Zenith, but declining to the S W; which I found to be a Centre, from which many luminous Radii, of which the red Band was much the moft confiderable, proceeded. This Crown, or Centre, feemed, at that time, as near as I could judge, about the Place of Cancer; for it effaced all the neighbouring Stars, and I could but juit fee two Stars, which I take to be thofe in the Heads of the Twins; when the Brightnefs was moft faded: It would fometimes almoft difappear for near a Minute, and then kindle again, and dart Rays on all Sides; but thofe to the W. and N. were fhort, pale, and foon difappeared. Thofe which fhot South ward, were of a fiery Red; and the whole Southern Part of the Atmofphere was tinged with a red Brightnefs, which did not however reach quite down to the Horizon; for, to the $S W$, where my Profpect was lealt confined, I could fee Sirius, then about $15^{\circ}$ high beyond the red Light. The Houfes oppofite to mine hindered me from feeing, how far to the E. and N E the red and blue Rays extended. All this whilc, the N. and N W Parts of the Heavens feemed dark, by Reafon of the great Brightnefs in the E. and S: It was very clear however, and the Stars vifible. Abour 9, the red Band had covered the Tail of Urfa Major, having moved confiderably towards the $N$, the Centre continuing in the fame Place; and by degrees it faded fo as not to be diftinguiflable from the common Rednefs which was fpread over fo confiderable a Part of the Heavens. About 10 I went to the Riverfide, where I had a large Profpect to the SE; and found all that Part covered with a durky Red, quite down to the Horizon. There were afterwards fome faint Rays darted, fometimes from the Centre of this Phrnomenon, which has the Appearance of a common Aurora Borealis.
2. About $7^{h} 30^{\prime}$ the Sky to the N. was very clear, and the Stars -at London,
fhone bright; to the S and SE, as I was in the Skirt of the Town on the N W Side, the Sky looked obfcured, partly from a Mif, partly from the Snook of the City. At the fame Time there appeared a bright Column arifing fomewhat N. of the E, or about the E N E, cicty. ibid. p. which reached up with it's Point near to the Zenith, but going a little 839 South of it. This Column feemed to be the Boundary of the clear and obfcure Regions of the Sky above mentioned: It had an uniform fteady Light, without any Dartings or Shiverings; but it fometimes vanifhed for a few Minutes, and chen returned again all at once, not pocceding from the Bottom, but from the Side next the mifty Part of the Sky, as if it were only the Border of the Mift illuminated. About 8 this Column was grown much wider, and all of a Breadth, extending in the fame Direction beyond the Zenith to the W S W, as far as I could fee for the Houfes; the Addition to it's Breadth feemed to be all on the Southern Edge of it ; this whole Band was of a moft beautiful Pinkcolour. At $8^{\mathrm{h}}{ }_{15}{ }^{\prime}$ the Pbenomene remained the fame; but to the N N W there appeared fome whitifh Clouds about $20^{\circ}$ from the Zenith: Out of thefe arofe three beautiful Pyramids of Light, which extended VO L, VIII. Part. ii. Dddd very

## as Pe

 terborough by $t b_{0} R \in v$. Mr Timothy Neve, 1bid. p. $4+3$.very near the $Z_{\text {enith }}$; the middle of thefe Pyramids were of a beautiful Sea-green, which went off gradually in lighter Shades towards the Edges, which were of a bright White; the Colour of thefe very much refembled the Light of. Pborpborus. I obferved thefe Columns for fome Mirutes, and then, going in a-doors, faw no more of the Phenomenon; and was told, half an Hour after, that it was all over; but have been informed fince, that it returned again about ten; when the Rednefs furead, alinof univerfally, over the Southern Parts of the Heavens.
3. About $7^{\prime \prime} 30^{\prime}$, till almoft 9, it \{pread with Variety of Colours all over the Horizon, meeting in a Centre alnoft vertical, but fomewhat inclining to the $S$. The original Colours were fo mixed and blended in the common Centre, as by the vaft Variety eafily diftinguifhed, made a beautiful A ppearance. The fainter Colours came from the 2 oppofite Points of the NW and SE: The Blood red Crimfon, E $\mathrm{E}^{2}$. were feen chiefly in the NE and SW. The Wind, I think, full N, but very fill. The 3 preceding Days were exceffive cold; the Barometer fell 8 or 9 Degrees, and we had very great Quantities of Snow, Hail, and Rain, mont of that Time; and, if I remember right, the Lights in the Air, of late Years, appear after fuch Storms, efpecially for 10 Years pift, when nur Winters have been unfeafonably mild, and our Summers cold and rainy.
IV. The Sky being all over cloudy, and a flrong S. Wind blowing,
an 27 Rorse by tlic Ablot Didacus de Revillas F.R.S. No. 460 . P . 744. Afr. छ\%. 17 +1.
Fig. 4 . at $6^{\circ}$ p. mir. a reddifh Light appeared between 45 and $55^{\circ}$ of S E Amplitude. The greateft Breadth of it above the Horizon was about $9^{\circ}$. But in a Part of the Sky neareft to the Horizon, darkened to about $1^{\circ}$, there was a Space of Light, almoft of the Figure of a Parallelogram, about $10^{\circ}$ broad, and $8^{\circ}$ high; which flone more in the upper Part than in the lower. Among the thicker Clouds there was one extremely black, A B, almoft parallel to the Horizon, extended above the Light toward the $S$.

In about $\frac{1}{2}$ an Hour the Light became more vivid, and then fenfibly diminifhed again; which it did feveral Times till $9^{\text {b }}$. In the meantime a little thin Cloud, CD, parallel allo to the Horizon, appeared interfeeting the Light on the Southern Side. About $9^{\text {h }}$ other Clouds, proceeding from the E . toward the S . covered the Light, which was then fading, and about $9^{\text {h }} 30^{\prime}$ extinguifhed it entirely. After 12 there fell a great Shower.

The Barometer all this time ftood at the Height of 27 . $9^{\frac{1}{\text { P }} \text { Paris Inches. }}$ The mercurial Thermometer, which in boiling Water is at $0^{\circ}$, and in Snow mixed with $\frac{2}{5}$ of common Salt is at 180 , was then at 144 Degrees.

The fame Light was obferved more bright and diftinct, at the fame Time, by fome who were coming from Viterbo to Rome, and by others in the Via Valerig, 25 Miles to the Eatward of the City.
LVI. I. PARt II. Containing Meteorological Obfervations made at

$$
\left.\left.\begin{array}{l}
\text { Peterfburgh, } \\
\text { Lunden in Sweden, }
\end{array}\right\} 1724,1725 . \begin{array}{c}
\text { Lunden in } \\
\text { Sweden, }
\end{array}\right\} 1724 .
$$

A Yournal of Meteorological Obfervations made at Peterfburgh, By the Rev. Mr Tho. Confett, from Nov. 24, 1724, to June 23, 1725 , abfracted for the Ufe of the Royal Society. By W. Derham, F. R. S.

This Journal contains Obfervations, 3 times in the Day, of the Barometer, the Winds and their Strength, the Weather, and (after $A_{P}$ ril 15 ) of the Thermometer. Which Obfervations (although very curious and ufful) yet being too long, would be tedious to be read at the Societies Meetings; I therefore defire the following Extract may be acceptable.

Mr Conjett, from the beginning noteth down the Barometrical Variations, but I know not his Divifions, and Degrees, 'till Dec. 18, at $3^{\text {'4 }}$ p. m and then the Barometer was at $3066 \mathrm{Wind}^{2} \mathrm{NE}^{\mathrm{r}}$ and fair.

From Nov. 24 to the End of the Month, the Weather was cloudy, with Snow, and a deep Snow on the laft Day, and fair on the 28 th. The Winds were E. and NE of 2 and ${ }_{3}$ Degrees Strength, 'till the 29 th and 30 th, and then $\mathrm{SE}_{3} \mathrm{~S}^{4}$ and $\mathrm{SW}_{3}$.

In Dec. it was cloudy, with fome Snow, 'till Dec. 8, and 9, which were fair Days. Then cloudy on the roth and 11th, and Rain in the Evening. Afterwards fome cloudy and moift Air; fome fair, 'till Dec. 23, and then Hail; Wind S W3. The next Day Snow; and the reft of the Month fome cloudy and dark, with Snow, and fome fair. The Barometer, ever fince the 19th, hath been above 30 Inches, and on Dec. 26 , it was 30.84 ; on Dlec. $30,30.96$, and 31.00 ; and lartly on Dec. 31, it was 31.12.

In $\dot{f}$ cin $1724-5$, on the 3 d Day, the Barometer was at 3065 , on the $4^{\text {th }}$ before Noon $3^{1 .} 3^{2}$, after Noon $3^{1.36}$, but on the $5^{\text {th }}$ it was in the Afternoon 31.59, the Wind S W' and cloudy Weather, which is the higheft Range of the Quick-filver in all the Obfervations, and if I miftake not, the higheft I ever met with any where, and at any time. On the other Hand, the loweft Range was on Felmuery 25, at 28.28; Wind W4. and Snow. The Barometer was above 30 Inches all the Beginning of $\mathcal{f m}$. 'till the 18 th, and then it gradually fell to 28.36 . The Winds, for the moft part, were in fome Wefterly Point 'till 7on. II, and then S E2 with fair, and an hard Froft for a Week; the Weather, before the ith, being cloudy and moift, with fome Snow now and then, and a little Rain on $\mathcal{F}$ m. 1. All the reft of $\mathcal{F a n}$. was, for the moft part, cloudy with Snow, and but little fair, and that attended with Froft.

## Meteorological Diaries at Peterfburgh.

In Feb. the Barometer continued high, until, by a gradual Defcent, it came to 28.98 , on Feb . 15, and 17; Wind Wefterly 3. and 4. But on Fib. 25, it fell to 28.28; Wind W , and is abovementioned. The greateft Part of this Month the Weather was cloudy, and fometimes with thick Darknefs, frequent Snow, and now and then fair, with Tharp Froft.

All Marck the Barometer was above 29 Inches, fometimes above 30. The greatef Part of the Month was cloudy, with frequent Snow, and fome fair, with fharp Frofts; the Winds were variable, and their Strength about 1 and 2 Degrees all the Month, and feldom at 3 Degrees, nor calm at any time.

All April the Barometer was above 29 Inches, and under 30. In the Beginning of the Month Snow and cloudy, with fome fair, and marp Frofts, 'till Apri! 13, when Mr Conjet faith, the continual WinterFrofts were thawed; and that on the 15 th they left off their Fires in their Stoves. After this, fome cloudy, fome liain, and fome fair; the Winds, were variable, commonly $x$ aid 2 Strength, now and then 3 , and not any Day 0 .

From April 16, he obierved the Thermometer; which being one made by Mr Haukfee ftood at 51 , which is between cold Air, and temperate; the freezing Point being at 65 ; it then rofe for fome Days to 46, and 40, 'till on the 22 d it was at 36 , and towards the End of the Month it fell again to 47 .

All May the Range of the Barometer was between 28 and 29 Inches; and for the moft part above 2950 . The Thermometer was on the ift Day at 52.8 , and continued rifing to 50 on the 7 th, where it ftood to about the 14 th, and then arofe to 40 for the following Days, being at 40.25 on the 1 yth in the Morning, Wind $S^{2}$. and fair, when in the Evening of the fame Day it arofe to 30.34 , Wind W2. with Rain; it foon got down again to 40 for feveral Days; but from the 27 th to the End it was about 30.50. This Month had much more fair than any of the preceding Months, together with fome cloudy with Showers, and fome heavier Rain.

In Fune the Range of the Barometer was (as in the laft Month) between' 28 and 29 Inches, but more frequently under 29.50 than it was in that Month. The Thernometer was all this Month between 40 and 41 , only on the $1 \mathrm{ft}, 2 \mathrm{~d}, 3 \mathrm{~d}, 8$ th, 1 ith, 13 th, 23 d Days, it was a little above 31, but never fo high as 30 , which is between warm Air, and Hot. On fune 2, Rain fell with Hail. And (as I have obferved in fome of thefe Papers) that Cold in Summer produces Rain, fo much Rain fell on Fune 5; after which, fome cloudy, with frequent Showers, and many Days fair, to fune 23, on which the Obfervations end.
Thus I have given an Abftract of the Meteorological Obfersations at Peterfourgh, and have taken what Care I could to note fuch Matters as may give the Society a juft Notion of the State of every Month at that


Place, and that which was moft obfervable in it. I could wifh, that either the Society, or I myfelf could have had fome Obfervations in the more Southerly Parts, to have tallied with thefe.

Thefe Obfervations not coming to Hand 'rill I had finifhed thofe at Appendix to to Pelerfourgh, I am forced to fubjoin them by way of Appendix; and forgoing 06 . the if Obfervation I fhall make, fhall be of the Range of the Mercury in the Barometer, which feems to be different in both Places, as far as I can judge of the Matter, by the few Obfervations that tally with one another, which is only from Dic. 18, to the End of that Month, Mr Confett's Barometrical Divifions before that time not being intelligible: And in all that Fortnight's time, the Peterflurgb Barometer was above 30 Inches, and once above 31 ; whereas that at Lunden was but a little above 29, and but once at 29.6: And indeed, through the whole Year, the I.unden Barometer, I obferve, was only now and then below 29 Inches, and much feldomer above 30. But I fhall perhaps be better able to give an Account of thefe Matters when I come to the Obfervations of future Years.
2. As I have taken Notice in other Places, fo I find in thefe Oblervations a great Conformity between the Winds, efpecially when ftrong for fome time, and when they have been for fome time in or near the fame Quarter.
3. As for the Weatber, no good Judgment could be made of it in the Space of five Weeks, which is all the time in which the Obfervations tally: Only I take Notice that Thunder was more frequent at Luiden than Peterfourgh during that time.

Having taken Notice of the Obfervations in 1724, that tally, I proceed to the whole Year's Obfervations of Lunden.

I begin with the Barometrical Ranges, which will be beft feen and compared by thefe two little Tables; the firft of which is, in part, the curious Author's, viz. the mean Heights of the Mercury; to which I have added the higheft and lowent Ranges in each Month. And becaufe it will take up but little Room, I have added the Author's Mean of his Thermometrical Obfervations, although, I confefs, I farce underftand: the Divifions of his Thermometer.

The Higheit and Loweft Ranges of the Barometer, and the Mean of the Barometer and Thermometer at Lasden, in the Year 1724.

An AbBrad or the Mletcorobo gical Obferviso tions of the whiole Year 1724, made. at Lunden in Sweder. By Abridged for the Ulic of the Royal Society. By W. Derhath F. R.S.

Meteorologital Diaries at Lunden in Sweden.

|  | 7uly | Augrif | Septem. | OElober | Noie | Decerts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{High}}$ | 29 | 29.9 | 29.9 | 30. $\frac{1}{2}$ | 30. $\frac{1}{2}$ | 30 |
| Mean | $29.2 \frac{12}{1}$ | $29.5{ }^{\frac{1}{3}}$ | 29. 3 | 29. 5 | 29. 5 | 29.2 |
| Low | 28. 8 | $29.2 \frac{1}{1}$ | 28. 7 | 29. | 28. |  |
| Ther | 34 | 23.5 |  | 15.1 |  |  |


| A. D. 1724 and 172 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  | 31.12 | 31.59 | 30.36 | 30.35 | 29.87 | 29.99 |  |
| ean | 30.61 | 29.97 |  | 2976 |  |  |  |
|  |  | 28 |  |  |  |  |  |

The Heights of the Thermometer.

| High | - | - | - | - | 36.0 | 30.34 | 3070 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean | - | - | - | - | 45. | 40.98 | 40.0 |
| Low | - | - | - | 54.7 | 52.8 | 40.63 |  |

By comparing thefe two Tables together, it is manifert that the Mercurial Afcents are much greater at Peterfourgh than at Lunden, and that the Defcents are nearly the fame; fo that the Range of the Barometer at Peterfourgh is 3 Inches, 31 bundredth parts; but at Lunden only I Inch, and about 8 Tenths. And the greatelt Height of the Thermometer at Peterfourgh, was on May 17, 30.34.
of the winds In fan. the Winds were, for the molt part, about the W. and S
and Weather at Lunden, in 1724. Points, and frequently very boifterous. The Weather was fome cloudy, fome fair, frequent Rain, but no Cold taken notice of 'till 7 an .30.

In Feb , the Winds frequented the fame Points as in $\mathcal{F a n}$. but they lay more between the N. and E: than then ; and they were very boitterous oftentimes. In this Month Snow was fiequent, and now and then Thunder, and but little fair Weather.

In March the Winds were very variable, and fometimes ftrong. The Weather more ferene than before, with fometimes Snow, and towards the latter End Rain, and now and then a Froft.

In April the Winds were more Northerly and Eafterly than in March, and not very ftrong. The greateft Part of the Month was freezing, and fair, with fome Days of Rain with Thunder.

The Beginning of May to the 1 6th the Mornings were frofty, with fome Rain, fome Snow, and fome fair the reft of the Day; after the 16th fome Rain and fome Snow; and towards the End of the Month fairer. The Winds were variable, brifk, and about the 23 d , 24 th, and 25 th, ftormy.

In fune the Winds variable, pretty brifk, and ftormy on the 1oth, 1 Ith, and 12th; then the Weather for the moft Part fair till the I5th; after that cloudy, and but little fair, with frequent and plentiful Rain.

Fuly alfo was a cloudy, wet Month, with but little fair, and fome Thunder, which was fometimes violent. The Winds, for the moft Part, were between the $W$. and $S$. and moderate.

In Aug. the Winds were more Northerly and Eafterly than in Fuly, and fometimes between the W. and S , and moderate in all the Points. The firft 9 or 10 Days were, for the moft Part, fair; after that, 9 or 10 Days, more cloudy, Rain, Lightning in the Evening, loud Thunder and Rain in the Day, and fome in the Night; and from the $20 t h$ to the Month's End fairer, with cloudy, Hail, and Rain.

In Sept. the Winds frequented the Northerly and Wenterly Points, were brifk, and fometimes ftormy ; the Mornings, for the moft Part, cloudy the 9 firt Days, and fairer the reft of the Day. The greateft Part of the reft of the Month was rainy, with Plenty of Snow on the $25^{\text {th }}$; then Rain, which continued in the Month of

OEF. during the 9 firft Days; the reft of the Month was clondy, with now and then Hoar-Frofts, and fome fair. The Winds varicd often, but were the moft frequent in fome of the Southerly and Wefterly Points, and not very high.

In Nov. the Winds were fometimes in the Wefterly and Southerly Points, but more frequent in the Northerly and Eafterly, for the moft Part of a moderate Strength. The 9 firl Days the Weather was cloudy, then Snow and Froft to the 17th; then to the End cloudy, Snow, Hoar-Frof, Rain, and but little fair, and that in the Morning

In Dec. the Winds were moderate, and often in the Southerly and S W Points, feldom Northerly. The 5 firft Days were cloudy and wet; then Snow and Froft the 6th, 7 th, and 8 th ; then cloudy to the 13th; then Hoar-Froft, and fair on the 14th, 15 th, and 16 th ; then cloudy, with Thunder, Rain, Snow, and Froft, at diverfe Times, in the reft of the Month.
2. Part III. Containing Meteorological Obfervations made at


Continued bs the fank, Nc. 433. P. 334 july, E゚c. 1734.

An Abftract of Metegrological Obfervations made in the Year 1726 , at Berlin, by the Sociery there, and communicated by Fob. Theod. Jablongk; and in Sweden, at Lunder, by Conrad Quenfel, Math, Prof yingius, Pastor and Provoft of the Place; and at Upfale, by Eric Burman, Aftron. Prof. in the Guftavian Academy; and at Bygden, in WeftroBothnia, by the late Jacobus Burman, Pastor of the Place; and laftly, at Pitbea, in the fame Province, by Clave Burman, and ISrael Steckefenus, Students.

Thefe Obfervations have, with fo great Judgment, Diligence, and Care, been made, rome twice, and forme thrice every Day, that I with they could be publifhed as they are; but by reafon they are too nomerous and bulky to be capable of that, therefore I have contracted them as well as I could, to make them ufeful to the Society; and that not without a great deal of Trouble, by Reafon of the Difficulty to give a tolerable brief Account of fo great a Variety and Number of Obfervazions, as are thole of the Winds, and their Strength, the Weather, the Barometer, Thermometer, $₹ c$. of fo many Places, and fo many Times every Day in the Year.

The mont ufeful of the Barometrical Obfervations I have reprefented in the following Table; which Thews, at an early View, the highest, loweft, and mean Heights of the Quickfilvcr in every Month, at the feveral Places.


Metcorological Diaries at Berlin, and in Sweden.

|  | September. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Berlin | Lun | \| Bettna | Upfa.\|Pithea | Berl | Lun | -tt | Upala |  |
| $\overline{\text { High }}$ | 28.6 | $29.7{ }^{\text {² }}$ | 30.28 | 30.00'29.80 | 28.10 | 30.1 | 30.55 |  |  |
| Mean | 28.1 | $29.1{ }^{3}$ | $29.57^{2}$ | 29.2929.20 | 28. 3 | $29.1{ }^{2}$ | 29.57 | 29.28 | 29. |
| L. | 27.8 |  |  |  |  |  |  |  |  |
|  | November. |  |  |  |  | December. |  |  |  |
|  | Berlin | Lun | Bettna | Upfa Pithea |  | un. | Bettn | Uprale | Pithe |
| High | 29 | $30.1{ }^{\frac{1}{4}}$ | 30.80 | 30.5130 .19 | 29.1 | $30.0{ }^{\frac{1}{3}}$ | 3050 |  |  |
| Mean | 287 | 2952 | 30.00 | 29.7329 .24 | -8 |  | 29.65 | 28.83 |  |
| L | 28.1 ${ }^{\frac{1}{7}}$ | 28.92 \| | 29.20 | $\|28.90\| 28.29$ | 咗 | 8 | 128.80 | 88.80 | 28. |

Although this Table may give a good View of the Barometrical Ranges at thé feveral Places in every Month of the Year 1726, yet I think it neceflary to acquaint the Society with the great Agreement between the Afcents and Defcents of the $\neq$, fometimes at the very fame Time, and generally near it. If the $\neq$ was remarkably high or low, it was fo in all, or moft of the Places: If ftationary for 3 or 4 or more Days, it was the fame in all. Only the Alteration would begin, or end, fomewhat fooner, or later, perhaps, in one Place than another; and when any Deviation was from this Rule, it was commonly moft remarkable in the Pilben Obfervations.

The Thermometrical Obfervations I can give no Account of, by reafon I underftand not the Thermometers there made ufe of, not the freezing, temperate, or other Points. Only the Upfale Thermometer (which was made by ${ }^{\circ} \mathrm{Mr}$ Haukfluee) muft ferve for all: In which the Point of extream Heat is marked 5 Degrees above 0 ; and fo is graduated downwards to $45^{\circ}$, which is the Point of temperate; and $65^{\circ}$, which is the Point of freezing. The Mean of all the Degrees of every Month, at Upfale, the illuftrious Burman hath noted according to Dr furin's Directions; which is, by adding the whole Month's Degrees, and dividing by the Number of Days. Which Means I have inferted, as well as my own; mine being the Means between the highert and loweft Degrees, as well of the Thermometer as Barometer. And becaufe I forgot to infert the Barometrical Means of the illuftrious Lunden and Pitbea Obfervers (which are according to Dr 'Furin's Way) but took only thofe between the higheft and loweft Stations, therefore I have given this little Table of them.

| January. | February. | March. |
| :---: | :---: | :---: |
| $\left.\frac{\text { Upfale }}{29.76 \frac{10}{31}}\left\|\frac{\text { Pithea }}{}\right\| \frac{\text { Upfale }}{29.47 \frac{1}{1+}}\left\|\frac{\text { Pithea }}{}\right\| \frac{\text { Upfale }}{29.5 \text { I } \frac{9}{31}} \right\rvert\, \frac{\text { Pithea }}{29.28 \frac{1}{13}}$ |  |  |
| VOL. VIII. Part ii. | Eeee |  |
| April. |  |  |

ATable of the Mean Barome. trical Stations, by $D_{r}$ Jurin's Was.

Metcorological Diaries at Berlin, and in Sweden.

| April. | May. | June. |
| :---: | :---: | :---: |
| $\left.\frac{\text { Upfale }}{29.769} \right\rvert\, \frac{\text { Prthea }}{29.49}$ | $\left.\frac{U \text { Upale }}{29.91 \frac{13}{1!}} \right\rvert\, \frac{\text { Pithea }}{29.82}$ | $\frac{\text { Upfale }}{29.59 \frac{4}{15}} \left\lvert\, \frac{\text { Pithea }}{29.499^{\frac{3}{3}}}\right.$ |
| Juty. | August. | September. |
| $\left.29.53 \frac{11}{\frac{11}{11}} \right\rvert\, 29.38 \frac{3}{9}$ | $29.544^{\frac{1}{3}} 129.27^{\frac{17}{17}}$ | $29.34 \div 129.14 \frac{1}{6}$ |
| October. | November. | December. |
| $2943 \frac{13}{11} 129.11 \frac{10}{10}$ | $29.81 \frac{1}{10} \left\lvert\, 29.49 \frac{23}{\frac{23}{10}}\right.$ | 29.66 27 \| $29.19 \%$ |


| A Thermome rical Table of sise bigbofs, lozece, and mean Stations Whlunden and the Upíale jilsans, acsord́ ing 10 Dr Jusin's Mesliod. |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



By this Table, efpecially by the Upfale Obfervations, it appears, that the colder Months in this Year 1726, were not fo exceffive cold, as their Northerly Situation would incline one to imagine, Uffale itfelf being $60^{\circ} \mathrm{N}$. But by the Table, fome of the Days in fan. Fib. and March, \&c. at the Beginning of the Year ; and of Sept. OEF. Nov. and Dec. at the fatter End of it, may be obferved to have had the Thermometer fometimes not fo low, or very little below the freezing Point. In $7 a n$. and Dec. for Inftance, when it was at 67.7 , which was lower than in the other Months, it was not 3 Degrees lower than the freezing Point, at $\sigma_{5}^{\circ}$.

But by the beft Judgment I could make of the Berlin Thermometrical Oblervations, they feem to have had no lefs, if not more fevere Weather, than in the Northern Parts, particularly than at Iumden, Upfale,
and Pitbea, where the Weather feems to have been milder than at Betlina and Byodea; at which two Places I find they had frequently Showers and Storms of Snow, and more hard Weather than at the other Swedifb Places, or Berlin.

What the Caufe of this different Warmth flould be, I leave others to judge, whether the Proximity of the Sea, or the Warmeh of mineral Vapours, and the Guard of their Woods ikreening off the cold Winds (which two hatter I remember Ol. Magnus afcribes much unto).

But for the better judging of the State of every Mionth, be pleafed to take this View, which the curious Author of the Belina Obfervations hath given, together with fome Remarks of my own, from the other Places.

In fan. he fays, the Winter cold (which was very intenfe from the 23 d of Dec. to the 15 th of $\mathcal{F}$ an.) began to abate, to the Difadvantage of the Ways and Travelling.

In Feb. he fays the Winter Weather continued all the Month, to the middle of March, with fome Snow, and Froft enough to benefit the Ways and Travelling.

March he fays began with Snow, and formy and grievous Cold; but towards the latter End, the Weather was milder, and more feafonable to the Agriculture newly begun. On the 14th and 17 th was an Aurora Borealis.

In this Month, on the 17 th and 22 d , at Berlin alfo there were Signs of Aurore Boreales, as alfo on Feb .23.

Alfo at Upfale, a Lumen Boreale was on Feb. 27, March 3, 15, and 16 .

In Aprib, Betma is faid to have had a feafonable Seed-time; and that the autumnal Corn, which had efcaped the Worm (a Calamity I find common in thofe Parts as well as England) began now to flourifh.

At Lunden they had Parbelii on the 28th and 2gth. At Upminfler we had the Auroia Borealis, or Streaming, in the Evening, April 12 th.

In May the reverend and learned Obferver at Betma takes Notice, that by the continual and pernicious Heat of the Sun in this Monti, the Corn was fo burnt up, as to be a fad Prefage of an enfuing Scarcity, and Dearth of Provifions.

And at UPfale alfo, and Berlin, they mention great Drought, and exceffive Heat of the Sun. But in fome Parts of the Month, the Air at Berlin is faid to have been coldifh.

In June the violent Heats were abated, and the Seafon more moift and rainy. The Corn being too foon ripe, caufed their Harveft to fall out at a very unufual Seafon.

At Lunden and Berlin it was cold feveral Days and irkfome.
Guly I find was a rainy Month at Berlin, and moft of the Sivedib Places (Pithea the leaft). At Beimna it was very unwelcome to the Harveft-men. Much Thunder alfo and Lightning was in moft of the Places, chiefly at Upfale.

In Aug. I find a greater Agreement between the Winds than in the other Months, they, in moft of the Places, blowing from fome of the Points between the Weft and South. At Berlin and Upfale was much Rain, at Pitbea Thunder; and at Bettna the Beginning of the Month, being mild and fair, is faid to be a good Seed-time; but it is remarked, that for want of Kain the Seed came not up well.

Sept. was a very rainy Month in all the Swedifo Places, very cloudy, and fome mifty, and fnowy at Pithen; but at Berlin better Weather. At Lunden, a Parbelius on September inth.
In O8sober the Sasedijs Places had many Aurora Boreales. At Lunden, on OAZ. 8, 12, and 24. At Betma on the 8th, 10th, 12th, 13th, 15 th, 22d, 26 th. At $U_{P} f a l e$, on the 3 d, 6 th, and efpecially the 8 th. And the fame Fivening of OEF. 8, at Upminfter, we had a very remarkable whitith Lift, or Girdle went crofs the Heavens, from W. by S, to E, by N , about half a Degree broad; which continued but a little while, and then the whole Hemifphere was covered with freaming Vapours, in all Parts emitting Lances that pointed towards the Zenith, where they formed a Canopy; fometimes reddifh, fometimes darker, and fometimes blazing, as if fet on Fire, and emitting Lances every Way, fo as to make an Appearance of the Star which the Knights of the Garter wear. This Canopy moved fometimes fome Degrees Eaftward, and then would return back again near the Zenith. When the Vapours and Lances fhone out moft, I obferved a frange Commotion and Working in them, as if fome large Body was behind them, and difturbed them. This Aurora Borealis being different from thofe that ufually appear, I was minded to take this Occafion of mentioning it with others that were feen at the fame Time in Sweden.

The Weather in this Month was Rain, and hoar Frofts in the Swedi/h Places, with much Snow at Bygdea and Pitbea; a Parbelius at Lunden, OET. 14: And the illuftrious Betina Obferver faith, the Plenty of Rain this Month caufed the Corn to thrive much; and he reckons the 3 Ift Day of this Month to be then the firt Winter Day with them, it being frofty, and Abundance of Snow that Day. At Berlin it feems to have been a dark and cloudy Month, with irkfome Cold towards the Jatter End.

In Nov. Aurore Borsales were at Lunden on the 2d, 7 th, and 8 th; at Bettna the 2d. At Lunden and Upfale it was cloudy, foggy, Froft, and Snow: At Bygdea, Pitbea, and Berlin, fairer, with Froft and fevere Cold. At Bettna the Cold was very intenfe; the Heavens very cloudy and mifty.

In December, at Lunden Aurora Boreales were on the 5th, 6th, 7 th, Sth, 9th, 10th, 14th, 15th, 16 th, and 22 d Days; and at Upfale on the 5th and 6th; and at Berlin on the 7 th and 12 th there were Signals of the Aurora Boreales. Froft and Snow, cloudy and Fogs were at Lumden; at Upfale fome cloudy and foggy, and a pretty deal of fair fometimes: At Berlin much Froft, Cold, and a great Storm of Wind on
the 23 d: At Pitbea frequent Snow, and fome fair, fome cloudy. Bettna is noted to have moderately Snow, but twice more intenfe Cold ${ }_{3}$ to the great Benefit of the Ways and Travelling.
For the better underftanding the foregoing Obfervations, and for a Conclufion of them, it is to be obferved, that the Lunden Barometrical Obfervations were made with a Barometer graduated according to our Englifs Meafure, into Inches, and I fuppore Decimals of Inches. But the Thermometer (as I- faid) I underftand not.
The Betma Barometer alfo is graduated, according to Englifh Meafure, into Inches and Centefms,
The $U_{p}$ fale Barometer and Thermometer were both made by Mr Haukbee, and confequently are according to Englife Meafure; the Barometer having Inches and ceneelimal Parts; the Thermometer as I have before deicribed.
The Bygdea Obfervations the reverend Author did not live all the Year to finif, and there being none Barometrical, or Thermometrical, only a verbal Account of the Weather, and now and then of the Winds; therefore I have only, as Occafion ferved, taken Notice of thofe Remarks.
The $P_{\text {ithea }}$ Obfervations had none Thermometrical; and thofe of the Barometer feem to be in Inches and centefimal Parts.

## 3. Part IV. Containing Meteorological Obfervations made at

An Abridgment of the Meteorological Obfervations made in the Year 1727, at Naples, by Dr Nic. Cyrillus, Prim. Med. Prof. and at Bengal, by the Rev. Mr Bellamy, Chaplain to the Englifb Factory; and as Cbriftiana in Norway, by _communicated by $\mathrm{Mr} \operatorname{Pr}$. Kink. Extracted, for the Ufe of the Royal Society, by W. Derbam, E.R.S.

I fhall begin (as in my former Abfracts) with a Thort and eafy View of the Barometrical and Thermometrical Objervations, in thefe little Tables of them, which will be the more valuable, on account of the Obfervations being made (as I fuppofe) with fome of the Societics Glaffes, of Mr HaukJoee's Preparation.

The Barometrical Means of Naples are, both as they are fet down by the illuftrious Obferver himfelf, according to Dr $\mathcal{F}$ urin's Directions; and alfo as they are between the higheft and loweft Stations of every Month. Thofe of Norway are in the latter Way.


A Table of the Thermometrical Ranges at Naples, Bengal, and Chriitiana, in tbe Year 1727.

|  | Jan.\|Feb. March. $/$ April |  |  |  |  |  | Ju. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nap. Nap. Nap.\|Beng. Nap.|Beng |  |  |  |  |  | Nap Beng |  |  |  | Beng. Chritt. |  |
| gh |  |  |  |  | 55 | 5.3 | 30.0 | -20 |  | - |  |  |
|  | 47.1400 |  |  |  |  |  |  | , |  |  |  |  |
|  | '43.0135.0 |  | O. 1 |  |  |  |  |  |  | 95 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ap Beng | rift. | ft. | Beng | Ch | Ch | p | p | g | g | N |  |
|  | 17.015 .4 |  | 21.0 |  |  |  | 25.0 | 0 | 104 |  |  |  |
|  | 10 | 35 | 11.1 | 7.8 | - | 35 | 19.7 | 77 | 77 | 732. | $2{ }^{43}$ |  |
|  | 3.0101 |  | 7.3 | 0.2 |  |  | 14.5 | 55 | 50 | $\mathrm{l}_{21} \mathrm{I}$. | - | +3.2 |

Thefe Tables give an eafy View of the Barometir and Thermoncter in the feveral diftant Parts of the World fpecified: Which would have been very inftructive, had they been obferved throughout the Year, as they were at Naples.

By the Barometrical Obfervations it appears, that the Afcent and Defcent of the Quickfilver is not fo great at Naples as in the more Northerly Climes: For it was but twice in the whole Year above 30 Inches; and but thrice as low as 29.12 Inches. And fo I obferved, that at $Z u$ rich the Range is but about an Inch; but at Upminfler I find the higheft Afcent to have been 30.44 Inches; and the loweft Defcent 27.44 Inches, which is a Range of 2 i $^{\prime}$ Inches: And by my Account of the ${ }^{7}$ eterfourgh Obfervations in 1724, it appears that the Mercurial Range there is 3.3 I Inches. And as for Norway, the Obfervations are too few,
few, and all made only in the Summer Months, whercby no good Judgment could be made: And Bengal had no Barometer.
By the Thermometrical Table we may judge of the Heat and Cold of the feveral Places. For the right undertanding of which, I muft repeat what I faid in a former Abridgment, viz. that in Mr Haukfbee's Thermometers, the Point of Extream Heat is $5^{\circ}$ above o; that $45^{\circ}$ below 0 , is the Point of Temperate; and $65^{\circ}$, the Point of Freezing. But Dr Cyril faith it freezes with them at Naples when the Spirits are only got to $55^{\circ}$.
And as at Naples it freezes at a warmer Degree of the Thermometer, fo I obferve that at Cbriftiana the illuttrious Obferver complains of the vebencent Heat of the Sun in fuly, when the Spirits were but at 36 and $34^{\circ}$; in Aug. at 25,27 , and 28 Degrees, he lays, the Weather was exceeding bot. I thus diftinntly mention (as the Author doth) the Heat of the Sun, and the Heat of the Weatber, becaufe they may not mean the fame Thing, I having been informed by the Whale-Fifhers, that in Greenland the Heat of the Sun is farce tolerable on one Side of the Ship, when on the other Side it freezes hard.
At Bengal the Heat at fome Times feems to be very intenfe, by the Thermometer being, in fome Months, more Degrees about the o, than the Point of extream Heat is. As particularly in April, May, and Yune, it was 6,7 , and $8^{\circ}$ above o. But thofe excefive Heats are generally in the Afternoons, the Forenoons being more temperate, and the Temperature, or what they call Cold there, is at the fame Time of the Day. And the Degree of the Thermometer, at which they reckon it coldinh, is about $15^{\circ}$. And on May 2d, at 8 in the Morning, Mr Bellany faich (the Glafs being then at 20.4 Degrees) The Morning was like Winter Weatber in Europe.

Whether this fo different Judgment of great Cold at Bengals whetr the Thermometer was about $20^{\circ}$; and of exceffive Heat as Cbrifficiona, when it was but a little below that, viz, at $25^{\circ}, \mathcal{E}_{6}$. Whether, 1 fay, this Difference of Judgment arifes from fome Prejudice of the Senfes, or from fome extraordinary Quality in the Air, 1 leave (as Dr Cyril doth) to the Judgment of the learned Society.

As to the Weather, Winds, Rain, © ${ }^{3}$ c. of the feveral Places, it would be endlefs to meddle with Particulars, and therefore a tranfient View of every Month nuuf fuffice.
At Naples, Yan. was a cool Month, frequent Rain, with much Thunder and Storms of Wind. The Rain amounted to $15^{\frac{1}{2}}$ Mead fures (23 of which make an Engliff Inch in Depth) which is 4 Inches $19 \frac{1}{2}$ Meafures, or near 5 Inches Depth. Vefuvius was pretty quiet.
Feb. was a drier Month, the Rain amounting only to $I_{4}$ Meafures; which is but little above half an Inch deep. The Weather was for the mof Part cloudy, with forme Frofts, iveruetits empitted a thick Smoak.

## Barometrical and Thermometrical Rages at

At Naples, in March it was cold, with Hail, and Snow on the Moun. tains, the Rain amounted to ros Meafures, which makes 4 Inches, 9 Mcafures Depth. The Winds were in all the Points. Vefurius difcharged Rivulets of Fire.

At Bengal the five laft Days (which were all obferved in this Month) were fair, the Wind $S^{\text {? }}$.

In April the Winds at Naples were much in the northerly Points, cold, frequent Thunder, the Rain only 38 Meafures, which make I Inch, 15 Meafures. No Fire in Vefuvius the Beginning of the Month, but towards the latter End, divers Rivers of Fire and Smoak.

At Bengal the Wind was much among the foutherly Points, cloudy, fome Rain and Thunder. The Weather for the moft part temperate, but great Heats in the Afternoons.

In May, at Naples, the Wind lay much in the wefterly and foutherly Points. Rain $103 \frac{1}{2}$ Meafures, which makes 4 Inches $x^{\frac{1}{2}}$ Meafures Depth, with frequent Thunder. Vefluvius catt out Rivers of Fire, which reached almoft to the Bottom of the Mountain.

At Bengal the Winds varying, but for the moft part foutherly, with much cloudy, Rain and Thunder. The beginning of the Month colder than ordinary; afterwards exceeding hot.

In Fune at Naples, the Wind was much in the wefterly and northwefterly Points, but little Rain, only $6:$ Meafures, which is but about 2 quarter of an Inch depth.

At Bengal, much Rain with Thunder and Heat. On June 6th, it is noted, we are now pretty certain the Rains are fet in.

At Cbriffiana, the Oblervations begin on $\mathcal{F} u n e$ 22d. .The Weather temperate, and for the moft part cloudy, with Thunder, Hail and Rain.

Fuly, at Naples, was a very hot, dry Month, without any Rain, but frequent Mifts. Vefuvius quiet.

At Bengal frequent and nuch Rain, with Thunder and Lightning; for the moft part cloudy. Winds perpetually varying.

At Cbriftiana, great Rains with Thunder, frequent Fogs, fome fair, and Complaints of vehement Heat, alchough the Thermometer was but at 30 Degrees in that Month.

In Aug. at Naples, the Wind was in the wefterly and north-wefterly Points. Showers with Thunder were frequent, which amounted only to $49^{\frac{1}{2}}$ Meafures, which is but a little above 2 Inches Depth. And although, by the Table, the Weather feems to have been warm, yet there are frequent Complaints of the Air being cold. Vefuvius caft forth a large River of Fire.

At Bengal much Rain, with Thunder and Cloudy. Winds varying, but pretty much Eafterly. Weather fometimes very hot, but for the moft part more temperate than in fome of the other Months.

$$
\text { Naples, Chriftiana, and Bengal, in } 1727 .
$$

At Cbrifiana the Winds various; frequent Mifts, with cloudy, and fometimes fair, and fometimes Rain. Great Complaints of Heat, athough by the Thermometer no great Signs of it.

In Sept. at Naples, the Winds various, and very formy towards the latter End of the Month, with horrible Thunder, Lightning, and heavy Rain, which amounted to $220 \frac{1}{2}$ Meafures, making 9 Inches $13^{\frac{1}{2}}$ Meafures in Depth; which was more than fell in any Month of this Year, and drowned the Marhes, and did a great deal of Damage to Houles, Trees, Erc. Vefuvius was quiet at the Beginning, but fiery at the End.

Bengal, hath only the 7 firft Days Obfervations where the Wind was moftly eafterly, cloudy, and fhowery, with Thunder and Lightning.

The Obfervations of the remaining Months are all of Naples; where, in

OEE. the Wind was various, and fometimes ftormy, with Thunder; firquent Mifts, and fometimes heavy Rain, amounting to 107 Meafures, which make 4 Inches 15 Meafures, and in the Mountains Snow. Vefuvius turbulent in the beginning of the Month, and emitted a River of Fire.

Nov. was, for the moft Part, a cloudy mining Month, with Thunder and Rain; but of no greater Quantity than 73 Meafures, which are equal to 3 Inches 4 Mealures Depth Engijb. The Wind was more northerly than in any other Quarter. The Fire of Vefuvius lefs.

Dic. was a wet, unfeafonable Month, the Rain being 179 Meafures, which is 7 Inches 18 Meatures in Depth; which following the Rains and unfeafonable Weather of the preceding Months, fo damaged the Fruits of the Earth, that publick Prayers were ordered for fair Weather.

The Rain of the whole Year the illuftrious Obferver computes at 3 Englif Fret 7 Inches and $14 \frac{1}{2}$ Meafures. And to thew how much wetter this Year was than the others, he gives thefe Quantities of the Year $17^{24}, 2$ Englifh Feet 10 Inches, 14 Meafures; of 1725 . ${ }_{2}$ Feet 10 Inches, 17 Meafures; of 1726, 1 Foot, 11 Inches, $14 \%$ Meafures.

V O L. VIII, Partii.

## Continued bj

 the fame.4. PARTV. Containing Meteorooogical Obfervations made at Hall in Saxony, 1729.
Goflar
Wittemberg
Naples
Sonthwick

\[\)|  Lunden  |
| :--- |
|  Swenxker  |
|  Rifinge  |
|  Bettna  |
|  Upfale  |
|  Iudinkfwala  |
|  Hernofand  |
|  Bygdea  |

\]

An Abftract of Meteorological Obfervations made at Hall in Saxony in $17^{2} 9$, by Fob. Foacb. Langen, Math. P. P. O. and in the Year 1728 , at Gofar in Lower Saxony in Gerinam;, by Foh. Conrad. Trumpbius, M. D. \& Pract. Goflar at Wittemberg in Saxony, by fob. Fred. Wrialer, J. U.D. \& Math. Super. Prof. in Acad. Witteb. at Naples, by Nic. Cyrillus, in Urbe Neap. Pr. Med. Prof. at Soutbwick in Nortbamplonfoire, by Geerge Lynne, Elq; and in Sweden, at Luxden, Betma, Upfale, and Bygdea (mentioned in 1726,) to which the illuftrious Obfervers have added Obfervations from Swencker, in Wefro-Gotbia, Latitude $58^{\circ} 10^{\prime}$, by Torftanius Vaffenius, V. D. Minitt. in Waffenda; at Wifing $\int e$, by Magnus Oxelgren, Leet. Gymnafii; at Rifinge in Oftro-Goth, by Sueno Laurelius, Paft. and Provoft, at Stockbolm, Lat. $59^{\circ} 30^{\prime}$, by Fob. Backman, Citizen; at Hudickfoald Helfingorum, by Olave Broman, Paftor there; at Hernefan:I and Angermann, by Fack. Renmarck, Math. Lectore; at Lafanger and Umea, Lat $63^{\circ} 43^{\prime}$, by Bern. Afk, Theol. Stucl, and at Torneao, in Weiftro-Goth. Lat. $65^{\circ} 43^{\prime}$, by Abr. Fougbt, Paftor there. Extracted for the Ufe of the Royal Society, by William Derbam, D. D. F. R. S.
ATable of the
Higbef, Mean,
and Lowewf
Baronnetrical
Seations, in the
Year 1728 .

|  | January. |  |  |
| :---: | :---: | :---: | :---: |
|  | High | Mean | Low |
| Hall | 29.4 | $28.7{ }^{-1}$ | 28.1 |
| Gofar |  |  |  |
| Wittemberg | 30.2 ${ }^{\frac{1}{2}}$ | 29.5 | 28. 9 |
| Naples | 29.38 | 29.50 | 29.12 |
| Southwick | 30.08 | 29.37 | 28.67 |
| Lunden | 30. | 2946 | 28.72 |

 March.


JANUARY:

|  | anuary. |  | February. |  | March. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | High | Nean Low | High M | Mean Low | High | Mean 1 | L |
| enxker | 30.36 | 29.6829 | 30.352 | 29.32 28.29 | 29.732 | 90 |  |
| Rjifinge | 30.20 | 29.5528 .90 | 30.202 | 29.522 28.85 | 29.672 |  |  |
| etna | 30.8 | 301029 | 30.80 | 30.129 | 30.212 | 29.5 |  |
| Uprate |  | 29.8529 .24 | 30.502 | 29.8 | 0002 | 29 |  |
| Hudickf |  | 7529.01 | 30.5629 | 29.892922 | 3. | 2952 |  |
| Herncefand |  | 29.9529 .30 |  |  | 30.2 | 47 |  |
| Bygdea. | 30.302 | 9.75 | , | , | $3{ }^{30.212}$ | 2539 | 28.50 |
|  | Aprit |  | May. |  | Tune |  |  |
|  | Hig |  | igh | Mean Lo | Migh | Meat |  |
| Hall | 1 | 2 | 2 | $28.8{ }^{28.3}$ | 290 | 28.8 | 28.3 |
| Gohar. | 31.4 | 30.11 | 3 | r.o | 3 S 43 | 31.0 |  |
| Wittemb |  | $\pm$ |  | 29.8 29.21 | 300 | 29.8 |  |
| Naples | 29.8 | $9.75{ }^{29.63}$ | 9.8029 | 29.7i ${ }^{29} 9$ | 9.88 | 29.7 |  |
| ck |  | 90 | $299^{62}$ | 9.51 29.07 | 29. | 70 |  |
| Lunden |  | 29.2228 .51 | 30.022 | $2957{ }^{2} 9.12$ | 29 | $295^{2} 29$ | 29.21 |
| Swenrek |  | $2905{ }^{28.27}$ | 30.0729 | 29.2628 .45 | 29.93 | 29.49 |  |
| Rifinge | 29.70 | 29.0628 |  | 28 | 2970 | 29.35 |  |
| Bettna | 30.22 | 63.29 | - | 29 | $30.20{ }^{2}$ | 29.89 |  |
| Upfate | 30.00 | 289 | 29 | $29.73{ }^{29}$ | 30.0 | 29.73 | 29.3 ${ }^{8}$ |
| H | 30.10 | 29 | 9, | 9.79 29 | 30. | . 09 | 2 |
| Herncel |  | 9.0 | 9 | $97^{2}$ | 30. | $29.71{ }^{2}$ |  |
| Bygdea | 29.8029 .429 .00 |  | 30.1 | 62 | 29.96 | PTEMB |  |
|  | Juty. |  | August. |  | Septemb |  |  |
|  | High M | Mean L | High M | Mean $\frac{1}{2}$ | High | Mean |  |
| Hall | 28.112 | 28.828.5 |  | 8. |  | 1028 | 28.8 |
| Gonar | 31. 3 | O.11 3 30. 7 |  | 030 |  | 31.0 |  |
| Wittember | 30.32 | 729.3 |  | 29. $8{ }^{29} 4$ | 30.022 | 7 |  |
| Naples | 29.802 | $29.71{ }^{29} 6$ | 29 | 29.8029 .7 | 298 | . 54 | 29.21 |
| Southwick | 29.9 | 29.57, 29.20 | 9 | 9.5128.9 | 30.022 | $29.53{ }^{20}$ |  |
| Eunden | 29.73 | 9.3829.02 | 29.9229 | 29.37228 .82 | 29.9 | 9.4529 |  |
| Swenæker | . 10 | 29.19 28.28 | 29.74 | 29.19 28.6 | $29.93{ }^{29}$ | 28 | 28.86 |
| Rifinge | 29.50 | 29.1528 | 29.572 | 28.8628. | ${ }^{2}$ | 29.32 |  |
| Bettna | 30.122 | 29 | 30.10 | $29.56{ }^{29.02}$ | 30.38 |  |  |
| Uprate |  | 9.55129.20\| | 299129 |  | $30 \times 172$ | , |  |
|  |  |  | Ffff ${ }^{\text {f }}$ |  |  |  |  |

Meteorological Obfervations in Saxony and Sweden.


| A Thermonne. trical Table of the Highef, Loveef, and Middle Stati. ens at Naples, Southwick, Lunden, and Upfale, in 1728. | $=-1$ | $\left\|\frac{\text { January. }}{\text { High } \mid \text { Mean } \mid \text { Low }}\right\|$ |  |  | February. |  |  | March. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | High | Mean Low |  | High | Mean | Low |
|  | Naples | 49. | 43.5 | 38. 5 | 48.0 | 44. 5 | 35. | 39. 5 | 35. 9 |  |
|  | Sourhwick |  | - |  | 80 | 67 | 54 | 69 | 57 |  |
|  | Lunden | 83 | 68 | 54 | 91 | 73 | 56 | 123 | 98 |  |
|  | Upfale | 91. 518 | 80. 9 | 68. 3 |  | 77. | 66. 6 | 72. | 63.0 |  |
|  |  |  | PRiL. |  |  | May |  |  | June. |  |
|  |  | High | Mean | Low | High | Mean | Low | 1gh | Muan |  |
|  | aples | . 5 | 3. ${ }^{2}$ | 2 | 26. 0 | 18.5 | II. | 16.0 | 9. |  |
|  | Southwick | 71.0 | 53 |  |  |  | 24 | 50 | 35 |  |
|  | Lunden | 148 | 118 | 85 | 172 | 145 | 118 | 176 | 153 | 13 |
|  | Upfale | 9. 5.5 |  |  |  |  |  | 42. 0 | 33. 6 |  |


|  | July. |  |  | August. |  |  | September |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | High | Mean | Low | High | Mean | Low | High | Mean | Lo |
| Naples | 13. 5 | 8. 2 | 3. 0 | 16.0 1 | 10. | 4. | 26. | 7. |  |
| Sourhwick | 50 | 34 | 17 | 56 | 39 | 23 | 65 | 48 | 32 |
| Lunden | $17^{2}$ | 152 | $13^{2}$ | 153 | 133 | 113 | 150 | 122 | 94 |
| Uprale | $\frac{37 \cdot 2\left\|\frac{1}{31 \cdot 0}\right\| \frac{\mathrm{s}}{25 \cdot 5}}{\text { OсTOBER. }}$ |  |  | 40.2 2 32.8 $\frac{25}{25.5}$ |  |  | $\overline{58.4} \left\lvert\, \frac{10}{46.2}-\frac{94}{34 \cdot 6}\right.$ |  |  |
|  |  |  |  | November. |  |  | December. |  |  |
|  | Hign | Mean |  | High | Mean | Low | High | Mean | Lo |
| Naples | 40. 0 | $3 \mathrm{I}-3$ | 22 | 48.0 | 42.0 | 34. | 54. 5 | 54 | 44. |
| - | 71 | 56 | 41 | 84 | 64 | 43 | 37 | 72 | 58 |
| Lu | 119 | g8 | 78 | 109 | 87 | 64 | 83 | 71 | 59 |
|  |  |  |  |  |  |  |  |  |  |


|  | $\left\lvert\, \begin{array}{l\|l} \text { Southwick } & \text { Naples } \\ \hline \text { Inch. Cent } & \text { Inch. Mealures } \end{array}\right.$ |  |  | Southwick Inch. Cent. | Naples |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | lach. |  | Teafures |
| January | 4. 00 | $4.15{ }^{\frac{1}{2}}$ |  | July | 3. 21 | 0. | co |
| February | - 09 | - 00 | Aug | 0. $9^{6}$ | o. | 00 |
| March | 3. 27 | 0.15 | Sept. | 0. 86 | 4. | 4 |
| April | I. 97 | o. ${ }^{14}$ | Oct. | 2. 79 | 6. | $17^{\frac{1}{2}}$ |
| May | I. 44 | 00 | Nov. | 1. 52 | 2. |  |
| June | 2. 82 | $2^{\frac{1}{2}}$ | Dec. | 2. 43 | 6. | $8 \frac{1}{2}$ |
| Rain in the whole Year, |  |  |  |  |  |  |
| At Southwick, is 26 Incles, and 26 Cenicfimals. |  |  |  |  |  |  |
| At Naples, is 19 Inches, and 14 Meafures. |  |  |  |  |  |  |

As the Obfervations of this Year, which the Royal Socicty hath received from many, and very diftant Parts of the World, are too large and numerous to be printed in the Pbilofopbical Tranfactions, or read at the Society's Meetings; fo to make them as ufful as poffible, I have put as many of them as I could into Tables, to be feen and compared Remarks on the Metecorio. gical Obervations of the. Year 1728. at an eafy View, as I have done in former Years: Eut I am forced to omit fuch of them, where no Account is given of the Inftruments they ufed, or where none were made ufe of at all, but only verbal Defcriptions given, that Tables would not admit of. But the Places mentioned in the Tables, had the Society's Glaffes of Mr HaukJuee's making.

The Barometrical Obfervations I need not fatiate the Society with Remarks upon, becaufe I liave made divers of that Kind, upon the preceding Years: only I hall repeat two Things that I formerly took notice of, and have had frequent Confirmations of this Year; viz:
I. The the Mercury in the Barometer. 2. That the Range of the Mercury is much greater in the Northerly than Southerly Climes.

As for the Thermomeirical Obfervations, I have inferted all that were made with the Rogal Socicty's Glaffes: But fuch as were made with other Thermometers, it would have been of little or no ufe to have taken Notice of them, unlefs I could have reduced then to fome known Neafure ; which only two of the curious Obfervers enabled me to do; but I found that a Matter fo perplext and difficult, as not to anfwer the great Trouble of it, efpecially confidering that thefe Tables exhibit Obfermations made in different and difant Parts, viz. Ifaly, Germany, England, and Sweder, by which an Entimate may be, in fome meafure, made of the Temperature of thofe different Climates of the World. In order to which, I muft repeat what I mentioned in fome preceding Year; that in the Royal Society's Glanfes, the Point of Exirenms Heat is $5^{\circ}$ above o, that Temperaiure is $45^{\circ}$ below o, and Freezing at $65^{\circ}$. And if we caft our Eye upon the feveral Months, particularly thofe of Winter, efpecially if we confider that which I have remarked in 172\%, from Dr Cyril, concerning the Frcezing-Point at Naples to be at $55^{\circ}$, which is at London at $65^{\circ}$, and at Cbrijfians and Bengal probably as different alfo. I fay, confidering thefe Things, it is furprizing that the Heat and Cold of thofe diftant Places, is not as different as their Northerly and Southerly Situations. But at Lunden, I was furprized to find the Thermometer much lower in the warmer Months than at Uffale, or any other of the Sivedifb Places, 'till I found that in all thofe Months, they had continual Cold and Rain, when the other Places mention little but fair, or cloudy, and but little Rain or Cold. And this minds me of a former Obfervation, Tbat Cold is the Parent of We!, efpecially in Summer.

As to the Winds and Weatber, fo many are the Places of Obfervation, and fo many and fo various the Obfervations, that it is next to impoffible to give a tolerable Abridgment of them: and therefore my Remarks on the foregoing Years, efpecially on the fanse Places and Parts of the World, mult fuffice here.

The Quantity of Rain and Snow were obferved at Naples, Rifingi, Belina, UPfale, Hudickfwald, and Soutbwick: But I find no Defcription of the Inftruments wherewith they obferved, nor of their Meafures, except at Soutbroick and Naples, and therefore am forced to omit all but the two latter, in which the Depth is meafured by Englif Meafure, the Soulbwick, by Inches, and hundredth Parts of an Inch; and the Naples, by Englifh Inches, and the Obferver's Meafures, 23 of which make an EnglijJ Inch.
Lantly, That I may omit as little as may be of what the illuntrious Obfervers take Notice of, I hall add the Meteors they mention, together with fome of my own, that happened about the fane Time.

The firt was a Lumen Boreale at Bettna, in the Night after March 20; and at half an Hour after 8 on March 22, at Windjor, I faw an unufual fort of Streaming, in which the Columns were not (as ufually) conical, or pointed, not rifing towards the Zenith. Point ; but were with paralle! Sides, and rofe perpendicularly to the Horizon. They were very bright, emitting a Light equal to that of the Moon in her Quarters. Alfo they rofe from a Bank of Vapours, not curved at Top (as ufually) but lacinated, or broken.

Alfo on March 24, the curious Bettna Obferver faith, there was, the Night before, Lumen Eflommans Boreale; which was alfo feen at Lafanger.

On Aug. 26, at Night was a remarkable Lumen Boreale at Bettna. And the Night before at $10^{\text {h }} 20^{\prime}$ p.m. a Gentleman going from my Houfe, faw towards the E. about $30^{\circ}$ high, a Ball of Fire, about 4 Inches Diameter, blazing, and ftanding fill at firft, and prefently after, it rant towards the $\mathbf{N}$. and in about 5 , or more Minutes, he heard an Explofion like Thunder. It's Blaze emitted a Light equal to that of the Moon at Full.

At the fame Time, the News-Papers fay, a Light in the Sky, like a Comer, was feen at Watford in Hertford/hire, with Sparks of Fire iffuing from it's Tail; that then it brake out with a prodigious Luftre, like the Sun, which lafted not long, and was followed with a terrible Clap of Thunder, the Stars twinkling all the while, and not a Cloud to be feen. Which Clap, I doubt not, was the fame which my Friend heard, and which was 5 or more Minutes in it's Paffage hither.

At Betina, Lumina Borealia were feen on the Nights after Sept. 18, 19, and 24 ; the fecond of which covered half the Heavens. And on Sept. 21 , about 10 Hours $p . m$. I obferven, at Upminfer, an unufual fort of Tancoloured thick Vapours towards the NWbN but withal lightfome, and fuch as the Stars might be feen through. And after fome Time, they fent forth, in divers Places, Streaming Lances, gently and gradually coming and going.

On O87. 13, I faw that uncommon fort of Streaning at Redbriage, near Soutbamptoit, and the fame Night at Bethna was Lumen Boreale eruicans Flamman, as the Oblerver expreffes it. At Lafanger alfo thofe Streamings were on the fanse Night, and on the $15 \mathrm{th}, 18 \mathrm{th}$, 19th, and 23 d .

On OEE. 19, a Parbelius was at Lunden, and on the 22d a Lumen Boreale at Witternberge.

On Nov. 12, at Windfor, we had confiderable Streaming; and the fame was at Bettra and Uinea; and on the 2gth at Lafanger; and again at Umea on Dec. 24.

After I had finithed the foregoing Obfervations on the Year 1728 , An Appendix I received the curious Obfervations of the illuftrious Marquis Poleni, made at Padua, for fix Years; fuch of which as are conformable to mine, $t$ frall fubjo in by way of A ppendix.

The firt thing he gives an Account of is, the Quantity of Rain and Snow (in Englifl Meafure. and according to the Old Stile) that fell before and after this Year 1728, in fix Years Time, in the following Table.

A Table of the Rain ar Padua, in the liears 1725, 1726. 1727,1728 , 1729, 1730 .

|  | $\frac{1725}{\operatorname{lnch} \cdot \operatorname{Pat}}$ | $\frac{1726}{\ln +5 .}$ | $\frac{17^{2} 7}{1 \mathrm{nch} \cdot \mathrm{Dec.}}$ | $\frac{1}{1 \text { nch. . . . }}$ | $\frac{17^{2} 9}{\operatorname{lnch} \mid D_{0 .}}$ | $\frac{1730}{\text { Inch. } \mathrm{D} \cdot \mathrm{c}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | 0 | 1.355 | 5.955 | 4.278 | 85 | 0.112 |
| February |  | I 4.460 | 1.073 | 1.050 | 1.245 | 2.906 |
| March | $\bigcirc$ | 3.108 | 1.878 | 4.832 | 2. 902 | 4.592 |
| Apr | 4.019 | 3.998 | 0.448 | 1-419 | 2.768 | 8 |
| May | 3.625 | 1.368 | 3.530 | 3.403 | 2.634 | - |
| June | 0 | 2.608 | 2.476 | 2.103 | 134 | 5 |
| Ju | 2. | 2.357 | 2.930 | 4016 | 4 | 2.3.39 |
| Augut | 5.185 | 1.268 | 5.067 | 5.18 | 0.578 | 4.269 |
| September |  | 2.900 | 4.164 | 6.948 | 3.267 | 1.0 |
| October |  | 0.179 | 6.576 |  | 6.294 | 5 |
| November | 3.636 | 2.277 | 5.091 | 836 | 4 | - |
| December | 0.030 | 2 | 169 | 99 | $\underline{2} .804$ | O. 894 |
| ear | $\overline{29.989}$ | 25.3 |  |  |  |  |

From this Table he oblerves, that the Februaries were the drieft Monibs, and $1 \boldsymbol{y}^{26}$, the drieft Year in all the fix, and that the Oerobers were the wetteft Months, and 1728 the wetteft of all the fix Years.

Further alfo he faith, that in the four Seafons of the Years (reckoning their beginning from the ioth Day of their refpective Months, viz. of Dec. March, Junc and Sept. that I fay) lefs wet falls in Winter and Spring, than in Summer and Autumn, and that the wet Weather increafes, as the Seafons advance; that in Winter is the leaft wet; that it increafeth in Spring; is more in Summer ; and moft of all in Autumn.

For the Proof of this, he hath made a Table of the mean Quanticies of the Rain in the four Seafons of each of the fix Years; the Sums of which fix Years Rain, are in Winter, 39:490 Inches; in Spring, 52,188 Inches; in Summer, 58,25 Inches; and in the Autumn, 74,55 Inches. But in the many Years that I obferved the Weather at Upminfter, I find it not fo.

After thefe Obfervations of the Weather, the illuftrious Marquis proceeds to the Barometrical Indications of it; and hath made Tables of the rifing and falling of the Quick filver, together with the Courfe of the Winds, both againft Rain, and alfo againft Snow, hoping to predict from thence the feveral forts of Weather. But I omit the Tables, becaufe I think little of general Ufe can be concluded from them but what is commonly known.

I omit alfo his Table of the Sum and Mean Altitudes of the Barometer, and Thermometer; but his following Table may be of Ufe.


> A Table of the bighef and lowef Stations of the Barometer, witb the Winds and Weather.

From this Table it appears, from the higheft and loweft Stations ins the fix Years, that the greatent Range of the Barometer is 1.84 Inches; but at Naples it is only 94 Centefimals of an Inch; and what it was at other Places, I have given fome Account of in my Remarks on 1727.

The illuftrious Obferver bath alfo been very curious and fedulous in his Obferwations of the Thermometer; which I am forry I can give no acceptable Account of, for want of fo much Knowledge of his Thermometer, as may enable me to compare his Ohfervations with mine.

He hath alfo compared with his own, the Quantities of Rain, andi the Baromsetrica! Range obferved at Paris, by M. de la Hire; and finds: that the Paris Rain is $16.4 \frac{\%}{12}$ Lines, and the Baromeirical Range $2 \frac{5}{12}$ Lines more than the Padua.

The laft Thing which the illuftrious Marquis takes Notice of, is the: Magnetical Diclination, which he faich is 13 Degrees Weft, and hath
 tion in the Declination, fo that it doth not continue the fame a whole. Day together; that the Declination of all Needles (efpecially if touched by different Magnets) is different a few Sexagefims. But thefe Niceties I recommend to the Enquiry of the Curious, becaufe they difagree withi the Obfervations of Gilbert, and moft of the Magnetical Writers.

[^0]
## Metcorological Dianies for 1739,1740 .

Ansecoumban L.VII. 1. The Society having been pleafed to refer to me, on the doivan of the Death of Dr Dikbam, the Meteorological Diaries tranfmitted to them ileteorological Diaties communicaud to be Royal Sociecty, for the Fíar's 1729 an? 1730 . By Gco. Hadley, F/g; F. R. S.
No. $44 \%$. 154. Jan. E゙ヶ. 1738. from the curious Obfervers both at Home and in foreign Parts; as foon as they were put into my Hands, I applied myfelf to make an Abfract of them in fuch Manner as I judged may be moft ufeful, and have nearly purfued the Method of Di Derbam, beginning at the Year 1729, where he left off.
Before I proceed to the Tables, I think it proper to give fome Account of each of the Diaries of thefe two Years, and their Contents, that any Member of the Society, that may have Occafion to make farther Inquiries into thele Matters, may be acquainted with what is to be found therein, and what Pains have been beflowed by the curious Obfervers.

The Diary kept by Mr Foukbee, by Order of the Society, at their Houfe in Crane-Court, confifts of Obfervations of the Barometrical Heights twice a Day, i.e. Morning and Evening, in Inches, Decimals, and Centefmals; the Thermometer likewife, in it's proper Graduations, which, I fuppore, are already well known to the Curious, and the Weather, with the Hour of each Obfervation. The Wind's are omitted. The Depth of Rain is fet cown feveral Times for the mort Part in each Month, the Sum of which is to be divided by 10 , the Funnel which catches the Rain being fo much bigger in Surface, than that of the Veffel which receives the Rain from it.

That from Soutbreick, near Oundle in Northamptonfliere, by George Lynne, Efq; contains the Height of the Barometer once a Day, and the Winds, the Steadinefs and Strength of which is likewife marked with proper Marks and Figures. Obfervation is made of the upper and under Currents of the Air, when it fo happened. The Thermometer is marked twice a Day; the Weather often, both by Day and Night; the Rain from Time to Time, and the Quantity of each particular Shower often fet down by itfelf, with fome other mifcellaneous Oblervations, as Halocs, Thunder-ftorms, and fudden Changes of Wind, Ec. He takes Notice of his Thermometer being placed in an Outhoufe expofed to the Air, but fcreened from the Sun, which is a proper Precaution in ufing that Inftrument. The remarkable Rifes and Falls of the Mercury, are alfo marked with proper Marks; which Method would be ufeful in the other Columns alfo, for Comparifon of Diaries, if fome certain Rule were agreed on.

That from Kent, 16 Miles SE from London, gives an Account of the Barometer once a Day, fometimes twice or thrice, with the Hour of each Obfervation, and the Winds, Weather, and Rain, the Proportion of which for every Day is given at the End of each Month. There is alfo a feparate Column for the Height of the Clouds, which he divides into 3 Orders; and where there are 2 Orders at a Time, they are both noted; as alfo when any of them move with different Velocities or Directions, which he fuppofes to be commonly a Sign of Change

Change of the Wind: But he does not inform us by what Method he determined their Heights or Velocities. The reigning Wind, and general Strength of it, is noted at the End of each Month; the Eclipfes alfo, and the Times of the New Moons; which he oblerves make it appear, that the Notion of the Change of Weather depending on the Age of the Moon, is without any Ground: With other Mifcellaneous Obfervations; as the Aurora Borealis, Fruitfulnefs or Sterility of the Seafon. He had no Thermometer.

That from Hudickfoall in Sweden, by Mr Olive Broman, fhews the Height of the Barometer fometimes once, fometimes twice or thrice a Day, O.S. in Englifh Meafure, with the Winds, and the Strength of them, and the Weather. There is alfo to the Diary 1729, annexed an Account of the Height of the Sea Water for every Day, which I obferve varies in the whole about 2 Inches, and is fometimes interrupted by Floods from Rain. This, I fuppofe, may relate to the Tides in the Gulph of Botbria. I have not inferted thefe in the Tables, not being of general Ufe. There is no Thermometer, nor the Quantity of Rain, fut down.

That from Risnge in Oftrogotbia in Sweden, by Sueno Laurelius, Paftor and Provoft, gives the Height of the Barometer, for the moft Part, 3 Times, fometimes 5 Times a Day, with the Hour of the Obfervations, O. S. in Engliß Meafure. He refers for the Defcriptions of his Barometer and Thermometer to the Diary 1727. The Winds, with the Degree of their Strength, Weather, and Depth of Rain, are aifo fet down.

In that from Upfale in Sweden, by $\operatorname{Mr}$ Audrew Celfius, Aftr. P. R. and F.R.S. Obfervations are made 3 Times a Day of the Barometer and Thermometer, both which Inftruments were made by Mr Haukjoe ; the Winds, with their Strength, and the Weather, and Depth of Rain, from Time to Time.

That from Svenaker in Sweden, near Trollbelia, by Torfanus Waffenius, V. D. M. $\underbrace{2} c$. contains the Ifeight of the Barometer twice a Day, fometimes 3 Times, O.S. in Swedifb Feet and Inches and Decimals, which being fuppoled to be in Pronortion to Englijh, as 974,375 to 1000, the mean Heights are reduced in the Tables following into that Meafure. The Winds alfo, with their Strength, are noted, and the Weather. There is no Thermometer. Notice is taken of ThunderStorms, and other Meteors *.

That from Lunden in Sweden, by Mr Conrad Quenfer, Math. Prof. in in Acad. Caroliza, contains Obfervations of the Barometer twice a Day,

[^1]
## Metorological Diaries for 1739, 1740.

 O.S. in Erglifh Inches and Decinais, and 4ths of them; the Winds, with their Strength, and their Weather. The Thermometer is Florentine, and therefore the Obfervations not inferted in the Table. The monthly Mean there given, is taken fimply between the 2 Extreams: I have given it in the Tables taken the other Way, as all the reft are.That from Bygdea in Sweden, by Mr Fobn Telinus, Paftor there, has Obfervations of the Barometer twice a Day, Morning and Evening, O.S. in Englifb Inches and Decimals; the Winds, with their Strength, and Weather. The 2 lat Months are wanting. There is no Thermometer.

That from Bettna in Sudermanland, by Mr And. Geringius, Paftor and Provof, has Oblervations of the Barometer thrice a Day, except in the firit Part of 7 an. O. S. in Englifb Inches and Decimats; the Winds, with their Strength, and Weather, with other Metcorological Obfervations, and upon the Seafons, as to Firuitfulnefs and Sterility, $E^{\circ}$ c. The Aurora Borealis is fiequently mentioned. The Thermometer is peculiarly graduated, and fo could not be inferted. There is a Column for Rain, with Marks, which I underftand not.

From Witterberg in Saxoily, there are two Diaries communicated, one from Mr Mat. Hafurs, Miath. Prof. the other from Mr F. Fred. Weidier, LL. B. and Maib. Prof. Primar. That by Mr Hoffus has the Height of the Barometer feveral Times a Day, fometimes four or five Times, O. S. in Eng!ifb Inches and Decimals, and the Parts of thefe in Vulgar Fractions, but are reducced to Decimals in the Tables. He ufed two Barometers and Thermometers. Thofe marked I, are Mr Houkf. bee's, thore marked II, Florentine. The coldeft Day he ever obferved, was Fibruary the 5 th, 17:6. It contains alfo the Winds, with their Scrength, and Weather. Mr Weidler gives the Height of the Barometer three Times a Day, N. S. in Paris Inches and Lines, and the Parts of thefe in Vulgar Fractions; the Winds alfo, with their Strength, and the Weather, and Quantity of Rain, in Cubes and Lines, but at the End of each Quarter the Depth is given in Paris Inches and Lines. The Thermometer is Mr Haukfoe's. There are fome Aftronomical Obfervations of Eclipfes, $\delta^{2} c$. He takes Notice, that an Occultation of Venus by the Moon, obferved with a Telefcope of 18 Feet, may ferve to prove the Moon to have an Atmofphere; for being then in it's Quadrature with the Sun, it appeared to lofe it's Cufps, and become oval, when it came near the Moon. I have in thefe two Years made ufe of Mr Hafius's Barometrical and Thermometrical Obfervations, being in the $O . S$. and Englift Meafure, though the three laft Months of 1730 are wanting. The Depth of Rain is taken from Mr Weidler, and reduced out of the Paris to Englifh Meafure, being fuppofed to be as 1068 to 1000, but is not reduced to the Old Style. Mr Weidler refers to his Differtation upon Meteorological Obfervations fent to the Society. The Year 1730 he obferves to have been more than had been known wet ant cold, and the Sky very milly.

## Mettorological Diaries for $1739,1740$.

That from Padua, by the Marquis Poleni, Thews the Height of the Barometer once a Day, O.S. in Engliß Inches and Decimals; the Winds, and fometimes their Strength, and Weather. A particular Account of his Thernometer has been publifhed formerly in the Tranfactions, and alfo his Obfervations upon his Diaries, containing in the whole fix Years. The Depth of Rain is given both for the Old and New Style.

That from Bengal, by Mr Bellamy, Preacher to the Factory, has the Height of the Thermometer twice a Day, Morning and Evening; the Winds, with their Strength, and the Weather, for the Year ry30. The Medium of the Thermometer is taken from both the Evening and Morning Heights, the Difference there being very great in Proportion berween Morning and Evening.

That from Bofton in Nero England, by Paul Dudley, Efq; F.R.S. fhews the Weather 3 Times a Day, and Wind once or twice. No Baronicter or Thermometer.

There is one of the Year 1729, feems to be Swedifh; but finding neither the Author's Name nor Place, I have not inferted it.

In the Year 1730, thofe from Crane-Court, Southwick, Kent, Hudickfall, Ofrogotbia, Upfale, Svenaker, Lunden, Betina, Wittemberg, Podua, and Bofton, and continued in the fame Manner. There is none from Bygdea. The Abo Obfervations for the Year 1730, by Mr D. Sporing, thew the Height of the Barometer twice a Day, in Swedifs Inches and Decimals, but the mean Heights are reduced to Englifb in the Tables. They fhew alfo the Winds and Weather, and in the laft Column the Aurore Boreales, which are frequent in mont Months of the Year.

That from Naples, by Cyrillus, fhews the Height of the Thernometer, which is Mr Haukflee's, once a Day. The Winds, with their Strength, and Weather, and Depth of Rain in Neapolitan Meafures, 23 of which make a London Inch, and are reduced thereto in the Tables. The Barometrical Heights he has not fet down, becaufe he found them not to agree with thofe of former Years, which made him furpect his Inftrument to be out of Order; but as it appears he had removed his Habitation, it might be owing to it's being fituated higher or lowex than the former. An Eruption of Vefuvius happening, an Account is given of it, and of Damage done by Lightning, and alfo of the Seafons, as to Fruitfulnefs and Healthinefs.

Note, In fome of the Diaries, the Numbers hewing the decimal Parts of the Inches, are fet down in fingle Figures, without any Rule or Cypher to diftinguifh them from the Centefimals, and in others the Centefimals in like Manner; but it is ealy to make a Judgment of the Author's Method by Confideration of them.

Having given an Account of the Method and Contents of the fevcral Diaries, I now proceed to the Tables extracted out of them. The Barometrical Table confifts of two Parts: The upper thews the mean Height Dr furin, for every Month throughout the Year, for each Place; and in each Column the higheft Month is marked with an $b$, the loweft with an $l$, to make them more obfervable to the Eye. At the Bottom, the Mean of the whole Year is fet down for each Place. At the Foot of this Table is another, fhewing the greateft Afcent and Defcent of the Mercury in that Year, with the particular Day of each, the Difference of which is the Range: Which Circumftance Dr Derbam, and other Oblervers, have ufed generally to take Notice of.

Next follow the Table of the monthly Thermometrical Heights, extracted in Dr fiurin's Method alio, in every Place where the Society's Intruments were uled; and at the Bottom the Mean of the whole Year, and allo the hotent and coldert Day in each Place. In the laft Place, the Tables of the Depth of Rain, where it is contained in the Diaries.

I chofe to put each of thefe Matters in feparate Tables, that the Eye may be able to take a View of the whole, and compare the State of each Place with the others, as to each Particular, with lefs Confufion, as alfo becaufe feveral of the Diaries have nothing upon one or more of thefe Heads.

Note, The mean Heights of both Barometer and Thermometer are extracted only from the Morning Obfervations, fome of the Diaries containing no more; and judging it fufficient to the prefent Defign of thefe Tables, except in the mean Heights of the Thermometer at Berigal, which are taken from both Morning and Evening Obfervations.

## Barometrical Heights obferved in 1720.

ATable of the montbly mean Barometrical Heigbts, and alfo of the greaieft Afcents and Defcents of the Mercury objerved in Several Places, in the Ycar 1729 , in Inities and Decimals.

| 1729. | $\left\|\begin{array}{c} \text { Crane. Court, } \\ \text { Londone } \\ \text { Lat. } 51^{\circ} \\ \hline \end{array}\right\|$ | Southrwick in Nortbampl. Lat. 5254 | In Kent. <br> Lat. 51 | $\left\|\begin{array}{l} \text { Fiudickfovill in } \\ \text { Sweddin. } \\ \text { Lat. } 62 \end{array}\right\|$ | Ofrogothia in Srueden. Lat. $\varsigma^{6}$ | UpJale in Sweden. Lat. $594^{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Yanuary | 308 | 2970 | 2941 h | $29 \quad 49$ | 29201 | $29 \quad 431$ |
| Fobruary | 02 | 66 | 37 | $30-2$ | 576 | 22 |
| March | $29 \quad 93$ | 54 | 37 | 2963 | 27. | 55 |
| April | 93 | 60 | 26 | $30 \quad 04 \mathrm{~h}$ | 62 h | $30 \quad 16 \mathrm{~h}$ |
| May | 95 | 57 | 29 | $29 \quad 82$ | 38 | $29 \quad 71$ |
| June | $30 \quad 07$ | 69 | 36 | 86 | 35 | 74 |
| July | $29 \quad 97$ | 6 | 28 | 69 | 201 | 60 |
| Auzu/t | 3009 h | 72 h | 38 | 78 | 35 | 65 |
| September | 2969 | 42 | 09 | 90 | 42 | 81 |
| Ociober | 83 | 52 | 09 | 55 | 32 | 54 |
| No.vember | 611 | 321 | $28 \quad 94$ | 451 | 25 | 54 |
| December | 83 | 52 | $29 \quad 25$ | 75 | 52 | 79 |
|  |  |  |  |  |  |  |
| the whole Year. | $29 \quad 91$ | 29575 | 29,257 | 29,748 | 29371 | $29 \quad 73$ |
|  |  |  |  |  |  |  |
| $\begin{array}{\|c\|} \hline y_{0} \text { Higheif } \\ \text { Lovef } \\ \text { Lover } \\ \text { Diffe, } \end{array}$ | $\begin{aligned} & 30 \\ & \hline 25 \\ & \frac{28}{28} \\ & \frac{75}{180} \\ & \hline 100.26 \end{aligned}$ |  | 2990 Fcb. 26 $\frac{18}{16}$ Nov. 25. |  | $\left\{\begin{array}{lll} 30 & 35 & F c b .27 \\ 28 & 15 & 7 \text { for. } 20 . \\ \hline 2 & 20 & 0 \end{array}\right.$ | $\left\lvert\, \begin{array}{lll} 30 & 59 & \text { Frb. } 27 \\ 28 & 70 & \text { fon. } 18 . \\ \hline 189 & 89 \end{array}\right.$ |



Thermometrical Heights and Depth of Rain in 1729. A Table of the monthly mean Thermometrical Heights in several Places in the Year 1729.


ATable of the Depth of Rain which fell in Several Places in the Year 1729, in Inches and Decimals.


Barometrical Heights in the 1ear 5730.
A Table of the monthly mean Barometrical Heigbts, and aljo of the greaits Afients ani Defcents of the Mercury objerved in feveral Places, in the Yiar 1730 , in Inches and Decimals.

| 1730. | $\left\|\begin{array}{c} \text { Crane Court } \\ \text { London. } \\ \text { Lat. } 51^{\circ} \\ \hline \end{array}\right\|$ | $\left\|\begin{array}{l} \text { Southruick ili } \\ \text { Northampl. } \\ 1 \text { lat. } 5224 \end{array}\right\|$ | In Kcnt. <br> Lat. 51 | $\left.\begin{aligned} & \text { Fiudickjvall in } \\ & \text { Swiden. } \\ & \text { I.at. } A_{2}\end{aligned} \right\rvert\,$ | Offrogorbia in S.weden. Lat. $5^{6}$ | Uifale in Sucder. <br> 1,at. $594^{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tanuary | 20.04 | 22.79 | $295: h$ | $29 \quad 61$ | 2950 | 29.66 |
| Febira y | $29.6 i$ | 39 | 06 | 50 i | 29 | 60 |
| March | ,521 | $34 \pm$ | 031 | 77 | 45 | 79 |
| Spril | 90 | 66 | 37 | 77 | 52 | 77 |
| Mny | , 76 | 55 | 15 | 6. | 58 | 72 |
| \%une | , 83 | 60 | 24 | 75 | 35 | 75 |
| 7 l | . 84 | 61 | 31 | 82 | 31 | 78 |
| Anguft | . 94 | 70 | 39 | 75 | 38 | 74 |
| Seprember | , 90 | 341 | 37 | 75 | 44 | 75 |
| Ofrober | 68 | 49 |  | 96 n | 64 | 23 h |
| Novembe, | 79 | 55 |  | 501 | 261 | 561 |
| December | 30.09 h | 83h |  | 84 | 68 h | 89 |
| Mean ot the whole Year. | 29.825 | $29 \quad 157$ | 29, ,27 | $29 \quad .725$ | $29 \quad 455$ | 29.745 |
| $\left\lvert\, \begin{gathered} \hline \text { Mishef } \\ \text { Loxiff } \\ \text { Differ. } \end{gathered}\right.$ | $\begin{aligned} & 30,35 \text { Dcc.1.13. } \\ & \frac{38,70}{7,65} M_{2 r} 8 . \end{aligned}$ | $\left\|\begin{array}{ll} 3,30 & \text { Yan. } 10 . \\ \frac{28,53}{1,57} & \text { Mur. } 8 \\ 1,79 \end{array}\right\|$ | 30,30,01 <br> $\frac{28,28}{1,73}$ | $\begin{aligned} & 30,52 \\ & \hline \end{aligned}$ | 30,40 <br> Dic. <br> $\frac{28,4}{1,9 j}$ <br> Yan. <br> 18 | $\left\lvert\, \begin{array}{lll} 30,71 & \text { Dec. } \\ 28,90 & \text { Dcc. } & 10 . \\ \hline 1,81 & & \end{array}\right.$ |
| 1730 | Svenaker in Srueden. <br> Lat. $5^{80} 10$ | Lunden in Sweden. <br> Lat $5 ; 42$ | Besena in Sweden. <br> Lat. $5^{8} 49$ | Abo in Finland <br> Lat. 6040 | Wittemierg in Saxonr, by Mr Hafius. L, at 52 | Padua in Ilaly. <br> Lat. 4515 |
| $\overline{\text { fanuary }}$ | $29 \quad 391$ | $29 \quad 57$ | $29 \quad 96$ | $29 \quad 68$ | 22883 h | 29 88 |
| Februay | 46 | 231 | 81 | 435 | 4281 | 55 |
| Marcb | 42 | 34 | 97 | 61 | $4^{8}$ | 461 |
| April | 59 B | 56 | $30 \quad 03$ | 705 | 677 | 69 |
| May | 54 | 46 | 2989 | 55 | 99 | 67 |
| Futie | 53 | 55 | 89 | 60 | 667 | 6. |
| fuly | 4 | 51 | 87 | 665 | 6,1 | 6.9 |
| Auguft | 53 | 59 | 89 | 56 | 770 | 8 |
| Sepromber | - 48 | 57 | $30 \quad 04$ | $30 \quad 05$ | 80 | 82 |
| Ocaber | 56 | 61 | 11 | $29 \quad 76$ |  | 72 |
| No.vinoer | $4{ }^{\circ}$ | 30 | $29-7+1$ | 3551 |  | 75 |
| Decemúer | 43 | 65 n | $30-12 \mathrm{~h}$ | 68 |  | 06 |
| Mcan us <br> - he whole <br> Year | 29.48 | 29 ,49j | $29 \quad 943$ | [ $29 \quad .637$ | 29 701 | 29,105 |
| $\begin{array}{\|cc\|} \hline 7 & \text { Higherf } \\ & \text { Low of } \\ & \text { Differ. } \end{array}$ | $\begin{array}{\|lll} 3 c, 42 & \text { Dec. } & \\ 18,43 & \text { Dec. } \\ 10 \\ 1,99 \end{array}$ | $\begin{aligned} & 30,22 \text { Dec. } 1.13 \\ & 28,61 \\ & 28,6 \text { Doc. } \\ & 1,61,61 \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline 30,98 & \text { Dcc. } \\ 28,95 & \text { Dcc. } \\ \frac{20,02}{2,02} & \end{array}$ |  | $\begin{array}{\|l\|} \hline 30,57 \\ 20,00 \\ 1, ~ \\ \hline 1,37 \end{array}$ | $\begin{array}{ll} \overline{30,+0} & \begin{array}{c} \text { Dac. } 20 \\ 280^{2} \\ \hline \end{array} \\ \hline 144^{2} \end{array}$ |
| VOL | L. VIII. | Part ii. |  | Hhhh |  | , $\frac{12}{}$ |

Thermometrical Heights, and Deptb of Rain in 1730. $A$ Iable of the montbly mean Thbermometrical Heights in Several Places in the Year 1730.


A Table of the Depth of Rain which fell in Several Places in the Year 1730, in Incbes and Decimals.

| 730 | $\begin{aligned} & \text { Crane- } \end{aligned}$ | $\begin{aligned} & \text { Soutb- } \\ & \text { wick. } \end{aligned}$ | Kent. | $\begin{aligned} & \text { Oftro- } \\ & \text { golbia. } \end{aligned}$ | Upsale. | Wittemberg, Stylo Norvo | Naples. | Padua. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fan. | 45 | 45 | 624 | 705 | 164 | 78 | $3 \quad 89$ | 11 |
| Feb. | 23 | 53 | 2054 | 870 | 412 | $1-68$ | 1434 | 2906 |
| March | 595 | $26_{1}$ | 4067 | 2730 | $19^{88}$ | 286 | 739 | $59^{2}$ |
| April | , 670 | 84 | 985 | 605 | 165 | $1 \quad 98$ | 2 | 638 |
| May | 755 | 25 | 1805 | 260 | 4120 | $3-23$ | 11 | 46 |
| Fune | 3.755 | $3 \quad 39$ | 2876 | 1535 | 755 | $2{ }^{2}$ | $1 \quad 00$ | 6505 |
| Fuly | 390 | 93 | 2598 | 2445 | 190 | 201 | 2173 | 2339 |
| Augult | 020 | - 85 | 131 | 505 | 52 | 07 |  | 420 |
| Sepiem. | - | 65 | 2043 | 3140 | 1579 | 16 | 2 | 09 |
| Orioupr | 460 | 9 | 2.424 | 1670 | 1103 |  | 25 | 525 |
| No: | 57 C | 93 | 2065 | 915 | 83 |  |  | 53 |
| Decem | 500 |  | 1322 | 890 | 110 |  |  | 89 |
| Fotal |  |  |  |  |  |  |  |  |

$$
\text { Meteorological Objervations for } 1739,1740 \text {. }
$$

Firff, I oblerve upon the Barometrical Tables of thefe two Years, that they confirm former Remarks made by Dr Derbiom and others, of the Confent of the Barometers in Places at a good Difance from each other. Not only the monthly mean Heights agree in the three Diarics of theje two Years here in England, but alfo the greateft Afcent and Difeent of the Mercury happen commonly on the fame Day, and the Barometers have been found to agree in their Motions to an Hour, fo far afunder as Towinch' in Lancefure, and Greenwich near London, which is near 160 Miles, alchough that might be partly accidental. The Barometer at Crane-Court and Soubzuick, diftant about 55 Miles, being compared, feem very feldom to vary from their mean Difference above $\frac{1}{10}$ and $\frac{1}{2}$ each Way; at Southwick and Kent fomething more. From whence it might be expected, that the Weather fhould be much the fame in all thefe Places; which neverthelefs feems not to agree with Accounts in fome Ycars from different Parts in this Inand, not very far diftant: And I myfelf have obferved fometimes Clouds to lie in one Part of the Horizon for a great Part of a Day, which have difcharged a large Quantity of Rain in Places not far off, while the Place, where I have beell, has all the while enjoyed fair Weather, and vice vorfa. Whence it appears, that the Barometrical Alterations of the Air extend farther than cheir Effects, as to the Production of Rain, at thore Times. Comparing the Diaries of Crone-Court and UpJale, I find the Barometers vary from their mean Difference an Iuch and half each Way; Crane-Court and Pedua as much, or more, and often go a-pace quite contrary Ways at the fame Time, and their monthly Differences -are alfo very variable, fo that their Agreement at any Time feems to be but accidental.

Secoisdy, I obferve, that the Defeents of the Mercury below the mean Heights of each Place, taken in this Way of Dr Yurin's, are generally much greater than the Afcents of it above; and there are alfo other extraordinary Defcents of the Mercury in every Year of the faune Kind. The Reafon I take to be, becaufe the Expanfion of the Air, whereby it becomes lighter in fome one Place, being the Original of the Alterations in the Atmofphere, it's Effects by Condenfation or Accumulation of the A ir in the Places round about will be more difperfed, and therefore lefs fenfible.

Thirdly, The Variation or Range is greater the farther North, as has been heretofore obferved, and appears in thefe Tables, in which I have put the Latitude of each Place; and likewife it is grearer generally in the Winter than Summer Months. The Sum of the Motion of the Mercury upwards and downwards, taken from the Berlin wandering Line, with a Pair of Compaffes, in the Year 1726, amounts to about 76 Inches, which gives $5 \frac{1}{3}$ for a Month, and about 0,2I for each Day. But the Barometer is by much moft fteady in the Summer.

Fourlbly, The mean Height of the Baroneter hath already been applied to determine the refpective Heights of Places, and alro the ablolute Height above the Surface of the Sea. Dr Scbeucbzer, in his Tables,

$$
\text { Hhhh } 2
$$ Sea to be $28^{1 /} 1^{\prime \prime \prime}$ Paris Meafure, whish reduced to Englifh, gives 29 Inches, 993 . This agrees very well with a Diary communicated to the Society, containing 10 Months of the Year 1723, and Fan. 1724 ; the Author of which found by Experiment, that in the Place where his Barometer was kept, the Mercury ftood $\frac{1}{10}$ and $\frac{1}{2}$ higher than at the Surface of the Sea, which was nut far from his Habitation. The mean Height of the Barometer for thofe 10 Months (leaving out the $\mathcal{F a n}$. following, which fecmis to be a very irregular Month) I lind to be 29 , 8:5, to which adding $-\frac{1}{2}$, it will give the mean Height at the Sulface of the Sea 29.975; to the Difference between thefe is only, 018 , and therefore probably may be near the Truth, but may hereafter be more exactly determined by Experiments. Then allowing about go Feet, or rather leis, for each roth of an Inch in Height of the Wercury in fmaller Alcitudes, or in greater, according to the Tables calculated for that Purpofe, hy Dr Scheuchzer and Dr Nettleton, and publifhed in the Tranfcitions of this Suciery, l. c. $\mathcal{V}^{\circ}$ 388. you will have the Height of each Place pretty near, provided the Obfervations be carefully made, and continued for a fufficient Time; for the yearly mean Heights in one of the Places in thefe Tables appear to differ near $\frac{1}{10}$ of an Inch in thefe two Yrars; and in moft of them, the laft of thefe two Years exceeds the firft, two or three Hundreths: The Barometer alfo ought not to be removed to a lower or higher Place.

Upon the Thermometrical Tables, and thofe of the Rain, I have at prefent no Remarks to make, but what are obvious on firf Sight; only that the Thermometers agree, efpecially as to the hotteft Days in the Year, more than might be expected from Places at fuch a Diftance.

The Wincis are of fo uncertain and variable 2 Nature, that they require a more than ordinary Care and Diligence in making the Obfervations, and a great Length of Time, and Comparifon of a vaft Number of them, betore any Thing can be deduced more than is commonly kno:vn; and cherefore I fhall not endeavour to do it at this Time, but only give this Elint, that if the Obfervers would take particular Notice, in great Storms, of the Time when the Mercury firft begins to sife, whether before, or after, or in the very Height of it, it might the a Direction to judge when an Abatement or Increafe of it might be expected, (if any regular Order hould be found therein) which might be ferviceable on tome Occafions. But if any Attempt Rould be made to lay down any Thing certain concerning the Rife and Progrefs of the variable Winds, it will appear, by confidering the Caufe of the TradeWinds, that for the fame Caufe the Motion of the Air will not be naturally in a grcat Circle, for any great Space, upon the Surface of the Earth any where, unlefs in the Equator iffelf, but in fome other Line; and, in gentral, all Winds, as they come nearer the Equator, will become more and more eafterly, and as they recede from it, more and more wefterly, unlefs fome other Caufes intervene.

Thefe are all the Obfervations I have at prefent to offer on this Subject, which I hould have been glad if they had been more material, and anfiwerable to the Labour beftowed by the curious Oblervers; but they niay alfure themfelves, that the Diaries communicated to the Society will be carefully preferved, for the Perufal of thofe who may be inclined to enquire farther into this Part of Nature; and perhaps by the Continuance of this Method, in Procefs of Time, a Difcovery may be made of fome regular Courfe in thefe Things, which may be of URE.
2. The Diaries that continue throughout the faict 5 Years, are only thofe kept at Cranz-Court, Soutbreick, and Coventry. The Ken'ifs Diary for the Year 1731 is wanting, and ends with the Year 1734. I have, in my former Account of the Years 1729 and 1730 , given an Account of the Method and Contents of the two Firft. Mr Herry Beighron's from Grify near Coveniry, contains the Height of the Barometer at feveral times of the Day, in Inches and Decimals, and the Weather. That from Upfal by Mr Celfus, from Hudickfoal by Mr Broman, and from $A b 0$ by Mr Sporing, go no farther than the Year 1731; for which Year there is alfo one frons Lunden by an Author whofe Name I do not find; for it appears not to be Mr Conrad Quensel's, whofe end in the Year 1730, from the fame Place: It contains Obfervations on the Barometer twice a Day, in Swedifb Meafure, which I have reduced to Englifh; the Wind and Thermometer, which is a particular one of his own.

Mr Wcialer's Diary from Wittemberg continues to the End of the Year 1734. In the Year 1732, he alters his Method of the Barometrical Heights, from Paris to London Meafure, and the Days of the Month from the Nerw Siyle to the Old one, to make them the better correfpond with our Obfervations. He gives a very accurate Account of the Pbanomera of feveral Northern Lights in the Ends of the Years 1731 and 1733, and Beginning of the Year 1734. His Diaries alfo contain fome few Aftronomical Obfervations, and extraordinary Occurrences.

Captain Cbriftopher Middleton's Journal of his Voyage to Hudfon's. Bay is publifined already. The Naples Diary by Dr Cyrillus ends in the Year 1732, and alfo that from Nere-England by Mr Dudley.

For the Year 1734, that from Dr Pack, at Centerbury, exhbits in one View, by a Table tor every Month of the Ycar, in the firft Column, the Quantity of Rain, and the Evaporation: In the fecond, third, and fourth, the greateft and leaft and middle Heights of the Barometer Thermometcr, and Hygrometer: In the fifth, the Meteors, by Variety of Marks, which he gives an Explanation of: In the fixth, the Direction and Strength of the Winds. He gives alfo a Defcription of the Influments he invented, and made ufe of, for Obfervation of the Quantity of Rain and Evaporation, and the Hygrometer, with a Draught of each. For fon. there is a particular Table, containing great

Mettorolagical Obfervations for $1731,1732,1733,1734$, and 1735 . Variety of Obfervations for cvery Day of that Month. The Thermometer is peculiar to himfelf, as far as I know; and he gives no Rule to reduce it to the Standard. There is a Letter of his, relating to a Chart of the Levels of Kent, which, he chinks, are fo contrived as to caufe a Crculation of Air from the Sea, which is of great Ufe. Mr Forth's Dary, at large, from Darlington, begins in the Year 1737; but he has given an Abfract for the 3 prececiing Years: In which the grcateft; leaft and middle Height of the Barometer is given for every Monch; which Mran, upon Examination, I take to be found in the way ufed in thefe Tables, and therefore I have put them in as fuch. By a Letter of his it appears, his Thermometer fands at $45^{\circ}$, when Mr Lhawkllee's flands at 33, which is 12 Diffierence; and, 1 fuppofe, he means they differ fo much throughout the Scale; fo by that Rule I have reduced his Obfervations to the Table. gitere, At what Time of the Day the Obfervations were made, and where the Thermometer was placed; for the mean Heights differ but litele from thofe at London, as he oblerves in his Letter. There is an Extract of a Letter from Signor Didacus de Revillas to Dr Mortimer, containing an Account of the Rain that fell at Rome, beginning with Auguf 1734, and ending with fuly 1735, in Paris Meafure, which 1 have reduced to Englifh.
Marquis Poleni's Diarics, at large, from Paduc, end in the Year 1730; but he fent an Abftract of his Obfervations for the Six following Years, which was publifhed in the Pbilofopbical Tranjactions $\mathrm{N}^{\circ} .44^{*}$. in which the Account of the Depth of Rain being entire, I have inferted it in the Table, for the readier comparing it with other Places.
Thefe are all the Manufript Obfervations communicated to the Royal Sociefy, relating to Melecorological Obfervations. I have added the Obfervations of the Barometer, Thermometer, and Rain, at Edinburgb, from the four Volumes of Medical Effays; and Mr Dopplemaier's Barometrical Obfervations, from the printed ones at Norimberg, to make the Tables as general as I could. The Tables are drawn up in the fame manner as thofe for the Years 1729 and 1730; and from them various Obfervations and Comparifons may be made, in the fame manner as has been done by feveral Hands heretofore, particularly, Dr Plot, Dr Derbam, Mr Locke, Marquis Poleni, and others, as appears in the Tranjaciions of this Society; and many more fuch Obfervations may be added, by thofe that are curious in thefe things, at their Pleafure.

