 6 weeks,
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that should be continued orally for months. Regarding the technical details of

the cement with antibiotic, a polymer that provides strength and porosity must

be chosen, combined with gentamicin. Some studies (Hanssen et al., 1996) re-

commend to add 0.6 to 1.2 grams of tobramycin and 0.5 to 1 gram of vancomycin

to the cement. Excessive amounts of antibiotics alter the chemical properties of

the polymer and a few orthopedic surgeons accept the handling of commercial

cement to add antibiotics, fearing to cause an alteration in the response of the

re-polymerization and the subsequent aseptic loosening.

It has been demonstrated through scanning electron microscopy and cul-

tures that bacteria are unable to adhere to tobramycin impregnated polymethyl-

methacrylate materials (Lyons et al., 1992).

The comparative results between one and two-times replacements vary. There

are sets with 75% of cases in which there is no difference between one-time and

two-time techniques (Thornhill, 1995). The immediate reimplantation of pros-

thesis after a previously infected joint replacement is a very complex and contro-

versial issue. Multitude of variables and peculiarities in each case prevent and

objective comparison of the the two procedures objectively, since patients selected

for one-time replacement usually have the best prognoses. Meticulous surgical

technique and wide debridement have an important role in these situations. At

present, there seems to be consensus that two-time replacements produce better

infection eradication rates (Westrich et al., 2010).

The two-time replacement is technically similar to the above case; without

implanting a new prosthesis. Instead, pre-formed spacers impregnated with an-

tibiotics are used. The disadvantage of these devices is that they are not biome-

chanically suited for the support, and could produce dislocations, fractures and

loss of bone stock, because they are usually implanted for 4 or 6 weeks, when the

patient should not bear weight on the limb. (McPherson et al., 1995) described

a spacer model that allows the support, and certain mechanical stresses as the

solution to this problem. The reimplantation is performed after the removal of

the spacer as described previously. After reimplantation intravenous antibiotics

should be given for at least seven days (Ayers et al., 1997).

Sets with 97% of success in the replacement in two-times have been described

(Ayers et al., 1997), (Calton et al., 1997).
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3.3 Construction of ArthroNET

In this section, we describe the construction of ArthroNET, a decision support

system for the diagnosis of perioperative infection in total knee arthroplasty.

The system basically consists of an influence diagram. It has been built using

Elvira1 and DPL 7 Standard2 software. We have used these both tools because

the former could not display the results of the decision analysis.

3.3.1 Construction of the structure of the graph

A graph is basically a set of nodes (or variables) and a set of arcs relating

them. We describe in this section how we have built the graph of the

model (see Figure 3.5 – In order to better appreciate the details of the diagram,

the image has been exported from Elvira software). The process of identifying

the variables of the problem, their domains and their relations in ArthroNET has

been performed with the expert’s help.

Identification of variables

We have identified three types of variables, which correspond to the three types

of nodes that can appear in an influence diagram: chance, decision and utility.

Chance variables

In medical diagnosis, chance variables usually correspond to possible causes and

risk factors of a disease, as well as the symptoms, signs and laboratory tests that

may confirm or discard the presence of the disease. Given that our objective is the

early diagnosis of deep infection in the total knee arthroplasty, we have included a

variable representing the presence or absence of infection. This variable, probably

the most important in the network, has been named Knee deep infection, and its

domain is {present, absent}.
The variables that represent risk factors are the following:

1Elvira, a free-software package developed as a joint project of several Spanish universities
(Elvira consortium, 2002).

2A commercial software developed by Syncopation software, a leading provider of decision
support software tools including decision analysis software, risk analysis software and decision
tree-based valuation software - http://www.syncopation.com.
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Figure 3.5: Influence diagram of ArthroNET.
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• BMI (Body Mass Index), which indicate whether the patient is obese. This

variable has been discretized into two values, {yes, no}, where the former

means that BMI ≥ 35.

• Diabetes : a random node that represents the presence of diabetes mellitus;

its domain is {present, absent}.

• Antibiotic allergy : it determines whether the patient is allergic to antibiotics

or not. Its domain is {yes, no}.

When the arthroplasty is made, the surgeon can verify some postoperative

signs, which are:

• Ischemia: time in minutes after applying the pressure inflated tourniquet

in the tight until the air is released. Its accurately measured via the built-in

clock of the air pump. This variable has been discretized into two values,

{> 90 minutes, ≤ 90 minutes}.

• Drained CC : cubic centimeters of fluid drained through the wound. Dis-

cretized into two values, {≥ 800 cc and ≤ 1000 cc, < 800 cc or > 1000

cc}.

• Knee motion: variable that represents the range of motion of knee after

the surgical procedure. More information about this measure is detailed in

(Ounpuu et al., 1993). It has been discretized into the following two values:

{≥ 65, < 65}.

Aditionaly the surgeon may also order some laboratory tests, represented by

the following variables:

• C-reactive protein: is a plasma protein that increases their levels in response

to inflammation. The normal serum of healthy adults is usually lower than

10 mg/L, therefore this variable takes the following values: > 10 or ≤ 10

mg/L. We assume that it represents the value measured three weeks after

surgery.

• ESR (Erythrocyte sedimentation rate): is the rate at which red blood cells

sediment in a period of 1 hour. It is a common hematology test that is

a non-specific measure of inflammation. Six months after the implant we

consider values greater than 30 mm/h as abnormal, so the possible values

that we have chosen for this variable are: > 30 or ≤ 30 mm/h.
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• Sequential Ga67 Tc99 : this node means a positive or negative deep infection

finding detected by a sequential gallium-67 and technetium-99 scintigraphy.

• Frozen sections PMN : this node measures the number of polymorphonu-

clears founded in a frozen sample of tissue from the synovial surface. Its

domain is {> 5 PMN, ≤ 5 PMN}.

Decision variables

The decisions to make are: (1) whether to implant the prosthesis or not, (2)

whether to perform the scintigraphy or not, (3) whether to perform the synovial

biopsy or not and (4) whether to treat or not a possible infection by the removal

of the implant, represented by the following variables: Implant prosthesis, Make

scintigraphy, Make synovial biopsy and Remove prosthesis, whose states are yes

and no. The first three decisions force us to introduce a new state to some of

the chance variables. Thus, the state Implant not made is added to the variables

Knee deep infection, C-reactive protein, ESR, Knee motion, Ischemia and Drained

CC, because the measurement of this variables depends on the performing of the

implant; also, the state Not performed is added to the test variables Sequential

Ga67 Tc99 and Frozen sections PMN.

Ordinary utility nodes

The decision maker’s preferences have been represented by a set of utility nodes.

