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Abstract

The principles of Nuclear Magnetic Resonance (NMR) can be understood thanks to the

magnetic properties of the nuclei derived from the intrinsic spin and the orbital angular

momentum, enabling a precise control on the dynamics of the nuclear spin system by

means of radio-frequency (RF) pulses.

NMR has revolutionised the field of medical imaging, being one of the few techniques

where no ionizing radiation is employed, besides ultrasound.

However, not exclusively medicine benefits from the outstanding applications of this phys-

ical phenomenon. Structural and chemical information of diverse atomic species can be

likewise investigated through NMR.

Furthermore, in the recent cutting-edge research in quantum computing, magnetic reso-

nance is an alternative technique to create the first quantum computer.

Moreover, the application of NMR to unique states of matter at very low temperatures ex-

plores the behaviour of the spins in different elements, revealing very interesting physical

properties.

In this thesis, the application of an important and precise pulse sequence, spin echo, to

a specific type of Bose-Einstein condensate, a spin-1 spinor, is studied. The interest of

this work focusses on analysing the spin evolution when only the short range interaction

constants are taking into account.

The simulations are computed applying numerical algorithms, by making use of GPELab,

a MATLAB R© toolbox developed to model non linear Schrödinger equations, the so

called Gross-Pitaevskii equations. The techniques are explored more in detail, analysing

the type of algorithm to be applied to compute the dynamics of the system.

These results can be implemented in numerous experimental possibilities, and open up a

new alternative to apply NMR in systems at very cold temperatures.
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Resumen

Los fundamentos de la Resonancia Magnética Nuclear (RMN, o NMR por sus siglas en

inglés) se basan en las propiedades magnéticas de los núcleos atómicos, como el esṕın y

el momento angular orbital, permitiendo un control preciso en la dinámica del sistema

nuclear mediante pulsos de radio frecuencia (RF).

La RMN ha revolucionado el campo de la imagen médica, siendo una de las pocas técnicas

que no implica radiaciones ionizantes, junto a la ecograf́ıa.

Sin embargo, no sólamente el campo de la medicina se beneficia de las increibles aplica-

ciones de este fenómeno f́ısico. También la información estructural y qúımica de diversas

especies atómicas pueden investigarse utilizando RMN.

Además, en el innovador y puntero campo de la investigación en computación cuántica,

la resonancia magnética se presenta como una de las posibles alternativas para crear el

primer ordenador cuántico.

Por otra parte, la aplicación de la resonancia magnética en estados de la materia únicos

que aparecen a temperaturas enormemente bajas, explora el comportamiento de los es-

pines en diferentes elementos, revelando propiedades f́ısicas de importancia inigualable.

En esta tesis se estudia la aplicación de una precisa secuencia de pulsos, llamada eco

de esṕın, a un espećıfico condensado de Bose-Einstein, un espinor de esṕın-1. El interés

de este trabajo se centra en el análisis de la evolución de los espines con el tiempo,

considerando sólo las interacciones de corto alcance.

Las simulaciones se han generado aplicando algoritmos numéricos, utilizando una her-

ramienta en MATLAB R© llamada GPELab, desarrollada para representar ecuaciones de

Schrödinger no lineales, denominadas ecuaciones de Gross-Pitaevskii. Las técnicas em-

pleadas se han descrito en detalle, analizando el tipo de algoritmo escogido para estudiar

la dinámica del sistema.

Estos estudios pueden implementarse en numerosas posibilidades experimentales, ofre-

ciendo una nueva alternativa al uso de RMN en el estudios de sistemas a muy bajas

temperaturas.
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Y al Prof. José Carlos Antoranz Callejo, por darme la oprtunidad de meterme en un

campo desconocido al proponer este tema para la tesis.

Quiero dar las gracias de corazón a Romain Duboscq, unos de los creadores de la her-

ramienta que he utilizado durante las simulaciones. Por las fruct́ıferas discusiones por

email, donde ha respondido todas y cada una de mis dudas, y ha sido generosamente

servicial, ayudándome cuando ya pensaba que no hab́ıa manera de sacar resultados.

Al resto de profesores y trabajadores de la UNED, que durante estos años han intentado

facilitar las cosas para los que intentamos estudiar estando en el extranjero, gracias.

Quiero agradecer a toda esa gente, mis amigos y compañeros, que durante el tiempo que
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Chapter 1

Overview

1.1 Short background

The importance of Nuclear Magnetic Resonance (NMR) has been intensively demon-

strated in several fields.

Magnetic Resonance Imaging (MRI), using the signal of the nuclei of hydrogen atoms for

image generation [1–3], plays a key role to deliver a better diagnosis in numerous diseases

or medical conditions. Nevertheless, there are other potential applications. Research in

recent years in the field of condensed matter physics has focused on magnetic materials

(e.g. high temperature superconductors), and the study of the interaction with magnetic

fields is attracting widespread interest to numerous fields in the scientific community.

Furthermore, the appliance of NMR in low temperature physics can reveal important

new features. Initial attempts of using NMR on Bose-Einstein condensates (BEC) provide

particular information that explores the inner behaviour of molecules and atoms [4–6].

An alternative approach to a general NMR technique is the simulation of a specific pulse

sequence, which is well understood in the case of hydrogen for the generation of a MRI.

There remains a need for an efficient method that can work in a more complex environ-

ment.

2



Chapter 1. Introduction 3

1.2 Objective of the thesis

The purpose of this study is to describe and discuss the spin time evolution simulating the

Gross-Pitaevskii equation using the GPELab program [7] when applying the spin-echo

technique to a specific Bose-Einstein condensate trapped in harmonic potential, focusing

on the results by Yasunaga and Tsubota [5, 6].

1.3 Outline of the thesis

The structure of this thesis is organised as follows. Chapter 2 contains theoretical back-

ground material, with a general introduction to the atomic properties, Nuclear Magnetic

Resonance, and pulse sequences, specially spin echo, before describing a Bose-Einstein

condensate.

In Chapter 3 the methodology is presented with the Gross-Pitaevskii equation. At the

end of the chapter the equation which will be used during the simulations is introduced.

In the next two chapters the investigation results are described in detail. Chapter 4

presents the numerical methods and tools, and the corresponding equation to be employed

in the computation. In Chapter 5 the results are presented, targeting the spin evolution

when a magnetic field varying in time is applied.

Finally, Chapter 6 concludes this project providing a discussion of the results and achieve-

ments of the thesis, with some directions for futures perspectives.
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Introduction
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Chapter 2

Theoretical Background

In this chapter I will outline the theoretical background of my research. In Section 1 the

properties of the atom are reviewed, in Section 2 and Section 3 the concept of Nuclear

Magnetic Resonance and pulse sequences, specially spin echo, are respectively discussed.

In Section 4, the Bose-Einstein condensation is described.

2.1 The properties of the atom

The Earth has two motions and associated with each of them are two types of angular

momentum – the orbital angular momentum of the motion around the Sun and the

intrinsic angular momentum around its axis. The electron has similarly orbital angular

momentum L (motion around the nucleus) and intrinsic angular momentum S, as if the

electron was spinning around its axis [8]. The total angular momentum of the electron is

then J = L+ S.

The nucleus is treated as if it had only intrinsic angular momentum I, and it is not

common to speak about the orbital momenta of the nucleons, but only about their spin.

The contribution of all the nucleons spins to the total angular momentum of the nucleus

is known as nuclear spin [2, 9].

The total angular momentum or atomic spin is then given by F = I + J .

In Table 2.1 there is a clear evaluation of the nuclear spins related to the mass and atomic

numbers.

5



Chapter 2. Theoretical Background 6

Table 2.1: Value of I. Source: Own elaboration based on [2, 10]

Mass number A Atomic number Z Value of I

Even Even 0

Even Odd Integral value (1, 2,

3...)

Odd Odd Half-integral value

(1/2, 3/2, 5/2,..)

Odd Even Half-integral value

(1/2, 3/2, 5/2,..)

The response of a specific atomic species to an applied magnetic field is the foundation

of magnetic resonance.

2.2 Basis of Nuclear Magnetic Resonance

All Nuclear Magnetic Resonance (NMR) sensitive nuclei carry magnetic dipole fields,

which means that they behave like bar magnets (see Fig. 2.1). The origin of this magnetic

behaviour is nuclear angular momentum and spin, as described in previous section.

m!

