
8
4
4
4

139989
part I: 20 foldriy pits.
". II: 12 "

Fllosofia y C. Educación

$$
\begin{gathered}
\text { K.000015333.3 } \\
\text { F.A. } 059 \\
\text { V. } 8
\end{gathered}
$$

$[39989$
 THE

PHILOSOPHICAL TRANSACTIONS

 (From the Year 1732, to the Year 1744) AB RI D GE D,A ND
Difpofed under General Heads,
The Latin PAPERS being tranflated into Engli/b.

$$
\text { By } \mathcal{F} O H N M A R T \Upsilon N, \text { F. R. S. }
$$

Profeflor of Botany in the Univerfity of Cambridgsana

> In TWO VOLUMES, $V I z$.

VOL. VIII. Containing,
Part I. The Mathematical PAPERS.
Part II. The Physiological. PAPERS.

VoL. IX. Containhed
Part III. The Anatomical and Medical Papers.
Part iV. The Historical and Miscellaneous PaPERS.

$$
L O N D O N:
$$

Printed for W. Innys, C. Hitch, T. Astiey in Paler-nofer-Roore, T. Woodward, C. Davis in Holbourn, and R. Mandy and H. S. Cox on Ludgate-Hill. MDCCXLVII.

$$
\begin{aligned}
& \text { BIMUIOV Q Wh in }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bres. }
\end{aligned}
$$

$$
\begin{aligned}
& \because A D I H \cdot 1080 \text { ITHI } \\
& 2 \pi 701 T+42-4 A T
\end{aligned}
$$

$$
\begin{aligned}
& \text { \& } V A
\end{aligned}
$$

TOTHE

PRESIDENT, COUNCIL, and FELLOWS OF THE

ROYAL SOCIETY 0 F

$$
L O N D O N \text {, }
$$

For the improving of
NATURAL KNOWLEDGE,
This Abridgment of the Philosophical Transactions is moft humbly dedicated by

Cbelfey, March I, 1746-7.

$$
\mathcal{F O H N M A R T Y N . ~}
$$

YTHIDOZ UAYOH
a o a Mo.
aอqaivoñ TASUTAK

TOTHE

R E A D E R.

A
S thefe Volumes are only a Continuation of thofe, which were publifhed twelve Years ago, by the late learned Mr Eames and myfelf, there does not feem to be any Occafion for a Preface. The only Alteration now made, is the Addition of the Dates of the feveral Papers in the Margin, which I hope will be thought an Improvement. But as I apprehend, that this may fometimes have been omitted, I fhall endeavour to fupply that Defect here, as I did in the former Volumes, by adding the following Table, which will fhew for what Months each Tranfaction was publifhed. VOL. N ${ }^{\text {e }}$
XXXVIII. 427. January, February, March, 428. April, May, Juune, 429. Fuly, Auguf, September, OEtober, 430. November, December, 431. January, February, March, 432. April, May, June, 433. July, Auguf,
434. September, October, November, 435. December,
XXXIX. 436. Эanuary, February, March, 437. April, May, June, 438. July, Auguft, September, 439. October, November, December,

To the READER.

VOL. No
XXXIX. 440. January, February, March,
441. April, May, June,
442. July, Auguff, September,
443. October,
444. November, December,
XL. 445. January, February, March, April, May, June,
446. July, Auguf, September, October, November, December,
447. January, February, March, April, May,
44. June, July,
449. Auguft, September,
450. October, November,
451. December,

Supplement,
XII.
XIII.
452. January, February, March,
453. April, May, June,
454. July, Auguft, September, October,
1737.
455. November, December,
456. January, February, March, April, May, June,
457. July, Auguf,
458. September, OCtober, November, Decomber,
459. January, February, March, 460. April, May, June, July, 461. Auguft, September, October, November, December.
462. January, February, 463. March, April,
464. May, June, July,
465. October, Part of November, 466. Part of November, December, 467. January 13, 20,
468. From January 20 to February 3,
469. From February 3 to April 2 I,
470. From April 21 to June 23 ,
471. November, December,

THE

C O N T E N T S.

VOL. VIII. PARTI.

The Mathematical PAPERS.

C H A P. I.
Algebra, Arithmetick, Fluxions, Geometry.
I.

(F the Reduction of Radicals to more fimple Terms, by Mr de Moivre, Page I
II. A Demonftration of Newton's Metbod of raifing any Polynomial to any Power, by Means of an afumed Binomial; by Mr Caftillioni,
III. Defcription and UJe of an Aritbmetical Machine, invented by Profeflor Gerften,
IV. A brief Account by $M r$ Eames of a Work intitled, The Method of Fluxions and infinite Scries, with it's Application to the Geometry of Curve Lines; by the Inventor Sir I. Newton, $E^{\circ} \mathrm{c}$. Tranflated from the Autbor's Latin Original, not yet made pubick. To wbich is fubjoined, A ferpe:ua! Comment upon the wbole ; by Mr Collon, $\quad 26$
V. 1. An Account by Mr Eames of a Bcok inticled, A Mathematical Treatife, containing a Syftem of Conic Sections, with the Doctrine of Fluxions and

Fluents, applied to various Subjects; by John Muller,

Page 30
2. An Account of a Book intitled, A Treatife of Fluxions, in two Books, by $\mathrm{Mr} \mathrm{Mc}^{\mathrm{c}}$ Laurin, 31
3. The fame continued, Curves, by the Interfection of rigbt Lines moving about Points in a given Plane; by Mr Braikenridge, 5^{8}
2. Concerning the Defcription of Curve Lines, by Mr Mc I aurin, $\quad 62$
3. A Paper mentioned in the foregoing Article,
VII. Concerning twio Species of Lines of the third Order (not mentioned by Sir I. Newton, nor Mr Stirling) by Mr Stone, $\quad 7^{2}$
VIII. The Solution of Kepler's Problem; by Mr Machin,
IX. An Inquiry concerning the Figure of fucb Planets as revolve about ain Axis, Juppofing the Denfity continually to vary from the Centre loward the Surface; by M. Clairant, $\quad 20$
X. Of a Curve called from io's Figure a Cardicit, by Joannes Caftillioneus, 108

The CONTENTS.

स1. A Rule for finding the meridional Parts to any Spheroid, with the fame Exailnefs as in a Spbere; by $\mathrm{Mr} \mathrm{Mc}^{\mathrm{c}}$ Laurin, Page 110

C H A P. II.

Opticks.

I. APropofition relating to tbe Combination of transparent Lens's, with reffecing Planes; by Mr Hadley, III
11. A new Metbod of improving and perfecting Catadioptrical Telefcopes, by forming the Speculums of Glafs inflead of Metal; by Mr Smith, 113 III. A Catadioptric Microfrope, by Dr Barker,

120
IV. An Account of Mr Leewenhoek's Microfcopes, by Mr Baker,

121
V. A true Coty of a Paper found in the Hand-writing of Sir I. Newton, among the Papers of the late Dr Halley, containing a Defrription of an Inftrument for obferving the Moon's Difance from tbe fixed Stars at Sea,

129
VI. 1. An Altempt to explain the Pbonomenon of the borizontal Moon appearing bigger than wben elevated many Degrees above the Horizon: Supported by an Experiment, by Dr Defaguliers, ${ }_{130}$
2. An Explication of the foregoing Experiment; by tbe fame,

C H A P. III.

Astronomy.

1. 0Bjervations of the Appearances among the fixed Stars, called Nebulous Stars; by Dr Derham, $\quad 132$ II. 1. Obfervations of the Moon's Tranfit by Aldebaran, April 3, 1736, made at London, by Dr Bevis,

133
2. An Occullation of Aldebaran, Dec. 23, 1728; by Mir Kirchius,

134
3. At Wittemberg in Saxony, obferved by Mr Weidler, Page 135
4. In Fleet-Atreet, London, by Mr Graham,
ibid.
III. I. An Obfervation of the Eclipfe of the Sum on May 2, 1733, by Mr Graham, ibid.
2. ——by Mr Gray, $\quad 136$
3. by Mr Milner at Yeovil in Somerferfhire, 137 4. at Gottenburg in Sweden, by $M r$ Vaffenius, ibid. 5. at Wittemberg in Saxony, by $M r$ Weidler, 13^{8} IV. Eciipse of the Sun April 22, 1734 , obferved at Rome by the Abbot Didacus de Ravillas, and Mr Celfius, ibid. V. Eclipfe of the Sun Sept. 23, 1736 , obferved at London, by Dr Bevis, 139
VI. 1. Eclipfe of the Sun Feb. 18, 1736-7, obferved in Fleet-ftreet, London, by Mr Graham,
ibid.
2. at the Royal Obfervatory at Greenwich, obferved by Dr Bevis in Company with Dr Halley,

140 3. \sim at Edinburgh, by $\mathrm{Mr} \mathrm{M}^{\mathrm{c}}$ Laurin, ibid. 4. - by Sir James Clerk, 149
5. at Trinity.College, Cambridge, and at Kettering, communicated by Mr Mafon, 150
6. -15 at Bologna, by _- 15 7. on Mount Aventine as Rome, by the Ablot Didacus de Ravillas, 152
8. at Wittemberg in Saxony, by Mr Weidler, ibid.
9. vania, by Dr Kearly, $\begin{array}{r}\text { at Philadelphia in Penfyl- } \\ \text { ibid. }\end{array}$ VII. I. Eclipse of the Sun Aug. 4, 1738, obferved in Fleet-ftreet, London, by $M r$ Graham and Mr Short, ${ }_{153}$
2. - at Upfal, by Mr Celfius,
ibid.
3. Eclipre of the Sun at Wittemberg, by Mr Weidler, Page ${ }^{1} 53$ 4. -al Bologna, by Mr Manfredi, 154
VIII. Eclipfe of the Sun, July 24, 1739, objerved at Wittemberg in Saxony, by Mir Weidler,
IX. Eclipfe of the Sun, Dec. 19, 1739, objerved in Surrey ftreet, by Mr Short,

157
X. An In:frument to reprefent Eclipfes of the Sur, by Mr Scguer, ibid. XI. 1. Eclipfe of the Moon, Nov. 20, 1732 , cblerved at Rome by the Abbot Didacus Revillas, Jo. Bottarius, and Euft. Manfredi, 161
2. - obferved in Fleet-Atreet, London, by Mr Gratiam, 163 XII. Eclipge of the Moon, Oct. 2, 1732, S. N. obferved at Wittemberg in Saxony, by Mr Weidler, 164 XIII. I. Eislipfe of the Moon, March 15, 1735-6, obferved in Fleet-Atreet, by Mr Graham,
ibid.
2. at Greenwich, by Dr Halley,
3. ——in Fleet-ftreet, by Mr Cel flus, ibid.
4. Bevis, in Covent-Garden, by Dr 5. - at Yeovil in Somerfetfire, by Mr Milner,

166
XIV. I. Eclipfe of the Moon, Sept. 8, $173^{6,}$ obferved in Fleet-Atreet, London, by Mr Graham and Mr Short, 167
2. - Bevis, in Covent. Garden, by $\mathrm{Dr}_{\text {r }}$ ibid. 3. Weidter at Wittemberg, by $M r$ Weidler, 168
4. $\begin{aligned} & \text { Middleton, in Hudfon's Bay, by Capt: } \\ & \text { ibid. }\end{aligned}$ XV. 1. Eclipfe of the Moon, Dec. 21, 1740, at the ifland of St Catharine on the Coaft of Brafi, obferved by Captain L.gge, VOL. VIII.
2. Remarks on the foregoing Account, by Dr Atwell,

Page 170 3. England, by Mr Winthrop, ivid.
XVI. Eclipfe of the Moon, Jan. 2, 17+1, obferved at the College at Pekin, by the ficfuits,

171
XVII. Eclipfe of the Moon, Jan. 2, 1740, observed in Fleet-ftrect, by NEr Shorr. 172
XVIII. Eclipfe of the Moon, OA. 22 , 1743, obferved in Flect-1treet, by Mr Graham, ibid. XIX. Of the Lunar Atmofpbere, by Mo Grandjean de Fouchy, ibid.
XX. A Conjunction of Saturn and Mars obferved at Wittemberg, by Mr Weidler, $\quad 178$.
XX1. 1. Eclipfes of the Satellites of Jupiter obferved by Euftachius Manfredi, 179
2. -objerved at Southwick, near Oundle in Northamptonlhire, iy Mr l.ynn, 180 3. at Peterfburgh, by Mr de line,
ibid.
4. the Feffiits,

183
XXII. An Occuliation of Jupiter and bis Satellites by the Moon, Oct. 27, 1740, in the Morning, objerved in Fleet-ftreet, by Dr Bevis and Mr Short, $\quad 184$
XXIII. 1. An Occullation of Mars by tbe Mcon, Oct. 7, 1736, objerved in Fleetftreet, by Mr Graham, $\quad 186$
2. - obferved in Covent-Garden, by Dr Bevis, ibid. 3. Occuliation of Mars by the Moon, obferved by the Yefiits at Pekin, ibid. XXIV. Obfervations on Mars in tbe Autumn of 1736 at Berlin, by Mr Kirch, 18% XXV. 1. An Objervation of the Tranjit of Mercury over the Sun, Oct. 31, 1736, in Fleet-ftrcet, I.ondon, by Mr Graham,
[b]
194
2. An Obfervation of the Tranfit of Mercury over the Sun, Oct. 31, 1736, obferved at Bologna, by Mr Manfredi, Page 195
3. obferved at Wittemberg, by $M r$ Weidler,
XXVI. ——at Greenwich, by Dr Bevis, ibid.
XXVII. A Trangit of Mercury over tbe Sun, Oct. 31 , $173^{8,}$ by Dr Huxham,
XXVIII. A Tranfit of Mercury over the Sun, April 21 , 1740, obferved at Cambridge in New-England, by Mr Winthrop, ibid. XXIX. I. Tranfit of Mercury over the Sun, Oct. 25, 1743 , in the Morning, obferved at Mr Graham's House in Lileetftreet, 202
2. - by Dr Bevis, 203
3. - by Mr Catlyn, 204
XXX. An Occultation of Mercury by Venus, May 17, 1737, at the Obfervatory at Greenwich, by Dr Bevis, 207 XXXI. An Obfervation on the Planet. Venus (with regard to ber baving a Satellite) by Nir Short, 208
XXXII. Several Aftronomical Obfervations made at Pekin by the Fefuits, ibid.
XXXIII. 1. Obfervations upon the Comet tbat appeared in Jan. Feb. and Mar. 1737, made at Oxford, by Dr Bradley, 210
2. _on Mount Aventine at Rome, by tbe Abbol Didacus de Revillas,

213
3. - at Philadelphia in Penfylvania, by Dr Kearny, 214 4. -at Spanifh-Town in Jamaica, by Dr Fuller, 215 5. -_ at Madras, by Mr Sartorius, ibid. XXXIV. The parabolic Orbit for the Comet
of 1739, obferved at Bologna, by Mr Zanottí,

Page 215 XXXV. Obfervations on a Comet, by F . Frantz at Auftria, 216 XXXVI. Some Conjerfures concerning the Pofilion of the Colure in the ancient Spbcre, by Dr Latham, ibid. XXXVII. 1. A Propofal to make tbe Poles of a Globe of the Heavens move in a Circle round the Poles of the Ecliptic; by the fame,

217
2. A Contrivance to make the Poles of the diurnal Motion in a celeftial Globe pafs round the Poles of the Ecliptic; invented by Mr Senex, ibid. XXXVIII. The true Delineation of the Afterifms in the ancient Spbere, by Dr Latham,

C H A P. IV.

Surveying.

ANEW ploting Table for taking Plans and Maps in furveying, invented in the Year 1721, by Mr Beighton,

CHAP. V. Mechanicks.

1. ΔN Experiment by $M r$ 'sGravefande relating to the Force of moving Bodies, Berwn to the R.S. by Dr Defaguliers, 235
II. A fbort Account of Dr Jurin's nintb and laft Differtation De Vi Morrice, by Mr Eames,
III. I. Obfervations made in London by Mr Graham, and at Black River in Jamaica, by Mr Campbell, concerning the going of a Clock, in order to determine the Difference between the Lengths of Ifocbronal Pendulums in thofe Places; communicated by Dr Bradley,

238
2. Experj-
2. Experiments concerning the Vibrations of Pendulums, by Dr Derham, Page 245 IV. 1. An Account of the Influence which two Pendulum-Clocks were obferved to have upon each otber, by Mr Ellicott, 246
2. Fartber Obfervations and Experiments, by tbe fame,

247
V. Some Confiderations whether Pexdulums are difurbed by any centrifugal Force, by Jo. Marchio Poleni,

251
VI. The Report of the Committee of the R. S. appointed to examine fome 2uefions in Gunnery,

253
VII. An Account of a Book intitted, New Principles of Gunnery, containing the Determination of the Force of Gunpowder, and an Inveftigation of the refifting Power of the Air to fwift and now Motions ; by B. R. F. R.S. as far as the fame relates to the Force of Gun-powder,

260
VIII. An Account of an Infrument or Macbine for changing the Air of the Room of fick People in a little Time, by eitber drawing out the foul Air, or forcing in frefs Air, or doing both fucceffively, witbout opening Doors or Windows,

270
IX. I. A Calculation of the Velocity of the Air moved by the new invented centrifugal Bellows of Seven Feet in Diameter, and one Foot tbick witbin, which a Man can keep in Motion with very little Labour, at the Rate of two Revolutions in one Second; by Dr Defaguliers, 271
2. The Ujes of the foregoing Machine, by the fame,

273
X. A Defcription of a nerw Invention of Bellows, called Water-Bellows, by Mr Triewald,

274
XI. An Account of fome new Statical Experiments, by Dr Defaguliers, 277
XII. A Macbine for grinding Lenfes Spberically, invented by $M r$ Jenkins, 281

CHAP. VI.

Hydraulicks.

2. The fame continued, 304
II. An Account of a new Engine for raijing Water, in wobich Horjes or otber Animals draw witbout any Lofs of Porver, (which bas never yet been practifed) and bow the Strokes of the Piftons may be made of any Length, to prevent the Lofs of Water, by the too frequent opening of Valves, with many otber Advantages altogether new ; the Model of rebich was Beren to the R.S. Nov. 28, by Walter Churchman, the Irventor of it, 321

C H A P. VII.

Geography and Navigation.

'F the Figure of the Earth, and the Variation of Gravity on the Surface, by Mr Stirling,

324
II. Some Invefigations, by which it is proved, that the Figure of the Earth muft very nearly approach to an Ellipfis, according to the Laws of Altraction, in an inverfe Ratio of the Square of the Diftances; by M. Clairaut, 328 III. 1. An Account, by Mr Eames, of a Difertation, containing Remarks upon the Obfervations made in France, in order 10 afcertain the Figure of the Earth, by Mr Celfius, intitled, $\mathrm{De} \mathrm{Ob}-$ fervationibus pro figura Telluris determinanda, in Gallia habitis, Difquifitio, Auctore Andrea Celfio, in Acad. Upfal. Aftronom. Prof. Reg. E'c. Upfaliae, 1738. 4 to.

334
2. The fame continued, $\quad 337$
IV. Concerning a Place in New-York, for mecfuring a Degree of Latitude, by Mr Alexander,

The CONTENTS.
V. A Propofal for the Meafurement of the Eartb in Ruflis, read at a Meeting of the Academy of Sciences of St Peterfbourg, Jan. 21, 1737, by Mr Jof. Nic. de l'Ine,

Page 339
VI. The aitual Menfuration of the Bnais propofed in ibe preceding Article, by M. de line,

351
VII. An Account of an Improvement on the terreffrial G'obe, by Mr Harris, 35^{2}
VIII. Tbe Confruition and UJe of Spberical Maps, or fucb as are delineated upon Portions of a Spicrical Surface, by Mr Colfon,

354
1X. A Spirit Level to be fixed to a 2 uadrant for taking a meridional Altitude at Sea, when the Horizon is not vijble, by Mr Hadley,

357
X. A Defcription of a Water-Level to be fixed 10 Davis's Quadrant, whcrely an Obfirvation may be taken at Sen, in tbick and bazy Weatber, witbout feeing the ITorizor; by Mr Leigh, $\quad 360$
XI. The Difcrittion and Uje of an Apparalus added as an Improvement to Da-
vis's Quadrant, conjefing of a mercurial Level, for taking the Co-alitude of Sun or Slar at Sea, witbout the ufual Afjstance of the Jenfible Horizon, wobiabla frequently is obfcured; by the fame, 362 XII. An Account of Mr Tho. Godfrey's Imfrovemizent of Davis's Quadrant, iranfferred 10 the Mariner's Bowo ; commiusnicated to the R. S. by MIr J. Logan, 366
XIII. The D scripition and Ufe of an Inframinent for taking the Latilude of a Place at any Tinie of the Day, by Mr R. Graham, 371
XIV. The UJe of a new Azimuib Cainpafs for finding the Variasion of the Compars or Magnetic Needle at Sea, with greater Eafe and Exailnefs than by any ever yet contrived for that Purpole; by Capt. Middleton,

374
XV. Obfervations made of the Latitude, Variation of the Magnetic Needle, and Weatber, in a Voyage from London to Hudfon's Bay, 1735, by Capt. Middleton,

376

PARTII.

The PHYSIOLOGICAL PAPERS.

Chép. I.
Physiology, Meteorology,
PNeumatices.

Pneumaticks.

1. COME Tbougbts concerning the Sun and Moon, when near tbe Horizon, appearing larger toan wiben near the Zenitb,
II. A Pbyfico-matbematical Demonfiration of the Impoffibility and Infuficiency of Vortices, by M. de Sigorgne,
III. A Bort Account, by Dr Parfons, of
a Book intilled, Traité des Sens, EOc. by M. le Cat,

390
IV. 1. Concerning Eleetricity, by M. dus Fay,

393
2. Experiments and Obfervations on the Light tbat is produced by communicating electrical AttraEtion to animal or inanimate Bodies, togetber with fome of it's moft furprifing Effects; by Mr Gray,

397 3. Some Experiments relating to Electricily, by the fame,
4. Concerning the Revolutions wbich fmall
pendulous Boaies will, by Electricily, make round large ones, from Weft to Eaft, as the Planets do rourd the Sun; by the fume,

Page 403
5. Electrical Experiments, by the fame, taken from bis Moutb tbe Day before be died, by Dr Mortimer,

404
6. Some clectrical Experiments, cbiefly regarding the repuifive Force of elecirical Bodies, by Mr Wheler, 406
7. An Aicount of fome electrical Experiments made by Mr Wheler, at the Houfe of the R. S. May 11, 1737, drazen up by Dr Mortimer,

412
8. Some Remarks on the late Mr Gray's circuiar Experiment, by Mr Wheler, 415
9. Some Thoughts and Experiments concerining Eleciricity, by Dr Defaguliers,
10. Experiments made before the R. S. Feb. 2, 1737.8, by the fame, 422
11. Experiments made at the R.S. Feb. 9, 1737-8, by the fame,

423
12. Experiments made before the R.S. Feb. 16, 1737-8, by the fome, 424 13. An siciount of fome clestrical Experiments made before the R. S. Feb. 16, 1737.8, by the fome,

425
14. An Account of fome electrical Experiments made at the P. of Wales's House at Cliefden, Apr. 15, 1738, webere the Elestricity was conveyed 420 Fcet in a direct Line; by the fame, $\quad 429$
15. Scme Things concerning EleERricity, by the fame,

430
16. An Account of fome eleetrical Experiments made before tbe R. Society, by the fame,

432
17. Electrical Experimert: i.....ebefore the R. Society, March 15, 1740-1, by the fame,

433
18. An Account of fome Experiments made before the R. Society, May 14, 1741, by the fame,
19. An Aicount of fome Experiments made before the R. Socie'ty, May 29, 1741, by the Same, Page 434
20. An Account of fome new eleetrical Experiments, performed bcfore the R. Society, Aug. 29, 1741 , by :be fame, 435 21. Some furlber Obfcrvations concerning Electricily, by the fame,
ivid.
V. Some Tboughts and Conjictures concerning the Caufe of Elaficity, by the fame,

439
VI. A Difcription of a Barometer, weercin the Scale of Variation may be increafed at Pleafure, by $M r$ Rowning, 442 VII. An Account of a Book intitled, Chriniani Ludov. Gerten Tentamina SyItematis novi ad mutationes Barometri ex natura elateris aerei demonftrandas, cui adjecta fub finem, Differtatio Roris decidui errorem antiquam \& vulgarem per obfervationes \& experimenta nova excutiens. 447 VIII. Of the Differences of the Heigbis of Birometers, by Mr Hollman, 45^{2} IX. The Imperfections of the comnion Barometers, and tbe Improvement made in them, by Mr Orme, of Alhby de la Zouche in Leicefterfhire, wbere they are perfected and rectified; with fome Obfervations, Remarks, and Rules for their Ufe, by Mr Beighton, 455
X. The Defoription and Manner of ufing an Inftrument for meafuring the $D_{c}^{\circ}-$ grees of the Expanjion of Melals by Heat, by Mr Ellicott, $\quad 4_{4}^{6}$
XI. An Experiment concerning the nitrous Particies in the Air, by Dr Clayton, 465
XII. An Experiment to prove that Watcr, when agitated by Fire, is infinitely mor's elaftic than Air in the fumic Circumftances, by the fame, itia:
XIII. The Confruction of a Quickfliver Thermonseler, by Mr di l'ine, 467
XIV. An Obfervation of extraordinary Warmel of the Air in Jan. 1741-2, by Mr Miles,

Page 469
XV. Obfervations of the Variations of the Needle and Weatber made in a Voyage to Hudfon's Bay 1731, by Capt. Middleton,
ibid.
XVI. The Effeets of Cold, logetber with Obfervations of the Longitude, Lalisude, and Declination of the magnetic Needle, at Prince of Wales's Fort, upon Churchill River in Hudfon's Bay, by Capt. Middleton,
ibid.
XVII. An Account of a Book intitled, Obfervationes de Aëre \& Morbis epidemicis, ab anno 1728, ad finem anni 1737, Plymuthi factx. Auctore Joanne Huxham, M.D. R.S.S. drazon up by Dr Stack,
XVIII. An Inquiry into the Caufes of a wet and dry Summer, by $\quad 482$
XIX. Concerning the Siorm Jan. 8, 1734-5, by Mr Forth,

497
XX. Concerning a violent Hurricane in Huntingtonfhire, Sept. 8, 1741, by Mr Fuller, ibid.
XXI. Concerning a terrible Whirlwind which bappened at Corne Abbas in Dorfethire, Oet. 30, 1731, by Mr Derby,
XXII. Concerning the Caufe of the geniral Trade-Winds, by Mr Geo. Hadley,

500
XXIII. Objervations on falling Dew, made at Middleburgh in Zeeland on a leaden Platform, in the Nigbt between July 25 and 26, 1741, N. S. with Figures of the Flakes of Snow obferwed Jan. 1742, by Dr Stocks,

502
XXIV. Nere Experiments ufon Ice, taken from the Abbé Nolet, and communicated by Dr Defaguliers,
XXV. I. An Account of an extraordinary Eiffert of Lightning in communicating Magnetijm, by Dr Cooklon, $\quad 504$
2. A fartber Account of the extraordinary Effeets of the fame Ligbining, by the fanse, Page 505
3. Concerning a File rendered magneticil by Lightning,

506
XXVI. Concerning the crooked and angular Appearance of the Streaks or Darts of Ligbining in Tbunder-Stornis, by Mr Logan,

507
XXVII. Extraordinary Effects of Ligbtning, by Sir John Clark, ibid.
XXVIII. Concerning fome extraordinary Effects of Ligbtning, by Lord Petre,
XXIX. A Halo objerved at Rome, Aug. 11, 1732, by tbe Abbot Didacus de Revillas,

508
XXX. Obferva!ions of two Parbelia, or Mock-Suns, fien Dec. 30, 1735, by Mr Neve,
ibid.
XXXI. An Obfervation of two Parbelia, or Mock-Suns, Seen at Wittemberg in Saxony, Dec. 31, 1735, O. S. by Mr Weidler,
XXXII. An Obfervation of tbree MockSuns feen in London, Sept. 17, 1736, by $M r$. Folkes,

511
XXXIII. Ain Account of a Book intilled, Ju. Friderici Weidleri Commentatio de Parheliis menfe Januario anni 1736 , prope Petroburgum Angliæ \& Vitemberge Saxonum vifis, accedit de rubore coeli igneo menfe Decembri anno 1737, obfervato Corollarium ; drawn up by Dr Stack,
XXXIV. 1. A Reprefentation of the Parbelia feen in Kent, Dec. 19, 174 I , by Mr Miles,
2. Of the Same, by Mrs Tennifon, 515 XXXV. An Obfervation of an Antbelion feen at Wittemberg, by Mr Weidler, ibid.
XXXVI. An Account of a Meteor feen in the Air in the Day-time, Dec. 8, 1733 , by Mr Crocker,
XXXVII. An Account of a luminous Appearance in the Sky, feen at London March 13, 1734-5, by Dr Bevis, 517 XXXVIII. Meteors obferved at Philadelphia, by Jofeph Breintnall, 518 XXXIX. An Account of Several Meteors, by Dr Short,
XL. An Account of a Meteor Seen at Peckham, Dec. 11, 1741, by Dr Milner, 5^{21}
XLI. An Account of a Meteor seen near Holkam in Norfolk, Aug. 1741, by Lord Lovell,
ibid.
XLII. Concerning a Ball of Sulpbur fuppofed to be generated in the Air, by Mr Cook,
5^{22}
XLIII. I. An Account of the Fire-Ball feen in the Air, and of the Explofion beard, on Dec. 11, 1741, by Lord Beauchamp,
2. Concerning the fame Meteor in Suffex, by Mr Fuller, ibid.
3. Concerning tbe fame Meteor in Kent, by Mr Goftling,
4. -in Suffex, by Mr Mafon, ibid.
5. at Newport in the Ine of Wight, by Mr Cooke, ioid.
6. at London, by Capt. Gordon
7. A fartber Account of the fame, by Mr Goftling,
XLIV. Two Obfervations of Explofions in the Air beard in Effex, by Mr Vievar and Mr Shepheard, $\quad 526$ XLV. An Account of an Explofion in the Air at Maryland, by Mr Lewis, 527
XLVI. I. An Account of the red Lights feen Dec. 5,1737 , as obferved at Naples by the Prince of Caffano, ibid.
2. -at Padua, by the Marquis Poleni, F. R.S.

529
3. - at the Obfervatory of the Infitute of Bononia, by Dr Zanotti, 53^{2}
4. at Rome, by the Aboot Didacus de Revillas,
5. at Edinburgh, by Mr Short, Page 53^{8}
6. - by Mr Fuller, 539
XLVII. An Account, by $M r$ Eames, of a Book intitled, Traité Phyfique $8 x$ Hiftorique de l'Aurore Boreale ; per M. de Mairan, σ° c. ibid. XLVIII. A Defcription of the Nortbern Lights feen at Wittemberg in 1732, by $M r$ Weidler, 547 XLIX. Obfervations of the Aurora Borealis made in England, by Mr Celfius, 548
L. Aurorx Boreales obferved at Wittemberg in 1733, by Mr Weidler, 550 LI. in 1734 , ly the fame, ibid. LII. An Aurora Borealis obferved at Pe terborough, Dec. 11, 1735, by Mr Neve, 55 I LIII. - at Edinburgh, by Mr Short, 55^{2} LIV. 1. An Aurora Auftralis Seen March 18, 173^{8-9}, at Chelfey, by John Martyn,
2. - at London, by Dr Mortimer,
3. at Peterborough, by Mr Neve, 554
LV. - al Rome, Jan. 27, 1740, by tbe Abbot Didacus de Revillas, ibid. LVI. r. An AbfraEt of the Meteorological Diaries communicated to the Royal Society, with Remarks upon them, by Dr Derham, 555
2. Continued by tbe fame, 559
3. Continued by the fame, 565
4. Continued by the Same, 570
I.VII. I. An Account and Abfrait of the Meteorological Diaries, communicated so the Royal Sociely, for the Years 1729 and 1730, by Mr Geo. Hadley, 57^{8}
2. An Account and Abfrait of Metcorological Obfervations, communicated to the 'Royal Society, for the Years 1731, 1732, 1733, 173\%, and 1735 , by the fame, 589 L.VIII. A

ivi

The CONTENTS.
LViII. A Summary of Melecrological O'. Servations, made for 62 ears, at Padua, by the Marquis Poleni, Page 599
LIX. Remarks on the Weatber, with 3 finoptical Tables of Meteorological Obfervations for 14 Years, viz. from 1726 10 1739, by Mr Lynn, 604
1.X. Ex'raets from the Roman Meteorologica! Diaries for 17+1, by the Abbot Didacus de Revillas, 613
LXI. 1. Some Meteerological Obfervations made at Wittemberg in 1733, by Mr Weidler,

6:5
2. An Oifervation made in 1734 , by the fame,
ibid.
LXII. A pingical Hifary of the Air and Earth, by Mr Cyrill, itid.
L.XIII. 1. An Account of Mr Sutton's Invention and Method of changing the Air in the Hold, and other cloje Parts of a Ship; communicated to the Rojal Sociely by Lr Mead,

628
2. Some Obfervations upon the fame, with critical Remarks upon the UJe of Windfails, by Mr Wation,
LXIV. Concerning an Improvement of the Diving-Bell, by Mr Triewald, 634
LXV. A Narrative of a niw Invention of expanding Fluids, by their being conreyed into certain ignified Veffels, where tbey are immediately rarefied into an elaftic impelling Force, fufficient to give Motion to bydraulopneumatical and olber Engines, for raifng Water, and otber Ufies, \&ac. by Mr Payne,

638

C H A P. II.

Hydrology.
I. \triangle Defcription of a large Lake, called Malholm Tarn, near Skipton in Craven, in the Coun'y of York, by Mr Fuller,
II. A bigh Tide in the River Thames on Feb. 16, 1735-6, by Mr Jones, 642
III. An Examinetion of Sia-Water frozen and melled again, to try what Quantily of Salt is conisined in Sucb Lie, made in Hudfon's Streights, by Capt. Middieton, Page 643
IV. Experiments, by Way of Analyjs, upon the Water of the Dead Sca, upoir the bot Spring near Tiberiades, and upon the Hammam Pharoan Water, by Dr Perry, ibid.
V. Of the Cement Wafzeer Waters in Hungary, by Mr Belius, 645
VI An Examination of Weft-A fhton W'ell Waters, belonging to Tho. Beach, Eiq: a Well about 4 Miles from that of Holt, by Mr Godfrey Hanckewitz, 649
VII. I. An Examination of the Chiltenham mineral Water's, by Mr Senckenberg, 650
2. Remarks by C. M. 652
VIII. An Account of a new purging Spring difovered at Dulwich in Surrey, by John Martyn,

653
IX. A Defcription of a Water-Spout feen at Sea, by Mr Harris,

655

CHAP. III.

Mineralogy.
I. $A N$ Account of the damp Air in a Coal-Pit of Sir James Lowther, Bart. Junk witbin 20 Yards of the Sen; communicated by bim to the R.S. 655
II. An Experiment 10 herw, tbat fome Damps in Mines may be occafoned only by the burning of Candles under-ground without the Addition of any noxious Vapour, even woben the Bottom of the Pit bas a Commuxication with the outward Air, unlefs the outward Air be forcibly drawn in at the faid Communication or Pipe; by Dr Defaguliers, 657 III. 1. An Objervation of an extraordinaly Damp

Damp is a Well in the Ine of Wight, Page 657 2. A fartber Account, by the fame, 659 IV. An Account of a fulpbureous vaporiferous Cavern in the Quarry at Pyrmont, like the Grotto del Cane at Naples, by Dr Seip,
ibid.
V. An Aicount of the icy Cave of Szelicze, by Mr Belius, 662
VI. An Account of the Cave of Ribar, which Sends fortb noxious Effluvia, by the fame,

665
VII. A Defcripiion of the Cave of Kilcorny, in the Barony of Burren in Ireland, by Mr Lucas,

668
VIII. An Account of the Eruption of Vefuvius in May 1737, by the Prince of Caffiano,

670
IX. An Account of the Eruption of Mount Vefuvius, May 18, and the following Days, 1737 , N. S. by an Englifh Gentleman at Naples, 677
X. 1. The Hiftory of an Earthquake, wbich Book Apulia, and almoft the wobole Kingdom of Naples, in 1731, by $M r$ Cyrillus, 682
2. Of the fame, by Mr Temple, 684 XI. An Account of an Eartbquake in Maryland, by Mr Lewis, 685
XII. An Account of the feveral Earthquakes which bave bappened in NewEngland fince the firf Settlement of the Englifh in that Country, especially of the laft, OCt. 29, 1727, by Mr Dudley,

685
XIII. 1. An Account of a Sbock of an Eartbquake felt in Suffex, OEt. 25, 1734, communicated to the R.S. by tbe Duke of Richmond, 690
2. A Narrative of the fume Eartbquake, by Dr Bayley, ibid.
XIV. A Sbock of an Earloquake fell in Northamptonfhire in OEt. 1731, 692
XV. A Fourral of the Shocks of Earthquakes fell near Newbury in NewVOL. VIII.

England, fromi 1727 to 174, by Mor Plant, Page 693
XVI. An Account of the Earihquakes felt in I.eghorn, froms the $16 \% 10$ to the $27 / 10$ of Jan. 1742, with fome Obferrations made by Mr Pedini, 697
XVII. A Narrative of an extraordinary finking down and Jliding awoy of the Ground at Pardines near Auvergne, by M. T- $\quad 103$
XVIII. An Aicount of the dead Boaies of a Man and Womain, which eecre preferved 49 Tears in the Moors in Derbyfhire, by Dr Balguy, $\quad 705$
XIX. An Accounit of the Petrefactions near Matlock Bat'bs in Derbythire; with Conjectures conccrning PetrefaEtion in general, by Mr Gilks, $\quad 707$
XX. 1. Experiments concerning Quickfilver, by Dr Boerhaave: 709
2. Part II,
717
3. Part III, 725

XXI. An Examination of the Mexican filtring Stone, and Comparifon of it witb olber Stones, by Dr Vater, 728 XXII. An Account of Coal-Balls made at Liege, by Mr Hanbury, 730 XXIII. Concerning certain cbalky tubulous Concretions, called Malm, by Mr Needham, 732 XXIV. Of the Nature of Amber, by Mr Beurer, 734 XXV. An Account of petrified Oyfters, by Cornelius de Bruyn, illuftrated by Mr Klein,

735
XXVI. Experiments made on the mag-- netic Sand, by Dr Van Mufchenbroek, 737

$$
\begin{aligned}
& \text { C. Ha P. IV. } \\
& \text { Magnerics. }
\end{aligned}
$$

I. A Extratif from the fourna'-Books A of the Rova!' Society, concerning Magnets baring inore Polis than isio, [c]
by Mr Eames ; with fome Obfervations by Dr Defaguliers on tbe farme Subject,

Page 740
11. 1. An Account of forme magnetical Experiments made before the R.S. June 24 , 1736, by Dr Defaguliers, ibil.
2. An Account of fome magnetical Experiments made before tbe R. S. Apr. 2t, 1737, by the fame,
ibid.
III. An Obfervation of the magnetic Needle being jo affeced by great Coll, that it would noot traverfe, by Capt. Middleton, 742 IV. Magnetica! Obfervations mede in May, June, and July, 1732 , in the Altantic or Weftern Ocean, by Mr Harris, ibid.
V. The Variation of the magnetic Needle, as obferved in tbree Voyages from London so Maryland, by Walter Hoxton, 744

> CHAP. V. BOTANY.

1. $A N$ Account of a Treatije intitled, D. Alberti Halleri Archiatri Regii, \&c. Enumeratio Methodica Stirpium Helvetix indigenarum, \&c. Extrabled and tranflated from the Latin, by Mr Watfon,
2. The Seiting of a new Genus of Plants, called after ibe Malayans, Mangotans, by Dr Garcin,
III. Botanica! Obfervations, exbibiting accurate Defriptions of fome Plants, by Dr Moehring,

760
IV. A Qiciery propofed to fuch curious Perfons as ufe tbe Greenland Irade; occafioned by a Letter froim Mr Nicolfon, V. An Account of the Peruvian or Fefuil's Bark, by Mr Gray, exiraited from forme Papers given bim by Mr Arrot, ibid.
V1. A Cataiogue of Plants obferved in the Tyrol Alps at the Beginning of September, by Dr Ehrard,
VII. A Catalogue of Plants prefented to the R.S. by the Company of Apotbecaries, by Mr Rand and Mr Miller, Page 769
VIII. Some Experiments concerning the Impregnation of the Seeds of Plants, by Mr Logan,
80_{4}
IX. Of the Difcovery of a perferd Plant in femine, by Mr Biker, 806 X. Conierning the Seed of Fern, by Mr Miles, 809
XI. I. Concerning the Seeds of Mufbrooms, by Mr Pickering,

2. Some Remarks occafoned by the preceding Paper, by Mr Wation, 815
XII. Microfcopical Obfervations on the Farina of the red Lily, by Mr Needham, 816
XIII. Concerning the Sinut of Corn, by the Abbé Pluche,

XIV. Microfoopical Objervations of Wormis difcovered in fmutty Corn, by Mr Needham,
ibid.
XV. An Observation on tbe Duplicature of all Skeletons whatfoever. prepared frows green Leaves, by Mr Hollman, 818 XVI. Some Conjectures on the Ufe of the Duplicature of the Fibres of Leaves, by the fame, 820
XVII. Concerning the Vegetation of MelonSeeds 42 Years old, by Mr Triewald,

$$
824
$$

XVIII. Concerning the wonderful Increafe of the Seeds of Plants, e. g. of the upright Mallow, by Mr Hobron, ibid. XIX. Experiments and Obfervations on bulbous Roo's, Plants, and Seeds, growing in Water, by Mr Curteis, 825 XX. Concerning the Virtues of ibe Star of the Earth, Coronopus, or Bucksborrs Plantain, in the Cure of the Bite of a mad Dog, by Mr Steward, 831 XXI. Some Obfervations concerning tbe Virtue of the Gelly of black Currants, in curing Infammations in tbe Throat, by Mr Baker,
XXII. An Account of Symptoms ariing from eating the Seeds of Henbane, zuith their Cure, \&c. and fome occafional Remarks, by Sir Hans Sloane, Page 840 XXIII. Concerning tbe Poifon of Hensbane Roots, by Dr Patouillat, 841
XXIV. The Cafe of a Man wobo was poifoned by eating Monks-bood, or Na pellus, by Mr Bacon,

842
XXV. Concerning the Poifon of LazreiWater, by Dr Rutty, Page $84+$ XXVI. An Account of Letters found ins the Middle of a Beech, by Mr Klein, 845 XXVII. I. Of the Horn of a Deer found in the Hearl of an Oak, by Sir John Clerk,
2. Remarks by the Publifber,

847
ibid.

VO L. IX. PAR T III.

CONTAININGTHE

ANATOMICAL and MEDICAL PAPERS.

C H A P. I.

ZOOLOGY and the ANATOMY of Animals.
1.

ACCOUNT of a remarkable Generation of Infects, by Mr Lewis,
II. Of the Bafes of the Cells wherein the Bees depofite tbeir Honey, by Mr Mac Laurin,
III. A Relation of the Defrultion of the Caterpillars and Grass-boppers, which fome Years ago deftroyed the Country near Wittemberg, by Mr Weidler, 5
IV. A new Species of Infeet, by Mr Klein,
V. Experiments and $O b$ fervations on a Beetle, that lived three Years without Food, by Mr Baker,
VI. An Account of a Capricom Beetle, found alive in a Cavily within a found Piece of Wood, by Dr Mortimer, it
VII. A Difertation on the Worms which deftroy the Piies on the Coofts of Hulland and Zealand 2 by Dr Bafter,
VIII. 1. Of the Polypus, a Water Infect, which being cut into feveral Pieces, becomes fo many perfect Animals,17
2. Of the fame, by Dr Gronovius, 18

3. 19
4. by the Hon. Mr Bentinck, 22
5. by M. Tremblay, ibid.
6. An Abstract of acibat is contained in the Preface to the fixt: Volume of M. Reaumur's Hiftory of Infiets, relating to the above-mentioned Olfervations, 26 7. Some Account of the fame Injeet, ty Mr. Folkes,
7. by tbe Duke of Richmond, 35
8. Some Objervations on a Polype dried, by Mr Baker, 3^{6}
9. Concerning fome Worms, whofe Parls live after they baec been cut afunder, by Mr L. ord,

37
IX. Objervations on the Moutbs of ybe Eels in Vinegar, by Mr Miles, 38 X. Some Obfervations upon Inseets, by Dr Bonnet,

The CONTENTS.

XI. Concerning the Squilla aqua dulcis, by Dr Richardfon,

Page 54
XII. I. Conjegtures on the charming or fafcinating Power attributcd to the Ratll-Snake, grounded on credible Accounts, Experiments and Obfervalions, by Sir Hans Sloane, $\quad 11$ adi ibid.
2. Concerning a Clufter of finall Teetb obServed at the Rool of each Fang or great Tooth in the Head of a Rallle-Snake, upon diffecing it, by Dr Bartram, 60 XIII. 1. Concerning the Viper-Catchers, and their Remedy for the Bile of a Viper, by Dr Burton, 11 Abid.
2. A Narrative of the Experiments made June 1, 1734, before jeveral Members of the R.S. and otbers, on a Man wbo Juffered bimfelf 10 be bit by a Viper, or common Adder; and on otber Animals likerwije bitten by the fame, or otber Vipers; by Dr Mortimer,
3. Obfervations on a Man and Woman bit by Vipers, by Dr Atwell,
4. Concerning tbe Viper-Catcbers, and the Efficacy of Oil of Olives in curing the Bite of Vipers, by Dr Williams, 66
5. An Abftract of an inaugural Differtalicn publijhed at Wittemberg 1736, by Dr Vater, F. R. S. concerning the Bite of a Viper cured by Sallad-Oil, ibid.
6. Concerning the Effiacy of Oil of Olives in curing the Bite of Vipers, by M. du Fay, 68
7. by the Jame,
ibid.
XIV. Remarks concerning the Circulation of the Blood, as feen in the Tail of a Water-Eft through a folar Microscope, by Mr Miles,
XV. 1. Account of a Narbual or Unicorn. Fiifo, by Dr Steigertahl,
2. A Defcription of the fame Narbual, communicated iy Dr Hamp, $\quad 72$
XVI. An Account of the Horn of a Fijh, fruck feveral Incbes into the Side of a Sibif, by Dr Mortimet, ibid.
XVII. Concerning the Mola Saiv. or SunFijh, and Glue made of it, communicated by Mr Barlow, Page 73 XVIII. Some Account of the Phoca, Vitulus marinus, or Sea-Calf, by Dr Parfons,
XIX. A Metbod of preparing Specimens of Fijh, by drying their Skins, as pracifed by Dr Gronovius,
XX. I. A Difertation concerning the flying Squirrel, by Mr Klein, $\quad 76$
2. by Mr Dale, $\quad 78$
XXI. Anatomy of a Female Beaver, and an. Account of Caftor found in ber, by Dr Mortimer, ibid.
XXII. 1. Defcription of the Moofe-Decr of New-England, and a Sort of Stag in Virginia, by Mr Dale,
2. A Remark, by Dr Mortimer, 87
XXIII. Obfervations and a Defcription of fome Mammotbs Bones dug up in Siberia, proving them $t o$ bave belonged 10 Elepbants, by Dr Breyne, ibid.
XXIV. Natural Hifory of the Rbinoceros, by Dr Parfons,
XXV. I. An Account of the Bones of Animals being cbanged to a red Colour by Aliment only, by Mr Belchier, 102
2. A fartber Account, by the fame, 103
3. Of the fame, by M. du Hamel du Monceau,
ibid.
XXVI. I. Concorning a Zoophyton, fomerwbat refembling the Flozeer of the Marygold, by Mr Hughes,

III
2. A Remark, by Dr Mortimer, ibid.
XXVII. 1. An Account of a Book intitled, Jo. Phil. Breynii, M. D. \&c. Differtatio Phyfica de Polythalamiis nova Teftaceorum Claffe, acc. by Dr Maffey,
ibid.
2. An Account by Mr Eames of a Book intilled, Jacobi Theodori Klein, Hifto. riæ Pifcium Naturalis promovendæ Miffus primus,

114

The CONTENTS.

C H A P. II.

The Structure, External Parts, and Commonteguments of the Body.

1. A
 Remarkable cutaneous Diforder, by Dr Vater,
 Page 117

C H A P. III.
 The Head.

1. A Remarkable Cure performed by John Cagua, Surgeon at PlymouthDock, of a Wound of the Head comsplicated with a large Frasture and Dipreffion of the Skull, the Dura Mater and Brain wounded and lacerated, 118
II. The Cafe of a Wound in the Cornea of the Eye being fuccefsfully cured, by Mr Baker,

120
III. An uncommon Palfey of the Eye-lids, by Dr Cantwell, 121
IV. Some Thoughts on the Operation of the Fiftula lacrymalis, by Dr Hunauld, ibid.
V. A Defcription of Needles made for Operations on the Eyes, by Mr Cleland, 124
VI. Inftruments propofed to remedy fome Kinds of Deafnefs proceeding from Ob fructions in the external and internal auditory Paffages, by the fame, ibid.
VII. An Account of Margaret Cutting, a young Woman now living at Wickham Market in Suffolk, wibo Speaks readily, and intelligibly, tbougb hie bas loft her Tongue,

126
VIII. An Account of the Wound wbich the late Lord Carpenter received at Brihuega, whereby a Bullet remained near bis Gullet for a Year, wenting a
ferw Days ; communicated to the R.S. by bis Son George Lord Carpenter, Page 13°

C H A P. IV.