The improvement of QALE (quality-adjusted life expectancy) of those patients

who have been implanted prosthesis is represented by the node Prosthesis QALE.

The morbidities due to scintigraphy and synovial biopsy are depicted by Scin-

tigraphy morbidity and Synovial biopsy morbidity respectively, and measured in

QALYs (quality-adjusted life year) -see (Weinstein et al., 2009)-. Removal QALE

indicates the QALE loss for patients that require a removal of their previously

implanted prosthesis, either because they a knee deep infection or because of a

different reason.

Super value nodes

The ordinary utility nodes presented above have been combined by using super-

value nodes, as proposed by (Tatman and Shachter, 1990). The nodes Prosthesis

QALE, Scintigraphy morbidity, Synovial biopsy morbidity and Removal QALE
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have been combined into the sum node Total QALE. We have used a sum node

because morbidities (and the removal of the prosthesis) decrease the QALE of

patients, considering that the utilities of nodes that represent morbidities and the

treatment will take non-positive values.

Arcs of the graph

The influence diagram in Figure 3.5 contains four kind of arcs:

1. Arcs into chance nodes. They represent probabilistic dependencies. In our

diagram, an arc from a node representing the decision of a test, such as the

arc Make scintigraphy −→ Sequential Ga67 Tc99, indicates that the result

is only available whether we perform the test (Make scintigraphy = yes).

2. Arcs into decision nodes. They imply availability of informational. For e-

xample, the arc Antibiotic allergy −→ Implant prosthesis has been included

in ArthroNET to indicate that the patient’s allergy to antibiotics is known

when the surgeon decides whether to implant the prosthesis or not. Based

on the no-forgetting assumption, we have specified in our diagram the mi-

nimum set of informational arcs (Nielsen and Jensen, 1999). Thus, the arc

Antibiotic allergy −→ Make scintigraphy has not been specified because we

are making the no-forgetting assumption.

3. Arcs into ordinary utility nodes. They represent functional dependencies.

The parents of a utility node indicate the domain of the associated utility

function. For instance, the arcs into the node Removal QALE mean that

the domain of its utility function depends on the nodes Knee deep infection

and Remove prosthesis.

4. Arcs into super value nodes. They indicate the set of utility nodes that

are combined into the super value nodes. In ArthroNET, arcs into the

node Total QALE indicate that is the combination of Prosthesis QALE,

Scintigraphy morbidity, Synovial biopsy morbidity and Removal QALE.

Decision tree

As mentioned above, using the DPL 7 Standard software was needed in order

to obtain the decision analysis results. In this software, the analysis is based on
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Figure 3.6: ArthroNET decision tree (first part).
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Figure 3.7: ArthroNET decision tree (second part).
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decision trees. Fortunately, this software has capabilities to transform influence

diagrams in decision trees automatically. Once the conversion was made, the

Knee deep infection node was moved from its original position to the last one

in the decision tree by the decision analysis process, as shown in Figure 3.6 and

Figure 3.7.

3.3.2 Numerical values

When the graph of the influence diagram has been constructed, it is ne-

cessary to complete the quantitative part of the diagram, which con-

sists of a set of probability and utility potentials. For instance, for each chance

node C we must give a conditional probability potential p(C|pa(C)) for each

configuration of its parents, pa(C). Then, the table for p(C|pa(C)) requires

|dom(C)|
∏

X∈pa(C) |dom(X)| numbers, but given the restriction that

∑
c

p(C|pa(C)) = 1, (3.1)

only some of them are independent. When eliciting the parameters of the model,

we asked the expert to estimate only a certain number of independent parame-

ters, mainly those relating to the conditional probability table for the node Knee

motion. In our study we have chosen a set of 50 independent parameters for all

the model (see Table 3.5). Two of them are the probability of the different states

of Ischemia and Drained CC nodes, conditioned on the implantation of the pros-

thesis; 10 parameters are conditioned probabilities of the tests (sensitivity and

specificity), given knee deep infection; 6 are utilities measured in QALYs; and 32

parameters are conditional probabilities of occurrence of a knee deep infection,

obtained all of them from a binary logistic regression.

This regression was made on a database of 279 cases of a public health service

hospital, which may have introduced an important bias in the study. For that

purpose, the IBM’s software SPSS PASW Statistics 18 -see (SPSS)- was used. The

aim of this regression is to predict the dichotomous variable Knee deep infection.

The following variables were included as control independent variables (also called

covariables): BMI, Diabetes, Antibiotic allergy, Ischemia and Drained CC. Table

3.4 shows the adjustment constant and regression coefficients obtained from the

analysis.
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Table 3.4: Knee deep infection variable logistic regression

equation parameters

Name of the variable Value

BMI 1.443

Diabetes 0.945

Antibiotic allergy 1.595

Ischemia 3.519

Drained CC 1.603

Adjustment constant -4.554

Applying the logistic regression equation:

P (+k|b, d, a, i, c) =
1

1 + e−ac−1.443·b−0.945·d−1.595·a−3,519·i−1.603·c , (3.2)

where +k means the knee deep infection appearance probability, b, d, a, i

and c the covariables (BMI, Diabetes, Antibiotic allergy, Ischemia and Drained

CC ) binary codification and ac the adjustment constant; the Knee deep infection

variable probability table could be obtained.

We have followed a convention for naming the parameters of ArthroNET,

which basically consists in abbreviating each name of laboratory test, test re-

sult, risk factor, clinical sign and decision to their two or three first letters. For

instance, the parameter sen ESR KDI pos refers to the sensitivity of the Erythro-

cyte sedimentation rate test when the patient suffers a knee deep infection. In

contrast, the parameter prob KDI pos DIA neg AAL pos BMI neg DCC extrem

ISC low refers to the conditional probability of suffering a total knee arthroplasty

perioperative infection if the patient is not diabetic, is allergic to antibiotics, is

not obese, has drained too much or little fluid and the ischemia time was lower

than ninety minutes. The Table 3.5 shows all those 50 parameters, and how they

were obtained (binary logistic regression, medical literature or expert’s subjective

estimates). For the data collected from literature, other bibliographical sources

were considered, but rejected because the expert considered that they do not

represent accurately the clinical reality.
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3.3.3 Cost-effectiveness and net health benefit

The version of ArthroNET presented above does not include the economic

costs of the diagnostic tests and the treatments. However, in medical

decision making costs cannot be ignored. Including the economic cost turns our

medical problem into a multi objective optimization (Steuer, 1986). Nevertheless,

instead of basing cost-effectiveness analysis on the incremental cost-effectiveness

ratios (ICERs), which is the standard method, we will apply a different perspec-

tive: the maximization of the net benefit, because it is easier to integrate with

influence diagrams, and of course, both approaches are equivalent. Thus, the

global utility can be identified with the net monetary benefit (NMB), and defined

by:

