
Sparse Bayesian Learning for Spherical
Deconvolution of Diffusion MRI Data

a dissertation presented
by

Jon Haitz Legarreta Gorroño
to

The Department of Physics

in partial fulfillment of the requirements
for the degree of
Master of Science
in the subject of
Medical Physics

Universidad Nacional de Educación a Distancia (UNED)
Madrid, Spain
September 2016





Advisors

Erick Jorge Canales Rodŕıguez, PhD
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Cristina Maŕıa Santa Marta Pastrana, PhD
Departamento de F́ısica Matemática y de Fluidos
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Sparse Bayesian Learning for Spherical Deconvolution of
Diffusion MRI Data

Abstract

Magnetic resonance diffusion imaging provides insights on the organizational mi-

crostructure of biological tissues. Fiber trajectories are determined by microscopic tis-

sue heterogeneity. Regional differences in biological fiber orientation are revealed by

water molecule diffusion displacement preference. This dependence of the diffusion co-

efficient on the direction in which it is measured is called anisotropy. Diffusion tensor

imaging was the first technique proposed to model the underlying architecture and spa-

tial orientation of the axonal fiber bundles in brain tissues. However, the assumptions

of the tensor model on the homogeneous Gaussianity of the diffusion process in a voxel

were found to fall short to model the complexity of fiber pathways in the human brain.

Several alternatives have been proposed to overcome these limitations, yet the angular

resolution of current state-of-the-art methods is insufficient for many applications.

In this thesis a new spherical deconvolution method to recover the fiber orientation

distribution function from diffusion magnetic resonance imaging data is proposed. The

new method does not require any assumptions on the underlying displacement probabil-

ity density function and uses a Sparse Bayesian Learning approach to find the optimal

solution. Results from synthetic data demonstrate that it is capable of resolving com-

plex fiber crossings at lower angles than other state-of-the-art methods. The proposed

method was also tested on real data. The superior ability to estimate the fiber bun-

dle orientations may lead to improved results in whole brain fiber tractography and

structural connectivity maps.

Keywords: diffusion magnetic resonance imaging (dMRI), spherical deconvolution

(SD), sparse bayesian learning (SBL), compressed sensing (CS), intra-voxel orientational

heterogeneity (IVOH), fiber orientation distribution function (fODF) reconstruction
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Aprendizaje Bayesiano Disperso para la Deconvolución
Esférica en Datos de IRM

Resumen

La imagen de difusión por resonancia magnética proporciona una representación de

la disposición estructural de los tejidos. La heterogeneidad de los tejidos, aunque ésta

sea apreciable únicamente a escala microscópica, determina la trayectoria que siguen

las fibras. La preferencia en el desplazamiento por difusión de las moléculas de agua

pone de manifiesto las diferencias regionales relativas a la orientación biológica de las

fibras. Esta dependencia del coeficiente de difusión respecto a la dirección de medición

se denomina anisotroṕıa. La imagen mediante el tensor de difusión fue la primera

técnica propuesta para modelar la arquitectura interna y la orientación espacial de

las poblaciones de fibras axonales en el tejido cerebral. Sin embargo, las suposiciones

del modelo tensorial sobre el carácter Gaussiano del proceso de difusión en cada vóxel

presentan numerosas limitaciones a la hora de explicar la complejidad de las trayectorias

de las fibras en el cerebro. Se han propuesto distintas alternativas para superar estas

limitaciones, pero la resolución angular de los métodos existentes es aún insuficiente

para numerosas aplicaciones.

Este trabajo propone un nuevo método para reconstruir la función de distribución

de orientación de las fibras a partir de imágenes de difusión por resonancia magnética.

Este nuevo método no realiza ningúna suposición acerca de la función de densidad de

probabilidad de la orientación y emplea un algoritmo de aprendizaje Bayesiano disperso

para obtener la solución óptima. Los resultados en datos sintéticos demuestran que el

método es capaz de resolver configuraciones complejas de fibras con ángulos de cruce

más pequeños que los que obtienen los métodos actuales. El método también ha sido

aplicado a datos reales. La mejora en la capacidad de estimación de la orientación de

las fibras podŕıa conducir a resultados más precisos en tractograf́ıa de fibras y en mapas

de conectividad estructural en el cerebro.

Palabras clave: imagen de difusión por resonancia magnética, deconvolución esférica,

aprendizaje Bayesiano disperso, muestreado disperso, heterogeneidad orientacional intra-

vóxel, reconstrucción de la función de distribución de orientación de las fibras
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0
Introduction

0.1 Background

Magnetic Resonance Imaging (MRI) is a non-invasive and non-ionizing technique that

provides excellent intensity contrast to study particular biological structures. Diffu-

sion Magnetic Resonance Imaging (dMRI) is a technique where the diffusion of water

molecules within tissues is measured through MRI excitation techniques. Diffusion phe-

nomena refer to the Brownian motion described by particles within a medium. In the

human body, diffusion is observed in different tissues, such as the brain, the muscles

(e.g. the heart), and other tissues such as the kidneys, thanks to the transport of water

molecules.

1



Diffusion, thus, can reveal the microstructure of a given tissue within the body at

a macroscale. The diffusion trajectories are described by pathways, which provide a

useful representation of how different parts of the tissue being imaged are connected.

More specifically, these different parts may serve to distinct purposes, and hence, may

constitute a functional region.

In the case of the brain, diffusion provides information about the directional structure

of neural tracts found in the white matter and the cortex. Through the dMRI tech-

nique, a collection of T2-weighted reference images, and a collection of diffusion-weighted

images, acquired at different gradient directions, are acquired. The reconstruction of

the diffusion information can be performed using a variety of methods that have been

developed over the past three decades. Although the target function formulation can

differ, the aim is to reconstruct the known fiber trajectories as faithfully as possible.

The performance of the reconstruction techniques is affected by a number of parame-

ters, such as the strength of the magnetic field, the number of gradients applied, or the

achieved Signal-to-Noise Ratio.

At current resolution scales, multiple fibers are present in a voxel. In clinically avail-

able MRI scanners, a voxel may represent tissue volumes between [1×1×1] and [2×2×2]

mm39, while histology and microscopy studies estimate the diameters of fibers in the

human brain being in the [1− 10] µm range8. Thus, intra-voxel fiber crossing, bending,

kissing and branching configurations must be resolved in diffusion imaging.

0.2 Motivation

Diffusion magnetic resonance imaging provides a unique insight into the biological tissue

microstructure. Anatomical structures where water molecule diffusion is preferentially

2



oriented in a given direction can be revealed thanks to this technique. Hence, the tissue

properties can be inferred from the diffusion images, and be compared at different

development stages or across different health states. White matter in the brain is one

of the preferred target regions due to the restricted movement of water molecules along

neurons’ axonal pathways.

However, current diffusion orientation reconstruction methods account for a limited

success in heterogeneous intra-voxel fiber configurations, namely fiber crossing, bending,

twisting, fanning or kissing. Although numerous alternatives to the initial diffusion

techniques, based on homogeneous Gaussian diffusion assumptions, have been proposed

in literature, methods still find limitations in the lowest inter-fiber (crossing) angle they

are capable of resolving (which is around 40◦), and in regions with non-dominant fibers

(i.e. voxels where a dominant fiber package’s volume fraction is larger by a factor of

two or greater than the non-dominant’s).

This thesis is motivated by the analysis of the limitations of current state-of-the-art

methods and the research of a method that could improve the estimation of the local

fiber micro-geometry by resolving a range of intra-voxel configurations at significantly

high angular resolutions. The technique proposed promotes a sparse solution to the

fiber orientation distribution function within the spherical deconvolution framework.

The method is found to be competitive under a variety of conditions, and is tested with

both synthetic data, phantom and real datasets. The increased ability to disentangle

complex white matter fiber pathways opens yet another possibility to improve the results

of tractography algorithms to study the brain architecture.

3



0.3 Outline

This thesis is divided into three parts: in Part I (Chapter 1) the theoretical background

on the imaging physics of Magnetic Resonance Imaging, and the diffusion phenomenon

enabling diffusion Magnetic Resonance Imaging are revisited. A brief illustration of

the fundamentals underpinning the diffusion signal acquisition, as well as a general

perspective of the Diffusion Tensor Imaging (DTI) analysis framework, are also provided.

Part II (Chapters 2-3) builds upon the previous concepts to present a review of the

different methods for the estimation of the fiber orientation distribution, as well as the

associated mathematical tools (Chapter 2). This will prompt the development of the

concepts, namely mathematical sparsity and Bayesian learning processes, involved by

the proposed fiber orientation reconstruction method (Chapter 3). Chapter 4 includes

the results of the method compared to other reconstruction algorithms, using synthetic

datasets, and phantom and real whole-brain volumes. The discussion will follow the

results in the same chapter.

Finally, Part III (Chapter 4) is dedicated to the conclusions drawn from the work

presented, and the future research lines on the diffusion approach proposed in this thesis

are presented.

0.4 Original Contributions

The work developed in this thesis contributes to the advance of the search of better

methods for fiber orientation reconstruction in biological tissues.

The fundamental contributions to the state of the art in diffusion Magnetic Resonance

Imaging can be summarized as follows:
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• Improved angular sensitivity: the Spherical Deconvolution-Sparse Bayesian Learn-

ing method is capable of estimating complex intra-voxel configurations down to

the range of 20◦ under some circumstances.

• Less demanding requirements for the imaging acquisition system: the proposed

technique successfully resolves intra-voxel fiber heterogeneity at lower b-values

than reviewed methods in literature. Using a lower b-value allows for faster ac-

quisitions, and improved Signal-to-Noise Ratio figures.

•
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If you want to understand function, study struc-

ture.

What Mad Pursuit: A Personal View of

Scientific Discovery. 1988.

Francis Harry Compton Crick, British physicist,

molecular biologist and neuroscientist

(1916-2004). 1962 Nobel Prize in Physiology or

Medicine 1
Principles of Diffusion MRI

The first part of this chapter consists in the formulation of the diffusion process

for Brownian particles, in which the diffusion coefficient is related to the mean squared

displacement of the particle. The excitation of nuclei in biological tissues through

Magnetic Resonance techniques is later introduced as a necessary tool for the acquisition

of diffusion images. Finally, the Diffusion Tensor Imaging technique is developed as the

foundational basis for the description of the white matter micro-architecture in the

brain.
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1.1 Brownian Motion

Magnetic Resonance Imaging (MRI) is based on a microscopic phenomenon, called

Brownian motion, by virtue of which molecules exhibit erratic trajectories in a medium.

These kinematics are described by random thermal motion. Brownian motion is a

process that occurs constantly in human tissues. It is named after the Scottish botanist

Robert Brown, who in 1827 first described the movement of particles trapped inside

pollen grains of the Clarkia pulchella flowering plant suspended in a water solution. It

was not until 1905 when Albert Einstein published a paper52 that the root causes of this

behavior were reported, and it became clear that the pollen grains were being pulled by

the random thermal agitation of the water molecules. Fig. 1.1 illustrates the Brownian

motion phenomenon.

Figure 1.1 Brownian motion. The trajectory described by a particle in a free, unconstrained
medium is a random walk caused by thermal effects. This phenomenon is called Brownian
motion.
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Although Brownian motion is mathematically expressed as a Wiener process, the

physical process can be described by simple movement equations. At long timescales, the

time evolution of the position of the Brownian particle can be mathematically described

approximately by a Langevin equation, an equation which involves a random force field

representing the effect of the thermal fluctuations of the fluid on the Brownian particle:

m
d2x

dt2
= −γ dx

dt
+ ξ(t) (1.1)

where m denotes the particle mass; γ is the friction coefficient of the fluid; and ξ(t) is a

noise term or random force due to random density fluctuations in the fluid representing

the effect of the collisions with the molecules of the fluid.

Thus, the expression in Eq. 1.1 has two terms: the first term represents the viscous

force proportional to the particle’s velocity, and the random force term, which has a

Gaussian probability distribution.

The erratic motion of the Brownian motion is best described in statistical terms by

the displacement distribution. The displacement distribution (statistically displacement

probability density function) describes the proportion of molecules that undergo dis-

placement in a specific direction and to a specific distance. The word ‘displacement’ is

often replaced with the term diffusion within this context.

Einstein found52 that the displacement probability density function p of Brownian

particles diffusing in a medium could be expressed in the one-dimensional case as

p(x, t) =
N√
4πDt

e−
x2

4Dt (1.2)

where x is the particle position; t is the time elapsed; N is the number of particles; and

8



D is the diffusivity of the medium.

The mobility of molecules can be characterized by a physical constant called the

diffusion coefficient , D, which is related to the Root Mean Square (RMS) displacement

of the molecules over a given time, tdiff , via the so-called Einstein equation

x̂2 = 2Dtdiff (1.3)

In any given medium, the distance that a molecule diffuses in one direction in space

may not be the same as in some other direction. Clearly, in a pure liquid, where there are

no hindrances to diffusion or in a sample where the barriers are not coherently oriented,

given a sufficient amount of time, diffusion is verified to be the same in all directions

(i.e. there is no preferential direction). In this case, diffusion is said to be isotropic.

However, if diffusion occurs preferably in a given direction (due to the presence of

highly oriented barriers, compartments, etc.), it is termed anisotropic diffusion. In this

case, molecules are said to undergo restricted diffusion. However, Beaulieau argued13

that hindered diffusion may be a more appropriate term for biological systems, since

membranes certainly have a finite permeability.

In biological samples, the underlying cellular microstructure of tissue influences the

overall mobility of the diffusing molecules by providing numerous barriers and by cre-

ating various individual compartments. The degree of anisotropy being directly related

to the geometry of these, different structural types (i.e. tissues) can be identified on

the basis of their diffusion characteristics. The degree of hindrance to water diffusion

will be determined by the size, shape, and composition of any physical constructions, as

well as the spacing between them. Fig. 1.2 shows the trajectories of different particles

subject to Brownian motion under different constraints that can be assimilated to those
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imposed by biological structures.

Diffusion in a homogeneous medium is well described as having a Gaussian distribu-

tion. The spread of the Gaussian distribution (i.e. its variance) is determined by the

type of molecule, the temperature of the medium, and the time allowed for diffusion, as

described by Eq. 1.3.

(a) (b) (c)

Figure 1.2 Brownian motion in different restricted spaces. The diffusion phenomenon,
described by Brownian motion or random walk, is influenced by the properties of the environment
in which takes place. If the properties of the medium are equal along all directions in space,
so will be the motion probability (i.e. there is no preferential direction); if the properties of
the medium depend on the direction, the motion direction will not be equiprobable. In the
first case, the medium is said to be “isotropic”, whereas in the second case it is said to be
“anisotropic”. (a) Brownian motion in an isotropic medium (constrained to a spherical shape);
(b) and (c) Brownian motion in anisotropic mediums: (b) constrained to a cylindrical shape;
and (c) hindered by a cylindrical shape.

Biological tissues are highly heterogeneous media that consist of numerous, highly

specific, structures, composed by permeable individual compartments and barriers that

present different diffusivity characteristics.

A defining characteristic of neuronal tissue is its fibrillar structure. Neuronal struc-

ture consists of tightly packed and coherently aligned axons, surrounded by a complex

extra-axonal environment containing astrocytes, glial cells, and ordered and randomly

oriented extracellular matrix molecules. Axons are said to be organized in fascicles or
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fiber bundles. As a result, the micrometric displacement of water molecules is hindered

significantly perpendicular to the long axis of the fibers relative to the preferential par-

allel direction. Consequently, molecular displacement parallel to the fiber is typically

greater than that perpendicular to it. When diffusive properties change with the direc-

tion of diffusion, the prevailing condition is anisotropy, and the associated displacement

distribution is no longer isotropic or Gaussian, like that in unrestricted diffusion, but

cigar-shaped. Restriction is thus at the core of axonal transport.

1.2 Nuclear Magnetic Resonance

Credit for the discovery of Nuclear Magnetic Resonance (NMR) goes to Isidor Isaac

Rabi. Working at Columbia University in the 1930s, Rabi and his team were attempting

to measure the magnetic properties of various nuclei including hydrogen, deuterium, and

lithium. Rabi described how nuclei could be induced to flip their principal magnetic

orientation by an oscillating magnetic field. Although the idea had been originally

proposed by Dutch physicist Cornelius J. Gorter in 1936, Gorter was unable to validate

this phenomenon due to limitations of his experimental setup.

The temporal behavior of the magnetization vector under the influence of an applied

magnetic field can be described by the so-called phenomenological Bloch equations.

The Bloch equations provide a valuable framework for describing many phenomena in

NMR20 19 102. They constitute the mathematical model used for the description of most

phenomena occurring in biological tissues during the acquisition of magnetic resonance

images.

In the rotating frame, and in the absence of any Radio Frequency (RF) field, the
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Bloch equations can be written as

∂m

∂t
= −iγr(t)Tg(t)−m/T2 (1.4)

wherem = mx+imy is the complex transverse magnetization vector; γ the gyromagnetic

ratio (an intrinsic constant to a nucleus, rad s−1T−1 in SI units); r(t) is the spin position

as a function of time t, g(t) = |∇B(t)| is the applied magnetic field gradient; T2 = 1/ρ

is the spin-spin relaxation time (s); and ρ is the bulk relaxation rate (s−1).

The Bloch equations were modified111 by Torrey to include the effects of molecular

diffusion and flow to give the Bloch-Torrey equation

∂m

∂t
= −iγr(t)Tg(t)−m/T2 +∇(D(r)∇m)−∇vm (1.5)

where D is the diffusion tensor; and v is the flow vector.

The Bloch-Torrey equation’s solution is expressed by (for a detailed derivation of the

expression, see111 and107)

m = exp

[
−iγ

∫ t

0
rT (t′)g(t′)dt′

]
A(t) exp (−t/T2) (1.6)

with

A(t) = exp

[
−
∫ t

0
Tr
(
B(t′)D

)
dt′
]
exp

[
iγ

∫ t

0

∫ t′

0
vT (t′′)g(t′′)dt′′dt′

]

where Tr (·) is the matrix trace.

The above equation can be used to calculate the attenuation due to Gaussian diffusion

and coherent flow for any effective gradient profile g∗(t).
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1.3 Magnetic Resonance Imaging

While working on the relaxation times of different nuclei under the NMR, Armenian-

American physicist Raymond Vahan (Johnson) Damadian, found that the hydrogen

nuclei of water in cancerous and healthy tissues showed pronounced differences in relax-

ation times. Thus, on a paper published in 1971 he proposed43 to distinguish cancerous

tissue from healthy tissues on the basis of the cells’ water structure by NMR.

The idea of superimposing small variations (called gradients) to the main magnetic

field, and thus, change the field strength to affect the resonance frequency of nuclei

to collect spatial information was suggested by three separate groups, including Paul

Lauterbur75, Richard R. Ernst73 and Peter Mansfield85. The Magnetic Resonance

(MR) image is the result of the application of gradients in different directions and with

different intensities at specific moments of the acquisition sequence.

Paul Lauterbur is credited for demonstrating MRI75 in 1973, extending upon the

ideas behind NMR to create MR images using a back projection technique similar to that

used in Computed Tomography (CT). Two years later, Richard R. Ernst proposed73

collecting magnetic resonance images using phase and frequency encoding by means of

the Fourier Transform (FT), which, together with gradient encoding, constitutes the

basis of current MRI techniques. The values of the measured signal are organized in a

coordinate system or formalism known as the k-space, where k refers to the sequence

(image) index in Fourier space. Performing the acquisition enables the filling of k-space.

To transform the raw MRI data from k-space into a position-encoded visual image, the

FT operation is applied.

Although the first human MRI scans were carried out in 1976 by Mansfield’s team, it

was not until 1977 when the first MRI body exam was performed on a human subject44.
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In 1977, Peter Mansfield84 developed the Echo Planar Imaging (EPI) technique,

which enabled to collect MRI images many times faster than previously possible, and

found applications in both Functional Magnetic Resonance Imaging (fMRI) and Dif-

fusion Magnetic Resonance Imaging (dMRI). Fig. 1.3 displays a human brain MRI

acquisition.

In Magnetic Resonance Imaging, an adequately applied magnetic field influences the

phase of the spins, with the degree of influence depending on the strength of the field.

MR data are collected by changing on and off an external magnetic field at a given

intensity in a prescribed sequence, called pulse sequence. The pulse sequence determines

the content, quality, contrast and resolution of the image.

MR signals are sensitive to the magnetic dipole orientation of the hydrogen nuclei

in water and fat present in biological tissues. This magnetic dipole, known as spin,

can align itself to an externally applied magnetic field. The MRI scanner maintains a

constant, strong magnetic field B0 (typically measured in Tesla (T)). A second magnetic

field oscillating at RFs, known as the RF pulse sequence, or simply, RF pulse, is applied

for a brief duration at regular intervals. In the presence of an external magnetic field, the

net magnetization vector of spins M is parallel to the former. Spins will come back to

this configuration some time after the application of the RF pulses. RF pulses are used

primarily for excitation and refocusing. Following the application of a 90◦ (π/2) RF,

spins will rotate away from their preferred orientation parallel to B0 (usually depicted

as parallel to the Z axis), and will precess in another orientation (typically the XY

plane). Excited spins precess about B0 at a frequency given by the Larmor equation

ω = γB (usually given in MHz). The net magnetization vector will be aligned parallel

to the XY plane.

Due to the interaction between the spins (spin-spin interaction), each spin loses
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(a) (b)

(c)
Figure 1.3 The brain under MRI. An MRI image of the human brain: (a) axial slice (inferior
view); (b) sagittal slice (right lateral view); and (c) axial-sagittal (anterior-right) view.
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coherence and will precess away from the Larmor frequency. The precessing part that is

perpendicular to the direction of B0 decays exponentially with a time constant T2 (also

known as transverse relaxation). At the same time, due to the so-called spin-lattice

interaction spins realign themselves exponentially in the direction of B0 with a time

constant T1 (commonly referred to as longitudinal relaxation). T1 and T2 are intrinsic

properties of the tissues, satisfying T2 < T1. The generated magnetic field from the

coherently precessing spins induces a current in the receiver coils; this current is used

to generate the MR images, and corresponds to image brightness. The more coherent

the phase of the precessing spins, the higher will be the brightness of the image picture

elements (pixels). The observable NMR signal generated by non-equilibrium nuclear

spin magnetization precessing about the magnetic field B0 is called Free Induction

Decay (FID).

The applied field is not perfectly homogeneous, though. This produces the spins to

precess at different phases, which involves a loss of transverse magnetization, and thus a

decreased signal intensity. The corresponding transverse relaxation constant is termed

T ∗
2 (T ∗

2 ≪ T2).

Decoherence because of magnetic field inhomogeneity is not a true relaxation process;

it is not random, but dependent on the location of the molecule in the magnet. For

molecules that are not moving, the deviation from ideal relaxation is consistent over

time, and the signal can be recovered by performing a Spin-Echo (SE) experiment.

Echoes and the “spin echo effect” in nuclear magnetic resonance were first described63

by Erwin Hahn in 1950. He discovered that the application of two successive 90◦ pulses

separated by a short time period gave rise to the effect, but a signal, the “echo”, was

detected when no pulse was applied. The moment of spin refocus is called a spin echo

(sometimes referred to as Hahn echoes), and creates the measured signal. Acquisition
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sequences that employ a refocusing pulse are called spin echo pulse sequences, and

gradient echo sequences otherwise.

The additional magnetic field generated by an NMR scanner are called magnetic field

gradients or simply gradients (G). Gradients have a special role in diffusion imaging,

as explained in Sec. 1.4.

Often, a second 180◦ (π) RF pulse is applied28 at some time after excitation to recover

the in-plane magnetization, since it inverts the phase of spins. This pulse is applied at

half the time between the 90◦ RF excitation pulse and data sampling, which is termed

Echo Time (TE). The time between two consecutive 90◦ excitation RF pulses is called

Repetition Time (TR).