[^2]Meteorological Obfervations for 1731,1732,1733,1734, and 1735. 591
ATable of the morthly mean Heights, and als of the greatefs Afcents and Defcents of the Barometer, obferved in feveral Places, and communicated to the Royal Society, for the Year 1731, in Inches and Decimals.

| 1731. | $\left\|\begin{array}{c} \text { Crane-Court, } \\ \text { London. } \\ \text { Lat. } 510 \\ 31 \end{array}\right\|$ | $\left.\begin{aligned} & \text { Sou!brick in } \\ & \text { Northamptonif. } \\ & \text { Lat. } 52 \end{aligned} \right\rvert\,$ | $\left.\begin{array}{\|cc\|} \hline \text { Covenlry } & \text { in } \\ \text { Warwick,Bire. } \\ \text { Lat. } & 52 \\ 34 \end{array} \right\rvert\,$ | $\begin{gathered} \text { UPal in Swe- } \\ \text { den. } \\ \text { List. } 5948 \\ \hline \end{gathered}$ | Inudickfoal in Sweden. Lat. $62^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fanuary | 29,83 | 29,61 | 29,44 | 29.71 | 29,69 |
| Februaly | 78 | 57 | 3 I | 98 | 74 |
| March | $30-20$ | 92 | 72 | 71 | 99 |
| April | 2971 | 51 | 31 | 79 | 86 |
| May | 3000 | 72 | 52 | 79 | 79 |
| Fune | $29 \quad 92$ | 66 | 48 | 66 | 71 |
| Fuly | 95 | 72 | 51 | 68 | 76 |
| Auguft | 86 | 65 | 48 | 85 | 92 |
| September | 96 | 70 | 49 | 65 | 59 |
| Ofrober | 93 | 67 | 47 | 84 | 82 |
| November | 77 | 54 | 33 | 61 | 56 |
| December | 88 | 61 | 39 | 66 | 88 |
| Mean of the whole Year | 29.,89 | 29,658 | 29.,45 | 29,74 | 29,77 |
| \% Higheft | 30,50 Mar. 7 |  | 29.96 Nay 31 | $\begin{array}{lll} 30,48 & 0 & 29 \\ 28,66 & \text { Dec. } & 6 \end{array}$ | 30,52 Dec. 23 28.59 Dec. 6. |
| Differ. | $\frac{29,00}{1,5} \mathrm{Fb} .12$ | $\left\lvert\, \frac{28,82}{1,29}\right.$ Fcb. 12 | $\frac{28.59}{1.37}$ Feb. 12 | $1 \frac{28.06}{1,82}$ Dec. 6 . | $\frac{28.59}{1.93}$ |


| 1731. | Lunden in Sweden. <br> Lat. $59^{\circ} 48^{\prime}$ | Abo in Find. land. Lat. 6040 | Wittermberg in Saxony. Lat. $5^{2}$ | Naples in Italy. Lat. 41 | Edinburgb in Scolland. Lat. $5^{6} 20$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fanuery | 29, 37 | 29,54 | 29,48 | 29,09 |  |
| February | 43 | $5^{2}$ | 60 | 11 |  |
| Marcb | 57 | 45 | 70 | 30 |  |
| April | 43 | 55 | 48 | $\bigcirc 3$ |  |
| May | 65 | 58 | 86 | 14 |  |
| fune | 51 | 48 | 73 | 29 | $29-05$ |
| 74.9 | 53 | 48 | 77 | OI | 07 |
| Auguf | 43 | 66 | 71 | 03 | 07 |
| September | 64 | 47 | 78 | 17 | 06 |
| OEIober | 59 | $28-87$ | 82 | 06 | 03 |
| Norember | 34 | $29-21$ | 47 | 14 | 08 |
| Dicember | 29 | 46 | 77 | 32 | 5 |
| Mean of the whole Year | $29 \quad 48$ | 29,44 | 29,66 | 29,14 | 29,55 |
| \% Highen | 30.91 fan. 12 | 31,12 Dec. 21 | $\overline{30,21}$ 7unee | 29,4 Sape. |  |
| Lowef Dificr. | $\|$30.81 <br> $\frac{20}{1.81}$ | $\left\lvert\, \begin{array}{ll} 31,12 & \text { Dec. } 21 \\ \frac{28,00}{2,22} & \text { Dec. } 7 \end{array}\right.$ |  | $\begin{aligned} & 29.4 \text { rape. } \\ & \frac{28.76}{00.64} \text { 7an. } 29 \end{aligned}$ |  |

592 Metcorological Oblervations for $1731,1732,1733,1734$, and 1735 . A Table of the monthiy mean Heights, and alfo of the greateft Afcents and Defcents of the Thermometer, obferved in feveral Places in ibe Xear 1731, and communicated to the Royal Society.

| 1731. | CraneCoart | Southavick. | $U_{\text {flal }}$ | Abo. | Wittombery | Naples. | Edinburgh. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 万апиа | $\rightarrow 0.8$ | 72 | 76 | $93 \cdot 3$ | $82 \quad 4$ | 54.5 |  |
| Februaty | $64-4$ | 66 | 71 | 98 | 79 9 | $45 \quad 9$ |  |
| Varch | 57 |  | 65 | $91-5$ | 72 | $4 ; \quad 4$ |  |
| dorit | 56 | 57 | 60 | 82 | $62-9$ | $3^{8}-3$ |  |
| 1 lay | $39-9$ | 42 | $43-2$ | 68 | $4{ }^{6}$ | 26 |  |
| 7ine | $36-1$ | $3^{8}$ | 38 3 | 50 | 43 | 177 | 48 |
| 7niv | $32-1$ | 36 | $37-4$ | 50 | 41 | 12 | 41 |
| Augafl | $33-1$ | 37 | $40-3$ | 49 | $39 \quad 7$ | 14.3 | 47 |
| Seprenber | $3{ }^{3}-4$ | +2 | 47 | $01-5$ | 48 | 18 | 49 |
| Ocrobir | $46-6$ | 49 | 56 | 73 | 60 | 26 3 | 57 |
| Voveriater | 59 | 59 |  | 83 | 66 | 36 | 69 |
| Decominar |  | 63 | 72 | 90 | 37 | 49 y |  |
| $\left\lvert\, \begin{aligned} & \text { Yean ui } \\ & \text { he whole } \\ & \text { Year } \end{aligned}\right.$ | 49 , 8 | 52.0 | ;6 , 3 | 74 , 1 | 60 , 1 | $32 \quad 3$ |  |
| 1helran <br> Highefs |  |  | 16 Aug.2. |  |  |  |  |
| Loweat <br> Difere"ch | $\frac{\varrho_{2}}{74} \text { fan. } 3$ | $\frac{80}{79} 948.8$ | $\frac{91.6 \text { 7an } 31 .}{75}$ |  | $\left\{\begin{array}{l} 20 \text { fure } 27 \\ \frac{s}{82} \text { fan. } 13 \end{array}\right.$ | $\begin{array}{r} 5 \\ \frac{60}{55} \text { fan ane 2 } 23 . \end{array}$ | $\begin{aligned} & 28 \text { July } 4 . \\ & \frac{n}{67} \end{aligned}$ |

1Table, in Incibes and Decimals, of the Deptb of Rain which foll in Severa Piaces, in the Riar 1731, commanicated io the Royal Society.

| 1731. | CraneCourt. | Southwick. | UpJal. | $\begin{aligned} & \text { Wiltem- } \\ & \text { berg, N.S. } \end{aligned}$ | Naples. | Padua. | $\begin{aligned} & \text { Edin } \\ & \text { burgh. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fanuary | ,125 | ,8I | , 774 | 1.557 | 2,60 | 2, 546 |  |
| Ficruay | 82 | 104 | 330 | 934 | 2 | $3-093$ |  |
| Marcb | 05 | 15 | ${ }^{2} \quad 544$ | 1775 | 478 | 976 |  |
| $\overline{\text { Apr }}$ |  | 07 | 587 | 801 | 478 | $3 \quad 434$ |  |
| Mey | 39 | 33 | 669 | 610 | 130 | 602 |  |
| Tune | 230 | $3^{8}$ | $3 \quad 074$ | 616 | 870 | $4 \quad 253$ | , 05 |
| fuly | 2 085 <br> 1 7 | - 65 | ${ }^{2} \quad 6881$ | 1513 | 34 | $3 \quad 402$ | 5 |
| Algugt | 173 | 154 | 1402 | - 222 | 3-239 | $7-372$ | 85 |
| Seprember | 55 | $1 \begin{aligned} & 1 \\ & 1\end{aligned}$ | 1913 | 1898 | -213 | $2-\frac{16}{216}$ | 02 |
| OEfober | 36 | 34 | 1.171 | 068 | 3 | -4-354 | $1 \quad 47$ |
| November | 53 | 49 | 460 | 699 | 4.04 | $1-653$ | 1.42 |
| $\overline{\text { December }}$ | 1.40 | 230 |  | 1927 | 676 | 306 | $3 \quad 12$ |
| Total | 3,60 | 7,57 | 16,00211 | 18,62012 | 27.955 | 34, 207 |  |

Metecrological Obfervations for 1731,1732,1733,1734, and 1735. 593 The Barometrical Table for the Year $173^{2}$.

| 1732. | Crane-Court. | Scullurick. | Kent. L.at. 51. | Coventiy: | IW'ilicmberg. | Naples. | Ediacugty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ¢anuary | 29 ? ? | 21) $\quad .54$ | 29, 53 | $29 \quad 27$ | 29) 54 | 29,03 | 29.3 |
| Februaly | 87 | $6 ;$ | 62 | ${ }^{2} 8$ | 53 | 11 | 4 |
| Darcb | 76 | 57 | 52 | 33 | 35 | 14 | 6 |
| Aprí | 7: | 52 | 04 | 27 | 43 | 23 93 | 5 |
| M1ay | 70 | 50 | 36 | 26 | 54 | 96 | 5 |
| 7une | 96 | 71 | 71 | 52 | 54 | 97 | 8 |
| ¢uly | 21 | $65-$ | 55 | 46 | 54 | $2938^{\circ}$ | 7 |
| Augaf | 95 | 70 | 66 | 52 | 64 | 03 | 9 |
| sipiember | 93 | 63 | 70 | 47 | 64 | $2 \%$ | 6 |
| Ociober | 58 | 68 | 27 | 15 | 39 | 10 | 3 |
| November | $30 \quad 60$ | 75 | 89 | 88 | 47 | 24 | 8 |
| December | $29 \quad 74$ | 47 | 48 | 28 | 52 | 10 | 8 |
| Mean of the whol: Year | 29,82 | 29,627 | 29 ,53 | $29 \quad 37$ | 29 151 | 29.1 | $29 \quad 60$ |
| \% Klighert | 30,5 Fcb. 14. | 30,13 Nor. 24 | 30,29 sept. 25. | 29,96 Nov. 25. | 30,25 Dcc. 9 | $29.40 \%$ ar. . $2 \mathrm{f}^{\prime}$ | 51,0 Aug. 28. |
| Loweft Differ. | $\left\lvert\, \frac{29,0}{1,5}\right. \text { Di6. } 31 \mid$ | $\left\lvert\, \frac{8,70}{1,43}\right. \text { Dec. } 30 \mid$ | $\frac{28,32}{1,97}$-2prils. | $\left.\right\|_{1,42} ^{28,54}$ Dic. 30. | $\left\lvert\, \frac{28,7.29}{1,524}\right.$ Nori. ${ }^{1}$ | $\frac{28,82}{., 8} M_{\text {aj }} 28$. | $\frac{28,2 \text { Nori. } 18 .}{2,5}$ |

The Thernometrical Table for the Year 1732.

| 1732. | Crane-Court. | Soutbreick. | Willemberg. | Naples. | Edinburgh. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fanuary | 66,1 | 67,5 | 86,5 | 53,5 | 75 |
| Ficbruary | 53 | 57 | $67-4$ | 43 | 65,5 |
| March | 57 | 58 | 66 | 39 | 65 |
| April | $47 \quad 9$ | 52 | $53-7$ | $34-3$ | 63 |
| May | $45 \quad 3$ | 485 | 42 | 22 | 54 |
| June | $37-6$ | 40 | $3^{8}$ | 19 | 41 |
| 7uly | $3^{2}-8$ | 36 | $35-3$ | 83 | 43 |
| Augut | 36 | 40 | 41 | 15.9 | 46 |
| September | 42 | 44 | 53-9 | 23 | 54 |
| OEFober | 47 | 51 | $58-9$ | $24-5$ | 61 |
| November | 62 | 64 | 78 | 42 | 72 |
| $\overline{\text { December }}$ | 64 | 66 | $84-5$ | 492 | $73 \quad 5$ |
| Mean of the whole Year. | 49,3 | $5^{2}$ | 58,8 | $3^{\text {I }}$,3 | 59,5 |
| Thermom. Higheft Loweft Difference | $\begin{aligned} & 19 \text { Aug. } 20 . \\ & \frac{80}{61} \\ & \hline \end{aligned}$ | $\begin{aligned} & 20 \text { Aug. } 13 . \\ & \frac{88}{68} \text { Dec. I1. } \end{aligned}$ | $\begin{array}{r} 3,5 \text { fuly } 16 . \\ 113 \text { Dec. } 11 . \\ \hline 109,5 \end{array}$ | $\begin{gathered} 47 u l y \text { 17. } \\ \frac{57}{53} \text { fan. Srep. } \end{gathered}$ | $\begin{aligned} & 28 \text { July } \\ & \frac{89}{69} \text { Dec. } \end{aligned}$ | A Table for the Depth of Rain for the Year 1732.


| 1732. | CraneCourt. | Soutbrvick. | Keit.t. | $\begin{aligned} & \text { Wittem- } \\ & \text { berg. } \end{aligned}$ | Naples. | Paduc. | Edinburgh. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fanuary | -,525 | $\underline{9}$ | . 537 | 3399 | 5.70 | 2,-129 | 1,28 |
| Fibruary | 190 | 2 | 2376 | $1-46+$ | 52 | 1-959 | 2409 |
| March | 115 | 14 | 11 <br> 166 | 917 | 33 | 2765 | 79 |
| Arril | 2765 | 12 | $1 \quad 310$ | $2-514$ | 130 | 5432 | 3 |
| May | 3.2 | 34 | $3-494$ | 1886 | 434 | 1864 | $4-62$ |
| \%une | 105 | 6 | 803 | 2308 | 208 | 2872 | 19 |
| 7uly | $1{ }^{1} 13$ | 18 | $15^{22}$ | 2.929 | 120 | 1.585 | 319 |
| Auguf | 15 | 17 | 931 | 1390 | 1 1 13 | 3112 | $1{ }^{1} 6$ |
| Septernber | 1.14 | 7 | 825 | 1.833 | 78 | 089 | 000 |
| October | $2 \quad 39$ |  | 3-295 | 1.346 | 470 | $9 \quad 164$ | 52 |
| November | 12 | 12 | $1-269$ | 1 | $3 \quad 34$ | 957 | 41 |
| December | 1705 | 26 | $1-471$ | 1524 | $4 \quad 82$ | $3 \quad 528$ | 361 |
| Total. | $19,6.55$ | 20,5 | 18,954 | 19,923 | 26,334, | 35,456 | $24 \quad 82$ |

The Barometrical Table for the Yoar 1733.

| 1733. | CraneCourt. | Soulbwick. | Kent. | Cozentry. | Wiltemberg. | $\begin{aligned} & \text { Edin- } \\ & \text { burgh. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fanuary | 29, 96 | 29,68 | 29,65 | 29,43 | 29,78 | 29.8 |
| Fitruary | 81 | 55 | 54 | 31 | 67 | 6 |
| March | 65 | 43 | 35 | 21 | 49 | 6 |
| April | 85 | 65 | 54 | 43 | 62 | 7 |
| May | 89 | 70 | 80 | 50 | 57 | 8 |
| Gune | 91 | 67 | 68 | 44 | 68 | 8 |
| fuly | 90 | 67 | 51 | 46 | 65 | 7 |
| Airguft | 81 | 56 | 43 | 36 | 55 | 6 |
| September | 89 | 62 | 53 | 41 | 99 | 6 |
| October | 97 | 72 | $30 \quad 04$ | $4^{8}$ | 70 | 8 |
| November | 30 O1 | 75 | 06 | 50 | 74 | 7 |
| December | 2985 | 53 | $29-66$ | 36 | 68 | 5 |
| Meian of the whole Year. | 29,87 | 29,63 | 29,65 | 29,40 | 29,67 | 29,68 |
| 8 Higueft Loweft Differ. |  |  |  |  |  |  |

Meteorol. Obfervat. for 1731, 1732, 1733, 1734, and 1739
The Thermometrical Table for the Year 1733.

| 1733. | Crane-Court. | Soulbroick. | Wittemberg. | Edinburgh. |
| :---: | :---: | :---: | :---: | :---: |
| दुanuary | 60,1 | 61,5 | 78 , 8 | \% 0 |
| February | 59 | 60 | 70 | 68 , 5 |
| March | 59 | $59-5$ | 68 | 68 |
| April | $52-8$ | $51-5$ | 536 | 59 |
| May | $45-3$ | 47 | 50.5 | 51 |
| F̧une | 35 | 36 | 38 | 41 |
| Fuly | 28.5 | 32.5 | 36 | $3^{8}$ |
| Auguft | $35 \quad 9$ | 395 | 41 | 47 |
| Septemior | 45 | 48 | 57 | 54 |
| Oerober | $53-4$ | 56 | 72 | 62 |
| November | 56 | 58 | 68 | 62 |
| Dicember | 54 | 55 | 68 | 64 |
| Mean of the whole Year | 47,9 | 50 | 50,4 | 57 |
| Therm. |  |  |  |  |
| Higheit <br> Lowelt | 16 June 26. <br> 72,57cn. 21. | 10 Fune 25. $85 \text { fan. } 22 .$ | $\begin{array}{r} 3,57 \text { fune } 2 B \\ 0 \end{array}$ | 28 Junce 26. $86,5 \% \text { an. } 2 \mathrm{x} \text {. }$ |
| Differ. | 56 | 75 | 95,5 | $\overline{5^{8,5}}$ |

$A$ Table of the Depth of Rain for the Year 1733.

| 1733. | CraneCourt. | Soutbwick. | Kent. | Wittenberg. | Padua. | Edin- <br> burgh. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7amuary | ,69 | , 0 | 1,235 | ,562 | x 785 | I , 37 |
| February | 16 | 14 | $1-925$ | 562 | 405 | 52 |
| March | 145 | 2 | $2{ }^{1} 6_{1}$ | 183 | $5 \quad 6+2$ | 63 |
| April | 70 | 1 | 815 | 621 | $3 \quad 816$ | 81 |
| May | 55 | $\bigcirc$ | 216 | 642 | $5-33$ | 08 |
| Fune | 65 | 2 | $1 \quad 742$ | 308 | 2 712 | $2-13$ |
|  | 54 | 2 | 979 | 1 | $3 \quad 874$ | 63 |
| Augut | $3 \quad 225$ | 3 | $3 \quad 354$ | 2308 | $3 \quad 679$ | 67 |
| September | 37 | 1 | $1 \quad 499$ | 517 | 589 | 83 |
| OEzober | 91 | - 6 | 790 | 828 | $2-788$ | $1-08$ |
| November | 52 | 5 | $1 \quad 081$ | $3 \quad 61$ | 388 | 32 |
| December | 244 | 17 | $13 \quad 201$ | $3-151$ | $1 \quad 065$ | $3 \quad 62$ |
| Total | 18,9 | $17 \quad 5$ | 19, 998 | 18 | 32,137 | 19,69 |

Meteorol. Obfervat. for 1731, 1732, 1733, 1734, and 1735. The Barometrical Table for tbe Xear 1734.

| 1734. | Crane-Court. | Soutbwick. | Kent. | Coventry. |
| :---: | :---: | :---: | :---: | :---: |
| faitury | 30,06 | 29.80 | 29, 88 | 29.53 |
| Fetruary | $29 \quad 85$ | 60 | 69 | 39 |
| March | 76 | 52 | 61 | $28-99$ |
| Ipril | 95 | 69 | 84 | 2949 |
| May | 82 | 54 | 52 | 33 |
| Ftine | 87 | 55 | 65 | 44 |
| Fuly | 87 | 63 | 65 | 44 |
| Alg $\mathrm{m}^{2}$ | 77 | 57 | 60 | 37 |
| September | 30.04 | 56 | 65 | 37 |
| OEtober | - 00 | 47 | 46 | 30 |
| $\overline{\text { November }}$ | 38 | 74 | 79 | 53 |
| $\overline{\text { December }}$ | $29-6$ | 22 | 24 | 02 |
| Mean of the | 29,92 | 29,58 | 29,63 | 29, 43 |
| ¢ $\begin{gathered}\text { Highett } \\ \text { Loweft }\end{gathered}$ |  | 30,25 Fan. 12 28.10 Dec. 15 | 30,34 Jan. 11. 28.19 Dcc. 15. | $\begin{aligned} & 30,05 \text { Jan. } 12 . \\ & 20 . \end{aligned}$ |
| Differ. | $\frac{2,05}{2,05}$ | 2,15 | 2.15 | 2.15 |


| 1734. | Darlington. | Wittemberg. | Norcmburg. | Edinburgh. |
| :---: | :---: | :---: | :---: | :---: |
| Fanuary |  | $29-8$ | 28, 58 | $29-9$ |
| Fibruary |  | 72 | 96 |  |
| $\overline{\text { March }}$ | 29,40 | 51 | 34 | 5 |
| $\overline{\text { April }}$ | 6 | 59 | 97 | 8 |
| May | 30.10 | 54 | 65 | 8 |
| Fune | $29-8$ | 63 | 42 | - 8 - |
| 万̛uly | - 8 | 56 | 66 | 7 |
| Auguj | 9 | 60 | 6 |  |
| Septcmber | 7 | 37 | 71 | 6 |
| Oizober | 8 | 07 | 48 | 5 |
| November | 3 | 66 | 71 | 9 |
| December | 8 | 57 | 5 | 0 |
| $\begin{aligned} & \text { Mean of the } \\ & \text { whole Year } \end{aligned}$ | 29, 87 | 29,56 | 28,63 | ${ }^{29}, 64$ |
| $\begin{gathered} \text { WHigheft } \\ \text { Loweft } \\ \text { Differ. } \end{gathered}$ |  | $\begin{array}{\|cc\|} 30,35 & \text { fan. } 11 . \\ 28,45 & \text { Dec. } 14 \\ 1,89 & \\ \hline \end{array}$ | $\begin{array}{lll} 29,2 & \text { fan. } 22 . \\ \frac{27,66}{1,53} & \text { Dcc. } 26 . \\ 1,53 & \end{array}$ | $\begin{array}{ll} 30,6 & \text { fan. } 12 . \\ \frac{28}{2,6} & \text { Dec. } 14 . \end{array}$ |

## Meteorol. Obfervat: for 173 1, 1732, 1733,1734, and 1735.

The Tbermometrical Table for the Year ${ }^{1} 734$.

| 1734. | $\begin{aligned} & \text { Cran } \\ & \text { Cour } \end{aligned}$ | Soutbwick. | Darlington. | Wittemberg. | Edinburgh. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fanuary | 67 | 68 |  | $8 \mathrm{~B}-2$ | 75 |
| Febrruary | $5^{88}, 7$ | 57, 5 |  | 66 | 65 |
| March | $51-7$ | 54 | 60,6 | 63 | 63 |
| April | 47 | 50 | 51 | 53 |  |
| May | 45 | $47 \quad 5$ | 46 | 40 | 55 |
| fune | $36 \quad 9$ | 39 | 40 | 32 | 43 |
| fuly | 34 | 35 | 35 | 33 | 41 |
| Augruf | 34 | 37 | $37-3$ | 34 | 46 |
| Sopteriber | 45 | 47 | 45 | 49 | 55 |
| OEtober | 56 | 56 | 55 | 71 | 61 |
| November | 61 | 64 | 60 | 88 | $7^{2}$ |
| $\overline{\text { December }}$ | $63 \quad 5$ | 65 | $63-4$ | $7^{6}$ | 74 |
| $\left\|\begin{array}{l} \overline{\text { Mean on of }} \\ \text { the whole } \\ \text { Year } \end{array}\right\|$ | 493 |  |  | 57, 5 | 58 ,5 |
|  |  |  |  | $\begin{aligned} 9 & \mathcal{Y u n n c}^{28} \\ 102 & \text { Nov. } 27 \end{aligned}$ |  |

A Table of the Depth of Rain for the Year 1734.

| 1734. | Crane. Court. | South. wick | Kent. | Canter. bury. | Darling | $\begin{aligned} & \text { Witlens. } \\ & \text { berg. } \end{aligned}$ | Rome. | Padua. | Edin. burgh. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | 1.01 | , 5 | 1,63 |  |  | . 86 |  | $1, c_{3}$ | 59 |
| February | $1 \quad 935$ | 26 | $2 \quad 43$ |  |  | 2.04 |  | 73 | 59 |
| Marcb | 179 | 18 | 198 | . 74 | 3,25 | $2-95$ |  | $1-55$ | -2 |
| April | 45 | 6 | 59 | 75 | 7 | 55 |  | 7 |  |
| May | $4 \quad 17$ | $5 \quad 1$ | $3 \quad 89$ | $1 \quad 49$ |  | $3 \quad 7$ |  | 437 | $3 \quad 31$ |
| June | 321 | 13 | 213 | $3 \quad 59$ |  | 67 |  | $4 \quad 55$ | $2 \quad 23$ |
| fuly | 111 | 18 |  | 194 | 16 | $2 \quad 47$ |  | $7 \quad 1$ |  |
| Augaj? | 176 | 4 | $2 \quad 16$ | $2 \quad 34$ | $2 \quad 4$ | 109 | 59 | 3 or | 28 |
| Seprember | 1 |  | 59 | 5.4 | $1 \quad 35$ | 2 | 83 | 89 | 17 |
| OCzober | 2 | 28 | 3-13 | $3 \quad 91$ | $2 \quad 4$ | 208 | 83 | $4 \quad 39$ | $1 \quad 32$ |
| Nowembier | 177 | 9 | 49 | 161 | 23 | 73 | 15 | 3 | 16 |
| December | $4 \quad 27$ | 4 | $7 \quad 26$ | $65^{2}$ | 17 | 75 | 602 | 49 | 233 |
| Yocal | $24 \quad 57$ | $\|27 \cdot 5\|^{2}$ | 29.72 | 23, 98 | 21,2 | 20,95 |  | 38,56 | 19,22 |

Metcorological Obfexvations far $\times 73 \mathrm{~F}, 1732,1733,1734$, and 1735 . The Barometrical Table for the 2 ear 1735

| 1735. | CrancCourt. |  |  | wick. | Covensry. | Darting:- Norimberg | $\begin{aligned} & \text { Edin- } \\ & \text { burgb. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fanuary | 30 | ,09 | 29 | . 47 | 29,13 | $29,4 \quad 28 \quad 3$ | 29,5 |
| February |  | 1 |  | 63 | $4{ }^{2}$ | $4-7$ | 7 |
| March | 29 | 84 |  | 36 | 15 | $73-41$ | 3 |
| April | 30 | 03 |  | 49 | 26 | $45-60$ | 7 |
| May |  | 14 |  | 60 | 42 | $30 \quad 7 \quad 54$ | 8 |
| 7une |  | 11 |  | 56 | 35 | $2992-63$ |  |
| fuly |  | 02 |  | 50 | $3^{2}$ | $65 \quad 64$ |  |
| Auguf |  | 31 |  | 72 | 46 | $92 \quad 83$ |  |
| September |  | 23 |  | 69 | 52 | $97-86$ |  |
| OEtober |  | 19 |  | 69 | 44 | $3010 \quad 7^{2}$ |  |
| Noveninber |  | 00 |  | 45 | 26 | 2965 - 60 |  |
| December |  | 13 |  | 59 | 37 | $80 \quad 71$ |  |
| Mean of the whole Iear | 30 | , 09 | 29 | , 56 | 29, 34 | $29,75,28,63$ |  |
| \% Hignelt | 33. | tan. 4 | 30,17 | Frb 11. | 30 Feb. 2 | $29,22 \mathrm{Nov.24}$ |  |
| Lowelt | 28.6 | fan. 8 | 28.00 | Jan. 8. | 27,9 7an. 8 | $\text { 28,02 fan. } 10 \text {. }$ |  |
| Differ. | 2,4 |  | 2,17 |  | 2,1 | 1,19 |  |

The Thermometrical Table for the Year 1735.


Meteorol. Obfervat. for $173^{17}, 1732,1733,1734,1735$, and 1736 .
A Table of the Depts of Rain for the Year 1735.

| 1735. | CraneCourt. | Soutbwick. | Darlingion. | Padua. | Rome. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fanuary | 2,36 | , | 1.65 | 4,05 | 6 ,26 |
| February | 178 | 7 | $2 \quad 40$ | 242 | 67 |
| March | 2) 24 | 22 | $2 \quad 26$ | $5-5$ | $5 \quad 30$ |
| April | 16 | 7 | 18 | $1-45$ | $2 \quad 32$ |
| May | 204 | 5 | 1.50 | 268 | $2 \quad 68$ |
| Fune | 208 | 4 | 21 | $3-86$ | 3.22 |
| Fuly | $3 \quad 14$ | 23 | $3-11$ | $4 \quad 99$ | $0-00$ |
| Auguft | 1.49 | $3-2$ | $2{ }^{2}$ | - $7^{2}$ |  |
| September | 156 | 3 | $x-04$ | 128 |  |
| OElojer | 98 | 17 | I 98 | 187 |  |
| November | 269 | 17 | 287 | - 54 |  |
| December | $1-5$ |  | 1 -84 | 63 |  |
| Total | 22,83 | 25 | 24,07 | 29, 68 |  |

LVIII. Thefe Obfervations are made according to Dr furin's Di. A Summary of rections, and with the fane Inftruments, that were made ufe of in the 6 preceding Years.

> TABLEA.


Metcorologiral Obfervations
made for 6
Piars at Pa -
dua, by the
Marquis Po
leni, F. R. S.
No. 448. p.
239. June,

ぼc. $173^{\circ}$ :

This

This Table seprefents the WWater of 6 Xears, collected from Rain and melted Snow. If you take-a!l the Menths tngether, you will fint that the Quantity of SVater, which fell in the Months of Novenber, Dig. 6. Dec. 295 is the leaft; and that what fell in the Months of Tuly, Dig. 23. Dec. 932. is the greaten: Whereas in the preceding 6 Ycars the fmalleft Quanticy fell in the Months of Fob: and the greateft in OEE. The Differeace between the Feaft and greateft Quantity before was Dig. 22. Dec. 79 (6; but now it is Dig. 17. Dec. 637

It appears alfo from the fane Table, that the Ycar 17.35 was the moft dry, being Dig. 29. Dec. 635 ; and that 1734 was the moifteft, being Dig. 38. Dic. 563 . In the preceding 6 Years the Difference between the moft dry and the mort wet was Dig. 27. Dec. 505 ; but in thefe Dig. 8. Dec. 878.

TAble B.


In this Table it appears, that the Quantity of Water collected in Summer and Autumn, in 3 Years, was greater than the Quantity collected in Winter and Spring; and that in the other 3 Years it was lefs: Whereas in the former Space of 6 Years the Quantity collected in Summer and Autumn was always the greateft. In thofe 6 Years the Scafons, according to the Increafes of the Sums of Water collected, were to be placed in the following Order; Winter, Spring, Summer, Autumn: But in the laft 6 Years they muft be placed thus; Aurumn, Winter, Summer, Spring.

In this Space of 6 Years, the Sum of the Quantity of Water collected in Summer and Spring exceeds the Sum of Water collected in Winter and Autumn. And in both Spaces the Summer is one of the Seafons of greater Quantity, and the Winter of lefs.

The Barometer decreafing from the Noon of the preceding Day to the Noon of the Day on which it rained.

| Number of the <br> Days on which <br> it rained. | Wind at Noon <br> on the Days in <br> which it rained. |
| :---: | :---: |
| 140 | NE |
| 47 | NE |
| 15 | E |
| 18 | SE |
| 27 | S |
| 28 | SW |
| 33 | W |
| 62 | NW |
| Sum 370 |  |

The Barometer increafing from the Noon of the preceding Day to the Noon of the Day on which it rained.

| Number of the <br> Days on which <br> it rained. | Wind at Noon <br> on the Days in <br> which it rained. |
| :---: | :---: |
|  | 80 |
| 29 | NE |
| 7 | E |
| 4 | SE |
| 14 | S |
| 17 | SW |
| 24 | W |
| 31 | NW |
| Sum 206 |  |

As I wondered in the correfponding Table of the former 6 Years, fo in this Table alfo I have obferved, not without Wonder, that there was no greater Difference between the Numbers of the Increafe and Decreafe of the Height of the Barometer (on the rainy Days) than between 370 and 206: Which is almoft the fame as that of the former Tables; namely, 378 and 211 .

It is worthy alfo of Obfervation, that in the whole former Space of 6 Years the rainy Days were 589 ; and in the latter 576: A fmall Difference only of ${ }_{3} 3$ Days between both Spaces. In both a greater Quantity of Rain was brought by the N. than by any other Wind; and the leaft by the E. and SE.
TABLE D.

The Barometer decreafing from the Noon of the preceding Day to the Noon of the Day on which it fnowed.
Number of the
Days on which
it fnowed.


V O L. VIII. Part ii.

In the firft 6 Years it fnowed more when the Barometer decreafed, than when it increaled; but it is the contrary in this Table. In thofe 6 Years there were 18 fnowy Days, and in thefe there were 15.

Table E.

|  | Sum of the Heights of the Barome |  | Sum of the Heights of the Thermo meter. |  | Mean Height of the Barometer on each Day. |  | Mean Height of the Thermometer on each Day. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dig. | Dec. | Dig. | Dec. | Dig. | Dec | Dig. | Dec. |
| 1731. | 10850 | 65 | 18286 | 25 | 29 | 72 | 50 | 9 |
| 1732. | 10870 | 19 | 18361 | 30 | 29 | 70 | 50 | 17 |
| 1733. | 10867 | 18 | 18301 | 95 | 29 | 77 | 50 | 14 |
| 1734. | 10850 | 24 | 18305 | 78 | 29 | 73 | 50 | 15 |
| 1735 | 10861 | 21 | 18274 | 87 | 29 | 76 | $5 \bigcirc$ | 6 |
| 1736. | 10870 | 7 | 18338 | 42 | 29 | 50 | 50 | 10 |

The mean Height of the Barometer in this whole Space of 6 Years is Dig. 20. Dec. 73. differing only 3 decimal Parts from that of the former 6 Years, which was Dig. 29. Dec. 70.

The mean Height of the Thermometer for each Day in this Space is Dig. 50. Dec. 12. differing only 4 decimal Parts from that of the former 6 Years, which was Dig. 50. Dic. 16.

The daily neean Heights both of the Barometer and Thermometer, belonging to each Year, hardly differ in this Table; as they agreed alfo. very well together in the Table of the former 6 Years.

| Years. | Months. | Days | Hoars. | Greateft Height of the Barom. Dig. Dec. | Leart Hsight of the Barom. Dig. Dec. | Height of f the Ther. mometer. Dig. Dec. | Winds. | Weather. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S Feb. | 6 |  | $30 \quad 26$ |  | 4836 | NW | Fair. |
|  | \{ Jan. | 29 | 15 |  | $28 \quad 70$ | $47 \quad 92$ |  | Foggy. |
|  | IDec. | 10 | 15 | $30 \quad 20$ |  | $48 \quad 32$ | N | Fair. |
|  | $\}$ Mar. | 11 |  |  | $28 \quad 85$ | $49 \quad 67$ | SW | Cloudy. |
|  | f fan. | 23 | 15 | $30 \quad 48$ |  | $48 \quad 62$ | NW | Fair. |
| 1733. | \% Mar. | 19 | 15 |  | $28 \quad 96$ | $49 \quad 18$ | N | Rain. |
|  | $\left\{\begin{array}{l}\text { Jan. } \\ \text { deb }\end{array}\right.$ | 12 | 15 | $30 \quad 34$ |  | 48 | N | Fair. |
|  | $\left\{\begin{array}{l}\text { Dea } \\ \text { Feb }\end{array}\right.$ | 15 | 15 |  | $28 \quad 38$ | $48 \quad 30$ |  | Cloudy. [Pari. |
| 1935. | $\left\{\begin{array}{l}\text { Feb. } \\ \text { Mar }\end{array}\right.$ | 8 | 15 | $30 \quad 30$ |  | 4840 | NW | Cloudy for the mor? |
|  | \% Mar. | 17 | 15 |  | 29 | $49 \quad 48$ | W | Small Rain. |
| 4736. | I Now. | 19 8.2 | 15 | $30 \quad 20$ | 2888 | $48 \quad 90$ | N |  |

Meteorol. Obfervat. for 1731, 1732, 1733, 1734, 1935, and 1736.
Table G.


By comparing there Tables with the corresponding ones in my former, it appears that the greateft Height of the Barometer, Dig. 30. Dec. 48. exceeded the greateft in the former 6 Years, which was Dig. 30. Dec. 40. But the Depreffion of the Quickfilver Dig. 28. Dec. 70. yields to that of the former 6 Years, which was Dig. 28. Dec. 56.

The greateft Height of the Thermometer in there new Tables is Dig. 52. Dec. $5^{2}$; in the former Dig. 52. Dec. 54 ; only two decimal Parts more. The leaft Height in there Tables is Dig. 47. Dec. 44 ; in the former Dig. 47. Dec. 58. Therefore in the laft 6 Years the QuickSilver funk 14 decimal Parts lower than in the former.

Table H.


This Sum of 187 Inches, $9^{\frac{1}{3}}$ Lines, being divided into 6 equal Parts, gives the mean Measure of the Water for each Year 3x Inches, $3 \frac{7}{12}$ Lines. In the former 6 Years it was found to be 35 Inches $\frac{7}{12}$ Lines: Therefore the Difference is 3 Inches 9 Lines.

Now if we add the Sums of there 2 Spaces of 6 Years into one, and divide it by 12, we hall find the mean Quantity for each Year to be K kkk 2 Meafure of Water, which falls at Paris 19 Inches, or 18 Inches 8 Lines, it will appear, that there falls a much greater Quantity of Water at Padua, than at Paris.

Thefe 6 Years furnifh alfo an Obfervation, that there fometimes falls at Padua in 24 Hours, a much greater Quantity of Water, than ever falls within the fame Space of Time at Paris. From the Noon of O8t. $27,173^{2}, 0 . S$. Wind N . to the Noon of the following Day, there fell 2 Inches of Rain and about 9 Lines, which is much more than ever was obferved to fall at Paris.
The greateft Height of the Barometer, $\mathcal{F}$ a!. 23, 1733, obferved in thefe 6 Years, being reduced to Frencb Meafure, is 28 Inches $6 \%$ Lines. The leaft Height 7 fan. 29, 1731, is 26 Inches $10 \frac{7}{10}$ Lines. The Difference between the greatelt and leaft Height is I Inch 8 Lines. And as the greateft Difference at Paris was Inch $11 \frac{1}{6}$ Line, it exceeds that at Padua $3 \frac{1}{6}$ Lines. Thus the Differences in my former Account are confirmed by thefe new Obférvations.

I have found, by repeated Obfervations, the Declination of the mag. netical Needle in Apr. 1733 to be $13^{\frac{1}{2}}$ Deg. to the W. At the latter End of 1736 I found it to be $13 \frac{15}{60}$ Deg. Therefore, by comparing this with my former Account, it will appear, that the Declination was greater in the 3 firft of thefe 6 Years, than in the 3 laft.

Padua, fune I, ${ }^{1737 .}$

Remarks on the Weather, with 3 Syncprical Tables of me-
teorologicai'Obfrervations for ${ }_{14}$ Years, viz. from 1726 to 1739, both inclufive, by Geo. Lynn, $E / g ;$ No. 460 . p 686. April, Egc. 1741 .
LIX. Having, for thefe 14 Years laft paft, kept a conftant Regifter or Diary of the Altitudes of the Barometer and Thermometer, the Quantity of Rain, Courfe of the Winds, $\underbrace{c} c$. according to Dr Furin's Invitation, the five firt Ycars of which have been communicated to the R. S. I now fend the remaining 9 Years at large, ending Dec. 1739 , in the fame Method as formerly. But, believing it would be of good Ufe, both here and abroad, if the mean Heights of the Barometer, Thernometer, and Quantity of Rain in every Month of the whole 14 Years, with the collateral Means, both of the Months and Years, were brought all into one View together, I have taken the Pains to range them ascordingly in a Scheme, or Table. The Meaning of the feveral Columns in that Scheme is, in a great Meafure, explained by the Titles of them; and by the loweft Line you will find, that the mean Height of the Barometer for the whole 14 Years is 29.58 Inches; the mean Quantity of Rain annually, 23 Inches; and the mean Alcitude of the Thermometer $\left|\begin{array}{c}51488 \\ 52\end{array}\right|$ that is, at the coldent Time of the Day 56 , at the hottef 48 , and their Mean 52. In the middle Column, viz. that of Rain, the Commas, Semicolons, and Colons, over the Figures, denoie, by their Manner of placing, from the Left to the Right, what Time in the Month the Rain fell, whether at the Beginning, Middle, or later Find; the Comma. [,] denotes a fmall Quantity, the Semicolon [;] a middling Quantity, and the Colon $[:]$ alarge Quantity; flrewing the dif-
ferent Proportion that fell at thofe Parts of the Months. The Thermometer made ufe of all along, is that of Mr Haukbee, and kept conftantly in the fame Place, as mentioned by Mr Geo. Hadley*. And the Altitudes of the Thermometer are taken but twice a Day, viz. at the coldeft, which is at Sun-rife, or fometimes a little after; and at the hotteft, viz. between 2 and 4 in the Afternoon: By which Method are gained the proportional Heats for every Month in the Year, and their Difference, as alfo between that of Day and Night, for ${ }_{13}$ Years together; not reckoning in the Year 1726 , which may be feen by the Scheme to be in another Method, and not filled up.

- Great Care has been taken, in cafting up and dividing, to get the exact Mediums and Sums; and I was not a little furprifed to. find, in calting up the Column of the mean Altitudes of the Thermometer collaterally, that as thofe for Fuly, being the hotteft Month, are $\left|\begin{array}{c}4 \\ 3 \\ 35^{2}\end{array}\right|$ fo the Altitudes of Fune and Aug. on each Side of it, come out exactly equal to one another, and alfo thofe of May and Sept. thefe laft only differing in their Morning and Evening Heats or Altitudes, which does not alter their Medium of $44^{\frac{1}{2}}$.

When there is a Hazinefs in the Air, fo that the Sun's Light quails by Degrees, and his Limb is ill defined, it is a pretty certain Sign of Rain, efpecially if the Mercury falls. The like Elazinefs at Night is ftill more a Sign of it.

It is obfervable, that though the Mercury, in the Summer Months, does not fo much vary in it's Altitude as at other Times of the Year, yet in that Seafon we have the moft Rain: It hould feem therefore, that the different Warmths (and confequently Rarefaction of Vapours) in the upper and lower Currents of the Air, and thofe Currents mixing, and fometimes wholly interchanging, are then the more immediate Caufes of the Rains, if not allo of Thunder and Lightning.

Black fleecy Clouds, formed upon a fudden Flurry of the Wind, are generally fucceeded by a Shower; and the fiifting of the Wind in a little Time almoft round the Compafs, in hot Weather, is often fucceeded by a Thunder-hower.

Several Times, when the Mercury has been a good while high, and fo continues, there has fallen miftling Rain, efpecially about the New and Full Moon, with an Eafterly Breeze, which the Borderers on the Conft of Lincalnfire and Norfolk call Tide-Weatber, and may be occafioned by the Vapours arifing from the Tides, which then cover a vaft Waft of Sands in their Neighbourhood.

Thofe Vapours fometimes reach us here in Nortbamptonßire, but believe feldom further W.

The Nights are for the moft Part calmer than the Days; and the Winds feldorn fettled in their Quarter, or at their Strength, till fome Hours after Sun-rife, and generally die away again before Sua fet.

Symoptical Tables of the Meteorological Obfervations made by George Lynn, E/q; at Southwick, near Oundel in Northamptonhire, for the lears from 1726 to 1739 inclufively.

|  | The Barometer's mean Alcitude (above 29 Inches) in 100 Parts of an Inch, <br> In the Years |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $17^{26}$ | $17^{27}$ | 1728 | 1729 | 1730 | 1731 | 1732 |
| Ganuary |  | . 36 | . 28 | . 70 | -79 | . 61 | - 54 |
| February |  | . 51 | . 86 | . 66 | -39 | . 57 | . 65 |
| March |  | . 66 | . 48 | . 54 | . 34 | . 92 | . 57 |
| April | $\cdot 75$ | .72 | . 48 | . 60 | . 66 | .51 | . $5^{2}$ |
| May | .74 | . 49 | . 64 | . 57 | . 55 | .72 | . 50 |
| Fune | . 63 | . 58 | . 68 | . 69 | . 60 | . 66 | . 71 |
| fuly | . 68 | . 65 | . 64 | . 64 | . 61 | . 72 | . 65 |
| Auguf | .45 | . 77 | . 64 | . 72 | . 70 | . 65 | . 70 |
| September | . 44 | . 50 | . 59 | . 42 | . 34 | $\cdot 70$ | . 63 |
| October | . 77 | . 44 | - $3^{8}$ | - $5^{2}$ | . 49 | . 67 | . 68 |
| November | $\cdot 74$ | . 84 | - 53 | - $3^{2}$ | . 55 | . 54 | . 75 |
| December | . 50 | . 33 | . 51 | . $5^{2}$ | .83, | . 61 | . 47 |
| The mean Altitudes in the feyeral Years. |  | . 57 | . 56 | - $57 \frac{1}{2}$ | . 57 | . 66 | . 61 |

Remarks on the Weather, \&cc. for 14 rears:

| fanuary | The Barometer's mean Altitude (above ${ }_{2}$ Inches) <br> in 100 Parts of an Inch, $\qquad$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{1733}$ | 1734 | 1735 | 11736 |  |  | 1739 |  |
|  | . 63 | . 80 | 47 | . 26 | . 86 | . 70 | 45 | ${ }^{58}$ |
| Felruary | . 55 | . 60 | . 63 | . 22 | . $5^{8}$ | 61 | . 60 | . 55 |
| March | . 43 | .52 | . 36 | 44 | . 45 | . 46 | . 48 | . 5 |
| April | . 65 | . 69 | . 49 | . 70 | 67 | . 53 | . 34 | . 52 |
| May | .70 | . 54 | . 60 | . 58 | . 70 | . 52 | . 60 | . 60 |
| Fune | .67 | . 65 | . 56 | . 76 | . 73 | . 50 | . 56 | . 64 |
| fuly | .67 | . 63 | . 50 | . 67 | . 59 | . $7^{2}$ | . 67 | .65 |
| Auguft | : 56 | 57 | 72 | 63 | . 55 | . 60 | 61 | .63 |
| September | . 62 | . 56 | . 69 | 71 | . 46 | . 65 | . 49 | . 56 |
| October | 72 | 47 | . 69 | . 33 | . 60 | . $5^{2}$ | 71 | . 57 |
| November | $\cdot 75$ | . 74 | $\cdot 45$ | . 64 | . 68 | . 67 | $3^{2}$ | 61 |
| December | . 53 | . 22 | . 59 | . 53 | 70 | . 58 | 65 | . 54 |
| The mean Altitudes in the fe yeral Years. | . 63 | . 58 | . 56 | . 54 | 63 | . 59 | 54 | .58 |


|  | $\begin{aligned} & \text { The Quar } \\ & \text { every } \end{aligned}$ | antity o Month | of Rai h, |  | ches an the Yea | Id Decir | mals for |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 17261 | 17271 | 1728 | 1729 | 1730 | 1731 | $7{ }^{1} 7$ |
| January | : $3: 1$ | $: ~$ 3.1 | $\left\lvert\, \begin{array}{ll} : & : \\ 4.0 \end{array}\right.$ | 0.2 ${ }^{\text {' }}$ | : 0.4 | , 0.8 : | \% 3. |
| February | : 1.0 ' | 2. $6^{\prime}$ | \% ${ }^{\text {; }}$ | 0.5 | 1.5: | ;: | I. 2 , |
| March | $\stackrel{1}{1.5}$ | 1.4 | 3 $3 \cdot$ | 1.3: | $\left\|\begin{array}{l} : 3 \\ 2.6 \end{array}\right\|$ | O. ${ }^{1} \frac{1}{2}$ | 1.3: |
| April | 3.0 : | : 1.2 | $l_{2.0}^{3}$ | \% ${ }_{\text {\% }}$ | 0.8 | $\left\lvert\, \begin{aligned} & i: ~ ; ~ \\ & 2.1 \end{aligned}\right.$ | I. 2 |
| May | ${ }^{3} 0.4$ | $4 \cdot 3$ | 1. 4 : | : 3.6 | 2.5 | $0.3{ }^{\text {3 }}$ | $3 \cdot 4$ |
| Fune | ; , : 4 : | : 3 ; |  | 0.8 | i: 3.4 , | 3.4 | , ; 6 : |
| Futy | , : ; ${ }^{\text {\% }}$ | 2.0 | : 3.2 ; | ; ${ }^{2}, 3 ;$ | $; \quad ; \quad ;$ | 1. 7 , | 1.8' |
| Auguft | ; 0.3 | 0. 3 : | 1.0 | 2.4 | $0.8{ }^{1} \frac{3}{3}$ | 1, ${ }^{\text {a }}$ : | : 1.7 |
| September | ; ; ; | , 2.0 | 0. $8^{\frac{3}{2}}$ | $\frac{1}{2} \frac{1}{2}$; ; ; | 1, ${ }^{\prime}$; | 1.5: | 0.7 |
| OEtober | 1.5 ${ }^{\text {3 }}$ | : 1.5 | 2.8 , | , $\begin{aligned} & \text {; : } \\ & 2.2\end{aligned}$ | 3.0; | $\begin{aligned} & ; \\ & 1.4 \end{aligned}$ | $\begin{aligned} & : ; \\ & 3 \cdot 7 \end{aligned}$ |
| November | ; 1.4 | $\left\|\begin{array}{c} ; \\ 0.4 \end{array}\right\|$ | 1. 5 : | : $:$; ; | 2.0; | ; ${ }_{\text {\% }}$, 5 | 1.2 ${ }^{\text {: }}$ |
| December | 2.5 | $2, ;$ | 2.4 | 1.7 | $0.8$ | $\left\lvert\, \begin{aligned} & :, ; \\ & 2.3 \end{aligned}\right.$ | $1, ;:$ |
| The mean Quan-? $\left.\begin{array}{l}\text { tity of Rain in } \\ \text { the feveral Years. }\end{array}\right\}$ |  | 25. | 26. | $23 \cdot \frac{1}{2}$ | 2 I | $17 . \frac{1}{2}$ | $20 . \frac{1}{2}$ |

Remarks on the Weather, \&c. for 14 Years.

|  | The Quantity of Rain in Inches and Decimals for every Month, In the Ycars |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1733 | 1734 | 7735 | 1736 | 1737 | 1738 | 1739 |  |
| Fanuary | $\vdots ;$ | 0.5 | 2.1 | 2.3' | 1.0 | 1.7; | : 2.4 | 1.3 |
| February | : 1.4 ; | 2.6 : | 10.7 : | 2.9 | 2.2 | - ${ }^{\text {¢ }} 8$ | ; 3.1 : | 1.6 |
| Marcb | ; 2.2 | 1. 8 : | 2.2 : | 2.1: | 2, : | 1.0; | : I 3 , | 1.7 |
| April | 1.0 | 0.6 | 1.7 | -. 6 | 0.4 | 1.3; | 2.2 : | 1.2 |
| May | 0.02 | 5.1 | 1.5: | 0.8 ${ }^{\text {; }}$ | 1.7 | I. 9 ; | ; ; ; | 1.9 |
| June | 2.0; | $:$ I. 3 | : ; ; | 1.4: | 1. ${ }^{\text {\% }} 8$ | 33.4, | ; ; | 2.3 |
| fuly | $2.2{ }^{\text {: }}$ | 1.8; | 2.3 | : 6.0 | 0.7 ${ }^{\text {; }}$ | 1.2, | , 1.7 | 2.3 |
| Auguft | : 3 | 4: ${ }^{\text {\% }}$ : | :, 3 | ${ }_{1}^{1.7}{ }^{3}$ | ¢ $5 \cdot 7$ | 1. 6 | , $\begin{gathered}\text { \% } \\ 2.5\end{gathered}$ | 2.2 |
| September | 1.4 | 1, 1.7 | $3 \cdot 2$ | I. 4 | 3. $\mathrm{i}^{8}=$ | 1 1.8 | I. 8 | 2.3 |
| Ociober | 0.6 | , 2.8 ; | ; ; 1.7 | , 2.6 | ; r : 8 | 1.8, | ; 0 | 2.0 |
| November | 0. 5 | $0.9:$ | 1.7 | O. | , : ${ }^{\text {; }}$ | 0.7 | 1.7 | 1. 4 |
| December | 1. 7 | $\left\|\begin{array}{c} ,:: \\ 4 \cdot 4 \end{array}\right\|$ | : 2 : 1 | 2.0 | , 3.3 | I, 2 : | : 1.9 | 2.2 |
| The mean Quan- 7 tity of Rain in the feveral Years. | $17 \cdot \frac{1}{2} / 2$ | $\left\|\begin{array}{\|c\|} 27 \cdot \frac{1}{3} \end{array}\right\|^{2}$ | 25. | 24. | 24. | 18. | $22 \cdot \frac{\frac{1}{2}}{}$ | 23. |

Remarks on the Weatber, \&cc. for 14 Pears.

The Thermometer's mean Altitudes saken (from Apris 13th, 1727) at the coldeft and botteft Time of the Day. and their Mean, In the Years

|  | 1726 | 1727 | 1728 | 1729 | 1730 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7anuary |  | $\left.\begin{gathered} \text { at } 10 \\ 65 \end{gathered}\right\|^{2 t} 3$ | $\begin{aligned} & 68105 \\ & 66 \frac{2}{3} \end{aligned}$ | $\begin{gathered} 70166 \\ 68 \end{gathered}$ | $\begin{aligned} & 69164 \\ & 66 \frac{1}{2} \end{aligned}$ |
| Eibruary |  | $\begin{gathered} \text { 2t 10 10 } 123 \\ 59 \\ 58 \\ 58 \\ 57 \end{gathered}$ | $\begin{aligned} & 69 \mid 62 \\ & 65 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 74167 \\ & 70 \frac{8}{2} \end{aligned}$ | $\begin{aligned} & 6816 \mathrm{r} \\ & 64 \frac{1}{2} \end{aligned}$ |
| Marcb |  |  60 | 59153 56 | $\begin{aligned} & 69160 \\ & 64 \frac{1}{2} \end{aligned}$ | $\begin{gathered} 62 \mid \div 4 \\ 58 \end{gathered}$ |
| Aprit |  | 52145 $48 \frac{1}{2}$ | $\begin{gathered} 57147 \\ 52 \end{gathered}$ | $\begin{aligned} & 61150 \\ & 55^{\frac{1}{2}} \end{aligned}$ | 58146 $5^{2}$ |
| May | at 10 $2 t$ <br> 25 20 <br> 22 $\frac{1}{2}$ <br> 22  | 45159 42 | $4 i 135$ 41 | 53142 $47^{\frac{1}{2}}$ | $\begin{aligned} & 4913^{8} \\ & 43 \frac{1}{2} \end{aligned}$ |
| June |  | 42132 37 | $\begin{aligned} & 41130 \\ & 35^{\frac{1}{2}} \end{aligned}$ | $\begin{aligned} & 43130 \\ & 36 \frac{1}{2} \\ & \hline \end{aligned}$ | $\begin{aligned} & 46 / 35 \\ & 40 \frac{1}{2} \end{aligned}$ |
| fuly | at $10 / 33^{3} 3$ 37 34 34 | 37126 $31^{\frac{1}{2}}$ | $41 / 38$ 36 | $\begin{gathered} 42130 \\ 36 \end{gathered}$ | $\begin{gathered} 42 / 32 \\ 37 \end{gathered}$ |
| Auguf |  $35^{\frac{1}{2}}$ | $\begin{gathered} 43127 \\ 35 \end{gathered}$ | $\begin{aligned} & 43134 \\ & 38 \frac{2}{2} \end{aligned}$ | $\begin{gathered} 43138 \\ 37 \end{gathered}$ | $\begin{gathered} 44132 \\ 38 \end{gathered}$ |
| Seprember | ${ }_{4}^{\text {at }} 10{ }^{\text {a at }} 3$ | $4913{ }^{\frac{8}{8}}$ | 53143 48 | $4{ }^{46137}$ | $\begin{gathered} 47139 \\ 43 \end{gathered}$ |
| OElober |  | $\begin{gathered} 57151 \\ 54 \end{gathered}$ | $58 / 52$ 55 | 57150 $53^{\frac{2}{2}}$ | $\begin{gathered} 55143 \\ 49 \end{gathered}$ |
| November |  | $\begin{array}{r} 66160 \\ 63 \end{array}$ | $\begin{gathered} 67 \mid 6.1 \\ 64 \end{gathered}$ | $\begin{aligned} & { }^{601} 1_{57}^{7} \\ & 59 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 591 ; 2 \\ & 55^{\frac{1}{2}} \end{aligned}$ |
| December | ${ }^{2 t} \mathrm{ropa} 3$ | $\begin{aligned} & 71168 \\ & 69 \frac{1}{2} \end{aligned}$ | $\begin{gathered} 72170 \\ 71 \end{gathered}$ | $\begin{aligned} & 6,160 \\ & 61 \frac{\pi}{2} \end{aligned}$ | $\begin{aligned} & 70165 \\ & 67 \frac{1}{3} \end{aligned}$ |
| $\left.\begin{array}{l}\text { The mean Altio } \\ \text { tudes of the Ther. } \\ \text { momete in the } \\ \text { Sereral Y Yars. }\end{array}\right\}$ |  | $54 / 46$ 50 | $56 / 49$ $52 \frac{8}{2}$ | $57 / 48$ $5^{2} \frac{1}{2}$ | 56147 |

Remarks on the Weatber, \&ce, for 14 Vears.

The Thermometer's mean Altitude taken at the coldefs and hotteß Time of the Day only, and their Mean,

In the Years

|  | 1731 | 1732 | 1733 | 1734 | 1735 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jamuary | 75159 72 | $\begin{aligned} & 70165 \\ & 67 \frac{3}{2} \end{aligned}$ | $\begin{aligned} & 65158 \\ & 61 \frac{1}{2} \end{aligned}$ | $\begin{gathered} 71165 \\ 68 \end{gathered}$ | $\begin{gathered} 68142 \\ 65 \end{gathered}$ |
| February | $\begin{aligned} & 7 n 1^{53} \\ & 66 \frac{1}{2} \end{aligned}$ | $\begin{gathered} 61 / 53 \\ 57 \end{gathered}$ | $\begin{gathered} 64156 \\ 60 \end{gathered}$ | $\begin{aligned} & 6154 \\ & 57^{\frac{1}{2}} \end{aligned}$ | $\begin{aligned} & 661 ; 9 \\ & 62 \frac{1}{2} \end{aligned}$ |
| Marck | $\begin{aligned} & 6_{3} 15^{2} \\ & 57^{\frac{1}{2}} \end{aligned}$ | $\begin{aligned} & 64 \mid 53 \\ & 58 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 64 \mid 55 \\ & 59^{\frac{-2}{2}} \end{aligned}$ | 59149 54 | $\begin{gathered} 641 ; 6 \\ 60 \end{gathered}$ |
| April | 62152 57 | $561+8$ 52 | $\begin{aligned} & 57146 \\ & 51 \frac{1}{2} \end{aligned}$ | $\begin{gathered} 56 / 44 \\ 50 \end{gathered}$ | $55^{5146}{ }^{\frac{1}{2}}$ |
| May | 50134 42 | $\begin{aligned} & 53144 \\ & 48 \frac{1}{2} \end{aligned}$ | $\begin{gathered} 54140 \\ 47 \end{gathered}$ | 53142 47 | 53143 48 |
| June | 4513 x 38 | 46134 40 | $\begin{gathered} 43129 \\ 36 \end{gathered}$ | $\begin{gathered} 44134 \\ 39 \end{gathered}$ | 46137 $41^{\frac{2}{2}}$ |
| Fuly | $\begin{gathered} 43129 \\ 36 \end{gathered}$ | $\begin{aligned} & 4213 \mathrm{r} \\ & 36 \frac{1}{2} \\ & 3{ }^{2} \end{aligned}$ | $\begin{aligned} & 38127 \\ & 32 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 4<13{ }^{\frac{1}{x}} \\ & 35^{\frac{1}{2}} \end{aligned}$ | 42 2 33 $37^{\frac{1}{2}}$ |
| Auguf | $\begin{gathered} 42!32 \\ 37 \end{gathered}$ | $47 / 33$ 40 | $\begin{aligned} & 45 \mid ; 4 \\ & 39^{\frac{1}{2}} \end{aligned}$ | $\begin{gathered} 42 / 32 \\ 37 \end{gathered}$ | $\begin{gathered} 43133 \\ 38 \end{gathered}$ |
| September | $48 / 36$ 42 | 49139 44 | $521+4$ 48 | 51143 47 | 46138 42 |
| OEFober | $\begin{gathered} 52 / 4^{6} \\ 49 \end{gathered}$ | $\begin{gathered} 55147 \\ 51 \end{gathered}$ | $\begin{gathered} 60152 \\ 56 \end{gathered}$ | $\begin{aligned} & 60153 \\ & 56 \frac{1}{2} \end{aligned}$ | $\begin{gathered} 60152 \\ 56 \end{gathered}$ |
| November | $\begin{aligned} & 62 \mid 57 \\ & 59^{\frac{8}{2}} \end{aligned}$ | $\begin{aligned} & 67162 \\ & 64 \frac{1}{2} \end{aligned}$ | $\begin{gathered} 61 \mid 55 \\ 58 \end{gathered}$ | $\begin{gathered} 66 \mid 62 \\ 64 \end{gathered}$ | 59154 $56 \frac{1}{2}$ |
| December | $\begin{aligned} & 66 \mid 6 \mathrm{r} \\ & 63 \frac{1}{2} \end{aligned}$ | $\begin{gathered} 68164 \\ 66 \end{gathered}$ | $\begin{aligned} & 5^{8 / 53} \\ & 55^{\frac{1}{2}} \end{aligned}$ | $\begin{gathered} 6_{7} \mid 6_{3} \\ 65 \end{gathered}$ | $\begin{gathered} 64160 \\ 62 \end{gathered}$ |
| $\left.\begin{array}{l}\text { The mean Alti- } \\ \text { tudes of the Ther- } \\ \text { mometer in the } \\ \text { feveral Years, }\end{array}\right\}$ | 56147 $5^{2}$ | 57148 52 | 55146 50 | $56 / 48$ $5^{2}$ | $561+8$ 52 |

L1112
The

The Thermometer's mean Altitude taken at the coldeft and hotteft Time of the Day only, and their Mean,

In the Years

|  | 1736 | 1737 | $173^{8}$ | 1739 | $\begin{aligned} & \text { The mean } \\ & \text { Alsitudes } \\ & \text { collaterally. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fanuary | 64160 62 | 6: ${ }_{631 \%}$ | $6{ }_{6} 1 / 7$ 60 | $\begin{aligned} & { }^{6} 31 ; 8 \\ & 60 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 6-16_{2} \\ & 64 \frac{1}{2} \end{aligned}$ |
| February | 71167 69 | 6,159 62 | $\begin{aligned} & 66161 \\ & 63^{\frac{1}{2}} \end{aligned}$ | $\begin{aligned} & 6 c \mid 33 \\ & 56 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 66159 \\ & 62 \frac{9}{2} \end{aligned}$ |
| Marcb | $\begin{aligned} & 6_{3} / 54 \\ & 5^{\frac{1}{2}} \end{aligned}$ | $6 / 158$ 61 | $\left.6_{2}\right\|_{54}$ $5^{8}$ | ${ }^{6,157} \begin{aligned} & \text { 61 }\end{aligned}$ | $\begin{gathered} 6_{3} \mid ; 5 \\ 59 \end{gathered}$ |
| April | $\begin{aligned} & 5-146 \\ & 5 \times \frac{1}{2} \\ & \hline \end{aligned}$ | $\begin{aligned} & 56147 \\ & 51 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 581+9 \\ & 53^{\frac{1}{2}} \end{aligned}$ | $\begin{gathered} 6 c \mid=2 \\ 56 \\ 56 \end{gathered}$ | $\begin{aligned} & 571+3 \\ & 5^{\frac{1}{2}} \end{aligned}$ |
| May | $\begin{gathered} 54144 \\ 49 \end{gathered}$ | 49135 42 | 48136 42 | $\begin{aligned} & 49137 \\ & 43 \end{aligned}$ | $\begin{aligned} & 5 \mathrm{c} / 39 \\ & 44^{\frac{1}{2}} \end{aligned}$ |
| Fune | 42130 36 | 47135 | 46137 41 4 | $3^{44133}$ | $\begin{aligned} & 44 \mid 33 \\ & 38 \frac{1}{2} \end{aligned}$ |
| fuly | $\begin{gathered} 4113 x \\ 3^{6} \end{gathered}$ | $\begin{gathered} 41 / 29 \\ 35 \end{gathered}$ | $\begin{gathered} 421,0 \\ 36 \end{gathered}$ | $\begin{gathered} 4 / 1 / 32 \\ 37 \end{gathered}$ | $\begin{aligned} & 41 / 30 \\ & 35^{\frac{1}{2}} \end{aligned}$ |
| Auguft | 42132 37 | 47139 43 | $4 \leq 137$ 41 | ${ }^{46 / 13^{6}}$ | $\begin{aligned} & 4413 \frac{3}{2} \\ & 3^{8} \end{aligned}$ |
| September | $\begin{aligned} & 4913^{8} \\ & 43^{\frac{2}{2}} \end{aligned}$ | $4740$ | 5143 47 | 48143 | 49140 |
| OEEDEer | $\begin{gathered} 53147 \\ 50 \end{gathered}$ | $\begin{aligned} & 601,55 \\ & 57^{\frac{1}{2}} \end{aligned}$ | $\begin{aligned} & 57 f ; 0^{\frac{1}{2}} \\ & 53^{\frac{1}{2}} \end{aligned}$ | $\begin{aligned} & 60153 \\ & 5^{\frac{1}{2}} \end{aligned}$ | $57150$ |
| November | $\begin{aligned} & 62 \mid 57 \\ & 59^{\frac{1}{2}} \end{aligned}$ | $\begin{gathered} 62156 \\ 59 \end{gathered}$ | $\begin{gathered} 6 \neq 157 \\ 60 \end{gathered}$ | $\begin{aligned} & 68163 \\ & 65^{\frac{3}{2}} \end{aligned}$ | $\begin{aligned} & 6_{3}{ }_{31} 188 \\ & 60^{\frac{1}{2}} \end{aligned}$ |
| Dacember | $\begin{aligned} & 6_{31} 6_{0} \\ & 6_{1} \frac{1}{2} \end{aligned}$ | $\begin{gathered} 6765 \\ 66 \end{gathered}$ | $\begin{aligned} & 6,162 \\ & 6_{3}^{\frac{1}{2}} \end{aligned}$ | $\begin{gathered} 70166 \\ 68 \end{gathered}$ | $\begin{aligned} & 66 \mid 63 \\ & 644^{\frac{1}{2}} \end{aligned}$ |
| The mean Altitudes of the Alerfeveral Years. | 55147 51 | $\begin{gathered} 56 / 48 \\ 52 \\ 58 \end{gathered}$ | $\begin{aligned} & 55148 \\ & 5 \times \frac{1}{2} \end{aligned}$ | $56 / 48$ 52 | 56148 $5^{2}$ |

LX. Wic
IX. We made ufe of a very exact Barometer, divided both by a Extrats frome Paris and London Scale into Inches and duodecimal Parts of an Inch, with a niding Index. The Room, in which it is placed, is a little above the Middle of the Capitoline Cliff: Hence it is in a mean Region between the upper and lower Parts of the City.

Our mercurial Thermometer is like that of Fabrcnbeyt, but it's Bafon is neither fpherical nor cylindrical, nor of any other Figure commonly ufed in Thermofcopes; but has a hemifpherical Concave, that the whole Mafs of Quickfilver, contained between the two hemifpherical Sides of the Glafs, may the more readily follow the Variations of the Atmofphere; and that the Afcent and Defcent of the Quickfilver may by no Means the Roman Meteorological Diaries for into 5000 Parts, into as many of which the Scale is divided, as the Tube can contain, beginning at the Top. The Quickfilver rifes to the Beginning of the Scale, and Top of the Tube, with the Heat of boiling Water. The Cold of Water beginning to freeze, finks it to $178^{\circ}$, and actual Froft to $180^{\circ}$. But if the Cold is more intenfe, and the Quickfilver falls below this Degree, the Increafe of Cold is marked by a greater Number of Degrees. This Thermometer is placed on the Outfide of a Window, oppofite to the E N E, and Steps of the Capitol; fo that it never receives the direct Rays of the Sun; and is therefore fit to fhew the Degrees of Heat and Cold accurately.

We collected the Rain after Dr Halley's Method, in a cylindrical Veffel, nine Inches deep, London Meafure, and 2 Feet 4 Inches in Diameter. Out of this Veffel the Water is received through a Spour into another cylindrical Veffel, one Foot both in Depth and Diameter, covered with a Lid, to keep the Water from evaporating. When the Rain ceafes, it is taken out, and meafured in another cylindrical Veffel, exactly meafuring one Foot, and exactly equal in Diameter to $\frac{1}{10}$ of theDiameter of the greater Veffel, which immediately receives the falling: Rain. Therefore, fince the Diameters of thefe Veffels are as 10 to 1 , their Bafis will be as 100 to 1 .

Therefore becaufe of the reciprocal Altitude of equal Cylinders with the Bafis, one Inch Depth of Water in the greater Veffel will be equal: to 100 Inches in the fmalier. That is, the Inches of Water which this fmaller Cylinder meafures, fhow as many $\frac{1}{100}$ Parts of an Inch Depth of Rain. But in the fmall Veffel, the Rule ufed to meafure is purpofely divided into Inches and Tenths, fo that each Divifion thereon fhews $\frac{x}{1000}$ Part of an Inch Depth of Rair.

We generally made 4 Obfervations every Day; and fometimes more; in the Morning early, at Noon, after Sun-fet; and about 2 Hours before Midnight ; and in Summer at 2 or $3^{\text {h }} \mathrm{p} . \mathrm{m}$.

The thermometrical Obfervations relating to Cold in Winter are to be underitood of the Morning, unlefs it is otherwife mentioned: For

## Roman Meteorological Diaries for 1741 .

at that Time the Air is naturally coldeft. In Summer they are to be undertood of Noon or Afternoon, when the Heat is ftrongeft.
Though there fell almoft as great a Quantity of Rain in the latt a Months of the preceding Year, as in the other 10, yet Fan. was very rainy: For the fame Winds, which ruled on the Days next the preceding Solftice, and generally bring Rain at Rome, prevailed alfo at the Beginning of this Month: Namely, the E., and S. and the intermediate Winds. Hence proceeded Rain, and the Sky was for the moft Part cloudy. It was Full-Moon after Midnight of the firft Day of the Month. The Barometer at this Time fluctuated between 8 and 10 Lines above 29 Inches. The Thermofcope indicated a great Cold, falling to $158^{\circ}$, which was much lefs than that in the Beginning of November, when it froze in the Streets, the Thermofcope being thens at $178^{\circ}$.

On the 8th the Northern Winds began to prevail, efpecially the N N E, the Sky was cleared from Clouds, and a pleafing Serenity fucceeded; which continued, with very little Interruption, till the 1yth, being hardly ever difturbed by Morning Fogs, or fcattered Clouds. But the Barometer, which on the 1oth had rifen to 29 Inches $10 \frac{1}{2}$ Lines, fell continually, and on the 17 th was fallen to 294 , the Wind E N E. In the Night of the 16 th and 17 th, the Wind being at NE , it froze: The Thermometer marking $180^{\circ}$. And this was the greateft Cold of the whole Year. The laft Quarter of the Moon was on the gth after Midnight, and the New-Moon on the 17 th Afternoon.

On the 1gth the S. and E. and S E prevailing again, the Barometer fell to 29 . 1 with an E . Wind. This was the leaft Height of the Quickfilver in the whole Year, though on the 25 th it fell to $29.1 \frac{1}{1}$. Very frequent Showers till the 28 ch: But elpecially on the 25 th and 26 th there were remarkable Depreffions of the Barometer. On the $25^{\text {th }}$ we collected 2 Inches of Water, and on the 26 th, 1 Inch. On thefe Days the Thermofcope hardly ever departed from 156 and $160^{\circ}$ early in the Morning. The firft Quarter of the Moon was on the 23 d after Midnight.

Befides the Showers, which fell on the 25 th and 26 th, the Snows of the Mountains being melted by the S. Winds, brought a great Quantity of Water into the Tiber; which overflowing it's Banks on the 27 th, not only drowned the adjacent Fields to the City, but alfo the lower Parts of the City itfelf. The Bafis of the Columns in the Portico of the Pantheon were covered with Water. It rofe 9 Inches higher than the other Flood of the 7 th of laft Month.

At the latter End of Fan. the Winds were Northerly again, efpecially N N E, and brought fair Weather. The Coldnets of the Air was thewn by the Thermofcope being at $169^{\circ}$ in the Morning. FullMoon on the 3 ift after Sun fet.

The greateft Cold of this Month was marked by the Thermometer being at $180^{\circ}$.

The greateft Height of the Barometer was－Inches 30.1
Leaft－－－－－－${ }^{29.1} 18.847$
Depth of Rain
The fair Weather hardly lafted to the 2d Day of the Month：On February the $3^{d}$ the Sky was covered with Clouds，and a little Rain fell；the Clouds continued frequent rill the Sth，the Barometer hardly ever fell from the Height of 29．10；gentle Winds at S．and E．

On the 8th the laft Quarter of the Moon before Midnight；Wind ENE，then N E，Barometer 29．11 $\frac{1}{2}$ ：And the clear Weather con－ tinuing，it arofe on the 14th to the greateft Height of this Year， 30.5 ． But neither the clear Nights nor Nurtherly Winds，continuing till the 24th，could bring a Froft，except on the Night preceding the 20th， when there was a hoar Froft on the Grafs：The Thermometer being at $177^{\frac{1}{2}}$ ．On the $15^{\text {th }}$ Wind NE，New－Moon：On the 22 d ，After－ noon，firt Quarter；Wind N NE

Till the $9^{\text {th }}$ the Barometer kept at the Height of 3 or 4 Lines above 30 Inches：Then defcending gradually，it came to $29.9 \frac{1}{2}$ on the 25th．Then the Sky was cloudy；and on the 26 th and 27 th，a little Kain fell，the S．and E．blowing alternately．The Winds and Weather were various till the End of the Month，the Barometer fcarce falling from the Height of 29．10．The Cold was moderate on thefe Days in the Morning：The Thermometer ftanding between 165 and $169^{\circ}$ ．

Therefore the greateft Cold of this Month was－Degrees エクク立 Height of the Barometer－Inches 30.5


This Month began with rough S．Winds and Clouds．Full－Moon March． on the 2d，Afternoon．Then E．and S E Winds being mixed with the S．Winds，brought frequent Showers and Clouds till the gth．The Ba－ rometer falling daily from the Beginning of the Morth，fell on the 3 d to $29.3 \frac{1}{4}$ ，and though it rofe again that Day $=029.6$ ，and continued rifing，yet a fmall Shower fell in the Evening，But on the 6th，after a new falling of the Barometer，there full above an Inch of Rain，with， a S S E Wind；and a fmaller Shower，with an E．Wind on the gth．

On the roth was the laft Quarter of the Moon，Afternoon；the Ba－ rometer rofe；Wind N N E，fair Weather，which continued till the ${ }_{26 t h}$ ，with ftrong N E Winds，fometimes Wefteriy at Sun－fet ：It blew hardeft on the $3^{\text {th }}$ ．The fame N．and W．Winds intermixt，accom－ panied not only the New－Moon on the 17th，and the firft Quarter on the 23 d ，but alfo the Days neareft to the Equinox．The Winds were moderate before the Equinox，but they grew ftronger afterwards，and brought on a cold Air from the $24^{\text {th }}$ to the 27 th，efpecially on the 26 th ，when it froze at Night，and deftroyed all the early Bloffoms．

The firft Half of this Month had only the firft and fecond Days quite fair. Full-Moon the ift. The Wind feldom blew from the $\mathbf{N}$. unlefs at Sun-rifing: It was generally S. and E. Many fmall Showers: Frequent Clouds. The Morning of the gth was mifty, dark, and then sainy: The preceding Night was the laft Quarter of the Moon. The Barometer was generally about 29.6. On the roth it fell to 29.2, and did not continue rifing till the 13 th. The Air was generally moderate: But on the 7 th and 8th there was a cold N N W Wind, the Thermometer falling to $165^{\circ}$.

On the 15th, New-Moon Afternoon ; the Barometer rofe almoft to 30.1 Inches. The Northern Winds now began to prevail, and brought a fharp Air from the 16 th to the 20th. The Thermometer continued between 161 and $163^{\circ}$. The Fairnefs of the Weather and rifing of the Barometer continued till the 22d, when the Moon was in the firft Quarter, after Sun fet: And the Barometer having rifen to $30.1 \geqslant$ Inches, fell that Day and the next, the Wind being ESE. The Sky was cloudy.

On the $24^{t h}, 15^{\frac{1}{4} h}$, the Thermometer being at $15^{\circ}$, and the Barometer at $30.0 \frac{1}{3}$ Inches, the Sky being quite clear, with a gentle I. NE Wind, a Thort Earthquake was perceived by many; in Tufcany and the neighbouring Provinces it was ftronger, and caufed great Damage, efpecially in the Morea.

The reft of the Month was very various, the Winds being fometimes S. fometimes E. the Sky fometimes clear, fometimes cloudy, but without Rain. The Barometer funk gradually, and on the 3 arh, when it was Full-Moon before Midnight, it had fallen to $29.5^{\frac{3}{4} ;}$ Wind SSE, a little cloudy.


## Roman Meteorological Diaries for 1741:

the N. a Shower fell with Hail. Barometer $29.6 \frac{1}{2}$, Thermometer $164^{\circ}$. The Air was very cold, efpecially on the $4^{\text {th }}$ and 6 th : But on the 5th, the Wind being at N E , and the Sky clear, the Vines about the City were frozen. At the Beginning of the Month it was feldom fair; frequent fmall Showers, and very frequent Clouds. On the $5^{\text {th }}$ the Barometer kept at 30 Inches, and fell gradually till the inth to $29.5^{\frac{1}{4}}$. On the 1oth, 2 Days after the laft Quarter of the Moon, there fcll a very copious Shower.

From the Irth to the 14th, when it was New-Moon at Midnight, the Wind changing from N W to W . the Barometer rofe again to 29.1 I , the Sky being almoft continually clear. Then the Winds were variable, but the W. prevailed, and the Barometer fell again: On the 16 th a fmall Shower, after which it grew clear, and the Barometer rofe again ; but fell on the 20th, when there was a Shower again, with a S. Wind.

The reft of the Month, the Winds being W. and fometimes S. made both the Face of the Siky and Temperature of the Air various; and the fame Winds accompanied the firft Quarter of the Moon on the 22 d , and Full-Moon on the 3oth. The Barometer, though fubject to continual Variations, did not nuch recede from 29 Inches 9 Lines; except on the 19th, when it reached almoft 30 Inches. It remained in this Elevation till the laft Day of the Month. On the two laft Days the Sky was ferene, but foggy.

Except the firft 5 Days of the Month, the Thermometer continued between 153 and $163^{\circ}$ at Sun-rifing. But though it generally reached to $150^{\circ}$ about Noon, yet on the $16,19,11,13$, and 19 , the Heat increafing, and S. Wind blowing, it was at $14^{2}$.

Greateft Height of the Barometer this Month — Inches 30
Leaft
Quantity of Rain
The Sky was generally ferene, and the Winds W. on the firft four June. Days of the Month. The Barometer, which on the firft Day was at $29.10 \frac{1}{2}$, gradually fell with fome Variations; and on the 4 th, after $\frac{\text { a }}{}$ gentle S E Wind in the Morning, it changed to E N E, and the Sky was difturbed by a fhort Storm and Shower. The S E generally blew on the following Days; and though the Barometer hardly funk, there was a new and more copious Rain, with Thunder, and a W. Wind, about 6 in the Evening, it being the laft Quarter of the Moon. The Sky was rainy the next 3 Days, the E. Winds prevailed, and the Barometer varied between 8 and 9 Lines above 29 Inches. It fell a little on the ifth, there was a fhort Shower, Wind S S E.

Then fucceeded a Serenity, feldom interrupted by Clouds, with E. and W. Winds alternately, but chiefly the latter, to the End of the Month. But at Noon there was often a gentle Gale from the S. which at Sun-fetting often gave Place to the W.

V O L. VIII. Part ii,

The Barometer rofe on the 13 th to 29.11 , and continued there all the Month; but fometimes it rofe to above 30 Inches.

The New-Moon was on the $13^{\text {th }}$, before Noon, and the firft Quarter on the 2 Ift , after Midnight, the Sky being ferene and mild. It was Full-Moon of the 28th, the Barometer fell, and fome Clouds appeared, with a W. Wind. The neareft Days to the Solftice were very mild.

The Thermometer was generally between 146 and $150^{\circ}$ in the Morning; at Noon it was between 138 and $144^{\circ}$.


July.
The ten firft Days of this Month had the like ferene Afpect, though the S W Winds generally prevailed, during that Time the Barometer ftood conftantly at above 30 Inches. But afterwards it fell gradually, and Clouds began to fpread in the N. efpecially at Sun-rifing.

The laft Quarter of the Moon was after the Evening of the 5th, and on the following 2 Days the Weftern Horizon was very red, efpecially about Sun-fetting; Wind S W. The New-Moon was after the Evening of the 12 th, when there were frequent Corufcations in the NE. The next Day the $S \mathrm{~W}$ raged furioufly about Noon, and the whole Sky was covered with Clouds. After Sun-fet it was calm again.

On the 14th the Barometer had fallen to 29.8 , and broken Clouds appeared here and there. It rofe again to 29.9 , and fell again; the Weather was various, and on the 18th the Sky was covered with dark Clouds, it thundered and rained; Wind S S W. There were more frequent Showers on the 3 following Days; efpecially on the 20th, on the Night before which the Barometer fell to $29.6 \frac{1}{2}$; Wind S E, and then E .

On the 20th, after Sun-fet, was the firft Quarter of the Moon, the Sky being cloudy and rainy; a ftrong NE by N. Wird rofe, and raged the following Day. The Winds were afterwards more mild to the 25 th. The Barometer began to rife on the 2 ift in the Evening, and continued rifing. A pleafant Serenity lafted till the latter End of the Month, there being only now and then fome light Clouds.

On the 27 th and 28 th the Wind was at firf $S \mathrm{E}$, then S . and S W, the Barometer fell a little. But on the 28 th, 29 th, and 30 th, a mifty and thick Band darkened the Weftern Horizon, it being eliewhere clear. On the 3 Ift the Mift was thickened into Clouds, the Barometer funk again, a great Shower fell; Wind S E.

The Thermometer rofe to 128 on the 7 th, about 2 in the Afternoon; and on the $17^{\text {th }}$ at the fame Hour got up to 122 : Which was the greateft Degree of Heat in the whole Year, though it rofe alfo to the fame Degree in Aug. The reft of the Month it food at between 140
and I 43 in the Morning; and generally between 132 and 135 in the Afternoon.


On the firft Day of this Month, though the Barometer conftantly Augua. rofe, and a N E by N. Wind blew in the Morning, yet, a W. Wind fucceeding, there fell a little Rain; afterwards the fame Wind continuing, and fometimes changing to N W , the fair Weather continued a long Time, there being only a thick Fog in the Morning of the 5 th, 6 th, and 7 th. The Barometer then ftood at near 29.11 ; and the Winds were Northerly. On the gth, the Barometer rofe to above 30 Inches, but fell again to 29.11. On the 12th, 13th, and 14th, the Mornings were foggy; Wind S S W.

The laft Quarter of the Moon was on the 3 d at Midnight, and the New-Moon on the 11 th in the Morning; Wind S W.

The S S W, which blew on the 14 th, continued intermixt with W. till the 18th. On the 15 th the Thermometer was $122 \frac{1}{2}$, on the 16 th 122, at $2 p . m$. which indicated the greateft Heat of the whole Year. The Wind blowing gently at S . and W , the Heat abated; and the $\mathrm{Ba}-$ rometer falling a little, the Sky was covered with Clouds. But at Night, the Wind changing, the Barometer rofe again, and the fair Weather returned. The next Day the Moon came to the firf Quarter after Noon.

The fair Weather, with Northerly Winds, lafted till the 23 d. But then the S S W fucceeding, Clouds and Thunder enfued. It rained at Night, the Barometer being at $29.8 \frac{1}{4}$. In the Morning the $S \mathrm{E}$ reftored the fair Weather for 3 Days, the Barometer varying but little. Then the Northerly Winds prevailing, efpecially on the 27 th, after a fhort Rain at Night, accompanied by Thunder, the Air grew cold: The Thermometer fell in the Morning to $149^{\circ}$, and from thence to the End of the Month varied between $14^{\frac{1}{2}}$ and $147^{\circ}$.

The Farmers imputed to this Sharpnefs of the Air the Skins of the ripening Grapes being hardened, and the Clufters fhrivelled, which before had given Hopes of a plentiful Vintage.

In the mean Time the Barometer rofe to $29.10^{\prime}:$; Wind N E by E: But on the laft Day of the Month it fell a little, and the Sky was covered with Clouds about Noon.


On the firft 5 Days of this Month the Weather was various, fome- Septeriber. times fair, and Sometimes cioudy. Several little Clouds frequently ap- was generally N E by E. at Sun-rifing, and S. about Noon. The Barometer varied between 29.8 and 29.10, and though on the 5 th in the Evening it rofe to 29.11 , it fell again a little at Night, and the next Day it rained with a S W Wind. We obferved the fame on the 8th, when after Rain in the Afternoon and Thunder, the N E and E. Winds prevailed, and the fair Weather returning lafted till the 12 th.

On the ad the Moon came to the laft Quarter, Wind S S W. On the gth, New-Moon; Wind NW.

The 12 th was fair almoft the whole Day; Wind N E by E, and then W. The Barometer fell gradually. At Night the Sky was a little cloudy; Wind S E. Next Day, the Wind blowing from the fame Quarter, and the Barometer falling gently to 29.9 , there fell a great Shower, amounting to almoft 2 Inches. Next Night the NE Wind brought Clouds, and the Baromerer rofe half a Line. The fair Weather lafted to the End of the Month, being fometimes interrupted by Clouds. There were frequent Mifts alfo, efpecially on the 23 d , $24^{\text {th }}, 25^{\text {th }}$, and 30 th, at Sun-rifing. The Moon came to the firft Quarter, with a S. Wind and fair Weather before Sun-rifing on the ${ }^{3} 5$ th, and was at the Full on the 25 th before Sun-rifing, with the fame Wind.

After the 20th, the Barometer varied but little from 20 Inches. In the Morning the Winds blew between N. and E. generally, feldom between $S$ and W. This State of the Atmofphere accompanied the Days neareft to the autumnal Equinox, the Barometer keeping at about 30 Inches. About the latter End of the Month Wind N N E.

The Thermometer fhewed various Degrees of Heat and Cold, both in the Morning and Afternoon. For on the 3 firft Days, at Sun-rifing, it was between 140 and $142^{\circ}$; at Noon between 130 and $133^{\circ}$. Afterwards it varied very much, for at Sun-rifing it was often at $15^{2}$, and fometimes at $153^{\frac{1}{2}}$. After Noon it was generally between 134 and 138 ; about the End of the Month it rofe to $126^{\frac{1}{2}}$, which was the greateft Heat of the whole Month, Wind W.


Qaober. This Month was very remarkable for Novelties. The laft Quarter of the Moon was on the ift Day, after Sun-fet, Wind N E by E, Weather fair. The N N E Winds, which prevailed at the latter End of laft Month, continued alfo at the Beginning of this. The W. Winds fucceeded till the 12 th. The Barometer food at a little above or below 30 Inches: But on the 8 th at Night it rofe to $30.4^{\frac{1}{4}}$.

The fame Night, the Sky being clear, 4 Hours after Sun-fet there was an Aurors Borealis, which overfpread the whole Sky from N. to W. with a remarkable Rednefs. The Houfes hindered me from fee-
ing quite to the Horizon. An Hour afterwards, the Rednefs gradually changed to whitifh: A little afterwards the Light was extinguifhed, and returned again, but fainter toward the W. In a little Time it quire difappeared. The Wind blowed gently from the W. the Thermometer was at $148^{\circ}$.

This Northern Light was feen an Hour after Sun-fet, in the Placentine, but in a different Form. It declined a little from the N. toward the W, and illuminated a third Part of the Heavens with a whitifh Light. Very thin Clouds, like ftanding Pillars, ©arofe from the Horizon, but did not intercept the Light of the fixt Stars, or fenfibly vary. The white Brightnefs continued all Night: But about Day-break it grew red, and declined a little toward the E. Thus in the E. the Sky fhone with the natural Light of the Dawn; but in the N. with the Red of full Day-break: And fo was illuminated with a double Light at once. The next Evening it was feen again from 9 till 4 Hours after Sun-fet. Then upon the Difappearance of this Light, a darker Night than ufual feemed to fucceed. At Rome, though, the Sky was clear, and it was New-Moon that Night, we did not obferve any Trace of an an unufual Light.

From the gth the Barometer fell gradually, the fair Weather and Weft Wind continuing. But on the 12th about Noon, this Wind darkened the Sky with very thick Clouds. Then the Barometer finking to $29.11 \frac{3}{4}$, there fell a great Shower, of almoft $2 \frac{1}{2}$ Inches.

A little after Sun-fet, the fair Weather returned; and the next Morning Clouds were feen only at the Northern Horizon, Wind S E. The Evening being fair, the Barometer rofe to $30.0 \frac{3}{4}$, though the S W blew, and then the $S$.

In the Morning of the $14^{t h}$, Wind SW, and about Noon S, after Noon it rained. The next 2 Days it rained, Wind fometimes $S$, and. fometimes NE. On the 16 th, which was the Day before the firft Quarter, there was Thunder and terrible Lightning, accompanied with Rain: But in the Evening the fair Weather returned. The Barometer kept fteady at $29.10^{\frac{1}{2}}$ till the 19 th, when it feil a little at Sun-fet. Whe next Night fome Showers began to fall, which continued to the End of the Month, the Barometer being generally above 299. They were very heavy on the $2 \mathrm{ff}, 23 \mathrm{~d}$, and 24 th ; and what is very obfervable, on the 23 d , there fell near 6 Inches of Rain in about 6 Hours, with a very ftrong S. Wind, accompanied with Thunder, Hail, and Lightning. The Barometer had fallen that Day to $29.6 \frac{1}{2}$, and the Thermometes was at $149^{\circ}$. On the 24th it rained an Inch, though the Barometer had rifen a little. Next Night it was Full-Moon. The reft of the Month the Barometer continued to rife a little, the Weather was various, but generally cloudy; Wind N. mixt with E.

The Thernometer generally kept between 15 I and 154 in the Morning: At Noon between 139 and 144. But on the laft Days of the

Month it was between 156 and 160 in the Morning: At Noon between 151 and 152.


November.
The NE and neighbouring Winds blew almoft all this Month, with various Weather. The Barometer conftantly kept at above 29.10, except on the 7 th and 8 th, when it fell to 29.8 with a S E Wind, and a great Shower fell on the Sth, when it was New-Moon after Noon. But the Barometer recovering it's former Elevation, and exceeding it on the 16 th, when the Moon had paffed the firft Quarter, it rofe to $30.4 \frac{1}{3}$, with a N E Wind. This Height of the Barometer fell very little fhort of the greateft Height of this Year.

On the 17 th and 18 th, at Sun-rifing, the Thermometer was at 170 and 171, with a clear Sky and NE Wind. Then on the 20th and 21ft, the Barometer fell haftily to $29.8 \frac{\frac{2}{3}}{3}$, with Rain, Thunder, and Lightning, Wind S. The Thermometer was then between 155 and 16 I . On she 22 d , after Sun-fet, the Moon being at full, and the Barometer at 30.2 , the fair Weather returned, and the Thermometer fell in the Morning to $166^{\circ}$. But the Barometer fell a little, and it rained again. Then after 2 Days of fair Weather (when a cold Air and NE Wind in the Morning had funk the Thermometer to $174^{\frac{1}{2}}$ ) Wind NE by E. to the End of the Month, either Clouds or Rain. On the 28th the Barometer fell remarkably to $29.1 \frac{3}{4}$. But in a fhort Time, the fame Wind continuing, it rofe again; and the Moon was in the laft Quarter on the 2 oth at Night.

This Month therefore the Barometer fell from a remarkable Height, almoft to the loweft, in a Space of 12 Days.


[^3]The N E Winds which prevailed laft Month, continued till the 20th of this: The Sky was generally clear, except on the firft 6 Days, in which the Barometer varied between 30 and 29.9, though a little Rain accompanied it's falling. On the other 14 Days it was but little above or below 30. On the Morning of the 8th (Full-Moon) and on the roth and rith it rofe to 30.2. After the 15th, which was the firft Quarter of the Moon after Noon, it fell a little from the Height of 30.1 , and the Sky appeared cloudy.

The Thermometer, which a little before Sun-rifing on the 2d, was at 174, kept on the following Days till the inth at the fame Hour between 165 and 170 . But the Cold increafing, it food on the 13 th at $574 \frac{1}{-}$ and then the Cold abated.

## Roman Meteorological Diaries for 174 r .

On the 20th about Noon, the S. Winds began to blow, the Sky to be darkened, and the Barometer to fall. This Defcent being more precipitate the following Night, amounted to above 3 Lines, being at $29.5^{\frac{1}{2}}$ in the Morning. Before Noon on the 21ft, it thundered, a ftrong $S$. Wind blew, and a large Shower fell.

On the 22d before Noon it rained again, Wind S W, Full-Moon. And becaufe the Winter Solftice happened on the 2 ift at Sun-fet, the Winds which prevailed on the neareft Days to that Solftice, were for the mof Part S. mixed with S W, S E, and E; then the Sky was rainy to the End of the Month; Winds S E and E; and on the 26 th alone there fell above $3^{\frac{1}{2}}$ Inches of Rain, the Barometer being at $29.10^{\frac{1}{2}}$. But when it came on the 28th to almoft 30 Inches, another Inch of Rain fell on the fucceeding Night; and it rained again the nert Night, when the Moon came to the laft Quarter. At this Time there fell many Showers, the Thermometer being at 1.61 in the Morning, and the Air very mild.


Since in Feb. the Barometer was at it's greateft Height, 30.5, and in $\mathcal{f}$ an. at it's leaft, 2 I. 5 , the Scale of the Variations of the Barometer this Year was 16 Lines, or $1 \frac{2}{3}$ Inch; and the mean Height 29.9.

General Objers vations on the Metcorological:
In fan. alfo the greateft Cold of the whole Year was indicated by ${ }_{1741}$ Diari. the Thermometer being at 180 ; and in Fuly and Aug. the greatef: Heat by it's being at 122 . Therefore the Scale of the Variations of: the Thermometer was $58^{\circ}$, or fo many of thofe Parts, of which the whole Capacity of the Thermometer contains 5000. Therefore taking from this laft Number 122 Parts, which the Quickfilver did not occupy in the greateft Heat; it's Bulk at that Time was only 4878 Parts; and it loft 58 of thefe Parts in the greateft Cold. Or if we divide the Bulk of the Quickfilver increafed by the greateft Heat into 1000 Parts, then in ss of thofe Parts will have been loft in the greateft Cold. For there is nearly the fame Proportion between 4878 and 58 , as between 1000 and $11 \frac{3}{9}$.

The Quantity of Rain that fell this Year was Inches 43.780 . Now from the Obfervations of the former 8 Years, the mean Quantity of Rain was 34 Inches; and in 1737, which exceeded the reft in Quantity of Rain, there fell only 36.788 . Therefore the Rain of 1741 exceeded the Mean by 9.780 ; and the greateft of 1737 , by 6.992 . It muft by no Means be omitted, that in the 3 laft Months of the Year alone there fell 22.884 , which not only exceeded half the Quantity of Rain of this whole Year, but $\frac{2}{3}$ of the mean yearly Rain. The greaterQuantity of Showers this Year fell therefore in the 3 laft Months.
The Showers alfo of $\mathfrak{F} u l y$, which meafured 3.629 , were very unufual ; for fince our Application to thefe Obferyations, we have never perceived a whole Inch of Water to fall in that Month. And this perhaps was the Caufe, that the Summer Fruits very much abounded with Worms this Year: As the Hufbandmen afcribed alfo the great Number of Worms, which injured the Olives, to the too great Abundance of autumnal Showers.