NMB = λ · E − C, (3.3)

where E is the effectiveness, C is the cost, and λ, sometimes called willingness

to pay, is used here to convert the effectiveness into a monetary scale. Its value

depends on each decision maker. NMB is the net monetary benefit, and can be

seen as the effectiveness (converted into monetary value) minus the associated

economic costs. Similarly, we can define the net health benefit (NHB) by:

NHB = E − λ′ · C, (3.4)

where λ′ = 1/λ. The NHB can be interpreted as the health benefit minus

the economic costs (converted into medical units). Therefore, in the analysis

maximizing the NMB is equivalent to maximizing the NHB because they are

proportional (NMB = λ ·NHB) and λ > 0. However, we have used the NHB

because it allows us to do λ′ = 0, which amounts to maximizing the effectiveness,

regardless of the economic cost; if we had used the NMB, we would not have been

able to perform this analysis, because making λ =∞ prevents the maximization

of the utilities. The integration of Equation 3.4 into ArthroNET is as follows (see

Figure 3.8 – In order to better appreciate the details of the diagram, the image

has been exported from Elvira software):

• The cost, C, is represented by a super value node, Total cost, whose parents

are the utility nodes Prosthesis cost, Scintigraphy cost, Synovial biopsy cost

and Removal cost.
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Figure 3.8: A new version of ArthroNET, including economic costs.
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• The effectiveness, E, is represented by a structure of utility nodes explained

in Section 3.3.1, having the Total QALE node at the bottom.

• The node Weighted economic cost is a super value node of type product,

which represents −λ′ · C (−λ′ is included in C2E node).

• Net effectiveness is a super value node of type sum, which represents the

net health effectiveness (Equation 3.4).

Numerical values

Analogously to the case of Section 3.3.2, we have defined a set of minimal pa-

rameters for the new nodes added in the new version of ArthroNET (Figure 3.8).

The new parameters are shown in Table 3.6, and the way they were collected

is also described as in Table 3.5. The names of the parameters use a similar

convention to those in Table 3.5. For instance, cost SGT denotes the economic

cost of making a sequential gallium-67 and technetium-99 scintigraphy. The last

parameter in table, lambda, denotes the term λ in Equation 3.3, which is the

inverse of λ′.

If we make λ′ = 0, the evaluation of the influence diagram returns the strategy

that maximizes the effectiveness, without taking into account the economic costs.

Table 3.6: Economic cost ArthroNET parameters

Name of the parameter Value assigned Obtained from

cost prosthesis e 6,865.52 (Espigares and Torres, 2008)

cost SGT e 335.08 (de Salud, 2007)

cost PMN e 405.28 (de Salud, 2007)

cost removal $ 50,000 (Hanssen et al., 1996)

lambda e 30,000/QALY (Sacristán et al., 2002)
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Figure 3.9: ArthroNET decision analysis policies summary.

3.4 Optimal strategies

In this section we show two strategies returned by ArthroNET with two different

criteria: the maximization of the effectiveness (disregarding costs) and the

maximization of the net health benefit -see (Luque Gallego, 2009)-.

3.4.1 Maximum-effectiveness strategy

The strategy that maximizes the effectiveness can be obtained from the ver-

sion of ArthroNET that does not include economic costs (see Figure 3.5).

However, instead of maintaining two versions of the influence diagram, with and

without costs, we have only the one with costs (see Figure 3.8). As explained

above, the maximum-effectiveness strategy can be obtained from this influence

diagram by making λ′ = 0 (see Equation 3.4). Below are the results of the

decision analysis performed with the DPL software.

Due to the large number of branches of the policy tree, it is impossible to

offer, for each of the more than 50,000 possibilities, an optimal policy. That

is the reason why the Syncopation tool offers summaries of policies, as seen in

Figure 3.9. For a particular patient, the specialist will choose those branches that

suit to the diagnostic clinical reality in order to get the more useful policy. In

our study, the policies summary indicates that the prosthesis implant is always

made, regardless of the risk factors presented by the patient; in this case, the

expected benefit of implanting the prosthesis is higher than when it is necessary

to remove the prosthesis because of the appearance of a knee deep infection.

This summary indicates a 51% failure of the implants, and suggests to carry out

scintigraphies and synovial biopsies in 87% and 92% of the cases, respectively, in

order to determine the presence of infection.

This means that if we have a patient per each possible combination of the
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three risk factors (eight combinations)3, 51% will need a removal of the prosthe-

sis. Moreover, to obtain these summaries, the software uses all branches of the

decision tree, including all the possible results of diagnostic tests. That is the

reason why the analysis should be made pre or post-operatively on each specific

sub-branch to reflect the clinical reality of the patient in terms of risk factors,

among others.

The decision analysis was also carried out controlling those decision tree sub-

branches that contain information about the risk factors. Thus, it was necessary

to perform 23 (8) analysis with the tool. Those analysis gave the policies sum-

maries showed in Table 3.7, where D1, D2, D3 and D4 are the probabilities of

making the decisions Implant prosthesis, Make scintigraphy, Make synovial biopsy

and Remove prosthesis respectively.

Table 3.7: ArthroNET decision analysis policies sum-

maries taking into account the risk factors

High BMI Diabetic Antibiotic allergic D1 D2 D3 D4

No No No 1 0.72 0.95 0.22

No No Yes 1 0.93 0.84 0.47

No Yes No 1 0.91 0.74 0.36

No Yes Yes 1 0.94 1 0.60

Yes No No 1 0.89 0.87 0.45

Yes No Yes 1 0.80 0.99 0.66

Yes Yes No 1 0.77 0.98 0.58

Yes Yes Yes 1 0.98 1 0.78

3.4.2 Maximum-benefit strategy

In a second phase we have evaluated ArthroNET with economic costs. As shown

in (Sacristán et al., 2002), all technologies with a cost-effectiveness ratio lower

than e 30,000 per QALY were recommended in the Spanish public health system,

3This classification does not take into account the prior probability of the risk factors.
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Figure 3.10: Policies summary of ArthroNET decision analysis including eco-
nomic costs.

but up to that limit there was no a clear tendency. That is the reason why we

have set the parameter lambda to a value of λ = e 30,000/QALY. A different

value of lambda could lead to a different strategy. Analogously as in section 3.4.1

below are the results of the decision analysis performed.

The summary of policies is presented in Figure 3.10. The introduction of

economic costs to the model makes the optimal policies vary substantially:

1. Implant prosthesis: recommended for all patients, except for those with a

high BMI, diabetes and allergy to antibiotics. The percentage of suggested

implants shown has considered sets where there is a patient per each possible

combination of the three risk factors. The calculation of a more abstract

rate should take into account the prevalence of risk factors in the country

where the diagnosis is made.