B'
N!

S!

Figure 2.1: Example of a magnetic dipole.

In the absence of any external magnetic field, each particle will be oriented in an arbitrary

direction (see Fig. 2.2). In the presence of a magnetic field, all the nuclear spins will align

in a parallel or anti-parallel manner with the field direction. Spin-up spins have lower

energy than spin-down (against the field) spins. Since lower energy states tend to be

preferred, measurements on a set of spins in thermal equilibrium will show more nuclei in

the spin-up than in the spin-down situation. The energy difference between the parallel
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and antiparallel alignment is caused by the Zeeman interaction, and it is proportional to

the external magnetic field strength, increasing with it [1–3, 11]:

N1

N2

= e
∆E
kBT , (2.1)

with N1 and N2 the spins oriented parallel and antiparallel to the magnetic field B0, kB

the Boltzmann constant and T the temperature of the system.

Figure 2.2: Protons oriented randomly acting like small magnets. [Source:
http://www.simplyphysics.com]

When placed in a static and homogeneous magnetic field B0, the nuclear spins will precess

around the magnetic field direction. The frequency of precession, called the Larmor

frequency (ω0), is characteristic of the nuclei involved, and proportional to the strength

of the external magnetic field:

ω0 = γB0, (2.2)

with B0 the magnetic field strength and γ the gyromagnetic ratio, a constant specific to

the particular nucleus:

γn = gn
e

2mp

, (2.3)

where mp is the proton mass and gn the g-factor of the nucleon (is a dimensionless quantity

which characterizes the magnetic moment and gyromagnetic ratio related to the observed

magnetic moment µ of a particle or nucleus).

The magnetic dipole moment, µ, of a single unpaired electron or nucleon is given by:

µ = γS, (2.4)

being S the spin observable.

Table 2.2 lists the relevant constants for some elements commonly found in biological

systems.
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A rigorous mathematical description of a nucleus with spin and its in-
teractions requires the use of quantum mechanical principles, but most of
MR can be described using the concepts of classical mechanics, particularly
in describing the actions of a nucleus with spin. The subsequent discussions
of MR phenomena in this book use a classical approach. In addition, al-
though the concepts of resonance absorption and relaxation apply to all nu-
clei with spin, the descriptions in this book are focused on 1H (commonly
referred to as a proton) since most imaging experiments visualize the 1H
nucleus.

In addition to its spin, a positively charged nucleus (the location of the
protons) also has a local magnetic field or magnetic moment. This associat-
ed magnetic moment is fundamental to MR. A bar magnet provides a useful
analogy. A bar magnet has a north and south pole; more precisely, a magni-
tude and orientation or direction to the magnetic field can be defined. A nu-
cleus with spin has an axis of rotation that can be viewed as a vector with a
definite orientation and magnitude (Figure 1-1). The magnetic moment for
the nucleus is parallel to the axis of rotation. This orientation of the nuclear

Production of Net Magnetization 3

Table 1-1 Constants for Selected Nuclei of Biological Interest 

Nuclear Composition Gyromagnetic ! at 
Nuclear Ratio " % Natural 1.5 T 

Element Protons Neutrons Spin, I (MHz T–1) Abundance (MHz)
1H, Protium 1 0 1/2 42.5774 99.985 63.8646
2H, Deuterium 1 1 1 6.53896 0.015 9.8036
3He 2 1 1/2 32.436 0.000138 48.6540
6Li 3 3 1 6.26613 7.5 9.39919
7Li 3 4 3/2 16.5483 92.5 24.8224
12C 6 6 0 0 98.90 0
13C 6 7 1/2 10.7084 1.10 16.0621
14N 7 7 1 3.07770 99.634 4.6164
15N 7 8 1/2 4.3173 0.366 6.4759
16O 8 8 0 0 99.762 0
17O 8 9 5/2 5.7743 0.038 8.6614
19F 9 10 1/2 40.0776 100 60.1164
23Na 11 12 3/2 11.2686 100 16.9029
31P 15 16 1/2 17.2514 100 25.8771
129Xe 54 75 1/2 11.8604 26.4 17.7906

Source: Adapted from Ian Mills (Ed.) Quantities, Units, and Symbols in Physical Chemistry, IU-
PAC, Physical Chemistry Division, Blackwell, Oxford, UK, 1989.

c01.qxd  5/16/2004  8:02 AM  Page 3

Table 2.2: Constants for selected nuclei of biological interest. Source: [2]

The net magnetic effect or magnetisation (M0) of all the nuclear dipoles involved can be

estimated by:

M0 =
Nγ2~2B0

4kBT
, (2.5)

where ~ is the reduced Planck’s constant and N the number of spins. It is important to

deduce from Eq. 2.5 that the magnetic resonance signal will be stronger for substances

with larger spin densities and when performed at higher magnetic fields.

When considering only a spin S = 1/2 in a magnetic field aligned with the z-axis, the

following Hamiltonian (the energy of the system) is obtained in accordance with [1]

Ĥ = −µB = −
(
−gx

e

2mx

S

)
B = ωS, (2.6)

where gx denotes the g-factor for either the electron or the nucleon. Therefore, the energy

is proportional to the z-component of the spin:

Ĥ = ωSz. (2.7)

As mentioned before, the net magnetic dipole moment will be pointing along B0, as more

spin-up nuclei in thermal equilibrium are found, consequently the equilibrium magneti-

sation is entirely along the z-axis [1–3, 11].
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2.2.1 Free induction decay

A deviation from the equilibrium orientation to influence the magnetisation M0 can be

achieved by introducing an additional magnetic field, B1. This energy, known as the

excitation pulse (rf , radiofrequency energy), has to be applied with the same frequency

as the Larmor frequency (resonance condition). The excitation of the spins system is the

process of the energy absorption and results in the magnetisation moving from the z-axis

to the transverse xy-plane, perpendicular to the direction of the main magnetic field.

During the pulse, the net external magnetic field will be the sum of B0 + B1. When all

the magnetisation lies on the transverse plane, the resulting magnetisation will be called

Mxy [1–3, 11].

When the rf pulse stops, immediately the protons will start to emit the energy absorbed.

If nothing affects the homogeneity of the magnetic fields, all protons will rotate at the

same resonance frequency. The portion of the magnetisation vector that is tilted towards

the xy-plane, determines the initial amplitude of the signal. The maximum of the signal

will be achieved when the angle is 90o; in that case the rf field will be called a 90o pulse.

The voltage in a receiving coil, located through the transverse plane, is the Magnetic

Resonance signal, which will be collected and processed to generate the MRI [1–3].

The Free Induction Decay (FID) is originated by the rate of change of the magnetic flux

and it is the voltage measured in the coil, according to Faraday’s induction law:

ε = −dΦB

dt
, (2.8)

being ε the electromotive force (EMF) and ΦB the magnetic flux. This FID decays with

time as the protons give up their absorbed energy through a process known as relaxation.

Two different processes take place during relaxation [2, 3, 10]:

- longitudinal relaxation: due to the recovery of the longitudinal magnetisation. This

exchange of energy occurs between the spins and their surroundings (lattice) rather than

to another spin, restoring thermal equilibrium. The spins go from a high energy state to

a lower energy state, giving back the energy to the surrounding lattice. The longitudi-

nal recovery follows an exponential curve, with a recovery rate represented by the time

constant T1.
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- transversal relaxation: describing the decay of the transversal magnetisation. It corre-

sponds to the spins being out of phase, when the corresponding magnetic fields interact,

modifying slowly the precession rate. These interactions are temporal and random. This

spin-spin relaxation causes a cumulative phase loss resulting in a decay of the transversal

component of the magnetisation. The decay follows an exponential curve and it is char-

acterised by the time constant T2. T1 relaxation is simultaneous to T2; both occur at the

same time, but with different mechanisms. However, the transversal relaxation is faster

than the longitudinal one, thus T2 � T1.

Moreover, due to the field inhomogeneities, the transversal magnetisation decays faster,

with a time constant T ∗2 , then
1

T ∗2
=

1

T2

+
1

T
′
2

, (2.9)

where T
′
2 indicates the relaxation time due to inhomogeneities unrelated to the spins. By

using an additional pulse the spins can be re-phased and the signal recovered. This signal

will be the echo, and it will be the key of the next section.