The Neck and Thorax.
I. Sbort Account of Dr Stuart's Paper, concerning the mufcular Sirueture of the Heart, by Dr Mortimer,

131
II. 1. Als extriordinary Cafe of the Foramen ovale of the Heart being found open in an Adult, by Mr Amyand, 133
2. Concerning the Foramen ovale being found open in the Hearts of Adults, by Dr le Cat,

134 III. Of the Heart of a Cbild turned upSide dorwn, by Dr de Torres, 135
IV. Concerning Polypi taken out of the Hearts of feveral Sailors juft arrived at Plymouth from the Weft-Indies, by Dr Huxham,
ibid.
V. A Caje wherein Part of the Lungs was cougbed up, by Mr Wation, 137. VI. Experiments on the Perforation of the Thorax, and il's Effects in Refpiration, by, Dr Houlton,
13^{8}
CHAP. V.

The Abdomen.
I. $1 \bigcirc$ F an Obftrution of the Biliary DuEts, and an Impoffumation of the Gall-Bladder, difcbarging upzeards of 18 Quarts of bilious Matter in 25 Days, zuitbout any apparent Defeef in the animal Functions, by Mr Amyand,

$$
142
$$

2. Some
3. Scime Obfervations on the above Cafe, by Dr Stuart, Page 146
4. An Account of the Extirpation of Part of the Spleen of a Man, by Mr Fergufon,
III. The Cafe of an extraordinary Dropfy, by Dr Short,

150
IV. An Afcites cured by tapping, by Dr Banyer,

151
V. An Account of what was obferved upon opening a Perfon wibo bad laken fiveral Ounces of crude Mercury internally; and of a Plumb-ftone lodged in the Coats of the Rectum, by Dr Madden, $\quad 15^{3}$
VI. The Gare of a Fijl taken out of an

Ulcer in tbe Rectum, by Mr Sherman,
VII. Of an inguinal Rupture witb a Pin in the Appendix Creci incrufted with Slone; nid forse Obfervations on Wounds in the Guts, by Mr Anyand, ibid.
VIII. A Ruplure of the lleum, occafioned by an external Contufion, by M. Wolfius,

160
IX. 1. Of a Bubonocele, or Rupture in the Groin, and the Operation suade upon it, by Mr Amyand,
ibid.
2. \sim by Dr Huxham, $\quad 164$
X. An Obfervation on the fingular Confcquences of an incomplete Hernia, and on the Functions of the Intefines expofed 10 Sight, by M. le Cat, 166
XI. A Cafe of an extraordinary Stone voided by the Anus, by Mr Mackarnefs,

170
XII. Of Stones in the Stomach and Kidnies, occafioned by an immoderate UJe of Crab's Eyes, and olber terreftrial Ab. Sorbents, by Dr Breynius, $\quad 171$
XIII. I. Defcription of a very extrcoordi"ary Stone or Calculus taken out of the Bladder of a Man after Death, by the Marquis de Caumont, $\quad 172$
2. An Account of the Cafe above-mentioned, by M. Salien, \quad ibid.
3. Sir Hans Sloane's Anfwer to the Marquis de Caumont's Letter concerning the Stone, Page 174
XIV. 1. A Calculus mating il's Way througb an old Cicatrix in the Perinæum, by Dr Hartley, 175
2. An Addition, by Dr Mortimer, 176 XV. An Account of a Stone or Calculus making it's Way aut tbrough the Scrotum, by Mr Sifley, $\quad 17^{6}$ XVI. An Account of feveral Stones found in Bags, formed by a Protrufion of the Coats of the Bladder, by Mr Nourfe, ibid.
XVII. The Cafe of Will. Payne, with webat appeared upon examining bis Kidnies and Bladder, by Mr Bell, 177
XVIII. An Account of a very large Stone zoided by a Woman tbrough the urinary Paflage, by Dr Leprotti,

179
XIX. A Defcription of a Catheter, made to remed'y the Inconveniences wbich occafioned the leaving off the bigh Operation for the Stone, by Mr Cleland, ibid. XX. 1. Concerning bairy Subftances voided by the urinary Paffages; by Mr Powell, 180
2. Sir Hans Sloane's Anfieer to Mr Powell, 182
3. \quad by Mr Knight, $\quad 183$ 4. a Remark, by Dr Mortimer, 184
XXI. Account of a large glandulous Tumour in the Pelvis; and of the pernicious. Effects of crude Mercury given inwardly 10 the Patient, by Dr Cantwell, ibid.
XXII. An Account of a Pin taken out of the Bladder of a Cbild,

185
XXIII. The Figure of the Canal of the Urethra determined by folid Injeetions, by Dr le Cat, $\quad 186$
XXIV. A large Quantity of Matler or Water contained in Cyftis's or Bags adbering to the Peritonxum, and not cosm-

The CONTENTS.

xxiii
municating with the Cavity of the Ab . domen, by Dr Graham, Page 187 XXV. An Obfervation of Hydatides voided Per vaginam,

188
XXVI. An Obfervation on Hydatides, with Conjectures on their Formation, by M. le Cat,

189 XXVII. An Account of a large bony Subfance fount in tbe Womb, by Dr Hody,
XXVIII. Of a Woman who bad a Fcetus in ber Abdomen for nine Years, by Mr Bromfield,

19:

CHAP. VI.

The Humours and General Affections of the Body.

1. A Obfervation of a white Liquor refembling Milk, which appeared inftead of Serum, feparated from the Blood after it bad flood fome Time, by Dr Stuart,

193
1I. An extraordinary Hamorrbage, by Dr Banyer,
ibid.
III. Explanation of an EJJay on the UJe of the Bile in the Animal Ciconomy, by Dr Stuart,

195
IV. 1. An Ascount of a Woman 68 Years of Age, who gave Suck to two of ber Grand-Cbildrem, by Dr Stack, 206
2. Of a Man wobo gave Suck to a Cbild, by the Bißop of Cork,

208
V. Concerning fome Cbildren inoculated with the Small-Pox at Haverford-Weft in Pembrokefhire, by Mr Davis, ibiá.
VI. A Paragraplo taken from Dr Timoni's Hiftory of tbe inoculated SmallPox, communicated by Dr Horfeman, 210
VII. A Letter concerning a Perfon who made bloody Urine in the Small- Pox, and recovered, by Dr Dor, \quad ibid.
VIII. The Cafe of Mr Cox, Surgeon at Peterborough, wbo fell into a pefilential Fcver, upon tapping a Corpfe lately dead of a Droply,

Page 212
IX. An Exfiralt from the Books of the Town-Council of Edinburgh, relating to a Difeaje ibere, Juppofed to be venereal, in 1497, by Mr Macky, 213 X. An extraordinary Venereal Cafe, by Dr Huxham, 214 Xi. The Cafe of a cataleptic Woman, by Mr Reynell, 216
XII. Experiments made upon mad Dogs with Mercury, by Dr James, 218
XIII. I. Of curing the Bite of a mad Dog, by Dr Mortimer, $\quad 221$
2. An Addition to the foregoing Article, by the fame,

222
XIV. The Cafe of a Lad bitten by a mad Dog, by Mr Nourfe, ibid.
XV. Concerning the Efferis of Dampier's Powder in curing the Bite of a mad Dog, by Mr Fuller, 223
XVI. A Cafe of a Perfon bit by a mad Dog, drawen up by Dr Hartley and Mr Sandys,

224
XVII. Two Hifories of internal Cancers, and of wobat appeared upon Diffection, by Dr Burton, 225
XVIII. Various Medico-cibirurgical Ob. Servations, by Dr Schlichting,

232
XIX. Twio Anatomico-praEtical Obfervations, by Dr Bafter, $\quad 235$ XX. Ant extraordinary Tumour of the Tbigb, by Mr Malfaguerat, $\quad 236$ XXI. The Case of Mary Howell, who bad a Needle run inio ber Arm, and came out at ber Breaft,
XXII. 1. Concerning a Man webo lived 18 Years on Water, by Mr Campbell, itid.
2. A fartber Aicount, by the fame, 240 XXIII. Concerving the Caferian Operasion performed by an ignorant Butcher, by Dean Copping.
XXIV.

XXIT, Of a Givl 3 lears old, who remained a Quarter of an Hour under Waler sxithoilt diveraing, by Dr Green, Page 241
XXV. An Account of a Treatife intitled, Opufculum de Morbo Colico Damnoniorum, coque maxime epidemico, annexcd to a Book intitled, Obfervationes de Aëre, \&xc. Auctore Joanne Huxham, M. D. by Dr Stack,

242
XXVI. An Account of a Book intilled, Diff. epiftolica de differentiis quibufdam inter hominem natum \& nafcendum intervenientibus, deque veftigiis Divini Numinis inde colligendis. Autore Chriftoph. Jacobo Trew; by Dr Harcley,
ibid.

ICHAP. VII.
The Bones, Joints, and Muscles.

1. 2. Oncerning an extraordinary Skeleton, by the Bijhop of Cork, 245
1. - by Dian Copping, $\quad 247$
2. by Mrs ibid.
3. An Account of Tuinours, which rendered the Bones Joft, by Mr Pott, ibid. III. The Bones of a Woman growing Joft and flexible, by Mr Bevan, 251 IV. A Cafe of extraordinary Exoftofes in tbe Back of a Boy, by Mr Freke, 252
V. 1. A large Piece of the Thigh-Bone, sobicb rwas taken out, and i:'s Place Jupplied by a Callus, by Dr Richardfon, ibid.

2. The Caje, by Mr Wright,

253
VI. Tweo exitraordinary Cafes in Surgery, by Mr Sherman, \quad ibid.
VII. The Defcription and Draught of a Machine for reducing the Fraetures of the I'bigh, by Mr Ettrick, $\quad 254$

YIII. I. The Ambe of Hippocrates for reducing Luxations of the Arm with the Sboulder, reEtified by M. le Cat, 256 2. Tbe Defcription of an Inftrument for reducing a diflocated Sboulder, invonied by Mr Freke, $\quad 264$
IX. Ain Account of the Man wobofe Aryis with the Sboulder-Blade were torn off by a Mill, by Mr Belchier, 266°
X. Of the Structure and Dijenfes of articulating Cartilages, by Mr Hunter, 267
XI. An Account of a very extraordinary Tumour in the Knee of a Perfon, whofe Lcg was taken off, by Mr Peirce, 271
XII. Defcription of a Macbine for dreffing and curing Patients, who are very unwieldy, and under the Surgeons Hands for fome Ailment on the Back, the Os facrum, $\mathrm{v}^{\text {c }}$. or are apprebenjive of it, by M. le Cat,
27.2
XIII. An Account of a Book intitled, Ofteographia, or the Anatomy of the Bones, by W. Chefelden, E'c. by $M r$ Belchier,

274
XIV. Tbree Lectures on mufular Mo: tion, read before the R. S. by Dr Stuart,

CHAP. VIII.

Monsters.
I. COME Reflecions on Generation, 1 and on Monfters; with a Defcrip: tion of fome particular Monfers, by M. Superville, 304
II A Bregma of a gigantic Magnitude, by $M r$ Klein, 311
III. Concerning a monfrous Cbild boin of a Women under Sentence of Tranjportation,

313
IV. An Account of a snonftrous Boy, by" Dr Cantwe!!,
V. An Account of a monftrous Foetus re. Sembling a booded Monkey, by Mr Gregory,

Page 314
VI. A remarkable Conformation, or Lufus Nature, in a Cbild, by Mr Warwick,
 VII. A Cbild of a monftrous Size, by M. Geoffroy, 1 mathe 317 VIII. Account of a Book intitled, A Mechanical Critical Inquiry into the Nature of Hermaphrodites, by Dr Parfons, ibid.

> C H A P. IX.

Period of Human Life.

1.4HE Bills of Mortatity for the Town of Drefden for a wibole Century, containing the Numbers of Marriages, Birtbs, Burials, and Communicants; communicated by Sir Conrad Sprengell,

318
II. The Bills of Mortality for the Imperial City of Augiburg, from 1501101720 inclufive, containing the Number of Birtbs, Marriages, and Burials; communicated by the fame,

322
III. Remarks upon the aforefaid Bills of Mortality, by Mr Mattland, 325
IV. An Account of the Biribs and Burials, with the Number of the Inbabitants, at Stoke Damerell in the County of Devon, by Mr Barlow, \quad ibid.
V. 1. A Bort Account of Mr Kefferboem's Efay upon the Number of People in Holland and Weft Friezland, as alfo in Harlem, Gouda, and the Hague'; draron from the Bills of Birtbs, Burials, or Marriages, in thofe Places, by Mr Eames,
itid.
2. An Anfwer to that Part of $M r$ Kefferboem's Effay, wibich treats of the Number of the Inbabitants of London, by Mr Maitland,
VOL. VIII.
3. ExtraEl by John van Rixtel, F. R.S. of $M r$ Kefferboem's fecond and third Treatife, confirning the Manner bow to know the probable Quantily of People in the Provinces of Holland and Weft Friezland, befides a Foundation on which to prove the probable Lives of Widows, and likererife a Rule wobereby 10 know the Duration of Marrigges,

333

C H A P. X.

Pharmacy and Chymistry.
I. A An:idote to the Indian Poifon I. in the Weft-Indies, by Dr Milward, 11. I. Of Ambergris, by Dr Newman, 2. The fame continued Part 339
3. The fame continued, Parl III, 35^{8}
4. An Account of the Experiments relating 10 Ambergris, made hy Mr Browne and Mr Godfrey Hanckewitz, witb Mr Newnan's Vindication of his Experiment; drawn up by Dr Mortimer, 366
III. A Melbod of making Sonp-lees and bard Soap for medicinal Ujes, by M.

IV. Mr Orme's paicral Syrup, frowr Calcurte,
V.ar. An Acoount of tbe Experiments Sewn by Dr Frobenius at a Meeting of the R. S. with the Spiritus Vini ÆitheIreus, and the Phorphorus Urinz, ly Dr Mortimer, n zallaida 372
2. Some Experiments on the Phofphorus Urinæ, webicb may ferve as an Explanation 10 the preceding, with feveral $O \dot{b}$ Servations tending 10 expluin the Nature of that wonderful chemical Production; by Mr Godfrey Hunckewitz, $\quad 373$ 3. Abftacts of tike original Papers communicated to the R. S. by Dr Frobenius, [d] contering

xxvi

concerning bis Spiritus Wini Ætherevis, collezted by Dr Mortimer, \quad Page 379 VI. Of Pholplorus, by M du Fay, 382 V1I. 1. Of Camphire of Thyne, by Dr Newinan,
ibid.
2. Extract of a Letter from the fame 1 :lthor to the Prefident of the R. S. 393 VIII. Concerning Mr Scignette's Sal poJychreftus Rupellenfis, and fome otber chemical Salls, by M. Geolfroy, ibid.
IX. An Acrount of Same Oil of Saffafras cryfalizid, by Mr Maud. Page 394 X. An Experiment concerning the Spirit of Corls, ly Dr Clayton, XI. A ibemian! Experiment by Mr Mas firving to illuftrate the Phenomenon of the inflammable Air, Soewn to the R. S. by Sir James Lowther, 396

PAR T IV.

CONTAININGTHE

HISTORICAL and MISCELLANEOUS PAPERS:

CHAP. I .

History and Antiquities.

I.ROPOSALS for the Improvement of the Hiftory of Ruffia, by publifbing, from Time to Time, Separate Pieces 10 Jerve for a Collestion of all Sorts of Memoirs, relating to the Tranfactions and State of that Nation, by Mr Muller,
11. An ExtraEE of a Topographical Account of Bridgnorch in the County of Salop, commusicated to the R. S. by Mr Stackhoure; containing an Account of the Situation, Soil, Air, Birtbs, and Burials, of tbat Place, and of fome Tumuli Sepulchrales near it, 402
III. An Account of a Bock prefented to the R. S. and inticled, Notitia Hungarix novæ Hifturico-Geographica, \&c. Auct. Matth. Belio ; by Dr Pearce, 406
IV. An Accoun: by Dr Pearce of a Book inititled, Reflections Critiques fur les Hiftoires des anciens peupies, \&rc. 407
V. An Abfract of a Natural Hifory of Greenland, by Hans Egedius, communicaied by Dr Green, 409
VI. Antiquities of Pruffia, by Mr Klem, 414
VII. Concerning a golden Torques found in England, by Sir Tho. Moftyn, 416 VIII. Defcription of an antiqua Metal Stamp in the Collietion of the Duke of Richmond, being one of the Infances bow near the Romans bad arrived to the Art of Printing, with fome Remarks, by Dr Mortimer,

417
IX. Concerning two Pigs of Iead found near Ripley, witb a Roman Infcription on them, by Mr Kirhaw, 419
X. 1. Concerning an ancient Date found at Widgell-Hall in Hertfordfhire, by Mr Cope,
2. Remarks upon tbe fame, by Mr Ward,
XI. I. Some Confiderations on the Antiquity and UJe of the Indian CkaraEEErs or Figures, by H ir Cope,

426
2. Kemarks
2. Remarks upon the fame, by Mr Ward, Page 429 XII. An Account of an ancient Date in Arabian Figures upon the Nortb Front of the Parifh-Cburch of Rumfey in Hamphire, by Mr Barlow, 432 XIII. A Copy of an ancient Cbirograph, or Conveyance of Part of a Sepulcbre, cut in Marble, lately brought from Rome, and now in the Polfefion of Sir Hans Sluane, with fome Obfervations upon it, by Mr Gale, $\quad 433$
XIV. An Explanation of the Runic Cbaracters of Helfingland, by Mr Celfius, XV.
XV. An Account of the Difcovery of the Remains of a City under Ground near Naples, communicated to the R.S. by Mr Sloane,
XVI. 1, and 2. Extratis of 2 Letters from S. Camillo Paderni at Rome, to Mr Ramfay, concerning fome ancient Statues, Pittures, and otber Curiofilies, found in a fubterraneous Toren lately dijcovered near Naples, itid.
3. Extrate of a Letter from Mr Knapton upon the fame Subject,
44^{2}
4. Extrall of a Letter from wh Crifpe upon the fame Subject, 444
XVII. An Attempt to examine the Barrowes in Cornwall, by Dr Williams, 445
XVIII. Concerning the Remains of a Roman Hypocauftum, or Sweating-Koom, difcovered under Ground at Lincoln, by Mir Sympron,

455
XIX. Concerning the Remains of an ancient Temple in Ireland, of the fame Sort as the famous Stone-Henge, and of a Stone Hatchet of the ancient Irifh, by the Bijloop of Cork,

C H A P. II.

Voyages and Travels.
1

OBfervations made in a fourney over the Tyrol Alps, by Dr Ehrard, Page 462 11. A Letter from Mr Clayton vo Dr Grew, in Anfuer to feveral शueries re. lating to Virginia, fent to bim in 1687; communicated by the Bibop of Cork,

465

C H A P. III.

Miscellaneous Papers.

'E XTRACTS of 2 Letters from Dr Lining, Pbyafician at CharlesTown in S. Carolina, to Dr Jurin, giving an Account of Statical Experiments made feveral Times in a Day upon bimjelf, for one wbole Year, accompanied with Meteorological Obfervations: To wbich are fubjoined, 6 Several Tables, deduced from the wabole Year's Cour fe, 475
II. An Account of the Standard Meafures preferved in the Capitol at Rome, by Mr Folkes, 486
III. An Account of the Analogy betwixt Englifh Weigbts and Meafures of Capacity, by Mr Barlow, 488 . IV. An Account of the Proportions of the Englinh and Firench Menfures and Weights, from the Standards of the fame, kept at tbe Royal Sociely, 489
V. An Account of a Comparijon lately made by fome Gen:lemen of the R.S. of the Standard of a Yard, and the feveral Weights lately made for their Ufe; witb the original Standards of Meafures and Weights in the Exchequer, and fome oibers
others kept for public Ufe, at GuildHal, Founders: Hall, the Tower, Ec.

Page 491
VI. A Metbod of making a cold-coloured Glazing for Earthen Ware, by Mr Heinfius, lour Th 499 VII. The Defcription and Ufes of the Steel. rard Balance-Swing, mvented and made by Mr Sheldrake, ibid.
VIII. An Account by Dr Maffey of a Book intitled, Locupletiffimi Reruns Natucosalium Thefauri accurata Defcriptio, \& c. Vol. I. Amiterd. in Folio, 1734° An exabl - Defrription of the principal Curiofties of Nature in the large MuSeum of Albertus Seba, F. R.S. 50 I
 est गूूL C H A P. IV.
 A Conjanntion of Venus with the Moon, Weatber at Plymouth, by Dr Huxham, ibid.
An Account of an Eartbquake at Scarborough on Dec. 29, 1737, by Mr Johnfon, 502 An Account of fome remarkable Stones taken out of tbe Kidnies of Mrs Felles, upon opening ber Body after ber Deceose. by Mr Sherwood, ibid.

THE

PHILOSOPHICAL TRANSACTIONS

(From the Year 1732, to the Year 1744)
AB RI DG E D,
A ND
Difpofed under General Heads, The Latin PAPERS being tranflated into Englifb.

By $\mathcal{F} O H N M A R T Y N$, F.R.S.
Profeffor of Botany in the Univerfity of Cambridge.

> VO L. VIII. PAR TI.

CONTAINING THE

MATHEMATICAL PAPERS.

$$
L O N D O N:
$$

Printed for W. Innys, C. Hitch, T. Astley, in Pater-nofer-Row, T. Woodward, C. Davis in Holboktr, and R. Mangy and H. S. Cox on Ludgate-Hill. MDCC XLVII.

$$
r^{2} \text { cta aH shannad asbars bologtice }
$$

I TAP.Y .IVY IOV

 2SG9Aq IADITAN直HTAM

$$
\begin{aligned}
& \text { UA JHTO CO.TIHT } \\
& \text { CADOMDABMAS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (I H D) } 1 \text { \& T A } \\
& \text { く切 }
\end{aligned}
$$

Philofophical Tranfactions

A B R I D G E D.

PARTI.

CONTAININGTHE

Mathematical PAPERS.

C H A P. I.

Algebra, Aritbmetick, Fluxions, Geometry.

HAVE explained, in the Appendix to Saunderfon's Algebra, my Method of extracting any Root from the Binomial $a-1-\sqrt{-b}$; the reading of which has caufed my learned Friend, W. Jones, Efq; F.R.S. to defire me to perform the fame in the noffible Binomial $a+\sqrt{+b}$. I fhall obey his Commands in this particular, though I am very ferfible, that this has been done already by Sir I. Newton and others.

Of the Reduction of Radicals 10 more fimple Terms, by $M r \mathrm{~A}$. de Moivre, F.R.S. N°. 451, p. 463.
Dec. $173^{8 .}$
To reduce the Binomial $\sqrt[n]{a+\sqrt{ } b}$ to more Sinnple Terms.
Prob. I.
Suppofe that this Binomial, involved with it's general Radicality, can Solution. be reduced to the other Binomial, freed from it's general Radicality; now to find each Quantity x and y, try whether the Sum of the VOL. VIII. Part i.

Of the Reduction of Radicals.

Binomials $\sqrt[n]{a+\sqrt{b}}+\sqrt[n]{a-\sqrt{b}}$, which may be done by a Table of Logarithms, makes nearly a whole Number. If it be fo, put $2 x$ equal to this whole Number: then fee whether $\sqrt{a a-b}$ is a whole Number, if it is, pur n equal to this new Integer, and there will be $y=x x-m$, wherefore the given Binomial will be reduced to the given Form. But beforc we proceed to the Demonftration, it will not be improper to illuftrate the thing by two or three Examples.

Example 1. Let the Binomial $\sqrt[2]{54+\sqrt{980}}$ be reduced to a more fimple Tern.
Put $a=54, b=980$; then $\sqrt{ } b=\sqrt{ } 980=31,3049$ nearly, whercfore $a+\sqrt{ } b$ will be $=85,3049$, and $a-\sqrt{ } b=22,695 \mathrm{r}$.
The Square Root of the firt Number is very near 9,236 .
The Square Root of the latter is 4,763 .
The Sum of the Roots is $\mathbf{I} 3,999$, to which the whole Number 14 is very near ; thercfore put $2 x=14$, or $x=7$; now fince $y=x x-3 n$, and $m=\sqrt{ } a a-b=\sqrt{2916-980}=\sqrt{1936}=44$; therefore we fhall have $y=49-44=5$, and fo the Binomial reduccd will be $7+\sqrt{5}$.

Example 2. Let $\sqrt[3]{45+\sqrt{1682}}$ be reduced to a more fimple Term.
Put $a=45, b=1682$, therefore $\sqrt{ } b=41,01219$ very nearly; therefore we thall have $a+\sqrt{b}=86,01219$, and $a-\sqrt{ } b=3,8971$.

The Cube Root of the firt Number is 4,4142 ; the Cube Root of the latter is 1,5857 ; the Sum of the Roots is 5,99991 , which is very near the whole Number 6 ; therefore fay $2 x=6$, or $x=3$; but $y=x x$ - m; but $m=\sqrt[3]{a a-b}=\sqrt[3]{343}=7$; and fo $y=9-7=2$; therefore the Binomial reduced is $3+\sqrt{ } 2$.

Exapmie 3.
3
Let $\sqrt{170+\sqrt{1825}}$ be reduced to a more fimple Term.
Put $a=170, b=18252$, then we fhall have $\sqrt{ } d=135,1$ very nearly; wherefore we Mhall have $a+\sqrt{ } b=305,1$, and $a-\sqrt{ } b=34,9$.

The Cube Root of the firft Number is 6,73 very nearly.
The Cube Root of the latter is 3,26 very nearly.
The Sum of the Roots is 9,99 , which is very near the whole Number 10; therefore fay $2 x=10$, or $x=5$, we have alfo $y=x x-m$; but $m=\sqrt[3]{a a-b}=22$; thercfore $y=25-22=3$; therefore the Binomial reduced is $5+\sqrt{ } 3$.

Take any Binomial, ns $\sqrt[3]{a+\sqrt{ } b}$, which fuppofe reducible to the Demonfration: Binomial $x+\sqrt{ } y$; therefore

$$
\begin{aligned}
& x^{3}+3 x x \sqrt{ }+3 x y+y \sqrt{ }=a+\sqrt{ } b ; \\
& \text { fay } x^{3}+3 x y=a, \\
& \text { and } 3 x x \sqrt{ }+y+y=\sqrt{ } b .
\end{aligned}
$$

Whatfoever the Index of the Radicality fhall be, from the Square of the firft Part fubtract the Square of the latter; now the Square of the former Part will be

$$
x^{6}+6 x^{4} y+9 x x y y=a a ;
$$

The Square of the latter $9 x^{4} y+6 x x y y+y^{3}=b$;
The Remainder will be $x^{6}-3 x^{4} y+3 x x^{y} y-y^{3}=a a-b$, extract from both the Root, of which the Index is n, that is, in this Cafe_{2} the Cube Root ; therefore we fhall have $x x-y=\sqrt[3]{a a-b}$, or to the Faitum $\sqrt[3]{a a-b}=m$; we fhall have $x x-y=m$; and therefore $y=x x-m$; now in the abovementioned Equation, namely, $x^{3}+$ $3 x y=a$, for y fay $x x-m$, and you will obtain the Equation $4^{x^{3}-}$ 3 m $x=a$; here ftop a little.

Now refume the Equation $2 x=\sqrt[3]{a+\sqrt{b}}+\sqrt[3]{a-\sqrt{b}}$, and fup. pore you would ftrike out the Radicality $\sqrt[3]{ }$;

In order to this, make $a+\sqrt{ }+\sqrt{ }=z^{3}$,

$$
\text { and } a-\sqrt{ } b=v^{3} \text {, }
$$

you will then have thefe two new Equations,

$$
\begin{gathered}
z^{3}+v^{3}=2 a \\
z+v=2 x \\
z^{3}+v^{3} a \\
\hline \text { hat } z+v 0
\end{gathered}
$$

It follows therefore that $z+v$ o
But $\frac{z^{3}+v^{3}}{z+v}=z z-z v+v v ;$ therefore $z z-z v+v v=\frac{6}{x}$ befides $z z+2 z v+v v=4 x x$.

Take the Difference of thefe Equations, you will have $3 z v=4 x x$ $-\frac{a}{x}$; but $z_{3} v_{3}=a a-b$; therefore $z v=\sqrt[3]{a a-b}$; but if you fay $=m$, then it will be $3 m=4 \times x-\frac{a}{x}$, or $4 x^{3}-3 m x=a$, which is the very Equation which came out before, and it will return to the fame in every Cafe of Radicality whatfoever.

Of the Reduction of Radicals.

If therefore you would try whecher the Expreffion $\sqrt[n]{a+\sqrt{b}}$ can be reduced to a more fimple Term; fay $2 x=\sqrt[3]{a+\sqrt{b}}+\sqrt[3]{a-\sqrt{b}}$; fay alfo $\sqrt[n]{a a-b}=m$, and $y=x x-m$; and the Expreffion reduced will be $x+\sqrt{ }$, if fo be thefe can be done by integral, or at leaft rational Quantities.

But in cafe thefe fhould not be integral, or rational Quantities, yet the Rule which we have delivered, will be of Ufe in the Solution of Equations of any Kind, as will hereafter be feen.

In the mean time, this Dube may perhaps arife, whether this Rule will cbeain univerfally in any Powers whatfoever of a Binomial; for Inftance, whether in any Binomial whatfoever, of which the Index is n, if from the Square of the Sum of thofe Terms, which are in unequal Places, you fubtrict the Square of the Sum of thofe which are in equal Places, the Remainder will be another Binomial, of which the Index alfo will be n.

To this I anfwer, that it has been obferved by many before me, and therefore may be looked upon as confirmed by Experiments; but however, it may not be amifs to produce a Demonftration of it, which I do not remember to have feen any where.

Take the Binomial $\overline{x+y}{ }^{n}$ and expand it ; take alfo another Binomial $\overline{x-y}{ }^{n}$, which expand in like Manner ; fay $\left.\overline{x+y}\right)^{n}=s$, and $x-y^{n}=p$; now it will appear at frit Sight, that, if the expanded Binomials are joined by Addition, their Sum will be equal to double the Sum of the unequal Terms of the firt Binomial ; but if the latter be fubtracted from the former, that then the Remainder will be equal to double the Sum of the equal Terms of the firft Binomial ; hence it follows, that $\frac{s+p}{2}$ is the Sum of the unequal Terms; and $\frac{s-p}{2}$ the Sum of the equal Terms.

From the Square of the firf Sum, that is, from the Square ss+2ps+pp
fubtract the Square of the latter, namely, 4
$\frac{s s-2 p s+p p}{4}$ the Remainder will be $\frac{4 p s}{4}=s p=\overline{x+y}{ }^{n} \times$ $x-\left.y\right|^{n}=x x-y y^{n}$ of which the Root (the Index of which is n)
is $=x x-y y$. $=m$, and interpret n fliccefively by $1,2,3,4,5,6,7,8, \mathcal{E}^{3} c$. there will arife the following Equations.

1. $x=a$.
2. $2 \% x-m=a$.
3. $4 x^{3}-3 m x=a$.
4. $8 x^{4}-8 m \times x+m m=a$.
5. $16 x^{5}-20 m x^{3}+5 m m x=a$.
6. $32 x^{6}-48 m x^{4}-18 m m x x-m^{3}=a$.
7. $64 x^{7}-112 m x^{5}+56 m m^{3}-7 m^{3} x=a, \& c$.

Now thefe Equations are of the fame Form as the Equations to the Cofines, though they are naturally quite different.

Let r be the Radius of a Circle, l the Cofine of any given Arch, x the Cofine of another Arcl, which may be to the firft, as I to n.
I. there will be $x=l$.
2. $2 \times x-r r=r l$.
3. $4 x^{3}-3$ rr $r=r r$.
4. $8 x^{4}-8 r r x x+r=r^{3} l$.
5. $16 x^{5}-20 r r x^{3}+5 r^{4} x=r^{4}$.
6. $32 x^{6}-48 r r x^{4}+18 r^{4} x x-r^{6}=r^{5}$ l.
2. $64 x^{7}-112 r r x^{5}+5^{6} r^{4} x^{3}-7 r x=r^{5} l, 8 \mathrm{c}$.

But the general Form of thefe is by putting for the Sake of Brevity $r=1$
$2^{n-1} \times x^{n}-2^{n-3} \times \frac{n}{1} x^{n-2}+2^{n-5} \times \frac{n}{1} \cdot \frac{n-3}{2} x^{n-4}-2^{n-7}$
$\times \frac{n}{1} \cdot \frac{n-4}{2} \cdot \frac{n-5}{3} x^{n-6}+2^{n-9} \times \frac{n}{1} \cdot \frac{n-5}{2} \cdot \frac{n-6}{3} \cdot \frac{n-7}{4} x^{n-8} \& c_{n}$
$=l$.
The Difference of thefe Equations confifts chiefly in this, that the firft are derived from the Equation $2 x=\sqrt[n]{a-1-\sqrt{b}}+\sqrt[n]{a-\sqrt{b}}$, but the latter from the Equation $2 x=\sqrt[n]{a+\sqrt{-b}-1} \sqrt[n]{a-\sqrt{-b}}$, and if this latter Equation be freed from it's general Radicality, we flall ottain Equations to the Cofines.

Let there be therefore the Equation $2 x=\sqrt[3]{a+\sqrt{-b}}+\sqrt{a-\sqrt{-b}}$, which muft be freed from it's radical Sign ψ^{3}.

Of the Reduction of Radicals.

Say $\sqrt[3]{a+\sqrt{-b}}=z$, and $\sqrt[3]{a-\sqrt{-b}}=y$; fay aldo $z+v=2 \ldots$. I Hence you will have

$$
\begin{aligned}
& \text { 1. } z_{3}=a+\sqrt{-b} \\
& \text { 2. } v^{3}=a-\sqrt{-b}
\end{aligned}
$$

hence it will be $z^{3}+v_{3}=2 a$.
But $z+v=2 x$, therefore it will be $\frac{z^{3}+v^{3}}{z+v} \frac{a}{x} ;$
But $\frac{z 3+v 3}{z+v}=z z-z v+v v ;$ wherefore $z z-z v+v v$ will be $=\frac{a}{x}$.

But $z z+2 z v+v v=4 x x$; whence $3 z v=4 x x-\frac{a}{x}$; but now $z^{3} v^{3}=a a+b$.

Therefore it follows, that $z v$ is $=\sqrt[3]{a a+b}$; which if you make $=m$, therefore $4 x x-\frac{a}{x}$ will be $=3 m$, or $4 x^{3}-3 m x=a$.

Hitherto we have had two Kinds of Equations; the firf in which m was put $=\sqrt[3]{a a-b}$; the latter, in which it was $=\sqrt[3]{a a-b}$ Let us call the firft Hyperbolical, the latter Circular.

Prob. II.
To extract the Cube Root from an impofible Binomial, $a+\sqrt{-b}$.
Solution. Suppose that Root to be $x+\sqrt{-y}$, of which if you take the Cube, you will find it to be $x^{3}+3 x x \sqrt{-y}-3 x y-y \sqrt{-y}$.

Now put $x_{3}-3 x y=a$.

$$
\text { and } 3 \times x \sqrt{-y}-y \sqrt{-y}=\sqrt{-b} \text {. }
$$

Then by taking the Squares there will arife two other Equations;

$$
\begin{aligned}
& x^{6}-6 x^{4} y+9 x x y y=a a \\
& -9 x^{4} y+6 x x y y-y^{3}=-b .
\end{aligned}
$$

Now take the Difference of the Squares, there will be $x^{6}+3 x+y \cdot+3$ $a x y y+y^{3}=a a+b$; wherefore $x x+y$ is $=\sqrt[3]{a a+b}$: now fay $\sqrt[3]{a a-b}=m$, whence $x x+y$ will be $=m$, or $y=m-x x$; now in the Equation $x_{3}-x y=a$, inftead of the Quantity y, fubflitute it's Value $m-x x$, you will have $x^{3}-3 m x+3 x^{3}=a$, or $4 x^{3}-3 m x$

Of the Reduction of Radicals.

$=a$, which is the very Equation, which had before been deduced from the Equation $2 x=\sqrt[3]{a+\sqrt{-b}}+\sqrt[3]{a-\sqrt{-b}}$; but it does not follow, that in the Equation $4 x^{3}-3 m x=a$, the Value of the Quantity x may be known by the former Equation, as it confifts of two Parts, each of which includes the imaginary Quantity $\sqrt{-b}$; but this will be beft done by the help of a Table of Sines.

Therefore let the Cube Root be to be extracted from the Binomial $81-\sqrt{-2700} ;$ fay $a=81, b=2700$; now $a a+b=6561+$ $2700=9261$, of which she Cube Root $=21$, which fuppofe $=m$, fo that $3^{m x} x$ may be $=63 x$; the Equation therefore to be refolved, will be $4 x^{3}-63 x=81$, and if this is compared with the Equation to the Colines, namely, $4 \times 3-3 r r x=r r l ; r r$ will be $=21$; and therefore r will be $=\sqrt{21} ;$ and moreover, l will be $=\frac{a}{r r}=\frac{81}{21}=\frac{27}{7}$.

Therefore let there be an Arc of a Circle, of which the Radius is $=\sqrt{21}$, and the Cofine $=\frac{27}{7}$.
Lee the whole Circumference be C, take the Arches $\frac{A}{3}, \frac{C-A}{3}$, $\frac{\mathrm{C}+\mathrm{A}}{3}$, which will eafily be known by a Trigonometrical Calculation, efpecially if you make ufe of Logarithms, then the Cofines of the Arcs to the Radius $\sqrt{2 \boldsymbol{1}}$, will be three Roots of the Quantity x; wherefore fince y is $=m-x x$, they will therefore be fo many Values of the Quantity y, and fo the Cube Root will be triple of the Binomial $8 \mathrm{I}+\sqrt{-2700}$, but let us accommiodate it to Numbers.
Say as $\sqrt{21}$ to $\frac{27}{7}$, fo Radius of the Tables to Cofine of any Arc, to which Arc, fuppofe A to be equal; but that Arc will be found near $23^{\circ}, 42^{\prime}$; hence the Arc $\mathrm{C}-\mathrm{A}$ will be $327^{\circ}, 18^{\prime}$, and $\mathrm{C}+\mathrm{A} 392^{\circ}$, 4^{\prime}, the third Parts of which will be $10^{\circ}, 54^{\prime} ; 109^{\circ}, 66^{\prime} ; 13^{\circ}, 54^{\prime}$, but now as the firt of them is lefs than a Quadrant, it's Cofine, that is, the Sine $79^{\circ}, 6^{\prime}$, ought to be looked upon as pofitive; as both the others are greater than a Quadrant, that is, the Sines of the Arcs 19°, $61 ; 40^{\circ}, 54^{\prime}$, ought to be looked upon as negative; but by the Trigonometrical Calculation, it will appear that thefe Sines to Radius $\sqrt{21}$ will be $4,4999,-1,4999,-3,0000$, or $\frac{9}{2}-\frac{3}{2},-3$; whence there will be fo many Values of the Quantity y, namely all thofe which

Of the Reduction of Radicals.

which $m-x \times$ reprefents, that is, $21-\frac{81}{4}, 21-\frac{9}{4}, 21-9=\frac{3}{4}$,
75, 12, of which the Square Roots are $\frac{1}{2} \sqrt{ }, \frac{1}{2} \sqrt{ } 3,2 \sqrt{ }$; where4 fore 3 Values of the Quantity $\sqrt{-y}$ will be $\frac{1}{2} \sqrt{-3}, i \sqrt{-3}, 2 \sqrt{-3 ;}$ whence the three Values of the Quantity $\sqrt[3]{81+\sqrt{-2700}}$ will be $\frac{1}{2}+\frac{1}{2} \sqrt{-3},-\frac{3}{2}+\frac{5}{2} \sqrt{-3},-3+\frac{1}{2} \sqrt{ }-3$, and after the fame Manner of proceeding will be found three Values of the Quantity $\sqrt[3]{81-\sqrt{-2700},}$ namely thefe $\frac{9}{2}-\frac{1}{2} \sqrt{-3},-\frac{3}{2}-\frac{5}{2} \sqrt{-3},-$ $3-\frac{1}{2} \sqrt{-3}$.

There have been many, among whom was the famous Wallis, who have thought that thofe cubic Equations, which are referred to a Circle, may be folved by the Extraction of a Cube Root from an imaginary Quantity, fuch as, $8 \mathrm{I}+\sqrt{-2700}$, without having any Regard to the Table of Sines; but let them fay what they will, it is all a mere Fiction, and begging of the Queftion; for if you attempt it, you muft neceffarily run back to that Equation which you had taken to folve. But this cannot be done directly, without the help of a Table of Sines, efpecially if the Roots are irrational; and this has been obferved by many befure me.

Prob. III. To extract a Root, of which the Index is n, from ans impoffible Binomial

$$
a+\sqrt{-b}
$$

Solution. Let the Root be $x+\sqrt{-y}$, then having made $\sqrt[n]{a a+b}=m$; alfo $\frac{n-1}{n}=p$, defcribe, or fuppofe to be defcribed, a Circle, of which the Radius is $\sqrt{ } m$, and therein take any $\operatorname{Arc} A$, of which let the Cofine be $\frac{a}{m p}$; let C be the whole Circumference. Take to the fame Radius, Cofines of the $\operatorname{Arcs} \frac{\mathrm{A}}{n}, \frac{\mathrm{C}-\mathrm{A}}{n}, \frac{\mathrm{C}+\mathrm{A}}{n}, \frac{2 \mathrm{C}-\mathrm{A}}{n}, \frac{{ }_{3} \mathrm{C}-\mathrm{A}}{n}$ $3 \mathrm{C}+\mathrm{A}$ n

E E^{c}. till the Multitude of them is equal to the Number n; which being done, flop there; then all thofe Cofines will be fo many

Of the Reduction of Radicals.

many Values of the Quantity x; as for the Quantity y, that will always be y - $x x$.

I muft not omit, though it has been mentioned already, that thofe Cofines mult be reckoned affirmative, of which the Arcs are lefs than a Quidrant, and thote negative, the Arcs of which are greater than a Quadrant.

Any Equation of the Kind of tbofe mentioned above being given, to know Prob. IV. wobether the Solution of it is to be referred to the Hyperbolical, or to the Circular Species.
Let n be the higheft Dimenfion of the Equation ; divide the Co- Solution. efficient of the fecond Term by $2{ }^{n-3} \times n$, and let the Quotient be $=m$; now lee whether the Square a a be greater or lefs than the Power m; if the former Cafe fhall happen, the Equation is to be referred to the Hyperbola; if the latter, to the Circle.

Let the Equation $16 x^{5}-40 x^{3}-1-20 x=7$ be given, where $n=5$, $n-3$
therefore $2 \times n=20$: Divide 40 by 20, the Quotient is $2=m$, moreover $m^{n}=32$, and the Square $a a=49$; and as this is greater than the Power 32, the Confequence is, that the Equation is to be referred to the Hyperbolical Species; but as in the Hyperbolical Cafe it was put $\sqrt[5]{a a-b}=m$, it follows, that $a a-b=m^{5}=32$, and fo $b=a a-3^{2}=49-3^{2}=17$: But now the Root of the Equation in this Cafe is $\frac{1}{2} \sqrt[5]{7-1 \sqrt{17}}+\frac{1}{2} \sqrt[-5]{7-\sqrt{17}}$; but $\sqrt{ } 17=4,123105$ nearly, therefore $7+V_{17}=11,123^{105}$, and $7-\sqrt{17}=2,876895$; moreover, the fifth Root of the former Number will be found $=1,6221$, the fifth Root of the latter $=1,2353$, the Sum of the Roots $=2,8574$, the half Sum 1,4287 is the Value of the Quantity x in the given Equation.

Now let the Equation $16 x^{5}-40 x^{3}+20 x-5$ be given; in which m is $=2$, but $a=5$; it is plain that the Square $a a$ is lefs than the fifth Power of the Number 2; wherefore the Value of the unknown x cannot be obtained without the Quinquerection of an Angle; and this is performed by the Help of our general Theorem, mentioned before, by taking to the Radius $\sqrt{ }$ 2, the Arc of which the Cofine is $\frac{a}{m P}=\frac{a}{4}=\frac{5}{4}$, and that Arc will be found $27^{\circ}, 55^{\prime}$, nearly, of which the fifth Part is $5^{\circ} 35^{\prime}$; now if you take the Logarithm of that Coline of the Arc to Radius 1 , you will find it to be 9,9979347 ; but fince our Radius ought to be $\sqrt{ } 2$, add to the former Logarithm the Logasichm $\sqrt{ } 2$, that is 0,1515150 , the Sum will be 10,1484497 , out of

Of the Reduction of Radicals.

which if you take 10, the Remainder, namely, 0,1484497 , will be the Logarithm of the Number fought, which will therefore be 1,4075 very nearly, and in the fame Manner the other four Roots may be found.

Some few things remain to be obferved, which I fhall add in this Place.
If the Equation is of the Hyperbolical Kind, and befides n is an odd Number, there will be only one poffible Root, the reft will be impoffible; but if 12 is an even Number, there will be only one Value of the Square $x x$, the reft are impofible.

If the Equation is of the circular Kind, all the Roots will be pofible.

In order to know how many affirmative Roots there will be, and how many Negative, in Equations to Cofines, Jet this Rule be obferved.

If n is an cven Number, there will be as many affirmative Roots as negative.

If n is an odd Number, but fuch that $\frac{n-1}{2}$ is an even Number, the Number of Affirmatives will be $\frac{n-1}{2}$, the Number of Negatives $\frac{n+1}{2}$.

But if $\frac{n+1}{2}$ is an odd Number, the Number of Affirmatives will be $\frac{n+1}{2}$, of Negatives $\frac{n-1}{2}$.
II. Every Index is either Integer or Fraction; and thefe are either pofitive or negative. I. If the Index is an Integer and pofitive, then to raife the Binomsial to a Power, of which the Index is m, is nothing but writing the given Binomial, as offen over as there are Units in m, and to draw all thefe Binomials in their Turns.
2. If the Index is a Fraction and politive, to raife the Binomial to the Power $\frac{r}{n}$ is to raife the given Binomial to the Power r, and, this Power being given, to feek the Quantity, which being given to the Power n, equats the Power of the given Binomial r.
3. But when the Index is negative, whether it is an Index or a Fraction, to raife the Binomial, we muft do as in N°. 1 , or 2, and then Unity is to be divided by the Power found.

I take a Binomial $p+q$, that it may flew me any Polynomial.

Between p^{m} and q^{m} there are as many Geometrical Means, in the Ratio $p \cdot q$, as there are Units in $m-1$.
Being to find thecie Terms, I note that p^{m} is to q^{m} in a compound Ratio of $p^{m} .1$, and $1 \cdot q^{\prime \prime \prime}$, alfo p to q has a Ratio compounded of $p .1$, and of 1.2 ; but if there are two Sericfes of Powers, in one of which, the Indices of the Power p decreafe in the fame arithmetical Proportion, of which the Difference is 1 , by which the Indices of q increafe in the fecond Series, there will be had a Series of continual Proportionals in the Ratio p. 1 , and $\mathrm{I} . q$.

$$
\begin{gathered}
\text { So } p \cdot 1: p^{m} \cdot p^{m-1} \cdot p^{m-2} \cdot p^{m-3} \cdot p^{m-4} \cdots \cdot p^{m-n}=p^{0}=1 \\
1 \cdot q:: 1 \cdot q \text {. } q^{2} \cdot q^{3} \cdot q^{+} \cdot: \cdot: \cdot: q^{m} \text {. }
\end{gathered}
$$

Therefore the correfponding Terms being mulciplied in their Turns,

$$
p \cdot q:: p^{m} \cdot p^{m-1} q \cdot \quad p^{m-2} q^{2} \cdot p^{m-3} \cdot p^{m-4} q^{4} \cdots q^{m} .
$$

Now I fay, that $p+q^{m}$ is compofed of the Terms found above, as is eafily proved by their Generation.
Therefore all the Terms which are in $\overline{p-q^{m}}$ difpofed in Order, are in continual Proportion. And indeed any two Numbers following each other immediately, are as the firt Ternn of a Binomial Root to the fecond. This appears by the Generation, for p any Number of Times multiplied, is to q as many Times drawn into p as p, q.
Therefore the Number of all is $m+1$; but alfo in the decreafing arithmetical Series $m \cdot m_{1}-1, m-2 \ldots \ldots 0$ - the Terms are in Number $m+1$, or in the increafing $0.1 .2 .3 \ldots \ldots$. m; therefore the component Terms $\bar{p}+q q^{m}$ ought to have thefe Indices, or to be $p^{m}, p^{m-1} q \ldots \ldots{ }^{n}$
But by the Laws of Multiplication, the Number of the Terns ought to be $2^{m}>n+1$, therefore in this Factum fome repeated Terms murt be found.
The common Fazta (namely thofe of which the Multiplicator and Multiplicand confift of different Quantities) contain all the different Terms, becaufe they are all formed of different Factors. In Powers therefore, it muft be feen what Terms were different, unlefs the Fachors were always the fame, and how many of the different ones are made equal by the Reffitution of Letters; for fo we flall find how often every one ought to be repeated in the Power.