1.4 Diffusion Imaging

Diffusion phenomena present in biological tissues can reveal microstructural properties.

dMRI or simply Diffusion-Weighted Imaging (DWI) is a technique that allows to capture

such phenomena in various types of tissues in-vivo non-invasively. This idea was first

suggested124 by Wesbey et al. in the early 1990s. Potential clinical applications of water

dMRI were suggested very early76. The first successful application of diffusion MRI to

clinical routine was the detection of brain ischaemia122 in the early 1990s, following the

discovery92 by Moseley et al. that water diffusion dropped at a very early stage of the

ischaemic event in cat brains.

Anisotropic water diffusion is clearly not unique to neural fiber tracts, and it has been

observed in other tissues such as kidneys64, skeletal muscle34, or the myocardium59.

However, the degree of anisotropy tends to be much less than that found in neural fiber

tracts.
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Water diffusion is clearly restricted in neural fiber tracts, such as white matter (WM)

and nerve. Fig. 1.4 shows the WM corpus callosum (cc) fiber bundles. Although in

these last years there has been a rising interest in the scientific community (see, for

example,40) to interpret and relate the dependency of the diffusion process (or any other

metric computed from DWI) with the underlying tissue microstructure and properties,

yet it remains an open issue.

(a) (b)

(c) (d)
Figure 1.4 Tractography: the fiber bundles’ pathways. Human brain white matter corpus
callosum (cc) fiber bundle tracts or pathways: (a) axial slice (inferior view); (b) sagittal slice
(right lateral view); (c) axial-coronal (anterior) view; and (d) axial-coronal-sagittal (anterior-
right) view.
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It is still not clear whether the observed diffusion anisotropy arises from the intra-

axonal compartment (primarily restricted diffusion) or the extra-axonal compartment

(primarily hindered diffusion) or some combination thereof. There is a body of experi-

mental evidence that suggests14 that myelin sheaths in neural axons are not necessary

determinants for anisotropic water diffusion in neural fibers, structural features other

than myelin being sufficient to give rise to anisotropy13. Evidence suggests that axonal

membranes play a primary role in restricted water diffusion in white matter, while myelin

modulates the degree of anisotropy. The complex and dense three-dimensional struc-

ture of the axons, composed of longitudinally oriented cylindrical neurofibrils, named

microtubules and neurofilaments, which, at the same time, are inter-connected by mi-

crofilaments, presumably participate in the restriction of water diffusion along neural

axons. The relative contributions of the various structural components of white matter

to the anisotropy of the water diffusion in the brain are yet to be determined.

Gray matter (GM), on the other hand, does not have an oriented fiber structure, and

thus, exhibits low diffusion anisotropy. At the white, gray matter interface some degree

of structural transition is observed.

1.4.1 Pulsed-Gradient Spin Echo

Diffusion experiments are usually performed by spatially labeling spins at two different

times during an MR experiment. These labeling periods are separated by a time interval

(known also as the diffusion time, ∆) during which the spin’s displacement is quantified.

The measured signal decay will depend on the strength of the labeling (referred to as

the q-value) and the diffusion time.

To describe diffusion, every voxel position is assigned a diffusion probability density

function. The resulting image encodes the proportion of molecules in a given voxel
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position that have been displaced a certain distance. To depict the displacement distri-

bution, diffusion must be related to the signal intensity as measured by the magnetic

resonance image. Magnetic resonance measurements of diffusion are sensitive to molec-

ular displacements along the axis of the diffusion-sensitizing gradients applied in a stan-

dard Pulsed-Gradient Spin Echo (PGSE) sequence or Stejskal-Tanner method107. Spins

moving in the magnetic field gradient direction are exposed to different magnetic field

strengths depending on their position along the gradient axis. The diffusion of water

along different directions in tissue can be readily assessed by varying the direction of

the diffusion-sensitizing gradients.

In diffusion MR imaging, the application of a single PGSE sequence produces one

diffusion-weighted image that corresponds to one position in q-space or, more precisely,

that depicts the diffusion-wighted signal intensity in a specific position q for every brain

position. Repeated applications of the sequence with gradients that vary in strength

and direction allow data sampling throughout q-space.

In a PGSE sequence (Fig. 1.5), a 90◦-180◦ spin echo pair of two additional diffusion-

encoding gradient pulses Gdiff are added to the standard SE sequence to introduce

a phase shift proportional to the molecular displacement along the gradient direction.

The key idea is to excite the spin system with a 90◦ pulse, encode the spin position with

a time-constant magnetic field gradient of duration δ, invert the spin phase with a 180◦

pulse, apply a second magnetic field gradient with equal intensity and duration to the

previous gradient at a time ∆ after the first gradient pulse, and then acquire the image

at time t = TE.

The first gradient pulse introduces a phase shift that is dependent on the strength

of the gradient at the position of the spin at t = t0 = 0. Before the application of

the second gradient pulse, which induces a phase shift depending on the spin position
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Figure 1.5 Pulsed-Gradient Spin Echo (PGSE) magentic resonance imaging acquis-
tion sequence. A PGSE sequence introduces an additonal spin-echo pair of 90◦-180◦ gradient
pulses to the standard SE sequence to introduce a phase shift proportional to the molecular
displacement along the gradient direction.

at time ∆, a 180◦ RF pulse is applied to reverse the phase shift introduced by the

first gradient pulse. Since the diffusion-encoding gradient causes the field intensity (i.e.

phase shift) to vary with position, all spins that remain at the same location along the

gradient axis during the pulses will return to their initial state. However, if a given

spin moves by diffusion between the time of the first and second gradients, then it will

be subjected to a different field strength during the second pulse, and therefore, will

not return to its original orientation. Due to the increased disorder of the spin phase

distribution, the spin echo signal, which is proportional to the mean phase difference,

will be smaller relative to the case in which there was no gradient. Hence, the decrease

in the spin echo magnitude will reflect the amount of diffusion which occurred between

the two diffusion gradient pulses. The longer the displacement distance, the higher the

phase shift, and the greater the signal decrease. Hence, the resultant image shows low
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signal intensity in regions where diffusion along the applied diffusion gradient is high.

A diffusion gradient can be represented as a 3D vector q, called spin displacement

wavevector (or simply wavevector) or reciprocal vector, whose orientation is in the di-

rection of diffusion, and whose length, the wavenumber, is proportional to the gradient

strength:

q = γδg (1.7)

with δ the diffusion-encoding gradient duration; and g the diffusion gradient wave vector.

The attempts to describe the DWI signal in terms of the q-value were originally

developed by Callaghan? and Cory and Garroway36. In their original approach, no

specific model of water diffusion was assumed. Instead, features of the measured dis-

placement probability distribution were extracted by a Fourier transformation of the

signal attenuation profile with respect to q.

A single application of the pulsed-gradient SE sequence produces one brain image with

a given diffusion weighting; multiple repetitions of this sequence, each with a different

diffusion weighting (i.e. varying the gradient strength and direction), are necessary to

sample the q-space. The result is a collection of images, each of which reflects the

particular diffusion weighting used, and corresponds to one point in q-space. In every

position, a Fourier transform relates the raw q-space data to the diffusion probability

density function.

Nevertheless, the gradient strength, or more often, the diffusion weighting, is more

commonly expressed in terms of a scalar quantity named the diffusion-sensitizing gra-

dient factor or b-value (b), which is proportional to the product of the square of the

gradient strength q and the diffusion time interval ∆ (b ∝ q2∆).

The b-value is derived from the Bloch-Torrey equations, and it is a function of the
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strength, duration, temporal resolution and timing parameters of the specific acquisition

scheme. Hence, it summarizes the amount of diffusion sensitizing gradient history.

In a PGSE experiment using rectangular diffusion-encoding gradient pulses of dura-

tion δ, and amplitude G, separated in time by ∆ and applied, for example, along the

X direction, the classical Stejskal-Tanner expression for the b-value in the X direction

at the time of readout reads107:

b = γ2G2δ2
(
∆− δ

3

)
(1.8)

= q2
(
∆− δ

3

)
(1.9)

where G is the gradient strength; δ denotes the pulse width (timing of the diffusion-

sensitizing gradients); and ∆ is the diffusion time interval.

The Stejskal-Tanner equation

In his seminal paper on the NMR spin echo, Hahn63 noted that molecular diffusion in

the presence of a magnetic field gradient would reduce the magnitude of the observed

echo signal. Quantitative measurement of a molecular diffusion coefficient was not

made possible, however, until the introduction of the PGSE experiment by Stejskal

and Tanner107. Stejskal and Tanner showed that the spin echo magnitude S(q, τ) from

a PGSE experiment is directly related to the spin displacement Probability Density

Function (PDF) P (R, τ) by a Fourier relation

S(q, τ) = S0

∫
P (R, τ)eiq

TRdR (1.10)

= S0F [P (∆r)]
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where S0 = S(0, τ) is the signal in the absence of any applied diffusion gradient; R

= r− r′ is the relative spin displacement from the initial position r′ of the spin at the

time of the first gradient to the position r of the spin at diffusion time τ ; and q is the

spin displacement wave vector introduced previously.

The PDF P (R, τ), which is referred to as the Ensemble Average (Diffusion) Propa-

gator (EAP), expresses the mean probability to observe a relative spin displacement R

in the experimental diffusion time τ in a volume element (voxel).

The observed diffusion propagator represents a spatial sum over the microscopic en-

vironments existing in the voxel, where the resolution of the voxel is defined by the

macroscopic spatial encoding as allowed by the available Signal-to-Noise Ratio (SNR).

This averaged propagator is referred to as the EAP defined as the propagator averaged

over all initial positions and expresses the average probability of a spin displacement R

P (R, τ) =

∫
P (r, r′, τ)p(r′)dr′ (1.11)

where p(r′) is the initial spin density.

The statistics of the spin displacement gives rise to the diffusion coefficient and, in

the case of anisotropic materials, the D. Consider an isotropic medium where the spin

position at time t = t0 = 0 is given by r′, and the subsequent spin position at time τ is

given by r. The diffusion coefficient D is then given by Einstein’s relation52

D =
1

6τ
⟨RTR⟩ (1.12)

where R = r− r′ is the relative spin displacement as a function of time τ ; and ⟨·⟩ is the

average over the spin ensemble.
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D is often referred to as the diffusivity value or Apparent Diffusion Coefficient (ADC)

(also denoted as Dapp in diffusion literature). It is the diffusion coefficient measured

by Nuclear Magnetic Resonance. The term apparent denotes that in a finite, non-

homogeneous medium (such as human tissue) it represents a net effect, since in such

environments the intrinsic diffusivity cannot be exactly defined or measured. Its value

depends on the interactions of the diffusing molecule, in most cases water, with the

cellular structures over a given diffusion time. The units of D are mm2/s (for water at

37◦C D ≈ 3 × 10−3 mm2/s), and b are s/mm2, typically in the range from 0 to 5000

s/mm2 for diffusion experiments, though some acquisition paradigms can call for values

of b up to or beyond 10 000 s/mm2 123 23.

In cases where the medium is anisotropic, the Einstein relation generalizes to the

diffusion tensor D

D =
1

6τ
⟨RRT ⟩ (1.13)

The diffusion term D in Eq. 1.13 is a three-dimensional rank-2 tensor. According

to Onsager’s hypothesis95 the diffusion tensor is symmetric (D = DT ), and positive

definite118.

The spin echo attenuation for the PGSE experiment can be calculated using Eq. 1.6.

The effective gradient for the PGSE sequence is:

g∗(t) = −θ(t) + θ(t− δ) + θ(t−∆)− θ(t−∆− δ) (1.14)

where θ(t) = δ(t ≥ 0) is the Heaviside step function. Substitution of this effective

gradient into Eq. 1.5 gives

m = exp

[
−γ2δ2gTDg

(
∆− δ

3

)]
exp

(
−γδ∆gT

)
exp

(
−TE
T2

)
(1.15)
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which is the Stejskal-Tanner relation. The time constant τ = ∆−δ/3 defines an effective

diffusion time where the δ/3 correction is due to the diffusion which occurs during the

time in which the gradients are on.

The Stejskal-Tanner equation relates the observed diffusion signal to the underlying

diffusion coefficient (or diffusion tensor) assuming that the diffusion is purely Gaus-

sian. However, it is currently accepted5 that the Gaussianity assumption is violated in

biological tissue due to the presence of restrictions, such as permeability, or diffusion

compartment heterogeneity.

The PGSE signal S is thus proportional to m, and can be understood as a superpo-

sition of the transverse spin magnetizations, each with a phase φ

S = S0⟨eiφ⟩ (1.16)

where S0 = S(0, τ) is again the spin echo signal in the absence of any applied gradient,

and corresponds to the term exp
(
−TE

T2

)
in Eq. 1.15 (note that it does not depend on

neither diffusion phenomena nor the b-value); and ⟨·⟩ denotes the ensemble average. The

ensemble average of any general function f(φ) of the phase φ can be written explicitly

in terms of the phase probability distribution

⟨f(φ)⟩ =
∫
f(φ)dP (φ) =

∫
f(φ)P (φ)dφ (1.17)

where P (φ) is the probability of a spin phase φ.

In the limit of infinitely narrow pulses (δ ≪ ∆; see72 and128 for further details about

the implications of the infinitely narrow pulse approximation) the effective gradient
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Eq. 1.14 from the Stejskal-Tanner experiment is

g∗(t) = g(δ(0)− δ(∆)) (1.18)

Note that g is independent of time. The spin phase φ is then

φ(t) = γ

∫ t

0
r(t′)Tg(t′)dt′ (1.19)

= γδgT (r(0)− r(∆))

= γδgT (r′ − r)

= γδgTR (1.20)

where r′ is the spin position at the time of the first gradient; r is the spin position at the

time of the second gradient, ∆ is the time between the two gradients; and R = r′ − r

is the relative spin displacement.

The spin displacement wavevector can also be expressed in terms of the spin phase as

φ = qTR. The wavevector q plays the important role of the Fourier reciprocal vector

to the relative spin displacement vector R.

Owing to the linearity of the Larmor equation (see Sec. 1.3), the probability of a

phase difference φ is proportional to the probability of a spin displacement R. Hence,

P (φ, τ) = P (R, τ) (1.21)
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Eq. 1.16 can then be written as

S(q, τ) = S0

∫
P (R, τ)eiq

TRdR (1.22)

= S0F [P (R, τ)] (1.23)

where P (R, τ) is the EAP, and F is the Fourier transform with respect to the relative

spin displacement vector R. By expanding R = r′ − r, the above equation can also be

written in terms of the absolute spin positions as

S(q, τ) = S0

∫
P (r′, r, τ)p(r)eiq

T (r−r′)drdr′ (1.24)

where P (r′, r, τ) is the diffusion propagator mentioned in Sec. 1.2; and p(r) is the initial

spin density.

Eq. 1.23 illustrates the Fourier reciprocal relationship between the PGSE signal and

the EAP. This relationship is key and forms the basis of all diffusion imaging exper-

iments. In particular, the Fourier relationship allows for direct reconstruction of the

EAP by inverse Fourier transform of the diffusion signal with respect to the displace-

ment wave vector

P (R, τ) = S−1
0

∫
S(q, τ)e−iqTRdq

= S−1
0 F−1[S(q, τ)] (1.25)

where the inverse Fourier transform F−1 is taken with respect to the reciprocal vector

q.

The EAP can be measured on the basis of PGSE experiments independent of any
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assumptions on the form of the underlying diffusion process.

1.4.2 Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) has been the most popular diffusion MRI reconstruction

algorithm by far until recently. DTI was introduced12 by Basser et al. in the mid 1990s.

The key assumption in DTI reconstruction algorithms is that the direction of maximum

diffusivity is an estimate of the major fiber orientation.

Figure 1.6 DTI neuron model. Brain white matter axon (or fiber) bundle model. The DTI
model gives acceptable results when the fiber bundles are coherently aligned, although their
diameter and spacing can be vary.

Fig. 1.7 illustrates the anisotropy concept germane to the diffusion tensor imaging

theory.

Under the Brownian motion premise, the diffusion signal strength for isotropic diffu-

sion is described by the model known as the Stejskal-Tanner107 formula:

S(q) = S0 exp(−bD) (1.26)

The scalar Stejskal-Tanner relation in Eq. 1.26 contains two unknowns, namely, the

unattenuated echo signal S0 and the diffusion coefficient D. Hence, the diffusion coeffi-

cient can be quantitatively estimated from at least two measurements of the signal each

with different b-value magnitudes. If we take the natural logarithm of the spin echo

signal, then the diffusion coefficient can be obtained from a set of diffusion experiments

by standard linear regression methods. Diffusion-weighted imaging cannot, however, de-

scribe the anisotropic Gaussian diffusion which is observed in fibrous biological tissues.

In such cases, the DTI experiment is called for.
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Figure 1.7 Anisotropy in diffusion tensor imaging. The displacement field of the diffusion
process in an unrestricted, isotropic environment would describe a spherical boundary. Diffusion
of water molecules inside axons is restricted by the geometry of the latter; since the preferential
movement takes place along the long axis of the axons, the displacement field tends to be
anisotropic, describing an ellipsoid. As the geometry gets more restrictive (i.e. the larger the
ratio between the length and the radius in the transversal axis), the sharper will be the ellipsoid,
and the higher the anisotropy.

It can be demonstrated that for free, anisotropic diffusion the spin echo signal is

computed as

S(q) = S0 exp(−bgTDg) (1.27)

where D is the diffusion tensor we wish to measure; and g is a unit-vector pointing in

the same direction as q.

DTI provides two key insights into material microstructure that simple DWI does

not4. First, it provides rotationally invariant statistics of the anisotropy of the prob-

ability density function of particle displacements over a fixed time, such as the Frac-

tional Anisotropy (FA), which reflects the anisotropy of the microstructure. Second,

the principal eigenvector of D can provide an estimate of the dominant orientation of
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(a) (b)
Figure 1.8 The tensor model in diffusion tensor imaging. Under the DTI assumption, a
fiber bundle is mathematically described as a second order tensor. Such a tensor is defined by
its eigenvalues (λ1, λ2, λ3) and eigenvectors (spatial orientation of the eigenvalues). The shape
of the ellipsoid is determined by the eigenvalues; the eigenvectors determine its orientation.
DTI methods attempt to compute these in order to determine the fiber orientation. Under this
model, the fiber orientation corresponds to the orientation of the dominant eigenvector. (a)
shows the isotropic diffusion tensor model; and (b) shows anisotropic diffusion tensor model.

the microstructural fibers.

Diffusion tensor MRI measures the apparent water self-diffusion tensor under the

premise of Gaussian diffusion (see Sec. 1.1). Based on the eigenstructure of the measured

diffusion tensor it is possible to infer the orientation of the diffusion compartments within

the voxel so that, for example, the major eigenvector of the diffusion tensor parallels

the mean fiber orientation.

The diffusion tensor is a three-dimensional, symmetric, rank-2 tensor, and therefore

has 6 unique coefficients: the 3 diagonal elements, and the 3 off-diagonal elements of
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the tensor

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


where Dxy = Dyx;Dxz = Dzx;Dyz = Dzy.

The tensor reconstruction can be formulated as a linear inversion problem. The

diffusion tensor can be decomposed into the eigensystem

D = RΛRT

where R = (e1e2e3) is a column matrix of the orthonormal diffusion tensor eigenvectors

eν ; and Λ = Diag (λ1λ2λ3) is a diagonal matrix of the diffusion tensor eigenvalues λi.

The eigenvectors e1, e2, e3 are often refereed to, respectively, as the major, medium,

and minor eigenvectors.

The diffusion tensor eigensystem can be conceptualized in terms of the diffusion

isoprobability surface which represents the surface on which a spin at the origin will

diffuse to with equal probability. For a Gaussian diffusion process the isoprobability

surface is a three-dimensional ellipsoid, as depicted in Fig. 1.7. The isoprobability

ellipsoid represents the surface on which the Gaussian diffusion function has a constant

value.

The axes of the isoprobability ellipsoid are oriented in the direction of the tensor

eigenvectors and have lengths proportional to the diffusion distance along the corre-

sponding eigenvectors. Since the diffusion distance is proportional to the square root of

the diffusion eigenvalues, this is equivalent to scaling by the square root of the diffusion

tensor eigenvalues.
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All diffusion images must be compared to a reference image that is not diffusion

weighted (i.e. a standard SE image): in other words, one for which the strength of the

diffusion gradient is zero (q = 0 and b = 0). Consequently, at least 7 image acquisitions

are required to reconstruct the diffusion tensor: 6 to obtain the 6 unique tensor elements,

and 1 to estimate the unattenuated signal magnitude S0.

Most DTI measurement schemes acquire more than the minimum seven measurements

to reduce the effects of noise. The standard approach is to acquire M measurements

with q = 0, and N measurements with non-zero wavenumbers qi, i = 1, . . . , N . The |qi|

are all equal and the diffusion time t, and hence the diffusion weighting factor b = t
∣∣q2
∣∣

is fixed for all the S(qi). The gradient directions q̂i are unique and distributed uniformly

over the sphere. We refer to this kind of measurement scheme “spherical acquisition

scheme”, since the qi all lie on a sphere in q-space.

1.4.3 The Orientation Distribution Function

One of the main interests lies in knowing the way the measured diffusion signal depends

on the underlying orientation of the fibers. One possible approach would be to replace

the diffusion probability density function with an isosurface, a surface passing through

all points of equal probability density value. For example, an isosurface of a 3D Gaussian

distribution is an ellipsoid (see Fig. 1.7). A more commonly used technique that is

less sensitive to noise involves the computation of the spin displacement Orientation

Distribution Function (also referred to as Orientation Density Function) (ODF) (also

referred to as orientation density function)117 from the displacement distribution. An

ODF may be considered a spherical polar plot whose radius in a given direction is

proportional to the integral of the diffusion probability density function in that direction.

The ODF expresses the probability of a spin displacing into a differential solid angle
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about a possible fiber direction û at each individual MR image voxel: it is the projec-

tion of the diffusion function onto the sphere through the integration over the radial

coordinate of the diffusion function. Thus, it sacrifices all the radial information but

keeps the relevant directional information.

For a given propagator P (rû) the ODF (denoted ψ) is obtained via the radial pro-

jection transformation

ψ(û) =

∫ ∞

0
P (rû)r2dr (1.28)

where û is a unit normal vector; and r is the radial coordinate in the diffusion space

coordinate system.

The ODF is a function on the sphere. The sphere is usually sampled at evenly

distributed points on a discrete spherical grid. The reconstruction task lies in correctly

estimating the points (i.e. directions) where the value of the ODF is maximum to

identify the direction of the underlying fibers.

Tuch118 demonstrated the correspondence between the orientational maxima of the

ODF and those of the underlying fiber orientation density at each voxel location.

The Fiber Orientation Distribution Function

Anderson suggested6 that the diffusion ODF is only an approximation to the underlying

fiber distribution, which is estimated more closely by the fiber Orientation Distribution

Function (also referred to as fiber Orientation Density Function) (fODF). The fODF

gives the fraction of fibers within the sample that are aligned along the direction (θ, ϕ),

expressed in spherical coordinates, and therefore contains all the volume fraction infor-

mation.

If we assume equal diffusion characteristics across all fiber populations in the brain,
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the diffusion-weighted signal attenuation that would be measured from a single coher-

ently oriented fiber population can be represented by an axially symmetric response

function R(θ) (assuming a response function such that the fibers are aligned with the

Z-axis). We can then express the observed diffusion signal S(θ, ϕ) that would be mea-

sured from a sample containing several distinct fiber populations as the sum of the

response functions of each population, weighted by their respective volume fractions,

and rotated such that they are aligned along their respective orientations

S(θ, ϕ) =

N∑
i=1

fiÂiR(θ) (1.29)

where fi is the volume fraction for the i-th fiber population; Âi is the operator rep-

resenting a rotation onto the direction (θi, ϕi); and N is the total number of fiber

populations.

This can be expressed as the convolution over the unit sphere of the response function

R(θ) with a fiber orientation density function F (θ, ϕ) (fiber ODF)

S(θ, ϕ) = F (θ, ϕ)⊗R(θ) (1.30)

where ⊗ denotes the convolution operation.
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The purpose of models is not to fit the data but

to sharpen the questions.

The 11th R. A. Fisher Memorial Lecture, the

Royal Society of London 20, April 1983.