2.3 Pulse sequences. Spin Echo

A pulse sequence is required to refocus the spins, to generate enough signal, hence, to

produce at the end the desired image. Thus far, only the case of an application of a 90o

pulse causing a FID has been described. Nonetheless, there is an enormous set of pulse

sequences accessible for MRI.

In all pulse sequences three phases have to be considered [2, 3, 10, 12]:

- Preparation pulse to excite the spins system. The way this pulse is applied and the

length of the flip angle have a significant impact in the parameter T1.

- A time interval between the excitation and the data acquisition.

- A total time for the data sampling, TR, or repetition time between two excitation pulses.

The proposal of the sequence spin echo in the 1950s by Hahn [13] was a powerful method

and a key milestone in the field of magnetic resonance [2, 3, 5, 6, 11].

Even though spin echo is a slow sequence (in comparison with, for example, a gradient

echo, where a gradient is employed to re-phase), is less susceptible to field inhomogeneities

(T2 decay instead of T ∗2 as in gradient echo).
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The sequence is described as follows:

The spins rotate along the z−direction. A rf pulse is applied at 90o (B1), bringing down

the magnetisation over the xy−plane. As some field inhomogeneities are always present,

some spins precess faster than others, and the de-phasing occurs. At a time half of the

echo time τ = TE
2

(TE or echo time is the interval between the application of the excitation

pulse and the signal collection), another 180o pulse is applied, allowing the recovery of

phase coherence, and the generation of an echo at a time TE after the pulse at 90o. The

pulse at 180o serves to eliminate the effects of any static field inhomogeneities. Fig. 2.3

below illustrates the complete spin echo process:

Figure 2.3: Spin echo sequence. [Source: http://www.wikipedia.org]

Other techniques of producing spin echo [14] were soon proposed after Hahn’s paper.

There are also standard multiecho sequences, with multiple 180o rf pulses following a

single excitation pulse. Although this kind of method could be useful in several fields, or

depending on the desirable output image, in this project the focus relies on the standard

single pulse echo.

2.3.1 Spin echo in other fields of physics

In quantum optics, the spin echo technique is widely exploited nowadays in experiments.

In this field, the pulse sequence is applied to the Bloch vector, used to represent the

density matrix. The density matrix formalism is useful to describe an ensemble of atoms

[15].

In low temperature physics, NMR and MRI have been used to measure spatial distribution

as an alternative to optical imaging methods [4].
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2.4 Bose Einstein Condensation

A particular atomic isotope is bosonic or fermionic depending on the number of its con-

stituents: protons, neutrons and electrons, being a boson (with integer total spin) if this

number is even; or a fermion (with half-integer total spin) if it is odd.

S. Bose and A. Einstein first predicted the concept of Bose-Einstein condensation in the

1920s developing a statistical theory for an ideal gas of indistinguishable bosons. It was

not until 1995 that C. Wieman, E. Cornell, and W. Ketterle did produce the first gaseous

condensate of rubidium atoms cooled to 170 nanokelvin (see Fig. 2.4), receiving the 2001

Nobel Prize in Physics. This experience opened a new platform to realise experiments at

very low temperatures [9].

Figure 2.4: Bose-Einstein Condensation of ∼ 2000 atoms of Rb at 200, 100, and ∼ 20
nano-Kelvins. [Source: http://www.colorado.edu]

A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of bosonic particles

cooled down to temperatures very close to absolute zero. Below this temperature, the de

Broglie wavelengths of individual atoms become comparable to the size of the cloud and

their wave functions start to overlap, giving rise to quantum coherence phenomena in

the gas (every particle shares the same quantum wave function and phase). Under such

conditions, a large fraction of bosons occupy the lowest quantum state, which means, the

macroscopic occupation of a single-particle state [9].

In order to understand what was presented above, there are here below some useful

definitions:
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- The de Broglie wavelength is the wavelength, λ, associated with a particle, and related

to its momentum, p, through the Planck constant, h: λ = h/p.

- A dilute gas is a gas with a low density, where the molecules barely interact; therefore,

the probability of collision between more than two particles is negligible. The de Broglie

length is much more smaller than the average separation between the molecules.

- The wave function in quantum mechanics describes the quantum state (description of the

physical state that a physical system possesses at a given time in the frame of quantum

mechanics) of an isolated system of one or more particles. The temporal evolution of

the wave function is described by the Schrödinger equation (the equivalent in quantum

mechanics of the Newtons’s Second Law for classical physics) [8].

The single-particle wavefunction in a Bose–Einstein condensate is described using the

Gross-Pitaevskii equation, which will be the main subject of the next chapter.

2.4.1 Rubidium

In this section some properties of the Rubidium will be presented, as 87Rb has been chosen

as the atomic species to be simulated in this project, not only because it was taken for

the first BEC created in the lab, but also following the papers of Yasinaga and Tsubota

[5, 6].

Table 2.3 shows the proton number Z, the neutron number N , the nuclear spin I, the

nuclear magnetic moment µ, and the hyperfine splitting νhf = ∆Ehf/h for hydrogen and

some alkali isotopes (the hyperfine interaction couples the nuclear spin to the electronic

spin).

The atomic spin is given by F = I + J , as explained in the Sec. 2.1.

In the electronic structure of alkali atoms all electrons but one occupy closed shells, and

the remaining one is in an s orbital in a higher shell.

For Rubidium and all other alkali atoms in the electronic ground state L = 0, since

the electrons have no orbital angular momentum. The coupling of the electronic spin is

S = 1/2. Hence, J = S = 1/2 since J = L + S. The coupling of the electronic spin to

the nuclear spin gives 2 possibilities: F = I ± 1/2. The nuclear spin of 87Rb is I = 3/2,

resulting in Fupper = 2 and Flower = 1. The energy difference between these two states,

the ground hyperfine splitting, is 6.835 GHz [9].



Chapter 2. Theoretical Background 14

42 Atomic properties

Table 3.1 The proton number Z, the neutron number N , the nuclear spin

I, the nuclear magnetic moment µ (in units of the nuclear magneton

µN = e!/2mp), and the hyperfine splitting νhf = ∆Ehf/h for hydrogen and

some alkali isotopes. For completeness, the two fermion isotopes 6Li and
40K are included.

Isotope Z N I µ/µN νhf (MHz)

1H 1 0 1/2 2.793 1420
6Li 3 3 1 0.822 228
7Li 3 4 3/2 3.256 804
23Na 11 12 3/2 2.218 1772
39K 19 20 3/2 0.391 462
40K 19 21 4 −1.298 −1286
41K 19 22 3/2 0.215 254
85Rb 37 48 5/2 1.353 3036
87Rb 37 50 3/2 2.751 6835
133Cs 55 78 7/2 2.579 9193

Bose–Einstein condensation has been achieved for four species with other

values of the electronic spin, and nuclear spin I = 0: 4He* (4He atoms in

the lowest electronic triplet state, which is metastable) which has S = 1,
170Yb and 174Yb (S = 0), and 52Cr (S = 3).

The ground-state electronic structure of alkali atoms is simple: all elec-

trons but one occupy closed shells, and the remaining one is in an s orbital in

a higher shell. In Table 3.2 we list the ground-state electronic configurations

for alkali atoms. The nuclear spin is coupled to the electronic spin by the

hyperfine interaction. Since the electrons have no orbital angular momen-

tum (L = 0), there is no magnetic field at the nucleus due to the orbital

motion, and the coupling arises solely due to the magnetic field produced

by the electronic spin. The coupling of the electronic spin, S = 1/2, to

the nuclear spin I yields the two possibilities F = I ± 1/2 for the quantum

number F for the total spin, according to the usual rules for addition of

angular momentum.

In the absence of an external magnetic field the atomic levels are split by

the hyperfine interaction. The coupling is represented by a term Hhf in the

Hamiltonian of the form

Hhf = AI·J, (3.1)

where A is a constant, while I and J are the operators for the nuclear spin

and the electronic angular momentum, respectively, in units of !. For the

Table 2.3: N , Z and the nuclear spin I for some alkali atoms and hydrogen. Source:
[9]

These parameters are essential to attain experiments and theoretical simulations.