Another unufual Phrenomenon alfo accompanied the autumnal Rains: For many and long Showers fell, when the Barometer was rifen not a little above the mean Height. Though it muft be acknowledged, that the Barometer generally fell a little from a greater Height before the Defcent of Showers.

In this Year, as in others, the NW Winds were feldom obferved to blow; and the E. Winds moft frequently about Rome. The E. and S. Winds generally brought Clouds or Rain, and the N. and W. Winds fair Weather: Sometimes, but very feldom, the contrary.

The Winds which blew moft frequently on the neareft Days to each Solftice, frequently prevailed in the following Seafon. We obferved the fame alfo, with regard to the Winds near the Equinoxes, but not altogether fo fenfibly. This Obfervation Blancbini has obferved to hoid for a long Courfe of Years, and I have found it feldom to vary.

When the Weather was calm, efpecially in Summer, the E. Winds were generally obferved to blow gently in the Morning, the S. about Noon, and the W. at Night.

The magnetical Needle varied this Year from N. to W. $15^{\circ}, 40^{\prime}$. The Increale of Variation therefore from 1730, was $4^{\circ} \cdot 40^{\prime}$. For the Variation that Year was $11^{\circ}$.

The following Obfervations on the epidennical Difeafes of this Year were made by S. Leprotti, Chief Phyfician to the Pope, and F.R.S.

In the Winter fome few had Infammations in the Breaft; but many had Catarrhs, Inflammations of the Tonfils, and rheumatical Diforders. About the End of Fanuary alfo, fome petechial malignant Fevers began, efpecially among thofe who lived near the Tiber; many who lived in the fame Houfe being feized by them at the fame Time. Thefe Fevers were continual, and did not at all intermit; but they all came on like thofe, which approached moft to the Nature of Tertians, being alternately one Day more vehement than another. Thefe were accompanied, among other Symptoms, by a vehement Pain of the Head, which was fucceeded by a Drowfinefs and Diarrhœa. They were cured by bleeding, and the Ufe of Diluents, and the Bark, without any Emeticks or Purgatives, which fome make Ufe of on thefe Occafions.

About the End of the Spring, thefe Fevers were fucceeded by regular Intermittents; which for the moft Part were favourable, but attended generally by grievous Head-achs: And thefe alfo were cured by bleeding and the Bark. This Sort of Fevers has continued through the Summer and Autumn, to the prefent Winter.

In the Summer fome were attacked by a Diarrhœa and Cholera. Some furious Inflammations of the Breaft, and Catarrhs bave appeared
this Winter: But the above-mentioned intermitting Fevers are mot epidemical.
In the 2 laft Months of the Year many fell ill fuddenly, fome of Apoplexies, others of internal iDiforders of the Precordia. Laftly, it is worthy of Obfervation, that Difeafes arifing from Worms were fiequent in Summer and Autumn, which in fome acute Cafes were thrown off by vomiting and purging. This was chiefly oblervable in the Country Pcople.
LXI. ı. The Mildnefs of the preceding Winter produced epidemical catarrhal Fevers in Feb. and Marcb.

March 14, the Cold was unufually fevere, and was brought by an impetuous N E Wind, which blew 2 Days before.

May 5, the Cold of the Night injured the Vines and Wallnuts, and fcorched the Corn, efpecially in low Places; fo that the Ears were aftcrwards empty.
F. R. S. No. 441. p. 238. Apr.
2. Feb. I7, the Barometer was at 28.7 , which is lower than I ever oblerved it before. It predicted a moft horrid Storm, and Violence of the Wind, which at $3^{h} p . m$. blew a great Number of Tiles off the Houfes, fo that it was very unfafe walking in the Streets. This Storm did great Mifchief, in Saxony and other Parts of Gernany, to the Buildings, Woods, and Gardens, broke old Oaks and other Trees, and blew down feveral Perfons in the open Fields.
LXII. In $\mathrm{Fan}_{\mathrm{n}}$. there fell 131 Meafures of Rain, 111 in Dec. and 108 in OEt. but in March and May it rained very little. Thus on comparing the Seafons together, we find Winter and Autumn the moft rainy, and Spring and Summer the moft fair, efpecially Spring. This is common in our Country, and feems to be moft agreeable to the Temperature of the Air, and to a hot and dry Seafon of the Year. It may feem ftrange, that at Paris the greateft Quantity of Rain fhould fall in Fuly, Aug. and Sept. as it has been conftantly obferved by M. de la Hire. Perhaps it may be owing to the Situation of that Country, which

Some Meteorological Objervations made at Wittem-
berg in 1733.
by Joh. Frea.
Weidler, Prof. Matb. Pr. and E'c. 1736.

## An Obferva-

tion made in
1734, by the fame No.442. p. 269. July, Oic. 1736. has the Sea to the N. and W. and to the Difpofition of the Air, that fuch Storms, as are attended by copious Showers, are more plentiful there in Summer. But we, who are wafhed by the Tyrrbene Sea on the S. and W. and furrounded by the Apennines on the S. and E. have fewer of thofe rainy Storms: For the Vapours being raifed from the Sea in greater Quantity by the hot Summer Sun, being carried to the Land, may produce more copious and frequent Rains in the Northern and Champain Country of France: But on our Coafts, the Vapours rifing in lefs Quantity from the Tyrrbene Sea, will fupply lefs Matter for Rain in Summer; efpecially as the Apennine Mountains and the Winds blowing againft them at that Seafon from the Midland Countries, will eafily repel them, when they are brought towards the Land. From this mutual Strife of the Winds from Sea and Land we are fub-
VOL. VIII, Partii. Nnnn ject remarkable for Thunder and Lightning, rather than for much Rain.

The Snow, which lay deep upon the Mountains about the End of 1731, ftill remained upon them in $\mathcal{F}$ an. Feb. and March 1732, the old. Snow being continually increafed by the falling of new. We often obferved even Vefurius to be covered with Snow: But it feldom lay in the City, and adjacent Country. It froze only on the 29, 30, and 3 I Days of the laft Year; the firft moderately, the fecond more, and the third lefs, when it thawed after Noon. Haukbee's Thermometer was at 57 ; the firt 2 Days it was calm, but on the 3 d the Wind was NW . At the End of November and Beginning of December it froze in the City, firt more, and then lefs. It hailed Feb. 23 near the City: March 4, in the City: Apr. 4, and after the 20th, it was obferved in the Mountains. Sept. 14, at Foggia, there was a Whirlwind and Hail, which did Mifchief to Men and Cattle in the open Fields.

The Strength of the Winds was various, and they were often oppofite. In Winter the W. generally prevailed, turning fometimes to the S. and fometimes to the N . which is very common with us, who have the Sca on that Side. The N. Winds blowed feldom; but Jan. 1 and 2, there was a very ftrong NE , and then abating a little, and changing to the N W, the Mountains were fprinkled with Snow.

In this Place it may be proper to animadvert on the Inftrument for obferving the Strength of Winds, defrribed in the Pbilofopbical Tranfaftions*; which is not only uncertain, but falfe. A tranfverfe moveable Wing is hung to a common Weathercock, and a Quadrant divided into Degrees is placed near it. When there is no Wind, the Wing hangs perpendicular; but it is raifed by the blowing of the Wind, and according to the Strength of the Wind it rifes more or lefs, and fhows the Degrees of Strength on the Quadrant. But this is evidently falle; for the Wind may be raifed 10 or more Degrees from it's perpendicular Situation by a very fmall Strength of Wind: And the more it recedes from the perpendicular, the more the Difficulty of the Elevation of the Wing increafes: So that if in the firt Elevation of the Wing, 2 Degrees of Strength of the Wind are fufficient to go over 10 Degrees of the Quadrant ; then 4 Degrees of Strength will hardly be able to acquire 10 Degrees more of the Quadrant; and fo the Strength of Wind augmented to the 6th and 8th Degree will hardly be fufficient to raife the Wing to the 30th Degree of the Quadrant. Whence it appears, that we cannot ufe this Machine to meafure the Strength of the Wind exactly; becaufe the proportional Increafe of it will not anfwer to the Degrees marked on the Quadrant. It will be better therefore to make ufe of Dr furin's Method of meafuring the Strength of the Winds, as I have done in my Obfervations $\dagger$.

* Vol. II, Chap. I. §. xyiz.
$\dagger$ Vol. VI. Part ii. Chap. 3. §. xxxyii.


## A Pbysical Hipory of the Ait and Eartb for 1732.

The Quickfilver in my Barometer fell once, May 20, to Inches 28.82, London Meafure, which was the greateft Sinking that Year: And though the Liquor of the Thermometer differed not a little from it's greateft Rarefaction, yet People were almoft fuffocated by the Heat. On the contrary, the greateft Height of the Batometer, 29.38, was Dec. 10, the Wind blowing 2 Degrees at E. the Air being dry and cold, and $V$ efuviuts raging furiouny. But that whole Month the Height of the Quickfilver was conftantly obferved to be greater than in the orher Months of the Year; but Nov. 20, 21, 23, and Dic. 16 and 17, it came to 29.30. The mean Height of my Barometer is 294. Though the Afcent of the Quickfilver generally denotes fair Weather and Northerly Winds, as it's Defcent on the contrary ufually accompanies impending Rains and Southerly Winds; yet the contrary often happens. Hence fome may perhaps conclude, that not fo much the various Weight of the external Air, as fome Alterations of the Quickfilver itfelf may conduce to the various Motion of the Quick filver in the Barometer.

The Thermometer, which was one of Haukfbee's, afforded the following Pbanomenon. The greateft Heat of this Year was from fuly 9 to the Beginning of Aug. The Heat came to the greaten Height fuly 17,23 , and 24, the Liquor rifing to 4. This Afcent ufed to happen in former Years: But what was peculiar in this Year, was the greateft Heat continuing almoft equal Day and Night for 22 Days: The Liquor keeping about $5,6,7$, and 8 , except $\mathcal{F}^{\prime}$ iy 16 , when the S. and N N W Winds blowing by Turns, with Thunder, it rained at Times to the Height of almoft an Inch, when the Thermometer fell fuddenly from 8 to 20.

The greateft Cold was obferved at the End of laft Year, and Beginning of this, the Thermometer falling to 56 and 57 , when there was Snow on the Mountains, and Froft in the City. In Dec. when there was Ice feen, the Thermometer fell to 55 and 56 . Here I think it proper to obferve, that in the Table put to Houkfee's Thermometer, Froft is fet at the 65 th Degree. But I have found from the Obfervation of feveral Years, that it has frozen, when the Thermometer fent to me fell only to 55. Whence it is plain, that Freezing requires a fmaller Degree of Cold at Naples than at London. This Pbenomenon will be the Subject of a particular Difcourle, when I fhall have made fome more accurate Experiments.

I fhall now mention fomething about our vefuvius. It was filent almoft the whole Year: But at the latter End, after Dec. 9, it began to emit Smoak with Violence in the Day, and fometimes Flame in the Night. On the 20th both Smoak and Flame increafed greatly. Hence on the following Days there was an inward Grumbling and Noife, like the Explofion of Cannon, which was heard at the Diftance of feveral Miles; fo that the Windows and Shutters fhook. Burning Stones were thrown on high from the Crater of the Mountain, which afterwards falling down, and fticking to the Sides of the Hill, afforded a beautiful, Nnn 2
though terrible, Spectacle to our City, and to Places more remote. The Afhes were fcattered over the neighbouring Parts farther or nearer, according to the Determination and Strength of the Winds. From Dec. 27 and 28 a very thick Smoak, rifing not very high, overfpread the neighbouring Places thick with Afhes. After Dec. 29, the Smoak and Noife gradually decreafed: And after fan. 4, all was quiet.

We were told, that Atna at the fame Time vomited forth a great Quantity of Fire and Smoak, with Noife: And that Stromboli thundred with an unufual Noife, and threw forth a violent Flame: So that the frequent Rumbling of the Inand, and Flames burfting out with Noife, feemed to the Inhabitants of the Weftern Part of Campania, as if two Navies had been engaged in Fight.

This Year was unfruitful in Corn, except Maiz; but produced great Plenty of all Sorts of Fruit; and the Wine was in greater Quantity and more delicious than in the preceding Year.

An Account of Mr Sutton's Invenvion and Mesibod of sbanging the Air in tbe Hold, and otber clofe Parts of a Sbịp ; communicated so the Royal Society, by R. Mead, M. D. P白疾sian to bis Ma. jeff. F. R. S. and Reg. Coll. Med. Lond. No.462. p.42. Read Feb. 11. $1541-2$.
LXIII. 1. It is found by daily Experience, that Air fhut up and confined in a clofe Place, without a Succeffion and frefh Supply of it, becomes unwholfome, and unfit for the Ufe of Life. This is more fenfibly fo, if any ftagnating Water be pent up with it. But it grows fill worfe, if fuch an Air as this is made ufe of in Refpiration, that is, becomes moifter and hotter, by paffing and repaffing through the Lungs.

Thefe bad Effects, in different Degrees, according to the different Manner in which Air is inclofed, are obferved in many Cafes; particularly in deep Wells and Caverns of the Earth, in Prifons or clofe Houfs, where People are fhut up with Heat and Naftinefs: But moft of all in large Ships, in which, with the Stench of Water in the Hold, many Men being crouded up in Clofe-quarters, all the mentioned Circumftances concur in producing greater Mifchief than would follow from any of them fingle.
The Reafon of thefe bad Effects is this: It is that Property of the Air which is called it's Elafticity or Springinefs, which makes it fo ufeful to our Life. When any Part of it is inclofed and kept from the Communication of the outward Air, it expands itfelf, and, in Proportion to the Clofenefs of the Place, lofes it's Spring; and if any Heat or Moifture comes to it, the elaftic Force may be quite loft and deftroyed: And not only fo, but if it happens to be impregnated with noxious $E f$ fluria, either from unwholfome Subftances of any Kind, or from the infectious Breath of difeafed Bodies; it will become quite poifonous and deadly, in a Manner fuitable to the original Caufe.

It is propofed at prefent to find out a Remedy for this Evil in Ships only: But by making Alterations according as particular Places require, the fame may be applied to any Houfes or Parts of them, as Prifons, the fick Wards in Hofpitals, E'c. Now it is a natural Confequent of the Elafticity of the Air, that when it is rarefied in any Part, (which is moft effectually done by Heat) the neighbouring Air will rufh that Way, till this Part is brought to be of an equal Denfity and Elatticity

## of cbanging foul Air in Sbips.

with itfelf; and this again will be followed by the Air next to it: So that, if a Conveyance for Air be laid from the Hold or Well of the Ship, and a Rarefaction of the Air therein he made; the foul Air from this Place will run or be drawn out that Way, and frefh Air from the adjacent Parts will fucceed in it's Room.

It is upon thefe Principles that the following Scheme is moft humbly offered to the R. Hon, the Lords of the Admiralty, and Commiffioners of the Navy, which it is hoped will be found effectual for clearing the bad and corrupted Air from the Holds and other clofe Parts of his Majefty's Ships; and thereby prove beneficial to the Publick, by preferving the Healths of many of his Majefty's good Subjects ferving on board the fame; the whole Thing being indeed eafy to be executed, and what will no Ways incumber, or be troublefome, in any of the Veffels where it fhall happen to be applied; the fame being, in fhort, no more than this: That whereas in every Ship of any Bulk there is already provided a Copper or Boiling-place proportionable to the Size of the Veffel, it is propofed to clear the bad Air by Means of the Fire already ufed under the faid Coppers or Boiling-places, for the neceffary Ufes of the Ship.

It is well known, that under every fuch Copper or Boiler, there are placed two Holes feparated by a Grate; the firft of which is for the Fire, and the other for the Athes falling from the fame; and that there is alfo a Flue from the Fire-place upward, by which the Smoke of the Fire is difcharged at fome convenient Place of the Ship.

It is alfo well known, that the Fire once lighted in thefe Fire-places, is only preferved by the conftant Draught of Air through the forementioned two Holes and Flue; and that if the faid two Holes are clofely ftopped up, the Fire, though burning ever fo brinkly before, is immediately put out.

But if after the fhutting up the above-mentioned Holes, another Hole be opened, communicating with any other Room or airy Place, and with the Fire ; it is clear, the faid Fire muft again be raifed and burn as before, there being a like Draught of Air through the fame, as there was before the ftopping up of the firft Holes: This Cafe differing only from the former in this, that the Air feeding the Fire will now be fupplied from another Place.

It is therefore propofed, that in order to clear the Holds of Ships of the bad Air therein contained, the two Holes above-mentioned, that is, the Fire-place and Ah-place, be both clofed up with fubftantial and tight Iron Doors; and that a Copper or Leaden Pipe, of fufficient Size, be laid from the Hold into the Afh-place, for the Draught of Air to come in that Way to feed the Fire. And thus it feems plain from what has been already faid, that there will be from the Hold a conftant Difcharge of the Air therein contained; and confequently, that that Air fo difcharged muft be as conftantly fupplied by frefh Air down the Hatches, or fuch other Communications as are open into the Hold; whereby

Some Obfervations uporn the Same, with cri sical Remarks upon the $U$ fe of Windfails, by William Watfon, F. R.S. No. 463 , p. 62 . Read April ; 8742.
whereby the fame muft be continually frefhened, and it's Air rendered more wholfome, and fit for Refpiration.

And if into this principal Pipe fo laid into the Hold, other Pipes are let in, communicating refpectively either with the Well or lower Decks, it muft follow, that Part of the Air confumed in feeding the Fire, muft be refpectively drawn out of all fuch Places, to which the Communication fhall be fo made.
2. As nothing is more conducive to the Health of the human Body, than taking a fufficient Quantity of wholfome Air into the Lungs, fo the contrary is attended with pernicious and often with deftructive Confequences.

One of the great Ufes of Air in Infpiration is, to cool the Blood paffing through the Lungs, where Nature has provided, according to the excellent Malpigbius, that the Blood fhould be diftributed through a vaft Number of exceedingly fine Arteries, which are applied all round the thin Veficles of the Lungs; and by this Means the Blood is expofed to the Air under a prodigious large Surface, whereby the Putrefaction is prevented, which, from the alcalefcent Quality of that Fluid, would otherwife be fpeedily deftructive.

Obfervations inform us, that contagious Diftempers are more frequent in hot Climates than cold ; and in clofely built Cities fully inhabited, than in Towns: The former may, in fome Meafure, proceed from the too great Heat of the Air, not fully anfwering the abovementioned Purpofes; and the latter from too many People breathing in the fame Atmofphere, thereby rendering it unfit for Refpiration.

It has been frequently tried, that if a Gallon of Air be contained in a Bladder, and by Means of a Blow-pipe infpired and expired into the Lungs of a Man, without having any Communication with the external Air; in the Space of a Minute, or little more, it becomes heated, and unfit for Refpiration; and without the Addition of frefh Air, the Perfon would fpeedily be fuffocated. The Diving-bell is another Inftance of the fame Kind, where a conftant Supply of frelh Air mult be had, to keep out the Water, and refrefh the People included.

Although Air is abfolutely neceffary to our Exiftence, and Neceffity conftrains us inevitably to breathe therein, it may be made a Vehicle of moft malignant Poifons, as the famous Grotio del Cani in Italy ; poifoning Air by Gharcoal, Air impregnated with the Fumes of fermenting vegetable Liquors, ftagnant Air, either alone or mixed with Water, foon becomes pernicious, and very offenfive; as in Wells digged for Supply of Water, and difufed for fome Time; alfo in the Wells and in the Holds of Ships, where what is ufually called the Bulge-water, if the Ship is tight, and the Water not pumped out often, foon becomes fo extremely poifonous, as frequently to fuffocate thofe Seamen, who, as the Pumps are fubject to be clogged with Filth, venture down to - cleanfe them; and alfo to affect Perfens at a Diftance with violent Headachs,

## of cbanging foul Air in Sbips.

achs, cold Sweats, and frequent Vomitings, which continiee more or lefs, in Proportion to the Diftance from the Well of the Ship when the Injury was reeeived, and the Degree of Putrefaction in the Water and Air.

The Air, in Ships particularly, is very liable to be vitiated; not only from the Bulge-water, but from too many People breathing in the fame Atmofphere; efpecially in Ships of War, Horpital Ships, and thofe ufed in the Guinea-Trade for Negroes, where a Number of uncleanly People, being ftowed too clofe together, heat the Air, make it replete with noxious Effluvia, deftroy the Particles therein adapted to cool the Lungs, particularly the acid nitrous Gas, which is fo abundant in cool Air, and manifefts itfelf not only from the Quantity of nitrous Cryftallizations, which may be collecited from Caverns of the Earth, efpecially thofe open to a Northerly Afpect, but from expofing Pieces of the Flefh of Animals frefh cut, or their Blood, whereby the Colour of their Surfaces are foon changed from a dark deep Red to a more lively and florid one. Air robbed of this valuable Property, and replete with hurfful ones, not only from the People, but from the ftinking Water in the Well and lower Parts of the Ship, nut produce the moft putrid, if not peftilential Fevers.

Although the Equilibrium within Places confined is maintained by the external Air, yet unlefs, by Openings properly adapted, the Air is fuffered to pafs freely through, the external Air proves as a Stopple to the internal, and only mixes with the next in Contact; as is evident from the common Occurrence in Privies, which are fcarcely offenfive in clear Weather, but are much fo in foul or windy, from a Diminution of the incumbent Preffure, when the Vapours that have been pent $u \rho_{\text {, }}$, expand themfelves to a confiderable Diftance.

To prevent the above-mentioned Inconveniencies, and preferve the Healths and Lives of that valuable Part of the Nation, the Seafaring People, many Schemes have been thought of; particularly the Machines of thofe two very worthy ingenious and induftrious Members of this Society, the Rev. Dr Hales, and the Rev. Dr Defaguliers; the firt by an Inftrument which he calls $T^{\prime b}$ Sbip's Lungs ${ }^{*}$, and the latter by 2 Machine $\dagger$, which is an Improvement of the Heffian Bellows: But as thefe have been laid before the Society by the Gentlemen themfelves, I fhall pafs them over, and proceed to mention the Contrivance commonly made ure of, I mean the Windfails. They are made of the common Sailcloth, and are ufually between 25 and 30 Foot long, according to the Size of the Ship, and are of the Form of a Cone ending obtufely : When they are made ufe of, they are hoifed by Ropes to about two Thirds or more of their Height, with their Bafis diftended circularly by Hoops, and their Apex hanging downwards in the Iratchways of the Ship; above each of thefe, one of the common 3ails is fo difpofed,

[^4]that the greateft Part of the Air, ruhhing againft it, is directed into the Windfail, and conveyed, as through a Funnel, into the upper.Parts of the Body of the Ship. Thefe nuult be hung up and taken down every Time they are ufed, and the Suppiy by this Method is not conftant. Though Cuftom has given a Sanction to this Device, it is fubject to many Inconveniencies: ift, Each Ship having commonly three of thefe, (one to each Maf) the Seainen are a confiderable Time in getting their Apparatus ready, and hoifting them up, to make ufe of $2 d l y$, They can only be ufed in mild Weather. 3 dly, Near the Equator, where frefh Air is moft wanted, there fometimes happen fuch ftark Calms, that they are ufelefs by not having Air enough to diftend them. $4^{t h l y}$, The Air hereby admitted paffes only into the upper and more open Parts of the Ship, fo that the Well, Ezc. receive no Change therefrom; and it is obferved, that fometimes, upon ufing them after fome Difcontinuance, they drive offenfive Air into the Cabin, and more airy Parts of the Ship; like as the pouring fome frefh into ftinking Water makes more Water ftink, though in a lefs Degree. 5tbly, They are improper to be uled in the Night-time, when the People are fleeping between Decks. And, laftly, admitting they had none of the former Inconveniencies, their Uie muft be deftructive in Hofpital-Ships; where, though frefl Air imperceptibly received is abfolutely neceffary to preferve the Crew as free as pofible from the infectious Breath and ExhaJations of the difeafed and wounded Seamen, yet Blafts of Wind, pouring impetuoufly into the very Places where the Sick lie, muft be attended with fuch Confequences as are too obvious to mention.

To remedy thefe Inconveniencies, to prevent Air proving foul even in the Wells and Holds of Ships, and to caufe imperceptibly a large Circulation of frefh Air into every Part of the Ship at all Times, Mr Sutton has invented this Scheme, which is ufeful not only in thefe Cafes, but, by altering fome Parts, as particular Places require, may be applied to Houfes, clofe Parts of Prifons, Wells at Land, Privies, Hofpitals, $E^{3} c$.

Nothing rarefies Air fo confiderably as Heat, and whenever it caufes a Diminution of the Denfity of the Air, that Part next in Contact will rufh in, and be fucceeded by a conftant Supply, till the Air becomes of an equal Degree of Elafticity. Therefore, if a Tube be laid in the Well, Hold, or any other Part of the Ship, and the upper Part of this Tube be fufficiently heated to rarefy the impending Column of Air, the Kquilibrium will be maintained by the putrid Air from the Bottom, which being drawn out this Way, a Supply of frefh Air from the other Parts of the Ship will fucceed in it's Place; which Operation being continued, will entirely change the Air in all the Parts of the Ship. This Principle, exactly conformable to the Doctrine of Pneumatics, is the Bafis of Mr Sutton's Machine, which being put in Execution on board the Hulk at Deptford, before the Lords of the Admiralty, Commiffioners of the Navy, M. Folkes, Efq; Dr Mead, \&rc, performed to
their Satisfaction, in bringing Air from the Bread-room, Horlop, and Well of the Ship at the fame Time, in fuch Quantity, that large lighted Candles being put to the End of Tubes, the Flame was immediately fucked out as faft as applied, though the End of one of the Tubes was above 20 Yards diftant from the Fire. The Method is as follows:

To boil the Provifions of the Ship's Company, they mufi have a Copper which is bigger or lefs, in Proportion to the Size of the Ship, and Number of the Crew: This Copper is fixed in Ships in the Manner as on Land, having under it two Holes divided by an Iron Grate. The firft Hole, having an Iron Door, is for the Fire; the Afhes from the Grate drop through into the Bottom of the other; the Smoke paffes through a Chimney, and is difcharged as ufual. After the Fire is lighted, it is fupported by the Air from the Parts next the Afh-pit; but having, contrary to the ufual Cuftom, adapted an Iron Door, like the former, made very tight, to prevent the Ingrefs of Air, the Fire would foon be extinguifhed, if not fupplied by fome other A perture; in order to which, one or more Holes are made through the Brickwork in the Side of the Afh-pit; and Tubes of Lead or Copper, fitted clofely in the Holes, and made faft, are laid from thence into the Well, and other Parts of the Ship; by which Means the Air next the Bottom of the Tubes rumhes through them, and the foul and ftinking Air fucceeding, is tranfmitted through the Fire, and paffes off, without offending, by Means of the Chimney; and a Supply of frem Air from the other Parts of the Ship continually fills the Place of the former, the Fire requiring a conftant Support, which Support will be wanting, not only during the Continuance of the Fire, but while any Warmth remains in the Fire-place, Copper, or Brickwork, as was obferved on board the Hulk at Deptford, where the Draught of Air through the Tube lafted. above 12 Hours after the Fire was taken away. This being confidered, as the dreffing the Provifions for a Number of People will take up fome Hours every Day, the Warmth of the Brickwork and Flues will continue a Draught of Air from one Day to the next. Mr Sutton propofes thus to circulate the Air by the fame and no greatel Expence of Fire than is cuftomarily ufed for the Neceflities of the Ship. The Operation of the Machine will be equally ufeful in large as fmall Ships; for the greater the Number of People they have on board, the larger Quantity, and longer Continuance, of the Fire will be neceffary to drefs the Provifion; and therefore there will be required a greater Quantity of Air to fupport that Fire. The Size and Number of the Tubes need not be fpecified, becaufe as the Confumption of Air is in Proportion to the Quantity of Fire, the wider the Tube, and greater the Number, the lefs the Velocity of the Air, and vice versa.

I feveral Times obferved in this Machine, when for the Sake of Obrervation, after the Fire was well lighted, and the loweft Iron Door left open, that the Flame did not afcend to high, or burn fo fierce; but

[^5]0000
imme.
immediately upon fhutting thereof, when the Draught of Air was only through the Tube's, the Flame foon recovered it's former Vigour.

There is likewife, efpecially in large Ships, not only a Copper, but alfo a Fire-grate like thofe ufed in Kitchens: That the Heat and Smoke of this alfo may not be ufelefs, an Iron Tube may be fixed behind the Grate, and inferted quite through the Brickwork, and through the Deck, fo that one End thereof will ftand about a Foot, or little more, in the Chimney above the Brickwork, and the ocher will enter into the Hold, or any Part of the Ship; fo that the upper End being heated, the Draught of Air will be fupplied from below, as in the orher Cafe. This likewife was tried on board the Hulk, with an Iron Tube about $2 \frac{1}{2}$ Inches in Diameter, and the lighted Candles held at the Bottom of this Tube were extinguifhed as faft as by any of the other.

It may be objected, that a Number of Tubes take up too much Room, efpecially in Merchants Ships, and are fubject to be broken or injured by loading or unloading: To remedy which, it is advifeable, that only one Tube of a convenient Size be made fart unto the Side of the Afh-pir, and, as foon as it comes through the main Deck, to comprefs it (a circular or any other Form being equally ufeful) not too clufe; and it may be divided into as many Ramifications as may be thought neceffary, (efpecially as the Biead-room, Store-room, E'c. cannot be kept too (weet, a Branch for each of thefe) and thele Branches be carried between the Beams which fupport the Deck, till they come to the Side of the Ship, and there let down likewife between the Beams into the Places intended; by which Contrivance their Operation will not in the leaft be obftructed, and the Tubes be fecured from any Accident.

The Simplicity of this Machine, it being fo little cumberforne, it's Operation without any Labour to the Seamen, the fmall Expence to put it in Execution, and maintain it, befides the before-mentioned Confiderations, are other Arguments for it's general Ufe.

Stockholm, Nov. 1, $173^{2}$.

Concerning an Improvement of the Diving Bell, by Mr Martin Triewald, $F . R$ S. Captainof Mechaniss, and Military Ar. sbitect to bis Swedifh Majeffy. No. 444 p. 377 . Nov.

Diving-Bell, as to my Knowledge it did once, when the Diver was 12 Fathom under Water, and a pretty large Hole happened to be ftruck in the Bell, by a Boult of the Wreck he went upon, at which Time the Air ruthed out of the fame with fuch Violence as aftonifhed the Beholders by the exceffive boiling on the Surface of the Water, fearing, not without Reafon, that the Man in the Bell was drowned; but he clapped his Hand to the Hole or Leak, and gave a Sign to be hauled up, which was done with all the Eafe and Safety as if no Accident had happened to him, the Water having only rifen about is a Foot into the Bell by this Leak.

The very fame Diver that was then in the Bell is 63 Years of Age, and has ufed the Bufinefs of Diving ever fince he was 20 , in a commion Diving-Bell, till of late, and is as yet a pretty ftrong and healthy Man: He declares that never a worfe $\Lambda$ ccident happened to him in his Bufnefs but once, when the Boll he was in ruhned down at once about a Fathom or more, by the Carclefinefs of thofe that worked the Bell; at which Time the Blood came out of his Nofe and Ears, feeling befides an intolerable Preffure on his whole Body; which finews, that when a Man in a Diving-Bell is nowly and gradualiy let down, he at fuch a Time and by Degrees refpiring compreffed Air, which by the Lungs is forced into the Blood, cannot feel the external Preffure, though of highly comprefed Air, furrounding him, and that of the Water reaching fome Parts of his Body, which Convenience no other Invention can yield or afford, where the Diver is to draw his Breath from Air in it's natural State.

I have often with a great deal of Pleafure obferved, that when I have caufed the Bell to ftop, being lowered down 5 Fathom, and the Diver taking in the Air contained in an Air-Barrel, lowered down a Fathom deeper than the Bell, without opening the Cock for difcharging the hot Air; the Water would, by the Accefs of the Air out of the Barrel, be quite, or to a very fimall Matter, expelled out of the Bell; and when the fame was again lowered down 5 Fathom more, the fame O peration with another Air. Barref repeared, and the Bell afterward's hauled up, it was no fmall Matter of Delight to fee, that every Fathom the Bell came up, it would difcharge iffelf of the fuperflunus and large Quantity of Air, which came up from the Bottom of the B.ll in very large Bubbles, as big as Eggs of an Oftrich; which Difcharge of Air and Phænomenon continued, till the Equilibrium of the Air in the Bell, and Preffure of the Water, was reftored, and till the Bell came above the Surface of the Water.

At other Times I have obferved, when no Air was by the Way' taken into the Bell, but the fame lowered down the common Way, and hauled up again after fome Time, that the very Inflant when the Bell fhould part with the Surface of the Water, the Strength of two Men more was required at the Capton at that Time, than before and after the Bell hung freely in the Air ; from whence I prefume it plainlys
appears, that the Air which paffes through the Lungs of a living Creature, lofes it's Elafticity, and that the Lungs of a Man make a Kind of a Vacuum in the Bell; for which Reafon the Diver feels at the very Inftant, when the Be!l parts with the Water, a very fmart Preflure his in Ears.

Though Experience thus has taught me, that no Invention is more fafe and ufeful than the Compama Úrimatoria, with the ingenious Improvements of Dr Hally; yet I have likewife found, that this Invention is not to be made ufe of without confiderable Charge, requiring a large Veffel, and Number of Hands, to the working and managing of fuch a large Diving-Bell, and the Air-Barrels with their refpective Weights for linking; which Charges, however, according to the Depth of Water, and the Value of what is to be fetched up from the Bottom of the Sea, may not be regarded: But fince it more frequently happens in thefe Larts, that Cargoes of a far lets Value than the Loadings of Spenisis Galleons, Esc. are to be dived for; then next to the Goodnets of the Invention, i have found myfelf neceffitated to think how the Expences might be leffened, and that the Diving-Bell neverthelefs might anfwer all Intents and Purpoies of Dr Halley's; which Improvement is as follows:

The Diving. Bull, A B, I have caufed to be made of Copper, and reduced the lame to a very little Compafs in regard to that of Dr Ha!ley's, as you will fee by the Scale under the Draught, by which Means it is eafily managed by two Hands: Yet I prefume that a Diver may not only live in the fame for as long a Time, and with as much Eafe, at a very confiderable Depth of Water, as in a Bell of twice it's Canacity, for this Reafon, though a Man in a large Bell has undoubtedly more Air than in a Jefs, and confequently hould be able to fubfift a great while longer on a large Quantity of Air, than on a fmall Parcel ; yet becaufe his Head for the moft Part is kept in the upper Paft of the Bell, where the hot Air takes up it's Place and Refidence, he receives very little or no Benefit of the Air under his Chin or Breaft, though never fo fit for Refpiration; which Air neverthelefs in the lower Parts of the Bell will remain cool a long Time after he has been in the Bell, and with Difficulty drawn his Breath; which cannot be denied, and is. very obvious to any body who has been in a German Bagnio, and fuch as are made ufe of in this Country, where in a fingle Room all the Degrees of Heat are to be felt, by Means of a Conerivance like Stairs tothe very Top of the Ceiling, a Man when he places himfelf on the. uppermoft Step will feel an exceffive Heat, fo that any body not very much ufed to it cannot endure the fame, nor draw his Breath, but will faint away; whereas on the firt, fecond, and third Steps from the Floor, the Heat is very moderate; nay, fometimes the Air near the Floor pretty cool, when at the fame Time near the Ceiling the Heat of the fame is intolerable. I will nos mention many other Inftances I could produce.

## An Improvement of the Diving-Bell.

To encounter this Inconvenience I have caufed a Spiral Tube of Copper, $b, c$, to be placed clofe to the Infide of the Bell, fo fixed that the fame may be taken out and cleanfed at Pleafure, and with Eare; and at the fame Time not to incumber the Diver when he is in the Bell; at the upper End of this Tube b, a flexible Leather Tube is joined 2 Foot long, at the End of which is a turned lvory Mouth-piece, which the Diver (as foon as he perceives the Air to grow hot in the Top of the Bell) keeps confantly in his Mouth, which he is able to do by Means of the flexible Tube in whatever Pofture he is in, ftanding, fitting, howing his Head, Ecc. And all the while he draws his Breath through the aforementioned Tube, and the Air from c ; by which Contrivance he not only draws continually cool and frefh Air as long as any is in the Bell, but occafions at the fame Time a Circulation, which is fo neceffary to the very Being of Air, (efpecially in a compreffed State) and it's Prefervation for the ufe of Animals, which I have found to be of great Confequence; and fo much the more neceffary, as any body who has been in a Diving-Bell for a long Time, without any new Supplies of Air, and has been reduced to the laft Extremity of breathing in the fame, will agree with me, that when at fuch a Time the Bell begins to be hauled up, and by that Means the compreffed Air allowed to expand and be put into Motion never fo little, the Man receives, as it were, a: new Life, and incredibible Comfort and Eafe.

Again, when, in Coal-pits, Levels are driven in the Coal or through Dykes, the Air of the Level or Adits growing hot by the Breath and Sweat of the Hewers and Workmen for want of a Circulation of the Air; I have found it to be an excellent Remedy, to place along the Side of the Drift or Adit, a fquare wooden Box, open at both Ends, laid from the Place where the Air is cool and good, reaching as far, by joining one Box clofe to another, as where the Work is carried on. Thus, by this fimple Contrivance, a Circulation of Air is obtained, and fometimes to that Degree, that when a Candle is held at the End of the Box.where the cool Air enters, the Flame is driven our by the Current of cold Air entring and circulating through the Box.

By which Experiment I am apt to think, that though the Diver fhould not keep the End of the Rexible Tube in his Mouth, which he may do with all the Eafe in the World, yet that the Air would circl!late through the Copper Tube, and he receive no fmall Benefit by it. D'DDD are the Weights for finking the Bell, fo contrived as with great Fafe to be hooked on the fame hanging on the Cable. The Iron Plate E, fixed to the Chains FFF, ferves the Diver to ftand upon when he is at work.

The Bell is extremely well tinned within all over; and as in all Rivers, and the Coafts of the Baltic Sea, the Water is extremely cleat and bright, becaufe of no Ebb and Flood, I have placed three ftrong convex Lenfes G G G. By thefe Means the Diver cannot only fee what is under him, but likewife on all Sides at a good Diftance.

A Narrative of a nezu In. venzion of expanding $\tilde{i} \% \mathrm{uzt}$ s, by their heing comroyed into certain ignified Fifels, vobere they are imme. diately rarefied into an claftic impelling Force, fufficient togive Motion 10 Hy draulopneuma. tical and other Engines, for raifing Water, and other Ujas, sec. by John Payne. No. 461. p. 821 . Aug. छ'c. 1741.

Fig. 44.

Thefe Glafes have ftrong Copper Lids like Snuff-boxes, HHH; which Lids are $\mathrm{h} u \mathrm{u}$, when there is no Occafion to difoover any Objects on the Bottom of the Sea, and ferve to preferve the Glaffes from being broken.
L.XV. To produce a great Power at a fmall Expence, is what every body defires in moving Machinery; and is what, by this new Invention, we have proved by Experiments and Practice to be a great Improvement, when applied to that noble Invention the Fire-Engine: Therefore I mall proceed to give a Short Defcription of the Veffels and Machinery contrived for that Purpofe, viz.
A Pot or Veffel made of wrought or caft Iron, nearly the Figure of a Cone, whofe Diameter at the Bafe is 4 Feer, with Holes round the Edge for Nails or Screws to faten a globular Head of Copper of about $5^{\frac{1}{2}}$ Feet Diameter. There is then placed in the Infide a fmail Veffel or Machine, which I call a Difperfer: This Bafon or Veffel hath Spours round the Sides fixed to it, and the Bottom thereof refteth on a Centre-pin; and in the Middle of this Bafon or Veffel is a Socket, with Holes near the Bortom, to let the Water or Fluids pafs from above, through an Iron Pipe of about 7 Feet long, the lower End of which is placed in the Socker, fo as the End of the Pipe will be always immerged in Water in the Bafon, to prevent the expanded Fluids from returning up the Pipe; and the other End of this Pipe goes up through the Copper-head, which is inclofed very tight, but fo as it may eafily be moved with a circular Motion, in order that the Water or other Fluid, which is conveyed through this Iron Pipe down into the Difperfer, may be difperfed or fhowered round, on the Sides of the red-hot Pan, or ignifed Vefel, in a very exact Manner.

This evaporating Veffel being thus completed, we then take I, 2 , or mere of thefe Veffels, with thefe Contingencies, ảd place it or them in a reverberatory Arch or Canal, for conveying the intenfe Heat of a ftrong Fire, the Flame of which encompaffes the Metal-Pot or Pots, and brings them to a red Heat ; and in that Condition they are continually kept, while in Ufe, with the Water running from a Cittern or Veffel (where the Water is heated) through a Gauge-cock down the Iron Pipe into the Difperfer, which conveys it to the Sides of the ignified Veffel or Pot, when it is immediately rarefied or expanded into an elaftic Steam or Vapour, fit for Application to give Motion to fundry Sorts of Machinery, E ${ }^{\circ}$ c.

> Fig. 43. A, A Globe sande of Copper, I2 Incbes Diameter.
> B B, Two Brafs Cocks, one oppofite to the otber, fitted very tigbt.
> C, A Handle or Bale, faftened to the Globe, by which it may be bung or beld up.
> D, A fmall Valve, or Clack, fitted to the upper Cock, of one Inch Dia-
meter.

The

The whole thus fitted, weighed ${ }_{5}$ Pounds 3 Ounces Troy, or 12 Pounds 9 Ounces $\frac{1}{2}$ Avoirdupois; and, filled with Water, it weighed 45 Pounds 7 Ounces, from which deduct the Metal, the Weight of Water is 32 Pounds 13 Ounces $\frac{1}{2}$ Avoirdupois, which is about 4 Gallons, containing about 925 cubical Inches.

This Veffel or Globe I chen hung over the large Veffel F, in which Water was rarefied or converted into Steam ; and by the Pipe E, at the large Cock $G$, which being open, as alfo the other Cocks B B, the Steam had a free Paflage through the Globe A, by which the Steam excluded or forced out the Air that was in the Globe, and by it's elaflic Quality fupplied it's Place; when both Cocks B B were fuddenly fhut, and the Globe A taken down and hung over a Veffel of cold Water, with the lower Cock B, immerged in Water, and then opened under Water; on which the Water rufhed into the Globe very furiouny, until it had fupplied the Vacuum, when the Cock was again Ihut, and the Globe, with the Water, put in the Scales, and then found to weigh 44 Pounds 9 Ounces; which take from 45 Pounds 7 Ounces, the whole Weight, as before, there remains but 14 Ounces, the Difference, which Theweth that all the Air was nearly excluded out of the Globe by the Steam: In Ounces it ftands thus, $\frac{727}{71 j}$, which is very near a perfect Vaculum.

I again excluded the Air out of the Globe with Steam as before, and hoth Cocks B B being clofed with the Globe full of Steam, we put the Globe in the Scales, and it weighed 12 Pounds 10 Ounces $\frac{\frac{1}{2} \text {. I then }}{}$ opened one of the Cocks, and Jet in the Air, on which the Scale defcended; and, by adding Weight in the other Scale, it was found to weigh 12 Pounds 11 Ounces; which fhewed that the Weight (not the Preffure) of the Air the Globe contained, was $\frac{1}{2}$ an Ounce Avoirdupois.

The Globe being filled with Steam as before, and condenfed with cold Water on the Outfide of the Globe, and the Metal again made very dry, and the Air let into the Globe, the Water from the condenfed Steam was found to weigh 4 Penny-weight.

The Globe filled with Steam as before, only now I continued the Globe longer with the Steam paffing through it, by which it acquired a greater Degree of Heat; for 1 found by thofe Experiments, that the leaft Degree of Cold Jels than the Steam, a Part would be condenfed again into Water, by which the Quantity could not be certainly attained to, that would exclude the Air out of a certain Space, which is the chief End of this Experiment. But in this Experiment I fucceeded better; for, on weighing the Giobe, when the Steam was condenfed, the Air let in, and all cold, it was as followeth, viz. ${ }_{1} 5$ Pounds 3 Ounces 2 Penny-weights Tray, the Weight without the Steam being ${ }^{5} 5$ Pounds 3 Ounces; fo that the Weight of the Water condenfed from the Steam, or the Water converted into a Arong elaftic Steam to Fill the Space of this little Globe, is but 2 Penny-weights, or $\frac{1}{10}$ of an when converted into Steam, 925 cubical Inches of Space in a Veffel, fo as to exclude nearly all the Air. I repeated this Experiment feverat Times, and found it nearly the fame ; and by immerging the Cock in Water, and opening it again, as in the firt Esperiment, I found the Weight of Water to be nearly as above, and to make about $\frac{15}{16}$ Void or Vacuum; fo that: Ounce Troy of Water makes 9250 Cube-Inches of Steam, of equal Force with the like Number of Inches of Air; and with this Remark, that the Weight of the Steam is much lefs than the Weight of common Air; for in this Globe I found the Air to weigh $\frac{1}{2}$ Ounce Avoirdupois, or 9 Penny-weight Troy; and the Steam, which filled the fame Space, to weigh but 2 Penny-weight Troy, which is but little more than ${ }^{3}$ th Part, and fhews how very fmall the Particles of Water are when fo divided by the Force of Fire, and of what Force. From which I fhall conclude, that I cubic Inch of Water will ditcharge or force out 4000 Inches of Air from a Veffel of that Content, which I have likewife proved by other Experiments in working the Fire-Engine: Therefore I Thall make it my Standard in fome future Calculations for Practice, about that noble Machine.

I proceeded, as before, with Steam in the Globe A; and condenfed it, as in the third Experiment; and then tried the Preffure of the Atmofphere on the Clack or Valve D, and found it required about 10 th Troy, to lift the Clack from it's Tube of I Inch Diameter; but in this I was not exact with fmall Weights.

I excluded the Air with the Steam, and in Place of the Clack I fcrewed on very tight a Plate, on which I placed a Glafs Receiver, as ufual, with the Air-Pump; and then, turning the Cock, the Air under the Glars Receiver expanded itfelf into the Globe, by which I had equally a Share of the Vacuum partly made in the Globe, and could thereby make many Experiments that are made with the Air-Pump, Erc. which I mention only, that fome curious Gentlemen may hereafter make fome further Obfervations by the like Experiments.

1. That a Pot or Veffel, of the Size and Shape here mentioned, will (being kept to a dark-red Heat, and the Water regularly difperfed) rarefy or expand 50 Gallons of Water, Wine-Meafure, per Hour.
2. That a Cube.Inch of Water will make in Practice 4000 Inches of Steam; or that the elaftic Steam of one Cube-Inch of Water is fufficient to exclude the Air out of a Veffel that is in Content 4000 Inches.
3. That the above 50 Gallons will produce $46,000,000$ Cube-Inches of elaftic Steam per Hour, which is per Minute $770,000$.
4. That the fecond Pot or Veffel, as in the Draught Tab.VI. Fig. 2, will rarefy or expand 40 Gallons of Water, Wine-Mafure, per Hour, and will produce $36,960,000$ Cube-Inches of elaftic Steam per $¥$ four, which is per Minute 6:6,000 Inches.
5. That both being united together make $1,386,000$ Cube-Inches of Steam every Minute, from 346 Inches of Water.
6. That, by an Experiment made at a Fire-Engine, 40 Gallons of Water per Hour, made into elaftic Steam in this Method, will effectually give Motion to a 24 Inch Cylinder Fire-Engine.
7. That, by true Experiments made at Wedgbury and Nerwaflie on Tyne, one hundred Weight, containing 112 H of Pit-coals, will and is fufficient in this Method to expand or rarefy 90 Gallons of Water per Hour into an elaftic Steam or Vapour.
8. That, by the beft Accounts and Obfervations I could get and make, they confume under their Boilers to make the fame Quantity of Steam, 300 Weight of Pit-coal, at 112 ith to the 100 , in working a Fire-Engine one Hour.
9. That 95 Gallons of Water per Hour, expanded or rarefied into Steam, will work a 36 Inch Cylinder Engine.
10. From thefe Obfervations I conclude, that this new Invention will fave at leaft 60 per Cent. in Pit-coals to work a Fire-Engine.

A, A, The two Pots.
Pig. 43.
B, B, The two Copper Heads or Globes.
C, C, The two finking Pipes, for waffe Witer, that is not evaporated.
D, D, Clacks or Valves to keep out the Air.
E, E, The two Di/perfers and Spouts.
F, F, The Stools with a Centre-pin, on wibich the Difperfer refteth.
G, G, The two Iron Pipes, in which the Water is conveyed to the Ciftern.
H, A Ciftern of bot Water.
I, I, Two Cog-webeets to turn the Difperfer.
K, A Steam-pipe, in which is conveyed the Steam to the Cylinder.
L, The Cylinder of the Fire-Engine.
M, M, Leaden Pipes that convey kot Water from the Ciftern in the Difperfer.

> C H A P. II.
> $H \Upsilon D R O L O G Y$.

1. $M^{A L H O L M}$ is a pretty Country Village, fituated on the $A$ Defiription Southern Side of a monftrous high Hill, the Afcent of which of a large Lake is not very fteep. By a Break between this Hill and another, which are joined by a Rock, which meafures 82 Yards perpendicular, and feems to be about \% of the Height of the Hill, I conclude the Hill to be about 120 Yards perpendicular. On the Top of this Rock there ftill V O L. VIII. Part ii.

PPPP
remains

John Fuller, Efg; jun.
F.R.S. No. 459. p. 612 .

remains the A ppearance of a Channel for 2 or 300 Yards together, which, by it's having no Mould or Earth to cover it, I juige to have been a Yaflage for that Water, which formerly ufed to tumble over the Precipice, but now has found a Paffage under-ground, and flows out at the Bottom of the Rock, being now called Air-Head, viz. the Head of the River Air. The Rock is called Malkolns Cove.

Between the Top of this Mountain and the Tops of four others, is Malbolin Tarn *. (I fay the Tops of them, for though they iteep a Quarter of a Mile towards the Lake from their Tops, it is at a Mile and an half down to the flat Counery on the Outfide.) This Lake is between 3 or 400 Acres. The Shape of it is a Parallelogram, the Length of which equals about twice the Breadth: There are no Weeds in it. In a fine fill Day, you may fee the white chalky Boctom, where it is 10 or 12 Foot deep. I wonder Cannden takes no Notice of this Lake, for it muft have been there in his Tinse, and he mutt have been very near it; for he defcribes a Precipice, which I am pretcy certain is the Northern Side of one of thofe very Hills which help to form Malbo!ma Tarn. There are but 2 vifible Springs that fupply it with Water, one lies E . the other N W; and by what I could guefs, there are only thefe 2 Springs; for the Difcharge feems to be no greater than what thefe Springs fupply.

The fuperfluous Water of this Lake is difcharged by a gliding Stream, about 4 Feet broad, and 2 or 3 Inches deep; which runs above-ground about 2 or 300 Yards, and then dips under-ground at two different Places about io Yards diftant from one another. What becomes of thefe Streams after their dipping, (though the Relation appears fomewhat fabulous, yet) as it is affirmed by all the Men of Credit in the Neighbourhood, I could not help believing it. About a Mile below Malbolm Village there are 2 Springs that difcharge themfelves into the River Air about 10 Yards diftant from one another, one fomewhat greater than the other. The Neighbours affured me, that if Wheat-chaff was put into either of the Rivulets at the Place of their dipping, in about 8 Hours Time it would come out at the greater or leffer Spring, and not out of both, into the River Air, which is from the Place of their firft dipping about $2 \frac{1}{2}$ Miles. By this it appears, that thefe 2 Rivulets never communicate in their fubterraneous Paffage.

The Tarn abounds with only 2 Sorts of Fifh, Trouts and Percb: The Trouts very large and red; the Percb far exceed in Size and Goodnefs any I have ever feen, being commonly 20 Inches long, weighing 4 or 5 Pounds. They are taken only with Hooks, it being fo deep and ftony, that you cannot draw a Net: The only Bait for them is an Eurth-worm ; the rocky Soil, and the Springs coming fo little a Way, affording them very little of that Sort of Food.

## $\triangle$ Higb Tide in tbe River Thames, on

## A Defcription of Malholm Tarn Lake.


ing; and was 4 Inches higher than had been known for 40 Years be-
fore.

But on Feb. $16,173^{2}$, the Tide rofe at the fame Place $6 \frac{1}{+}$ Inches above that Mark, and flowed near 2 Foot the laft half Hour but one before High Water.

## New Crane, Feb. 17, 1735.6.

N. B. If the Tide had flowed it's full Time, it would have flowed half an Hour longer, and had drowned the whole Level.
III. Dr Hales, in his learned Paper lately read at the Royal Society, wherein he propofes a Method of rendering Sea-Water frefh, and wholfome to drink, mentions a Diverfity of Saltnefs of the Water at the Nore in the Mouth of the Thames, and the Water taken up in the MEditerranean Sea, this containing $\frac{1}{2}$ of Salt, the former $\frac{1}{25}$. Mr Boyle, in his Obfervations of the Salmels of the Sea, p. 4, faith, that about Holland the Salt in the Sea-Water hath been found to be $\frac{1}{4}$. In the Englifh Channel, p. 3', he found Sea-Water $\frac{1}{\top}$ heavier than ConduitWirer; and, by immerfing a Lump of Sulphur in it, he found the Difference $\frac{1}{53}$; but by Diftillation ad ficcitatem, p. 33, he found the Salt to be $\frac{1}{30}$, and in another Trial $\frac{1}{\sqrt{2}}$. It is certain the Sea differs in Saltnefs in different Parts: It is in general obferved, that in hutteft Climates the Water is the falteft. At Mofanbique Mr Boyle, ib. p. 29, relates an Inftance of a Ship drawing two Hands-breadth lefs Water than ufual. On the contrary, when Salt-Water freezes, it hath been thought to let fall all it's Salt; the Ice of Sea-Water, and the Water melted from it, tafting frefh, and being good for boiling Meat and Peafe in : Capt. Middleton, being in Fludjon's Streigbts in F̛uly 1738, took Ice from under the Surface of the Sea, which he melted till he got 40 Quarts of Water, which he evaporated to Drynefs, and out of that Quantity had only fix Ounces of Salt, or about $\frac{1}{L_{13}}$.
IV. Exp. I. Upon fteeping or infufing fome Scrapings of Gall in it, (after ftanding a long Time) it turned of a bright Purple Colour.

Exp. 2. Upon the Inftillation of Ol. Tartari per Deliq. it immediately became troubled or muddy, and feemed as if Goblets of Fat were fluctuating in it. This unctuous Matter, upon long ftanding in Repofe, came gradually into clofer Contact, and at laft fubfided.

Exp. 3. Upon the Inftillation of Spirit of Vitriol, it depofited a Milk-white greafy Sediment; which, after 12 Hours Repofe, occupied $\frac{1}{5}$ Part of the Vehicle or Liquor.

Exp. 4. Being mixed with a Solution of Saccbaram Saturni, it let fall a fmall Quantity of a greyifh Powder.

Exp. 5 Being feverally and feparately mixed with Solution of Sublimate, with Sp. Sal. Armoniac. and with S:Igar of Violets; it neither fermented, depofited any Sediment, grew turbid, nor changed Colour; except only from the Sugar of Violets, which turned it of a dark Green.

An Examination of Sea Water frozen and meited again, to try zibat Quartity of Sait is cons. tained in fuce Ice, mase in Hudfon's
Streights by
Capt. Chrifiopher Middleton, F.R.S. at the Reguefs of C. Mortimer, R.S. Secr. No. 46 t . p. 806. Aug. ช゙c. 1741.

Experiments,
by Way of $A$. nalifse, upen the Water of the Dead Sea; upon the bot Spring near
Tiberiades ; ard ypon the Hammam Pharoan Water; by Charles Perry, M. D. made on bis Journey tbro the Holy Land, sce No. 462. p.48. Read Feb. 25.

## Experiments by Way of Analyis on feveral Waters.

Obfervations. This Water is highly faturated with Salt, infomuch that any Meafure of it preponderates frem Water under equal Surfaces, in the Ralio of 5 to 4.

It has alfo a wonderful Acrity, infomuch that being held in the Mouth for a fhort Time, it conftringes it in like Manner as Alum does.
I cannot (from the above Experiments, and the Appearances which refulted from them) conclude, that this Water is impregnated with any Thing more than mere Salt, which is of a very acrid, alkaline Nature; and fomething elfe, which may be of a compound Nature, partly fulphureous, and partly bituminous. But, to fpeak negatively, it may be prefumed, I think, that it neither partakes of Steel, Alum, nor Vitriol, nor yet of a pure, genuine Sulphur: And, confequently, as I take it, can afford no other, nor better Effects, to fuch as may bathe in it, than other Sea-Water; except only, that it's greater Degree of Salt, and fuperior Weight, may fomewhat heighten the fame Effects.

Exp. 1. Oil of Tartar. per Delig. 3fs, being mixed with zifs of the

Experiments
(by Way of $A$ nalyfil) upon she hot Spring. Water near Tiberiades.

Water, it became troubled and muddy; and after ftanding 12 Hours in Repofe, $\frac{3}{3}$ of the whole, from the Bottom upwards, appeared like white Wool: But this woolly Water, being feparated by Filtration, and left to dry, feemed no other than a yellowifh Oker.

Exp. 2. I mixed 3 fs Sp . Vitriol with zifs of the Water, and, after 12 Hours ftanding ftill, I found a large Sediment of a white unctuous Matter.

Exp. 3. Solution of Sublimate 3fs being mixed zifs of the Water, it became turbid and yellowifh, and yielded an earthy Sediment in finall Quantity; whence I conclude it contains a Sal marale.

Exp. 4. One Ounce and half of the Watcr, mised with 3 fs of a Solution of Sacch. Saturni, depofited a greyin Sediment of a lateritious Matter, in fmall Quantity.

Exp. 5. One Ounce and half of the Water, mixed with 3 fs Sp. Sal. Armoniac, turned turbid, of a Colour betwixt Green and Blue; and after 12 Hours Repofe, yielded a woolly Sediment of four Digits deep.

Exp. 6. One Ounce and haif of the Water, mixed with 3 is Sacch Viclar, became troubled, and of a dark-yellowifh Colour.

Exp. 7. One Ounce and half mixed with 3 fs of Scrapings of Gall, became of a fine Violet Colour; but when mook, was as deep as Ink.

Obfervations. This Water (as appears to my Judgment) contains a good deal of a grofs fixed Vitriol, fome Alum, and a mural Salt of a limy Quality.
'Ti: too falt and naufoous for internal Ufe; but by bathing in it, muft be good for all cutaneous Diftempers, and efpecially for the Scurvy and Leprofy: For it will powerfully deterge, fcour, and clean the excretory Pores; and it may, by it's Weight and Stimulus, reftore them to their natural State, Strength, and Elafticity. It may, by the fame Means, reftore the loft or impaired Tone of the Solids in general: In Confequence of which it may thin the Blood, help it's Circulation, and promote the natural Digeftions and Secretions; and thus, finally, it may be ufeful in Rheumatifms, Dropfies, Jaundices, and nephritic Difeafes.

Exp. 1. This Water being mixed with the Scrapings of Gall, manifefted no fenfible Change at firft; but after long ftanding it grew fomewhat greenifh.

Exp. 2. Upon the Inftillation of Sp. Sal. Armoniac. it became turbid; and on ftanding fome Time in Repofe, depofited a dark-greyifh Powder, in fmall Quantity.

Exp. 3. Four Ounces of the Water, being mixed with 3ifs Sacch. Violar. maniffted no Change, except what would neceffarily refult from the Tincture of Violets.

Exp. 4. Being mixed with a Sulution of Saccb. Saturni, it became immediately very turbid; but on ftanding, fome Time in Repofe, it depofited a large dark-brown Sediment, leaving the Vehicle troubled and. whitifh.

Exp. 5. I mixed a Solution of Sublimate with it, upon which it became immediately yellow; but, after ftanding at Reft, it depofited a woolly unctuous Matter, in fmall Quantity.

Exp. 6. Being mixed with Ol. Tartari per Deliq. it became of a chyly Colour and Subftance, or of a turbid pearly Colour.

Exp. 7. Being mixed with Spirit of Vitriol, it manifetted no Change, either of Colour or Tranfparency.

Obfervation. I conclude from the Phenomena which appeared upon A. nalyfation, that this Water is impregnated with a good deal of a grofs earthy Sulphur, a neutral' Salt, a fmall Quantity of Alum, but no Proportion of Vitriol.

This cannot be ufed inwardly, it being naufious beyond Exprefion: It fmells fomewhat like rotten Eggs, but much worfe. But, ufed by Way of Bath, it may cleanfe the Skin of all Foulneffes, purge and deterge the cutaneous Glands from all foul noxious Humours: It may reinforce the natural Heat and Vigour, (where they are decayed) and may seftore the impaired Digeftion: And hence, finally, it may promote Virility in Men, and Fecundity in Women. It may likewife be ufeful in the Gout; as alro in Epilepfies, and other Difeafes of the nervous Clafs.
V. The Newbaufel, commonly called Cement-Wafifer, Waters are well known by the Learned. Kircher in his Mundus Jubterraneus*, Dr Edroard Brown, in his Travels $\dagger$, and Facobus Tollius, in his Epifto. he Itinerariae ll, have mentioned them, not to fpeak of other lefsiconfiderable Writers.

They rife a Mile from Newoboufel, in that vaft Copper-Mine, which is known by the Name of Herrn Grund. We have no Knowledge of the Difcovery of them, but from the Traditions of the Vulgar. That they

[^6]Of the Ce ment Walzees. Waters in Hungary, by Matthias Belius, FR.S. and Collogue of the R.S. of Sciences at Ber. lin. No. 450. Silence. It is faid however, that they were accidentally found in 1605 ; when Newbinuich was plundered and burnt. The Miners, in that Confufion, concealed their Inftuments in the Mines, where they lay in moift Places above a Month, and were found incrunted with Copper, when taken out; and the more fo, in Proportion as they lay deeper. This induced them to make Channels to receive thefe arific Waters, and afterwards to inclofe them.

They foon difcovered, that Iron being thrown in was confumed, and turned to an equal Quantity of the pureft Copper. This way of procuring Copper was found to be fo compendious, that they have made 20 of theie Inclofures. We mall take notice only of two of thefe, from which we may form a Judgment of the reft. The chief of thefe is funk 85 Orevie, and the Accefs to it is by a winding of $15^{1}$ Orgyice. Here the Water diftils from the Sides of the Mine, and is received at firt in a fmall Bafon, from whence it flows into a larger, and is divided into Channels. In the fmaller Bafon they put little Pieces of Iron, fuch as Horfe-fhoes; and in 3 or 4 Weeks time, find them turned to Copper, retaining their former fhape, but being a little more elevated. This Water is more efficacious, than that which is received in the larger Bafon. It corrodes the Iron more languidly; for at firt there floats upon the Water only a yellowin Scum, which afterwards fticks to the Iron, and is fcraped off every Month with great Exactnefs, and laid in a particular Chamber to drain. This Scum is called Scbmund by the Miners. They repeat this Operation, till all, or the greateft Part of the Iron is confumed.

The other Chamber is 15 Orgyie deeper; and from it's Form and Situation is called the Iiong one, being 2 Orgyie in Breadth, and 25 in Length. The Copper-water drops here in greater plenty than in the other Inclofures or Chambers. For befides the dropping from the Sides and Cavities of the Mine, there are two perpetual Springs, which continually iffue to the Thicknefs of a Straw. Both thefe Springs open on the South, one of them 3 Paces on the Left-hand from the Entrance of the Chamber, the other 5 Paces more inward. To keep the Waters from being walted, they are brought through little Ducts, partly into Channels, and partly into fquare Bafons, where they throw their Iron. We obferved, that the Channels made for the Reception of the Water and Iron, are fo carefully difpofed on the Ground, that none of the dropping Water can be loft. What is received after that manner in one Channel, runs over into another, that into a third, and fo on; but the Efficacy of the Water is diminifhed in every Channel. In the middle of the Wall of this Chamber there drops a peculiar limpid Water; which is therefore collected in a particular Bafon. Into this they throw the Copper made in the other Chambers, when they defire to have it more pure. As the Chambers are fteep, the Waters that fow from the Channels and Bafons, are quite abforbed by the porous Bottom of the

## Experiments by Way of Analysis on feveral Waters.

Mine. Befides thefe Receptacles, there are in the Caverns of the Mine many moift Places, which give a copper Colour to Iron; which fhews that moft of the humours of the Mine are of that Nature.

The Water looks greenifh in the Bafons; but in a clear Glafs it is as tranfparent as Cryftal. It has no Smell, but has an aftringent vitriolic Tafte. On our tafting it at the Spring, it bliftered our Lips. Whilft we were in the Mine, and travelled 3 or 4 German Miles thro' fubterraneous Windings, we felt no other diforder in our Lips than a night itching; but as foon as we came into the open Air, they began firft to fwell, and then to form Matter. When the Water drops in larger Quantities it grows weaker, and has a lefs fenfible Effect upon Iron. It is fo far from rotting the wooden Troughs and Bafons, which receive it, that it confolidates them, and makes them laft longer than they otherwife would. The Chambers, in which the Balons are inclofed, have not any ftrong Smell, or any Vitriol in them. But in fome of the Chambers, one may find here and there a little Stone refembling blue Vitriol. At the Sides of fome of the Caverns, we found a fort of Salt, mixt with a moift, yellow Earth, infipid, and friable like the Lapis Specularis. The Miners, a people fubject to Difeafes, drink this Water, as a medicated Potion, in defperate Diforders, with great Confidence of Succefs. It foon works either upwards or downwards, or both ways. In an Opb:balmia, the ufe of it is fafer, if it is applied with Caution after the manner of a Collyrium.

The Copper obtained from thefe Waters is more pure, more ductile, and more fufible, than any other forts of that Metal; which makes it be fought after in the making of Snuff-Boxes, and other fuch like Utenfils. Whilft this Copper is yet in the Water, it is more friable, than ifter it is taken out: For then the Particles are more ftrongly concreted, and grow folid. The Scum beforementioned is only indigefted Copper precipitated from the Water, and adhering to the Iron. It is carricd every Year to the Copper-work at Newbaufel, and is there melted into the pureft Copper; and that without much Lofs; becaufe the Iron being corroded by the Copper-water, leaves but very litele heterogencous Matter in the Scum. Before thefe Springs were injured by a Inundation, which happened in our Time; a much greater Quantity of Copper was produced from Iron. For it is certain, that in 1707,88 hundred weight of Iron was turned to Copper, whereas now they hardly get 20 hundred Weight in a Year. Hence we may conclude, that this Inundation greatly diminifhed the Efficacy of the Water: For fewer Chambers formerly produced more Copper, than is now made in 20. Indeed many of them now do not produce any folid Copper, but only the Scum already mentioned, which muft at laft be melted down with a ftrong Fire.

I hall now relate the Experiments made by me and my Friends, in order to difcover more perfectly the Nature of theie Waters.

A Pound of the ftrongeft and moft pregnant Copper-Water gradually and gently evaporated, grew zurbid and let fall fomething of a yellow Powder; and being afterwards boiled to Drynefs, left Hijfs of a greenifh Rcfidum. This Refidurm being afterwards diffolved in Water, afforded a green Solution; which being filtered and evaporated, yeilded Эij of a cryitalliform Vitriol. What remained of the Powder was yellow, and Gr. vj in Weight.

A Pound of the fame Water, precipitated with Oil of Tartar, grew turbid, and became of a Sea green Colour. It left a Refidue in the Filtre, which being dried, afforded $\exists \mathrm{ij} / \mathrm{s}$, with a little common Salt.

A Pound of the Water in a Bottle clofe fhut, began fenfibly to tinge a fmall Wedge of Iron, that was put into it, of a Copper Colour, having feveral Bubbles adhering to it. The next Day the Water grew turbid and whitifh, having feveral whitifh Streaks at the Bottom of the Bottle, and about the Wedge ; and after fome Days we found a yellow or Copper-like Sediment.

From thefe Experiments we learn,
I. That this is a true Copper-Water, and faturated with Vitriol of Copper, and that it flows from a Solution of Pyrite in the metallic Veins; and hence that it may be called a vitriola!ed Water.
2. That this Water corrodes and diffolves Iron, and precipitates the Particles of Copper exifting in it, as in a Menftrumm; or lets them fall to the Bottom, after being feparated by this Diffolvent; affuming the Form of the injected Iron, to which they adhere. This is abundantly confirmed by a nice Infpection of this Copper: For it is formed into a folid and fmooth Mafs, but infinite little Grains, like the Fggs of Fifhes, uniting, it coalefces into one friable and extremely brittle Body. It is a Thing well known to all Chymifts and Workers in Metals, that one Metal is precipitated by another. Thus Quickfilver diffolved in Aqua fortis precipitates Silver; Silver precipitates Lead; Lead Copper; and Copper Iron. Hence if you diffolve Copper in Aqua fortis, and, then put Lead into it, you may obferve the fame Tranfmutation, as we have now obferved in our Copper-Water: For that Menftruum will corrode and diffolve Iron; and in that Action, the Copper being mixed with the Menftruum, will be feparated from it, and gradually and gently fubfide into the Place of Iron.

There Rules being eftablifhed, the Notions which fome have too haftily admitted, on confidering the Effects of thefe Waters may eafily be refuted.
I. There being taken out of this Water a Quantity of Copper equal to the Iron put in, it is falny inferred, that the Iron being corroded by the Water, lets fall the Particles of Copper which it contained, as freed from a Bond, and entirely confumes the other material Particles, and makes them vanifh.
2. Nor can the effential Tranfmutation of Iron into Copper be admitted in all this Work of Nature: Which the Alchymifts perfuade themfelves
themflues and others to believe; as if a more ignoble and imperfect Metal could have it's whole Subftance changed into another more perfect and noble. For it fufficiently appears from thefe Experiments, and is evident from phyfical Reafoning, that our Water by no Means changes Iron into Copper, but only depofits the Particles of Copper, with which it was before impregnated. Nay the contrary might be proved from our Obfervations. For if Iron and Copper, the moft nearly related Metals, cannot be changed into each other by the Affiftance of Nature ; much lefs can it be expected from Art, how fkilful foever. Now that Iron and Copper are more related than any other Metals, is made more than probable by Henckelius in his Kiefs Hiforie, or Hifory of Pyrita, where he affirms, that among fo many Experiments, he never met with any one Piece of Copper Ore, that was not affected by the Magnet. Thus this attractive Virtue of the Magnet operates upon Copper next to Iron. And as Iron and Copper both afford what is properly called V'itriol, which cannot be faid of the reft, in the fame Furm; for they are of the like Subftance and Colour, green or blue; if there was any fuch Thing as the pretended Hermaphrodite Vitriol, it would certainly be difcovered in this Workmanfhip of Nature, which it is not.

That this Water of Newbaufch, as was faid before, derives all it's Power and Efficacy from a diffolved Pyrites of Copper, is proved alfo from the Works at Schmolnicz: For the whole metallic Country about that Town is full of Copper Pyrita; fo that the Copper. Water abounds not only in the Mines, but on the very Surface; fo that it is more pregnant and efficacious than this of ours. In dry Weather the People of Schmolnicz pour common Water upon Heaps of Pyrita, which being received in Troughs and Bafons, acquires the fame Power and Efficacy as the natural Copper- Waters.
VI. Obf. I. I tork $\mathrm{y}_{\mathrm{i}}$ iv of the Wcfafbion Water, with as much Milk, and fet them on the Fire ; as fonn as they boiled, the Milk began to curdle, which denotes a brackifh Salt of a neuter Nature. The Water changes Syrup of Violets green.

Obr. 2. Some Powder of Galls infufed in this Water, gives it a Tinge of a brown Purple, by which it appears, that this Water is Chalybeat: For all martial Waters will, with Galls, turn blackifh or inky.

Obf. 3. A fixt Alceli, as Ol. Tartar. per delig. and a volatile one, as Sp. Sal. Armoniaci, caufed a white Precipitation, which denotes an aluminous cretaceous Earth.

Obf. 4. A Solution of Salt of Lead, caufes a Cream-like, or a troubled milky Colour.

An Examing tion of Weftafhton WellWaters, belonging to Tho. Beach, $E /_{q ;}$ a Well about 4 Miles from that of Holt, by Ambrofe Godfrey Hanckewitz. No. 46:. $p$. 828. Aug. EOC. 1741.

Obf. 5. The ufual acid Spirits, viz. Spirit of Salt, Nitre, and Vitriol, caufe no Alteration; which fhews that the Water is iffelf impregnated with an Acid.

Obf. 6. The Water being evaporated to a Pellicule, depofits faline Cryftals of a rough or auftere Tafte, being of a ftyptic Nature; and feparates a martial yellowin Okre (which is attracted by the Loadfone)

V O L. VIII, Part ii.
Qq99
and
and is an Abforbent, for it ferments with Acids. The remaining Brine, being evaporated to Drynefs, leaves a Salt of a lixivious alcaline Tafte.

Obf. 7. Some of thefe Salss being put into Warer, 3 Parts out of 4 diffolve very readily; but ' Part will not diffolve at all, but is of a talcky Nature, and unalterable in the Fire.
Hence we may obferve, that chalybeat Waters, as long as they reain their natural fulphureous Gas are capable of keeping fufpended, or floating in them, thefe talcky Subitances; but that Boiling drives away that fulphureous Gas, upon which this talicky Subftance fibfides, and cannot aga in be diffulved in Water, and remains Ext againft the Puwer of the Fire; for it fuffers no Alteration upon a red hot Iron, neither emitting Flame, nor melcing, as neither dorh Talck itelf.

Obl: 8. Thefe chalybeat Waters contain fomewhat of the fame $\mathrm{Na}_{\mathrm{a}}$ ture as our cathartic Eipfom. Salt, only not fo mild upon the Tongue; for by this Examen, when therr Gas is gone, they are found to contain two Sorts of fuch-like Earths; the one ablorbent, fermenting with A. cids; and the other fixt, or talcky: And that this Subitance is really talcky, is confirned by the digging up of a pretty deal of Talck in the finking this Well.

All the Salts of the medical Waters are more generally alcaline than acid, being of a martial Nature, impregnated with Sulphur, which gives them a muriatic Tafte.

We may hence conclude, that this Wiftabton Water is a very good chalybeat Water; and, by Report, more plentiful and more conftant all the Year round, than the Well at Holt, which Spring diminifhes much at a certain Time of the Year; but both feem alike for their Virtues, and phyfical Ule, being both alike martial.

An Examination of the Chiltenham mineralWiWater, by ConradusHieronymus Senckenberg which may
ferve as a Me.
sbod in general for examining mineral Wasers. Ibid. p. 830 .
VII. 1. The Water is bright and clear to the Sight, of no Smell, yet of a bitter Tafte.

To know it's confituent Parts, the following Experiments were made ; and, firf, to try whether there is any alcaline Salt in it.

Rbenifb Wine was mixt with the mineral Water. Rbenifb Wine is a fubtilized Acidum effentiale in a fpirituous and oily Liquor: Wherefore an alcaline Salt fhould have been manifefted; but it was unaltered.

Diftilled Vinegar is a ftronger vegetable Acid; but, mixed with the Water, procures no Alteration.

Spiritus Salis, Nitri, and Vitrioli, the three ftrongeft and pureft mineral Acids, being mixed with the mineral Water, there was no Change or Precipitation.

Mercurius fublimatus corrofrus, is a Diffolution of Quickfilver in concentred Spirit of Salt, which, being diffolved in common diftilled Water, manitefted not only the volatile, but alfo the fixed alcaline Salt, in any Liquor, infomuch that it precipitates the Volatiles to a wbite, and the fixed alcaline Salts to a red Yowder; but, mixed with this Water, produced no Precipitation.

Vitriolum Martis is an acid Salt, intimately mixed with Iron-Eattls: Being diffolved, and put into another Liquor, it will prefently betras the alcaline Salts by precipitating thent ; but fhould it find no conttary Salt, then fomewhat of the Iron-Earth will fettle to the Bottom; as is common in diffolving all Surts of Copperas: And fo it happened by mixing this mineral Water with it, when a brown Powder fettled, which is the Terra Martialis.

All thefe Experiments fhew evidently, that no alcaline Sa!t is in the faid mineral Water.

For, to try whether there is any acid Salt to be found in this Water; the following Mixtures were made:

Aqua Calcis Vive, which contains an Earth impregnated with alcaline Salt, makes a very quick Difcovery of an Acid, by Precipitation; but, mixed with this Water, caufed no Variation.

Syrupus Violarum, having a very fenfible vegetable Tincture, which, by mixing it with a fmall Quantity of any Acid, turns red, and, with an alcaline Salt, green; but, mixed with this Water, keeps it's Colour.

Oleum Tartari per deliquium, which is an alcaline Salt, diffolved in Water: And,

Spiritus Salis Armoniaci, a volatile alcaline Salt in Water, they being mixed with this mineral Water, the Mixture grew milky, and a little after a white Precipitate fettled. This happens when a fixed or a volatile alcaline Salt meets with a neutral Salt; then they join together, and fomewhat of the alcaline Earth falls down.

Milk mixed with a mineral Water, and boiled in equal Proportion, will make a Separation, by meeting with either an acid or alcaline Salt in it, or, by finding of the laft Salt, the Mixture will change red; but our mineral Water may be boiled with it in feveral Proportions, without any Change or Precipitation.

According to thefe Experiments, there is no acid Salt in this Water.
To fee whether there is no Iron or Copperas in it,
If the Solution of Galls is mixed with any Liquor, and grows black, then it is a Sign of Iron or Copperas; but our mineral Water, mixed with it, turned a little brownifh, becaufe of the Salt in the Water.

To know whether there is any Brimfone in a mineral Water, it is to be inquired with a polifhed Piece of Silver, which, being put in the Water, will turn black or yellowifh; but this did not happen with this Water.

To find out the aciduns falinum in a mineral Water, you muft mix with it Solutio Argenti, which turns inftantly white, and a light Precipitate falls, being the Luna Cornea.

A Solution of Saccharum Saturni, mixed with the Water, yields the Magiferium Saturni.

All the above-mentioned Expriments certify, that our mineral Water contains no alcaline nor acid Salt, no Iron, Copperas, or Brimffone: Therefore from the fame Experiments it is evident, that the Chiltenbans

Water confifts of a Sal medium fixum vel neutrum, and a diffolvable Tirra alcalina vel crelacea, which may be feparated.
By a Sal medium, is to be underftood a S3lt being neither of an alcaline nor an acid Nature; and that will not precipitate any Solution made with fuch Salts, nor, mixed with the Syrup of Violets, will change it's Colour.

Thefe neutral Salts have always their Origin from an alcaline and an acid Salt; and, according to the alcaline Salt they meet with, fo they are qualified. So we have the Tartarus vitriolatus, confifting of the Sal alcali fixum, and Acidum vitriolicum.

The Arcanum duplicatum of the Sal alcali, Salt-perre, and Acidum vitriolicum.

The Sal Mirabile Glauberi, confifting of common Salt, and it's Terra fluxilis, and an Acidum vitriolicum; but with this Difference, that the Sal Mirabile will foon melt in a Crucible with a gentle Fire; but Tartarus vitriolatus, Arcanum duplicatum, $\mathcal{\vartheta}^{\circ}$ c. will not melt, even with the ftrongelt Heat, becaufe of the Difference of the Farth in the alcaline Salt, which in the common alcaline Salt is very fixed, but in the common Salt very volatile and fufible.

Such a Sal medium as the Sal mirabile we find in this mineral Water, yet mixed with fome common Salt.

As for the Bitternels of this Water, there is no other Reafon for it than the Terra Cretacea, which is proved by the Eplom-Salt, where the Terra alcalina Salis communis, joined with the Acidum vitriolicum; and after the fame Manner in the Sa! mirabile, the alcaline Earth caufes the bitter Tafte. The fame may alfo be found, by mixing Quick-lime with Spirit of Vitriol, and it will produce a very bitter Tafte; but the Mixture of Quick-lime with Spirit of Nitre caufes a Bitternefs which exceeds Gall.

One Pound Troy of this Water yields 29 Grains of the faid Sal medium, and 3 Grains of the Earth.
Romarks by 2. The R. Hon. Lord Cadogan had communicated a mort Account C. M. Ibid. of thefe Waters to the Royal Society on April 17, 1735, being a Letter p. 834. his Lordfnip had received from Mr Tbo. Dundafs, Surgeon to his LordShip's Regiment, dated at Gloucefter, Marcb 25, 1735, wherein he gives an Account of fome few Experiments he had made on thefe Waters; which mofly agree with the preceding ones; as that there were no Marks of a chalybeat Nature in them; nor any Signs of Nitre or Sulb phur: But that fix Quarts of this Water being diftilled very carefully, the Sediment at the Bottom of the Veffel was nothing more than Alum and Sal Gem, to which it owes it's purgative 凤uality. Some of the Salt of this Water, being put into a Solution of Silver, quickly made a Precipitation of the Silver. Mr Dundafs fays, that fome alcaline Lir quors, as Oil of Tertar, Spirit of Sal Ammoniac, Evc. being dropt into fome of the Water, immediately produced a violent Effervefcence; which plainly fews a great Aidity, which he afcribes to the Alum :n

## A new Purging-Spring difcovered at Dulwich.

this Water. M. Senckenberg found no fuch Effervefcence on mixing thefe two alcaline Liquors with the Water; but only fays it grew milky, and a little white Precipitate fubfided. I can account for this material Difference no otherwife, than by fuppofing, that the Acid, which caufed the Effervefcence in Mr Dunda/s's Experiment, was a volatile Gas, which was not quite fpent in being carried no farther than Gloucefter. but which was quite evaporated and fown away before the Water came into M. Senckenberg's Hands in London: And as to the Alum, Mr Senckenberg did not attend to it.
"Mr Dundafs thinks thefe Waters may be of Ufe in a lax Conftitw "tion, when the Humours are of an alcalefcent Nature; but, when " acefcent, mult do Hurs."
VIII. Dulwich is a Village lying about 6 Miles S. of London, at the An Account of Foot of that Ridge of Hills which divides the Counties of Kent and a new Parg. Surrey. The Purging.Springs, which have been ctteemed for about ${ }^{i n g}$. Spring diff. 100 Years, and are commonly known by the Name of Duleicb. Waters, wich in Surhave been improperly fo called; thofe Springs arifing in a Valley on rey, by John the S . Side of thofe Hills, in the Middle of a large Common belonging to the Parifh of Lewifbam in Kent; whereas Dulaich is on the North Side of the Hills, in the Parifh of Camberswell in Surrey.

Martyn,
F. R. S. Prof. Botan. Cantab. Ibil.

There has not been any medicinal Spring obferved in Dulwich, be-p.835. fore that which is the Occafion of this Difcourfe.

In the Autumn of 1739, Mr Cox, the Mafter of a well-known Houre of good Entertainment, called the Green Man at Dulwich, lying about a Mile beyond the Village, was defirous to dig a Well for the Service of his Houfe, there being no Spring of good Water near it. And as it was probable, that he would be cbliged to dig pretty deep, I was willing to obferve what Strata of Earth he dug through. The firt 20 Feet in Depth feemed to be only the Clay, which, in a long Tract of Time, had been wafhed off from the fteep Hill, at the Foot of which his Houfe is frtuated. It was intermixed with Pieces of Roots ard Leaves, and with other Fragments of vegetable Subftances. In diggirg 40 Feet deeper, the Clay was found of various Colours, brown, blueifh, and black, intermixed with a confiderable Number of Pyritee or Copperas Stones, and fome pretty large Maffes of the Waxen-vein or Likius Helmontii, which is alio found in great Plenty on the Sea-Shore near the Spaw at Scarborough.

The Well being digged to the Depth of 60 Fcet, and no Water appearing, Mr Cox caufed it to be covered up, and gave himfelf no farther Trouble about it that Winter. The following Spring, on my coming down, it was opened. 1 found 25 Feet of Water, of a fulphureous Smell and Tafte, which went off, after the Well had been opened fome Days.

As I had a ftrong Sufpicion, that this Water was impregnated with. fome Mineral, I made an Inquiry into the Nature of is by the following Experiments:
x. It curdled Milk.
2. It became green, when mixed with Syrup of Violets, which Colour difappeared in a few Days.
3. Being poured on Green Tea, it did not acquire any Colour.
4. Being nixed with powdered Galls, it acquired a deeper brown Co. Iour than Rain-Water did, and continued turbid; whereas the RainWater continued clear, after the Galls were fubfided.
5. Being fhaken in a clofe-ffinpped Phial, it difploded a Vapour on opening the Phial hefore the Commotion ceafed, with a more audible Noife than common Water did.
6. Being mixed with Oil of Vittiol, and Oil of Tartar, a much more confiderable Ebullition was raifed, than by the Mixture of thofe Liquors with Rain-Water.
7. Six Quarts of this Water, being boiled to a Pint, let fall a large Quantity of a fine, whitifh, infipid Powder; and the Water fo boiled had a very ftrong faline Tafte, with a Mixture of Bitternels, not unlike the Sal cartharticum amarum.
8. It let fall a copious white Sediment, on the Addition of the Oil of Tartar, which has the fame Effect on a Solution of Alum, or of Sal calbarticum amarum.
9. The boiled Water, after it had depofited it's Earth, precipitated large white Flakes, on the Addition of Oil of Tartar.
10. It differs from a Solution of common Salt. For the Oil of Tartar, being dropped into that Solution, caufed only a flight Precipitation, which was foon afterwards abforbed again by the Water.
11. It does not lather with Soap.

Having made thefe Experiments, I was fatisfied, that this new Spring was really a Purging-Water, as it has fince been found by Experience. Some of Mr Cox's Family drank of it with Succefs, which encouraged. feveral other Perfons to try it, to their great Advantage.

Being drank frefh, in the Quantity of 5 Half-pint Glaffes, it purges quickly, not finking, but raifing the Spirits.

It is found to be very diuretic.
Thefe Properties of the Dulwich-Water do not feem to be owing to any of the Materials found in digging the Well. The Pyrite are known to be a Mixture of Iron and Sulphur; but this Water feems to have hardly any Parts of Iron in it [Exp. 3 and 4]. The Spirit, with which it abounds, [Exp. 5 and 6] may, perhaps, be owing to a Fermentation of the Sulphur, which is continually flying off, as appears by the ftrong Smell of it, after it has been for fome Time covered up. And Mr Cox has lately informed me, that a Silver Cup, which has been often ufed in drinking this Water, has acquired a yellowith Colour.

The Ludus Helmontii affords nothing but Iron: Nor does the Clay, through which they dug, difcover any Salt in it's Compofition. We may therefore conclude, that the Hill, which lies between the old Wells

## A Defcription of a Water-Spout:

and this new one, contains the purging Salt, with which there Waters are impregnated.

I do not find any material Difference between the old and new Waters, except in the Convenience of drinking them. The old Wells are at a Diftance from any Houfe, except fome few Huts, and expofed to the Rain and Land-Floods, by which they are often injured: The new Well is a Mile or two nearer to London, well fecured from any Injuries of the Weather.

December 11, 1740.
IX. When firf we faw the Spout, it was whole and entire, and Defription of much of the Shape and Proportion of a Speaking-Trumpet, the fmall End being downwards, and reaching to the Sea, and the big End terminated in a black thick Cloud. The Spout itfelf was alfo very black, and the more fo the higher up. It feenjed to be exactly perpendicular to the Horizon, and it's Sides perfectly fmooth, without the leaft Ruggednefs. Where it fell, the Spray of the Sea rofe to a confiderable Height, which made fomewhat of the Appearance of a great Smoak.

From the firt Time we faw it, it continued whole about a Minute, and 'till it was quite diffipated about 3 '. It began to wafte from below, and fo graduaily up, whilft the upper Part remained entire, without any vifible Alteration, 'till at laft it ended in the black Cloud above. Upon which there feemed to fall a very heavy Rain in that Neighbourhood. As it wafted, the Bottom of the remaining Part was irregular, fomewhat like the Trunk of a Tree broken afunder: There was but little Wind, and the Sky elfewhere was pretty ferene. We judged the Spout to be above 2 Leagues off, and I think the Angle under which the fmall End appeared, mult be at leaft 201. According to which Eftimation, the Thicknefs of it muft be upwards of 60 Yards, and it's Height or Length about + of a Mile.

## C H A P. III.

## MINERALOGY.

1.8IR $\mathcal{A} A M E S$ LOWTHER having Occafion to fink a Pit very near the full Sea-Mark, for the draining one of his principal Collieries near Wbitebaven, in the County of Cumberland, which was known would be near 80 Fathom in Depth to the beft Seam of Coals, which is 3 Yards thick.; the Work was carried on Day and Night very fuccefsfully, through feveral Beds of hard Stone, Coal, and other Minerals, 'till the Pit was funk down 42 Fathom from the Surface, where they came to a Bed of black Stone, about 6 Inches thick,

An Accoknt of the damp Air in a Coal. Pis of Sir Jaraes Lowiher, Bart. Junk within 20 Yards of the Sea; comma. niated bo bem very to $\mathrm{bb}_{\mathrm{b}} \mathrm{R}$. S.

No. 429. p. very full of Joints, or open Cliffs, which divided the Stones into Pieces 109. July, $v$ of about 6 Inches fquare, the Sides whereof were all fpangled with Sul1733. phur, and in Colour like Gold. Under this black Stone lies a Bed of Coal 2 Foot thick: When the Workmen firft pricked the black Stone Bed, which was on the rife Side of the Pit, it afforded very little Water, contrary to what was expected; but inftead thereof a vaft Quantity of damp corrupted Air, which bubbled through a Quantity of Water, then fpread over that Part of the Pit, and made a great hiffing Noife; at which the Workmen being fomewhat furprized, held a Candle towards it, and it immediately took Fire upon the Surface of the Water, and burned very fiercely; the Flame being about half a Yard in Diameter, and near 2 Yards high, which frightned the Workmen fo that they took the Rope, and went up the Pit, having firft excinguifhed the Flame, by beating it out with their Hats; the Steward of the Works being made acquainted with it, went down the Pit with one of the Men, and holding a Candle to the fame Place, it immediately took Fire again, as before, and burnt about the fame Bignefs; the Flame being blue at the Bottom, and more white towards the Top. They fuffered it to burn near half an Hour, and no Water being drawn in that Time, it rofe and covered the Bottom of the Pit near a Yard deep, but that did very little abate the Violence or Bulk of the Flame, it ftill continuing to burn upon the Surface of the Water. They then extinguihed the Flame as before, and opened the black Stone Bed near 2 Foot broad, that a greater Quantity of Air might iffue forth, and then fired it again; it burned a full Yard in Dianeter, and about three Yards high, which foon heated the Pit to fo grat a Degree, that the Men were in Danger of being ftifled, and fo were as expeditious as poffible in extinguifhing the Flame, which was then too ftrong to be beaten out with their Hats; but with the Affiftance of a Spout of Water, of 4 Inches Diameter, let down from a Ciftern above, they happily got it extinguifhed without further Harm. After this no Candles were fuffered to come near it, 'till the Pit was funk down quite through the Bed of black Stone, and the 2 Foot Coal underneath it, and all that Part of the Pit, for 4 or 5 Foot high, was framed quite round, and very clofe jointed, fo as to repel the damp Air, which neverthelefs, it was apprehended, would break out in fome other adjoining Part, unlefs it was carried quite off as foon as produced out of the Cliffs of the Stone; for which End a fmall Hollow was left behind the Framing, in order to collect all the damp Air into one Side of the Pit, where a Tube, of about 2 Inches โquare, was clofely fixed, one End of it into the Hollow behind the Framing, and the other carried up into the open Air, 4 Yards above the Top of the Pit ; and through this Tube the faid damp Air has ever fince difcharged itfelf, without being fenfibly diminifhed in it's Strength, or leffened in it's Quantity, fince it was firft opened, which is now 2 Years and 9 Months ago: It is jutt the fame in Summer as in Winter, and will fill a large Bladder in a few Seconds, by placing a Funnel


2 Funnel at the Top of the Tube, with the fmall End of it put into the Neck of the Bladder, and kept clofe with one's Hand.

The faid Air being put into a Bladder, as is above defrribed, and tied clofe, may be carried away, and kept fome Days, and being afterwards preffied gently through a fmall Pipe into the Flame of a Candle, will take Fire, and burn at the End of the Pipe as long as the Bladder is gently prefled to feed the Flame, and when taken from the Candle, after it is fo lighted, it will continue burning 'till there is no more Air left in the Bladder to fupply the Flame. This fucceeded in May laft before the Royal Society, after the Air had been confined in the Bladdet for near a Month.

The Air, when it comes out at the Top of the Tube, is as cold as frofty Air.
It is to be obferved, that this Sort of Vapour, or damp Air, will not take Fire except by Flame; Sparks do not affict it, and for that Reafon it is frequent to ure Flint and Steel in Places affected with this Sort of Damp, which will give a glimmering Light, that is a great Help to the Workmen in difficult Cafes.

After the damp Air was carried up in a Tube, in the Manner above defribed, the Pit was no more annoyed with it, but was funk down very fuccersfully through the feveral Beds of Stone and Coal, without any orher Accident or Interruption, 'cill it came to the main Seam of Coals, which is 3 Yards thick, and 79 Fathom deep from the Surface; and the faid Pit being oval, viz. ro Foot one Way, and 8 the other, it ferves both for draining the Water by a Fire-Engine, and allo for raifing the Coals.

Whitchaver, Sug. 1, 1733.
II. Exp. I. İn a cylindric Glafs Receiver, open at both Ends, whore lower End is plunged in Water, and upper End covered with a Plae with an Hole of near an Inch Bore, a Candle of fix in the Pound will not burn quite the Time of one Minute before it goes out.

Exp. 2. A Candle will burn almoft as long when the Receiver is quite covered.

Exp. 3. The Receiver having the Hole of the Plate open, and a Pipe at Bottom communicating with the external Air, will burn but a little longer than in the firft Experiment; and if you blow in at the Pipe with your Mouth, it will go out rather fooner.

Exp. 4. Blow in at the Pipe with Bellows, and the Candle will burn as long as you will.

An Experimint to Berw that Some Damps in Nines may be occafioned only by the burning of Candles under ground, ruithout the Addition of an; noxious ${ }^{\prime}$ apour, coven when the Bottom of the Pit
bas a Comm:anication re:th the outwward Air, unlefs the outward Air be forcibly driven in at the faid Communication or Pipe. By the Rev. J. T. Defaguliers, LL D. F. R. S. No. 47゙. p. 28s. July, Eic. 1736.
III. 1. In fune 1733, a Farmer, in Hopes of finding a perpetual Spring of good Water, funk a Well, whofe Diameter was 7 to the Depth of 45 Feet; (through a Soil whofe Surface was a Kind of Brick VOL. VIII. Part ii.

Rrre
Earch

An Obfervation of an ex. traordinary
Damp in a

Well in the Ine Earth mixed with Sand, which in defcending became almoft wholly of Wight, by hard, coarfe, yellow Sand) which Work employed the Labourers aMr Benj. bout 20 Days, without finding the leaft Appearance of Water.
No. $4 \div 0$. b . 1738. Inconvenience; nor were the Workmen in the leaft incommoded in carrying on the Work, till about the 12 th Day after, when towards the Evening they were much annoyed with a faint fulfocating Heat, (which they compared to that coming from the Miouth of an Oven) and which, as they were drawn up, was mont remarkably perceived, when they came oppofite to the mineral Stratima above mentioned, to come out in the Form of a warm fulphureons Holitus.
The next Morning, a lufty young Man attempted to go down (Hand over Hand, as the Workmen call it) by Means of a fingle Rope which was ufed to draw up the Earth digged out ; but as foon as he came oppofite to the above-mentioned stratum, he bicame incapable of fuftaining his own Weight, fell down to the Bottom, and died immediately.

Ancther young Man, not lufpecting the Caule, had the Rope nimbly drawn up; and having feated himfelf aftride a Crofs-ftick fixed to the Rope for that Purpofe, was haftily let down to his Friend's Affiftance; but when he came to the fame Diftance from the Top, he was obferved to give the Rope a very great Shock, a:id when he came to the Bottom, fell down, as the other had done before him, was feized with violent Convulfions, which held him more than a Quarter of an Hour, and then he expired.

A third Perfon, in Hopes of fetching up this fecond before he was quite dead, was tied faft into a large Bafket, and let down with more Caution; but when he came to the fame Stratusn, finding his Beath going, (as he expreffed it) he cried out, and was drawn up again ; but remained in the open Air, for the Space of near half an Hour, pale as dead, panting and fpeechlefs.

The dead Bodies were, within 3 Hours Space, drawn up by the Help of a Sort of Tongs, ufed to ferch Things up from the Bottom of the Sea; but brought fuch a difagreeable Stench in their Cloaths with them, as made feveral hardy Men, who affifted in doing of it, vomit.

The next Day a Cat was let down, and at the fame Place feized with Convulfons; but being drawn quickly up again, foon came to herfelf; which Experiment was repeated feveral Times for fome Weeks following, by which it was found, that this deftructive Vapour was fometimes of a greater and fometimes leffer Force, and fometimes quite gone, fo that the Cat felt no Uneafinefs; and a lighted Candle, which would fometimes be immediately extinguifhed as foon as it fuink below this deadly Siratum, would burn clearly at the very Bottom.

It was very remarkable, that there was a whitioh Fog in the Well, fo thick that one could but juft fee the dead Bodies through it.

Water being fearce in that Place, the Well was left open for about 8 Months, in Hopes the Damp might at laft wholly leave it ; but inftead of fo doing it became worfe ; and not confining itfelf within it's firft Bounds, it overflowed at the Top, where, when the Air was moift, it appeared like a thin white Fog; and when the Air was dry, could be perceived like a warm Breath, at all Times diffufing a fulphureous Stench, (fomething like that which arifes from Fileings of Iron, while corroding with Vinegar) affecting thofe who came into it wich a Giddinefs, Shortnefs of Breath, and Propenfity to vomit; fo that at latt the Well was filled up, being troublefome to the Family which lived near it.