Samuel Karlin, American mathematician

(1923-2007)

2
Fiber Orientation Reconstruction

Methods

One of the main goals of current dMRI acquisitions is to determine the fiber ori-

entations in each voxel from a set of measurements. The diffusion tensor framework

can only describe diffusion phenomena occurring at a very limited class of biological

conditions. Such diffusion excludes a vast range of biological environments which are

commonly observed in vivo such as tissues with different diffusivity properties, or fiber

populations with multiple preferential diffusion directions. Failure to resolve complex

36



tissue architecture with more than one significant fiber orientation within a voxel called

into question the tensor model.

Figure 2.1 Intra-voxel orientational heterogeneity (IVOH). White-matter axonal fiber
bundles can adopt a variety of configurations, such as crossing, bending, kissing or diverging.
Fiber reconstruction algorithms are proposed to estimate as accurately as possible their orien-
tations within a voxel.

As mentioned in , DTI was the first method to allow mapping a fiber orientation

from a magnetic resonance image. Unfortunately, the diffusion tensor model has a

number of important limitations that make it an inaccurate method to predict fiber

orientations. The diffusion tensor can provide a fair approximation to a multivariate

Gaussian diffusion process, but fails for heterogeneous in vivo fiber architectures. First,

and most importantly, the tensor model assumes that there is a single eigensystem

in each voxel (i.e. it only possesses a single maximum). According to16, up to one

third of white matter voxels contain more than one fiber bundle population. When a

voxel contains contributions from different bundles with distinct orientations, the major

eigenvector will, in general, no longer correspond to the orientation of any of the fiber

tracts present10, but to the mean orientation. Thus, the multi-modality of the observed

diffusion signal precludes the standard tensor reconstruction from providing valuable

orientational information, as depicted in Fig. 2.2. Second, it has been demonstrated98

that the peaks of the diffusivity profile do not necessarily correspond to the orientations

of the distinct fiber populations. Third, the mono-exponential signal decay model (see

Eq. 1.26) has been shown to be invalid for high diffusion-weighting values in vivo 35.

And finally, it is observed that the diffusion of water molecules seen in the brain does

not generally obey a Gaussian distribution law71. Thus, the Gaussianity assumption

inherent to the diffusion tensor model may not be accurate enough. Hence, applications
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relying on the diffusion tensor model will provide unreliable results for tractography

applications.

(a) (b) (c)
Figure 2.2 The diffusion tensor imaging method pitfall. The DTI reconstruction method
fails to determine accurately the orientation of fiber bundles when multiple fibers reside in the
same voxel. Since the model assumes that there exists a single dominant fiber orientation at
each voxel, when fibers’ orientation is not coherent inside a voxel, DTI estimates an average
orientation, and thus is unable to correctly resolve the true fiber orientations. (a) shows the
isotropic diffusion model provided by the diffusion tensor; (b) shows fiber bundles (represented
as black sticks) crossing at a given angle, and uninformative orientation information that the
DTI model would provide in such a case (i.e. true fiber directions cannot be inferred from
the ellipsoid maximum); and (c) shows a coherently oriented fiber bundle (black stick), whose
orientation can be correctly estimated by the tensor model (ellipsoid).

Efforts to resolve this Intra-voxel Orientational Heterogeneity (IVOH) have been put

in the last two decades. A good review can be found in106. Since the adoption of

the High Angular Resolution Diffusion Imaging (HARDI) acquisition protocol, works

attempting at solving IVOH have since focused on the development of new algorithms to
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reconstruct the displacement distribution (or features thereof). The Diffusion Spectrum

Imaging (DSI) (see ) technique is probably the sole exception requiring a modified pulse

sequence.

Although several criteria may be used to classify the fiber orientation reconstruction

methods, the model criterion is used in this work. Algorithms are divided into two cat-

egories, namely, model-based reconstruction algorithms, and model-free reconstruction

algorithms. As the names suggest, the former are based on the assumption of a model

or distribution that is to be identified by the sampled data. The latter, on the other

hand, make no assumption about the nature of the diffusion process.

This chapter presents and compares different model-based and model-free methods

for the reconstruction of orientation distribution functions using sampled diffusion MRI

data.

2.1 High Angular Resolution Diffusion Imaging

A popular diffusion data acquisition protocol, proposed by Tuch et al.120 118 in the

late 1990s/early 2000s, is High Angular Resolution Diffusion Imaging (HARDI), which

involves acquiring diffusion information for a single b-value (single shell) in several

gradient directions uniformly spread on a sphere119.

The diffusion process may exhibit non-Gaussian behavior if the diffusion is restricted36,

or if there is slow exchange between partial volume elements exhibiting Gaussian dif-

fusion. Traditional tensor imaging techniques cannot resolve such behavior, and higher

angular resolution techniques are required. Tuch showed120 evidence that human brain

white matter regions containing heterogeneous fiber orientations show non-Gaussian

diffusion when sampling the apparent diffusion coefficient at higher angular resolutions.
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While this protocol allows for resolving the angular structure of the neural fibers, it

does not provide information about the radial signal decay, which is sensitive to white

matter anomalies103.

2.2 Model-based Reconstruction Algorithms

2.2.1 Multi-Tensor Models

High b-value diffusion-weighted imaging revealed non-mono-exponential behavior of the

signal attenuation94 93 9 in white matter. This finding prompted some works in which

the original DTI model was extended to contain two or more diffusion tensors94 33. In

multi-tensor models (also referred to as Multiple-Diffusion Tensors model (MDT), or

Gaussian Mixture Models (GMMs)), the diffusion signal is modeled as arising from

a finite mixture of Gaussian diffusion processes in slow-exchange (i.e. the exchange

between compartments should be extremely slow in relation to the experimental time

scale).

If only one single fiber bundle is present in each voxel, the Gaussian model (Eq. 1.27)

is accurate enough. For N fiber bundles without water exchange, the linearity of the

Fourier transform (relating the diffusion propagator and the Stejskal-Tanner experiment,

see ) yields the multi-tensor model. In order to address the “partial volume effects”

(i.e. contributions from multiple fibers in a single voxel), multi-tensor models3 assume

N diffusion compartments with little or no (material) exchange during measurement

time. Each compartment is parametrized by a symmetric 3×3 diffusion tensor Di with

eigenvalues λ1 ≥ λ2 ≥ λ3. The signal fractions fi ∈ [0, 1] sum to unity. The signal is
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then S(g) predicted as

S(g) = S0

N∑
i=0

fie
−bgTDig (2.1)

where S0 is the non diffusion-weighted signal; N is the number of fibers; b is the diffusion

weighting; g is the diffusion-sensitizing gradient; fi is the partial volume fraction of the

i-th fiber; and Di is the corresponding diffusion tensor.

As it can be drawn from Eq. 2.1, the algorithm requires applying a priori knowledge

about the underlying micro-architecture to select the appropriate number of fibers.

Multi-tensor models are not able to estimate simultaneously the diffusivity tensor

and the relative volume fractions of fibers. Thus, in order to restrict the solution space,

additional constraints are imposed. Many authors118 6 assume equal eigenvalues on all

diffusion tensors; others82 prefer to fix the volume fraction instead. In either case, a

very common assumption is axial symmetry (λ2 = λ3).

The “ball-and-stick” model17 assumes that all diffusion tensors have equal principal

eigenvalues (λ1), a single “ball” (isotropic) compartment (i.e. λ1 = λ2 = λ3), while

the remaining “stick” compartments are infinitely anisotropic (i.e. perfectly linear)

(λ2 = λ3 = 0).

The multi-tensor approach has a number of significant shortcomings, including the

need for an iterative reconstruction scheme, nonlinear optimization schemes, which can

be unreliable and inefficient, the possibility of model misspecification, the ability to

describe only a discrete distribution of fiber orientations, and the inability to capture

non-Gaussian behavior within each fiber compartment.

Extensions to this model have been proposed to allow the inference on multiple (i.e.

more than two) fiber orientations, but they lead to complicated model selection prob-

lems, such as those adopted by Hosey et al. in66 and Behrens et al. in16. Melie-Garćıa
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et al. developed a Bayesian framework to solve the model selection problem, but the

method was computationally expensive due to the use of Markov Chain Monte Carlo

(MCMC) simulations.

Furthermore, the inverse problem of multiple-tensor fitting is ill-posed. Pasternak et

al. suggested101 to use regularization terms to stabilize the problem.

2.2.2 Multi-Compartment Models

Multi-compartment models consist in a variation of the multi-tensor models explained

in . As opposed to the latter, where the multiplicity of the tensors models the intra-

voxel fiber heterogeneity, in this case, the multiplicity in the tensors is given by a

finite mixture model that describes an exchange model between the intracellular and

extracellular compartments.

In these works, it is assumed that the “fast” (or rapidly decaying) diffusion component

can be associated with the extracellular space, and the “slow” (or slowly decaying)

diffusion component can be associated with the intracellular space. However, according

to10, if this slowly diffusing component arises from restricted diffusion (a non-Gaussian

process), fitting the overall signal decay to a bi- or multi-exponential tensor model,

which assumes Gaussian diffusion, is inappropriate.

The Composite Hindered and Restricted Model of Diffusion (CHARMED) proposed

in10 provides an implementation of a multi-compartment model. CHARMED expresses

the signal decay observed in white matter in terms of Gaussian (hindered) and non-

Gaussian (restricted) contributions. For noise-free environments, the diffusion model
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can be written as

S(q,∆) =

M∑
i=1

fhi S
h
i (q,∆) +

N∑
j=1

f rj S
r
j (q,∆) (2.2)

where

Sh(q,∆) = exp

[
−4π2
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∆− δ

3

)
qTDq

]
, (2.3)

Sr(q,∆) = S⊥(q⊥,∆) · S∥(q∥,∆) (2.4)

= exp
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(2.5)

where h denotes the hindered compartment contribution, and r the restricted compart-

ment contribution; ⊥ denotes the contribution from the displacements perpendicular to

the axis of the fiber, and ∥ the contribution from the diffusion aligned with the fiber

axis; M is the number of distinct hindered compartments, and N is the number of

distinct restricted compartments (not necessarily equal to M); τ is half the echo time

(TE); and R is the net displacement vector modulus.

The model assumes that one contribution to the net signal decay arises from hindered

diffusion in the extra-axonal volume (including extra- and intracellular spaces), while

another contribution to the net signal decay arises from restricted diffusion in the intra-

axonal volume. The extra-axonal compartment’s diffusion properties are characterized

by an effective diffusion tensor, and an intra-axonal compartment, whose diffusion prop-

erties are characterized by a restricted model of diffusion within cylinders.

Gaussian signal attenuation is observed at low b-values; non-Gaussian attenuation

arises from sampling at high b-values. To estimate various microstructural parameters
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of the composite model, CHARMED thus requires sampling at both high and low b-

values obtained along different directions.

Two important problems accompany the use of multi-compartment models. First,

the number of such compartments has to be specified a priori, presenting a model-

selection problem. Second, the parameter estimation requires a nonlinear fitting, which

is sensitive to noise and to the number of measurements, and tends to perform poorly

when more than two fiber orientations are present.

Although CHARMED seems to compare favorably to the standard DTI model or

a dual tensor model for any given noise level (inter-fiber angles as small as 30◦ are

reported7), this is at the cost of prohibitive scanning times (up to 18 h) due to the high

b-values (as high as 44000 s/mm2) required by the method.

2.3 Model-free Reconstruction Algorithms

2.3.1 Diffusion Spectrum Imaging

A mathematical alternative to the tensor model is the DSI method, which does not

assume an analytical form of the diffusion process. In DSI, the ODF is reconstructed

by sampling the diffusion signal on a Cartesian grid, Fourier transformation, and then

radial projection.

The Fourier relationship between the spin echo magnitude and the PDF allows for

direct reconstruction of the PDF by inverse Fourier transform of the diffusion signal with

respect to the displacement wave vector (see Eq. 1.25 in Sec. 1.4.1). The DSI method

exploits this relationship to reconstruct the PDF within each imaging voxel. The PDF

is then radially projected onto the sphere (see Sec. 1.4.3), yielding the estimated ODF.

According to the results in118, the Diffusion Spectrum Imaging method allows for the
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resolution of complex fiber structures, such as intra-voxel fiber crossing and divergence.

Nonetheless, results show multiple peaks in the detected ODF function in gray matter

regions, and it is unclear whether these correspond to genuine anatomic structure. The

main shortcoming of DSI is the long acquisition times required, since it requires an

order of magnitude more measurements than DTI to get an equivalent fiber angular

resolution power4.

Furthermore, Canales-Rodŕıguez et al. showed21 that the exact mathematical ex-

pression for the ODF was not correctly approximated by DSI.

2.3.2 Q-Ball Imaging

Instead of forcing the diffusion anisotropy data into a group of tensors, the HARDI signal

can be reconstructed model-independently using a spherical inversion mathematical

tool called the Funk-Radon transform, also known as the spherical Radon transform,

resulting in a reconstruction method termed q-Ball Imaging (QBI). In q-ball imaging,

the ODF reconstruction scheme is based on the finding that integration over a great

circle in reciprocal q-space is equivalent to the Hankel transform of the planar projection

of the diffusion function. QBI approximates the ODF by the Funk transform of the

diffusion MRI signal at a fixed radius in q-space. The Funk transform, a mapping

between functions of the sphere, is a generalization of the Radon transform to the

sphere. For a given point on the sphere referred to as a pole, the value assigned by the

Funk transform at the pole is the integral over the associated equator (i.e. the great

circle):

G(u)[f(u)] =
∫
S2

f(u)δ(uTw)dw (2.6)
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where G denotes the Funk transform; f(u) is a function on the sphere S2; δ is the Dirac

delta function; and u and w are unit vectors on the sphere.

The Funk transform of the diffusion signal S(q), where q is sampled on a sphere,

yields an ODF that approximates the ODF obtained by explicit radial projection:

ψ(r) ≈ Gq′ [S(u)] (2.7)

where q′ is the radius of the sampling shell.

One of the most salient contributions of QBI was spherical sampling. QBI requires

sampling on one or more spherical grids. Tuch argued that the ability to sample directly

on the sphere allows to spend the signal acquisition time more efficiently on angular

resolution. As opposed to this, Cartesian Fourier spatial resolution contributes relatively

inefficiently to the desired endgoal of angular resolution. In conventional Cartesian

Fourier reconstruction, significant time and effort are invested in the acquisition near

the origin and tails of the reciprocal space, where the angular contrast-to-noise ratio is

relatively low. In the context of spherical sampling, the acquisition can be targeted to

the spatial frequency band where the angular contrast-to-noise is allegedly greater118.

The radial projection used to construct the ODF discards all of the radial information

contained in the diffusion function. Hence, the ODF does not contain the radial informa-

tion which was originally present in the Cartesian diffusion function, but preserves the

salient angular contrast. Tuch states that spherical sampling provides a more natural

framework for describing angular resolution, which can be defined as the upper-bound

of the angular distances between the sampling points.

QBI can resolve multiple intra-voxel fiber orientations118 117, and does not require

any assumptions on the diffusion process, such as Gaussianity or multi-Gaussianity.
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Aganj et al. argued1 that the definition of the ODF used in the original QBI, com-

puted as a linear radial projection of the spin displacement PDF, does not take into

account the quadratic growth of the volume element with respect to its distance from

the origin. This inaccurate formulation reportedly distorts the ODF, and requires arti-

ficial post-processing (such as the introduction of normalization constants). Aganj et al.

re-derived the ODF expression for QBI via Fourier analysis from the proper definition

of the ODF in Constant Solid Angle (CSA), and used spherical harmonics (see ) for the

implementation. Although, results reported provide high angular contrast (close to 30◦)

and do outperform QBI, a high b-value was used (b = 4800 s/mm2) (in the synthetic

experiments), fiber dominance was not tested, and the method requires long scanning

times.

An extension to the QBI algorithm, termed Exact q-Ball Imaging (EQBI), was pro-

vided23 by Canales-Rodŕıguez et al.. EQBI provides a different method to calculate the

ODF analytically using multiple spherical q-space shells.

As an alternative to the QBI method, Tristán-Vega et al.116 introduced the Orienta-

tion Probability Density Function (OPDF) for fiber tracts in the brain white matter for

HARDI data. In QBI, the ODF is estimated as the radial projection (integral) of the 3D

PDF. Instead, Tristán-Vega et al. proposed to marginalize the radial part of the PDF

to represent the orientation distribution, and named Orientation Probability Density

Transform (OPDT) the estimator of such a function. In noise-free environments, the

lower inter-fiber angle resolution power is close to 40◦ for b = 3000 s/mm2, and is close

to 50◦ for lower b-values (b = 1200 s/mm2). Results on the effect of dissimilar rela-

tive fiber volume fractions were not reported by the authors. Furthermore, the OPDF

estimator may yield negative values which have to be corrected.
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2.3.3 Spherical Harmonics

Several studies proposed to represent multi-modal diffusivity (i.e. ADC) profiles using

a Spherical Harmonics (SH) expansion57 5 6 47. For a formal definition of the SH basis

functions, see Sec. A.1.

The diffusion measurements along different encoding directions can be expressed as

rotations in three dimensions relative to the (unknown) principal axis system of the

diffusion. In the HARDI technique, these measurements are along a set of directions

covering the range of the spherical coordinates (θ, ϕ). The HARDI diffusion measure-

ments have an inherent spherical symmetry because they are made by a series of 3D

rotations. Systems with spherical symmetry are often more conveniently handled in the

spherical basis e = r, θ, ϕ. Rotation matrices transformed into the spherical basis are the

spherical harmonics. Tensors transformed into this representation are called spherical

tensors. Thus, the process of rotating a diffusion tensor can be reformulated by ex-

pressing the diffusion tensor in an irreducible form in which its individual components

transform separately under rotations affected by spherical harmonic components.

This rationale can equally be applied to the general case of a HARDI measurement

of a voxel of unknown fiber composition. In HARDI, the measured apparent diffusion

coefficient D(Ω) is an arbitrary real function. Letting Y m
l (θ, ϕ) denote an l-order, m-

degree SH basis function in the (θ, ϕ) direction, ns be the number of discrete HARDI

sampled data at a given (θ, ϕ) point on the sphere, N the number of SH used in the

approximation of order l(ns ≫ N), X = (x1, . . . , xns)
T the vector of measured ADCs
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D(g), C = (c00, c
−1
0 , c01, . . . , c

l
l)
T the vector of SH coefficients, and

B =


Y 0
0 (θ1, ϕ1) Y −1

1 (θ1, ϕ1) · · · Y l
l (θ1, ϕ1)

...
...

. . .
...

Y 0
0 (θns , ϕns) Y −1

1 (θns , ϕns) · · · Y l
l (θ1, ϕns)

 (2.8)

the ns ×N matrix of discrete SH, the approach seeks for the spherical harmonic series

that passes nearest to the discrete sampling points on the sphere. Hence, X = BC+E

where the error vector E should be small. This system of overdetermined equations is

solved with linear least square sums over the columns of E by minimizing ∥X−BC∥2,

yielding

C = (BTB)−1BTX (2.9)

The estimated ADC profile of order l is thus recovered by evaluating

D(g(θ, ϕ)) =
l∑

k=0

k∑
m=−k

cmk Y
m
k (θ, ϕ) (2.10)

for any (θ, ϕ) outside the discrete measurements X or in the discrete linear case, by

simple matrix multiplication,

X = BC (2.11)

The above solution works so long as the noise level is small relative to the HARDI

diffusion signal level. For cases where noise is larger, Descoteaux et al. proposed47 a

generalization of the standard least-squares evaluation method to include a regulariza-

tion (smoothness maximization) criterion. Hence, they model the Apparent Diffusion

Coefficient with Higher-Order Diffusion Tensor (HODT) described by Özarslan et al.97.

That is, a linear transformation is found taking the coefficients of the spherical harmon-
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ics series to the independent elements of the HODT.

This model has several advantages: no a priori knowledge about the diffusivity profile

is assumed, and non-Gaussian diffusion can be potentially described.

Although results show48 that it is possible to recover voxels showing isotropic, single

fiber anisotropic, and multiple fiber anisotropic diffusion behavior, the recovered inter-

fiber angle is never lower than 45◦ (for b = 3000 s/mm2).

One of the drawbacks of the use of SH is the need of a priori assumptions (or statistical

tests) to decide on the SH order (i.e. the complexity of the model). Characterization of

sharper fODFs often requires contributions from higher order harmonics whose omission

leads to ringing effects. Furthermore, higher order harmonic representations are more

sensitive to noise since the magnitudes of individual SH coefficients are reduced6.

The inability of the basis of SH to sparsely represent diffusion signals led to the pro-

posal of Spherical Ridgelets (SR) in90, where it was shown that the order of Spherical

Ridgelets required to represent the HARDI signals with a precision exceeding the pre-

cision of their representation using SH is reduced by a factor of 5 on average. Spherical

Ridgelets are derived from a set of wavelet functions through the application of the

Funk-Radon transform.

2.3.4 Spherical Deconvolution

To avoid the problems of the multi-compartment models, Tournier et al. proposed114 the

Spherical Deconvolution (SD) framework to estimate the underlying arrangement and

orientations of fiber populations. The key idea of the spherical deconvolution method is

to assume that there is a distribution, rather than a discrete number, of fiber orientations

in each voxel. Under this assumption, the sampled HARDI signal is the result of the

(spherical) convolution of the underlying fODF, which is a real-valued function on the
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unit sphere, with some kernel function representing the response derived from a single

fiber bundle, which can be considered as a sort of system impulse response function.

Under this approach, the model of diffusion signal generation can thus be written as

S(θ, ϕ) = F (θ, ϕ)⊗R(θ) (2.12)

=

∫ 2π

0

∫ π

0
F (θ′, ϕ′)R(γ′) sin θ′dθ′dϕ′ (2.13)

where S(θ, ϕ) is the measured HARDI signal; F (θ, ϕ) is the fODF sought along each

direction (θ, ϕ); R(θ) is the fiber response function; γ′ is the angle between directions

given by θ, ϕ and θ′, ϕ′.

SD approaches proceed by deconvolving this response from the observed diffusion

signals to estimate the underlying orientation distribution function. As opposed to

model-free techniques that estimate the diffusion ODF, the output from SD is directly

the fiber ODF itself.

The kernel not only models the physical process, but also the degrading factors af-

fecting the measured signal, such as the angular blurring introduced by HARDI ac-

quisition45. Response functions may either be estimated on a voxel-by-voxel basis or

assumed to be a constant across the image.

Spherical Harmonic Deconvolution (SHD)114 and its constrained version (Constrained

Spherical Harmonic Deconvolution (also referred to as Constrained Spherical Deconvolu-

tion) (CSHD))112 are implementations of spherical deconvolution, proposed by Tournier

et al., in which it is assumed that both the observed diffusion signal and the single-fiber

response functions may be adequately represented by a (truncated) linear combination

of spherical harmonic basis functions. This reduces the number of parameters that need

to be stored (reducing memory requirements) and, more importantly, reduces the de-
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convolution process to a computationally trivial operation in SH space (analogous to

convolution/deconvolution in Fourier space), reducing overall processing requirements.

Tournier et al. proposed112 two alternatives to their initial SHD approach (also

referred to as “filtered spherical deconvolution” –filtered SD– due to the use of a low-

pass filtering on WM voxels of parallel fibers to minimize noise susceptibility effects, i.e.

spurious negative lobes), named CSHD (or also Constrained Spherical Deconvolution

(CSD)) and Super-resolved Constrained Spherical Deconvolution (super-CSD). Both

introduce a regularization term using a modified version of the ℓ2-norm (Tikhonov)

penalization method.

The Tikhonov regularization involves the minimization of the weighted sum of two

terms:

∥Af − b∥2 + λ2
∥∥L(f − f ′)

∥∥2 (2.14)

where f are the SH coefficients of the ODF; b are the measured signal intensities; L is

a matrix that (indirectly) provides the amplitude of current estimate of the ODF for

the set of directions; and A is the problem matrix A = QR, where Q maps the SH

coefficients to the corresponding intensities along the HARDI diffusion signal, and R

performs the spherical convolution with a response function (kernel).