In the next chapter the mathematical introduction to the Gross-Pitaevskii equation for

spinor Bose-Einstein condensates, and the election of the parameters used during the

simulations will be presented.
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Chapter 3

The Gross-Pitaevskii equation

In this chapter, I highlight the mathematical formulation used to describe a Bose-Einstein

condensate, using a non linear Schrödinger equation represented by the Gross-Pitaevskii

equation. In Sec. 3.1, I present the basis to scattering theory. The general Gross-

Pitaevskii equation is introduced in Sec. 3.2.

In Sec. 3.3 I define a spinor Bose-Einstein condensate. Finally, in Sec. 3.4, I discuss in

more detail the 2-dimensional spin-1 Gross-Pitaevskii equation, which I will use later in

the following chapters.

3.1 Basic scattering theory

In a Bose-Einstein condensate (BEC) the interactions between atoms are not negligible,

and are indeed very important for the physics of these systems [9, 16, 17].

To describe scattering, the wave function for the relative motion is written as the sum of an

incoming plane wave with definite angular momentum quantum number and a scattered

wave. For low energy scattering, only the first few l-quantum numbers are affected. If

all but the first term are discarded, only the s-waves take part in the scattering process.

This is an approximation applied in the scattering of the atoms in a BEC. That is why

at very low energies it is sufficient to consider s-wave scattering, and the wave function

will take the form of [9]

ψ = 1− a

r
, (3.1)

being r the vector separation of the two atoms and the constant a the scattering length.

16
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In order to avoid short-term correlations when the wave function for many body systems is

calculated, the concept of effective interaction is introduced. It describes the interaction

between long wavelengths, low frequency degrees of freedom of a system when coupling

of these degrees of freedom via interactions with those at shorter wavelengths has been

taken into account [9]. It is used to calculate energies and is always proportional to the

scattering length.

While the scattering lengths for alkali atoms are large compared with atomic dimensions,

they are usually small compared with atomic separations in gas clouds. In very dilute

systems, like quantum gases, the scattering length is much less than the inter-atomic

spacing, and most of their properties are governed by the interaction between particles.

Since in the ultra-cold regime only s-wave scattering between particles can take place,

this allows one to replace the real inter-atomic potential (which at long distances is the

usual van der Waals interaction) by a pseudo-potential, which is short range, isotropic

and characterized by the s-wave scattering length a [9, 16, 17].

3.2 Introduction to the Gross-Pitaevskii equation

In order to understand the formulation it is necessary to review the standard time de-

pendant Schrödinger equation,

i~
∂

∂t
Ψ = ĤΨ, (3.2)

with Ψ the wave function of the quantum system, and Ĥ the Hamiltonian operator. For

a non-relativistic particle

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + V (r)

]
ψ(r, t). (3.3)

where V is the potential energy, ∇2 is the Laplacian (a differential operator), and ψ is

the wave function (the ”position-space wave function”).

Generally, the Hamiltonian describes the total energy of any given wave function, and

taking the analogy with classical mechanics, the total energy will contain kinetic energy

plus potential energy.
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Analogously, a Bose-Einstein condensate can be described by the following Hamiltonian

[9, 17, 18]:

Ĥ =
N∑
i=1

~2

2m
∇2 +

N∑
i=1

Vext(ri) +
∑
i<j

U(ri, rj), (3.4)

with N the number of particles, Vext is the one body external potential, and U a two-body

interaction potential.

To derive the Hamiltonian in the mean field theory, applying second quantisation, the

Many-Body-Hamiltonian is described using the following equation:

Ĥ =

∫
drΨ̂†(r)

[
− ~2

2m
∇2 + Vext

]
Ψ̂(r)+

1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r’)U(r−r’)Ψ̂(r’)Ψ̂(r), (3.5)

with U(r− r′) the two body interaction potential, and Ψ the field operator that satisfies

the following relation: [
Ψ(r’, t),Ψ†(r, t)

]
= ∆(r− r′). (3.6)

where the Heisenberg picture version of the Schrödinger equation is given by

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
. (3.7)

The Many-Body-Hamiltonian in the standard time dependant Schrödinger equation will

then become:

i~
∂

∂t
Ψ̂(r, t) =

[
− ~2

2m
∇2 + Vext(r) +

∫
dr′Ψ̂†(r′, t)U(r− r′)Ψ̂(r′, t)

]
Ψ̂(r, t). (3.8)

Applying the Bogoliubov approximation (the condensate wave function is approximated

by a sum of the equilibrium wave function and a small perturbation):

Ψ̂(r, t) = Φ(r, t) + Ψ̂′(r, t), (3.9)

with

Φ(r, t) = 〈Ψ̂(r, t)〉 (3.10)

the field mean value or the condensate wavefunction, and Ψ̂′ represents the non condensed

fraction.

As reviewed in Eq. 3.1, the s-wave contribution dominates the scattering of a pair of

particles and it is described by the scattering length. Introducing the limit where the
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contact potential is a delta function (Born approximation in the pseudopotential, see

[19]):

U(r− r′) = gδ(r− r′), (3.11)

where

g =
4π~2a

m
, (3.12)

then the Gross-Pitaevskii equation form can be deduced:

i~
∂

∂t
Φ(r, t) =

[
− ~2

2m
∇2 + Vext(r) + g | Φ(r, t) |2

]
Φ(r, t). (3.13)

Starting from the Hamiltonian in second quantisation, the Heisenberg equation of motion

(Eq. 3.7) can be derived. Then by replacing the quantum field operator with a classical

field we obtain:

Ψ̂→ ψ(r, t) ≈
√
NΦ(r, t), (3.14)

with N the number of atoms present in the BEC.

In this case there are many atoms in one quantum state, and the fluctuations on the

single atom level are neglected.

Replacing directly the field operator with the classical condensate function, Equation 3.15

is obtained:

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + Vext(r) + g | ψ(r, t) |2

]
ψ(r, t). (3.15)

It is important to notice that the condensate wave function represents the classical limit

of the de Broglie waves for the atoms, the existence of individual atoms is no longer

important.

The general time-dependant Gross-Pitaevskii (GP) equation (Eq. 3.15), developed by E.

Gross and L. Pitaevskii in 1961, describes the zero-temperature properties of the non-

uniform Bose gas when the scattering length a is much less than the mean interparticle

spacing [9, 16, 17], and it is the basis for the equation to be employed during the simu-

lations.
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3.3 Spinor BEC

Spinor condensates are BEC with internal spin degrees of freedom, offering complex

internal quantum features and rich in quantum dynamics, due to the vector properties of

the condensate order parameter and the nonlinear spin-spin interactions. To be able to

observe these spinor condensates, special techniques for trapping have been developed,

like optical traps where the gas is trapped with lasers, and the spin of the atoms is

free, make possible to have all spin states occupied. In optical traps the potential is

independent of the hyperfine state, and it is posible to investigate the dynamics of the

spin [9, 16, 20–22].

As it was explained in Sec. 2.4.1, the ground hyperfine splitting is the difference between

the two states Fupper = 2 and Flower = 1. In a BEC when the atoms approach each other,

a total spin will be formed from a temporal coupling of the individual spins, and the

atomic spins precess around this total spin during the collision. After the collision, the

two spins decouple and the atoms separate from each other.

Table 3.1 shows some experimental candidates for the study of ultracold spinor Bose

gases. In brackets the nature of the spin dependent contact (f: ferromagnetic, af: anti-

ferromagnetic, cyc: cyclic or tetrahedral, ?: unknown) is indicated.