2. Make scintigraphy: only recommended in 8% of the cases, mainly due to

the contrast low sensitivity - economic cost of this test.

3. Make synovial biopsy: recommended in 18% of cases.

4. Remove prosthesis: a policy that combines health and economic cost leads

to cutting down cases of implant failure, although less implants are made.

As in the previous strategy, several decision analysis based on all possible risk

factors casuistic have been performed, whose results are shown in Table 3.84.

4This table uses the same nomenclature as Table 3.7
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Table 3.8: Economic version of ArthroNET decision a-

nalysis policies summaries taking into account the risk

factors

High BMI Diabetic Antibiotic allergic D1 D2 D3 D4

No No No 1 0.1 0.25 0.21

No No Yes 1 0.02 0.18 0.47

No Yes No 1 0.09 0.23 0.36

No Yes Yes 1 0.15 0.16 0.59

Yes No No 1 0.07 0.21 0.44

Yes No Yes 1 0.08 0.23 0.66

Yes Yes No 1 0.16 0.17 0.57

Yes Yes Yes 0 0 0 0

3.5 Sensitivity analysis

3.5.1 Introduction

The object of decision analysis on a probabilistic decision problem, repre-

sented for example in a decision tree, an influence diagram or an uncons-

trained influence diagram, is twofold: to determine an optimal strategy, consisting

of an optimal policy for each decision, and on the other hand, to compute the

maximum expected utility (MEU). In general it is usual to compute first the

optimal policies and the MEU for a particular model, called the reference case,

in which all the parameters are assumed to be known with certainty, and in a

posterior phase, the decision analyst investigates whether these results depend on

(are sensitive to) the uncertainty about the model. This post-hoc investigation

is called sensitivity analysis. The optimal policies and the MEU are sensitive to

variations in both the qualitative part of the influence diagram (arcs and nodes)

and the quantitative part (the utilities and the probabilities).
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Basic concepts

Sensitivity analysis (SA) consists in determining whether the conclusions ob-

tained for the reference case (optimal strategy and MEU) hold in spite of the

uncertainty about the accuracy of the model itself.

There exist several types of SA. Depending on the part of the model studied,

SA can be:

1. qualitative, also referred to as structural, which examines how variations

of the structure of the model can affect the conclusions;

2. quantitative, which explores the effect of the variations in the probabilities

and utilities.

Depending on the types of conclusions studied, we can distinguish two types

of SA:

1. value sensitivity analysis, which measures variations in the expected

utility;

2. decision sensitivity analysis, which explores the changes in the optimal

strategy.

Quantitative SA can furthermore be characterized as:

1. interval-based SA: each parameter to be within a certain interval;

2. probabilistic SA: it assigns a probability distribution to each parameter;

(Doubilet et al., 1985) describes a practical method when uncertainties in

all values are considered simultaneously, they used a parametric model that

permits each distribution to be specified by two values: (1) the baseline

estimate, and (2) a bound (upper or lower) of the 95 percent confidence

interval;

3. policy change thresholds SA: it investigates the admissible values a

parameter (or a set of parameters) can be assigned without changing the

optimal strategy of the reference case.

The distributions commonly used in probabilistic SA when applied to medical

decision making are shown in Table 3.9.
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Table 3.9: Commonly used distributions in

SA in medical decision making. Taken from

http://www.york.ac.uk/inst/che/pdf/teehtacosteff04.pdf

Parameters Distribution Details

Probabilities Beta Between 0 and 1

Costs Log-normal | Gamma Ranging from 0 to ∞
Utilities Beta | Gamma (1 – U ) – ∞ to 1

Relative risks Log-normal Ratios | Additive in log scale

Quantitative SA can be classified into three types (Dı́ez, 2007):

1. one-way: it is concentrated on just one parameter; for instance, the preva-

lence;

2. n-way independent analysis, which consists in considering the conse-

quences of individual variations of each of n parameters;

3. n-way joint analysis: it analyzes the joint variation of a set of n para-

meters.

There are three graphical representations very popular in SA of Bayesian

decision problems (Dı́ez, 2007), (Clemen and Reilly, 1999):

1. Utility plots: they can be used for finding treatment thresholds in different

scenarios (van der Gaag and Coupé, 2000) and, in consequence, to explain

the optimal policies. For instance, Figure 3.12 shows the results of one-way

sensitivity analysis on the prevalence of X for the influence diagram given

in Figure 3.11. This graph is obtained by evaluating several instances of the

influence diagram, each having a different value of P (+x). We can see that

the treatment threshold is approximately 0.17, i.e., when P (+x) < 0.17

the best option is not to treat the patient, and when P (+x) > 0.17 it is

better to treat. This way, utility plots show graphically the policy changes

thresholds and why they emerge.
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Figure 3.11: Influence diagram with two decisions, two chance nodes and three
utility nodes. There is a directed path T − Y − D − U1 − U0 including all the
decisions and the global utility node U0.

2. Tornado diagrams: they are a form of interval-based n-way independent

analysis. They show graphically which parameters in the model have the

greatest influence on the expected utility. Each parameter is assigned to a

bar whose length indicates the variation of the expected utility. The graph

is laid out so that the most sensitive parameter (the one with the longest

bar) is at the top, and the least sensitive is at the bottom, where the bars

are arranged in this order. An example of tornado diagram is shown in

Figure 3.13. The vertical bar represents the MEU for the reference case.

3. Spider diagrams: the analysis is identical to the tornado diagram. The

only difference is how the results are presented. In a spider diagram, the

utility is not represented on the horizontal axis but on the vertical one; the

percentage variation of each parameter over its reference value is represen-

ted on the horizontal axis. An example of spider diagram is displayed in

Figure 3.14.

Sensitivity analysis in influence diagrams

One of the first steps towards a framework for sensitivity analysis in influence

diagrams was proposed in (Bielza et al., 1996). They consider influence diagrams

in which only partial information is available about probabilities and utilities.

Uncertain values are represented by parameters. The authors propose a method
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Figure 3.12: Utility plot of the prevalence of the disease, which is represented
in the the x -axis. The y-axis represents the expected utility. The treatment
threshold is 0.17.

Figure 3.13: A tornado diagram. Taken from (Dı́ez, 2007)
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Figure 3.14: A spider diagram. Taken from (Dı́ez, 2007)

for computing a set of non-dominated strategies based on that parametric model.

Given that the set of non-dominated set may grow tremendously they introduce

some additional criteria to limit the size of the sets, and eventually, select a

non-dominated alternative.