Now it appears, that if the Factors were always different, all the Terms alfo in the Product would be different.

But when the firt in the Product is made only of the firt of the Multiplicators, and the laft of them is made of the laft, thefe Faila will
always be different, though the making Binomials are the fame, becaufe the firft Term of the Binomial differs from the fecond.

But of the reft, fome may be made equal, becaufe they are compofed of the firtt of the Efficients multiplied into the fecond, and joined in different Manners.
It muft therefore be enquired, after how many different Manners the Quantities, of which the Number is given, may be joined.

In our Cafe, the Index of the Things is m, the different Things two, of which one is repeated s Times, the other t, fo that $s \frac{1}{\gamma} t=m$; therefore the Number of the Changes will be

$$
\frac{m \cdot m-1 \cdot m-2 \cdot m-3 \cdot \cdots \cdots 1}{s . s-1 \cdot s-2 \ldots 1 \cdot t \cdot t-1 \cdot t-2 \cdot t-3 \cdots 1}
$$

So let $t=1, s=m-1$, the Term will be $p \quad q$, and it's Cocfficient $\frac{m m-1 . m-2 \cdot m-3 \cdots 1}{m-1 . m-2 . m-3 \ldots 1}=m$.

Let $t=3, s=m-3$; it's Coefficient will be had $p^{m-3} q^{3},=$ $\frac{m \cdot m-1 \cdot m-2 \cdot m-3 \cdot m-4 \ldots \ldots 1}{1.2 .3 \cdot m-3 . m-4 \cdot m-5 \ldots \ldots .1}=\frac{m \cdot m-1 \cdot m-2}{1 \cdot 2 \cdot 3}$, and fo of the reft.

If any one fhall doube, whether the former Demonftration will prove that all the Terms are neceffarily formed after fo many Manners, as they may, and fhall contend that it only fhews that it may happen, I thall anfwer thus.

Certainly $\overline{p+q^{m}}=\overline{p-q} \times \overline{p+q}{ }^{m-1}$; but amongtt the Terms of this are $p^{m-n-1} q^{n}$ which will neceffarily be multiplied into p and q, and $p^{m-n-1} q^{n} \times p=p^{m-n} q^{n}=p^{m-n} q^{n-1} \times q$, therefore $p^{m-n} q^{n}$ by all poffible Ways will be made into $\overline{p+q} m$, if $p^{m-n-1} q^{n}$ and $n-n \quad n-1$
$p \quad q$ are generated as many Ways as poffible into $\overline{p+q} m-1$; which will neceffarily be, if $p^{m-n-2} q^{n}$, and $p^{m-n} q^{n-2}$ are in the lower Power $p+q^{m-2}$, and fo on always to the Square in which $p p$, $p q$, and $q q$ are had, formed after as many Ways as poffible, (4. II. Euclid.) therefore alfo in the former.

This reafoning requires, that I fhould fhew the fame alfo after a Manner fomething different.

We have now hewn that the Coefficient of the firft is Unity.

The fecond Term $p^{m-1} q$ is formed of $p^{m-2} q \times p$, and $p^{m-1} \times q$, that is, of the firf of the Roots multiplied into the fecond of $\overline{p+q} \mathrm{~m}^{-1}$, and of the fucond of the Root into the firft of $p+q)^{m-1}$, therefore in $\overline{p+q})^{m}$ there is $p^{m-1} q$ once more as often as the fecond is in $\overline{p+} q^{m-1}$ which is there once more as often as the fecond in $\overline{p+q})^{m-2}$ which again is there once more as often as the fecond is in $\overline{p+q} q^{m-2}$ and fo always till you come to $p \mathrm{~F}^{m-m}$, where the fecond is once; therefore you mult feek the Sum of as many Units as there are in m, which is m.
Alfo the third $p^{n-2} q q$ is formed of $p^{m-3} q q \times p$, the third of $\overline{p+q} q^{m-1}$ into the firt of the Root, and of $p^{m-2} q \times q$ the fecond of $\overline{p+q^{m-1}}$ into the fecond of the Root; therefore $\overline{p+q^{m}}$ will contain $p^{m-2} q q$ as often as the fecond is contained in $p+q^{m-1}$, that is $m-1$ times more, as often as the third is there, that is, as offen as the fecond is in $p-q^{m-2}(m-2)$ more than the third is there, which again is as often as the fecond is in $\overline{p+q^{m}}{ }^{m-3}(m-3)$ more than the third is there, and fo on till we come to $\overline{p+q}{ }^{2}$ where the third is once, or to $p+q$, where there is no third; for we muft always feek the fum of the arithmetical Progreffion $m-1 \cdot m-2 . m-3 \ldots \ldots$, or $n-\mathrm{r}, m-2 \ldots \ldots .0$, in the former the Number of the Terms is $m-1$, in the latter m, as is manifett ; wherefore this Sum $=m-1 \neq 1$ $\times \frac{m-1}{2}=m \times \frac{m-1}{2}=\frac{1-1-0}{m-\frac{m}{2}}$.
By the fame Means, the Coffficients of the other Terms will be proved to make the Series, in which the fecond Differences are in arithmetical Progreffion, © © c.

Whence always, where m is an Integer and poftive, the Formula will be $p^{m}+m_{p}^{m-1} q+\frac{m \cdot m-1}{2} p^{m-2} q q+\frac{m \cdot m-1 \cdot m-2}{2 \cdot 3}$ $p^{m-3} q^{3}+\frac{m \cdot m-1 \cdot m-2 \cdot m-3}{2 \cdot 3 \cdot 4} p^{m-4} q^{4}+$ $\frac{m \cdot m-1 \cdot m-2 \cdot m-3 \cdot m-4}{2 \cdot 3 \cdot 4 \cdot 5} p^{m-5} q^{5}, 8 \%$.

If we make $p+q=p \times 1+\frac{q}{p}$ there will artie the very Formula of Sir ISaac Newton; for $\overline{p+q^{m}}=p^{m} \times 1+\frac{q}{p}=p^{m} \times$ $\overline{1+\frac{m}{1} \times \frac{p}{q}+\frac{m \cdot-m 1}{1 \cdot 2} \times \frac{p^{2}}{q^{2}}+\frac{m \cdot m-1 \cdot m-2}{1 \cdot 2 \cdot 3 .} \times \frac{p^{3}}{q^{3}}, 8<c .}$ $=$ (if $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathcal{B}_{\mathrm{c}}$. are fuppoled to equal the frt, fecond, third, fourth, \mathcal{E}^{c}. each with their Coefficients) $p \times \mathrm{I}+m \mathrm{~A} \frac{q}{p}+\frac{m-1}{2}$ $\mathrm{B} \frac{q}{p}+\frac{m-2}{3} \mathrm{C} \frac{q}{p}+\frac{m-3}{4} \mathrm{D} \frac{q}{p}+\frac{m-4}{5} \mathrm{E} \frac{q}{p}+\frac{m-5}{6} \mathrm{~F} \frac{q}{p} 8 \mathrm{c}$. Let us now feek the Formula, or railing the fame Binomial to the Power $\frac{r}{n}$, where r and n are whole Numbers, and both either pofitive or negative.

Now $p, q:: \frac{r}{\frac{r}{n}}, x=\frac{\frac{p}{n} q}{p}=p^{\frac{r}{n}-1} q$, wherefore the Terms will be $p^{\frac{r}{n}} \cdot p^{\frac{r}{n}-1} q \cdot p^{\frac{r}{n}-2} q q \cdot p^{\frac{r}{n}}-3 q^{3}, \delta c c$.

The Coefficients to be found are $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, fo that the whole $\overline{p+q})^{\frac{r}{n}} \mathrm{R} 00 \mathrm{t}=\mathrm{A}^{\frac{r}{p} n+\mathrm{B} p^{\frac{r}{n}}-1} q+\mathrm{C} p^{\frac{r}{n}-2} q q+\mathrm{D} p^{\frac{r}{n}}-3$ $q^{3}+\mathrm{E} p^{\frac{r}{n}-4} q^{4}, \mathcal{E}^{2}$. therefore $\left.\overline{p+q}\right)^{r}\left(p^{r}+r p^{r-1} q+\right.$ $\left.\frac{r: r-1}{2} p^{r-2} q q+\frac{r \cdot r-1 \cdot r-2}{2 \cdot 3} p^{r-3} q^{3}, \varepsilon_{c}\right)=\mathrm{A} p^{\frac{r}{n}}+$ B $p^{\frac{r}{n}-1} q+\mathrm{C} p^{\frac{r}{n}}-{ }^{2} q q, \mathcal{E}_{c_{1}}^{r}=\mathrm{A}^{n} p^{r}+n \mathrm{~A}^{n-1} \mathrm{~B}_{p}^{r-1} q+n$ $\mathrm{A}^{n-1} \mathrm{C} p^{r-2} q q+n \mathrm{~A}^{n-1} \mathrm{D} p^{r-3} q^{2}+n \mathrm{~A}^{n-1} \mathrm{E} p^{r-4} q^{4}, d c \mathrm{c}$ $+\frac{n \cdot n-1}{2} \mathrm{~A}^{n-2} \mathrm{~B}^{2} p^{r-2} q q+n \cdot n-1 \mathrm{~A}^{n-2} \mathrm{BC} p^{r-3} q^{3}+$ $n . n-\mathrm{I} \mathrm{A}^{n-2} \mathrm{BD}_{p}^{r-4} q^{4}, \varepsilon_{c}+\frac{n \cdot n-1 \cdot n-2}{2 \cdot 3} \mathrm{~A}^{n-3} \mathrm{~B}^{3}$ $p^{r-3} q^{3}+\frac{n \cdot n-1 \cdot n-2 \cdot n-3}{2 \cdot 3 \cdot 4} \mathrm{~A}^{n-4} \mathrm{~B}^{4} p^{r-4} q^{4}$. And therefore

A Metbod of raifing Polynomials.

therefore the Terms being compared $1=A^{n}=A^{n-1}=A^{n-2}, \delta_{C} c$. $n \mathrm{~B}=r$, and $\mathrm{B}=\frac{r}{n}, n \mathrm{C}+\frac{n \cdot n-2}{2} \times \frac{r r}{n n}=\frac{r \cdot r-\mathrm{B}}{2}$, and C $=\frac{r \cdot r-n}{2 \cdot n n}, n \mathrm{D}+n \cdot n-\mathrm{I} \times \frac{r}{n} \times \frac{r \cdot r-n}{2 n n}+\frac{n \cdot n-1 \cdot n-2}{2 \cdot 3} \times$ $\frac{r^{3}}{n^{3}}=\frac{r \cdot r-1 \cdot r-2}{2 \cdot 3}$, and $\mathrm{D}=\frac{r \cdot r-n \cdot r-2 n}{2 \cdot 3 \cdot 2^{3}}, \delta_{c}$.

If therefore we make $\frac{r}{n}=m$, and the firf Term A, $\underbrace{\circ} c$. the firft Formuld will rcvive, and $\overline{p+-q^{\prime}} \frac{r}{1}=\overline{p+q^{m}}=p^{m} \times 1+m \mathrm{~A} \frac{q}{p}+$ $\overline{m-1} \mathrm{~B} \frac{p}{q}+\frac{m-2}{3}$ C $\frac{q}{p}, \varepsilon_{c}$.

Let the Binomial $p+q$ be to be raifed to the negative Power, either perfect or imperfect, - s.

Now $\overline{p+q^{-1}}=\frac{1}{p+q^{1}}=\overline{p^{s}+s p^{s-1} q+\frac{s \cdot s-1}{2} p^{1-2}}$
$\overline{q q, छ^{g} c}=$ (by Divition) $\frac{1}{p}-\frac{s p^{s-1} q}{p^{2 s}}-\frac{s \cdot s-1}{2} \times \frac{p^{s-2} q q}{p^{2 s}}-$ $\frac{s . s-1 \cdot s-2}{2 \cdot 3} \times \frac{p^{s-3} q^{3}}{p^{2 s}}-\frac{s \cdot s-1 \cdot s-2 \cdot s-3}{2 \cdot 3 \cdot 4} \times \frac{p^{s-4} q^{4}}{p^{2 s}}$
$=p^{-s}-s p^{-s-1} q-\frac{s \cdot s-1}{2} p^{-s-2} q q$.
From this Formula, by infiting on the former Methods, is eafily drawn the ufual and moft general $p^{m} \times 1+m \mathrm{~A} \frac{q}{p}+\frac{m-1}{2} \mathrm{~B} \frac{q}{p}$,\& $\& \mathrm{c}$.

I do not think it an unpleafant thing, that in this Formula, if $m=$ -2 , the coefficient Numbers will be natural, if $m=3$, Triangular ; and Pyramidal, if $m=4,8^{\circ} c$.

But it is plain, that this Formula always gives an infinite Series; for (if m expounds a pofitive Number) the laft Term ought to be q;
but $p \cdot q:: p_{-m}^{-m} p^{-m-1}:: p^{-m-1} q \cdot p^{-m-z} q q$, \& cc. therefore the Ratio of $p^{-m} \cdot q$ ought to be compouncied of fome Ratios $p \cdot q$. which cannot be done, becaufe $p^{-m} \cdot q^{-m}:: \frac{1}{p^{m}} \cdot \frac{1}{q^{m}}:: q^{m} \cdot p^{m}$ in a Ratio compounded of the Reciprocals of $p . q$.

The Indices of p make an arithmetical Progreffion, of which the Terms - $m,-m-1,-m-2, \mathcal{E B}^{2}$. are negative indeed, but increafe or decreafe from 3 ; but the laft Term ought to be $q=$ p q, therefore it will never come to it.
III. Sir Samue! Moriand was, for ought I know, the firft who under-

Defcription and Uje of an Arithmetical Machine, inwented by Chri-fian-Ludovicus Gerlten, F. R. S. Prof. Math. at Gieffen. No. 438. p. 79. 7 uiv, Evc. 1735. Fig. 1, 2, 3 , 4, 5 . took to perform Arithmetical Operations by Wheel-work. To this end he invented two different Machines, one for Addition and Subfraction, the other for Mulliplication, which he publifhed in London, in the Year 1673, in finall Twelves. He gives no more than the outward Figure of the Machines, and fhews the Method of working them. But as by this every one, who has any Skill in Mechanicks, will be able to guefs, how the inward Parts ought to be contrived; fo it cannot be denied, that thefe are two different Machines, independent of one anoother ; that the laft, which is for Mulliplication, is nothing elfe but an Application of the Nepairion Bones on flat moveable Difks; confequently that his Invention alone is not fit to perform juftly all Arithmetical Operations.

After him the celebrated Baron de Leibniz, the Marquis Poleni, and Mr Leupold took this Undertaking in hand, and attempted to perform it after different Methods.
The firt publifhed his Scheme in the Year 1709, in the Mifcellanea Berolinenfia, but then he gave only the outward Figure of the Machine. S. Poleni communicated his, but explaining at the fame time it's inward Conftruction, in his Mijcellanea of the fame Year, 1709. Mr Leupold's Machine, together with thofe of Mr de Leibnilz and S. Poleni, were inferted in his Theatrum Aritbmetico-Geometricum, publifhed at Leipzig in 1727, after the Author's Death, yet imperfect, as it is owned in the Book itfelf.
Befides thefe, I learned from feveral French Journals, that Monfieur Pafcal invented one, which however I never had the fight of. *
I took the Hint of mine from that of Mr de Leibnizz, which put me upon thinking kow the inward Structure might be contrived : But as it

[^0]
Cersten's Aititmetical Machize, \&cc.

was not poffible for me to hit upon the original Ideas of that Great Man, an exict Enquiry into the Nature of Arithmetical Operations furnificd me at laft with others, which I expreffed in a rough Model of Wiood, anc Ghewed to fome Patrons and Friends, who encouriged me to have another made of Bafs: But the want of an Artificer, able enough to execute iny Ideas, made me delay it till the Year 1725; when having fpare Time, and finding an Inclination to divert myfelf with Mechanical Operations, I fetabout it, and finifhed the whole Work fitted to a Reckoning not excceding feven Places. And in Dec. of the fame Yar, I had the Honour to lay chis Machine before the prefent Landgrave of Heffen Dairmpade, and the Hereditary Prince his Son, to whom I demonftrated the Mechanifm of the whole Invention.

I was checked from publifhing it at that time by the Uncertainty I was under, whether poffibly Mr Leibnizz's Mach ne had not been brought to it's Perfection; in which cife there is no doubt but the Operation of his Machine, if it would really perform what is promifed in the Defoription, would have been eafier than mine, and confequently preferable io it, provided it's Structure did not prove too intricate, nor that the working of it took up too much time.

But at prefent, being certain that none of Mr Leibnitz's Invention has yet appeared in fuch a State of Perfection, as to have anfwer'd the Effect propofed, and that thefe of mine differ from all thofe mentioned above, fancying at the fame time, that Perfons who underfand Mechanicks, will find it plain, practicable, and exact, in regard to it's various Effects, I make no Scruple to prefent this Invention to the Royal Society.

The Particulars of it are as follows:
There are as many Sets of Wheels and moveable Rulers as there are Places in the Numbers to be calculated. Fig. I. Thews three of them. by which one may taflly conceive the reft. A A fhews the firft Syftem or the Figures of Unites, according to it's inward Structure. B B and C C fhews the fecond and third Syftem, riz. of Tens and Hundreds, accordto their outward Form. We fhall firft confider A Λ; where $\alpha \alpha \alpha$ is a flat Bottom of a Brafs Plate, which may be fkrewed on either upon a particular Iron Frame, or only upon a ftrong Piece of Walnut-Tree, doubled with the Grain crois'd. In this Syftem are two moveable Rules gggg, and $k k k$, the firft of which I call the Operator, the fecond the Determinator. There are befides two Wheel-Works, the upper one is for Aldition and SubftraEtion, the lower one ferves for Mulliplication and Divifion. The upper one is provided firt with a, an oblique RatchetWheel of 10 Teeth, of what Diameter you pleafe, on which, however, depends the Length and Breadth of the Syftem itfelf. This Wheel has ${ }^{\text {a Stop }} r$, with a depreffing Spring i; Under the Wheel a is a fmaller Wheel b of the fame Shape: Both a and b are rivetted together, and fixed on a common Axis. Under the Wheel b lies a third f, which is a common Tooth-Wheel of 20 or more Teeth, according as one pleafes: It is larger than b, and fmaller than a, turns about the fame Axis with,

VOL. VIII. Part i,
D
Fig. 1.
the other two above it, and upon it is fixed a Stop c, with the Spring d, which catches the oblique Teeth of the Wheel b. Immediately under this Wheel لies the upper Part of the Operator, which may be belt made of Iron or Steel. The Wheels may all be of Brafs, except the upper one. The Operator is of the fame Thicknefs all over, and in it's upper Partare fixed as many round Steel Pins as there are Teeth in the Wheel f, which are to catch the Teeth of this Wheel, and move it backwards and. forwards. The Height of thofe Pins ought exactly to anfwer the Thicknefs of tle Whiecl f. The A xis of the Whicels a and 6 is \$sept perpendicularly by the Bridge ee, which is 1krewed to the Botton, as appears by the Figure. The Operatorgggg moves on the Side, above, and in the Middle in two Brafs Grooves i i i and $q q$; about D it jets out, on which Projection a Piece of Iron b muft be well faftened, having a ftrong Pin, on which the Handle z fits as you fee in the Syftem B B. The Side D itfelf fides in another Groove s's, and in it's inner Corner joins to it the Determinator $k k k$, of the fame Thicknefs with the Operator, the Shape of which is fufficiently expreffed in the Figure. This Aides alio up and down, on the one Side in the Groove ss, and von the other Side, where it is fmalleft, in a fmall Piece of Brafs 4, and where it is broadeft, above in the Operator itfelf, which is either hollowed out into another Groove, or filed off obliquely. The niding part of the Determinator ought afterwards alfo to be fitted to it. II's chief Part is the Lock u, flanding perpendicular on it's broad Part. I have drawn it leparately in Fig 4. BB, in which the fiding Stop c, is preffed down by it's Spring d, but raifed by the Tricker a a. That Tricker has a pin b, on which is flsewed on the fmall Handle ll(Fig. i. in the Syitems B B and C C.) In the Brafs Bottom A A (or $\alpha \alpha$ Fig.r.) you mult file out 10 Ratchet-Tecti or Kerfs, Purpofely for tho Stop of this L.ock, or, which is better, yols may infert into the Brafs Bottom a finall Piece of Iron filed out according to this Figure. The Partition and Length of thefe Rachet-Teeth in the Bottom muft fit exnetly with the Circumference of the Wheel f, (Fig. I. Syfeim A A, , with this Direction, that it the Lock is kept by the upperemoft Tooth in the Bottom, the Operator cannot be moved at alls abut. when by prelfing down the Tricket an, (Fig. 4.) the Determinator is fhoved, town, and is itopp'd by the feconid or thitd Tooth in the Bottom, the. Opéarár being allo drawn down ás forma the Determinator pernits, makes the Stop c, (Fig. 1. Syfo A A) Alide over 1 or 2 Teeth of the fucond Wheel b; confequently the fame Stop c, muft dide over 9 Teeth, when the lLock of the Determinator will Aand before the roth Tooth in the Bottom, rand the Operator is pulled adown fo far. If you have a!mind ea apply thure! Racher-Teeth enothè Outfode of the Plate $\odot \bigcirc$, that covers the Whoded Wou may fit the Look oe it accordingly: But in this. Cafe the Coveringt Miate muft be well faftenct.
aFor Maltiplicaizon and Divifong, there is properly in cach Syftem but one Whet, likewife divided into raRachet-Teeth, on which is rivetted the round 1 Phate. 7 , of which are engraved the! Numbers on Figures: Thefer 9!?
ei 71.4 IIIV OWheels

Gersten's Aritbnetical Mechine \&c.

TWheels have no occafion for any Bridge, but may turn about a ftrong Pin of Steel, folder'd to the Bottom. The Rachet Whecl in in refts oin one Side upon the Determinator, and upon a lliece of Brats of the fame Thicknefs, to which are fattened the Stop n, and the Spring p. Upoul the Operator is another Stop 0, with it's Spring; which Stop has a final! Arm at 0 , which is checlied bya fimall Studd, to hinder the Spring's preffing the Stop lower down that it ought: By which Contrivalace it is fo order'd, that after the Operator is flid down fo far as it can go, in being flid up again, the Stopo will turn but one Tooth of the Whecl man. The round Plate I has in it's Middle a fmall hollow Axis, on which are turned firt two Shoulders, and then a Skrew: This Skrew in the Syfem A A is an ordinary one, winding from the left to the right.
But as each Syfemr ought to have Communication with tha prececiing one, though not with that which follows; to this end a projecting Tootii of communication made of Sceel 2 is sivetted to the upper Plane of the uppermoft Wheel a. This Tooth muft be placed exactly on the Point of a Tooth of the Wheel, and by it's Revolution catclies and turns every time but one Tooth of the uppermon Wheel of the preceding Syftem, fiding over the following one (if there be any) without touching it. For this reafon the Planes of the Brafs Bottoms in all the Syllems ought to incline a little. This will bêt appear from the Vertical Section, Fig. 2. (cut in Fig. I. in the Direction from h to f) in which α is the Brals-Bottom, HH the Wood-Bottom, g the Operator, i the Groove, f the third common Tooth-Wheel, b the fecond Wheel, a the firt or uppermoft Ratchet-Wheel, e the Bridge, o the Covering-Plate, and pithe Tooth of Communicaton. I have reprefented all thefe Pieces of one Thicknefs; but every Artift will eafily know where to add of take off. 5ig. 5. Thews the Plan and true Difpofition of the Teeth in the feveral uppermoft Wheels; that is to fay, The Paratiel Lines A B and CD ought always to cut the Brafs Bottoms (which are like one another in Length and Breadth) length-wife into two equal Parts: Then the perperit dicular Interfection EF will determine the Centers a and b, of the two Whech H and G . The ftop r ought every time to hold it's: Wheel in fuch a manner, that the Points of two Tceth coincide with the Line $A B$ or $C D$. The Obliquity of the Teeth is the fane in both, with thits difference however, that in G, which is a Wheel of the Syftem $A A$; (Fig. 1.) they are cut in from the left to the right, but in H (a Whecl of The Syten BB) from right to the Ickt, I need not tike notice, that for making the Work more durable, (the Teethare not to be cut out into quire fharp Points, but blunted a little, as in the Wheel H. The Nicoty of the whole Machine chiefly confifts in placing the Center a and ξ, oi (which amounts to the fame thing) after having chofen the Breadth of the Brafs-Bottoms, in determining the Diameter of the upperinof Whect: For if that fhoult prove fo large, as that the two Wheels $E 1$ and G thouid very near touch one another, the Tooth of Communication will be-fhore, it's Operation will be of find Force, ghid the Wheds thenfelves wite

Fig. 5.

Gersten's Aritbmetical Macbine, \&cc.

scquire a very great Exactnefs, left by turning about the Wheel H, and the Tooth of Communication ftanding in the Pofition as it is reprefented in Fig. 5, a Tooth of the Wheel H may touch it, and fop the Motion. Whereas, on the other hand, fuppofing the Centers at the fame Diftance, and the Diameters of both Wheels lefs, the Tooth of Communication will belonger: than fuch an Exactnefs is not requir'd in the Wheel, yet more Force is neceffary for making the Tooth of Communication lay hold the better. Furthermore, it will be well for you to make the undermoft common Tooth-Wheel as large as you call.

From the Conftruction of this firt Syftem, with which the 3 , 5 th, 7 th, \mathcal{F}^{2}. entirely agree, one may eafily imagine the $2 \mathrm{~d}, 4 \mathrm{th}, 6 \mathrm{ch}, 8 \mathrm{th}$, \mathcal{E}^{2}. for every thing there alfo is the fame, except only, that it is inverted; fo that whit iathe firft ftands on the right-hand, is on the Left in the fecond.

The Plate for Multiplication has on it's hollow Axis, as it is faid before, two Shoulders, the lowermof of which is very fmall, the Sum of it's Height, the Thicknefs of the Plate of the Wheel $m m$, and of the Operator mutt amount to as much as anfwers to the Height of the Bridge ee. On both Ends of the Brafs-Bottoms, the two Pieces of Brats $\mathbb{C} \mathbb{C}$, of the fame Height, are rivetted on. This being done, ar laft the Cover-ing-Plates $\odot \odot$ is prepared and $\mathfrak{f k r e w e d}$ on the Pieces of Brafs $\mathbb{C} \mathbb{C}$. If the Machine be made pretty large, the Covering-Plate muft be fkrewed faft, not only to the Bridge ee, but alfo not far from the Wheel of Multiplication. It muft be provided not only with round Holes, through which are to go the Axis of each uppermoft Wheel a, and the hollow Axis of the Plate l; but it muft alfo have a long Slit, in which the Operator and Determinator may be moved up and down, and laft of all a fmall Window over the Plate of Multiplication, through which the Figure or Number engraved on the Plate may appear diftinetly. To the projecting Skrew l, of the Plate l, is fitted an Handle f, joined to an Index in the Shape of a Scythe. The Skrew in the Syftem A A is a common Skrew, confequently the Roundnefs of the Scythe mult turn from the left to the right; but in the Syftem BB, where it ought to be inverted, like all the other Parts, the Scythe muit turn from the right to the left, as in the Figure. The Ufe of this is to hew which Way the Wheels are to be turned; and the Skrews are to prevent the Machine's being hurt by unfkilful Hands.

On the Side of the Determinator, viz on that Piece which cannot be preffed down, is alfo fkrewed a fmall Index, which may be directed to fuch Numbers or Figures as is required. Thefe Figures are to be engraven in the Covering-Plate, according to the Figure, and their Diftance depends on the Ratchet-Teeth ce (Fig. 4) in the Brals-Bottom.
On the Axis of each uppermoft Wheel a (which Axis muft be made Equare as far as it projects over the Covering. Plate) is fixed a thin round Silver-Plate $x x$ (in the Syftems BB and CC) or ad in Fig. 3. yet fo that it may not rub againft the Covering-Plate. It has a hollow Axis bc
(Fig. 3.) on which is a right or left Skrew, according to the Syftem it belongs to, and a fimall Shoulder c. To the Skrew is fkrewed the Handle fs (Syftem BB and CC, Fig. 1.) which is vertically flat on the Extremity, in order to turn by it the Plate and the Wheels. The Plate (as appears by the Figure) is divided by 3 concentrick Circles into two Rings, in the outmoft of which are engraven the Numbers for Addition, in the inmoft thofe for Subferaction. I will hereafter call this Plate only the Silver-Plate, the firt Ring the didition-Ring, the fecond the Sub-fracion-Ring: Moreover two Indexes wandy are Rrewed to the Cover-ing-Plate ; w hews the Numbers of the outmoft or Addifion Ring, and y thofe of the Subfraftion-Ring. They have Hinges, that they may be lifted up, and the Silver. Plate taken out or put in again: Their Curvature ferves for a Direction, which way the Plates ought to be turned.

A Rilful Artificer will be able to give them a neater and handfomer Shape, than here in the Draught, where I would not cover the Numbers.

All this being done, there remains now the Figures or Numbers to be engraven, in the manner following: Place each uppermoft Wheel a (Syftem A A) to that the Tooth of Communication be ready to catch (as in G, Fig. 5) which may be eafily felt. Obferve ir the Silver Plate, where the Index w points, and there engrave the Number or Figure 9 . lower down in the SubfraEtion-Ring, where the Index y points, engrave the Cypher o. After this divide both Rings into 10 cqual Parts, one of which is already defigned for 9 in the Aldition, and another for o in the Sub-IraEtion-Ring; then obferve which way the Wheel turns, if from the right to the leff, as in Syftem B B, then you mult from the engraven Number 9 in the Addition-Ring, towards the right engrave o next, then $\mathrm{F}, 2,3,4$, $\mathcal{E}^{\circ} c$ and in the SubfraEtion-Ring towards the right alfo, from the already engraved o, firft engrave 9 , then $8,7,6, \xi^{2} c$. ordine inver $\rho 0$. But if the Wheel turns from the left to the right, as in the Syftems A A and CC, you engrave the Numbers or Figures in the fame Order, but from the right to the left. (Sce in Fig. I. the Syfems BB and CC.)

In the Multiplication-Wheels smm you muft conduct the Indexf exact: y to the Window, as it is drawn in the Syftem BB; mark the Place on the round Multiplication-Plate under the Window, and engrave upon it the Cypher or o; Then make, by two concentrick Circles, a Ring upon this Plate, and divide this Ring into ten equal Parts, and after the o (already engraven) engrave on the Numbers. 1, 2, 3, 4, 5, 6, 7, 8, 9, in the fame Order as it was done in the Addition-Ring of the Silver-Plate of the fams Syftem. Laft of all, if you think fit, you may fkrew on thin Ivory Plates, to note upon them the Numbers which are to be calculated, particularly a long fmall one on that Side of the Slit of the Determinator, where there are are no Numbers, and alfo two. horter broader ones, one under the Window of Multiplication, the other above the Silver-Plate. All this together compofis a Machine, by the help of which you may perform all the four Arithmetical Rules or Operations. The Way of working it_{2} is as follows:

1. As to addition: For inftance, if you are to add 32 and 59 : becaufe the hindmoft Syftem A A in the Figure, which ought to reprefent the Place of Unites, is not cover'd, let us take the Syftem BB for the Place of the Unites, and the Syftem CC for the Place of the Tens; turn the Silver-Plates $x x$ in thefe two Syftems, that the Indexes ww point to the two Numbers 5 and 9 ; then make the Determinators $l l$, $1 l$, point alfo to 3 and 2: next take one of the two Operators, ex. gr. in BB, and pull it down as far as you can, and moveit upwards again. This done, the Number I of the Silver. Plate in BB will come by this means under the Index io, and the Number 6 of the Silver- Plate in the Syitem CC under it's Index at the fame time, which is 61 , the Sum, 59 and 2. After this move the Operator of the Syftem CC alfo up and down, when inftead of 6,9 will come under the Index; confequently you have 9 r tunder the Indexes ww, which is the Sum requit'd of 59 and 32 added together. The Reafon of it is plain; for by pulling down the Operator of the Syftem B B fo far, the Stop 6 of the lowernoft or common TonthWheel f (vid. Syit. A A) will nide over two Teeth of the Rachet-middlemof Wheel b; and by moving the Operator up agmin, the fame Stop c will turn the two Ratcher-Wheels a and b together, and caufe the Stopr of the great or uppermint Wheel a to nide alfo over two Teeth; at the fame time the Tooth of Communication ? will move forward one Tooth of the uppernioft Ratchet-Wheel in the Syftem CC; confequently on the Silver-Plate in B B, inftead of 9 the Nuinber 1 , and in Syftem CC, inftead of 5 the Number 6 muft appear under their Indexes $w w$; and fo for the fame reafon, having pulled up and down the Operator of the Syftem CC, the Number 6 pointed to by the Index muft be at that changed into 9 .
II. Subfraftion. Suppofe 40 the Sum, from which you are to fubftract 24: Here you mutt put your Sum 40 in the Subfraction-Rings; that is to fay, turn the Cypher o in the Sytem B B, and the Number 4 in the Syftem CC, under the Indexes yy, as the Figure hews: Set the Determinators at 24, as in Addition; move alfo the Operators only once np and down, the Remainder 16 will appear under the Indixes y). As for the Reafon of this Operation, when you confider, that the Numbers in the Subfration-Rings are engraven inverso ordine, as it is faid before, you witl find that it is the fame as in Aldition.
III. Miltiplication. For infance, if your are to mulciply 43 by 3 , bring the 0 in all your Aldition-Rings to the Intexes, as alfo in all your Multiplication.Plates in the Windows. Write down (which is more particularly neceffary if the Numbers are larger than here) the Multiplicand 43 upon the Ivory. Plates near the two Determinators in the two Syftems B B and C C: But the Multiplicator 3, you may write only on the Ivory-Plate under the Window of the Syftem B B. Set the Determinators at 43 ; then move your Operators fucceffively as often up and down, till there appears in both Windows the Number 3 ;
then you will fee on your Aldition-Rings under the Indexes, the Product 129 .

It is eafy to underftand, that as the Multiplicalion is nothing elfe than a repeated Addition, the Machine does alfo perform it's Operation by a repeated Addition only: For the Number 3, which appears in the Window of the Syftem B B, fhews how many Times you have added the Number 3, pointed by the Determinator to itfelf, which when done 3 Times, is 9. And fo the fame Number 3, which appears in the Window of the Sytem C C, after your Operation, fhews how many Times yout have added the Number 4 to itfelf. I need not to make you obferve, that befides the two Syftems B B and C C, there muft be fuppofed another, not exprefs'd in the Figure, which will fhew the Number I of the Product 129.
IV. Divifion. If you are, for inftance, to divide 40 by 3, fet your Dividend 40 in the SubftraEtion-Rings under the Indexes $y y$, in the Syftem B B and C C ; turn the Indexes $f f, f$, near the Windows to make - appear; write your Divifor near the Determinator of the Syftem CC, and fet the Determinator at 3; pull the Operator up and down, then you will have I under the Index y, and 1 likewife in the Window. By this you fee, that you cannot work further in this Syftem C C, becaufe you cannot fubftract 3 from 1 : You muft therefore go on, to the other Figure of the Dividend, viz. O, and in the Syftem B B fet the Determinator again at 3. This being done, the firft pulling of the Operator up and down will produce I in the Window, and 7 in the Sub-fraction-Ring under the Index, and the Number 1 which remained before in the Syftem C C will be changed into o. Now as 7 is more than 3, you muft work on accordingly; having done it twice more, you will find that there remains under the Index y but I, (which is the Numerator of your Fraction) and below in the two Windows the Quotient :3. When you confider that Divifion is nothing elfe but a repeated Subfrection, you will alfo eaflily underftand the Reafon of this Operation.

Thofe that underftand the Matter ever fo little, may now eafily conceive how they are to proceed with this Machine in larger Examples: Inowever, for greater Clearnefs, I will explain it by two Examples. A
Suppofing there are fix Syftems, d, b, c, d, e, f; Let all the Numbers pointed to by the Indexes ww be in $A B$; thofe which are to be pointed to by the Determinators in C.D); and thofe which are feen in the Windows, in EI: Fint of all, you muft turn all your AdditionRings of the Silver-Plates and your Multipl:-Gation-Plates to our wiz, that under all the Ingexes, ww, and in the Windows rothing may appear but o. Write the Number 3563 near The D,terminator, in the Syftems a, b, d, and direct them ace cordingly:
condingly: The other Nunber 5^{5}, you mut write down likewif, but under the Windows in Syitem a and b, as you fee in this Scheme. Move the fiveral Operators, which are moveable, fucceffively as often up and down, till 8 appears below in the Windows, and you will have under the Indexes above 28504 , the Product of 3563×8. And fo the Numbers of the Machine will appear thus.

But if you are to divide again 206654 by 3563 , you muft place the Dividend above in the Subftraction-Rings under the Indexes. In the Windows below, every Figure mult be o, likewife as in the Multiplication; and write the Divifor under the Dividend, according to Vulgar Aritbmetick, and as in the Figurs here annexed.

If you direct the Determinators in c, d, c, b, to their Numbers, and fubftract this Divifor by pulling up and down the Operators as often as you can, you will have in the Windows in e, d, c, b, every where 5 ; but on the Silver-Plates there will remain 28504. Now advarcing

Pla.I.fid. viIf. part s.page 24.

vancing your Divifor from the Left to the Right, bringing to the Windows in d, c, b, all the Cyphers 0 , and operating as before, there will at laft appear on the Silver-Plates nothing at all, but below in the Windows 5888 . See the Figure following:

And here you have only this to obferve, that in fuch Cafes, you cut off all the hindermoft Figures or Numbers in EF, except that which ftands under the firft Figure of the Divifor; what remains is your Quotient.

As for what remains, if it be objected that this Machine cannot be fitted for fo many and long Numbers, as one would pleafe, becaufe the Multiplication of fo many Syftems would require too great a Force for one Operator to move fo many Wheels, kept by Springs, fuppofing the Cafe that all the Teeth of Communication fhould duly catch; I own that this Objection is but too well grounded: However, I cannot help obferving at the fame Time, that this Defect can hardly be avoided, in any Arithmetical Machine, for performing all thofe Operations of itfelf, without the Help of the Mind: For there muft certainly be a particular Syftem for each Place of Figures, which is to communicate with the next ; confequently, as the Syftems increare in Number, the Force muft increafe alfo which is required for moving them all. Befides, it ought to be confidered, of what Size fuch a Machine ought to be, which might ferve for common Ufe. I think few Calculations could be required, for which 14 or 16 Syftems might not fuffice. That which I made was of 7 Syftems, as I have already mentioned. The Difpofition of it was neither fo well contrived as I have explained it here, nor were it's feveral Parts fo well wrought, as a good Artificer, who makes Profeffion of fuch Work, might have performed it ; yet thofe 7 Syftems were very eafily put in Motion; and if in a Machine for 14 Figures made by a fkilful Hand, it could not be fo eafily practicable, this Defect, I believe, might be eafily remedied, by applying the other Hand in the fifth or fixth Syftem to the Handle $\int s$, in order to cafe and affift the Operator.
IV. This Text may very well be divided into three Parts: An In- Abrief Actroduction, containing the Method of Infinite Series; the Method of Fluxions and Fluents; and laftly, the Application of both to the moft confiderable Problems of the higher Geometry. The Comment confifts of very valuable and curious Annotations, Illuftrations, and Supplements, in order to make the whole a compleat Infitution for the Ufe of Learners. I thall take a kind of comparative View of the Text and Comment together.
count by Mr. John Eames, F. R. S. of a Work entilled, The Method of Fluxions and Infinite Series, with it's Applica. The tion to the

Geometry of Curve Lines, by the Inventor Sir I. Newton, Kı. E゙c. Iranflated from the Author's Latin Original not yet made pub. lick. To which is Jubjoined a perpitual Coma ment upon the rubole, sic. by John Colfon, M. A. and F, R. S. No. 443 . . 320. Of. $1 ; 360$

The great Author, in what is called the Introduction, teaches the Rudinents of his Method of Infinite Converging Serics, which is preparatory to that of Fluxions. In this he fhews how all Compound Algebraical Quantities may be refolved into Series of fimple Terms, which will converge to thofe compound Quantitics, or rather to their Roots; jutt as in common Decimal Arithmetick, any complicate Number whatever, rational or furd, may be profecuted and exhibited to what Degree of Accuracy we pleafe, by decimal liarts continued in infinitum. And this general Arithmetick is here applied to the finding of the Roots of all kinds of Algebraical Equations, whether pure or affected.

And this Doctrine is carried on ftill farther by Mr Colfon in his Comment. He purfues the Author's Hint, that vulgar Arithmetick and Algebra, decimal Fractions and infinite Series, have the fame common Foundation, and compofe together but one uniform Science of Computation. For, as in our vuligar Arithmetick, when tightly explained, we exprefs and compute all Numbers by the Root Tim, and it's feveral Powers and their Reciprocals, together with a Set of certain known and fmall Coüfficients; fo in this more univerfal Arithmetick of infinite Series, we do the fame thing in effect, by means of any Root affumed at Pleafure, it's Powers ant their Reciprocals, dilpofed in a regular defcending Order, together with any Coëfficients, as it miay happen. And when thefe Series duly converge, they will as truly exhibit by their. Aggtegate the Quartity required, as a Decimal Fraction infinitely continued will approximate to it's proper Queftum. This gives him Occafion to expatiate largely upon the Nature and Conftruction of Arithmetical Scales, particular and general; and to inquire into the Nature and Formation of Infinite Series, and their Circumftances of Conyergency and Divergency. To explain which he fhews, that in every Series there is always a Supplement to be underftood, when it is not exhibited. This Supplement fums up the Series, and makes it ftop at a finite Number of Terms, in Series that either converge or diverge. Whence in diverging Series it mutt neceffarily be found and admitted, or otherwife the Conclufion will not be true; but in converging Serics, where it can feldom be known, it may fafely be omitted, becaufe it continually diminifhes with the Terms of the Series, 2nd finally becomes Jefs than any affignable Quantity.

The Nature of infinite Series being thus difplayed, he applies them to the Refolution of all kinds of Algebraical Equations. He explains in a very general Manner, the Author's famous Artifice, for finding the Forms of the Scries for the Roots, and their initial Approximations, by means of a Parallelegram and Ruler, and mews it's Application in all Cafes. Then he invents many ways of Analyfis, by which the Roots are further profecuted, and may be produced to any Degree of Accuracy required. Alfo many other Speculations are added, to compleat the Doctrine of Series; particularly a very gencral and ufcful Theorem, for the Solution of all affected Eqtations in Numbers.

From the Refolution of Equations, and the Dectrine of Infinite Series, which fininhes the firt Part of this Work, Sir I Newton proceeds to lay down the Princip!es of his Method of Fluxiors, which is the chief Defign of the prefent Treatife. This Methothe founds upors the abftract or rational Mechanicks, by fuppofing ail Mathematical Quantities to be gencrated, as it were, by local Motion, and therefore to have relative Velocities of Increafe or Decreafe, which Velocities he calls Fiuxions. And the Quantities fo generated by a continual Flux he calls Flumens or flowing Quantitics ; the Relation of which Fluents is always expreffed by fome Algebraical Equation, either given or required. If this Equation be given, and the Relation of the Fluxions is required, it conflitutes the direst Melliod of Fluxicions; but when the contrary, 'tis the inverre Melbod of Fluxions.

Sir IJaac, in his firt Problem, which takes in the dircet Method of Fluxions, fhews how to find the Relation of the Fluxions in a very general Manner, and by a great Variety of Solutions. This way of refolving the Problem is peculiar to this Work. He likewife extends it to Equations involving feveral Fluents, which accommodates it to thofe Cafes, wherein any complex or irrational Quantities may be found, or Quantities that are geometricilly irreductible. Then he demonftrates the Principles of his Method, or the Precepts of Solution, from the Nature of Moments or vanifling Quantities, and from the obvious Properties of Equations, which involve indeterminate Quantities.

The Commentator much enlarges upon this whole Doctrine; he enters into the Reafon and Ure of this Multiplicity of Solutions, and Shews it is a neceffary Refult from the different Forms the fame given Equation may acquire. But efpecially he takes the Author's Demonftration into ftrict Examination, endeavours farther to illuffrate and enforce it's Evidence, and to clear it from all the Objections that either have or may be urged againft it. He even contends, that though the Moments and vanifhing Quantities of the Author could be proved to be impoffible, as has been fuggefted by fome Mathematicians, yet even then they would be fufficient for all the Purpofes of Fluxions, and he produces Intances of a like Nature from other Parts of Mathematicks. And though the Author, Sir I. Nerwon, in his prefent Treatife, does not direftly mention fecond Fluxions, or thofe of higher Orders; yet the ingenious Commentator thinks proper to extend his Enquiries to thefe Orders of Fluxions, demonftrates their Theory, gives Rules and Eximples for deriving their Equations, proves their relative Nature, and even exhibits them to View by Geometrical Figures. This laft he does chiefly in what he calls the Geometrical and Mechanical Elements of Fluxions ; and he contrives a very general Method, by means of Curve-lines and their Tangents, to make Fluxions and Fluents the Objesis of Senfe and ocular Infpection; and Equations in all Cafes.

In the Author's fecond Problem, or the Relation of the Fluxions being given to determine the Relation of the Fluents, which includes the inverfe Method of Fluxions, he begins with a particular Solution of it. He calls this Solution particular, becaufe it extends only to fuch Cafes, wherein the given Fluxional Equation either has been, or might have been, derived from fome previous finite Algebraical Equation. Then he fhews how we may return directly to this Equation. But this is feldom the Cafe of fuch Fluxional Equations, whofe Fluents or Roots are propofed to be found. For they have commonly Terms either redundant or deficient, by which they cannot be brought under this particular Solution. Therefore to anfwer this Cafe alfo, he gives us a general Solution, in which he extracts the Roots of any propored Fluxional Equation, by feveral ingenious Methods of Analyfis. And here it is chiefly, that he calls his Method of Infinite Series to his Affiftance; for the Fluent, or Root, will here always be exhibited by a Series. And to find the Fluent in finite Terms, when it can be done, requires particular Expedients, as we fhall fee afterwards.

Mr Coljon, in his Comment upon this Part of the Work, is very full and explicit. He explains and applies the Author's particular Solution; but is much more copious in explaining the Examples, and clearing up the Difficulties and Anomalies of the general Solution. This is chiefly: performed by introducing feveral new and fimple Methods of Analyfis, or Proceffes of Refolution; and by applying the Author's Artifice of the Ruler and Parallelogram mentioned before, to thefe Fluxional Equations: By which means not only the Forms of the Series are determined, and their initial Approximations, as has been obferved above ; but likewife all the Series may be found, that can be derived from the fame Fluxional Equation. The Commentator concludes by giving us a very general Method for refolving all Equations, whether Algebraical or Fluxional ; which Method requires no foreign Affitance, or no fubfidiary Operations, which all other Methods do. It is founded upon the Ufe and Admiffion of the higher Orders of Fluxions, and is exemplified by the Solution of feveral ufeful Problems. Here the Comment deaves us, but we will go on with our Aurhor.

Having thus taught us the Method of Fluxions both direct and. inverfe, he proceeds to apply this Method to fome very curious and general Problems, chiefly in the Geometry of Curve-lines. As firft, he determines the maxima and minima of Quantities in all Cafes, and propofes fome elegant Problems to illuftrate this Doctrine. Then he teaches us to draw Tangents to Curves, whether Geometrical or Mechanical, and that after a great Variety of Ways, or however the Nature of the Curve may be defined. Here likewife he propofes fome Queftions, to exercife and improve the Learner: Then is very particular upon finding the Quantity of Curvature, at any Point of a given

Curve, whether Geometrical or Mechanical, or in determining the Centre and the Radius of Curvature: To which feveral other curious Speculations are fubjoined of a like Nature. Here he communicates a very clegant and entirely new Problem, for detcrmining the Quality of the Curvature, at any Point of a given Curse; or how the Curvature proceeds in refpect of it's greater or lefs liequability.

Afterwards he goes on to the Quadrature of Curves, which chiefly gives Occafion to apply the inverfe Method of Fiwxions; and firft he fhews how, by the direet Method, to find as many Curves as you pleafe, (or to determine their Equations) the Areas of which flall be capable of an exact Quadrature. . Then he fhews how to find as many Curves as you pleafe, which, though not capable of a juft Quadrature, yet their Areas may be compared to thofe of the Conic Sections, or of fuch other Curves as fhall be affigned. Laftly, He fhews how to determine in gencral the Area of any Curve that Shall be propofed, chiefly; by the Method of Infinite Series; where many curious and ufeful Speculations are occafionally introduced and inferted: As how to afceitain the Limits of an Area, when thus found analytically; how commodioully to fquare the Circle, the Ellipfis, or Hyperbola, and how to apply the Quadrature of this laft to the computing a Canon of Logarithms; the Conftruction of Tables for the ready finding of Quadratures, or the Comparifon of Arcas, and how to apply them to the folving of other like Probleras; the forming of Conftructions, and demonftrating Theorems by Fluxions; the approximating to Areas mechanically, and fuch like.