Table 3.1: Experimental candidates for the study of ultracold spinor Bose gases.
Source: [23]

The total spin for two identical spin-f particles will be F = f1 + f2, where the total spin

allowed are F = 2f, 2f − 1, ..., 0. Due to the symmetry required by identical bosons,

as it is the case in this thesis, only even channels for F are allowed. Since the focus

here is on spin-1 condensates, the allowed collision channels are F = 0, 2. Therefore the

s-wave scattering lengths aF=0 and aF=2 are the two parameters required to describe the

interactions. From now on aF=0 = a0 and aF=2 = a2 will be utilised [16, 23].
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The general form of the interaction will have the contribution of the different total spin

channels, in this case:

U(r1 − r2) = δ(r1 − r2)(g0P0 + g2P2), (3.16)

where PF is a projector operator which projects the pair of atoms into a total hyperfine

spin F state, with respectively:

P0 =
1− S1S2

3
(3.17)

and

P2 =
2 + S1S2

3
, (3.18)

as the product of the spin operators is

S1S2 = P2 − 2P0. (3.19)

Hence, the contact interaction can be written as:

g0P0 + g2P2 = c0 + c2S1S2, (3.20)

where

c0 =
g0 + 2g2

3
(3.21)

and

c2 =
g2 − g0

3
, (3.22)

being c0 the interaction constant between atoms and c2 the spin exchange interaction

constant [9, 23, 24], that can be written as well as:

c0 =
4π~2

m
a (3.23)

and

c2 =
4π~2

m

∆a

3
, (3.24)

being the coupling:

gF =
4π~2aF
m

. (3.25)

The expression

a =
(a0 + 2a2)

3
(3.26)

is the mean s-wave scattering length and ∆a = a2− a0 is the scattering length difference.
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3.4 Spin-1 condensate GP equation

As described before, in each F state, there are 2F + 1 Zeeman sublevels denominated

mF = F, F − 1, . . . ,−F , and in this case where F = 1, m can take values of 1,0, and

-1. Instead of choosing the basis |1〉, |0〉 and | − 1〉, a new basis is introduced: Si|i〉 = 0

with i = x, y, z where Si is the i − th component of the spin operator. In the following

notation, the sub-index α indicates the specific state.

The Hamiltonian for the F = 1 spinor BEC for a many-body system with the effective

interaction in second quantisation is then defined as [9, 20, 24–27]:

Ĥ =∫ [
− ~2

2m
∇ψ∗α∇ψα + V (r)ψ∗αψα − gµBψ∗αBiS

i
αβΨβ +

1

2
c0ψ

∗
αψ
∗
α′ψα′ψα +

1

2
c2ψ

∗
αψα′SαβSα′β′ψβ′ψβ

]
dr

(3.27)

with the additional term gµBψ
†
αBiS

i
αβψβ indicating the presence of a gradient or magnetic

field term(B), with g the Lande g−factor and µB the Bohr magneton. ψ∗ represents the

conjugate of ψ.

The Pauli matrices are represented by Siαβ with i = x, y, z:

Sxαβ =
1√
2


0 1 0

1 0 1

0 1 0

 ; (3.28)

Syαβ =
1√
2


0 −i 0

i 0 −i
0 i 0

 ; (3.29)

Szαβ =


1 0 0

0 0 0

0 0 −1

 (3.30)

Being S = Sxi+ Syj + Szk, the component of the spin density vector is given by:

Si =
∑
α,β

ψ∗αS
i
αβψβ, (3.31)
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where each component will be represented as [9, 28]:

Sx =
1√
2

[
ψ∗1ψ0 + ψ∗0(ψ1 + ψ−1) + ψ∗−1ψ0

]
(3.32)

Sy =
i√
2

[
−ψ∗1ψ0 + ψ∗0(ψ1 − ψ−1) + ψ∗−1ψ0

]
(3.33)

Sz = |ψ1|2 − |ψ−1|2, (3.34)

being ψ1, ψ0 and ψ−1 the three components of the wavefunction.

Ultimately, following the standard procedure in the mean-field description, the spin-1

Gross-Pitaevskii (GP) equation will take the form [5, 6, 27]:

i~
∂

∂t
ψα =

[
− ~2

2m
∇2 + V

]
ψα − gµBBiS

i
αβΨβ +

1

2
c0ψ

∗
βψβψα +

1

2
c2SiS

i
αβψβ. (3.35)

The previous equation is the basis for the simulations to be done in this project. In the

next section the value of the different parameters selected will be introduced.

In the following chapters the simulation of the Gross-Pitaevskii will be computed and the

results presented.
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Chapter 4

Equation simulation

In this chapter the numerical package that have been employed during the project to

simulate the two-dimensional spin-1 Gross-Pitaevskii equation (GPE) for a spinor BEC

is described, namely GPELab. Sec. 4.1 introduces the general environment to compute

stationary states and dynamics for a GPE. In Sec. 4.2 the utilisation of this tool for the

spin-1 case presented in the previous chapter is detailed.

The systems in this project are quantum, and nowadays it is technically extremely com-

plex and expensive to perform an experiment in order to observe the physical phenomena

at the quantum level. By using numerical simulations it is possible to experiment complex

configurations in a cheaper way.

4.1 General GPE in the environment of GPELab

Firstly, in order to understand how the simulation has been done, it is necessary an

introduction to the general environment of GPELab [29].

GPELab has been selected the tool to be used during the simulations because it offers

excellent conditions to compute stationary as well as dynamical behaviour of non linear

Schrödinger equations, that is, Gross-Pitaevskii equations. The toolbox is based on recent

and updated numerical methods and it is written inMATLAB R©, making it exceptionally

helpful when using the program.

25
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Eq. 3.15 obtained in Chapter 3 will be the basis of the following derivation. The equation

is given by:

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + Vext(r) + g | ψ(r, t) |2

]
ψ(r, t). (4.1)

Considering the following changes of variables:

• t −→ t
ω

.

• ψ −→ ψ

a
3
2
0

. with

a0 =

√
~
mω

. (4.2)

Now taking a term representing the non-linearity strength which describes the interactions

between atoms in the condensate defined as

β =
4πaN

a0

, (4.3)

the equation can be reduced to:

i~
∂

∂t
ψ =

[
− 1

2m
∇2 + Vd + βd | ψ |2

]
ψ, (4.4)

with d the dimension of the problem and N the number of atoms in the condensate. This

step is necessary to show the resulting equation which will be simulated by the numerical

methods.

Eq. 4.4 characterises the basic GPE to be solved and, by adding supplementary terms, a

specific problem can be defined.

4.1.1 Stationary states

For the purpose of computing a stationary state, like the ground state, it is necessary to

find the numerical solution to the equation given. Eq. 4.4 can be rewritten in a more

general way as:

i~
∂

∂t
ψ(t, r) = Ĥ

(
r,−i∇2

)
ψ(t, r). (4.5)

The stationary states are the eigenfunctions of the operator Ĥ. Then, for each eigenfunc-

tion, we have

Ĥ
(
r,−i∇2

)
φ(r) = µφ(r), (4.6)
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where µ is the associated eigenvalue.

That is, for a time dependent GPE a solution is given by

ψ(t, r) = e−iµtφ(r), (4.7)

with φ(r) a time independent function.

φ must be normalised: ∫
R2

|φ(r)|2dr = 1, (4.8)

In order to solve numerically the equation, an iteration method is needed.

In GPELab the imaginary time method is used, and the critical points are searched by

a Continuous Normalized Gradient Flow (CNGF) (for additonal information please refer

to [29–31]). This method consists in:

• a gradient flow on a certain time interval,

• a projection on the constraint manifold.

To further discretise the equation, time and space discretisation have to be considered.

4.1.1.1 Numerical Methods for time discretisation

Here I give a general introduction to the basis of the numerical methods used for time

discretisation. The time step is the key parameter to be introduced when using an

iterative method, and from now it is defined as ∆t.

Using the notation of the n-th time step as tn with a solution given by φn, an ordinary

differential equation is defined by:

dφ

dt
= f(t, φ), (4.9)

with f(t, φ) an arbitrary function and initial conditions φ(t0) = φ0.
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The two methods generally employed to solve these kind of equations are:

1. Backward Euler [32]

Taking Eq. 4.9 and applying:

φn − φn−1

∆t
= f(tn, φn), (4.10)

then,

φn = φn−1 + ∆tf(tn, φn). (4.11)

Next, by stepping the index n to n+1, the equation for the implicit method of Backwards

Euler is obtained:

φn+1 = φn + ∆tf(tn+1, φn+1), (4.12)

2. Crank-Nicholson [33]

The equation for the Crank-Nicholson method can be found as:

φn+1 − φn
∆t

=
1

2
f(tn+1, φn+1) +

1

2
f(tn, φn), (4.13)

and rearranging the terms, the following equation is obtained:

φn+1 = φn +
∆t

2

[
f(tn+1, φn+1) + f(tn, φn)

]
. (4.14)

The time discretisation method to be applied will depend on the type of problem to be

computed.