I have fent you a little Quantity of the Sirctum above-mentioned, which is continued to the neighbouring Clift, where, when heated with the Summer's Sun, it gives a noifome fulphureous Smell, and is, after moderate Rains, covered with a yellowifh eflorefcent Salt, very aftringent and acid.-On the Shore below there are gathered Pyrites.
2. I have recollected fome further Obfervations on the Damp. The Vein which was cut through in the Middle of the Well, from whence were emitted the fatal Effluvia, is a crude Ore made up with Iron, Sulphur, and acid Salts, mixed with Pyrites.

Thefe Effuvia were not perceived till after the Vein had imbibed the Air for feveral Days.

Whilft the Air continued dry, thefe Effuvia fubfided, and lay in the lower Part of the Well, which feemed filled near to an exact Level with the Stratum from whence they came.

But when the Weather became rainy, the Quantity as well as the Impetus of the Effuvio increated to fuch a Degree, as to appear in Mornings over the Top of the Well, in the Form of a Mift, and gave great Annoyance to thofe that came within it's Sphere of Action.

From hence it is worth obferving, that the fame Dimp, according to the Variation of the Weather, is fpecifically heavier or lighter than the Air.
IV. The Quarry at Pyrmont, 800 Paces from our chalybeat Springs, has been ufed thefe 100 Years for Stones to build the neighbouring Houfes. When I was building ny own Houfe 20 Years ago, and often went into the Quarry, the Workmen told me, that they frequently found dead Birds in a deeper Pit, and fometimes fhewed me feveral Sorts of Birds newly dead.

I fufpected at firft, that fome poifonous mineral Matter, like Smalt or Orpiment, might be mixed with the Stones, and diffolved by the Rain-Water, of which the Birds might have drunk. But when I went into the Pit my\{elf, and leaned down my Head to take out the Birds, I was immediately ftruck with a moft penetrating Smell, fo that I was obliged to retire, being giddy and afthmatic.

Thus the Myftery was difoovered, and I judged this fuffocating ful. phureous Steam to be of the fame Original and Nature with that,

An Account of a fulpbureous
vaporiferous
Cavern in the 2marry at Pyrmont, like the Grotto del Cane at Naples, by Jo Phil. Seir, M. D. AulicCounfellor and chief Pbys. to the Pr. of Waldeck, and F. R. S. No.
448. p. 266 June, $\mathrm{EB}_{\mathrm{c}}$ 1738.

## A julphureous vaporiferous Cavern.

which we obferve in our Fountains, in fair, calm, and dry Weather, in the Mornings and Evenings, where Birds are fuffocated in an Inftant, and Ducks fwimming in the great Spring, ufed for a Bath, can fcarce fubfirt a few Moments.
I was fo far from thinking it advifeable, that I rather judged it would be dangerous to our chalybeat Springs, to make more of thofe Chimneys, and fo let out the fulphureo-firituous Vapours from the Infide of the Mountains, which ought sather to be kept in to tharpen the fubtersancous Waters.

For this Reafon, and on my Reprefentation, the Prince of Waldeck forbad the Workmen to dig any deeper into the Quarry, and fo to let out the mineral Sceans. Only I begged of his Highnefs one fquare Pit, of 6 Feet on each Side, to ufe fometimes as a dry Bath, and about 12 Years ago I covered it with an Arch, and fhut it up with a Door. This little Cavern, defended and confined by Walls, cannot defraud our chalybeat Springs of their fulphureo-fpirituous Virtues, fince it is certain, that this Vapour does not always rife, but only when the Weather is mild and ferene, the Winds E. and N. dry and not ftormy, but blowing gently, and when Fogs and Vapours rife before Thunder.

The Steam alfo is found only in Mornings and Evenings ; and as the Sun afcends gradually in the Day-time, fo the Vapour defcends, and towards Noon goes quite under the Stones, and entirely vanifhes. About Evening it begins to return; and after Sun-fet comes out again plentifully. This Steam is not like watery Vapours and Fogs, and never. Shews itfelf vifibly, except in the Sun-Beams, when the tremulous Motion of the Vapour fhews it as if it flafhed from the Stones at fhort Intervals.

The Steam is generally confined within a certain horizontal Line, and feldom rifes and exerts it's Power above 1 , $1^{\frac{1}{2}}$, and 2 Feet. Therefore if any one goes down into the Pit, let him ftand upright in it, and not bow his Head below the Line, and he will not perceive any Smell, or have his Organs of Refpiration affected. But at certain Times, efpecially when the Air is calm and very dry, with violent Thunder and Lightning, the Vapour rifes, and exerts it's noxious Effects to the Height of 5 or 6 Feet or more; but this feldom happens.

I have obferved the following Pbenomena in this mineral Steam.

1. On going into the Cavern, and ftanding erect, one perceives no Smell at all ; but in a few Moments the Feet grow hot, and the Steam penetrates quickly through the Shoes, and excites aftimulating Senfation in the Skin, as if it was ftung with Nettles, which gradually $\epsilon X_{i}$ tends itfelf to the Legs and Thighs, warming the lower Parts, as if they were near a Fire.

If you ftand quiet in this Manner for a fhort Time in the Pit, the Sweat is drawn out, firt in the lower Parts, afterwards all over the Body, without any Trouble or Uneafinefs.
2. Thofe
2. Thofe who bow down their Heads to the Bottom of the Pit, prefently perceive a moft penetrating Smell; their Refpiration is fuppreffed; the Eyes water, and are fenfible of fuch an Acrimony as proceeds from Onions and Horfe-radifh; the Mouth is filled with a fulphureous Tafte; the Head is giddy and drowfy; fo that they are in Danger of falling down and being fuffocated.
3. All Sorts of Infects, as foon as they touch the Vapour, fall down and die.
4. Sometimes the fmaller Birds, if the Steam is very copious, are fuffocated in the very Moment of their Entrance; but they often feem for fome Moments to be convulfed, futter, jump, gape, and imitate the Gefticulations of fuch Animals as are deprived of Air ; and at laft expire.

If Care is taken to obferve exactly when the Birds drop, and begin to faint, before they are quite dead, and to carry them immediately into the open Air, efpecially if Air is blown into their Mouths, they awake as it were from a profound Sleep, revive, and foon come to themfelves, fo as to efcape entirely without any Lofs of Life or Health. In this Manner I have treated a Bird 10 Times in one Day, and have afterwards preferved him a long Time alive.
5. The larger Birds and domeftick Fowls continue longer in our Pit, efpecially if they can ftretch their Necks above the Line, or by frequent 1. eaps get above the Sphere of Vapour, and fo breathe the free Air by Intervals; but if the Vapour is copious, or their Heads are kept at the Bottom of the Cavern, they fuffer in like Manner with the fmalier Birds.
6. The larger and ftronger any Quadruped is, the longer it efcapes Sulfocation, but at laft they all drop like the Birds. But they recover much more eafily in the open Air, efpecially if they are plunged into Water, or fprinkled plentifully therewith.
7. Our Vapour prefently extinguifhes Fire, efpecially Flame, and Candles, either open or in lanterns.

It is a pleafant Experiment to let a Bundle of Straw on Fire, and hold it down to the Bottom of the Cave; for the Flame is prefently extinguifhed; if you raife it again into the free Air above the Sphere of the Vapour, it immediately burfs into Flame again, and you may repeat this as often as you pleare.
8. When the Vapour is copious and ftrong, Gun-powder will not catch Fire at the Bottom of the Pit. Sparks from Filint and Steel fall upon Gun-powder, but do not fire it.
In 1724, when I firt inclofed the Pir, I confidered how I might apply to the Health of Man this wonderful Vapour, which is much more fubtile and penetrating than any of our chymical Spirits: For I did not find the Vapour to be arfenical, or corrofive, like that which rifes from burning Sulphur. It does not adhere to the Lungs, and corrode them, but only takes away the Air, and obftruets Refpiration:

## The icy Cave of Szelicze.

But this Eiffect is not fo fudden on Man, but that he may have Time to remove himfelf with Safety. I have often, by Way of Experiment, ftaid in the Cave as long as I could bear the Vapour, to the very Point of Fainting and Suffocation; I have opened my Mouth to draw in the Vapour, and at laft recovered by leaping into the open Air. I never found any Inconvenience from this, but rather felt my Breaft and Relpiration lighter; and fometimes, when I have had a Defluxion and Cough, I have found the Obftructions to be diffolved and diffipated by this Fumigation.

There is not under Heaven a more fhort and eafy Method of raifing a Sweat; for after a few Moments Stay in this vaporous Cave, the whole Body flows with Sweat.

The Country-People have fometimes found great Relief here from Swellings of the Feet, Rheumatifms, and arthritic Pains of the Joints, But becaufe the Vapour fometimes rifes above it's ufual Sphere, and then is too frong and intolerable, I have been afraid, leaft any rafh Perfon, making too long a Stay in the Cave, might lofe his Life; for which Reafon I have not ventured to make fo hazardous an Experiment.

Py mont Welli,
May 12, 1736. N. S.

An Account of zbe icy Cave of Szelicze, by Mattbias Relius, F. R. S. No.452.p41.
V. At the Foot of the Mountain Carpaibus, toward the South, lies the County of Thorn, which takes it's Name from the Tower of Thorn. It's Linnits are reftrained within a narrow Compals by the Hills, which are prodigious. Among thefe may be reckoned the Mountain which rifes between Szelicze and Borfua; not that it is bigger than the others; but becaufe of it's extraordinary Appearance, of which we are now going to give an. Account.

The Village of Szelicze is fituated among Woods and Forefts; it is hilly and barren, the Weather is rough, and the Air cold, with ftrong and almont continual N. Winds, which blowing from the high and fnowy Carpatbus, make the Air fo cold, that Flies and Gnats cannot live there, when it is warm in all the Country round about. Near this Village the Cave, of which we are fpeaking, opens from the Mountain above-mentioned, with a great Mouth toward the N. For it is is Orgyia high, and 9 broad; whence it is fufficiently accommodated for the full Reception of the N. Wind. The deep and fubterraneous Paffages of the Cave wind toward the S.

When the Cold is fevere in the Country, the Air within the Cave is warm; but it freezes there, when the Sun fhines with the greateft Heat. When the Snow is melted, and Spring begins, the inmoft Part of the Cave, which lies toward the meridian Sun, emits a limpid Water, which being frozen into a tranfparent Ice, by the Power of the internal Cold, forms Icicles, that hang down, as thick as large Tubs, branching out into many furprizing Forms. The Water, which hap-

## The icy Cave of Szelicze.

pens to fall on the fandy Ground, is faid to freeze foonert. Thus not only the Arches, which are formed by Nature in the folid Rock, but alfo the Floor of the Cave is covered thick with clear Ice. This Ice flines fo all about the Cave, that you would think it was incrufted with Cryftal.

This unufual Sight is the more furprifing to the Beholders, as the Cave grows broader and deeper. That Part of which is paffable, is 50 Orgyie deep, and 26 wide, and of unequal Height. The Recenies beyond this are fo fteep as to be inacceffible. Nor has any one yet attempted to go farther down this nippery Precipice, which would require to be cut into Steps with vaft Labour. Some have attempted to found it with a Plummet, but as the Defcent is not perpendicular, like a Well, but breaks out into various Windings, the Experiment has proved fruitlefs. Thofe have fucceeded beft, who have fired Mufkets well charged into it: For the Report has lafted feveral Minutes, with a very great Eccho, like a long roiling Clap of Thunder; which fhews that the Cave is very deep, and has many winding Receffes.

The freezing Difpofition of this Cave increafes with the Heat of the Sun. At the Beginning of the Spring, the Winter Warmth begins to leffen; as the Spring comes on, the Cold of the Cave increafes in Proportion to the outward Warmoth. But when the Summer is advanced, and the Heat of the Air is the greateft, then all within is Winter, and the Froft moft intenfe. Then all the Drops, which diftil from the Vault, are frozen till they are increafed to the Bulk of Large Cafks, and appear like the Ruins of broken Rocks. The Exudations from the Sides of the Cave are formed into aftonihning Incruftations, which are fpread like Carpets wrought with the exacteft Art. The reft of the Ice adherts mutually, according to the Vicifitudes of the Heat without. For if the Heat is continual and vehement, a greater Quantity of Ice is added to the Icicles, and to the Sides and Bottom of the Cave; but if the Heat happens to be moderated by N. Winds, or falling Showers, the Waters are more now in freezing, and the Ice itfelf gives, and begins to form little Rivulets: But when the Hat increales again, the Cave returns to it's icy Temper. Some have obferved, that it predicis the Viciffitude of the Weather as well as a Barometer. For if the outward Air is beginning to grow hot, the Waters within the Cave will freeze hard fome Hours before the Heat is fenfible: And, on the contrary, the Ice will give fome Hours before the outward Air grows cool.

The Nature of this Cave furnifhes it with fuch a Quantity of the cleareft Ice, that 600 Waggons loaded every Week would not be fufficient to exhault it. It is cuftomary with the Inhabitants, when they are at Leeifure, to fetch out the Ice to cool their Liquors, and frequently mett it into Water to rrink. They have a high Opinion of it's Wholfomenefs, and think it is lighter on the Stomach, and more
eafily difciasted through the Pores or Bladder, than other Water, and not without Reaion.
There are howeve: different Climates in this Cave. At the firt Entrance there is a pleafant Air, like an Etefian Gale. A few Steps farther it grows cold; if you proceed, it makes you 隹位, and you are ghad to button up your Cloaths, which you wore open before you came in. But if you deficend farther, the Cold is fo fevere as to be almoft intolerable: But when the autumnal Nights begin to grow cold, the Ice begins to melt, and as the Cold increales, to form Rivulets of Water, till in the Depth of Winter is is all gone, and the Cave is in a Manner dry. Then the Air within is mild and pleafant, and the Cave becomes a Refuge for Infects, and other Animals, to efcape the outward Cold. For befides fwarms of Flies and Gnats, and whole Flights of Bats and Owls, the Hares and Foxes retreat hither, till upon the Return of the Spring the Cave refumes it's icy Nature. The Surface of the Cave, which is expofed to the meridian Sun, abounds in Grafs, and affords good Pafture for Cattle.

This is the Matter of Fact. Now let us confider a little, how this unufual Nature of the Cave may be explained. There are univerfally fuch Viciffitudes of Heat and Cold in fubterraneous Places, that they feem to contend with each ocher. For when the Air without is hot, the Receffes of fuch Caves are cold; and they are warm again, when the Air without is cold. This we are taught by daily Experience, in Wine-Vaults, which are not funk very deep. For the Effect of Heat is fuch, that when it beats upon the Earth, an Element thick of itfelf, moift, and cold, it drives in it's internal Cold, and greatly condenfes it in Caves formed either by Nature or Art. It is the reverle, when Cold lies upon the Surface of the Earth; for then it draws from it's inmoft Bowels the Heat, from what Principle foever it is conceived, which makes the Air warm, wherefoever it is capable of diffufing itfelf through any Caverns. I may here mention an old Cuftom among my Countrymen, of cooling Wine, all over the champain and hot Country of Hungary. For when they travel through vaft Defarts, or are obliged to make any Stay in them, where there is neither Ice nor Spring-Water to cool their Liquors; they dig a Pit about 2 Feet deep, and bury their Bottles of Wine in it, covering them over again very clofe. Then they burn Straw or Reeds over the Place, and when the Fire is out, they dig up their Wine as cool as if it had been put into the coldeft Water. Whence now is this Cold brought to the Wine? Surely the Fire, which fuddenly heats the Surface of the Pit, drives the natural Cold of the Earth, condenfed on all Sides, about the Bottles, which at Length pervades them, and renders them agreeable to the Tafte.

Hence we may eafily conjecture what are the Caufes of the different Temperatures of the Cave of Szelicze. The Power of the outward

Yeat beating on the Surface of the Cave, the native Cold of the Earth and Rocks, which form the Arches underneath, firft makes the Waters cold, and then freezes them : Till, the Air being cooled again, the Heat is drawn forth that is conceived in the inmoft Bowels of the Earth. When I fay this, I do rot come into the Opinion of Marin, who divides the Earth as well as the Air into 3 Regions; the firft of which is alternately cold and hot; warm in Winter, and cold in Summer, to the Depth of 400 Toifes, or Orgyic. The fecond, he fays, is always hot, as he himfelf found by Experience in the Mines of Hungary. Ife conjectures that the third is always cold, as being neareft to the Centre of the Earth; juft as the middle Region of the Air is always cold, and the upper, which is neareft the Sky, is always hot. Let Morin anfwer for the Truth of this. As for the perpetual Heat of the fecond Region in the Mines of Hungary, it is not always right. None of the Hungarian Mines indeed, that I am acquainted with, are funk to the Depth of 400 Orgyie, and hardly any fo deep as 200 Toifes, becaufe of the Waters that obftruct the digging. How then could any one be certain of the Temperature at the Depth of 400 Toiies? Mines have their different Regions, warm in fome Places, and cold in others, when they do not exceed 80 Orgyice in Depth. But let us return to our icy Cave.

Not only the common Caufe, the incumbent Heat, which has been amgned, but the very Pofition of the Cave, and it's Texture contribute to it's Properties. For it gapes wide to receive the N. Winds, which come from Carpatbus, and are very frequent, and rage chiefly in the Spring and Summer Months, rufling down from Mountains covered with Snow, and bringing Particles of Froft along with them, which entring the Hollows of the Cave, and being condenfed by the outward Cold, eafily pervade the dropping Water, and conftringe it into Ice. Befides the Difpoftion of the Chambers is to be confidered, which are all compofed of Rucks, ftrongly compacted, fometimes fuftained on high, and fometimes feeming to fall in Ruins. The Nature of the Rocks of Carpatbus is faline, nitrous, aluminous, and vitriolic. Therefore what can be more eafy, than a copious Generation of Ice in this Cave, from the Mixture of the icy with the other Particles? They will affent to this, who have learned the artificial Congelation of Liquors, by repeated Experiments. For Snow or Ice, mixed with an equal Quantity of common Salt, Nitre, Alum, or Vitriol, and put about a Veffel of Water, freezes it even in the middle of Summer, or near the Fire; not to mention other Experiments.
VI. Riber is a Village in the County of Zo!, I $\frac{1}{2}$ Mile S. from Net:- Aa Acourt of fol. In this Country are many warm Baths, which are very bencficial to Health, and of a wonderful Nature. About 600 Paces from thefe Baths, this Cave opens itfelf to the meridian Sun, and emits it's noxious Vapours in a fmall graffy Meadow, lying in a fruitful Valley; and has near it an acid Spring, which is good to drink. In former limes, when People were lefs curious, there was hardly any Body that gave Attention VOL. VIII. Part ii.
to the uncommon Nature of this Cave. It was therefore in a Manner left to ittilf, overgrown with Buthes, and feldom vifited. It was then in Form of a copious Fountain, and the Water rifing to a good Height, flowed on all Sides, as it does in a Conduit, where the Water flows into a Refervoir, and then runs over, till it ge's into artificial Paffages. The Water was petrifying; and generating a Topbus, formed it by Degrees into fuch a Mals, that there grew up a Sort of Hill about the Mouth of the Spring. This toplaceous Stone increafed by Degrees io far, that the Spring itfelf was ftopped up, not being able to rife any longer to the Top of the Fountain. This was helped by the Induftry of the Pealarts, who were glad to fop up the Spring, becaufe it dici Harm to their Cattle.
This was the ancient State of the Spring, the Footteps of which appear at prefent on the S. Side of the Meadow, at the Foot of a woody Hill. But afterwards, when plentiful fubterraneous Veins of Watter flowed from the late Fountain in hidden Paffiges, the Ground began to give Way near the old Fountain, and at Length formed a new Opening. Then it began to emit noxious Vapours again, and to be deftructive to Birds and other Animals. This Cavern gaped in the Form of a Funnel, the Lips of which, being 24 Paces long, and 12 wide, grew narrower by Degrees, till they ended at Jaft in a a littic Hole at the Botom, whence the noxious Vapour iffued forth. The murmuring Noife of running Water is fill heard there, fo that we may eafly conjeêure, that a River flows through thofe dark Paffages, and at laft lotes itfelf in fome Kird of Swallows. It has not yet broken out any where, though the Ground flopes downward into a Valley, at a fmall Diftance from the Cavern.
in 17081 made feveral Trials on the Nature of this Cavern, with the Alliftance of a curious Friend. In the firf Place, I faftened a well grown Chicken to the End of a Pike, and held it over the Mouth of the Cave, fo that the Vapours, as they iffued, niuft neceffarily reach it. I had hardly brought it to the Place, when it began to futter, and in a Moment expired. We opened the Chicken, but only found the Blood ftagnated in the Precordia; the reft of the Body was quite found. Then I cut fome Steps in the Ground, and went down myfelf, to obferve the fubterraneous Waters; but I was obliged to make more Hafte in going up, than I did in getting down; for my Breaft began to be obftructed, and my Head to grow giddy. We wondered that this Vapour hould be fo very noxious, and yet not emit any Sort of Fog, but have the Air above it pure and clear. We therefore endeavoured to difcover, what Sort of Vapour this could be, which killed Animals fo foon, and yet was imperceptible to the Eyes. We thought, that the firing a Munket into it, was the readieft Way to lead us to the Difoovery. The Cavern thundered with the Noife, and emitted Smoak for feveral Hours afterwards. We concluded from this Experiment, that the Flafh of the Powder had fet Fire to the fulphureous Exhala-
tions, which being whirled about, continued to exhale a long Time afterwards. Indeed there was an extrandinary Smell of Sulphur, like what I have obferved in the Baths, before a Storm.

Having obferved this fulphureous Exhalation, it was eafy to conclude, that the ill Effects of it were owing to a volatile and very fubtile Sulphur. Therefore we were follicitous to get fome of the Water out of the Cavern, to confirm the Experiment. We were moved to this by the frequent Sight of Birds lying dead about the Hole: For we feldom approached it, either in the Morning, or after Dinner, without finding fome new Deftruction. We gave great Attention to a Hedge-hog, which in one Night's Time was fo fwoln, and it's Skin diftended in fuch a Manner, that the Prickles, which otherwife adhere ftrongly enough, feemed to be thruft out by the very Routs. This gave us Room to fufpeet, that the Animal had not only infpired the Vapours of the Cavern, but had alfo drunk of the Waters, which boil up violently, and are abforbed again. The Lungs being livid, and the other Bowels unufually diftended, fhewed that the Animal had both tafted the Water, and fucked in the Vapour; and it began already to have an ill Smell. We therefore drew up fome Water from the Bottom of the Cavern, not without Hazard to the Servant, who was let down with Ropes Head foremoft. It was clearer than Cryftal, very light, and in a Manner ethereal, of a moderately fulphureous Smell, with fomerhing of acid, and a little Acrimony, but not biting the Tongue or the Palate. In fhorr, they feemed to come very near to the Nature of the neigh. bouring Acidilice. We tafted it at firt cautioully, but being by Degrees confirmed by each other's Example, we at laft ventured to take large Draughts of it. This we did without any Offence to our Stomachs, though moft of us were tender enough, being jult come for the ufe of the hot Springs; nay, fome were deffrous of mixing it with the generous Hungarian Wine.

Thefe Obfervations we have made diligently for feveral Years, that we might be enabled to form a Judgment, whether Agricola and Wernber juflly call the Exhalations of this Cave peftilential. A late Writer boldly afferts, that all Poifon proceeds either from a Putrefaction of the Earth, or from I know not what Vitiofity of fagnating Humour ; each of which Opinions we flall now examine. In the firtt Place, though the Vapours of this Cave are mortal, yee they are certainly not peftilential; for they do not kill Animals by any congenial Poifon carried along with them; but from other Caufe, which I Thall mention afterwards. If thefe Exhalations were peftilential, the Waters could not be drunk; much lefs could the Animals killed by them, fuch as Chickens, Thrufhes, Pigeons, and Hares, be eaten, without Lofs of Life, at leaft of Heaith; as frequently done by thofe who bathe in the fe Waters. But you will fay, perhaps a Putrefaction of the Earth, or Vice of fome ftagnating Humour, produces thefe fatal Effects. Bur it is neither of them : For if you admit this, the Vapours of the Cavern muft ne- ceffarily be thick, and the Water curbid, and of an ill Tafte: Whereas it is clear, and the Tafte not putrid, but fubacid; befides, it has been already obferved, that the Vapours are imperceptible to the Eye. Therefore the fatal Effect of this Vapour muft be alcribed to a Quantity of very fubcile Sulphur, and a Mixture of the Exhalations of the Minerals, which are hurried along, together with the Waters, through thofe fubterraneous Paffages. Not that they are in their own Nature deftructive, but that their too great Subtilty, filling the Broncbia of the Lungs fuddenly, and fhutting out the neceffary Air for Refpiration, choak up the Blood therein immediately, and kill Animals fooner than can be imagined. Thofe who think otherwife, are greatly miftaken, and beftow an unjult Mark of Infamy on our Cavern.
However we may furm a Judgment of the fulphureons Nature of the Exhalations of our Cavern, from the neighbouring Baths, which are of the fame Nature, but have denfer Streams, and are fometimes more intenfe, and fometimes again more remifs, according to the different Difpofitions of the Air. For when the Air is hot, and the Sky difpofed to a Storm, the Baths always fmell of Sulphur moft intolerably, and are offenfive and fometimes fatal to thofe who ufe them; efpecially when the Waters are frefh let in. I faw a ftrong, hearty Man, in the Vigour of his Age, who bathed one Afternoon, when a great Storm was gathering: He bore the fulphureous Vapours a great while, but was attacked by a Fever, which carried him off in four Days. I do not know whether our Cavern is fubject to thefe Vicifitudes of Weather, for I did not attend to this Obfervation fo accurately as I ought to have done. This is certain, that, even when the Weather is clear, and there is no Sufpicion of a Storm, the noxious Effracy of the Vapours varies, and kills the Animals that are brought to it fometimes fooner, and fometimes later; and that it quite ceafes fometimes, and as it were lofes it's Nature; the Caufes of which I have not difcovered myfelf, nor do I remember, that any of my Friends have made the Difcovery. The Inhabitants have now covered the Cavern with Boughs in fuch a Manner, that it is hardly acceffible. The Deftruction of Birds alfo is not now fo frequent as formerly, which 1 afcribe to the Watercourfe running deeper than it ufed to do.

A Defriztion of the Cave of Kilcorny in she Earory of
Bursen in Ire.
land, by Mr CharlesLucas, Apotbecary at Dublin. No.
456 p 360. Jan. Eヒr. 1740 .
VII. That Part of Ireland called Burren, is a fmall Barony in the N W Part of the County of Clare, and bounded on the North Side by the Bay of Galway. It is from one End to the other a Continuation of very high, rocky, Lime-Stone Hills, there being lietle or no plain Land throughout the whole. It is that Part of which it is reported, that Oliver Cromwell faid, (when he came to form a few Caftles in it) that he could neither fee Water enough to drown a Man, Wood enough to hang a Man, or Earth enough to bury a Man in: Notwithftanding it is moft fersite, and produces immenfe Quantities of Juniper, and fome Yew; befides great Variety of the capillary Herbs, Virga Aurea, Verbena, and fome other common Plants, I have found the Teucriums

## A. Dejcription of the Cave of Kilcorny in Ireland.

Alpinum magno fore, of Cajpar Boubin, and a large fhrubby Cinquefoil, aniwering the Defrciption Mr Morijon gives, in his fecond Volume of Hilt. Oxon. of his Pentcphylloides rellunn fruticofum Etboracerfe.

The Inhabitants are but few, and they montly poor Cottagers, whofe chicf Stock is a Parcel of Goats. They are courteous and good-natured to Strangers, though very wild and unpolifhed; weak, blind, fuperIftitous Zealors to the Church of Rome, and (like fome more polite People in the World) led and enfaved by a Set of mean, ignorant, and illiterate Pricfts.

The Place where this Cave lies, is called Kilcorny: It is a pretty low Valley, in Comparifon to the Hills that furround it: The Entrance is into the Eaft End of it, (for it lies Eaft and Weft) about Midway. There are the Ruins of an old Church, and, a little Weftward of it, an even Plain of about an Acre of Ground; on the North Side of which, under a fteep rugged Cliff, lies the Cave.

The Mouth of it is level with the Plain, about three Feet Diameter: It has been much larger, but was blocked up with Lime and Stone, which plainly appears ftill, but to what Purpofe is not known. Some conjecture it was an Attempt to reftrain the great Flux of Water; but the fabulous Natives, who tell numberlefs romantic Tales of it, fay, it is a Paffage to the Antipodes; and that a Sud of fine Horfes have been feen coming out of it very often, to eat the Corn fown in the Valley: They furcher add, that many Stratagems have been tried to catch fome of them; but, with the Lofs of fome Mens Lives, they could catch but one Stone-horfe, the Breed of which, being very valuable, they fay is kept to this Day by O Logblen, which with them is a Kind of titular King that they pay great Refpect to. But to return to the Cave :

When you pals this narrow Entrance, it grows much wider and loftier. The Floor is a pretty even Rock, from 2 to 4 or 5 Yards broad: The Sides and Top are rugged and unequal, from 6 to 12 or 14 Feet high.

About 40 Yards from the Door, there is a pretty deep Pit, 7 or 8 Yards over; but, when paffed, the Floor is plain and even, as before, for about 200 Yards, which is the fartheft that any one known has ventured into it: For my Part, I did not pafs this Pit, but have feen feveral that did, whofe Veracity I can depend upon. Moft People that have gone into it, went by a Thread or Clue; others have carried a Bundle of Straw, and dropped it by the Way, to guide their Return; which feems altogether unneceffary, there being no Windings or Chambers throughout of any Extent. It is all over, even in the Depth of Winter, as dry as any Place of the Kind under-ground can be; and what feems very prodigious, is, that it often pours forth fuch a Deluge as covers the adjacent Plain, fometimes with above 20 Feet Depth of Watcr.

The Times of it's overflowing are uncertain and irregular; fometimes it does not happen above once in a Year or two, but moft commonly 3 or 4 Times a Year: It is fometimes obferved to fucceed great Rains and Storms, though it offen happens without either.

The neighbouring Inhabitants are alarmed at it's Approach, by a great Noife, as of many falling Waters at a Diftance; which continues for fome Hours before, and generally all the Time of the Flood.

The Water comes forth with extreme Rapidity from the Mouth of the Cave, and likewife from fome fmaller Holes in the low Ground, attended with a furprifing Noife: It fows for a Day or two, and always returns into the fame Cave, and partly into the limall Holes, from whence it was obferved to come before, but with a more llow and tardy Courfe. The Water is of a purrid Quality, like ftagnated Pond-Water, infipid as Spring-Water. It always leaves a filthy muddy Scum upon the Ground it covered, which greatly enriches the Soil.

It has been known fometimes (though rarely) to overfiow and ebis in 6 or 8 Hours Time, but in a much lefs Quantity.

There is neicher River or Lake any where in that Part of the Countiv, and it is above 6 Miles from the Sea. There are very near it feveral much lower Valleys, in which there is no Appearance of Water, unlefs a litele Rain-Water collected in a Pit, in the Fiffure of a Rock, or the like.

An Account of sbe Eruption or Vefuvius in
May 1737, by Nicolas Ali. chael d'Ara-
gona, Prince of Caflano, and F.R.S. Tranfiated from the Italian, b; T. S. M.D. F.R.S. No. 455 . . 237.Nov. हैं. 339.
VIII. Mount Vefuvius is generally efteemed about 7 Miles diftant from Naples. It riles in the Middle of a large Plain, which furrounds it on every Side. It is better than 4 Miles from the Sea, and the Foot of the Mountain is feen to begin from the Sea-Coaft, which growing gradually higher, reaches the firft Plain, to which one can eafily ride on Horfeback. The Figure of the Plain is almont circular, being about 5 Miles in Diameter, and half a Mile perpendicular Height above the Level of the Sea. This is the Bafis of the Mountain, out of which arifes another, called by the People of the Country Monteveccbio, whofe perpendicular Height is about 400 Paces, and it's Top little lefs than 2 Miles in Circumference, of an irregular Figure. The faid Top, t- fore the Year 1631 , was of the Form of a Baton, but all furrounded with aged Oaks, and vaftly large Cheftnut-Trees, whofe Fruit afforded Food fufficient for a Number of Cattle that fed thereon. In the Bottom a Cavern was obferved, into which People defcended above 200 Paces, by dificult and interrupted Paths; and this Opening was looked upon as the ancient Mouth, which for a long Space of Iime had conftantly caft up great Quantities of bituminous Matter, and had at the fame Time burnt up a confiderable Part of the neighbouring Country, cultivated by the Inhabitants round the Hill.

Concerning the Eruptions that have happened herctofore, they are very numerous, as well ancient as modern.

Of the firf, feveral are taken Notice of by Berojus Cbaldcus, PolyEims, Sirato in the Time of Augufurs, Dirdorus, and Vitruvius; and
in Trajan's Reign the Name of the Mountain became more famous by the Death of Pliny. From that Time forward, it is not doubted, that the Eruptions were lefs frequent down to the Year 1139; when, after a confiderable Eruption, it began to take Reft, and continued quiet fomewhat lefs than 5 Centuries; fo that the horrid Remembrance of the paft Ruins was pretty well obliterated out of the Minds of the neighbouring Inhabitants; who, vainly flattering themfelves with Hopes, that the inflammable Matter was feent, planted the whole Diftrict round the Mountain, which, by it's Fertility, became the Delight of thefe Parts. Put, in Procefs in Time, they found themfelves deceived and Iruftrated in their Expeefations: For in the Year 1631, during fix Months Space, continual Rumblings were heard, and Shocks of Earthquakes fett: And afterwards, in Dec. a dreadful fiery Eruption happened, which firf blew up Part of the Mountain into the Air, in a terrible Manner, and then vomited out Water, Afhes, Stones, and Fire; inundating almoft the whole Country around to the Sea, and for above 7 Miles in Breadth, with the irreparable Lofs of more than 4000 People. After which the Mountain became filent, and remained confiderably diminifhed in it's Height, from what it had been before.

It continued quiet for 29 Years, but having rekindled in 1660 , it's Fire filled the whole Capacity of the immenfe Hollow, which remained fince the Year 1631; whence, after feveral leffer Eruptions, a new Mountain appeared in 1685.

In 1707, not only the Inhabitants of the Neighbourhood, but alfo the whole City of Naples, were put into great Terror, and not without Reafon, by the Apprehenfions of a Renewal of the difmal Tragedy of 1631, upon Account of the frequent Noife and Shocks, the Fire feen on the Top of the Mountain, with a vaft Quantity of Afhes, whicis iffuing out with Impetuofity, were difperfed all over our Hemifphere, and darkened the Light of the Sun for one whole Day's Space. Thefe were all manifeft Signs of the impending Defolation; and yet (whether by a Miracle of our particular Protector St Fanuarius, as fome were of Opinion, or by natural Caufes) this dreadful Day, which had portended fo much Mifchief, was beyond Expećtation, and to our great Aftonifhment, followed by another as pleafant as could be defired: For the Air was quite ferene, and clear of the Afnes; and on the Mountain there was no other Appearance but that of a little Smoke.

In the Year 1724, the Quantity of Ahes and Stones, thrown from the Top of the Mountain, were fo heaped from the Bottom up to the Edge of the old Mountain, that the whole Space from the old Hill to the new, appeared but one continued Mountain.

In 1730 there was another Eruption of Vefuvius, which, though very inconfiderable in refpect of the latt, yet was the Occafion of much Fear.

This prefent Year 1737, to the Month of May, the Mountain was never quiet: Sumetimes emitting great Quantities of Siriak, at other Times

Times red-hot Stones; which, for want of a fufficient impelling Force, fell on the fame Mountain. But in order to a clear Idea of all the Circumftances preffging the impending Eruption, it is requifite to know, that in the Beginning of May, a Smoak only was feen to iffue from the open Mouth at the Top; and from the 16 th to the 19th, fubterraneous rumbling Noifes were heard.

On the rgth, Fire was feen to burft out in thick black Clouds; and the fame Day there were ieveral loud Reports, returning quicker towards the Evening: And ftill more on Sunday Night, when there conconflantly appeared a very great Smoak mixed with Athes and Stones; and the Neighbourhood felt fome Shocks, like thofe of a weak Earthquake.

On Moraday the 20th, at $13^{\text {h }}$, the Mountain made to loud an Explofion, that the Shock was ftrongly felt not only in the Neighbourhood, but alfo in the Cities twelve Niles round. Black Smoak, intermixed with Afhes, was feen fuddenly to rife in valt curling Globes, which ipread wider as it moved farther from the Bafon. The Explofions continued very loud and frequent all this Day, fhooting up very large Stones through the thick Smoak and Afhes, about a Mile high, to the Horror of the Beholders, and Danger of all the neighbouring Buildings.

At $24^{\mathrm{h}}$, amidft the Noife, and dreadful Shocks, the Mountain burft on the firft Plain, a Mile diftant obliquely from the Summit, and there iffued from the new Opening a valt large Torrent of Fire; whence, by the Quantity of Fire inceffantly thrown up into the Air, at a Diftance all the South Side of the Mountain feemed in a Flame. The liquid Torrent flowed out of the new Vent, rolling along the Plain underneath, which is above a Mile long, and near 4 Miles broad; and in ir's Way it fpread very fpeedily near a Mile wide; and by the fourth Hour of the Night it reached the End of the Plain, and to the Foor of the low Hills ficuated to the South. But as thefe Hills are rugged with Rocks, the greateit Part of the Torrent ran down the Declivities between thefe Rocks, and into two Valleys; falling fuccefively into the other Plain, which forms the Bafis of the Mountain; and after uniting there, it divided into four leffer Torrents, one of which flopped in the Middle of the Road, $1 \frac{1}{2}$ Mile diftant from the Torre del Greco. The fecond flowed into a large Valley. The thire ended under the Torre del Greco, near the Sea; and the fourth at a finatl Diftance from the new Mouth.

The Torrent which flowed into the Valley, ran as far as between the Church of the Carmelites, and that of the Souls of Purgatory, by the 8th Hour on Tuefday. The Matter of the Torrent ran like melted Lead: In 8 Hours it made 4 Miles; and, confequently, it flowed $\frac{1}{2}$ a Mile in an Hour: A new and remarkable Circumftance of this Eruption, feeing Bulifone thought it very ftrange, that in the Eruption of 1698 , the Torsent had advanced 60 Paces in an Hour; whence he infers, that:

## An Account of the Eruption of Vefuvius.

fuch great Swiftnefs proceeded from a greater Degree of Liquation of the Matter. The Trees, which the Torrent light on in it's Way, upon the firft Touch took Fire, and fell under the Weight of the Matter.

The Torrent which ran behind the Convent of the Carmelies, after fetting the litale Door of the Church on Fire, entered not only therein, but alio through the Windows of the Veftry, and into two other Chambers. In the Refectory, it burnt the Windows; and, what is furprifing, the Glafs Veffels, that food on the Tables, were melsed into a Palte by the violent Heat of the Fire. Sixteen Days afterwards, the Matter continued hot, and was very hard, but it was broke by repeated Blows.

A Piece of Glafs faftened on the Top of a Pole (and thruft into this Matter) was in 4 Minutes reduced to a Pafte. Under the Mafs of the Torrent were heard frequent Reports, which made the Church fhake, as if by an Earthquake. Along the whole Surface of the Torrent. there appeared fmall Fiffures, out of which iffued Smoak, that funk of Brimftone mixed with Sea-Water; yet thefe Exhalations are not poifonous, but rather a Remedy for fome Difeafes. The Stones round about thefe Fiffures were obferved to be covered with fublimed Salts, the Nature of which I hall explain hereafter.

Iron, thruft into thefe Fiffures, was taken out moift; tut upon thrufting in Paper, it was not moiftened, but rather fomewhat hardened.

At the fame Time when the new Mouth opened, that on the Summit of the Mountain vomited a vaft Quantity of burning Matter, which, dividing into Torrents, and fmall Streams, ran partly towards the Salvadore, and partly towards Ottejano; and at the fame Time that this Matter iffued out, red hot Stones were feen to be caft out of the Mouth, in the Midft of black Smoak, frequent Flafnes of Lightning anct Thunder, all produced by the fame Matter.

Thefe impetuous Expulfions of Fire continued till Tuefday, when the Eruption of the melted Matter, the Flafhes, and thundering Noife, cealed; but a ftrong S W Wind arifing, the Ames were carried in great Quancities to the utmoft Boundaries of the Kingdom ; in fome Places very fine, in others as coarfe as Ifcbian Sand: And in the Neighbourhood they not only felt this plentiful Shower of Afhes, but likewife Pieces of Aumice-Stones, and other large Stones.

Tuefday Night the Fury of the Mountain began to abate, fo that on Sunday there was fcarce any Flame feen to break nut of the upper Mouth: and on Monday but little Smoak and Afhes. This Day it began to rain plentifully, which continued to Tuefáay, and afterwards for many Days: A Circumftance which has conftantly happened after the Eruptions of Times paft.

The Damages done in the Neighbourhood by this Eruption of Fire and Afhes, are incredible. At Oblajano, fituated between $4^{\frac{1}{2}}$ and 5

VOL. VIII. Part ii,

Miles from $V$ efuvius, the Afhes on the Ground were four Palms high. All the Trees were burnt (or blafted) the People terribly affrightited, and many Houlcs crufhed by the Weight of the Afhes and Stones that fell.
After the Defcription of this fiery Eruption, the Academy of Sciences [at Naples] thought proper to make an accurate Analyfis of the Matcer, and of the Salts, that were collicted in great Plenty near the above-mentioned Fifiures; and, towards the Difcovery of the Truth, they cffictually made the following Experiments:
Exp. 1. Sonse of the Siones of Vejuvius being pounded fmall, and the L.oadfone applied to the Powder, fome few Particles were attracted by it; and the fame Powder, put into Aqua fortis, caufed a fenfible Effervefence; whence it certainly contains no Imall Quantity of Iron: Which was alfo found upon Trial in arother Eruption by Tomafo Cornelio. But for the greater Elucidation of Truth, one of thefe Stones being applied to the magnetic Needle, it turned to the Stone; and then carrying it round to the oppofite End of the Needle, it immediately turned from it, in the fame Manner as if Iron was applied near the Compafs.

Exp. 2. The Stones are not all of the fame Denfity or Colour, but various, and of different Ponderofity. Some are compofed of real Talck, others full of Marcafites: Some are almoft all fulphureous, others nitrofe; fome of a grey Colour, others red.

Exp. 3. The Matter of the Current is Spongy at Top, but very denfe towards the Bottom; which is a Proof of the Fufibility thereof, whereby the heavier Bodies fubfided, and the lighter remained at Top.

Exp. 4. After growing hard, it retained Part of the Heat above a Month, though unequally: For in the inward Parts, where the Air bad not free Accefs, and the Matter was more compact, the Heat was much ftronger than towards the Surface.

Exp. 5. Twenty Days after the Eruption, in divers Parts of the Mountain, from the Bottom to the Top, there were feen to arife many pernicious Damps, [Mofete] efpecially from the Cavities, and the Fiffures of former Torrents; as alfo on the Plain: But none were obferved in the Matter of this laft Eruption. They iffued out of the Fiffures under the Appearance of a cold Wind, and rofe about 3 Palms high; then they moved along the Surface of the Ground, and, after a Progrefs of fome Paces, difappeared. Animals, which happened to graze where thefe paffed, were all killed thereby; and likewife a Terefian Friar, who inadvertently breathed the Vapour of one of thefe Damps.

Exp. 6. Having placed the Barometer in the Vapour, it underwent no Change, but the Thermometer fell fomewhat more or lefs. A lighted Torch, thruft into them at two Palms from the Ground, was foon extinguifhed by the Action of the Damp.

## All Account of the Eruption of Vefuvius.

Iixp. 7. Thefe Damps grew gradually weaker in their pernicions Effects for above 3 Months, even to the fubfequent Autumn, as has been generally found in other former Eruptions, or when they happened to iffue out of their Vents.

Exp. 8. Concerning the Salts which are generated in Abundance in Vefuvius, I have, by Order of the Academy, examined them by accurate Experiments. My Intention was to know, if befides Salt Ammoniac, there were alio Sea-Salt, Vitriol, Nitre, or any other Salt. I thought there was no better Way of proceeding in this Inquiry, than by Cryftallization; becaule it is univerfally allowed, that Salts in cryftallizing conftantly retain one certain and determinate Figure ; Sea-Salt concreting into Cubes, vitriolic Salt into rhomboidal Parallelepipeds, Alom into Octædrons, and Nitre into rectangular Prifms on hexagonal Bafes. I imagined, that if the Salt of Vefurius happened to contain any Particles of the Salts above-mentioned, it would difcover them after Cryftallization. This Way of reafoning was confirmerd by Experiment: For the Vefuvian Salt, in cryftallizing, left on the Sides of the Veffels fmall Parcels of cryftallized Salts, which, obferved through a Microfcope, refembled a Tree with it's Branches, on the Ends of which there appeared feveral Pyramids of an irregular Figure, hut very fharppointed; and between the Branches there were interfperfed in fome Dlaces a Group of Prifms, in others fome fmall Cubes: Whence I inferred, that the aforefaid Salt was ammoniacal, and indeed a genuine and efficacious Salt-Ammoniac, with infenfible Portions of Nitre and Sea-Salt. Which coincides with the Sentiments of the Royal Academy of Paris in 1705; with thofe of Thomas Cornelius in his Progymaafma de Senfibus; of Dominicus Gulielmini in his Treatife de Salibus; of Dr Boerbaave in his Chemiftry, and many other Writers.

Exp. 9. In order to be convinced whiether this Salt was really ammoniacal, and of the Nature of neutral Salts, I mixed is with Spirit of Vitriol, and Spirit of Salt, without producing the leaft Fermentation. I afterwards put fome of it into Oil of Tartar per deliquiuin, and could not perceive any Ebullition; wherefore it is to be ranked among the neutral Salts.

Exp. 10. Thrown upon red Coals, it did not crepitate like Sea-Salt, but it boiled and fwelled, and after evaporating, it dried up.

Exp. II. It is of a very pungent Tafte, ftrongly pricking the Tongue, and of a bituminous Smell of Brimftone, which occafions a violent Head-ach by it's volatile Texture.

Exp. 12. The Salts taken from different Stones are not all of the fame Weight or Colour: For fome are yellow and unctuous, as if rubbed all round with Petrolaum : Others are very white, others tlackifi, and others of other Colours, according to the Stones they adhe rod to.

Exp. 13. I have likewife found by Experience, that the Salt Ammoniac of Vefurius is much more efficacious than any other Salt known at this Day, in cooling Liquors. Upon diffolving fome of it in Water, Tttt 2
it makes the Water fo cold, that the Sides of the Veffel which containz it, can hardly be touched without Uneafinefs, through the exceffive Cold.

Exp. 14. M. Geoffroy looks on it as a fingular Power of common Salt Ammoniac, that being mixed with a certain Quantity of Water, it rendered the Water fo cold, that it made the Spirit of his Thermometer, 18 Inches high, fall 33 Lines. But I have fhewn to feveral Perfons, that the Veliuvian Salt makes the Liquor of a Thermometer, like his, fall $4 \frac{1}{2}$ Inches; which is equal to 54 Lines. Wherefore the Efficacy of this Salt, in cauring the Fall of the Liquor, exceeds the Efficacy of common Salt Ammoniac by 21 Lines.

Exp. 15. If round a Veffel full of Water conled with Snow, there be put fome of the Salt of Vefurius, the Water freezes and grows hard in a very little Time.

Exp. 16. If you put a good Quantity of the Salt of Vefurius into Snow fet round a [Glafs] Veffel full of Water, and then ftir the Veffel, the Water contained therein becomes unfit to drink, having acquired a very difagreeable, acrid, fulphureous Tafte; a manifeft Sign, that the Salt is divided into fmall Particles, which paffing through the infenfible Pores of the Glafs, enter into and mix with the Water.

Exp. 17. Of all Kinds of Salts, this diffolves in the greateft Quantity in Water; and perhaps the greater or leffer Diffolubility of a Salt in Water, will be [found] proportional to it's greater or leffer Effect in cooling Water.

Exp. 18. Being put into Brandy, or Oil, befides that very little of it is diffolved, it occafions no Defcent of the Liquor in the Thermoneter.

Exp. 19. Being mixed with Blood lately drawn from the Vein of a Man, but coagulated after fettling, the Blood was thereby diffolved, and continued in that State for the Space of 24 Hours.

Exp. 20. A Solution [of this Salt'\} being injected into the Vein of a Dog, firt occafioned Tremors, then univerfal Convulfions, and laftly Death: And 4 Hours afterwards, having opened the Dog, the Blood, which fhould have been coagulated, was found fluid, both in the Trunks of the Veins, and at the Ends of the Arteries.

Exp. 21. It has all the Properties of Salt Ammoniac to that Degree, that upon fubflituting this Vefuvian Salt, inftead of common Salt Ammoniac, the ftrongeft Sort of Aqua Regid may be had for diffolving Gold: Which Experiment was made with Succels by M. Lemery, in the Academy of France.

Exp. 22. If a Lump of the mineral Matter be reduced to a fine Powder, and attentively viewed through a Microfonpe, it appears very like the Sand of Ifcbia, and is very proper for Writing-Sand: Whence I conjecture, that that Sand is nothing elfe, but the [time] Matter for a long Time comminuted by the Action of the Sea.

## An Account of the Eruptiou of Vefuvius.

Exp. 23. In fome of the Stones there appear fome few Veins of Gold, in others of Silver, but infenfible; and in others, which are very heavy, there is fome Antimony.

Exp. 24. A great Difpute arofe in the Academy on the Rife of the [Mofete] Damps; for what Reafon thefe fhould be feen only in the old Strata of the mineral Subftances, and not in the new, where by the Action of the Fire they ought to iffue: Which Phenomenon, if I am not miftaken, may be accounted for in this Manner: As the cooling of the burning Matter begun at the Surface, we may think, that the more fubtle heterogeneous Particles, upon the clofing of the Pores at the Surface, remained in Quantities buried in the lower Parts of the Matter; which, in Procefs of Time, becoming acutangular, and of deleterious Figures, yet cannot offend while imprifoned: But in new Eruptions, wherein the Shocks given to the Matter produce many Fiffures, the Damps, meeting with lefs Refiftance there, iffue forth: As when the Air is a long Time pent up in fome Hollow, upon giving it Vent, it generally comes out in a pernicious Vapour.

Exp. 25. It was obferved, that the greateft Shocks happened to fuch Things as ftood expofed to the Volcano; but that thofe Things which were not thus expofed to it, received but faint Shocks: A manifeft Sign, that the Vibration of the Air had a great Share in the Shocks of the Earth: Which Circumftance is taken Notice of by Borelli with refpect to Mount Eina.
IX. I was lodged for fome Time at Cbaja, and afterwards at Fontine An Account of Medina, in the Face of this furprifing Neighbour [Mount Vefuvius] the Eruption of which from thence doth not appear to be above 2 or 3 Miles diftant.

It gave us Strangers conftant Entertainment, by fliewing us what it could do, as weil as great Satisfaction to the People of Naples, who, whilft it continues burning more or lefs without ceafing, are under no Apprehenfion (and I believe with good Reafon) of an Earthquake: But we little thought of being invited to a Sight, Quod nunquam vidimus, 8 nunquam videbimus; for by all the Accounts of the Living, there has not been any Eruption in their Remembrance near fo violent, nor fo furious; and Authors mention none to this Degree later chan above 100 Years ago. On Friday, May 17, 1737, N. S. I oblerved, as far as I could fee round, that the Mountain was covered with white Afhes a great Way down, as it hath been with Snow in the Winter, which I could not find any Body here, or at Barra near Porticbe, take any Notice of; though I foould be apt to think for the future, that it might be a Fore-runner ; for I had never feen any Thing like it. Pliny oblerves in thefe Words, Precefferat per multos dies terramotus minus forsinidolofus, qui Campania non foluni coffella, verum etiam oppida vexare folibus. (Plin. Lib. vi. Ep, 20.) Other Authors fay the contrary, thougis it may very likely be fo, round and near the Foot of the Mountain; but this Time I have not found any Body fenfible of it here; but it is certainly true, that our Windows and Doors fhook all the Time of the cuffion of the Air upon the violent Explofions: A Door which had a Latch, to my great Suprize, opened often of itfelf. I cannot conceive a cremulous Motion of the Earth from the Mountain hither, unlefs is were thoroughly cavernous from thence, which the People here deny, and particularly the Author Paragalio.

O: Salurday Night (May 18) this great Pbenomenon began, and in. creafed fo much on Surday, that it brought half the People out to gaze at it, with great Variety (no Doubt) of Paffions and Ratiocinations. There were certainly, amongft fome, great Apprehenfions, by their being employed in Proceffions, vifiting their Churches, and expofing their Images of the Virgin Mary; but I looked upon them as very ungrateful to their great Patron [Sc famuarius] in having any Dread, when they even boaft, that he has never failed delivering them from their greateft Diftreffes; but hy the terrible Havock I have obferved in their Country, as well as what has been made by this laft Eruption, I find he hath always left them in the Lurch: However, as I had not loft a Grain of the Faith I ever had in that Saint,

I very boldly fee out on Monday about two Hours before Sun-fet. It was a melancholy Sight, to fee the Road full of Numbers of poor Wretches, flying as from Sodom. I fopped on the Way, to oblerve the vaft Clouds of Smoak, which was thrown up in a prodigious Column, to an Height not to be gueffied at, which, by it's gentle Waving and Undulation, was a moft beautiful Sight ; and when it had mounted To high, that it had loft the Force of the Protrufion, it was carried by the Wind a vaft Way; but not too far for one to obferve how it's Rollis began to break, and, being difperfed and expanded, covered the Country underneath with Afhes and Darknefs. There were many great Flafhes of Lightning darted through this Pillar of Smoak, and frequent Difcharges as of Cannon or Bombs, which were followed by falling Stars, fuch as we fee from well-made Rockets. We turned off out of Portiche, to gain the North Side of the Mountain, as far as we could, in Chaifes, till we were forced to get upon Affes or Mules.

It was now growing dark, and the Fire began to be vifible, which it was not in the Day-time, the Sun bearing no Rival. The prodigious Bouillon of Fire, and the extreme Force it was expelled with, as well as the vaft Height it was carried up to, are not to be defcribed or gueffed at. If I Thould imagine an hundred Stentors or Polyphemus's, with as many of Pbaleris's Bulls roaring all together, they could not bellow more terribly. But to have a truer Idea of this Scene, you muft Jook into Burnel's moft beautiful Painting of the general Conflagration. As we looked round this Northern Side, the whole Country appeared as if over-run by Samfon's Foxes.

In a littele Time, by the Light of the Mountain, (though that was much obfcured by the Clouds and Pillar of Smoak) and the Help of our Torches, we fcrambled oyer very rough Roads, till we got within
a Quarter of a Mile of the great Lava or Current: But then I ordered an Halt; for indeed the Scene on all Sides became fo fupendous and terrible, that I thought I fhould make a very foolifh Figure, if any Misfortune fhould happen to us.

We returned to Porticbe, where we fupped, and got home, much fatigued, by 2 in the Morning. The Fury of this Eruption was at ir's Height this Night, as to burning; but the next Day (Turfday) the Columns and Bouillons of Smoak were as great, and thrown out with as much Violence, which, as the Wind fat, carried it's Deftruction, not of the large maffy metallic Bodies, but of infinite Quantities of Afhes and Cinders, all that Day, and Part of the Night. Through the Columns of Smoak was a continued Lightning, the mort beautiful Sight imaginable.
The following Day (Wednefday) we fet out again to view the Weft Side of the Mountain at Torre del Grejo, 8 Miles from hence; where we heard, that the grear Lava had flopped at the Church of the Carmelies, but not without carrying Part of it away: Yet the People were fuperftitious enough to think this Stop miraculous; though it made a great Breach on one Side, broke down and quite demolifhed their Sacrifty, belides cracking the Roof. This Lava had from the Declivity taken the Water-courfe, which was the Prefervation of the Country from being drowned (and the People had beft look to themfelves, unlefs they make another). This Hollow, which was for fome Miles between $3^{\circ}$ and 40 Feet deep, and as many wide, was not only filled up, but the Matter rofe as miany Feet above the Surface of the Land about it: We walked to view it on one Side, but the Heat was fo intenfe, and the fulphureous Stench fo fuffocating, that we were obliged to keep at a good Diftance; and I was well informed by feveral, that it continued very hot a Monsh or 5 Weeks after; fo long in cooling is that grear Quantity of bituminous and metallic Matter, with which this Vomes is loaded.

As the Fury of the Expulfion and Expiofion was much abated on Tuefday Morning, the Stop here was about four that Day in the Afternoon ; which might be the more eafily conceived, when no more of this vaft metallic Matter was difcharged, and the Motion of all the reft was relented, for want of more Protrufion, and the Bitumen growing a little cooler. As this Stop was made at the Church, Part of the Lava took a Turn into the great large Road to Salesno, to a great Height; which Part is choaked up for ever, the Expence being immenfe to remove it. N. B. Giulio Cefare Reputio, one of the Authors who defcribes the Eruption in 1631 , fays, one of the maffy metallic Bodies was in his Time weighed, and the Weight amounted to 500 Cantaras, a Cantara being nearly 200 Weight. They have fince made the Road paffable, by laying Earth upon the Lava, and fo have added to the Hills of their Country. There are fome who pretend to tay, that the Matter difcharged this Time in the different Currents or Lava's.
round abour, would make a Mountain as big as their Sire. The Curmelites here foon fled, and were not come back ten Diys afterwards, when we returned that Way, to vifit the S E: Side, to view the great Devaftation which was made about Oltcjano, 18 Miles from hence; for though the great Difcharge of the metallic Body ceafed on Tuefdey, a vaft Deftruction of the Councry followed for a long Time after; for as the Force of the Explofion was very great, it continued to throw out valt Showers of Cinders and Afnes. The Lands indeed, where the Lara's fall, are annihilated to the Owners; but the other Materials deftroy all the Fruit and Produce of the Earth where they fall, which doth not recover for a long Tinte; and in this unhappy Diftrict, his Majety hath, with great Gondnels, taken off all Taxes for 10 Years.

As we turned on the Luft from Torre del Grcjo towards Olicjono, we paffed all the Way through their Miafferias [Farms]; and the Mountain, having the Weather-gage of Lis for 3 or 4 Miles, rained Afhes plentifully upon us, and we loft our Smell of every Thing bue Brimftone. All the Trees, Vines, and Hedges, bent under the Weight of thefe Afhes, feveral Arnss, and even Bodies of Trees, were broken with the Weight ; fo that in fome narrow Roads we had Difficuity to pals. Within a Mile or two of the Prince of Ofrojano's Palace (a very honeft worthy Genteman, who has fuffered a Lols of above 100,000 Ducats, or $50,000 \mathrm{l}$. fome fay more) one can farce frame to one's felf a Sight of greater Defolation; ten fuccefive Northern Winters could not have left it in a worfe Condition: Not a Leaf on a Tree, Vine, or Hedge, to be feen all the Way we went, and fome Miles farther, as we were informed: Here, and at the Town, they had a new Earth, about 2 Feet deep, fome faid more, by the Account of the miferable Inhabitants, who were a difmal Spectacle, though they had recovered their Fright, and feemed to be got into a new Heaven. The Storm fell fo thick and heavy for that Time, that they almoft all fled, and many Houfes were beaten down. In one Convent, two or three Nuns were buried in the Ruins. At Somma, on the N E Side, it has made great Havock; a Monaftery of Nuns was deftroyed. After a long Day's Work, we returned at fix o'Clock.

The Earth of this Country is, no Doubt, greatly compounded of Sulphur and Nitre, from whence Dr Burnel hath fixed it for the Beginning of the general Conflagration; though he has, out of a particular Spite to the People of Rome, laid the Commencement of it there. The great Quantities of Sulphur and Nitre are, to be fure, the Operators of thete great Explofions, Lightnings, Bombs, Bellowings, and Expulfions of all this Matter; and Nature can certainly make much Atronger and more elaftic Gunpowder, than Mankind; elfe thofe great maffy Bodies of Metals could not be thrown up with that vaff Furce, to that great Height. The Bodies are compounded of various Metals, and, as it were, incorporated with the Bitumen: They pretend to find fome Silver, but I queftion whether the Gains will pay the Cofts.

They have fpoken of the Lava's, as if their Motion was quick ; but I obferved otherwife, that it is now, and the Progrefion rather like a vermicular one: And befides trufting to my Sight, I am tather apt to think it muft be fo, becaufe, though in a great Declivity, thefe great Maffes mult be much retarded in their Motion, by their large unequal Points or Angles; befides, the Glewynefs of the Bitumen as it cooled, would very much impede a quick Motion; which Bitumen is that Matter that hames, finokes, and is to very fuffocating.

By fome of the Ancients, thefe burning Mountains have been looked upon as Divinities, and that they lived there: To confirm which, there was a Marble found at Capua (as Parogallo affirms) with this Infcription, Fovi Vefurio facrum D. D. The Greeks made ufe of them in their Mythology, by clapping the Rebel Giants under them.

1 muft not conclude without faying fomething of the Mofete, upon which much have been written, particularly by Leonardo de Cafua; but all mighe be reduced into a narrow Compafs. I mention it now, becaufe it hath given great Terror to the Neighbourhood of this Mountain; four or five Purfons near Torre del Grejo, Portiche, and fome other Place, having been killed by going into their Caves or Cellars: And it is parcicularly remarked to have been thus deftructive all round the Hill, after the great Eruptions; upon which the great Agitation ard Rarefaction of this inflammable Earth, compofed of fuch active Particles, even Sal Ammoniac, muft fend out vaft and ftrong Effluvia, (or what in fuch clofe Places may properly be termed Exfudations) pernicious, no Doubt, when confined under.ground, and hindered from expanding and mixing with frefh Air: And, no Doubr, all round the Mountain they abound; but the open Air is a Specific againft their ill Effects; as we fee it is an immediate Cure to the poor Dog at the Grotto del Cane, and not any particular Quality of the neighbouring Lake, which throwing him into, I fhould rather think, would kill him, till he had recovered his Refpiration and Spirits. Virgil, En. VII. 84, mentions thefe Damps:

## ———Nemorum que maxima facro <br> Fonte fonat, fevamque exbalat opaca mepbitim.

And to thefe Seenches Perfuus, Satire III. 1. 99, refembles the Scent of a ftinking Breath :

## Gutture Julpbureas lente exbelante mepbites.

The following Authors have given very ample Accounts of the Eruption of Mount Vefuvius, on Dec. s6, 1631.

Giulio Cefare Braccini; Dell' Incendio fattofi nel Vefuvio, a 16 Dec. 1631, Neapoli, ${ }^{6} 63^{2}, 4^{\text {to }}$.

VO L. VIII. Part ii.
Uuuu
Don
X. March. 9,1730 1, O.S. $4^{\text {h }}$ a. m. an Earthquake fhook the whole Kingdom of Naples, but chielly Apulia. In it's Dutation, all the Appearances mentioned by the Ancients were oberved. Firft a Trembling, then a Shaking, and at haft an Inclination, or Nitation of the Earth, like the Notion of a Ship. Thefe various IVotions fucceeded each other for the Space of $3^{\prime}$, and fume Stconds. It was not obferved by my Friend, whether the Nutations and Ofcillations of the Earth were made according to the parallel Circles of the Earth, accord. ing to the Obfervation of modern Philofophers, who endeavour thereby to confirm the diurnal Motion of the Earth. But. Imyfelf and others have obferved it to be fo, not only in this, but alfo in former Earthquakes.

The Air at that Time was heavy with thick, low, hanging Clouds, which were afterwards diffipated by a gentle N E Wind. The next Day the Sun thone faintly, as if it were covered by vary thin Clouds; but no finch Clouds were diftinguifhable in the Sky. This Pbocnomenon has alfo been obferved in fublequent ftrong Earthquakes. The Fihermen who were then at their Work on the Coaft, obferved the Sea to fwell on a fudden, and rode out the Storm coming from the Northward, without any Wind; but thought chemfelves in Danger of Ship. wreck.

The next Day, March 10, $8^{\text {h }}$ a.m. there happened a new out Morter and weaker Earchquake, in the fame Province; noe fo weak, bowever, but that it was perceived here at Naples. This was preceded by a certain flaning or fhort Corufcation about the Mountain Garganus, which surning to Smoak or Fog, gradually difappeared. In the Country abont Foggia, this Earthquake, and others alfo in April, OEE and Nov. were generally preceded by a ftrong N E Wind, though the Air was fometimes quite ftill.

There was no fmall Ruin of Buiddings, and Deftruction of Perfons crufned by them; for the Dead were reckoned to be about 600.

The Centre of thefe Shocks feemed to be at Foggin: For there were the moft cruel Motions and Ruins; and from thence they dinsinifhed gradually to Places more remote; fo that one might fay, that the Propagation of this Motion was fucceflively diminifhed (only fo far as it was altered by the various Solidity and Interruption of the interjacent Earth) in a duplicate Ratio of the Diftances: According to the common Laws in other Sorts of Motions.

The fame was obferved alfo in the Ofeillations of Pendulums by two careful Obfervers. For Pendulums of a Palm in Length, at Afculum and Iuvenctium, being applied to a graduated Semicircles, and aroving

## The Hifroxy of an Ear thourake at Apulia.

in the Shacks, fwutig more or fewer Degrees from the Centre of Ofcillation, according to their Jefs or greater Diftance from Foggia : For the greater Number of thefe Digrees at Afculuth, which is nearet ; asd the lefier at Iuvenatium, which is farther, anfivered alnof to the duplitete Ratio of the Ditances of thefe Places from the Centre of the Farthquake. And lience alfo it came to pafs, that whien the-Earh flook but little at Foggia, the Pendulum vibrated but little at Foggia, and was cbferved to ftand perfeectly fitll at Iuvenatium.

In all the Shocks, which happened for almoft a whole Year together, it was confanily obferved in the open Fields, that they were preceded by a Noife and borrid Rumbling in the Air. Thus we read in Pliny, Lib. ii. C. 80 , that terrible Noiles, Groans, and fometimes Sounds, like human Cries preceded them. This Noife in the Air was fpiead in a contrary Determination: So that as the Parts of the Earth were Shaken, with a Motion communicated from the Centre to the furpounding Places; $f$ fo, on the contrary, the Mation of the Air was nor wbfeurely propagated fram the Circumference toward the Centre. This Pbanomenon has afforded no fmall Matter of Dipute among Philofophers; but I do not think myfelf concerned in it. I mall only oblefve, that this differs from Arifoolle's Opinion, in his Meteors, that an external Wind ivas neceflary to form an Earthquake: So that, according to him, an Earthquake on the Coaft of Achaia was caufed by a Conflict of the N. and S. Winds. Some indeed have fufpected, that night Earth, quakes, which were formed after forong E Winds, might arife from a Retardation of the diurnal Motion of the Earth, at leaß in that Track where the Wind blew.

This alro is obfervable with regard to our Earthquake, that near the Farm of the Cortbufans called Tre Santi (of which the Houfe was levelled with the Ground by the firft Earthquake in March) in the Place where the Bed of the Brook called Fontana del Pefee is moft depreffed, there burf out a new Source of copious, turbid, warm Water. This indeed is not new or urdown to the Ancients: For we learn from their Records, that Waters burft out from the opening Body of the Earth, jut as the Water coters a Ship through it's Fiffures: Nay, they relate farthes, that not only little Springs have iffued, but fuch Deluges as have eve! overflowed Cities. This might feem ftill more probable to thofe, why thought wich Thales, according to Senceca, that the Earth Roated like a Ship upon the Surface of Water. But this will appear abfurd to thole, who know the real Structure of the terraqueous Globe.

The Water, which burf forth in the mentinned Part of Apulia, driedi up graduilly, and in the Suace of a Montli quite difappeared : But the dry Sand retained a Smeli of Sulphur for fome Time. Thus Pliny, Lib. xxxi. C. A. fays, that Earthqualies pour forth Water, and fuck it up again. Hence it is no Wonder, that Lakes, Fountains, and Rivers are faid to have appeared where they were not before; and to have dried up, where they formerly appeared.

## The Hifory of an Earthquake at Apulia.

It is generally reported, that the Wells poured out Abundance of Water at the Beginning of the Earthquake: But it is not to be imagined, that this was caufed by the Shock; for then it muft have been fo violent, as to fubvert the whole Kingdom of Naples. It mult have been caufed by new Waters flowing into the Springs.

The Water, which iffued near Tre Santi, being examined, produced the following Plaenomena.

1. Being compared with an equal Bulk of Rain- Water, and examined by the Areometer, it exceeded the Weight of it in this Proportion, that where the latter weighed $t \mathrm{j}$, the former weiged to j Gr. 82 : But it weighed only Gr. 15 more than the Spring-Water, which is faltifh there.
2. A Pound of the fame Water diftilled to Drynefs left 3 fs of a Subftance approaching to Crocus Martis fprinkled with Эj of white, infipid Earth. The Magnet being applied to this Powder when dry, attracted fome reddifh Particles. During the Diftillation, a Smell of Sulphur was very evident. This is a frefh Confirmation of Lemery's Experiments, which prove that fubterraneous Fires and Volcanoes are caufed by a Mixture of Iron and Sulphur; and confequently Earthquakes may be caufed by a Succeffion of hidden Fires.
3. Having infured 3iij of Galls finely powdered in th ij of that Water, in a Quarter of an Hour it began to turn blue; and then the Powdes precipitated.

This is an exact and true Hiftory of our Earthquake, without any of: the hyperbolical Fancies, which are common in the Mouths of the Vulgar on thefe calamitous Occafions.

Naples, Dec. 12, N. S: 1732.

Of the fame, by the Hon. Henry Temple, E/q; Son of the R. Hon. the Lord Vif. count Palmerfon. No. $45^{5}$. p. 340. Jan. ぼc. ${ }^{2740}$.
XI. Sept. 5, $173^{2}$, about 11 in the Morning, an Earthquake was An Account of felt in diverfe Places in Maryland; the moft particular Account I have heard of it, was from Mr Cberw. It Thook his Houfe for fome Time, and ftopped the Pendulum of his Clock; during it's Continuauce, a Lewis Richard rumbling Noife was heard in the Air, and many People who did not 429. 8.120. feel the Shaking, as well as thofe who did, complained of a Dizzinefs in their Heads, and Sicknefs at their Stomachs: At the fame Time, I have been credibly informed, it was felt in Penfilvania and Ners-England; but I have not heard whether it extended to $N$. or S. Carolina.
XII. That this Country is fubject to Earthquakes, is certain; and An Account of we have been often admonifhed of it fince the firft Settlement of the Englifh here, which now is about 100 Years. Our printed Books and other good Records have taken Notice of the moft remarkable that have happened. The firft and moft confiderable Earthquake that I find in our Hiftory, and which feems to have been much like our laft, was on Fune 2, 1638 . This is faid (by the Author, who was a Gentleman of Character and Probity) "to have been a great and fearful Earth. " quake: It was heard before it came, with a rumbling Noife or low "Murmur like unto remote Thunder; it came from the Northward, "" and paffed Southward; as the Noife approached near, the Earth be"gan to quake; and it came at length with that Violence, as caufed "Platters, Tyles, $\mathcal{J}^{\circ} c$. to fall down; yea, People were afraid of their "Houfes. The Shock was fo violent and great, as that fome being " without Doors, could not ftand, but were fain to catch hold of Pofts, ". Ecc. About half an Hour after, or lefs, came another Noife and "Shaking, but not fo loud nor ftrong as the former: Ships and Veffels. " in the Harbour were fhaken, $\mathcal{E}^{\circ} c$ " In 1658 , there was another very great Earthquake, but no Particulars related. In 1660, Fan. 3I, a great Earthquake. In 1662, $\mathcal{F}$ an. 26, about 6 at Night, there happened an Earthquake, which fook the Houfes, caufed the Inhabitants to rusn out into the Streets, and the Tops of feveral Chimnies fell down. About the Middle of the fame Night was another Shake; alfo in the Morning following the Earth fhook again. In 1665 , and in 1668; and 1669 , the Farth was Thaken; fince which we have alfo had feveral Tremors of the Earth, but not very confiderable; fo that our People began to hope we fould hear no more of them. But we are now convinced to Purpofe, that Nero-England is ftill liable to the fame Terror and Defolation that other Countries are from thefe extraordinary Motions of the Earth.

I now proceed to give the beft Account I can of our late terrible Earthquake, which has fo juftly amazed and terrified the Inhabitants from one End of the Country to the other. The firft Thing. I fhall begin with, is to give a hort Account of the Weather or Seafon preceding the Earthquake: Our Winter in 7 nn and Feb. was very moderate, and excepting a few cold Days, the Weather was pleafant, and no great Eroft in the Ground. In the Beginning of March we had a great deal
of snow, and fane cold wheather, which foon went over; and on the Ith, $x^{\prime \prime}$, after $f$, the Sun was eclipled about 5 Digits, as near as I could thake it without an inffument; afier which to the End of the Month we had pleafant Weather, Rain at Times, and once we had Thunder cand Lighening April for the most Part had fair pleafant Spring Weather, and a plentiful Rain in the Beginning and latter End of the Month. The Beginning of May was allo platane Weather; the 9th, roth, and 13 th, a great deal of Rain: The 18 th, a white Iiroft: $24^{\text {ch }}$ and $25^{\text {th }}$, cold Weather; from thence to the End of the Month very diy. The Beginning of fune the fame; Abundance of Thunder and Lightning at Times during the whole Month. In July allo, though we had fome Showers in different Places, yet in general it was a very dry Scafon, and a great deal of Thunder and Lightuing alfo this Month; the 3 laft Days of it fo violent hot, that there was no working or travelling by Day, or neeping by Night: The Beginning of Aug. was alfo exceeding hot, and in particular the firft Day at Night from the Evening to Midnight we had a continted Corufcation on Lightning all round the Horizon; the like farce ever remenbered: It was truly terrible, though the Thunder was not fevere Dry Weather continued to the roth, and then we had a plentiful Rain all over the Hrovince, but our hot Weather held on to the End of the Month; and till absut the Middle of Scptember we had very hot Weather: So that take it all together, I have never known to miuch hot Weather in any one Summer in my Time. Sept. 16, we had fuch a viotent Storm from the NE, as was never remembered, for the lijercenefs and Strength of the Wind; it blew down Houfes, Barns, and an infinite Number of Trees in our Orchards and Woods; a great deal of Rain alfo then fell. In OEF. preceding the Earthquake, we had a pretty deal of cold W' ather; on the 23 d , a great deal of Rain, with the S . Wind ; on the 25 th at Night, a hard Froft; on the 26 th, winterinh Weather, and a little Snow; 28th, cold, the Wind at N WT: 29th, the Wind at NW, though little of it, but cold; in the Evening quite calm, and a clear Sky.

By this fhort Journal of the Weather the Learned will be able in fome Meafure to lay, how far our Earth might be difpofed to, or prepared for, the Earthquake that followed; firft by a long continued Drought and extreme Heat, whereby the Earth became more porous, and abounded with Exhalations or Vapours inflamed, and which afterwards being thut up by the fucceeding great Rains and Froft, and thereby hindered from an ordinary and eafy Paflage through the Pores and common Vents of the Earth, worked fo much more forcibly and terribly upon one another. But Philofophers not being yet agreed on the Nature or certain Caufes of Earthquakes, I pafs on to the fecond Thing which I propofed to enquire into, viz. what Kind or Sort of Earthquake ours was. Gilbcrlus Facchaus, in his Infitutiones Phy fice, cap. Terre Molus, diftinguifhes Earthquakes into four Species; wherein he agrees

## Accounts of Jeveral Eartbquakes.

with Arifotle and Fliny, with whom the firf Species is a Shake or Trembling, and by them likened to the Shaking Fit of an Ague. I cannot yet hear of any Breach or Opening of the Earth, through the whole Extent of our Earthquake. It has been faid by fome that were abroad, that the Earth fenfibly rofe up, and fo fank down again; but I nuch queftion the Truth of it; for if there had been any fuch Succuffion to raife the Earth to any confiderable Height, the Houfes would certainly have tumbled down, or the Exhalation forced it's Way by fome Breach. Nor was our Motion of the Earth that which Arifolle and Pliny call a Pulfe, or an intermittent Knocking, but one continued Shake or Trembling; and therefore muft be ranked under the firft Species, viz. a Tremor or Shake, without altering the Pofition of the Earth, and left all Things in the fame Pofture in which it found them, except the falling down of the Tops of fome Chimnies, Stome Walls, Eic. without Doors; Difhes and lome other Things within Doors; which I hall obferve when I come to Speak of the Degree of the Shake.

That our Earthquake was of the firft Species, is alfo proved from the Sound that accompanied it, fince tremulous and vibrating Motions are proper to produce Sounds; which brings me to the third Particular, viz. the Noife or Sound that accompanied or immediately preceded our Earchquake. This indeed was very terrible and amazing; though I am apt to think it was thought more confiderable by thofe within Doors, than luch as were without in the Air. Some of our People took this Noife to be Thunder; others compared it to the Rattling of Coaches and Carts upon Pavements, or frozen Ground. One of my Neighbours likened it to the fhooring out of a Load of Sones from a Cart under his Window. For my own Parr, beirg perfectly awake, though in Bed, I thought at firft my Servants, who lodged in a Garret over my Chamber, were haling along a Trundle-Bed: But, in Truth, the Noife that accompanies an Earthquake feens to be fonus fui gencris, and there is no deferibing it: This Noife, as amazing as it was, in an Inflant of Time, as one may fay, was fucceeded by a Shake much more terrible. My House, which is large and well built, feemed to be fqueezed or prefled up together, as though an hundred Screws had been at Work to throw it down; and thook not only every Thing in the Houfe, particularly the Bed under me, but the Building itfelf, and every Part of it fo violently for the Time, that I was traly in great Fear it would have tumbled down, and my Fannily perifhed in the Ruin: But through the great Power and Mercy of God, we received no Harm. It is impoffible to defcribe the Terror and Amazement that an Earthquake carries with it; and though I had never felt one before, yet I was thornughly convinced what it was at the very Time.

The next Thing I proceed to, is the Degree or Greatnefs of the Shake. This will be beft known from it's Effects. I have already mentioned the falling of the Tops of Chimuies, Difhes from Shives, Cbina Ware, $E^{3}$ c. Doors unlatched, Bells jangling Beds trembling, Rods of Stone Wall thrown down by it: And though I acknowledge thefe Effects are not very confiderable, yet I cannot but be of Opinion, that our Earthquake, for it's Species, was as violent and terrible as any we meet with in Hiftory: And had the Tremor continued a Minute lunger, or been repeated in the like Degree, our Houles had doubtels ibeen many of them overthrown. One of my Neighbours that was walking home at the very lintant, tells me, the Noife firlt brought hins to a Stand, and that during the Shake, the Earth trembled to under him, that he was fo far from attempting to continue his Walk, that it was as much as he could do to keep upon his Legs, and expected every Moment the Earth would have opened under him. A nother that was riding home, fays, that upon the Noife the Earthquake made, his Horke food ftock fill, and during the Shake, trembled to that Degree, that he thought he would have fallen under him. Our HoufeDogs were alfo fenfible and affected with the Earthquake; fome of them barking, others howling, and making ftrange and unufual Noifes. Nor was our Earth only affected with this Shake, but the Sea alfo in our Harbours, and our Shipping fmall and great much moved with it. I do not fuppole it ever happens that Earthquakes of this Kind, of any Extent, are equal or alike in all Places; and accordingly I find by Information from our feveral Towns, that the Shake was much more moderate in fome Parts of the Country than others.

The Time and Duration of the Shock-OUr Bofion News. Papers fix the Time at about $40^{\prime}$ after 10 at Night: My own Watch was not fo much by $5^{\prime}$; but the Clocks of the Town might be trueft. The firf Day of Nov. at Midnight, which was 3 Days after the Earthquake, the Moon changed. As to the Duration of the Shock itfelf-Whatever others may print or have printed, I can by no Means fuppofe it exceeded the Space of a Minute, if it was fo long; I mean the firft and great Shock; after which in the fame Night we had 4 or 5 more leffer Tremors ; and at fundry Times fince the Earth has crembled in different Places (even to this Nov. 13) but without any confiderable Effects or Extent.

The laft Thing I have to mention, is the Courfe and Extent of the Earthquake. Bofton, the Merropolis of this Province, lies in Lat. of $42^{\circ} 25^{\prime} \mathrm{N}$. and $4^{\mathrm{h}} 43^{\prime} \mathrm{W}$. of London; as the Longitude between the two Places was fettled by Mr Thomes Bratlle of this Country, and Mr Hodgfon of London many Years fince : And making Bofton a Centre, we have a certain Account, that our late Earthquake was felt in Kernebeck River to the Eaftward, and at Pbiladelpbia to the Weftward, 150 Leagues diftant one from the other upon a W S W and E N E Courie neareft: And no Part of the intermediate Country, that I can underftand, efcaped the Shake; the Colonies of Rbode-Ifand, Connecricut, and New-York, that lie between us and Penfliziania being all affected, though not equally, particularly at Pbiladelphia they write, a fmall Shock. As
oo the oppofite Line or Latitude, as we may call it, of the Earthquake, we have two noted Inands to the SiE, called Nantucket and Martba's Vincyart, about 90 Miles diftant from Bofon, and the firt named liess about 12 Leagues into the Sea, diftant from the main Land; both thefe Inands had the Earthquake. Our Englifu Settlements towards the N W. do not yet exceed 40 or 50 Miles from Bofon ; but they all of them had this Earthquake very fenfibly; and how far it might reach beyond them towards Canada, we cannot yet fay. By this Calculation I believe it will be found, that our Earthquake was of a much greater Extent, than any yet taken Notice of in Hiftory: As to the Courfe of the Earthquake, or where it firft began, I am nor yet able to determine by all the Information I can get: For they write from Rbode-I/and, Conneeficut, New- York, and Philedelphia, all to the Weftward, that it was between 10 and 11 at Night. The lame again is affirmed from Pijcataqua, Cafoo-Bay, and Kennebeck River, which are to the Eaftward: So that as yet it feems to me, that the Earth, through the whole Extent aforefaid, was fhaken very near at the fame Time. Some of my Neighbours are pofitive, that it came from the Southward; while others again are confident, that where they were, it came from the North. But this is not to be wondered at, fince, as I fuppofe, the fubterraneous Channels or Caverns, through which the Exhalation paffes, are not in any one continued ftreight Line, but branched out, and running upon all Points of the Compafs, efpecially in fuch a vaft Extent of Land.

I am now come to Nov. 28, and having met with fome further Particulars omitted in the preceding Account: I fall throw them into a Pofticript.

A Neighbour of mine, that has a Well 36 Feet deep, about 3 Days before the Earchquake, was furprized to find his Water, that uled to be very fweet and limpid, ftink to that Degree, that they could make no Ufe of it, nor farce bear the Houfe when it was brought in; and thinking fome Carrion was got into the Well, he fearched the Bottom, but found it clear and gnod, though the Colour of the Water was turned wheyif or pale. In about 7 Days after the Earthquake, his Water began to mend, and in 3 Days more returned to it's former Sweetnels and Colour. I am alfo very credibly informed, that feveral Springs and good Watering-Places were fome of them lowered, and: others quite funk and loft with the Earthquake A worthy Divine in a Town about 20 Miles from Bofton, alfures me, that immediately after the Earthquake, there was fuch a Stink or ftrong Smell of Sulphur, that the Family cotid fearce bear to be in the Houle for a confiderable Time that Night. The like is confirmed alfo from other Places. Perfons of Credit do alfo affirm, that juft before, or in the Time of the Earthquake, they perceived Flafhes of Light. A Gentleman of Probity from Nerabury; a Town fituated between 30 and 40 Miles to the N NE VOL. VIII, Pattii. $\mathrm{X} \times \mathrm{xx}$ of
of Boforn, writes Word, that at 40 Rods Diftance from his Houfe, chere was a Fiffure of the Earth, and near 20 Cart-Loads of fine Sand thrown out where the Ground brake, and Water boiled out like a Spring, and mixing with the Sand, made a Sort of Quagmire; but at the Date of his Leetter, which was the 2 Ift current, the Spring was become dry, and the Ground clofed up again. Since the Receipt of this Letter, I underftand, that the Ground where this Sand is thrown up, and round about it for a confiderable Diftance, is a folid Clay for 20 or 30 Foot deep, and noining like Sand ever to be found there before; fo that the Exhalation forced this great Quantity of Sand through a very deep Siratam of Clay. I am alfo very well fatisfied, that the Earthquake was more violent in the Towns to the N. and N E of Bofon, than in thofe to the Southward and Weftward; and in fome of them that are rocky, the Earth fhook but a few Days fince.
XIII. I. I know moft of the People that have figned the inclofed
sia Account of a Sbock of an Earthyuake felt in Sufiex, OC.25,1734, communicated so the R S. by Charles $\mathrm{D}_{\mathrm{u}} \mathrm{ke}$ of Richmond and Lenox, Esc. F. R. S. No. 444 . $p$. 36r. Nov. ร์ㄷ. $1 / 36$. Papers, to be Perfons of Veracity: And what confirms me in my Opinion, that there really was an Earthquake, is, that almoft every Body agree in the fame Difcription, as to the Senfation, the Hour of it's happening, and the perfect Calm that was at that Time. I obferve the Shock was vaftly more felt towards the Sea. Side, as at Shorebam, Tarring, Goreing, Arundel, and Havant. At my Houfe of Goodroood, which is near 3 Miles N. of Chicbefer, and about 7 from the Sea, it was not fo perceivable as at Cbicheffer, and where it was ftill lefs fo than by the Sea-Side. I do not hear as yet that theré was the leaft Touch of it in any Parts of the Vale on the N. Side of the Downs, which for the mott Part run E. and W. I think, what Dr Bayley of Hovant fays of the different Motions of the Beds, according to the different Situations they were in, is very well worth obferving. This Gentleman is a Ductor of Phyfick, and a very curious Man. I could have got above 50 more Accounts from the feveral Places I have mentioned; but as they all tend to the fame Purport, I thought what I had already collected fufficient.

## Havant, OEFob. 25, 1734.

## A-Narrative

 of the fame. Earthquake by Edward Bzy. ley, M. D. Ibid. p. 362.
## Accounts of feveral Eartbquakes.

Becls, but alfo the rocking of their Houres, together with a rumbling Noife of Drawers and the like moveable Goods in their Chambers and other Rooms. A learned and ingenous Genteman in this Town informs me, that the Motion of his Bed anpeared to him like the toling of a Veffel when it croffes over a Wave, the Head and Feet thereof rifing and falling alternatcly feveral Times; whereas mine feemed rather to rock from Side to Side : Bur thefe contrary Motions of the two Beds are cafily accounted for, by confidering the different Pofitions of them, my Friend's ftanding directly E. and W, and mine N. and S. For fuppofing the undulatory Motion which the Earth might have at that Time was propagated from E. to W, the fame Kind of Motion which caufed his Bed to rife up and down longways, muit make mine rock from Side to Side; as may be obferved in two Veffels failing in contrary Directions on the fame Waves of the Sea, that which croffes the Waves at right Angels being toffed up and down lindways, while the other moving in a Line parallel with the Waves, will be rocked from Side to Side. What makes me the more inclined to think the progreffive Motion of this Earthqualke to have been from E. to W, is, becauie it appears from the beft Accounts I have yet had of it, that it was obferved fooner E. than Weft ward, and likewife extended further from E. to W. than N. and S.

It may not be amifs to take Notice of fome remarkable Phrnomena which happened before and after, as well as fome other Circumftances which immediately attended this Earthquake, moft of them agreeing with thofe Signs which have been obferved by the Learned to precede or accompany former Earthquakes in thefe and other Pars of the World. It is obfervable, that we have had of late more Rain and Wind for feveral Months fucceffively, than for many Years paft; efpecially from the Beginning to the Middle of this Month, about which Time it cleared up, and the Weather became fuddenly very cold, with frofty Mornings, the Wind blowing generally pretty hard from N W. On Wednefdey the 23 d , the Cold abated confiderably; it was cloudy, but we had no Rain that Day. The 24th was very calm all Day; it rained moft Part of the Afternoon, though the Mercury ftood at $30 \frac{2}{15}$. It continued very calm all Night, and rained hard for fome Time before and after the Earchquake happened; but it foon cleared up, and we had a frong Gale of Wind, which rofe within half an Hour, or, as fome fay, within a Quarter, afterwards: It continued blowing hard all the Forenoon. At 4 in the Morning I obferved the Mercury continted at 30 Inches $\frac{3}{15}$, the Spirit of Wine at $55 \div$; having rifen about five Degrees fince the late cold Weather.
N.B. My Barometer and Thermometer are both in one Frame, made by Mr Hlaukfoee. 29 OEE. 1734.

The Circumftances related by his Grace, and by Dr Boyley, are backed by the united Teftimonies of feveral; many of whom are known to his Grace to be Perfons of Veracity, and whom he procured to fign

Certificates

Cerrificates of what they obferved concerning this Accident at Chicbeffir and other Places. It is unneceflary to trouble the Reader with each Certificate ; the mentioning the Namies of thofe who have fubfrribed them may fuffice.

Foikn Fletcher, Andrew and Sarab Alaire, Fone Yobinon, Martha Freeland, Owen Apps, Sarab Brycrs.

Sarab Tutle, and her Children Eleanor, Fane, and Sarab.
Tobn Cofellow, 7obn Freclain, Wattbiw Falbars.
Fobn and Sarab Bryers, Fobn Long.
Tbomas Turgis, Ricbard Silverlock: All of the City of Cbicbefer.
Pbilip Boifdoune, Efq; of the Parifh of Funtington in the County of Suffex.

This lait-mentioned Gentieman, and the aforefuid Perfons, dwelling in the City of Chicloffer, all agree that there was a manifen Shock of an Earthquake felt on OEFober 25 , about a Quarter before 4 in the Morning, which lafted by Fits fome few Seconds, about a Quarter of a Minute, or while one might tell twenty, with a Motion fenfibly fow: For moft of the Accounts concur in this Particular, that the Chairs, Wainfcot, Doors, Chefts of Drawers, and other Moveables, were heard rattling; and one, that a Bell rung of itfelf juft before they felt the heaving of their Beds; and that there was no Wind ftirring at thas Time, but that it rained, and the Wind rofe foon after.

The Rev. Mr Ricbard Green, Prebendary of Cbichifacr, and Recior of Merfon, in the County of Sulex, had Informations of the fame Tremblings, attended with the fame Circumftances, being felt at Sborebain, Goreing, Tarring, Findon, Arundcl Coffle, and Merfor.

Fobn Sbaw, Thomas Dagy, and Fobn Towner, all Servants to the Duke of Ricbinond, at his Seat called Goodzicod, felt the fame.

Mr Fobn Fenkins, Riding-Officer of the Cuftoms, in the Parifn of Wef-Wittcring, near Braglefam-Bay, in the County of Sufex, defrribed. the Shock after the fame Manner: And he adds further, that within half a Quarter of a Mile of his Houfe, a young Man, of abcut 18 or 20 Years old, having been at the fame Time to feich up a Ieain of. Horles Irom Grafs, the Horfes were fo fenfible of fomething more than ordinary, that they trampled, and feemed very much affrighted, as ihey were coming home.
A Shock of an XIV. To the foregoing Accounts of an Earthquake fel: in Srifex, it Eartbquake felt in North amptonhire, in UCE. 1731
Ibid. P. 367. is thought not improper to fubjoin, from the Regifters of the Royal Society, the following Intimation from the Rev Mr Fof. Wafie, Rector of Aynbo in Nor:bamplonßire, of "a Shock of an Eartliquake felt there "On Sunday, OEF. 10, about 4 in the Morning, 1731. This Gentle" man faith, that his Windows rattled, as if fometody had been " dancing over-head. The Concuffion lafted about a Minute; others "thought it lafed about 2". It alarmed the neighbouring Villaves, "Bloxbam, 4 Miles S W from Aynbo; Barford, 5; Banbury, 4 W; *. Aiderbury, a Mile W; Crowion, a Mile to the E; and Clarrlion, as
" much to the N. There was no Notice of it's Progrefs S. or S E.
"About a Minute after, fome of the Town of Aynbo faw a great Fiafh
" of Lightening. In the Morning the Sky looked of a Land-Colour.
" It was faid that there was a former Shock felt upon OEf. 8, about 3
" in the Morning; and that the latter was preceded by a Noife like
"diftant Thunder."
It is remarkable, that this Shock was perceived to extend more from E. to W, than from N. to S; which Particular was likewife obferved in the laft Shock felt in Suffex 1734 .
XV. Oct. 29,1727 , about $10^{\text {b }} 40^{\prime} \mathrm{p}$. 施. there came a great rumbling Noife; but before the Noile was heard, or Shock perceived, our Bricks upon the Hearth roie up about ${ }^{3}$ of a Foot, and feemed to fall down and loll the other Way, which was in $\frac{1}{2}$ a Minute attended with the Noife or Burf. The Tops of our Chimneys, Stone Fences, were thrown down; and in fome Places (in the lower Grounds, about 3 Misies from my Houfe, where I dwell) the Earth opened, and threw out fome hundred Loads of Earth, of a different Colour from that near the Surface, fomething diarker than your white Marl in England; and in many Places, opened dry Land into good Springs, which remain to this Day; and dried up Springs, which never came again. It continued foaring, burfting, and fhocking our Houres all that Night. Though thie frit was much the loudeft, and moft terribie, yet 8 more, that came that Night, were loud, and roared like a Cannon at a Diftance. It continued roaring and burfing 12 Times in a Diy and Night, uncil Thurf(day, Noo. 2, and then was not fo freguent; but upon Friday in the Evening, and about Midnight, and about Break of Day upon Saturdey, 3 very loud Roarings: We had the roaring Noife upon Saturday, Sundey, Monday, about 10 in the Morning, though much abatect in the Noife.

Nov. 7, being Tuefley, about 11, it mared very loud, and gave our Howles a great Shock; and continued flocking from 3 Times to 6 every Day and Night until Nov. 12, when it was heard twice in one Hour in the Afternoon, from half an Hour after tiree to talf an Hour ateer four. Sometimes the Roaring of the Earthquake was loud, other Times it feemed at a Diftarce, and much abated. Nov. 13, being Monday, two Hours before Day-break, the Roaring was loud, and fhook the Houtis. Upon Wedinsfay following, half an Hour paft 2 in the Afternoon, there was a Roaring, but not fo loud. It continued fometimes roaring loud, and fhocking our Houfes, for $5 \cdot 6$, to 10 Times a Week, until Dec. 19 following; and then about half an Hour puit ro in the Evening, being Sunday, it roared very lout, and mook Our Houfes very much; another Shock the next Morning about four, much abated.
Gan 3, $17^{27-8}$, about 9 at Night, an eafy Shock.
Yan. 6, Saturday, there were five Shocks, attended with the Rcaring, from about 9 at Night to 4 on sanday Morning, which I heards Space of about half an Hour, it continually kept roaring every half Minute or Minute.

Upon Wednefday, fann. 24, about half an Hour after 9 at Night, it roared exceeding loud, and was followed in half a Minute with roaring much abated in the Noife.
Fan. 28, Sunday, about half an Hour after 6 in the Morning, another eafy Shock, and another about 10 the fame Morning, eafy: $\mathrm{On}_{n}$ the fame Night about one, a loud Roaring and Shock.

Fan. 2.9, I heard it twice, though eafy, that Day.
Tuefday, fona. 30, about 2 in the Afternoon, there was a very great Roaring, equal to any but the firt, for Terror: It hook our Houfes fo, as that many People were afraid of their falling down; Pewter, $\mathcal{E}^{3} \mathrm{C}$. was thaken off our Dreffers; the People that were in the Church for Evening Service, ran out; the Lead Windows rattled to fuch a Degree, as that I thought they would all be broken. And there was another Shock the fame Day, about an Hour and half after, though much abated.

Feb. 21, about half an Hour paft 12 at Midnight, a confiderable loud Roaring with a Shock.

Feb. 29, fuch another.
March 1\%, about 3 in the Morning, an eafy Shock.
March 19, $40^{\prime}$ paft one at Noon, a fmall Noife; at 9 the fame Night, a fmall Noife with a Shock.

April 28, 1728 , about 5 in the Afternoon, a fmall Noife, but perceivable.

May 12, Surday Morning, about $40^{\prime}$ paft nine, a long and loud Roaring, and fhook the Houfes.

May 17, about 8 in the Evening, a long and loud Roaring fook our Houfes.

May 22, feveral fmall Roarings in the Morning; but about 10 the fame Morning, long and loud, and fhook our Houles.

May 24, about 11 at Night, loud and long Roaring Thook our Houres.

Tburday, Fune 6, Saturday 8, about 3 in each Morning, a long and loud Roaring.

June 11, 9 in the Morning, a fmall Noife.
Fuly 3, about 2, in the Morning, and Fuly 23, about Break of Day, very loud and long, fhook our Houfes. Befides thefe Times I have mentioned, it has been often heard by me; but the Noife was fmall, fo Iforbore to fet them down: I had Thoughts to have added no more Account of the Noife and Repetition of the Earthquake in my ChurchBook; but acquainting my People with what I had done, they prevailed upon me to proceed again, which I did upon March 19, 1728-9. Wednefday, betwixt 2 and 3 in the Afternoon, it was loud and long, Thook our Houfes, being repeated twice in an Inftant; and this was
the longeft and loudef Roaring, and the greateft Shock, that I'ever heard, the firtt excepted, and that on $\mathfrak{f}$ an. 30 , mentioned before. We had feveral fmall Shocks in this Interim.- But Sept. 8, 1729, about half an Hour pait 3, it was loud and long.
Sept. 29, about half an Hour paft 4 in the Afternoon, loud and long.

O8t. 29, I heard it twice this Night; one of the Times was about the fame Time of Night the firt Shock was.

Nov. 14, about 8 in the Morning, loud and long, attended with two Burfts like unto two fudden Claps of Thunder; fhook our Houfes.

Nov. 27, about 8 in the Evening, a very great Roaring, and a great Shock : It was heard at $I_{p}$ feich, about 14 Miles diftant.

Feb. 8, 1729-30, about 8 in the Evening, a fmall Shock, about Midnight loud and long, and gave our Houfes a great Shock.