From finding of Areas he proceeds to the-Recifification of Curves; and firft he hews how to find as many Curves as you pleafe, whofe Curve lines are capable of an exact Rectification. Then he teaches us to find as many Curves as we pleafe, whofe Curve lines, though not capable of a juft Rectification, yet may be compared with the Lengths of any Curve-lines affigned, or with the Areas of any Curve, when reduced to the Order of Lines. Laftly, he determines the Lengths of any Curve in general, and gives feveral proper Examples of it. Ail which elegant Speculations are managed with admirable Skill, greas Subtility, and fine Contrivance.
V. In the firft Book, he confiders the Properties of the three Sections of a Cone, as well in, as out of the Cone. And to make this Part of the Work of more Service to the Reader, he has not only felefted the moft confiderable Properties of thefe Curves that are to be met with in other Writers, both antient and modern, but has added feveral new ones, which, as he informs us, are inferted in their proper Places. And that fuch Gentlemen as are defirous to read Sir I. Necwor's Principia, but are a Lofs for want of a fufficient Acquaintance with Conic-Sections, may be the more obliged, he has taken particular Care to demonftrate fuch Properties as Sir Ijaac prefuppofes his Reader to be acquainted withal. Accordingly, he has prefixed a Table of fuch

An Account 6
Mr John
Eames, F.R S.
of a Bookica
tituled, A Ma. the matical Treatife, cont: taining: a Syr tem of ConicSedions, with-
the ipoctivine:
of Fluxions
and Fluents,
applied.to yan
sion: Subjects By John Muller. No. +46 . p. $87 . \mathrm{J}_{\text {aly, }}$ \&c. 1737.

Book II.
Propofitions, informing him as well where they are to be met with is this Book, as in Sir I. Newton's Principis Martbetialica.
The Proofs made ufe of in his Demonftrations, are fometimes Algebraical, at other Times Geometrical, according as he finds the one to be plainer and fhorter than the other.

The lecond Book treats of the direct Method of Fluxions. And here he hopes the firft Principles of this Method are laid down, not only in a new, but very phain and concife Manier. He proceeds to fhew the Ufic of Flaxions in the Solution of the common Problems of finding the Mavima and Minima of Qunntitics, the Radii of the Evolution of Curves, and the Radi: of Refraction and Reflection. Under the firft of thefe Heads he tells us, particular Care has been taken to diftinguifh the Maximums from the Minimums, a Thing which has not been taken Notice of fo much as it ought to have been. And whereas fome Mathematicians having made ufe of what they call infinitely fmall Quantities, are forced to reject fomething out of the Equation, for finding the Fluxion of a Kectangle, whofe Sides are varying Quantities, Mr Muller ufes only finite Quancities; and finds the Fluxion of fuch a Rectangle after a new Manner, without rejecting any Quantity for it's Smallnefs. He does the fame in finding the Fluxion of a Power. And to avoid the Ufe of infnitely fimall Quantitics, introduces a new Principle, viz. That a Curve-Line may be confidered as genterated by the Motion of a Point carried along by two Forces or Motions, one in a Direction always parallel to the Abfcifs, and the other in a Direction always parallel to the Ordinate. Hence he infers, that the Fluxion of the Ordinate is to the Fluxion of the Abfcifs, as the Ordinate is to the Subtangent of the Curve.

Having likewife proved from the firt Suppofition, that if the deferibing Point, when arrived at any Place given, fhould continue to move onwards, with the Velocity it has there, it would proceed in a right Line, which would touch the Curve in that Point; he concludes that the Direction of the Force in that Place is in the Tangent to the Curve: Confequently, the three Directions being known in each Place, the Proportion bitween the Velocities of the urging Forces will be likewife known. So that the Nature of the Curve being given, the Law obferved by thefe Velocities may be found; and if the Law of the Velocities be given, the Nature of the Curve may likewife be given.

In the third and laft Book, we have the inverfe Method of Fluxions, with it's Application to the feveral Problems folvable by it; fuch as the fuperficial and folid Contents of curvilmeal Figures, the Rectification of Curve-Lines, Centers of Gravity, Ofcillation and Percuffion. Here alfo Mr Cotes's Table of Fluents are explained and illuftrated by Examples.

He finithes this Book with a great Varicty of Problems, that are of a Phyfico-Mathematical Nature, feveral of which are new, and propored to him by Mr Belidor. Some, indeed, are not fo, having been folved
folved by Meffieurs Varignon and Porent; but then he has folved them after a different, and, as he hopes, a more agreeable, Manner, the Conftruction being more fimple, and the Procefs much fhorter.
V. The Author's firf Defign in compofing this Treatife, was to eftablifh the Method of Fluxions on Principles equally evident and unexceptionable with thofe of the antient Geometricians, by Demonftrations deduced after their Maliner, in the moft rigid Form, and by illuftrating the more abofrufe Parts of the Doctrine, to vindicate it from the Imputation of Uncertainty or Obfcurity. But he has likewife comprehended in this Work the Application of Fluxions to the moft important geometrical and philofophical Enquiries. It confifts of an Introduction, and two Books. In the Introduction he gives an Abftract of the Difcoveries of the Antients in the higher Parts of Geometry, with Obfervations on their Method, and thofe that firft fucceeded to it. The firft Book treats of Fluxions in a geometrical Method, and the fecond treats of the Computations.
In the Introduction we have an Abftract not only of the Difcoveries of the Antients in the higher Parts of Geometry, but likewife of their Demonftrations. After an Account of the Propofitions of this Kind, that are to be found in the 12th Book of Euclid, there follows a Summary of what is moft material in the Treatifes of Archimedes, concerning the Sphere and Cylinder, Conoids and Spheroids, the Quadrature of the Parabola and the fpiral Lines. The Demonftrations are not precifcly in the fame Form as thofe of Archimedes, but are often illuftrated from the elementary Propofitions concerning the Cone, or Corollarics from them, after the Example of Pappus, from whom the Propofition Coll. Math. is demonitrated, and rendered more general, concerning the Area of the Prop. 21. Spiral that is generated on a fpherical Surface by the Compofition of Lib. fo two uniform Miotions analogous to thofe by which the Spiral of Δr cbimedes is delicribed on a Plane. This Area, though a Portion of a curve Surface, is found to admit of a perfect Quadrature, and this Propofition concludes the Abftract. He takes Occafion from thefe Theorems to demonftrate fome Properties of the Conic Sections, that are rot mentioned by the Writers on that Subject ; and there are more of this Kind defribeci in Chap. II and 14 of Book I.

It is known, that if a Parallelogram, circumferibed about a given Ellipfe, have it's Sides parallel to the conjugate Diameters, then fhall it's Area be of an invariable or given Magnitude, and equal to the Rectangle contained by the Axis of the Figure; but this is only a Cafe of a more general Propofition. For if, upon any Diameter produced: without the Eliipfe, you take two Points, one on each Side of the Center at equal Diftances from it, and the Four Tangents be drawn from thefc Points to the Ellipfe, thofe Tangents fhall form a Parallelogram, which is always of a given or invariable Magnitude, when the Ellipfe is given, if the Ratio of thofe Diftances to the Diameter be given; and wheis the Ratio of thofe Diftances to the Semidiameter is that of the Diagomal Sides parallel to conjugate Diameters. It is likewife fhown here, how the Triangles, Trapezia, or Polygons of any Kind are determined, which circumfrribed about a given Ellipfe, are always of a given Magnitude.

There is alfo a general Theorem concerning the Fruftum of a Sphere, Cone, Spheroid, or Conoid, terminated by parallel Planes, when compared with a Cylinder of the fame Altitude on a Bafe equal to the middle Section of the Frufum made by a Parallel Plane. The Difference betwixt the Fruftum and the Cylinder is always the fame in different Parts of the fame, or of fimilar Solids, when the Inclination of the Planes to the Axis, and the Altitude of the Fruftum, are given. This Difference vanifhes in the parabolic Conoid. It is the fame in all Spheres; being equal to half the Content of a Sphere of a Diameter equal to the Altitude of the Fruftum. In the Cone it is one Fourth of the Content of a fimilar Cone of the fame Height with the Fruftum; and in other Figures it is reduced to the Difference in the Cone.

In the Remarks on the Method of the Antients, the Author obFerves, that they eftablifhed the higher Parts of their Geometry on the fame Principles as the Elements of the Science, by Demonitrations of the fame Kind; that they feem to have been careful not to fuppofe any thing to be done, till by a previous Problem they had Thewn how it was to be performed: Far lefs did they fuppofe any thing to be done, that cannot beconceived to be poffible, as a Line or Series to be actually continued to Infinity, or a Magnitude to be diminifhed till it become infinitely lefs than it was. The Elements into which the refolved Magnitudes were always finite, and fuch as might be conceived to be real. Unbounded Liberties have been introduced of late, by which Geometry (wherein every thing ought to be clear) is filled with Myfteries, and Philofophy is likewife perplexed. Several Inftances of this Kind are mentioned. The Series $1,2,3,4,5,6,7, \delta^{2} c$. is fuppofed by fome to be actually continued to Infinity; and, after fuch a Suppofition, we are puzzled with the Queftion, Whether the Number of finite Terms in fuch a Series is finite or infinite. In order to avoid fuch Suppofitions, and their Confequences, the Author chofe to follow the Antients in their Method of Demonftration as much as poffible. Geometry as been always confidered as our fureft Bulwark againft the Subtleties of the Scepticks, who are ready to make ufe of any Advantages that may be given them againft it * ; and it is important, not only that the Conclufions in Geometry be true, but likewife that their Evidence be unexceptionable. However, he is far from affirming, that the Method of Infinitefimals is

[^1]without

without Foundation, and afterwards endeavours to juftify a proper Application of it.

The Grounds of the Method of Fluxions are defcribed in Chap. I. Book I. and again Chap. I. Book II. In the former, Magnitudics are conceived to be generated by Motion, and the Velocity of the generating Motion is the Fluxion of the Magnitude. Lines are fuppofed to be generated by the Motion of Points. The Velocity of the Point that defribes the Line is it's Fluxion, and meafures the Rate of it's Increafe or Decreafe. Other Magnitudes may be reprefented by Lines that increafe or decreafe in the fame Proportion with them; and their Fluxions will be in the fame Proportion as the Fluxions of thofe Lines, or the Velocities of the Points that defribe them. When the Motion of a Point is uniform, it's Velocity is conftant, and is meafured by the Space which is deferibed by it in a given Time. When the Motion varies, the Velocity at any Term of the Time is meafured by the Space which would be defcribed in a given Time, if the Motion was to be continued uniformly from that Term without any Variation. In order to determine that Space, and confequently the Velocity which is meafured by it, four Axioms are propofed concerning variable Motions, two concerning Motions that are accelerated, and two concerning fuch as are retarded. The firft is, That the Space defcribed by an accelerated Motion is greater than the Space which would have been defcribed in the fame Time, if it had not been accelerated, but had continued uniform from the Beginning of the Time. The fecond is, That the Space which is defcribed by an accelerated Motion, is lefs than the Space which is defcribed in an equal Time by the Motion which is acquired by that Acceleration continued afterwards uniformly. By thefe, and two fimilar Axioms concerning retarded Motions, the Theory of Motion is rendered applicable to this Doctrine with the greateft Evidence, without fuppofing Quantities infinitely little, or having Recourfe to prime or ultimate Ratios. The Author firft demonftrates from them all the general Theorems concerning Motion, that are of Ufe in this Doctrine; as that when the Spaces defcribed by two variable Motions are always equal, or in a given Ratio, the Velocities are always equal, or in the fame given Ratio; and converfely, when the Velocities of two Motions are always equal to each other, or in a given Ratio, the Spaces defribed by thofe Motions in the fame Time are always equal, or in that given Ratio; that when a Space is always equal to the Sum or Difference of the Spaces defcribed by two other Motions, the Velocity of the firft Motion is always equal to the Sum or Difference of the Velocities of the other Motions; and converfely, that when a Velocity is always equal to the Sum or Difference of two other Velocities, the Space defcribed by the firf Motion is always cqual to the Sum or Difference of the Spaces defcribed by thefe two other Motions. In comparing Motions in this Doctrine, it is convenient and V O L. VIII. Part i, F ufua! ufual to fuppofe one of them uniform; and it is here demonftrated, that if the Relation of the Quantities be always determined by the fame Rulc or Equation, the Ratio of the Motions is determined in the fame Manner, when both are fuppofed variable. Thefe. Propofitions are demonftrated ftrictly by the fame Method which is carried on in the enfuing Chapters for determining the Fluxions of the Figures.

In Chap. II. a Triangle that has two of it's Sides given in Pofition, is fuppoled to be generated by an Ordinate moving parallel to itfelf along the Bare. When the Bate increafes uniformly, the Triangle increales with an accelerated Motion, becaufe jt's fuccefive Increments are Trapezia, that continually increafe. Therefore, if the Motion with which the Triangle flows, was continued uniformly from any Term for a given Time, a let's Space would be defcribed by it than the Increment of the Triangle, which is actually generated in that Time by Axiom I. but a greater Space than the Increment which was actually generated in an equal Time preceding that Turm, by Axiom II. and hence it is demonftrated, that the Fluxion of the Triangle is accurately meafured by the Rectangle contained by the correfponding Ordinate of the Triangle, and the right Line which meafures the Fluxion of the Bafe. The Increment which the Triangle acquires in any Time, is refolved into two Parts; that which is generated in confequence of the Motion with which the Triangle flows at the Beginning of the Time, and that which is generated in confequence of the Acceleration of this Mution for the fame Time. The latter is jufly neglected in meafuring that Motion (or the Fluxion of the Triangle at that Term) but may ferve for meafuring it's Acceleration, or the fecond Fluxion of the Triangle. The Motion with which the Triangle flows, is fimilar to that of a Body defcending in free Spaces by an uniform Gravity, the Velocity of which, at any Term of the Time, is not to be meafured by the Space defcribed by the Body in a given Time, either before or after that Term, becaufe the Motion continually increafes, but by a Mean between thefe Spaces.

When the Sides of a Rectangle jincreafe or decreafe with uniform Motions, it may be always confidered as the Sum or Difference of a Triangle and Trapezium ; and it's Fluxion is derived from the laft Propofition. If the Sides increafe with uniform Motions, the Rectangie increafes with an accelerated Motion ; and in meafuring this Motion at any Term of the Time, a Part of the Increment of the Rectangle, that is here determined, is rejected, as generated in confequence of the Acceleration of that Motion.

The Fluxions of a curvilineal Area (whether it be generated by an Ordinate moving parallel to itfelf, or by a Ray revolving about a given Center) and of the Solid, gencrated by the Area revolving about the Bafe, are determined by Demonftrations of the fame Kind; and when the Ordinates of the Figure increafe, the Increment of the Area is refolved in like manner into two Parts, one of which is only to be retained
tained in meafuring the Fluxion of the Area, the other being rejefted as generated in confequence of the Acceleration of the Motion with which the Figure flows. An Illuftration of fecond and third Fluxions is given by refolving the Increment of a Pyramid or Cone into the feveral refpective Parts that are conceived to be generated in confequence of the firft, fecond, and third Fluxions of the Solid, when the Axis is fuppofed to flow uniformly.

In Chap. V. a Series of Lincs in Geometrical Progreffion are reprefented by an eafy Conftruction. The firft Term being fuppofed invariable, and the fecond to increafe uniformly, all the fubfequent Terms increafe with accelerated Motions. The Velocities of the Points that defcribe thofe Lines being compared, it is demonftrated from the Axioms by common Geometry, that the Fluxions of any two Terns are in a Ratio compounded of the Ratio of the Terms, and of the Ratio of the Numbers that exprefs how many Terms precede them in the Progreffion.

In Chap. VI. the Nature and Properties of Logarithms are defcribed after the celebrated Inventor; and it is oblerved, that he made ufe of the very Terms Fluxus and Fluat on this Occafion. A Line is faid to increafe or decreafe proportionally, when the Velocity of the Point, that defcribes it, is always as it's Diftance from a certain Term of the Lines and if in the mean time another Point defrribes a Line with a certain uniform Motion, the Space deferibed by the latter Point is always the Logarithm of the Diftance of the former from the given Term. Hence the Fluxion of this Diftance is to the Fluxion of it's Logarithm as that Diftance is to an invariable Line ; and the Fluxions of the Quantities that have their Logarithms in an invariable Ratio, are to each other in a Ratio compounded of this invariable Retio, and of the Ratio of the Quantities themfelves. Some Propofitions are demonftrated, that relate to the Computation of Logarithms ; but this Subject is profecuted farther in the fecond Book. The Logarithmick Curve is here defrribed, with the Analogy betwixt Logarithms, and Hyperbolic Ratios.

In Chap. VII. after a general Definition of Tangents, it is demonftrated, that the Fluxions of the Bafe, Ordinate, and Curve, are in the fame Proportion to each other, as the Sides of a Triangle refpectively parallel to the Bafe, Ordinate, and Tangent. When the Bafe is fuppofed to flow uniformly, if the Curve be convex towards the Bafe, the Ordinate and Curve increafe with accelerated Motions; but their Fluxions at any Term are the fame as if the Point which defcribes the Curve had proceeded uniformly from that Term in the Tangent there. Any further Increment which the Ordinate or Curve acquires, is to be imputed to the Acceleration of the Motions with which they flow. A Ray that revolves about a given Center, being fuppofed to meet any Curve and an Arc of a Circle, defrribed from the fame Center, the Fluxions of the Ray, Curve, and circular Arc, are compared together ; and feverat other Propofitions concerning Tangents are demonftrated from the

An Account of Mr McLaurin's Fluxions.

Axioms. The next Chapter treats of the Fluxions of curve Surfaces in a fimilar Manner.

Chap. IX. treats chiefly of the greateft and lcaft Ordinates of Figures, and of the Points of contrary Flexure and Cufpids. The Fluxion of the Bale being given, when the Fluxion of the Ordinate vaniflues, the Tangent becomes parallel to the Bare, and the Ordinate moft commonly is a Maximum or Minimum, according to the Rule given by Authors upon this Subject. But if the 2d Fluxion of the Ordinate vanih at the fame Time, and the gd Fluxion be real, this Rule dous not hold, for the Ordinate is in that Cafe neither a Meximam nor Minimum. If the ift, 2d, and 3 d Fluxions vanifh, and the 4 th Fluxion be real, the Ordinate is a Maximum or Minimum. The general Rule demonftrated in this Chapter, and again in the laft Chapter of Book II. is, that when the if Fluxion of the Ordinate, with it's. Fluxions of any fubfequent fuccemive Orders, vanifh, and the Number of alf thefe Fluxions that vaninh is odd, then the Ordinate is a Maximum or Minimum, according as the Fluxion of the next Order to thefe is negative or pofitive. The Ordinate paffes through a Point of contrary Flexure, when it's Fluxion becomes a Maximum or Minimum, luppofing the Cuive to be continued on both Sides of the Ordinate. Hence the common Rule for finding the Points of contrary Flexure is corrected in a fimilar Manner. Such a Point is not always formed when the ad Fluxion of the Ordinate vanifhes; for if it's 3 d Fluxion likewife vanifhes, and it's 4th Fluxion be real, the Curve may have it's Cavity turned all one Way. The fame is to be faid, when it's Fluxions of the fubfequent fucceffive Orders vanifh, if the Number of all thofe that vanifh be even. Ocher Theorems are fubjoined relating to this Subject.

Chap. X. treats of the Afymptotes of Lines, the Areas bounded by them and the Curves, the Solids generated by thefe A reas of firal Lines, and the Limits of the Sums of Progreffions. The Analogy there is betwixt chefe Subjeets, induced the Author to treat of them in one Chapter, and illuftrate them by one another. He begins with three of the moft fimple Inftances of Figures that have Afymptotes. In the commons Hyperbola, the Ordinate is reciprocally as the Bafe, and therefore decreafes while the Bafe increafes, but never vanifhes, becaufe the Rectangle contained by it and the Bafe is always a given Area, and it is affignable at any affignable Diftance, how great foever. The Points of the Conchoid are determined by drawing right Lines from a given Center, and upon thefe produced from the A fymptote, taking always a given right Line; fo that the Curve never meets the Afymprote, but continually approaches to it, becaufe of the greater and greater Obliquity of this right Line. The $3 d$ is the Logarithmic Curve, wherein the Ordinates, at equal Diftances, decreafe in Geometrical Proportion, but never vanifh, becaufe each Ordinate is in a given Ratio to the preceding Ordinate. Geometrical Magnitude is always underftood to confift of

Parts ; and to have no Parts, or to have no Magnitude, are confidered as cquivalent in this Science*. There is, however, no Necefity for confidering Magnitude as made up of an infinite Number of fmall Parts; it is fufficient, that no Quantity can be fuppofed to be fo fmall, but it may be conceived to be diminimed further; and it is obvious, that we are not to eftimate the Number of Parts that may be conceived in a given Magnitude, by thofe which in particular determinate Circumflances may be actually perceived in it by Senfe; fince a greater Number of Parts become vifible in it by varying the Circumftances in which it is perceived.

It is hardly poffible to give a tolerable Extract of this or the following Chapters, without Diagrams and Computations: We shall therefore obieve only, that after giving fome plain and obvious Inftances, wherein a Quantity is always increating, and yet never amounts to a certain finite Magnitude (as, while the Tangent increafes, the Arc increafes, but never amounts to a Quadrant); this is applied fuccefively to the feveral Subjects mentioned in the Title of the Chapter. Let the Figure be concave towards the the Bare, and fuppofe it to have an Afymptote parallel to the Bale ; in this Cafe the Ordinate always increafes while the Bafe is produced, but never amounts to the Diftance between the Miymptote and the Bafe. In like manner a curvilineal Area, in a fecond Figure, may increafe, while the Bafe is produced, and approach continually to a certain finite Space, but never amount to it: This is always the Cafe, when the Ordinate of this latter Figure is to a given right Line, as the Fluxion of the Ordinate of the former is to the Fluxion of the Bafe; and of this various Examples are given. A Solid may increafe in the fame Manner, and yet never amount to a given Cube or Cylinder, when the Square of the Ordinate of the latter Figure is to a given Square, as the Fluxion of the Ordinate of the firt Figure is to the Fluxion of the Bafe. A Spiral may in like manner approach to a Point continually, and yet in any Number of Rcvolutions never arrive at it; and there are Progreffions of Fractions that may be continued at Pleafure, and yet the Sum of the Terms may be always lefs than a given Number. Varinus Rules are demonitrated, and illuftrated by Examples, for determining when a Figure has an Afymptote parallel or oblique to the Bafe; when the Area terminated by the Curve and the Afymptote has a Limit which it never exceeds, or may be produced till it furpafs any affignable Space; when the Solid generated by that Area, the Surface generated by the Perimeter of the Curve, the fpiral Area generated by the revolving Ray, the fpiral Line itfelf, or the Sum of the Terms of a Progreflion, have fuch Limits or not; and for meafuring thofe Limits. The Author infifts on thefe Subjects, the rather that chey are commonly deforibed in very myiterious Terms, and have been the moft fertile of Paradoxes of any.

[^2]
An Account of Mr McLaurin's Fluxions.

Farts of the higher Geometry. Thefe Pradoxcs, however, amount to no more than this: That a Line or Number may be continually acquiring Increments, and thofe Increments may decreafe in fuch a Manner, that the whole Line or Number flall never amount to a given Line or Number. The Neceffity of admiting this is obvious enough, and is here fhewn from the Nature of the moft common geometrical Figures in Art. 292, 293, \mathcal{E}° c. and from any Series of Fractions that decreafe continually, in Art. $354,355, \mathrm{E}^{\circ} \mathrm{C}$.

Chap. XI. treats of the Curvature of Lines, it's Variation, the Degrees of Contact of the Curve and Circle of Curvature, and of various Problems that depend on the Curvature of Lines. This Subject is treated fully, becaufe of it's extenfive Ufefulnefs, and becaufe in this confilts one of the greateft Advantages of the modern Geometry above that of the Antients. The Author on this, as former Occafions, begins by premifing the neceffary Definitions. Curve Lines touch each other in a Point, when the fame right Line is their common Tangent at that Point; and that which has the clofert Contact with the Tangent, or paffes betwixt it and the other Curve through the Angle of Contact formed by them, being lefs inflected from the Tangent, is therefore lefs curve. Thus a greater Circle has a lefs Curvature than a leffer Circle; and fince the Curvature of Circles may be varied indefinitely, by inlarging or diminifhing their Diameters, they afford a Scale by which the Curvature of other Lines may be meafured. As the Tangent is the right Line which touches the Arc fo clofely, that no other right Line can be drawn between them ; fo the Circle of Curvature is that which touches the Curve fo clofely, that no other Circle can be drawn through the Point of Contact between them. As the Curve is feparated from it's Tangent in confequence of it's Flexure or Curvature, fo it is feparated from the Circle of Curvature in confequence of the Variation of it's Curvature; which is greater or lefs, according as it's Flexure from that Circle is greater or lefs.

The Tangent of the Figure being confidered as the Bafe, a new Figure is imagined, whofe Ordinate is a third Proportional to the Ordinate and Bafe of the firt. This new Figure determines the Chord of the Circle of Curvature, by it's Interfection with the Ordinate at the Point of Contact, and by the Tangent of the Angle in which it cuts that Circle, meafures the Variation of Curvature. The lefs this Angle is, the clofer is the Contact of the Curve and Circle of Curvature, of which there may be indefinite Degrees. When the Figure propofed is a conic Section, the new Figure is likewife a conic Section; and it is a right Line when the firft Figure is a Parabola, and the Ordinates are parallel to the Axis; or when the firf Figure is an Hyperbola, and the Ordinates are parallel to either Afymptote. Hence the Curvature and it's Variation in a conic Section are determined by feveral Conftructions; and, amongft other Theorems, it is fhewn, that the Variation of Curvature at any Point of a conic Section is as the Tangent of the

Angle contained by the Diametcr which paffes through that Point, and by the Perpendicular to the Curve.

When the Ordinate at the Point of Contact is an Afymptote to the new Figure, the Curvature is lefs than in any Circle; and this is the Cafe in which it is faid to be infinitely little, or the Ray of Curvature is faid to be infinitely great. Of this Kind is the Curvature at the Poinis of contrary Flexure in the Lines of the third Order. When the new Figure paffes through the l'oint of Contact, the Curvature is greater than in any Circle, or the Ray of Curvature vanifhes; and in this Cafe the Curvature is faid to be infinitely grear. Of this Kind is the Curvature at the Cufpids of the Lines of the third Order.

As Lines which pals through the fame Point have the fame Tangent when the firlt Fluxions of the Ordinate are equal, fo they have the fame Curvature when the fecond Fluxions of the Ordinate are likewife equal ; and half the Chord of the Circle of Curvature that is intercepted between the Points wherein it interfects the Ordinate, is a third Proportional to the right Lines that meafure the fecond Fluxion of the Ordinate and firl Fluxion of the Curve, the Bafe being fuppofed to flow uniformly. When a Ray revolving about a given Point, and terminated by the Curve, becomes perpendicular to it, the firf Fluxion of the Ray vanifhes; and if it's fecond Fluxion vanifhes at the fame time, that Point muft be the Center of Curvature. The fame is to be faid when the angular Motion of the Ray about that Point is equal to the angular Motion of the Tangent of the Curve; as the angular Motion of the Radius of a Circle about it's Center is always equal to the angular Motion of the Tangent of the Circle. Thus the various Properties of the Circle fuggeft various Theorems for determining the Center of the Curvature.

Becaufe Figures are often fuppofed to be defrribed by the Interfections of right Lines revolving about given Poles, three Theorems are given in Prop. 18. 26. and 35. for determining the Tangents, Afymptotes, and Curvature of fuch Lines, from the Defeription, which are illuftrated by Examples. A new Property of. Lines of the third Order is fubjoined to Prop. 35. The Evolution of Lines is confidered in Prop: 36. The Tangents of the Eiroluta are the Rays of Curvature of the Line which is defribed by it's Evolution; and the Variation of Curvature in the latter, is meafured by the Ratio of the Kay of Curvature of the former to the Ray of Curvature of the latter.

Sir 1. Neteron, in a Treatife lately piblifhed, meafures the Variation of the Curvature by the Ratio of the Fluxion of the Ray of Curvature to the Fluxion of the Curve; and is followed by the Author, to avoid the Perplexity which a Difierence in Definitions occafions to Readers, though he hints (in Art. 386.) that this Retio gives rather the Vatiation of the Kay of Curvature, and that it might have been proper to have meafured the Variation of Curvature lather by the Ralio of the Fluxion of the Curvature itfelf to the Flusion of the Cunve, fo:
that the Curvature being inverfely as the Ray of Curvature, and confequently it's Fluxion as the Fluxion of the Ray irfelf directly, and the Square of the Ray inverfely, it's Variation would have been directly as the Mealure of it, according to Sir I. Nerston's Detinition, and inverfeJy as the Square of the Ray of Curvature: According to this Explication, it would have been meafured by the Angle of Contact contained by the Curve and Circle of Curvature, in the fame Manner as the Curvature itfelf is meafured by the Angle of Contact contained by the Curve and Tangent. The Ground of this Remark will better appear from an Example: According to Sir I. Neroton's Explication, the Variation of Curvature is uniform in the Logarithmic Spiral, the Fluxion of the Ray of Curvature in this Figure being always in the fame Ratio to the Fluxion of the Curve; and yet while the Spiral is produced, though it's Curvature decreafes, it never vanifhes; which muft appear ftrange to fuch as do not attend to the Import of his Definition.-It is eafy, however, to derive one of thefe Meafures of this Variation from the other, and becaufe Sir I. Neroton's is (generally fpeaking) affigned by more fimple Expreffions, the Author has the rather conformed to it in this Treatife, but thought it neceffary to give the Caution we have mentioned.

The greatef Part of this Chapter is employed in treating of ufeful Problems, that have a Dependance on the Curvature of Lines. Firt, the Properties of the Cycloid are briefly demonftrated, with the Application of this Doctrine to the Motion of Pendulums, by fhewing that when the Motion of the generating Circle along the Bafe is uniform, and therefore may meafure the Time, the Motion of the Point that defcribes the Cycloid, is fuch as would be acquired by a heavy Body defcending along the cycloidal Arc, the Axis of the Figure being fuppofed perpendicular to the Horizon. In the next place, the Caultics, by Reflexion and Refraction, are determined. If Perpendiculars be always drawn from the radiating Point to the Tangents of the Curve, and a new Curve be fuppofed to be the Locus of the Interfections of the Perpendiculars and Tangents, then the Line, by the Evolution of which that new Curvecan be defcribed, is fimilar and fimilarly fituated to the Cauftic by Reflection. The Ductrine of centripetal Forces is treated at Lengeth from Art. 416. to 493.

Firft, a Body is fuppofed to defcend freely by it's Gravity in a vertical Line ; and becaufe the Gravity is the Power which accelerates the Motion of the Body, it muft be meafured by the Fluxion of it's Velocity, or the fecond Fluxion of the Space defcribed by it. When the vertical Line is fuppofed to move parallel to itfelf with an uniform Mosion, the Body will defcend in it in the fame Manner as before; and the Gravity will be ftill meafured by the fecond Fluxion of the Defcent, or the fecond Fluxion of the Ordinate of the Curve that is traced in this Cafe by the Body on an immoveable Plain, and therefore is as the Square of the Velocity (which is meafured by the Fluxion of the

Curve) directly, and the Chord of the Circle of Curvature that is in the Direction of the Graviey inverfely, by a Propofition mentioned above. When the Gravity acts uniformly, and in parallet Lines, the Projectile, in defcribing any Arc, falls below the Tangent drawn at the Beginning of the Are, as much as if it had fallen perpendicularly in the Vertical ; and the Time being given, the Gravity may be meafured by the Space which is the Subtenfe of the Angle of Contact. In other Cires, when the Gravity vari:s, or it's Direction changes, it may be meafured at any Point by the Subtenfe of the Angle of Contact, that would have been generated in a given Time, if the Gravity had continued to act uniformly in parallel Lines from that Term, that is, by the Subtenfe of the Angle of Contact in the Parabola that lias it's Diameter in the Direction of the Force, and has the clofent Contact with the Curve; which leads us to the fame Theorem as before.

In general, lec the Gravity (that refults from the Compofition of any Number of centripital Forces, which are fuppofed to act on the Body in one Plane) be refolved into a Force parallel to the Ordinates, and a Force parallel to the Bafe; then the former fhall be meafured by the fecond Fluxion of the Ordinate, and the latter by the fecond Fluxion of the Bate, the Time being fuppofed to flow uniformly, fo that the Velocity of the Body may be meafured by the Fluxion of the Curve. When the Trajectory is not in one Plane, the Force is refolved in a fimilar Manncr into three Forces, which are meafured by three fecond Fluxions analogous to them.

Whether the Body move in a Void, or in a Medium that refifts it's Motion ; the Gravity that refults from the Compofition of the centripetal Forces which act upon the Body, is always as the Square of it's Velocity directly, and the Chord of the Circle of Curvature that is in the Direction of the Gravity inverfely.

When a Body defribes any Trajectory in a Void or in a Medium, by a Force directed to one given Center, the Velocity at any Point of the Trajectory is to the Velocity by which a Circle could be defrribed in a Void about the fame Center, at the fame Diftance, by the fame Gravity, in the fubduplicate Ratio of the angular Motion of the Ray drawn always from the Body to the Center, to the angular Motion of the Tangent of the Trajectory: And, if there be no Refiftance, the Velocity in the Trajectory at any Point, is the fame that would be acquired by the Body, if it was to fall from that Point through one fourth of the Chord of the Circle of Curvature that is in the Direction of the Gravity, and the Gravity at that Point was to be continued uniformly during it's Defcent.

If the centripetal Force be inverfely as any Power of the Diftance whofe Exponent is any Number ma greater than Unit, there is a certain Velocity (viz. that which is to the Velocity in a Circle at the fame Diftance as $\sqrt{2 \text { to }} \sqrt{m_{2}-1}$) which would be juft fufficient to carry off the Body upwards in a vertical Line, $f 0$ as that it foculd continue to V OL. VIII. Part i.
afcend for ever, and never return towards the Center. If the Body be projected in any other Direction with the fame Velocity, it will defrcibe a Trajectory which is here conftructed: It is a Parabola when $m=2$, a Logarithmic Spiral when $m=3$, an Epicycloid when $m=4$, a Circle that paffes through the Center of the Forces when $m=5$, and the Lemnifata when $m=7$. In general, it is confructed by drawing a Perpendicular from the Center of the Forces to a right Line given in Pofition, and any other Ray to the fame right Line, then increafing or diminifhing the Angle contained by this Ray and the Perpendicular in the given Ratio of 2 to the Difference between 3 and m, and increafing or diminifhing the Logarithm of the Ray in the fame given Ratio. The Trajectories defcribed in analogous Cales by centrifugal Forces, are conftructed in a fimilar Manner. Thefe are the Figures in which the Perpendicular, from a given Center on the Tangent, is always as fome Power of the Ray drawn from the fame Center to the Point of Contact, which are afterwards found to arife in the Refolution of the moft fimple Cafes of Problems of various Kinds.

When the Area defcribed about the Center of an Ellipfe is given, the Subtenfe of the Angle of Contact, drawn through one Extremity of the Arc parallel to the Semidiameter drawn to the other Extremity is in a given Ratio to this Semidiameter; and therefore, when an Ellipfe is defcribed by a Force directed towards the Center, that Force is always as the Diftance from the Centre. When the Force is directed toward the Focus, it is inverfely as the Square of the Diftance. And thefe two Cafes are confidered particularly, becaufe of their Ufefulnefs in the true Theory of Gravity. To illuftrate which, the Laws of centripetal Forces that would caufe a Body to defcend continually toward the Center, or afeend from it, are diftinguifhed from thofe which caure the Body to approach towards the Center, and recede from it by Turns. A Body approaches from the higher Apfid toward the Center, when it's Velocity is lefs than what is requilite to carry it in a Circle ; and if it's Velocity increafe, while it defcends, in a higher Proportion than the Velocities requifite to carry Bodies in Circles about the fame Center, the Velocity in the lower Part of the Curve may exceed the Velocity in a Circle at the fame Diftance, and thereby become fufficient to carry off the Body again. But while the Diftance clecreafes, if the Velocities in Circles increafe in the fame or in a higher Proportion, than the Velocity in a Trajettory can increafe, the Body muft either continually approach toward the Center, if it once begin to approach to it, or recede contimially from the Center, if it once begin to afcend from it; and this is the Cafe, when the centripetal Force increafes as the Cube of the Diftance decreafes, or in a higher Proportion. But though, in fuch Cafes, the Body approach continually towards the Center, we are not to conclud, that it will always approach to it till it fall into it, or come within any given Ditance; for it is demonftrated afterwards in Art. 879 and 880, that it may approach to the Center for cver, in a

An Accoint of Mr MLaurin's Fiuxions.

Spiral that never defeends to a given Circle deferibed in the fame Plane, and that it may rececie from it for ever in a Spiral that never arifes to a given Altitude. An Ixample of each Cafe is given when che centripetal Force is inverfely as the fifth Power of the Diftance.

When the Trajectory is diferibed in a Medium, let z be to a given Magnitude as the centripetal Force is to the Force by which the lame Trajectory could be defrribed in a Void; and if the Area be fuppoied to flow uniformly, the Refiftance will be in the compound Ralio of the Fluxion of z, and of the Fluxion of the Curve; and the Denfity of the Medium (fuppofing the Refittance to be in the compound Resio of the Denfity and of the Square of the Velocity) Thall be as the Fluxion of the Logarithm of z directly, and the Fluxion of the Curve inverfely. Hence, when any Figure that can be defcribed in a Void by a Force that varies according to any Power of the Diftance from the Center, is defcribed in a Medium, the Denfity of the Medium muft be inverfly as the Tangent of the Figure bounded by a Perpendicular at the Center to the Ray drawn from it to the Point of Contact.

After giving fome Properties of the Trajectories that are defcribed by a Budy when it gravitates in right Lines perpendicular to a given Surface, and their Application to optical Ufes, the Author procceds to confider the Motion of a Body that gravitates towards feveral Centers. In fuch Cafes, that Surface is faid to be horizontal, which is always perpendicular to the Direction of the Gravity that refults from the Compofition of the feveral Forces; and it is fhewn, that the Velocity which is acquired by defcending from one horizontal Surface to another, is always the fame (whether the Body move in right Lines, or in any Curves) ; the Square of which is meafured by the Aggregate of feveral Arens which have the Diftances from the refpective Centers for their Bafes, and right Lines proportional to the Forces at thefe Diftances for their Ordinates.

The Force which acts upon the Moon is refolved into a Force perpendicular to the Plane of the Ecliptic, and a Force parallel to it. This laft is again refolved into that which is parallel to the Line of the $S y$ zigies, and that which is parallel to the Line joining the Quadratures. The firft meafures the fecond Fluxion of the Diftance of the Moon from that Plane, the fecond and third meafure the fecond Fluxions of her Diftances from the Line of the Quadratures, and from the Line of the Syzigies, refpectively. Hence a Conftruction is derived of the Trajectory which would be defcribed by the Moon about the Earth, in confequence of their unequal Gravitation towards the Sun, if the Gravity of the Moon towards the Earth was as her Diftance from it. From this a Computation is deduced of the Motion of the Nodes of the Moon, and of the Variation of the Inclination of the Plane of her Orbit, which we cannot defcribe here. It is fufficient to oblerve, that thefe: Motions are found to agree nearly with thofe which have been deduced from other Theories, and from Aftronomical Obfervations.

A Fluid being fuppofed to gravitate towards two given Centers with equal and invariable Forces, it is flewn, that the Figure of the Fluid murt be that of an oblong Spheroid, and that thofe two Centers muft be the Foci of the generating Ellipfe. The Nature of the Figure is alfo fhewn, when the Fluid gravitates towards feveral Centers, or when it revolves on it's Axis; but thele are mentioned bricfly, becaufe fuch Theories are of litele or no Ufe for difcovering the Figures of the Plarets.

In Chap. XII, the Author proceeds to confider the more concife Methods, by which the Fluxions of Quantities are ufuaily deternined, and to deduce general Theorems more immediately applicable to the Refolution of Gomerrical and Philofophical Problems. In the Method of Infinitefimals, the Element by which any Quantity increafes or decrealics, is fuppofed to become infinitely finall, and is generally expreffed by two or more Terms, fome of which become infinitely lefs than the reft, and therefore being neglected as of no Importance, the remaining Terms form what is called the Difference of the Quantity propofed. The Terms that are neglected in this Manner are the very fance which arife in confequence of the Acceleration or Retardation of the generating Motion, during the infinitely fnall Time in which the Element is generated; and therefore thefe Đifferences are in the fame Ratio to each other as the generating Motions or Fluxions. Hence the Conclufions in this Method are accurately true, without cven an infinitely fmall Error, and agree with thofe that are deduced by the Method of Fluxions.

It is ufual in this Method to confider a Curve as a Polygon of an infinite Number of Sides, which, being produced, give the Tangents of the Curve, and, by their Inclination to each other, meafure it's Curvature. But it is neceffary in fome Cafes, if we would avoid Error, to refolve the Element of the Curve into feveral infinitely fmall Parts, or cven fometimes into Infinitefimals of the fecond Order; and Errors that might otherwife arife in it's Application, may, with due Care, be corrected by a proper Ufe of this Method itfelf, of which fonse Infances are given. If we were to fuppofe, for Example, the leaft Arc that can be defcribed by a Pendulum to coincide with it's Chord, the Time of the Vibration derived from this Suppufition will be found erroneous; but by refolving that Arc into more and more inininitely fmall Parts, we approach to the true Time in which it is defcribed. By fuppofing the Tangent of the Curve to be the Prodution of the rectilineal Element of the Curve, the Subtenfe of the Angle of Contact is found equal to the fecond Difference or Fluxion of the Ordinate; but in this Inquiry, the Tangent ought to be fuppofed to be equally inclined to the two Elements of the Curve that terminate at the Point of Contact ; and then the Subtenfe of the Angle of Contact will he found equall to haif the fecond Difference of the Ordinate, which is it's true Value.

Sir I. Neevton, however, inveftigates the Fluxions of Quantities in a more unexceptionable Manner. He firft determines the finite fimultaneous Increments of the Fluents, and, by comparing them, inveftigates the Ratio that is the Limit of the various Proportions which they bear to cach other, while he fuppofes them to decreafe together till they vanifh. When the generating Motions are variable, the Ratio of the fimultancous Increments that are generated from any Term, is expreffed by feveral Quantities, fome of which arife from the Ratio of the generating Motions at that Term, and others from the fublequent Acceleration or Retardation of thefe Motions. While the Increments are fuppofed to be diminifhed, the former remain invariable, but the latter decreafe continually, and vanifh with the Increments; and hence the Limit of the variable Ratio of the Increments (or their ultimate Ratio) gives the precife Ratio of the generating Motions or Fluxions. Moft of the Propofitions in the preceding Chapters may be more briefly demontrated by this Method, (of which feveral Examples are given) and the Author makes always ufe of it in the Scquel of this Book.

It is one of the great Advantages of this Methoct, that it fuggefts general Theorems for the Refolution of Problems, which may be readily applied as there is Occafion for them. Our Author proceeds to treat of thefe, and firft of fuch as relate to the Center of Gravity and it's Motion. In any Syftem of Bodies, the Sam of their Motions, eftimated in a given Direction, is the fame as if all the Bodies were united in their common Center of Gravity. If the Motion of all the Bodies is uniform and rectilineal, the Center of Gravity is either quiefcent, or it's Motion is uniform and rectilincal. When Action is equal to Reaction, the State of the Center of Gravity is never affected by the Collifions of the Bodies, or by their attracting or repelling each other mutually: It is not, however, the Sum of the abfolute Motions of the Bodics that is preferved invariable in confequence of the Equality of the Action and Reaction, as they feem to imagine, who tell us, that this Sum is unalterable by the Collifions of Bodies, and that this follows fo evidently from the Equality of Action and Reaction, that to endeavour to demonftrate it, would ferve only to render it more obfeure. On this O :cafion the Author illuftrates an Argument which he had propofed in a Piece that obtained the Irrize propoled by the Royal Academy of Sciences at Paris in 1724, agninf the Menfuration of the Forces of Bodies by the Square of the Velocities, thewing that if this Doctrine was admitted, the fame Power or Agent, exerting the fame Effort, would produce more Force in the fame Body when in a Space carried uniformly fotwards, than if the Space was at Rett; or that Springs acting equally on two equal Bodies in fuch a Space, would produce unequal Changes in the Forces of thofe Bodies.

Various Problems concerning the Collifion of Bodies are refolved in a more general Manner than ufiul. Mr Bernouilli had cetermined the Motions when the Elaficity is perfect, and one Body frrikes two equal

Bodies in Directions that form equal Angles with it's Direction; or when there are any Number of Bodies impelled by it on one Side in various Directions, providing equal Bodies be impclled by it on the 0 . ther Side, in Directions equally inclined to it's own Dircetion. Bur the Problem is refolved here without thefe Limitations; fome others of this Kind are fubjoined, and this Doctrine is applied for determining the Motions of Bodies that att upon each other while they defcend by their Gravity.

The general Principle derived from thefe Inquirics, is, that if there be no Collifion, or fudden Communication of Motion from one Budy to another, while they defcend together, and in any cafe, if the Elafticity be perfeet, the Sum of the Products, when cach Body is multiplied by the Square of the Velocity acquired by it, is the fame as if all the Bodies had defcented freely from the fame refpective Alcitudes to their feveral Places; only in collecting that Sum, if any Body is made to afcend, the Product of it multiplied by the Square of it's Velocity is to be fubducted: And if the Bodies be fappofed to afcend from their Places with the refpective Velocities acquired by them, then their common Center of Gravity will rife to the fame I, evel from which it defeended. In other Cafes, however, the Afcent of the Center of Gravity will be lefs than it's Defcent, but is never greater.

After demonftrating the ufual Rule for finding the Center of Ofcilfition, the Author treats of the Motion of Water iffuing from a cylindric Veffel. The Effect of the Gravitation of the whole Mafs of Water is confidered as threefold. It accelerates, for fome time at leaft, the Motion with which the Water in the Veffel defeends; it generates the Excefs of the Motion with which the Water iflues at the Orifice above the Motion which it had in common with the reft of the Water ; and it acts on the Bottom of the Veffel at the fame Time. Then fuppofing the laft two Parts of the Force to be in any invaitable Ratio to each other, when the Diameters of the Bafe and Orifice are given, he determines by Logarithms the Velocity with which the Water iffues at the Orifice ; and Rhews that this Velocity will approach very near to it's utmof Limit, in an exceeding finall Time. When the Water is fuppofed to be fupplied in a Cylinder, fo as to ftand always at the fame Altitude above the Orifice, there is an Analogy between the Acceleration of the Motion of the Water that iffies at the Orifice, and the Acceleration of a Body that defcends by it's Gravity in a Medium which refifts in the duplicate Ratio of the Velocity. For when the utmoft Velocities, or Limits, are equal in thofe two Cafes, the Time in which the iffuing Water acquires any leffer Velocity, is to the Time in which the defcending Body acquires the fame Velocity as the Area of the Orifice to the Area of the Bafe; and if a cylindric Column be fuppofed to be crected on the Orifice equal to the Quantity of Water that iffues at the Orifice in the former of thofe Times, the Height of this Column will be to the Space defcribed by the defcending Body in the latter Time,

Time, in the fame Ratio as the Orifice to the Area of the Bure. The Ralio of the Force that acts on the Bottom of the Veffel to the Force that generates the Motion of the Water iffuing at the Orifice, is deduced from Sir I. Nerwton's Cataract, and is the fame that follows from the Principle concerning the Equality of the Afcent and Defcent of the Center of Gravity, which was firft applied to this Inquiry by Mr Daniel Bernouilli Comment. Acad. Petrop. Tcins. 2. But there are feveral Precautions to be taken in applying this Doctrine.