4.1.1.2 Numerical Methods for space discretisation

Spatial discretisation provides the use of a spatial grid, where only a discrete set of values

of φ is defined.

GPELab considers an approach based on Fourier series representations through Fast

Fourier Transforms (FFTs).

For more information to deepen into the calculation of these stationary states for the

general GPE please relate to [29–31].
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4.1.2 Dynamics

In this project the interest focusses on the dynamical simulations, rather than on find-

ing the stationary states. Therefore, the details of the numerical method used for the

dynamics will be presented in this section.

The scheme that is employed (and that needs to be utilised in most of the dynamical

simulation) is a relaxation scheme (Crank-Nicholson with a relaxed non-linearity).

4.1.2.1 The relaxation scheme

This scheme was introduced by Besse [34] and it is based in the Crank-Nicholson without

solving a non-linear equation (through a fixed point or a Newton-Raphson method).

First of all, the method is based on the the Crank-Nicholson since this is the only approach

conserving both density and energy.

The procedure applied to Eq. 4.4 with ~ = m = 1 is given by:
φn+1/2+φn−1/2

2
= β|ψn|2

iψ
n+1+ψn

δt
=
(
−1

2
∇2 + φn+1/2

) (
ψn+1+ψn

2

)
+ V n+1ψn+1+V nψn

2
,

(4.15)

with φn+1/2 = φ(tn+1/2, r), ψn = ψ(tn, r), V n = V (tn, r), and with initial conditions:

ψ0 = ψ0 and φ−1/2 = β|ψ0|2 [7, 34].

By applying the spatial discretisation using the pseudospectral method by Fourier expan-

sion (instead of a finite difference scheme, pseudospectral approximation of the spatial

derivatives can be used to get high-order accuracy [7]), the following system of equations

is obtained: {
[[φn+1/2]] = 2β[[ψn|2]]− [[φn−1/2]]

ARe,nψn+1 = bRe,n,
(4.16)

where the operator ARe,n is given by:

ARe,n :=

(
i
[[I]]

δt
+

1

4
[[∇2]]− 1

2
[[V n+1]]− 1

2
[[[φn+1/2]]

)
, (4.17)

and the vector bRe,n

bRe,n :=

(
i
[[I]]

δt
− 1

4
[[∇2]] +

1

2
[[V n]] +

1

2
[[φn+1/2]]

)
ψn. (4.18)
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These equations are the basis for the relaxation scheme applied in any dynamical simu-

lation using the toolbox GPELab.

Further clarification and details can be found in [7, 29, 34].

4.2 Spin-1 GPE for a spinor BEC in the environment

of GPELab

In the previous section a general introduction to the methodology followed by GPELab

has been given. Nevertheless, all the examples have been simple GPEs, whereas the

interest of this project is related to the dynamical simulations of the GPE for spin-1

spinor BECs.

The first step is to characterise the multicomponent case, that is, when there is a system

of coupled Gross-Pitaevskii equations.

4.2.1 N-components

Eq. 4.4 in the multicomponent case will take the form [29, 31, 35]:

i~
∂

∂t
Ψ(t, r) = −1

2
∇2Ψ(t, r) + V (r)Ψ(t, r) + βF (Ψ(t, r), r)Ψ(t, r), (4.19)

with Ψ = (ψ1, ..., ψN), F (Ψ(t, r) the non linearity matrix, and the initial conditions

Ψ(t = 0, r) := Ψ0(r).

The solution to the stationary state will have the form:

Ψ(t, r) = e−iµtΦ(r), (4.20)

where Φ = (φ1, ..., φN) is a time independent function.

Time and space discretisation are anew applied to the multicomponent case when the

stationary state is calculated.

Regarding the dynamics of the system, the relaxation scheme can as well be extended

when there is more than one component.
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Eq. 4.15 will take the form [7, 29, 35]:{
Φn+1/2+Φn−1/2

2
= βFΨn

iΨn+1+Ψn

δt
= −i

(
1
2
∇2 + Φn+1/2

) (
Ψn+1+Ψn

2

)
+ V n+1Ψn+1+V nΨn

2
,

(4.21)

with {
[[Φn+1/2]] = 2β[[F (Ψn)]]− [[Φn−1/2]]

ARe,nΨn+1 = BRe,n.
(4.22)

The operator ARe,n will result in:

ARe,n :=

(
i
[[I]]

δt
+

1

4
[[∇2]]− 1

2
[[V n+1]]− 1

2
[[Φn+1/2]]

)
, (4.23)

and the vector bRe,n

bRe,n :=

(
i
[[IN ]]

δt
− 1

4
[[∇2]] +

1

2
[[V n]] +

1

2
[[Φn+1/2]]

)
ψn. (4.24)

Adopting the multi component form, the ingredients to represent the equation for a spin-1

GPE for a spinor BEC are already available.

4.2.2 Spin-1 GPE for a spinor BEC

The three couple equations will represent the Zeemann sublevels as described in Chapter

3.

The Hamiltonian for the F = 1 spinor BEC in second quantisation was defined equation

in Eq. 3.27. The starting point will be the same equation without the magnetic field:

Ĥ =

∫ [
− ~2

2m
∇ψ∗α∇ψα + V (r)ψ∗αψα +

1

2
c0ψ

∗
αψ
∗
α′ψα′ψα +

1

2
c2ψ

∗
αψα′SαβSα′β′ψβ′ψβ

]
dr,

(4.25)

and the three component wavefunction Ψ(r, t) = (ψ1(r, t), ψ0(r, t), ψ−1(r, t))T are de-

scribed by the coupled equations [36, 37]:

i~
∂

∂t
ψ1(r, t) =

[
− ~2

2m
∇2 + V (r) + (c0 + c2)(|ψ1|2 + |ψ0|2) + (c0 − c2)(|ψ−1|2

]
ψ1+c2ψ

∗
−1ψ

2
0,

(4.26)

i~
∂

∂t
ψ0(r, t) =

[
− ~2

2m
∇2 + V (r) + (c0 + c2)(|ψ1|2 + |ψ−1|2) + c0(|ψ0|2

]
ψ0 + 2c2ψ−1ψ

∗
0ψ1,

(4.27)
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i~
∂

∂t
ψ−1(r, t) =

[
− ~2

2m
∇2 + V (r) + (c0 + c2)(|ψ−1|2 + |ψ0|2) + (c0 − c2)(|ψ1|2

]
ψ−1+c2ψ

2
0ψ
∗
1.

(4.28)

Hence, using the change of variables like in Section 4.1, the coupled GPEs in d dimensions

can be written as:

i
∂

∂t
ψ1(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ1|2 + |ψ0|2) + (βn − βs)(|ψ−1|2

]
ψ1+βsψ

∗
−1ψ

2
0,

(4.29)

i
∂

∂t
ψ0(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ1|2 + |ψ−1|2) + βn(|ψ0|2

]
ψ0 + 2βsψ−1ψ

∗
0ψ1,

(4.30)

i
∂

∂t
ψ−1(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ−1|2 + |ψ0|2) + ((βn − βs)(|ψ1|2

]
ψ−1+βsψ

2
0ψ
∗
1,

(4.31)

where

βn =
Nc0

a3
0~ω

, (4.32)

and

βs =
Nc2

a3
0~ω

. (4.33)

Eq. 4.29, Eq. 4.30 and Eq. 4.31 are the equations to be simulated to study the dynamics

by applying a spin echo sequence.

The results representing the evolution of the spins with time will be presented in the next

chapter .



Chapter 5

Spin evolution according equation

results

As it has been described in Chapter 2, the spin echo technique can be used to explore

the physics that is associated with a variety of models, making this technique a doubtless

tool in a wide range of fields.

The purpose of this chapter is to analyse the behaviour of spin-echo applied to a spinor

BEC, evaluating how the spin density vector evolves in time. Additionally, the stationary

states with and without magnetic field are investigated.

The chapter is organized as follows: in Sec. 5.1, the general parameters for the case studied

are set. In Sec. 5.2, the case of a spin-1 spinor without any magnetic field is investigated.

The simulation is performed with the additional magnetic field in Sec. 5.3. Lastly, in the

same section, the spin evolution under a spin echo pulse sequence is examined.