The first part in Eq. 2.14 corresponds to the data-driven part, and is a simple linear

least-square fit of the solution f (the parameters to be estimated) to the data b, via the

problem matrix A. The second part is the regularization part, where the parameter λ

controls the relative weighting between the two terms.

Assuming that f ′ = 0, and discarding at each step fiber amplitudes below a given

threshold, the problem reduces to iteratively finding an estimate of the set of fiber
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orientations until convergence (i.e. no change in the matrix L):

f (i+1) = arg min
0

{∥∥∥Af (i) − b
∥∥∥2 + λ2

∥∥∥Lf (i)∥∥∥2} (2.15)

The results provided by Tournier et al. under a number of conditions (different values

of the weighting parameter, (truncation) order of the SH coefficients, SNR, etc.) show a

lower bound for the inter-fiber angle at 40◦ (for a relatively standard b-value of b = 3000

s/mm2).

Where the assumption that all single fiber populations within an image volume exhibit

the same diffusion profile is valid, CSD can be shown to provide accurate estimates of the

fiber orientations, as shown in113. In real datasets, however, there are many situations

in which this fundamental assumption is not valid, reducing the method’s performance

and making it impractical.

A sensitivity analysis conducted by Parker et al.100 in both single and crossing-

fiber configurations showed that CSD produces spurious fODF peaks as the discrepancy

between the estimated single-fiber response function and the target response increases.

Reconstruction of the fODF by spherical deconvolution is an ill-posed problem, and

multiple solutions may exist, some of which may be physically implausible (such as

negative peaks in the fODF). To address this, non-negativity constraints are often placed

upon the deconvolution process. However, instabilities may persist in the deconvolution

process.

One of the most notable contributions in overcoming these issues was proposed in45.

In this work, Dell’Acqua et al. used a modified version of the Richardson-Lucy (RL)

algorithm104 79 for the deconvolution assuming a Gaussian model for the noise distri-

bution. The RL algorithm follows a statistical Bayesian approach to the deconvolution
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problem, and implements an iterative estimation scheme for approximating the solutions

of a maximum-likelihood problem. The classical version of the RL algorithm was origi-

nally developed for astronomical image reconstruction and denoising in the presence of

Poisson noise.

The RL algorithm for spherical deconvolution (SD-RL) can be compactly expressed

in matrix-vector notation as45

f (k+1) = f (k)
HTS

HTHf (k)
(2.16)

where k refers to the k-th iteration step; f is the column-vector of length N which

contains the values of fODF along N -directions uniformly distributed on the sphere; S

is the column-vector of length M containing the values of the HARDI signal, acquired

along M -directions uniformly distributed on the sphere; and H is an matrix which acts

as a circulant matrix on a spherical surface; every column of length M contains the

values of the fiber response profile oriented along one of the N -directions.

This framework intrinsically satisfies the non-negativity constraint, and controls the

instabilities of the estimation process.

Due to the spherical symmetry of both the diffusion problem and the specific applied

gradient direction set, the coupled symmetric sampled data can be averaged together

in order to improve the diffusion-weighted SNR and reduce cross-term effects between

imaging and diffusion gradients45. Hence, the size of the vectors and matrices in Eq. 2.16

can be halved to speed up the computation.

Convergence properties show45 that this algorithm, in the case of Gaussian noise,

converges to the Non-negative Least Squares (nnLS) solution.

The SD-RL approach fails in pure isotropic voxels, where only a number of randomly
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oriented spurious spikes can be obtained. The same problem has also been reported

for QBI and Persistent Angular Structure Magnetic Resonance Imaging (PASMRI)45.

Dell’Acqua et al. proposed to workaround the problem by either discriminating isotropic

voxels using their FA values45 or using the algorithm’s convergence properties46.

The results provided by Dell’Acqua et al. showed that SD-RL outperforms other

methods (such as QBI) in a number of situations (such as different diffusivity, fiber

dominance, or SNR values), but the tested inter-fiber angles in the synthetic simulations

was only 60◦ 45.

More recently, Dell’Acqua et al. proposed46 a variation of the RL method to address

the partial volume effects from isotropic tissue, such as gray matter or cerebrospinal fluid

(CSF), and which may degrade the spherical deconvolution results, leading to the partial

deactivation of the non-negativity constraint. The alternative approach, named Damped

Richardson-Lucy (dRL) algorithm, is based on an adaptive regularization scheme.

The dRL variation can be written in matrix notation as

f (k+1) = f (k)

[
1+ u(k)

(
HTS−HTHf (k)

HTHf (k)

)]
(2.17)

where u(k) is a vector that performs the damping operation on each element of f , and

is defined as

u(k) = 1− µr(k) (2.18)

with

r(k) = 1−
(
f (k)
)ν(

f (k)
)ν

+ ην
(2.19)

where r is a vector controlling the damping for each fiber orientation function com-
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ponent; ν is a geometrical parameter describing the damping curve and how fast the

damping turns on and off; η acts as a threshold parameter controlling where the damp-

ing starts according to the fiber orientation function amplitude; and µ modulates the

damping across voxels and is used to obtain a preliminary classification of brain tissue

based on the voxel anisotropy (µ = max{0, 1− 4 std(s)}).

Damping occurs when differences between data and recovered object are close to or

lower than the noise level; for larger differences, the algorithm acts as the original RL

form. Thus, spurious component amplification is prevented.

Fiber orientation recovery results with the damped version of the RL algorithm show

a reduced false positive rate for a broad range of volume fraction values compared to the

standard RL version. Furthermore, dRL exhibits a low overall target response mismatch

sensitivity for sub-optimal choices of the single-fiber response function, with a calibration

response function for a highly anisotropic fiber being optimal100. Nevertheless, dRL

demonstrates a reduced ability to resolve low anisotropy crossing-fibers compared to

CSD, and the lower bound of the inter-fiber angle resolved remains relatively high (50-

60◦, depending on the number of iterations allowed, and the allowed overestimation

rate). Furthermore, the dRL algorithm exhibits tolerance to system impulse response

imprecision.

The main issue for either the standard or the damped versions of the RL algorithm

seems to be one of convergence. The algorithm exhibits the “semi-convergence” prop-

erty; first the solution converges to the true value and then diverges as iterations proceed,

leading to noise amplification and generation of artifacts such as spurious components.

Thus, the algorithm returns the best results shortly before the fODF deconvolution fully

converges, while actually reaching convergence can often result in over-fitting (i.e. an

increased rate of false positives or the over-representation of the signal’s noise compo-
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nent)46.

Compared to the multi-compartment models, the spherical deconvolution framework

has two significant advantages. First, it does not require the specification of the number

of underlying fibers before computing the fODF. Second, the spherical deconvolution

methods often lead to a linear system which can be solved efficiently while the multi-

compartment models usually involve a computationally expensive nonlinear fitting pro-

cess.

Another advantageous property of the Spherical Deconvolution interpretive frame-

work is that it works directly on the acquired data, therefore avoiding the use of other

representation domains or basis, such as the SH. Furthermore, obtaining the fODF

directly allows SD methods to resolve fiber crossings with small inter-fiber angles in

datasets acquired within a clinically feasible scan time53.

Contrary to SD methods using direct inversion to solve fiber crossing (see, for exam-

ple,114 and6) the iterative nature of the dRL method warrants that, thanks to semi-

convergence, the solution found approximates well the true value, without unacceptable

instabilities due to noise amplification.

Notwithstanding, the iterative nature of the algorithm makes it slower than direct

inversion methods. Other computational issues that arise in the application of the

deconvolution framework concern the stability of the deconvolution in the presence of

noise, and the ability to accurately recover multiple fiber orientations from relatively

low angular resolution imaging data70.

The main assumption inherent in the Spherical Deconvolution technique is that the

diffusion characteristics of fiber tracts can be assumed approximately constant, such

that the response function measured for a typical coherently oriented fiber population

is constant throughout the brain114 6. This premise may be broken in regions where the
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white matter fibers have significantly different diffusion characteristics, due for example

to (i) different myelination levels, (ii) axonal diameters, or (iii) axonal densities13.

Using this simplifying hypothesis, the SD approach assume that the fODF within a

voxel can be obtained by deconvolving a ‘common’ single-fibre response function from

the observed set of diffusion signals. In practice, this common response function is not

known a priori, and thus, an estimated fiber response must be used. Although SD

methods produce inaccurate fODF estimates when the single-fiber response function

does not estimate well the observed data, it only affects the estimated volume fractions

of the various fiber populations, not their respective orientations114 6. The sensitivity

to an incorrect single-fiber response function differs across SD methods100.

(a) (b)

Figure 2.3 Spherical sampling. Spherical deconvolution methods use a sampling strategy
that relies on probing the signal at evenly distributed points over a unit sphere: (a) sampled
points; (b) faces defined by the edges linking the sampled points. There are many solutions to
the issue of packing points on a sphere. In this case, the number of points (vertices) is V = 492
and the number of faces F = 480.

More recently, another SD method, named Robust and Unbiased Model-Based Spher-

ical Deconvolution (RUMBA-SD), was introduced by Canales-Rodŕıguez et al.53. The

method is intended to deal with realistic MRI noise, based on the dRL algorithm adapted
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to the Rician likelihood model (see Sec. B.1). An iterative scheme based on solving

f (k+1) = f (k)
HT

[
S In(SHf (k)/σ2)

In−1(SHf (k)/σ2)

]
HTHf (k)

(2.20)

is obtained. Here, In (In−1) is the modified Bessel function of the first kind of order n

(n− 1); and σ2 is the noise variance.

It was demonstrated that, compared to the dRL method, RUMBA-SD offers increased

ability to resolve fiber crossings at small inter-fiber angles and to better detect non-

dominant fibers in both synthetic and human brain datasets.

2.4 Other methods

2.4.1 Diffusion Orientation Transform

One major difficulty with employing HARDI in studies involving orientation mapping

has been that the peaks of the diffusivity profile do not necessarily yield the orientations

of the distinct fiber populations98. Hence, Özarslan et al. propose98 the Diffusion

Orientation Transform (DOT), which transforms the diffusivity profiles into probability

profiles whose peaks correspond to distinct fiber orientations.

The method expresses the average displacement probability (see 1.2) in spherical

coordinates. Under the mono-exponential attenuation assumption, the radial part of

the integral is evaluated analytically; the probability values on a fixed radius can be

reconstructed either directly or parametrically in terms of a Laplace series / Least

Squares (LS).

In either case, the average displacement probability P (r) is re-written as the proba-

bility of finding the particle, initially at the origin, at the point R0r; hence, the interest

59



lies in computing the probability values on a sphere of radius R0.

In the parametric reconstruction alternative, this probability can be re-written using

a Laplace series expansion as

P (R0r) =
∞∑
l=0

l∑
m=−l

plmY
m
l (r) (2.21)

with

plm = (−i)lαllm = (−1)−1/2αllm (2.22)

where the αllm coefficients are given by a spherical harmonic transform; and Y m
l (θ, ϕ)

is the spherical harmonic function.

An alternative, non-parametric interpretation of the probability is given by

P (R0r) =
∞∑
l=0

∫
du(−1)−1/2 2l + 1

4π
Pl(u · r)Il(u) (2.23)

where u is a unit vector specifying the direction of the diffusion sensitizing gradient; Pl

is the Legendre polynomial of l-th order; and Il(u) is a function of orientation.

Thus, the parametric reconstruction allows expressing the probabilities in terms of a

Laplace series, whereas the non-parametric reconstruction allows for direct probability

computation. Although it is simpler to implement the latter scheme as no Spherical

Harmonic Transform (SHT) is necessary, when the LS is truncated, the number of prob-

ability points to be evaluated is smaller than the directions along which the probabilities

are estimated, which saves computation time.

DOT estimates a contour of the diffusion propagator estimated at a defined displace-

ment length R0. The ODF obtained through the DOT model (see22 for mathematical

details on the derivation) provides less angular contrast than the fODF, and provides a
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nonnegligible rate of false positives.

2.4.2 Simple Harmonic Oscillator-based Reconstruction and Esti-

mation

Özarslan et al. proposed96 an alternative series representation for the q-space dif-

fusion MR signals in terms of a complete set of orthogonal Hermite functions, named

Simple Harmonic Oscillator based Reconstruction and Estimation (SHORE). The three-

dimensional variant requires multiple q-shell acquisitions, which requires longer scanning

times.

Results reported by the authors do not allow for an effective comparison of the algo-

rithm’s performance. Furthermore, results presented in96 were performed ex-vivo with

an ultra high-field scanner (14.1 T).

2.4.3 Higher-Order Diffusion Tensors

In the presence of multiple fibers, the diffusion tensor signal is oblate or planar and there

is no unique principal direction. Additionally, the maxima of the Apparent Diffusion

Coefficient profile do not correspond to the true fiber orientations. One natural gener-

alization is to model the ADC with HODTs (also named Higher-Order Tensors (HOTs)

or Generalized Diffusion Tensor (GDT) framework)97 77. This model does not assume

any a priori knowledge about the diffusivity profile and has the potential to describe

non-Gaussian diffusion. It constitutes an alternative basis of functions on the sphere,

equivalent to Spherical Harmonics (see Sec. 2.3.3). However, the HODT makes it un-

necessary to evaluate the Spherical Harmonic Transform from the diffusivity profiles,

which is a computationally difficult task.
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In the HODT statement of the reconstruction problem, the distribution of the diffu-

sivities is assumed to be characterized by a tensor of arbitrary rank, and is re-written

as

D(g) = −1

b
ln
S(g)

S0
(2.24)

where g is the direction of the diffusion sensitizing gradient.

Özarslan et al. sought97 to fit this expression to a rank-2 and higher order tensor

model by using linear regression methods.

Results reported by the authors of the HODT methods are limited to either synthetic

phantoms or qualitative comparisons with no real performance analysis.

2.4.4 Persistent Angular Structure MRI

This algorithm, introduced67 by Jansons and Alexander, proposes to determine another

feature, the (radially) Persistent Angular Structure (PAS), of the probability density

function of particle displacements. The PAS is the function p̃ of the sphere whose

Fourier transform, when embedded in the 3D space on a sphere of radius r (i.e. the

q-space), best explains the normalized sampled data.

The method is derived from the principle of maximum entropy to obtain an expression

for the function that contains the least information (i.e. the one with the largest entropy)

subject to the constraints from the data.

The information content of a probability density function p defined over a set Ω is

given by

I[p] =

∫
Ω
p(x) ln p(x)dx (2.25)

The substitution

p(x) = p̃(x̂)r−2δ(|x| − r)
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where δ is the standard one-dimensional δ distribution; r is a constant; x̂ is a unit

vector in the direction of x; and p̃ is the (radially) Persistent Angular Structure, is

equivalent to projecting the angular structure from all radii onto the sphere of radius

r, and ignoring any information about the radial structure in the data.

The relative information of the probability density function p with respect to the

probability density function p0 is given by

I[p; p0] =

∫
Ω
p(x) ln

(
p(x)

p0(x)

)
dx (2.26)

The constraints on p from the data can be incorporated into the expression above

using the method of Lagrange multipliers to yield

I[p̃] =

∫ p̃(x̂) ln p̃(x̂)− p̃(x̂)

N∑
j=1

(λj exp (iqj · rx̂))− p̃(x̂)µ

 dx̂ (2.27)

where qj , 1 ≤ j ≤ N , are the non-zero wavenumbers for the MRI measurements; the λj

are Lagrange multipliers for the constraints from the data; and the Lagrange multiplier

µ controls the normalization of p̃. The information content, I[p̃], has a unique minimum

at

p̃(x̂) = exp

λ0 + N∑
j=1

λj exp (iqj · rx̂)

 (2.28)

Taking advantage of the fact that the probability density function of particle dis-

placements has antipodal symmetry,

p̃(x̂) = exp

λ0 + N∑
j=1

λj cos(q̃j · rx̂)

 (2.29)
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Finally, the method proposed by Jansons et al. seeks to minimize the error function

N∑
j=1

[
E(qi)

E0
−
∫
p̃(x̂) cos(q̃j · rx̂)

]
(2.30)

with respect to the N + 1 λj , j = 0, . . . , N parameters of p̃.

The above nonlinear least squares problem is solved using a LevenbergMarquardt

algorithm (also known as the damped least-squares) (LMA) (also known as the Damped

Least-Squares (dLS) method).

The nonlinear optimization and numerical integration operations involved make the

PASMRI method impractical due to the long computation times required. An alter-

native to ease this computational burden proposes to substitute the maximum-entropy

parametrization of p̃ with a linear basis. This linearization makes the problem more

tractable. Yet, authors do not provide quantitative results of the algorithm, or numerical

comparisons to other methods in terms of its angular resolution power.

2.4.5 Hybrid Diffusion Imaging

The Hybrid Diffusion Imaging (HIDY) method126 estimates DTI, DSI, and QBI diffu-

sion properties in a single experiment using a concentric multi-shell diffusion weighting

encoding scheme. Each shell has a constant diffusion weighting, but the number of

encoding directions is increased with each encoding shell to increase the angular resolu-

tion. Thus, the most interior shells are suitable for a diffusion tensor analysis, whereas

the outer shells allow for high angular resolution reconstruction frameworks such as

QBI. The entire data set from all shells is combined for both fast and slow diffusivity

estimation, using DSI and multi-exponential (nonlinear least squares bi-exponential) fit.

The technique suffers from several shortcomings, such as long scan times (30 min) and
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limited angular resolution (45◦) despite the use of high b-values (b > 6000 s/mm2) used

in the outer shells.

2.4.6 Spherical Polar Fourier Transform

The Spherical Polar Fourier (SPF) transform was postulated by Assemlal et al.11 and

further investigated by Cheng et al.32 31 and Caruyer et al.30 as a model-free algorithm to

recover the EAP and the ODF in q-space from the coefficients of the signal reconstructed

in the SPF basis.

In the original approach by Assemlal et al., the estimation is based on the approx-

imation of the signal by a series expansion made of Gaussian-Laguerre and spherical

harmonic functions followed by a projection on a finite dimensional space. Furthermore,

the introduced method considers the Rician noise model of the MRI samples.

In the orthonormal basis SPF expansion, the MR signal attenuation E can be re-

written as the following series

E(q) =
S(q)

S(0)
=

∞∑
n=0

∞∑
l=0

l∑
m=−l

an,l,mRn(∥q∥)yml
(

q

∥q∥

)
(2.31)

where n ∈ N is the radial index; l ∈ N,m ∈ Z,−l ≤ m ≤ l are the angular indexes; S(q)

is the diffusion MR signal at a point q in the q-space; an,l,m are the series coefficients;

yml are the real SH; and Rn is an orthonormal radial basis function made of Gaussian-

Laguerre (GL) functions.

While the radial component of the MR signal is reconstructed a normalized basis

of generalized GL polynomial functions, the angular component of the signal is recon-

structed by elementary angular functions based on the complex SH basis (for further

details, see11).
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In practice, the expansions in Eq. 2.31 must be truncated to some finite nmax = N

and lmax = L values. Furthermore, a variational framework is introduced to regularize

the estimated diffusion functions during the estimation process.

Although authors argue that the SPF approach enables to accurately estimate various

features of the tissue micro-architecture compared to other approaches (such as QBI),

quantitative data concerning the resolvable inter-fiber angles is missing.

2.4.7 Microstructure Modeling Methods

Other approaches trying to provide a deeper insight into the white matter micro-

architecture have also emerged. These models, namely the Diffusional Kurtosis Imaging

(DKI) and the Neurite Orientation Dispersion and Density Imaging (NODDI), attempt

to adopt a model that is closer to a real neuronal tissue model: the intra- and extra-

axonal spaces are modeled separately, and new features are introduced to account for

the uncovered dissimilarities between both compartments.

The diffusion kurtosis model is an expansion of the diffusion tensor model that, in

addition to quantifying the diffusion tensor, provides an estimate of the degree to which

water diffusion in biological tissues is non-Gaussian using a mathematical construct

called the kurtosis tensor (KT)69 78. This diffusion kurtosis thus represents the extent

to which the diffusion pattern of the water molecules deviates from a perfect Gaussian

curve.

The diffusion kurtosis model expresses the diffusion-weighted signal as:

S(u) = S0 exp

[
−bD(u) +

1

6
b2D2(u)K(u)

]
(2.32)

where S(u) is the signal intensity at the echo time; b is the applied diffusion weighting;
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S0 is the signal in the absence of diffusion gradient sensitization; D(u) is the value of

diffusion (i.e. the apparent diffusion coefficient) along direction u; and K(u) is the value

of kurtosis along direction u.

The directional diffusion D(u) and kurtosis K(u) can be related to the diffusion

tensor and KT using the following equations:

D(u) =

3∑
i=1

3∑
j=1

uiujDij (2.33)

and

K(u) =
M2

D

D(u)2

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

uiujukulWijkl (2.34)

where Dij are the elements of the second-order diffusion tensor (DT); Wijkl are the

elements of the fourth-order (3 × 3 × 3 × 3), fully symmetric KT; MD is the mean

diffusivity and is independent of the direction (MD = 1
3

∑3
1Dii); and i, j, k, and l are

the indices of the directions in the physical space.

As the DT, KT has antipodal symmetry, and thus only 15 Wijkl elements are inde-

pendent and fully characterize the KT.

Hence, Eq. 2.34 is a linear equation system with 15 unknown parameters. Therefore,

by applying the gradients in 15 or more non-collinear, non-coplanar directions, the

solutions can be found and the complete diffusional kurtosis tensor can be estimated.

Thus, this approach does not require the complete measurement of the displacement

distribution function and, therefore, is more time efficient compared to the q-space

imaging technique. Another advantage of the DKI model is the low b-value (b ≤ 2500

s/mm2) required for imaging.

Measurements of non-Gaussian diffusion from the diffusion kurtosis model are of
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interest because they can be used to characterize tissue microstructural heterogeneity68

and to derive concrete biophysical parameters, such as the density of axonal fibees and

diffusion tortuosity56. In56, Fieremans et al. further elaborated on the DKI model to

separate, like the CHARMED model, the intra-axonal space and extra-axonal space,

and to estimate the fraction of MRI visible water in the axons relative to the total

visible water signal, i.e. the Axonal Water Fraction (AWF).

According to65, DKI can be used to resolve crossing fibers in tractography, and

to obtain invariant rotational measures not limited to well-aligned fiber populations.

Authors report an inter-fiber angle resolution power of 35◦ for the ODF computed under

the DKI framework. Real dataset tractography results65 60 show that DKI compares

favorably against DTI and DSI.

The NODDI method is an approach that models130 dendrite and axon populations

(collectively termed neurites) in the human brain WM. The method is not targeted at

recovering the fiber orientation distribution in the WM; it rather seeks to provide more

reliable descriptors of the water diffusion in the brain tissue. According to the authors,

indices accounting for this neurite-structure relate more directly to and provide more

specific markers of brain tissue microstructure than standard indices from DTI, such as

Fractional Anisotropy.

The proposed technique enables such mapping by combining a three-compartment

tissue model (intra- and extra-axonal spaces, and the CSF) with a two-shell HARDI

protocol optimized for clinical feasibility.

Under this model, the normalized signal S reads

S = (1− fiso)(ficSic + (1− fic)Sec) + fisoSiso (2.35)
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where Sic and fic are the normalized signal and volume fraction of the intracellular

compartment; Eec is the normalized signal of the extracellular compartment; and Siso

and fiso are the normalized signal and volume fraction of the CSF compartment.

The intracellular compartment refers to the space bounded by the membrane of neu-

rites. This space is modeled as a set of “sticks”, i.e., cylinders of zero radius, to capture

the highly restricted nature of diffusion perpendicular to neurites and unhindered diffu-

sion along them. The normalized signal, Sic, adopts a simplified version of orientation-

dispersed cylinder model in129, such that

Sic =

∫
S2

f(n)e−bd∥(q·n)2dn (2.36)

where q and b are the gradient direction and b-value of diffusion weighting, respectively;

f(n)dn gives the probability of finding sticks along orientation n; e−bd∥(q·n)2 gives the

signal attenuation due to unhindered diffusion along a stick with intrinsic diffusivity d∥

and orientation n.