After fome other Theorems concerning the Center of Gravity, and feveral Obfervations concerning the Curvature of Lines, and the Angles of Contact ; the Author reprefents four general Propofitions in one View, that the Analogy between them may appear. The ift gives the Property of the Trajectories that are defcribed by any centripetal Forces, how variable foever thefe Forces, or their Directions, may be. The ad gives a like general Property of the Lines of fwifteft Defcent. The 3 d gives the Property of the Line that is defcribed in lefs Time than any other of an equal. Perimeter. And the 4 th gives the Property of the Figure that is affumed by a flexible Line or Chain, in confequence of any fuch Forces acting upon it. If we fuppofe a Body to fet out from any Point in the Trajectory, or in the Line of fwifteft Defcent, with the Velocity which it has acquired there, and to move in the right Line which is the Direction of the Gravity, that refults from the Compofition of the centripetal Forces, then Mall it's Velocity, and it's Diftance from the Point where the Perpendicular from the Center of Curvature meets that right Line, flow proportionally, i.e. the Fluxion of the Velocity (or of the right Line that meafures it) fhall be to the Velocity as the Fluxion of that Diftance is to the Diftance. When the Velocity and Direction of the Motion is the fame in the Line of fwifteft Defcentas in the Trajectory, their Curvature is the fame. Thus in the common Hypothefis of Gravity, the Curvature in the Cycloid, the Line of fwifteft Defcent, is the fame as the Parabola defcribed by a Projectile, if the Velocities in thofe Lines be equal, and their Tangents be equally inclined to the Horizon. In order to find the Nature of the Catenaria in any Hypothefis of Gravity, fuppofe the Gravity to be increafed or diminifhed in the fame Proportion as the 'Thicknefs of the Chain varies, and to have it's Direction changed into the oppofite Direction; then imagine a Body to fet out with a juft Velocity from a given Point in the Chain, and to defrribe the Curve. The Tenfon of the Chain at any Point will be always as the Square of the Velocity acquired at that Point, and if a Body be projected with this Velocity in the Direction of the Tangent, the Curvature of the Trajectory defcribed by it will be one half of the Curvature of the Chain at that Point. We noult refer to the Book for a fuller Account of thefe and of other 'Iheorems.

In Chap. XIII. the Problems concerning the Lines of fwifteft Defcent, the Figures which amongft all shofe that have equal Perimeters preduce:

An Account of Mr McLaunin's Fluxions.

produce Maxima or Minima, and the Solid of leaft Refiftance, are refolved without Computations, from the firft Fluxions only. There are alfo eafy fynthetic Demonitrations fubjoined, becaufe this Theory is commonly efteemed of an abftrufe Nature, and Miftakes have been more frequently committed in the Profecution of it, than of any other relating to Fluxions. 'To give fome Itea of the Author's Method, fuppofe the Gravity to act in parallel Lines, a to denote the Velocity acguired at the lowermoft Point of the Curve, and u the Velocity acquired at any other Point of the Curve. Suppofe the Element of the Curve to be defcribed by this Velocity u, but the Element of the Bafe to be always deferibed by the conftant Velocity a. Then it is eafily demonftrated without any Computation, that the Element of the Ordinate being given, the Difference of the Times in which the Elements of the Curve and Bafe are thus defcribed is a Minimum, when the Ratio of thofe Elements is that of a to u; i. c. When the Sine of the Angle, in which the Ordinate interfects the Curve, is to the Radius in this Ratio. Suppofing therefore this Property to take Place over all the Curve, the Excefs of the Time in which it is defcribed by the Body defeending along it, above the Time in which the Bare is defcribed uniformly with the Velocity a, mult be a Minimum; and this latter Time being given, it follows that the Time of Defcent in this Curve is a Minimum. When the Gravity tends to a given Center, fubftitute an Arc of a Circle defcribed fron that Center through the lowermont Point of the Curve in the Place of the Bale in the former Cafe; and the Property of the Line of fwifteft Defcent will be difcovered in the fame Manner. The Nature of the Line that among all thofe of the fame Perincter is deferibed in the leaft Time, is difcovered with great Facility, by determining fron the former Cafe the Property of the Figure when the Sum or Difference of the Time in which it is defcribed by the defeending Body, and of the Time in which it would be defcribed by any given uniform Motion, is a Minimum; for the latter Time being the fame in all Curves of the fame Length, it follows that the Figure, which has this Property, mutt be defrribed in lefs Time than any of an equal Perimeter. The general Ifoperimetrical Problems are refolved, and the Solutions are rendered more general, with like Facility by the fame Method ; which is alfo applied for determining the Property of the Solid of Jeaft Refiftance, and ferves for refolving the Problem, when Limitations are added concerning the Capacity of the Solid, or the Surface that bounds it.

The laft Chapter of the firf Book treats chiefly of Gravitation towards Spheroids, of the Figure of the Planets, and of the Tides. The Author, having Occifion in thofe Inquiries for feveral new Properties of the Elliple, begins this Chapter by deriving it's Propertics from thofe of the Circle, by confidering it as the oblique Section of a Cy linder, or as the Projection of the Circle by parallel Rays upon a Plane oblique to the Circle. In this Manner the Properties are bricfly transferred
ferred from the one to the other, becaure by this Projection the Center of the Circle gives the Center of the Ellipfe; Diamcters perpendicular to each other in the Circle with their Ordinates, and the circumferibed Square, give conjugate Diameters of the Ellipfe with their Ordinates, and the circumfrribed Parallelogram ; paralleil Lines in the Plane of this Circle are projected by Parallels in the Plane of the Ellipfe that are in the fame Ratio; any Area in the former is projected by an Area in the latter, which is in an invariable Ratio to it ; and concentric Circles give fimilar concentric Ellipfis. It is likewife fhewn how Properties of a certain Kind are briefly transferred from the Circle to any conic Section with the fame Facility.

After den:onftrating the Properties of the Ellipfe, it is fhewn, that if the Gravity of any Particle of a Spheroid being refolved into two Forces, one perpendicular to the Axis of the Solid, the other perpendicular to the Plane of it's Equator, then all Particles, equally diftant from the Axis, muft tend towards it with equal Forces; and all Particles at equal Diftances from the Plain of the Equator, gravitate equally towards this Plain ; but that the Forces with which Particles at different Diftances from the Axis tend towards it, are as the Diftances; and that the fame is to be frid of the Forces with which they tend towards the Plain of the Equator.
From this it is demonftrated, that when the Particles of a fuid Spheroid of an uniform Denfity gravitate towards each other with Forces that are inverfely as the Squares of their Diftances, and at the fame time any other Powers act on the Particles, either in right Lines perpendicular to the Axis, that vary in the fame Proportion as the Diftances from the Axis, or in right Lines perpendicular to the Plain of the Equator, that vary as their Diftances from it, or when any Powers att on the Particles of the Spheroid, that may be refolved into Forces of this Kind ; then the Fluid will be every-where in Equilibrio, if the whole Force that acts at the Pole be to the whole Force that acts at the Circumference of the Equator, as the Semidiameter of the Equator to the Semiaxis of the Spheroid ; and that the Forces with which equal Particles at the Surface tend towards the Spheroid, will be in the fame Proportion as Perpendiculars to it's Surface, terminated cither by the Plane of the Equator, or by the Axis. Becaufe the centrifugal Force with which any Particle of the Spheroid endeavours to recede from it's Axis, in confequence of the diurnal Rotation, is as the Diftance from the Axis, it appears that if the Earth, or any other Planet, was fluid, and of an uniform Denfity, the Figure which it would affume would be accurarcly that of an oblate Spheroid generated by an Ellipfis revolving about it's fecond Axis.
Afterwards the Gravity towards an oblate Spheroid is accurately meafured by circular Arcs, not only at the Pole, but alfo at the Equator, and in any intermediate Places; and the Gravity towards an oblong Spheroid is meafured by Logarithms. The Gravity at any Diftance
V O L. VIII. Part i. H
in the Axis of the Spheroid, or in the Plane of the Equator pröduced, is likewife accurately determined by like Meafures, without any new Computation or Quadrature, by fhewing that when two Spheroids have the fame Center and Focus, and are of an uniform Denfity, the Gravities towards them at the fame Point in the Axis or Plane of the Equator produced, are as the Quantities of Matter in the Solids.

This Theory is applied for determining the Figure of the Earth, by comparing the Force of Gravity in any given Latitude, derived from the Length of a Pendulum that vibrates there in a Second of Time, with the centrifugal Force at the Equator, deduced from the periodic Time of the diurnal Rotation, and the Amplitude of a Degree of the Meridian ; or by comparing the L.engths of Penduluins that vibrate in equal Times in given unequal Latitudes; or by comparing different Digrees meafured upon the Meridian. By the beft Obfervations it would feem, that there is a greater Increafe of Gravitation, and of the Degrees of the Meridian from the Equator towards the Poles, than ought to arife from the Suppofition of an uniform Denfity. Therefore the Author fuppofes the Denfity to vary from the Surface towards the Center ; and, in feveral Cafes he has confidered, he finds that a greater Denfity towards the Center would account for a greater Increafe of Gravitation, towards the Poles, but not for a greater Increafe of the Degrees of the Meridian ; and that the Hypothefis of a lefs Denfity towards the Center would account for the latter, but not for the former, luppofing (after Sir I. Newton) the Columns of the Fluid to extend from the Surface to the Center, and there to fuftain each other. On this Account he determines the Gravitation towards the Earth, when it is fuppofed to be hollow with a Nucleus included, according to the Hýpothefis advariced by Dr Halley, with the Difference of the Semidiameters that might arife from fuch a Difpofition of the Internal Parts. But in this Cafe, and when the Denfity is fuppofed variable, the rpheroidical Figure is only affumed as an Hypothefis. He adds, that by imagining the Denfity to be greater in the Axis than in the Plain of the Equator at equal Diftances from the Centre, an Hypothefis perhaps might be found, that would account for moft of the Pbrenomena ; but that a Series of many exact Obfervations is requifite, before we can examine with any Certainty the various Suppofitions that may be imagined concerning the internal Conftitution of the Earth. This Doctrine is likewife applied for determining the Figure of fupiter.

It follows from the fame Theorem, that if we fuppofe the Earth to be fluid, and abftract from it's Motion upon it's Axis, and the Inclination of the right Lines in which it's Particles gravitate towards the Sun or Moon, the Figure which it would affume in confequence of the unequal Gravitation of it's Particles towards either of thofe Bodies would be accurately that of an oblong Spheroid having it's Axis directed towards that Body. The Afcent of the Water, deduced from this Theorem, agrees nearly with that which Sir I. Nereton found, by com-
puting it briefly from what he had demonftrated concerning the Figure of the Earth. Several Obfervations are fubjoined concerning the Tides, and the Caufes which may contribute to increafe or diminifh them, particularly the Inequality of the Velocities with which Bodies revolve about the Axis of the Earth in different Latitudes.

This Chapter concludes by demonftrating briefly, that if the Attraction of the Particles decreafed as the Cube of their Difance increafes, or in any higher Proportion, then any Particle would tend toward the leaft Portion of Matter in Contact with it, with a greater Force than towards the greateft Body at any Diftance, how fmall focver from it. The true Law of Gravity is better adapted for holding the Parts of each Body in a proper Union, while it perpetuates the Motions in the great Syftem about the Sun, and preferves the Revolutions in the leffer Syftems nearly regular; and the Auchor concludes with obferving, that a remarkable geometrical Simplicity is often found in the Conclufions that are derived from it.
V. 3. In the fecond Book, he treats of the Method of Computation, or the Algebraic Part; to the Facility, Concifenefs, and great Extent of which, the Improvements that have been made by this Method are in great meafure to be afcribed. In order to obtain thofe Advantages, it was neceffary to admit various Symbols into the Algebra: But the Number and Complication of thofe Signs muft occafion fome Obfcurity in this Art, unlefs Care be taken to define their Ufe and Import clearly, with the Nature of the feveral Operations. An Example of this is given by an Illuftration of one of the firft Rules in Algebra. As it is the Nature of Quantity to be capable of Augmentation and Diminution, fo Addition and Subftraction are the primary Operations in the Sciences that treat of it. The politive Sign implies an Increment, or a Quantity to be added. The negative Sign implies a Decrement, or Quantity to be fubftracted: And thefe ferve to keep in our View what Elements enter into the Compofition of Quantities, and in which Manner, whether as Increments or Decrements. It is the fame Thing to fubftract a Decrement as to add an equal Increment. As the Multiplication of a Quantity by a pofitive Number implies a repeated Addition of the Quantity, fo the Multiplication by a negative Number implies a repeated Subftraction: And hence to multiply a negative Quantity, or Decrement, by a negative Number, is to fubftratt the Decrement as often as there are Units in this Number, and therefore is equivalent to adding the equal Increment the fame Number of Timess or, when a negative Quantity is multiplied by a negative Number, the Product is politive. When we inquire into the Proportion of Lines in Geometry, we have no Regard to their Pofition or Form; and there is no Ground for imagining any other Proportion betwixt a pofitive and negative Quantity in Algebra, or betwixt an Increment and a Decrement, than that of the abfolute Quantities or Numbers them relves. The Algebraic Exprefions, however, are chiefly ufeful, as they
ferve to reprefent the Effects of the Operations ; and fuch Expreffions are not to be fuppofed equal that involve equal Quantities, unlefs the Operations denoted by the Signs are the fame, or have the fame Effect. Nor is every Expreffion to be fuppofed to reprefent a certain Quantity; for if the $\sqrt{-1}$ fhould be faid to reprefent a certain Quantity, it muft be allowed to be imaginary, and yet to have a real Square; a way of fpeaking which it is better to avoid. It denotes only, that an Operation is fuppofed to be performed on the Quantity that is under the radical Sign. The Operation is indeed in this Cafe imaginary, or cannot fucceed ; but the Quantity that is under the radical Sign, is not lefs real on that Account. The Author mentions thofe Things briefly, becaule they belong rather to a Treatife of Algebrat than of Fluxions, wherein the common Algebra is admitted.

In order to avoid the frequent Repetition of figurative Expreffions in the Algebraic Part, the Fluxions of Quantities are here defined to be any Meafures of their refpective Rates of Increafe or Decreafe, while they are fuppofed to vary (or flow) together. Thefe may be determined by comparing the Velocities of Points that always deforibe Lincs proportional to the Quancities, as in the firt Book; but they may be likewife determined, without having Recourfe to fuch Suppofitions, by a juft Reafoning from the fimultaneous Increments or Decrements themfelves. While the Quantity A increafes by Differences equal to a, $2 A$ increafes by Differences equal to $2 a$, and (fuppofing m and n to be invariable) $\frac{m A}{n}$ increafes by Differences equal to $\frac{m a}{n}$ and therefore at a greater or lefs Rate than a, in Proportion as m is greater or lefs than n. Thus a Quantity may be always affigned that fhall increafe at a greater or lefs Rate than A, (i. e. Mhall have it's Fluxion greater or lefs than the Fluxion of A) in any Proportion; and a Scale of Fluxions may be eafily conceived, by which the Fluxions of any other Quarcities of the fame Kind may be meafured.
Let B be any other Quantity whofe Relation to A can be expreffed by any Algebraic Form; and while Λ increafes by equal fucceffive Differences, fuppofe B to increafe by Differences that are always varying. In this Cafe, B cannot be fuppofed to increafe at any one conftant Rate; but it is evident, that if B increafe by Differences that are always greater than the equal fucceffive Differences by which $\frac{m A}{n}$ increafes at the fame Time, then B cannot be faid to increafe at a lefs Rate than $\frac{\%: A}{n}$; or if the Fluxion of A be reprefented by a, she Fluxion of B cannot be lefs than $\frac{m a}{n}$. And if the fucceffive Diffe-
rences of B be always lefs than thofe of $\frac{m A}{n}$, then furely B cannot
be faid to increafe at a greater Rate than $\frac{m A}{n}$; or the Fluxion of
B cannot be faid to be greater in this Cafe than $\frac{m a}{n}$.

From thofe Principles the primary Propofitions in the Method of Fluxions, and the Rules of the direct Method, with the Fundamental Rules of the inverfe Method, are demonftrated. We muft be brief in our Account of the Remainder of this Book. The Rule for finding the Fluxion of a Power is not deduced, as ufually, from the Binomial Theorem, but from one that admits of a much eafier Demonftration from the firft Algebraic Elements, viz. That when n is any integer pofitive Number, if the Terms $E^{n-1}, E^{n-2} F, E^{n-3} F^{2}, E^{n}-+F_{3}, \ldots$. $F^{r \rightarrow-}$, (wherein the Index of E conitantly decreafes, and that of F increafes by the fame Difference Unit) be multiplied by $E-F$, the Sum of the Products is $E^{n}-F^{n}$; from which it is obvious, that when E is greater than F, then $E^{n}-F^{n}$ is lefs than $n E^{n-1} \times \overline{E-F}$ but greater than $n F^{-1} \times \overline{E-F}$.

The Rules are fometimes propofed in a Form fomewhat differene from the ufual Manner of deferibing them, with a View to facilitate the Computations both in the direct and inverfe Method. Thus, when a Fraction is propofed, and the Numerator and Denominator are refolved into any Factors, it is demonitrated, that the Fluxion of the Fraction divided by the Fraction is equal to the Sum of the Quotients, when the Fluxion of each Factor of the Numerator is divided by the Factor itfelf, diminifhed by the Quotients that arife by dividing in like Manner the Fluxion of each Factor of the Denominator by the Factor.

The Notation of Fluxions is deferibed in Chap. 2. with the Rules of the direct Methoci, and the fundamental Rules of the inverfe Method. The latter are comprehended in Seven Propofitions, Six of which relate to Fluents that are affignable in finite Algebraic Terms, and the Seventh to fuch as are afigned by infinite Series. It is in this Place the the Author treats of the Binominl and Multinomial Theorems (becaufe of their Ufe on this Occafion), and they are inveftigated by the direct Method of Fluxions. The frame Method is applied for demonftrating other Theorems, by which an Ordinate of a Figure being given, and it's Fluxions deternined, any other Ordinate and Area of the Figure may be computed. The moft ufeful Examples are defrribed in this Chapter, by computing the Series's that ferve for cletermining the Are from it's Sine or Tangent, and the Logarithm from it's Number, and converfely the Sine, Tangent, or Secant, from the Arc, and the Number from it's Logarithm.

The

The inverfe Method is profecuted farther in Chapter III. by reducing Fluents to others of a more fimple Form, when they are not affignable by a finite Number of Alegebraic Terms. When a Fluent can be affigned by the Quadrature of the Conic Sections, (and confequently, by circular Arcs or Logarithons) this is confidered as the fecond Degree of Refolution; and this Subject is treated at Length. An Illuttation is premifed of the Analogy betwixt Elliptic and Hyperbolic Sectors formed by Rays drawn from the Centers of the Figures: The Properties of the latter are fometimes more eafily difcovered becaufe of their Relation to Logarithms, and lead us in a brief Manner to the analogous Properties of elliptic Sectors, and particularly to fome general Theorems concerning the Multiplication and Divifion of circular Sectors or Arcs. When two Points are affumed in an Hyperbola, and alio in an Ellipfis, fo that the Sectors terminated by the Semi-axis; and the two Semi-diameters, belonging to thofe Points, are in the fame given Ratio in both Figures, then the Relation betwixt the Semiaxis and the two Ordinates drawn from thofe Points to the other Axis, is always defined by the fame, or by a fimilar Equation in both Figures. This Propofition ferves for demonftrating Mr Cotes's celebrated Theorem, as it is extended by M. De Moivre, by which a Binomial or Trinomial is refolved into it's quadratic Divifors, and various Fluents are reduced to circular Arcs and Logarithms. The Demonftrations are alfo rendred more eafy of the Theorems concerning the Refolution of a Fraction, that has a multinomial Denominator, into Fractions that have the fimple or quadratic Divifors of the Multinomial for their feveral Denominators. Thefe Demonftrations are derived from the Method of Fluxions itfelf, without any foreign Aid; the invariable Coefficients being determined by fuppofing the variable Quantity or it's Fluxions to vanifh.

When a Fluent cannot be affigned by the Areas of Conic Seetions, it may however be meafured by their Arcs in fome Cafes; and this may be confidered as the third Degree of Refolution, or the Fluents may be called of the third Order. On this Occafion, fome Fluents are found to depend on the Rectification of the Hyperbola and Ellipfis, which have bcen formerly efteemed of an higher Kind. The ConAtruction of the elaftic Curve, with it's Rectification, and the Meafure of the Time of Defcent in an Arch of a Circle, are derived from hyperbolic and elliptic Arcs; and the Fluents of this Kind are compared with thofe of the firft or fecond Order by infinite Series. Becaufe there are Fluents of higher Kinds than thefe, the Trajectorics abovementioned, which are defcribed by a centripetal Force, that is, as fome Power of the Diftance from a given Centre, when the Velocity of the Projection is that which would be acquired by an infinite Defcent, or by Juch a centrifugal Force, and the Velocity is fuch as would be acquired by flying from the Centre, are employed for reprefenting them. A fimple Conftruction of thefe Trajectories had been given above, by drawing

An Account of Mr Mc'Laurin's. Fluxions.

Rays from the Centre to a Right Line given in Pofition, increafing or diminifning the Logarithms of thofe Rays always in a given Ratio, and increafing or diminifhing the Angles contained by them and the Perpendicular in the fame Ratio. From any Figure of this Kind, a Series of Figures is derived by determining the Interfections of the Tangents of the Figure with the Perpendiculars from the Centre. Every Series of this Kind gives two diftinct Sort of Fluents; and any one Fluent being given, all the other Fluents taken alternately from it in the Series depend upon it, or are meafured by it ; but it does not appear, that the Fluents of one Sort can be compared with thofe of the other Sort, or with thofe of any different Series of this Kind.

The inverfe Method is profeclited farther in the 4 th Chapter, by various Theorems concerning the Area when the Ordinate is expreffed by a Fluent, or when the Ordinate and Bafe are both expreffed by Fluents. The firft is the XIth Prop. of Sir I. ${ }^{-}$Newton's Treatife of Quadratures. In Art. 819, 820, E σ°. the Author fuppofes the Ordinate and Bafe to be both expreffed by Fluents, and fhews, in many Cafes, that the Area may be affigned by the Product of two fimple Fluents, as of two circular Arcs, or of a circular Arc and a Logarithm. This Subject deferves to be profecuted, becaufe the Refolution of Problems is rendered more accurate and fimple, by reducing Fluents to the Products of Fluents already known, than by having immediately Recourfe to infinite Series. One of the Examples in Art. 822, may be eafily applied for demonftrating, that the Sum of the Fractions which have Unit for their common Numerator, and the Squares of the Numbers 1, 2, $3,4,5,6, \mathcal{E}^{2} c$. in their natural Order, for their fucceffive Denominators, is one fixth Part of the Number, which expreffes the Rerio of the Square of the Periphery of a Circle to the Square of it's Diameter; which is deduced by Mr Euler, Comment. Petropol. Tom. 7. in a different Manner; and other Theorems of this Kind may be demonftrated from the fame or like Principles.

The Series that is deduced by tine ufual Methods for computing the Area or Fluent, converge in fome Cafes at fo flow a Rate, as to be of little or no Ufe without fome farther Artifice. For Example: The Sum of the firft Thoufand Terms of Lord Brounker's Series for the Logarithm of 2 , is deficient in the fifth Decimal. In order therefore to render the Account of the inverfe Method more complete, the Author hhews how this may be remedied in many Cafes, by Theorems derived from the Method of Fluxions itfelf, which likewife ferve for approximating readily to the Values of Progrefinons, and for refoiving Problems that are commonly referred to other Methods. Thofe Theorems had been deferribed in Book I. Art. 352, Ecc. but the Demonfitation and Examples were referred to this Place, as requiring a good deal of Computation. The Bafe being fuppofed equal to Unif, and it's Fluxion alfo equal to Unit, let half the Sum of the extreme Ordinates. be regrefented by a, the Difference of the firt Fluxioris of thefe Ordi- ternate Fluxions by $c, d, c, \mathcal{J}^{c} c$, then the Area fhall be equal to a $-\frac{b}{12}+\frac{c}{720}-\frac{d}{30240}+\frac{c}{1209600}-$ © c. which is the firft Theofor finding the Area. The reft remaining, let a now reperefnt the middle Ordinate, and the Area flaall be equal a $+\frac{6}{24}-\frac{7 c}{5760}$ $+\frac{31 d}{967680}-\frac{127 e}{154828800}+, 8 c$. And this is the Theorem which the Author makes moft Ufe of. When the feveral intermediate Ordinates reprefent the Terms of a Progrefion, the Area is computed from their Sum, or converfely their Sum is derived from the Area, by Theorems that eafily flow from thele.
Thefe general Theorems are afterwards applied for finding the Sums of the Powers of any Terms in Arithmetical Progreffion, whether the Exponents of the Powers be politive or negative, and for finding the Sums of their Logarithm, and thereby determining the Ratio of the Uncia of the middle Tern of a Binomial of a very high Power to the Sum of all the Uncie. This laft Problem was celebrated amongft Mathematicians fome Years ago, and by endeavouring to retolve it by the Method of Fluxions the Author found thofe Theorens, which give the fame Conclufions that are derived from other Methods. They are likewife applicd for computing Areas nearly frons a few equidifant Ordinates, and for interpolating the intermediate Terms of a Series, when the Nature of the Figure can be deternined, whofe Ordinates are as the Difierences of the Terms.
In the latt Chapter, the general Rules derived from the Method of Fluxions for the Refolution of Problems, are defribed and illuftrated by Examples. After the common Theorems concerning Tangents, the Rules for determining the greateft and leaft Ordinates, with the Points of contrary Flexure, and the Precautions that are neceffary to render tiem accurate and general, (which were defribed above) are again demonfrated. Next follow the Algebraic Rules for finding the Center of Curvature, and determining the Ciuftics by Reflexion and Refradion, and the centripetal Forces. The Conftruction of the Trajectory is given, which is defrribed by a Force that is inverfely as the $5^{\text {th }}$ Power of the Diftance from the Center, becaufe this Confruction rcquires Hyperbolic and Elliptic Arcs, and becaufe a remarkable Circumftance takes Place in this Cafe, (and indeed in an Infinity of other Cafes) which could not obtain in thole that have been already confructed by others, viz. That a Body may continually defcend in a fpiral Line towards the Center, and yet never approach fo near to it as to defcend to a Circle of a certain Radius; and a Body may recede for ever from the Center, and yet never arife to a certain finite Aluitude. The Conftruction of the Cafes wherein this obtains is performed
formed by Logarithms or Hyberbolic Areas, the Angles defcribed about the Center being always proportional ti) the Hyperbolic Sectors, while the Diftances from the Center are directly or inverfely as the Tangents of the Hyperbola at it's Vertex. The Circle is an Afymptote to the Spiral ; and this can never be, unlefs the Velocities requifite to carry Bodies in Circles increafe while the Diftances decreafe, (or decreafe while the Diftances increafe) in a higher Proportion than the Velocity in the Trajectory ; that is, unlefs the Force be inverfely as a higher Power of the Diftance than the Cube. Next follow Theorems for computing the Time of Defcent in any Arc of a Curve, for finding the Refiftance and Denfity of the Medium when the Trajeetory and centripetal Force are given, and for defining the Cateinaria and Line of fwifteft Defcent in any Hypothefis of Gravity.

Then the ufual Rules are derived from the inverfe Method for computing the Area, the Solid generated by it, the Arc of the Curve, and the Surface defcribed by it revolving about a given Axis. The meridional Parts in a Sphere, and any Spheroid, are determined with the fame Accuracy, and almoft equal Facility. The Attraction of a Spheroid at the Equator, as well as at the Poles, is determined in a more general Manner than in the firf Book, or in a Piece of the Author's publifhed at Paris in 1740, which obtained a Part of the Prize propofed by the Royal Academy of Sciences for that Year. Several Mechanical Problems are refolved, concerning the Proportion the Power ought to bear to the Weight, that the Engine may produce the greateft Effect in a given Time; and concerning the moft advantageous Pofition of a Plane which moves parallel to itfelf, that a Stream of Air or Water may impel it with the greatef Force, having Regard to the Velocity which the Plane may have already acquired. On this Occafion, it is flewn, that the Wind ought to frike the Sails of a Wind-mill in a greater Angle than that of $54^{\circ} 44^{\prime}$, againft what has been deduced from the fame Principles by a learned Author. The fame Theory is applied to the Motion of Ships, abftrating from the Lee-way, but having Regard to the Velocity of the Ship; and amongt other Concjufions it appears, that the Velocity of a Veffel of one Sail may be greater with a Side-wind, than when fhe fails directly before the Wind; which, perhaps, may be the Cafe of thofe feen by Captain Dampier in the Ladrone Ifonds, that failed at the Rate of 12 Miles in half an Hour with a Side-wind.

The Remainder of this Chapter is employed in reducing Equations frem fecond to firft Fluxions; conftructing the claftic Curve by the Rectification of the equilateral Hyperbola ; determining the Vibrations of Mufical Chords; refolving Problems concerning the Maxima and Minima, that are propofed with Linitations, relating to the Perimeter of the Figure, it's Area, the Solid generated by this Area, $\xi^{\circ} c$. with Examples of this Kind concerning the Solid of leaft Refiftance; and concludes with an Inftance of the Theorems by which the Value of the V O L. VIII. Part i .

A general Metbod of defcribing Curves.

Ordinate may be determined from the Value of the Area, by common Algebra, and by obferving, that it is not abfolute, but relative Space and Motion, that is ruppofed in the Method of Fluxions.
VI. I. You have here a general Method of defcribing Lines of any

A general Mothod of de. fcribing
Curves, by the Interfection of rigbs Lines moving about Points in a given Plane, by the Rev. Mr William Braikenridge, No. 436. p.
25. fan. \&c. ${ }^{2} 735$. Order, by means of the Interfection of right Lines about Poles; which is much more fimple than that of $\operatorname{Sir} I$. Newon, and will give a Solution of many very difficult Problems; and I queftion whether they can be found by any other Principles. I gave only one particular Cafe of this in a geometrical Exercitation printed at London in 1733, not thinking it convenient to explain the whole Affair at that Time, tho I was well acquainted with the Method. It is now three Years ago, that I fell upon the general Theorem, but I had many Reafons for concealing it ; and I was determined to let two Years at leaft pals after the Publication of that Exercitation, before this general Method fhould come into the World. For I did not doubt, but that if any others were in Poffeffion of this Invention, they would, upon the Publication of a particular Cafe, efpecially as they were provoked to it, lay hold of the Opportunity to publim their general Method, if they had really difcovered any.
Fig. 6. About three given Points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, as Poles, in any Plane, let there be moved three right Lines, A NS, BOS, CNO, which may interfect one another in the Points $\mathrm{S}, \mathbf{N}, \mathrm{O}$, and let the two Points of interfection S and N be drawn through the right Lines $\mathrm{DK} \mathrm{K}, \mathrm{RNK}$ given by Pofition; the reft O will defcribe a Conic Section. If through the Points, A, B, C, are drawn the right Lines $A B, A C$, meeting each other in A, and the right Lines $\mathrm{K}, \mathrm{D}, \mathrm{K}$, given by Pofition in R and M; the Figure defcribed will pals through the five Points B, C, K, M, R. And hence appears a new Method of defcribing a Conic Sektion through five given Points, much more eafy than any that have been hitherto invented.

Let there be moved about four Points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, as Poles, in any Plane, as many right Lines, A NS, B OS, C NO, DPO, three of which ANS, BOS, CNO, may interfect each other in three Points, $\mathrm{S}, \mathrm{N}, \mathrm{O}$, and let the two Points of Interfection S, N, be drawn through the right Lines d $K, \mathbf{R} K$, given by Pofition, and in the mean time let the right Line D P O, drawn from the fourth Pole O, pals through the Rcmainder O, and cut the right Line A NS in P, and that Point P will defcribe a Line of the third Order.

Through the Poles A, B, D, let the right Lines A BR, DBH, be drawn, meeting each other in B, and the right Lines $K R, K d$, given by Pofition in RH; the Figure detcribed by the Motion of the Point \mathbf{P} will pafs through the five Points, A, D, H, K, R, of which A will be double. Hence is deduced the Method of defcribing a Line of the 3 3d Order through fiven given Points, one of which is double. For
Fig. 8.

Dimonfrated

 in Exerc. Geom. Frop. 11.Demonfrated in Exerc. Geom. Prop. 1.

Vid. Exerc. Geom. Prop. 3.

Fig. 7.

Lines HK, RK, be moved, and let the Points AR, and HD, be joined, and let the right Lines A R, HD, be produced, meeting one another in B. Then the right Lines APNS, AMns, cutting the right Line $K R$ in N, n, and the right Line $H K$, in S, s, being drawn through A, and the Points P, M ; let the right Lines B S, B s, he drawn through thofe Points S , s , to B ; and through D , to the Points P, M, move the right Lines $\mathrm{DPO}, \mathrm{DM}^{\top} \mathrm{T}$, meeting the right Lines BS, Bs, in O, T. Let the Points O, N, and T , n be joined, and let the right Lines O N, T n be produced, meeting together in C. Then about the Points A, B, C, D, as Poles, let the right Lines A S, B O, CO, DO, revolve, of which let three AS, B O, C O, interfect each other in the Points S NO, and let two S, N be drawn through the right Lines HK, K, and in the mean time let the right Line D O always pafs through the Remainder O, and cut the right Line A NS in P , and this Interfection P of the right Lines AS, DO, will defcribe a Line of the third Order paffing through feven given Points, $\mathrm{A}, \mathrm{D}, \mathrm{H}$, $\mathrm{K}, \mathrm{M}, \mathrm{P}, \mathrm{R}$, and doubly through the given A .

Lines alfo of the third Order are more generally, but lefs commodiounly defcribed after this Manner, which alfo comprehends the firft. About five given Points A, B, C, D, E, as Poles, let as many right Lines ANS, BOS, CNO, DPO EPS revolve, of which let three ANS, BOS, CNO interfect one another in the Points NS O; let two S, N, be drawn through the right Lines given by Pofition $\mathrm{d}, \mathrm{K}, \mathrm{R}$; and one S of the two S, N, and the Remainder O , let the right Lines EPS, DPO pafs, being drawn through the Poles E, D, and meeting in P : let that Point P deferibe a Line of the third Order, with a double Point in the Pole E.

In like Manner may Lines of the fourth order be defrribed. About Give given Points joined A, B, C, D, E, as Poles, in any Plane; let as many right Lines, ANS, BQS, CNO, DPO, EPQ 2 be moved; of which let three A N S, B Q S, C N O, meet each other in three Points $\mathrm{S}, \mathrm{N}, \mathrm{O}$; let the two Points of Interfection be drawn thro' the right Lines $\mathrm{d} \mathrm{K}, \mathrm{R} \mathrm{K}$, given by Pofition, and in the mean time let the right Line D P O, moveable about the fourth Pole D, pafs thro' the Remainder O, and cut the right Line A N S, in P; then let the right Line E P Q 2 drawn from the 5th Pole E , be drawn thro' P , and be produced on both Sides, till it meets the right Lines B QS, C N O, in Q and W: I fay that the Points Q, W, will defribe Lines of the $4^{\text {th }}$ Order. Through the Poles A, E, and B, D, let the right Lines AEH, BDF revolve, meeting the right Line dK , given byPofition, in H, F, let D and E be joined; and AD being drawn through the Poles D, A, meeting the right Line d K in V ; from V let the right Line V B be drawn to the Pole B, and cut the right Line DE in G. The Figure defcribed will pafs through the five Points B, E, G, F, H, and triply through the Pole B. Let the right Line A, B, R; be produced through the Poles A, B, and meet the the Points R, K.
Fig. 11.

Vid. Exerc. Geom. Prop. 3.

Hence is derived the Method of drawing a Line of the 4th Order through nine given Points, of which one is triple. For let $\mathrm{B}, \mathrm{E}, \mathrm{F}, \mathrm{G}$, H, L, M, T, Q be given, and one of them B muft be triple. Let the Points B F, F H, HE be joined, and the right Lines B F, FH, HE be produced, and thwough the Points EG, G B, let the right Lines EGD, BGV be drawn, of which let EGD cut the right Line BF in D, and let the other B GV cut the right Line FH in V. Then having joined V and D, and produced V D, till it ineets the right Line IIE in A, let the right Line dA B R be drawn thro the Points A, B. Then from the Points B, E, let the right Lines $B Q S, E P Q_{2}$ be moved to the given Q_{2}, of which let the firft $B Q S$ meet with FH , produced to S; and AS being drawn through the Points A, S, and meeting the right Line $\mathrm{E} Q$ in P , let the right Line D PO be produced through P and D, and meet the right Line B Q S in O : and let the Point O be marked. And in like Manner from the fame B, E, to another given T , let the right Lines $\mathrm{BTs}, \mathrm{EpT}$ (fupply the Figure) be turned, of which let BTs meet with FH in s, and the right Line A s cutting the right Line EpT in p being drawn, let the right Line D p Z be moved through P and D , and meet the right Line B Ts in Z , and let Z be marked. And fo on let right Lines be drawn from the fame B, E, to the other given $M L$, and right Lines being drawn from A and D as before, let the Points found be marked X Y. Then thro' the four Points found, $\mathrm{O}, \mathrm{Z}, \mathrm{X}, \mathrm{Y}$, and the given one B, let a Conic Section be defcribed, cutting the right Line FH in the Points I K, and the right Line d A B in B, R. Through the Points A, I, let the right Line A I be drawn, cutting the Conic Section in 1 and C ; and let the Points K, R be joined, and let the right Line KR be produced. Now about the five Points A, B, C, D, E, as Poles, let as many right Lines A S, B S, C N, D O, E Q, revolve, of which let three A S, B S, C N, meet each other in $\mathrm{N}, \mathrm{S}, \mathrm{O}$, and let the Interfections N and S of the right Lines A S, C N, and A S, BS be drawn through the right Lines K, FHK; and in the mean time let the right Line D P O pals through the Pole D, and the Inter-s fection O of the right Lines BS, C N, and cut the right Line A S in P ; and through P and the Pole E, let the right Line E P' Q be produced, cutting the right Line $\mathrm{B} S$, in Q_{2} and this Interfection: Q of the right Lines BS, EP will defrribe a Line of the 4th Order paffing through nine given Points, B, E, F, G, H, L, M, T, Q, one of which B will be triple.

By a Method not much unlike this, a Line of the 4 th Order may be defcribed through eight given Points, three of which are double, as alfo a Line of the fame Order through eleven given Points, two of which are double, and more of the fame Sort.

But as for the Number of Points which determine a Line of any Order, I find that, if n is the Number of the Dimenfions of a Line, $n^{2}+1$ will be the Number of Points through which the Line may be defcribed. For Inftance, a Line of the fecond Order through five Points; of the third through 10; of the 4 th through 17 ; of the 5 th through. 26. And lience is deduced, that if a Line of the Order n has a punctum mulliplex, it may be defcribed through $2 n+1$. For Example, a Line of the third Order, with a punctum duplex; that is, $n-1=2$, thro' feven Points, and a Line of the 4 th Order with a punctum triplex through nine, \mathcal{E}^{c}. And gencrally if p, q, r, \&ic. denote puncia mulliplicia, of which the Number is m, a Curve may be defcribed through $n^{2}-p^{2}$ $-q^{2}-r^{2}+m+1$ Points, in which m are multiplicia; for Inftance, a Line of the 4th Order, which has three punEZa duplicia may be defcribed through cight Points; for $n=4, p=q=r=2, m=3$, and $16-4$ $-4-4+3+1=8$.

There is another Method alfo, not very different from the firf, of defcribing Lines of the 4 th Order, but a little more complicated. About feven Poles A, B, C, D, E, F, G, let there revolve as many right Lines AS, BS, C N, DS, E N, FO, GT, of which let one ANS, in revolving cut the right Lines $\mathrm{d} K, \mathrm{R} K$, given by Pofition, in the Points S, N; let the right Lines C N, EN be drawn through one of them N , and the right Lines BS, DS through the other S , and meet the right Lines C N, E N in the Points O, T, defribing Conic Sections as above; and in the mean time let the right Lines F O, G T, drawn from the Poles F, G, pafs through the fame O, T, and meet in P; the interfection P will defcribe a Line of the 4th Order, with a double Point in both Poles F and G.

But not to detain you any longer with thefe, I fhall now give you the general Theorem. About the Points A, B, C, D, E, F, G, H, ξ^{c}. as Poles, of which let the Number be n, let as many right Lines AS, BS, CN, DP, EQ. FW, X G, HY, Ec. revolve, of which det three AS, B S, C N interfect each other in the Points $\mathrm{N}, \mathrm{S}, \mathrm{O}$, let two, S, N, be drawn through the right Lines $\mathrm{d} \mathrm{K}, \mathrm{K} \mathrm{R}$ given by Pofition; and in the mean whle through the Remainder O and the Pole D let the right Line D P pafs, cutting the right Line AS in P, and the right Line E, Q, being drawn through P^{\prime} and the Pole E, cutting the right Line BS in Q and from Q through the Pole F, let $F Q$ be drawn, and cut the right Line AS in W, and WG being drawn through W and the Pole G, cutting the right line $B S$ in X, and then lee the right Line HY be produced through X and the Pole H , meeting the right Line S A in Y, and fo on; the Interfection Y of the right Line YII drawn from the laft Pole H , with either of the right Lines A S, BS, will deftribe a Line of the Order $n-1$; and the manifold Curve will have the Point $n-2$ in the Pole A or B , as it has been defcribed by the Interfection of the right Line AS or BS. The Points $\mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{E}_{\mathrm{c}}$, will defcribe Lines of the $2 \mathrm{~d}, 3^{\mathrm{d}}$, $\mathrm{I}, \mathrm{G}, \mathrm{H}, \mathrm{Ec}_{\mathrm{c}}$. are placed in the fame right Line, thofe Points, O, P,

Fig. 14.

Fig. 15. $\mathrm{Q}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{E}^{2}$ c. will alfo defribe as many right Lines.
The Newtonian defcription is alfo greatly promoted by this Method. It is well known, that, if the given Angles OAN, OBN revolve about the given Points A B and the Interfection N of the Legs A N, BN , is drawn through the right Line $\mathrm{N} R$, given by Pofitions, the Interfection O of the Legs A O, B O will defcribe a Conic Section. Now let another Point C be taken, about which let the right Line O C P, be moved, which Thall always pals through the Interfection O of the Legs A O, B O, and meet the other Leg A N of the Angle A in P; the Interfection P will defrribe a Line of the 3 d Order paffing doubly through the Pole A. And in like manner, if by the Interfection B N of the Angle Na Curve is defribed, it will be of the fame Order, and have a pungum duplex in the Pole B. And hence alfo it appears, how a Line of the third Order may be defcribed, through feven given Points, one of which is double.

Let the Angles O A N, OBN, be moved, as before, about the given Points A, B, and through the Interfection O of the Sides O A, $O B$, let the right Line OCP pafs, being drawn from another given one C, meeting the Side A N of the Angle A in P; then through P and a $4^{\text {th }}$ given one D, drawn the right Line D P Q meeting the Leg A O in Q; the Point Q will defcribe a Line of the $4^{\text {th }}$ Order, with a punctum triplex in the Pole A.

And thus, by increafing the Number of the Poles A, B, C, D, E'c. fo that their Number at Length may be n, the Line deffribed will be of the fame Order n. But it flould be obferved, that for the Angle O B N we fubftitute the right Line, which revolves about the Pole B, the Defrription will be more eafy.
2. I am informed that fome Papers* have been prefented to the

Concerning the Defrription of Curve Lines, by Mr Colin McLaurin, Math. Prof. Edinburgh, F. R. S. Communicated Dec. 21, 1732. Royal Society of late, concerning the Defcription of Curves, in a manner that has a near Affinity to that which I communicated to them of old, and have carried farther fince ; and that it would not be unfearonable, nor unacceptable, if I fhould fend an Account of what I have done further on that Subject fince the Year 1719. The Author of thofe Papers taught Mathematicks here privately for fome Years, and fome time ago (viz. in 172\%.) mentioned to me fome Theorems he had on that Subject; which, at the fame Time, I thewed him in my Papers. Some Time before that, he fhewed me a Theorem which coincided with one of thofe in my Book, tho' he feemed not to have obferved that Coincidence; and indeed Merhods of that kind are often found coincident that do not appear fuch at firf Sight. I am unwilling to be the Occafion of difcouraging any thing that is truly ingenious,

[^3]and renounce any Pretenfions of appropriating Subjects to myfelf ; but, on the contrary, wifh Juftice may be done to every Perfon, or to any Performance in Proportion to it's Merit ; yet I find it is fit I fhould take Precautions left any one fhould take it in his Head afterwards to fay, I take Things from him which I may have had long before him; and therefore thall fend you an Abftract of what I have done in Relation to this Matter, fince the Year 1719.

I have fo much on this Subject by me, that I am at a Lofs what to fend ; but at prefent I fhall only give you an Abitrait of thofe Propofitions, which I take to be more nearly related to thofe which this Author has offered to the Society from the Converfations I had with him. In 1721, I printed feveral Sheets of a Supplement to my Book on the Defcription of Curve Lines, which I have never yet publifhed, having been engaged for the moft part in Bufinefs of a different Nature, and in Purfuits on other Subjects fince that time. I hall firft give you an Abfract of that Supplement, as far as it was then printed, and fhall fubjoin to this an Account of fome Theorems I added to it the following Year, viz. in 1722. I was led into thofe new Theorems by Mr Robert Sympfon's giving me at that Time a Hint of the ingenious Paper which has been fince publifhed in the Philofophical Tranfactions. I hadt tried in the Year 1719, what could be done by the Rotation of Angles on more than two Poles; and had obferved, that if the Interfections of the Legs. of the Angles were carried over right Lines, as in Sir I. Neroton's Defcription, the Dimenfions of the Curve were not raifed by this Increafe of the Number of Poles, Angles, and right Lines; and therefore neglected this at that Time, as of no Uie to me; confining myfelf to two Poles only, and varying the Motions of the Angles as you find them in my Book. I found this by inquiring in how many Points the Locus could cut a right Line drawn in it's Plane, and found, by a Method I often ufe in my Book, that it could meet it in 2 Points only.

Having found then, that 3 or more Poles, were of no more Service than 2, while the Interfections were carried over fixed right Lines, I thought it needlefs to profecute that Matter then, lince by increafing the Number of Poles, my Defcriptions would become more complex without any Advantage. But in fune or $\mathcal{F} u l y$ 1722, upon the Hint I got from Mr Sympfon of Pappus's Porifms, I faw that what he has there ingeniouny demonftrated, might be confidered as a Cafe of the abovementioned Defcription of a Conic Section, by the Rotation of any Number of Angles about as many Poles; the Interfections of their Legs, in the mean time, being carried over fixed right Lines, excepting that of two of them which defrribes the Locus. For by fubftituting right Lines in place of the Angles, in certain Situations of: the Poles and of the fixed right Lines, the Locus becomes a right Line ; as for Example, in the Cafe of 3 Poles, when thefe 3 are in one right Line, in which Cafe the Locus is a right Line, which is a Cafe of the Porifm.

This

This led me to confider this Subject anew; and firft I demonftrated the Locus to be a Conic Section algebraically; and found Theorems for drawing Tangents to it, and deternining it's Afymptotes. I alfo drew from it at that 'Time a Method of defcribing a Conic Section thro' 5 given Points*. This encouraged me to fubftiture Curves for the right Lines, to fee if by this Method I could be enabled to carry on my Theorems about the Defcriptions of Lines through given Points to the higher Orders of Lines. Some of the Theorems I found at that Time, I now fend you. In Nov. 1722 , looking into Sir Ifaac's Principin, I fiw that the Defcription of the Conic Section by 3 right Lines, moving as above, about 3 Poles, could be immediately drawn from his 2oth Lemma, which itfelf is a Cafe of this Defeription. This gradually led me to leek Geometrical Demonftrations for the whole, as far as it related to the Conic Sections. I fend you fome Leaves of this Paper dated at Nancy, Noy. 1722. Since that Time, I have not added much to this Subject, but what relates to the drawing Tangents, determining the Afymptotes, and the Puncta Duplicia, or Multiplicia of thefe Curves. I confidered it the lefs, that I did not find it more advantageous in any Refpects, than the Method I had confidered in my Book, or more general.

In ${ }_{1727}$ I added to a Chapter in my Algebra, which is very public in this Place, an Algebraic Demonftration of the Locus, when three Poles are employed; and the Method of defcribing a Conic Section through 5 given Points, fubjoining at the fame Time, that if more Poles are employed, and Angles or right Lines, the Locus was fill a Conic Section; which I thought was a remarkable Property of the Conic Sections not obferved before.

Thefe Things I intended to put in order, and publifh in the Supplement to my Book, a Part of which has been printed fince the Year 1721. I have in my View alfo in give feveral other Things in that Supplement; two of which, I fhall only juft mention at prefent, be. caule I believe they are foreign to the prefent Affair. I fubjoin a Problem determining the Figure of a Fluid, whofe Parts are fuppofed to be attracted to two or more Centers ; and a Solution of a general Problem about the Collifion of Bodies.

The Author of the Papers given in to the Royal Society, will not refufe that I thewed him the Theorems I'now fend you, in 172%. He owned it laft Summer at leaft: I am to publifh thefe very foon. Whether he has carried the Subject farther, I leave to the Judgment of the Gentlemen to whom they were referred. As to the Demonftrations, it would take fome Time to put them in a proper Form to be publifhed. I could fend thofe that are algebraic eafily; but do not care to fend thofe that are geometrical, till I have Leifure.

[^4]
The Defcription of Curve Lines.

In the firf Part of the Supplement, there is a general Demonftration given of the Theorem, that if two Lines of the Orders or Dimenfions, expreffed by the Numbers m and n, be defcribed in the fame Plane, the greatef Number of Points in which thefe Lines can interfect each other, will be $m n$, or the Product of the Numbers which exprefs the Dimenfions of the Lines, or the Orders to which they belong.