5.1 Election of parameters for the simulation

The specific Bose-Einstein condensate studied in this project is a 87Rb BEC trapped by

a harmonic potential of frequency ω.

33
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The equation to be simulated is the two-dimensional spin-1 Gross-Pitaevskii (GP) equa-

tion for a spinor BEC, that is, the three coupled equations derived in the previous chapter:

i
∂

∂t
ψ1(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ1|2 + |ψ0|2) + (βn − βs)(|ψ−1|2

]
ψ1+βsψ

∗
−1ψ

2
0,

(5.1)

i
∂

∂t
ψ0(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ1|2 + |ψ−1|2) + βn(|ψ0|2

]
ψ0 + 2βsψ−1ψ

∗
0ψ1,

(5.2)

i
∂

∂t
ψ−1(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ−1|2 + |ψ0|2) + ((βn − βs)(|ψ1|2

]
ψ−1+βsψ

2
0ψ
∗
1,

(5.3)

The different parameters will be described next, together with the specific values set

during the numerical simulations:

• ~ = 1.

• V = mω2 x2+y2

2
. For simplification during the numerical simulation m and ω have been

set up to 1.

• N = 104, as a typical value of the number of atoms employed in these kind of experi-

ments [38].

• For 87Rb, −c2 � c0, with values of c2 = −3.1 · 10−10 and c0 = 6.70747 · 10−8, by using

a0 = 101.8 and a2 = 100.4 (in terms of the Bohr radius aB = 5.2917720859 · 10−11) from

[23], and with the corresponding substitution in Eq. 3.21 and Eq. 3.22.

Consequently, the calculation of βn and βs as defined in the previous chapter will result

in βs = −3.1 · 10−6 and βn = 6.70747 · 10−4.

Once the variables have been specified, the simulations can be started.

NOTE1 ⇒ all results will be shown as a projection on the xy−plane.

NOTE2 ⇒ the following configuration was used for the simulations: CPU Intel Core i5

(1.3 GHz) CPU, Memory 4 Gb RAM, and the software was MATLAB R© version R2015a.
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5.2 Solution without any magnetic field

A substantial number of papers have been published focussed on finding the stationary

solutions, mainly the ground state, of BECs [35, 39–41], as well as in spinors BECs, such

as in [40, 41].

As discussed in Chapter 4, it is necessary to employ numerical tools to be able to solve

these kind of non linear differential equations.

The details and results of this computation are described next.

5.2.1 Model computation for the stationary solution

In the simulation performed here, using GPELab, the solution is found with a BESP

scheme (Backward Euler SPectral using Fast Fourier Transforms, see Chapter 4 for the

background on these numerical methods).

The system of coupled equations is the one described by the Eqs. 5.1-5.3 with parameters

defined as in the last section.

The time step chosen for the time discretisation has a value of ∆t = 0.1 with a maximum

of 10 iterations. The CPU time for this calculation was about 8.1 seconds.

Fig. 5.1 shows the modulus of the wavefunction for the solution of the ground state in

the 3 components, respectively:

Figure 5.1: The 3 components of the ground state solution for the 2D spin-1 spinor
87Rb BEC.

It is possible to observe that the three components are essentially identical.
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As an additional result, Fig. 5.2 represents the Sx component of the spin in the ground

state.

Figure 5.2: Spin component Sx in the ground state for the 2D spin-1 spinor 87Rb
BEC.

Fig. 5.2 looks practically as the ones in Fig. 5.1, but this is not a surprise, since the Sx

component is a combination of the three components of the wavefunction solution of the

equation, being the main difference the higher total intensity.

Being the interest of this thesis the study of the spin density vectors, Fig. 5.3 plots the

spin vector in the xy-plane, which is the desired final output for each of the cases to be

computed.

Figure 5.3: Spin density vector for the stationary state for the 2D spin-1 spinor 87Rb
BEC.
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The density contour lines give an idea of the regions with higher or lower total wavefunc-

tion density (from the three components).

The insights of the dynamics of these kind of systems where there is no additional gradient

or magnetic field can be of special interest, and it has been studied in the next section.

5.2.2 Model computation for the dynamics

The relaxation scheme is the numerical tool selected for the dynamics simulation, using

GPELab. The description of this method was covered in the Sec. 4.1.2.1.

The total time of the evolution has been computed with a time step of ∆t = 0.001 for

the time discretisation, corresponding to 10 iterations. The CPU time for this calculation

was about 12.89 minutes.

Figure 5.4: The 3 components of the ground state solution for the 2D spin-1 spinor
87Rb BEC letting the system evolve with time.

Fig. 5.4 displays the modulus of the wavefunction for the solution of the ground state

in the 3 components at the end of the evolution, and as expected, there is no particular

change in any of the components, since there is no additional term that can affect the

wavefunction of the ground state. However, extending the study to the spin density vector

evolution, as in Fig. 5.5, it can be recognised that in fact, there is a small contraction of

the high density vector contour.
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(a) Evolution after 100 iterations.
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(b) Evolution after 400 iterations.
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(c) Evolution after 700 iterations.
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(d) Evolution after 1000 iterations.

Figure 5.5: Spin density vector evolution for the 2D spin-1 spinor 87Rb BEC.

In the following section the results of the stationary solution as well as the dynamics

by adding a magnetic field will be presented. Ultimately, the spin echo is going to be

demonstrated.

5.3 Addition of a time-dependent magnetic field

In the last fifteen years few research papers have attempted the calculation of ground

states for spin-1 spinors BECs in a presence of a magnetic field [40, 42–44].
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The Hamiltonian for the F = 1 spinor BEC for a many-body system with a magnetic

field will be represented by the Eq. 3.27, repeated below:

Ĥ =∫ [
− ~2

2m
∇ψ∗α∇ψα + V (r)ψ∗αψα − gµBψ∗αBiS

i
αβΨβ +

1

2
c0ψ

∗
αψ
∗
α′ψα′ψα +

1

2
c2ψ

∗
αψα′SαβSα′β′ψβ′ψβ

]
dr

(5.4)

The three coupled equations taking into account the magnetic field will result in:

i
∂

∂t
ψ1(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ1|2 + |ψ0|2) + (βn − βs)(|ψ−1|2

]
ψ1 + βsψ

∗
−1ψ

2
0

− gµBB1 [cos(γB0t)x + isin(γB0t)y] [
1√
2
ψ0]− gµBB0ψ1z,

(5.5)

i
∂

∂t
ψ0(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ1|2 + |ψ−1|2) + βn(|ψ0|2

]
ψ0 + 2βsψ−1ψ

∗
0ψ1

− gµBB1 [cos(γB0t)x− isin(γB0t)y] [
1√
2
ψ1]− gµBB1 [cos(γB0t)x + isin(γB0t)y] [

1√
2
ψ−1],

(5.6)

i
∂

∂t
ψ−1(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ−1|2 + |ψ0|2) + ((βn − βs)(|ψ1|2

]
ψ−1 + βsψ

2
0ψ
∗
1

− gµBB1 [cos(γB0t)x− isin(γB0t)y] [
1√
2
ψ0] + gµBB0ψ−1z.

(5.7)

To be systematic in the calculations, the parameters must be defined for the atomic

species of interest, that is, 87Rb:

• The Bohr magneton will be set to 1 for the numerical simulation.

• The fine structure Landé g-factor for 87Rb 52S1/2 is ' 2 [45], as the value for a BEC

will be the one of the ground state of the atomic species.

The details and results of this computation are described next.
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5.3.1 Model computation for the stationary solution

The system of coupled equations Eqs. 5.5-5.7 is the one employed for this computation

without the time variant gradient, that is [46]:

i
∂

∂t
ψ1(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ1|2 + |ψ0|2) + (βn − βs)(|ψ−1|2

]
ψ1 + βsψ

∗
−1ψ

2
0

− gµBB0ψ1z,

(5.8)

i
∂

∂t
ψ0(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ1|2 + |ψ−1|2) + βn(|ψ0|2

]
ψ0 + 2βsψ−1ψ

∗
0ψ1,

(5.9)

i
∂

∂t
ψ−1(r, t) =

[
−1

2
∇2 + V (r) + (βn + βs)(|ψ−1|2 + |ψ0|2) + ((βn − βs)(|ψ1|2

]
ψ−1 + βsψ

2
0ψ
∗
1

+ gµBB0ψ−1z.