Feb. 26, about a Quarter before 2 in the Morning, the Noife was repeated twice in about one Minute : The firft was loud and long, and fhook our Houfes equal to any but the firt Shock; the fecond Noife was low, and feemingly at a Diftance.

April 12,1730 , about 8 in the Evening, a very loud and long Noife, and a great Shock, equal, I thought, to any for Length and Noife, the firlt excepted.
July 28, about 9 in the Morning, a fudden and loud Roaring and Shock.

Aug. 15, about 8 in the Morning, a Shock of the Earthquake, twice. repeated in a Moment of Time.

Nov. 6, about 11 at Noon, it was loud and long, and gave my Houle a Jar.

Nov. 14, about 9 in the Morning, a fmall Noife and Rumbling, no Shock.

Nov. 25, about $20^{\prime}$ paft 8 at Night, a loud and long Roaring, and gave my Houre a confiderable Shock.

Dec. 6, about a Quarter of an Hour before 11 at Night, it was loud, and roared long, and made our Houfes jar.

Dec. 11, about a Quarter before feven at Night, there was a fmall Burf, but fhook my Houfe.

Dec. 19, about half an Hour paft 10 at Night, the Earthquake did very much thake our Houfes, without any Noife or Roaring, more than ever before, the firft Time excepted. It was felt at Boffon 40 Miles, at Pijcataqua 22 Miles, almolt equal to what it was with us.

Fan. 7, 1730-1, about 7 at Night, it was loud and long, frook our Houles.

Fan. II, about Midnight, loud and long, fhook our Houfes.
March 7, about 5 in the Evening, we heard the Noife, but no Shock

May 28, 173 r, about 9 in the Morning, I heard the Noire of the Eardhquake very diftinctly, but could not perceive that it hook.

Fris" 5 , a jour Sun-rife, it was loud and long, monk our Houfes.
Aug. 21, 9 in the Evening, the Noife was final and Short.
Oi. 1, about it at Night, loud and long, Shook our Houfes.
Fib. 7, 1731-2, about 7 at Night, a great Shock, hook our Houses. Sept. $5,17.32$, about Noon, we had a tevere Shock, which was perceised at Bolton and Pijcataqua, but attended with little or no Noife. The fame Earthquake was heard at Moun:real in Cenedn, at the frame Time, and about the fame Hour of the Day, and did Damage to 185 Houris, killed 7 Persons, and hurt 5 others; and it was heard there feveral Times afterwards, only in the Night, as the News-Papers gave us this Account.

Dec. 30, in the Morning we had a Shock, and it had been heard by tome People feveral 'Times within 3 . Weeks before.

March 1, a loud and long Noife of it.
ORt. 19, 1733, a loud and long Noife about Midnight.
fan. 16, 1733-4, about 20 ! part 10, at Night, a loud and long Roaring.

June 29, 1734, about a Quarter pat 3 in the Afternoon, there was fomewhat of a Noife of it.

O8F. 9, about $20^{\prime}$ pat 10 in the Morning, a fall Shock.
Nov. 11 or 12, for it was about Midnight, we had the loudest Noife, and the greateft Shock, except the firft: It was long, very awful and terrible.

Nov. 16, about 6 in the Morning, there was a fall Shock.
Feb. 2, $1735^{-6}$, about a Quarter of an Hour before 6 in the Evening, there was a pretty loud Noile and Shock.

March 21, about half an Hour part so in the Morning, it was fomewhat loud.

July 13, 1736, about three Quarters after 9 in the Morning, the Noise of it was loud.

Ort. 1, about half an Hour pat one at Midnight, it was loud and long, and a great Shock, twice repated in an Inftant.

Nov. 12, about 2 in the Morning, there was a Shock with the Noife, and about 6 the fame Morning it was fomething louder.
Feb. 6, 1736.7 , about a Quarter pat 4 in the Afternoon, we had a confiderable Shock.

Sept. 9, 1737, about 20 ' pat 10 in the Morning, it was very loud and long, and hook our Houses very much.

Dec. 7, a little before 11 in the Night, the Ground hook very much, but we heard no Noife. Upon the fame Dec. 7, at Nere-York, they had 3 fevere Shocks of an Earthquake in the Night: It threw down there fume Chimneys, and made the Bells to toll fo as to be heard. At the fame Time the faid Shock and Noife was felt and heard in many other Places.

Aug. 2, 1739, we had a great Shock; it made my House flake much, and the Windows jar. It was about half an Hour pat 2 in
the Morning: I think I never heard but two either louder, or longer, or greater.

Dec. 14, 1740, about $35^{\prime}$ after 6 in the Morning, there was heard a pretty loud Noife of the Earthquake.

Fan. 1B, 1740-1, about 4 in the Morning, there was heard the Noife of the Earthquake.

Fan. 25, 1740-1, about 10 before 4 in the Afternoon, there was a Shock of the Earthquake, with a loud rumbling Noife. This is the laft that has been heard (and I pray God I may never hear any more fuch, and fo long). I have omitted to fet fome down that were fmall, or fuch as I did not hear myfelf: I was very exact to the Time, fo that what Account I have fent you, is moft certainly true.

I thought an exact Account of fo remarkable a Judgment, continued fo long, might be acceptable: And although the firt Night was the moft terrible, as the Surprize was fudden, yet there never happened one Shock amongft us, but what occafioned fome Alteration at that Time in every Perfon's Countenance and Confitution; and which Way foever any Perfon's Face happened to be, that Way the Noife of the Earchquake appeared to him: And I have frequently, in my Converfation with fundry Perfons, been told by them, that for a few Minutes before a Shock of it came, they could foretel it by an Alteration in their Stomachs; occafioned (as I fuppofed) by an Alteration in the Air: I atteft to the Truth of the Thing by my own Experience.
P.S. I forgot to tell you, that (except the firft Shock) thefe frequent Repetitions of the Roaring and Shocks of the Earthquake were upon Merrimack River, and feldom extended above 7 or 8 Miles Diftance from, or 20 or 30 up the faid River; thofe Inftances only excepted, which I have mentioned in the Relation; and the firt Shock of it was greater with us than any where elfe in New England; and the Tops of Chimnies and Stone Fences were thrown down only in thefe Parts.
XVI. We have had here very unfetted Weather; continual Rains, fometimes more, and fornetimes lefs; continual Winds, chiefly from the S . and W , fo that farce any in this City remember to have feen the like. We cannot be faid to want Wind here, fince fcarcely a Day paffes without it, from fome Point or other. But to obferve in the Country one Wind in the Morning, another at Noon, and then a third at Night, is what furprizes us. In fome Days, efpecially after the Winter Solftice, there have been felt extraordinary warm Southern Breezes, from whence People drew an ill Omen of the Health, or other Misfortunes, which every one figured according to his own particular Fancy: However, no one thought of the prefent Calamities, the Reafons of which are unfeen by mortal Eyes; for where Thall we find thofe Telefopes through which our Sight may reach the fubterraneous Receptacles of that Matter, which, whether burned or fomented, makes the whole Earth ftart, and terrify Man? I look upon the Forefight of

VOL. VIII. Part ii. Yyy there

An Account of the Earthquakes felt in Leghorn, from the 16 th to the $27^{t h}$ of Jan. 1742. Witb fome Obfervations made by the mof Reverend Siz. Pafqual $R$. Pedini, Principal of the Clergy of the moff eminent Colige of the faid City. No. 463.p.77. Read Aprill 8, 1742. prophetic fixing them to a certain Time, much more fo: But obferve to what a Pitch Ignorance or Fear carries fome People; after the firft Shock of the Earthquake, every Body was in great Confternation within this City, not fo much for what they immediately felt, as through Fear of another infinitely more violent, which a certain Milanefe Aftrologer predicted to happen (as they faid) Yan.28. By Misfortune he was witrin a Day of it, the great Earthquake being the 27 th ; by this Means the Faith and Credit given to the Aftrologer inicreafed fo much, that I do not know whether hec has not more Reverence and Honour flewn him than the Prophets, and holy Gofpel. Theic is no Need to prove, that this Science does not belong to Aftrologers; for Effect fhews it, fince the Earthquake came a Day before his Prognoltication. He has moreover predicted another Earthquake to happen March 6 next, upon which Numbers who are in the Councry, and fome at Pija, will not return to Leghorn till that Day is part.
Fan. 16 was a very temperate Day, with a gentle Breeze between $S$. and W. A little after 24 Hours (about 6 at Night, according to the Englifb Way of reckoning) I obferved a certain dark Cloud, which paifed with a bad Smell; of this I took but little Notice, having often fimele the like; and whiat might occafion a greater Inobfervance, was, a great Cold, which prevented my diftinguifhing between Smells, whether good or bad: However, I faw this Cloud, blacker and thicker than the reff, fettle within a Foot and an half on the Tops of the Houfes, like the Smoke that the Pearants make in an Evening, when they burn their Garden Rubbihh, or fuch-like. On account of the cald 1 had, and this black Cloud, I went into a Friend's Houfe: Finding him with Company, after a little common Difcourfe, he returned, it being Tuefday, and I remained witha few more. At 2 Hours in the Night, ( 8 Eng.) we thought the Pavement gave Way, and the Chamber fhook: Some of us thought it proceeded from walking in another Chamber, others thought it was a Shock of an Earthquake; upon which I liftened attentively, to hear if there might be any confequent Motion or Noife in the Houfe, that I could attribute it to; but on the contrary every Thing was quite ftill: Upon this I went to the Window, and found a fmall Air from the South; the dark Cloud was no longer to be feen, but a thin night Obfcurity in the Air. Scarce a Quarcer of an Hour paffed, bur the Chamber received a more violent Motion than the former, though not to frighten us very much. I obferved a Motion in the Candices on the Table from W. to E. We then heard all the Bells in the City; on this my Friends and I went out of the Houfe, and ftaid abroad till $4^{\text {h }}$. I fmelt the Stink no longer, but obferved the Cluuds increafing and thickening on every Hand, but always with a white Hue, like the Circle which is often feen round the Moon, but of a prodigious Extent. Every Body's Eyes were bufied at this, looking on it as the Forerunner of fomething extraordinary, though no-body
knew what would be the Event. Many afked my Opinion of this Novelty: I told them, I had obferved the fame Thing very often, and that the Confequence was fometimes Rain, or Wind, and very often nothing at all : In fhort, I perfuaded them it was nothing out of the common Way, and did not portend any future Evil, as they thought. But returning home a few Minutes after 4 in the Night, I was got about half Way up the Steps, when another violent Shock began, far fuperior to the two former, which lafted about the Time one might fay an Ave, Maria; the Motion was fudden, and the flaking of the Houfe was from E. to W. The Houfe wherein I live being $S$, and I ftanding fronting it, faggered twice to the Right-hand, and in great Danger of falling down all the Stairs.

At 10 Hours and a half were heard by many 2 other Shocks, (with a fmall Intermiffion of Time) much like the two firft; however, I was not fenfible of thefe. One waked me at $11^{\mathrm{h}} 45^{\prime}$, and another about an Hour after: Thefe were perceived by every Body, but were of no Confequence; and I being between Sleep and Wake, could not tell which Way the Houfe moved. In the Morning, Fan. 17, after the laft Shock, there fell a little fmall Rain, like Hail, which turned to Snow about 14 or 15 Hours, which fell in fuch Abundance for an Hour, that the Streets and Tops of the Houfes were quite covered; and a little more after Mid-day, which continued all the Remainder of the Day. On the 18 th there were no fenfible Shocks of the Earthquake, but there were now and then vifible Undulations of the Ground, though of no Confequence. The 19th in the Morning, at Sun-rife, there were between the E. and S. certain Clouds very thick, which difperfed as they came nearer to the folar Difk; but there always remained a particular uncommon whitifh Thicknefs in the Air, till $16^{\text {b }}$, when it was entirely diffipated; a fmall Gale rofe from the South, which foon fell again, and changed to the Weft; the Sun was fo fcorching, that it racked the Head to ftay in it. At $18^{\mathrm{h}} 30^{\prime}$ I heard a rumbling Noife, which feized me with Horror, and expected an Earthquake was at hand, neither was I deceived, the Houfe began to fhake, and continued the Motion 8 or $10^{\prime \prime}$ : It came like a Blow, and the Houfe waved from W. to E. At $19^{\text {h }}$ exactly, followed another Shock, which lafted about $3^{\prime \prime}$; but I did not obferve any Motion of the Building, being fo furrounded by Numbers of People, that I could not ftir, nor raife myfelf from kreeling, being then at Church. All the Remainder of the Day, quite till $23^{\text {b }}$, the Earth was in continual Motion; and exaCtly at $23^{\text {h2 }}$ followed ancther Shock, like that at $1 \mathrm{~S}^{\text {h }} 30$ '. Ifelt nothing at all of this, by the Increafe of the People, who poured in upon us. However, at $2^{\mathrm{h}}, 3^{\mathrm{h}} 30^{\prime}$, and $3^{\mathrm{h}} 50^{\prime}$, I perceived 3 finall Shocks; and from that Time to $\mathrm{Fon}^{20}$. 20, at $23^{\mathrm{h}} 30^{\prime}$, I felt nothing: At this Hour there was a fmall fhuddering, which was not univerfally obferved. At $5^{\mathrm{h}} 25^{\prime}$ in the Night, followed a Shock like that of $1 \mathrm{I}^{\mathrm{h}} 30^{\prime}$ of the 19 th Day, with this Difference only, that the Houfe waved from SE, and conYyyy 2 tinued the Ground (fomething interrupted) until $20^{\text {h }}$ of $\mathcal{F a n . 2 1 ;}$ at $23^{\text {h }}$ of the faid Day, being in the great Piazza of the City, I found a fmall Motion of the Ground, which was obferved by a few more, that I happened to be in Company with.

Some Fifhermen told me, that at the fame Hour, Fan. 19, that we had the terrible Shock at Legborn, they being at Sea between Meloria and Gergona, faw a fmall Part of the Sea rage violently, and raife itfelf to a great Height in a white Foam, with a dreadful Roaring, and frighted them fo far as to imagine themfelves loft, though it did not directly beat upon them, but filt it on one Side only; which made them imagine fome violent Mifchance at Shore; and keeping their Eyes always on that troubled Part of the Sea, perceived it made towards Leghorn, and broke on the old Fortrefs, which for a little while was hid from chem. The Captain of a Ship, who came to this Port, fays, that he faw, to his great Surprize, a few Miles diftant from Capo Corfo, feveral Streams running with great Impetuofity different Ways, and fo very rough, that although he had a very fair Wind, he expected every Moment to be loft. This muft have happened juft before the Earthquake of 7 ain. 19 above-mentioned.

From the 20th to $23^{\mathrm{h}}$ of $7 a n .25$, the Ground was in a continual Agitation: I fufpected it might be my fool:h Apprehenfions: I afked every one I faw, but every body agreed there was fome little Matter. To alfure myfelf of the Truth, I put Water in a Bafon, and put it on a Plain, obferving it every Time I thought I felt any Thing, and faw it move: I continued this Obfervation till 7 an. 26 , and at $23^{\text {h }}$ on the 25 th Day, there was a much greater Motion than that of the 2oth Day; and from that Hour until $18^{h} 45^{\prime}$ on the 27 th Day, there was not the leaft Motion perceptible: Upon this I hoped the Evil was paft, and comforted myfelf with thinking that Matter fpent to which the Philofophers attribute this horrid Pbanomenon; but found myfelf miltaken, for when I leaft expected it, and my Mind quite otherwife engaged, I was furprized the faid Hour with a moft dreadful Noife, which was followed by a treble Shock of the Earthquake in the moft trightful Manner, and beyond Meafure violent; it began by a fuccufive Motion, and followed by a Sort of Blow with horrible Violence; and at laft came another fuccuffive Motion, more horrible than the former: There was heard from under-ground a hollow terrible Rumbling, as if the whole Earth had broken to Pieces: It had a Motion like turning, and continued moving; the Houfes waved 30 or $32^{\prime \prime}$, from E. to W. I looked upon myfelf quite loft, and expected nothing lefs than the immediate Ruin of the Houfe, efpecially when I beheld Part of the Door-cafe falling, and the Parrition-Walls cracked; the Mortar fell all about like Rain, the Furniture and Cloaths hung to the Walls fell all down; in this I was confined, without being able to feels Safety out of the Houle, but ftood fixed, and nailed up, (as it were)

## Accounts of feveral Earthquakes.

by the furrounding Crowd of frightened Wretches that flocked in upon me : At laft, however, I got out, and could hardly believe my Eyes, when I found the Houfes all ftanding, having figured Things much worfe than I found them; yet every Thing has fuffered very much, there not being a fingle Edifice but what is damaged; although a great Part of the Hurt within the Houfes proceeds chiefly from the Roguery of the Builders, who either when firtt built, or in repairing, ufed bad Materials; thofe which are well built have fuffered fcarce any Thing : Some muft inevitably be rebuilt, chiefly thofe which remain leaning to one Side; which proceeds chiefly from the Load occafioned by their being raifed fo high. What has moft furprized me is, the Number of Cracks in the Walls of this Collegiate Church, which were built without fparing any Coft, to make them a compleat Piece of Workmanflip, and are of an extraordinary Thicknefs, as one may obferve in fome of the Openings in the Building and Vaulting, which was efteemed fuperior to any in this Town: From hence you may conceive a juf Idea of the extreme Violence of the roaring Earthquake. As for myfelf, I look upon it as a particular Providence, that the whole City did not go to Wreck; and had not the Houfes been in general very good, they muft have come to the Ground. The Ruins confift in, viz. the Roof of the Church of St Gobn Baptijt, the Convent of Augufine Friers, the Roof of a Palace called Rofcicno, belonging to the Family of Borghefz of Sienna. Befides thefe there are few others of Confequence, and but 3 People killed. There is an immenfe Quantity of Iron Chains. ufed, to keep the Walls of the Houfes together.

Upon account of the Inconveniences attending this Earthquake, an infinite Number of People went out of the Town; the Houfes and Shops were abandoned inftantly, to feek Refuge in the great Piazza : So great was the Confternation, that no one knew what he was about. It was an Object of the greateft Compafion, to fee the Aftonifhment. and general Confufion that prevailed; cvery body looked pale as Death, without knowing what he did or faid. There was another fmall Shock at $19^{\text {h }} 0^{\prime} 1^{\prime \prime}$, at $19^{\mathrm{h}} 15^{\prime}$, and a third at $20^{\mathrm{h}}$ : After this laft, I faid till $2 \mathrm{I}^{\mathrm{h}}$ of 7 an .30 , and then went away to breathe a little of pure and more quiet Air than you enjoy, and obferved no further confiderableMotion of the Earch; there remained, however, a continual Undulation, fometimes more, fometimes lefs; but muft own, that from $22^{\text {h }}$ of ' 7 an .27 , to $13^{\text {h }} 30^{\prime}$ of the next Day, I could not perceive any: Thing, becaufe I retired, and went to lie on board a Ship.

We may oblerve here, that fome Earthquakes happened in cloudy ${ }_{3}$ fome in ferene, fome in ftill, and others in quite ftormy Weather. Fan. 1.6 at Night was Snow and Clouds, as above-noted, with a very: fmall S. Wind from Midnight to Break of Day; the Fogginefs turned into Clouds, which afterwards became Sleet and Snow. On the 19 th in the Morning, was a bright Sun, but a gentle Breeze; about $23^{\text {h }}$ it was cloudy, which at laft coxered all the Sky, continuing cloudy alk

## Accounts of feveral Earthquakes.

that Day and the nixt Night, when at $5^{\text {h }} 25^{\prime}$ followed the above-mentioned Earthquake; and in the Morning about $13^{\text {h }}$, there fell a fmall Sleet and a Wefterly Wind. Before the Earthquake on the 19 th, the Waters fwelied, and then fell again; foon after they fwelled half a Yard higher than they ever were ufed to do. I was told by many, that the fame Night and the following, there was a ftrong Smell of Sulphur in the Streets; but my Cold prevented it's being perceived by me. This Smell was likewife found in the Water of fome Wells. The Sea was feen in fundry Situations, now high, and then prefently very low again; fometimes ftrongly agitated, and at others on a fudden calm. On Sunday, Fan. 20, a fmall Sleet fell all Day, and the Air was changeable till the 27 th in the Morning, being, by Turns, ferene, cloudy, foggy, windy, and damp, with South and Wefterly Winds, The 27 th in the Morning, was a pleafant fine Sky, and a bright Sun, but exceffive hot: About 16 or $17^{\mathrm{h}}$, a brifk Welterly Wind arofe, and with this full Wind we fuftained, at $18^{h} 30^{\prime}$, the violent Shock of the Earthquake; the Waters were obferved to rife as high or fomething higher than the 19 th. At Night, between $24^{\mathrm{h}}$ and $\mathrm{I}^{\mathrm{h}}$ in the Night, it became cloudy in the W, with a ftrong Wind; from Midnight to Day-break, fell a fmall Sleet, which continued (with fome Interruption now and then) till the 28ch; between whiles the Sun fhone. The 28 th at Night, and the 29 th Day, it rained violently, accompanied by flrong bluftering Winds from the W. The 2gth it was all Day cloudy, with the fame violent Wind and Rain. The 3oth the Sun began to appear, but the Clouds were not all difperfed. At $2 \mathrm{I}^{\mathrm{h}}$ this Day I left Legborn, and have not been able to make any further Obfervations.

It is faid here, that the Sea roared with fuch Violence and Smartnefs, that it's Noife was like the firing of large Cannon. I have not feen any body who was then at Sea, but a Friend of mine informed me, that a Fifherman (a Frencbman by Nation) being then in his Boat, found it of a fudden raifed up a prodigious Height, and then it fell down fo low, that he thought it had touched the Bottom of the Sea, and concluded himfelf loft: During this uncommon Motion he affirms to have heard one of thefe Noifes refembling the firing a Cannon, and afterwards felt no Storm. I give it neither for true or falfe, but as a Relation of others. It is affured me by many, that on the ninth Hour of the 1oth Day, there was a fmall Shock of an Earthquake. Thefe are all the Obfervations I have been able to make myfelf, and gather from other creditable Perfons, having avoided the additional Stories that are commonly raifed on fuch Occafions.

What has much attributed to the Prefervation of this City, is the fatherly Care and Solicitude of our Royal Sovereign, who, by the Means of his Royal Council of Regency, neither has or will ever fail giving us Inftances of his Royal Munificence to this afficted City; having ordered, that fuch Wood, Iron, Ejc. fhould be furnifhed as may be neceffary for Repairs, with certain fixed Prices; having further

## Accounts of Several Earthquakes..

ordered one half of the Duty to be taken off of Flefh. He has'alio, at his own Expence, fent a moft able Engineer, and two MafterBuilders, to eftimate and fupervife the faid Repairs: Neither has his Bounty failed to the more Indigent, who not having wherewithal to repair the Damages they have fuffered by this Earthquake, he has ordered Money to be diftributed for repairing them, that he may again fee this his dear City vefted in it's former Beauty. The Affiftance and Watchfulnefs of the civil and military Power was likewife very great, even during the Tinse of the Earthquake; for by their Means there were no Dilorders practifed, not even in the Midft of the Hurry and Confiufion, as it very commonly happens upon fuch Occafions.
P. S. I cannot omit to acquaint you with fome Obfervations communicated to me after the writing of this Letter, by Sig. Ferdinando Tidi, a Gentleman of inconteftable Credit, who being at his Seat in the Country, called Popogna, pretty high up a Hill, between the Mountain Montenero, and the Valley Bencdetto, on Fan. 20, about $2^{\mathrm{h}} 30^{\prime}$ in the Night, he obferved a large Circuit of Air in the Weit, (quite from the Inand of Corfica to Capo Mele) thickened with Clouds, but open, and all the Remainder of the Sky covered with heavy dark Clouds; he faw the Air light, and extremely fhining, fo that one might eafily read a Book; and, according to his Defcription, muft have been a very bright Aurora Borealis. Befides this, he obferved that when we had the Wind from S. or E, the Sea was in great Agitation, and ran towards Leghorn, but fuddenly retired. I will likewife tell you, that Sig. GuiSeppi Vincenti, Captain of the firft Lazaretto, and prefent Canfalonicve of the City, a Perfon not eafily to be impoled upon, having one Night, at about $3^{\text {h }}$, opened his Window, faw a Cloud in the W, which was exceeding dark, except in the Middle, where a ftrong Light (like the Influence of the Sun juft before it's Rife) difcovered iffelf, and difperfed Beams of reddih Fire all over the Circumference of the Cloud, which was very extenfive. He made a Friend of his obferve the fame Thing, but neither one or the other remember what Night it happened; and being uncertain of the particular Night, is the Reafon 1 omitted it in the Account: But fince it happens, that I am treating of thefe Pbanomenons, which may have fome Relation to the Earthquake, and proceed from the fame firf Culf, I imagine it mult have been the fame Night, though perhaps not. However it may have been, I have related to you a true Expofition of all Things as they really were; and there is now a Way opened for Philofophical Oblervations and Inquiries. As for me, I fhould be of Opinion, that it is a Collection of thofe Vapours and Exhalations proceeding from the Fermentation or lighting of thofe Particles of Matter, which occafioned the Earthquake.
XVII. The Parifh of Paraines, in the Diftrict of Iffoire (in Au-ANarrative of. vergne) is fituated about a League from the Town of Ifoire on the Road to Clermont, almoft on the Top of pretty fteep Hill.

## An extrcordinary Sinking of Ground.

 near Auvergne, by $M$.Tranflated from the French, by Phil. Henry Zol!man, E/q; F. R.S. No. 455, p. 272. Nov. छ゙ఁ. : 739.

This Parifh confifts of two Villages, or Hamlets, diftant from each other about 200 Paces; the one, which is called Le Fort, in which is the Parifh Church, and Part of the Houfes of the Inhabitants, ftands upon a Rock ; there appear the Remains of an ancient Fortification, with which fome Houfes were furrounded in the Time of the Wars.

The other Village, which is properly called Pardines, was compofed of the greater Part of the Houfes of the Inhabitants to the Number of 46 Buildings; the Ground whereon this Village was built, as well as that of the whole Hill, is a good and light Earth, mixed with a little white Clay: There are alfo found in it fome Stones and Rocks of a middling Size. This Land was very well cultivated, and very fruitful, confifting of Fields fowed with Corn, of Orchards, and for the greater Part of Vineyards; the whole Ground was overfpread with Fruit. Trees, particularly Walnut-Trees.

This Earth ufed to dry foon and chap from the Heat; they even obferved in it long fince Clefts of a confiderable Depth, which fometimes growing wider and wider, formed feveral Gullies
Fune 23, 1733, about 9 in the Evening, the Inhabitants of the Village of Pardines faw the Walls of their Houles thake fenfibly; whereupon they all retired out of them, and faw that the Hill vifibly melted away, as it were, the greater Part of the Land fliding along towards the Vale; others fubfided fenfibly; in fome Places the Earth, opening itfelf formed new Culls, and thofe that were obferved there before, grew much wider; fometimes the Ground, which nlided along in great Pieces, ftopped and tumbled one Piece over the other; and the Rocks, which broke loofe from that rolling Earth, precipitated themfelves into the Valley, which at prefent is quite filled up with them, as well as with the Earth which rolled down, whereby the Road from Iffoire to Clermont is become impaffable.

All this was done, not with any impetuous Motion, but very gently, and even fometimes almoft imperceptibly; a fenfible Motion was obferved during the Space of 3 or 4 Days at different Times; there was even a Houfe which did not fall till the 1oth of the prefent Month of Guly. During all that Time no Noife was heard, any otherwife than what proceeded from the Rocks falling into the Valley, and from fome large Clods of Earth, which loofening themfelves from the fteeper Parts, fell down with Precipitation.

By this Rolling were carried away 26 Buildings, large or fmall, fome of which fubfided with the Ground, and, being fhaken at their Foundations, tumbled on a Heap; the Remains of fome others appear, as yet, on thofe Pieces of Ground that solled down into the Valley.

It is computed, that the Lands which flided away, or were loft by being buried under the Rubbifh of the others, amount to the Number of 466 Oeuvres of Vineyards, 40 Septerées of arable Land, and 56 Oeuvres of Grafs-Fields, which all together may make up 150 Acres of Paris Meafure. It is obfervable, that in this Number were comprifed

## An extrastinary Sinking of Ground.

feveral Orchards, befides that the whole Ground was covered with Trees, either Walnut-Trees on the Hill, or Willows or Poplars in the Valley, of which they reckon 4000 in all.

If one may conjecture what was the Caufe of fo difmal an Accident, it feems it proceeded from the Situation of the Ground, and the Na ture of the Soil. The firft Surface of the Hill about 4 or 5 Foot deep, was a pretty light Earth, eafily dried by the Heat of the Sun; under this firft Layer there was a Stratum of fat Clay, which at prefent lies open in feveral Places, and is very moift, fo that one even fees the Water bubbling out of it in fome Places.

The great Rains that fell in the Beginning of the Spring, foaked through and diluted this Stratum of Clay, which retained and gathered all the Waters of the Hill running between the two Layers; the Heat of the Summer enfued, which dried up the upper Surface, and formed it into a Sort of folid Cruft, which Cruft refting itfulf upon a fat and moift Clay, and by it's fteep Situation being inclined to nide towards the Valley, the whole Surface of it loofened itfelf by great Pieces, and breaking in feveral Places, flided along towards the Place whither it's Declivity would naturally carry it. There are fome Parts which moved almoft infenfibly, and only funk or fubfided, either becaufe the rolling of the aeighbouring Soils made Room, that what was under this Surface might nide off, or perhaps becaufe the Parts under this Surface had been hollowed a long while fince, by the Waters which paffed between this Surface and the Stratum of fat Clay. Other Parts, which were much more in Number, rolled all together towards the Valley, and one fees yet whole Pieces of Vineyards, with the Props remaining upright; which may eafily be conceived: There are again other Parts, which in tumbling were overturned in different Manners.

I am to add here, that this Accident is not without Example in the Province of Auvergne; we have not indeed feen fo confiderable a one till now, yet it has often happened, that Pieces of Earth of a Quarter or half an Acre, have feparated themfelves all in one Piece, from the Top of a Hill, and nided down vifibly on the Lands lying below.

How confiderable foever this Accident may be in regard to the poor People who fulfered by it, yet it was to be wifhed it was the only one that has befallen this Province. The overflowings of the River Allier, and of the Rivers and Brooks that run into it, and the Hail that fell almoft continually fince, have entirely ruined above 100 Parifhes, in which they will have no Harveft this Year as for Corn and Hemp, nor any Vintage at all.
XVIII. The Perfons of whom you have the following Account were loft in a great Snow on the Moors, in the Parifh of Hope, near the Woodlands in Dercypire, Jan. 14, 1674; and not being found until the $3^{d}$ of May following (the Snow lafting probably the greateft Part of that Time) they then fmelt fo ftrong, that the Coroner ordered them to be buried on the Spot. The Man's Name was Barber; he had been VOL. VIII. Parti. Zzzz a con-

An Account of the dead Indies of a Man and Woman zubicb were prefervad 49 Year in tbe Moers in Derby hise"; by

## Dead Bodies preferved.

Dr Charles Balguy of Pe. terborough. No. 434 p. 413. Sept. S'c. 1734.
a confiderable Grafier, and was well known by the People that found him: But being reduced in his Circumftances, was then going off with his Servant-Maid for Ireland. They lay in the Pcat-Mofs 28 Years 9 Months before they were looked at again, when fome Countrymen, having oblerved, I fuppofe, the extraordinary Quality of this Soil in preferving dead Bodies from corrupting, were curious enough to open the Ground to fee if thefe Perfons had been fo preferved, and found them no Way altered, the Colour of their Skin being fair and natural, their Flefh foft as that of Perfons newly dead. They were afterwards expofed for a Sight 20 Years, though they were much changed in that Time, by being fo ofen uncovered; and in the Year 1716, Ds Bourn of Cbisferffeld was there, who gave me this Arcount of the Condition they were then in, viz the Man perfect, his Beard frong, and about a $\frac{1}{4}$ of an Inch long, the Hair of his Head hhort, his Skin hard and of a tanned Leather Colour, pretty much the fame as the Liquor and Earth they lay in: He had on a Broad cloth Coar, which he tried to tear a Skirt off, but could not. The Woman, by fome rude People, had been taken out of the Ground, to which one may well impute her greater Decay; one Leg was off, the Flefh decayed, the Bone found, the Flefh of one Hand decayed, the Bone found; on her Face, the upper Lip, the Tip of her Nofe decayed, but no where elfe. Her Hair was long and fpringy as that of a living Perfon. He took out one of the Fore-Teeth, the upper Part of which, as far as was contained in the Socket, was as elaftic as a Piece of Steet; and, being wrapped round his Finger, fprung again to it's firft Form; but this Power was loft in a few Minutes after it had been in his Pocket.

Mr Barber of Rotberam, the Man's Grandfon, was at the Expence of a decent Funeral for them at laft in Hope Church, where, upon looking into the Grave fome Time afterwards, it was found they were en. tirely confumed.

Mr Wermald, the Minifter of Hope, was prefent when they were removed: He obferved that they lay about a Yard deep, the Soil or Mols moift, but no Water ftood in the Place at all. He law their Stockings drawn off, and the Man's L.egs, which had never been uncovered before, were quite fair; the Flefh, when preffed with his Finger, pitted a little, and the Joints played frecly, and without the leaft Stiffinefs: The other Parts were much decayed: What was Ifft of their Cloaths (for People had cut away the greatelt Part to carry bome as a Curiofity) was firm and good; the Woman had on a Piece of new Serge, which feemed never the worfe.

Thefe are all the Particulars of Moment which my Friends, who faw them at chis Diftance of Time, are able to recollect. The Thing is certainly very remarkable, as there are no Means known (I believe) of preferving dead Bodies fo well.

## An Account of Petrefactions.

XIX. In the mountainous Part of Derby/bire, about Cromford, is a Valley of at leaft a Mile and half long, walled on each Side with high craggy Rocks; the Faft Side clify, the Weft more reclining, but extremely rough and difficult of Afcent; being compofed of large loofe Pieces of the Lime-Stone Rock, of 5, 10, or 20 Ton Weight; that feem at fome Diftance of Time to have broken off from the Tup of the Cliffs, and fallen down into the Valleys - At the Bottom of the Valley, which feems to be a great gaping Fiffure of the Rock, runs the River Derwent barfhly along it's rocky Bottom. About the middle of the Valley, at near 50 Foot perpendicular Height from the River, iffue forth feveral Rivuluts of a luke-warm Water, that pour themfelves into the Dervent below. Some of this Water, being collected in a Refervoir, on account of it's agreeable Warmeth, hath of late Years been much ufed for bathing, and is called Matlock-Bath. Now for about the Compafs of 5 or 600 Yards, near to where this Water guthes out, the Stone appears of a very different Texture and Complexion; and proves, upon Examination, to be a perfect Incruftation, formed upon the original Rock; compofing a factitious Stone, of Earth, Vegetables, $\mathcal{F}^{\circ}$. of various Kinds, fuch as ufually grow in rocky Places, as Polypody, Trichomanes, and other Species of the capillary Tribe, Moffes, Brambles, Ivy, Hazle, E己c. - There are feveral large Grotto's at about ${ }_{15}$ Foot above the Level of the River, lined mof curioufly with the StalaEtite, Lnpides Stillatitii, \&xc. Some of them nearly refemble large Bunches of Grapes, and other Clufters of Fruir, very beautiful to look upon. I found upon Examination, that the farcher you penetrate into this Mountain, the clofer and more compact the Stone appears; the Intertices in the petrified Matter being at the Depth of 15 or 16 Foot, almoft filled up, and nearly as folid as the Lime-Stone, of which the original Rock is compofed; and even within 4 or 5 Foot of the Surface, though very open and porous; yet is it fo hard as to be ufed in the Building about the Bath; and I imagine it may be equally durable, though eafier to work with the Saw, than the clofe Lime-Stone.

The Mountain in feveral Places jets out almoft over the Brink of the River; under thefe Protuberances are the Grotto's, very dangerous and difficult to get at. It was here the Specimens I fend you were collected*, but it is impoffible to give you an Idea of the natural Beauty of the Place. The Froft-work, and incrufted Plants, are fome of them fo very delicate and tender, as to make it impracticable to bring them away with half their Beauty, by the moft careful Conveyance. In one Place there is an Ivy creeping along the Rock, Part of it entircly petrified, another Part only incrufted, and a third fill vegetating. In another Place is a Hazle-Tree, the Root whereof compofes a Part of this petrified Mountain, the Branches fome petrified, and fome tenderly in, crufted. As thefe are changed, others fpring up, and in Time will
undergo the fame Fate. In hort, nothing in Nature can give a more clear Idea, or more beautiful Reprefentation, of the whole Bufinefs of Petrefaction, than a curious Obierver will fee, and frame in his Mind from this Mountain. He will fee, that not only the Water, as it diftils out of the Rocks, is capable of incrutting and petrifying the Bodies it meets with in it's Paffage, but that even the Steams and Exhalations*, being highly faturated with thefe mineral Particles, will work the fame Effet ; as is evident in the Phace under Confideration, and will genesally beft account for the Supply of petrifying Matter, brought to fill up the Vacuities that are left by the Decay and Wafte of Vegetables incrufted over; and which, he will fee, are in Courfe of Time conftantIy filled therewith. For although the Water of fome Spings may be fo loaded with mineral Matter, as, perhaps by penetrating the Pores of Wood and other lax Bociies, to increafe greatly their fpecific Gravities; $y$ at furely it is contrary to the Laws of Matter, and ablurd to lay, there is any hidden Property in fuch Waters capable of changing the Parts of one Body into another Body fpecifically different. It may in Time, no doubr, lofe it's Texture and Coherency, by the Admittance of heterogeneous Particles of different Attractions; but the Caufe of Coherency in the Parts of the original Body muft entirely ceafe, and be diffolved, before it can be faid to become a Part of ary other Bociy whatever. Afterwards, indeed, the Space that was poffenid by the Parts of the original Body, may be fupplied by thofe of the new one, fo as to make in Time a uniform Stone in the Shape of the original Plant : But if this petrified Plant be fill kept in the Place where the fume perrifying Quality contiriues to act upon it, it will lofe even that Shape, and become a Part of the Body it is contiguous to ; and fo a great many of thefe petrified Plants, and other Bodics united together, will compofe large Maffes and whole Strata of Stone. This is clearly the Cafe in the Inftance now before us, and perhaps it might be carried To far as to ftrengthen our Conception about the gentral Formation of the Strata of Linie-Store or Mable; that appearirg to be every-where, (notwithftanding Dr Woodward difpatches them much more expeditiounly $t$, but efpecially in the Peak of Derbybire, fuch a Petrefaction as I have been deferibing, quire finifhed. I could urge many Reaforis for my Suppofition, but I will not trouble you with them bere, the Compafs of this Letter not pernitting me; nor do I know how far fuch Conjectures are capable of being ufed, with regard to the received Opinion of the World's Age; but if we had as good Authority to fuppofe it 60,000 Years old, as we have 6000 , it would be worth the while to trace the Origin and Source of thefe petrifying Exhalations a little deeper than feems to have been done by Dr Woodroard; and might either perfect his Hiftory, or produce a mure rational Syftem of the Earth than has yet appeared.

You will find, amongtt the Things I fend, fome Land-Coral found in a Lime-Pit, where is a great Quantity of it, between two Strala of Lime-Stone of at leaft 3 Foot thick. You will find alfo fome few Pieces of Pscudo-fappbirus, and other Kinds of Spar; they are fuch as I picked out of the Fiffures of the Rocks I have been defcribing. There is a vaft Variety of thefe Things in the Peak, much greater than hath been taken Notice of by any one; as I mall convince the Rojal Sociey,y, when I am able to prelent them with a complete Collection of Derlybire Foffils, in which I have already made fome Progrefs.

Burton, Nov. 26, 1735.
XX. I. Exp. 1. Pure Quickfilver being only fhaken in a dry, clean, Glafs Veffel, affords a very fine, foft, black Powder.

Operation. I bought ₹xvi of Quickfilver of the Amferdam Company, 1 fqueezed it through Leather, and no Impurity remained. I wafhed it well with fair Water, and it continued pure. I rubbed it a good while with Sea-Salt, and the Colour of the Salt was not altered. I poured frefh Water upon this Salt and Quickfilver; and neither did

## Experimens

concerning 2uikfliver. by Herman Boerhave, M.D. F. R. S. E\%c. No. 430 . $p$. 145. Nov. છ゙ఁ. 1733. this change Colour. In all this Operation there did not appear any: Thing black, foreign, or foul, the Quickfilver being dried after the Ablution was bright. I poured it into a clean, dry Bottle, made of dark-green Girman Glafs. I placed it in a Sand-Hitar, with juft Fire enough not to raife the Quickfilver; and that I might be fure, that all the Water was got out, for there is often fome concealed in Quickfilver, I kept it in that State for 3 Days. Iftopped the Bottle very clofe with a very folid, dry, clean Cork, thruft into the Neck of the Bottle, whilf it was hot; and clofed it all over the Top with a Cement of Pitch, Refin, Suct, and Sulphur. I covered it with Linen bound on faft with Cords. I then put the Bottle into a wooden Cafe, filting it fo as to have the Sides touch; and filled the Spaces between the Bottle and the Cafe with dry Bran. The Lid of the Cafe had a Hole in the middle for the upper Part of the Neck of the Bottle to come out. The Bottle was tight in it's Cale. Being thus prepared, I fixed it to the Hammer of a fulling Mill, that went Night and Day when the Wind blew : Thus it was continually fhaken, by a perpendicuiar Motion up and down, from March i, 1732, to Nov. I3 following.

The Veffel being opened, there was the fame Weight of Quickfilver, covered all over with a great Quantity of very fine, foft, black Powder. I fqueezed it through a clian Leather. The Quickfilver came through clear and pure. The Powder ftaid in the Leather, and. had an acrid, metallic Tafte, fomething like Braís.

Coroll. r. Quickfilver, a moft infupid Body of iffelf, aequires a metallic braffy Tafte by mere thaking.
2. From being moft mild, it becomes acrid and penetrating.
3. From a moft fhining Silver Colour, it becomes very black.
4. From a Fluid, it becomes a confintent Powder.
5. It may thercfore lie hid under the Form of fuch a Powder, and deceive the Ignorant.

Exp. 2. The moft purified Quickfilver, being treated after the foregoing Manner, affords the fame Powder in a far greater Quantity.

Operation. Sulpecting that fomething foreign from the Nature of Quickfilver might poffibly adhere to it, and be feparated from it, by Motion in Form of that Powder, I brought over all the Quickfilver with a Sand-Heat from a Glafs Retort; I poured it into the fame Retort again, and diftilled it as before. I repeated the Operation 60 Times. The Quickfilver was ditilled 61 Times. At the Bottom of the Veffel there were $3 v$ of red Powder, of which hereafter. This Quickfilver was very quick and flining. I got ${ }^{\boldsymbol{z}}$ ij of this to be flaken as before.

Effect. The Weight was the fame. There was a foft, black Powder, of an acrid, metallic Tafte, refembling Brafs to the Weight of 3 ij Gr. xxvj ; which is more than $\frac{1}{3}$ : Whereas fcarce $\frac{1}{128}$ of the common Quickfilver was turned to Powder by the fame Operation.

Coroll. 1. Quickfilver 61 Times diftilled, and very infipid, acquires a metallic Tafte.
2. From being moft mild, it becomes acrid and penetrating.
3. From a moft hining, bright, Silver Colour, it becomes exceeding black.
4. From more, than it's native Fluidity, it becomes a confiftent Powder.
5. A lafting, ftrong Fire being often repeated, it retains this Property.
6. It therefore does not depend upon a foreign Impurity of the Quickfilver, feparable from it by Fire.
7. The Matter remaining in the Botrom of the Retort, from the Diftillation of the Quickfilver, is red, fhining, acrid, and no more like the black, arifing from Concuffion, than that Part which continued volatile.
8. Quickfilver is turned red by Fire, and black by fhaking: It is therefore changeable in it's Colour.
9. Does it yield more black, if wrought upon in a lefs Quantity?

Exp. 3. The black Powdèr (Op. 2) being raifed with a ftrong Fire from a Glafs Retort, returns to pure Quick filver.

Operation. I raifed $3_{i j}$ Gr. xxvj of the black Powder (Op. 2) with a ftrong, open Fire, from a clean Glafs Retort, fo that the Retort was hot for 2 Hours.

Effect. There were in the Receiver 3 ij Gr. ij of a moft pure, infipid, fhining Quickfilver. There fluck here and there to the Sides of the Glafs a fmall Quantity of Quickfilver, which I could not get up exactly. At the Bottom of the Retort there was a fmall, thin, fixed Spot, barely vifible.

## Experiments concerning 2uickfilver.

Coroll. x. Quickfilver 61 Times diftilled, fhaken, and turned into the above-mentioned Powder, returns by Fire alone to it's ancient Form.
2. From acrid and penetrating, it becomes very mild.
3. From being very black, it becomes bright and polifhed.
4. From a confiftent Powder, it becomes very fluid.
5. After thefe 3 Operations, it remains the fame, though it changes into various Shapes.
6. The acrid Power and Tafte are wonderfully changed therein, by Motion alone, and by Fire alone.
7. In the mean Time there proceeds fome little of fixed from the Quick filver, by thefe Operations.
8. The black Subftance was no Impurity, nor any Thing foreign, fo feparated from the Quickfilver.
Scbolium. I put Quickfilver in conical Glafs Cucurbits, with a plain Bottom, clofed with an inverted, chemical, Glafs Phial, and expofed it to a Fire of 180 Degrees for feveral Months. It became black, and afforded a black Powder, alike in every Refpect. Hence I learned, that Fire and Shaking have the fame Effect upon Quickfilver in this Degree.

Exp. 4. Quickfilver is changed by fimple Ditillation.
Operation. I diftilled zxviij Amjterdam Weight of Quickfilver, bought of the Amflerdam Con pany, from a clean Glafs Retorr, with a SandHeat, into a Receiver filled with the cleareft Water to the Height of 4 Inches, till none of the running Quickfilver remained in the Belly of the Veffel. I dried and purified the Quickfilver in clean, dry, filtring Paper : So that it might be perfeetly dry, and clear from any accidental Impurity, and from the black, which comes over with the Quickfilver at every Diftillation. Then I poured it into the fame Retort, and diftilled it again as before. I repeated the Operation 52 Times. At each Diftillation there rofe a red, fhining Powder in the Retort.
Et Efect i fharp, red, hining Powder, purging upwards and down wards, to the Quantity of 3 iv 13 . The remaining Quickfilver weighed $3 x y j \%$. Therefore 3 vjif were loft. Sthis could not be avoided: For fomething gers out through the Lute; and fomiething black and a fmall Quantity of Quckfilver ftick to the filtring Paper at every Exiccation. There is but a little loft in each Operation; but this being multiplied, amounts to a good cleal. The Powder obtained was heavy, of a ihining red Colour, very friable, of a very fharp, metallic, naufious, penetrating Tafte, hardly to be got out of the Mouth, difturbing the human Body long and much, and difpofing it to Exctetions.io The Quickfilver thus obtained feemed more fluid than the common.?

Coroll. I. Quickfilver thus acted upon by the Fire, is changed near $\frac{1}{28}$ of it's Weight from a Fluid to a Powder.
2. Froen a hlining Silver Colour to a fhining red Colour.
3. From a mot infipid 'zatt, to a moft harp, horrid, metallic, pepetrating Tafte.
4. From being moft mild, to a virulent, venemous acrid, difordering the Body, and caufing Pain.
5. From volatile to more fixed, being no longer volatile with the fame Degree of Fire that firft brought it over.
6. The remaining Part becomes more fluid, the other fimilar.
7. Mechanical Motion and a fmall Fire give a black Colour to Quickfilver; a ftronger Fire, with the Veffel hut, makes it red.

Exp. 5. I was defirous to know, what farther would happen to the Quickfilver, if it was urged by a Fire requifite to Difillation.
Operation. I diffilled as before $\overline{3} \mathrm{xv} 3 \mathrm{v}$ of the Quickfilver remaining from Operat. 4, till nothing remained at the Bottom. When it was come out, I depurated and dried it, and always poured it again into the fame Retort. I repeated this Operation 448 Times. The Quick filver was now diftilled full 500 Times. It always generated fomething red: It al ways rofe more fluid and more pure. The laft Times I made the Fire ftronger, and then the red Powder feemed to be rather diminißhed than increafed; perhaps being partly revivified.

Effcr. The Powder at the Bottom of the Retort weighed $\bar{j} 3 \mathrm{v}$ Gr. xxi: The Quickfilver remaining after 500 Diftillations weighed 弓ix $3 v$ : But in fo many Diftillations the Retorts happened fometimes to crack, and fo fome of the Quickfilver efcaped, befides what was loft by fo many Times purging and drying.

Coroll. I. The Corollaries of Oper. 2 and 4 are verified alfo in this Operation.
2. Quickfilver is very immutable in one Part.
3. But very mutable in another.
4. Perhaps it returns from it's changed Form to it's firft Appearance.
5. And perhaps regenerating by a new Action of the Fire, it is again revolved to it's changed Form.

Exp. 6. The Property of Quickfliver, which turns it by Fire to this Powder, is hardly taken away from it by Diftillation.

Operation. I diftilled in a clean Glafs Retort the moft fluid, pure Quickfilver, remaining in the Weight of $3 \times 3$ vß, having made from it, by 501 Diftillations, $\mathrm{z}_{\mathrm{ij}} \mathrm{3j} \mathrm{Gr}$. lj fo that all the Quickfilver paffed over entirely into the Receiver. The Bottom of the Retort was as clean as if juft taken out of the Furnace. But at the Edge of the Surface, where it had ftood before Diftillation in the Belly of the Retort, there was a thin, beautiful, fine red, shining Ring. When the Quickfilver was come over, I dried and purified it, and poured it again into the fame Retort. I brought it over into the Receiver, and repeated the Operation 10 Times. At earh Time there was made more of that red Powder; and that in no lefs Quantity than from the crude Quickfilver.

Effict. A mont hining vivid Quickfilver. A fine red, fixed Powder. The reft (as 2, 4, and 5) to Gr.vij.
2. Coroll. 1. The Mutability of Quickfilver into this Powder by Fire remains in it, after $\frac{1}{8}$ of it is turned to Powder.
2. It ręmains after 511 Diftillations, each of which made fome of that Powder, though no new Quickfilver was added.
3. That Powder therefore is hardly to be accounted an Impurity feparable from the Nucleus of Quickfilver by Diftillation.
4. Hence it is manifert, that it is thus changed by thefe Nieans; but it is not certain, that it is thus defecated.
5. Fire is not fo united with Quickfilver, as the modern Chemifts have afferted.
6. Diligence hardly teaches a confant Artift the Bounds, beyond which that Powder is no longer made.
7. If that Powder arifes by Fire from the crude Sulphur of Quick filver: This Diftillation does not purge the Quickfilver from it.

Exp. 7. To examine the Powder produced by Oper. $2,4,5$, and 6.
Operation. I put 3 jij 3 j Gr . Ij of that Powder into a clean Glafs Retort, covered with a Crutt of Clay tempered with Sand; I urged it by Degrees, till the Retort, fet upon the naked Fire, grew hot with Plenty of Fire laid over it, in a Sand Furnace, for 3 Hours together.

Effect. There came out 3 j 3 fs of pure, revivificd Quickfilver from that Powder: At the Bottom of the Retort there remained 3 vijfs of bright red Powder. Something ftuck in the Neck of the Retort, and in the Glafs Veffel applied to it's Neck. Something perhaps was diffipated by fo large and long a Fire.

Coroll. 1. Quickfilver returns from the Powder, into which it had been converted by Fire.
2. Being revivified, it recovers all it's former Properties, and lofes thofe it had acquired. Quickfilver comes the fame from the Powder.
3. The acquired Fixednefs does not bear a great Fire.
4. But there is one Part in that Powder more fixed than the other: The latter ftill remains in the Form of Powder; the former returns into Quickfilver.

Exp. 8. To examine farther the Powder remaining from the preceding Operation.

Operation. I put $3 v i j$ Gr. xxxvij of that Powder into a very clean Glafs Retort, covered with a Coat of Clay and Sand, and committed it to a naked Fire, increafed cautiouny by Degrees; till at laft the Retort being covered all round with Fire, grew quite hot. I kept it thus ignited 4 Hours.

Effect. The Quickfilver revivified from this Powder, came over very pure to the full Quantity of 3 vij. At the Bottom of the Retort there were Gr. xv of a brown fubtile Powder, fixed in fo great and continued a Fire. There was a very thin broad Spot, of a very fine red Colour, V O L. VIII. Part ii.

## Experiments concerning 2uickjiver.

impreffed on the Bottom of the Retort, and, as it were, penetrating into the Glafs.

Coroll. r. Quickfilver is changed to the above-defrribed Powder $(2,4,5,6,7,8)$ by Fire alone.
2. This Powder is turned to Quick filver by Fire alone, only greater.
3. Thus a Serpent bites itfelf and dies.
4. It tifes again more glorious after Death.
5. So long Labour, and fo great a Fire being fo long. furtained, out of ${ }_{3} x$ xij of Quickfilver there remained only Gr. xv fixed, in a Glafs fo hot, as to be almoft melted.
6. Silver, Gold, and other Metals, fought by this Art in Quickfilver, are hardly any Thing in Proportion to the Expence and Labour.
7. Only $\frac{1}{7}$ P Part of the Powder thus fixed from Quickfilver remains fixed in this Fire: The reft returns to Quickfilver.
8. Are the loft Gr. xxij difperfed? Or is that Weight added by the Fire to the Quickfilver, and feparated from it again by a greater Fire ?
9. The Nature of Quickfilver is conftant, fimple, and not feparable into diffimilar Parts by Diftillation. Neither into fixed and volatile; nor into pure and impuxe; nor into impure and purified; nor into different Elements.

Exp. 9. I put Gr. xiij of this laft fixed Powder, in a Crucible, upon an open Fire before the Bellows. I blowed the Fire till the whole Crucible was totally ignited. I kept it fo for $\frac{1}{\ddagger}$ of an Hour. The Powder remained fixed at the Bottom, but fwoln like a Spunge and brown: Hence I learned, that the great Fixednefs of this Howder is acquired by the Fire alone.

Exp. 10. I added, in the Crucible, a little Borax to this fo fixed Powder, and blowed the Fire. It became one, friable, vitrefcent Mafs, fixed in this great Fire.

Exp. 11. I gave Gr. ij of that Powder, which had remained fo fixed (8) to the Weight of Gr. xv, to a moft fkilful, fworn Affayer at Amferdam, to examine it in the moft accurate Manner with Lead, according to the Rules of Art. There remained nothing fixed at all. Therefore there is not any Gold or Silver in that Powder.

Exp.12. Thofe Gr. xiij, melted into a vitrefcent Mafs with Borax, were given together with Borax to a molt Rkilful, fworn Aflayer of Amferdom, to examine, according to the Rules of Art, in Leead, with the greateft Accuracy. There remained nothing fixed from the whole Mals ; and, confequently, nothing of Gold or Silver.

Coroll. 1. Quickfilver continues in the Fire, retaining it's immutable Nature.
2. It is fimple, and not feparable by Diftillation into diverfe Bodies.
3. It is fixed by the Fire, and feems changed in it's external Form.
4. Appearing thus, in various Parts, it acquires different Degrees of wixednefs.
5. But not one of thefe Parts acquired the Fixednefs of Gold, or Silver, by fo long and continual a Fire.
6. The fixing Caufe is the Fire pafling through the Glafs, and fo changing Part of the Quickfilver, either by mere Action, or by uniting itfelf with the Quickfilver.
7. That Fire thus acting, through 5 II Diftillations, was not able, either by it's own Power, or by Conjunction, to change even the leaft Particle of it into Gold or Silver.
8. But from Quickfilver, thus fixed by the Fire, a greater Fire refores true Quickfilver; or the known Force of Lead makes it vanifh from the Cupel.
9. It does not appear therefore, by thefe Experiments, that any known Metal is produced by Quickfilver and Fire, thus confpiring together: Thofe Gr. xiij did how when the Fire was blown; they did not ftand in Lead; they were not diffolved with the Quickfilver into an Amalgama.
10. By thefe Experiments therefore Fire is not demonftrated to be the Sulphur of the Philofophers, fixing Quickfilver into Metals.
II. It is probable, however, that the Sulphur of the Philofophers is fomething very near it.
12. The fixed Part is not the Dreg of Quickfilver; nor it's crude, fetid Sulphur: It returns to it again.
13. The Depuration of Quickfilver from it's terreftrial Impurity, and aqueous Crudity, fearce feems to be fo eafy to be obtained from it by mere Diftillation: Perhaps it is obtained by fome more fecret Operation.
14. Neither Gold nor Silver is made from Quickfilver by Fire. The Ignorant, and thofe who are given up to Imagination, are eafy in Promifes, and rich in Hope. Here Quick filver remained Quick filver.
15. We are fafe from the fallacious Writings and Prefcriptions of the Sophifts, who promife to make fuch Things from Quickfilver in the fhort Space of a few Months: For in feveral Years there do not appear the leaft Signs of a firt Beginning.

Exp. 13. Quickfilver detained under boiling Water, is not elevated from the Bottom of the Veffel.

Operation. I poured 3 j of pure Quickfilver into a Glafs Urinal, which I filled with Rain-Water. I then fet the Veffel upon a naked Fire. The Water boiled ftrongly for 8 Hours: But fo that fome Water always fwam above the Quickfilver. Then the Quickfilver being weighed, was juft 3 j , without any Lofs.

I poured the Dram of Quickfilver again into a clean, dry, Glafs Veffel. I fitted it within a Kettle, fo that it could not ftir. Ifilled the Kettle with Water, and took Care to make it boil for 8 Hours. This Veffel was cylindrical, open, $2 \frac{1}{2}$ Inches deep, and fo placed, that the Water could not get into it. This being done, the Quickfilver weighed 3 j , without any Lofs. it; and fetting it on an Alembic, boiled it a long Time, but none of the Quickfilver roie. I continued the Boiling till all the Water was driven away, and the Quick filver remained dry at the Bottom of the Veffel, the Fire not being then increafed. The Quickfilver prefently rofe to the Sides of the Cucurbit, and into the Capital: The Reafon appears from what I have written in my Chemical Inflitutions concerning Water and Fire.
Exp. 14. Quickifiver may be changed by Art, fo as to rife from the Botom of the Veffl, by the Heat ot Vinegar, before it boils.

Operation. I thook an Amalgama made of half a Pound of Lead, and $: \frac{1}{2}$ Pound of Quichfilver in a Glafs. It became a very black Powder. I put it into a Glafs Cucurbit, 14 Inches deep, and poured upon it diffilled Wine. Vinegar, made very pure by double Diftillation. I took of the Pliegm by a gentle Diftillation: Then I increafed the Fire a little; but fo that the Liquor did not boil at all. The Quickfilver rofe into the Capital, together with the Phlegm, and from thence into the Receiver. I cried the fame Thing other Ways: A Thing worthy of Speculation! of which I flall fay no more at prefent. By a like Artifice I faw Quickfilver rendered fo volatile, as to rife in my digefting Furnace, by a lefs Heat than that of a healthy Man, afcending along the Sides of the Veffel. Do you think it was then more pure? It was mixed with Metal, and very dry.

Exp. 15. Geber has written, that pure Quickfilver is heavier than Gold. I tried a long Time to learn whether it could be made more denfe, and therefore more heavy than it is naturally. I began to attempt it by feparating it's lighter and more mutable Part, from the more ponderous Remainder, but could not. I afterwards erdeavoured various Ways to defecate it; but it did not fucceed. I found however fome Things worthy of Oblervation. Examining a Mafs of zij of the pureft Gold hydroftatically in Rain-Water, defecated by a gentle Dittillation, I found the Weight of it to be to Water as $19 \frac{1100}{500}$ to 1. The Quickfilver commonly fold, once diftilled by a Retort, is to the fame Water as $13 \frac{17}{100}$ to 1. Quickfilver worked up with the pureft Gold; and diftilled fome hundred Times, was to Water as $13 \frac{55}{100}$ 10 I. Quicl:filver thus treated with the pureft Silver, was to Water as $13 \frac{98}{100}$ to 1. Quickfilver united with Lead, wholly turned into a Powder with it, and refufcitated by a ftrong Fire, was to Water as $13 \frac{45}{100}$ to 1. Quichfilver diftilled 51 I Times, was to Water as $14 \frac{11}{100}$ to 1. Thefe Statical Weighings were made with exact Inftruments, and the ftricteft Caution. If fent feveral Years in preparing Quickfilver for this Purpofe. Nor do I know, that any one elfe has had regard to it. Many Corollaries might hence be drawn by proper Judges with mature Confideration, 1. hall mention a few.

1. If defecated Quickfilver becomes lighter, then it is rendered moft defecated by Gold and Lead. By the Art of Sucbtenius and Pbilaietbes, it remains the fame.
2. If defecated Quickfilver becomes heavier, then it is rendered moit defecated by Silver, in Proportion to other Metals. But mont of ail by fimple Diftillation, by Converfion into red Precipitate, and Refufcitation therefrom.
3. Quickfilver may be rendered more denfe by Silver and Fire.
4. Quickfilver may be rendered more denie by Fire, and mon by Diftillation. Is not this therefore the beft Way to purify and perfect it?
5. Does Quickfilver depofit it's heavieft Part in Gold? Is this the Seed of Gold?
6. Does Quick filver depofit it's heavieft Part in Lead? Is this the Seed of Gold?
7. Does Fire, boiling Quickfilver 51 I Times, fixing, and refufcitating it, increafe il's heavieft Part? How far can that be done? Can Quickfilver, by continuing the Operation, at laft be condenfed into the Weight of Gold? Would it then be quick Gold, or Mercurius Pbilofophorum? Let proper Judges examine.
8. Exp. 1. Pure Quickfilver, fuch as is commonly foid by the Am- Part II. No. ferdom Company, digetted a long Time upon the Fire, is not changed to a Metal.

Operation. This Quickfilver being diftilled, left no Dreg. Afterwards being mixed with diffilled Vinegar and Sea-Salt, and agitated for a long Time, it remained pure. Iftrained it through Leather, and put a Pound of it into a Matrafs with a long Neck, the Mouth of which Iftopped with a Paper Cone, and covered it with another Paper well tied to the Neck of the Matrafs, fo that no Duft could get into it, and at the fame Time the Air could eafily get in and out. I placed it in a Furnace with a continual Heat, which, by M. Finbrerbeil's Thermometer, kept at above 100 Degrees of Heat from Noi. 15, 1718, to May 23, 1734 Then I found the Quickfilver fluid in this Matrals, with a little black Duft upon the Surface. This Powder being rubbed in a Mortar, revivified into Quickfilver. I put all this Quickfilver in Diftillation in a clean Glafs Retort, increafing the Fire toward the End, till the Retort was almont red-hot. There remained nothing at all in the Retort, and the Quickfilver came out without any fenfible $\Lambda 1$. teration.

Coroll. i. Fire to the Degree, and during the Time above-merntioned, changes nothing of the Fluidity, Volatility, or Nature of the Quickfilver put into a Veffel, where the Air comes freely: Nor is there any Separation made between the pure and impure.
2. Nor is there any fenfible Gencration of the leaft Quntity of Metal.
3. Much lefs of Silver or Goict.

1. Nothing of the Quickfilver was fixed by this Operation, continued for $15^{i}$ Years; nor did there appear the leaft Beginning of merallic Fixation, not even of Lead; which however, according to thole vilio boalt of knowing this beft, ought to be the firf Metal formed by this Operation.
2. This Experiment by no Means favours the Opinion of thofe, who affirm that Metals are formed from Quickfilver, as the Matter, and from Fire as the fixing Sulphur, united by Digeftion.
3. It is very probable, that all Gmilar Operations made with pure common Quickfilver, do by no Means anfwer to what is promifed from them, fince the fmall Quantity of black Powder already mentioned is lighter than the Quickfilver, on the Surface of which it fwims, and very eafily becomes Quickfilver again: See what was faid in the preceding Article concerning a like black Powder ootained from Quickfilver by Motion only.
4. It does not appear, that Quickfilver can be charged in the Mincs into any metallic Thing whatfoever, by the fole Action of the fubterraneous Fire acting for a long Time, and in a Place to which the Air hâs a free Accefs: For Heat does not rife to above $70^{\circ}$, in Places where Veins of Metals are found. They fay indeed, that 1000 Years are required to produce this Effect ; but how can Men, who live fo fhort a Time, be fure of this?
5. As to Sulphur, which the Alchemifts have belicved to be one of the Principles of Metals, and of which they fay, that it unites the Elements of Quickfilver, in order to make a folid Body, and fixed to a Degree of Fire capable of rendering it fufible and malleable; this Sul. phur, I fay, feems to be quite different from the Matter of Light or Fire, though Fire alone is the only Means of producing this wonderful Union of this Sulphur with Quickfilver.

However in this Operation the Air was admitted freely to the Quickfilver, and it may be faid, perhaps, that this is the very Thing that hinders this Action of the Fire; and the more, becaufe the Alchemifts fay; that crude Air hinders the Philofophical Coction: This induced me to make the following Experiment.

Exp. 2. Quickfilver put in Digeftion in a clofe ftopped Veffel, during the Time mentioned below, does not produce any Metal.

Operation. I put pure Quickfilver into a conical Glafs Veffel with a flat Bottom, fuch as the Affayers ufe in feparating Gold and Silver, and expofed it to a Heat of 100 Degrees from Dec. 6, 1532, to July 8, 1733. The Veffel being conflantly ftopped, the Quickfilver did not undergo any remarkable Alteration; I put $\bar{v} \mathbf{v j}$ of it into a Veffel like the former, and inferted the Neck of an inverted Phial into it's Mouth, without luting the 2 Veffel together; I expofed it 4 Days to a SandHeat fo ftrong, that the Quickfilver began to rife, and this with an Intent to drive out any Moifture that might be lodged therein. When I faw that there was not the leaft Sign of Humidity, I luted the Place
exacly, where the 2 Veffels joined. I expofed the Quickfilver to a Sand-Heat, ftrong enough to rife and fall gently; I continued this Degree of Heat till fan. 29, 1734: I found nothing at the Bottom of the Veffel but fluid Quickfilver, lightly covered with a fine, light, fubtile, black Powder, nothing fixed, nothing precipitated, though the Degree of Heat was always near to that of boiling Water. Then I poured this through a very dry, clean, Paper Funnel, the lower Orifice of which would hardly fuffer a Hair to pafs. The Quickfilver came very clean through that litele Hole, and there remained about the Sides, and abour the Hole of the Funnel, a fmall Quantity of a black Suiftance, which being rubbed in a Mortar, turned again to Quickfilver. I diftilled this Quickfilver thus depurated in a Glafs Retort, with a SandHeat, and toward the End, with a Fire of Suppreffion; there remained nothing fixed at the Bottom of the Retort, the Quickfilver fiemed a little more fuid than before, but not at all changed otherwife.
Coroll. The fame Conclufions may be drawn from this as from the preceding Experiment ; and if they are added to what I mentioned in: the former Paper, it will plainly appear, that Quickfiver is immutable in it's own Nature by mechanical Motions, and by the above-mentioned Ditillations and Digeftions. From all this I conclude, that the Chemifts may fave themfelves the vain Labour of repeating all thefe Operations, with an Intent to fix Quick filver, or to change it into any other Body than what it is; I advile them alfo not to give Credit to iguorant Perfons, abounding in vain Promifes, among whom thofe are defs to be blamed, who endeavour to try Experiments at the Expence of others.
I have laboured a long Time to know certainly, whether it is true, that Metals can be refolved by Art into Quickfilver, and into any other Principle; many Authors uffirm ic fo diftinctly, and in fo many Places, that there feemed to be no Room to doubt of the Fait: I believed it upon the Credit of thefe Authors; but in order to be convinced of it by my own Eyes, I went to work upon Lead. The famous Van Helmont * fays, "Lead, becaufe of the Crudity of it's metallic Nature, "fuch as fometimies Fire alone can deffroy, may alio, by the grofs " Parts of the fixed Salts, be divided into the Principles of which it is " compounded, fo as to fuffer the crude Quickfilver to run." His Son Francis-Mercury Van Helmont + fays, "When Lead is diffolved " by Alkalies, and Salts, or Oil, which take in the Sulphur, and fepa" rate it from the Body, the Lead by this Means becomes changed into " a volatile running Mercury, which can no more endure the Fire, as " before, but is cold and running like Water, and wichout a metalline "Form." Yoacbim Becberus affirms the fame Thing, and anfwers for the Succefs of feveral Operations which he defcribes for this Purpofe,

[^7]in his Colldoma quing normm Experimentorum, from p. 310 to 333. Here fullows in few Words what I have learned on this Subject, by a wery long and tedious Labour.

Oper alisin. Idiffulvent as much pure Cerufe, as could be diffolved, in Spirit of Nitre diluted with 6 Times it's Weight of Water; and filtred this Solution, which was very clear. This Liquor being put into a very clean Glars Veffel, and thickened by a gentle Heat, and afterwards being fuffered to reft in a cool Ilace, there were formed Cryftals in it, of which I took ₹xiv, and reduced them to Powder in a Glafs Mortar with a Glafs Peftle. I diffolved this Powder in very pure Rain - Water, and diluted this Solution with 3 Times as much Kain-Water; and then I poured gently and carefully another filtred and very clear Solution made with Sal Ammoniac and Rain-Water. The Mixture became as white as Milk, and the Lead precipitated immediately, as it happens to Silver difiolved in Aqua forlis, as foon as Sal Ammoniac is mixed with it. The precipitated Powder, which was as white as Snow, being wafhed in a great deal of Water, and then ciriect, was very infipid, and weighed $\frac{z}{3}$ xvijijh. I put $\overline{3} v j$ of this white, dry Powder into a very clean Glafs Urinal, and poured to the Height of 2 Fingers over this Powder a very ftrorg Lee, compofed of quick Lime and PotAfhes, which I kept feveral Years in a clofe-ftopped Bottle. Afterwards I covered the Urinal with filtring Paper tied well about the Neck, and fet in a Furnace of Putrefaction in a Heat of 96 Digrees. 1 left it there from Feb. 6, 1932, to Aug. I 3 following, to try whether this Mixture, being expofed to the Air, would be altered by this Heat of Putrefaction. If found nothing but a white Ma/s, which being reduced to Powder, tafted of Salt. I put it into a Glals Retort, covered with a Lute compofed of Clay and Sand; and urged it with an open Fire till it became red-hot, and continued it 3 Hours in the fame State. There arofe fome white Soot in the Neck of the Retort, but no Quickfilver at all, and at the Bottom there remained a half vitrified brittle Matter, of an An-Colour. I reduced it again to a Powder of the fame Colour, which I beat a long Time in a Mortar, with a Lce of fixed alkaline Salt and quick Lime, and dried it again by a fow Fire; I poured frefh Alkali upon it, and expofed it to a Heat of $96^{\circ}$ from Aug. 18, 1732, to OEt. 15, 1733, beating it every Day in the Glais Mortar, in which it was, which was covered only with Paper, fo that the Air had free Accefs. Is was then a dry, white, acrid Powder, on which I poured fome more Lee, and reduced it to a Pafte. I fet it in Putrefaction as before, beating it often from the Day above-mentioned till Feb. 21,1734 ; then it became a white, faline Mafs, very near approaching to the Tafte of Sea.Salt. After it was beaten and wafhed with Water, and dried very nowly, I found a very infipid, white Powder. I put it into a Retort, which I kept feveral Hours in the greateft Fire that the luted Glafs could bear. May 20, 1734, no Quickfilver came out; the Neck of the Retort was ftained of feveral Colours;
the friable Mafs, which remained at the Bottom, afiorded alfo different Colours, difpofed in Strata, and weighed $3 v 3 v j ß \beta$; the l’owder into which it was reduced by beating, was of a reddifi grey Colour.

Scholium. In this Operation, the Lead at firit was cerufe, that is penetrated and diffolved by the Vapour of the Vinegar, rejuced to a white Calx, and then to a fubtile Powder. It was then diffolved in diluted Spirit of Nitre, and fo became a very clear Liquor, without Colour, and of a fweet Tafte, in which the Lead was reduced and divided into moft minute Parts. Thbirdly, The diffolved Sal Ammoniac poured on, by expelling the Spirit of Nitre, fubftututed in it's Place a Spirit of Sea-Salt, and uniting iffelf intimately with the metallic Part of the Lead, difpofed it, as much as poffible, to facilitate the Separation of the Quick filver from the metallic Part, according to the Opinion of all thofe who feem to have written beft on thefe Subjects: For they afcribe the Power of feparating Quickfilver from Metals principally to Sal Ammoniac and Sea.Salt. Fourtbly, The Lime thus prepared, and put in Digeftion 7. Months, with a very violent Alkali, feemed likely to make the Quickfilver appear, by abforbing the Sulphur of the Lead. But however, though a ftrong Fire was applied, yet it did not afford the leaft Quantity of Quickfilver. Fiftibly, This Mafs being ftrongly beaten for a long Time, and then mixed with a new and very ftrong Alkali, and digefted for 14 Months, fhewed not the leaft Appearance of Quickfilver. Sixitbly, It was pounded again with new Alkali, and digetted for 5 Months; fo that after all thefe Operations, it was fufficiently expofed to the Action of the Alkali, to have Time to feparate the fulphureous Part of the Lead, and for the Quickfilver, being difengaged from this Sulphur, to be driven out by the Force of the Fire. Neverthelefs, after all this Labour, the very greateft Fire did not difcover any Quick filver.

It is plain therefore, that what Authors have boldly pronounced, concerning the Facility of extracting Quickfilver from Lead, is not confirmed by Experience. Lead, fay thofe Authors, is the Metal that contains the noft of Quickfilver, and is refolved moft eafily into Quickfilver by refufcitating Salts. Therefore it is more difficult in other Metals. Authors affirm, however, that it may eafily be done, and prefrribe Methods very little different from that which I have now related, by which I have learned, after all my Labours, that what they have promifed, will not fucceed. I very much queftion, whether the Affertions of thefe Authors are founded upon Obfervations. I rather belicve, that they gave Way to their own Opinions, than confulted Experience. What has now been related, will ferve at leaft to fave the Reader the Trouble and Expence of repeating thefe Obfervations, and to hinder him from admitting eafily thefe pretended Principles of metallic Knowledge.

Exp. 3. Ifacus Holland has written, that Quickfilver may eafly be extracted from the Salt of Lead, made with diftilled Vinegar: To V O L. VIII. Part ii. $\quad 5 \mathrm{~B}$ make Litharge, and fume diftilled Wine-Vinegar: I calcined $z_{i j}$ of it in an open Glafs Veffel, with a now Fire, continued from Fune 6, 1734 , to fully ig following. The white Powder thereby produced, was beaten very fine in a Glafs Mortar with a Glafs Peftle. It was beaten very quick and lorg, adding now and then fome Lee, faturated with as much of a moft violent fixed Salt as the Water could diffolve. I kept it in the lame Mortar, covered with Paper, in a Heat continued from Fuly 21, to Nor.27. During this Time I took Care, as foon as the Powder was diy, to beat it again with frefh Lee. I kept it all that Time covered with Paper, in a Heat of 90 Degrees, drying, moittening, and pounding it alternately. The latt Day I beat this white dry Subftance into an impalpable Powder; and having put it into a luted Glais Retort, I carefully increafed the Fire by Degrees, till the Retort was red-hot, and kept it in this Srate for 4 Hours. There did not appear even the fonalleft Globule of Quickfilver, either in the Receiver, or in the Neck of the Retort, at the Botton of which there was found a very black, light Mafs, in Form of Powder, of a burning alkaline Tafte. Nov. 28, I fet it on a Glafs Plate in a Cellar, where it prefently grew moift, and left it there till $70 n 1$.8, 1735. This Subftance was then increafed in Bulk, all the faline Part being turned to Liquor by the Moifure of the Air, and the metallic Part being at the Bottom in Form of a black Powder. I dried it all together, both that which was melted, and that which was not; and this Mixture was very black. I put it again into a Glafs Retort, and at laft raifed the Fire till it kept it red-hot for 4 Hours. There did not even now appear the leaft Sign of Quickfilver, either in the Receiver or Retort, at the Bottom of which there remained a grey Subftance, of a hot fiery Tafte, which immediately turned to Liquor, on being expofed to the Air.

In this Operation the Lead being diffolved and opened by pure Vinegar, and difpofed fo that it might be intimately penetrated by the Salt; being mixed and pounded with a liquid, cauftic, fixed Alkali; being put in Digeftion, put in Putrefaction, and expofed to a violent Fire ; bejng diffolved by the Moifture of the Air during a Philofophical Month; laftly, being pounded, dried, and raifed by a violent Heat, did not afford even the minuteft Quantity of Quickfilver.

What are we to think now of this Matter, or of what has been advanced fo boldly by idle, credulous Men, given up wholly to Speculation? They engage thofe who have more Application to Labour than Knowledge, in vain Labours and exceffive Expences, and chereby render one of the fineft Arts odicus. Let others reap the Profit of my Labour and Expence, and fpare their own.

Exp. 4. Having learned, by my own Experience, that the Salts called refufcitating, could not extract any Quickfilver from Lead by the Method juft defribed, I was willing to try what Quickfilver ittelf could produce in this Cafe; efpecially as the Chemifts call this Fluid the

## Experiments concerning 2uickjilver.

Water of Metals, in which they tell us Metals die and rife again, and become more beautiful than they were before. I melted $弓$ jof Lead in a very clean Iron Spoon, and at the fame Time heated ziij of pure Quickfilver in a like Spoon. I then poured the hot Quick filver upon the melted Lead; they mixed immediately, and formed a folid Mafs, of a Silver Colour. I beat it, and when I had made it foff, I put it into a fmall warm Matrafs, which I ftopped with a Cork, and placed in a digefting Furnace, in a Heat always equal to 84 Degrees, from Feb. 1 I, 1732, to 7 an. 10, 1735. It was a foft Amalgama, yielding to the Penle like Butter, growing black immediately on being Ihaken, and weighing ziv. The fame Day I expofed it to a Sand-Heat in a clean Glafs Retort, and at laft to a Fire of Supprefion, till the Sand was quite red, and that for 4 Hours; there came over $z_{i j} 3 \mathrm{vjß}$ of Quickfilver into the Receiver. There was at the Bottom, and in the Neck of the Retort, a red Powder, formed by the Quickfilver in diftilling, there was a little Quickfilver in the Neck, and rome Globules of pure Lead in Form of Powder; the whole weighed Gr. lii. Laftly, there was at the Bottom a folid Mafs of Lead weighing $3 j$ wanting Gr. v, which made up the Value of the Globules of Lead; whence it appeared, that all the Lead remained, and that Gr. xliii of the Quickfilver were diffipated. Thofe who have any Knowledge in thefe Affairs, will eafily find the Caufe of this Difipation in the Caufes already mentioned, efpecially if they confider, that in diftilling, Part of this Quickfilver remains faltened to the extended Surface of a great Receiver; and that another Part remains in Form of little Clouds on the Surface of the Water, which muft always be put into the Receiver.

By this Operation I learned, that no Quickfilver could be extracted from Lead, by a Digeftion of the Quickfilver with the Lead, continued for 3 Years, and by a moft violent Diftillation; alfo that Quickfilver cannot by thefe Means be fixed in Lead : Becaufe in the Diftillation of Quickfilver, there is always a fmall Quantity of it changed to a red Powder, which is fixed in the Fire in this Application; but the Weight of the Lead always remained the fame.

Exp. 5. I performed the fame Operation on an Amalgama made with $z_{\text {iij }}$ of Quickfilver, and $z_{j}$ of good Tin, and expofed them to the fame Degree of Heat during the fame Time. Then I diftilled them in the fame Manner in a Glafs Retort by the fame Fire. I got from the Receiver zij 3iv of Quickfilver; at the Bottom of the Retort there was a Powder, Part of which was fine, and compofed of a fmall Quantity of fixed Quickfilver; and the other groffer Part was black, and compofed of fmall Parts like Tin. There was ftill a little Quickfilver at the Bottom of the Neck of the Retort. All together weighed 3ij Gr. v. At the Bottom was a folid Mafs of Tin, weighing 3 j 3 j Gr. ix. The Lofs was Gr. xlvi, of which I have given the Reafon already.

It appears by this Operation, that Quickfilver cannot be extracted from Tin ; but 3iij Gr. xiv, that is, about 4 of the Quickfilver were $5_{5} \mathrm{~B}_{2}$ united
united with the Tin, and fo well fixed as not to be feparated by a Fire that made the Sand red-hot, continued 4 Hours. There is a great Connection between $\mathcal{F} u p i s e r$ and Mercury, and Sol is in the middle between them *.

Exp. 6. I heated $\xi^{x}$ of Quickfilver, and poured it upon $z_{i j}$ of very good Tin, melted in a very clean Iron Spoon. I beat the whole into an uniform Amalgama, which being very hot and diry, I put into a clean, warm Glafs Blottle, which I afterwards fopped. I placed it in a wooden Box, which I taftened to the Hammer of a Fullet's Mill, continually at work ; and there it remained almoft in continual Motion Night and Day from Nov. 30, 1732, to fan. 9, 1735. Then I took out the Bottle, which was whole, and fourd fluid Quickfilver at the Bottom; and after a Reft of fome Days, there was fourd a pretty hard Amalgama at the Top; the whole weighed cxactly yxij. I diftilled ${ }_{3} \times \mathrm{j} 3 \mathrm{vij}$ of this Amatgama in a luted Glats Retort, with an open Fire, increafed at laft, fo as ro keep the Retort red hot for 2 Hours. There came out no more than exactly the fame Quantity of Quickfilver that had been put in; it was very fluid, and there remained at the Bottom a Mafs of Tin fixed to the Glafs, with a little of a yellow Subftance, that was in a Manner foliated. This Mafs was fufible like Tin, with a moderate Fire; and then the Surface cxpofed to the Air was painted of different Colours. The Mafs of Tin weighed zj $3 v i \beta$, and there was alfo a litte of the yellow Subfance above-mentioned. It is certain therefore, that with the Help of a Motion continued for fo long a Time, Quickilver cannot diffolve Tin in fuch a Manner, that Quickfilver may be extracted from it, by a Diftillation made with the ftrongeft Fire.

Scholium. What I have obferved in thefe 3 laft Operations, is very fingular, that the Quickfilver ieparated from the Lead or Tin by Difillation, was extremely liquid, and that being ftirred in a clean, white, glazed earthen Pot, it foon ftained the Surface of the Pot, and left a very black Spot there, flicking very hard. As foon as I had cleared away this Spot, by wiping it with a very clean dry Paper, there was prefently formed another, and fo feveral Times fuccefively. This made me think it was owing to a fat Part of the Metal, which paffed over in Diftillation with the Quickfilver, remained fixed to it's Surface, and was then feparated from it. To fatisfy myfelf of this, I fpread the Quickfilver upon very clean, dry Paper, and it left a flender black Mark whe:ever it had paffed; and befides, the Surface of this Quickfilver was always cowered with a very thin Skin, which feemed like Fat. Therefore, though by Diltillations of Quickfilver often repeated, fome Particles of other Metals may be united with the Quickfilver, it will not follow, that any of them are changed into Quicklilver.

[^8]
## Experiments concerning 2uickflver.

3. I bought at the public Shop of Amferdam zijiß of the pureft Part III. No. Gold that could be prepared by the affaying Art, and reduced it into fmall Maffes, weighing each 3 B. I put thefe 5 into a clean Glafs Retort, and poured upon them $\zeta \mathrm{xxv}$ of pure Quickfilver, once dinilled. I then forced half the Quick filver to rife from the Gold, which fubfided at the Bottom under the Quickfilver. The Operation being thus performed, there came over ₹xiij of Quickfilver into the Receiver; the Gol.I was now at the Bottom of the Veffel quite diffolved in the Quickfilver, in Form of a white, perfect Mixture, called Amalgama: Hence it appears, that Gold is diffolved by the mere Heat of boiling Quickfilver; and this feems the beft Way of mixing them, which in Torms of Att is called amalganating, The Quickfilver, which had come over, was well dried, and put upon the Refidue in the Retort; I again exprefled from it by Fire an equal Quantity of Quickfilver, which being dried, I poured again upon the Refidue. This I repeated 50 Times. The laft Time the Quickfilver came off pure. I beat the blackifin Amalgama remaining at the Bottom of the Retort in a Glafs Miortar with a Glafs Peftle, the Water was turbid, and I poured it off. I wafhed it with fair Water, which again became muddy by beating. I did this 13 D.ys, when the Water no longer became foul, but the A malgama became of a fhining bright Colour, and the Water remained clear. This Powder, prepared by heating and wafhing, of a brown Colour, of an abominable metallic Tafte, weighed Gr. lxxxiii. The Quickfilver and Gold weighed $\mathrm{Zxxvj}^{3 v i j}$. There were loft Gr. vii Biijß by the 50 Operations. This happened partly by the Difperfion of the volatile Quickfilver, partly by the Adhefion of it to the filtring Paper, in which it was dried, and into which it was received in Diftillation.

I treated this very pure Amalgama 50 Times more afrer the fame Manner. The Quickfilver now came pure the 5oth Time, and there remained a brown Amalgana at the Bottom of the Veffrl. Being beaten and wathed as above for 13 Days, it yielded $3 j$ Gr. xliv of wafhed, brown, dried Powder. Then the purelt Amalgma with the Quickfilver brought off weighed $\overline{\mathrm{xxvj}} \mathrm{Jiv}$ : 1 lof by thefe 50 Operations 3 j Gr. xvi.

I again diftilled this depurated Amalgama 50 Times afeer the fame Manner. The Quickfiver came over pure, and there was a reddifh Amalgama at the Bottom of the Retort. This being beaten and wanhert as before for 14. Days, gave 3j Gr. ii of a brown Powder. I added the Quickfilver that came over to the pure Amalgama: They weighed together $\begin{aligned} & \text { xxiv } \\ & 3 v \\ & \text { Gr. xxiv. But at the Bottom of the Retort, whilf }\end{aligned}$ the Amalgama was poured off, there remained fome of the Amaigama. flicking to the Glafs, fo that I could not compute the Lofs.

I treated the depurated Amalgama again in the fame Manner 50 Times, diftilling, beating, and wafhing it it Days: It yielded 3 jß Gr. iv of a brown Powder. The Amalyama was exseedingly bright, and
being mixed with the pure Quickfilver brought over, weighed $\xi^{\mathrm{xxv}} 3 \mathrm{ij}$ Gr. xivi after 2 co Dittillations.

I urged this Amalgama again 50 Times as before, and then beat it with Water for 16 Days. I obtained $3 \mathrm{ij} \exists \mathrm{j}$ Gr. iv of a brown Powder. The fhining white Amalgama with the Quickfilver weighed $₹ \times x y=3 j$ Gr. xlvi.

Having gone through this Labour, I perceived, that by 250 Difillations of Quickfilver from Gold thus performed, the Gold and Quickfilver afforded $\bar{j}$ Gr.v of the defrribed Powder: That there remained of Gold and Quickfilver $z^{2} \mathrm{xxv} 3 \mathrm{j}$ Gr. xlvi: That there was loft 3 j 3 j Gr. ix.

When I confidered this attentively, I began with Joy to fufpeet, that I had found the defired Method of purifying Quick filver. I thought fometimes, that all this Powder was a mere fetid and foul Sulphur, which had ftained the unfpotted Virginity of Quickfilver, I doubted whether I did not now fee the Meffenger of the Gods naked, and pure from the Bath of Fire and Water. This Rapture was a little moderated by the Remembrance of a like, but precipitate Joy, which had often vanifhed into Smoak. I was determined not to reft till I was fatisfied of the real Truth. Therefore I diftilled ${ }^{2} \mathrm{xxv} ~ 3 \mathrm{j}$ Gr. xlvi of that laft pureft Amalgama again 627 Times, drawing off conftantly half the Quickfilver, and pouring it on again; I would nor wanh it any more with Water, but fee what would become of it. The Matter ufed to grow dufky by this Operation, till at laft it was almoft black. I then covered the Glafs with a Lute, that was able to bear the Fire, and not wahing the black Amalgama, urged it with a very ftrong Fire, fo that the Retort was red-hot fuil 3 Hours. There came over jxx of the pureft Quickfilver. On breaking the Veffel, I found at the Bottom ${ }^{3} \mathrm{ij} \beta$ ß of the moft fhining Gold, without any Drofs. This I thought a fufficient Recompence for all my Labour.

1 then took the Powder, which I had collected from 250 Diftillations, and urged 3 vij Gr. lvii of it with a very ftrong open Fire, in a luted Retort, fo that it was red-hot a long Tinje. From this Powder there came $3 v i j$ Gr. xlvi of the pureft Quickfilver. There remained at the Bottom of the Retort Gr. vi of a brown Powder.

I weighed the Quickfilver, which I had now diftilled 877 Times, by the Art, Induftry, and hydroftatical Ballance of my dear Friend the famous'sGravefande. It was to pure Water as $13^{\frac{1}{2}}$ to 1 : So that the Dinfity of the Quickfilver was not altered by all this Labour, nor freed from any lighter Part. I mention this, becaufe I underftand, that the Method mentioned in my firt Paper, was not thought accurate cnough. Give me Leave now to deduce fome Truths from what has been faid.

1. Gold diffolved by Quickfilver, and fo often boiled and pounded with it, changed nothing of it's former Nature lof nothing of it's proper Weight, and gained nothing.
2. Quickfilver mixed with Gold, and feparated from it again by Fire, was in Part changed to a brown, fubtile Powder, of an abominable, metallic Tafte, of a quite different Difpofition from it's former Nature, and that conftantly, even to 877 Times. But yet, by a ftronger Fire, it returned to Quickfilver again, the fame in every Refpect, as far as Art could difcover.
3. Therefore Fire and Gold do not by thefe Means feparate from Quickfilver different Parts, Sulphur, Drofs, or any Thing elfe: But only change it as to it's external Form, reducible however to it's priftine Appearance, the fame in every Refpect, not being altered even in it's fpecific Gravity.
4. Quickfilver and Gold by the Force of Fire prefently change the Silver, Mining of their Amalgama, to a brown Colour, and at laft to a black: But the Silver Colour being reftored to Quickfilver, and the yellow Colour to Gold, fhew that this Colour does not demonftrate the Corruption of the Metals, but the Change in their Nature.
5. But if native Quickfilver can be purged by Gold and Fire, ac= cording to the Opinion of the Ancients, it mult be performed by fome other Operation.
6. The Hope of fixing Quickfilver with Gold, by the Action of Fire, falls to the Ground : Since no fuch Thing is fo much as begun by. fo great a Labour in fo long a Time, the laft Diftillation was as eafily performed as the firf.
7. Hence we have no Confirmation of the Opinion, that Fire can increafe Metals or Quickfilver by concreting with them, or generate any Thing metallic; or form any durable Change of the Metal.
8. How conffant, how fimple are Gold and Quickfilver! If Gold was Quickfilver in it's firft Origin, may we not juftly fay, either that the Quickfilver totally flew away by the Fire, or that it remained wholly fixed in it.
9. The great Promifes of diffolving Gold by grinding it, either with Water or without, which have been made by two great Men in this Art, are not performed by thefe our Labours. It was a vain Hope: They avoided the difficult Labotir, and haftened precipitately to idle Conclufions.

One Thing remained worthy of Inquiry; whether Quickfllver fo often diftilled from Gold by the Force of Fire had laid afide that Property, by which it is turned by Diftillation into the Powder called Pracipitatum per fe? Therefore I diftilled thofe そxx of Quickfilver 877 Times diftilled from Gold, in a clean Glafs Retort, by fo great a Force of Fire, that none of the Quickfilver remained in the Glafs after each Ditillation, which I repeated 8 Times. At the Bottom of the Retort I found Gr. xii of a red, glittering, ponderous, mercurial Precipitate, of an abominable, metallic Tafte. I am certain therefore, that even this Property is not taken away from Quickfilver by all this Labour.

An Examination: of the Mexicall fil. tring Stone, and Comparijon of it with other Esones, ly Abr . Vater, M. D. \& P. P. Soc. Imper. Nat. Cur. \& Reg. Britann. \& L Loruff. Soc
No. 438. p. 106. July, हैंC. 1735.
XXI. Among the various Exoticks, brought from both Indies, wirls which our Age greatly abounds, the Mexican filtring Stone does not hold the loweft Place. It is fo called, becaufe it's porous Texture affords a Paflage to Liquors, for which Caufe large Pieces of it are bollowed in Form of Pots or Mortars, which are ufed to ftrain I.iquors for drinking. It is imagined, that Liquors filtred through this Stone, are freed from all their Impurities, become more clear and pure, and conduce more to Health. Hence there Stones are highly efteemed in Fapan, and are valued equally with Gold, becaufe the $\mathcal{I}$ afonefe, who know nothing of the Stone, or other Difeafes of the Kidnies, and prefer their Health far before the Goods of Fortune, are of Opinion, that thofe Fungi converted into Stone have a Power of prolonging Life, as max, be feen more at large in Valentini's Hiftory of the filtring Stone, in his Mufeum Muforum, Lib. I. Cap. 22. This Sort of Iungus grows, as is there mentioned, to the Rocks in fome Parts of the Gulph of Mexico, about 100 Yards under Water, and is hardened to Stone by the Air. I will not determine what we are to think of this Origin and Manner of growing of the filtring Stone, though it is very fufpicious, and feems to have been invented, to make it be thought no vulgar Stone. Lentilius, Ephem. Germ. Cent. iii, Ouf. 176, writes, that thefe Veffels are of 2 Sorts, fome being of a dark grey Colour, like Slate, brought from Canada, and fold dear, others of a tophaceous Colour, and coming from Italy: Le Clerc teftifies, in his Phyfics, that it is digged up in agro Leodicenf, and is much ufed in Holland. It was, no doubt, one of this Sort, of which a little Piece, about the Bignefs of a Wallnut, was fent me fome Years ago by Dr Rittmeyer, of Amjterdam; with which however I was not able to make any Experiments. But after I had fixed it at the Bottom of a Tin Funnel, I made ufe of it to filtre Water, for the Sake of Curiofity. A little while ago the learned Dr Ebrart of Mermimingen fent me a choice Collection of Foffils, among which was a Topbus remarkably porous, found about Memmingen, which, as he affured me, being immerfed in Water, fucked it up greedily. For as foon as the Surface of the Water is touched by it, the Prefure of the Air makes the Water rife immediately through it's whole porous Subftance, as we find by Experience it does in Sugar, Salt, filtring Paper, and Sponge. Immediately I began to fufpect, that perhaps this Tophus might be ufed inftead of the Mexican Stone to filtre Water. In order to try this, I made a Hollow in a Piece of it, and poured Water therein, which I faw pafs very faft through it's Pores. I then had a Mind to make Trial with other Stones, and accordingly took fome tophaceous Tubuli of Ofeocolla, and ftopping one Extrontity, poured in fome Water, which in like Manner tranfuded very quickly through their porous Subftance. I recollected, that I had a Sponge by me for feveral Years, which, when I lived at the Caroline Baths, I had laid in the Canal through which the hot Waters are brought to the Baths, where being incrufted by the Okre, which thofe Waters carry along with them,
it degenerated to a Topbus. I hollowed this Sponge, and poured in fome Water, which quickly ran through it. Having leen this, I deserminied to make Trial of the very 'Iophous of the Baths, of which 1 had a pretty large Piece, and accordingly gave it to a Mafon, to form it into a Mortar, that I might fee whether Water would pals chrough in denfe and folid a Stone. My Expectation was anfwered, for the Water ran through in like Manner, but not fo faft, becaufe of the Thicknefs of the Stone. I now nattered nyydelf, that by this Experiment, I had made fome Difcovery, that night ferve to illuftrate the Generation of the filtring Stone under Water: For as the Topbus of the Baths is gradually generated by thefe Waters depoficing their Okre, in running through the Aqueducts, and dropping from them; I thought that the Sea, by fhaking the Stones, depolited the falino tetroous Parts, from which this Toplous is generated by a fuccefive Concretion, and grows to the Rocks, rather than fprouts from them, afoer the Manner of a ftony Agarick, or Fungus. But becaufe the Origin of this Stone, as we have feen already, is very doubtful, and it is not certain, whether it is taken from the Bottom of the Set, or rather digged out of the Earth, I dare not affirm any Thing concerning it. But confidering the remarkable Thicknefs of the Tophus of the Batns, rotwithftanding which the Water paffes through it, I had a Mind to try the fame Experiment with the common Stone that we ufe in bailding Wallis. The Event anfivered the Expectation, for a Mortar made of one of thofe Stones, ferves me now inftead of a Mexican filtring Stone, and the Water paffes equally clear through it. The Water thus filtred, acquired indeed at firf an earthy Tafte, which ceafed however by repeated Filtration, as the above-mentioned Limiliius obferved of that filtring Stone. There is no Doubt, but that other Stones may perform the fame, becaufe even the hardeft and moft folid Flints, with which the Streets are paved, imbibe the Water, as we obferve in a wet Seafon. But this is manifeft, that the more folid and thick the Stones are, and the more narrow their Pores, with fo much more Difficulty do the Waters pals through them.