In the next. Part, Theorems are given for drawing Tangents to all the Curves that were defcribed in that Treatife by the Motions of Angles upon given Lines. Their Afymptotes are alfo determined by more fimple Conftructions than thofe which are fubjoined to their Defcriptions in that Treatife. Of thefe we flall give one Inftance here.

Suppofe the invariable Angles FCG, K SH, to revolve about the fixed Points or Poles, C and S. Suppofe the Interfection of the two Sides CF, SK, to be carried over the Curve B QM, whofe Tangent at the Point Q is fuppofed to be the Right Line AE; and let it be required to draw a Tangent at P to the Curve Line defribed by P the Interfection of the other two Sides C G and SH.

Draw $Q T$ conftituting the Angle SQT, equal to CQA, on the Confruction oppofite side of $S Q_{2}$, that QA is from CQ; and let QT meet CS (produced if neceflary) in T. Join PT, and conftitute the Angle CPN equal to SPT, on the oppofite Side of CP, that PT is from SP, and the Right Line P N, fhall be a Tangent at P, to the Curve deferibed by the Motion of P , which is always fuppofed to be the Interfection of CG and SH.

The Afymptotes of the Curve defcribed by P, are determined thus. Find, as in the abovementioned Treatife, when thefe Sides become parallel, whofe Interfection is fuppofed to trace the Curve; which always happens when the Angle CQS becomes equal to the Supplement of the Sum of the invariable Angles FCG, K SH, to four Right ones, becaufe the Angle CPS then vanifhes. Suppofe that when this happens, the Interfection of the Sides CF, SK is found in Q .

Conftitute the Angle SQT equal to CQA, as before, and let QT meet CS in T. Take CN equal to ST, the oppofite Way from C that ST lies from S. Through N draw D N parallel to CG or SH, which are now parallel to each other, and D N flall be an Afymptote of the Curve defcribed by the Motion of P.

If in place of a Curve Line BQM, a fixed Right Line AE be fubftituted, then the Point P will defcribe a Conick Section, whofe Tangents and Afymptotes are determined by thefe Conftructions. In this Supplement, it is afterwards hhewn how to draw the Tangents and Afymptotes of all the Curves which are defrribed in the above-mentioned Treatife by more Angles and Lines.

The fame Method is afterwards applied for to draw Tangents to Lines defcribed by other Motions than thofe which are confidered in that Treatife; of which the following is an Inftance. Suppofe that the

VOL. VIII. Part i .
K
Lines A CP bears always the fame invariable Proportion to A S P, fuppofe that of m to n. In the Line CS, take the Point T, fo that S T may be to CT in that fame Proportion of m to n; and this Point T will be an invariable Point, fince CS is to CT, as $m-n$ to n. Draiv T P, and conftitute the Angle SPN, cqual to CPT, fo that P N and P T, may lie contrary ways from SP and CP, and PN thall be a Tangent of the Curve defrribed by the Motion of the Point P. Several other Theorems of this kind are fubjoined here.

After thefe, Lines or Angles are fuppofed to revolve about three or more Poles, and the Dimenfions of the Curves with their Tangents and Afymprotes are determined. Suppofe in the firft Place, that the three Poles are C, S, and D, and that Lines or Rulers $C R, S Q, Q D R$, revolve about thefe Poles. The Line which revolves about D, ferves only to guide the Motion of the other two, fo that it's Interfection with each of them being carried over a fixed Right Line, their Interfection with each other defcribes the Locus, which is Thewn to be a Conick Section. the Interfection of QDR with $S Q_{2}$, is fuppofed to be carried over the fixed Right Line AF; the Interfection of the fame $Q D R$, with CR, is fuppoled to be carried over the fixed Right Line AE; and in the mean time, the Interfection of the Right Lines $S Q, C R$, that revolve about the Poles S and C, defcribes a Conick Section.

This Conick Section paffes through the Poles C and S ; and if you produce DC and DS, till they meet with $A Q$ and $A R$ in F and E, it will alfo pars through F and E : It alfo paffes always through A, the Interfection of the fixed Lincs QF and ER; from which this eafy Method follows for drawing a Conick Section through 5 given Points. Suppofe that thefe 5 given Points are A, F, C, S and E: Join 4 of them by the Lines A F, F C, A E, ES, and produce 2 of thefe F C, ES, till they meet, and by their Interfection give the Point D. Suppofe infinite Right Lines revolve about this Point D, and the Points \mathbf{C} and S, two of thofe that were given, and let the Interfections of the Line revolving about D, with thofe that revolve about C and S, be carried over the given Right Lines AE, AF; and the Interfection of thofe that revolve about C and S with each other, will, in the mean Time, defcribe a Conick Section, that fhall pals through the five given Points A, F, C, S and E.

It is then fiewn, that when C, S and D are taken in the fame Right Line, the Point P defcribes a Right Line; as alfo when C, S and A are in the fame Right Line; which alfo follows from what is demonftrated in that very ingenious Paper concerning Pappus's Porifms, p. 76 .

In unicated by Mr Sjmpon, Prefor of Mathematicks at Glafgow.
In the next Place it is hhewn, that if four Right Lines revolve about four Poles C, S, D, and E, and thofe that revolve about D and E, ferve only to guide thofe that revolve about C and S; fo that Q and R, the Interfections of that which revolves about D, with thofe that revolve about

about E and S , be carried over the fixed Lines AB and AF ; and M the Interfection of that which revolves about E with that which revolves about C, be carried over a third fixed Iine B F, then the Interfection P of thofe that revolve about C and S , will in the mean time, defrribe a Conick Section, and not a Curve of a higher Order. The Conick Section degenerates into Right Lines, when CP and $S P$ coincide at the fame time with the Line CS, that joins the Poles C and S, as in the preceding Defrription; which coincides again with what is demonftrated in the abovementioned ingenious Paper.

After this it is fhewn generally, that tho' the Poles and Lines revolving about them be increafed to any Number, and the fixed Lines over which fuch Interfections, as we defrribed in the two latt Cafes, are fuppofed to be carried, be equally increafed, the Locus of the Point P will never be higher than a Conick Section: That is, let a Polygon of any number of Sides have all it's Angles, one only excepted, carried over fixed Right Lines, and let each of it's Sides produced, pafs through a given Point or Pole, and that one Angle which we excepted, will either defrribe a ftreight Line, or Conick Section.
Thus if a hexagonal Figure LQR PM N, have all it's Angles ex- Fig. 23: cepting P carried refpectively over the fixed Right Lines $\mathrm{A} a, \mathrm{~B} b, \mathrm{G} g$, $\mathrm{H} b, \mathrm{~K} k$, the Point P in the mean time will defribe a Conick Section, or a Right Line. The Locus of P is a Right Line when CP and P P coincide together with the Line CS. All thefe things are demonftrated geometrically.

After this, Angles are fubfituted in place of Right Lines revolving about thefe Poles ; and it is till demonftrated geometrically, that the Locus of P is a Conick Section or Right Line.
Suppofe that there are 4 Poles C, S, D and E, about which the Fig. 24: invariable Angles $P C Q, P S R, R D M, M E Q$ revolve; and that Q, M and R , the Interfections of the Legs CQ and EQ, of E M and DM, and of DR and SR, are carried over the fixed Kight Lines $\mathrm{A} c, \mathrm{~B} b$, and $\mathrm{G} g$ refpectively, then the Locus of P is a Conick Section, when CP and $\mathrm{S} \hat{\mathrm{P}}$ do not coincide at once with the Line CS, but is a Right Line when CP and SP coincide at the fame time with CS, and never a Curve of a higher Order.
Having demonftrated this which feems a remarkable Property of the Conick Sections or Lines of the Second Order; I proceed to fubftitute Curve Lines in place of Right Lines in thefe Defrriptions, (as I always do in the Treatife concerning the Deffription of Lines) and to determine the Dimenfions of the Locus of P, and to flew how to draw Tangents to it to deternine it's Afymptotes, and other Properties of it. I had obferved in 1719, that by increafing the Number of Poles and Angles beyond two, the Dimenfions of the Locus of P, did not rife above thofe of the Lines of the Second Order, while the Interfections moved on Right Lines; and therefore I did not think it of ufe to me then to take more Poles than two, fince by taking more, the Defrriptions became more complex without any Advantage. When the Interfections are carried over Curve Lines, the Dimenfions of the Locus of P rife higher, but the Curves defrribed, have Punnla Duplicia, or Multiplicia, as well as when two I'oles only are affumed; and therefore this Speculation is more curious than ufeful. However, I fhall fubjoin fome of the Theorems that I found on this Subject concerning the Dimenfions of the Locus of P , and the drawing Tangents to it.

Fig. 21.

Fig. 23.

Fig. 25 .

Fig. 26.

Fig. 2%

1. If you fuppofe Q and R to be carried over Curve Lines of the Dimenfions m and n refpectively, then the Point P may defcribe a Locus of $2 m n$ Dimenfions.
2. If you fuppofe $L, Q_{,}, R, M, N$, to be carried over Curve Lines of the Dimenfions m, n, r, s, t, refpectively, the Locus of P may arife to 2 murs d Dimenfions, but no higher; and if in place of Lines revolving about the Poles, you ufe invariable Angles, the Dimenfions of the Locus of P will rife no higher.
3. I then affumed three Poles C, D and S, and fuppofed one of the Angles S N L, to have it's angular Point N carried over the Curve A N, while the Leg NQ paffes always through S , as in the Defcription in the Treatife of the General Defcription of Curve Lines, while the Angles QDR, RCP, revolve about the Poles D and C: I fuppofe alfo the Interfections Q and R to be carried over the Curve Lines $B Q$, GR , and that the Dimenfions of the the Curve Lines A N, B Q 2 GR, are m, n, r, refpectively; and find that the Locus of P may be of $3 m n r$ Dimenfions; but that the Point C is fuch, that the Curve paffes through it as often as there are Units in $2 n \mathrm{mr}$.
4. If any number of Poles are affumed, fo as to have Angles revolving about them, as about C and D in the laft Article, and the Interfections are carried over other Curves, the Dimenfions of the Locus of P will be equal to the triple Product of the Number of Dimenfions of all the Curves employed in the Defrription.
5. If the invariable Angles PNR, PMQ, move fo that while the Sides P N, P M, pafs always through the Poles C and S, the angular Points N and M defrribe the Curves $\mathrm{A} N$ and BM ; and at the fame time, the invariable Angle R D Q, revolve about the third Pole D, fo that the Interfections R and Q defcribe the Curves ER and $G Q$; then the Dimenfions of the Locus of P, when higheft, fhall be equal to the quadruple Product of the Numbers that exprefs the Dimenfions of the given Curves A N, ER, GQ and BM, multiplied continually into each other. If more Poles are affumed, about which Angles be fuppofed to move, as R D Q moves about D in this Defcription, and the Interfections of the Sides be ftill carried over Curves, as in this Example; the Dimenfions, of the Locus of P, when higheft, fhall ftill be found equal to the quadruple Product of all the Numbers that exprefs the Dimenfions of the Curves employed in this Defcription.
6. Suppofe that the three invariable Angles P Q K, K L R, R N P , move over the Curves $G Q, E L, A N$, fo that the Sides $P Q, K L, P N$ produced,
produced, pals always through the Poles $\mathrm{C}, \mathrm{D}, \mathrm{S}$, and that the Interfections of their Sides K and R , at the fame time move over the Curves FK and BR; and the Dimenfions of the Locus of P when higheft, Ahall he equal to the Product of the Numbers that exprefs the Dimenfions of the given Curves multiplyed by 6 . If more Poles, with the neceffary Angles and Curves, are affumed betwixt C and D , as here D is affumed betwixt C and S, and the Motions be in other refpects like to what they are in this Example; then in order to find the Dimenfions of the Locus of E when higheft, raife the Number 2 to a Power whofe Index is lefs than the Number of Poles by a Unit; add 2 to this Power, and multiply the Sum by the Product of the Numbers that exprefs the Dimenfions of the Curves employed in the Defcription; and this laft Produif hall hhew the Dimenfions of the Locus of P when higheft.

I am able to continue thefe Theorems much farther: But it is not worth while, efpecially fince I find that there is not any confiderable Advantage obtained by increafing the number of Poles above the Method delivered in the abovementioned Treatife of the Defrription of Curve Lines. On the contrary, the Defcriptions there given by means of two Poles, will produce a Locus of higher Dimenfions by the fame number of Curves and Angles, than thefe that require three or more Poles; and are therefore preferrable, unlefs perhaps in fome particular Cafes.

However, I have alfo found how to draw Tangents to the Curves that arife in all thefe Defcriptions; of which I fhall give one Inftance where 3 Right Lines are fuppofed to revolve about 3 Poles, and 2 of their Interfections are fuppofed to be carried over given Curve Lincs, and the third defcribes the L.ocus required.-

Let the Right Lines C $-, S \mathbb{N}, \mathrm{D} \mathrm{N}$, revolve about the Poles C, S, D, Fig. 28 . where that which revolves about D, ferves to guide the Motion of the other two; it's Interfection with CQ moving over the Curve GQ, while it's Interfection with S N moves over the Curve F N. Suppofe that the Right Line $\mathrm{B} b$ touches the Curve GQ in Q , and that the Right Line A a touches the Curve FN in N. In order to draw a Tangent to the Locus of P; join DC, DS and CS, and conftitute the Angle $D Q R$, equal to $C Q B$, fo that $Q R$ lie the contrary way from $Q D$ that $Q B$ lies from $Q C$, and let $Q R$ meet $D C$ in R. Conftitute alfo the Angle DNT, equal to SN A with the like precaution, and let NT meet DS in T. Join R T, and produce it till it meet CS in H; then join PH, and make the Angle C P L equal to S P H, fo that PL and PH, may lie contrary ways from CP and SP; ard PL thall be a Tangent at P, to the Locus defcribed by P, the Interfection of $C Q$ and $S N$.

I have alfo applied this Doctrine to the Defription of Lines through given Points. But I fuppofe I have faid enough at prefent on this Subject; and mall conclude, after obferving that in the abovementioned Treatife, I have given an eafy Theorem for calculating the Refiftance of the Medium when a given Curve is defrribed with a given centripetal

The Defription of Curve Lines.

Force in a refifting Medium, which I fhall here repeat, becaufe it has been mifreprefented in a forcign Journal.

Let V exprefs the centripetal Force with which the Body that is fuppofed to defcribe the Curve, is acted on in the Medium; let vexprefs the centripetal Force with which the fame Curve could be deferibed in a Void; fuppofe $z=\frac{\mathrm{V}}{v}$, and the Refiftance fhall be proportional to the Fluxion of z multiplied by the Fluxion of the Curve, fuppofing the Area defcribed by a Ray, drawn from the Body to the Center of the Forces, to flow uniformly. Let this Theorem be compared with what the celebrated Mathematician mentioned by that Journalift has given on the fame Subject, and it will eafily appear what juclgment is to be made of his Affertion; and fince feveral Perfons, and particularly the Gentleman mentioned above in this Paper, teftify that I communicated to them this Theorem before any Thing was publifhed on this Subject by the learned Mathematician he names, his Obfervation on this Occafion mutt appear the more groundlefs.

From this Theorem, I draw this very general Corollary, that if the Curve is fuch as could be defcribed in a Void by a centripetal Force, varying according to any Power of the Diftance, then the Denfity of the Medium in any place, is reciprocally proportional to the Tangent of the Curve at that place, bounded at one Extremity by the Point of Contact, and, at the ocher, by it's Interfection with a Perpendicular raifed at the Center of the Forces to the Ray drawn from that Center to the Point of Contact. Let A L be the Curve defcribed by a Force directed to the point S; let LT touch the Curve at L , and raife S T perpendicular to S L, meeting LT in T, and the Denfity in L fhall be inverfely as LT, if the Refiftance be fuppofed to obferve the compound Proportion of the Denfity, and of the Square of the Velocity.

Befides what I have obferved here, I propofe to illuftrate and improve feveral other Parts of the Treatife concerning the Defcription of Curve Lines in this Supplement.

That Treatife requires thefe Additions and Illuftrations the more, that tho' the whole almoft was new, it was publifhed in a hurry, when I was very young, before I had time to confider fufficiently which were the beft ways of demonftrating the Theorems, or refolving the Problems, for which this Supplement I hope, will make fome Apology. 2re Paper dat. 3. About the Poles $\mathrm{C}, \mathrm{B}, \mathrm{D}$, let the Right Lines $\mathrm{C} d, \mathrm{~B} m, \mathrm{Dr}$
od af Nancy, be moved, and let the Interfection of the Legs $\mathrm{B} m, \mathrm{Dr}$ be drawn thro'

Nov. 27.
1722, men-
sioned in the foregoing arti. cle Prop. 1. sea. I.
Fig. 30. the given Right Line PG, the Interfection of the Legs $\mathrm{C} d, \mathrm{Dr}$ thro' the given Right Line $P Q$, and the Interfection of the Legs $C d_{3} B d$ will defrribe a Conick Section.

Draw r t parallel to the Right Line B D given by Pofition, and let it meet the Right Line $\mathbf{B} d$ in ℓ; join $\mathrm{P} \ell$ and produce it till it meets the Right Line $B D$ in F; and you will have the Point F. For as the

Proportion is given of $r u$ to $r t$, which is the fame as of DG to DB, beciule of the fimilar figures $\mathrm{D} m \mathrm{BG}$ and $r m i u$, and $r u$ is to $r t$ as $Q G$ to $Q F$, the Proportion will alfo be given of QF to $Q G$; and fo becaufe of the given one QG, QF will be given, and therefore the Point F and the Right Line PF. Since therefore $\mathrm{B} t$ and C r cut off the parts $\mathrm{P} t, \mathrm{Pr}$, from the Right Lines given by Pofition PF, PQ, their Interfection d will always be in a given Ratio in a Conick Section, by Lem. 20. Lib. 1. Neret. Princip.

If the Point D be taken any where in the Right Line BF, and if $D G$ is always to $Q G$ as $B D$ to $Q F$, the Conick Section will be the fame that d fhall deforibe.

The Conick Section paffes thro' C, P, B, and a by compleating the Parallellogram PSau. It alfo paffes thro' L where the Right Lire B G being produced meets $\mathrm{P} u$, as allo thro' K , where the Right Line CD cuts the given one PG. Whence the Pentagon PKCLB is inferibed on the Section. And if 5 points C, K, P, B, L, are given, thro' which the Conick Section is to be drawn, or if the Conick Scetion is to be circumferibed about the given Pentagon C L B P K, let any 2 fides C K, L B be produced to their Interfection D, and then let the reft P L،, P K be joined, and let the Interfections of the Right Lines $\mathrm{C} d, \mathrm{D} r$, and $\mathbf{B} d$, D R be always drawn thro' thofe Right Lines P L, P K, and the Interfection d will defrribe the Section.

About the given Points F, C, G, S, as Poles, let the Right Lines F Q, Prop. z: C N, G Q, SL be moved, and let the Interfections of the Right Lines Fig. 3r. $F Q$ and $C N, F Q$ and $G Q, G Q$ and $S L$, namely the Points M, Q, L, always touch the Right Lines given by Pofition A E, BE, HL, and the Interfection of the Right Lines CN,SL, will defcribe a Conick Section.

Let the Right Lines AM, HR meet B \mathcal{Q} in E and H . Let CF and GS be joined meeting each other in D, let D Q be joined meeting the Right Lines $C M, S L$ in N and R; and if $E N$ and $H R$ are joined, EN and HR will be Right Lines given by Pofition by Lemma I. For as the Points F, C, D are in the fame Right Line, and the Interfections of the Right Lines FM, CM, and FQ, DQ run over the given Right Lines, the Interfection of the Legs CM, DQ will alfo touch the given one. And for the like Reafon as S, D, G are in the fame Right Line, the Interfection of the Right Lines D Q, SL will alfo touch the given one.

Thercfore omitting the Poles F and G, the Curve is to be found which the Interfection of the Right Lines C N, S L, viz. P will defcribe, whilft, as the Right Lines CN, D N, SR revolve about the Poles C, D, S, the Interfection of the Right Lines CN, DN touches the given EN, and the Interfection of the Right Lines SR, D N touches the given one $H R$, and that this is a Conick Section is manifeft from the foregoing Propofition.

Concerningtwo Species of Lines of the Third Order, (not mentioned by Sir I. Newton, nor Mr Sterling) by Mr Edmund Stone, F.R.S. No. 4i6. p. 318. Jan. Eic. 1740. dased 7 uhy 31. 1736 .
VII. Having for fome time paft been rcading and confidering the litele Treatife of Sir I. Newlon intituled Enumeratio Linearum tertii Ordinis, as alfo the ingenious Piece of Mr Sterling called Illuffratio TraEtatus Domini Newtoni Linearumn tertii Ordinis; I have obferved, that they have neither of them taken Notice of the two fullowing Species of Lines of the Third Order ; and venture to affirm, that the y^{2} Species mentioned by Sir IJaac, together with the 4 more of Mr Sterling, and thefe Two, making in all 78 , is the exact Number of the different Species of the Lines of the Third Order, according to what Sir Iface has thought fit to confiture a different Specics.
The two Species I mean, are to be reckoned amongft the Hyperboloparabolical Curves, having one Diamecter, and one Alymptote, at No. 8. of Newson's Treatife, or Page 104. of Mr Sterling's ; whofe Equation is $x y y= \pm b x^{2} \pm c x+d$; which will give, not 4 , as in thefe Authors, but 6 Species of thefe Curves: For,
I. If the Equation $b x^{2}+c x+d=0$, has two impofible Roots, the Equation $x y y=b x^{2} \pm \bar{c} x+d$, will (as they fay) give two Hyper-bolo-parabolical Figures equally diftant on each fide the Diameter A B. See the 57 th Figure in New.on's Treatife, and this is his 53^{d} Species, and Sterling's 57 th.
II. If the Equation $b x^{2}-c x-d=0$, has two equal Roots both with the Sign + ; the Equation $x y y=b x^{2}-c x+d$, will (as they fay) give two Hyperbolo-parabolical Curves croffing each other at the Point τ in the Diameter. See Fig. the 58 th in Newolon; and this is his 54 th Species, and Sterling's 58 th.
Fig. 32. III. But if the Equation $b x^{2}+c x+d=0$, has two poffible unequal negative Roots A_{ρ} and A_{r}, the Curve given by the Equation $x y y= \pm$ $b x^{2}+c x+d$, will confirt of two Hyperbolo parabolical Parts, as alfo of an Oval on the contrary Side the Afymptote or principal Abciifs. And this is one of the Species omitted by Sir IJanc and Mr Sterling, which is really the 59 th Species.
IV. Alfo if the Equation $b x^{2}+c x+d=0$, has two equal negative Roorts A_{ρ} and A_{τ}; the Curve given by the Equation $x y y= \pm b x+c x$ $\pm d$, will confift of two Hyperbolo-parabolical Parts, and alfo of a Conjugate Point on the contrary Side the Afymptote or principal Ordinate: And this is the other Species of thefe Curves omitted by Sir Ifanc and Mr Sterling, which is really the 60th Species.
V . If the Roots of the Equation $b x^{2}-c x+d=0$ are real, and unequal, having both the Sign +; the Curve given by the Equation $x y y=b x^{2}-c x+d$, will (as they fay) confift of a conchoidal Hyperbola and a Parabola, on the fame ficle the Afymptote or principal Ordinate. See Fig. the 59th in Nereton; and this is really the 6If Species.
VI. If the Roots of the Equation $b x^{2}+c x-d=0$, have contrary Signs, the Equation $x y y=b x^{2} \pm c x-\frac{1}{d}$, will (as they fay) give a conchoidal
conchoidal Hyperbola with a Parabola on the contrary Side the Afymptote or principal Ordinate. See Fig. the Goth in Nerevon; and this is really the 62 d Species.
VIII. Many Attempts have been made at different times, but, if I miftake not, never any yet with tolerable Succefs, towards the Solution of the Problem propofed by Kepler: To divide the Area of a Semicircle into given Parts, by a Line from a given Point of the Diameter, in order to find an univerfal Rule for the Motion of a Body in an Elliptic Orbit. For among the feveral Methods offercd, fome are only true in Speculation, but are really of no Service. Others are not different from his own, which he judged improper: And as to the reft, they are all

The Solution of Kepier's Problem, b; J. Machin. Afr. Prof: Gircin. and Secr.R.S.No. 447. p. 205. Jan . $8 \mathrm{cc} .173^{8}$. fome way or other fo limited and confined to particular Conditions and Circumftances, as fill to leave the Problem in general untouched. To be more particular; it is evident, that all Conftructions by Mechanical Curves are feeming Solutions only, but in reality unapplicable; that the Roots of infinite Series's are, upon account of their known Limitations in all refpects, fo far from affording an A ppearance of being fufficient Rules, that they cannot well be fuppofed as offered for any thing more than Exercifes in a Method of Calculation. And then, as to the univerfal Mcthod, which proceeds by a continued Correction of the Errors of a falle Pofition, it is, when duly confidered, no Method of Solution at all in itfelf; becaufe unlefs there be fome antecedent Rule or Hypothefis to begin the Operation, (as fuppofe that of an uniform Motion about the upper Focus, for the Orbit of a Planet; or that of a Motion in a Parabola for the perihelian Part of the Orbit of a Comet; or fome other fuch) it would be impoffible to proceed one ftep in it. But as no general Rule has ever yet been laid down, to affift this Method, fo as to make it always operate, it is the fame in Effect as if there were no Method at all. And accordingly in Experience it is found, that there is no Rule now fubfifing but what is abfolutely ufelefs in the Elliptic Orbits of Comets; for in fuch Cafes there is no other way to proceed but that which was ufed by Kepler: To compute a Table for fome part of the Orbit, and therein examine if the Time to which the Place is required, will fall out any-where in that Part. So that, upon the whole, I think, it appears evident, that this Problem (contrary to the received Opinion) has never yet been advanced one Step towards it's true Solution: A Confideration which will furnifh a fufficient Plea for meddling with a Subjeef fo frequently handled; efpecially if what is offered fhall at the fame time appear (as I truft it will) to contribute towards fupplying the main Defect.

Tbe Tangent of an Arcb being given, to find the Tangent of it's Mrultiple. Lemma i.
Let r be the Radius of the Circle, t the Tangent of a given Arch A, and n a given Number. And let τ be the Tangent of the Multiple Arch $n \times A$ to be found.

Then if $\xi \xi$ be put for $-r r$, and $\tau \tau$ for $-t t$;
The Tangent T will be $\frac{\left.\overline{r+\tau}\right|^{n}-\overline{r-r^{n}}}{\overline{r+\tau^{n}}+\overline{r-\tau^{n}}} \rho$: Which Binomials being raifed according to Sir I. Newton's Rule, the fictitious Quantities τ and ρ will difappear, and the Tangent T will become equal to $n t-\frac{n}{1} \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} \cdot \frac{t^{3}}{r^{2}}+\frac{n}{1} \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} \frac{n-3}{4} \cdot \frac{n-4}{5} \cdot \frac{t^{5}}{r^{4}}-5 c_{c}$ $1-\frac{n}{1} \cdot \frac{n-1}{2} \cdot \frac{t t}{r r}+\frac{n}{1} \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} \cdot \frac{n-3}{4} \cdot \frac{t^{2}}{r^{+}}-\varepsilon^{3} c_{0}$
This Theorem (which I formerly found for the Quadrature of the Circle, at a time when it was not known here to have been invented before) has now been common for many Years; for which Reafon I thall premife it, at prefent, without any Proof; only for the fake of fome Ules that have not yet been made of it.

From this Theorem for the Tangent, the Sine (fuppofe) Y, and Cofine \mathbf{Z} of the Multiple Arch $n \times \mathbf{A}$, may be readily found.

For if y be the Sine, and z the Cofine of the given Arch A, then putting $v v$ for $-y y$, and fubftituting $\frac{r y}{z}$ for t, and $\frac{r v}{z}$ for τ, and $r \mathrm{~T}$ $\sqrt{r r+\mathrm{TT}}$
for \mathbf{Y} : The Sine \mathbf{Y} will be $\frac{\overline{z+v \mid}^{n}-\overline{z-v}}{2 r^{n}}{ }_{\rho}^{n}$. The Cofine Z will be $\frac{\left.\overline{z+v}\right|^{n}+\overline{z-v \mid}}{2 r^{n-1}}$.

Each of thefe may be expreffed differently in a Series, either by the Sine and Cofine conjointly, or by either of them feparately.

Thus Y the Sine of the multiple Arch $n \times A_{2}$ may be in either of thefe two Forms, viz.
$=\frac{z^{n-1}}{r^{n-1}} y$ in $n-\frac{n-1}{2} \cdot \frac{n-2}{3}$ A. $\cdot \frac{y^{2}}{z^{2}}+\frac{n-3}{4} \cdot \frac{n-4}{5}$ B. $\frac{y^{4}}{z^{4}}-$ V'c. 2.
or $=n y-\frac{n n-1}{2.3 r r} \dot{A}^{\prime} y^{3}-\frac{n n-9}{4.5 r r} \mathrm{~B} y^{5}-\frac{n n-25}{6.7 r r}{ }_{\mathrm{C}}^{\mathrm{C}} y^{7}-\mathrm{E}_{c}$.
Wherein the Letters $A, \stackrel{\prime}{\mathrm{~A}}, \stackrel{1}{\mathrm{C}}, \Xi^{c} c$. ftand, as ufual, for the Coefficients of the preceding Terms.

The firt of thefe Theorems terminates when n is any integer Number, the other (which is Sir I. Newton's Rule, and is derived from the former by fubitituting $\sqrt{r r-y y}$ for z) terminates when n is any odd Number.

The Cofne Z may, in like manner, be in either of thefe two Forms viz.
$=\frac{z^{n}}{r^{n-1}}$ in $1-\frac{n}{1} \cdot \frac{n-1}{2} \cdot \frac{y^{2}}{z^{2}}+\frac{n}{1} \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} \cdot \frac{n-3}{4} \cdot \frac{y^{4}}{z^{4}}-\mathcal{E} c$.
or $=r-\frac{n n}{2 r r} \mathrm{~A} y^{3}-\frac{n n-4}{3 \cdot 4 r r} \mathrm{~B} y^{4}-\frac{n n-16}{5 \cdot 6 r r} \mathrm{C} y^{6}-\mathcal{E}^{2} c$.
The latter of which terminates when the Number n is even, and the other as before, when it is any Integer.

Hence the Sine, Cofine, and Tangent of any Sulmultiple Part Corol. z. of an Λ rch (fuppofe) $\frac{1}{n} \Lambda$, may be determined thus:

The Tangent of $\frac{1}{n} A$ will be $\frac{\left.\overline{r+\tau}\right|^{\frac{1}{n}}-\left.\overline{r-\tau}\right|^{n}}{\left.\overline{r+\tau}\right|^{\frac{1}{n}}-\left.\overline{r-\tau}\right|^{\frac{1}{n}}}$
The Sine of $\frac{1}{n} A$ will be $\frac{\overline{\left.T v\right|^{\frac{1}{n}}}-\overline{z-v_{1}} \frac{1}{n}}{2 r^{\frac{1}{n}}}$?
For thefe Equations will arife from the Tranfpofition and Reduction of the former for the Tangent and Sine of the Multiple Arch, upon the Subititution of t, y, z and A; for T, τ, Z and $n \times A$.

Hence regular Polygons of any given Number of Sides may be in. Corol. 3 . fcribed within, or circumfcribed without, a given Arch of a Circle. For if the Number n exprefs the double of the Number of Sides to be infcribed within, or circumferibed about, the given Arch A; then one of the Sides infcribed will be the double of the Sine, and one of the Sides circumfribed the double of the Tangent of the Submultiple
Part of the Arch, viz. $\frac{1}{n}$.
To find the Length of the Arch of a Circle witbin certain Limits, Lemma II. by means of the Tangent and Sine of the Arch.

Let t be the Tangent, y the Sine and z the Cofine of the Arch A, whofe Length is to be determined, and let ρ, τ, v be expounded as before; then, if any Number n be taken, the Arch of the Circle will be always lefs than r

$$
\begin{aligned}
& \frac{r+\tau}{r+\frac{1}{n}}-\overline{r-\tau} \frac{1}{n} \\
& \overline{r+\tau} \frac{1}{n}+\overline{r-\tau} \frac{1}{n} \\
& \frac{v}{n} \frac{1}{n}
\end{aligned} \times n_{\rho} . \text { and bigger than }
$$

For if, by the preceding Corollaries, a regular rectilinear Polygon be infcribed within, and another without, the Arch A, each having half fo many Sides as is expreffed by the Number n; then will the
former of thefe Quantities be the Length of the Bow of the circumfrrib. ed Polygon, (or the Sum of all it's Sides) which is always bigger and the latter will be the Length of the Bow of the infcribed Polygon, which is always lefs, than the Arch of the Circle; how great foever the Number n be taken.
Corol. 1.
Hence the Series's for the Rectification of the Arch of a Circle may be derived.

For by converting the Binomials into the Form of a Series, that the fictitious Quantities, ρ, τ, v may be deftroyed; it will appear, that no Number n can be taken fo large as to make the infcribed Polygon fo big, or the circumfrribed fo little as the Series.
$\frac{r y}{z}-\frac{r y^{3}}{3 z^{3}}+\frac{r y^{5}}{5 z^{3}}-\frac{r y^{7}}{7 z^{7}}+\varepsilon^{2} c$. in one Cafe, or it's Equal $t-\frac{t^{3}}{3 r^{2}}$ $+\frac{t^{5}}{5^{r}}-\frac{t^{7}}{7 r^{6}}+\mho^{\circ} c$. in the other Cafe.

Wherefore fince the Quantity denoted by the Sum of the Terms in either of thefe Series's is always bigger than any infcribed Polygon, and always lefs than any circumfcribed, it muft therefore be equal to the Arch of the Circle.
Corol. 2. If, in the firt of the above Series's, the Root $\sqrt{r r-y y}$, be extracted and lubftituted for z, there will arife the other Series of Sir I. Neritom, for giving the Arch from the Sine; namely, $y+\frac{y^{3}}{6 r^{2}}+\frac{3 y^{5}}{40 r}+\frac{5 y^{7}}{112 r^{6}}$ $+\mathcal{E}_{6}$. or otherwife, $=y+\frac{1}{1 \cdot 2 \cdot 3} \times \frac{y^{3}}{r^{2}}+\frac{3 \cdot 3}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot} \times \frac{y^{5}}{r^{4}}+$ $\frac{3 \cdot 3 \cdot 5 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot} \times \frac{y^{7}}{r^{6}}+\xi^{2} c$.

In like manner, as the Arches of the Polygons ferve to determine the Arch of the Circle, fo by comparing the Areas of the circumfcribed and infribed Polygons, $\frac{1}{2} n r \tau$ and $\frac{1}{2} n \Upsilon Z$, the Area of the Sector of a Circle may be found, For if \mathcal{T}, Υ and Z are the Tangent, Sine, and Cofine of the Arch A; then by the fecond Lemina the Area of the circumicribed Polygon will be found to be $\frac{1}{2} n r_{\rho} \times \frac{\left.\overline{r+\tau})^{\frac{1}{n}}-r \overline{-r}\right)^{\frac{r}{n}}}{\frac{r+\tau}{n}+r \overline{-\tau} \frac{1}{n}^{\frac{1}{n}}}$ $=\frac{1}{2} n r T$: and the Area of the infcribed will appear to be $\frac{1}{2} n \rho \times$ $\frac{\overline{z+v})^{\frac{2}{n}}-\overline{z-v)^{\frac{2}{n}}}}{4 r^{\frac{2}{n}-1}}=\frac{1}{2} n \Upsilon Z$.

The Solution of Kepler's Problem.

But upon the Expanfion of thefe Binomials it will appear, that no Number n can be taken fo large as to make the one fo big, or the other fo little, as the Area denoted by the Series. $\frac{1}{2} r$ in $t-\frac{t^{3}}{3 r r}-\frac{t^{5}}{5 r^{4}}$ $-\frac{t^{7}}{7 r^{6}}+\varepsilon^{3} c$.

So that this Area being larger than any infcribed, and fmaller than any circumicribed, Polygon, muft be equal to the Area of the Sector.

It may further be oblerved, that as the Arch or Area is found from the Sine, Cofine, or Tangent of the Arch, by means of the limiting Polygons, fo may the Sine, Cofine, or Tangent be found from the Length of the Arch by the fame Method.

Thus, if A be the Areh whofe Tangent T, sine r, and Cofire Z, are to be determined, then will the
Tangent T be $=\frac{A-\frac{1}{1.2 .3} \times \frac{A^{3}}{r^{2}}+\frac{1}{1.2 .3 .4 .5} \times \frac{A^{5}}{r^{4}}-E^{2} c}{1-\frac{1}{1.2} \times \frac{A^{2}}{r r}+\frac{1}{1.2 .3 .4} \times \frac{A^{+}}{r 4}-8 c .}$
Sine r

$$
=A-\frac{I}{1 \cdot 2 \cdot 3} \times \frac{A^{3}}{r^{2}}+\frac{\mathrm{I}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \times \frac{A^{5}}{r^{r}}-E_{6}
$$

Cofine Z

$$
=r-\frac{1}{1 \cdot 2} \times \frac{A^{2}}{r}+\frac{1}{5 \cdot 2 \cdot 3 \cdot 4} \times \frac{A^{+}}{r^{3}} 8^{2} c_{0}
$$

For it may be made to appear, from the firft Lemme, and it's Corollaries, that if in any of thefe Theorems, as fuppofe in the Firft, the Quantity A ftand for the Bow of the circumfcribed Polygon, then will the Quartity T exhibited by the Theorem, be always bigger; but if for the Bow of the infcribed, always "lefs than the Tangent of the Arch, how great foever the Number n be taken; and confequently, if A ftand for the Length of the Arch itfelf, the Quantity T muft be equal to the Tangent; and the like may be fhewn for the Sine, and mutatis mutandis, for the Cofine.

Thefe Principles, from whence I have here derived the Quadrature of the Circle, which is wanted in the Solution of the Problem in hand, happen to be upon another Account abfolutely requifite for the Reduction of it to a manageable Equation. But I have inlarged, more than was neceffary to the Problem itfelf, on the Ufes of this fort of Quadrature by the limiting Polygons, becaufe it is one of that kind which requires no other Knowledge but what depends on the common Properties of Number and Magnitude; and fo may ferve as an Inftance to Thew that no other is requifite for the Eftablimment of Principles for Arithmetick and Geometry. A Truth, which though certain in itfelf,
may perliaps feem doubfful from the Nature and Tendency of the prefent Inquiries in Mathematicks. For among the Moderns fome have thought it neceflary, for the Inveltigation of the Relations of Quanticies, to have Recourfe to very hard Hypothefes; fuch as that of Number infinite and jindeterminate ; and that of Magnitudes in Sictu fiert, exifting in a potential Manner, which are actually of no Bignefs. And others, whofe Names are truly to be reverenced on Account of their great and fingular Inventions, have thought it requilite to have Recourfe even to Principles foreign to Mathematicks, and have introduced the Confideration of efficient Caufes and Phyfical Powers for the Production of Mathematical Quancities; and have Spoken of them, and ufed them, as if they were a Species of Quantities by themEelves.
N. B. In the following Propofition I have, for the Sake of Brevity, made ufe of a peculiar Notation for compofite Numbers (or fuch Quantities as are analogous to them) whofe Factors are in Arithmetical Progreffion.

The Quantity expreffed by this Notation has a double Index : that as the Head of the Root at the Right-hand, but feparated by a Hook to diftinguifh it from the common Index, denotes the Number of Factors; and that above, within the Hook on the Left-hand, denotes the common Difference of the Factors proceeding in a decreafing or increafing Arithmetical Progreffion.

Thus the Quantity $\frac{\stackrel{a}{c}}{n+a}(m$ denotes by it's Index m on the Right-hand, that it is a compofite Quantity, confifting of fo many Factors as there are Units in the Number m; and the Index a above, on the Left, denotes the common Difference of the Factors, decreafing in an Arithmetical Progreffion, if it be pofitive ; or increafing, if it be negative ; and fo fignifies, in the common Notation, the compofite Number or Quantity, $\overline{n+a} \overline{n+a-\alpha} \overline{n+a-2 a}$. $\overline{n+a-3^{\alpha}}$ and fo on.

For Example : $\frac{2^{n}}{n+5}(6$ is $=\overline{n+5} \cdot \overline{n+3} \cdot \overline{n+1} \cdot \overline{n-1} \cdot \overline{n-3}$. $\overline{n-5}$, confifting of fix Factors whofe common Difference is 2. After the fame Manner $\frac{2}{n+4}{ }^{15}$ is $=\overline{n+4} \cdot \overline{n+2} \cdot n, \overline{n-2} \cdot \overline{n-4}$, confifting of five Factors. According to which Method it will eafily appear, that if a be any Integer, then $\frac{2^{2}}{n+2 a+1}(2 a+2$ will be $=$
$=\overline{n n-1} \cdot \overline{n n-9} \cdot n-25$, continued to fuch a Number of double Factors as are expreffed by $a \nmid 1$, or half the Index, which in this Cafe is an even Number. So $n+2 a^{2} 2 a+1$ will be equal to $\overline{n . n n-4} \cdot \overline{n n-16} \cdot \overline{n n-36}$, and fo on, where there are to be fo many double Factors as with one fingle one (n) will make up the Index $2 a+1$, which is an odd Number.
If the common Difference a be an Unit, it is omitted:
Thus, $\check{n}(6$ is $=n \cdot \overline{n-1} \cdot \overline{n-2} \cdot \overline{n-3} \cdot \overline{n-4} \cdot \overline{n-5}$, containing 6 Factors. So ${ }_{6}(6$ is $=6.5 .4 .3 .2$. 1, and the like for others.

If the common Difference α be nothing, then the Hook is omitted, and it becomes the fame with the Geometrical Power :
So $\frac{\square^{0}}{n \vdash^{\mathrm{a}}}{ }^{m}$ is $=\overline{n \mp I^{m}}$ according to the common Notation. An Arch less than a Semicircle being given, weith a Point in the Dia- Prop. I. mocer paffing through one of it's Extrenities; 10 find, by means of the Sine of a given Part of the Arch lefs than one balf, the Area of the Sector fubtended by the given Arch, and comprebended in the Augle made at the given Point.
Let PNA be a Semicircle defrribed on the Centre C, and Diameter A P, and let P N be the given Arch lefs than a Semicircle, and S the given Point in the Diameter A. P paffing through one of the Extremities of the Arch N P in P. Then taking any Number n bigger than 2, let P K be an Arch in Proportion to the given Arch PN , as Unity to the Number n; and let it be required to find by means of the Sine of the Arch P K, the Area of the Sector NS P fubtended by the given Arch N P , and comprehended in the Angle N S P made at the given Point S.
From N and K let fall on the Diameter A P the Perpendiculars NM and KL, and join CN and CK.

Then let t ftand for C P the Semidiameter of the Circle ; f for CS, the Diftance of the given Point S from the Center; p for SP the Diflance of it from the Extremiry of the Arch through which the Diameter A P paffes; and y for K L the Sine of the Arch K P in the given Circle.

There Subftitutions being prefuppofed, the Problem is to be divided into two Cafes; one when S P is lefs, and the other when it is greater than the Semidiameter $\mathrm{C} P$.

If S P be lefs than CP, then take an Area H equal to the Sum of Cafe J. the Rectangles expreffed by the feveral Terms of the following Series continued ad libitum:

$+\frac{9 \times 25 t+\frac{2}{-1-\left.5\right|^{6}} \times f}{77^{7}} \times \frac{)^{7}}{t^{6}}+\mathrm{E}^{2} c$. And the Area $\frac{1}{2}$
$n \times H$ will determine the Area of the Sector $\mathbf{N} S \mathrm{P}$ ad libitum.
For the Sector P S N, being the Excefs of the Sector N C P above the Triangle NCS, will be the Difference of two Rectangles: $\frac{\mathrm{I}}{2} \mathrm{CP} \times \mathrm{PN}-\frac{1}{2} \mathrm{CS} \times \mathrm{NM}$; but PN is the Multiple of the Arch PK, namely $n \times P \mathrm{P}$; and NM is the Sine of that multiple Arch: Wherefore if for CP be put t, for CS, f, according to the Suppofition; and if for P K be fubftituted: $\frac{y}{1}+\frac{1}{\left.3\right|^{3}} \times \frac{)^{3}}{t^{2}}+\frac{9}{\left.5\right|^{5}}$ $\times \frac{)^{5}}{t 4}+\frac{9 \times 25}{77^{7}} \times \frac{)^{7}}{t^{6}}+$ Ec. by Cor. 2. Lem. 2 ; and for NM : $_{\text {ch }}$.
 according to Cor. 1. Lem. I. the Area of the Sector will appear in a Series, as is above determined.

But fince the Number n is greater than 2, and the given Arch PN is lefs than a Semicircle, and confequently K L or y, the Sine of the Submultiple Arch P K, is lefs than the Semidiameter CP or t; it may thence be eafily proved, that the Series will approximate to the juft Quantity of the Area, ad libitum.

Corod. 1.
Hence, if the Number n be taken equal to $\sqrt{5+\sqrt{25+\frac{1}{1} \frac{p}{f}}}$ the Sector N S P will be $=\frac{1}{2} n p y+\frac{n^{3} t-n \cdot \overline{n-1} \cdot p}{12 t t} y^{3}$十****+ $\left.\frac{n^{3}}{1120 t^{3}}\right)^{7}+\xi^{2} c$.

For the Numerator of the Coefficient of the third Term in the Series, that determines the Area H, namely, $9 t-\overline{n+31^{4}} \times f$ is equal to $g t-\overline{n=1}, n n=9 \cdot f$, which according to the above Deter-

Primple

The Solution of Kepler's Problem.

Determination of the Number n, will become nothing; wherefore, if for $t-p$ be put f in the fecond Term, and the Value of n be fubftituted for n in the Third and Fourth, the Series for the Area will appear upon Reduction to be as is here laid down.
Hence the Area of the Sector N S P may be always defined nearly by Corol. z? the Terms of a Cubic Equation.

For the Number n, as conftructed in the former Corollary, is always greater than the fquare Root of 10 , and confequently $\frac{y}{t}$ is always lefs than the Sine of one third Part of the given Arch; fo that the fourth Term $\frac{n^{3}}{1120 t^{3}} y^{7}$, with the Sum of all the following Terms of the Series, can never be more than a fmall Part of the whole Seetor.

If R ftand for 57,2957795, Ecc. Degrees, (or the Number of Corol. 3. Degrees contained in an Angle fubtended by an Arch of the fame Length with the Radius of the Circle) and M be the Number of Degrees in an Angle which is to 4 right Angles, as the Area NSP to the Area of the whole Circle; then will M be $=\frac{n p}{t} \times \frac{\mathrm{R} y}{t}$
$+\frac{n^{3} t-n \cdot \overline{n-1} \cdot p}{6 t} \times \frac{\mathrm{R} y^{3}}{t^{3}}$, nearly.
For $\frac{M}{R} \times \frac{t t}{2}$ will appear by the Conftruction to be equal to the Sctor NSP.

If $S P$ be greater than $C P$, then take an Area H equal tol $C A S E$ II. the Sum of the Terms in the following Series: $\frac{p y}{1}+\frac{t-\left.\frac{n_{1}}{1}\right|^{2} \times f}{3^{3}}$ $\times \frac{y^{3}}{t^{2}}+\frac{9 t+\frac{2^{2}}{\frac{1}{5}}{ }^{4} \times f}{\left.5\right|^{5}} \times \frac{y^{5}}{t^{4}}+\frac{9 \times 25 t-\frac{t^{2}}{n+5} \times f}{7 r^{7}} \times \frac{y^{7}}{t^{6}}+\delta^{\circ} c$. and the Area $\frac{1}{2} n \times H$, will be the Sector, as before.

For the Point S being on the contrary Side of the Centre to what it was before, it will eafily appear, that the Change of $+f$ into - f, muft reduce one Cafe to the other, without any other Proof.
Hence, if the Number n be taken equal to $\sqrt{\frac{t+f}{f}}$ or in this Corollary Cafe $\sqrt{\frac{\hat{P}}{f}}$, then the Series for the Sector will want the fecond Term, as in the former it wanted the Third.
VOL. VIII. Part i.
M
The

The Solution of Kepler's Problem.

The Angle called by Kepler the Anomalia Eccentri, is a fietitious Angle in the Elliptic Orbit of a Planer, being analogous to the Area defcribed by a Line from the Centre of the Orbit, and revolving with the Planet from the Line of Apfides; in like manner as the Mean Anomaly is a fictitious Angle, analogous to the Area deferibed by a Line from the Focus

Ocherwife, if C be the Centre, S the Focus of an Elliptic Orbit defrribed on the tranfverfe Axis AP, and the Area NSP in the Circle be taken in Proportion to the whole, as the Area defrribed in the Ellipfis about the Focus, to the whole: Then is the Arch of the Circle P N, or the Angle NCP, that which Kepler calls the Anomalia Eccentri.

This Angle may be meafured either from the Apbelion, or from the Peribelion; in the following Propofition it is fuppofed to be taken from the Peribelion.