(5.10)

The value of the parameters has been previously defined. The magnetic field is the only

term not yet stated. The stationary states will have the following gradient magnetic field

B0:

B0 = (1.5)z T. (5.11)

A maximum of 10 iterations are evaluated with a discretised time step of ∆t = 0.1. The

CPU time for this calculation was about 12.36 seconds.

Fig. 5.6 represents the modulus of the wavefunction for the solution of the ground state in

the 3 components, and the major discrepancy with the stationary state without magnetic

field is the fact that the component 1, that is ψ1, has a higher intensity that the other

two, which appear to be very weak.
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Figure 5.6: The 3 components of the ground state solution for the 2D spin-1 spinor
87Rb BEC with additional magnetic field.

The spin Sx component has in this case a very low intensity, as Fig. 5.7 illustrates:

Figure 5.7: Spin component Sx in the ground state for the 2D spin-1 spinor 87Rb
BEC with additional magnetic field.

As the magnetic field acts in the z-axis, all spins have to be parallel to this axis, and a

zero projection of the spins on the xy-plane is expected. However, Fig. 5.8 shows another

result, due to the fact that all the simulations have been done in two dimensions, that is,

the spin density vector on the z cannot be represented here in the xy-plane, which is by

a similar result as the one without the magnetic field is obtained.
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Figure 5.8: Spin vector in the xy-plane with additional magnetic field.

The next section is the most relevant within this research project, as contains the simula-

tion results of the dynamic evolution of a spin-1 spinor BEC in the presence of a magnetic

field applying a specific pulse sequence, the spin echo.

5.3.2 Spin echo dynamics

The dynamics of the system is described through the time dependent magnetic field

represented by the following equation:

B = B1 [cos(γB0t)x− sin(γB0t)y] , (5.12)

with B1 = 0.1B0 and γ is the gyromagnetic ratio, set to 1 for the numerics.

The results and details of the evolution are described below.

5.3.2.1 Model computation

For this simulation the system of coupled equations Eqs. 5.5-5.7 have been evaluated.

Repeatedly, a relaxation scheme is employed in the numerical tool for the dynamics

simulation.

The time step chosen for the time discretisation has been ∆t = 0.001 and the total time

ωt = 20. The CPU time for this calculation was about 4.15 hours.
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Figure 5.9: The 3 components of the ground state solution for the 2D spin-1 spinor
87Rb BEC with additional magnetic field.

Fig. 5.9 illustrates the modulus of the three component of the wavefunction, where the

first component has higher intensity value. Moreover, a distortion of the second a third

component is observed.

The spin echo sequence is displayed in Fig. 5.10 with the dynamics of S projected on

the xy-plane. The spins start to get oriented on the y-axis after the π
2

pulse (see figure

Fig. 5.10 (a)), to continue precessing on the plane in (b) and (c). At a time ωt = 6.51, the

spins reverse the direction, after the π pulse is applied in (e). The coherence of the spins

becomes observable through figures (f) and (g), and the spins will become refocussed

almost at the end of the evolution, at ωt = 16.01, as observed in figure (h).
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(a) ωt = 1.01 (b) ωt = 2.51

(c) ωt = 5.51 (d) ωt = 6.51

(e) ωt = 7.51 (f) ωt = 9.01

(g) ωt = 9.51 (h) ωt = 16.01

Figure 5.10: Spin echo time evolution of the spin density vectors S projected on the
xy-plane.
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5.4 Results discussion

In this chapter, the simulation results for the stationary solution as well as the dynamics

of spin-1 spinor BEC have been proposed, to study the spin density vector evolution in

the different cases proposed.

Using the numerical tool GPELab it is possible to simulate special cases of Schrödinger

equations, mainly non linear ones, or Gross-Pitaevskii equations.

By having a 87Rb BEC trapped by a harmonic potential, it is possible to represent the

three different Zeemann states or couple wavefunction equations.

The three components of the resulting wavefunction in the different models have been

analysed, showing very interesting discrepancies when the system evolves in time.

As well, the spin density vector has been represented, as the main focus for this research.

At first, without any additional term, the stationary solution as well as the dynamics

of the system has been evaluated, curiously highlighting a small contraction of the high

density vector contour in the spin density vector representation at the end of the evolution.

Secondly, by adding a magnetic field, the system has been evaluated in two cases: a

stationary state with a magnetic field in the z direction, and the dynamics under a spin

echo sequence represented by a time variant gradient in x and y axis. The application of a

magnetic field in the stationary state is mainly observed under the difference in intensity

within the three components of the wavefunction.

The most interested behaviour appears when a time variant magnetic field is applied. A

distortion occurs with time in the second and third components of the wavefunction.

Also in the last section, the specific study of the spin echo applied to this type of BEC

have been demonstrated, where the spin time development is clearly observed in Fig. 5.10.

It is important to meantion here the discrepancies that can be found between these results

and the previous results from Yasunaga and Tsubota papers [5, 6], considering:

- only short range interactions have been taking into account during all the simulations,

- there are always small errors associated to any numerical computation. Therefore,

numerical errors is probably the main reason on the differences obtained,
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- as well, there is no detail of the numerical method employed by the authors, which leads

to obvious variation in the results,

- last but not least, the value of the different parameters can vary, resulting in small

discrepancies during the dynamics evolution.

In summary, the application of special radio-frequency techniques, as spin echo, can be

observed in a variety of physical models, and by using different numerical tools.

It is indeed very interesting to see how these kind of magnetic field affects the spin density.

Nonetheless, the possibility to observe how a pulse sequence effects the wavefunction offers

a new picture of the insights of matter a very cold temperatures, and can be applied to

numerous experiments and fields in the very near future.
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Chapter 6

Outlook and conclusions

6.1 Outlook

As a future direction of this research, the cases where also long range interactions are

present can be investigated, by including the dipolar constant term in the coupled equa-

tions. There is a number of research papers with the focus on spinor dipolar Bose-Einstein

condensates [5, 47–49].

Magnetic characterisation is another field in physics that benefits from magnetic resonance

in very cold temperature systems, as it has been already described in [49].

An important application of spin-echo is found in magnetometry, where very weak mag-

netic fields are detected [50]. Perhaps spin echo magnetometry based in very low tem-

peratures will be a new resource in the field of medicine.

An alternative approach for these simulations could be by employing wavelets. There are

early discussions in the scientific community about the possible advantage of using these

mathematical functions in the field of cold atoms.

48
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6.2 Conclusions

The realization of spin echo in a spinor Bose–Einstein condensate (BEC) has been previ-

ously proposed theoretically and numerically by Yasunaga and Tsubota [5, 6]. However,

the method used was not clear and the details of the algorithm have not been discussed.

In this document the application of an important and precise pulse sequence, spin echo,

to a specific type of Bose-Einstein condensate, a spin-1 spinor, has been studied. The

simulations have been computed applying numerical algorithms, by making use for the

first time in these kind of problems of GPELab, a MATLAB R© toolbox developed to

model non linear Schrödinger equations, the so called Gross-Pitaevskii equations.

Simulating the dynamics of spinor BECs, it has been possible to study the behaviour of

the wavefunction components as well as the dynamics of the spin density vector with and

without an additional magnetic field.

The simulations presented in this thesis are directly relevant to some ongoing experi-

ments, as deduced from several papers mentioned in the text, and fundamentally inter-

esting in terms of the dynamics of specific systems under a sequence of radio-frequency

pulses. It would be necessary to make a further study for other systems, perhaps by

changing the magnetic fields, or by using other numerical algorithms. Furthermore, other

atomic species, or molecules, must be simulated in order to broaden the fields of inter-

est. Moreover, the simulation of a BEC in three dimensions could reveal very interesting

perspectives in terms of spin dynamics under certain radio-frequency pulses. Other alter-

natives such as Carr and Purcel [14] sequence proposals could be indeed applied to low

temperature physics.

The research insights presented here are very useful for further theoretical and experi-

mental work. Although just a small contribution in this area fell within the scope of this

work, it has been clearly demonstrated that medical imaging techniques can be applied

to other kind of systems, as the ones simulated in this thesis, directly impacting other

areas of physics.
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