The orientation distribution function f : S2 → R is modeled with a Watson distribu-

tion:

f(n) =M

(
1

2
,
3

2
, κ

)−1

eκ(µ·n)
2

(2.37)

whereM is a confluent hypergeometric function; µ is the mean orientation; and κ is the

concentration parameter that measures the extent of orientation dispersion about µ.

According to the authors, the Watson distribution is the simplest orientation distri-

bution that can capture the dispersion in orientations.

The extracellular compartment refers to the space around the neurites, which is

occupied by various types of glial cells and, additionally in gray matter, cell bodies

(somas). In this space, the diffusion of water molecules is hindered (but not restricted)
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by the presence of neurites; hence, it is modeled with simple (Gaussian) anisotropic

diffusion.

The normalized signal, Sec, again adopts the extracellular signal model of orientation-

dispersed cylinders in129, such that

logSec = −bqT

[∫
S2

f(n)D(n)dn

]
q (2.38)

where D(n) is a cylindrically symmetric tensor with the principal direction of diffusion

n.

The CSF compartment models the space occupied by cerebrospinal fluid and is mod-

eled as isotropic Gaussian diffusion with a given diffusivity.

Within this framework, a new fiber orientation index, named “orientation dispersion”,

is defined as

OD =
2

π
arctan

(
1

κ

)
(2.39)

which, according to the authors, provides a more complete physical description of the

diffusion process in white matter.

Authors use a set of imaging protocols consisting of various sampled orientations and

(relatively low) b-values (b < 3000 s/mm2) to test their method. The results reported

focus on the role of the orientation dispersion and the neurite density in the FA index.

Although, according to the authors, the orientation dispersion may potentially quantify

the bending and fanning of axons, and therefore, may classify voxels as containing

crossing fiber populations, no evidence is provided.
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Cubism had been an analysis of the object and an

attempt to put it before us in its totality; both

as analysis and as synthesis, it was a criticism of

appearance. Surrealism transmuted the object,

and suddenly a canvas became an apparition: a

new figuration, a real transfiguration.

Corriente alterna. 1967.

Octavio Paz, Mexican poet and diplomat

(1914-1998). 1990 Nobel Prize in Literature 3
Spherical Deconvolution-Sparse Bayesian

Learning Diffusion Reconstruction

In 2 we described different methods to elucidate the orientation of white-matter

fiber bundles in diffusion MRI images. The Spherical Deconvolution framework postu-

lated by Tournier et al.114 provided a robust foundation for the direct estimation of the

fiber orientation distribution. Their approach relied on spatial regularization penaliza-

tion. Successive works have incorporated different priors or penalization terms to the

SD approach in search of the global minima of the cost function: et al. introduced the
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Least Absolute Shrinkage and Selection Operator (LASSO) regularization, and Daducci

et al. proposed the ℓ0-norm.

Recently, the Sparse Bayesian Learning (SBL) framework was introduced by Zhang

et al.131, where minimization of penalties on the sparsity of the estimate was shown to

provide notable results in signal recovery problems. The framework is able to handle

underdetermined problems, and reduce the local minima of the cost function employed

even in the presence of highly correlated samples. Solving these issues is essential for

the fiber orientation reconstruction from diffusion MRI images employing SD methods.

3.1 Introduction

The diffusion signal S(q) is a real-valued function, which determines the value of S at

the location q in q-space. In the HARDI acquisition protocol, the signal S(q) is sampled

at N discrete orientations on the sphere uk
N
k=1 for several different q-values. Thus, for

each q-value, measurements are made along N directions uniformly distributed over a

unit sphere.

The reconstruction schemes presented in attempt to estimate S(q) (or its features

thereof) through several strategies. Nonetheless, either model-based or model-free math-

ematical diffusion imaging methods postulated to date have achieved a relatively high

lower bound in the Inter-fiber angle (IFA) their are capable to resolve. According to

Behrens et al.16, an estimated one third of white matter voxels in a diffusion acquisition

contain more than one fiber population.

The ability of each method to resolve the micro-geometry of WM fibers critically

depends on the data required. Many of the fiber orientation reconstruction algorithms

in compute the diffusion ODF, which can be interpreted as a smoothed version of the
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fODF49. Generally, a larger number of acquisitions directions, together with larger

b-values, provide better angular resolution. However, that limits their practical appli-

cation due to longer acquisition times. Thus, shorter acquisition schemes are privileged,

which impacts the quality of the fiber orientation reconstruction.

Methods based on variations of the tensor model, such as DKI, DOT or Generalized

Diffusion Tensor Imaging (GDTI), require measuring at different b-values. Thus, for

a clinically feasible acquisition scheme, the number of gradient directions acquired at

each b-value must be reduced. The resolution power of the methods may be influenced

by this requirement. Furthermore, voxels containing complex geometries, such as fibers

at low inter-fiber angles or a large number of fibers, may not fit in a single tensor order,

or may required higher orders.

Spherical deconvolution methods tend to obtain stable reconstructions across wide

fiber crossing angle ranges, and require less gradient acquisition directions and smaller

b-values39. Furthermore, a higher angular contrast is ensured by the computation of

the fODF compared to the diffusion ODF.

The SD methods that encourage sparsity are of particular interest. These methods

tend to reconstruct the diffusion signal (or its features) while intrinsically promoting

the solution that minimzes the number of estimated fibers (ideally being the number

of ground-truth fibers) in the solution space. The underlying theory to sparse signal

recovery is Compressed Sensing (CS).

3.2 Compressed Sensing

The theory of compressed sensing (also known as compressive sensing, compressive

sampling, or sparse sampling) was introduced by Candès, Romberg, and Tao25 and
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Donoho51 almost simultaneously in 2006. They provided evidence about the possibility

of reconstructing a band-limited signal with fewer samples than the sampling theo-

rem (also known as the Nyquist-Shannon sampling theorem) requires, given sufficient

knowledge about the signal’s sparsity. In numerical analysis, the term sparsity refers

to the density quality or compactness of a construct or matrix (representing some sort

of information source) in which most element (called atom) values are zero (or close to

zero). Such a structure is then called to be sparse. A signal is called S-sparse if it has

only S nonzero elements. However, natural signals are rather compressible. A signal is

designated compressible if it has only a small proportion of large coefficients when the

signal is transformed into a suitable domain. Mathematically, a signal is compressible

if the decay rule of the coefficients in the transformed domain obey the power law26.

Emphasis should be put on the fact that compressed sensing does not violate the

sampling theorem, because the latter guarantees perfect reconstruction given sufficient,

not necessary, conditions. Compressed sensing depends on the sparsity of the signal in

question and not its highest frequency. Sparse signals with high frequency components

can be highly under-sampled using compressed sensing compared to classical fixed-rate

sampling26 24.

Compressed sensing typically starts with taking a weighted linear combination of

samples (also called “compressive measurements”) in a basis different from the basis in

which the signal is known to be sparse. Candès et al. demonstrated that the number

of these compressive measurements can be small and still contain nearly all the useful

information. Therefore, the task of converting the signal back into the intended domain

involves solving an underdetermined matrix equation since the number of compressive

measurements taken is smaller than the number of samples in the original domain signal.

However, if there is a unique sparse solution to an underdetermined system, then the
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compressed sensing framework allows the recovery of that solution. In order to choose

a solution to such a system, extra constraints or conditions (such as smoothness) must

be imposed as appropriate.

The least-squares solution to such problems is to minimize the ℓ2-norm, that is, min-

imize the amount of energy in the system. Although mathematically simple, this leads

to poor results for many practical applications, for which the unknown coefficients have

nonzero energy. To enforce the sparsity constraint when solving for the underdeter-

mined system of linear equations, one can minimize the number of nonzero components

of the solution. The function counting the number of non-zero components of a vector is

called the ℓ0-norm. Candès et al., proved that for many problems ℓ1-norm is equivalent

to the ℓ0-norm. This equivalence result allows to solve the ℓ1-norm problem, which is

easier than the ℓ0-norm problem.

Sparse signal representations from overcomplete (redundant) dictionaries have found

increasing relevance in a large number of application domains125. Attaining such repre-

sentations is central to solving regularized linear inverse problems that have far-reaching

applications in signal processing, compression, and feature extraction.

Compressed Sensing in Diffusion Imaging

Compressed sensing has been used to shorten magnetic resonance imaging acquisition

times measuring fewer Fourier coefficients80 81. Given that the intra-fiber angle resolu-

tion performance of many diffusion MR techniques comes at the expense of long acqui-

sition times, the CS theory found an immediate application in to reconstruct the sparse

diffusion directions in each voxel from a sub-Nyquist sampled data91 87 88 89 115 103 127. In

the context of diffusion MRI, CS requires three components: an under-sampling strat-

egy that can incoherently sample the q space, a sparse model that can represent the

75



multi-modal diffusion and a reconstruction scheme that can recover the diffusion peaks

without aliasing artifacts.

Michailovich et al. proposed91 to use CS to reduce the number of gradients re-

quired in the HARDI acquisition protocol without compromising the accuracy of the

reconstruction. The use of spherical harmonics as a basis does not allow for a sparse

representation of the HARDI signal, because the energies of SH are spread all over S2,

and as a result, a relatively large number of coefficients are needed to effectively encode

the diffusion tensors. According to their rationale, using an appropriate basis would

allow to concentrate the energies of the elementary signals alongside the great circles

of S2, which would reduce the number of coefficients required to represent the HARDI

signal with a given precision comparable to SH.

Since the diffusion measurements are linear, the set of discrete samples Sk of the S(u)

diffusion signal can be expressed in the form of inner products Sk = ⟨S(u), φjk(u)⟩, being

{φjk}Nk=1 a subset of the so-called “Dirac sampling basis” {φi}i∈I .

Let {ψj}j∈J be another basis in the signal space, used for the representation of

S(u)91. Thus, S can be expressed according to:

S(u) =
∑
j∈J

cjψj(u), ∀u ∈ S2 (3.1)

The set {ψj}j∈J is assumed to be finite, being the total number of elements M .

Making the following assumptions

• S is assumed to be “sparsely representable” by {ψj}j∈J , which implies that the

number K of non-zero coefficients cj in Eq. 3.24 is significantly less than M .

• The bases {φi}i∈I and {ψj}j∈J are “incoherent”, implying that the value of
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µ = supi,j |⟨φi(u), ψj(u)⟩| is relatively small.

Provided that such a basis ψjj ∈ J is available for which the above assumptions are

valid, the theory of CS provides evidence that an accurate estimate of S is possible from

O
(
µ2 log(M)K

)
, as opposed to O

(
M
)
in the case of the standard sampling theory.

The basis ψjj ∈ J , called a basis of SR, is derived from a set of wavelet functions

through the application of the Funk-Radon transform.

The same rationale was the foundational basis used by Rathi et al. to propose103 the

generalization of the use of (single-shell) spherical ridgelets to multi-shell acquisitions,

thus introducing the Multi-Shell Imaging (MSI) acquisition protocol.

Tristán-Vega et al. postulated115 the Spherical Wavelets (SW)58 as a suitable basis

to sparsely represent the fODF. The estimation problem becomes an inverse problem by

relating the SW functions to their counterparts in q-space. To solve the optimization

problem, L1 regularization was proposed as a first approach. The L1 regularization-

based solution compared positively to the Spherical Ridgelet approach, providing a

lower reconstruction error rate. However, the L1 reconstruction problem was proved

to be intractable in reasonable time ranges. Thus, although sparsity is only enforced

for ℓp∀p ≤ 1, Tristán-Vega et al. also proposed reconstructing the ODF using an

L2 regularization strategy. Reconstruction times were two orders of magnitude faster

than with L1, providing comparable reconstruction perfomance. When considering

the number of samples required for the reconstruction, Tristán-Vega et al. reported

a 4 : 1 reduction ratio compared to a HARDI acquistion scheme. However, synthetic

experiments were only reported for a relatively high SNR (40 dB), and a lower inter-fiber

angle bound of 45◦.

Landman et al. formulated74 the compartment (fiber volume) fraction reconstruction

problem as a LASSO problem. Since the computational complexity is a limitation of
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compressed sensing techniques, Landman et al. proposed to use an acceleration tech-

nique based on a multi-resolution basis set. Furthermore, the non-negativity constraint

on the relative volume fractions was intrinsically enforced by the optimization method

used. The results reported show that fibers crossing at angles as low as 30◦ are recon-

structed the with a remarkably low number of gradient acquisition directions (30) and

low b-value (b = 700 s/mm2).

Mani et al. postulated83 that, for simultaneous improvement of resolution in spatial

and angular domains in the CS sense, undersampling of the combined k-space-q-space

was required. The diffusion signal in each voxel is modelled as a sparse linear com-

bination of Gaussian basis functions, i.e. a GMM. The L1 penalty was used on the

coefficients of the basis functions to enhance sparsity, while the total variation penalty

was employed for the coefficients to exploit the spatial smoothness. The reconstruc-

tion problem was solved by an iterative re-weighted conjugate gradient (CG) algorithm.

Reconstruction results are qualitatively comparable to the regular HARDI scheme, no

fiber reconstruction performance data is provided though, and emphasis is put on the

acceleration factor introduced by the proposed strategy.

Menzel87 and Paquette99 proposed different CS-based strategies to accelerate DSI

sampling schemes and reconstruct the EAP and ODF features. Menzel et al. solve

the CS-DSI problem by considering the gradient operation as sparse transform, i.e.

using a total variation regularization. Paquette et al. represent the signal on the

basis provided by the Discrete Wavelet Transform (DWT), and use the Fast Itera-

tive Shrinkage-Thresholding Algorithm (FISTA) algorithm15 to solve the optimization

problem. Although experiments with real diffusion MRI data are also presented in87,

numerical results provided for synthetic dataset only refer to relatively high inter-fiber

angle values (70◦).
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Another family of CS methods used in the context of diffusion signal feature re-

construction employ a “dictionary” or “kernel”. A diffusion reconstruction dictionary

consists of a set of atoms representing a set of (fiber) directions whose amplitude (rep-

resenting the relative volume fraction) need to be estimated to identify the underlying

fiber layout. Dictionary-based sparse-like algorithms are generally formulated as convex

optimization problems and exploit some sorts of priors.

Merlet et al.88 89 used a CS-based approach to reconstruct diffusion features from DTI

signals. They employed a sparse dictionary that allowed them to estimate the EAP and

ODF with fewer measurements than those required by a HARDI acquisition. In88, the

dictionary is learnt from a set of training diffusion data, and thus a pre-processing step

prior to the estimation stage needs to be completed to build the dictionary. This increase

in the computational burden prompted Merlet et al. to use89 predefined sets of functions

that form orthonormal bases commonly used in the dMRI field as the dictionary.

In either case, Merlet et al. opted to use the Levenberg-Marquardt algorithm (LMA)

to solve the non-linear optimization problem posed by the dictionary update step. The

need of non-linear optimization methods, which are slow, still impose a notable compu-

tational burden to the approach.

The results reported in89 on the use of CS modelling the diffusion signal with a num-

ber of basis (such as SPF11 or SHORE96) read that, in the most favourable experimental

conditions, the maximum angular resolution solved with an acceptable error is around

30◦.

79



Regularization

Suppose that for a known matrix Φ and an observed vector of measurements E, we

wish to find a vector c such that

Φc = E (3.2)

The standard approach is ordinary least squares linear regression. However, if no

E satisfies the equation or more than one E does (i.e. the solution is not unique) the

problem is said to be “ill-posed”. In such cases, ordinary least squares estimation leads

to an overdetermined (over-fitted), or more often an underdetermined (under-fitted)

system of equations. Most real-world phenomena have the effect of low-pass filters in

the forward direction. Therefore, in solving the inverse-problem, the inverse mapping

operates as a high-pass filter that has the undesirable tendency of amplifying noise

(eigenvalues / singular values are largest in the reverse mapping).

Ordinary least squares seeks to minimize the sum of squared residuals, which can be

compactly written as

∥Φc−E∥2 (3.3)

where ∥·∥ is the Euclidean norm.

In order to give preference to a particular solution with desirable properties, a reg-

ularization term can be included in this minimization. Depending on the property of

the observed data that is that is priviledged in the solution space, different regulariza-

tion penalties exist. From a Bayesian point of view, many regularization techniques

correspond to imposing certain prior distributions on model parameters.

For the purpose of signal and image reconstruction, ℓ1-norm minimization models are

used. In the CS reconstruction models using constrained ℓ1-norm minimization, larger
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coefficients are penalized heavily. A popular choice is to use an iterative algorithm

for constructing the appropriate weights: each iteration requires solving one ℓ1-norm

minimization problem by finding the local minimum of a concave penalty function that

more closely resembles the ℓ0-norm.

In order to find c, the convex optimization problem specified in Eq. 3.12 must be

solved, i.e.

min c ∈ Rnc∥c∥ s.t.∥E−Φc∥ ≤ ϵ (3.4)

where ϵ denotes the noise level.

L1 Regularization

The Least Absolute Shrinkage and Selection Operator (LASSO) or L1 regularization

method was proposed by Tibshirani108 and is a popular method for estimating gener-

alized linear models. It is a “shrinkage estimator”, i.e. generates coefficient estimates

that are biased to be small, using to that end a penalty term which encourages the sum

of the absolute values of the parameters to be small. The estimator can be stated as

arg min
c∈Rnc

{
∥E−Φc∥2 + λ∥cℓ1∥

}
(3.5)

where λ is the regularization parameter; and the ℓ1-norm is ∥cℓ1∥ =
∑N

i=1|ci|, being N

the number of samples.

The regularization parameter λ replaces the noise level ϵ in Eq. 3.4, in governing the

trade-off between the data consistency and its sparsity. As λ tends to zero, the estimate

tends towards unregularized least-squares regression; as λ increases, the sparsity term

dominates. Since the non-negative factor λ controls the trade-off between accuracy and
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stability, it is important to choose λ in order to avoid the under-regularization or the

over-regularization.

A number of algorithms exist to solve problems regularized with the LASSO method.

L2 Regularization

Least squares recovery with an L2 regularization is the preferred method used in order

to solve systems of overdetermined equations. The L2 recovery problem can be stated

as

arg min
c∈Rnc

{
∥E−Φc∥2 + λ∥cℓ2∥

}
(3.6)

where λ is the regularization parameter; and the ℓ1-norm is ∥cℓ2∥ =
∑N

i=1 ci
2, being N

the number of samples.

Tournier et al. used112 the ℓ2-norm regularization in their CSHD spherical deconvo-

lution framework variant.

Tikhonov Regularization

The Tikhonov regularization scheme can can be formulated as finding the c that solves

arg min
{
∥Φc−E∥2 + λ∥Γc∥2

}
(3.7)

where λ is a regularization parameter; and Γ is the regularization operator known as

“Tikhonov regularization matrix”.

In many cases, this matrix is chosen as a multiple of the identity matrix (Γ = λI;

∥Φc−E∥2 − λ∥c∥2, giving preference to solutions with smaller norms; this is known as

L2 regularization. In other cases, lowpass operators may be used to enforce smoothness.
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Minimization of the objective function in Eq. 3.7 with Γ = λI yields the equation

ΦTE = (ΦTΦ+ λI)c whose solution is given by

ĉ = (ΦTΦ+ ΓTΓ)−1ΦTE (3.8)

where (ΦTΦ+ λI)−1ΦT is called the damped least squares (DLS) inverse of Φ and can

be computed using the Singular Value Decomposition (SVD).

Total Variation Recovery

Total Variation (TV) can be seen as a non-negative real-valued functional defined on

the space of real-valued functions (for the case of functions of one variable) or on the

space of integrable functions (for the case of functions of several variables). In signal

and image reconstruction, it is applied as “total variation regularization”, where the

underlying principle is that signals with excessive details have high total variation and

that removing these details, while retaining important information such as edges, would

reduce the total variation of the signal and make the signal subject closer to the original

signal in the problem.

3.3 Sparse Bayesian Learning

SBL is a framework that was originally proposed109 by Tipping to find robust solutions

to sparse signal representation problems in the context of regression and classification.

It was later applied by Wipf and Rao for sparse signal recovery125. A key feature of

this development that is germane to the basis selection problem is the incorporation of

a parameterized prior on the weights that encourages sparsity in representation, i.e.,

few nonzero weights. Furthermore, the global minimum solution is found to be the
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sparsest one in SBL methods. Bayesian algorithms have received much attention since

they generally achieve notable recovery performance131.

The rationale for the SBL is to find the posterior probability p(x|y; θ) via the Bayesian

rule, where θ denotes the set of all the hyperparameters. Given the hyperparameters,

the solution x̂ is given by the Maximum-A-Posteriori (MAP) estimate. The hyperpa-

rameters are estimated from the data by marginalizing over x and then performing

evidence maximization or type-II Maximum Likelihood (ML)). The idea remains essen-

tially unaltered for multiple observation vectors, but the ℓ2 norm is applied on each

source Xi.

Following the notation in this work, SBL assumes a Gaussian likelihood model

p(E|c;σ2) = (2ϕσ2)−N/2 exp

[
− 1

2σ2
∥E−Φc∥2

]
(3.9)

where Φ is the SBL dictionary matrix where rank(Φ) = N ; and σ2 is the error variance.

The Φ ∈ RN×M is a coherent matrix, one which has most of its mass in a relatively

low number of elements, and whose columns represent a (possibly) overcomplete basis

(i.e. rank(Φ) = N ∧M > N).

Obtaining the maximum likelihood estimates for c under these conditions is equivalent

to finding the minimum ℓ2-norm solution for Eq. 3.13. However, such solutions are

known to produce non-sparse representations. Thus, some sort of weight prior needs to

be incorporated to promote sparsity. Different priors can be invoked, each corresponding

to a different hypothesis about the underlying truth. These hypothesis can be compared

by evaluating the Bayesian evidence for the model prior.
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SBL estimates a parametrized prior from the data as

p(c; γ) =

M∏
i=1

(2πγi)
− 1

2 exp

(
− ω2

i

2γi

)
(3.10)

where γ = [γ1, . . . , γM ]T is a vector of M hyperparameters controlling the prior vari-

ance of each weight. These hyperparameters (along with the error variance σ2) can

be estimated from the data by marginalizing over the weights and performing a ML

optimization, in a procedure referred to as evidence maximization or type-II maximum

likelihood.

SBL is found to be globally convergent, i.e. each iteration os guaranteed to reduce

the cost function until a fixed point is reached. The SBL cost function can potentially

have multiple local minima, but all must be achieved at sparse solutions. When tasked

with sparse linear inverse problems such as Eq. 3.13, cost functions whose minimization

corresponds with maximally sparse solutions are priviledged. The SBL cost function is

characterized by a global minimum that can produce the maximally sparse solution at

the posterior mean125.

SBL has been used for a variety applications in brain research, such as Electroen-

cephalography (EEG) signal source localization105, or the identification of the neu-

roanatomical basis of cognitive impairment in Alzheimer’s Disease (AD)121.

SBL methods have found a suitable application in the estimation of diffusion fiber

features, such as the Bayesian Estimation of Diffusion Parameters Obtained using Sam-

pling Techniques (BEDPOSTX) implementation based on previous works by Behrens

et al.17 16, and involving sampling through Markov Chain Monte Carlo techniques to

build up distributions on diffusion parameters at each voxel.

Bilgic et al. used18 the k-means Singular Value Decomposition (k-SVD) algorithm2
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coupled to the Focal Underdetermined System Solver (FOCUSS) algorithm61 for the

acceleration of DSI using CS and Bayesian learning techniques.

Although not enforcing signal sparsity, Melie-Garćıa et al. proposed86 to use Bayesian

techniques for model selection and parameter estimation, in combination with Reversible

Jump Markov Chain Monte Carlo (RJMCMC) for probability and diffusion model pa-

rameter estimations, to reconstruct the fODF. Although authors grant the high com-

putational burden of the method, its performance is notable in multi-fiber (containing

as much as 5 fibers) synthetic datasets for a given band of SNR and b-value conditions.

The authors used the same model used in the synthetic signal generation for the fiber

reconstruction, which is an unlikely condition to be met in practice. Furthermore, the

use of Monte Carlo simulations requiring a large number of iterations per voxel renders

the method computationally inefficient.