Prop. II. The mean Anomaly of a Comet or Planet revolving in a given Elliptic Orbit being given; 10 find the Anomalia Eccentri.

The Solution of this Problem requires two different Rules; the firt and principal one ferves to make a Beginning for a further Approximation, and the other is for the Progrefion in approximating nearer. and nearer ad libilum.

1. The Rule for the firf AJumption: Let t, f, and p, ftand as before, for the Semi-tranfverfe Axis of the Ellipfis, the Semi-diftance of the Foci, and the Peribelian Diftance; then taking the Number n equal to $\sqrt{5+\sqrt{25+\frac{9 P}{f}}}$; let τ ftand for $\frac{2 t}{n n t-n n-1} \cdot p$; and P for $\frac{2 p}{n n t-n n-r}\left(\operatorname{or} \frac{p}{t} \mathcal{T}\right)$; which conftant Numbers, being once computed for the given Orbit, will furve to find the Angle required nearly by the following Rule.
Let M be the Number of Degrees in the Angle of mean Axomaly to the given Time, reckoned from or to the Peribelion; and fuppofing R, as before, to ftand for $57,2957, \mathcal{E}^{\circ}$. Degrees; take the Number $N=\sqrt[3]{\frac{3 T}{n R}} M$, and let A be the Angle whofe Sine is $N \sqrt[3]{\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{P^{3}}{N^{3}}}}$ - $N \sqrt[3]{\frac{1}{2}-\sqrt{\frac{1}{4}}+\frac{p^{3}}{N^{0}}}$; then the Multiple Angle $n \times A$ will be nearly equal to the Anomalia Eccentri.

The Truth of which will appear from the Refolution of the Cubic Equation in the laft Corollary to the preceding Propofition.

The Solution of Kepler's Problem.

If the Quadruple of the Quantity $\frac{p^{3}}{N^{5}}$ be many times greater or many Corod. x.
times lefs than Unity; or, which amounts to the fame, if the mean Anomaly M, be many times lefs, or many times greater, than the Angle denoted by the given Quantity $\frac{2 n p}{3 t} R \vee P$ (one or the other of which two Cafes moft frequently happens in Orbits of very large Eccentricity) then the Theorem will be reduced to a fimpler Form near enough for Ufe.

If M be many times lefs than $\frac{2 n p}{3^{t}} R \sqrt{ } P$, then the Angle A may Cafe I. be taken for that whofe Sine is $\frac{t \times M}{n p \times R}$.

If M be many times greater than $\frac{2 n p}{3^{t}} R \vee P$, then let A be the cafo II. Angle whore Sine is $N-\frac{P}{N}$; and the Multiple Angle $n \times A$, according to it's Cafe, will be nearly equal to the Angle required.

In Orbits of very large Eccentricity, the Peribelian Diftance p is Corol. 2. many times lefs than the Semi-diftance of the Foci f, and the Number $n=\sqrt{5+\sqrt{25+\frac{9 p}{f}}}$; is always nearly equal to $\sqrt{10}$ or to the Integer 3, either of which may be ufed for it without any material Error in the Orbits of Comets.

II. The Rule for a further Correction ad libitum.

Let M be the given mean Aromaly, the Semi-tranfverfe Axis, as before; and let B be equal to or nearly equal to the Multiple Angle $n \times A$ before found, then if μ be the mean Anomaly, and x the Planet's Diftance from the Sun, computed to the Anomalia Eccentri B; the Angle B taken equal to $\mathrm{B}+\frac{t}{x} \times \overline{\mathrm{M}-\mu}$, will approach nearer to the true Value of the Angle fought; and by Repetitions of the fame Operation, the Approximation may be carried on nearer and nearer, ad libitum.

This laft Rule being obvious, the Explication of it may be omitted at prefent.

In this Solution, where the Motion is reckoned from the Peribelion, Scholiun the Rule is univerfal, and under no Limitation, but had the Motion been taken from the Aphelion, the Problem murt have been divided
into two Cafes: One is, when the Eccentricity is lefs than $\frac{9}{16}$; the other is, when it is not Jefs, but is either equal to, or more than in that Proportion,

If the Eccentricity be not lefs than $\frac{9}{16}$, then the fame Rule will hold, as before, only putting the Apbelian Diftance, fuppofe (a) inftead of the Peribelian Diftance (p), and fubftituting - f for $+f$ in the Rule for the Number n.

If the Eccentricity be lefs than $\frac{0}{16}$, then take the Number n equal To $\frac{a}{f}$, and $\frac{t}{n a} \times \frac{M}{R}$ will be nearly equal to the Sine of the Submultiple Part of the Anomalia Ecceniri denominated by the Number n, as before,

It is needlefs to obferve, that the like Rules would obtain in Hyperbolic Orbits, mutatis mutandis. But that which perhaps may not appear unworthy of being remarked, concerning this fort of Solution from the Cubic Root, is, that aithough the Rule be altogether impoffible, upon a total Change of the Figure of the Orbit either into a
Circle, or into a Parabola; yet it will operate fo much better, and poffible, upon a total Change of the Figure of the Orbit either into a
Circle, or into a Parabola; yet it will operate fo much better, and ftand in need of lefs Correction, according as the Figure advances nearer in it's Change towards either of thofe two Forms.

That the Ufe of the Method may better appear, it may not be amifs to add a few Examples.

I have given two for the Orbits of Planets, one the moft, and the other the leaf Eccentric; but which are more to fhew the Extent of the Rule, than to recommend the Ufe of it in fuch Cafes; for there are many other much better and more expeditious Methods in Orbits of fmall Eccentricity. The other two Examples are adapted to the Orbits of two Comets, whofe Periods have been already difcovered by Dr Halley; the one is to thew the Ufe of one of the Rules in the firft Corollary, and the other is to explain the Ufe of the other Rule.

Example I. For the Orbit of Mercury.

Example.

The Solution of Kepler's Problem.

 orm ond If an Unit be put for the Semi-tranfverfe Axis (t), the Eccentricity0,20589 will become (f, and the Peribclian Ditance (p) will be 0,79411 ; wherefore by means of the Number R given as before, the conftant Numbers for this Orbit will appear to be, $n=3,5^{6} 755$ 2 $\tau=0,5857271, P=\frac{p}{t} \tau=0,4.651319$, and hence $\frac{3 T}{n \times R}=0,0085965$.

Suppofe M the mean Anomaly from the Peribelion to be $120^{\circ} .001$ oo \prime, to which it is required to find the Anoinalia Eccentri.

Here, fince the mean Anomaly M is not many times more than the limiting Angle $\frac{2 n p}{3 t} R \checkmark P$, (which in this Orbit is about 94 De grees) Recourfe mult be had to the general Rule in the Propofition.

The Solution of Kepler's Problem.

The Number N then, which is $\sqrt[3]{\frac{3}{n R}} M$ will be $=1,0104195$;
which found gives $N \sqrt[3]{\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{\mathrm{P}^{3}}{\mathrm{~N}^{0}}}}=1,0389090$; and alfo $N \sqrt[3]{\frac{1}{2}-\sqrt{\frac{1}{4}+\frac{\mathrm{P}^{3}}{\mathrm{~N}^{6}}}}=-0,4477126$. Wherefore the Sum of both (under their proper Signs) viz. 0,5911964 will be the Sine whofe Arch $36^{\circ}, 24195$ is the Angle A; the Multiple whereof $n \times A=$ 129 ${ }^{\circ}, 295503$, will be the Angle to be firft affumed for the Anomalia Eccentri.

For a further Correction ; this Angle, now called B, whofe Sine is ruppofe y, and it's Cofine z, gives, by a known Rule, $t+\frac{f}{t} z=$ 1,1304 for x the Planet's Diftance from the Sun ; and by another known Rule $B-\frac{f R}{t t} y=120^{\circ}, 16568$ for μ the mean Anomaly to the Anomalia Eccentri B. Wherefore the correct Angle $B=B+\frac{t}{x}$ $\times \overline{M-\mu}$ will be $129^{\circ}, 14846=129^{\circ} \cdot 08^{\prime} .54^{\prime \prime}, 5$, erring, as will appear from a further Correction, about $\frac{2}{10}$ of a Second.

This Angle being thus determined, will give by the common Me thods $137^{\circ} \cdot 4^{1!} \cdot 33^{\prime \prime \frac{s}{2}}$, for the true Anomaly or Angle at the Sun: The Sine of the true Anomaly being in Proportion to the Sine of the A nomalia Eccentri, as the Semi-conjugate Axis to the Planet's Diftance from the Sun. So that the Equation of the Center in this Example is $17^{\circ} \cdot 4^{81} \cdot 33^{\prime \prime \frac{1}{2}}$.

Suppofing, as before, the mean Diftance t to be Unity, and the Example Eccentricity f to be 0,0069855 ; the conftant Numbers for this Orbit II. will be, $p=0,9930115 ; n=6,4116 ; T=1,562134 ; \quad P=$ For the Orbis 0,$1551217 ; \frac{3 T}{n R}=0,0127571$; and the limiting Angle $\frac{2 n p \text { of Venus. }}{36}$. $R \vee P$, will appear to be about 303 Degrees.

Let M be $120^{\circ} .00^{\prime} .00^{\prime \prime}$, as in the former Example. Then, Example, fince the mean Anomaly is, in this Cafe, not many times lefs than the limiting Angle, the general Rule muft be ufed as before; according to which the Number N will appear to be 1,152585 ; the Sine of A will be $0,3^{217917}$; the Angle $1,18^{\circ}, 7,13^{2}$; and the Multiple $n \times A$, or Angle B; for the firf Affumption of the Anomalia Eccentri will be $120^{\circ}, 354,6$.

This Angle B will give, by the Method before explained; the Angle 1 $B=120^{\circ}, 34555$, or $120^{\circ} \cdot 21^{\prime} \cdot 44^{\prime \prime}$ fere, for the Anomalia Eccentri correct; the kirror of which will appear, upon Examination, to be but a fmall Part of a Sccond.

In this Example the true Anomaly is $120^{\circ} \cdot 4^{\prime} 25^{\prime \prime}, 1$; and confequently the Equation of the Center no more than $41^{\prime} \cdot 25^{\prime \prime}, \mathrm{I}$.

To know the mean Anomnly of this Comet to any given Time, it is

Example

III.

For the Orbit of the Comet of 1682 .

Example.

Example

IV.

For the Orbit to be premifed, that it was at the Peribelion in the Year 1682, on the $4^{\text {th }}$ Day of September, at 21 Ho. 22 Min. equated Time to the Meridian of Greenwich, and makes it's Revolution about the Sun, as Dr Halley has difcovered, in $75^{\frac{1}{2}}$ Years.

The Peribelian Diftance p is, according to his Determination, 0,0326085 Parts of the mean Diftance $\%$. So that the conftant Numbers for the Orbit will be, $n=3,1676061 ; T=0,2054272$; $P=0,00669867$; and the limiting Angle $\frac{2 n p}{3 t} R \checkmark P$ will be about 19 Minutes or $\frac{1}{3}$ of a Degree.

In the Orbits of Comets, the Rule for the firt Affumption of the Anomalia Eccentri is generally fufficient without Correction.

Thus, fuppofe the mean Anomaly M to be 0,072706 , (as it was at the Time of an Obfervation made at Greenverch on the 3oth of Auguft 1682, at $\eta^{\text {b }} 42^{1}$. Æq. T.) then the general Rule (which muft be here ufed, fince the Angle of mean Anomaly is not above 4 or 5 Times lefs than the limiting Angle) will give $n \times A$ or $B=2^{\circ} .12^{\prime} \cdot 4^{\prime \prime \prime}, 7$, erring about io of a Second from the true Anomalia Eccentri.

But in thefe Orbits the Rules in the firft Corollary to the fecond Propofition moft frequently take Place, efpecially the laft; and the Calculation may alfo be further abbreviated, by putting the fquare Root of 10, or the Integer 3, for the Number n.

Suppofe the mean Anomaly to be $0^{\circ}, 0065^{22}$, or $23^{\prime \prime}, 4792$: Here, fince M is 50 Times lefs than the limiting Angle, the Rule in the firft Cafe of the firft Corollary may be ufed; that is, to take the Sine of the Angle $A=\frac{\ell \times M}{n p \times R}$.

Wherefore, if the Number 3 be put for n, the Sine of A, which $t M$ is $\frac{t M}{3 p R}$, will be $=0,00116367$; and confequently the Angle A will be 4^{\prime}. ooll orir; and the multiple Angle $n \times A$ to be affumed for the Anomalia. Eccentri will be 12!.00'1,033, the Error of which will be found to be about $\frac{1}{30}$ of a Second.

This Comet, according to Dr Halley, performs it's Period in 575 Years ; and was in it's Peribelion on the 7 th of December 1680, at

23 Hours o9' 太q. T. at London; the Pirbelian Diftance p is of 0,000089301 , in Parts of the mean Diftance t : Wherefore fuppofing the Number n to be $\sqrt{10}$, the conftant Numbers for the Orbit will be $\tau=0,2000161 ; P=0,000017862$, and the limiting Angle $\frac{2 n p}{3^{i}} R \sqrt{ } P$ will be about $\frac{1}{6}$ of a Second.

Suppofe the mean Anomaly to be $3^{\prime}, 31^{\prime \prime}, 4478$ or $0^{\circ}, 05873541$, (as Examite. it was at the Time of the firt Oblervation made on it in Saxony, on November the $3^{\text {d, at } 16 \mathrm{~h}} 47^{\prime}$ 压q. T. at London.) here, fince the mean Anomaly is many times greater than $\frac{1}{6}$ of a Second, the Rule in the fecond Cale of the firft Corollary may be ufed; that is, by taking the Sine of $A=N-\frac{P}{N}$.

But the Number N or $v^{3} \frac{3 T}{n R}$ is $=0,0579+134$; and $\frac{P}{N}$ will be $=0,0030827$; wherefore $\left(N-\frac{P}{N} \Rightarrow 0,05763307\right.$, will be the Sine whofe Arch $3^{\circ}, 30397$ is the Angle A; and the multiple Angle $n \times A=10^{0} \cdot 26^{\prime} \cdot 53^{\prime \prime}, 05$, will be the Angle to be firft affumed for the Anomalia Eccentri; the Error of which will be found to be lefs than a Second.

The true Anomaly, computed from this Angle according to the Rule in the Example for Mercury, will appear to be $171^{2} \cdot 3^{81} \cdot 24^{\prime \prime}$. from the Peribelion.

By thefe Examples it appears, that the Solution is univerfal in all Refpeets; for the two firlt, compared with the two laft, ferve to fhew that it is not confined to any particular Parts of the Orbit, but extends to all Degrees of mean Anomaly: And by comparing the fecond with the laft, it fufficiently appears to be univerfal with refpect to the feveral Degrees of Eccentricity; fince in one the Equation of the Center for the Reduction of the Mean to the true Motion is not fo much as the $\frac{1}{1-0}$ th Part of the whole ; whereas in the other it amounts to almoft 3000 times as much as the mean Motion itfelf.

Upon reviewing the Reflections on the Quadrature of the Circle in Poffcript. Page 7\%, I believe it may be neceffary for me to prevent any Mifrake that may arife from the different Opinions that obtain about the Nature of Mathematical Quantity, to explain myfelf a little upon that Head; as alfo to add a few Words to fhew how the Method of Quadrature by limiting Polygons, takes Place in other Figures as well as the Circle.

I take then a Mathematical Quantity, and that for which any Symbol is put, to be nothing elie but Number with Regard to fome Meafure which is confidered as one. For we cannot know precifely and deter-
determinately, that is, mathematically, how much any thing is, but by means of Number. The Notion of continued Quantity, without regard to any Meafure, is indiftinct and confufed; and although fome Species of fuch Quantity, confidered phyfically, may be defcribed by Motion, as Lines by Points, and Surfaces by Lines, and fo on; yet the Magnitudes or Mathematical Quantities are not made by that Motion, but by numbering according to a Meafure.

Accordingly, all the feveral Notations that are found neceffary to exprefs the Formations of Quantities, do refer to fome Office or Property of Number or Meafure; but none call be interpreted to fignify continued Quantity as fuch.
'Thus fome Notations are found requifite to exprefs Number in it's ordinal Capacity or the Numerus Numerans, as when one follows or precedes ancther, in the firf, fecond, or third Place from that upon
which it depends; as the Quantities $\dot{x}, x^{\prime \prime}, x, x^{\prime}, x^{\prime \prime}$, referring to the principal one x.

So, in many Cafes, a Notation is found neceffary to be given to a Meafure as a Meafure ; as for Inftance, Sir I. Newton's Symbol for a Fluxion \dot{x}; for this ftands for a Meafure of fome Kind, and accordingly he ufually puts an Unit for it, if it be the principal one upon which the reft depend.

So fome Notations are exprefly to Thew a Number in the form of it's Compofition, as the Index to the Geometrical Power x^{n} denoting the Number of equal Factors which go to the Compofition of it, or what is analogous to fuch.

But that there is no Symbol or Notation but what refers to difcreet Quantity, is manifeft from the Operations, which are all Arithmetical.

And hence it is, there are fo many Species of Mathematical Quantity as there are Forms of compofite Numbers, or Ways in the Compofition of them; anong which there are two more eminent for their Simplicity and Univerfality than the reft: One is the Geometrical Power formed from a conftant Root; and the other, though well known, yet wanting a Name as well as a Notation, may be called the Aritbmetical Power; or the Power of a Root uniformly increafing or diminihhing, and is that whofe Notation is defigned in Page 73: The one is only for the Form of the Quantity itfelf, the other is for the Conftitution of it from it's Elements.

Now from the Properties of either of there it would be ealy to fhew how the Quadratures of fimple Figures are deducible from the Areas of their limiting Polygons. I hall jutt point out the Method from the Arithmetical Power, as being the fhorteft and readieft at Hand.
Let $z, \dot{z}, \dot{z}, \& x$. or $z, \dot{z}, \ddot{z}, \& x c$. be Quantitics in Arithmetical Progreffion, diminifling or increafing by the common Difference
rence \dot{z}, and let, as before explained, $\tilde{z}^{(m}$ fignify the Arithmetical Power of z, denominated by the potential Index m, namely, $z \times \dot{z} \times \not z^{\prime \prime}$, $\&$ cc. whofe firt Root is z and laft $z-m-1 \times z$; which being fuppofed,
the Element of the Arithmetical Power will be $12 \dot{z} \times{ }^{\text {(mos-1}}$ that is, the Product made from the Multiplication of the two Indices, and the next inferior Power of the next Root in Order. For the firft Arithnectical

Power $\underset{\sim}{z}$ is $=z . z^{m-1}$, and the next $\underset{z}{ }$ is $=z^{m-x} \times x-n z$, wherefore the Difference will be as is explained.

And confequently, fince the Sum of thefe Elements or Differences, taken in order from the firft to the laft, do make up the Quantity according to it's termini; hence, if z be the Abfcifs of a curvilinear
Figure whofe Ordinate y is equal to $m z^{m-n}$, a Demonftration might eafily be made that [the Form of the Quantity for] the Area will be z^{m}; that is, the fame Multiple of the next fuperior Power of z divided by the Index of that Power.

For fince the Arithmetical Powers do both unite and become the fame with the Geometrical Power, when the differential Index \dot{z} is fuppofed to be nothing; the Magnitude of the Geometrical Figure will be implied from the Magnitudes of the two Polygons made up of Rectangles, one from the increafing Arithmetical Power, the other from the diminifhing, although it be true, that the Elements of the Polygons cannot be fummed up, when \dot{z}, the Meafure of the Abfcifs z, is fuppofed to be nothing.

In like manner, in any other Cafe where z and z are two Abfiffes whofe Difference as a Meafure is \dot{z}; and $y, \dot{y} \dot{y}$ the two Ordinates; the Magnitude of the Figure will be implied by the Magnitudes of the two Polygons which are made from the Sum of the infcribing and circumferib-
ing Elements $\dot{z} y$ and $\dot{z} y$, although the Figure itfelf is not to be refolved into any fuch primogenial rectangular Elements.

And thus, I think, the Symbol \dot{z}, confidered as a component Part of the Rectangle $z y$, may bear a plain Interpretation; viz. that it is the Meafure according to which the Quantity z is meafured; nor can I fee that any other Interpretation need to be put upon a Symbol, which, like a Meafure, is ufed only to make other things known, but is of itfelf for nothing but a Mark.

And what is faid of the Elements of the firft Refolution, is cafily applied to thole of a fecond or third, and fo on; the laft may always be confidered as the Meafure of the former and indivifible, although, in refpect of the following, it be taken as the Part according to which the Micalure was made, and therefore divifible.
IX. Notwitliftanding that Part of Sir I. Nereton's Malbematical Prin-

In Inquir concerning she Fijure of juct Planets as revolve ahout an Axis, fupping the Denfify :cinsinually to
verry, fromestie Centretozesards the Surface; by Mr Alexis

Clairaut,

F. R.S. and Nember of the Royal Acad of Sciences at Paris. Tranflated from the French by the Rev. John Colfon, Lutaf. Prof. Math. Cantab. and F. R S. N^{2}. 449. p. 277. Aug. ©ic. 1738. ciples of Natural Pbilofopby, where he treats of the Figure of the Earth is delivered with the ufual Skill and Accuracy of that great Author; yet I thought fomething farther might be done in this Matter, and that now Inquirics may be propofed, which are of no fmall Importance, and which puffibly he overlooked, through the Abundance of thofe fine Difcoveries he was in Purfuit of.

What at firf feemed to me worth examining, when I applyed myfelf to this Subject, was to know why Sir ljaac aftumed the Conical Ellipfis for the Figure of the Eirth, when he was to determine it's Axis? For he does not acquaint us why he did it, neither can we perceive how he had fatisfied himfelf in this Particular: And unlefs we know this, I think we cannot entirely acquiefce in his Determinations of the Axes of the Planets. It feems as if he might have taken any other oval Curve, as well as the Conical Ellipfis of Apollonius, and then he would have come to other Conclufions about thofe Axes.

I began then with convincing myfelf by Calculation, that the Meridian of the Earth, and of the other Planets, is a Curve very nearly approaching to an Ellipfis; fo that no fenfible Error could enfue by fuppofing it really fuch. I communicated my Demonftration of this to the Royal Societs, at the Beginning of the laft Year; and I have fince been informed, that Mr Stirling *, had inferted a Difcourfe in the Pbilofopbical TranfaEtions, wherein he had found the fame thing before me, but without giving his Demonftration. When I fent that Paper to Lonion, I was in Lapland, within the frigid Zone, where I could have no Recourfe to Mr Stirling's Difcourfe, fo that I could not take any Notice of it.

The Elliptical Form of the Meridian being once proved, I no longer fourd any thing in Sir I. Neroton, about the Figure of the Earth, which could create any new Difficulty; and I hould have thought this Quefrion fufficiently difcuffed, if the Obfervations made under the Aretick Circle had not prevailed on us to believe, that the Shape of the Earth was fill flatter than that of Sir Iface's Spheriod; and if he himfulf had not pointed at the Caufes, which might make Fupiter not quite fo flat, as by his Theory, and the Earth fomething more.

As to $\mathcal{l u p i l e r}$, he fays t, that it's Equator confifts of denfer Parts than the reft of it's Body, becaufe it's Moifture is more dried up by the Heat of the Sun. But as to the Earth, he fufpects it's Flatnefs to be a fmall matter greater than what arifes by his Calculation. He

[^5]
Of the Figure of fuch Planets as revolve about on Axis, \&c.

infinuates, that it may poffibly be more denfe towards the Center than at the Supserficies*. I am fomething furprized that Sire Iface foould imagine, that the Sun's. Heat can be fo great at 'fupiter's Equator, when it has no fuch Effect at that of the Earth; and that he does not afcribe each to a like Caufe, by fuppofing alfo, that Yupitcr may be of a different Denfity at the Center from that at the Superficics.

But whatever Reafon he might have for introducing two different Caufes, I give the Prefercince to the IHypothefis which fuppofes unequal Denfities at the Center and at the Circumference. I have inquired, by the Affiftance of this Theory, what would be the Figure of the Earth, and of the other Planets which revolve about an Axe, on Suppofition that they are compofed of fimilar Strata, or Layers, at the Surface; but that their variable Denfity, from the Center towards the Circumference, may be expounded by any Algebraical Equation whatfoever.

And though my Hypotiefis fhould not be conformabie to the Laws of Nature, or even rhough it Thould be of no real Ufe (which would be the Cafe, if the Obfervations made by the Mathematicians now in Pert, compared with ours in the North, fhould require that Proportion of the Axes, which is derived from Sir Ifaca's Spheroid;) I thought however that Geometricians would be plenfed with the Speculations contained in this Paper, as being, if not ufeful, yet curious Problems at leaft.

To find the Altraction which a bomogeneous Spheroid B NE be, differing but very liwle from a Spbire, exerts upon a Corpufcle placed In rwbichare at A in the Axis of Revolution.
I. We may conceive the Space B NE b DMB, included between the Spheroid and the Sphere, to be divided into an infinite Number
of Sections perpendicular to the Axe ACb. Suppofing then that every one of the Particles, which are contained in one of thefe Elements or Moments $\mathrm{N} n m \mathrm{M}$, exerts the fame Quantity of Attraction upon the Body at A, which may be fuppofed becaufe of the Smallnefs of NM; we fhall have $c \alpha \times \mathrm{PM}^{2} \times \mathrm{P} p \times \frac{\mathrm{AP}}{\mathrm{AM}^{3}}$ for the Attraction of fourd the Lawes of Attrafion,wbich are exerted upon Bodies as a Difance, by a Spberoid composed of Orbs of diffe. rent Degrees of Denfity. Prob. I. Fig. 35.
any one of thofe Elements; putting c for the Ratio of the Circumference to the Radius, and a for the given Ratio of $\mathrm{M} N$ to $\mathrm{P} M$, that is, of DE to CD.

Now if we make $\mathrm{C} A=e, \mathrm{CB}=r, \mathrm{~A} M=z$; and for PM , A $P, P P$, if we fubftitute their Values expreffed by z, and then feek the Fluent of the foregoing Quantity; we flall have $\frac{4 c \alpha r^{3}}{3 c e}$

[^6]- $\frac{4 c \alpha r^{3}}{5 e^{t}}$ for the Value of the whole Attraction of the Solid generated by the Revolution of BD b E B: To which if we add $\frac{2 r^{3} c}{3 c e}$ the Attraction of the Splicer, we mall have $\frac{2 r^{3} c}{3 e c}+\frac{4 c r^{3} \alpha}{3 e c}$ - $\frac{4 c \alpha r^{5}}{5 e^{t}}$ for the required Attration of the Spheroid upon the Corpufcle A.
Pron. II. Suppofing now the Spberoid Bebe, to be no longer of a bomogeneous Fig. 36. Matler, but to be comizofed of ais infinite Number of Elliptical Strata, all fimilar to BE. b, ibe Denfities of which are reprefented by the Ordinates K T of any Curve whatever V T, of which we bave the Equation betwecn C K and K T ; the Altrattion is required wobich this Spbercid exeris upon a Corpufcle placed at the Pole B.
II. Making $\mathrm{B} \mathrm{C}=e, \mathrm{C} \mathrm{K}=r$, by the foregoing Propofition, we Thould have $\frac{2 r^{3} c}{3 e e}+\frac{4 c r^{3} \alpha}{3 e e}-\frac{4 c \alpha r^{5}}{5 e^{4}}$ for the Attraction of the Spheroid K L K, if it confifted of homogeneous Matter; and the Fluxion of this Quantity $\frac{2 r r c \dot{r}}{e c}+\frac{4 c \alpha r^{2} \dot{r}}{e \rho}-\frac{4 c \alpha r^{+} r}{e^{4}}$ would be the Element or Moment of the Orb K L K $k l k$. But becaufe the Denfity is variable, we muft multiply this Value of the Attraction of the Orb by K T, and the Fluent of this Quantity will be the Value of the Attraction of the Spheroid K L K.

As to the Value of K T, which expreffes the Denfity of the Stratum or Bed K L K $k l k$, we fhall take only $f r p+g r^{q}$, becaufe we thall fee afterwards, that a Value more compounded, at $f r p$ $\dagger g^{r}{ }^{q}$, +brs+ire, \mathcal{E}^{2} c. which by the Property of Series may exprefs ail Curves, would not produce any Variety in the Calculation.

Therefore multiplying the foregoing Equation by frp $+g^{r^{q}}$,
We hall have $\frac{2 c f \times \overline{1+2 \alpha} \times r^{3-1} p}{e e \times \overline{3+p}}-\frac{4 c \alpha f r^{5+p}}{e^{4} \times \overline{5+p}}$
$+\frac{2 c g \times \overline{1+2 \alpha} \times r^{3}+q}{e e \times \overline{3+q}}-\frac{4 c \alpha g r^{5}+q}{e^{4} \times \overline{5+q}}$
of Attraction of the Spheroid K L K, exerted upon a Corpufcle placed at B.
III. In this Value making $r=e$, we Thall have $\frac{2 c f e^{1-f p}}{3+p}$
$+\frac{8 c f e^{1+p}}{3+p \times 5+p}+\frac{2 c g e^{1+q}}{3+q}+\frac{c g e^{1+q_{\alpha}}}{3+q \times 5+q}$ which will exprefs the Force of Attraction of the Spheroid B E b, exerted upon a Corpuicle placed at the Pole B.

A Corpufle being placed in any Point N of the Surface of the foregoing Theorem.
Spheroid B E be, I fay it will undergo the fame Altraction from this.
Spleroid, as if it ceere placed at the Pole N of a Second Spheroid revolving about the. Axe N O, the fecond Axe being the Radius of a Circle equal in Superficies to the Ellipfis F G; juppofing this Jecond Spheroid N G OF, to.be compofed of the Strata. M $m q Q$, whofe Den-Fig. 37. fities are the fame as thofe of the Strata $\mathrm{K} k \mathrm{~L} l \mathrm{~K} k$, of the firft Spheroid.
IV. In the Difcourfe which I communicated to the Royal Society *, being then at Torneo, printed in the Pbilofopbical Tranfactions, I have demonftrated this Propofition as to a homogeneous Spheroid; and the fame Reafoning will obtain in this Cafe alfo.

To find the Altraction wobich the Spheroid Be be exerts upon a Corpuscle placed at any Point N of the Superficies.
 Fig. 36.

V. We will make, as above, $\mathrm{BC}=e, \mathrm{C} \mathrm{E}=c+c \alpha$, and alfo $\mathrm{CN}=e+e \lambda$, and half the Conjugate Diameter of CN will be $\mathrm{C} \mathrm{G}=e+e \alpha-e \lambda$; whence the Radius of a Circle, equal in Superficies to the Ellipfis F G, will be a mean Proportional between CE and C G, that is to fay, $e+e \alpha-\frac{1}{2} e \lambda$. Therefore the Spheroid BE $b \theta$ exerts the fame Attraction at N , as would be exerted at the Pole of a Spheroid NGOF, (Fig. 37.) of which the principal Axis would be NO $=2 e+2 e \lambda$, and the fecond would be to the Principal as $1+\alpha-\frac{3}{2} \lambda$ to I.

Therefore in the Expreffion of the Atraction at the Pole, (Art. III.) we maft fubftitute $e+e \lambda$ infread of e, and $\alpha-\frac{3}{2} \lambda$ inftead of a.

* See Chap, vii, of this Volunse.

94 Of the Figure of fuch Plancts as rerolve about an Axis, \&c. But if f and g mult no longer be the fane; for we may eafily perceive by the foregoing Theorem, that the Denfity muft be the fame in this Speroid NGOF, at the Diftance $r+r \lambda$ from the Center, as it is in the Spheroid BE b e at the Diftance r. Therefore f $\left(\frac{c}{1+\lambda}\right)^{p}+g\left(\frac{e}{1+\lambda}\right)^{q}$ muft be put inftead of $f e p+g e q$. Thus we fhall have $\frac{2 c f e^{1+p}}{3+p}+\frac{\overline{2 p-2 c f \lambda e^{1-t} p}}{3 T p \times 5+p}+f$ $\frac{8 c f a e^{1-p}}{3+p \times 5+p}+\frac{2 c g e^{\mathrm{r}+q}}{3+q}+\frac{2 q-2 c g \lambda e^{\mathbf{1}+q}}{3+q \times 5+q}$ $+\frac{8 c g \alpha e^{1}+q}{3+q \times 5+q}$ for the Attraction of the Spheroid BE $b c$ at N .
VI. If we make $\lambda=\alpha$, the foregoing Expreffion will be reduced to this $\frac{2 c f e^{x+p}}{3+p}+\frac{2 c f e^{1+p} p_{\alpha}}{5+p}+\frac{2 c g e^{1+q}}{3+q}+$ $\underline{2 \operatorname{cg} e^{I+} q_{\alpha}}$ $5+q$
VII. If we would have the Attraction at any Point M within the Spheroid, in the Expreffion of the Attraction at N, we muft put r inftead of e. The Proof of this is plain from the fame Reafons that Sir I. Nerutor makes ufe of ${ }^{*}$, to fhew that the Attraction of an elliptic Orb, at a Point within it, is none at all.

Prob. IV. Fig. $3^{8 .}$

Let $\mathrm{R} \Pi r \pi$ be a Circle wbofe Center is Y; 'tis required to find the Attraction wobich this Circle exerts upon a Corpufcle at N, according to the DireEtion H Y; Juppofing the Point H , which anfwers perpendicularly below the Point N , to be at a very fmall Diftance from the Point Y.
VIII. Let there be drawn $\boldsymbol{\Pi} \mathrm{H} \pi$ perpendicular to the Diameter $\mathrm{R} \mathrm{Y} r$, and let the Space $\mathrm{R} \Pi \pi$ be transferred to $\pi \Pi \mathrm{Z}$. Then the Space $\pi \mathrm{Z} \Pi r$ will be the only Part of R II π, which will attract the Body N according to H Y.

To find the Attraction of this little Space, we will fuppofe it to be divided into the Elements T is S , the Attractions of which, according to HY , will bc $\frac{\mathrm{T} t s \mathrm{~S} \times \mathrm{QT}}{\mathrm{NT}}$, or $\frac{2 \mathrm{HY} \times \mathrm{Q} q \times \mathrm{QT} \text {, the Fluent of }}{\mathrm{NT}^{3}}$, which $\frac{2 \mathrm{HY} \times \mathrm{HQTZ}}{\mathrm{NT}^{3}}$ is the Attraction of TZ Z , according to HY. In which if we put $\Pi \pi$ for $\mathrm{H} Q$, we fhall have $\frac{\Pi \mathrm{H} \pi \mathrm{R} \times 2 \mathrm{HY}}{\mathrm{NT}^{3}}$ or $\frac{\stackrel{1 H Y}{ } \times \pi H^{2} \times c}{N T^{3}}$, for the Attraction required.
IX. It is eafy to perceive, that if, inftead of a Circle, the Curve $\mathrm{R} \Pi r$ were an Ellipfis, or any other Curve whofe Axes were but very little different from one another, the foregoing Solution would be ftill the fame.

To find the Attraction which an Elliptical Spberoid K L k exerts upon a Prob. V. Corpufcle placed zvilbout it's Surface at N, according to the Direition Fig. 39. C X perpendicular to C N.
X. To perform this, we will begin by drawing the Diameter $\mathrm{C}_{\mu \nu}$, which bifects the Lines $\mathrm{R} r$ perpendicular to CN ; and the Ratio of CH to HY fall be called n. Then efteeming the Ellipfis $\mathrm{R} r$ as a Circle, (fee the foregoing Article) we Shall have by the Problem aforegoing $\frac{\frac{1}{2} n c \times \mathrm{R} \mathrm{H}^{2} \times \mathrm{CH}^{3}}{\mathrm{NR} \mathrm{R}^{3}}$ for it's Attraction, according to H Y; which being multiplyed by the Fluxion of $\mathrm{MH}_{\text {, }}$, the Fluent of this will be the Attraction of the Segment of the Spheroid RMr.

This Calculation being made, and $\mathrm{N} m$ being fubftituted for NR , we fhall have $\frac{2 n c r^{5}}{5 e^{+}}$for the Attraction of the Spheroid in N, accorsing to the Direction CX.
To find the Attrastion of a Corpufcle N , according to CX , towards an Pros. VIs Ellipfoid BNEbe, compofed of Strata, the Denfities of rebich are - defined by the Equation $D=f r^{p}+g^{2}$.
XI. Take the Fluxion of the Quantity $\frac{2 c h r^{5}}{5 e^{4}}$, which expreffes the Attraction of the homogeneous Ellipfoid $\mathrm{K} L k$, and you will have $\frac{2 c n r^{4} r}{e^{+}}$for the Attraction of an infinitely little elliptic Orb; which:

Of the Figure of fuch Planets as revolve about an Axis, \&ce. being multiplied by the Denfity D, gives $\frac{2 \epsilon n f r^{4+p} \dot{r}}{c^{+}}+\frac{2 \operatorname{cgn} n r^{4+q} \dot{r}}{c^{+}}$ the Fluent of which $\frac{2 c f n r^{5+p}}{5+p \times e^{+}}+\frac{2 \operatorname{cgn} r^{5+q}}{5+q \times e^{4}}$, is the Attraction of the Spheroid K L,k, according to CX. Therefore the total Attraction of the Spheroid B N E be upon the Corpufcle N, according to the Direction C X, will be $\frac{2 c f n e^{x+p}}{5+p}+\frac{2 \operatorname{cgn} e^{I+q}}{5 T^{-q}}$.

Now if we have regard to the Smallnefs of the Line $N \%$, and obferve how little the Angle v N C will differ from a right one, we may perceive that the Diameter C N contains the fame Angle with the perpendiculat N X in N, as the Diameter C N with the perpendicular at v; that is to fay, that the Angle N Cv is the fame as the Angle C N X; fo that inftead of n we may take $\frac{C X}{C N}$. Wherefore the foregoing Expreffion of the Attraction of the Ellipfoid BE be, acting according to the Direction CX upon a Corpufcle placed in N , will be $\frac{2 c f e^{\mathrm{Y}+p}}{5+p} \times \frac{\mathrm{CX}}{\mathrm{CN}}$ $+\frac{2 \operatorname{cg} e^{\mathrm{I}}+q}{5+q} \times \frac{\mathrm{CX}}{\mathrm{CN}}$.

Prob. VII. To find the Direction of the Attraction of a Corpufle N towards the $^{\text {a }}$ Ellipfoid.
XII. by the fecond Problem we fhall find the Attraction of the Spheroid according to CN to be $\frac{2 c f e^{\mathrm{I}}+p}{3+p}+\frac{2 c g e^{1+q}}{3+q}$, by expung. ing what may be here expunged. Then by taking a fourth proportional to thefe three Quantities, the firt of which is the Attraction according to CN, the fecond is that according to C X, and the third is

$$
\frac{f e^{\mathrm{I}+p}}{\mathrm{e} \frac{5+p}{f e^{\mathrm{x}+p}} \frac{g e^{\mathrm{x}}+q}{5+q}} 3 \times \mathrm{g}+\frac{g e^{\mathrm{I}+q}}{3+q} \times \mathrm{CX}=\mathrm{CI}
$$

Of the Figures of fuch Planets as revolve about an Axis, \&ce.

Whence we Mall have N I for the Direction required, of the Actraction of the Corpuicle N .
XIII. If we fuppofe $p=q=0$, that is, if the Spheroid be homogeneous, we fhall have $\mathrm{CI}=\frac{3}{5} \mathrm{CX}$; which agrees with what Mr Stirling has found, in that curious Differtation he has publifhed in the Pbilofopbical Tranfactions, ut Jupra.
XIV. Let us now fuppofe, that the foregoing Spheroid BNEbe, Parr II. which is fill compofed of Beds or Strata of different Denfities, revolves about it's Axis B b, and that it is now arrived at it's permanent State. It is plain that the Particles of the Fluid, which are upon it's Surface, muft gravitate according to a Direction perpendicular to the Curvature B NE; for without this Condition there could be no EEquilibrium.

We fhall now inquire, whether the Elliptic Figure we have afcribed to our Spheroids can have this Property, and to produce this Effect what muft be the Relation between the Time of Revolution of the Spheriod and the Difference of it's Axes.
Let us then put Φ for the centrifugal Force at the Equator, and the centrifugal Force at N will be $\frac{\phi \times \mathrm{P} \mathrm{N}}{\mathrm{CE}}$, or $\frac{\varphi \times \mathrm{C} x}{2 \mathrm{CE} \times \alpha}$, becaufe ${ }_{2} \mathrm{P} \mathrm{N}$ $x_{\alpha}=\mathrm{C}$.

By refolving this centrifugal Force according to the Perpendicular to CN , we fhall have $\frac{\varphi \times \mathrm{CX}}{2 \alpha \times \mathrm{CE}}$; which being added to $\frac{2 c f e^{\mathrm{I}+p}}{5+p}$ $\times \frac{\mathrm{CX}}{\mathrm{CN}}+\frac{2 c g e^{\mathrm{I}}+q}{5-1+q} \times \frac{\mathrm{CX}}{\mathrm{CN}}$, found by Prob. V. will give the whole Force of the Body N, according to the Direction C X, when the Spheroid is converted about it's Axis. But becaufe this Body, by virtue of the Attraction according to C N, and the Force according to C X, ought to have a perpendicular Tendency to the Superficies; we fhall have this Analogy, $\mathrm{CN} . \mathrm{CX}:: \frac{2 c f e^{1+p}}{3+p}+\frac{2 \operatorname{cg} e^{\mathrm{I}}+q}{3-1 q} \cdot \frac{2 \alpha}{2 \alpha} \frac{\mathrm{CX}}{\mathrm{CE}}$ $+\frac{2 c f e^{1+p}}{5+p} \times \frac{\mathbf{C X}}{\mathbf{C N}}+\frac{2 c g e^{1}+q}{5+q} \times \frac{\mathbf{C X}}{\mathbf{C N}}$. And hence, becaufe CN and CE may be affumed as the fame on this Occafion, it will be $\phi=\frac{8 c f e^{1+p} \alpha}{3+p \times 5+p}+\frac{8 c g e^{1+q} \alpha}{3 T q \times \overline{5 T q}}$.

Tlos Spheroid being fuppojed elliptical,

Bodies will

 gravitate per. pendicularly so ii's Surfact.The Exprefion for lbe Gravity at any Place on the Spheroid.
Fig. 40. to NC; we fhall have $\frac{\| c f e^{I+p}}{3+p \times 5+p}+\frac{B c g e^{I+q} \lambda}{\overline{3 T q} \times 5+q}$ to be fubtracted from the Attraction at N. Hence $\frac{2 c f e^{1+p}}{3+p}+\frac{\overline{2 p-10 c f \lambda e^{1}+p}}{3+p \times 5-\frac{1}{1-p}}$ $\frac{8 c f \alpha e^{1+p}}{3+q \times \overline{5+q}}+\frac{2 c g e^{\mathrm{I}+q}}{3+p}+\frac{\overline{2 q-10} \operatorname{cg} \lambda e^{\mathrm{I}+q}}{3+q \times 5+q}+\frac{\operatorname{scg} \alpha \cdot e^{\mathrm{I}+q}}{8+q \times 5+q}$
will be the Gravity at N . will be the Gravity at N .

The Gravits at the Equatior.

And as in this Value of the centrifugal Force, no Quantity enters but what will agree to any Point N ; we may therefore conclude, that when our fuppofed elliptical Spheroid performs it's Rotation in a proper Time, fo that the centrifugal Force at the Equator may be as beforc; then the centrifugal Force in any other Place N will be fuch as it ought to be, to caufe Bodies to gravitate in a perpendicular Direction to the Surface.
XV. If we now confider, that E D being taken for the centrifugal Force in E, then will $M \mathrm{~N}$ exprefs the centrifugal Force in N , and confequently MI will be fuch a Part of this Force as acts according ?
XVI. In this value making $\lambda=\alpha$, we Shall have $\frac{2 c f e^{1+p}}{3+p}$

$$
+\frac{\overline{2 p-2} c f \alpha e^{1+p}}{3+p \times 5+p}+\frac{2 \operatorname{cg} e^{1+q}}{3+q}+\frac{\overline{2 q-2 c g a \cdot e^{1+q}}}{3+q \times \overline{5+q}} \text { for the }
$$ Gravity at the Equator.

XVII. If we fubtract the Value of the Gravity in N. from the Value of the Attraction or Gravity at the Pole, (Art. III.) we Shall have $\frac{\overline{10-2} p c f \lambda e^{1+p}}{\overline{3+p} \times \overline{5+p}}+\frac{\overline{10-2 q c g \lambda e^{1+q}}}{\overline{3+q} \times \overline{5+q}}$. But it is ealy to perceive, that λ is proportional to the Square of the Sine of the Arc PM, or of the Complement of the Latitude. Whence we may therefore conclude, that the Diminution of the Gravity from the Pole to the Equator is proportional to the Square of the Cofine of the Latitude; or, which is the fame thing, that the Augmentation of Gravity from the Equator to the Pole is as the Square of the Sine of the Latitude, as Sir I. Newlen has demonftrated in his Hypothefis of a homogenous Spheroid.
XVIII. From the following Calculation it is eafy to conclude, that Sir Ifaac's Theorem*, which is this, that the Gravity in any Place witbin

Of the Figure of fuch Planets as revoive about an Axis, \&c.

is reciprocally as the Diftance from the Centre, cannot obtain here. For we may fee by the foregoing Expreffion, that the Gravity in N carnot be to the Gravity in P as I to $1-\lambda$, except when $p=q=0$, which happens only in Sir IJanc's homogencous Spheroid.

It was for want of confidering, that this Theorem was demonitrated by Sir Iface only in the Cafe of his homogeneous Spheroid, that feveral Geometricians have too haftily concluded, this Theorem might be applied to determine the Ratio of the Earth's Axes, and the I.engths of the Pendulum obferved in two Places of different Latitudes. Dr Gregory is one of thofe who have fallen into this Miftake *, And in the Pbilof. Transact. + it is concluded, from the Proportion of Gravity at Famaica to that at London, that the Diameter of the Equator muft exceed the Earth's Axis by $\frac{1}{190}$ th Part, which Computation was founded on this 20th Prop. Lib. III. of Sir IJaac's Principia, which is true only of his Spheroid.
XIX. Let us now fuppofe, that the centrifugal Force at the Equator The Manner of is known by obfervation, as alfo within the Earth, E'c. and that it is a finding the Axes certain Part $\frac{1}{m}$ of the Gravity; by Articles XIV, and XVI, we fhall $\begin{gathered}\text { of the the sphcroid, } \\ \text { tbe Derfation of }\end{gathered}$ theSerata being have this Equation: $\frac{2 c f e^{x+p}}{3+p}+\frac{\overline{2 p-2} c f e^{x+p}}{\frac{1+p}{1+p}}+\frac{2 c g e^{x+q}}{3+q}$ faken $+\frac{\overline{2 q-2} c g e^{\mathrm{x}+q_{\alpha}}}{\overline{3+q} \times 5+q}=\frac{8 c f m e^{\mathrm{x}+q_{\alpha}}}{3+p \times 5+p}+\frac{8 c m g e^{\mathrm{x}+q_{\alpha}}}{\overline{3+q} \times \overline{5+q}}$. From hence it will be eafy to derive the Value of α, becaure f, g, p, q, will be given, from the Hypothefis that will be chofen, for the Variation of the Denfity in the internal Parts of the Spheroid.
XX. And if on the contrary a be given, that is, if we know by Obfervation the Ratio of the Axes of the Planet concerned; then by the foregoing Equation we may perceive, whether we have affumed an agrecable Hypothefis for the Variation of the Denfities: But we cannot precifely determine what this Hypothefis muft be, becaufe there is but one Equation, in which 4 indeterminate Quantities f, g, p, q, are involved. And indeed there might be many more than 4 indeterminate Quantities, if we fhould affume more than two Terms in the general Equation of the Denfities $\mathrm{D}=\int r^{p}+g r^{q}+b r^{s}, \varepsilon^{2} c$.
XXI. In order to apply the foregoing Theory to the Earth, it might feem at firft Sight, that by the Affirtance of Obfervations made for meafuring the Length of the Pendulum, we might have other Equations, which with the foregoing Equation A, would determine the Coëfficients and Exponents now mentioned; but we fhall foon fee the Impoffibility

[^7] of this upon two Accounts: Firft, There need be only two Obfervations, as to what concerns the Length of the Pendulum. For becaufe by Art. XVII. the Augmentation of the Gravity from the Equator to. the Pole is proportional to the Square of the Sine of the Latitude, two Obfervations as much determine the Problem as an infinite Number can do : So that we could have but one other Equation befides the foregoing. This Equation will be
$$
\text { (B) } \frac{p-p}{p}=\frac{\frac{\overline{5-p} f_{\alpha}}{3+p \times 5+p}+\frac{\overline{5-q} g \alpha}{3+q \times \frac{1}{5+q}}}{\frac{\overline{p-1} f_{\alpha}}{3+p \times 5+p}+\frac{f}{3+p}+\frac{g}{3+q}+\frac{\overline{q-1} g \alpha}{3+q \times 5+q}} .
$$

The firft Member of this Equation expreffes the Gravity at the Equator fubtracted from that at the Pole, and divided by that at the Equator; a Quantity which may be known in Numbers, by determining the Length of the Pendulum at two different Latitudes. The other Member of the Equation is an Expreffion of the fame Quantity, as it is deduced by the preceding Calculus.