But now to come to the Virtue afcribed to this filtring Stone, by which the Waters filtred through it are faid to be freed from all Dregs and Impurities: For thus we read in the above quoted Hlllory in $V$ Valentini's Mufoum, that the Water filtred through it, though ever fo clear at firf, always depofits fome Quantity of Dregs, and becomes fenfibly lighter, purer, and much more fit to preferve Healch, may, that it may be longer kept frefh, and without freezing, or corrupting. If this was true, and Waters could thus be freed from all heterogeneous Parts, the filtring Sones could never be valued enough. For what conduces more to Health, than pure Water taken in Meats and Drinks? But vaft Tracts of Land are deprived of this Benefit, where the Waters are falt, nitrous, vitriolic, and aluminous, and frequently infected by mineral Particles, which may give Rife to many Difeafes, It feems wery probable, that fuch Waters depofite thofe Impurities in paffing through

[^9] in fandy and gravelly Places, and paffing through Beds of the fame Earth, are much more clear and pure than other Springs. But thofe Waters do not owe their Purity to their having depofited their Impurities in paffing through the Sand and Gravel, but their not having thence derived any. For we learn by Chemiftry, that not only Salts, but by their Means other heterogeneous Corpuicles, earthy, fulphareous, and mineral, being diffolved in Water, and clofely connected therewith, cannor be feparated from it by Filtration. We fee that the moft folid mineral Bodies, Quickfilver, Antimony, Lead, and others, diffolved in Menftruums, penetrate through the Pores of the filtring Paper, which afterwards being abfiracted from the Embraces of the Water, and difturbed from it's Interntices by Precipitation, are feparated, and on being filtred again, remain in the filtring Paper. But fome perhaps will object, that a thick, denfe filtring Stone can do more than Paper. But the concrary is teftified by Waters exuding and diftilling in Mines and fubeerraneous Caverns from the very Rocks, which prefently are perrified, whence the Stalcetites arifes. From this alone it is manifeft, how lietle the moft folid Stones, and confequently filtring Stones, conduce to the Depuration of Waters, and to the Separation of falino-terreous and mineral Scorice diffolved in Water. I will not deny however, that turbid and muddy Waters may be rendered clear by being filcred through thofe Stones, becaufe thofe Impurities are not diffolved in the Waters, and united with them, but only float upon them. But that Waters do not become otherwife more pure by this Method, I am fatisfied b; repeated Experiments made with the filtring Stone received from Holland, and alfo with the Topbus of the Caroline Baths, and with the common Stone, by ftraining the Waters of various Rivers and Springs through them, and examining their Gravity both before and affer Filtration by the Hygrometer, but I have hardly found any fenfible Difference. Thofe therefore, who do not enjoy the Bleffing of pure and wholiome Springs, had better ufe Rain-Water, which is freed by Difillation fiom all Impurities, and fo is the moft clean and wholfome.
An Ascount of XXII. In Purfuance of the Orders of the Society, I fhall endeavour Coai-Balls to give an Account of the factitious Coal made at Liege. But firit I m.ade WiLiege, fhall quote two Autiors, who mention it in their Accounts of the Town Hanbury, Efa; of Litge.
F. R. S. Nc. The frit is, Le Curieux. Antiquaire, ou Recueil geogratbique E' bifo460. p. 672 . rique, per le Sieur P. L. Berkenmeyer ì Leide 1729, P. 182, where 1741, he fays, "This Bifhoprick (Liege) has rich Mines of Houille, or Stone"Coal *, which the Inhabitants fell in the Neiterlands, and by the Sale "f of it, they get above 100,000 Ducats per Aimum.

[^10]"This Coal lights eafily, and gives a great Heat: It is not there" fore to be wondered, that Fire is reckoned amongtt other Advan" tages the Liegois boaft of: They fay they have the beft Bread, the " hardeft Iron, and the hotteft Fire: By this laft they mean, de la "Houille, which, being once well lighted, calts the greateft Heat, if " it be wetted with Water."

The fecond Book I hall mention is, Les Delices des Peis Bas, Vol. III. p. 243, where I find that this Town Liege is faid to be "the Hell of "Women, becaufe they are obliged to work more here than in any " other Country. They draw the Boats, and carry on their Backs,
" like Slaves, les Hoilles, and other Things; and thefe Women are called
" des Botreffes."
In the Year 1628 , by a printed Paper produced before you, it appcars, that this Fuel was known in England at that Time ; and if you will believe the Author of that Paper, it was difcovered by Hugh Plat in 1594.

There is an Account of it printed in the Effays for the Month of December 1716, where it is propofed to be made with the black Oufe of the Tbames, and for Four-pence per Bufhel *.

I have ufed this Coal and Clay mixed upwards of 10 Years, and by Experience I find it to anfwer very well. It is a moft excellent Fire for roafting, for heating of Irons, or warming a Room: I ufe it in my Kitchen, Laundry, Parlour, and Library.

The Method in which it is made at Liege, where I firft faw it, and made fome myfelf, is as follows:

Take $\frac{1}{3}$ of unctuous Clay, (fuch as Brewers ufe to bung their Veffels, in it there muft be neither Sand, Gravel, or Stone)

And $\frac{z_{3}}{3}$ of Coal-Duft: Mix, and make them incorporate well together; caft them into round Balls, or Bricks, and you may put them on a Coal-Fire, and they will burn directly. But if they are made in Summer-time, and laid to dry for Ufe in Winter, they will light fooner.

Thus you have an hot, clean, lafting Fire, not at all offenfive to the Smell.

The Duft is there the Refufe of the Mine, and may be here of the Coal-Merchant's Yard, fo that this Fuel comes exceeding cheap.

Nor is it neceffary to put fo much Coal-Duft ; for fome Clay (particularly what I ufe myfelf in the Country) will do, if mixed $\frac{2}{3}$ Clay, $\frac{\frac{2}{3}}{3}$ Coal-Duft; and the true Proportion of the Mixture muft be found by Experience; but it is always better to put in too much than too little Coal-Duft at firf, becaufe Men are too apt to be difcouraged in making Experiments.

[^11]This Fuel is not orly to be had at an eafier Irrice, but it is likewife more durable.
How far it may be ufeful in Glafs-houfes, Brewhoufes, Sale -Works, Ee. I muft leave to the Confideration of the feveral Perfons concerned in them.
I have heard, that at Liege they burn both Lime and Brick with it; bar, as I never faw it done, I cannot affirm it.
XXIII. This Bed of Malm lies in a Valley, at the Foot of a long

Concerving certain chalky tu: bulous Concre. tions, called Malm, by Mr Turbevil Needham.
No. 47 T. $p$. 634. Read Dec. 22,1 i $7+3$. Ridge of chalky Downs; extends from Winchefter, where it begins, as I have been informed, almof due $S$, about 4 meafured Miles; the Breadth not above $\frac{1}{+}$ of a Mile; and Depth, at a mean Computation, about 5 Font. It is ufed in Manure for the fame Purpofes as Chalk is, but anfivers the Intent much better. It rifes up in one continued Bed, almoft to the Surface, where a thin Layer of common Earth but juft hides it in all Places, where continual Cultivation has not fuperinduced a new Soil. Horfetail, and a Species of wild Trefoil, grows out of it very plentifully, efpecially the firft, which fink their fibrous Ronts to a confiderable Depth in it: The whole Bed confifts of feparate detached Pieces, in the Nature of thofe which you have by you, and of feveral Dimenfions, as thote are, moftly long and tubular; fome few round, with a imall Cavity in the Centre, others quite flat, and fome, as it were, excavated on one Side, as if the chalky Lamine had extended themfelves round a Piece of Bark; but all of them hollowed within, agreeable to their exterior Shape, except very few. I believe it may be afferted, with fome Confidence, that this Valley formerly was over run with Wood, if not wholly, at lealt for fome confiderable Length and Beeadth: Wild Boars Tunks, which are known by their Length; Stags Horns, and a Flint Knife, which have been found buried to fome Depth, in the Maln, feem to evince as much. That Trees of confiderable Dimenfions have grown in it, is very evident; for in a Drain, which they have lately made to convey the Water from the main River to the adjacent Meadows, Trees of a vaft Size may be feen, at 2 or 3 Feet Depth, in no fmall Number, retaining both Shape and Subftance in fome Meafure, though much decayed, and not fo compact and folid in thofe Parts, which have been expofed to the Water; thefe lie out of she Verge of this Bed of $\mathrm{M}_{\mathrm{a}} / \mathrm{m}$, and are not confequently affected by it. Now I am much inclined to think, that thefe Trees, together with the reft of the Wood, might, by Age, and fome Accident combining with it, have fallen; the uppermoft might have ferved to bury the reft, and preferve them from a more immediate Decay, by cutting off their Communication with the exterior Air. Rains, in Procefs of Time, ment have wafhed off from the adjacent Hills to fome certain Diftance, and depofited in the neighbouring Valley, but mixed with other heterogeneous Subitances, as decayed Wood, Earth, छ'c. a Quantity of chalky Particles, fufficient to involve, by a continual Addition of new

## Concerning certuin chalky tubulois Concriations, callied Maim.

Lawinc, Roots, Trunks, Branches, Twigs, and the broken Extremities of Twigs; and tending continual!y to form Niaftes refembling the fuppofed Paticulars. I do not now imagine, though I once thought fo, that the fe chalky Particles have penetrated the Wood iffelf, and converted it into in's own Subftance, in the Nature of ordinary Petrification, except here and there fome fow particular lyieces; but I rather furpofe, that the Pieces of Wood have been invefted continually by addicional Lamine; that the firt Lanince muft have adapted itfelf to, and affumed the exterior Shape, whether fmooth or knoty, of the inroled Winod; that the others have proceeded accordirgly; that the Extremities have gradually rounded themfelves; and that in the Irterim, till they were wholly clofed, the included Wood has been infenfibly attenuated by the paifing Moifture, and, Particle by Particle, either entirely, or in Part only, wafted away. And, though it may be objected againft this Suppofition, that fome Pieces are entirely fulid, as one of thofe two large Pieces is which you have by ycu, and has the Refeniblance of white Thorn; yet thefe are but rarely found, and may very well be fuppofed to have been a Species of Wood of a more folid and durable Contexture ; which might confequently withtand any confiderable Atcenuation by Water, long enough to permit the chalky Particles to penetrate, fix, and convert it into it's cown Subflance; while other Woods, lefs tenacious, infenfibly wafte, and are carried off by the infinuating Liquid, together with the chaiky Particles, which they not only could not arreft, but prevented cfiectuaily, by a Blending and Interpofition of their own Parts, from adhering to each other. The Reafons why I apprehend the Procefs of the vihole to have been in the Manner defcribed above, and anfwerable to my Suppofition, are, firft, the clofe Vicinity, I may almoft fay, Contact of the chalky Hills, upon which this Bed of Malm attends throughout the whole Line, and no farther. Secondly, That this Malm is an alkalizate Body, in a Degree fomething inferior to Chalk, as I found upon a Trial, fome Time ago, by putting equal Portions of each into equal Quantities of double-diftilled Vinegar, and meafuring the Height of the Fermentation in a long cylindrical Glafs. Thirdly, The Reafons, which I gave above, for fuppoling that this Valley formerly has been over-run with Wood. Furu!biy, The Difpofal of the feveral detached Pieces of Malm, which lie in all Manner of Direetions. Fifthly, The Refemblance which they bear to Roots, Trunks, Branches, Twigs, Eic. Sixthly, Some additional Obfervations, which I have made fince my Return from London; and thofe, I think, are almoft decifive. In the Hollow of fome of the oblong cubular Pieces, which were clofed at both Ends, upon breaking them open, I found the Remains of the included Wood attenuated to a mere Thread, which, though extremely tender, I could plainly difcover to be Woot, both by it's exterior Ap. peararce, as well as by rubbing in my Hand, in order to try if it would colour it, as decayed Wood, that has imbibed Moifture, will do. Within the Lamire of feveral, I found a fair Imprefion of Leaves, in

## Of the Nature of Amber.

no fmall Number, and with litele Trouble: The Leaves I knew not, as not becing very familiar in the vegetable World, though they appeared to me nuch to refemble white Thorn Leaves in thcir Stape, differing in this alone, that the Impreffion of the fore Part of the Leerf had many finall indented Cavitiss, equal in Size to a Pin's Point, which had been formed by fmall Protuberances in the Leaf itfelf. Some Pieces I found quite flat, as if the chalky Laininac had involved a Chip, and the Cavity confequently went off infenfibly lefs towards cach Extremity. Others I found, whofe Cavitiss at the Extremities were irregularly flaped, agreeable to the jagged Ends of broken Sticks. Some, in fine, I found excavated on one Side, and convex on the other, as if the Laminice had furrounded a Piece of Bark. Thefe are the chief Ob fervations which I have hicherto made, and which, I hope, are fufficient either to fix the Point where I have placed it, or to enable you to draw better Confequences. I cannot fay, that I am fo thoroughly fatisfied with what I have advanced, as to judge it unqueftionable ; though $I$ am fenfible, that the finding of feveral Maffes of Malm, the Structure of which is not reducible to, nor explicable by, this Scheme, is no Objection to it; becaufe, as every one knows the Tendency which chalky Particles have to difpofe themfelves in Leminna; fo thefe Lamine may involve Bodies of different Kinds, as Parts of the fibrous Roots of Weeds, fmall Seeds, or the like; may affume their Shapes, increafe continually in Bulk, and infenfibly raife the Height of the Bed, where they ate firt formed.

Of the Nature of Amber, by John Ambrofe Beurer. No. 468. p. 322 . Read Jan. 27, 17423
XXIV. I abfolutely deny, that Amber is the refinous Juice of a Tree, for the following Reafons. Firft it is rot probable, that A mber fhould pafs through the Earth into the Sea: For whence is that Paffage? feeing the Trees are not very near the Sea.

Then this Refin can by no Means pafs through the Earth like Water, or diffufe itfelf fo copioufy through it; if this was pofible, it would rather grow fliff, and adhere to the Surface of the Earth.

Befides, the Heat of the Sun, however great and continual, can never produce fuch a Flood of Refins, as to fill feveral fubterraneous Tracts: For the Exudation of Refins is made by Drops, the leaft Part of which reaches the Ground, the greateft Part adhering to the Bark of the Tree. Moreover, why is Amber often found on Mountains, and in Pits, where Trees were never planted? Laftly, the Arguments drawn from the Diftillation of a vitriolic Acid with Turpentine do not prove what they were intended to prove, becaufe though fomething bituminous is thence produced, yet it is not real Amber; for it wants the equal Mixture, Tranfparence, Elafticity, and Hardnefs. This may be more eafily produced, and almoft Extempore, by the Mixture of any diftilled ethereal Oil concentred with a vitriolic Acid, from which Mixture there prefently arifes fomething bituminous, but not Amber.

To me it feems probable, that Amber derives it's Origin, not from a Vegetable but a Mineral, that is, from a tender Bitumen (Olcum

## An Account of petrified Oyfers.

Napblee) and an acid vitriolic Sulphur, which mixes itfelf in Form of Steam, and immediately grows hard. This is alfo proved by the fofil Amber; for wherefoever that is digged up, there are alfo found amongft the blue Clay, bituminous Wood, Coal, Vitriol, and often Allum. But the Amber, which is found in the Sea, is produced after the fame Manner as that which is formed in the Mountains, being only wafhed out of the Earth by the beating of the Waves, and partly fwallowed up by the Deep, and partly thrown up on the Banks.

I fhall add but one Obfervation more, that as the vitriolic Acid, together with a Bitumen, produces the Form and Appearance of Amber; that Acid will quite difolve it again, and leave it in the fame State, without the Deftruction of any conftitutive Part, and reduce it's Hardnefs, Tranfparence, and Elafticity.

Nuremberg, Oit. 20, $174^{2}$.
XXV. That indefatigable Traveller Cornelius le Bruyn, among other Things worthy of Notice, relating to Natural Hiftory, mentions Oyfters, of which not only the Valves, but even the Animals themfelves were petrified within the Shells.

At firf Sight, both his Account and Figures feemed fufpicious, and delivered with more Confidence than Truth; but let us hear his own Words.
"At fome Miles from Nicofin, there is a Hill, which confifts wholly " of petrified Oyfters. - The Shells are clofe fhut, and when they " are opened, there appears an Oyfter on each Side, fo well confumed, "that one might fay it was well engraved there. Thefe Shells are alfo " petrified, or turned to Stone.-I opened one - in the middle of " which there was an Oyfter quite entire, and at the fame Time, as it " were, engraved in the other Shell *."

I did not wonder at the Shells being turned to Stone, but it feemed ftrange, that the animal Oyfter fhould be petrified; nor did the Author's Reafon of this Pbanomenon appear to be fufficient.
"When we take the Sand out of the firft Shell, we fee the Oyfter, "s which is in like Manner confumed by Time, whence we muft con"clude, that thefe Oyfters have been alive there, and that the Water "r running out, the Sand has infenfibly fupplied it's Place, and that the "Oyfter, as it died, left the Print of it's Shape in the Shell. - - Thus "t there are fome of thefe Oyfters, like thofe Stones in which we fee a "Fifh."

You will hardly underftand what is meant by the Shape of the Oyfter, a foft and corruptible Animal, being impreffed on it's Shells, before the Shells themfelves, by Nature hard, were turned into Stone; nor will you eafily come into the Authot's Opinion: That it fhould be poffible for an Oyfter to imprint it's Shape on the Shells, in like Manner as the

[^12]Skelctors

Skeletons of Fifies leave their Imprefion in foft Earth, which is afterwards turned to a Stone, for the moit Part flaky.

Therefore I thought it not amifs to explain this Account by Schemes of a Lithofreum, which I got whole out of a very hard Stone of the Mountain Zijanken-Berg, near Dantzick, in 1736 .

But it muft be mentioned before-hand, I. That the figured Stones of Dantzick, containing many extraordinary vegetable and fofill Subitances, efpecially of the Mountains Magels-Berg, and Zijenken-Berg, are formed of Potcer's Earth and Clay mixed with a little Sand, grey, and generally very hard; fo that being beaten with an Iron Hammer, they fly aluider like the Vitrumiz fofile Imperali. 2. That they contain Abundance of Shells of Cochlide or Conchae, very often entire, petrified, but very diftinguifhable by their natural Colours; fometimes, when the Matrix, as it is called, is lefs compact or hard, partly calcined, and partly petrified.

Now in the above-mentioned Lithoftrenm, if I miftake not, the fame Planomena will appear, which le Bruyn has endeavoured, however obfeurcly, to defcribe; wherefore I have taken Care to have an exact Draught of this Libbfireum, the Valves being opened with great Circumpection.

Fig. 46 reprefents the lower flat Shell, flicking tenaciounfy in a very hard Stone, of the Kind of the Rork Oyfters ; of which lee Lijter de Cocbl. Tit. xxvii, p. 182, with the Hinge fluted on both Sides, or a $a$, furnifhed with Ging gimi. b, A manifett Foottep of a ftrong Tendon, by which the Animal, when alive, opens and fluts the Shells. I have fulpected $c \mathrm{c}$ to be the Fins or Beard of the Oyfter, of a light grey Colour, and of a very fmooth Subflance, diftinguining themfelves from the Colour and Subtance of the Stone; and this I was the more eafily induced to believe, becaufe the Fins of teftaceous Fifhes are naturally different in Colour and Subfance from the other foft Parts.

Fig. 47 is the upper Valve, or Concavo convex Shell, more fo than the upper Valve of the Oyfter, which is commonly brought to our Tables. Here again a a are the Gingtynit, and $b$ the Antagonift Tencon.
Fig. 48. Fig. 49 reprefents the Body of the Animal found in the Cavity of the Valves, where a hews the Foorttep of the tendinous Procefs from Part of the Concaro convex Shell: $b$ the oppofite Procefs of the flat Shell.
Thus the Form of the Animal remained entire ; but the whole Subfiance of it was changed to a fmouth, hard Clay. This perhaps is whit le Bruyn meant, when he faid, "In the middle .. - we fee the Oyfter " entire, and at the fame Time it looks as if it was engraven in the "oppofite Shell."
Fig. 49, the reft of the Bivalve, by which it appears, that the Shell was lefs ponderous than that of a common Oyfter, finooth, and not gutceied or furrowed.

## Experinuents on Marnetick Sand

Now every Body knows, that in the inner Part of nont Oyfters, efpecially in the concave Valve, there is a Sort of Ciftern, containing tie Water which is gieedily drawn in, clofed with a thin melly Plate. and from the Hinge generally equalling the whole Bed of the Animat; and I have learned by Experience, that this Ciftern, when it is diffinet from the hard Shell, is apt to deceive the Unflilful: For it has happened more than once, that one or another has promounced the Cavity covered with a tranfparent Plate in foffil Oyfters, to be the ligure of the Oyfter rudely infcribed on cither Shell.

Perbaps fuch a Shell of Mount Niçfia might impefe upon le Bruss. "That the Oyfter has imprinted it's Shape on the Shell," when lie boldly appeals to his Figure, "as may be feen in the Figure :" Whereas even his Figure, confidered attentively, fhews nothing hut the mere Shell, reprefenting only an imaginary shape of the Oytter. I could prove this Afertion by many Schemes, but one thall fuffice.

Fig 50 reprefents a forcign Oytter with many Ginglymi, of Zijanken Fig. 50. Berg. Now could any one take upon him to pertuade us, that the Figure circumfcribed by the Letters $a, b, c, d, e$, is the Form which the dying Animal impreffed on it's Shell? When it appears to the Eye, that it denotes the above mentioned Ciftern, with orily a lmall P.irt of the above-mentioned thin, teftaceous Plate remaining, over-2gainit the Letter b.
XXVI. The Indian-Sand, which is brought to Hollont, is faid to be Experimem/s chiefly gathered upon the Sea-fhore in Perfoc; then it is boiled in Water, to free it from it's Saltnefs, and it is after this a black Powder, confifting of Grains of different Bignefs; fome of which have a very onigh Surface, and pthers have one Part of their Surfice fomething rough, and the other very fhining: Their Figure is very irregular, like Grains of common Sand, only this Indian-Sand is fmaller. Thefe litule I umps have neither Tafte nor Smell, and are friable, fo as to be eafly reduced made on the Magnetick sand, by Petrus Van Mufcherbroek, $M D$. F. R. S. Prof: Matb. and AAron Utrecht: to a very fubtile Powder. It has fome Parts which Rre Rrody No. 432. p. tracted by the Loadftone; and others fo very inactive, as fcarcely to ${ }^{1734}$. feem to be magnetical: The ftrongett are the blackeft; but the inactive ones are more fhining, and more inclining to the Colour of Lead; thefe are in the greateft Quantity, and from them the others are got out by a Loadftone. Dr Moulen has examined feveral Ways fuch a Kind of Sand which is brought from Virginia, and defcribed it in the Pbilof. Tranf.* I have examined the Indian Sand another Way, of which I have given an Account in my Pbyfal D flertations, $P$ 12y; but a great deal ftill remained to be confidered, and as there is a great deal more of this Subftance of the lazy or inactive, than of the active or magnetic Sorr, it was proper to try whether a magnetic Virtue maight not be excited or increafed in all of it ; and after a few Trials I found the Thing to fucceed. I fufpected that there might ferlaps be too

> * See Vol. II. Chap. 3. \$. xcvi.

$$
\text { V O L. VIII. Part ii. } 5 \text { D }
$$

## Experiments on Magnetick Sand.

great a Qunntity of Sulphur achering to the Sand, to fuffer it to be turned into any metalline Regulus by a long Continuance in the Fire; therefore I toafted it in an open Crucible for two Hours with half the Quantity of Pot-afh; afterwards I wafhed away the Salt with Water, and the Sand remained much blacker than before, of which I found more than a Quarter endued with a greater magnetick Force. I do not fcruple to atribute this Virtue to the Salt; becaufe, though the Action of the Fire alone does increafe the Force of the Sand, yet it does not give it near fo much attractive Force.

Becaufe common tlack Soap is made of Oil boiled with a Lixivium of Pot-ath, I had a Mind to try whether Soap might not do more than Salt alone in raiting the Virtue in the Sand; fo I mixed the Sand with an equal Quantity of Soap, which I firf expored to a gentle Fire in an open Crucible, to dry up the Soap which fivells very much; then the Fire was increaled for - of an Hour, all the oily Subftance wholly confumed, and the Matter in the Crucible was flrongly fired; then afterwards bo:ling it in Water, and wafhing it well, I obtained a black Sand, which was all enducd with a lively attracting Force. Very well pleafed with this Succefs, I had a Mind to try whether I might raife a greater Force in it; wherefore I again roafted it with black Soap as before, and even a third Time; but no Addition was thereby made to it's Virtue: I find that ftaying too long in the Fire is as prejudicial as flaying too mort a Time; between 2 an Hour and an Hour feehied to me the moft proper Space of Time.

After, I added to the black Soap : of Salt of Tartar, and mixed thereto an equal Quantity of Sand; which, when it had been expofed to a reverberatory Fire ${ }^{3}$ an Hour in a Crucible, I wafhed in Water; and then fo great was the Virtue of the Sarid, that if it did not exceed the former, at leaft it was equal to it.

Becaufe I had obferved the Oilinefs of the Soap to conduce much to excite the Virtue in the Sand, I mixed Beef-Tallow with an equal Quantity of Sand, and having very well clofed the Crucible, I expofed the whole Mafs to a reverberatory Fire for 2 Hours, whereby the Sand betame much blacker, and received a great deal of attractive Virtue: But that Sond became much more active which was burned 2 Hours with an equal Quantity of Pitch, as likewife very black, fubtile, and very little fhining: But when it was expofed a longer Time in the fame Crucible, I obferved it to be weaker; as alfo, when it was in the Crucible with the Pitch but $\frac{1}{8}$ an Hour, it farce acquired any Virtue; fo that there muft be a determined Action of Fire to raife the Virtue in the Sand. Yet I could not raife a greater Virtue in the Sand than by the Means following, viz. mixing the Sand in the Crucible with equal Parts of Rofin, Pitch, Frankincenfe, and Rape Oil, and expofing it to a reverberatory Fire for an Hour, having firft well clofed up the Crucible. Between the black Coals of the oily Matter, there fticks a very black Sand, which leaps up fwiftly to the Loadfone, as foon as it

is brought neat it. Then I confidered whether the Sand did not acquire the greateft Force as it catne neater to the Nature of Steel, by burning it with the Bodies above-mentioned; and fufpecting this, in order to try it, I put it among fuch Bodies as turn Iron into Steel, according to the Operations defcribed by that great Experimenter Monf. Reaumer, in that excellent Book, entituled, The Art of turning Iron into Steel. I took therefore three Parts of Sand, two Parts of ChimneySoot; and of Sea-Salt, powdered Charcoal, and Ahes, one Part each. Having accurately mixed all thele Bodies together, they were expofed for fix Hours in a clofe Crucible to a flong Fire; and then the whole Mafs was boiled and wahed in Water, then dried, and fo received a great deal of attracting Force; but it was not near fo active as that which was prepared with Soap, or in the Manner laft deferibed.

And now, what can this Sand be? Is it an imperfect Magnet, or fubtile Powder of it, which when it is grown up into a greater Lump, makes the vulgar Loadftones? So I conjectured at firft but when I found by Experience that common Loadfones expofed to the Fire, according to fome of the Methods above-mentioned, did rather lofe of their Force than gain, I altered my Opinion; and now confefs that I have not yet penetrated into the Knowledge of the Nature of this Matter.

Whatever it be, it is certain that there are feveral Kinds of this Sond, brought from different Countries of the Earth: For it is brought from Perfia; fome is brought from Virginia; there is another Sort in Italy, which is common enough at Legborn, and this laft is naturally very attractive: There are two Sorts found in the Eber, a River of Haffa; of which one is like the Italian, and the other confifts of large Grains, almoft as big as Hemp-Seed, but fcarce having any Virtue. I have befides a very ftrong Sort, which I am told was got near old Old Ragufa in Dalmatia. No-body knows how many Kinds of this Sand there are: That Time, and the diligent Obfervations of Philofophers muft hereafter fhew.

Uerecht, Jan. 15, 1733, O.S.
5
2
CHAP.

## C HAP. IV.

## MAGNETICKS.

An Extract 1. THE fagacious Dr Halley, in his Account of the Changes of the Variation of the magnetical Needle, upon the Hypothefis
from the 'Yournal Books of the RoyalSociety, conserning Magnets baving more Poles than treo; by Joan Eames, F.R.S. with fome Obfervations by Dr De faguliers on the fance Sutject. No. 450 . p. 383. Oct. © 1738.
of the Earth's being one great Magnet having 4 magnetical Poles, tells us, that he had found two Difficulcies not eafy to furmount; the one was, that no Magnet he had ever feen or heasd of, had more than 2 oppofite Poles, whereas the Earth had vifibly 4, if not more, Eve. I find in looking over the Copy of the Journal-Book of this Society, Vol. II. an Article in the following Words :

July 20, 1664 .
" Mr Ball produced reveral Loadfones, and among them two Ter"rella's, whercof one feemed to have four Poles, with a Circle pafing "between then, of no Virtue at all. Some of the Company fug"gefted, that it was probable this Stone confinted of two Stones, by "Nature cemented together by a Piece that had no magnetical Quality " in it."

Query, Whether this Stone can be come at, to examine whether it be a fingle or duuble Stone? If fingle, whether the refpective Poles were oppofite?
An Account of In the Year 1715 , trying fome Experiments upon a very large weak Eomemagnetical Loadfore, I found that it had feveral Poles: Then I tried feveral other Exporiments by j. T. Defogi liers. Loadfones, and often found ${ }_{4}$ Poles in fuch as had been armed when I took off their Armour. In large coarfe Stones I found fometimes 8, 9, or 10 Poles. This made me believe all Loadfones to have feveral Poles; but, when I tried my Lord Paifey's (fince Earl of Abercoril) Loadftones, and other very good ones, I then found that homogeneous Loadifones had but 2 Poles; thofe that have more being only an Aggregate of magnetical and other Matter, which makes an heterogeneous Subitance. Such is the Suciety's great Loadfone, for it has feveral Poles.
An Account of II. I. I took a Bar of Iron, of $\frac{1}{4}$ of an Inch Diameter (which havfomemagnetical ing been 15 Years in an erect Pofition, had acquired a fixed Pole at Experiments Top, fo that the End which had ftood uppermoft attracted the N. End m. S. June of a Compafs. Needle, and the other End the S. End of the Needle); 24, ${ }^{1736, \text { by }}$ and having furpended it by a String for the Space of $\frac{1}{2}$ a Year, it actbe Rev. J. T. quired a fixed S. Pole at that End, as well as it had done at the other
Defaguliers Defaguliers,
$L L . D . F . R S$. bid. p. 38 s. End : So that both Ends of the Rod in any Situation attracted the N. End of the Needle of the Compals.

That Rods of Iron untouched, or which have not acquired a magnetick Virtue by their Situation, will with their upper End (whatever End of the Bar be held upwards) attract the N. End of the Needle, and the lower

Fnd of the Bar the S. End of the Needle, is a Truth known many Y'cars agn, and mentioned in Dr Brown's Book of vulgar Errors.
2. It is well known, and has been often found by Experience, that An Account of an Iron Bar untouched by a Loadfone, will, with it's upper End, attract the N. End of the Needle of a Compafs, when the faid Bar is held upright, and the S. End of the Necdle with it's lower End, when applied to ir, ftill in a perpendicular Pofition, whatfoever End of the Bar be held up; unlers the Bur has acquired a fixed Pole by having fome magnetical Experiments made before the R.S. April2 1 , been long in a vertical Pofition. But if the Bar from a vertical be 1737, by the brought to an horizontal Pofition, the Needle will return into the Situation it had before, which was in the magnetical Meridian, the Bar being then at right Angles to it. Upon railing or fanking the End of fame. Ibid. p. 38. the Bar which is fartheft from the Needle, the one or the other End of the Needle will begin to move towards the Bar. Such a Bar has in itfulf no fixed magnetick Virtue; but if it hat, it mult be heated redhot, and theri cooled in an horizontal Pofition. A Bar thus prepared is fit to make the following Experiments, communicated to me by M. du Fay.

Hold the Bir upright, and give it a Blow or two againft the Ground with it's lower End; and that End will attract the S. End of the Needle, when the Bar is held horizontal, and at right Angles to the magnetick Meridian: The other End held horizontal in the fame Manner, will attract the N. Find of the Needle. Invert the Bar, and the Virtue of it will be loft by friking as many Blows with it againft the Ground with the other End: Then frike asother Blow or two, and the End which attracted the N. End of the Needle, will now attract the S. End, and fo vice verfa, the Pofition being ftill horizontal.

If the Blow be given againtt the Ceiling, or any horizontal Body, with the upper Find of the Bar, the fame Virtue will be communicated as before.

This will likewife happen, if the upper or lower End of the Bas be ftruck with an Hammer or Maller; whether the Blow be given endwife, or at right Angles to the Bar: Nay, though it fhould be given in the middle of the Bar; the Pofrtion of the Bar at receiving the Blow being all that is requifte; for if you give the Bar only a Jerk or Shake in that vertical Pofition, it will receive the Virtue, as if there were in the Iron feveral Threads or Beards fixed at one End, as M. du Fay fuppofes, which the Blow or Shake laid all one Way, and which were placed the other Way by inverting the Bar, and then giving it a Shake or Blow.
N.B. When the Bar is placed horizontally, a Blow in the middle. deftroys it Virtue.
III. I formerly made Mention of a Atrange Pbenomenon relating to AnDbsirvation the Sea-Compafs, which I had frequently obferved, when we were among the Ice in Huadon's-Bay; to wit, that the magnetick Virtue of the Needle was fo far loft or deftroyed, that it would nut traverie as ufual, of the magnetic. Nedle being fo: affected by great Cold, tbas: even is mosed s .nat

## traverfe; by

 Chrifto pace Middleton, F. R. S. No. 449 . 310. Aug Efic. 1738.even when the Ship was in a confiderable Motion: And in my Voyage thither hatt Year, I obferved our Compafs would not move at all, any longer than the Quarter Mafter kept touching it. We had then much Snow on the Land, and many Ines of Ice around us, and the Sca not very fmootin: I crdered one of the Comphines to be brought into the Cabin, but did not find it any better, till it had flood near the Fire about of an Hour, and then it began to traverle very well; I then ordered is to be placed in the Binnacle, and another to be brought into the Cabin, changing them alternately thus every half Hour, and found by this Mears I could make them traverfe as well as in any other Part of the World: I was obliged to continue this Prattice, till we got near 100 Leagues from the Coaft; but afterwards I had no Occalion for that Trouble. What Thould be the Caufe of this wonderful Phencmenon, I am not able to conjecture, being certain the Compaffes, as to their mechanical Sertufure, were very perfeet, and anfwered very well both before and after, during the whole Voyage ; there is never any Oil ufed to make them move eafily, for in that Cate it might often congral, and ftop the Motion of the Card: But whether the Cold of the Climate hath a Power to deprive the Needle of it's Virtue for a Time, or that the Friftion is increafed thereby to fuch a Degree, as it cannot be overcome by the Magnetifn, I am not able to lay; but the Fact is certhin and furprizing.

$$
\text { April 20, } 1738 .
$$

Magnetical Obfervations made in May, June, and July, 1732, in the Atlantic or Weflern 0 . cean ; by Mr Jofeph Harris. No.428.p.75. April, E̋ic. 2733.
IV. I fome time fince took Notice of the Imperfections of the common Azimuth Compafs, and how ill adapted that Inftrument is for the Purpofe intended. I alfo gave the Defcription of a new Inftrument, whereby I propofed to remedy the principal Objections to the former; and farther Experience has fufficiently confirmed me in what I have faid. But I fhould be glad to have it determined by thofe who have convenient Opportunities of making Experiments of this Kind, what would be the propereft Diameter and Weight for a Needle and Card, and what ought to be their proportional Weights to each other when taken ieparately: Regard being had that the Friction be no more than what is neceffary to prevent the Card from being too much affected by the Motion of the Ship. Some Obfervations incline me to think, that a Sea-Card fhould not exceed 6 Inches Diameter, and that moft of thofe generally ufed, are too heavy for nice Experiments, though they may be well enough adapted for common Purpofes.

In March and April, 1732, the Variation at Black-River in Famaica was very accurately obferved to be from $6^{\circ}$ to $6^{\circ} 5^{\prime}$ Eafterly.

Off the Havanna about $4:$ Deg. Eafterly.

The reft of the Obfervations I made, are expreffed in the following Table.

| Laritude. N . | Longituds <br> from Lon- <br> don.-W | Varia:ion | Latitude. | $\left\|\begin{array}{ll} \text { Longitude } \\ \text { from } & \text { Lon } \\ \text { don, } & \text { W. } \end{array}\right\|$ | Variation. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Deg Min | Deg Min. | Deg. | Deg Min. | Deg. Min | Deg. |
| $\overline{27} 00$ | $\overline{80}$ | 4 E . | $\overline{35} \quad 55$ | $\overline{65} 30$ | 5 W. |
| 2845 | $80 \quad 00$ | $3^{\frac{1}{2}}$ | 3806 | 60 30 | 6 |
| 3100 | $77 \quad 45$ | $1 \frac{3}{+}$ | 3910 | $57 \quad 30$ | $8 \frac{1}{3}$ |
| $32 \quad 15$ | $72 \quad 30$ | 00 | $39 \quad 40$ | $56 \quad 30$ | $8 \stackrel{3}{+}$ |
| 3240 | 7200 | I W. | 4300 | 45 00 | $9^{\frac{1}{2}}$ |
| $32 \quad 45$ | 71 30 | $1{ }^{\frac{1}{2}}$ | $43 \quad 05$ | $44 \quad 35$ | $9 \frac{1}{\frac{1}{2}}$ |
| $32 \quad 52$ | $70 \quad 40$ | 21 | $44 \quad 40$ | $35 \quad 15$ | $11 \frac{1}{\frac{1}{2}}$ |
| 3430 | $67 \quad 25$ | $4 \frac{1}{3}$ | $47 \quad 20$ | $20 \quad 20$ | 11 |

The Inftrument I ufed was fo eafily managed, that unlefs the Sea was pretty rough, an Obfervation might be depended upon to about a Quarter of a Degree, had the Card performed to the fame Exactnefs. Bua by comparing feveral Obfervations made under the like Circumftances, as to the Weather, it feems to me as if the Virtue of the Needle was not always of equal Strength. Sometimes feveral Obfervations would agree exceedingly well; at other Times the Card would ftand indifferently any-where within a Degree or more of it's Meridian; and this I obferved in feveral Cards. I found another Circumftance which furprized me much: The Card would fometimes differ about $2^{\circ}$ from icfelf betwixt the Morning and Evening of the fame Day; and this Difference would continue as it were regularly for feveral Days, then vanihh for a Week or more, and afterwards would return and continue as before.

The Greatnefs of this Difference, and the near Agreement betwixt the Obfervations made in the fame Forenoon, or Afternoon, amongft themfelves, will not give me Room to fufpect that it proceeded altogether from an Error in obferving. I own I cannot account for it, but whatever be the Caufe thereof, the Error was always the fame Way; that is, the Wefterly Variation in the Morning would be lefs than in the Afternoon. I carefully examined if this could be any Ways owing to the Inftrument, or to any Iron near the Place where it was ufually. fet for Obfervation; but I was fully convinced it could proceed from neither. 1 know not whether any fuch Oblervations as thefe have been made before; but I think it would not be unuffeful, if thofe who have proper Inftruments, and are fufficiently fkilted, would communicate any Thing of this Kind that may occur.

It now appears that the Numbers in the foregoing Table cannot be frictly accurate; but I think the Error can farce any-where excced hall

## Magnetical Ojfervations.

half a Degree ; for in moft Cafes feveral Obfervations were made pretty near together, of which I took a Medium, making Allowances according to the Circumftances attending each: And perhaps they are as exact as can be well expected from Sea-Journals. And there can be no fenfible Error as to Longitudes, our Reckoning, when we made the Land, happening to fall out to a more than ufual Exactnefs.

The Variation of the Magnetick Nedle, as obferved in three Voyages from London to Maryland, by Walter Hoxton. No. 454. p. 171. July, E゙c. 1739.
V. N. B. The Longitude is reckoned from the Lizard.

|  | The | fret Voya | ge, 1732. |
| :---: | :---: | :---: | :---: |
| Latitude. <br> North. <br> - | Longituce. Welt. - | Variation. Wefl. |  |
| $39 \quad 53$ | $27 \quad 16$ | 12 | $\left\{\begin{array}{l} \text { In Sight of the Ifland Corzio. } \\ \text { Difference of Longitude fiom } \\ \text { it } 3 j^{\prime} \mathrm{W} . \end{array}\right.$ |
| $37 \quad 49$ | $27 \quad 45$ | 14 |  |
| $35 \quad 19$ | $39 \quad 20$ | 13 |  |
| 3240 | 50 | 8 |  |
| $34 \quad 40$ | 56 | $6 \quad 30$ |  |
| 354 | 65 | 428 |  |
| $3^{6} \quad 50$ |  | $4 \quad 42$ | $\left\{\begin{array}{c} \text { Dinance from Cape Hcny } \\ \text { Leagues. } \end{array}\right.$ |
|  |  | $4 \quad 58$ | $\left\{\begin{array}{l} \text { In the Bay of Cbefepeak, }{ }^{3} \text { Miles below the Mluuth of } \\ \text { Potomack Riscr. } \end{array}\right.$ |
|  |  | 4 4? | $\left\{\begin{array}{l}\text { Off the Mouth of Potuxon } \\ \text { River. }\end{array}\right.$ |

Return.

| Latitude. North. - | Longitude. Weit. - | Variation. Weft. |
| :---: | :---: | :---: |
| 3611 | 56 | 22 |
| $34 \quad 5{ }^{2}$ | 53 | 17 |
| $34 \quad 33$ | $5^{2}$ | 15 |
| 34.45 | 51 | 65 |
| $34 \quad 36$ | 50 | $6 \quad 23$ |
| 36 | 4930 | $7 \quad 37$ |
| 3720 | 48 | $9 \quad 23$ |
| 38 | $48 \quad 20$ | 10 |
| $39 \quad 27$ | $47 \quad 40$ | 10 |
| 408 | 4540 | 10 |

Magnetical Obfervations.

| Latitude. North. |  | Longitude Wert. |  | Variation. Wert. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 40 | 30 | 45 |  | 13 | 4 |
| 42 | 32 | 42 | 2 | II | 43 |
| 42 | 40 | 42 |  | 12 | 39 |
| 43 | 27 | 40 | 2 | 13 | 24 |
| 43 | 32 | 39 |  | 13 | $4^{2}$ |
| 4 | 48 |  |  |  |  |

The fecond Voyage, 1733.

| itude. <br> orth. | Longitude. ${ }^{\text {Welt. }}$, | Sun's Alcitude. | $\begin{aligned} & \text { Variation. } \\ & \text { Weft. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 48.12 | 18 | 31 | 18 |
| 467 | 30 | 25 | 16 |
| 44 | 7 - | 22 | 16 |
| 17 | 9 | 33 | $16 \quad 36$ |
| 0 - | 12 | 37 | 15 |
| 38 | 14 | 4 | 14 |
| 36 | $14 \quad 45$ | 25 | 13 |
| 32 | $15 \quad 52$ | 47 | 13 |
| 16 | 1612 | 19 | 13 |
| $34 \quad 2$ | 2151 | 35 | 11 |
| 344 | 23 18 | 27 | 951 |
| 35 6 | $30 \quad 33$ | 21 | 10 |
| $35 \quad 12$ | 3138 | 20 | 48 |
| 23 | 3122 | 32 | 10 |
| 34 | $32 \quad 25$ | 20 | 8 18 |
| 19 | 3126 | 23 | $7 \quad 12$ |
| 2917 | 31 II | 24 | 645 |
| $3^{2} \quad 24$ | $37 \quad 55$ | 25 | 639 |
| 3250 | $38 \quad 35$ | 25 | 10 |
| $3^{2} 11$ | $40 \quad 23$ | 30 | 11 |
| $3^{1} 19$ | 419 | 25 | $6 \quad 42$ |
| $3^{2} 25$ | 43 | 26 | 5 |
| 5 | $47 \quad 20$ | 25 | 849 |
| 3345 | $49 \quad 24$ | 3 I | 10 |
| 35 | $54 \quad 10$ | 30 | 83 |
| 4 | 54 | 41 | 554 |
| 41 | 54 | 22 | 512 |
| $33-51$ | 55 | 23 | 635 |
| 59 | 60 | 36 | $7 \quad 2$ |
| 32 | $59 \quad 30$ | 23 | 749 |
| $37 \quad 1$ | 61 10 | 33 | 645 |

VOL. VIII. Part ii.
${ }_{5} \mathrm{E}$
$37 \quad 5$

## Magnetical Obfervations.

 North. Weft. $\begin{aligned} & \text { Alta- } \\ & \text { etude. }\end{aligned}$

| 37 | 5 | 66 | 22 | 44 | 5 | 25 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 36 | 53 | 66 | 40 | 30 | 4 | 45 |
| 36 | 36 |  |  | 30 | 5 |  | $\left\{\begin{array}{c}\text { In the Sounding r, } \\ \text { 20 Leagues of } \\ \text { Cape Henry. }\end{array}\right.$

## Return.



The third Voyage, 1734.


| Latikude. North. - | Longituce. $0^{\text {Welt. }}$ | $\left\|\begin{array}{c} \text { Sun's } \\ \text { Alti. } \\ \text { tude. } \end{array}\right\|$ | $\begin{aligned} & \text { Variation. } \\ & \text { Weff, } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $30 \quad 29$ | $49 \quad 48$ | 22 | 4 |
| 30.31 | 5210 | 25 | $4 \quad 49$ |
| 18 | 53 | 25 | $4 \quad 45$ |
| 30.23 | 55 | 25 | 4 |
|  | $57 \quad 30$ | 22 | $45^{2}$ |
| 37 | 68 | 38 |  |

## CHAP. V.

## $B \cap T A N$.

, TH I S learned and ingenious Performance, in two Volumes in Am Accoumt of Folio, contains a Didication to the Prince of Wales, a Pre- a Treatife, imtituled, D. AIberti Halleri face, and 794 Fages.

In the Preface, the Author firft lays down a Geographical Account of Switzerland, being fituated from 46 to $43^{\circ}$ in Lat. and $4^{\circ}$ in Long. then mentions it's various and almoft furprizing Degrees of Heat and Cold within the Space of a few Miles, arifing from the different Arrangement of the Mountains: That it is in fome Parts deftitute both of Corn and Wood from the Intentenefs of the Cold; in others, where there are high Mountains to the N , and Openings to the $S$, the reflected Heat becomes fo troublefome, that the Inhabitants are forced to defert the Towns, and take Shelter in the Woods; that in other Parts the Country is fo excremely pleafant, that Tavernier himfelf, though he had travelled over great Part of the Globe, dechared he never had obferved any more beautiful. The Author then mentions, that the Plants produced in fuch Difference of Soils and Situations, muft be very nuproduced in fuch Difference of Soils and Situations, muft be very nu- ditbiarum De-
merous; he accordingly met with not only many of the Plants of the claratio, nova. warmer Parts of France, almoft all the German ones, but even thofe of Lapland and Spitzberg. Thefe Varieties have been collected in a flort Lapland and spilzerg. The fame Day, the Biforts and Saxifrages which cones continere-
Time. You gather in the ArcbiatriRegii © Elea. Medicith. Anatomia, Botar. Pralea. Ev's. Enumeratio MethodicaStirpium Helvetix indigenarum. 2ua omnium brevis Defriptio © Synorymia, Compendium Virium Medicarum, rum छ̇ rariorum uberior Martens collected in Spitzberg; the yellow Milfoil, Xeranibemum, E-tur. Gottinpbedra, and other Ornaments of the Southern Part of France. The giae, 1742, in Progreffion between both Extremes is fo regular, that in going from Born to Grimful, you paifs firft by Cbifnut-Trees, and other Inhabitants lated from the tranfof the warm Countries, then $V^{\prime}$ ines, then Walnut. Trees, then Beecbes Latin by Wiland Oaks, then Firs, then Larch-Trees, then Pines, then barren Heaths producing Wbortle-Berries and fuch like, then Rocks, and Plants a F. R.S. Nation, Span high, and laft of all, beyond which Vegetation ceafes, you meet Ren. p. 369. with a Species of round-leaved Willow, not exceeding an Inch in Height, 1742.3.

[^13] the Mountains are covered with Snow. This great Variety is not (as it muft be in any other Part of the World) the Collection of many Provinces, but furnifhed within the Space of 17 Leagues; and would be ftill lefs, if in going from Sedunum, you afcend Mount Sanetch, whofe Top is but 7 Leagues from Sedurumz [or Syon].
The Author adds, that the Sides of the Mountains produce great Variety of Mofles and Fungus's, that the Paftures furnifh an inexpreffible Collection of Graffes, of which in this Book he mentions 220 Species. The following Kinds of Plants feem to be wanting in Swizzerland, viz. the hotter Kind, fuch as Tbyme, Lavender, and Rofemary; thofe very frequent in champain Countries; thofe which are produced in Bogs and putrid Soil ; fome of thofe peculiar to the North, and maritime Plants.

The Alps contain about 500 Species peculiar to themfelves, all diverfe, perennial moft of them, biting, feented, and frequently with a white Flower; befides many Plants common to other Places.

The Author then procceds to enumerate all the Botanifts, who by their Journals and Publications have laboured to oblige the World with Hiftorics and Defrriptions of the almoft inexhauftible Number of Plants, which the various Soil and Situation of this Country produces; and after having mentioned the Performances of thefe great Men, he gives fome Account of his own Travels, and the Progrefs of his Botanical Studies; that he had gone through Germany, Holland, France, and England, and made very few Obfervations of the Botanick Kind, at leaft had preferved roo Specimens of what he had feen; but upon his Arrival at Bafil to attend the Lectures of Bernoulli, and ftudy Mathematicks there, he was feized, as it were, by the Genius of the Place, where thofe great Writers the Baubins had lived, and were publick Profelfors; and whofe Chair at that Time was very worthily filled by Starbelinss : That he began to collect, defcribe, and compile, with fo great Hopes of Success, however remote, that he even attempted the Work before us, at a Time when he was farcely acquainted with the more cormon Plants. A Work of this Kind had been begun by Fobn Gefner of Zurich, a Defcendant of the famous Conrad Gefner's, and a Friend of our Author's, for which Tafk he was very well qualified by his many laborious Refearches; but at length his bad State of Health would not permit him to proceed in a Science, where he mult not be confined only to his Clofet, but climb up almoft inacceffible Mountains, fometimes nearly perifhing with Cold, and, poffibly, in the fame Day, almot ftifled with Heat. This Gentleman not only fent our Author a great many Plants, but granted him whatever he had occafion for of his Collection, which confifted of a great Number of valuable Specimens, of which he alone was poffeffed.

Our Author fpecifies likewife, what Parts of the Alps have been looked over, and what remain hitherto unattempted; and then fliews
how large a Field is yet behind, for future Botanifts to exercife their Genius upon; and that thefe Mountains have rather been curforily paffed over by Perfons travelling over them to remote Places, often at an improper Seafon, than carefully examined; from whence it happens, that many not only of Moffes, but of the mort perfect Plants, have either been omitted, or fo negligently defribed, that it is impoffible to reduce them to the Genus to which they belong. Add to this, that the Fungus's, and the very fmall Plants, fuch as the Centunculus, Sedum tetrapetalon, $\mathcal{E}^{c}$., were overlooked by the ancient Botanifts, and feem to have been referved for the Induftry and Perfpicuity of the Vaillant's, Dillenius's, and Micheli's, of the prefent Age. Our Author then candidly confeffes, that alchough he had herborized upon many different Parts of this Country for 9 Years, he could by no Means promife a full and perfect Enumeration of it's Plants; for the Defcriptions of the more ancient Writers, efpecially the Graffes mentioned by Cafpar Baubin, are fo obfcure, that it is fearcely poffible to know many of them by thofe Means; that fome Plants are inferted by Authors, which have occurred to no-body fince their Time; that others, if not quite lof, he never could meet with, notwithftanding he travelled for that Purpofe to the Places where they have been faid to be found; which may in fome Meafure be owing to our Author's being fhort-fighted, from which Defect (he believes) he may, no doubt, have paffed over fome Plants, which he had been particularly in Queft of: That he had received fome Specimens fo ill preferved, as not to be able to difcover their generical Marks; and, laftly, that it is almoft impoffible to fave any Seeds of the Plants of the Alps, or fee them in that State, on account of the Snows falling fo early as the latter End of Auguf, and Beginning of September, whereby the Mountains are covered, and rendered unpaffable.

Surrounded with Difficulties, he defpairs of perfecting his Catalogue, but hopes he flall have the Reader's Pardon, after he is apprifed of the Means our Author took againft them. Firft, he carefully marked out the Characters of all his Plants, the Day he collected them; for not being prejudiced in favour of any artificial Methoct, he looked over the Compofition of the Flower with regard to it's Petals, Calyx, and SeedVeffel, after the Manner of Profunor Boerbaave, at a Time when nobody had confidered the Stamina and Tubes as generical Notes: That he compared with his Plants the Botanical Writers of more than 2 Centuries, whofe Names are mentioned at the End of the Preface, beginning in order of Time with Branfeljus, and concluding with the late Work of Monfieur Geoffroy: That he had examined their Defcriptions of Plants, and compared them with their Figures, and made hinjelf a Pinax of the Plants of Switzerland, even to the prefent Time.

Our Author, in the Work before us, has never inferted a doubtful Plant, without mentioning his Scruple, nor any but what he himfelf has feen, without an Afterif. He has added to the End of the Work,

## An Account of Dr Hallerus's

thofe which he rould with but little Certainey refer to any Clafs ; and, contrary th che Practice of lome late Writers, he never enumerates a Variety, but regaris Proportion as a Mark of fipecifick Difference, if ever a les Plant produces Flowers twice as hig as a larger Plant of the fame Species, and holds that Size when planted in Gardens, and continuts the Difference to it's Pofterity.
As te the Method and Order of this Work, our Author has been as fort, and at the fame Time as defcriptive, as pofible. He has given the Synonymes of moft goot Aurhors: He generally firt affixes the Name the Difcoverer gave if, unlefs a very improper one; and then proceeding ufually as the Authors lived, fets down the Appellations of Conrad Gefiner, Cordus, Do ioneus, Lobel, Tabernemontanus, Hortus Aichfadionfis of Bafll, Befler, Clufus, Cafoar and Fobn Bawbin, Morion, TCurnefort, and others, who have lived frace them, either as they have difoovered a new Plant, or illuftrated an old one with a new Defcription, Figure, or Character. Wish regard to Method, he fays he might have difpofed them alphabetically, followed Boerbaave's Method, or Linneers's, but was fearful of making unnatural Difortions; efpecialiy as he was not writing an univerfal Hittory of Plants. He thinks it not at all proper to difpofe Plants in the fame Clafs, unlefs their A finity is perfee ; and lays it down as a Foundation, upon which alone a natural Method can be formed, that however different Plants may feem in no Characteriftick, thofe fhould be placed together which agree in moft others; and however alike they may be in one Point, that thofe be feparated which differ in many others. The Neglect of this Axiom has made all Methods unnatural.

The Author then apologizes for giving new Names to fome Plants, but he could not omit inferting fonce that were more exprefive, and give them the Preference to old ones, that imported little or nothing, although they had the Sanction of Antiquity; but he farce ever has changed the generical Names, becaufe amongft Things that are in themfelves indifferent, Cuftom fhould be always complied with; and as all generical Names are arbitrary, fcarce any can be thought of 10 contain enough to diftinguifh the Plant by; but the fpecifick Name ought to be a fhort Definition and Compendium of it's niceft Differences: And alchough this may fometimes be thought too tong, the Marks of Difference in many Kinds will not permit them to be contracted.

After he has acquainted the Reader with his Objcctions, and told his Reafons, he procteds to that Part of his Work, which is intituled, Normina Scriplorum \&o Editionum; and has given a Specianen of his great Erudition in a very laborious and learned Hiltory of almoft all Botanical Authors, for more than 2 Centuries: He therein points out their Excellencies and Defects, Hews which of them were Originals, and which Plagiaries; gives an Account of all their Publications and Editions, and deduces the Rife and Progrefs of Botany through all it's Stages, from the general Darkneis of the 15 th Cuntury, to the nice

Diftinctions of the prefent Time. This may be efteemed a very valuable Performance. It may not be improper to exhibit from it, the dif. ferent Characters of 2 Books in the Author's own Words, whereby fome Judgment may be formed of the reft. Firf, mentioning Clufii rariorum Stirpiumn per Hijpaniam obfervatarum, he fays, "Cordus was "reftored to the World in Clufurs. He, with incredible Labour, col" leEted the Plants of Spain, Langueloc, England, the Alps, Auftria, " fome Parts of Hungary, and thofe about Frankfort: He afterwards " drew them, and publifhed their Figures very expreffively, and with " great Neatnels. He alone doubled the Number of Plants before " known, alchough indeed many have been attributed to him, which "are concealed in the Works of Cordus, Aretius, and Gefner." Our Author afterwards, fpeaking of Fabregou's Defcription des Plantes qui: naifent autour de Paris, fays, "Nothing can be more audacious than "this Writer; he often quarrels with good Authors, and obtrudes " upon them long fince dead, arbitrary Definitions propofed by him"felf. The Synonymes of his Plants, and the Definitions of his Spe" cies, are very, much confufed: He takes, with the utmoft Impu" dence, the Names of Vaillant and Tournefort, but with ridiculous "Alserations. Befides, to my great Abhorrence, he inferts a very " great Number of Plants moft certainly exotick, as growing about "Paris; and, leaft any Thing flould be wanting to fpoil this Work, "the typographical Errors are infinite."

Before I give an Account of our Author's Syftem of Botany, it will be neceffary to mention the different Parts of Plants, from which other Authors have formed theirs. Conrad Gefiner was the firt wio difcovered, that Plants might be diftinguifhed into Genera from their different Maniner of bearing Fruit, as appears by his pefthumous Letters publifhed by Camererius; but Cefalpinus firft reduced it into Practice. Cefalfinus, I fay, Ray, Hermaiz, whofe Plan is much improved by Bocrbanve, and Knaut's Syftems, are formed from the Fruit; Tournefort's, from the Figure of the Flower; Rivinus's, which is followed by Ruppius, from the Number and Equality of the Petals; Magnol's, from the Colyw:; Linneus's, from the Stamiun, Piftillum, and Sex of the Flower: and our Author, his principally from the Number and Difpofition of the Simmina, and likewife from the Manner of Fruiting. I have, at the End of this Extract, abridged it according to the Order of the Claffes, Genera, and Species.

Throughout the Body of this Work, our Author has ranged his Plants after this Method; and when he mentions a particular Plant, he firft gives the generical Name, and ir's Inventor; then lays down the Form of the Flower, and the Manner of diftinguifhing this Plant from others of the fame Species; then quotes the Synonymes, then the Place of it's natural Growth, afterwards the Defcription of it's Root and Leaves; and daftly, collects all the Evidence on both Sidus, with regard so it's Ufes as a Medicine, or the contrary, I think it not jmproper

## An Account of Dr Hallerus's

to give here Part of the Hiftory of one Plant, as a Specimen of the reft. The Author, fpeaking, p. 298, of Viratrum, or white Hellebore of the Shops, after mentioning the generical Name, Form of the Flower, 29 Synonymes of different Writers, the Place of Growth, and the Form of it's Root, fays, "This Plant is univerfally agreed to be "hurtful, though Braflarola, p. 535. found fome Pcople hardy enough "to give 3 j at a Dofe, without any Corrector; which Dofe even Welfib "and Herman have allowed in Infution to Drmoniacks, alfo Mathbio" lus, p. 1222. with good Succeis, to Lunaticks. Herman in like "Cafes gives the Root in Subftance, from 15 to 30 Grains. Notwith"flanding which, we find in the Eppenerides nature curiof. Anno $1^{\text {mo }}$ "Obf. 65. that $Э j$ has certainly produced Convulfions; and Wepfer " mentions a Dog killed with the fame Dofe, and Fallopius de Purgant. " likewife many ftrangled therewith. Lentilius, p. 868. takes Notice ". of violent V omitings occafioned by the Root's being given by Miftake, " inftead of Solomon's Seal. The AEEa Hafn. Anno v. Obferv. 55. fay, "that thofe nooft hardy Mortals, who live in the Northern Parts of " the World, and purge themfelves with this Plant, weceive great Mif"chief in their Eyes therefrom, even fometimes to be followed by "Blindnefs. See alfo it's terrible Effects in the Breflau Tranfacions, "Anno 1725. Even amongf the Ancients, notwithftanding that both "Sorts of Hellebore were produced in Anticyra, the black was only " made ufe of in Purges, on account of the emetick Quality of the white. "See Poufanias, Lib. X. p. 623. Alloyne will fcarcely admit it to be "fafe given in Powder as a Sternutatory. But if the Juice of this "Plant, with it's full Powers, fhall by any Method get into the Blood, " it is fo quick a Poifon, that the Animal immediately dies, if wounded "even in a flight Manner, and the Juice applied thereto. See Crato, "Epitt. II. p. 226. Mattbiolus found this Experiment true upon Hens. "See p.1226. Epifolar. p.219. And that the Putrefaction excited " thereby was fo great, that the Flefh immediately was grown foft. "See Arceus de Curand. Vuln. Lib. I. p. yo. Nor does the Caufe feem " to be obfcure, feeing that the Roots, being chewed, fire the Mouth " and Throat, and pour forth a very fharp Liquor, not unlike that of "Lime. Geoffroy de Mat. Medic. Vol. II. p, 226. But Conrad Gefner, " in the Work publifhed by himfelf, affures us, that his Oxymel Ellebo" ratum may be given to 3ij without any Mifchief, and that it is very " ufeful to promote the Menfes, Expectoration, and Sweat."

This may ferve as a Specimen of our Author's great Induftry and Exactnefs; which he acheres to throughout the whole Work, where a Plant has by any, whether ancient or modern, medical Writer or Hiftorian, been celebrated for medicinal Purpofes, or it's Ufes in the Art of Dying. His Defcriptions are fo exact, that it is almoft impoffible, that any Perfon, ever fo little converfant with Botany, thould miftake one Plant for another. His Figures, of which there are 24 Tables, are finely engraven, and with great Accuracy, as appears from comparing them

## Enumeratio Metbodica Stirpium Helvetix indigenarum.

them with their Defcriptions. His Method is very natural, and not difficult to comprehend when confidered; though at firt View it feems more fo than Ray's, Tournefort's, or Boerbaave's: And indeed there have been already fo many Botanical Syftems, fuch warm Controverfies among Authors, fo many bad Names, fuch great Confufion, that as often as there appears a new Syftem, it fends forth a Panick throughout the Botanical World; as it adds to the Number of Names already too great, and tends to the Difcouragement of thofe who are defirous of being acquainted with Plants. But our Author's Syftem being, as I faid before, very natural, and as he gives but few new generical Names, and at the fame Time when he gives his own, mentions thofe of moft good Authors; thefe Confiderations take off many Objections, to which fome late Botanick Writers are liable. In the Work before us, the Author takes in only the Plants of Switzerland; but I believe his Plan may be extended to a general Hiftory, which, if executed with the fame Accuracy as the prefent Work, cannot but be a moft valuable Performance.

V O L. VIII, Part ii.

## Conspeofus Metiodi PL A N TARUM D. Alb. Halleri. <br> (I. Sunt vel, flore ftaminibus \& petalis deftitute, femine folo donatæ; ut Conferva.

II. Staminibus veris \& petalis deflicutre, fore aliguo \& fernine donatre $\ldots,\{3$ 2. Staminum analogis corpufcul is pradita, ut Muffi, 3. Epiphyllofperma; ut Ofmanda. Polypodium. 1. Staminibus coalitis a fructu remoris, coniferx, ut I.arix.
2. -a fructu remotis, Juliferx ; ut Salix.
3. Non Juliferx, ifottemones; ut Rhamnoidcs.
4. Meiollemones; ut Alcbimilla.
5. Diploftemones; ut Knarvel Raii.
6. Polyftemones; ut Tifloymalus.
7. Aquaticx varix; ut Chara, Limnopeuce.
8. Triftemones, flore plerumque bifolio; ut Gramina.
9. Graminibus adfines; ut Cyperoides.
IV. Seminibus, fiore, flaminibus, \& petalis, donatia.


1. Polyitemones,
[3. Plerumque multifiliquax; ut Veratrum, Butomus.
$\{$ 1. Petalis circa ovarium ortis; ut $A$ -
2. Gymnopo- $\{$ donis, Trinitas.
lyfperma, 2. $\overline{\text { phyllata. }}$ e calyce ortis; ut Caryo-
3. Pomifera, $\left\{\begin{array}{l}\text { 1. Umbilicatx, ut Ribes, Ro } \\ \text { 2. Non Umbilicata; it Pra } \\ \text { rafus. }\end{array}\right.$
4. Diploftemones; ut Oxys , Geraniums.
$\left\{\right.$ 1. Placentiferx, $\left\{\begin{array}{l}\text { 1. Vafculifere; ut Evonymus. } \\ \text { 2. Flore fructui innato Gymnodi- } \\ \text { Spermx; ut Umbelliferre. }\end{array}\right.$

5. Flore circa fructum pofito.
6. Cucurbitacex ; ut Bryonia.
7. Solanaceæ; ut Alkekengi, Solanum.
8. Afperifolia; ut Echium, Symplytum.
9. Dicarpx; ut Afclepias, Pervinca.
10. Hexapetalx; ut Berberis.
11. Meioftemones; ut İgufirum, Veronica.
12. Staminibus ad petala féfquialteris ;
ut Tetrapesala Cruciatre $\left\{\begin{array}{l}\text { 1. Siliqua breviori, }\left\{\begin{array}{l}\text { 1. Uniloculares. } \\ \text { 2. Biloculares. }\end{array}\right. \\ \text { 2. - tongiori. }\end{array}\right.$
13. Staminibus ad petala duplis féquitertiis; ut Papilionacere.
14. Flore monopetalo, faminibus $\int \begin{gathered}\text { 1. Capfula uniloculari; ut Oro- } \\ \text { banche. }\end{gathered}$
quatuor inaqualibus, $\quad$ 2. $\begin{aligned} & \text { Seminibus quartuor nudis. } \\ & \text { 3. }\end{aligned}$
15. Floribus uni femini infidentibus congregatis; ut Pappofe, Capitata,

Corgmbiferc.
II. The

## A new Genus of Plants, called Mangoftans.

11. The Mangoffans is a Kind of pomiferous Tree, which grows in The Settling of the Molucca Mands, the Fruit of which is one of the beft in the World a newGenus of for eating.

CbaraEter. This Genus has it's Flower compleat, tetrapetalous, regular, hermaphrodite, containing the Ovary. I's Calix is monopetalous, divided into four Lobes, roundifh on the Edges, and hollowed in the Shape of a Spoon. The Ovary is very near cylindrical, with a Tube upon it cut out in the Shape of a Rofe, which covers it like a little Cap. The Stamine which furround it, are fpherical at the Top, their Number is four Times that of the Petala. When thefe are gone off, the Pifill changes into a round Fruit, adorned with it's Calix, and it's Tube, cut into the Shape of a Star, with Rays fquared at the Corners. It's Cortex, which is thick and brittle, enclofes a Cavity filled with as many pulpous and juicy Segments as there are Rays in the Tube. Thefe Segments are white, in the Shape of a Half-moon, fticking together, and containing each but one Grain of Seed; which latter is oblong, fomething flattened, refembling an Almond, wrapped up in a Tunica, which is covered with a hairy Coat of Fibres or Velfels, which, together with the Pulp, make up the Parenclyma of a Segment of the Fruit. The Leaves of the Tree are entire, fmooth like thofe of the Laurel, and grow oppofite to each other on the Branches. The Stem of the Tree grows up ftraight to the Top of it's Tuft, and it's Branches and Twigs come out oppofite to one another like the Leaves.

I know but one Species of this Genus, which admits indeed of fome Variation, but without any other Mark than what appears in the Fruit.
Mangoftans Garcir, Cluf. Bont. Arbor peregrina Aur antio fimili frustu. Cluf. exot. 12. Lourifolia favanenfs C. B. Pin. 461.

Defcription. The Mangoftans is a Tree of a very moderate Size. It does not grow above 3 Toifes (about 18 Feet) high. It's Stem runs up ftraight to the Top of it's Tuft, like the Fir. This Tuft is regular, in Form of an oblong Cone, compofed of many Branches and Twigs, fpreading out equally on all Sides, without leaving any Hollow.

The Stem grows at Bottom to the Thicknefs of a Man's Thigh, or about 8 or 10 Inches in Diameter; it afterwards diminifhes in Thicknefs by Degrees up to the Tuft. It's Wood is white, as long as the Tree is growing, but brownifh when the Tree is cut down and dry. It's Bark is a little tender, and feparates eafily from the Wood; it is of a dark-grey Colour, and nit, or full of Cracks up the Stem, but on the Twigs it is more even and greener, refembling that of Euonymus, or Spindle-Tree.

The Branches grow out of them by Stories, and oppofite to one another; thofe Stories crofs each other obliquely, and not at right Angles. The Thicknefs of thofe Branches is always proportionable tothat of the Stem at the Place where they come out of it: This Proportion is about 1 to 4 , or 1 to 5 . The Length of the inferior Branches Top. The Diftances of the Stories of the Branches are a little unequal, but where they are wideft, they do not exceed the Length of the greateft Leaves, that is, 8 or 9 Inches.
The Twigs grow on the Branches in the fame Order as thofe do on the Stem, that is, oppofite to each other. The longeft are commonly of the Length from one's Hand to the Elbow. The greater Twigs grow out to a certain Diftance from the Stem, and the others which garnifh the reft of the Branches, always grow lefs and lefs towards their Extremity.

The Branches and Twigs never divide themfelves.
The L.eaves are large, entire, beautiful, fmooth, of a Mhining Green on the upper Side, and of an Olive Colour on the Back, pointed at their Extremities. The Rib which divides it's Extent into 2 equal Parts, is ftraight, and equally prominent on both Sides. From the Sides of this Rib there iffue forth Fibres pretty fmall, and almoft by Pairs, which extend themfelves in Parallels, and bent a little Archwife quite to the Edge of the Leaf, where they unite themfelves into a Thread, which forms chere a Kind of Margin. The Mafnes or Filaments of the Net are not very perceptible. The Size of thefe Leaves varies; the largett are 8 or 9 Inches long, but commonly 7. The Breadth of each Leaf is near equal to half it's Length, which Proportion is always the fame in every Leaf. Their Pedicles are thick, fhort, and wrinkled, flat on the Infide, and raifed in the Shape of an Afs's Back on the Outfide, moft frequently half an Inch long. They come out near, and on the Extremities of, the Twigs, oppofite to each other like the Branches themfelves. There appear feldom above 2 Pairs of Leaves on each Twig, and thofe that hoot out laft always make up the Extremity of that Twig.

The Flower is 2 Inches in Diameter, pretty much like a fingle Rofe. It is compofed of 4 Petala, almoft round, or a little pointed, of the Breadth of an Inch, or thereabouts, very thick, firm, fleflyy, brittle, and fomewhat hollowed into the Shape of a Spoon. Their greateft Thicknefs is near their Bafis, of above a Line, which decreafes by Degrees towards the Extremity. They entirely refemble the Petal of a Rofe, except that inftead of being indented like a Heart, they end gradually into roundifh Points (as I faid before). Their Colour is alfo like that of a Rofe, except that it is deeper and lefs lively. The Bafis, which is the thickeft and firmeft Part of it, is the whiteft, and the moft brittle.

The Piftil, or Ovary, is a round or almoft cylindrical Bocly, five Lines chick, raifed to the Height of four. The upper Part of this Piftil, that is to fay, it's Tube, is cut in the Shape of a froall Rofe, covering the Ovary like a Cap. The Diameter of this Cap is of an equal Breadth with the Ovary, which it covers entirely, Aticking very

## A new Genus of Plants, called Mangoftans.

clofe to it. The Colour of the Ovary is a pale or whitifh Green, and that of the Tube a White that is fullied or dirty.

The Stamina rife from the Bafe of the Piftil, they are whitifh, round at the Tops, and raifed to the Circumference of the Tube, applying themfelves to the Ovary. They are 16 in Number; 4 for each Petal.

The Calix is of one Piece, expanded and cut into 4 Lobes down to it's Bafis. Thefe Lobes are thick, round, fkinny, hollowed in the Manner of a Spoon, refembling alfo Petala of Rofes not fully blown. They feem to crofs one another like the Petala. The two upper Lobes are fomething larger than the lower ones; they are greenifh on the Outfide, and of a fine deep Red within, which makes them more agreeable to the Eye than the Petala; the Red of the upper ones is more lively than that of the lower ones. All thefe Lobes in fhort are hollower than the Petala; they do not cover thofe latter farther than half Way their Height. This Calix enclofes all the Parts of the Flower. It is fupported by a Pedicle of 7 or 8 Lines long, it's Thicknefs being commonly of $\frac{1}{3}$ of it's Length. This Pedicle is green, and conftantly comes out of the End of a Twig above the laft Pair of Leaves.

The Fruit is round, of the Size of a middling Orange: It's Bignefs however varies very much, from $1 \frac{1}{2}$ Inch to $2 \frac{1}{2}$ Inches Diameter. The Top of it is covered with a Sort of Cap emboffed, cut out in the Shape of a Rofe, or a Star with Rays fquared off, of a Finger's Breadth, or fometimes of an Inch in Diameter. The Rays of this little Rofe are moft frequently 6 or 7 in Number, but feldom of 5 or 8 . Thefe Rays, by being thus fquared, form together a Kind of Polygon: This is the Part which had ferved for the Tube to the Ovary.

The Body of this Fruit is a Capfula of one Cavity, compofed of a thick Shell, brittle, a little like that of a Pomegranate, but fofter, thicker, and fuller of Juice. It's Thicknefs is commonly of 3 Lines: It's outer Colour is of a dark-brown Purple, mixed with a little Grey and dark Green; the inner Colour, that is to fay, on the Infide of the Cafe, is of a Rofe Colour. It's Juice is purple. Laft of all, this Skin is of a ftyptick or afringent Tafte, like that of the Pomegranate; nor does it Atick to the Parts of the Fruit it contains. The inner Part of this Fruit is a furrowed Globe divided into Segments, much like thofe in an Orange, but unequal in Size, which do not adhere to each other. The Number of thefe Scgments is always equal to that of the Rays of the Tube which covers the Fruit. The fewer there are of thefe Segments, the bigger they are. There are often in the fame Fiuit Segments as big again as any of thofe that are on the Side of them: Which will be eafily feen in the Figure 1 have given of it.

Thefe Scgments are white, a little tranfparent, fichy, membranous, fibrous, full of Juice like Cherries or Rafberries, of a Tafte of Strawberries and Grapes together. Each of the largeft Segments enclofes a Grain of Seed of the Figure and Size of an Almond Atripped of it's Shell, having a Protuberance on viic of it's Sides, which is notining elfe moft of which ferves for a Bafis to the Filaments and Membranes of which the Pulp is compofed. The Subftance of thefe Grains comes very near to that of Chefnuts as to their Confiftency, Culour, and aftringent Quality. The Calix always remains flicking to the Fruit, to which it ferves for an Ornament, and when half dried up, it is of the Colour of the Ponegranate-Shell on the Outfide. It covers about $\%$ Part of the Circumference of the Fruit.

Remarks. Garcias, Cluffus, and Bontius, are the firf Authors who have nade mention of the Mangofans; but they have left us only indifferent Defcriptions, and fo mort ones, that it is not poffible to form from them a fufficient Idea for difcovering it's Characters. The firft of thofe Authors was ill informed, when he was told the Fruit of it was yellow. Clufus has fpoken of it under 2 different Names, without apprehending that it was one and the fame Plant. The Figure which he has given of the Fruit, and which he calls Arbor pcigrina Aurantio fimili fructu, though ill done, yet reprefents it enough to know it again. If in that Figure the Fruit appears little in relation to the Twig which fupports it, this can be for no other Reafon, but becaufe he received from the Indies fome of that Fruit which had been gathered before it's State of Perfection, and after it drew his Figure. And hence it is, that the Fruit being fhrunk up and imperfect, he found nothing in it but a few Mrivelled Grains, which were not much larger than thofe of a Fig.

It is furprizing however, that the moft delicious Fruit of all the $I_{n-}$ dies, and which yields to none of the beft in Europe, is that which of all has been hitherto lealt known. But as I have often eaten of it, and found it as excellent as it is reputed in the Countries where it is cultivated, I refolved to examine it's Genus, to fettle it's Characters, and to give a Defcription of it, which might make it better known for the future to Botanifts, and other curious Perfons.

This Tree originally grows in the Molucca Inands, but for fome Years paft it has been tranfplanted into the Ihe of Gava, and fome few at Malacce, in which Places it thrives very well. It's Tuft is fo fine, fo regular, fo equal, and the Appearance of it's Leaves fo beautiful, that it is at prefent looked upon at Batavia as the moft proper for adorning a Garden, and affording an agreeable Shade ; yet there have been but few Europeans in the Indies who have made ufe of it for this Purpofe, becaufe they were unacquainted with it. They employed other Trees which did not near come up to it as to Ufefulnefs and Beauty.

Travellers who make mention of it's Fruit, always fpeak of it with great Encomiums. Linfchooten is the only one who, after having given a Defcription of feveral Indian Fruits in his own Way, thought it needlefs to defrribe the Mangoftans, as well as fome others, becaufe, fays he, they are little valued. Probably he never faw it, but upon Enquiry took upon Credit what fome Perfon or other told him, who

## A new Genus of Plants, called Mangoftans.

knew nothing of it befides the Name, and confounded it with others which are little efteemed.

There are few Grains to be met with in this Fruit that are good for planting, for moft of them are but abortive.

Sometimes this Fruit is found fpoiled within, which may be known by yellow Spots appearing on fome of the Segments. Some People fcruple then to eat them, but others make no Difficuity about it. It is certain however, that they are not fo good, efpecially if the Spots are confiderable. I obferved that this Corruption proceeded from the Juice in the Capfula, which being fpoiled by the Sting of lome Infeet, and thereby becoming yellow, and fpreading over the Segments of the Fruit, infected them with that Colour, and thereby changed them. This Wound is fo fmall, and fo hard to be difcovered, that one often is left in a Doubt whether there be any at all.

One may eat a great deal of this Fruit without any Inconvenience, and it is the only one which fick People may be allowed to eat without any Scruple. It is very wholfome, refrefhing, and more cordial than the Strawberry.

It's Shell has the fame Virtue as that of the Pomegranate; at Batavia they make an Infufion and a Tincture of it againft Loofenefles, and chiefly againft Dyfenteries. The Wood is good for nothing but firing.
In the Mem. de Matb. EJ de Pbyf. de l'Acad. R. des Sc. de Paris, 1692, Page 435, Amint. Edit. there is a mort Defcription of the Mangoftans by Father Beze, which is pretty good; but as he took the Calix for the Flower, it is plain he obterved it not until after the Petala were fallen off. His Defcription is too fhort and defeetive for determining from thence alone the true Characters of this Genus.

Fig. 51 . The Flower as it appears in the Infide and Outfide. a. The Explanation of four Pciala of the Flower, b. The four Lobes of the Calix. c. The the Figurs. Tube. d. The Pedicle. Fig. ${ }^{1}$.
Fig. 52. The Calix as it appears in the Infide with the Pifill and the Fig. $5^{2}$. S:amina: e. The End of the Pedicle of the Flower, which fupports the Collix.

Fig 53. A Petal, as it appears on the Back, feparated from the Fig. 53. Flower: f. It's Bafis, which is the thickett, the firmeft and the moft brittle Part. g. Fcur Stamina belonging to the Petal, arifing from the Balis of it, and of the Pifill.

Fig. 54 The entire Fruit feen from the Side of the Calix, or the Fig. 54. Pedicle. b. The Calix. i. The Pedicle. k. A Part of it's Tube.

Fig. 55. The fame, feen from the Side of the Tube, which is cut Fig. 55. out in the Shape of a fmall Rofe: l. The Tube, which always fticks faft to the Frisit. $m$ I The Pedicle, and Part of the Calix.

Fig. 56. The Fruit cut into two Halves, containing 6 Segments : n. Fig. $56 \ldots$ The Segments good to eat, whereof fome commonly are larger than the others. 0. The Calis. p. The Pedicle.

Botanical Ob fervations, exbibiting accurate Defcriptions of fome Plants, by Paul. Henry Gerard Moeh ring, $M . D$. No. $454 \cdot p$. 211. July, Foc 1739.

Fig. 58.

Fig. 59.

## Botanical Obfervations.

Fig. 57. A feparate Segment of the Fruit, in the Shape of a Halfmoon, containing a Grain.

Fig. 53. A Grain or Seed feparated from the Segment, the Coat whereof is covered with Filaments, which formed the Parencbyma of the Segment.

Fig. 59. A Leaf of the Tree which bears the Mangoftans, with it's Fellow cut off near the Bottom, fupported by a Piece of it's Twig.
III. 1. Salicornia ramis clavatis, Squamis articulorum adprefts.

It is an annual Plant, fucculent in all it's Parts, 8 or 9 Rbinland Inches, feldom a Foot high. The Root is fibrous: The Stalk is branched, a little flatted, woody, and wrinkled at the Root, fucculent above, fmooth, without Leaves, having Clubs proceeding alternately from auricular, fquamous Productions, forming Sheaths, and flatted clofe to the primary Stalk; they are from $\frac{1}{2}$ to $1^{\frac{1}{2}} R$ binland Inches long, the extreme one being longer than the reft.

The Fructification confifts of 3 little Flowers, of the Form of a birectangular fpherical Triangle, with the bafe Convex upwards, and difpofed alternately. It fits upon each Joint of the Branches, which is fquamous, denticulated, and fomething acute, the Indentation ferving for a Receptacle of the whole Fructification, and inclofing the loweft Stamina. The Empalement is a fquamous Production of the Stalk, forming one Plane with it, when it withers. That of the upper, and as it were intermediate Flower, is rhomboidal, the inferior rectilinear Angle being acute, the upper curvilinear one obtufe: That of the $z$ lower, or, if you pleafe, lateral Flowers is triangular, the Bafe being a little broader.

It has no Corolla. There are 2 Stamina, placed oppofite above and below the Germen, fixed to it's Baife, and coming out of the Opening of the Empalement : The firt rifes up, and when that falls, the under one comes out; whence all the Botanifts have afcribed but one Stamen to it. The Filamento are like Threads, and lie within the Empalement. The Summits are oblong, erect, appearing out of the Empadement, doubled, fo that at the firft nice Infpection they reprefent a frall quadrangular Body, hollow without, having their Sides rolled inwards longitudinally, with a Filament or Chive of equal Length, adhering to the Top of it on both Sides, and covering it clofely, having their Bafe thut up for the moft Part within the Cavity of the Empalement. A great Quantity of the genital Farina falls into that Cavity.

The Pifillum is a roundifh, pointed Bud, placed between the Chives, and hid within the Empalement, of the fame Length with the Chives. It has no Style. It's Stigma is capillary and acute.

The Pericarpium is a Veffel blown up like a Bladder, of an acuminated oval Shape, exactly refembling the Hood of the Polvericbum Dillenii, only more fwelling downwards, and hid within the Empalement. It has one Seed, of a flat oval Shape, placed horizontally in the Veffel, furrowed



## Butanical Obfervations.

furrowed from the Bafe to the Middle, and fixed to the Rib of the Stalk by a very fmall Pedicle.

Obfervations. a. It grows commonly on the Shoar of the N. Sea, where the Soil is a fat Clay, fuch as we call Scblick, and fometimes fprinkled with the Sale Water. But as foon as the Earth is banked in, and deprived of the Nourifhment of the Sea Salt, it difappears in a Year's Time.
b. It is ufed in Sallads, having a cooling Tafte.
c. It flowers in A:guft, and ripens it's Seeds in Sept. and OET. The young Plants come up in April, and the Beginning of May. The SeedLeaves are round, oblong, and fucculent.
d. Therefore, in Linneus's Syfena Scxuale, it belongs to the Diandria Monogynia.
e. There is another Species, of which a dried Specimen was fent me from Salizdabl in the Dutchy of Brunfwick, by Dr Franc. Ern. Bruckman; it is very different from ours, and may be called Salicornia, ramis imbrication pyxidatis, fquamis articulorum extantibus. It feems to have been mentioned by feveral Authors.
f. Laftly, it appears, that the Genus of Salicornia has not hitherto been explained with fufficient Accuracy by any Botanift, witnefs Linneus's Fragment, in his Cbaraft. Gener. Plant. E Hort. Clifort. where he relates only the imperfect Sketches of Tournefort and Magnol.
2. Verbafcum foliis cordatis crenatis acutis glabris: floralibus ternis.

It is a biennial Plant, flowering the fecond Year. It's Stalk is 7 or 8 Feet high, generally fingle, fometimes branched at the Bottom, very long, upright, round, covered with very fhort Hairs, of a lively Green, full of Leaves toward the Bottom, but towards the upper Part, where the Flowers begin to break forth, it is fet with fmall Foliols. The Leaves of the firt Year, and the lower ones of the Stalk, are feffile, half embracing the Stalk, ending in a Point, fmooth, crenated, and indented, the Indentations being unequal.

The Floralia are 3, pointed, frall, the middle one being twice or: thrice as long as the lower one. The Flowers are generally 4 out of the fame Bofom; one at the Top of the Stalk, the reft fuffocated. The Pedunculus is much fhorter than the Empalement, thick and fingle. The Empalement as in Limnous, cut into 5 at the Bafe; the Divifions being pointed and hairy. The Corolla as in Linneus. The Chives are pointed, the 3 upper ones being fhorter than the reft, hairy all round: The 2 lower ones $\frac{2}{3}$ longer than the reft, bent upwards, and woolly in the middle of the inner Side. The Summits of the 3 fhorter Chives are fat, plain, and fexangular, lying upon them in a triangular Form; thofe of the 2 longer Chives lie in a rectangular Figure, being alfo flat, plain, and fexangular. The Piftillum is a roundifh Bud. The Style like a Thread, bending, a little longer than the Chives. The Stigma as in Linnaus.

V O L. VIII. Part ii.

## Botanical Obfervations.

The Pericarpium is a fub-globnus Veffel, having 2 Furrows from the Bottom to the Top, and divided into 2 Cells, $\Xi^{c} c$, as in Linneus. The external Covering of it is an upright Empalement, embracing the Fruit. The Seeds are numerous, oblongo-quadrangular, truncated, moft minutely wrinkled, and fmall. The Receptacula as in Linneus.

Objervations. a. Therefore as to moft of the Parts of Fructification, it is very like the fifth Verbafoum of Linnous, Hort. Cliff. p. 55. In the reft it differs.
6. The Petals are yellow, their Nails being fpotted with Purple. The Chives are purple within: Their Down is partly purple, and partly white.
c. The Seeds were fent me by my Friend Dr Linneus in 1738 , under the Title of Verbafoum e Virginia; and produced the Plants now deferibed. They feem to want only houfing in the Winter.
d. The Flower is open all the Morning the whole Summer.
e. Therefore the Verbafoum annuum, foliis oblong is finuntis obtufis glabris Likn. Hort. Cliff. 55. would be better named Verbafcum foliis oblongis finuato-crenatis obtufis glabris, florail unica: The chief fpecifical Difference of which is, that it has but one floral Leaf, ovato acuminated; one Flower; a very long Pedunculus, like a Thread, three Times as long as the Empalement; and a plain expanded Empalement under the Fruit.
3. Senecio foliis pinnatifidis lacinulatis: Laciniis omnibus laxis patentiffimis linearibus acutis. Facobsa allifima, foliis Erucce Artemifueve Sinnilibus $\mathcal{E}$ amulis Rup. Jen. 142.

The Stalk is as tall as a Man, round, or very flightly angular, nender, and fmooth. The Leaves are alternate, pennatifid, fmooth, with the Segments linear, very wide, loofely lacinjated, fharp at the Point, fet on a linear Rib: They are of a deep green Colour, jomething paler at the lower Part.

The Rays of the Flower are yellow, and rolled back; the Leaves of the Empalement are preffed to the reft at the Bafe.

Obfervations. a. I have called this Plant a Senecio according to Limneers Gen. Plant. 647.
b. It differs therefore in Species from Linnous's Senecio foliis pinnatolyratis, lacinulatis Hort. Cliff. 406.
4. Illecebrum Lin. Coroll. Gen. 947. Rupp. Jen. 79. Corrigiola Dillen. Giff. Supp. Append. $16 \%$
The Empalement confifts of 5 thick, erect, compreffed Leaves, hollow on the Infide at the Top, and enduring. It has no Corolla. The Slamina confift of 5 Chives triangular and pointed, florter than the Fruit within the Enpalement, and round, ereet, fingle Summits. The Pifillum is a Tharp oval Bud, florter than half the Empatement. It has no Style. The Stigma is fingle, turgid, and obtufe.

The Pericarpium is a very thin, oval, membranacenus Veffel, acuminated on each Side, fingle, univalye, gaping at the Top, and covered

## Botanical Objervations.

by the Empalement. It has one very large, Thining, oval Seed, acuminated on each Side.

Obferrations. a. Therefore it belongs in Limnous's Syjema fexuale to the Pentandria Monogynia, and will be placed conveniently after Achy ranlbis, Genus 94.
6. I have difcovered thefe Characters by 3 Years Obfervation of the Plant, which grows plentifully with us in moit fandy Places, where it fpreads itfelf on the Ground.
5. Ruppia foliis linearibus obtufis.

The Plant fwims upon the Sea Water; is bending, and perennial.
The Root is ramofe, fending forth Bunchcs of Leaves ; the Body of it is round, jointed, creeping, brown, folid, about the Thicknefs of a Pigeon's Quilt, or fomething thinner; the Fibres are capillary and fingle, coming only out of the Joints, I or 2 Inches long, and whitift.

The Stalks refemble thofe of Grafs, and come each out of a Branch of the Root; they are flat, loofely jointed, fmooth, very weak, bending, floating, and on the Reflux of the Water lying on the Sand, fending forth compound Branches out of every fheathed Joint, in an alternate Order.

The fheathing Leaves are alternate, linear, vertically obtufe, longitudinally Parallelograms, fmooth, mucous, deep Green, and with their Bafe fixed to the Joints of their Stalks, cover their Branches, and with their Leaves, like Daffodils. Toward the Exrremity of each Branch, 2, 3, or 4 Leaves, placed parallel, are inclofed in one Sheath.

In moft of the fheathed Leaves, which are longer than the Stalk itfelf, the Fructifications are hidden in the lower Half, within a compreffed Opening. Above and below the Line of Fructification, there is a Joint, furrowed tranfverfy, diftinguifhing it from the Petiolus below, and from the reft of the Leaf above.

The Empalement is an univerfal Covering, a Sheath fupplying the Place of a Spalba, in the lower Half of the Leaf; it opens in the middle of it's Length, and one Side wraps a little over the other.

The Spadix within the Involucrum is membranaceous, white, flat, obtufe, the Sides being a little rolled up longitudinally, the middle having a night Carina, looking toward the Back of the Involucrum, in Length ${ }^{3}$ of the Involucrum, or little longer, never reaching the End of it, inclofing from 9 to 13 Fructifications in 2 Rows.

It has neither Corolla nor Chives. The Summits are folitary, concealed within the Sheath before blowing, ovato-oblong, a little pointed on each Side, afcending obliquely, and adhering in 2 Rows lengthwife to the Spadix, in fuch a Manner, that one PiPtillum feems to receive fometimes one, fometimes two Summits in the fame Plane; but there is really one Piftillum to each Summit, fometimes hidden, and fometimes appearing. But being unfolded during the Time of flowering, by their lateral, elaftick, membranaceous, tranfparent, expanded Wings, they are bent into the hollow Form of a Boat, the Keel being downwards,

## Botanical Obfervations.

and are fo put over the Piffilla, that the Cavity of the Involucrum being opened, their under Part rifes horizontally upwards, and they appear in Form of little Boats lengthwife outwards. The Body of the Summits is yellow, and has a Mucus upon it, which may eafily be wiped off.

The Pifillum is a Bud, within the Involucrum, oblong, a little larger at the Bafe, where it is fixed to the Spadix. The Style within the Inwolucrum is fimple, filiform, bending upward, enduring, after flowering parallel with the Spadix, and a little crooked. There are 2 very thin, capillary Stigmata, feparated from each other, ftretched horizontally without the Involucrum, foon withering and difappearing; fo that the -dufky ferrugineous Spot remaining may eafily perfuade any one, that there is but one Stigma.

The Pericarpium is a thin, membranaceous, cylindrical Hurk, obtufe at the Bafe, having a Style at the Stop, being a little longer than the Style, parallel with the Spadix, free at the Bafe; fixed to the Spadix at the End of the Style, by Means of a very fhort little Pedicle.

In each Hufk there is a fingle, cylindrical Seed, obtufe on both Sides, very nicely flriated on both Sides, and white.

Therefore it belongs in Linneus's Syftema fexuale to the Gynandria Monandria, but not at all to the Gynandria Polyandria ejufd. ibid. In the Fragment. meth. nat. Linn. p. 506. Clafjum Plantar, to the $48^{\text {th }}$ Order, to which alfo Naias and Zanicbellia feem to belong. In Rayen's Syftem, to the Palma Spatba bifida. See his Flor. Leyd. Prodr. p. 9.

It grows in the Salt Water, at the Inand Wangeroogen, and other Inlands fituated in the Bay of the Northern Ocean, called Wadt. When the Tide comes in, it floats upon the Water; but when the Tide is gone out, it lies upon the tenacious Clay, in which it's Root is fixed.

It is a Wonder, that a Plant fo common in maritime Places, the Leaves of which, in Aug. and Sept. are caft upon the Shoar in great Abundance, has never been either defcribed or figured, unlefs perhaps by an Englifh Botanift. It feems to belong to the Genus of Ruppia, if the Character of it, as given by Linneus, only from a dried Specimen, as the Mark $\dagger$ denotes, but a little enlarged. Should it rather be a new Genus?
6. Hippuris Linn. Gen. r.

It has neither Empalement nor Corolla.
The Stamen is one thick, pointed Chive, deciduous, of near the faine Length with the Summits, and fitting on the Bud. The Chive is double, bifulcated in each Segment behind, a little longer than the Bud and Chive, thick and flemy.

The $P_{i j}$ fillum is an oblong Bud below the Chive. It has one thin, filiform, erect Style, with the Point berding outwards, rifing within, by the Side of the Chive, from the Top of the Bud, longer than the Chive, and withering. The Stigma is very fharp-pointed.

It has no Pericarpium; but one, oblong, naked Seed, containing a fmall Kernel in a hard Shell,

Objervations. 1. It flowers in $\mathcal{F}$ une and $\mathcal{F} u l y$, and perfects it's Fruit in Aug. and Sept. It grows plentifully in foffis feveranis, near Embden in Eaft-Friezland, Erc.
2. There is a Variety with red Chives, which is more plentiful ; and another with whitifh herbaceous Chives, which is more rare.
3. Therefore thofe Margins defribed by Linnculs under the Empalement are really Summits, as appears evidently by a good Glafs.

Fig. 60. The Flower feen at the fore Part, that the Filamentum or Chive may appear. a. The Chive. $b b$. The Summits feen on the fore Part.

Fig. 61. The Flower feen on the back Part, that the Piffillum may appear. cc. The Summits feen on the back Part, to fhew the Furrows. $d d$. The Germen or Bud. e. The Style with it's Stigma.

Fig. 62. The Seed. f. The Seed almoft ripe. g. The Stile withering, bent above the Seed.
IV. "Whether the Scurvy-grafs of Greenland be the fame Species, " as to it's external Appearance, with the common Scurvy-grafs of "England? And, having no acrid Tafte while growing in Greenland, " doth it, being brought growing in Earth from Greenland, gradually " acquire an acrid Tafte, as it is brought into a warmer Climate?"

## $S I R$,

London, Dic. 16, 1730.
I communicate this as Matter of Truth, and not Hypothetick, viz. that the Scurry-grafs in Greenland, equally the fame with ours in England, as to the Figure of the Plant, and all it's Appearance to the E.ye, changes it's Nature much, as it approaches the Sun; for in that Climate, it's principal Quality, the volatile Salt, is neither pungent nor perceivable; but to the Tafte, the whole Plant is entirely as infipid as the Colwort or Beet. So by my Endeavour, I preferved fome Plantswith their natural Earth, and brought them to London alive ; and I obferved the remarkable Change produced by the Sun's Heat on them; for the falize Matter in Greenlond, which certainly was analogous to a fixed Salt, became, in a Month's Time, almoft to the fame Volatility as that which naturally grows in England.

This I make mention of, in cafe other Gentlemen, who have had the fame Opportunity, have been remifs in their Curiofity.

## David Nicolion.

V. The Tree from which the Fefuits Bark is cut, grows in Peru, and is found moft commonly in the Provinces of Loxa, Ayaraca, and Quenco, which are fituated between two and five Degrees of $S$. Lat. This Tree is tall, and has a Trunk rather bigger than a Man's Thigh, tapering from the Root upwards, has no Boughs or Branches till near it's Top, which grow as regular as if lopped artificially, and with the Leaves form exaclly the Figure of a Hemifphere: It's Bark is of a blackifh Colour on the Outfide; and fometimes mixed with white Spots, whence

An Account of the Peruvian or Jefuits Bark, by Mr John Gray, F.R.S now at Cartagena in the Spanifh Weft. Indies ; exiracted fiom fome Papers
given bim by fis. Wallian Arrot, a ScotchSurgeon, ewbo bad gathered it at the Piace webere it grow's in Peru. No. 4 t 6 p.81. July, e゙c. $1737^{\circ}$

## An Account of the Peruvian or Jefuits Bark.

commanly grows a Kind of Mofs, called by the Spaniards, Barbas; ii's Leaves selemble much the Leaves of our Plum-Tree, of a darkina green Colour on their upper or concave Side, and on their lawer or convex Side, reddifh: It's Wood is as hard as our common Englijh Ah, and rather tough than brittle.

There are 4 Surts of the Bark of this Tree, to which the Spaniards give the following Names, viz. Cafoarill, colorada, or reddifn Bark; amaryilla, vellowifh; crefpilla, curling; and blanca, whitifh: But Mr Arrot could only find two different Sorts of the Tree, and he believes that the other two Sorts of the Bark are owing to the different Climates where it grows, and not to a different Species of the Tree. The Bark called colorada and amarylla, is the beft, and differs from the blenca in this, that the Trunk of the former is not nigh fo big as that of the latter, the Leaves as defribed above; whereas thole of the blanca are larger, and of a lighter green Colour, and it's Bark has a very thick fpungy Subftance, whitin on the Outfide, and is fo tough, that it requires the Force of an Ax to flice it from the Tree: It is true, indeed, it is as bitter when cut down as the beft Sort, and has then the fame Effect in intermitting Fevers; but when dry and long kept, turns quite infipid and good for nothing: And it is to be obferved, that both Sorts have a much furer and quicker Effect in Cures when green, than when dry. As the bad Sort is in great Plenty, and the beft very fcarce and hard to be come at, large Quantities of it are cut yearly, and fent with a little of the fine Bark to Panama for Europe.