A method based on value sensitivity was proposed in (Felli and Hazen, 1998).

This method uses the expected value of perfect information, and it requires a

probability distribution to be assigned to each parameter under investigation.

Formally, let t be an uncertain parameter, and let ∆0 be the optimal strategy

found with the initial values of the parameters t, denoted by t0. Let EU(∆, t)

denote the expected utility of the influence diagram under strategy ∆ and values

of parameters t. Then, the expected value of perfect information (EVPI) is given

by:

EV PI = Et[(max∆EU(∆, t))− EU(∆0, t)], (3.5)

where Et denotes the expected value with respect to the probability distribution

of parameters t. Monte Carlo methods are usually applied to sample values for the

parameters in order to calculate EVPI. Et in Equation 3.5 is then approximated

by calculating the mean over the set of generated samples.

Ictneo, a decision support system to manage neonatal jaundice, is a good

example of the application of sensitivity analysis techniques to a real influence

diagram (Bielza et al., 2000). The authors deduced a relevant set of parameters
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to analyze as a result of interviews with the doctors. They performed a one-way

SA based on tornado diagrams and n-way SA through the EVPI calculated with

Monte Carlo simulations.

(Nielsen and Jensen, 2003) proposed a method that performs decision SA in

influence diagrams based on threshold-proximity. They developed very efficient

algorithms for performing one-way and n-way SA. Their method is based on

an explicit representation of the parameters in question, and the calculations are

performed in the underlying junction tree representation of the influence diagram.

3.5.2 Sensitivity analysis in ArthroNET

We are interested in determining whether the conclusions obtained with

ArthroNET hold in spite of the uncertainty relative to the construction

of the model. The sensitivity analysis has been performed through the DPL

software.

Expected value of perfect information

For both strategies, the expected value of perfect information charts (see Figu-

re 3.15 and Figure 3.16) offer the same correlation between the model variables.

In these charts, a positive value of information means that knowing which

state of the chance event will occur before making a decision changes the policy

tree in some way to improve expected value. A zero value would mean that

knowing the state has no impact on the policy tree. A negative value usually

means that the objective was to minimize an utility, and that there is value

to knowing the state of the event. In our study all values are positive, because

decreasing the uncertainty of any variable in the model implies a better diagnosis,

and subsequently a better treatment policy.

These graphs show that, as expected, the variable representing the presence

of infection of the knee is the one with greater significance because it determines

the success or failure of the implant, and therefore increase or decrease of the net

health benefit. Additionally, the analysis of the C-reactive protein, and the time

of ischemia are the variables more significant in the model.
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Figure 3.15: Expected value of perfect information - ArthroNET maximum-
effectiveness strategy.
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Figure 3.16: Expected value of perfect information - ArthroNET maximum-
benefit strategy.
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Rainbow diagrams

We present below (see Table 3.10) a series of one-way and two-way rainbow

diagrams (Clemen and Reilly, 1999) to see the effects of varying a single variable

on the optimal policy and the expected value. In these diagrams (obtained from

the decision analysis performed with the DPL software), a region in which the

optimal policy does not change is indicated with a single color. If there are

more than one colored regions in the graph, then the optimal policy is different

depending on the value of the sensitivity parameter. Because model outputs

are determined at discrete values over a range of the sensitivity parameter, we

cannot assume that the line between regions indicates the precise value at which

the policy changes. Obtaining the precise points where the policy change is

postulated as the subject of a future study. Analogously, in two-way rainbow

diagrams, a region in which the optimal policy is the same is indicated with

a single color, being displayed in a graph with the range of values for the first

sensitivity variable along the horizontal axis and the range of values for the second

sensitivity variable along the vertical axis.

For those cases where possible, and in order to make comparisons, diagrams

for each one of the two strategies, maximum-effectiveness (ME) and maximum-

benefit (MB), will be presented. The Table 3.10 contains the references to all the

rainbow diagrams performed through the DPL software. The way the diagrams

were obtained was specifying the value range that the parameter can take, and

the steps to do it. For instance, a range [-10, 0] with 20 steps means that the

model will be evaluated for the following parameter values: {-10, -9.47, -8.95,

-8.42, -7.89, -7.37, -6,84, -6.32, -5,79, -5.26, -4.74, -4.21, -3.68, -3.16, -2.63, -2.11,

-1.58, -1.05, -0.53, 0}.

Table 3.10: ArthroNET sensitivity analysis DPL out-

come (rainbow diagrams)

Type Variable Reference See also

One-way Prosthesis QALE A.1

One-way Prosthesis QALE A.2

One-way Removal QALE A.3 Table 3.11

Continued on next page. . .
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Table 3.10 – Continued

Type Variable Reference See also

One-way Removal QALE A.4 Table 3.11

One-way Removal QALE A.5 Table 3.11

One-way Removal QALE A.6 Table 3.11

One-way Prosthesis cost A.7 Table 3.12

One-way Removal cost A.8 Table 3.12

One-way Scintigraphy cost A.9 Table 3.12

Oneway Synovial biopsy cost A.10 Table 3.12

Two-way Prosthesis vs. Removal QALE A.11 Table 3.13

Two-way Prosthesis vs. Removal QALE A.12 Table 3.13

Two-way Prosthesis vs. Removal QALE A.13 Table 3.13

Two-way Prosthesis vs. Removal QALE A.14 Table 3.13

Two-way Prosthesis vs. Removal QALE A.15 Table 3.13

As can be seen in figures A.1 and A.2, there is great variability of optimal

policies due to the variation of the parameter Prosthesis QALE when the implant

is made (evaluated range: [0,10], 20 steps), although in the case of maximum-

benefit strategy, when it exceeds a value close to 5 QALEs, the optimal policy is

maintained, being this to perform the implant on 100% of patients, because the

economic cost of the implant does not affect the global net benefit (due to the

high improvement of the quality of life).

The rainbow diagrams detailed in Table 3.115 show the expected value of the

optimal policies when the Removal QALE parameter varies. To obtain those

diagrams, the presence of infection has been considered, and the analysis has

evaluate the model whether the implant was removed or not. This diagrams do

not give too much information, but confirm the variability of policies depending

on the parameter values.

As shown in Table 3.125, the economic costs rainbow diagrams are related

to the four model decisions. In those diagrams only the Removal cost variable

5Each row of this table means one sensitivity analysis run. This table also specifies, for each
run, the chance variables selected values and the decisions made. The last column of the table
contains the reference to the graphical output of the analysis execution.
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diagram (see Figure A.8) indicates a great variability of the policies, mainly due to

the high economic cost of prosthesis removal. This parameter has been evaluated

in a e 60,000 range, whose real cost is much higher than the other arthroplasty

procedures costs.