3.4 Problem Statement

This work proposes to use of a SD-SBL algorithm to resolve the brain’s fiber arrange-

ment. In the context of the fiber orientation reconstruction, it is natural to impose

some useful prior constraints based on the following considerations: the relative vol-

ume fractions of the fibers are expected to be nonnegative. Negative weights are not

physically meaningful and should be penalized by adding a regularization term or ex-

cluded by imposing an explicit nonnegativity constraint. In addition, it is reasonable

to assume that most white matter voxels only contain contributions from relatively few

fiber bundles. Therefore, apart from a few significant peaks, we can assume that c has

a sparse support, i.e. most of its entries are expected to be zero (or very small). The

Sparse Bayesian Learning method implemented in the context of this work is based on
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the version introduced by Zhang et al. in131.

The signal recovery problem in the context of CS can be stated as follows. We want

to recover a S-sparse signal x ∈ Rn from an observation vector yΩ ∈ Rm with m < n,

such that

yΩ = AΩx (3.11)

where Am×n
Ω is called the CS matrix; and Ω defines a subset of indices corresponding to

samples in which AΩ is evaluated and yΩ is acquired. This problem is ill-posed because

we have fewer equations than unknowns (m < n). However, if x is sufficiently sparse,

one can recover x in Eq. 3.11 by solving the following convex optimization problem51 27:

arg min
x∈Rn

{∥x∥ℓ} s.t. yΩ = AΩx (3.12)

where yΩ = AΩx is the data consistency or the model-fitting constraint, ∥x∥ℓ is the

sparsity constraint. The data consistency constraint enables the solution to remain close

to the raw data acquisition, whereas the minimization of the second term promotes

sparsity.

When x is corrupted by noise z ∈ Rm, that is

yΩ = AΩx+ z (3.13)

we relax the constraint in Eq. 3.12 and solve

minx ∈ Rn∥x∥ℓ s.t. ∥y −AΩx∥ℓ ≤ ϵ (3.14)

where ϵ is the level of noise in the data.
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In the single measurement vector (SMV) model, to ensure a unique global solution,

the number of nonzero entries in the source vector has to be less than a threshold61.

When a sequence of measurement vectors are available, a framework named the mul-

tiple measurement vector (MMV) model, the key assumption is that the support (i.e.

indexes of nonzero entires) of every column of the source matrix is identical. This qual-

ity is referred to as “the common sparsity assumption” in the literature. In addition,

similiar to the SMV model, the number of nonzero rows in the source matrix has to

be below a threshold to ensure a unique global solution38. This leads to the sparsity

constraint.

3.5 Numerical Experiment Design

Numerical experiments were performed to compare the performance of the proposed SD-

SBL method under different experimental conditions against other methods. Synthetic

datasets, a phantom model and a human dataset were used in the assessment. The

minimization strategies compared to SBL were the nnLS, LASSO, and RUMBA-SD.

According to Jian et al.70, nnLS is arguably the technique of choice for the multi-

fiber reconstruction problem in the presence of IVOH. Although nnLS is known to be

less competitive than other methods, it was included for its simplicity. LASSO is a

well-established method that provides notable angular contrast, although suffers from

a number of drawbacks. Finally, RUMBA-SD is a spherical deconvolution approach

known to outperform Richardson-Lucy-based methods that appeared recently53. It was

elected on the basis of its ability to efficiently reconstruct the fODF for low inter-fiber

angles. RUMBA-SD was used without spatial regularization in this work.
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3.5.1 Synthetic Data Generation

In this work, we assume a generative multi-tensor signal model where the diffusion

data in each voxel can be expressed as the sum of the signals from each intra-voxel

compartment, as proposed in118. In this case, the term “compartment” is defined as

a homogeneous region in which the diffusion process possesses identical properties in

magnitude and orientation throughout, and which is different to the diffusion processes

occurring in other compartments. From a modelling point of view, using a multi-

compartment framework allows considering the partial volume effect in brain voxels

with mixture of white matter, gray matter and cerebrospinal fluid. This strategy has

been shown to be effective in reducing the occurrence of spurious fiber orientations46.

Under this assumption, the canonical form of the diffusion signal in a voxel at the

i-th gradient direction is expressed as

Si = S0

[∑M

j=1
fje

(−biv
T
i Divi) + fGMe

(−biDGM ) + fCSF e
(−biDCSF )

]
(3.15)

where M is the total number of fiber bundles; fj denotes the relative volume fraction of

the j-th fiber compartment; fGM and fCSF are the relative volume fractions of the gray

matter and cerebrospinal fluid compartments, respectively, so that
∑M

j=1 fj + fGM +

fCSF = 1; bi is the diffusion-sensitizing gradient factor (i.e. b-value) used in the acqui-

sition scheme to measure the diffusion signal Si along the diffusion-sensitizing gradient

unit vector vi, i = 1, . . . , N ; DGM and DCSF are respectively the mean diffusivity coef-

ficients in GM and CSF; S0 is the diffusion signal amplitude in the absence of diffusion

sensitization gradients (bi = 0); Dj = RT
j ARj denotes the anisotropic diffusion tensor

of the j-th fiber-bundle, where Rj is the rotation matrix that rotates a unit vector

initially oriented along the X-axis towards the j-th fiber orientation (θj , ϕj), and A is
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a diagonal matrix containing information about the magnitude and anisotropy of the

diffusion process inside that compartment.

The observed signal at a given voxel will be the vector sum of the signals measured

along different spatial gradient directions gradients:

S(θ, ϕ) =

N∑
i=1

Si(θ, ϕ) (3.16)

where (θ, ϕ) are, respectively, the polar and azimuth angles defining the applied gradient

direction; and N is the total number of gradient directions.

The spherical deconvolution dictionary for SBL and RUMBA was generated using a

diffusivity tensor with values D = [1.7 0.4 0.4] × 10−3 mm2/s for white matter fiber

bundles, and 3.0 × 10−3 and of 0.7 × 10−3 mm2/s for the cerebrospinal fluid and gray

matter isotropic compartments, respectively.

Without loss of generality, S0 = 1 was assumed. A total number of 724 unique

angular gradient directions uniformly distributed over the unit sphere were used for the

simulations.

The extraction of the orientational peaks was based on the following procedure.

Sparse methods directly return the fODF, being the candidates with a value greater

than a given threshold the compartment estimates. Such threshold was set as a volume

fraction ratio to the greatest component (i.e. 0.1 · fmax). This procedure allowed to

discard spurious components. The orientations of the fibers and their relative volume

fractions of continuous methods are computed from the maxima of the ODF functions.

That is, the number of maxima, their magnitude and directions are computed, and the

elements below the above threshold are similarly discarded.
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Noise model

To be consistent with previous studies presenting new reconstruction methods, in this

work the signal has been corrupted by Rician noise (see Sec. B.1) as follows:

Snoisy =
√

(S + η1)2 + η22 (3.17)

where η1, η2 ∼ N(0, σ2) and σ2 = S0/SNR controls the level of the noise.

The noise level is thus determined by the on the image.

3.5.2 Fiber ODF model

Without loss of generality, under the spherical deconvolution framework, the measured

diffusion signal Si at a voxel i for N different sampling parameters (i.e., vi and bi,

i ∈ [1, . . . , N ]) can be recast in matrix form as

S = Hf (3.18)

where S = [S1, . . . , Si, . . . , SN ]T , and H = [HWM |Hiso] comprises two sub-matrices.

HWM is an N ×M matrix where every column of length N contains the values of the

signal generated by the model given in Eq. 3.23 for a single fiber-bundle compartment

oriented along one of the M directions, i.e., the (i, j)-th element of HWM is equal to

HWM
ij = S0 exp

(
−bivT

i Divi

)
. Likewise, Hiso is an N × 2 matrix where each of the two

columns of length N contains the values of the signal for each isotropic compartment,

i.e., Hiso
i1 = S0 exp (−biDGM ) and Hiso

i2 = S0 exp (−biDCSF ). Finally, the column-vector

f of length M + 2 includes the volume fractions of each compartment within the voxel.

In the framework of model-based spherical deconvolution, H is created by specifying

91



the diffusivities, which are chosen according to prior information, and by providing a

dense discrete set of equidistant M -orientations Ω = (θj , ϕj).i ∈ [1, . . . ,M ] uniformly

distributed on the unit sphere. Previous studies have used different sets and numbers

of orientations . The goal is then to infer the volume fraction of all predefined oriented

fibers, f , from the vector of measurements S and the dictionary or kernel H of oriented

basis signals. The underlying fiber bundle orientations will then correspond to the

(θi, ϕi) orientation sets corresponding to the estimated relative volume fractions. Under

this reconstruction model, f can be interpreted to as the fiber ODF evaluated on the set

Ω. The matrix H is also known as the “diffusion basis functions” , or the “point spread

function” that blurs the fiber ODF to produce the observed measurements.

The deconvolution problem given by Eq. 3.26 does not have a straightforward solu-

tion, since the resulting system of linear equations is ill-conditioned and ill-posed (i.e.,

there are more unknowns than measurements and some of the columns of H are highly

correlated), which can lead to numerical instabilities. In order to solve such equation

system, in this work we propose to use the SBL strategy.

This framework uses a sparse Bayesian learning algorithm to explore the solution

space, and find the fiber configuration that minimizes the cost function.

3.5.3 Phantom Model

The data used for complex fiber configuration reconstruction performance assessment in

this work corresponded to the data used at the 2nd HARDI Reconstruction Challenge41,

organized in the framework of the International Symposium on Biomedical Imaging

(ISBI) 2013. The phantom used to generate these data simulates a 27 fiber-bundle

complex architecture, with fibers aligned at distinct orientations, and comprising a

wealth of configurations, including branching, crossing and kissing fibers. White-matter

92



fibers were simulated using a diffusion tensor model with cylindrical symmetry (λ1 =

1.7, λ2 = λ3 = 0.2 × 10−3 mm2/s). Isotropic compartments simulating the presence

of and were also included in the data (DGM = 0.2;DCSF = 1.7 × 10−3 mm2/s). The

generated diffusion images had a total size of 50× 50× 50 voxels.

Diffusion MRI images for methods using the HARDI protocol were generated using

N = 64 sampling points on a sphere in q-space with constant b = 3000 s/mm2, plus one

additional image with b = 0. Images for methods using a DTI protocol were generated

using N = 32 sampling points on a sphere in q-space at b = 1200 s/mm2, plus one

additional b = 0 image.

The spherical deconvolution dictionary for SBL and RUMBA was generated using a

diffusivity tensor with values D = [1.7 0.4 0.4] × 10−3 mm2/s for white matter fiber

bundles, and 3.0× 10−3 and of 0.7× 10−3 mm2/s for the cerebrospinal and gray matter

isotropic compartments, respectively. Different values from ground truth values were

used to avoid over-fitting.

The signal when no diffusion-sensitinzing gradient is present (b = 0) was assumed to

be S0 = 1.

3.5.4 Human Brain Dataset

The human brain diffusion MRI dataset studied corresponds to a whole-brain HARDI

acquisition from a healthy subject. Data were acquired in a 3 T Philips Achieva scanner

(Best, Netherlands) located at Hospital de la Santa Creu i Sant Pau (Barcelona, Spain)

with an 8-channel head coil along 100 different gradient directions on the sphere in

q-space with constant b = 2000 s/mm2. Additionally, one unweighted volume (b = 0)

was acquired with in-plane resolution of 2 × 2 mm and slice thickness of 2 mm. The

acquisition was carried out without undersampling in the k-space (i.e., R = 1). The
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final dimension of this dataset is 128× 128× 60× 101 voxels.

The spherical deconvolution dictionary for SBL and RUMBA was generated using a

diffusivity tensor with values D = [1.4 0.4 0.4] × 10−3 mm2/s for white matter fiber

bundles, and 3.0 × 10−3 and of 0.7 × 10−3 mm2/s for the cerebrospinal fluid and gray

matter isotropic compartments, respectively.

The signal when no diffusion-sensitizing gradient is present (b = 0) was assumed to

be S0 = 1.

3.5.5 Data Analysis

We have tested the angular contrast of the fiber orientation reconstruction methods

method in a set of fiber-crossing configurations for the synthetic dataset. Two synthetic

fibers were simulated at different compartment separation angles up to 90◦ in discrete

steps of 5◦. The ability to recover a single fiber (i.e. the 0◦ case) was also rated for the

sake of completeness.

The sensitivity to miscalibration effects was assessed on the synthetic datasets, or

according to available data on the phantom model and real datasets. The impact of

different values of the diffusion-sensitizing gradient factor (i.e. b-value) was studied

in the analytic diffusion signal model for the synthetic dataset: (i) b = 3000 s/mm2

was used as a conservative value; (ii) b = 1500 s/mm2 was elected to illustrate a more

challeging value; and (iii) b was set to 800 s/mm2 as the lower end case.

Two acquisition schemes were tested for the phantom models: (i) b = 3000 s/mm2,

measured along a total set of 64 uniformly distributed gradient directions, and (ii) b =

1200 s/mm2, measured along a total set of 32 uniformly distributed gradient directions.

The response to differential fiber signal contribution (i.e. changing relative volume

fractions) was tested on the synthetic dataset. The even relative volume case (f1 =
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f2 = 0.5) was used as the baseline. The simulated fibers’ relative volume fraction was

then varied to test different contributions (f1 ̸= f2) satisfying the
∑

i fi = 1 condition.

As a general rule, the white matter fiber bundles were simulated with the same diffu-

sivity properties corresponding to a tensor with values D = D1 = D2 = [1.7 0.3 0.3] ×

10−3 mm2/s. The influence of a larger mismatch with respect to the values used in the

spherical deconvolution dictionaries was investigated varying the anisotropy of the sig-

nal using two additional sets of diffusivity tensors: D = D1 = D2 = [1.7 0.2 0.2]× 10−3,

and D = D1 = D2 = [1.5 0.3 0.3]× 10−3 mm2/s.

The performances of the reconstruction methods were also evaluated as a function of

the noise magnitude for different levels, i.e., SNR = 20, 30 dB.

For each different configuration, a maximum of 2000 iterations were allowed for SD-

SBL. For the rest of the methods tested, the number of iterations was decimated by

a factor of 10, except for RUMBA, for which it was set to 600. For the phantom and

human datasets, RUMBA was set to a maximum of 300 iterations, and a maximum

value of 2000 was kept for SD-SBL.

In the case of the synthetic datasets, due to the random nature of the Rician like-

lihood noise model used, in order to quantify orientational uncertainty of the results,

100 estimates of the peak orientations were obtained, and their average and standard

deviations were computed.

An angular cone of 12.5◦ was set to determine a fiber population orientation.

The performance of the algorithms on the synthetic datasets was assessed according

to three criteria:

• Detected fiber error, that is, the number of peak orientations recovered by the

methods.
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• Detected fiber penalty, computed as the normalized penalty between the num-

ber of fibers estimated and the true fiber populations, thus providing an estimate

of the failure rate.

• Angular error, computed as the angular deviation between the estimated and

real fiber orientations.

• Volume fraction error, computed as the mean error in the estimated volume

fractions with respect to the real volume fractions.

On the premise that the influence of all variables on the quality of fiber orientation

reconstruction could be summarized by an absolute measure, a global penalty function

was computed. This score was used to report the net algorithm performance, and

included the following aspects:

• Angular error, computed as the mean angular deviation between the estimated

and real fiber orientations.

• Volume fraction error, computed as the mean error in the estimated volume

fractions with respect to the real volume fractions.

• Success rate (SR), defined as the mean fraction of correctly estimated fibers

(see39 for a definition on multiple voxel datasets).

In order to provide a penalty sense to the function, the complementary to the SR

(which can be termed as the “failure rate”) was used.
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3.6 Results

3.6.1 Synthetic Data

Fiber orientation reconstruction results for synthetic fibers are displayed in Fig. 3.1

and Fig. 3.2 for the diffusion value b = 1500 s/mm2, for equal fiber volume fractions

f1 = f2 = 0.5, at SNR 30 dB. Simulations show that methods are able to successfully

solve fibre populations separated by inter-fiber angles as small as 40◦. Some methods’

performance decreases when the inter-fiber angle is below 40◦ (see, for example, RUMBA

–column (d) in Fig. 3.1). Although other methods, such as nnLS, seem to succeed for

angles as small as 30◦, the number of overestimated fibers (i.e. false positives) is also

increased. Fig. 3.1 shows that the angular resolution of SD-SBL is approximately 30◦,

but false positives are not present (compare nnLS and SD-SBL for 30◦ and 40◦ –columns

(b) and (d) in Fig. 3.1). Furthermore, the fiber orientation diffusion function provides,

approximately, the same signal for both fibers for angles as small as 40◦ in the SD-

SBL case. For larger angles, nnLS and LASSO still add fibers that were not in the

ground-truth dataset.

The effects of multiple realizations on the recovered fiber package orientations are

depicted in Fig. 3.3, Fig. 3.4, Fig. 3.5, and Fig. 3.6. Thus, an intuitive insight into each

method’s compartment resolution power, success rate, and angular error is provided.

Signals were generated for a diffusion value b = 1500 s/mm2, for equal fiber volume

fractions f1 = f2 = 0.5, at SNR 30 dB. In agreement with Fig. 3.1 and Fig. 3.2,

nnLS’ and LASSO’s fiber population separation ability is acceptable for crossing angles

above 40◦. However, high overestimation rates are observed in the [30− 90◦] inter-fiber

angle range. For IFAs lower than 40◦, nnLS and LASSO are not able to successfully

separate the two fiber populations. RUMBA exhibits a higher underestimation rate
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(a) (b) (c) (d) (e)
Figure 3.1 Fiber orientations for angles [0−40◦] recovered using different reconstruc-
tion methods. Fiber orientations reconstructed with different methods for inter-fiber crossing
angles in the interval [0−40◦]. Each row represents a different inter-fiber crossing angle, starting
from 0◦ to 40◦, in discrete steps of 10◦. The ground truth is displayed in (a). Reconstructions
methods are: (b) Non-negative Least-Squares (nnLS); (c) Least Absolute Shrinkage and Se-
lection Operator (LASSO); (d) Robust and Unbiased Model-BAsed Spherical Deconvolution
(RUMBA); and (e) Spherical-Deconvolution Sparse Bayesian Learning (SD-SBL) (continued).

than both nnLS and SBL, that is, for separation angles lower than 40◦, RUMBA tends

to detect a single fiber population, estimating the orientation to be the mean of the
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(a) (b) (c) (d) (e)
Figure 3.2 Fiber orientations for angles [50 − 90◦] recovered using different recon-
struction methods. Fiber orientations reconstructed with different methods for inter-fiber
crossing angles in the interval [50 − 90◦]. Each row represents a different inter-fiber crossing
angle, starting from 0◦ to 40◦, in discrete steps of 10◦. As previously, (a) corresponds to the true
fiber orientation; (b) nnLS; (c) LASSO; (d) RUMBA; and (e) SD-SBL. Synthetic signals were
generated with b = 1500 s/mm2, for equal fiber volume fractions f1 = f2 = 0.5, at SNR 30 dB,
with fiber diffusivity values of 1.7×10−3 and 0.3×10−3 mm2/s, and for a dictionary containing
724 directions. Differences in the depiction of RUMBA are due to the spatially continuous,
smooth nature of the estimation algorithm.
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two generating populations. SD-SBL exhibits a lower underestimation rate than the

rest of the methods; while at 40◦ other methods may misestimate the number of fiber

populations, SD-SBL still separates the simulated fiber populations. Furthermore, as

the point clouds around the true fibers reveal, SD-SBL still separates the fibers when the

crossing angle decreases to 30◦ for the majority of the cases. Although more dispersed

across angles than for RUMBA, the number of overestimated fibers still remain low for

SD-SBL.

Figure 3.3 Angular distribution of estimated fibers recovered by nnLS. Angular distri-
bution of estimated fibers for different inter-fiber angles as reconstructed by the nnLS method.
Black dots represent the column-wise ground-truth fiber orientation. Each colored dot repre-
sents the orientation of an estimated fiber obtained in a single run. For a given inter-fiber
angle, the population of estimated fibers is split into three groups: (i) the population of under-
estimated fibers (top row), which represent the orientations of the fibers (represented as red
dots) for a realization that reconstructed fewer compartments compared to the ground-truth;
(ii) the population of correctly estimated fibers (middle row), corresponding to the orientations
of the fibers (blue dots) belonging to a run in which the right number of compartments was
detected; and (iii) the population of over-estimated fibers (bottom row), which represent fiber
orientations (yellow dots) corresponding to a realization in which the number of recovered fiber
bundles exceeded the number of compartments in the model. The simulation was repeated 100
times with a b-value of 1500 s/mm2, for equal fiber volume fractions f1 = f2 = 0.5, an SNR
value of 30 dB, fiber diffusivity values of 1.7× 10−3 and 0.3× 10−3 mm2/s, and for a dictionary
containing 724 directions.

Reconstruction performance measurements for LASSO, RUMBA and SD-SBL are de-
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Figure 3.4 Angular distribution of estimated fibers recovered by LASSO. Angular
distribution of estimated fibers for different inter-fiber angles as reconstructed by the LASSO
method. Simulation (synthetic signal and dictionary) parameters were the same as those used
for Fig. 3.3. Fiber orientation visual glyphs’ meaning is the same as in Fig. 3.3.

Figure 3.5 Angular distribution of estimated fibers recovered by RUMBA. Angular
distribution of estimated fibers for different inter-fiber angles as reconstructed by the RUMBA
method. Simulation parameters were the same as those used for Fig. 3.3. Fiber orientation
visual glyphs’ meaning is the same as in Fig. 3.3.

picted in Fig. 3.7 and Fig. 3.7. The mean and standard deviations were computed across

the [0− 90◦] IFA range in order to model uncertainty in two fibre-orientation estimates

within a voxel. SD-SBL outperforms the LASSO method in the fiber orientation task
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Figure 3.6 Angular distribution of estimated fibers recovered by SD-SBL. Angular
distribution of estimated fibers for different inter-fiber angles as reconstructed by the SD-SBL
method. Simulation parameters were the same as those used for Fig. 3.3. Fiber orientation
visual glyphs’ meaning is the same as in Fig. 3.3.

(Fig. 3.7). The LASSO algorithm overestimates the number of fiber compartments (top

left), in agreemtn with Fig. 3.4, and shows a higher variance in the [20 − 90◦] range.

LASSO detects the presence of two fiber populations around IFAs of 30◦; SD-SBL is

able to separate two fibers at angles as small as approximately 25◦. The mean compart-

ment misestimation penalty is consistently higher for LASSO; the standard deviation

for SD-SBL is higher at low (< 20◦) fiber separation angles. The overestimation rates of

SD-SBL are limited, and higher in the [20−40◦] range, in agreement with Fig. 3.6. The

angular error exhibited by both methods is similar across the whole range of simulated

IFAs. The error’s upper bound is 10◦, with an approximately linear increase in the

range of [0− 20◦] for SD-SBL ([0− 25◦] for LASSO), decreasing linearly to a value of 5◦

at 55◦, and then exhibiting a low, nearly constant deviation from that mean value. The

relative volume fraction error is 50% of the simulated fibers’ volume fraction values for

both methods until an IFA value of 20◦. The error then decreases with a considerable

gradient (from 0.5 to 0.2 in 10◦), stabilizing then around a value of 0.1.
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Figure 3.7 Inter-fiber angle resolution power performance for LASSO and SD-SBL
on a synthetic dataset with b = 3000 s/mm2, equal fiber volume fractions, an SNR
value of 30 dB, and fiber diffusivity values of 1.7× 10−3 and 0.3× 10−3 mm2/s. Quan-
titative measurements of the LASSO and the SD-SBL methods’ fiber separation ability for an
IFA range of [0 − 90◦]. The top left plot shows the number of detected fibers; the top right
plot shows the detected fiber penalty; the bottom left plot shows the angular error ∆θ (in ◦);
and the bottom right plot displays the volume fraction error ∆f . Mean values are displayed
as a dark, continuous line, and standard deviations are displayed as a shaded area around the
mean. The simulation was repeated 100 times with a b-value of 3000 s/mm2, for equal fiber
volume fractions f1 = f2 = 0.5, an SNR value of 30 dB, fiber diffusivity values of 1.7×10−3 and
0.3× 10−3 mm2/s, and for a dictionary containing 724 directions. The angular step was 5◦.