The Tree of the crefpilla is the fame with that of the amarylla and colorada, but grows in a cold frofty Climate; by which Means the Bark is not only altered in it's Quality, but is alfo whitifh on the Outide, though Cinnamon-coloured within, and ought in Medicines to be rejected. This Sort and the blanca grow plencifully in the Province of Ayavaca, 50 Leagues from Piura, and 62 from Payta, a Port in, the Soutb-Sea; as alfo in Cariamango, Gonfonana, and Ximburo, whence they commonly fend it to Payta, and there fell it as the beft. The blanca likewife grows in the Province of Quenca, and in the Mountains of Caxamarea: But the true and genuine fine Fefuils Bark, which is of a reddifh or yellowifh Colour, is only found from 5 to about 14 Leagues round the City of Loxa, in the Province of Loxa, called generally by the Spaniards, Provincia de las Calvas. This City is fituated between two Rivers, that run into the great River Marannon, or of the Amazons, and lies about 100 L.eagues from Payla, and in a direct Line about 110 Leagues S E from Guayaquil, though by the common Road near 200. The Places about Loxa, where this fine Sort is found, are, La Sierra de Caxanuma, Malacatos, Yrutajinga, Yangana, Manfanamace, La Sierra de Boqueron, and a Place called Las Monjas.
The Bark-Trees do not grow all together in one Spot, but intermixed here and there with many others in the Woods; it happens, indeed, fometimes, that Clufters of them are found together, though
at prefent they are much farcer than in former Times, a great many of the fine large Bark-Trees having been entirely cut down, that their Bark might the more eafily be fliced off.

The Soil where the beft Sort thrives, is generally in red clayey or rocky Ground, and very frequently on the Banks of fmall Rivers defcending from high Mountains.

That this Tree flourifhes and bears Fruit at the fame Time all the Year round, is certainly owing to the almoft uninterrupted Rains, that fall in thole high Mountains where it grows, which continue with little or no Intermiffion: Although about 3 or 4 Leagues down in the low Country, where it is exceffive hot, there are wet and dry Seafons, as in other hot Countries, the Rains beginning in December, and ending in May; this Seafon the Spaniards who live there call Temporal, and it is general all thereabouts; whereas what they call Paroma, is a cold rainy Sealon, that lafts in all the mountainous Places of thefe Countries from Fune to Nov. but efpecially in the City of Loxa and Places adjoining, where Mr Arrot has paffed 25 or 30 Days without feeing the Sun once, and felt the Air fo extremely cold, that he was obliged always to be wrapped up in his Cloak, and to be in continual Motion to keep himfelf warm. Such exceffive Cold fo near the Line, appears to Europeans incredible; but many Places in thefe Latitudes are fo, by their Situation and Vicinity to high Mountains.

The propereft Seafon for cutting the Bark is from Sept, to Nov. the only Time in the whole Year of fome Intermiffion from Rain in the Mountains. Having difcovered a Spot where the Trees moft abound, they firft build Huts for the Workmen, and then a large Hut wherein to put the Bark, in order to preferve it from the Wet; but they let it lie there as fhort Time as poffible, having before-hand cut a Road from the Place where the Trees grow, through the Woods, fometimes 3 or 4 Leagues, to the neareft Plantation or Farm-houle in the low Country, whither, if the Rain permits them, they carry the Bark forthwith to dry. Thefe Preparations made, they provide each Indian (they being the Cutters) with a large Knife, and a Bag that can hold about 50 Pounds of green Bark: Every two Indians take one Tree, whence they cut or flice down the Bark, as far as they can reach from the Ground; they then take Sticks about half a Yard Jong each, which they tie to the Tree with tough Withs at proper Diftances, like the Steps of a Ladder, always nicing off the Bark, as far as they can reach, before they fix a new Step, and thus mount to the Top, the Indian below gathering what the other cuts: This they do by Turns, and go from Tree to Tree, until their Bag is full, which, when they have Plenty of Trees, is generally a Day's Work for one Indian. As much Care as poffible mult be taken that the Bark is not cut wet; fhould it fo happen, it is to be carried directly down to the low Country to dry; for otherwife it lofes it's Colour, turns black, and rots; and if it lie any Time in the Hut without being fpread, it runs the fame Rifque: So that while the

Indians are cutting, the Mules (if the Weather pernits) ought to be carrying it down to the Place appointed for drying it, which is done by freading it in the open Air, and frequently turning it.

Mr Ariol had the Curiofity to fend above 50 Seroons from the Woods to the City of Loxa, where he put it into a large open Houfe, and dried it under Cover, never expofing it either to the Sun or Night Air, imagining that the Sun exhaled a great many of it's fine Parts, and that the Night Air, or Serene, was very noxious to it; but he found the Colour of the Bark thus cured, not near fo bright and lively as that dried in the open Air. He is of Opinion, that a very fhort Time will put an End to this beft Sort, or, at leaft, it will be extremely hard to be got, by reafon of it's Diftance from any inhabited Place; the Impenetrability of the Woods where it grows, and the Scarcity of the Indians to cut it, who, by the Spaniards hard Ufage and Cruclty, are daily diminifhing fo fatt, that in a very few Years their Race in that Country will be quite extinct.

Mr Arrot fays, that the fmall Bark which curls up like Sticks of Cinnamon, (and which in England is much efteemed, as being cut off the Branches, and therefore reckoned better and more effectual in curing Fevers) is only the Bark of the younger Trees, which, as it is very thin, curls in that Manner; and that the Bark of the Branches would not compenfate the Trouble and Expences of cutting. He alfo told me, that after the Bark is cut off any Tree, it requires at leaft 18 or 20 Years to grow again; which is direetly contrary to what Dr Oliver fays*. He added befides, that it's Fruit is no Ways like a Chefrnut, as the Doctor informs us in the fame Paper; but rather like a Pod, which inclofes a Seed fomewhat like a Hop-feed, and that he had fent fome of them to England.

He could not tell me by what Artifice or Stratagem the Fefuits have got this Bark to be called after them, if not that they carried it firts into Europe, and gave themfelves out as the firft Difcoverers of it's Virtues: But he affured me, that the current Opinion at Loxa is, that it's Qualities and Ufe were known by the Indians before ever any Spaniard came among them; and that it was by them applied in the Cure of intermitting Fevers, which are frequent over all that wet unhealthy Country.
ACatalogue of VI. Acetofa lanceolata, Alpina, rotundi folia N. Round-leaved SheepsPlantsobferved Sorrel of the Alps.

## in the Tyrol

Alps at the be-
sinning of Sept.
by Balthazar
Ehrard, MD.


Acini pulcbra fpecies 7. B. 3.260. Broad-leaved Auftion wild Bafil. Cacalin tomentofa C. B. 198. Woolly ftrange Colts-Foot. Cardamine Alpina Cluf. Pannon. Alpine Ladies-Smock.
Caryopbyllata Alpina Cbamedryos folio Boerb. 45. Mountain Avens, with Germander Leaves.
Cotoneafter F. B. 1. 73. Dwarf Medjar.

- Vol. IV. Part ii. Chap. 5. 9. 14.
- Crategus folio fubrotundo, ferrato, fubtus inceno Tourn. 633. The white Beam-Tree.

Deucus montanus, multifido longoque folio C. B. Mountain Lovage, with a long, divided Leai.

Diofpyros 7. B. 1.75. I. Myrtomelis Gefneri.
Doria que Facobrea Mipina C. B. Prod. 66. Alpine Doria.
Erica arborefiens, foribus lutcolis vel berbaceis F. B. 3. 355. B fome Heath.
Horminum lutcum glutirofum C. B. 238. Yellow Clary, or fupiter's Diftaff.

Larix folio deciduo conifira 7. B. The Larch -Tree.
Cbamarbododendros Alpima rilliofe T. 604. Hairy Mountain Ciftus.
Quinquefolium album 1. Cluf. White-flowered Mountain Cinquefoil.
Pinafter Alpinus purnilio Cluf. Pannon. Dwarf Mountain Pinc.
Seduos minus focre luteo F. B. 694. The moft ordinary yellow Prick. madam, or Stone-crop.

Siler montanum minus Boerb. 52. Small narrow-leaved Sermountain.
Vitis Idaa foliis oblongis albicantibus C. B. 470. Bilberry with lorg hoary Leaves.

Gallium faxatile fupinum, molliore folio A. R.P.1714. Supine RockLadies Bedftraw, with a fofter Leaf.
ViI.
$\mathrm{N}^{\circ} 436$. p. 1. Ann. 1733. $55^{1}$ 1. Abrotanum mas, angufifolium, majus C. B. 136. Common Sothernwood.

-     -         -             - 552. Abrotanum mas, anouftifolium, Segmentis foliorum tenuiflimis. Sothernwood with very fine Segments.
 - - - 602. Abfintbium maritimum album Ger. emac. 940. Abfintbium Romanum Offic. Lond. ramulis expanfis. Englifh Sea Wormwood.
-     -         -             - 603. Abfntbium maritimum, ramulis हo capitulis erectis. Sea Wormwood with upright Branches and Heads.
-     -         -             - 604. Abfintbium maritimum, fruticofus: ramulis ereEtis ; tenuiffme divifos foliis. Shrubby Sea Wormwood, with upright Branches, and finely divided Leaves.

$$
\begin{aligned}
& \mathrm{N}^{\circ} \text { 445.p.1. - }-1735.651 \text {. Abutilon Altbeodes; flore carneo, } \\
& \text { VOL. VIII. Part ii. }
\end{aligned}
$$

A Calalogue of Plants prefented to the R.S. by the Comp. of Aporbecarics of London, parJuant to the Direfion of Sir Hans Sloane, Bayt. by Mr Ifaac Rand, Apotbecary, F. R, S. with a Flefh-coloured Flower, and a globofe Fruit.
'N 447. P.143. Ann. 1736. 701. Abutilon, Lavatera flore, fructu criffaso. Hort. Ell. 3. Yellow Mallow, with a Lavatera Flower, and acrefted Fruit.
$\mathrm{N}^{\circ}$ 471. p. 620. - 1740. 901. Acantbus Salivus, vel mollis Virgilii C. B. $3^{83}$. Brank. urfine, or Bear'sBreech.
 379. The greater Fifh-thifle with winged Stalks.
$\mathrm{N}^{\circ} 45^{2}$. p. x. - 1737.751. Acetofa Egyptia, rofoo feminis involucro, folio lacero, Lippi. D Skaw Pbyt. Afr. Spec. N ${ }^{\circ}$ 5. Egyptian Sorrel, with a Rofe-coloured Covering to the Seed, and a jagged Leaf.

## — — — — — 752. Adiantbum nigrum, radice pralonga,

 arbores annofas perreptante. Grif. Virid. Lufitan. Fiiicula Luffianica, Polypodii radice T. Inf. 54 1. Black Maiden.Hair of Porlugal, with a Polypody Root.— - - 753. Adnirabilis Peruviana, flare rubro Cluf. rar. Plant. Hif. Lib. V. p. 89. Sloane Cat. Jam. 91. Marvel of Peru, with a red Elower.
$\mathrm{N}^{\circ}$ 456. p. 291. - 1738. 801. Alonis Hellcbori radice, Bupbtbalmi flore 1. L. Bat. Fennel-leaved black Hellebore.
N'431. p.199. - 1732. 501. Alkekengi Anwericanum, foliis finuar tis birfutum. a D. Houfton. Hairy Anerican Winter Cherry, with finuated Leaves.
$\mathrm{N}^{\circ} 447 \cdot$ p. 143. 1736.702. Alyfon Alpinum birfutum luteum T. Inft. 217. Leucoiunn luteum nizoides montanum. Column. 2. 62. Yellow Alpine Alyfon, with hairy Leaves.

-     -         - 703. AmygdalusfativaC. B. 44. The Almond-Tree.
$\qquad$


## A Gatulogue of Plants.

$\mathrm{N}^{\circ} 45^{3}$. p. 1, Ann.1737. 754. Androfemam maximum frutefcens
Ary el C.B. 280. Tutan, or Park-Leaves. $\mathrm{N}^{\circ}$ 456. p.291. 1738.802. Anonis Alopecuroides, mitis, annur, purpurafiens H. Ell. 28. Purpte, annual, mild, Fox-tail Reftharrow.
$\mathrm{N}^{\circ}$ 445. P. 1. 1735.652 . Anonis Anericana Jupina, Medicaginis facie ; chliquis latis, planis. Supine, American Reft-harrow, like Moon-trefoil, with broad, plain Pois.
 recta; floribus albis, laxe Jpicatis; filiquis infatis. Upright, branched Reft-harrow of Carolina, with loofe: - driv 2arel-zencl moinall Spikes of Flowers, and infated Pods.
$\mathrm{N}^{\circ} 436$. p. 1. 1933.533 . Anonis fore minimo ; filiquis craff:, in foliorù um alis fefitious. Ononis luted, fyleeftris, minima Colim. Ecph. 104. Small yellow Reft harrow.
$\mathrm{N}^{\circ} 471$ p. 620 . -1740.905 . Ancbora Off. Aconitum falutiferûm, five Anchora C. B. Silutary Wolfs-Bane.
$\mathbf{N}^{\prime}$ 431. p.199. - 1732. 502. Antirrbinum àngufi folium, majus, percgrinum, ruberrimo fiore H. Reg. Par. Large, narrow-leaved Snapdragon, with red, deep Flowers.
N'471. p.610. - 1740.904. Antirrbinum angufo folio, Linarice eleganter varieg ato, flore rubro, rietu lutco Boerb. Striped Snap-dragon.
$\mathrm{N}^{\circ} 43$ 1. p. 199 - 1732. 503. Antirrbinum arvenfe, majus, Italicum, majore fore, ex albo purpurafconte. Great Italian, Fic!d Snapdragon, with a purplifh white Flower.

- — - - - 504. Aparines folio anomala; valculo Seminali roturdo, multa Semina minutifina continente Sloane Cat. Jam. p. 50. Hift. Tab. 7. f. 4.
$\mathrm{N}^{\circ} 47$ 1. p.620. 1740. 906. Apbata Park. Latbyrus luteus, annuus, foliis Conecluli min. Nor. Yellow Vetchling.
No 440.p.173. 1734.605. Apium dulce, radice rapaces $D$. 'Fufferu. Sweet Partley, with a Turnep Root.
— — - - 606. Apiuñ Maccionicum C. B. 154. Petrofelinum Macedonium Officin. Maredonien Parney.


## A Catalogue of Plants.

$\mathrm{N}^{\circ}$ 440. p.173. Ann. 1734. 607. Apium Pyreraicum Thaphe facie T. Inff. 305. Pyrenean Parney, with the Face of Deadly-carrot.
— — — — — - 608. Apium Thaphie facie, majus \&f clatius. Apiun petrcum, five montanums albun J. B. Parijzenfum. Greater Parney, with the Face of Deadlycarrot.
 dle Parney, with the Face of Deadlycarrot.
N'431. p. 199. - 1732. 505. Apocrnum Americanum, Euonymi folio, flore ex albo virente. a D. HouAon. American Dogs-Bane, with a Spindle-Tree Leaf, and a greenih white Flower.
No 452. p.1. —— 1737. 755. Aralia Canadenfis T. Inft. 300. Panaces xd́ğpupov five racemofa, Canadenfis Cornut: 74. Canada Berrybearing Angelica.
$\mathrm{N}^{\mathrm{s}} 445$. p.I. $\quad 1735$. 653 . Arijolocobia rotunda, fore ex pur-pura-nigro C. B. Round Birthwort.
$\mathrm{N}^{\circ} 440$. p.174. -1734.610 . Aflepias albo fore C. B. Pin. 303. Aclepias, five Vincetoxicum mullis, foribus sabicantibus J. B. 2.138. Vincetoxicum Dod. Pempt. 40\%. Swallowwort.

-     -         -             - 6II, Afclepias angufifolia, fore favef- $^{\text {- }}$ cente H. R. Par. Narrow-leaved Swallow-wort, with yellow Flowers.
-     -         -             -                 - ${ }_{14}$. After Americanus, latifimo, aurito, If ferrato folio, foribus albidis, umbellatim dijpostiis. An After Canadenfis, foliis imis amplioribus.cordatis OF ferratis D. Sarrazin. Ac. Reg. Par. 1720? American Starwort, with a very broad, eared, and ferrated Leaf, and white Flowers, difpofed
— $\begin{aligned} & \text { in Umbels. } \\ & \text { I5 }\end{aligned}$ folius, parvo albente fore. Narrowleaved, early, American Starwort, with a fmall, whitih Flower.
$-=-=-613$. Afler annuus, foliis variis, fore amplo, peramane purpureo. KiangSita Sinenfis D. Jufieu. Afer Cbeno-
podii folio, annuus, fore ingenti $\sqrt{T} e-$ ciofus. Annual Starwort with various Leaves, and a fine purple Flower.
N ${ }^{2}$ 440. p. 174. Ann. 1734. 616. After Nove Anglia, Linaria foliis, Chamameli floribus Par. Bat. 96. Nerw-England Starwort, with Toadflax Leaves.
 Starwort of Canada.
-     -         -             - 617 . Afer Virginianus, latifolius, precocior, purpurafiente parvo fore Park. Theat. Afterifous latifolius autumnalis Cornut. 64. The earlier broadleaved purplifh Virginian Starwort. N'431. p. 199. - 1732.506. Afterifcus annuus, Lufitanicus, odoratus Boerb. Ind. Alt. 105. Portugal fweet-fmelling, annual Afterifcus.
$\mathrm{N}^{\circ}$ 456. p.291. - 1738.803. Afterifus Corona Solis fore ' ' facie H. Elt. 42. Aftericus with the Flower and Face of Sun-flower. $\mathrm{N}^{\circ}$ 431. p. 199. - 1732. 507. Afragalus bumilis, Ornitbopodiifoliis, villofis, filiquis propendentibus, brevibus, in Spicam congeftis. L.ow Liquorice-vetch, with hairy Leaves of Birds-foct-trefoil, and fhort, hanging Pods, gathered into a Spike.
$\mathrm{N}^{\circ}$ 457. p.406. - 1739. 852. Afragalus, perennis, birfutus, Alopecuroides, Galeg e foliis, foribus lutteis. Hairy, perennial, Fox-tail Liquoricevetch, with Goat's Rue Leaves, and yellow Flowers.
$\mathrm{N}^{\circ}$ 452. p. I. 1737.756. Aftrantia major, corona foris candida T. Inf. 314. Black Mafterwort, with a white Flower.
-     -         -             - 757. Aftrantia major, corona foris purpurafcente T. Inft. 3 14. Black Mafterwort with a purplifh Flower.
$\mathrm{N}^{\circ}$ 445. p. I. - 1735 . 654. Atriplex Halimoides, latifolia, dentata. Broad-leaved indented Orrach.
$\mathbf{N}^{\circ}$ 457. p.406. - 3 3 39.85 . Baubinia non aculeala, folio fubrotundo, bicorni, foribus albis D. Houfton. Baubinia without Prickles, with a roundifh, two-horned Leaf, and white Flowers.

$$
\mathrm{N}^{\circ} 43 \mathrm{I}
$$ An Betonica rubicundiffimo flore, Montis aurci H. R. Par? Long-leaved Betony.

-     -         -             - 5c9. Betcnica major Danica Park. Theat.
$\mathbf{N}^{\circ} 452$. p. I. 1737.75 S. Betonica Orientalis, folio angufiffimo Ef long ifimn, Spica forum crafliori. T. Cor. 13. Oriental Betony, with a very narrow, long Leaf, and a thick Spike.
$\mathbf{N}^{\circ} 431$. p. 199. - 1732. 510. Betonica purpurea C. B. 231. Wood Betony.
$\mathrm{N}^{2} 457$. p. 406. - 1739.854. Bidens Americena, flore albo radiato; foliis inferioribus irilobatis, 预perioribus fubrotundis, acute crenatis. Ameritian Bidins, with a whice, radiated Flower, and various Leaves.
$\mathrm{N}^{\circ} 43$ 1. p.199. - 1732.511. Bidens Americana, graminifolia है ranofiffima. Hieraciunin fruticojum, angufiffimis, gramineis foliis, capitulis parvis. Sloane Hift. Vo!. I. 255 . Tab. 249. f. 3. Branched, Gratsleaved, American Bidens.
-     - 512 . Bidens Americana, trifolia \&o quin-
quefolia; fore albo, amplo, radiato. An Bidens trifolia, Americana, Leucontbemi fore. T. Inft. 462? Trifoliated, and quinquefoliated American Bidens, with a large, white, radiated Flower.
$\mathrm{N}^{\circ}$ 447. p.143. - 1736. 705. Bidens Americana, tripbylla; fore barbulis latis, allis radiato. Trifor liated American Bidens, with a Ray of broad, white Semiflorets.
- — — - - 706. Bidens Americana, tripbylla; fore. lureo, capite foliofo. An Bidens Canadenfis latifolia, flore luteo T. Inf. 461? Trifoliated American Bidens, with a yellow Flower, and a leafy Head.
$\mathrm{N}^{\circ}$ 452.p.2. 1737 . 759. Bidens Americana, triphylla, foliis anguftis, acutis. Cbryfanthemum Virginianum, folio acutiore, lavi, trifo-liato:- Seu Anagyridis folio. H. Ox. i11. p. 21. Trifoliated American Bidens,


## A Catalogue of Plants.

Bidens, with narrow, Mharp-pointed Leaves.
$\mathrm{N}^{\circ}$ 457. p. 406. Ann. 1739. 855. Bidens latifolia, birfutior, Semine angufiore, radialo H. Elt. p. 51. Broad-leaved, hairy Bidens, with a narrow, radiated Seed.

-     -         -             - 856. Bidens fcabra, flore niveo, foiio Pandur reformi H. Ell. p-54. White flowered, rough Bidens.
— — - - $857^{\text {A. Alowered, rough Bidenia Americana, Fraxini folio, }}$ flore amplo pbaniceo. T. $16_{4}$. Scarlet Trumpet-Flower.
-     -         -             - 858. Bignonia Americana, Fraxini folio, minor; fore coccinco. Small Scarlet Trumpet-Flower.
$\mathrm{N}^{\mathrm{N}} 47 \mathrm{~T}$. p.620. - 1740. 90\%. Brafica campeftris, perfoliata, alba C. B. Codded Thorow-wax.
$\mathrm{N}^{\circ} 43^{6}$. p. 1. $\quad$ 1733. 551. Bupbthalinum Creticum, Cotulac fasie, flore albo Breyn. Cent. I. f. 75. Camomile-like Ox-Eye.
$\mathrm{N}^{\circ}$ 447.p.143 - 1736.707. Butlcurusin axborefcens, Salicis folio T. Inft. 310. Sefeli e tibiopicum frutex Dod. 312. Shrub Hartwort of Etbiopia.
-     - 708: Calamintha, Pulegii odore, five Nepeta C. B. 228. Calamintba Officin.
II - चhaino m1-709, Calamintha vulgaris, vel Officinarum Germania C. B. 228. Common Calamint.
——————o. Calcitrepoites-procumbens, Cicborii folio, fore purpurafcente. D. D'IJnard. Miver. Ac: Reg. Anno 17I 9. Yrocumbent Calciirapoides, with a Succory Leaf, and a purplifh Flower.
$\mathrm{N}^{\circ} 457$. $1.407 . \quad$ 1739. 8.5\% Calendula minor arcenfis H. L. Bat. Small Field Marigold.
— - - - 863. Camara Americana, foliis parvis, fubrotundis; fioribus foliolis interceptis. Camma with Emalls, roundilh, Leaves; and little Leaves between the Flawers.
-     -         - 864. Camara Americana, Salvic foliis, mucronatis; foribus luteis. Camara with pointed, Sage Leaves, and yellow Flowers.

N 457 . p. 40\%. Ann. 1739. 861. Carmara Americana, Uricice folio, forribus miniatis. Nettle leaved $\mathrm{Ca}_{-}$ mara, with farlet Flowers.

-     -         -             -                 - $\begin{array}{r}\text { 860. Camnra Americana, Urrice foliis } \\ \text { latioribus, fuinofa, foribus minalis. }\end{array}$ Prickly Nettle--leaved Camara, with broader Leares, and a farlet Flower. - - - - - 862. Camara Aimericana, Urtica foliis minoribus, fore vario. Nettle-leaved Camara, with a various Flower.
N० 447. p. 144 - 1736. 711. Campanula Canarierfis, Atriplicis folio, tubcrofa radice. T. Int. 109. Casary Bell-Flower, with Orach Leaves, and a tuberofe Root.

$$
\begin{aligned}
& \mathrm{N}^{\circ} \text { 452. p.2. - 1737. 760. Campanula pentegonia, perfoliata, } \\
& \text { Morif. H. Ox. 11. 457. Perfoliated }
\end{aligned}
$$ Bell-Flower.

No 447. P. 144. - 1736.712. Campanila pratenfis, fore conglomerato C. B. 94. Little Throatwort, or Canterbury Bells.
$\mathrm{N}^{3} 445$. p. I. - 1735. 655. Canella alba, cirjus correx eft Cortex Winteranus Offcin. Lond. Arbor baccifera, laurifolia, aromatica, frufiu viridi, calsculato, racemolo Sloan Hijt. fam. T. 19r.f. 2. Winter's Bark, or wild Cinnamon-Tree.

-     -         -             -                 - ${ }_{5} 6$. Cannabina Cretica frublifera T. Cor: 52. Fruit-bearing Cannabina of Candy.
No 471. p. 620. - 1740. 908. Cannabis Sativa alba Off. Hemp. $\mathrm{N}^{\mathrm{N}} 457$. p.40\% - 1739. 865. Caprifolium Germanicum Dod. Dutch Honey-Suckle.
$\mathrm{N}^{\circ} 43$ 1. p.200. $-173^{2}$. $5^{13}$. Cardamine annua, glabra, parvo fore, foliis vix finuatis. Smooth, annual Ladies-Smock, with a fmall Flower, and Leaves hardly finuated. - - — - - 514. Cardamine Sicula, foliis fumaria T. Inff. 224. Sicilian Ladies-Smock, with Fumitory Leaves.
No 456. p.291. - 1738. 804. Carduus galagtites \%. B. II r. 54. Y. Baubinus's Milk-Thiftle.
$\mathrm{N}^{3}$ 447. p. 144. - 1736. 71 13. Carduus bumilis alatus, five Carduus Maric annuus; folio littris obfuris notato H. C. Boerb. Ind. alt. 136. Annual Milk-Thiftle, with obicure Streaks.

No 456. p. 291. Ann. 1738, 805. Caryophyllata Alpina luted C. B. 322. Yellow Alpine Avens.
$\mathbb{N}^{\circ} 43$ I. p.200. - 1732.515 . Caffia berbacea, PSeudoacacia foliis a D. Collinfon. Caffa Marilandica: pinnis foliorum oblongis, calyce ficris reflexo Martyn. Hift. Plant. rar. Dec. III. $\mathrm{N}^{\circ}{ }_{1}$. Caffa of Maryland. with oblong Lobes, and a reflexed Empalement.
N• 47 1. p. 620. - 1740. 911. Caffida Alpina fupina megno flore T. Cor Supine, Mountain SkullCap, with a large Flower.
$\mathrm{N}^{\circ} 45^{2}$. p.2. $\quad$ 1737. 761. Cafine vera perquam finilis, Arbufcula Pbillyree foliis antagoniftis. Ex Provincia Carolinienfo. Pluk. MantiJ. p. 40. Phytogr. Tab. 38 I. Fig. 3. The Caffioberry Bufh.
$\mathrm{N}^{\circ}$ 471. p.620. - 1740. 909. Centaurium majus foliis in plures. lacinias divijos C.B. Off. Great Centory.
$\mathrm{N}^{\circ} 45^{2}$. p. 2. 1737.763. Cepa Afcalonia Mattbiol. 556. Ef. chalottes.

-     -         - 762. Cepafiflis Mattbiol. 555. Ciboule. $\mathbf{N}^{\circ}$ 456. p.291. - 1738. 806. Cbamalea tricoccos C. B. 46e. Widow-Wail.
$\mathbf{N}^{\circ} 43$ I. p.200. - 1732.516. Cbamamelum trimeftre, nudum, capitulis minimis. Naked Camomile, with very fmall Heads.
$\mathbf{N}^{\circ}$ 457. p.40\%. - 1739. 866. Cbenopodio-morus media, foliis argute dentatis. Middle MulberryBlite, with fharp-pointed Leaves.
$\mathbf{N}^{\circ}$ 456. p.291: - 1738.80\%. Cbenopodium Ambrofoides, folio $82-$ nuato T. 506. Oak of Ferufalem.
-     - 808. Chenopodium Ambrofoides Mexicanum T. 506. Mexican Oak of Ferufalem.
$\mathrm{N}^{\circ}$ 452. p.2. 1737.764. Cbenopodium Ambrofoides Mexica. num fruticofum. Shrubby Mexican Oak of ferufalem.
$\mathrm{N}^{\circ} 457$. p. 407. 1739.867. Cbenopodium Botryos folio, fubtus candicante. Atriplex fylveftris Ir. Tab. Icon. 40\%. Goofe-Foot, with an Oak of Ferufalem Leaf, hoary underneath.

VQL. VIII. Part ii

## 1 Catalogue of Plants.

 Pes Anferinus Fuchfii. Great GoofeFoot, with a jagged Leaf. tuce.
$\mathrm{N}^{\circ}$ 452.p.2. 1737.765. Cbriftophoriana Americana procerior, E longius spicata Dillen. H. Elt. Tab. 67. Tall American Herb Cbriftopber, with long Spikes.
$\mathrm{N}^{\circ} 43$ 1. p.200. - $73^{2}$. 517. Cbryyantbemoides ofteofpermon, $A$ fricanum, arboreum, foliis Populi albe Boerh. Ind. alt. 104. African hard-feeded Iree CbryJantbemum, with Leaves like the white Poplar.
$\mathrm{N}^{\circ}$ 436.p.1. ${ }^{1733.555 .}$ Cicer Sativum C. B. 347. Chiches, or Chich-Peafe.
$\mathrm{N}^{\circ}$ 457. p:407. - 1739. 871. Cirfium arvenfe, repens, folio vix sinuaro, in aculeum abeunte. Creeping Field gentle Thiftle, with a Leaf fcarce finuated, ending in a Prickle.
$\mathrm{N}^{\prime}$ 447.p.144. - 1736. 715. Citus ladanifera, Cretica, fiore purpureo T. Cor. 19. Large fweet Ciftus, or Rock-Rofe from Crete.
$\mathrm{N}^{\circ}$ 456. p.291. - 1738. 809. Clinopodium Americanum, Salica: rice foliis, perforatis, Pulegii odore. American Field Bafil, with Willowwort, perforated Leaves, and a Smell of Penny-Royal.

$$
\begin{aligned}
& - \text { 810. Clinopodium Mentba folio, incanum } \\
& \text { §odoratum H. Elt. Tab. 74. Hoary, } \\
& \\
& \text { fweet-fmelling Field-Bafil, with a } \\
& \text { Mint Leaf. }
\end{aligned}
$$

$\mathrm{N}^{\bullet}$ 471. p.620. - 1740. 910. Clinopodium Orientale, birfutum, foliis inferioribus Ocimum, fuperioribus Hiflopum referentibus T. Cor. Hairy oriental Field-Bafil, with the under Leaves like Bafil, and the

$$
\begin{aligned}
& \mathbf{N}^{\circ} \text { u4\%.p.144.-1736. 714. Clinopodium Virginianum, angufi- } \\
& \text {-folium; foribus amplis, luteis, pur- }
\end{aligned}
$$

puro maculatis, Eoc. Pluk. Pbyt. Tab. 24. Fig. 1. Narrow-leaved FieldBafil of Virginia, with large yellow Flowers, fpotted with Purple.
$\mathrm{N}^{\circ}$ 440. p.1ヶ4. Ann. 1734. 618. Cnicus caruleus, bumilis, Montis Lupi H. L. Bat. Low blue DiftaffThifte.
N ${ }^{\bullet}$ 431. p. 200. - 1732. 518. Cnicus Creticus, Alraclylidis folio छ facie, fore candidifimo T. Cor. Candy, white-flowered DiftaffThiftle.
$\mathrm{N}^{\circ}$ 456.p.291. - 1738.811. Cnicus Hijpanicus, arboreus fatidifimus. T. 45 I. Stinking, Spanif, Tree Diftaf-Thiftle.
$\mathrm{N}^{\circ}$ 471. p.620. - 1740. 913. Cocblearia minor rotundifolia noftras Raii Syn. The leffer round-leaved Scurvy-Grals.

- — - - 912. Colutea veficaria C. B. Baftard Sena.
$\mathrm{N}^{\circ}$ 452. p.2. - 1737.766. Commelina anguftifolia procumbens. Procumbent, narrow-leaved Commeline.
$\mathrm{N}^{\circ}$ 436. p. I. 1733 . 556. Convolvulus Americanus, minor: Polygoni fubbirfuto folio; flore parvo, ceruleo, patente. Small American Bindweed, with a hairy Knot-grấs Leaf, and a fmall open Flower.

The Vifturt Clandi Hort. Malab. 11. p. 13I. Tab. 164. comes near it.
$\mathrm{N}^{\circ}$ 436. p. 1. $1733.557^{\circ}$ Convolvulus major, reEtus, Creticus, argenteus Mor. Hift. 2. p. 11. Silver, upright, great Bindweed of Candy.

-     -         -             - 558. Convolvulus ramefis, incanus, foliis Pilofelle C. B. 294. Hoary, branched Bindweed, with MoufeEar Leaves.
$\mathbf{N}^{\circ} 43$ 1. po.200. 1732 . 519. Corchoro afinis, Cbamiedryos folio; foro Atamineo ; Seminibus atris, quadrangulis, duplici ferie difpofitis Sloane Cat. Fam. p. 50. Hijt. Tab. 94. f. 1 .
$\mathbf{N}^{\circ} 447$. p. 144. - 1736.716 . Cotyledion Afra; folio craffa, lato, laciniato; ficfculo aureo. Boerb. Ind. alt. 288. African Navel-wort, with
a thick, broad, jagged Leaf, and a golden Flower.
$\mathrm{N}^{\circ}$ 456. p. 292. Añ. 1738. 814. Crocus albus, variegatus; fundo floris flavefcente. White, variegated Crocus, with a yellowifh Bottom to the Flower.

812. Crocus vernus, latifolius, flavus
C. B. Yellow, broad-leaved Spring
Crocus.

N'440. D: 574 Ann. 1734. 619. Eruca Tanaceti folio H. R. Par. Tanfey-leaved Rocket.
$\mathrm{N}^{\circ} 45^{6}$. p.292 - 1738.817. Eryngium carulcum, albis maculis notatum H. Ox. 111. 165. Blue Eringo, marked with white Spots.
$\mathrm{N}^{\circ} 457 \cdot$ p.40\%. - 1739. 874. Eryngium maritimum C. B. 386. Sea-Holly, or Eringo.
N' 456. p.292. - 1738.818. Eryngium mon:anum, Ametbyfinum C. B. 386. Amethyft Eringo.
$\mathrm{N}^{\circ}$ 457. p.408. - 1739.875. Eryngium vulgare C. B. 386. Eryngium campeftre Dod. 730. Common Eringo.
$\mathrm{N}^{\mathrm{j}} 43$ 1. p. 200. - $173^{2}$. $5^{21}$. Eupatoriophalacron Americanum; Hyperici foliis; Semine adunco. a D. Houfon. American Eupatoriophalacron, with St. Fobn's Wort-leaves, and a kooked Seed.
No 471. p. 621. - 1740.919. Eupatorium Americanum, berbaceum, Melija folio, villofum Houf. Herbaceous, American Hemp-Agrimony, with a Baum Leaf, and hairy. $\mathrm{N}^{\circ}$ 452. p.2.-1737.774. Eupatorium cannabinum C. B. 320 . Eupatorium Avicenne Officin. Common Hemp-Agrimony, or Dutch Agrimony.

- P. 3. - - 775. Eupatorium folio oblongo, rugofo; caule purpurafcente T'. Inft. 456. Canada Hemp-Agrimony, with along; rough Leaf, and purplifh Stalk.
N'445. p.I. - 1735. 658. Eupatorium Virginianum; Salvie foliis longifimis, acuminasis, perfoliatunit Pluk, Pbyt. T. 87. Fig. 6. Perfoliated, Virginian Hemp-Agrimony, with very long and pointed SageLeaves.
- N' 440. p.174. - 1734. 620. Fagopyrum Americanum, angufifolium, procumbens; caulibus lappaceis. Procumbent narrow-leaved $A$ merican Buck-Wheat, with prickly Stalks.
$\mathrm{N}^{\circ} 45^{2}$, p.3. $\quad$ 1737. 776. Fagopyrum erectum; Seminibus ad angulos dentatis, Jpicatim nafcentibus. Ex Rufia. Upright Rufian BuckWheat, with Seeds indented at the Angles, and growing in Spikes. $\mathrm{N}^{\circ} 440$. purpureis foribus, ad caulium extremitates fere umbellation nafcentibus. An Mefembryanibemum falcatum, minimum, Egc. Hort. Eltb. 288. FigMarygold, with a fmall Swordfafhioned Leaf, and purple Flowers, growing in a Sort of Umbells at the Extremities of the Stalks.
$\mathrm{N}^{\circ} 45^{2}$. p.3.—1737.777. Ficus Orientalis, foliis in lacinias angujtas profunde incifis. The large white Turkey Fig.
$\mathbf{N}^{\circ}$ 447.p.144. - 1736. 721. Filicula, que Adiantum nigrum Of
ficinarum. Adiantum folis Longioris
bus, pulverulentis; pediculo nigro C. $B$. 355. Common black Maiden-Hair, or Oak-Fern.
- p.145. - 722. Filix faxatilis, foliis tenuioribus है $^{2}$ acutioribus. Adiantum nigrum, pin. nulis Cicutarice divifura D. Bobart. Raii Syn. 11. 50. Black Maiden-
— — - $7^{2}$ Hair, with finely divided Leaves. Raii Syn. Ed. 11. 50. Pluk. Phyt. 180. f. 5. Stone-Eern, with a thin, brittle L.eaf.
N ${ }^{\circ}$ 471. p. 621. - 1740. 921. Fraxinella fore albo, five Diztamnus albus Off. White Dittany, or Fraxinella.
$\mathrm{N}^{\circ} 436 . p .1 . \quad 1733.560$. Fraxinella. Finus ficrifera, botryoides Mor. H. Reg. Blef. Flowering Afh.
$\mathrm{N}^{\circ} 43$ 1. p.200. - 1732. 522. Frutex Virginianus, trifolias; Ulmi famaris D. Banifter. Pluk. Almag. 159.
-     -         -             - 523. Fumaria Africana, veficaria, fcandens Par. Bat. App. Cy.ficapnos:Afrt cana, fandens Boerh. Ind. 3 1o. African, climbing, Bladder-Fumi-
$\mathrm{N}^{\circ} 45^{2} \cdot \mathrm{p} \cdot 3 . \quad \mathrm{B}$ - $737 \cdot 779$. Fumaria bulbofa; radice cava; maz jor C. B. 143. Great bulbous-rooted! Fumitory, or Hollow-root.

$$
\mathrm{N}^{\circ} 45^{2} .
$$

## A Catalogue of Plants.

 8. Panick-grafs, with a divided Spike.

-     -         -             - 66\%. Gramen paniceum Famaicene, ppica divifa nitida. Famaica Panick-grafs, with a neat, divided Spike.
No 440. P.175. - 1734.624. Granadilla flore albo, fruEtus reticulato Boerb. Ind. 82. White PaffionFlower, with a reticulated Fruit.
$\mathbf{N}^{\circ}$ 436. p. 2. 1733. 562. Granadilla folio tricujpidi, latiori; flore minimo. An Granadilla folio tricufpidi; flore parro, flavefcente T. Inf. 240? Paftion-Flower, with a three-pointed Leaf, and a very fmall Flower.
—————561. Granadilla Hifpanis Flos Palfonis Italis Cob. in Recch. 889. Threeleaved Paffion-Flower.
$\mathbf{N}^{\circ}$ 440. p.175. - 1734. 625. Granadilla oblongo acuminalo folio, flore purpureo. An Granadilla folio oblongo, ferrato, flore purpureo $D$. Houfton? Purple Paffion-Flower, with an oblong, acuminated Leaf.
$\mathrm{N}^{\circ}$ 471. p. 621. - 1740. 925. Harmala Off. Ruta quat dici folet Harmala 7. B. Wild Rue.
-     -         -             - 927. Hedyfarum clypeatum, flore fuaviter rubente Hort. Eyft. Frencb Honeyfuckle, with a delicate red Flower.
$\mathrm{N}^{0}$ 431. p.200. - 1732. 524. Hedyfarum tripbyllum, Canadenfe Cornut. 44. Three-leaved Canada French Honey-fuckle.
$\mathrm{N}^{\circ} 447$. p. 145. - 1736. 725. Heleniaftrum Americanum, latifoliwm, Serratum. Broad-leaved, ferrated, American Heleninftrum.
$\mathbf{N}^{\circ} 445$. p.2. 1735.668. Helleborus niger bortenfis, flore viridi C. B. 18 5. Bears-Foot.
$N^{\circ} 471$. p. 621. - 1740. 926. Herba Paris Off. Herb Paris. VOL. VIII. Part ii. umbilicato Plum. Nov. Gen. 6. Nux veficaria oleofa, foliis umbilicatis, ex Infula Barbadenfi Pluk. Pby\% 208. Fig. 1. Jack in a Box.
N0 447. p. 145. - 1736. 626. Hieracium Cbondrilla Solio, birfutum C. B. 127. Rough-leaved, yellow Devil's Bit.
$\mathrm{N}^{\circ} 47 \mathrm{I} . \mathrm{p} .621 .-1740.928$. Hieracium bortenfe, floribus atropurpureis C. B. Golden Moufe-Ear, or Grim the Collitr.
$\mathrm{N}^{\circ}$ 431. p. 201. - 1732. $5^{25}$. Hieracium medio nigrum, Baticum, minus. Park. Tbeat. 792. Smaller Spani/h Hawkweed, with yellow and black Flowers.
-     -         -             - 526. Hieracium medio nigrum, Bcticum, latifolium, amplo fore. Broad-leaved Spani/h Hawkweed, with a large yellow and black Flower.
$\mathrm{N}^{\circ}$ 456. p. 292. - 1738.819. Hyofoyamus albus major, vel tertius Dioforidis E quartus Plinii C. B. 169. White Henbane.
-     -         -             - 821 . Hyofyyamus luteus, minor frutefcens. Small, fhrubby, yellow Henbane.
-     -         -             - 820. Hyofoyamus major, albo fimilis, Umbilico foris atro-purpureo. T. Cor. I. Great Henbane, like the white, but with a dark purple Bottom to the Flower.
$\mathrm{N}^{\circ}$ 452. p.3. 1737.784. Hypericum Androfomum dictum F.B.
Androfamum alterum birfulum. Co$\mathrm{N}^{0}$ 436. p. 2. ${ }^{\text {lum. Ec. 75. Tuffan-St fobn's Wort. }}$ Hy Jopus rubro flore C. B. $21 \%$.
No 431. p.201. - 1732. $52 \%$ Red fowered Hyffop. Ind. alt. 99. African Ragwort, with
 Hift. 21. Senecio incanus, pinguis C. B. 131. Cotton Groundfel, or Arong-fcented Groundfel.

$$
\mathrm{N}^{0} 436
$$ fore albo odoratifimo H. Ampl. I. p. 159. Three-leaved Azorian Jafmine, with very fweet, white Flowers, or Ivy-leaved Jafmine. fundius incifis, vix crenatis Boet. Ind. 272. African Bladder Kelmia, with deeply cut Leaves.

-     -         -             -                 - 530. Ketmia veficaria, Africana T. Inft. 101. African Bläder Ketmia.
-     -         -             - 531 . Ketmia veficaria vulgaris T: Inf. roi. Common Bladder Ketmia. $\mathbf{N}^{\circ}$ 436. p.2. - 1733 . 565. Lacbryma Fob. Cluf. Hift. ccxvi. Fob's Tears, or Reed-Millet.
$\mathrm{N}^{\circ}$ 440. p. 175. - 1734. 626. Lapatbum Egypliacum, annum, Pariotarice folio, capfula Seminis lon. gius barbala H. Pifan. Annual $E$. gyptian Dock, with a pellitory Leaf, and a long Beard to the Seed.
-     -         - $62 \%$ Lapatbum aquaticum, folio cubi. tali C. B. ri6. Great Water Dock. - - - - 628. Lapatbum bortenfe, rotundifolium, five montainium C. B. 115 . Buttard Monk's Rhubarb, or great roundleaved Dock.
— — — - - 629. Lapatbum rotundifolium, maximum, q. Rhaponticum Officin. Rhapontick.
-     -         -             -                 - 630. Iapalbum fativum Dod. q. Patientia Officin. Monk's Rhubarb, or Garden Patience.
$\mathrm{N}^{\circ}$ 457. p.408. - 1739.878. Lappa major, ex omni parte minor; capitulis parvis, eleganter reliculatis Pluk. Alm. Smali Burdock, with reticulated Heads.
-     -         - 877 Lappa five Bardana major, fore dock, with white Flowers.
$\mathrm{N}^{\bullet} 456$. p.292. - 1738.824. Lajerpitium angufifolium, majus, Segmentis longioribus, $\mathcal{E}$ indivifs H. ${ }_{5} \mathrm{~K}{ }_{2}$ Ox .

Ox. 111. 321. Great, narrowleaved Laferwort, with longer and undivided Leaves.
$\mathbf{N}^{*}$ 456. p.292. Ann. 1738. 825. Laferpitium foliis latioribus; Semine crifpo Ev verrucofo H. Ox. I Is. 320. Laferwort with broader Leaves, and a curled and warty Seed.
826. $\begin{aligned} & \text { Laferpitium bumilius, Paludapit } \\ & \text { folio, fore albo. T. 325. Dwarf } \\ & \text { Laferwort, with a Smallage Leaf, } \\ & \text { and a white Flower. }\end{aligned}$
Laferpitium lobis angufioribus, Es
dilute virentibus, conjugatim pofitis
H. Ox. I11. 32 I. Laferwort with
narrower, and pale-green Lobes,
placed by Pairs. gioribus $\varepsilon$ dilute virentibus, plurifariam divifis Pluk. Pbyt. Tab. 198. f. 6. Laferwort with narrow, long, pale-green Leaves, variouny divided.

-     -         -             - 829. Laferpiitum, Lobis minimis, trifdis, feminum alis fere planis. An Laferpitium angufiore folio, umbella concava, E contraEla. Pluk. Pbyı. Tab. 199. Laferwort with very fmall, trifid Lobes, and the Wings of the

$$
\mathrm{N}^{\circ} 47 \mathrm{I} . \text { p. 621. - 1740. 930. } \begin{aligned}
& \text { Seeds almoft plain. } \\
& \text { Latbyrus perennis latifolius C. B. }
\end{aligned}
$$

931. Latbyrus fylveftris Dodonai Park. The other great wild Latbrrus, or everlafting Peafe.

-     -         -             - 932. Lathyrus ficulus, flore odorato, magno Boerh. Ind. ${ }^{159 \text {. Sicilian ever- }}$
lafting Pea, with a large, fweet-
 Spica Nardus Germanica Trag. The moft common or broad-leaved Lavender.
$\mathrm{N}^{\circ}$ 456. p. 293. Ann. 1738. 832. Leonurus minor, Capitis Bona Spei vulgo Boerb. 180. Leffer Lion's Tail from the Cape of Good Hope, with a Cat-mint Leaf.
 with Privet Leaves, fally called the Perfan Jafmine.
No 431. p.201. - 1732. 533. Limonium lignofum, Gallis viduum Lavender.
$\mathrm{N}^{\circ}$ 456. p. 293. - 1738. 833. Limonium minimum, flagellis tortuofis, nofiras. The leaft Sta-Lavender, with twifted Branches.
- — - - 834. Linaria annua, angufifolia; fofculis albis, longius caudatis Triumph. Narrow-leaved, annual Toad-Flax, with white Flowers, and long Spurs.
$\mathbf{N}^{\circ}$ 447. p.145. - 1736.727. Linaria bederaceo folio, glabro; Seu Cymbolaria vulgaris. T. Inft. 169. Kound-leaved Toad-Flax.
— — - - 728. Lingua Cervina minima; folio ob. tufo, undulato है ferrato. An Lingua Cervina, anyufifolia, lucida; folio Serrato H. Reg. Par.? Small Harts-Tongue, with an obtufe, undulated, and ferrated Leaf.
-     -         - 729. Lingua Cervina maxima; undulato folio, curiculato per bafin H. Reg. Par. Great Harts - Tongue, with an undulated Leaf, eared at the Bafe.
— - - - 730. Lingua Cervina minor, crijpa uno pediculo trifolia H. Keg. Par. Pluk. Fbyt. 24S. f. 2. Small, trifoliated Harts-Tongue.
— — - — 73r. Lingua Cervina Officinarum. C. B. 353. Common Harts-Tongue.
$N^{\circ}$ 436. p.2. 1733. 566. Lotus bemorrboidalis, bunilior ED candidior T. Inft. 403. Lower and whiter, hemorrhoidal Birds-Fout Trefuil. ribus $छ$ anguftioribus. Hort. Edin. Small, fmooth Birds-Foot Trefoil, with longer and narrower Leaves.
-     -         - 536 Loous pratenfis, major, glabes. Vaillant. Bot. Par. Great, fmooth, Meadow Birds-Foot Trefoil. $\mathrm{N}^{0} 437$. p. 2 1733. 567. Lychnidea Caroliniana; floribus quals umbellatimn difpoftits; foliis lucidis, craflis, acutis. Martyn. Hift. p. Io. Lychnidea of Carolina with umbellated Flowers, and fhining, thick, Tharp-pointed Leaves.
N'471. p. 621. 1740.933. Lycbnis mulliplex, fore purpureo C. B. Double red Campion, commonly called Double red Bachelor's Button.
$\mathrm{N}^{\circ}$ 452. p.3. - 1737.785 . Lycoperficon Galeni Ang. Apples
$\mathrm{N}^{\circ}$ 457.p.408. - 1739.880. Lymacbia annua; minima; Polygoni folio T. 142. Small, annual, Loofe-ftrife, with a Knot-Grafs Leaf.
$\mathbf{N}^{\circ} 43$ r. p. 201. - 1732.537. Ly/machia Canadenfis, lutea; folio Jalappa D. Sarrazen. Yellow L.oofeftrife of Canada. caulibus rubentibus H. L. Bat. ComNo 436. p. 2. - 1733. 568. Marrubium album vulgare C. B. Pin. 230. White Horehound.
-     -         -             - $569 \begin{gathered}\text { Pin. }{ }^{2} 30 \text { Marrubium album, anguffifolium }\end{gathered}$ peregrinum C. B. Pin. 230 . Narrowleaved Candy Horehound.
-     -         - 570. Marrubium album, latifolium pere. grinum C. B. Pin. 230. Broad-
Noaved white Horehound. Broad-
le. p.175. - 1734.631. Medicago annur, Trifolii facie T. Inft.p.412. Annual Moon-Trefoil. 632. Medicago marilima, trifolia, annua, polycarpus, fruElu torofo, non fpinofo, D. Micheli Hort. Pif. p.iıo. Annual, Maritime Moon-Trefoil, with a fmooth Seed.

$$
\mathrm{N}^{\circ} 43 \mathrm{I} .
$$

N ${ }^{\text {431. p.201. Ann. 1732. 538. Melifa Americana, graveolens a }}$ Domino Houffon. Strong-fmelling American Baum.
$\mathrm{N}^{\circ} 45$ 6. p.293. - 1738.836. Menijpermum Canadenfe, Scandens umbilicato folio Ac. R. Sc. 1705. Climbing Canada Moon-Seed, with an umbilicated Leaf.
—— ———— 837. MeniJpermum umbilicato folio, mucronato, ad bafin non finuato. MoonSeed with an umbilicated, pointed Leaf, not finuated at the Bafe.
—— ———— 838. Menijpermum bederacee folio. MoonSeed with an Ivy Leaf.
N ${ }^{\circ} 457$. p.408. - 1739. 881. Mentba angufif folia Jpicata C. B. 227. Spear-Mint; or Hart-Mint.
— — — — - 882. Mentba angufifolia, altera, rugofior, Spica birfuta. Rough SpearMint, with a hairy Spike.
$\mathrm{N}^{\circ} 43$ 6. P.2. - 1733. 571. ${ }_{288}$ Mentha bortenfis prior Fuchf. Hif. - — — — - 5730 Mentba bortenfis verticilata, 0 cimi odore C. B. Pin. 227. Mentba quarta Dod. Pempt. 95. Red Mint.

 Romane, verticillis minimis Rand. Round-leaved Mint, with very fmall Whorls.
$N^{\circ} 43^{\text {6. p. 2. - }}$ 1733. 574. Mentbo Jylvefris, roturndiore folio C. B. Pin. 22\%. Horfe-Mint, or round-leaved wild Mint.
— — — - 575. Mentha fylvefris, rotundiore folio, purpureo fore Bot. Monjp. Roundleaved Horfe-Mint, with a purple Flower.
— — — - - - 576. Mentba Sylvefris, Jpicata, latifolia, birfuta. Hairy, broad-leaved, fpiked wild Mint.
№ 457. p. 408. - 1739. 883. Mentba verticillata, longiori acuminato folio, odore aromatico. Whorled Mint,

Mint, with a long pointed Leaf, and an aromatic Smell.
$\mathrm{N}^{\circ} 47$ 1. p. 621. Ann. 1740. 935. Mentbaftrum Off. Mentbaftrum $/ p i-$ catum, folio longiore candicante F. B. Long-leaved Horfe-Mint.

- p.622. - 936. Millefolium purpurcum vulgare Raii. Purple common Yarrow, or Milfoil.
No 445.p.2. 1735.669. Milleria, amplis foropbularia fo- $\begin{aligned} & \text { Miis, maculatis. Milleria, vith large, }\end{aligned}$ fpotted, Fig-wort Leaves.

$\mathbf{N}^{\circ}$ 447. p.145. - 1736. 732. Nerion foribus rubefcentibus C. B. $\mathbf{N}^{\circ} 445$. p.2. ${ }^{2}$ 1735.671. Nicotiana major anguftifolia C. B. 170. Narrow-leaved Tobacco.
— - - - 672. Nicotiana major, angufto, longoque folio, caulem fere amplectente. Tobacco with a long, narrow Leaf, almoft embracing the Stalk.
- — — - 673. Nicotiana latifolia major; albo fore. Ex Infula Tobago. Broad-leaved Tobacco, with a white Flower.
$\mathrm{N}^{\circ}$ 431. p.202. - 1732. 543. Nigella angufifolia, flore majore, fimplici, caruleo C. B. Narrowleaved Fennel-Flower, with a large, fingle, blue Flower.

$$
\mathrm{N}^{0} 471 .
$$

$\mathrm{N}^{\prime}$ 471. p.622. Ann. 1740.937. Nigella arverifis carselea C., B. Wild, horned Fenucl Fiower:
$\mathrm{N}^{3} 431$. p.202. - 1732.542: Nigella, fore mincore, fimatici, candido C.B. 145 . Fennci-Flower with a fmall, white, fingle Flower.

- p.201. - 541. Nigilla Orientalis; flure flavefcente: femine atuto, plano. T. Cor. 19. Oriental Fennel-Flower, with a yellow Flower, and a flat winged Secd.
 folio T. Inft. r40. Low, vernal Venus Navel wort, with a ComfiyLeaf, or leffer Borage.
————— 582. Onagra Bonarienfis villofa, flore mutabili Hort. Elt. 297. Tab. 219. Hairy Tree-Primrofe, with a changeable Flower.
$\mathrm{N}^{\circ}$ 44\%.p.145. - 1786.733. Orcbis galea \&o alis fere cinereis 7. B. 11. 735. The Man Orchis.
$\mathrm{N}^{\circ}$ 471. p.622. - 1740.938. Oftrys Americana fructu Lupuli. Ind. Hort. Cbelf. American Hop Hornbeam.
No 457. p.408. - 1739. 885. Oxys lutea, Americana, procumbens. Prucumbent, American, yellow Wood-Sorrel.
N² 471. p. 622. - 1740. 939. Parietaria Polygoni folio, canefcens.
Hoary Pellitory, with a Knot-Grafs Leaf.
$\mathbf{N}^{3} 447$. p.145. - 1736.734. Parnafla paluftris Ef vulgaris T. Inft. 240. Gramen Parnafle, albo fimplici fiore. C. B. 309. Grafs of Parnajus.
$\mathrm{N}^{\circ}$ 436. p.3. $\quad$ I733. 583. Paronycbia Hifpanica Cluf. Hif. clxxxii. Silver fcaly-headed Mountain Knot-Grafs.
No.445. p.2. 1735.675 . Paftinaca fylveftris, latifolia, Au. friaca D. Boerbaave. Auftrian wild Parfnep.
$\mathrm{N}^{\circ}$ 440. p. 175. - 1734.633 . Perficaria perennis, repens, latifolia. Broad-leaved, creeping, perennial Arfmart.

V O L.: VIII. Part ii. 120. Narrow-leaved Periwinkle. 197. Butter-bur, or Peftilent-wort.

— — — — - 888. ${ }^{\text {P Petafites major, foribus albis, Spica }}$ bipedali D. Bobart. Petafites major, floribus pediculis long is infidentibus $R$. Syn. 111. 179. Butter-bur, with Flowers on long Pedicles.
— — — - — 889. Petafites minor, folio Tufflaginis Mor. H. Reg. Blef.
$\mathbf{N}^{\circ}$ 452.p.3. $\quad$ 1737.786. Petiveria Solani folits; loculis /pinofis Plum. Nov. Gen. 50. Verbence aut Scorodonice affinis, anomala, flore albido; calyce afpero; allii odore. Sloane Cat. Fam. 64. Guinea HenWeed. Hift. 1. 172.
$\mathrm{N}^{\circ}$ 457. p.408. - 3739. 890. Pblomis acuminato, viridi, Splendente folio; fore purpurafcente, caulibus villofis. Sage - Tree, or ferlfalem Sage, with a fhining, green, pointed Leaf, a purple Flower, and hairy Stalks.

- . - - - 89r. Pblomis Hifpanica, fruticofa, candidifsma, fore ferrug ineo T. Inft. 178. White, fhrubby Spanib Sage-Tree, or Sage of Jerusalem.
-     -         -             - 992. Pblomis Narbonerfis, Hormini folio, flore purpurafcente T. Inf. 178. Narbonne ferufalem Sage, with a clary Leaf, and purplifh Flower.
No 436. p. 3. - 1733. 584. Pbytolacca Americana majorifructu. T. Inft. 299. Solanum magnum Virginianum rubrum Park. Thbeat. 347. Virginian Poke, or Pork Phyfick.
— - - - 586. Pbytolacca Americana, minor, bacca monopyrena. Solanoides Parijienjum. Small American Nighthade, with one Seed in a Berry.
$\mathrm{N}^{\circ} 457$. p.409. - 739. 893. Phytolacca fructu monopyreno, majore, folio longiore, glabro. American Nightfhade, with a large Berry, and N 476 . p. 3. $\quad 733.585$. Phe Phoed, and a long, fmooth Leaf. bus Hort. Elt. 318. Mexican Nightthade, with feffle Berries.

$$
\mathrm{N}^{0} 457
$$

$\mathrm{N}^{\circ} 457$. p.409. Ann. 1733. 894. Pilofella major, umbilifera, macrocaulos. Floribus ef forculofis Col. Ecph. 248. Great umbelliferous Moufe-Ear.
N'456. p.293. - 1738. 839. Pinus Halepenfis; foliis tenuibus, late virentibus. Aleppo Pine, with nender, bright green Leaves.

-     -         -             - 840. Polium erectum minus angufifolius An Polium Hispanicum tenuifolium, flore albo, capitulo breviori T. 20\%. Small, narrow-leaved, upright PoleyMountain.
N' 447. p. 146. - $1736.73 \%$. Polygonalums latifolium, flore mas jore, odoro C. B. 303. Solominn's Seal, with a large, fweet-fmelling Flower.
- — - - 738. Polygonatum latifolium vulgare C.B. 303. Common Solomon's Seal.
— — — — - 739. ${ }^{\text {30 }}$ Polygonatum majus, vulgari, fimile 7. B. $111.5^{29}$. The greateft Solomon's Seal.
- p.145. - 735. Polypodium Cambro-britannicum: pinnulis ad margines laciniatis Raić Syn. Ed. ir. p. 35. Laciniated Polypody of Wales.
- p.146. - $736 .{ }^{\text {pody Polypodium murale, pinnulis Serratis }}$ Petiver Bot. Hort. Wall Polypody, with ferrated Leaves.
$\mathrm{N}^{\circ} 47$ 1. p. 622. - ${ }^{1740}$ 940. Polypodium Senfibile Munting. Hif.
$\mathbf{N}^{\circ}$ 456. p. 293. - 1738.841. Ponfitive Polypody nigra, folio maximo; gemmis Balfamum odoratifimum fundentibus Catef. Hif. Tab. 34. Largeleaved, odoriferous black Poplar.
$\mathbf{N}^{\circ}$ 447. p. 146. - 1736. 740. Prenantbes Americana, folio lato, bipennem militarem referente; flavefcente fore. American Prenanthes, with a broad Leaf, and a yellowifh Flower.
$\mathbf{N}^{\circ}$ 471. p. 622. - 1740. 941. Pfeudo-DiEzamnus verticillatus odorus C. B. Sweet-fmelling baftard Dittany.
$\mathrm{N}^{\circ}$ 445. p.3. 1735. 676. Pfyllium anguftifolium, perenñ:: Pyyllium majus fupinum C. B. 191. Perennial, narrow-leaved Flea-wort. 5 L 2
$\mathrm{N}^{0} 445$. folium, annuum. Grear, upright, narrow-leaved, annual Flea-wort.
— — — — 678. Pyllium Dioforidis, vel Indicum, crenatis foliis C. B. 191. Indian Fleawort, with notched Leaves.
_ — — — - 679. Pfyllium majus, ereEtum, latifo. liuni, annuum. Pfillium mojus, erectum C. B. 19r. Annual, broadleaved, upright, great Flea-wort.
No 436. P. 3. 1733. 587. Ptarmica Orientalis, Santoline, folio fore minori T. Cor. 37. Oriental Sneezwort, with a Santolina Leaf, and a fmaller Flower.
$\mathrm{N}^{\circ}$ 440. p. 175. - 1734. 634. Pulegium onguftifolium C. B. 2.22. Pulegium Cervinum Offic. Hart Pen-ny-royal.
— — — — - 635. Pulegium angufifolium fore albo $H$. Reg. Par. Hart Penny-royal, with a white Flower.

This Plant is almoft 3 Times as big as the preceding.
— — - - - 636. Pultgium latifolium C. B. 222 Penny-roya!, or Pudding Grafs.

- — — - 637. Pulegium latifoiium ereEtum. IPright, broad-leaved Penny-royal.
N 447. p.146. - 1736. 741. Pulegium nininum, Scrfylli facie. The leaft Penny-royal, with the Appearance of Mother of Thyme.
No 431. p. 202. - 1732. 544. Pulmanaria calyce veficario. Lungwort, with a Bladder-like Empalement.
$\mathrm{N}^{2}$ 452. 7. 3. Aun. 1737. 787. Pyretbrum Officinarum. Pyretbrum flore Bellidis C. B. 148. Chamanneluin Jpeciofo fore, radice longn, fervida D. Shaw. Pbyl. Afric. Stac.
 Leucantbermum Canaricnfe, foliis Cbryfantbemi, Pyretbri Japore T' Inft: 666. Shrubby Pyretbrum of the Canary Inands.
$=-$ - -789 . Rapuntium Americanum, fiore di. lute caruleo Ao Reg. Par. Amerisan Rampion, with a pale, blue Hower.
$\mathrm{N}^{2}$ 436. p. 3 Ann. 1733.588. Rapuntium Tracbelii folio, flore purpurafcente Plum. Cat.p. 5. Rampion with a Throat-wort Leaf, and a purplifh Flower.
$\mathrm{N}^{\circ} 45^{2}$, p. 4. $\quad$ 1737.790. Rapuntium Virginianum, foliis oblongis, foribus parvis caruleis; spica longifima, laxa. Virginian Rampion, with oblong Leaves, fmall blue Flowers, and a very long, loofe Spike.
 oblongo. $A D^{\text {mo }}$ Houfon. An Ricinoides Americana Caftanea folio Plum. Cat. p. 20. American Phyficknut, with an oblong Alder-Leaf.
No 445. P.3. - 1735. 680. Rofa mofckain flore pleno C. B. 482. Mufk-rofe, with a double Flower.
N'457. p.409. - 1739. 895. Rofa Pimpinella folio, Scotica, fore elegimter variegalo. Rofa Ciphiana Sibbald Sco!. Illuft. Striped Scotch Kofe.
$\mathrm{N}^{\circ}$ 445. p.3. - 1735 631. Rofa rubra, plena, Jpinoffima, pe dunculo mufcofo Boerb. Ind. alt. 252. Mofs Rofe.
$\mathrm{N}^{2}$ 457. p.409. - 1739. 8g6. Rola jolveftris, Virginienfs. Wild Virginian Rofe.
$\mathbf{N}^{\circ}$ 445. p.3. - 1735. 682. Salicaria Hyflopi folic latiore T. Inf. 253. Grafs-Poly, fmall HedgeHyffop.
$\mathrm{N}^{\circ}$ 447. p. 146. - 1736. 742. Salvia Africana frutefcens; folio Scorodonice; flore violaceo H. Amjt. 2. 181. Shrubby African Sage, with a. Wood. Sage Leaf, and a Violet coloured Flower.
$\mathrm{N}^{\circ}$ 456. p.293. - 1738.842. Saxifraga rotundifolia alba C. B. 309. White Saxifrage.
-     -         - $843 \begin{array}{r}\text { Saxifraga verna, annua, bunilior } \\ \text { S. }\end{array}$ T. 252. Sedum tridactylites tericrum C. $B$ : Rue Whitlow-GraIs.

$$
\mathrm{N}^{\circ} 44.5
$$

## A Catalogue of Plants.

$\mathbb{N}^{3} 445 \cdot$ p.3. Ann. 1735. 683. Scabiofa capitulo globofo, foliis in tenuiflıus lacinias divifis C. B. $27 \mathbf{1}$. Field-Scabious, with Leaves cut into very fine Segments.
— — — — 684. Scabiofa capitulo globofo major C. B. 270. Scabiofa minor Maitbioli. Great Scabious, with a globofe Head.

-     -         - 685. Scabiofa capitulo globofo, major, acutiore folio, tenuiter diffecto. Great Scabious, with a globofe Head, and a flarp-pointed Leaf, cut into very fine Segments.
— — - - 686. Scabiofa capitulo globofo, tenuifolia, pediculis forum pralongis. An Scabiofa capitulo globofo minor C. B. Scabious, with a globofe Head, fine cut Leaves, and very long Pedicles to the Flowers.
-     -         -             - 687. Scabiofa peregrina, rubra; capitulo oblongo C. B. 270 . foliis integris. Red Scabious, with an oblong Head, and entire Leaves.

$$
\mathrm{N}^{\circ} \text { 436. p.3. - 1733. 590. Scabiofa ftellata, Orientalis; fof fu- }
$$ lis marginalibus fimbriatis. Starred, oriental Scabious, with the marginal Flowers fimbriated.

$\mathrm{N}^{\circ}$ 440. p. 175. - 1734. 638. Scorpioides Bupleuri folio C. B. Pir. 287. Prickly Caterpillars.

- p.176. - - 639. Scorpioides filiqua crafla Boelii Ger. Emac. App. 162\%. Caterpillar with a thick Pod.
-     -         -             - 640. Scorpioides filiqua friata, minus afpera. Smoother Caterpillar, with a ftriped Pod.
-     -         -             - 641. Scropbularia flore luteo C. B. 236. Yellow flowered Figwort.
-     -         -             - 642. Scropbularia folio Urtice C. B. 236. Scropbularia peregrina Cam. Hort. Icon. 43. Nettle-leaved Figwort.
-     -         - 643. Scropbularia Lamii folio D. Bobart. Figwort with an Archangel Leaf.
$=-\quad-=$ 644. Scropularia nemorenfis; folio Urtise rugofo; flore atro-punicante H.C. Boer.

Boer. Ind. alt. 234. Figwort, with a rough Nettle Leaf, and a dark-red Flower.
$\mathbf{N}^{\circ}$ 440. p. 176. Ann. 1734. 645. Scropbularia Orientalis, foliis Cannabixis T. Cor. 9. Oriental Figwort, with Hemp-Leaves.

-     -         - 646. Scropbularia faxatilis lucida, Laferpitii Mafflienfis foliis Bocc. Muf. 166. Shining, Rock Figwort, with the Leaves of Laferwort of Marfeilles.
-     -         -             - $64 \%$ Scropbularia Scorodonia folio Mor. Hif. Ox. 482. Figwort, with a Wood-Sage Leaf.
N ${ }^{\circ}$ 457. p. 409. - 1739. 897. Senecio Americanus, folio baftato, nitide Serrato. American Groundfel, with a haftated Leaf, neatly ferrated.
$\mathrm{N}^{\mathrm{N}} 47$ 1. p. 622. - 1740. 942. Senna Italica, five foliis obtufis C. B. Italian Senna.
$\mathrm{N}^{\circ}$ 456. p.293. - 1738. 844. Serratula Marilandica, foliis glaucis, Cirfii inflar denticulatis H. Elf. 354. Saw-wort of Maryland, with glaucous, indented Leaves, like Cirfium.
$\mathrm{N}^{\circ}$ 431. p.202. - $^{2}$ 1732. 545. Sberardia nodiflora; Stechados ferrata foliis D. Vaillant. Sherardia. flowering at the Joints, with the Leaves of ferrated Strecbas.
-     -         -             - 546. Sberardia repens, nodifora, fubro. tundo folio D. Houfton. Creeping Sherardia, flowering at the Joints, with a roundifh Leaf.
— - - - - 547. Sberardia Jpicata, anña; fore cãruleo; foliis angufis, छ ferratis D. Houfton. Annual, fpiked Sherardia, with a blue Flower, and narrow, ferrated Leaves.
$\mathbf{N}^{\prime} 471$. p. 622. - 1740. 943. Sideritis Romana, ufriculis fpinafis H. L. Bat. Roman Iron-wort, with prickly Empalements.
$\mathrm{N}^{\circ}$ 447. p. 146. - 1736. $743^{\text {. }}$ Sinapi HiJpanicum pumilumi albimm T. Inft. 227. Dwarf, white, Spanifs Muftard. fiore sarneo; foliis trififis Ev quinquefruis D. Houfton.
$N^{2} 447$. p. 146. -1736.744 . Sium aromaticum, Sifon Officinarum T. Inft. 308. Sijon quod Amomum Officinis noferis C. B. 154. B.attard Stone-Parney.

N' 457 . p. 409. - 1739. 898. Sium umbellatum repens Ger. Emac. 256. Creeping Water-Parfnep.

N'445. P.A. - 1735. 693. Solanum Anericansm, glabrum, acinis puniceis, majoribus. Smooth American Nighthade, with great, red Berries.
$\mathrm{N}^{\circ}$ 457. p.409. - 1739. 899. Solanum fruticofum, Africanuin, Lauri foliis. Shrubby, African Nightfhade, with Bay-Leaves.
$\mathrm{N}^{\circ}$ 452. p.4. $\quad$ 1737. 793. Solanum fruticofum, bacciferuin C. B. 166. Tree Nightfhade.
$\mathbf{N}^{\circ}$ 445.p.4. 1735. 694. Solanum Guineenfe; fruEu Ccrafo nigri forma $\mathcal{O}^{2}$ magnitudine $D$. $\mathcal{F} u f$ fieu. Nighthade of Guinea, with a Fruit of the Form and Size of a black Cherry.

- P.3. - - 688. Solanum bortenfe; finuatis foliis; acinis faturate virentibus. Garden Nightfhade, with finuated Leaves,
-     -         - 689 . Solanum nigricans, borterfi fimile, elatius, Virginiarum, fore foris purpurafcente. Blackifh Virginian NightThade, like the common one, but larger, with a Flower purplifh on the Outfide.
-     -         - 690. Solanuw nigricans, bortenfe fimile, minore flore E' fructu. Ex Infula Tobago. Blackifh Nightfhade, like the common one, with a fmaller Flower and Fruit. From the IJand Tobago.
-     -         -             - 691. Solanum Offcinarum ; acinis luteis C. B. 166. Common Nighthade, with yellow Berries.
- p.4. - - 692. Solanum Officinarum; acinis puniceis C. B. 166. Common Nightfhade, with red Berries.
$\mathrm{N}^{\prime}$ 431. p.202. - 1732. 549. Spergula que Alizne faxatilis छु mulliflora; capillaceo folio T. Inf. 243.


No 440: p. 176. Ann' 1734 . 648. Tragopogon gramineo folio, fuarerubente flore. Col. 291. Grafs-leaved Goat's Beard, with a fine red Flower.
— - - - - 649. Tragopogon luteum, foliis gramineis; caule purpurafcente Boer. Ind. All. p. go. Yellow Goat's Beard, with grafly Leaves, and a purplifh Stalk.
$\mathrm{N}^{\circ} 452$. p. 4. - ${ }^{1737.795 \text {. Trichomanes five Polytrichum Offi- }}$ cinarum C. B. 556. Englifh black Maiden-Hair.
No 436. p.4.—1733. 596. Turnera frotefoens Ulmi folio Plum. Nov. Gen. p. 15 . Broad-leaved Turnera.
$\mathrm{N}^{\top} 436$. p.4. 1733. 597. Turnera Lycopi folio; flore ampliore. Cifus Urtica folio, flore luteo; vafculis trigonis Sloan Hift. Vol. I. Tab. 127. Fig. 4 E3 5. Nar-row-leaved Turnera, with a large Flower.
$\mathrm{N}^{\circ} 45^{2}$. p.4. - 1737.796. Turritis vulgaris ramofa T. Inft. 224. Pilofella foliquata Thalii Tab. vii. Codded Moufe-Ear.

- ——————797. Turritis Leucoii folio T. Inf. 224.
Tracle Wormfeed.
Turritis Leucoii folio; foribus am-
pli:ribus. Treacle Wormfeed, with
larger Flowers. Capre firribus compartis C. B. $1_{6}$. Meadow-fweet.
-     -         -             - 800. Ulinaria floribus in longas Jpicas congefits Boerh. Ind. Alt. 295. Barba Capre floribus oblongis C. B. 163. Goat's Beard, with Flowers in long Spikes.
$\mathrm{N}^{\circ} 47$ 1.p.946. - 1740. 946. Urtica pilulifera Parietarice foliis Hort. Reg. Parif. Spanifh Mar-
- p.622. - $\quad$ joram. Valerinnella femine fiellato C. B. Corn-Sallet, with a farred Seed.
$\mathrm{N}^{\circ}$ 445.D.4. - 1735. 697. Verbena Americana, bumilior; Urtica longiori folio; Spica fere fimplici; flore allo. Low Amerisan Vervain, with
 niana. Virga aurea, Americana, afpera, foliis brevioribus ferratis Hort. Elt. 4 II. American, rough golden Rod, with Thort, ferrated Leaves.
 birfutia lappacea obfita, a D. Houfton. Gronovia fondens, lappacea, pampinea fronde Houfton. Martyn. Hift. Plant.rar. Dec. iv. N ${ }^{\circ}$ 8. Climbing, rough Gronovia, with a Vine Leaf. N ${ }^{\circ}$ 457. p.409. - 1739. 900. Vulneraria ereeta, annua fore fubroturdo, leviter crenato. Loto affinis, Coryli folio Dod. Mem. Upright, annual Wound-wort, with a roundifh Leaf, flightly crenated.
$\mathrm{N}^{\circ}$ 471. p. 622. - 1740. 949. Vulneraria fore purpurafenic Tourn. Wound - worth, with a purplif Flower.
-     -         -             - 950 . Vulneraria pentapbyllos Tourn. Antbyllis leguminofa, veficaria Hijpanica Park. 1094: Five-leaved Wound-wort.
-     -         -             - 948 . Vulneraria ruftica J. B. Anthyllis leguminofa Raii Syn. Kidney-Vetch, or Lady's Finger.

$$
\begin{aligned}
& \mathrm{N}^{\circ}{ }_{440} \text { p. } 650 .-1734.650 \text {. Xernnthemumn. flore Jimptlici, pur } \\
& \text { pureo, minore T. In. 499. Sinaller } \\
& \text { Sneezwort. }
\end{aligned}
$$

N. B. Part of this Catalogue containing the Plants numbered from 901 to 950, was drawn up, after the Death of Mr Rand, by Mr Gofept Miller, Apothecary, Horl Cbel. Praf. \& Prelec. Botan.

Some Eirperi-
miats concerningione Improg "asion of the siced'of Plan's, in James Lo$\operatorname{gan}, E / q ;$ No 640. p. 192

VIII. As the Notion of a Male Seed, or the Farina Fxcundens, in Vegetables is now very common, I fhall not trouble you with any Obfrvations concerning it, but fuch as may have fome Tendency to what I have to mention. And, firt, I find from Miller's Dicionary, that M. Eecofroy, from the Experiments he made on Mayze, was of Opinion, that Sieds may grow up to their full Size, and appear perfect to the Eye, without being impregnated by the Farina, which poffibly, for nught I know, may in fome Cafes be true; for there is no lind of Varieties in Nature: But in the Subject he has mentioned, I have Reafon

## of the Seeds of Plants.

Reafon to believe it is otherwife, and that he applied not all the Care that was requifite in the Management.

When I firft met with the Notion of this Male Seed, it was in the Winter Time, when I could do no more than think of it; but in the Spring I refolved to make fome Experiments on the Mayze, or Indian Corn. In each Corner of nyy Garden, which is 40 Foot in Breadth, and near 80 in Length, I planted a Hill of that Corn, and watching the Plants when they grew up to a proper Height, and were purhing out both the Taffels above, and Ears below; from one of thofe Hills, I cut off the whole Taffels, on others I carefully opened the Ends of the Ears, and from fome of them I cut or pinched off all the filken Filaments; from others I took about $\frac{1}{2}$, from others $\frac{1}{4}$, and $\frac{3}{4}, \mathcal{E C}^{\circ}$. with fome Variety, noting the Heads, and the Quantity talsen from cach: Other Heads again I tied up at their Ends, juft before the Silk was putting out, with fine Munin, but the fuzzieft or moft nappy I could find, to prevent the Paffage of the Farina, but that would obftruct neither Sun, Air, or Rain. I faftened it alfo fo very loofely, as not to give the leaft Check to Vegetation.

The Confequence of all which was this, that of the 5 or 6 Ears on the firft Hill, from which I had taken all the Taffels, from whence proceeds the Farina, there was only one that had fo much as a fingle Grain in it, and that in about 480 Cells, had but about 20 or 21 Grains, the Heads, or Ears, as they ftood on the Plant, looked as well to the Iye as any other; they were of their proper Length, the Cores of their full Size, but to the Touch, for want of the Grain, they felt light and yielding. On the Core, when divefted of the Leaves that cover it, the Beds of Seed were in their Ranges, with only a dry Skin on each.

In the Ears of the other Hills, from which I had taken ali the Silk, and in thofe that I had covered with Mullin, there was not fo much as one mature grown Grain, nor other than as I have mentioned in the firft: But in all the others, in which I had left Part, and taken Part of the Silk, there was in each the exact Proportion of full Graitis, according to the Quantity or Number of the Filaments I had jeft on them. And for the few Grains I found on one Head in the firf Hill, 1 immediately accounted thus: That Head, or Ear, was very large, and fond prominent from the Piant, pointing with it's Silk Weffward directly towards the next Hill of Indian Corn; and the Farina, I kriow, when very ripe, on thaking the Stalk, will Ply off in the fincit Duft, fomewhat like Smoak. I therefore, with good Reafon, judged that a Wefterly Wind had wafted fome few of thefe Particles from the wher Hill, which had light on the Seiles of this Eir, in a Situation perfectly well firted to rective them, which none of the other Ears, on the fame Hill, bad. Ard indeed I admire that there were not more of the fame Ear than I fourd impregnated in the fame Manner.

As I was very exad in this Experiment, and carious cnough in my Obfervations, and this, as I have related it, is truly Fact, I think is may reafonably be allowed, that notwithtanding what M. Gioficy may my Experiment on thofe Heads, from which Silk was taken quite away, ald thofe that were covered with Mullin) none of the Grains will grow up to their Size, when prevented of receiving the Farina to impregnate tiem, but appear, when the Ears of Corn are difclofed, with all the Beds of the Seeds, or Grains, in their Ranges, with only a dry Skin on each, about the fame Size as when the little tender Ears appear fillid with milky fuice before it puts out it's Silk. But the few Grains that were grown on the fingle Ear, were as full and as fair as any I haed feen, the Places of all the reft had only dry empty Pellicles, as I have defribed them; and I much queftion whether the fane does not hold generally in the whole Courfe of Vegetation, though, agreeable to what I firt hinted, it may not be fafe to pronounce abfolutely upon it, without a great Variety of Experiments on different Subjects. But I believe there are few Plants that will afford fo fine an Opportunity of obferving on them as the Mayzi, or our Indian Corn; becaufe it's Stiles may be taken off or left on the Ear, in any Proportion, and the Grains be afterwards numbered in the Manner I have mentioned.

The Diforery of a perfeet Plant in Semine, by Mr Henry Baker No. 457. p $44^{8}$. July Sic. 1740.
IX. Since the ancient Suppofition of equieocal Generation has been rejected, for a mure reafonable Belief, that every Thing procecds from Parents of it's own Kind, Numbers of curious People have bufied themfelves in Search of Experiments, whereby to densonltrate the Iruth of the latter, and conlequently the Falfity of the former Opinion. For - this Puspofe the Animel and Vicgetable Worlds have been examined, and fuch Analogy found between them, as proves convincingly, that their Generatios and Increafe are brought about in a Manner pretty much alike. The animal and vegetable Semina are found to be alike the Rudiments of their future Offspring; ard both alike require only a proper Repofitory to preferve them from Injuries, and proper Juices to advance their Growth, and bring them to Perfection.

Glaffes (which the Moderns have fo much improved) are the Means whereby thefe Secrets in Nature are difcovered to us. The Eye, affifted by a good Microfcope, can diftinguifh plainly, in the Semens mafculinum of Animals, Myriads of Animalcules alive and vigorous, though fo exceedingly minute, that it is computed 3000 Millions of them are not equal to a Grain of Sand, whofe Diameter is but $\frac{1}{100}$ Part of an Inch: And the fame Inftrument will inform us beyond all Doubt, that the Farine of Vegetables are nothing elfe but a Congeries of minute Granula, whofe Shapes are conftant and uniform as the Plants they are taken from And as the Secds of Plants are found, by repeated Experiments, to be unprolific, if the Farina be not permitted to thed, it has been fuppofed, that all it's Granula contain Seminal Plants of their own Kind.

The Growth of Animals and Vegetables feems to be nothing elfe but a gradual Unfolding and Expanfion of their Veffels by a now and progreflive Infinuation of Fluids adapted to their Diameters, until, being Atretched

## The Difcovery of a perfect Plant in Semine.

ftretched to the utmont, Bounds allotted them by Providence at their Formation, they reach their State of Perfection, or, in other Words, arrive at their full Growth. If this be granted, the Confequence muft be, that all the Members of a perfect Animal exift really in every Animalcule of the Semen animale majculinum, and all the Parts of a perfect Plans in every little Grain of the Farina Plantaram, however minute either of them may be.

According to this Theory, it is fuppofed by fomie, that, in Animals, the Semen of the Male being received into the Matrix of the Female, fome of the Animalcules it contains in fuch Abundance, find an Entrance into the Ovaria, and lodge themfelves in lome of the Ova placed there by Providence as a proper Nidus for them. An Orum, becoming thus inhabited by an Animalcule, gets loofened in due Time from it's Ovarium, and paffes into the Matrix through one of the Fallopian Tubes. The Veins and Arteries that faftened it to the Ovary, and were broken when it dropped from thence, unite with the Veffels it finds here, and compole the Placenta: The Coats of the Orum, being fwelled and dilated by the Juices of the Matrix, form the Cborion and the Amnion, Integuments needful to the Prefervation of the little Anima!, which, receiving continually a kindly Nourihment from the fame Juices, gradually ftretches and enlarges it's Dimenfions, becoming then quickly vifible with all the Parts peculiar to it's Species, and is called a Fatus.

In Plants, fay they, (which are uncapable of removing from Place to Place, as Animals can) it was requifite a Repofitory for thèir Farina Thould be near at Hand to prevent it's being loft; and accordingly we find, that almof every Flower, producing a Farina, has likewife in itfelf a proper Ovary for it's Reception; where the Ova thercby impregnated are expanded by the Juices of the Parent Plant to a certain Form and Bulk, and then, becoming what we call ripe Seeds, they fall to the Earth, which is a natural Matrix for them.

According to the above Suppofition, a ripe Seed, falling to the Earth, is in the Condition of the Ovum of an Animal getting loofe from it's Ovary, and dropping into the Utcrus: And, to ge on with the Analogy, the Juices of the Eartb fwell and extend the Velfels of the Seed, as the Juices of the Uterus do thofe of the Ovum, till the Seminal Leaves unfold and perform the Office of a Placen:a to the Infant included Plant; which, imbibing fuitable and fufficient Moifture, gradually extends it's Parts, fixes it's own Ront, Rhoots above the Ground, and may be faid to be born.

Others dilapprove of this Hypolbefs, and infirt that no Animalcute can pofibly enter the Ovum animale, nor any Particie of the Farina get into the Embryo of a Seed: But, fay they, in Animals, either the fineft Part of the Semen is taken in by the Veffels of the Vogine and $L_{\text {in }}$ terus, circulated with the Fluids, and carried into the Ovaria, and even into the Ova, by the Velfels that run thither; or elfe, Fecundation is occafioned by a fubtile Spirit in the Semen mafoulinum, which paffes the.

Uierus, enters the Ovaria, pervades the Female Ova, actuates and erilivens the fiminal Moteer in them contained, and produces all the various Symptoms of Conception: In Plantston, fay they, the fame is effected by penerrating Effucia from the male Semen, or Farina.

This Account of animal and vegetable Generation is interded to introduce a Difoovery, which may puffibly fome Way lead to a greater Certainty about it.

An:ongit numberlets Inquirers, whom the Opinion, that every Seed includes a real Plant, has iet at work to open all Kinds of Seeds, and try by Glaffes to find evident Proofs thereof, I have not been the leatt induftricus: But after repeated Experiments, in every Manner I could think of, and with the utmoft Niccty in my Power, I began to defpair of ever attaining an ocular Demonftration of it. If by moiftening the Sued it began to vegetate, I could indeed dilcern the Seminal Leaves, and the Girmen or Bud, whence the future Plant fould arife; but was able to go no further, unlefs I waited till the Moifture gradually extending it's Veffels made the little Root hoot down, the Stalk rife up, and the minute Leaves expand, and bring themelves to View. This, hovever, was not the Thing I fought for: But, fome Days ago, mere Accident, when I thought nothing about it, favoured me with a Difcovery I had fo often fearched after to no Purpole.

Fig. 63. Cafes that inclofed it, I afterwards cut open a great many Seeds of the fame Sort, in Hopes I might be able to feparate one of thefe minute Plants entirely from it's Theca; which at latt I fuccefffully effeeted.

X. In the Edition which Boerbaave and Gaubius have civen us of Swammerdam's Biblia Natu:a, five Hiftoria Infeciorum, in Dutch and Latin, 2 Vol. in Fol. printed at Levden 1737, and 1738, we have an Epiftolary Differtation on the Seed of the Male Fern, together with a very curious Cut, reprefenting the Seed-Vefels, their Mechanifm, and the Seed, as viewed by a grod Microfcope, inlerted at the End of the faid Hiftory. The Cut I have attempted, with my unfkilful Hand, to draw as well as I could; and, polibily, it may help you to conceive of the Form of what it is defigned to $r$ eprefent, in fome Meafure.

The Author, I tind, claims to himfelf the having firft difcovered the Seed of Fern, in his Differtation, at the Beginning: "You rightly " judge" (fays he to his Friend) " me to have been the firft," $\mathcal{E}^{\circ} c$. Boerbanve fays, that he fhewed therin to the Botanick Profeffor at Leyden, Anno 1673, and that he had crawn the Figures of them. But I find Dr William Cole fent an Account of the Seeds of divers of the Plants called Dorfferous, to Dr Robert Hook *, in a Letter dated September 30, 1669, and gives a pretty juft Defcription of the Seed. Veffels, and the Manner in which they grow, and intended a Delineation of the Figures. Swammerdan's great Piety, which Thines confpicuouny throughout his Work, teaches me, in Charity, to conclude, he fpake what he thought to be true; and, poffibly, he might have made the Difcovery many Years before the Time when he fhewed the Seeds to the Profeffor. However, I am humbly confident of this, (after numberlefs Trials made with all Kinds of Microfcopes, and in all Pofitions, and with different Lights) that Swammerdam's Account is juft and accurate in every Point. I have viewed the feveral Kinds of Fern, Englifo Maiden-Hair, other Sorts of Maiden-Hair, Wall-Rue, Harts-Tongue, and find the Seed-Veffels of the fame Form in all, fome little Difference being between fome of them in the Size only; and in the Manner of their being inferted on the Back of the Leaf, with the Numbers in

[^14]V O L. VIII. Part ii.
various Plants, there is a more confiderable Difference. I obferve, where you have fewer Seeds, you have more of a Sort of Fungus, or Tubercule, very like what is called Fewes-Enr!, which feems to me defignech to fhelter the Seeds, which grow, as under Covert, round about them. In the Female Fern, and Englifh Maiden-Hair, the whole Surface of the Leaf on the Infide feems covered, fo the Seeds guard one another in fome Meafure, though in thefe I find, after the Seed-Veffels are fhaken off, fmall Membranes here and there on the Surface, a little curled, locking as if they had been raifed with the Edge of a fharp Penknife, from the Skin of the Leaf, not altogether unlike the Pieces of Skin we are wont to raife in trying a Penknife on one's Hand.

The Plant which I' have attempted a Figure of, with it's Seed-

Fig. 67, 68,

Fig. 70.

## Of the Secd of Fern.

 Veffels, $\xi^{c} c$. is the Filix mas Dodonci; on the Infide of the Leaves of which are ufually feen feveral Spots placed in a regular Manner, of a Jight-brown, or Ruffet. In this Plant the principal Part of there Spots is the Fungus before-mentioned, around which the Seed-Veffe's are inferted *.The Seed-Vefels confift of a Stalk, by which they are inferted into the Leaf, as cc, of a fpringy ribbed Chord ee, having a great Number of annular Ribs, exactly refembling the annular Cartilages in the Apern Altioria; and I know nothing in Nature fo aptly refembling this Chord, as the A/pera Arteric of a fmall Bird, as a Robin or Nigblingaie, Esc. This Chord incircles the globular membranaceous Pot, wherein the Seed lies, adhering to it, and dividing it into two Hemifpheres. The Pod $f f$ is, in Appearance, compofed of a fine whitim Membranc, fomewhat like that which lines the Inflde of a Pea-Shell. The Seeds, $k$, are irreguiar in Shape, and in the Surface of them, a little refembling a Sort of Net-work, which I have endeavoured, in my rude Manner, to minick.

In viewing this admirable Production of Divine Wifdom in this Plant, I ufe a fingle Lens, and no deep Magnifier, that I may have the Advantage of the Light falling on the Objects. I throw a Quantity of Seed-Vefels on a circular Phite of Ivory; and, if the Plant be newly gathered, (the proper Time is about the Beginoing of September) I often have the Pleafure of feeing the Seed-Veffels burft; the

[^15][^16]| 9 | $j$ | $j$ |
| :--- | :--- | :--- |
| 0 | $j$ | $j$ |

0

Motion of which at that Time may be feen by a good Eye unafinted But, when I happened to light of a Pod not thoroughly crifp, thave had the Satisfaction of feeing the gradual Procedure of the burfting of the Veffel, in order to the fattering the Seed, in the following Mianner Firft, the Chord breaks, and by expanding rends the Follicatum or Pod in two Parts: By going on to expand itfell, as it departs from a Curse, and approaches to a right Line, it rends itfelf away from the globular Pod gradatim, till it be wholly difcharged from it; whem, as there can be no further Refiltance made to the Chord in expanding itfelf, it nasurally gives a fudden Jerk (which in this Cate is very gentle); and thereby the Seeds are ined on the Surface of the Plate, in the fame Manner as if you were to caft fome Grains of Corn out of a Bowl on the Plane of a Table-board: This I have feveral Times feen with unfpeakable Pleafure; but where the Veffe! is mure crifp, the Motion of it in burfing wholly efcapes the Sight, Aying away with great Violence beyond the Field which the Lens takss in. Sometimes 1 hape obferved the Pod to be $10^{\prime \prime}$, fometimes $20^{\prime \prime}$ in burfting; in which Time you may have a diftinct View of the Procedure. I would add, that I have more than once feen the Pod broke in the Side by fome Accident, as at $l$; and the Seed lodged within, while the Chord has been whole, and fill embraced it.

Oae might have the Opportunity of feeing this curious Piece of Divine Mechanifm to greater Advantage, if I could find a Way to get the Seed-Veffels from the Leaves in a lefs rude Manner than by rubbing them; for they will not eafily be difcharged from the Leaves, (for I believe they continue a Month after the Seeds are difperfed) 10 as to collect any Number of them together, and this Method burits them. When I have been attempting this, they fly about like exceeding fine Vapour or Smoke, and are very troublefome to one's Hands, Evc. by getting into the Pores like Corvidge.

Fig. 71, 72, is a Reprefentation of a fmall Piece of the Leaf of Harts-Tongue magnified, taken from Dr Grewe's Anatomy, or Hiftory of Plants, Plate $7^{2}$, referred to Book IV. Page 200. I was furprized to fee that Cut fo little refembling the true Figure: Indeed the Doctor fays it was a cloudy Day when he viewed the Object; and I am fure he had no juft Notion at all of the Spring which embraces the Pod, as to it's Texture; for it is by no Means fpiral, or like a Screw; nor do the Seeds grow in that regular Manner, as reprefented in the Fi gure.

Whatever Ufe may otherwife be made of this Difcovery, a moral one naturally prefents itfelf to us, viz. to admire the infinite Wifdons and Skill of the wonderful Creator: For what thinking Mind can help being ftruck with Aftonifhment, when he confiders the Seed-Veffels of a coarfe Plant fo minute as to fly about in the Air like a Vapour, but a little Remove from being invifible to a naked Eye, framed with fuch be kenned by the acuteft Sight without the Help of Glaffes !

Tooting, Oct. 29, 1741.
Explanation of Fig. 63. A Branch of the Plant. She Fizures.

Fig. 6g. The Seed-Veffels.
Fig. 70. The Seeds.
a a. A Branch of the Male Fern.
$\beta \beta$. Refer to the Leaves, on the Back-fide whereof, the Excrefcencies, like Feris-Ears, grow, arcund which grow the Seed-Veffels.
c c. The Stalks of the Seed-Veffels.
d. A Sbool from the Stalk, producing fometimes anotber Seed-Veffel on the fame Stalk.
e e. The Jpringy Chord, cmbracing the Pod, which contains the Seed.
f f. Tbe Pod.
g. The Fod with a Crack or Clink in it, 10 rcprefent it's being about to be divided into two Hemijpleres.
h h. Thb Cbord expanded, approaching a right Line.
i i. The two Hemijpheres, when the Pod is divided in two.
k. The Seeds.

1. Seeds in the Pod, the Membrane being broken and turned up.

$$
\text { Depiford, OEt. } 3 \mathrm{I}, 1743 .
$$

Conecrning the XI. 1. I was always of Opinion, that Mufhrooms had their Seeds, Seeds of $M w / / 3$ as well as others; and attributed the not difcovering it hitherto, to the
rooms, by Mr
Roger Picker-
Roger Picker-
No. 47 I. $p$.
593. Read Nov. 10 , 1743. Shortnefs of this Plant's Duration, and to it's fucculent and loofe Contexture, whereby it is liable to immediate Putrefaction from the leaft Alteration of Weather. I could no otherwife account for the Methot made ufe of by the Italians, who make Mufhroom-Beds in their Cellars, with a Mixture of fine. Mould, and the Parings of Mufhrooms laid upon Dung; and that of our Gardeners, who water their Beds with Water, wherein fuch Parings are foaked; but by fuppofing, that their Success was owing to minute Seeds lodged and retained in fuch Parings, and wathed off by fuch Infufions. So alfo, as to the Mouldineis of old Dung and Thatch, which the Gardeners are very fond of in making their Mufhroom-Beds, I apprehended, that this Mouldinefs was not the nutritive Juice or Salt proper for the Production of this Plant, but the Mufhroom itfelf in it's early and inceptive State. The late warm Rains have enabled me to reduce my Conjectures to a Certainty. In Mort, I have not only difcovered, that this Mouldinefs is a Collection of litte Mufhrooms adhering to each other by minute Fibres; or, as the Gatdeners in other Cafes call them, Runners; but I have had the Happinel's to difcover and preferve the Seed of Mulhrooms.

I had prepared for my Obfervations, by ordering the Gardener to make a Mufhroom-Bed, in a well-heltered Place, after the ufual Manner; which was finifhed about fix Weeks ago, but has not yet worked; and had

## Of the Seeds of Mufbrooms.

had charged him to let me know, if any occafionally fprung up in any Part of the Ground. Accordingly, about Wednefday, laft Week, he informed me, that a great Plenty had appeared above-ground, among the Afparagus, and on the Grafs-Walks, as indeed I expected, becaule on Tuefday in the Night there had fallen $\frac{10}{3 f^{2}}$ of a Cubic Inch of Rain, which, together with an unufual Height of the Thermometer, for the Seafon, made it the moft fuitable Weather for Mufhrooins. I immediately chofe out the moft promifing Plants, which I covered with BellGlaffes, where there were feveral together, and the fingle Plants with little Hand-Glaffes, which I had had made for the Prefervation of Wall-Fruit.