Finally, in Table 3.135, the sensitivity analysis conditions of the Removal

QALE, Prosthesis cost and Removal cost two-way rainbow diagrams are pre-

sented. Their study will be made in a future work.
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3.6 Discussion

In the daily clinical practice, indications of total knee arthroplasty are based

mostly on clinical facts, like presence of pain, exploration, and results of

image studies. However, after some time of practicing, each surgeon develops

some kind of intuition that is mainly based on his/her experience. When the

infection appears, the surgeons, usually ask themselves What did I do wrong? or

What should not I have done? This afore mentioned intuition makes the surgeons

suspect that some patients (over-weighted, diabetic, arthritic, immunodepressed,

previously infected...) have a high probability of developing an infection after the

arthroplasty.

Many studies have identificate some risk factors that increase the risk of infec-

tion in arthroplasties. However, the influence diagram presented in this memory

(see Section 3.3.1) offers for the first time a tool based on a scientific, probabilis-

tic, evidence-based algorithm for helping the surgeon decide whether to operate

or not, when some risk factors are present, decide which methods are most suit-

able for the diagnosis of an infection, and decide what procedures and treatments

are optimal when the infection has been diagnosed. Not only quality of life has

been taken into consideration for this study, but also economic advantages and

disadvantages.

Identifying pre-operative risk factors in total knee arthroplasty is a hard and

painstaking task. Diversity of biological variables, correlations and dependence

amongst them (i.e. age and overweight, age and diabetes, overweight and dia-

betes) and variability between individuals usually lead to invalid statistic models,

and erroneous results. Therefore, for this model, we have considered two unques-

tionable risk factors for developing arthroplasty infections, both of them already

extensively studied in literature (like obesity and diabetes) and a new risk fac-

tor (antibiotic-cephalosporin allergy) identified on our series, and based on the

specialist’s own experience.

Identifying risk factors is a hard task, but it is harder to determine whether a

total knee arthroplasty is infected. Commonly used diagnostic tests are not 100%

accurate, and their results should be interpreted as a probability of the presence

of an infection. Scintigraphy, synovial biopsy, analytic results (C-reactive protein

values), and clinical observation (stiffness, lowered range of motion) are taken

into consideration into the model, as well as their morbidity and costs.
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The proposed algorithm not only evaluates the probability of an infection,

based on the presence of risk factors, combined with the results of diagnostic

tests, but is capable of advising the surgeon of which diagnostic method is most

suitable for each patient, i.e. this tool is capable of detecting if there is no need

to make a synovial biopsy, when the probability of infection is already very high,

thus lowering costs and morbidity.

ArthoNET is a decision support system for the diagnosis of perioperative

infection in total knee arthroplasty and does not pretend to be an unquestionable

method of election, but represents an advisor for the surgeon. The parameter

λ, which in cost-effectiveness analyses represents the amount of money that the

decision maker is willing to pay to obtain a unit of effectiveness, has been included

in the influence diagram by introducing a utility node that represents 1/λ (−λ′

is included in the node C2E of the influence diagram in Figure 3.8).

We have evaluated the influence diagram with λ′ = 0, which makes the net

health benefit coincide with the effectiveness (see Equation 3.4), i.e., we have

disregarded the economic costs. Then, we have evaluated it again with λ =

e 30,000/QALY, which is accepted as the shadow cost-effectiveness equivalence

in Spain (Sacristán et al., 2002).

3.7 Evaluation of ArthroNET

Previously guided by clinical common sense, by medical literature and by the

specialist’s empiric experience, ArthroNet has been used for three months

in the clinical service where the specialist belongs to. The way it was used

was through the influence diagram implemented in DPL software, leading to a

maximum-benefit strategy.

Twenty-five (25) patients were included in the study. All of them eligible for

a total knee arthroplasty. The Table 3.14 shows the patients’ risk factors and the

probability of outcome of infection for each of them before the surgical procedure

(extracted from the decision analysis results). The software discouraged three (3)

patients from making the implant. These three patients were obese and allergic

to antibiotics (two of them were also diabetics), and are identified in Table 3.15

as patients 12, 24 and 25.
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Table 3.14: Risk factors and prior probability of outcome

of the infection of the 25 patients belonging to the sample

under study

High BMI Diabetes ATB allergy Infection prob. No. patients

No No No 0.38 1

No No Yes 0.61 2

No Yes No 0.52 1

No Yes Yes – 0

Yes No No 0.59 7

Yes No Yes 1 1

Yes Yes No 0.7 11

Yes Yes Yes 1 2

Regardless of the results offered by the tool, all the patients underwent total

knee arthroplasty. The Table 3.15 shows, for each patient, his/her risk factors

(R1, R2 and R3 are the risk factors High BMI, Diabetes and Antibiotic allergy

severally), the variables observed during surgery (ischemia time and drained cubic

centimeters), the probability of occurrence of infection, and the policies recom-

mended by the tool (D1, D2, D3 and D4 are the decisions Implant prosthesis,

Make scintigraphy, Make synovial biopsy and Remove prosthesis respectively.).

The last column shows whether or not the infection appeared finally, so the suc-

cess of the model can be checked.
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As can be seen in Table 3.15, the model has predicted accurately the outcome

of infection in three (3) of twenty-five (25) patients before the surgical procedure.

Despite of the recommendations of the software, and in order to evaluate its

capabilities, the total knee arthroplasty was performed on all of the twenty-five

(25) patients. After surgery, the model predicted the outcome of infection in

another five (5) patients (total of eight -8-). Three months after all arthroplasties

were made, the team was able to verify that the knees that became infected (eight

-8-) were those the model predicted: 100% success.
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Chapter 4

Conclusions

We end this dissertation by summarizing the main contributions (Section 4.1)

and proposing some lines open for future research (Section 4.2).

4.1 Main contributtions

Firstly, we have reviewed the state of the art of two kinds of decision support

systems: (1) those related to knee arthroplasties and (2) those influence

diagrams applied to medicine.

We have also built an influence diagram, ArthroNET, a decision support sys-

tem for the diagnosis of perioperative infection of total knee arthroplasty. The

parameter λ, which in cost-effectiveness analyses represents the amount of money

that the decision maker is willing to pay to obtain a unit of effectiveness, has been

included in the influence diagram by introducing an utility node that represents

−1/λ (C2E node - see Figure 3.8). We have evaluated the influence diagram

with λ′ = 0, which makes the net health benefit coincide with the effectiveness

(see Equation 3.4), i.e., we have disregarded the economic costs. Then, we have

evaluated it again with λ = e 30,000/QALY, which is accepted as the shadow

cost-effectiveness equivalence in Spain (Sacristán et al., 2002).