Although RUMBA achieves lower standard deviation figures than SD-SBL in the

estimation of fiber populations, the mean angular resolution of SD-SBL is superior to

RUMBA: the ability to separate the fiber compartments starts to decrease at an IFA

value of 40◦ for RUMBA (Fig. 3.8). Except for a transition region between 20 − 40◦,

where RUMBA features worse performances than SD-SBL, RUMBA exhibits a flat

response (i.e. absence of any variation), for any of the parameters.
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Figure 3.8 Inter-fiber angle resolution power performance for RUMBA and SD-
SBL on a synthetic dataset with b = 3000 s/mm2, equal fiber volume fractions,
an SNR value of 30 dB, and fiber diffusivity values of 1.7 × 10−3 and 0.3 × 10−3

mm2/s. Quantitative measurements of the RUMBA and the SD-SBL methods’ fiber separation
ability for an IFA range of [0 − 90◦]. Simulation parameters were the same as those used for
Fig. 3.7. Performance plots, mean and standard deviation visual representations are the same
as in Fig. 3.7.

A summary of the individual results is displayed in Fig. 3.9, where the mean number

of detected fibers, and the mean angular and volume fraction errors are displayed. The

nnLS method is displayed for the sake of completeness. SD-SBL presents the desirable

properties of: (i) high angular resolution (true fiber compartments are detected at

lowest separation angles); (ii) low or virtually no overstimation (no false positives or

non-existing fibers are estimated) across the whole IFA range; (iii) low, stable angular

error after peaking at the resolution angle lower bound; and (iv) low relative volume

fraction error.

The global performance figure achieved by each method at each simulated inter-fiber
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Figure 3.9 Group-wise performance comparison between nnLS, LASSO, RUMBA,
and SD-SBL on a synthetic dataset with b = 3000 s/mm2, equal fiber volume fractions,
an SNR value of 30 dB, and fiber diffusivity values of 1.7×10−3 and 0.3×10−3 mm2/s.
Mean fiber orientation recovery statistics for nnLS, LASSO, RUMBA and SD-SBL for an IFA
range of [0 − 90◦]. The top plot shows the number of detected fibers; the mid plot shows the
angular error ∆θ (in ◦); and the bottom plot displays the volume fraction error ∆f . Statistics
were computed for the recovered fibers in Fig. 3.7 and Fig. 3.8.

angle is displayed in Fig. 3.10. SD-SBL features the lowest global penalty for the [0 −

40◦] angle range. Interestingly enough, its performance is especially remarkable in the

[20 − 40◦) range, where most diffusion orientation distribution function reconstruction

have poorest performances. RUMBA demonstrates the best behavior in the [40 − 90◦]

IFA subset.

105



Figure 3.10 Global penalty for nnLS, LASSO, RUMBA, and SD-SBL computed on
the reconstruction of a synthetic dataset with b = 3000 s/mm2, equal fiber volume
fractions, an SNR value of 30 dB, and fiber diffusivity values of 1.7×10−3 and 0.3×10−3

mm2/s. The global penalty is proposed to describe a method’s overall performance taking into
account: (i) the mean angular error; (ii) the mean volume fraction error; and (iii) the mean
success rate. Each bar represents the penalty figure for the methods in the legend at each
simulated inter-fiber angle. A method will have the best behaviour when its penalty figure is
the lowest. The penalty figures were computed based on the statistics were obtained for a 100
cycle simulation, with a b-value of 3000 s/mm2, equal fiber volume fractions (f1 = f2 = 0.5),
an SNR value of 30 dB, fiber diffusivity values of 1.7 × 10−3 and 0.3 × 10−3 mm2/s, and for a
dictionary containing 724 directions. The angular step was 5◦.

Evaluating the performance of the methods at low diffusion b-values is interesting

due to the potential benefits this may have in faster acquisitions of the diffusion signal.

A b-value of 1500 s/mm2 can be considered sufficiently low compared to values reported

by other works (see 2). The impact on the performance of the methods in this work of

such a b-value are displayed in Fig. 3.11 and Fig. 3.12. The angular resolution power

of any of the methods is affected by the variation; a decrease in anguar resolution of

almost 20◦ is experienced by SD-SBL (10◦ for RUMBA) (see Fig. 3.8). However, both

RUMBA and SD-SBL exhibit a flat response for a larger subset of inter-fiber angles
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for the number of detected fibers, the detected fiber penalty, and the relative volume

fraction error. The figures obtained by LASSO are also worse than when simulating for

b = 3000 s/mm2 (see Fig. 3.7).

Figure 3.11 Inter-fiber angle resolution power performance for LASSO and SD-
SBL on a synthetic dataset with b = 1500 s/mm2, equal fiber volume fractions, an
SNR value of 30 dB, and fiber diffusivity values of 1.7 × 10−3 and 0.3 × 10−3 mm2/s.
Quantitative measurements of the LASSO and the SD-SBL methods’ fiber separation ability
for an IFA range of [0 − 90◦]. The top left plot shows the number of detected fibers; the top
right plot shows the detected fiber penalty, computed as the normalized penalty between the
number of fibers estimated and the true fiber populations; the bottom left plot shows the angular
error ∆θ (in ◦); and the bottom right plot displays the volume fraction error ∆f . Mean values
are displayed as a dark, continuous line, and standard deviations are displayed as a shaded
area around the mean. The simulation was repeated 100 times with a b-value of 1500 s/mm2,
equal fiber volume fractions (f1 = f2 = 0.5), an SNR value of 30 dB, fiber diffusivity values of
1.7× 10−3 and 0.3× 10−3 mm2/s, and for a dictionary containing 724 directions. The angular
step was 5◦.

However, according to the mean value comparison (Fig. 3.13), SD-SBL’s performance

is still notable. Again, its mean overestimation rate is virtually zero. This statement os
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Figure 3.12 Inter-fiber angle resolution power performance for RUMBA and SD-
SBL on a synthetic dataset with b = 1500 s/mm2, equal fiber volume fractions,
an SNR value of 30 dB, and fiber diffusivity values of 1.7 × 10−3 and 0.3 × 10−3

mm2/s. Quantitative measurements of the RUMBA and the SD-SBL methods’ fiber separation
ability for an IFA range of [0 − 90◦]. Simulation parameters were the same as those used for
Fig. 3.11. Performance plots, mean and standard deviation visual representations are the same
as in Fig. 3.7.

confirmed by the global penalty figures (see Fig. 3.14): although an increase is registered

in the global penalty of SD-SBL for the subset 0−30◦, it achieves lower global penalties

with b = 1500 s/mm2 above an IFA of 40◦. And yet, its overall behavior is comparable

to the b = 3000 s/mm2 case.

At b-values lower than 1500 s/mm2, the perfomance impact is larger. A b = 800

s/mm2 can be considered as a limit case for current practice in diffusion imaging. At

this rate, the angular resolution of SD-SBL is pulled back to 50◦, and the angular and

relative volume fraction errors are consequently higher (Fig. 3.15). However, SD-SBL
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Figure 3.13 Group-wise performance comparison between nnLS, LASSO, RUMBA,
and SD-SBL on a synthetic dataset with b = 1500 s/mm2, equal fiber volume fractions,
an SNR value of 30 dB, and fiber diffusivity values of 1.7×10−3 and 0.3×10−3 mm2/s.
Mean fiber orientation recovery statistics for nnLS, LASSO, RUMBA and SD-SBL for an IFA
range of [0−90◦]. Statistics were computed for a b-value of 1500 s/mm2. The rest of simulation
parameters were not varied with respect to Fig. 3.9. The plot layout reproduces the layout in
Fig. 3.9.

still preserves close-to-zero overestimation rate.

Fiber bundle populations may not occupy the same relative volume fraction. Thus,

studying the effects of uneven volume fractions is worthwhile. Fig. 3.16 shows the mean

performance values of the fiber orientation reconstruction task across the [0−90◦] inter-

fiber angle range for the f1 = 0.4; f2 = 0.6 relative volume fraction values. Compared
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Figure 3.14 Global penalty for nnLS, LASSO, RUMBA, and SD-SBL computed on
the reconstruction of a synthetic dataset with b = 1500 s/mm2, equal fiber volume
fractions, an SNR value of 30 dB, and fiber diffusivity values of 1.7×10−3 and 0.3×10−3

mm2/s. The global penalty was computed as previously indicated for a b-value of 1500 s/mm2.
The rest of simulation parameters were not varied with respect to Fig. 3.10.

to the balanced (f1 = f2 = 0.5) case, the variations in the response are not significant

for any of the methods studied.

A more extreme case for unbalanced relative volume fractions is represented in

Fig. 3.18, where one of the populations was simulated with a relative volume frac-

tion f1 = 1/3, while f2 = 2/3 was set for the second. Thus, one of the fiber bundles

had twice the volume fraction of its counterpart. Although the response of the esti-

mated fibers is less stable than for the (f1 = 0.4; f2 = 0.6) case, (see Fig. 3.16), and the

angular error is worse, the net performance can be assimilated to the behavior in the

(f1 = 0.4; f2 = 0.6) case.

The effect of differential white-matter fibre compartment diffusivities is depicted in

Fig. 3.19 and Fig. 3.20. When the anisotropy is larger (Fig. 3.19), less uncertainty

exists in the detection of the two fiber populations, and thus, as expected, less bias
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Figure 3.15 Group-wise performance comparison between nnLS, LASSO, RUMBA,
and SD-SBL on a synthetic dataset with b = 800 s/mm2, equal fiber volume fractions,
an SNR value of 30 dB, and fiber diffusivity values of 1.7×10−3 and 0.3×10−3 mm2/s.
Mean fiber orientation recovery statistics for nnLS, LASSO, RUMBA and SD-SBL for an IFA
range of [0− 90◦] and a b-value of 800 s/mm2. The rest of the simulation parameters remained
unaltered with respect to the ones used for Fig. 3.9.

is observed. The net effect is a more coherent (i.e. flat) response across the entire

angle range, with a sharper transition from the two-fiber population detection region

to the singe-fiber detection region. On the contrary, when the mismatch between the

dictionary and the diffusion signal is due to a reduced anisotropy (Fig. 3.20), a net

degradation is observed in the performance, with increased overestimation rates and

large variances for all methods except RUMBA. RUMBA exhibits a certain invariance

111



Figure 3.16 Group-wise performance comparison between nnLS, LASSO, RUMBA,
and SD-SBL on a synthetic dataset with b = 3000 s/mm2, f1 = 0.4; f2 = 0.6 relative
volume fractions, an SNR value of 30 dB, and fiber diffusivity values of 1.7 × 10−3

and 0.3× 10−3 mm2/s. Mean fiber orientation recovery statistics for nnLS, LASSO, RUMBA
and SD-SBL for an IFA range of [0−90◦]. Statistics were computed for relative volume fractions
f1 = 0.4; f2 = 0.6. The rest of simulation parameters were not varied with respect to Fig. 3.9.
The plot layout reproduces the layout in Fig. 3.9.

to reduced anisotropy figures, and its response is still stable at the cost of a reduced

angular contrast.

The precision of the estimated fiber orientations is also impacted by the quality of

the acquistion, that is, by the Signal-to-Noise Ratio present in the samples. Previous

simulations were performed at an SNR value of 30 dB, which may be considered as
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Figure 3.17 Global penalty for nnLS, LASSO, RUMBA, and SD-SBL computed
on the reconstruction of a synthetic dataset with b = 3000 s/mm2, f1 = 0.4; f2 = 0.6
relative volume fractions, an SNR value of 30 dB, and fiber diffusivity values of
1.7×10−3 and 0.3×10−3 mm2/s. The global penalty was computed as previously indicated for
relative volume fractions f1 = 0.4; f2 = 0.6. The rest of simulation parameters were not varied
with respect to Fig. 3.10.

an optimum value in diffusion acquisitions. Higher noise levels negatively influence the

ability to reconstruct the fiber population orientations. Fig. 3.21 and Fig. 3.22 show

the performance comparisons between LASSO and SD-SBL and RUMBA and SD-SBL,

respectively, in terms of the mean and standard deviation values across the [0 − 90◦]

IFA range for an SNR value of 20 dB (a 33.3% decrease with respect to the previous

value). The effect of a decline in the available SNR is a manifest increase of the standard

deviations in the estimated fiber compartments, and therefore, its penalty. The effect is

particularly noticeable for LASSO (Fig. 3.21), with a marked higher mean overstimation

rate. The angular contrast of SD-SBL is somehow affected as well, but the two existing

populations can be separated for angles as small as 35◦. Even at this SNR value, SD-

SBL outperforms the rest of the methods (Fig. 3.23), and maintaining a relatively low
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Figure 3.18 Group-wise performance comparison between nnLS, LASSO, RUMBA,
and SD-SBL on a synthetic dataset with b = 3000 s/mm2, f1 = 1/3; f2 = 2/3 relative
volume fractions, an SNR value of 30 dB, and fiber diffusivity values of 1.7 × 10−3

and 0.3× 10−3 mm2/s. Mean fiber orientation recovery statistics for nnLS, LASSO, RUMBA
and SD-SBL for an IFA range of [0− 90◦] and relative volume fractions f1 = 1/3; f2 = 2/3. The
rest of the simulation parameters remained unaltered with respect to the ones used for Fig. 3.9.

global penalty (Fig. 3.24).

Finally, it is verified that SD-SBL does not introduce artefactual, physically mean-

ingless negative relative volume fraction estimations.
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Figure 3.19 Group-wise performance comparison between nnLS, LASSO, RUMBA,
and SD-SBL on a synthetic dataset with b = 3000 s/mm2, equal fiber volume fractions,
an SNR value of 30 dB, and fiber diffusivity values of 1.7×10−3 and 0.2×10−3 mm2/s.
Mean fiber orientation recovery statistics for nnLS, LASSO, RUMBA and SD-SBL for an IFA
range of [0−90◦]. Statistics were computed for fiber diffusivity values of 1.7×10−3 and 0.2×10−3

mm2/s. The rest of simulation parameters were not varied with respect to Fig. 3.9. The plot
layout reproduces the layout in Fig. 3.9.

3.6.2 Phantom Model

The phantom model’s fiber reconstruction was restricted to a volume of interest (VOI) of

50×5×50 voxels centered around a mid-phantom coronal plane, where the compartment

geometry showed a wealth of fiber configurations. For this purpose, a mask reducing the

number of slices in the coronal direction was generated. Only the voxels from this subset
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Figure 3.20 Group-wise performance comparison between nnLS, LASSO, RUMBA,
and SD-SBL on a synthetic dataset with b = 3000 s/mm2, equal fiber volume fractions,
an SNR value of 30 dB, and fiber diffusivity values of 1.5×10−3 and 0.3×10−3 mm2/s.
Mean fiber orientation recovery statistics for nnLS, LASSO, RUMBA and SD-SBL for an IFA
range of [0−90◦]. Statistics were computed for fiber diffusivity values of 1.5×10−3 and 0.3×10−3

mm2/s. The rest of simulation parameters were not varied with respect to Fig. 3.9. The plot
layout reproduces the layout in Fig. 3.9.

were incorporated to the computation, excluding the voxels from other areas. Fig. 3.25

shows the ground-truth fiber geometry of the phantom in a coronal slice elected for fiber

reconstruction analysis purposes.

Fig. 3.26 shows the fODF reconstruction for the b = 3000 s/mm2 case with an applied

noise level of 20 dB. Despite the heterogeneous number of fibers at each compartment,
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Figure 3.21 Inter-fiber angle resolution power performance for LASSO and SD-
SBL on a synthetic dataset with b = 3000 s/mm2, equal fiber volume fractions, an
SNR value of 20 dB, and fiber diffusivity values of 1.7 × 10−3 and 0.3 × 10−3 mm2/s.
Quantitative measurements of the LASSO and the SD-SBL methods’ fiber separation ability
for an IFA range of [0 − 90◦]. Simulation parameters were the same as those used for Fig. 3.7
except for the SNR, fixed at 20 dB. Performance plots, mean and standard deviation visual
representations are the same as in Fig. 3.7.

the figure highlights the ability of the method to resolve intra-voxel fiber orientations

with a large inter-fiber angle variability. Although the method misses to reconstruct

the orientation at a few single-fiber voxels with inapparent complexity (e.g. lower right

region), the false positive rate is very low, i.e. no fiber bundles are detected in regions

where the phantom does not contain them. A closer inspection of multi-fiber voxels

indicates that the method scatteringly underestimates the number of fibers when more

than two fibers conform the local micro-geometry. However, the orientations of the

detected fibers is consistent with the ground truth. Thus, results are consistent with

the synthetic data experiments, where the method systematically records virtually no
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Figure 3.22 Inter-fiber angle resolution power performance for RUMBA and SD-
SBL on a synthetic dataset with b = 3000 s/mm2, equal fiber volume fractions, an
SNR value of 20 dB, and fiber diffusivity values of 1.7 × 10−3 and 0.3 × 10−3 mm2/s.
Quantitative measurements of the RUMBA and the SD-SBL methods’ fiber separation ability
for an IFA range of [0 − 90◦]. Simulation parameters were the same as those used for Fig. 3.7
except for the SNR, fixed at 20 dB. Performance plots, mean and standard deviation visual
representations are the same as in Fig. 3.7.

overestimation.

A 50% increase in the SNR increases the accuracy of the result, as verified in Fig. 3.27.

The false positive rate (i.e. spurious fibers) is virtually zero at an SNR of 30 decibel.

An increase in the accuracy of the detected fibers’ orientation is also observed. Yet, the

method still suffers from underestimation in regions where a three-fiber layout should

be reported.

Fig. 3.28 demonstrates the performance of the RUMBA method for a SNR of 30 dB

in the same region displayed in Fig. 3.27. From the image, it is apparent that RUMBA

exhibits a number of limitations compared to SD-SBL. First, there is a clear penalization
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Figure 3.23 Group-wise performance comparison between nnLS, LASSO, RUMBA,
and SD-SBL on a synthetic dataset with b = 3000 s/mm2, equal fiber volume fractions,
an SNR value of 20 dB, and fiber diffusivity values of 1.7×10−3 and 0.3×10−3 mm2/s.
Mean fiber orientation recovery statistics for nnLS, LASSO, RUMBA and SD-SBL for an IFA
range of [0− 90◦] and an SNR value of 20 dB. The rest of the simulation parameters remained
unaltered with respect to the ones used for Fig. 3.9.

concerning overestimation of fibers in regions where no compartment is present in the

dataset (e.g. central superior part). Second, the orientation of detected fibers at low

crossing angles (e.g. superior left compartments) seems to compare unfavourably with

SD-SBL, including some understimation. Finally, RUMBA seems to also suffer from

deficiencies in detection when at least three fiber compartments are present in a voxel.

Reconstruction of fiber orientation at a lower b-value (1200 s/mm2), and halving

119



Figure 3.24 Global penalty for nnLS, LASSO, RUMBA, and SD-SBL computed on
the reconstruction of a synthetic dataset with b = 3000 s/mm2, equal fiber volume
fractions, an SNR value of 20 dB, and fiber diffusivity values of 1.7×10−3 and 0.3×10−3

mm2/s. The global penalty was computed as previously indicated for an SNR value of 20 dB.
The rest of simulation parameters were not varied with respect to Fig. 3.10.

the number of gradient directions provides an expected decrease in the performance

of SD-SBL, as shown by Fig. 3.29. Clearly, there is less evidence of the underlying

ground truth fiber-compartment layout due to higher underestimation. Results are also

confounded by the presence of spurious fibers. Effects on detected fiber orientation are

also visible, with deviations from the true fiber orientation (e.g. upper left region).

The superior accuracy in fiber orientation detection and low overestimation rates

comes at the cost of significantly longer computation times for SD-SBL. According to

the simulations performed on the diffusion phantom, RUMBA uses 1 ms to compute

the fODF at each voxel, while SD-SBL requires between 50 and 60 ms, depending on

the SNR and gradient acquisition directions used.
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Figure 3.25 Ground truth fiber orientations for the 2nd HARDI Reconstruction
Challenge phantom model. True fiber orientations for the 2nd HARDI Reconstruction
Challenge41 held at the ISBI 2013 conference. Coronal orientation central slice for the 3000
s/mm2 b-value, 64-gradient direction, 20 dB SNR acquisition simulation. The yellow rectangle
highlights a region of interest (ROI) area where the fiber orientation exhibits a significant number
of fiber-crossings at different angles, together with coherently oriented fiber bundles. Fiber
orientations are displayed by linear glyphs.

3.6.3 Human Brain Dataset

The results of the fiber reconstruction process on the human brain dataset are displayed

in Fig. 3.30. The coronal view displays the fiber orientations according to SD-SBL. The
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Figure 3.26 Phantom model fiber orientations recovered with SD-SBL at b = 3000
s/mm2, SNR 20 dB. SD-SBL fiber orientation reconstruction result for the HARDI Challenge
2013 phantom for 64 acquisition directions, b-value 3000 s/mm2, at SNR 20 dB. Detail from a
coronal orientation central slice. Fiber orientations are represented by cylindrical glyphs.

slice comprises a variety of white-matter structures, such as the internal capsule (ic),

the corpus callosum (cc) tracts, or the superior longitudinal fasciculus (slf). The first

fiber package runs in an inferior-superior direction, and the cc tracts travel laterally at

the medial longitudinal fissue level and continue superiorly; the slf travel mainly along

the antero-posterior planes. Thus, the three fiber packages interleave their fibers in a

wide region of the white matter.

Fig. 3.31 and Fig. 3.32 show fiber orientation reconstructions obtained by SD-SBL

and RUMBA, respectively, in a close view of Fig. 3.30. Compared to RUMBA, SBL

misses less slf fiber bundles. On the whole, both method estimates seem to be in good
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Figure 3.27 Phantom model orientations recovered with SD-SBL at reconstruction
b = 3000 s/mm2, SNR 30 dB. SD-SBL fiber orientation reconstruction result for the HARDI
Challenge 2013 phantom for 64 acquisition directions, b-value 3000 s/mm2, at SNR 30 dB.
Detail from a coronal orientation central slice.

agreement with the known anatomy.

Again, as for the phantom, RUMBA requires one order of magnitude less computation

time than SD-SBL.

3.7 Discussion

Compressed sensing has been previously used to accelerate diffusion MRI acquisitions

and the recovery of diffusion features, such as the EAP89. The fiber orientation dis-

tribution function was introduced by Tournier et al.114, along with the Spherical De-

convolution framework, as a reliable and accurate feature of the white matter axonal

architecture. We have shown that the Spherical Deconvolution-Sparse Bayesian Learn-

ing fODF reconstruction technique, based on the CS theory, introduced in this work
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Figure 3.28 Phantom model fiber orientations recovered with RUMBA at b = 3000
s/mm2, SNR 30 dB. RUMBA fiber orientation reconstruction result for the HARDI Challenge
2013 phantom for 64 acquisition directions, b-value 3000 s/mm2, at SNR 30 dB. Detail from a
coronal orientation central slice.

improves the angular resolution for the fiber population separation task. Furthermore,

it provides a robust, stable performance under varying acquisition conditions in both

synthetic datasets, phantom models, and human datasets.

Simulations show that nnLS, LASSO and RUMBA are able to successfully solve fibre

populations separated by inter-fiber angles as small as 40◦, which agrees previous results

in literature112 53 39. Yet, SD-SBL scores a higher angular resolution (close to [20−30◦])

under most experimental conditions.

For the validation of the method, it is essential to re-visit the often overlooked single-

fiber case, as a significant proportion of imaged human white matter volumes consists

of coherently oriented fiber bundles, as pointed by100. Although it may be argued that

some of the methods separate the fiber populations at inter-fiber angles as small as 10◦
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Figure 3.29 Phantom model fiber orientations recovered with SD-SBL at b = 1200
s/mm2, SNR 30 dB. SD-SBL fiber orientation reconstruction result for the HARDI Challenge
2013 phantom for 32 acquisition directions, b-value 1200 s/mm2, at SNR 30 dB. Detail from a
coronal orientation central slice.