Oct. 28, at Noon, I carefully gathered about a Dozen Mufhrooms, of the efculent Kind, from under the Glaffes; choofing fuch as gradually differed from each other in the Colour of their Gills, from a faine Peach-bloom Colour, to a deep Purple; flattering myfelf, that as I had hereby got the Muhhoom, in it's feveral States, fecured by thefe Glaffes from the Injury of the Weather, I hould be able to difcover. the Seed.

With thefe I gathered feveral Mufhrooms of another Kind, commonly known by the Name of Cbampignons; which allo I had fecured under Glaffes. With thefe I hegan, and foon found, what I fufpected to be the Cafe, that the Gills, as they are called, are no other than Capfule, or Pods for the Seed; for with one of the lower Magnifiers, and a tine Penknife, I could eafily divide them from adhering to each other. This encouraged me to apply directly to the larger Sort of Muhrooms; and accordingly I fixed upon one of a deep Flefh-colour, which I looked upon to be, by it's Colour, in it's Prime. I began with one of the Gills carefully feparated from the Head, or Stool, without bruifing; but could difcover nothing in it like Seeds, except that, here and there, there were fome globular dark Spots, appearing, through the fifth Magnifier, about the Size of very fmall Pin-heads: But when I endeavoured, with a fine Brufh, to wipe off any Thing, to fix it upon a Talck, the lighteft Touch reduced it to Water. Upon this, I had secourie to a thin, but tough Filament, which was fituated upon the Stalk orostem of the Muhhronm, in an exact Diftance from the Head of the Multroom, and the Mark, which the Earth round abour the Stem had made. Upon this Filament appeared a fine downy Subitance of a lively Brown, refembling the Down upon a Moth's Wing, but nuch finer. I could brufh off fome of this upon white Paper, withont reducing it to Water; but, not having the new Apparatus for opique. Objects, (which is the only one I am without) there was nothing that appeared bold or tharp enough for me to depend upon. I had then recourfe to a fine Talck in a Slider, and brufled off fome of this brown Duft upon it; and, after I had applied the fecond Magnifier, I was gratifed with the firtt Sight of the Seed of Mufhrooms; for It then difo covered a Multitude of round, regular, tranfparent Bodies, bearing the lame
P. S. I had forgot to mention under the Article b. Eig. 73. that the thin Filament is that to which the Edges of the Head of the Muthroom adhere, while it is, what is commonly called, a Button, and from which it feparates by expanding into a Flap.
P.S. Since I wrote the above, I have met with Sig. Micbeli's Nova Genera Plantarum, wherein I find the Obfervations which I have made upon Mufhrooms, though entered upon without any Hint or Direction from him, or any other Writer, pretty near the fame with his. I think it therefore a Piece of Jultice, due to him, and to the Reading and Judgment of Mr Watfon, candidly to allow the firt Difcovery of the Seeds of Mufhrooms to that Italian Botanift. It fully fatisfies my dittle Ambition to have had the Honour of fhewing them the firtt to the Rayal Sociely of England.
N. B. I thought proper to print the Rev. Mr Pickering's Paper on the Seeds of Mufhrooms, together with Mr Watfon's Remarks upon it; becaufe Sig. Micheli's Book, being printed at Florence, is not in many Peoples Hands here; and, as that is in Latin, I thought it would not be difagreeable to our Gardeners to have an Account of this Difcovery in Englifh: Befides, it is but doing Juttice to Mr Pickering's Diligence in fearching into the Works of Nature, fince he was fo fortunate as to fucceed in a Difcovery which had eluded many curious Botahilts, and that without having taken any Hint from Micheli. C. M.


|  |
| :---: |

## Remarks occafoned by tbe preceding Paper.

2. Mr Pickering having, at your laft Meeting, laid before you an Some Remarks ingenious Account, and fhewn you, by the Affiftance of a Microfcope, occafioned by the Seeds of two Sorts of Fungus's, which were imagined, by many pre- Paper, by $M r$ fent, to have been undifcovered before; I hope I hall not be thought William Watto detract from that learned Gentlemar's Merit, if I mention the firft fon, ApotbeObferver of thofe minute Bodies, although till now they never have, cary, and to my Knowledge, been fhewn in Eingland: For, however great my pi 599. Read Zeal is to give the Honour of any Difcovery to my own Countrymen, Nov. 17, yet Candour will not permit me to give is them to the Prejudice of 1743 . thofe of another Nation. It was to the late Sig. Mickeli, Profefior of Botany at Fiorence, that the Workd owes the Difcovery of the Seeds of Mufhrooms, as well as the Flowers and Seeds of the various Species of Licb:n, or Liecrecoort: He not only faw with his Glaffes, but raifed from their Seeds, many Kinds of Nufhrooms, as may be feen from his Experiments in Page 135 of his incomparable Worl;, intituled, Neva Plantarum Gencra, printed at Fiorence in the Year 1729. He confantly obferved the Seeds produce the fame Species, as in the more perfect Plants.

A very worthy and learned Member of this Society, Dr Haller, Profeffor of Phyfick, Botany, $E^{3} c$. in the Univerfity of Gottingen, in his excellent Work publifhed lat Year, intituled, Enumeralio Metbodicas Stirpium Helveitie, tells us, when treating of Fungus's, Page 34, that their Seeds are produced in the Lemine of their concave Side; as the has moft evidently feen in the 35 th, 50 th, 73 d, 93 d, and royth Species mertioned in his Work; which Seeds are by Nature, when ripe, Maken from the Plants, and, being fown, propagate their Species. He likewife mertions, that the Seeds of cifferent Mufhooms wary in their Colour, fone being blue, others green, white, Eic.

That Oenament of this Socicty, the hate Mr Re\%, iniect, mentions: a. Fungus, difcovered by his Friend Mr Doady, which tre calls, in his Hiftory of Plants, Vol. III. Page 21, Fungus feminifer ex:thèfriatus; and M. Tourncfort, in his Infiturinos Rsi Herpocie, Page 560, takes Notice of another Species of this Tribe, which he calis /ungoides iat fundibuliforme femine fa'um. M. Voillant, in Doge s. , of this Bocenicushb Parifienfe, gives a Defcription and Figures of the Seteds of thefe two Kinds. His Words are to this Purport, when tranfared from the, French. "Within the Cavity, fays he, of thefe Plants, lowarlis the "Bottom, are concained many Seeds heaped une upon another, cut"t upon their fuperior Surface fomewhat like a Triagole, broad under" neath, where they are cornected to a little Tendom, and are whitim." Notwithftanding the high Veneration I have for he Cpisions of thefe able Botanifts, Iam fatisfied the Paris of thefe two Plants, fo imagined, are not their Seeds, but tather their Suckers, Siglenes; which, in mont others of this Tribe, are prodused from the Root; but from both thete, as in many of the Kinds of Lichom, and in the Dinsorva berluifero; are produced from other Patis of the Plant. I cabnot help obfesving that. in alanof all Phants, whofe Seeds are produced fparingly, or are difficule to b. faved, Nature abundantly makes up that Deficiency by the great Increafe of their Roots, whereby their Species may cafily be propagated; as is manifeft in Muhrooms, Potatoes, Crocus's, Goldenrods, Starworts, and above all in the Corona Solis, flore parvo, iuberofa radice, of M. Tournefort, vulgarly called 耳erufalem Arsichóes, the Seeds of which, from the Shortnefs of our Summer, having never as yet ripened in England. I fhal! only add, that although many Species of Mufhrooms are catable, and fome of them better havoured than the common Sort, the Gardeners only propagate that Sort with red Gills, called, by Way of Excellence, Champignon, a Name given by the Fench to ail Sorts of Mufhrooms; but fome defcriptive Word is added to them, whereby they may be diftinguifhed from this. The Method of propagating Muhhrooms according to the ufual Practice, viz. from their Suckers, was firft mentioned by La Broffe in his Treatife De ba Nature des Plantes, and afterwards by M. Tournifort in the Memoirs of the Academy of Sciences, Anno 1507, Page 72.

$$
\text { Now } 17,1743 .
$$

Microfoopical
Obfervations on the Farina of the red Liky, by Mr. Turbevil
Needham.
No. 471 . p.
639. Read

Dec.22,1743.
XII. Upon viewing an Infufion of the Farin Ficundans of the Liizum rubrum fore reflexo in common Water, I thought I perccived fome Alteration in ieveral of thefe minute Bodies, as if the outward Shell or Hufk had, at a fmall lateral Orifice, fhed a long Train of Globules adhering to each other, and enveloped in a filmy Subitance. I, imniediately upon this, applied fome frefh Farina, adapted my Microfoope b-fore-hand, with the Tip of my Brufh dropped a frmall Globule of Water upon the Object, and in a few Seconds, I plainly perceived a Rope of exceeding fmall Globules to be cjaculated with fome Force from within, and contorting itfelf from one Side to the other, throughout the whole Line, during the Time of Action, which does not laft above a Second or two, and is to be expected from a few only of thefe farinaceous Globules. Thefe emitted Particles are very different from the fmall Globules of Oil, with which the Ferina of the Lily abounds; for thefe diffufe themfelves equally on all Sides, while thofe, on the contrary, go off in one continued Train, like the ejected Pulp of a roafting Apple; and are involved in a filmy Subftance, as the Eggs of fome aquatick Infects are. I have fince chofen the Farina of a Pompion to repeat this Experiment upon, which is not of an oily Nature; and, upon account of it's Size, may be conveniently obferved with the fecond Magnifier, where I have the Advantage of a larger Field. I viewed fome few of thefe alfo out of the many farinaccous Globules, which were within the Area of my Microfcope, with the fame Succefs, and yet greater Pleafure: For I could plainly perceive, during the Time of Action, by two or three lucid Specks in the Centre of the Globule, which continually fhifted their Places, an inteftine Commotion within the farinaceous Corpufcle, and a ftronger Ejaculation of the emitted Particles.

## Concirning the smat of Corn.

Particles. Mr Cbambers fays in his Dietionary, that no Alteratha has been obferved upon the Infufion of the liurins in Water: Bat chis, I apprehend, is nwing to the Oblerver's not being ready with his Microfope, and prefent at the Time of Ation, which is almoft irftantaneous; and as the Orifice, at which thefe Particies energe, is bat fmall, it produces no very fenfible Alteration in the Globule iffelf.

$$
\text { Paris, Oct. } 24,1736 \text {. N.S. }
$$

XIII. Having, with the Affiftance of the Microfcope, viewed the Simut of Corn, I offerved the Stalks were all fpotted and pricked with frall Burnings: Now as the Smut happens after a fine Rain, foriowed by a bright Sun-hine, the Caufe of this Evil is, that the Focus of thofe very finall Drops is juit near them, and on the Stalk that fupports them: Wherefore the Sun's Rays, collected in this Point, muft there burn; which dries up the Stalk, and prevents the Ear from graining.

The fecond Remark is on the Corn that grows up into Ears, the Grains of which are for the moft Part full of Meal, quite black. With the Microfoope I faw, all rourd or above thefe black Grains, fmall Concirnimg ithe Smut of Corn, bs the AEbe Plucte to D Mortiner, Sce. R. S. Trank lata 'j jom ite Fierch bri.... M.D. FR..

No. 456 . long Bodies, rolled up, and having each a Pedicle; which I found to be the Flowers, that could not reach their due Form, or come forth and ripen; fo that the Grain, being deprived of this Help, could not develop it's Germ, and produced only a black Meal, for want of the unfolding of certain Veffels.

The third Remark is, the Reafon that invites Thrufbes or Starlings under the Legs of tlack Cattle grazing in a Pafture. Not being able to get near them, I obferved them at a Diftance with a good Glafs. I faw all thefe Birds thruft their Head and half their Body down into the Grafs, in fuch Manner that their Tails remained crect in the Air, as that of a Duck upon diving; which makes me think, that thofe Birds feek after Worms in the Earth; and that they gather about the Cattle, becaufe as they are large Animals, upon trampling on the Ground, they oblige fuch Worms to come forth, as happen to be preffed under the Weight of their Hoofs.
XIV. Upon opening lately the fmall black Grains of fmutty Wheat, which they here diftinguifh from blighted Corn, the latter affording nothing but a black Duft, into which the whole Subftance of the Ear is converted; I perceived a foft white fibrous Subftance, a fmall Portion of which I placed upon my Object-Plate: It feemed to confift wholly of longitudinal Fibres bundled together; and you will be furprized, perhaps, that I fhould fay, without any the leaft Sign of Life or Motion. I dropped a Globule of Water upon it, in order to try if the Parts, when feparated, might be viewed more conveniently; when, to my great Surprize, thefe imaginary Fibres, as it were, inftantly feparated from each other, took Life, moved irregularly, not with a progreffive, but twifting Motion ; and continued fo to do for the Space of 9 or ro Hours, when I threw them away. I am fatisfied they are V O L. VIII. Part ii.

## Microfopical

 Obfervations on Worms dif. covered in Smutt) Corn, by Mr Turbevil Needham. No. 478. \$. 640. Read Dec.22,8743-a Species of aquatick Animals, and may be denominated Worms, Eels, or Serpents, which they much refemble. This, if confidered, will appear to be fomething very fingular: But I have fince repeated the Experiment feveral. Times, with the fame Succefs, and gratified others with a Sight of it.

Twiford, Aug. 11, 1743.

An ObfervaLion on tbe Duplicature of all Sieletons rubat fiever.prepared from green Leaves, by Sa . muel Chriltian Hollman, Prof. Log. and Metapb. in the newu Univerfity of Gottingen. Nc. 46! p. 789. Aug. ̌ㅜㅇ. 1741.
$X \mathrm{~V}$. From the firt Time of my feeing thofe Skeletons of Leaves, which feem to have been firft prepared by the diligent Ruydob, and thofe which were prepared by the celebrated Profeffor Valer; I was fruck with great Admiration, and a frong Defire to obtain the Method of performing an Operation, which gives fo much Ligit into this ftupendous Work of the great Creator. I made many Trials on the Power of a now Fernentation and Putrefaction wich fone Succefs, when I was informed by my learned Friend, that the whole was to be done by Puerefaction, which I afterwards found more fully explamed in the Commercium Liler. Phyico-Nedicum, printed at Norimberg. I now went on fecurely, and prepared not only Skeletons of feveral Leaves, but allo both Cuticles, which ftrongly adhere on each Side of every Leaf, and feparated them eafily, and dried them with fuch Succefs, as to fhew all their Dimenfions. Hitherto I had only performed what had been already obferved and deferibed in the above-mentioned Papers: But foon afterwares an Accident happened, which perhaps has never yet occurred to any of the Diffectors of Leaves. Whilft I was bufy in preparing a Leaf, which did not anfwer my Expectation, I threw it away, torn as it was, into a Veffel that ftood by to receive what I rejected, and went to work upon fomething elfe. But foon after I had a Fancy to examine the torn Parts of the rejected Leaf by a Microfcope. This Labour proved not to be vain. I difcovered, not without Wionder, that the Parts, which lie very clofely one upon another, were now feparated by that violent Laceration of the moft tender Fibres, and were in a moft diftinct Manner vifible feparately; and fo that there was a Duplicature to be obferved of all the Fibrilla, both great and fmall, of the torn Leaf. I was in Doubt at firft, whether that violent Lactration had produced any Thing in that Part of the Leaf, contrary to it's natural Conftitution; and whether this Duplicature of all the Fibrille was rather owing to the Force applied, than the Work of Nasure; but this Doubt foon vanifhed: For after I had tried, in other Skeletons of Leaves which were at Hand, and not yet dried, whether the fine Fibres, of which they are conftituted, would fuffer themfelves to be parted without much Force; I found, in Leaves now brought to that State of Putrefaction, that each Cuticle adhered to the I caf only at the very Edge ; and that after the Separation thereof, that Matter of the green Leaf lying under it, being now diffolved by Putrefaction, went off of it's own Accord. I found alfo, that the Pedicle feparated so lefs into two Parts of it's own Accord, and upon taking off the Cu-
ticle, began to open ; and that upon gently prefing thefe Parts feparately with the Finger, and pulling them gradually afunder, there was af certain peculiar and feparate Ner of very fubtile Fibres annexed to each of them, which very eafily parts from the other, and has each Divarication, and, as it were, Ramification of Fibres, fo exactly anfwering to the Divarications of the other Net, and lying fo clofely upon them, that they feem to make but one Net, before their Separation. When I had fucceeded thus in feveral, I obferved befides, in others, which were reduced to mere Skeletons, and aftervards in Leaves which were a long Time macerated in Water, to iacilitate the Separation of the fmalieft Nets from each other, but chiefly at their very Points, that thofe Nets parted gradually from each other of their own Accord; and I plainly perceived, that when they were gently moved about in very clear Water, they were actually parted afucder. I therefore held fuch a Skeleton with a Finger of one Hand under Water to the Bottom of the Bafon; and endeavoared at the fame Time, with the other Hand, to raife the upper Net, that parted fpontaneouny, by Means of a Pen. knife, till I found I could do it gently with the Fingers; and then I preffed the under ore with another Finger to the Bottom of the Veffel, holding it fan there, and fo endeavoured gencly to pull one Net from the other, beginning at the Point of the Leaf. This alfo fucceeded at laft, and here I obferved the fame Diftribution of all the Divarications and Diftributions of both Nets to anfwer exactly to cach otier.

When I had thus found thefe Nets in every Skeleton to part from each other of their own Accord, I no longer doubted, whether the Force, which I had ufed before, was the Work of Art, or of Nature; and was now fufficiently convinced, that every Skeleton naturally confifts of fuch a double Net of Fibres. But I was afterwards ftill more confirmed in my Opinion, when I obferved by the Microfcrope, that in one Net the Divarication of the Fibres, both great and fmall, was hollow like a Gutter, and in the other convex, and that in fuch a Manner, that the Concavitics were exactly fitted to the Convexities, and received them fo accurately, as to refemble fimple Fibres, and not to fhew the leaft Sign of Duplicature. This is eafily perceived, in the Leaves I made ufe of, even by a Microfcope of middling Goodnefs. Nor will any one find it difficult to difcover the fame, provided he firt undertands the Art of making the Skeletons themfelves, and fuffers the Leaves to come to the juft Degree of Putrefaction, and performs the whole Operation in a Veffel not above 6 or 8 Lines deep, and filled with clear Water.

Fig. 76 exhibits a naked Skeleton of a Leaf, prepared by me after Fig. 76. the Manner above-mentioned, in which no Divifion has been attempted.

Fig. 77 fhews one partly divided, and after this Separation laid upon Fig. 77. the Water in fuch a Manner, that the Parts of the Pedicle are purpofely turned a little to the oppofite Side; that fo each Divarication of both

## Sorne Conjectures on the Ufe

Nets may be feen the better, and thus that whole Skeleton is afterward dried. By this it appears very diftinctly, that every Divarication of one Net is anfwered by juft as many, and in the fame Order, in the other, and that not one of them is deftitute of it's Companion.

Fig. 82.

Some Conjic.sures on the U je of the Duplica. dure of the Fi bres of Leazes, by the fame. ibid. p. 296.

Fig. $7^{8}$ reprefents a Skeleton of a Leaf, divided in fuch a Manner, beginning from the Pedicle, that one of the Nets may be raifed as far as they are feparated, the other Parts fill fticking clofe, and feeming but one Net, by which the Duplicature is vifible to any one.

Fig. 79 fhews a Skeleton divided from the Point toward the Pedicle, fo that each Lamella may be leparated from the other; but the Parts near the Pedicle are lefe without any Separation.

Fig. 80 is a Leaf, where one Side only, next the P'edicle, is divided; fo that one Net may be raifed from the other, and one Side is left in it's natural State and Situation.

Fig. 81 reprefents not only the Nets feparated from each other, but borh Cuticles alfo, which are fo extremely delicate, that the leaft Puff of Breath will injure them.

Fig. 82 hews no Duplicature of the Fibres, but only the Cuticles both of the Leaf and Pedicle, and the Divifion of the Pedicle into two Parts, to which the Nets clofely adhere, one being convex, and the other concave.
XVI. I fuppofe it generally known by thofe, who are at all converfant in the Study of Nature, that moft of the ligncous Fibres in Plants, and fuch as are analogous to them, confift of many minute $\tau_{1 s}$ buli and Canaliculi, by which the nutritious Juice is conveyed from the extreme Fibrille of the Roots to the moft diftant Parts, being propelled and protruded by it's moving Principle, whatfoever that is. Whofocver knows this, can hardly be ignorant, that thofe fmalleft Fibrilla, of which the Stalk or Pedicle of. Leaves confifts, are only an Elongation and Continuation of thofe fmalleft Canaliculi, and conftitute a peculiar Kind of Bundle of them, by which the nutritious Juice is tranfmitted to the other Parts of the Leaf, and diftributed through them ; and afterwards unfolded by various Divarications and Ramifications through the whole Plane of the Leaf, and recede more and more from each other, but are again wonderfully inofculated, in many Places, by vatious Arafomofes, and fo conftitute together a Kind of coherent Net of Fibrille and finallef Tubes. This may eafily be obferved by the naked Eye, or by a tolerable Microfcope. Nor can I imagine any one, that is at all verfed in Natural Philofophy, to be ignorant, that in the laft Century many very famous Men came into the Opinion, that the nutritious Juice circulates in Plants, as well as in Animals; and that many Experiments have been made to confirm it, before the Royal Socielies of Eondon and Paris. Therefore, when I intend to fpeak of the Duplicapure of Leaves, and their fmalleft Fibrille, I look upon this as a Thing ommonly known.



## of the Duplicature of the Fibres of Leaves.

Now it cannot be imagined, that there fhould be a ftronger Argument, to convince thofe who doubt of the Circulation of the nutritious Juice in Plants, than this Duplicature of the Net-work in all Sorts of Leaves. For if the Fibres of that Net are fo many little Tubes, by which the nutritious Juice afcends into the Leaf, and is diftributed through it, of which hardly any one doubts, and the Duplicature is fuch as has been already demonftrated, the very minuteft having it's Companion exactly correfponding with it; nothing can feem more manifeft, than that one Side performs the Office of Arteries, and the other of Veins. Thus they are always found to accompany one another in animal Bodics; and therefore one Kind of them ferves to carry the nutritious Juice from the Root to the Extremities, and the other to carry it back from the Extremities to the Root; and thus this circulatory Motion is performed by this different Kind of Tubes in Vegetables.

This is not a Place to inquire, what Truth appears to me to be im this Opinion of the Circulation of the Juice in Plants, much lefs to examine what is ftill farther to be confidered about the Experiments that have already been made; which perhaps I may take another Opportunity of doing. But let us fuppofe this Circulation to be fettled paft all Doubt ; yet this Duplicature by mee obferved, does not favour this Opinion quite fo much as I could wifh: For in the firft Place, it does not feem evident enough, and pait all Doubt, that the Fibrilice of every Net confidered feparately, and their Divarications, are Ramifications of the whole Tubulus, and of to many whole Tubuli, fince in fuch Fibrilla, cut or broken traniverly, no Orifices and Inofculations of any Tubuli, fuch as are cafily obferved in the Fibres of any Sort of Wood, cut tranfverfly or horizontally, could ever yet be difcovered by me, even with the Afiltance of the beft Microfcopes. Perhaps therefore, whilft the convex Part of one Net, is received in the Bolom of the concave one, and ftrictly embraced thereby, fome fmall and only infenfible Cavity is left between them, which ferves to tranfinit the nutritious Juice; and thus the Divarications of both Nets being mutually conjoined, perform the Office of Tubuit. But if, notwithftanding what has been faid, we flould grant, that all the Fibrille of both Nets are fo many entire and perfect Tubuli, by each of which any nutritious Juice is tranfnitted, and diftributed through the Subftance of the whole Leaf; yet I do net think, that it can hence be inferred, that the Tubuli of one Net perform the Office of Arteries, and thofe of the other that of Veins, and fo that the nutritious Juice is circulated in thefe Tubuli of the Nets: For I have obferved two Things principally in the above-defcribed Preparation of Leaves, which do not feem at all to favour this Opinion. 1. I have difcovered, that the fmalleft Fibrille of both Nets, feated and terminated in the extreme Edge of the Leaf, can much more eafily be feparated from each other, and recede, as it were, of their own Accord, than thofe which are more remote from the Edge; though each Cuticle adheres moft clofely on each Side at the Edge; and though it warough it's whole Circumference; yet here it muft be carefulfy dificeled with a Knife, if we would have one Lemella depart from the other: Which feens 10 be a mot evident Argunent, that the Extremities of the Fibrille of both Nets do not cohere at the Edge of the Leaf, and bend like Arteries to their Veins, fince thote mof fubsile T ubes ought mof ftrietly to cohere, effecially in this Place. 2. This allor is worthy of Obfervation, which I have found not feldem to thappen; that when one Surface of a Leaf fwimming upon the Water, during the Time of Putrefaction, has rifen a little out of the Water, this very Surface being lefs thruft under the Water than the other, and being all covered with Putrefaction, has been made fit for the Preparation of a Skelcten, it has with more Difficulty let go it's Curicleyand fufficed the gircenifh Parts, placed between the Lacinne of the Net, to be wathed off by the Water, than the other Surface of the fame Leaf. When this thetefore has happened, I have fometimes obferved by the Microfope, that the lower Net of the fame Leaf, with regard to the Siruntion and State of Putrefaction, has been deprived of all the greeniPulp, flicking between it's Divarications and Licune, whiff it was clofly fixed and interwowen - between the Divarications and Lecence of the lower Net; which may eafily be obferved by any one, who will apply himfelf to this Sutbect. Since therefore it is thus evident, that this fubtile green Pulp, which lies clofe under each Cuticle of every Leaf, and generally comes in great Part away of it's own Accord, after due Putrefaction is no lefs diftinguifhed into two Lamelle, and as many SIrala, of which one intimately and clofely interwoven with the one, and the other with the other Net of the Leaf; it feems alfo to be very evident, that one Net ferves to gencrate one Surface of the Leaf, and the other to do the fame to the other.

Since therefore the Ufe of that Duplicature in the Skeletons of all Leaves is manifeft, let me add fome other Things belonging to this Argument, the firft of which chiefly concerns the Generation of that greenifh Pulp, which lies on each Side between the Lacunce of buth Nets. It is manifeft to me, from feveral Obfervations and Experiments, that it is produced from the nutritious Juice in Vegetables, that being concreted, it acquires the Form of Bladders; whence it has been defrribed under the Name of Uiriculi by good Writers. It appears from the Pith of all Trees, from their green Bark, from the Stalks of moft Flowers that rife immediately from the Ground, from thofe which are protruded from Trees, and from the other common Leaves of all Plants whatfoever, in which the utricular and veficular Figure may generally be feen by the naked Fye. Now it is manifeft from Experience, that when any vifcid Liquor, or fuch as is impregnated with faline and oily Parts, is driven through narrow Tubes by an Agitation of the Air, it is always expanded into fewer or more Bladders at the Extremities of thofe Tubes, which is known even by our Childrens play-

## of the Duplicature of the Fibres of Leaves.

ing with the Soap fuds. But fince it appears from the Anatomy of Plants, that their folid Parts and Fibres commonly conftitute their fmalleit Tubuli and Canaliculi, which run from the Fibrille of the Root to the utnoit Ends of the Leaves in the more perfect Plants; and as it is no lefs manifeft, that the nutritious Juice is propelled to the Ends of the Leaves, by no other Force than that of the Gravity and elaftick Power of the Air incumbent on the Fibrilla of the Roots; it is very probable, that the nutritious Juice, being propelled by the Power of the Air through the moft narrow Tubuli of Plants, to their very Extremities, is expanded into fome very fmall Bladders, and after the infenfible Tranfpiration of the aqueous Parts confolidates, and retains that veficular Form, and that fo this veficular and utricular Subftance is fornied in Plants. From this moft fimple Theory, in my Opinion, may almoft all the Pbonoriena relating to the Nutrition of Plants, as well as thofe which have already been obferved by the learned and judicious $\mathrm{Dr}_{\mathrm{r}}$ Halos receive fome Light, as I hall prove more fully at anoz ther Time. By thefe Ifears it feems to me, that the green, and the veficular and utricular Subftance in L.eaves, may exude from the fmalleft Tubuli of every Net, and their Extremities, and athere to thofe fmalleft Tubult, and thefe be gradually hardened between the Cuticles, and fo with thofe Tubuli, from which it is protruded, and in a Manner interwoven with their Lacuna, form at laft a cemmon and continuous Expanfe in the Net of every Leaf. But the Caufe of the Divarication of the Tubuli from each other, cannot at prefent be explained at large, though it might be underitood from the fame Fundamentals. But becaufe that green Pulp is of a far more tender and foft Subftance than the Tubuli of the Nets; it is more cafily deftroyed alfo by Putrefaction, whilft the Tubuli of the Nets remain yet entire, and unhurt by that Putrefaction, and may be diftinctly perceived to be entirely denudated.

This Obfervation furnifhes me with another, not unworthy to be mentioned. The figured Stones, which reprefent the Figures of various Plants, even of fuch as are exotick, with all their Ramifications, which are the moft tender and fubtile of any Thing in Nature, have caufed me- to doubr, whence their Figures could arife in thofe Stones. Great Quantities of Stones are digged up in the Mountains about Gottingen, for building Houfes, and paving the Streets, which befides petrified Shells, Sea-Stars, Cornua Ammonis, and fuct: like, between the Joints of the Shells, nay, and upon the very petrified Shells themfelves, have Delineations of Shrubs fo fine, that the naked Eye cannot difcover all their Parts; and it may well be queftioned, whether any Plant in the World has fuch delicate Branches, But after the Preparation of thofe Skelctons, and the making of that Obfervation, that the green Pulp is more eafily corropted than the Tubuli of the Ncts, the whole Doubt vanified. For thofe delicate Shrubs, delineated in Stones or petrified Badies, feem to be only the Nets of Leaves temainieg after the Putrefaction of the other Parts, and imprinting theit Form on the

## Of the great Increafe of Seeds of Plants.

foft Mafs, which afterwards is hardened to Stone. This Opinion will appear probable to any one, who will take the Trouble of comparing the Net-work of Leeaves and thefe Shrubs together.

Concerning the Fegetation of Melon-Sceds $4^{2}$ fiars oid, by Martin Triewald, F.R.S. Captain of Me chanicks, and MilitaryArchi scit to the King of Sweden.
No. 464. p. 115. Read May20,1742. natural Curiofities, amongt which he has likewife collected a great Number of foreigu Seeds, and finding he had Melon-Seeds that were laid up in a Paper in the Year 1700. I was curious to try if they had retained their vegetative Quality, and accordingly the 2 ift of Feb. laft, I planted myfelf 24 of them in a feparate Hot-bed, of which I had 21 good Plants, which, after they were planted in a new-made Hot-bed, Thewed Flowers before they began to branch themelves, and their Branches were very narrow, yet produced early and plenty of good Melons. This Experiment fhews not only how long Melon-Seeds retain their vegetative Quality, but likewife that good Melors-Seeds cannot well be too old. I know it is no new Thing to make ufe of old Melon-Seeds rather than new, but I never heard of any Body trying fo old as thefe. stil Stookholm, Nov. 16, 1741.

Concerning the avanderful increafe of the Secds of Plants, e. g. of the $U_{p}$. right Mallow, by Mr Jofeph Hobfon. No. 468. p. 320. Read Jan 27, 1742-3.
XVIII. Obferving here a large Plant of the common Upright Mallow, which I thought muft have a large Number of Seeds, I had the Curiofity to count them. The Seeds being difpofed in Rings, I counted thofe which were upon the principal Stems, and there were upon


I then

I then counted the Seeds in fiveral particular Rings, and found them commonly 14 in each, but have confined myfelf to multiply the Rings by 12, which is moderate, yet makes the Number of Seeds amount to 150000 , allowing 7612 Seeds for two large Stems cut down and deflroyed, a moderate Allowance, confidering two of the Stems alone contain each above 1000 Rings: Some of thefe Stems were above 2 : Yards high. I have to add, that this Plant was a Seedling laft Year, tranfplanted out of the Fields on the End of a noping Strawberry. Bed; and I counted the Rings in the Middle of laft $7 u$ ly, when it had Thoufands of Flowers upon it, which, with Thoufands that muft fill fucceed, might very probably produce more than 50000 Seeds * more, confidering 1000 Rings contain 12000 Seeds and more; and if we multiply the Number of Rings actually counted, by 14, the Number of Seeds contained in one Ring, inftead of 12 , we fhall have an Addition of 20000 Seeds; all which, added together, amount to 200000 , the poffible Increafe of one Seed.

```
Macclesfield, Sept. 1, 1742.
```

XIX. About 3 Years fince, feeing fome Bulbous Roots fet in Glaffes Experiments filled with Water in a Shop Window, and being told they would flower and Obferva in that Manner, I immediately tried a couple of Hyacintbs, which blowed very prettily the next Spring: It pleafed me much to fee that we could have fuch Things in a clofe Room in Town, without the Help of a Garden to produce them, having lately come out of the Country, and being a Lover of Flowers; wherefore I began to think if I could contrive a Method to make a Pot-full blow together, with a Mixture of feveral Sorts of Flowers with a Variety of Colours, it would be an Improvement.

The next Year, I took a couple of common penny Garden Pots, and ftopped the Holes at the Bottoms with Corks; and painted the Pots, and puttied the Corks, that no Water could filtrate through them; then had a couple of Boards cut to fit the Tops of the Pots, bored with feven Holes at equal Diftances, to place my Bulbs in, and likewife as many fimall Holes for placing of Sticks, to tie the Stems of the Flowers to; I chen planted Hyacinibs, Narcifus's, Tulips, and Funquils, and filled the Pots with Water up to the Board, fo that the Bulbs ftond only upon the Water, where they blowed very well, and made the beft Appearance, as I thought, I had ever feen, beyond any Flower Pot that could be dreffed by gathered Flowers. After the Bloom was over, their Leaves looking green, I fet them out in my little Garden, thinking any Thing that looked green, and made a tolerable Figure, agreeable in a London Garden; and not depending on the Bulbs again to be of any Service to be preferved, I let them ftand till toward Midfummer, and took no farther Care, but now and then giving them frefh Water as it

> * Even fuppofing many of the Flowers to produce no Seed.
sA VOL. VIII. Part ii.
-1 P perfpired or evaporated, and when the Rains filled the Pots, I empried them down to the Boards again; but the Bulbs flrinking, fome of them fiipped through the Holes down to the Bottom of the Pot, and about Midfumnier, when their Leaves began to grow yellow, I went with a Defign to pull them up and throw them away, I was furprized to find thot the Bulbs, which were buried in the Water, were grown firm, and too large to be drawn back through the Hoies, being found and fir for blowing the next Year, and increafed in Off-fets.

This accafinned me the next Year (which was the laft) to try another Experiment of blowing my Bulbs under Water, which I found anfwered beyond what could be expected, for they rather out-do thofe that grow in the Ground, in the Strength of their Stalks, the Clearnets of their Blofioms, the lafting of their Bloom, and likewife the Difference of their Seafons, which may be fo managed, according to the Warmth of the Rooms they are kept in, as to have the fame Sorts in Elower from Cbriftmas, till the natural Time of their Bloom in the open Ground, which is March and April.

But finding it very troublefome to keep the Boards fixed under Water, I thought Iead might anfwer the Purpofe better; whereupon, I got fome Sheet Lead, of about four Pounds to the Foot, cut fit to my Por, and made Holes in it proportionable to the Bottoms of my Bolbs, and likewife fmall Holes to fix Sticks for the Support of the Leaves and Stems of the Flowers; I put a little coarfe Sand in the Bottoms of my Pots, thinking it would fupport the Sticks, and keep them fteady; but when I came to make ufe of the Sticks, the Sand gave way; I then made falfe Bottoms with Lead, and cut Holes oppofite to thofe at the Top, which anfwered my Purpofe. Upon taking up the Bulbs to put in thefe falfe Bottoms, I found the Sand had corsoded the Fibres, and changed them all like Ironmould, that I thought they were fpoiled; but rincing them in two or three Waters, it came clear off, and on fixing my falfe Bottoms, and placing the Bulbs in their Holes, and filling theiti up with frefh Water, they recovered, and never changed again in the clear Water, but thrived and put forth their

Fin. 83. At Fig. 83 is reprefented one of thefe Glafs Jarrs, containing the following Flowers.

$$
\left.\begin{array}{rl}
\text { 1. } \left.\begin{array}{r}
\text { Golden Sun, } \\
\text { 2. Bofelman, }
\end{array}\right\} \\
\text { 3. Keyers, Jewel, } \\
\text { 4. Púchr, }
\end{array}\right\}
$$ Narcijus's. Flowers very kindly, although by the Experiments which I had tried,

before I coula fix them right, I had often planted and tranfplanted them. But I found afterwards, that Glars Jarrs of the Form is reprefented in the Ilate, were the moft convenient, both for feeing the Progrefs the Roots made, and for knowing when they want to be cleaned.
Narcijus's.

At Fig. 84 is reprefented the Profile or Section of the lame Jarr. Fig. 84. n. The Sticks to tie up the Leaves and Steras of the Flowers. b. The upper Leead with Holes to fuppore the Bulbs and Sticks. c. The under Lead with Holes to fupport the Sticks fteady.

By feveral Experiments on dried Bulbs, and thofe that were taken frefh out of the Ground, I find the dried ones do beft; for thofe taken growing out of the Ground, being full of Moifture, will not fo foon, upon changing their Element, be acquainted with a new one; the Fibres they had ftruck in the Ground, always rot, and they mult make new ones in the Water, which makes them require a long Time before they can recover themfelves enough to flower. The Bulbs will not rot, yet they will not be fo ftrong as thofe put in the Water when dry; which fill themfelves with Moitture by Degrees: Therefore, when I plant my Bulbs, I fet them at firt on the rop of the Water; for I found by two or three Experiments, that thofe planted under Water did not pufh out their Fibres to fuon, nor fo ftrong, as thofe fet upon the Water; the Reaion of which I take to be, that they were filled with Water too from, whereas thofe fet upon Water attracted it by Degrees, and fo made both the Fibres and the Buibs grow ftronger; and then about 5 or 6 Weeks after planting them, as the Fibres puh out, I by Degrees fill the Water higher and higher, till the whole Bulb is covered, and fo keep them till the Bloom is over, and the Seafon for drying them returns.

One Obfervation furprized me, viz. two of my Hyacintbs were mouldy, which Mould cankered and ear Holes through feveral of their Coats or Scales; this I picked and cleaned feveral Times, but ftill it fpread farther and farther; but foon after they were covered with Water, I could perceive them heal by Degrees, till they became perfectly found, and blew their Flowers as kindly, as thofe that had continued perfectly found.

By another Experiment, I tried what Bulbs would do if kept all the Year under Water: I left in Water a Narciffus, an Hyacinth of Peru, and feveral $\mathcal{F}$ unquils, that were planted in October, 1732; which are now as found and Atrong, as thofe I took out and dried, and promifed fair for a Bloom; I obferved that their old Fibres did not rot, till they were ready to purh out new ones.

Another Obfervation feems worthy of Notice; one of my double Hyacin:bs, commonly called Keyfer's Ferwel, brought two Pods of Seed to Maturity; which I have blowed for 14 or 15 Years fuccenivety in the Ground, and could never find them make any Thing towards feeding; and I have reafon to think that feveral other Bulbs would have feeded, if I had taken timely Care of them, but did not perceive it till too late.

## 828 Obfervations on Bulbous Roots, Plants, and Seeds growing in Water.

Mr Miller intimates *, that Bulbs fet in Glaffes grow weaker, and Thould be renewed every Year with frefh ones; but I obferved by this Way of raifing them under Water, that at their taking up, they are as large, and fome of them ftronger than when they were planted, and if they be dried at the proper Seafon, will produce a fecond Year as well as trefh ones.

I planted likewife Renusculus and Anemone Roo's, which grew and Thot up the Stems of their Flowers very ftrong, but the Buds of the Flowets were blafted, which I am apt to think happened from their being crowded too much, having no Convenience to give them free Air enough.

I alfo planted Auriculas and Pinks, the Pinks flowered, but the Aisriculas were not ftrong enough; they are fill both of them growing, and I am in Expectation they will blow the next Seafon.

I have tried alfo feveral Shrubs, as Rofes, 7 (finines, and Honeyfuckles; which all grew, and ftruck out frefh Fibres, and the RofeTree made fix ftrong Buds for Bloffoms, but accidentally fetting them out in a hot Sun-fhiny Day in April, they were all fcorched up, that they came to nothing; I oblerved, that ftrong Suckers cut off 2 or 3 Inches under-ground, without any Fibres, grew the beft.

By another Experiment, I was willing to try what the fucculent Plants would do in this Way; I took a Leaf of the Opuntia, or Indicis Iilg, and laid it by to dry for 3 Weeks or a Month, till it had loft all it's Moifture, and was nothing but a dried Skin; I then planted it in Water in the beginning of fuly, and tied it to a Stick that was fixed in one of my Leads, and filled the Pot fo, that the Botton: of the Leaf was $\frac{1}{4}$ of an Inch in the Water; in about a Month's Time the Leaf filled, ftruck out Fibrés, and put forth a frent I eaf, which is now growing, and has made as much Progrefs as fuch a Plant would do in the Earth, in the fame Space of Time: I had no Opportunity of trying other fucculent Plants.

Dr Mortizner told me he had placed Beans upon Water, which bloffomed and podded: This put me upon trying the Experiment with them, and likewife Peafe at the fame Time. I planted 6 Beans in a Pot, and fixed Sticks in it to fupport their Stems as they grew; they bloomed as freely as thofe which are planted in the Ground, but did not pod fo well, having not above a Pod or two on each Plant, which came to Perfection, and ripened their Seed; but this might happen for want of a little more Experience; the Peafe which were of the dwarf Surt, drew a little too much, and only put out three or four Bloffoms at the Extremity of their Tops, but every Bloffom brought a Peafe-cod, and sjpened it's Seed.

This Growth of the Beans and Peafe made me imagine, that other Sceds would fucceed in the fame Manner, knowing they would chip

[^17]upon being laid for a little Time in Water, or in a moit Place: The only Difficulty was to invent fomething proper for their Support in growing. The firft Thing I tried, was boring very little Holes in a Piece of Lead, fixed in a Pot, and fowing the Seeds thereon; I found they would fyrout, but as the Water evaporated, filling in frefh moved the Seeds from their Places, that they could not fix thenfelves to turn their Radicle down into the Water; 1 then tried Towe or Hemp, and fipread it on the Lead, which I found anfwer the Purpofe of fupporting the Seed, which by that Means grew, and the Radicle taking hold of the Towe, it was cmabled to throw up it's Plume or Shoor; I then tried feveral Sorts of finall Seeds, and found they would all grow, though I made the Experiment about Chrifmas ; but I found the Towe difcoloured the Water, and gave an offenfive Smell, and that the Seed did not thrive kindly : I then tried Wool and Cotton, the Cotton being tor boyant, would not fo well anfwer the Purpofe; but Wool, when it is juft buried in Water, being like a Gelly, and not drying fo foon on the Top, even though the Water has left it, entirely anfwers the Purpofe as well as fowing them in the Earth; and if the Seed be good, will keep clean for 2 or 3 Months; for this Way of fowing will difcover whether the Seed be mixed with old Seed (as thofe bought at a Seed-Shop generally are). I fowed feveral Sorts of Sallad-Seeds in this Way, and they came to as great Perfection as thofe of the fame Kind raifed in Hot-beds: And thus they may be produced in any Room or Garret, early in the Spring, and fo on till late in Autumn, till she cold Weather cumes in, and afterwards in the Middle of Winter, in a Room where a conftant Fire is kept. I had feveral Sallads laft Spring, and this Autumn, by fowing different Sorts every Week one under another, in fmall Half-penny Pots; as Lettice, Creffes, While Mufard, Rape, and Radiifb, which in a Fortnight after fowing would be fit to cut; to that keeping a proper Succefion, I had every Week a tolerable Sallad for two or three Perfons.

My Way of fowing of thefe Seeds, is to have a Piece of Lead bored full of Holes, and made to fit the Pot, about half an Inch below the Top; then filling it with Water, I take a little cltan Wool, and fpread it even and thin, upon the Surface of the Lead, quite home to the Sides. of the Pot, which will then look like a Gelly; if there is too much Water, I pour it off, till the Wool only appears covered or filled with Water; then I fow the Seed pretty thick, and in 48 Hours it will begin to clip, and in a Fortnight after fowing, will be fit to cut for a Satlad.

1 obferved from feveral Experiments, that any of thefe Plants tranfplanted out of the Earth into Water would not thrive kindly; but thoferaifed in Water may be tranfplanted into Earth, fo that this Method of railing Seeds in Water may be of ufe in a dry Seafon, to be pricked? out into the Earth, though they will not cone up in fuch a Seafon, if fowed:
fowed in the Ground, yet tranfplanted from Water they will take asfrecly to the Earth as if raifed in it.

I do not know but from the foregoing Experiments in Water, we may come at a better Way of planting in the Earth, efpeciatly fonce Roots, which are apt to rot in the Ground, as Ancincies, Ranuincylus, and Iyacinths; from an Obfervation I have frequentiy made, bar never before took Notice enough to improve it, which is, that I have offen feen a Bulb dropped by Chance upon the Ground, frike cut Fibres fronger and more numerous than thofe prianted in their ufual Depth: of Earth would do. The Ufe I would make of this Obfervation, is, that when I plant my Buibs, I take nut the Earth of the Bed, I defign to plant, as deep as the Bulbs or Roots are to ftand when planted, and place my Bulbs on the Surface, till the Moifture of the Earth ihail have attracted their Fibres, and they begin to thoot up their Plume, and then by Degrees I cover them over to the Thicknets of Mould, that they fhould ftand in, by which Means thig will be in no Danger of rotting after they have got ftrong Fibres; for when we plant thefe Bulbs or Roors, it is generally either too wet, or too dry; if it be a wet Seafon, the Bulbs are too foon facurated with Moifture, which rots them; and if it be too dry, they lie fo long, before they can attract Moilture enough to make them vegetate, that they grow mouldy, and are rendered dry and hard as a Piece of Stick, fo that the firt Rain infallibly rots them.
N. B. Thefe Experiments were made without the Benefit of any Sun, all my Windows having a Nortbern Expofition.

As thefe Experiments have opened a new Scene of Knowledge in the vegetable World, and may be of great Ule in Natural Philofophy, and particularly improve the Art of Gardening; 'tis to be hoped the Curious will carry on the Inquiry as they have Leifure and Opportunity.

Direcrions for planting Bulbous Roots in Pots or Glafes of Water.

When the Leaden falle Bottoms are fixed down tight, within 2 or 3 Inches from the Bottom of the Pots (which is only defigned to hold the Sticks fteady that are to fupport the Leaves and Stems of the Flowers) lay on the Lead, which is to fupport the Bulbs, placing the notched Part oppofite to that in the falle Bottom, as near as the Sticks when placed will fuffer it; then place your Bulbs in each Hole, and fill in Water up to the Lead, which will then touch the Bottom of the Bulb, and as the Water evaporates or perfpires, keep it filled to that Height, till the Bulbs have ftruck their Fibres pretty ftrong into the Water, which may be in a Month or 6 Weeks; then fill in Water about $\frac{1}{2}$ an Inch above the L.ead, and by Degrees as the Fibres ftrengthen, and the Plume or Head fprouts, fill it higher and higher till the Bulbs be entirely buried under Water, which mult be continued till the Seafon for drying them returns.

But you muft obferve at the planting the Bulbs to clean them very well from any Foulnefs they may have at their Bottoms, by frraping them
them with the Point of a Knife, till the found Part of the Bulb appears, and likewife clear them of all their loofe Skins, and even the brown Skin, till they appear white; which otherwife will difcolour and foul the Water that flould be kept as clear as pofible; and for this Reafon, the Notches in both the Leads are contrived, that upon Phifting all the Water out of the Pots, if there happens to be any Sediment, by fhaking the Pots once or twice as it is poured off, all the Foulnefs may come with it; but this fhifting of the Water need not be done but once or twice in a Winter, or whenever you fee Occifion by the Difcolouring or Foulnefs of it; and at the fame Time it will be neceffary with a Painter's Bruh to clean off all Slimine?s that will adhere to the Sides of the Pots and Bu!bs, and rince them well, by pouring Water on them at a little Diftance: By this Method they may be kept perfeetly clean; at any Time when the outward Skins of the Bulbs loofen and begin to decay, clear them off, which otherwife would occafion Foulnefs; and whenever you fee Dult fwimming on the Surface of the Water, fill the Pot full, and let it run over, which will carry it all off, and then pour off the Water to it's ufual Height.
N. B. Plant Bulbs of equal Bignefs, at leaft in Height, together in the fame Pot, that they may have the fame Benefit of the Water; therefore I plant Narciffus and Hyacintbs and Bulbs of that Size together; Tulips and Funquils, \&c. by themfelves; and Crocus and Szow-drops, \&c. by themfelves.

> Bangor Court, Shoe Lane, Dcicmb. 19, 1733 .

Bury St Edmund's, Nov. I, $173^{8 .}$
XX. Having met with a Paragraph in the Hiftory of the Works of Concerning the the Learned for fuiy lalt, in which the Author takes Notice of a Palfage Virtues of the in the Fhilof. Tranf. ${ }^{*}$, relating to fome Vegetables faid to have great Virtue for the Prevention of that terribly Malady called the Hydrophovia, viz. the Lichon cineraus terreftris, and an Herb calleci, Stellaria, or Siar of the Earth; as to the latter of which, at leaft, I apprehend there mult have been a Miftake, though an involuntary and unavoidable one, through the Defect or Confufion of the Memoirs made ufe of. I have endeavoured to get fome further Light into the Affair, by a Converfazion with Dr $S$. Dale of Braintrec, who fully concurs with me in his Sentimerts, as to the Subject of this Letter. In his well-furnimed Botanick Libraiy, I met with feveral Things which are Defiderate in

> born Plantain, in the Cure of
the Bite of the mad Dog, by Mr Thomas Steward, Botanick Libraiy, I met with feveral mings which are Defiacrara in dation of what has been itrangely obfcured by an odd and unaccountable Complication or Accumulation of Miftakes, grounded upon Narratives. in which there feem to me to be diverfe Inconfiftencies, and Mifrepre-

\author{

* See Vol. IX. Part iii, Chap. 5: §, xiii. I.
} mory, or Arachronims, by which my once very dear Friend and kind Correfpondent, Mr Ray, (whofe Name and Mensory muft ever be precous in all Lovers of folid Learning was himfelf led into a Miftake (and became the innocent Occafion of leading others into the fame) about the laft-mentioned Vegetable, which be took to be the Slar of the Earth, mentioned by Grey, as a fovereign Remedy againtt the Bite of a mad Dog; but was afterwards convinced, that it was not fo, as will evidently appear from what follows, in which I have done what in me lies to get to the Bottom of the Matter, and to extricate it out of that Maze in which it has pretty long fain hid, by the Ilelp of the beft Clue that I couid poffibly find.

Havirg made the Study of Botany the agreeable Amufement of my younger Years, I was very much puzzled with what I met with in the Appendix to the 2 d Volume of the gencral Hiftory of Plants, compiled by the reverend and learned Gentleman but now mentioned, concerning the SFanifl. Catcb-fly, which he there affirms (p.1895.) to be the Star of the Earth, fo tamous for the Prevention of the Hydropbobia; whereas I always (before I read this Affertion in Mr Ray) took the Coronopus, or Bucks-horn Plantain, to be the true Siar of the Earth, and do ftill believe it fo to be, for the Reafons that will occur to you in the Sequel.

Bcing defirous to know what Grounds Mr Ray had for afcribing fuch Virtue to the Catch-fy, I wrote a Letter to him, dated fo long ago as Dec. 1, 1698, in which I requefted of him to tell me what his Sentiments were at that Time upon this Subject. My Word's were thefe, viz.
"I defire to know your Opinion concerning that Herb, which Grey "calls Star of the Earth, and affirms to be very cfficacious for the Bite " of a mad Dog. There feem to be 2 Plants mentioned under this "Name, viz. Plontago foliis laciniatis, Coronopus diela, and Lychnis " vifcofa fore mufoofo, five Sefamoides Salamanticum inagnum. The firt is
"highly efteemed in Norfolk, and is commonly ufed with good Succefs.
"The latter is known but by few, and I have never known any that
" have ufed it. But in your Appendix to your general Hiftory, you
" affirm on the Authority of Dr Hulfe, that this is the Plant fo much
" extolled by Grey: And in your Symopfis, you mention nothing of the
"Virtues of this Herb, and have referred the Praifes which you be-
"flowed on it, to the Coronopus. I would know therefore, whether
" you have altered your Opinion, and whether you now think that
"Dr Hulfe was miftaken about this Plant. For my own Parr I am in
" great Doubt about it. Grey himfelf mentions no other Name, for
"the Plant which he fo highly magnifies, but Star of the Eartb; nor
" has he added any Defcription, or characteriftic Note, by which it
" may be known to others. I cannot imagine, how Dr Hulfe fhould
" know with fo much Certaintys that Grey meant the above-mentioned
"Lycbnis.
" Lychnis. I very much queftion whether that I.ycbnis is endowed " with fuch Virtues, and earnenly intreat you to remove my Scruples."

To this Inquiry that good communicative Gentleman condefeended to return the following free and ingenuous Anfwer.
"As to your pertinent Queftion concerning the Plant called Star of "the Earth, the Cafe ftands thus: King "fames fent to the Royal Socie'y "s a Sample of a Plant dried, which was fent him for that which cured " his Dogs when bitten with a mad Dog, and by the Name of tbe Star " of the Earth. This Plant not being well dried and preferved, none " of the Royal Society knew certainly what to make of; fo they fent it " to me, who, upon careful Examination of it, found it to be the "Sefamoides Salamanticum Magnum; whereupon Dr Hulfe fending me "6 that Obfervation out of Grey, concerning the Ufe of the Plant ca!led "the Star of the Eartb, I thought I had Ground enough to attribute "the Virtue of curing the Itydropbobia to the Sefamoides Salamanticum, "s not imagining that any would dare to abufe a fovereign Prince, by " fending him a falfe Plant. But afterwards, confidering that the $\mathrm{Co}_{0}$ " ronopus was, for it's Refemblance to a Star, called the Stur of the "Earth, and that it was noted for fuch a Virtue, but the Sefamoides "was neither like a Star, nor by any fo called, nor defcribed to have " fuch a Quality; I concluded, that the Plant which Grey meant, was "6 the Coronopus, and not the Sefanoides, and that we had been abufed "Wy a falfe Plant fent to King 'Fames, for the Star of the Earth."

This Account from Mr Ray himfelf fully fatisfied me, that the Bucksborn, and not the Catch-fly, was the true Star of the Earth. But as to the curing of King fames's Hounds, I fufpect that Mr Ray was mifinformed as to that Matter, and am now almoft perfuaded, that there was never fuch a Thing; for I cannot but obferve, that there is a moft perplexing Inconfiftency between the two Extracts which have been given from the Journal-Books of the Royal Society, relating to this Matter of Fact. The Words are thefe *:
"Nov. 16, 1671, Sir R. Moray exhibited a certain Plant, (which " by Mr Ray is called Licben cinereus terreftris) faid by Sir K. M. to " be very good to cure Dogs bitten by a mad Dog; his Royal High" nefs having caufed it to be given to a whole Kennel of Dogs bitten " by a mad one, which were all cured, except one of them, to whom
" none of it was given. The Specimen was kept in the Repofitory." Qucry, Whether it be there itill?
"Afterwards, viz. March 167 1-2, Sir R. M. mentioned, that a "s whole Kennel of Dogs belonging to his Royal Highnefs, were bitten " by a mad Dog, and had been lately cured by an Herb called Stellaria, " or Star of the Earth. This Plant is the Lych. vijc. fore mufcofo, C. B. " in Englifh, Spaniß Catch-fly: See thefe Tranfaetions, No 187, where ${ }^{5} 6$ is a Receipt to cure mad Dogs, wherein this Plant is a principal

$$
\text { * See Vol. IX. Part iii, Chap. 5. S. xiii. } 1 .
$$

VOL. VIII. Part ii. $\quad 5 \mathrm{Q}$. Ingredient,

Wow here are two very different Accounts from the fame Perfon, relating to the fame Thing. In the firf, $\operatorname{Sir} R . M$. fpeaks of the Cure as performed by the Licben; in the fecond, in lefs than half a Year after the other, he mentions it as done by the Stellaria. Now it feems utterly improbable, that the Kennel of Hounds fhould be twice bitten, and cured by a different Plant in fo thort a Space: And indeed (as I hinted before) my prefent Opinion is, that the Hounds were never bit by a mad Dog at all, but that the whole Story has been founded upon an older one, of which there is Mention made in that Book written by T. de Grey, Efq; called, The Expert Farrier, in the 2d Edition of which, in $4^{\circ 0}$, publifhed in 1652, among other Cures for the Bite of a mad Dog, he preferibes this which follows, $p .160$.
"T Take the Herb which groweth in dry and barren Hills, called the "Slar of the Earth; you murt give it three Days together. The firft "Time you mult gather three of thefe Herbs, with all the whole " Roots; and wafh them clean, and pound them well; which done, "give them to your Horfe in Milk, Beer, Ale, or White-wine, but "" be careful the Horfe takes all the Herbs and Roots: If you will, "you may make up thefe Herbs and Koots in freth or fiveet Butter, "which will do as well. The fecond Day, give your Horle five of "thefe Herbs and Roots, as before; and the third Day, give him st feven. Do this punetually, and you may be well affured your Horfe "will be perfectly cured; for albeit, I myfelf have never tried this " Medicine, yet I do know, the Party of whom I had this Cure, hath *. cured much Cattle of all Sorts therewith. I myfelf can fay thus " much of this Receipt, that Iknew it cure a whole Kennel of Hounds. " of a Gentleman's, one Beagle excepted, which they did not furpect st to be bitten, which indeed was bitten; fo he fell mad and died, but " all the reft efcaped. Another Time, a Gentleman's Son of my Ac" quaintance was unfortunately bitten, who was cured by the Party who "taught me this Receipt ; and this young Gentleman (who was then a "Boy of 10 Years old) was fo far Pent with the Rancor of the Dif. "eafe, before this Man took him in Hand, as that his Head began to " be addle, and he to talk very idly; yet he cured him, fo as he lived " and did well, and is at this Hour living, and a very proper and hand" fome Man, Éc."

Thus far de Grey. Now, Sir, I am apt to think, that any one who confiders what he fays about the Kennel of Hounds, will be ready to conclude, that thefe were what $\operatorname{Sir} R . M$. miftook for the Duke of York's Dogs, as feems plain from the remarkable Circumftance of the one Beagle that had none of the Plant given him, mentioned in both the Stories. So frangely may Errors arife, and be multiplied, by jumbling the Ideas of different Things together in the Minds and Memories of Men, how wife and learned foever. So far as I can find, all
the Concern King fomes had in this Affair, was his fending a Plant to the Royal Society, which his Huntfman recommended as an excellent Remedy for the Bite of a mad Dog; and it feems to me very likely, that the Huntfman might have met with this Story in Grey, and told it to his Mafter, and this he might tell to Sir R.M. and it may be, the Man, to fet out the Virtues of the Miedicine the more, might tell the Duke, that feveral of his own Hounds were cured by it, whether it werc really fo or not. None of thefe Suppofizions are impofible, nor, in my poor Judgment, very improbable.

To make this dark Affair appear in a ftill clearer Light, let me defire you to compare and confider the following Extracts. In a Letter to Mr Ray from Mr Aubry, published by Mr Derbam, and dated Aug. 5, 1691, there is this Paragraph, p. 250 . "King Faines fent by Sir —— "Garden (I fuppofe it fhould have been Gourden) to the Royal Sociely, "a Plant called Star of the Earth, with the Reccipt made of it, to "cure the Bite of a mad Dog, which is in Tranfarions, $\mathrm{N}^{0} 187$." This refers to a Receipt communicated by Sir R. Gourdon, by his Majefty's Command, and in which there is Mention of the Star of the Earlb, and to which this N. B. is added, "The Plant in this Receipt, " and which is the chief Ingredient, is known among Botanifts by the "Name of Sefamoides Saiamanticum of Parkinjon, or Lycenis vijcofa, "E3c. of Bauhine, Anglice Spani/b Catch-居y. It grows plentifully about "Thetford, \&c. Vide Raii Cat. Pl. Angl. छु Hift. Pl. Tom. $2^{\text {do }}$, inter "Lycbnides." This feems grounded upon what Mr Ray was afterwards perfuaded to be a Miftake.

The next Thing I thall beg your Attention to, is a Letter from Sir Hans Sloane, to Mr Ray; prior indeed in Time to the former, being dated Fone 1, 1687, in thefe Words: "Sir, I fend you inclofed the "Specimen of a Plant growing on New-market Heath, and in Surrey, " known by the Name of the Star of the Earth in thofe Parts. It is " particularly taken Notice of on the Account of it's extraordinary and " admirable Virtue, in curing the biting of mad Dogs, either in Beafs " or Men. One of his Majefty's Huntfmen having proved it a great " many Times, gave the King his Way of ufing it, which was an "Infufion in Wine with Treacle, and one or two more Simples. His "Majefty was pleafed to communicate it to Grefham College, to the "Royal Society; and no-body knowing the Plant by that Name, fome "t there prefent confirming it's Ufe in fome Parts of England in that "Difeafe, the Herb being as little known here as if it came from the "Indies, I told the Society, I would let you have the beft Specimen " of it, which I queftion not is known to you. If you pleafe to give your "Sentiments, you will extremely oblige, E ©c." To this Mr Ray returned the following Anfwer: "Sir, I received your Letter with the "Specimen inclofed, which feems to me to be the Sefamoides Salaman" ticum Magnum of Clufius, or Lycbnis vifc. $\mathcal{E}^{\circ}$ c. of Baubine, which 1 " have obferved to grow plentifully upon New-market Heath, $\mathcal{E}^{\circ} c$. I
(6 wonder it fhould have fuch a Virtue as you mention, but it feems it "W is well attefted. Dr Hulfe writes to me, "he finds it in Grey's Farrier." This feems pretty evidently to refer to the fame Plant mentioned by Aluiry, and this furely was the Plant, that not being well dried and pre. ferved, the Society could not tell what to make of, and which Mr Ray found to be the Sefamoides, which he then thought was the Piant that Grey called the Star of the Earth; but upon further Confideration, he was firmly perfuaded, that the Coronopus, and not the Sefamoides, was the Plant intended by de Grey (for fo his Name ought to be written): And indeed, to me there feems to be the greateft Probability, if not ablolute Certainty, of this latter Opinion; for the Sefamoides was a Plane fo litele known in Grey's Time, that the Botanifts who were contemporary with him, took it for a Plant that was wholly a Sirarger in England, as may be feen in Fobnfon upon Gerard and in Parkinfon, and the Manner of giving it, as directed by Grey, viz. firft three, then five, and then feven Plants, Roots and all, fpeaks it to be a fmall Herb, fuch as is the Coronopus, and not fuch a large one, with a big, fticky or woody Root, as the Sefamoides. This I am very fure of, that in $\mathrm{N}^{\text {Tor- }}$ folk, nyy native Country, (and which, if I miftake not, was Grey's alfo) the Coronopus is called the Star of the Earth (and among other Names given it by Dodonaus, this of Stellaria, and Stellia Terre, is one, p. 95 of the Englifh Tranflation; and he defcribes it as lying fipread upon the Ground like a Star; and Gerard gives the fame Deticription of it, and Parkinjon, in his Theatruin, yet more fully, P. 50 I , viz. that the Leaves fie round about the Root in Order one by another, thereby refembling the Form of a Star, and therefore called Herba Stella; by which Name, among others, it is called by Crefalpinus, Lobel, E $\delta$ c. But whotver met with the Name Stellaria, or Stella Terre, among the Synonyma of the Sefamoides in any Botanick Writer before Mr Ray, who afterwards setracted it, as has been fully proved?) In that Part of Norfolk where in was born, not far from Norwich, towards the Sea-Cuaft, where the Bucks-born Plantain grows abundantly, there was great Ufe made of : when I was but a Lad, and always with good Succels, fo far as ever I could hear. One Story I can tell of my own Knowledge, which may feem too trifing to mention, were it not to Shew the Efficacy of the Simple. About 40 Years ago, when I lived at a Place called Debenbam in Suffolk, a Perfon unknown to me, having heard that I knew an Herb that was good against the Bite of a mad Dog, fent to defire a Sample of it, with Directions how to ufe it; and fome Time after I ind half a Dozen fine Chickens brought me. I afked whence they came? It was anfwered from fuch a one (the Name I have now forgot). I faid I did not know him: To which the Reply was, That it was the Man $t 0$ whom 1 had fent the Plantain, which had Yived the Lives of half a dozen Hogs of his, that had been bitten by a mad Dog; and he thought the leaft he could do, was to fend me half a dozen Chickens as a Token of his Gratitude. After all, I will not be pofitive, that the

Lycbnis, or Catch-fy, is not good contra morfum Canis rabidi; but I am confident that it is not the true Star of the Earth.

You fee I have taken a good deal of Pains to trace this Matter through all it's intricate Meanders. I have been forced, indeed, to deal pretty much in Gueffes and Conjectures, which I am not very fond of; but as the Cafe ftands; it could not well be avoided: And I fhall be glad, if by this Means we may be got (as I hope we are) near the Truth, which is the Thing I aim at in this long Purfuit; and I have rode more than 50 Miles in this wet Winter Sealon, (though fer Septuagenarius) in order to difentangle it from the Confufion and Contradiction in which it has been involved. If any Doubt thould be made with refpect to my Integrity, or Exactnefs in the Extract I have given you from Mr Ray's Letter, the Original is Atill in Being, and Mall be prociuced, if defired.

As for the Liverwort, I can fay nothing from my own Knowledge; but by the Account of it's Virtues given by Dan pier, (which he took for a Kird of Gerv's-Ear, but which Sir Hians Sloane with great Reafon affirmed to be the lichen cinereus terreftris) I cannot doube but it is a potent Remedy, of which 1 prefume there may have been feveral fuccelfful Experiments made, fince thofe made by Dempier's Uncle, which are very confiderable. And it may be King $\mathfrak{F}$ ames might have fome of his Hounds cured by this Lichen, after he came to the Crown, and might then fend a Specimen thereof alfo to the Society.
P. S. A Friend of mine lately informed me, that there was a wonderful Cure performed upon a Woman in this Country, feveral Years ago, who had been bitten by a mad Dog, and in whom the evident Symptoms of the Hydroplobia appeared, who yet was faved, by God's Bleffing, upo: the Ule of a Powder given by the Direction of theLady Brook (a Perfon of Eninence formerly in Suffo:k). It feems the Powder went by the Name of The Lady Rronk's Poseder, and was generally fuppofed to be chiefly, if not cinly, the Coronopus dried and pulverized: And I muft own, that I have at prefent fuch an Opinion of the great Virtue of this Simple, that till I have fome convincing Evidence of it's having failed, I can fcarce avoid lonking upon it as a Specifick contra morjum conis rabidi; and 1 heartily with, for the Sake of fuch as fiall at any Time happen to fall under fo terrible a Misfortune, that it may be proved by Experience fo so be.
XXI. From my Childhood, till within about 12 Years paft, I ufed, almoft conftantly, upon taking Cold, to be feized inmediately with an Inflammation in the Throat, attended with great Swelling, Throbbing, and Sorenefs: And notwithftanding Bleeding and Purging, together with the Aniftance of Gargles, Linctus's, and a!l the other witethods generally made ufe of in fuch Cafes, it moft commonly would take it's Courfe; that is, in about a Werk or 10 Days Time, it

Some Obfervaitions concerning the Virtue of the Gelly of black Courraits, in curing $1 n$. flammations in the Tlroat. By Herry Rakes,
F. r. S. No. would fuppurate and break, a confiderable Ruantity of fectid Matecr as9 . 655 would be difcharged, and then 1 foon recover do. During it's Conti-
 even thofe not without much Difficulty and Pain; but upon it's breaking, I found immediate Eale.

This Diforder attacking me 5 or 6 Times a Year, and fometimes oftner, afforded bet ton frequent Opportinities of experiencing, that all the common Methods did me no Good at all ; but, on the contrary, made my Uneafinefs laft the longer, by retarding the Suppuration: Which ofen' determined me to leave it wholly to Nature, with the Affiftance only of warm Broths and Gruels.

But, about 12 Years ago, I becarse acquainted with a learned and ingenious Clergyman, the Rev. Mr Weßbbourne, Vicar of Edmonton, and one of the Canons of St Paul's; who told me, that from many Experiments on himelf and others, fcarce ever failing of Succefs, he could almoft affure me of a certain Cure, if, as foon as ever I fhould perceive any Sweiling or Sorenefs in the Throat begin, I would fwallow, deifurely, a fmall Quantity of the Juice of black Currants* made into a Gelly; or, if the Gelly couid not be got, a Decoction of the Leaves in Milk, or even of the Bark (if it Aould happen in Winter) wled by the Way of Gargle, would prove, he faid, a Specifick for all inflammatory Diforders of the Throat.

Though I had no great Faith, I refolved to try this ealy Remedy: And, as foon as black Currants could be got, caufed a Quantity of their Gelly to be made: Nor was an Occafion of trying it long wanting, when, to my great Surprize and Joy, I found it's tiffect beyond any Thing I could imagine; for in 2 or 3 Hours the Infammation and Swelling entirely vanifhed, and my Throat remained as eafy as if nothing at all had happened.

From that Time till very lately, for a dozen Years together, this Medicine has never failed me once: But has, on numberlefs Trials, taken away this Diforder from me in a few Hours. It has tikewife had the fame good Effect on many of my Friends, to whom I have at different Times recommended it, fo that feveral of them are never now without it in their Houles.

[^18]But a Difappoinment I lately imagined I had met with from this Medicine, is the Reafon of my laying before you the following Fact.

Upon taking Cold, about ten Weeks ago, I was feized with an Inflammation in my Throat, attended with Sorenefs, and throbbing Pain; on which I applied to my old Remedy, but without the ufual Succefs; for though I took it feveral Times a Day, for 2 or 3 Days together, the Diforder grew continually worfe, and the left Side of my Throat was fo violently inflamed and painful, and fwelled to fuch a Degree, that I was not able to fwallow even Liquids without Abundance of Trouble. In fhort, it exactly refembled the fore Throats I ufed to be afllicted with before my Knowledge of this Medicine; and cherefore I gave it up to take the fame Courfe it was accuitomed to do formerly.

After about a Week, when I had good Reafon to believe there was a confiderable Collection of Matter, and I expected it every Hour to break, I was called by Bufinefs to a Reiation's Houfe at Tottenbam, in Middlefex; where, being fcarce able to get down a fingle Difh of Tea; my Frierds (who have been long acquainted with the Virtues of black: Currant Gelly) inquired wherefore I had not applied to my ufual Remedy: I told them that I had, but to ne Purpofe at all; which I: knew rot how to account for, unlefs, mine being above two Years old, Time had deftroyed it's V'irtue. They faid they had lately made fome; and immediately fetched a Glafs of it, which they perfuaded me to make ufe of. - 1 took 3 or 4 Spoonfuls of it, rather through Civility, than from any Hope of it's doing Good, at a Time when I every Moment expected and wifled it to break.

In about an Hour's Time, as I fat by the Fire-Side, I perceived' a Sort of difagreeable putrid Smell, which I did not mind at firft, fuppofing it fonething accidental: But, finding a Continuance or rather an fucreale of $\mathrm{it}, \mathrm{I}$ began to eximine what it might be owing to; and was convinced, after I had changed my Place, that it proceeded from myfelf, and was really the Smell of ny own Perfiration, which I found fo much increaied, as to become almoft a Sweat. At the fame Time, fancying my Throati a little eafier, I took fome more of the Gelly.

I came to Toitenban about 5 in the Afternoon, and began with the Grily about 6. At Supper I with fome Difficulty got down a little Gruel; and when I went to Bed, drank fome Linfeed. Tea, fweetened with Syrup of Mulberries. Ifoon got to feep; but, wiking after fome Hours, found myfelf in agentle breathing Sweat, attended with the fume unpleafans putrid Smell. The Swelling in my Throat was, however, fenfibly diminified, and the Sorenefs much abated: At which being rejoiced, I tooks a Mouthful of the Gelly that ftood by my Bedfide, and compofed myfelf to theep again. A gentle Sweat contirued during the whole Night; and, in the Morning, the Swelling, to niy great Amazement, was quite reduced, and the Sorenefs fo inconfiderable, thas atout 10 I eat fome Ioaft with Chocolate, and by Dinner- time had no more Remains of any Diforder, than if it had never been.
I am very certain the Swelling was not difcharged by breaking; for had it broke, even in my Sleep, I mutt have found fome ill Tatte in niy Mouth at waking: Whereas I was not fenfible of any difagreeable Tafte at all, but the Smell before-mentioned was gready ciffenfive to me, whenever I put my Nofe into the Bed.
During the whole Time I hive been fpeaking of, that is, for about ${ }_{17}$ Hours, I made Water but once orily, and then in a fmall Quanticy: The Colour of it was very high, and it foon threw down an exceeding thick Sediment, as did all I made for 2 Days afterwards, though gradually clearing up more and more.

I fhall not prefume to offer any Opinion as to the Manner this Medicine operates, but leave it to be confidered by more proper Judges; only permit me to obferve, that were the Vireaes of Simples diligently inquired into, we might perhaps difcover more ready and certain Cures for fome Diftempers than what we know at prefent. The barbarous Negroes, merely by Trials and Obfervations, have been able to find out both Poifons and Counterpoifons, on which (if our Accounts of them be true) they can depend with Certainty: And we know, that the Savages in America have difonvered by the fame Means, and generounty taught us, the medicinal Effects of their Ipecacuanba, Contraverva, Ppruvian Bark, and fome other Simples, which are almoft infallible in curing the Diforders of the Climate where they grow: Nor is it im: probable, that every Country may produce Remedies for the Difeafes of it's Natives.
XXII. In the Year 1729 , a Perfon came to confult me on an Acci-

An Account of Symptoms arifing from arting the Seeds of Henbane, with their Cure, \&c. and fome ocrafional Remarks, by Sir Hans Sloane, Bart. P. S. R. No. 429. p. 99. July, evic. $-1732$.
dent that befel four of his Children, aged from $4^{\frac{1}{2}}$ to $1^{\frac{1}{2}}$ Years, upon eating fome Seeds they had gathered in the Fields, near Pancras Church, which they mitook for Philberts. He brought one of the Capfules with him : I inftantly knew it to be that of the Hyofiamus niger, vel wulgaris, C. B. (or the common Henbane) which bears fome grofs Refemblance to the Hufk of a Philbert; and the Seeds are like thofe of the Poppy. The Symptoms that appeared in all the four were, great Thirft, Swimmings of the Head, Dimnefs of Sight, Ravings, and profound Sleep; which laft, in one of them, continued two Days and Nights.

I ordered them all to be bled, bliftered in feveral Places, and afterwards purged with a Medicine compofed of Elcet. lenitiv. Ol. amyyd. duic, fior. Sulph. © Syr. flor. Perficor, which operated both by Vomit and Stool: And by this Method they perfectly recovered.

The Delirium occafioned by thefe Seeds differs from the common, and in fome Meafure agrees with that produced by the Dutroa, a Species of Stramoniums ; and by the Bangue of Enfl-India, a Sort of Hemp: And they are all different from that Kind of Diforder caufed by the rubbing with a certain Ointment made ufe of by Witches (according to Lacura, in his Verfion and Comments upon Diofcorides) the Effect

## Of the Poijon of the Henbane Rooris.

of which (as he was told) is to throw the Perfons into decp Sleep, and make them dream fo ftrongly of being carried in the Air to diftant Places, and there meeting with others of their diabolical Fraternity; that when they awake they actually believe, and have confeffed, that they have performed fuch extravagant Actions.

On this Occafion I beg Leave to give an Inftance of the great Virtues of Henbane-Seeds in the Tooth-ach. Some Years ago, a Perfon of Quality tormented with this racking Pain, had an Empyrick recommended to him ; his Anguifh obliging him to fubmit to any Method of procuring Eafe: The Quack conveyed the Smoke of burning Hen-bane-Seeds, by Means of a Funnel, into the hollow Tooth, and thereby removed the Pain: But at the fame Time there dropped fome Maggots from the Tooth (as he pretended) into a Pail of Warer placer underneath for that Purpofe; which was very furprizing to the Beholders. Being told the Story, I procured one of the Maggots, and fent it wrapped un in Silk to Mr Leewieenboek, at Delft in Holland, where it arrived fafe and alive. Upon Examination, he found it to be entirely like thofe bred in ordinary rotten Cheefe: Wherefore, he got fome of thefe latter, and carefully fed them, and that I had fent, on the fame Cheefe, and they were all, according to the ufual Methods of Nature, turned into fmall Scarabai; fo that there appeared not the leaft Difference between them either when Maggots or Scarabai, both being returned me from Holland.

Upon the whole, though the Smoke of the Henbane-Seeds cured the Tooth-ach, it is highly probable the Maggots had been conveyed thither, and let drop into the Water by fome Slight of Hand; feeing, by Means of fome fuch unjuft Dexterity, Empyricks daily acquire Reputation from a Medicine, which from the Prefcription of an honeft Phyfician would be taken little Notice of.
XXIII. The 26th of laft Month, I was called to a Cottage very near Concernizg zise Toucy; where I was furprized to find 9 Perfons together, all having the Poifon of Hentrue Symptoms of being poifoned; with this Difference, that fome were fpeechlefs, and thewed no other Signs of Life than by Convulfions, Contortions of their Limbs, and the Rifus Sardonicus; all having their Eyes ftarting out of their Heads, and their Mouths drawn backwards on both Sides; others had all the Symptoms alike. However, 5 of them did now and then open their Mouths, but it was to utter Howlings: And whenever they expreffed articulated Words, it feemed as if they would prophefy. One, for Example, faid, in a Month my Neighbour will lofe a Cow : Another, in a little Time you will fee the CrownPieces of Sixty-pence at five Livres. [100 d.] Among thefe nine Perfons there was a Woman 5 Months gone with Child, a Child of a Years; four Boys of $0,12,15$, and 18 ; and three Girls of 15,17 , and ig Years of Age, who had all three the Misfortune of the Greenficknels upon them at that Juncture of Time. The Madnefs of all thefe Patients was fo complete, ance their Agitations fo violent, that in
vol. Vili. Part ii. 5 K order
order to give one of them the Antidote, I was forced to employ fix ftrong Men to hold him, while I was getting his Teeth afunder, to pour down the Remedy: And as they could not all be warched at once, one of the Boys got away, and ran to a Pond 100 Paces from the Houfe, into which he leaped; but as he was feen, he was foon taken out.

It was vain to examine thofe Wretches concerning the Nature of the Poifon they had taken, as they were quite fenfelcfs. Happily the Father of the Family, by being abfent, was free from this Misfortune. Of him I learzed, that digging his Garden the preceding Day, he had tound feveral Ronts refembling common Parjnips; and having cartied them home for Parfiips, they were boiled in the Sonp; and the unJucky Mirtake was not appreheaded, till the Children were in this dreadful State. He deicribed to me the Plant, which he thought he had taken for Parjilips; whereupon I went into the Garden, in order to find and know what it was; but as it had no Leaves, I was obliged to derive the Knowledge of it from the Roots; and foon knew it to be the Henbone, which is a very ftrong Poifon; and to much the more dangerous, as the Patients could give no Account of their Ailments, nor of the Quality of the Poifon they had taken.

To the Boys I gave the Tartar. Sibiat. in fo large a Dofe, that the oldeft took 45 Grains, and the others in Proportion.

For the Woman, I had Recourfe to Theriaca in a triple Dofe; not thinking it fafe to give her the Emetick, on account of her Pregnancy. I gave the fame Remedy to the Child, by reafon of it's Tendernefs.

To the Girls, befides the Theriaca, which they took in very large Dofes, (having made ufe of 弓iv of it) I gave warm Milk, wherein I diffolved Salt of Rue. The next Day I vifited the Patients, and found them in a quite different Condition; for they had all recovered the Uie of their Reafon, buc remembered nothing of what happened.

All this Day, every Object appeared double to them, that is, upon looking at a Man, a Beaft, or a Tree, they faw two.

I returned to fee them the next Day, and found that the Symptoms were removed; but were fucceeded by another alcogether as furprizing, to wit, all Objects appeared to them as red as Scarlet. This laft Symptom ceafed gradually on the third Day, and fince that Time they have made no Complaint.

Tic Cark of a Man wuto ruas
poijoned by aatome Monks hiood,
of Napellus, communnicaled to the Royal Suciety by Mir
Vincent Ba.
cosc, Surgeon,

XXIV On Mondey Night laft, Fb. 5, 1732, about ten, I was called in Hafte to Fobn Crumpler, a siik Weaver, in Spital-Fields; when I came into the Reoom, I found him lying on the Bed, his Head fupported by a Fiy flander, his Eyes and Teeth fixed, his Nofe pinched in, his Hands, Feet, and Furehead cold; and all covered with a cold Swear, no Pulfe to be perceived, and his Breath fo fhort as farce to be diftinguiffed: Enquiring into the Cafe, I was told that he had been pery well all Day, and about 8 had eaten a very hearty Supper
of Pork, and a Sallad dreffed with Oil and Vinegar; and though he was very merry at his Meal, he began immediately after to find a: indifpofition: Iafked of what he Sallad was compofed? and was anfwered, that there were in it notining but common Sallad Herbs, all which they bought at a Stall in the Market, except fome Cekry, which they had picked out of their own Garden. Sufpecting that he hapd been eating fome poifonous Herb, I aiked if he found in the Beginning of the Diforder any Inclination to vomit? They faid, no; but that when he found his Illnels come upon him with great Violence, he believed himfelf to be poifoned, and forthwith drank a large Quaitity of O:1, not lefs than a Pint in all, and after that he loaded his Somach with Carduus-Tea till he vomited; and though he threw up the greatett Part of his Supper, yet the Symptoms ftill increafed, which made them fend for me; but before I could get to him, Things were come to the Extremity above-defrribed. Having nothing at Hand but a Tea-fpoonful or two of Spirit of Harthorn, I forced open his Teeth with the Handle of a Spoon, and as his Head was reclined, I poured the Spirit into his Mouth, which a little roufed him, and firft fet him a coughing, and next a vomiting; I took the Advantage of the little Senfe that was returned, and continued plying him with Carduus. Tea until he had vomited feveral Times more, but I could not hinder his Swooning often between the Times of reaching, though I gave him after each 40 or 50 Drops of Sal Volatile ETinclur. Croc an. p, a (which 1 had fent for) in a Glafs of Wine; he at length began to find a Working downwards, as he afterwards expreffed himfelf, which was followed by a Stool; after which he vomited 2 or 3 Times more, and then faid his Head was fo heavy, and his Serength and Spirits fo exhaufted, though his Stomach and bowels were much eafier, that he mutt needs lie down: His Pulfe was then a little returned, though very much interrupted and irregular, fometimes beating two or three Strokes very quick together, and then making a Stop of as long, or a longer Time than the preceding Strokes altogether took up. Having obferved that what he had laft vomited was little more than the pure Carduus-Tea, I then gave him a Draught made of Aq. Epidem. Ther. Androm. Conf. Alkermes, \&c. and gave Orders to make him fome Sack whey to drink between whiles, fometimes alone, and in cafe of great Faintnefs with fome of tise abovenamed Drops. It being near one $0^{\circ}$ Clock, I left him, ard calling to fee him on Tuefday in the Forenoon, found him much amended: He had lain awake, though ftill, an Hour or two after I left him, but being very cold and chilly, had a great deal of Covering laid on him, and then found a kindly Warmth come over his Limbs, which was fucceeded by a moderate Sweat, and then a quict Sleep of 4 or 5 Hours, from which he awaked very much refrethed; and when I was there, was capable of anfwering the Queftions I aflied him; I meain with regard to Strength; for his Senfes had never failed him but during the Swoonings. I wanted to fee fome of the Sallact, but was told that
they had eaten all that they picked, and the reft was thrown upon the Fire, fo that nothing could be feen but the Celery, which being the Produce of their own Garden, the Boy who gathered it the Evening before, was ordered to fetch fome more of the fame; he prefently brought a Specimen, which I took to be the common Monks-hood of our Gardens, called by Morifon in his Prelud. Boton. Aconitum Spiciâ Foruin pyramiduli. But that this Company may be more certain, I have brought a Specimen of the Plant taken from the fame Place this Morn. ing, which the Boy fays is of the fame Kind which he gathered before, and the Patient upon biting it, declares to have the fame Tafte which he percived on Monday. But it may be obferved, that it was not then to much fhot up into Leaves as it is now: I defired him to give me an exact Account of what Alterations he found in himfelf after the eating it, and how they came on: He faid the firft Symptom was a Senfation of a tingling Heat, which did not only affect his Tongue, but his Jaws, fo that the Teeth feemed loofe; and his Cheeks were fo much irritated, that the People about him, nay even his LookingGlafs could farce perfuade him but that his Face was fwelled to twice it's proper Size; this tingling Senfation fpread itfelf farther and farther, until it had taken hold of his whole Body, efpecially the Extremities; he had an Unfteadinefs in the Joints, efpecially of the Knees and Ancles; with Twitchings upon the Tendons, fo that he could farce walk a-crofs the Room, and he thought that in all his Limbs he felt a fenfible Stop or Interruption in the Circulation of his Blood, and that from the Wrifts to the Fingers Ends, and from the Ancles to the Toes, there was no Circulation at all; but he had no Sicknefs or Dilpofition to vomit until he took the Oil, Erc. Afterwards his Head grew giddy, and his Eyes mifty and wandring, next a Kind of humming or hifing Noife feemed continually to found in his Ears, which was followed by the Syncopes above recited.

There fupped with him two Women the fame Night; one of them happened to have a Dinike to Celery, and therefore laid afide all that fhe took for fuch; the other having before been out of Orcer, and was not then perfectly recovered, eat but fparingly, but took this fuppofed Celery along with the other Herbs, and felt, and complained of all the fame Symptoms, but in a lefs Degree than the Man had done. She would not be prevailed on to vomit, but only took the CordialDraught above defcribed. I faw them both this Morning, the Man is quite well, but the Woman is ftill out of Order.

They fay that there was not put into the whole Sallad, more than Conserning the what grows upon one of thefe Roots.
Poijon of Lat rel.Water, by John Rutty, M.D.No $45^{2}$.
 1739 Dased died in Dubbin, Miay 17, 1752.
XXV. At Lifminy in Weftmeath, a Girl of 18 Years old, very well and healthy, took a Quantity, lefs than two Spoonfuls, of the firft Runnings of the Simple Water of Laurel-Leaves; whereupon within
XXVI. In the Year 1727, a Beech-Tree was felled near Elbing, for An Accoun! of the domeftick Ufe of Fohn Mourice Maller, then Pof Mafter of Eilling, now Secretary of his native City. The Trunk being fawed into Pieces, one of thefe, three Dantzick Feet fix Inches long, cleft in the Houfe on the zoth of $\mathcal{F}$ une, difcovered feveral Letters in the Wood about one Inch and a half from the Bark, and near the fame Diftance from the Centre of the Trunk. The Hewer having at one Stroke unfolded fuch a Prodigy, and believing there was Witchcraft at the Bottom of it, ran in all poffible Hafte for his Mafter: But this Gentleman, well inftructed in found Philofophy, gave Orders to preferve the Pieces of Wood, and hadd them brought to my Study, at the fame Time con1municating to me the Hiftory, and his Sentiments thereon.

Fig. 85 exhibits the Letters confpicuous in the folid Wood, two of Fig. 85 . which, D B, hew their old Bark fmooth and found. Tise Wood lying between the Letters and the Bark of the Trunk, as well as that between the Letters and the Heart of the Tree, is likewife folid and found, bearing not the leaft Trace of I.etters. The Characters g CI, being fomewhat hollow, receive the Bark of the Letters D B *.

The fame Letters are feen in the Bark of the Tree, only that they are partly ill-fhaped, partly almoft effaced, whereas thofe wichin bear a due Proportion, as if done with a Pencil.

Now fhould it be afked after what Manner thefe Letters reached the Middle of the Beech? and how it came to pafs, that two of them, and no more, had their old dry Bark Aticking to them ?

Both thefe Queries are anfwered by the Vegetation of Plants. But as this is not a proper Place to expound it, I will fuppofe it known, and thus briefly complete the Affair.

It is an ancient Cuftom to cut Names, and various Characters, on the Rinds of Trees, efpecially on fuch as are fmooth. That this has happened to our Beech, the mere Infpection of the Bark commands our Affirmation + .

An Incifion made, the Tubuli conveying the nutritious Juice, and the Uericult, in which it is prepared, are divided and lacerated, and more of then, as the Incifion was made deeper and wider; and confequently the Sap is not carried on in the Circulation, but extravafated and ftopped at the Wounds. Fience the Origin of the Characters in the Bark and Woot.

Now as a new Circle of Fibres grows yearly on the Tree between the Wood and Bark, it is not impoffible but a Number of thefe fhould, in a Proceis of Years, more and more furround the ingraved Characters, and at length cover them. And this Number was the greater in our Becch, on account of better than half a Century elapfed fince the In-

[^19] cifion, which was made in the Year 1672, as appears on the Outfide of the Bark, as may be feen in the Figure. But while new Circles of Fibres are fucceffively added, the Tunicle or Skin of the Bark is broken each Time, and the Uiriculi extended and dilated.
Wherefore it is eafy, from what had been faid, to draw the Reafon, why the Bits of Bark cut off on all Sides, in the L.etters D B, had the fame Fate with the Letters; why the Wood between the Bark and Letters was folid and found; and why the Shapes of the Letters bore a juf Proportion in the Middle of the Wood, and not in the Bark.

So much for our Beech.

- Now let us fee, in few Words, what Authors fay of fuch figured Woocis.

Solomon Reifelius, of Letters found witbin the very cleft Trunk of a Beech, Epph. Nat. Cur. Dec. 1. An. 6. Obf. 4. has at length, though with fome Difficulty, gueffed the genuine Caufe from frequent Examples of Incifions.

But foannes Meverus, on a Thief benging from a Gibbet, drawn by Nature's Pencil in a Beech, Eph. N. C. Dec. 3. An. 5. Obf. 29. and Joannes Petrus Albrechtus, on a certain rare Figure feen in a Beech, Epb. ibid. afcribe it to a Sport of Nature, and give this Reafon; becaufe they could not difcover the leaft Sign of Impofture, the deep Situation of the Figures hindering them from having any Sufpicion on that Head.

On the contrary, Luke Schrackius, on figured Beech. Wood, Eph. N. C. Dec. 3. An. 7, 8. Obf. 118. follows Reifelius's Opinion; and being verfed in Malpighbi's Anatomy of Plants, writes: "No Wonder, " if Figures cut in a young Tree, by the Length of Time, and the "Accretion of many Barks, appear at laft about it's Middle, when " grown old."

Fobn Chrifopher Goltwald, on a crucified Man drewen by Nature in the Midddle of a Beech-Trunk *, Epb. N. C. Dec. 3. An. 9. Obf. 158. accufing Nature's fimple Violence, or a Difeafe of the Tree, is corrected by the moft celebrated fobn fames Scbeucbzer, in his Itinera Alpinc, Tom. 3. p. 414. and in Herbarium Diluvianum, p. 46. of a little Man in Beech-Wood, Tab. X. where he makes mention of other Inftances.

Fobn Melch. Verdries is of the fame Sentiment, treating of a Figure found in the Middle of a Beech, Eph. N. C. Cent. 3 E3 4. Olf. 89.

There remains, to my Knowledge, the Figure of a Cbalice, with a Sword perpendicularly ereft, and on il's Point Jufaining a Crown, found in the Heart of a Piece of Wood at the Hague; which the Authors of the Coliections of Breflau exhibit to us "as a fingular Pbenomenon,
"s worthy of being compared to Aldrovandus's Guaiacum. Tree, and " figured Stones, if no optick Fallacy, Error of Judgment, artificial "Fiffure of the Wood, or other fuch Deceit, intervene,"

[^20]

## The Horn of a Deer found in the Heart of an Oak.

XXVII. r. The Horn of a large Deer was found in the Heart of an Of the Horn Oak in Wbinfeeld-Park in Cumberland, belonging to the Earl of Thanet. a Deer found in It was difcovered upon cutting down the Tree. It was found fixed in the Hearrof an the Timber with large Iron Cramps; it feems therefore, that it had at John Clerk, firft been fattened on the Outfide of the Tree, which in growing after- one of the Bawards had inclofed the Horn. In the fame Park I flaw a Tree 13 Feet of Diameter.

Tons of the $E x$ -
chequer in Scot-

F. R.S. Dated Nov. 6, 1731. Ibid. p. $235^{\circ}$
2. This Horn of a Deer found in the Heart of an Oak, and that Remarks by the fattened with Iron Cramps, is one of the mot remarkable Inftances of this Kind, it being the largeft extraneous Body we have any where rePubbijber. Ibid. p. 236. corded to have been thus buried, as it were, in the Wood of a Tree. If Joannes Meycrus, and Joannes Petrous Albrcchlus, (p. 233) had feen this, they could not have imagined the Figures fee by them in BeechTrees to have been the Sport of Nature, but mut have confeffed them to have been the Sport of an idle Hand. To the fame Cause are to be afcribed thole Figures of Crucifix's, Virgin Mary's, Eec. found in the Heart of Trees; as, for Example, the Figure of a Crucifix, which I myfelf fam at Maffricht, in the Church of the White Nuns of the Order of St Auguftin, fid to be found in the Heart of a Walnut - Tree upon it's being flit with Lightning. And it being usual in fome Countries to nail fall Images of our Saviour on the Crofs, of Virgin Mary's, $\mathcal{E}^{\circ} c$. to Trees by the Road-fide, in Forests and on Commons, it would be no greater Miracle to find any of there buried in the Wood of the Tree, than it was to find the Deer's Horn fo lodged.

Sir Hans Sloane, in his noble Mufeum, hath a Log of Wood brought by Mr Cunningham from an INland in the Ecif-Indies, which, upon being flit, exhibited theft Words in Portuguese, DA BOA ORA. i. e. Der [Deus] bonam Horam.

> End of the Eighth VOLUME.

PHILOSOPHICAL TRANSACTIONS

VOL. VIII
1732-1744


[^0]:    VOL. VIII. Part ii.
    $G \mathrm{Gg} g$
    LVII.

[^1]:    * Note, In the Account of the Swedibs Diaries 1728, Evenaler is faid to be tog London Fect above the Surface of the Sta. The mean Height of the Baroneter there in thefe two Years is but 29 Inches, 47, which would give the Height of the Place neat 450 Feet, according to the Reckoning hereafier in this Papes; therefore I think there mult be fome Mitake. Peihaps fome Air might have yot inso the Top of the rube, or the Seale placed 100 high ,

[^2]:    * See §. LVIII. of this Chapter.

[^3]:    December.

[^4]:    * See Dr Hales's Treatife of Yonciadors.
    + See thefe Trantasfiant, No. $43 \%$.

[^5]:    VOL, VIII. Part ii.

[^6]:    *Tom. II. p. 185,
    t. P. 186.
    \& P. 191.

[^7]:    PPotef. Medicam. §. xl.

    + Paradoxical Difcourfes, Fart ii. S. xxii.

[^8]:    * Nov. Lum. Cberm. Tracr. 9.

[^9]:    V O L. VIII, Part ii.

[^10]:    - The common People call their Pit Coall, del Hyy, of di fa Houzillc ; and the Mixturo of Cou! and Claj, de Houschy. C. M.

[^11]:    * It is mentioned alfo by Ray, in his Obfercations Trpograpizical, \&c. p. 58. Lond. 1673 , Bro. 7. M.

[^12]:    $\times$ Vojage, Tom. II. à Paris छ' Roucn, $1725,7^{\text {to }}$.

[^13]:    ${ }_{5}$ E 2
    and

[^14]:    * Who was the firl Englifman that difcovered the Seed of the Fern b;" the Help of a Microfcope.

[^15]:    * Whereas I have mentioned, that a Scrt of Fungus, of a light brown Colour, grows prer the Seed. Vefiels of the Filix mas; this is to be undertood to have that Appearance, When the Seeds are full ripe, and the Veffels containing them are prepared to burft: Fior I have fince viewed them, foon after they begin to appear, and alfo when the Seed Veffeis aie reatly grown to their full Size; at which Times the faid Fungus is a fine Nembrane of a bright Green, entirely covering the Tuft of Seed. Veffels like a (raf, find clofely adhering to the Surface of the Leaf of the Piant: But when the Sced. Veriels are arrivad at Perifettion in Size, and able to bear being expofed, it begins so receče from the Leaf, and to harig nuer them in Form of an Umbrellc:; and as they grow ripe, i gradually changes brcivn, and curls up a litle, making the Appearance fortt-men:ioned.

[^16]:    Thaoting, January 24, 1744.5 .

[^17]:    * See Vol. VI. Past ii. Chap. 5. §. xxi. 2.

[^18]:    * Ribes nigrum, Raii Hif. Plant. Vol. II. p. 1486. Squinancy Berries: Angine wiles [baccas] efo nomen Anglicum arguis.

    Dale in Pharmacologia fua in 4to, $p: 293$, (ais) Ribes nigra in angina commendatur.
    Fohn Aubrey, Efq; F. R.S. in his Mifcellanies, princed at London, 1721, in 8vo, \$. 63 , fays, that a Gentlewoman bad her fore Throat cured by a Pultefs of blue Currants.

    The Efficacy of the Gelly of black Curranes, in curing fore Throats, has been long known among feveral good Women, who give away Medicines in the Country; yet is tras been hitherto fo overlooked by Phyficians, as not to be ordered to be kept in the Apochecaries Shops: and even the Rob or Gelly of Elder-berries, which comes up to this next in Virtue, although ordered, is kept but in few Shops. $\quad$ C M.

    I have frequently prefribed the Syrup or Gelly of black Currants, for In iammations of the Throat, with good Succefs. Mort of she Apothecaries in Clielfory keep it in theis
    Shops.
    $7 . M$

[^19]:    * Daüiel Barckloliz, formerly Cafarean Poct-Laureat.
    * 'the Cbarafers, befides D B, mark the Names of a noble Family, to which the Land, whereon the Tree was fellid, formanty belonged: Regina, Deristica, Mibhasi, Gotrinic, Yoannes, Helzuingii.

[^20]:    This Wood is kept in the Library of the Council of Dantzi:k.