For the eight infected patients mentioned in section 3.7 (out of a population

of 25 candidates to total knee replacement), and in absolute terms of health

and money, the software predicted pre-operatively a high risk of infection in

three of them, based on the presence of obesity and/or diabetes and/or antibiotic

allergy; and post-operatively a high probability of infection in the other five
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patients, based on results of the tests. The eight infections were confirmed later

in operating room, when the infected prostheses were extracted.

As it has already been said, this new tool does not pretend to exclude any pa-

tient from total knee arthroplasty, but to provide both the surgeon and the patient

with an estimate of the risks for health and the probabilities of failure. The selec-

tion of the right patient includes other innumerable factors, most of them being

not mathematically measurable, like personality or social features, self-sufficiency,

mental health, personal care, capability of understanding the treatment and the

care of the prosthesis, disposition to rehabilitation, etc.

In conclusion, our experience with ArthroNET showed a reasonable guideline

to the alternatives in diagnosis and treatment, and a correct prediction of infec-

tious disease outcome in 8 cases out of a 25 patients population (100% success).

4.2 Future work

There are some open lines for future research.

With respect to the explanation of the reasoning in influence diagrams, to find

some method that could help to explain to the expert which variables are having

more influence in the optimal strategy and in the maximum expected utility.

In relation to the application of ArthroNET we have three research lines

suggested by the expert:

• To model the evolution of the implant through time.

• To add more risk factors to the model, such as the rheumatoid arthritis.

• To include in the model the bacterial organisms responsible for the infec-

tions.

Also, a more accurate sensitivity analysis is needed; it would be desirable to

know the precise points where policies change. Besides, a sensitivity analysis

must be performed on the model parameters that the DPL software does not

allow to study.

In addition, the author intends to continue this study in a doctoral thesis,

including the implementation of the model through OpenMarkov, a free software
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tool for probabilistic graphical models, such as Bayesian networks, influence dia-

grams and Markov models, developed at the CISIAD1, a Research Center on

Intelligent Decision-Support Systems, UNED dependent center.

1http://www.cisiad.uned.es
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Appendix of chapter 3

A.1 Figures

This section contains some of the figures mentioned in the sensitivity analysis

of chapter 3.
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Figure A.1: Maximum-effectiveness - Rainbow diagram Prosthesis QALE —
Implant prosthesis = Yes.
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Figure A.2: Maximum-benefit - Rainbow diagram Prosthesis QALE — Implant
prosthesis = Yes.
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Figure A.3: Maximum-effectiveness - Rainbow diagram Removal QALE — Knee
deep infection = Present, Remove prosthesis = No.
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Figure A.4: Maximum-effectiveness - Rainbow diagram Removal QALE — Knee
deep infection = Present, Remove prosthesis = Yes.
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Figure A.5: Maximum-benefit - Rainbow diagram Removal QALE — Knee deep
infection = Present, Remove prosthesis = No.
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Figure A.6: Maximum-benefit - Rainbow diagram Removal QALE — Knee deep
infection = Present, Remove prosthesis = Yes.
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Figure A.7: Maximum-benefit - Rainbow diagram Prosthesis cost — Implant
prosthesis = Yes.
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Figure A.8: Maximum-benefit - Rainbow diagram Removal cost — Remove
prosthesis = Yes.
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Figure A.9: Maximum-benefit - Rainbow diagram Scintigraphy cost — Make
scintigraphy = Yes.
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Figure A.10: Maximum-benefit - Rainbow diagram Synovial biopsy cost — Make
synovial biopsy = Yes.
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Figure A.11: Maximum-effectiveness Two-way rainbow diagram Prosthesis
QALE — Implant prosthesis = Yes vs. Removal QALE — Remove prosthesis =
No.



A.1. Figures 103

Figure A.12: Maximum-effectiveness Two-way rainbow diagram Prosthesis
QALE — Implant prosthesis = Yes vs. Removal QALE — Remove prosthesis =
Yes.
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Figure A.13: Maximum-benefit Two-way rainbow diagram Prosthesis QALE —
Implant prosthesis = Yes vs. Removal QALE — Remove prosthesis = No.
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Figure A.14: Maximum-benefit Two-way rainbow diagram Prosthesis QALE —
Implant prosthesis = Yes vs. Removal QALE — Remove prosthesis = Yes.
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Figure A.15: Maximum-benefit Two-way rainbow diagram Prosthesis cost —
Implant prosthesis = Yes vs. Removal cost — Remove prosthesis = Yes.



Appendix B

Resumen en español (Summary

in spanish)

B.1 Motivación

Los modelos gráficos probabiĺısticos (MGP), en particular las redes bayesianas

y los diagramas de influencia, fueron desarrollados en los años 80 por in-

vestigadores del campo de Inteligencia Artificial, Matemáticas y Economı́a con

el propósito de resolver problemas cuya complejidad excede la capacidad de los

métodos existentes hasta entonces. Hoy en d́ıa los MGP son aplicados a muchas

áreas y existe un interés creciente en el campo académico y en el mundo em-

presarial. Los MGP permiten resolver problemas que no podŕıan ser abordados

con los métodos probabiĺısticos tradicionales o con otras técnicas de Inteligencia

Artificial.

Varios grupos de investigación españoles interesados en los MGP fueron sur-

giendo de forma independiente en diferentes universidades. El trabajo en MGP en

la UNED comenzó en 1990 con la tesis doctoral de (Dı́ez, 1994), que consistió en la

construcción del sistema experto DIAVAL, una red bayesiana para el diagnóstico

de enfermedades card́ıacas por ecocardiograf́ıa.

La investigación del grupo CISIAD (Centro de Investigación sobre Sistemas

Inteligentes de Ayuda a la Decisión)1 siempre ha estado guiada por problemas

médicos concretos: las necesidades surgidas al construirlos han motivado el desa-

rrollo de nuevos modelos, algoritmos, y herramientas software, que posteriormente

1Centro dependiente de la UNED.
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han sido aplicados a otros problemas, no solamente en medicina.

El principal objetivo de esta investigación fue la construcción de un diagrama

de influencia para realizar un análisis coste-utilidad del proceso cĺınico de la artro-

plastia total de rodilla.

La principal motivación para construir este diagrama fue confirmar dos su-

posiciones del especialista que ha colaborado en esta investigación, el Dr. Rubén

Garćıa Fraile, y que son las siguientes:

1. Los principales factores de riesgo a la hora de sufrir una infección peri-ope-

ratoria tras una artroplastia total de rodilla son: (1) un ı́ndice de masa cor-

poral (IMC) elevado, (2) ser diabético (diabetes mellitus) y (3) ser alérgico

a los antibióticos.