(see nnLS, LASSO and SD-SBL in Fig. 3.1), they may not be statistically relevant, and

it can be considered that for angles up to [20− 30◦] most methods yield a single fiber.

As shown by the results, when the inter-fiber angle is below [20− 30◦] or when a single,

coherent fiber exists in the synthetic dataset (i.e. fiber populations at 0◦) or the phantom

dataset, a single fiber is detected (see, for example, Fig. 3.9). It is verified that SD-SBL’s

mean angular contrast is higher that its competitors’, with a lower bound of close to

20◦. Although not investigated, other factors influencing the lowest achievable angular

resolution may be related to the resolution of the spherical sampling grid used, or the

angular cone used to estimate a fiber orientation. The angular error increases steadily
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Figure 3.30 Coronal slice showing fiber orientations recovered by SD-SBL for a
human brain dataset. Coronal view of the SD-SBL fiber orientation reconstruction result
corresponding to a human brain dataset acquired at b = 2000 s/mm2 and 100 gradient directions.
The background image corresponds to the brain shape mask.

from a low value at 0◦ to its peak value at 20◦ (30◦ with the least favourable settings),

i.e. the point where the two fiber populations are start to be successfully separated.

This behavior is also mirrored in the fiber orientation distribution projections, where

the detected single fiber points at half of the angle separating the two ground-truth

directions (Fig. 3.6). When the simulations can be reduced to a single fiber population

case, the volume fraction error is expected to be the mean value of the existing fiber

packages. This is verified systematically for all simulations (see, for example, Fig. 3.18)).
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Figure 3.31 Detail of the fiber reconstruction in the corticospinal tract (cst) and
corpus callosum (cc) tract regions corresponding to a human brain dataset using
SD-SBL. Fiber population orientations recovered using the SD-SBL method a human brain
dataset acquired at b = 2000 s/mm2 and 100 gradient directions. Detailed view to a coronal
slice where fibers corresponding to the corticospinal tract (cst) and the motor region of the
corpus callosum (cc) tracts are visible.

Figure 3.32 Detail of the fiber reconstruction in the cst and cc tract regions cor-
responding to a human brain dataset using RUMBA. Fiber population orientations
recovered using the RUMBA method a human brain dataset acquired at b = 2000 s/mm2 and
100 gradient directions. Detailed view to a coronal slice where fibers corresponding to the
corticospinal tract (cst) and the motor region of the corpus callosum (cc) tracts are visible.
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LASSO exhibits markedly low angular errors under all experimental conditions, but

this is most probably driven by the excessively high overestimation rate it records, which

leads, at the same time, to high detected fiber penalties. Such a low success rate explains

LASSO’s overall poor score across all inter-fiber angles (see Fig. 3.10). RUMBA records

the lowest angular uncertainties, with flat responses at fiber crossing angles where the

method consistently detects either a single fiber or the true fiber populations (see Fig. 3.8

and Fig. 3.12).

When faster acquisitions are required, lower diffusion-sensitizing gradient factors can

be generally achieved. This may have a bearing on the fiber peak orientation estimation.

As shown in Fig. 3.13, the angular contrast of any of the methods is affected by a lower

b-value. Yet, SD-SBL’s beats nnLS, LASSO and RUMBA in terms of resolution, success

rate and volume fraction error. SD-SBL’s resolution decreases approximately from 20◦

to 30◦, with a smoother transition from the single-fiber to the two-fiber estimation

case. However, it presents a remarkably low rate of noise amplification, comparable to

RUMBA’s, outside the transition zone. This allows SD-SBL to score a lower detected

fiber penalty than in the b = 3000 s/mm2 case. At a b-value as small as b = 800 s/mm2,

the deterioration in performances is yet more evident, with SD-SBL separating the true

fiber populations at 40◦, and consequently, recording higher angular errors at a broader

range of IFAs. Again, the low angular errors scored by nnLS and LASSO are explained

by the high number of extra compartments they add in the estimation.

Although the orientation contrast increases with the b-value, there is an associated

decrease in the diffusion signal intensity. That is, the SNR goes down very quickly

with increasing b-values. This may help understanding the substantial minimization

of the standard deviation, along with a deterioration in the angular resolution, when

using a lower b-value. Therefore, an optimal b-value should provide the best orientation
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contrast to noise ratio.

Intra-voxel fiber heterogeneity may also account for fibers of varying relative volume

fractions. The estimation of peak orientations of the bundles representing the smallest

volume portion may be expected to be shaded by the largest fiber packages. When

simulating uneven volume fractions (f1 = 0.4; f2 = 0.6, see Fig. 3.16), the methods’ net

performance remains largely invariable. When one of the population’s volume fraction

is 50% larger than its counterpart’s, although flatness in the mean responses is affected,

no relevant departures from the even volume fraction case are reported (see Fig. 3.18).

Thus, it can be concluded that the methods are relatively insensitive to variations in

the relative volume fraction, which agrees previous results reported in114 and6.

The effect of miscalibration on sensitivity to differential white-matter fiber compart-

ment diffusivities largely depends on the sign of the signal diffusivity variation. Larger

anisotropies provide a good angular contrast with reduced bias, which translates into

a net improvement in performance for SD-SBL. An inverse impact is verified when the

difference between the fiber diffusivities is reduced; the response is heavily penalized by

the large overestimation rate.

Simulations with larger noise levels (i.e. lower SNR values) influence the results in

more important ways. The impact on LASSO is easily recognizable by a larger average

number of extra compartments (i.e. higher false positive rate), and the extreme penalty

introduced by the large variations produced (see Fig. 3.21). As in previous results, its

marked trend to estimate spurious compartments allows it to record very small angular

errors. On the other hand, RUMBA’s response is relatively robust to elevated noise

levels (see Fig. 3.22). Although relevant, the degradation of the mean angular response

of SD-SBL is not as extreme as for the LASSO, and is still close to the 30◦ boundary.

SD-SBL records very low overestimation rates across the whole inter-fiber simulation
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range under most experimental conditions, as anticipated by results in Fig. 3.6. This

is most probably explained by sparsity, which is intrinsic to the compressed sensing

framework used by the SD-SBL method. Additionally, coherence shown by SD-SBL in

orientations may also be an indicator of the absence of over-fitting, which is usually

revealed as fibers in excess being detected at high cross angles.

Similar effects are verified for SD-SBL on the phantom dataset. Peak orientations

recovered by SD-SBL are in agreement with the ground-truth at most voxels. As implied

by the synthetic dataset simulations, the precision of the estimated peak orientations

was found to be dependent on the acquistion b-value. When the diffusion-sensitizing

gradient factor was reduced by a factor of 50%, the agreement between the ground-truth

and estimated fODFs decreased. More importantly, the underestimation rate increased,

with less IVOH resolved by SD-SBL. For the case of the phantom model, the decrease

in the orientation accuracy is also influenced by the reduction of the available gradient

directions.

The phantom model presented the additional challenge of pure isotropic voxels, where

only a number of randomly oriented spurious peaks are obtained by some methods (see45

for example). While RUMBA-SD seems to be prone to noise amplification at isotropic

voxels, SD-SBL records a notable absence of fibers.

On the other hand, the reconstruction performed on the human brain dataset seems

to correspond well to the knwon anatomy, with SD-SBL possibly misestimating less

fiber bundles than RUMBA.

These results are in agreement with the recent evaluation carried out by Daducci et

al., where the sparse-like algorithms studied39 exhibited notable performances. Under

a set of experimental conditions, sparse-like methods showed the lowest number of

underestimated compartments at low crossing angles.
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The choice of different values for the fiber diffusivities in the dictionaries used for

the phantom and the human brain dataset may be explained by the dependence of the

kernel on the acquisition b-value. Although experiments show that RUMBA is robust

with respect to the choice in the diffusivity values for the reconstruction dictionary, it

is verified that SD-SBL’s performance is influenced by the election. In particular, at a

lower b-value, SD-SBL tends to provide better results (i.e. less uncertainty preserving

high angular contrast at low inter-fiber angles) with higher anisotropy diffusivities, while

it provides a potentially better result with lower anisotropy diffusivities at a higher b-

value.
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The Master, when he entered the grand temple,

asked about everything. Someone said, “Who say

that the son of the man of Tsâu knows the rules of

propriety! He has entered the grand temple and

asks about everything.” The Master heard the

remark, and said, “This is a rule of propriety.”

Analects, III, ch. 15

Confucius, Chinese teacher, editor, politician,

and philosopher (551-479 BC) 4
Conclusions and Future Work

We have presented a method to estimate the fiber orientation distribution function

in diffusion Magnetic Resonance Imaging data employing a Sparse Bayesian Learning

Spherical Deconvolution framework. We have demonstrated the method’s ability to

estimate the fiber bundles’ orientations down to low crossing angles, both on synthetic

datasets, phantom models and human datasets. We have compared the method to other

state-of-the-art fiber orientation reconstruction methods, and have shown its improved

recovery performance across a range of acquisition conditions.
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4.1 Summary

SD-SBL reconstructs the fiber orientations with a high degree of accuracy, even at low

diffusion-sensitizing gradient factor values. SD-SBL does not require solving any model

selection problem, which may be an advantage when fiber orientations are to recovered

in heterogeneous data (such as different acquisition parameters). SD-SBL’s benefits

draw on the correspondence of the global minimum solution estimated through sparsity

with the target fiber population orientations.

The extensive simulations performed in this work leads us to highlight the following

important advantages of SD-SBL:

• SD-SBL obtains the global minimum of the cost function with the minimum

number of components that best describe the intra-voxel fiber population ori-

entations. The sparsity on the solutions sought by SD-SBL allow the method

to record better success rates (i.e. lower under/overestimation rates), and lower

noise amplification at isotropic voxels, which is still an issue in fODF recovery.

• SD-SBL does not require nonlinear optimizations, and thus no instabilities arise

from its numerical implementation.

• Non-negativity is intrinsic to the SD-SBL framework. Thus, no additional con-

straint needs to be imposed to avoid physically meaningless solutions (i.e. negative

volume fractions).

Enhancements in the estimation of the local fiber micro-geometry at regions contain-

ing multiple fiber populations may improve the estimation of anatomical connections

between distant voxels in the brain by means of fiber-tracking techniques. Such algo-

rithms rely on accurate estimates of the white matter fiber population orientations. The
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ability to produce sharper peaks at fiber orientations that are separated by smaller an-

gles potentially improves the reliability of tracking results for tracts that pass through

or close to other tracts that are similarly oriented. Furthermore, robustness on the

estimated fiber orientations is critical to fiber pathway tracking.

In summary, the results obtained in this work point in the direction that the SD-SBL

framework holds great promise for tractography applications.

One drawback of the SD-SBL algorithm is the computation time required, especially

when being applied to large datasets or when considering clinical setting time-frames.

The time elapsed to solve the fiber distribution is an order of magnitude greater than

other comparable methods. However, SD-SBL’s time ineffectiveness is not linked to the

acquisition strategy or requirements, as opposed to other methods; it is hardware- and

implementation-dependent. This work did not incorporate strategies to minimize the

impact of large computation times. Thus, it may be expected that improvements in

the implementation aspects and the hardware used might turn SD-SBL fit for on-line

diffusion orientation reconstruction tasks.

4.2 Future work

Elucidating the brain’s white matter micro-architecture through Magnetic Resonance

Imaging will require new models capable of differentiating the individual compartments

within the fiber pathways, as well as methods that obtain sharper fiber orientations. The

method presented in this work offers improved angular sensitivity for fiber orientation

reconstruction.

Some limitations and future extensions to the current work are related to the sig-

nal and noise generative models, as well as to the method’s overall time performance.
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First, several strategies exist for creating the signal dictionary, like using mixtures of

intra-compartment models to capture different diffusivity profiles. Therefore, explor-

ing the dictionary that provides the most effective signal representation deserves to be

investigated. Second, we have not included additional strategies, such as spatial regu-

larizations, to enhance the method’s performance. Third, a broader validation of the

method is required. A few efforts have emerged in the last years in order to provide

a common testing ground (such as the “Phantomas”29, an early version of which has

been used as the phantom model in this work, or “Diffantom”55 datasets), as well as

universal performance reporting frameworks for tractography pipelines (such as “Trac-

tometer”37) for diffusion reconstruction methods. Using such tools may help in obtain-

ing standardized scores for method comparison purposes. Data provided by the two

Human Connectome Project consortia110 54 may also be useful to test the method on

real diffusion data acquired under different acquisition conditions. Furthermore, fiber-

tracking methods applied to fODF reconstruction algorithms on both phantom and real,

whole-brain datasets may help assessing a method’s fitness for clinical practice.

And finally, issues linked to real data acquisition would require a closer study. On

the one hand, although low diffusion-sensitizing gradients may provide sufficient angular

contrast when using SD-SBL in synthetic datasets, issues stemming from fewer gradient

direction acquisitions or different sampling strategies need further investigation. Cer-

tainly, an optimal value providing a sufficient SNR for a good angular resolution should

exist for a given acquisition strategy. On the other hand, although we have used a Ri-

cian noise model, we have not investigated the factors affecting the noise. The observed

noise on a Magnetic Resonance image depends on many factors, including the number

of coils in the scanner and the multi-channel image combination method. Thus, further

work is required to study the influence of the scanner settings into the proposed algo-
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rithm. Second, although we have tested the method on synthetic datasets, phantom

models and real datasets for different noise levels, we have not directly addressed the

impact on the quality of reconstructions of other imaging artifacts such as eddy currents,

B0-field inhomogeneity and subject motion. In the same way, we have not studied the

performance of the method when different q-space acquisition strategies (such as partial

q-space acquisition) may be employed for accelerating the acquisition process, or when

data from multiple shells is available. Yet it may be an interesting aspect to consider.
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A
Appendix A

A.1 Spherical Harmonic Basis

The Spherical Harmonics (SH), normally indicated by Y m
l (θ, ϕ), where l denotes the

degree, m the order or phase factor, and (θ, ϕ) the angular direction, are a basis for

complex functions on the unit sphere satisfying the SH differential equation

1

sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+

1

sin2 θ

∂2F

∂θ2
+ l(l + 1)F = 0, l ∈ Z+ (A.1)

where θ and ϕ are the polar and azimuth rotation angles in spherical coordinates,

respectively; and F is the function being analyzed.
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The first two terms of this equation correspond to the Laplacian in spherical coordi-

nates, also called the three dimensional Laplace-Beltrami operator ∆b. It is a natural

measure of smoothness for functions defined on the unit sphere, satisfying the relations

∆bY
m
l = −l(l + 1)Y m

l .

For each nonnegative integer l there are exactly 2l + 1 spherical harmonics given by

Y −l
l , . . . , Y 0

l , . . . , Y
l
l , i.e., m = −l, . . . , 0, . . . , l. Explicitly, they are given as

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ (A.2)

where Pm
l is an associated Legendre polynomial of degree l and order m.

The set of spherical harmonics forms an orthonormal basis for all functions on the

unit sphere. Since they form a basis, any spherical function x : S2 → C can be written

as x(θ, ϕ) =
∑∞

l=0

∑l
m=−l c

m
l Y

m
l . This is called the Spherical Harmonic Transform

(SHT). Due to orthonormality of the SH basis, the coefficients of the SH series clm

can be calculated by forming the inner product of x with the spherical harmonics,

cml = ⟨x(θ, ϕ)Y m
l (θ, ϕ)⟩ =

∫ 2π
0

∫ π
0 x(θ, ϕ)Y

m
l (θ, ϕ) sin(θ)dθdϕ. This is analogous to a

Fourier decomposition of sinusoidal functions, but on the unit sphere.

Finally, even order spherical harmonics are antipodally symmetric, while the odd

order spherical harmonics are antipodally antisymmetric.
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B
Appendix B

B.1 Rician distribution

Magnetic Resonance Imaging magnitude data are known to be corrupted by a noise

that follows a Rician (or Rice) distribution62. Rician noise produces, on average, a net

increase in the signal which is different along every gradient direction. The probability

density function of the Rician distribution follows the law in Eq. B.1

f(x|ν, σ2) = x√
σ2
e−

−(x2+ν2)

2σ2 I0

(xν
σ2

)
(B.1)
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where I0(z) is the modified Bessel function of the first kind with order zero. Note

that in this expression ν and σ are not the mean and standard deviation of the Rician

distribution.

The Rician distribution is related to the Gaussian distribution: a distribution R has

a Rice distribution (R ∼ Rice (ν, σ)) if R =
√
X2 + Y 2, where X ∼ N

(
ν cos θ, σ2

)
and

Y ∼ N
(
ν sin θ, σ2

)
are statistically independent normal random variables and θ is any

real number.

In many diffusion reconstruction works (see, for example,46 114, and117), it is assumed

that the noise obeys a Gaussian distribution law (N(µ, σ2)), which has the probability

density f(x|µ, σ2) = 1√
2σ2π

e−
(x−µ)2

2σ2 . However, the deviation of the Rician distribution

from Gaussianity is particularly evident at low SNR values, as verified in Fig. B.1.

The Gaussian distribution can be considered a good approximation of the Rician dis-

tribution only above an SNR of approximately 5:162. According to Daducci et al.39,

reconstructions assuming zero-mean Gaussian noise produce small amplitude, spurious

fibers to explain this discrepancy. Few works have studied (see, for example,50 82 or53)

the impact on fiber orientation reconstruction of Rician noise.
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(a)

(b)

(c)
Figure B.1 Rician distribution at different SNR values. Comparison between the Rician
distribution and the Gaussian distribution at different SNR values: (a) low SNR; (b) medium
SNR; and (c) high SNR.
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CSHD Constrained Spherical Harmonic Deconvolution (also referred to as
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DT diffusion tensor

DTI Diffusion Tensor Imaging
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EAP Ensemble Average (Diffusion) Propagator

EEG Electroencephalography

EPI Echo Planar Imaging

EQBI Exact q-Ball Imaging

FA Fractional Anisotropy
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fMRI Functional Magnetic Resonance Imaging

fODF fiber Orientation Distribution Function (also referred to as fiber Ori-

entation Density Function)

FT Fourier Transform

GDT Generalized Diffusion Tensor

GDTI Generalized Diffusion Tensor Imaging
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GM gray matter

GMM Gaussian Mixture Model

HARDI High Angular Resolution Diffusion Imaging

HIDY Hybrid Diffusion Imaging

HODT Higher-Order Diffusion Tensor

HOT Higher-Order Tensor

ic internal capsule

IFA Inter-fiber angle
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LASSO Least Absolute Shrinkage and Selection Operator

LMA LevenbergMarquardt algorithm (also known as the damped least-
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MAP Maximum-A-Posteriori
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MDT Multiple-Diffusion Tensors model

ML Maximum Likelihood

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MSI Multi-Shell Imaging

NMR Nuclear Magnetic Resonance

nnLS Non-negative Least Squares
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ODF Orientation Distribution Function (also referred to as Orientation Den-
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OPDF Orientation Probability Density Function

OPDT Orientation Probability Density Transform

PAS Persistent Angular Structure

PASMRI Persistent Angular Structure Magnetic Resonance Imaging

PDF Probability Density Function

PGSE Pulsed-Gradient Spin Echo

QBI q-Ball Imaging

RF Radio Frequency

RJMCMC Reversible Jump Markov Chain Monte Carlo

RL Richardson-Lucy

RMS Root Mean Square

RUMBA-SD Robust and Unbiased Model-Based Spherical Deconvolution

SBL Sparse Bayesian Learning

SD Spherical Deconvolution
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SH Spherical Harmonics

SHD Spherical Harmonic Deconvolution
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TV Total Variation

WM white matter
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Notation

A problem matrix / compartment anisotropy characterization diagonal

matrix

b b-value

B0 static magnetic field intensity

∆ time between diffusion-encoding gradients (diffusion time)

δ duration of diffusion-encoding gradient / Dirac delta function

D diffusion tensor

E spin echo signal attenuation

F Fourier transform

F−1 inverse Fourier transform

fi relative volume fraction of the i-th fiber population (fi ≥ 0)

F (θ, ϕ) fiber orientation distribution function

f fiber orientation distribution function

G magnetic field gradient intensity

g diffusion gradient wave vector

γ gyromagnetic ratio

H spherical surface circulant matrix, kernel or dictionary

In modified Bessel function of the first kind of order n

λi diffusion tensor eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥ 0)

M spin magnetization vector

m particle mass / complex transverse magnetization vector

Pm
l associated Legendre polynomial of degree l and order m

P (rû) diffusion propagator

P (R, τ) ensemble-average propagator

ψ orientation distribution function

q spin displacement wave vector
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R relative spin displacement / diffusion tensor eigenvector matrix

r final spin position

r′ initial spin position

R(θ) fiber response function

ρ bulk relaxation rate

Rj rotation matrix rotatin a unit vector initially oriented along theX-axis

towards the j-th fiber orientation (θj , ϕj)

S spin echo signal

S0 spin echo signal in the absence of diffusion gradient

T1 spin-lattice relaxation time (sometimes referred to as T1)

T2 spin-spin relaxation time (sometimes referred to as T2)

τ diffusion time

û unit normal vector

φ spin phase

Y m
l (θ, ϕ) spherical harmonic basis function of degree l and order m in (θ, ϕ)

angular direction
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constant solid, 47

inter-fiber, 44, 47, 50, 53, 55–57,

59, 66, 68

anisotropy, 9, 11, 17, 19, 29, 30, 56

B

Bloch-Torrey

equation, 12

Brownian motion, 7–9, 29

C

cerebrospinal fluid, 55, 89, 90, 93, 94

coefficient

diffusion, 9, 23, 24, 26, 29

convolution, 50

D

decay

free induction, 16

deconvolution

spherical, 50, 51, 53, 57

diffusion

anisotropic, 9, 30, 50

hindered, 9

isotropic, 9

diffusion time, 19

diffusion-sensitizing gradient factor, 22,

89

diffusivity profile, 37, 50

displacement

root mean square, 9

E

echo, 16

echo time, 17, 43

Einstein

equation, 9

ellipsoid, 32, 33

expansion

spherical harmonics, 48

F

fiber bundle, 51

fitting

nonlinear, 57

Fourier

inverse transform, 28

transform, 22

Fourier transform, 62

fraction

fiber volume, 47

fractional anisotropy, 30, 55, 68
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function

fiber orientation distribution, 34,

35, 50, 53, 56–58, 60

fiber response, 51

orientation distribution, 33, 34,

44–47, 51, 60, 68

probability density, 24, 47

diffusion, 22, 33

spin displacement, 23

single-fiber response, 51, 53, 56, 58

Funk

transform, 45, 46

Funk-Radon

transform, 45

G

gradient

diffusion, 22, 33

gray matter, 19, 45, 55, 89, 90, 94

great circle, 45

I

imaging

diffusion tensor, 29, 30

diffusional kurtosis, 68

high angular resolution diffusion,

50, 51, 68

magnetic resonance, 45

q-ball, 45, 46, 66

intra-voxel orientational heterogeneity,

38, 88, 130

L

Laplace

series, 59, 60

Legendre

polynomials, 60, 138

M

model

diffusion tensor, 38

mono-exponential signal decay, 37

multi-compartment, 42, 44, 50, 57

multi-tensor, 40

N

non-negativity constraint, 53

P

phase shift, 21

projection

radial, 44, 46, 47

propagator

ensemble average, 24, 28

pulse

gradient, 20, 21, 23

Radio Frequency, 14, 17

R

Radon

spherical transform, see

Funk-Radon

transform, 45

repetition time, 17

resolution

angular, 45, 57

resonance

164



nuclear magnetic, 11, 16, 23

Richardson-Lucy

algorithm, 53, 56

damped, 56

ridgelets

spherical, 50

S

sampling

spherical, 46

Signal-to-Noise Ratio, 91

spherical harmonics, 47, 65

basis function, 51

coefficients, 50

spin echo, 16, 21, 23, 44

pulsed-gradient, 20, 28

Stejskal-Tanner

equation, 26

experiment, 20

system

linear, 57

T

tensor

diffusion, 24–26, 31, 67

kurtosis, 67

tractography, 38, 68

transformation

radial projection, 34

W

white matter, 18, 19, 86, 89, 93
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