2. Para aquellos pacientes con los tres factores de riesgo anteriormente men-

cionados presentes, la artroplastia conducirá a una pérdida elevada de cali-

dad de vida y de dinero, debido a que si la infección está presente la retirada

de la prótesis es necesaria.

B.2 Objetivos

Debido a las necesidades planteadas en la sección previa, los objetivos de esta

investigación pueden resumirse en:

1. Construir un diagrama de influencia con nodos super-valor representando

el proceso cĺınico de la artroplastia total de rodilla y el diagnóstico de la

infección peri-operatoria de la prótesis, que hemos llamado ArthroNET.

2. Evaluar este diagrama.

B.3 Metodoloǵıa

La metodoloǵıa seguida para alcanzar los objetivos se divide en tres fases,

como se muestra en la Figura B.1.

La primera fase consiste en la construcción del diagrama de influencia Arthro-

NET, con la ayuda del cirujano especialista en traumatoloǵıa y ortopedia citado

en la Sección B.1. La segunda fase fue la validación del sistema, que condujo a la
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Figure B.1: Fases del desarrollo de esta investigación.

modificación del diagrama con la ayuda del especialista en un proceso iterativo.

Finalmente, pudimos evaluar el modelo y extraer algunas conclusiones.

B.4 Organización de la investigación

Esta memoria está estructurada en cuatro partes:

1. Parte I: se explica la motivación, objetivos y metodoloǵıa de este trabajo.

2. Parte II: se revisa el estado del arte de dos tipos de sistemas de soporte a la

toma de decisiones: (1) aquellos relacionados con las artroplastias totales

de rodilla y (2) aquellos aplicados en el campo de la medicina que están

basados en diagramas de influencia.

3. Parte III: se presenta el sistema de soporte a la toma de decisión para el

diagnóstico de la infección peri-operatoria de la artroplastia total de rodilla.

4. Parte IV: se muestran las conclusiones y el trabajo futuro.

B.5 Principales contribuciones

Primeramente, hemos revisado el estado del arte de dos tipos de sistemas de

soporte a la toma de decisiones: (1) aquellos relacionados con las artroplas-

tias totales de rodilla y (2) aquellos aplicados en el campo de la medicina que

están basados en diagramas de influencia.

También hemos construido un diagrama de influencia, ArthroNet, un sistema

de soporte a la toma de decisión para el diagnóstico de la infección peri-operatoria

de la artroplastia total de rodilla. El parámetro λ, que en análisis coste-efectividad

representa la cantidad de dinero que el decisor está dispuesto a pagar para obtener

una unidad de efectividad, ha sido incluido en el diagrama de influencia mediante
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la introducción de un nodo de utilidad que representa −1/λ (nodo C2E - ver

Figura 3.8). Hemos evaluado el diagrama de influencia con λ′ = 0, lo que hace

que el beneficio de salud de la red coincida con la efectividad (ver Ecuación 3.4),

omitiendo los costes económicos. Después, se ha evaluado de nuevo el diagrama

con λ = 30.000e /QALY, que es aceptado como la equivalencia coste-efectividad

en la ”sombra” en España (Sacristán et al., 2002).

Para los ocho pacientes infectados mencionados en la sección 3.7 (de entre

una población de 25 candidatos a la artroplastia total de rodilla), y en términos

absolutos de salud y económicos, el modelo predijo de forma pre-operatoria un

riesgo elevado de infección en tres de ellos, basándose en la presencia de obesidad

y/o diabetes y/o alergia a antibióticos; y de forma post-operatoria una elevada

probabilidad de infección en los otros cinco pacientes, basándose en los signos

cĺınicos intra-operatorios. Las ocho infecciones se confirmaron posteriormente en

quirófano, cuando fueron necesarias sus extracciones.

Esta herramienta no pretende excluir a ningún paciente de la artroplastia total

de rodilla, pero śı dotar tanto al cirujano como al paciente de una estimación de

los riesgos para la salud y las probabilidades de fallo del implante. La selección

del paciente correcto incluye otros innumerables factores, la mayoŕıa de ellos

no cuantificables, como la personalidad o caracteŕısticas sociales del paciente,

su autosuficiencia, salud mental, cuidado personal, capacidad de comprender el

tratamiento y el cuidado de la prótesis, disposición a la rehabilitación, etc.

En conclusión, nuestra experiencia demuestra que ArthroNET ha propor-

cionado: (1) una pauta razonable de las alternativas de diagnóstico y tratamiento

en el proceso cĺınico, y (2) una predicción correcta de los procesos infecciosos en

8 casos de entre una población de 25 pacientes, con un acierto del 100%.

B.6 Trabajo futuro

A continuación se exponen algunas ĺıneas futuras de trabajo.

Con respecto a la explicación del razonamiento en diagramas de influencia,

encontrar algún método que pudiera ayudar a explicar al experto qué variables

tienen más influencia en la estrategia óptima y en la máxima utilidad esperada.

En relación con la aplicación de ArthroNET tenemos tres ĺıneas de investi-

gación sugeridas por el especialista:
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• Modelar la evolución del implante a lo largo del tiempo.

• Añadir más factores de riesgo al modelo, como la artritis reumatoide.

• Incluir en el modelo los organismos bacteriológicos responsables de las in-

fecciones.

Además, se hace necesario un análisis de sensibilidad más preciso; seŕıa de-

seable conocer los puntos precisos en los que las poĺıticas óptimas cambian.

Además, debeŕıa realizarse un análisis de sensibilidad sobre aquellos parámetros

del modelo que el software DPL no permite evaluar.

Por otra parte, el autor pretende continuar este estudio en una tesis doctoral,

incluyendo la implementación del modelo en OpenMarkov, una herramienta gra-

tuita para modelos gráficos probabilistas, como redes bayesianas, diagramas de

influencia y modelos de Markov, desarrollado por el CISIAD2 (Centro de Inves-

tigación sobre Sistemas Inteligentes de Ayuda a la Decisión)3.

2http://www.cisiad.uned.es
3Centro dependiente de la UNED.
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C. Bielza, D. Ŕıos-Insua, and S. Ŕıos-Insua. Influence diagrams under partial in-

formation. In Bayesian Statistics, volume 5, pages 491–497. Oxford University

Press, 1996.
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por el Servicio Cántabro de Salud. Bolet́ın Oficial de Cantabria, 2007.

Webpage DeSSOS. Decision support software for orthopaedic surgery (dessos).

URL http://www.soton.ac.uk/ses/research/bioeng/dessos.html.

F.J. Dı́ez. Sistema Experto Bayesiano para Ecocardiograf́ıa. PhD thesis, Dpto.
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