Secondly, This new Equation B cannot be of any Survice in determining the Coïfficients and Exponents $f, g, p, q, \mathcal{E}^{\sigma}$. For we thall now fhew, that the foregoing Ratio $\frac{p-p}{p}$ has fuch an immediate Connexion with a, that one of them being determined, the other will neceflarily be fo too, independently of the Values of $f, g, p, q, \mathcal{B}_{6} c$. This may deferve our Attention, and the Proof is thus:
XXII. Becaufe the Ratio of the Gravity to the Centrifugal Force is very great, and is expreffed by m, in the Equation A we may reject the third and fourch Terms; by which means the Equation will be reduced to this, $\frac{f}{3+p}+\frac{g}{3+q}=\frac{4 m f \alpha}{3+p \times 5+p}+\frac{4 m g \alpha}{3+q \times 5+q}$ And if from this Equation we deduce the Value either of f or g, and fubftitute it in the Equation B; (having firft rejected the firft and fourth Terms of the Denominator, as in this Cafe may be done) we thall have after the Calculation is made, whatever is the Number of

Th. Figure of shs Spheroid being known, the Augmensation of Gravity from the Equator so sbe

Terms in the Equation of the Denfities, $\frac{p-p}{p}=\frac{10}{4 m}-\alpha$, or $\frac{p-p}{p}$ $=\frac{1}{115}-\alpha$, by putting 288 for m, as has been long known. It is eafily
cafily feen from this Equation, that when α is determined, $\frac{\dot{p}-p}{p}$ will be fo too, which was the thing propofed to be proved.
XXIII. But from this Equation there follows a very fingular Propofition, and which, in fome fort, is contrary to the Sentiments of Sir I. Newton*, that if by Obfervation it frall be difcovered, that the Earth is flatter than according to the Spheroid of Sir Ifaac, that is, if the Diameter of the Equalor exceeds the Axis by more than the $\frac{1}{230}$ Part, the Gravity will increafe lefs from the Equator towards the Pole, than according to the Table which be bas given for bis Spperoid ; Prop. XX. of the 3 d Book. And on the contrary, if the Spberoid is not so flat, the Gravily will increafe more from the Equator lowards the Pole.
XXIV. 'Tis thus that Sir 1 . Nerwoons expreffes himfelf about it, when he relates the Experiments made towards the South, concerning the Diminution of Gravity, which Experiments make it greater than his Theory requirest. He affirms, that the Earth is denfer towards the Centre than at the Superficies, and more depreffed than his Spheroid requires. But by the foregoing Theory we may eafily perceive, that if the Denfity of the Earth diminithes from the Centre towards the Superficies, the Dimunition of Gravity from the Pole towards the Equator will be greater than according to Sir Ifanc's Table; but at the fame time the Earth will be not fo much depreffed as his Spheroid requires, inftead of being more fo, as he affirms. Yet I would not by any means be underttood to decide againt Sir IJaac's Determination, becaufe I c:innot be affured of his Meaning, when he tells us, that the Denfity of the Earth diminifies from the Centre towards the Circumference. He does not explain this, and perhaps inftead of the Earth's being compofed of parallel Beds or Strata, it's Parts may be conceived to be otherwife arranged and difpofed, fo as that the Propofition of Sir Ifaac thall be agreable to the Truth.
XXV. As to Dr Gregory, who has attempted to comment upon this Paffage of Sir IJaac, I think I have demonftrated, that he has comnitted a Paralogifin. He fays n that if the Farth is denfer cowards the Centre, or if (for Example) it has a TVucleus of greater Weight than the other Parts, the Diminution of Gravity from the Pole towards the Equator fhall be greater than if the whole were of the fame Denfity ; and in this he is right. But he is in the wrong (I think) immediately to conclude from thence, that the Earth has a greater Flatnefs. Whence can he conclude this? It can be only from that Propofition of Sir IJrac

[^8] becaule he gave us the Propofition but the Page before, as a Method for determining the Figure of the Earth. But we are not allowed to make ufe of this Propufition in this Cafe, becaufe it has been flewn, Arr. XVIII. that it can take Place only on the Suppofition of a homogencous Spheroid. Therefore, Bc.
XXVI. It will not be very difficult, without any Regard had to the foregoing Theory, to find the Ratio of the Axes of a Spheroid, which we may fuppofe to have a Nucleus at the Centre, of greater Denfity than the reft of the Planet; and hence we thall be eafily affured of Dr Gregory's Miftake.
XXVII. Setting afide all Attraction of the Parts of Matter, if the Action of Gravity is directed towards a Centre, and is in the reciprocal Ratio of the Squares of the Diftances, the Ratio of the Axes of the Spheroid will then be that of 576 to 577 : And the Gravity at the Pole, is greater than at the Equator by $\frac{1}{1+4}$ th Part, or thereabouts. Which may be a Confirmation of what is here advanced, efpecially to fuch as will not be at the Pains of going through the foregoing Calculations. For we may confider the Spheroid now mentioned, in which Gravity acts in a reciprocal Ratio of the Squares of the Diftances, as compofed of Matter of fuch Rarity, in refpect of that at the Centre, that the Gravity is produced only by the Attraction of the Centre or Nucleus.
XXVIII. In the foregoing Calculations, in order to find the Axes of our Spheroids, and to know whether their Figure makes a fenfible Approach to that of the conical Ellipfis, we have had Recourfe to this Principle, that Gravity ought always to act in a Direction perpendicular to the Surface. Two Reafons have prevailed with us to make ufe of this Principle rather than the other, which confifts in the Equilibrium of the Columns. The firft is, becaufe the Calculations founded thereon are more fimple. The fecond is, that confidering the ftate of the actual Solidity of the Earth, it hould feem as if this Principle were the more indifpenfably neceffary. However, becaufe Sir I. Nerwton, and all the other Philofophers, who bave treated about the Figure of the Earth, have taken it, as it were, at it's firt Formation, at which Time they fuppofe it to have been fluid; we fhall here make the fame Suppofition, and we fhall affume no other Ratio for that of the two Axes, than that of the Spheroid, which refults from a Coincidence of thefe two Principles.

We fhall begin by inquiring what is the entire Weight of any Column CN. To do this we mult refume the Expreflion of the Attraction in any Point M of the Column CN ; then multiply it by $r \div \lambda r$, and by the Denfity $f r^{p}+g r^{q}$, and afterwards we muft find
$+\frac{2 c f g e^{2}+p+q}{2+p-q \times \overline{3+p}}+\frac{2 c f g e^{2}+p+q}{2+p+q \times 3+q}+\frac{+c f^{2}=\frac{\alpha e^{2}+2 p}{1+p \times 3+p \times 5+p}}{3+\frac{1}{1+p}}$
$+\frac{4 c g^{2} \alpha e^{2}+{ }^{2} q}{\overline{1+q} \times \overline{3-q} \times \overline{5+q}}+\frac{8 c f g \alpha e^{2+p+q}}{2+p+q \times \overline{3+p} \times \overline{5+q}}$
$+\frac{8 c f g c e^{2+p+q}}{\frac{1+p+q}{}+\overline{3+q} \times \overline{5+q}}+\frac{\overline{4+2 p c f^{2} \lambda e^{2}+2 p}}{1+p \times 3+p \times \overline{5+p}}$
$+\frac{\overline{4+2 q} c^{2} \lambda e^{2+q}}{3+q \times 5+q \times \overline{1+p}}+\frac{\overline{8+4 p} c g f \lambda e^{2}+p+q}{2+p+q \times \overline{3+p} \times \overline{5+p}}$
$-1 \frac{\overline{8+4 q} c f g \lambda e^{2+p+q}}{2+p+q \times \overline{3+q} \times \overline{5+q}}$ for the total Gravity of any Column C N, having Regard only to the Attraction.
XXIX. If in this Expreffion we make $\lambda=0$, we fhall have the Gravity of the Column at the Pole.
XXX. And if we make $\lambda=\alpha$, we fhall have the Aggregate of the Attractions of the Column at the Equator.
XXXI. Now becaufe the Column CN is in Aquilibrio with the Column CB; it follows from thence, that if we fubtract the Weight of the Column C B, from the Aggregate of the Attractions of the Column C N, the Refidue muft be equal to the Sum of the centrifugal Forces of the Column C N. Now to endue our Spheroids with this Property, we will refume the Expreffion of the centrifugal Force in E , which we found.
Art. XIV. which will give $\left(\frac{8 c f e^{1+p} \lambda}{3+p \times \overline{5+p}}+\frac{8 c g e^{1+p_{\lambda}}}{3+q \times \overline{5+q}}\right) \frac{r}{e}$,. for that Part of the centrifugal Force which ants according to $C M$, in any Place M , by expunging the Terms in which $\alpha \propto$ would be found. This Value being multiplyed by \dot{r}, and by the Denfity, will give (when we have taken the Eluent) $\frac{8 c f^{2} e^{2+2 p} \lambda}{2 \pm p \times \overline{3 T p} \times \overline{5 T p}}$,

104 Of tbe Figure of fuch Planets as revolve about an Axis, \&c.

$$
+\frac{8 c f g e^{2+p+q} \lambda}{2 T p \times 3+q \times \overline{5 T q}}+\frac{8 c f g e^{2+p+q} \frac{q^{2}}{2 T q \times \overline{3 T p} \times \overline{5 T p}}}{\frac{1}{3+q}}
$$

$+\frac{8 c g^{2} e^{2}+2 q \lambda}{\overline{2+q} \times \overline{3+q} \times \overline{5-1} q}$ for the Sum of the centrifugal Forces of the Column CN , ftill expunging thofe Terms in which either $\alpha \alpha$ or $\lambda \lambda$ are found.
Then making this Exprefion equal to $\frac{\overline{4+2 p} c f^{2} e^{2}+2 p_{\lambda}}{1+p \times \overline{3+p} \times \overline{5+p}}$ $+\frac{\overline{8+4 p} c f g e^{2+p+q} \lambda}{\overline{2+p+q} \times \overline{3+p} \times \overline{5+p}}+\frac{\overline{8+4 q} \subset f g e^{2}+p+q \lambda}{2+p+q \times 3+q \times \overline{5+q}}$ $+\frac{\overline{4+2 q} c^{2} e^{2}+{ }^{2} q \lambda}{\overline{1+q} \times \overline{3+q} \times \overline{5-q}}$, which is the Difference of the Weight of the Column at the Pole CB, from the Sum of the Attractions of the Column CN, we fhall have the Equation $\frac{p p f f}{1+p \times \overline{2+p} \times \overline{3+p} \times \overline{5+p}}$ $+\frac{2 p q f g}{2+p+q \times \overline{3+p} \times \overline{5+p} \times \overline{2+q}}+\frac{2 p q f g}{2+p+q \times 3+q \times 5+q \times \overline{2+p}}$ $+\frac{q q g g}{1+q \times 2+q \times \overline{3+q} \times \overline{5+q}}=0$, where we have put $e=1$, for the greater Simplicity of Calculation.

Determination of fuch Spbe. roids, as make the Principle of the Equi librium of the Columns, and that of Gra. vity perpendi. cular to sbe Surface, so coincide with easb otber.
XXXII. This Equation informs us, that when out of all the infinite Varieties, which will be fupplyed by the Equation of the Denfties $\mathrm{D}=f r^{p}+g r^{q}+b r^{s}, \mathcal{E}^{c} c$. we Chall have taken at Pleafure all the Coëfficients, and all the Exponents, one only excepted; if this laft is fuch in refpect of the others, that it may fulfil the Conditions of the foregoing Equation, the Spheroid, being fuppofed in a State of Fluidity, will be in Equilibrio, becaufe it will unite as well the Principle of a perpendicular Tendency to the Surface, as that of an Equipoife of the feveral Columns.
XXXIII. Before I conclude this Paper, I flall make a few Reflections on the Principles we have now made ufe of, for determining the Figure of a Spheroid revolving about it's Axe.

The firt Principle which, after Mr Huygens, we have had Recourfe to, and which confifts in making Bodies gravitate perpendicularly

Of the Figure of fuch Planets as revolve about an Axis, sxc.

to the Surface, feems to me of abfolute Neceffity. For if there were never fo little Water upon the Surface of the Earth, it could not be at Reft, if it had a Tendericy any how inclined to the Surface.

The fecond Principle made ufe of by Sir I. Newton, and which confitts in an Equilibrium of the Columns C E, C N, C P , could be thought neceffary (I think) on!y for thefe two Reafons: The firft is that which is ufually affigned, that at the firft Formation of the Earth, it was probably in a State of perfect Fluidity ; in which cafe it muft acquire fuch a Figure, as will refult from the Equilibrium of the Columns, and from the Gravitation acting perpendicularly to the Surface. Indeed though this Reafon has a Degree of Plaufibility, yet there are many who think it to be of fmall Force. Pcrhaps, fay they, the Earth has never been in this fluid Condition.

The fecond Reafon, which I bclieve will have a greater Weight with every Body is this. Confidering the Farth as it is at prefent, and without carrying our Thoughts to far back as to it's Formation, if the Ocean, which is now upon il's Surface, has any confiderable Depth, and if it's Parts preferve a Communication with each other, from Region to Region, by fubterrancous Canals; it can only keep an Equilibrium by this Means, becaufe it's Superficies is the fame as it would have, were the whole a Fluid.
XXXIV. This fecond Reafon has fuggefted a Reflexion to my Mind, concerning the Equipoife of the Columns now calculated, Art. XXXI. and XXXII. Let us firft fuppofe, that the Earth is our fluid Spheroid, compofed of Beds of different Denfities; and that afterwards this Fluid hardens into a Solid, fo that the different Beds or Strata, of which it is made up, are of no other Ufe but to caufe a Gravity by their Actractions. Then let us fuppofe, that the Seas and great Waters about the Earth have a Communication with each other, by means of fome fubterraneous Canals. As the Waters of the Sea, which unite with one another, are probably homogeneous, the foregoing Calculation, wherein we have confidered the Spheroid as a Fluid, can no longer take Place, becaufe we have there fuppofed, that the Fluid contained in the Canal BCN is of a Denfity, that varies from the Center to the Circumference. From hence it feems to me, we muft undertake the Computation of the Equilibrium of the Columns after another Manner, thus :

We muft examine whether two Canals, as CN and BC , which are filled with a homogeneous Fluid, will be in Aquilibrio, all the other Parts of the Spheroid continuing as above.
XXXV. To do this, we will begin with finding the Gravity of any Column C N, arifing from Attraction alone. Firft, then, we muft re- Fig. 41. fume the Expreffion of the Attraction in any Point M, Art. VII. Then we muft multiply it by $\dot{r}+\lambda \dot{r}$, which will give

$$
\frac{2 c f r^{1+p}}{3+p}+\frac{\overline{8+4 p c f \lambda r^{1}+p}}{\frac{p_{r}}{3+p} \times \overline{5+p}}+\frac{8 c f_{\alpha} r^{1+p} \dot{r}^{1+p}}{3+p \times 5+p}
$$

$+\frac{2 \operatorname{cgr}{ }^{1} T q \dot{r}}{3 T q} \xi^{c} c$. And taking the Fluent of this Quantity, we Shall have $\frac{2 c f e^{2+p}}{3+p \times 2+p}+\frac{4 c f \lambda e^{2+p}}{3+p \times 5+p}$ $+\frac{\| c f a e^{2+p}}{2+p \times 3+p \times 5+p}+\frac{2 c q e^{2+q}}{3+q \times 2+q}$, Sc . for the Gravity of the whole Column $C \mathrm{~N}$.
XXXVI. If in this Value we make $\lambda=0$, we Mall have the Grabvity of the Column at the Pole.
XXXVII. And if we fubtract the Gravity of the Column at the Pole from the whole Sum of the Attractions of the Column C N, we Shall have $\frac{4 c f \cdot e^{2+p}}{3+p \times 5+p}+\frac{4 \operatorname{cg} e^{2-1} q_{\lambda}}{3+q \times 5+q}$, which mut be equal to the Sum of the centrifugal Forces of the Column C N , in order that the Columns CB and C N may be in Equilibrio.

But we foal find this really to obtain, if we refume the Quantity $\left(\frac{8 c f e^{1+p}}{3 T p \times 5+p}+\frac{8 c g e^{1+q}}{3+q \times \overline{5 T q}}\right) \frac{r}{e}$, which exprefles (Art. XXXI.) that Part of the centrifugal Force in M , which acts according to $\mathbf{C M}$. Then multiplying this Expreffion by \dot{r}, and reeking the Fluent, we fall have $\frac{4 c f e^{2}+p_{\lambda}}{3+p \times 5+p}+\frac{4 c g e^{2+}+q_{\lambda}}{3+q \times 5+q}$ for the Aggregate of the centrifugal Forces of the Column C N. And this being the fame as the foregoing, shews, that the Columns C B and C N are in Equilibrio, fuppofing them to be homogeneous; nor are we here obliged, as in Arr. XXXII. where we confider them as heterogeneous, to fuppofe the Coëfficients $f p, \& x$, to have any certain Relation among one another.
XXXVIII. Perhaps it may be urged, that the foregoing Calculus agrees only to a Canal, as B C N, which paffes through the Center; and that we ought to prove, in the fame Manner, that the Water in-

Of the Figure of fuch Planets as revelve about an Axis, Sic.

 clucted in any other Canal $p q r$ would obferve an Equilibrium. But it appears to me, that this Property may be derived from the former: For it follows from the foregoing Calculation, that if we might be allowed to make this Hypothefis, ziz. That independently of the Attradion of any Matter, the Gravity at any Diftance C N from theCenter (Sce Frig. +1.) would be proportional to $\frac{2 c f e^{1+p}}{3+p}$

$$
3 \div p
$$

from thence, that a Mafs of the homogencous Fluid, which fhould turn about the Axis C B, would affume the fame Form as that of our heterogeneous Fluids. But if this Spheroid fhould then put on a fixed State, except only fome Canal $p q r$, the Water in this Canal would be in Fiquilibrio; for without this, the Spheroid could not be eftemed as having arrived to it's fixed State. But this Suppofiton comes to the fame as that of our heterogencous Spheroid, compoled of elliptical Beds, in which flould be found a Canal pqrof a homogeneous Fluid; provided that the Space, which this Canal poffeffes in the Globe, be not of folarge an Extent, as to change the Law of Attraction.

The only three Planets, in which we can be alfured of Gravitation, and the centrifugal Force, are the Sun, Jupiter and the Earth. As to the Sun, the centrifugal Force is there fo fmall, in refpect of it's Gravity, that his Poles muft be very little depreffed, fo that we cannot be fenfible of it by Obfervation. Then as to Jupiter, Obfervations make him fomething lefs flat than according to Sir I. Newlon; that is to fay, than if he were compofed of Matter of an uniform Denfity. Therefore by the foregoing Theory, he muat be a little more denfe towards the Center, than at the Parts near the: Superficies. We might make a thoufand Hyporhefes about the Manner of dittributing the Incquality of Denfity, proceeding from the Center towards the Circumference, which would all agree with the Figure obferved, and which are very eafy to calculate by the Principles here daid down.

As to what concerns the Earth, I fhall wait till we receive the Ob fervations which muft have been lately made in Peru; that by comparing thole with what Obfervations we have made under the arctick Cirele, and with thofe of Mr Picart in France, we may have the true Difference of the Earth's Diameters at the Equator and at the Poles. Then our Theory may be applied, to determine whether the Earch is more or Iefs denfe at the central Parts than at the Surface, or whether it be every-where of an uniform Denfity, as it ought to be, if (without admitting very grofs Errors in the Obfervations) it may be concluded, that the Earth is really the Spheroid of Sir I. Nerotost; and this Cafe would be the fimpleft and the moft natural of all.

I am here obliged to acknowledge, that if the Obfervations we have made in the North may be relied upon, and if we muft admit as inconteftible as well the Meafure of a Degree as the Length of the Pendulum, the foregoing Theory could not be reconciled to the Pbrenonomena. For it follows from our Obfervations, that the Diameter of the Equator mult exceed the Earth's Axis by more than $\frac{1}{220}$ Part : And that the Gravity at the Pole muft be greater than that at the Equator by more than $\frac{1}{230}$ Part likewife; which will by no means agree with what we have deduced in Ait, XXIII.

As to what concerns the Meafure of Gravity in Lapland, as being not fo liable to Error as the meafuring a Degree ; the Earth may be not quite fo flat as Sir Ifaac's Spheroid requires. By the Table of the Length of the Pendulum, exhibited in the Treatife concerning the Figure of the Earth, publifhed this Year by M. de Maupertuis, and by Art. XXII. of the prefent Difcourfe, the Earth may be more elevated at the Equator than at the Pole by the $\frac{1}{265}$ Part, or thereabouts. After the true Quantity of the Earth's Flatnefs thall be fully fettled, if it fhould be found to have this Figure, I fhould be apt to think it is a little more denfe at the Center than towards the Superficies. But if, on the contrary, we fhould be well afcertained, that the Earth is raifed higher at the Equator than at the Pole, by above the $\frac{1}{230}$ Part; and if, for any fufficient Reafon, we may fomething fhorten the Length of the PenduJum that beats Seconds in the North; there would be fome Grounds to allow, that the Earth is rot fo denfe at the central Regions as at thofe near the Surface. But if it thall happen, that we can neither diminifh the Length of the Pendulum, nor the Excefs of the Equatorial Diameter above the Axe, I mult then give up my Hypothefis.

Of a Curve called from it's Figure, a Car dioide, by Joannes Caitillioneus. No. 46 r. p. 778. Aug. \&c. 1741.

Fig. 42, 43, 14.
X. The Diameter B A of the Semicircle B M A, touching the Circumference in the Point B, fo as always to pafs over the Point A, will generate the Curve in queftion. From the Genefis it appears,

1. That $\mathrm{D} A$ e perpendicular to $\mathrm{A} B$ is equal to double the Diameter.
2. That the Periphery of this Curve $\mathrm{ADN} a \% N \mathrm{~A}$ will terminate in A .

We may call this Curve, from it's Figure, a Cardioïde.
Now through a and A draw a $\mathrm{E}, \mathrm{A} \mathrm{Q}$, perpendicular to a A ; and E N perpendicular to a E.. It follows from the Genefis, that $\mathrm{A} \mathrm{N}=$ $B A \pm A$, and (by the Similitude of the Triangles Q AN, MBA) $A Q \equiv B M \pm M P$, and $N Q=M A \pm A P$.

This is the chief Property of our Curve, and there is another, which is no unpleafant one, that the right Line $\mathrm{N} N$ is always equal to double the Diameter, and is always bifected by the Circle in M .

Now let $\mathrm{B} \mathrm{A}=a \quad a \mathrm{E}=x, \mathrm{EN}=y$, then $\mathrm{QN}=\mp y \pm 20$, $\mathrm{A} N=x^{2}+y^{2}-4 a y+4 a^{2}$, and $\mathrm{M} A=\mp a \pm$

Ma.V.Iol. viIr.partsi.page 108.

e

$\sqrt{x^{2}+y^{2}-4 a y+4 a^{2}}$, which 4 Lines being compared by Analogy, give the Equation to the Curve,

$$
\left.\begin{array}{r}
y^{4}-6 a y^{3}+2 x^{2} y^{2}-6 a x^{2} y+x^{4} \\
+12 a^{2} y^{2}-8 a^{3} y+3 a^{2} x^{2}
\end{array}\right\}=0
$$

The Subtangent of the Curve, according to the common Mcthods, is, $\frac{2 y^{4}-9 a y^{3}+2 x^{2} y^{2}+12 a^{2} y^{2}-3 a x^{2} y-4 a y^{3}}{6 a x y-2 x y^{2}-3 a^{2} x-2 x^{3}}=\frac{x}{y}$.

But a more eafy Method of drawing the Tangent may be deduced from the Generation of the Curve. Let M A N come into the neareft Place to the firft m A n, take $\mathrm{AR}=\mathrm{AM}$, and $\mathrm{A} r=\mathrm{A} \mathrm{N}$, and having joined $\mathrm{M} R, \mathrm{~N} r$, draw through A the Right Line A T parallel to them, and through $\mathrm{M} m, \mathrm{~N} n$, the Right Lines M T, in . Nown $n: \mathrm{A} t:: n r(\mathrm{or} m \mathrm{R}): r \mathrm{~N}:: m \mathrm{R} \times \mathrm{M} \mathbf{A}: r \mathrm{~N} \times \mathrm{A} \mathbf{M}$ $:: m \mathrm{R} \times \mathrm{MA}: \mathrm{MR} \times \mathrm{A} \mathrm{N}:: \mathrm{MA} \times \mathrm{A} m: \mathrm{A} \mathbf{N} \times \mathrm{A} \mathrm{T}$, but in the laft Ralio $m \mathrm{~A}=\mathrm{M} \mathrm{A}$, and T A perpendicular to MN , wherefore $n \mathrm{~A}: \mathrm{A} t:: \overline{\mathrm{M} \mathrm{A}^{2}}: \mathrm{A} \mathrm{N} \times \mathrm{AT}$; now if from M bedrawn through the Center of the Circle F, the Right Line M F , to be produced till it meets the Right Line produced alfo in G; that is, to the Periphery of the Circle, then $M A^{2}=T A \times A G$; wherefore $\% A$: A T : : A G : A N ; therefore let a Semicircle be defcribed through G and N , which will cut the Right Line A T in t, from which the Right Line N being drawn, will be a Tangent to the Curve, to which alio the Right Line N G is perpendicular ; from hence let MO be joined, to which draw a parallel from N touching the Curve.

Here let us obferve by the way, that this Method of drawing Tangents agrecs with mon Curves.

Let $\AA B$ be a Conchoide of Nicomides : then, fuppofing the former Fig. 43. Preparation, BP: P': : BR (or $c r$): R $b:: c r \times C \mathrm{P}: \mathrm{R} b$ $\times \mathrm{CP}($ or $r \mathrm{C} \times \mathrm{PR}):: \overline{\mathrm{CP}^{2}}: \mathrm{TP} \times \mathrm{PR}$, whence the former Conftruction is deduced.

Let a Right Line of a given Length C P B, touching the Right Fig. 44Line C D T perpendicular to D A, at the Point C, always pafs over a given Point P in D A, and fo generate the Curve A B.

If you apply the former Preparation and Reafoning to this, you will have $\mathrm{BP}: \mathrm{P} t:: b \mathrm{R}(r c): \mathrm{RB}:: c r \times \mathrm{CP}: \mathrm{RB} \times \mathrm{C} P(\mathrm{BP}$ $\times r():=\mathrm{Cl}^{\mathrm{P}^{2}}: \mathrm{B} \times \mathrm{P}$, as before.

But the Method de maximis ${ }^{\circ}$ minimis gives the greateft Ordinate $=\frac{c a}{4}$, and it's Λ bicifs $=\frac{a}{4} \sqrt{3}$. In the fame Manner the greateft Abfcifs might be inveftigated; but this would be tedious; therefore feek it thus.

Becaufe $\mathrm{E} \mathbf{N}$ is a Tangent to the Curve, the Right Line M G Fig. 42: drawn from the Point M thro' the Center F determines the Point G, from
from which $G N$ being drawn is perpendicular to $E N$, therefore alfo to A a, by the Hypotheris, but $N Q=A V=M A+A P$; therefore $V P=M A$; but $B A: A M:: M A: A P$; therefore $B A$: $\mathrm{PV}:: \mathrm{VP}: \mathrm{P} \Lambda$; but $\mathrm{P} F=\mathrm{FV}=a-2 \approx$; and thereforc $6: a$ $-2 z:: a-2 z: z$. Hence is eafily deduced $z=\frac{a}{4}, \mathrm{EN}=$ $\frac{7 a}{4}, \mathrm{AQ}=\frac{3 a}{4}, 3$. Here we muft obferve, that the fame Point M , which affords in the Right Line N A M N the Point of the greater Ordimate, affords allo the Point of the greater Abfcifs.
XI. It was demonftrated long ago, that in a Sphere the Nautical

A Rule for freding the meTidional Parts so ant Spheroia, with the / t me Exact. ners as in a Sphere. by Colin Mac 1.surin, F. R. S. Communicased bo Andrew Mitchel, E/g; FR.S. No. 461 . p. 808. Aug.

Sc. 174. Meridian Line is a Scale of logarithmic Tangents of the half Complements of the Latitudes. The fame may be computed with no lefs Exactnefs to any Spheroid by the following Rule.

Let the Semidiameter of the Equator be to the Diffance of the Focus of the generating Ellipfe from the Center as m to 1 . Let A reprefent the Latitude for which the meridional parts are required, s the Sine of this Latitude, the Radius being Unit ; find the Ark P, whofe Sine is $\frac{s}{m}$; take the logarithmic Iargent of half the Complement of B from the common Tables; fubtract this logarithmic Tangent from 10.000000 , or the logarithmic Tangent of 45°; mulciply the Remainder by $\frac{7915 \cdot 70446,897^{8}}{m}$, Ec. and the Product fubtracted from the meridional Parts in the Sphere, computed in the ufual manner for the Latitude A, will give the meridional Parts expreffed in Minutes for the fame Latitude in the Spheroid, provided it is oblate. When the Spheroid is oblong, the Difference of the meridional Parts in the Sphere and Spheroid for the fame Latitude, is then determined by a circular Ark; but it is not neceffary to defcribe this Cafe at prefent.

Example: If $m m: 1:: 1000: 22$. then the greateft Difference of the meridional Parts in the Sphere and Spheroid is 76.0929 Minutes: In other Cafes it is found by multiplying the Remainder abovementioned by 1174.078 .

Pla.VI.Vd.VIIr.parti.pageno.

C H A P. II.

OPTICKS.
I. YF two I.ens's of equal focal Length be put together in the Form of a Telefcope, and a Plane Speculum be placed before one of them, fo that the Axis of the Telefcope make any Angle with it's Surface, and a Ray of Light (the Line of whofe Direction lies in a Plane perpendicular to that Surface, and paffing through the Axis of the Telefcope) fall on it, and be reflected from it, fo as to pafs thro' the Telefcope; then the Line of it's laft Direction, after paffing the Telefcope, will make an Angle with that of it's firft Direction, before it's Incidence on the Speculum, very nearly equal to double the Angle made between the Axis of the Telefcope, and the Surface of the Speculum.

Let the Line, F G be the common Axis of the two Lens's I D and K E , of equal focal Lengths; to which let the Lines A D, D B and $B \mathrm{E}$, be each equal; and let a Ray of Light, iffuing from a Point in the Axis F, fall on the Lens I D at I, and be there refracted into the Line IG, cutting the Axis in G, and meeting the Lens $K E$ in K, where let the Ray be again refracted into the Line K H, cutting the aforefaid Axis in H: The Angles IF D and K HE are very nearly equal.

It is known from Dioptricks, that the alines F I, IG, K H, and Demonfta. F G, are all in the fame Plane; and by the Conftruction the Lines tion. A D, D B, and BE are equal; and by Prop. 20 of Huygens's Dioptricks, the Lines FA, FD, and F G are continually proportional; and confequently $\mathrm{F} . \mathrm{A}: \mathrm{A} \mathrm{D}:: \mathrm{FD}: \mathrm{D}$ G, and dividing, $\overline{\mathrm{F}} \mathrm{A}: \mathrm{AD}$ $\therefore: F D-F A(=A D): D G-A D(=B G$.$) Therefore$ A D: B G : : FD: D G. By the fame Propoficion, the Lines B G, $\mathrm{E} G$, and HG are alio continuatly proportional, and $\mathrm{BE}(=\mathrm{AD})$ $: B G:: E H: E G$. Hence it follows, that the Lines F D, D G, $\mathrm{EH}, \mathrm{E} G$, are Proportionals. But as $F \mathrm{D}$ is to $\mathrm{D} G$, fo is the Tangent of the Angle IGD or K G E to the Tangent of the Angle $I F D$; and as EH is to E G, fo is the Tangent of the Angle K GE to the Tangent of the Angle K H E. The Tangent of the Angle K G E therefure has the fame Proportion to the Tangents of each of the Angles I F D and K HE, and confequently thofe Angles are equal. Q E. D.
N. B. In the Demonftration of the above-cited Prop. of Huygens, the Thicknefs of the Leens's are neglected, and the Diftance of the Yoints I and K, from the Line F G, fuppofed very fmall ; fo that if cither of thofe are too great, there may arife a fenfible Difference between the Angles I F D and KHE..

Let DF and CG reprefent the two Lens's put together as before, having their common Axis in the Line EL., and B N a plane Speculum to which that Line is inclined in the Angle $G \mathrm{H} \mathrm{N}$, and let $A \mathrm{~B}$ be a Ray of Light falling on the Speculum at B, as is before expreffed, and let it be there refleted towards the Point C of the Lens C G, where it is refracted towards the Point D of the Lens DF, and there again refracted into the Line D E, cutting the Axis in E. The Angle AOP contained between this laft line DE, continued backwards, and the firft Line of Incidence of the Ray A B, will be very nearly equal to double the Angle of Inclination of the Axis of the Lens's EL to the Plane of the Speculum B N ; i.e. double the Angle GHN.

Jemonfra-

 tion.Produce the Lincs of Incidence and Reflection of the Ray A B and $B C$, till they meet the Axis of the two lens's in I and L ; and thro the Point B draw B K perpendicular to the Plane of the Speculum, and cutting the fame Axis in K, the Angles KBL and K BI are equal, The Angle K LB is the Difference of the Angles IKB and KBL; and the Angle H I B is the Sum of the Angles IKB and KB I (= KBL) : Therefore the Angle I K B is equal to half the Sum of the Angles H I B and K L B. But by the foregoing Lerima, the Angles K L B and FED are very nearly equal. Therefore the Angle I K B is nearly equal to half the Sum of the Angles H I B, and F E D; that is to half the Angle POB, and it's Complement BHI or GHN is nearly equal to half the Angle A OP the Complement of POB to a Semicircle. Q. E. D.

If the firt Incidence of the Ray be fuppofed to be in the Line ED, it will proceed in the fame Track as before, but with the contrary D:rections; fo that the Angle E O B made between the firft incident Ray and the laft reflected, will ftill be equal to the Double of G H N, as before.

It is evident that on this Principle an Inftrument might be conftructed, the Effects of which would in a great Meafure refemble thofe of that before mentioned *: But it would be liable to the Errors arifing both from the fpherical Figure of the Lens's, and alfo the different Refrangibility of the Rays of Light, when the Object is feen at a Diftance from the Axis of the Telefcope; altho' thofe Errors, by a proper Difpofition of the Parts of the Inftrument, may be reduced to a very fmall Quantity. However, for this Reafon, and alfo becaufe the Inftrument feemed to me to be attended with greater Inconveniencies, both in it's Conftruction and Ufe, than the other, I have not thought it neceffary to give any more particular Deffription of it.

Of improving and perfecting Catadioptrical Telefcopes.

II. The Imperfections of Telefcopes are atcributed to two Caufes; The Unfitnels of the Spherical Figure to which the Glaffes are ufually ground, and the different Refrangibility of the Rays of Light.

The firft of thefe Defects only, was known to the Writers of Dioptrics, before Sir I. Newton; for which Reafon (as he informs us himfelf*, they "imagined, that Oprical Inftruments might be brought - to any Degree of Pertection, provided they were able to communicate - to the Glaftes, in grinding, what Geometrical Figure they pleafed; - to which Purpofe various Mechanical Conerivances were thought of, - whereby Glaffes might be ground into Hyperbulical, or even Para-- bolical, Figures; yet nobody fucceeded in the exact Defcription of - fuch Figures; and had their Succefs been anfwerable to their - Wifhes, yet their Labour would have been loft, for the Perfection ' of Telefcopes is limited, not fo much for want of Glafes truly figured, - according to the Prefcriptions of Optic Authors, (which all Men - have hitherto imaginedj) as becaule that Light itfelf is an heterogencous - Mixture of differently refrangible Rays; fo that were a Glafs fo - exactly figured as to collect any one fort of Rays into one Point, - it could not collect thofe alfo into the fame Point, which having - the fame Incidence upon the fame Medium, are apt to fuffer a - different Refraction t?' And again,--' The different Refrangibility - of different Rays, is an obftruction to the perfecting of Optical Inftru-- ments, cither by Spherical or other Figures; and unlefs the Errors ' thence ariling, can be corrected, all the Labour fpent in correcting the - reft will be to no purpole il.

Now, for this principal and lift-mentioned Defeet, no one, that we know of, has propofed any Remedy; apprehending, perhaps, the Difficulty of attaining fuch to be infuperable; inafmuch as the great Author of this Difoovery, himfelf, had not mewed us any Method wherety to correct thofe Errors which arife from this Inequality of Refraction; but rather difcouraged any fuch Attempts, by declaring, - that on this Account he laid afide his Glafs-works**, and looked upon - the Improvement of Telefoopes, of given Lengths, by Refraction, ' as delperate †t.'

However, as it has been proved by inconteftable Experiments, that this Difipation of the Rays of Light, from whatever Caufe it proceeds, in pafing out of one Medium into another, is not accidental and irregular; but that every fort of homogeneal Rays whether more or lefs refrangible, confidered apart, are refracted according to fome conftant uniform and certain Law; and as the removal of fo great an Impediment as this of unequal Refraction in the Rays of Light, is of great Importance to the Science of Dioptrics, and abfolutely neceffary to it's further Advancement; we have thought it worthy

[^9] of a careful Examination, whether, in fome Cafes at leaft, it might not be poffible for contrary Refractions fo to correct each other's Inequalities, as to make their Difference regular; and if this could be conveniently effected, Sir I. Newton has acknowledged, 'there would - be no farther Difficulty *.'

Now, upon a due Confideration of this fubject, we have found it poffible, by proper Methods and Expedients, to rectify thofe Errors which proceed from the different Degrees of Refrangibility in different Rays, paffing from one Medium into another; admitting only this well-known and eftablifhed Principle, upon which we ground our Reafoning, viz. 'That the Sines of Refraction of Rays differently - refrangible, are one to another in a given Proportion, when their - Sines of Incidence are equal + .' And our prefent Defign is, to fhew what Advantage this will yield towards improving and perfecting Catadioptrical Telefcopes, by making the Speculums of Glafs, inftead of Metal, in the following Manner:

Pig. 47.

Let A B C D E F reprefent the Section of a concavo-convex Speculum, whofe two Surfaces are Segments of unequal Spheres; call the Radius of the Sphere, to which the concave Side is ground, a; and the Radius of the convex Surface, which muft be quickfilvered over, e; let BR be the Axis of the Speculum, or a Line perpendicular to both the Surfaces; and therein let P be the principal Focus, or Point where parallel Rays of the moft refrangible Kind are collected, by this Speculum; and Q the Focus, or point of Concourfe, of fuch Rays as are leaft refrangible; to wit, after they have fuffered two Refractions, at entering into, and pafing out of, the concave Surface DE F, and alfo one Reflection from the convex Surface ABC: If the Radius of Concavity be greater than the Radius of Convexity, as we will in the firt Place fuppofe, then P will fall nearer the Vertex of the Speculum than the Point Q; and the Interval QP will be the greaten Aberration, or Error, occafioned by the Separation, or unequal Refraction, of the greateft and leaft refrangible Rays, after their Emergence from theconcave Surface FED. Call the common Sine of Incidence, n; the Sine of Refraction of the leaft refrangible Rays out of a denfe Medium into a rarer, m; and, of the moft refrangible, μ; then, according to the known and received Laws of Refraction and Reflection, the Focal Diftance of the moft refrangible Rays, from the Vertex of the Speculum, (neglecting it's Thicknefs, as of little or no Moment in the prefent Cafe) will be found $=\frac{n a e}{(a-e) 2 \mu+2 n e}=\mathrm{PB}$. And the Quantity of the greateft Aberration, occafioned by the different Refrangibility of the moft and leaft refrangible Rays, PQ , will be to the focal Diftance juft mentioned, PB , as $(a-e(x(\mu-m)$ to $(a-e) m+e n$; which call ε; and now let it be required to form a Lens, if poffible, which placed at fome given Point in the Axis between the Focus of the moft refrangible Rays P, and the Vertex of the Speculum (as H), fhall refract not only the Rays of the moft refrangible Kind tending to the Point P, but alfo the Rays of the leaft refrangible Kind tending to Q, in fuch a Manner, that both Sorts fhall concur, after fuch Refraction, in fome other Point of the Axis R; let H P the given Diftance of the Point in the Axis H, from the Focal Point P, be called d; and then if the Point H has been affumed, fo that the faid given Quantity, or Diftance, d, is greater than $\frac{(\mu-n) \varepsilon}{\mu-m}$, but lefs than $\frac{m \varepsilon}{\mu-m}$, I fay the refracting Superficies G H I, that fhall perform what was required, will be part of a concave Sphere, whofe Radius is $=\frac{\left(d d+d_{\epsilon}\right) \times(\mu-m)}{m_{\varepsilon}-(\mu-m) d^{3}}$ and HR, the Diftance of the given Point H , from R , the Point to which all the Rays will tend, after Refraction at the faid concave Surface, (whofe Radius being found, as above, we call v) will $\mathrm{bc}=\frac{\mu d v}{(d+v) n-\mu d}$. Laftly, upon the Point \mathbf{R} thus obtained, as a Centre, with an Interval a little lefs than HR, defcribe the circumference KLM, and the Figure GHIMLK will denote the Section of a double concave Lens, which, placed at the given Point in the Axis H , (taken neverthelefs within the Limits above-mentioned) will collect all Sorts of Rays proceeding from the Speculum, into one and the fame Focus, or Point of the Axis, R , as was required; for the Surface GHI, which firf receives thofe Rays, will refract the moft refrangible Sort converging to the Point P, and alfo the leaft refrangible converging towards Q , fo that both Sorts, after fuch Refraction, will concur in the Point R; but the Rays tending to R, 'tis manifeft, will fuffer no Refraction at their Emergence from the Superficies K L M, becaufe R is the Centre thereof, by Conftruction; which Point, R, where a perfect Inage of an Object infinitely diftant will be formed, we call the Focus of the Telefcope, to diftinguifh it from the Point, P, which we have before called the Focus of the Speculum.

In this manner a Lens, (or inftead thereof a triangular Prifm with two of it's Sides ground concave, and the third plain, if that be found as practicable) may be formed and fituated, fo as to correct the Errors of the Speculum arifing from the different Refrangibility of the Rays of Light. But, in order to render this kind of Telefcopes abfolutely perfect in their Conftruction, the Errors alfo that refult from the fpherical Figure muft be rectified; and with regard to this, we affert, that it is poffible to affume a Point in the Axis, between the in the following Example*) at which, if a refracting Superficies, or Lens, be conftituted, according to the Method already deliveted, it will not only correct the Errors occafioned by the unequal Refraction of the Rays of Light, but alfo reEtify fuch as proceed from the fpherical Figure of this Speculum, to a much greater Degree of Exactnel's than is requifite for any Phyfical Purpofe (meaning always the Errors of thofe Rays which refpect the Axis). Now to find or determine this Point, affords a Problem not eafy to be fo'ved; and we recemmend it, as worthy of the Confideration of Geometricians.

Seeing therefore it is poffible, and we believe alfo practicable, to remedy the Imperfections of this kind of Speculums, (from whatfoever Caufe they arife) by the Method we have here propofed; it feems to follow, that Catadioptrical Telefcopes may be carried, by this means, to as great a Degree of Perfection, as they are capable of receiving; provided fpherical Figures can be truly communicated, with an exquifite Polifh, to Glaffes of a large Aperture, and a Foil of Quick filver made alfo to retain that Figure accurately, and without any Inequality; for the Object-Glafs or Speculum being rendered perfect, fo as that all forts of Rays, proceeding from one lucid Point in it's Axis, fhall be collected by means of the Lens exactly in another Point, it's Aperture may then be extended to it's furthen Limits; and that is, till the whole Pupil of the Eye (or the whole Portion of the Eye-Glafs to be ufed, when that becomes neceffarity lefs than the Pupil), be filled with Rays procteding from the Speculum, and fowing from one Point of the Object, but no farther; becaufe this is a Limitation made by Nature in the Structure of the Eye itf:If: And in Telefcopes whote.Conftruction is fuch as we have now defcribed, the largef A perture of the Speculum that can ever"be of Ufe, will be to the Diameter of the Pupil of the Eye, very nearly, in a Ratio compounded of the Ratio's of the Focal Length of the Speculum to the Diftance of that Focus from the Lens, and of the Diftance of the Lens from the Focus of the Telefcope, to Unity: That is, of BF to PH, and of RH to 1 ; which Proportion holds, whatever be the Charge or the Power of Magnifying.

But if Inquiry be made as to the Charge moft proper and convenient that will be determined beft by Experience, in thefe, as well as in all other forts of Telefcopes: However, on Suppofition that one of a given Length has it's Aperture and Charge rightly ordered and proportioned, the Rule for preferving the fame Degree of Brightnefs and Diftinctners, in all others of a like Conftruction, will be, to make the Apertures, and magnifying Powers, directly as the Focal Lengths of the Speculums; which fhews the vaft Advantage and Perfection of thefe Telefcopes, above the common reflecting ones; where, according

[^10]
Of improving and perfecting Catadioptrical Telefcopes.

to Sir I. Newton's Rule, the Apertures, and Powers of Magnifying, muft be as the Biquadrate Roots of the Cubes of their Lengths*.

It is likewife a confiderable Advantage in this Conftruetion, that the Reflection from the concave Side of the Speculum will do no fenfible Prejudice; becaufe the Image of any Object made thereby, is removed to fo vaft a Diftance from the principal Image, formed by the convex Surface, as to create no manner of Confufion or Difturbance in the Vifion; which neceffarily happens, in Eome Degree, from the Vicinity of thofe Images, when the Glafs is ground concave on one Side, and as much convex on the nether; according to the Method propounded by Sir I. Netoron, in his Opticks.

It may be imagined, perhaps, at firf View, that (if our Reafoning is juft) the Errors of refracting Telefonpes, occafioned by the different Refrangibility of Light, may be corrected by a like Artifice: But the Aberration of the Rays from the principal Focus is there fo great, and bears fo confiderable a Proportion to the Focal Length of the Telefcope, that the Eirror cannot be rectified by the Interpofition of any Lens, unril the Rays are, by a contrary Refraction, collected again at an infinite Diftance, which renders this Expedient quite ufelefs; however there is no need to defpair of accomplifhing even this, by other Methods: And, by the way, we may obferve, if it were worth while to feek a Remedy for the Errors occafioned by the fpherical Figure of the Object-Glafs only, in Dioptrical Telefcopes; that might be obtained by the proper Application of a fuitable Lens, betiveen the Focus and the Vertex of the Object-Glafs; which is much more eafy and practicable, than the grinding of Glaffes to Hyperbolical or Elliptical Figures.

For a further Illuftration of what is gone before, it may be proper to exhibit the feveral Parts and Proportions of a Telefcope in Numbers computed according to the Theorems already delivered; and in Practice we judge it will be moft convenient, that the Radii of the Spheres to which the concave and convex Sides of the Speculum are ground, be nearly in the Ratio of 6 to 5 ; as in the following Example; where A B CDE.F, reprefents the great Speculum of Glafs, ground concave Fig. 48. on one Side, and convex on the other; quickfilvered over the convex Side, and of an equal Thicknefs all round it's Circumference.

The Radius of Concavity $=a=48$ Inches.

 The Radius of Convexity $=e=40$ Inches.Then putting n, the Sine of Incidence $=100$; m, the Sine of Refraction of the leaft refrangible Rays, out of Glafs into Air, $=154$; and μ, the Sine of Refraction of the moft refrangible Rays, $=156$; as $\operatorname{Sir} I$. Nervion found them by Experiments; we Chall have,

[^11] refrangible Rays $=18.2926$ t, which will be fomewhat increafed by the Thicknefs of the Glafs, when that is confiderable.
PQ, the greateft Aberracion of the Rays, occafioned by their different Degrees of Refrangibility, $=.05594+$, which Quantity, in Practice, fhould be a very little augmented, rather than other. wife; wherefore we put it here $=.056=\varepsilon$.
The Radius of the concave Surface of the Lens, turned towards the Speculum, viz. of GHI, $=v=2.8$ Inches.
The Radius of the concave Surface of the Lens, turned from the Speculum, viz. of $\mathrm{KLM},=6.7$ Inches.
The Thicknefs of the Lens at the Vertex $\mathrm{LH}=\frac{1}{10}$ of an Inch.
The Aperture of the Lens mult be about $\frac{x}{6}$ of the Aperture of the Speculum.
H P , the Diftance of the Focal Point \mathbf{P} from the Point H, where the abovefaid Lens is to be placed, fo as to correct the Errors arifing from the different Refrangibility of the Rays, and alfo the Errors of the fpherical Figure, $=2 \cdot \frac{24}{75}$ Inches.
HR , the Diftance of H the Vertex of the Lens from R the Focus of the Telefcope, $=6.8$ Inches.
And if we fuppofe the Diameter of the Pupil of the Eye to be $\frac{r}{8}$ of an Inch, (though it has not one certain Meafure) then the Diameter of the greateft Aperture of the Speculum, that can ever be of Ufe, will be $6 \frac{2}{3}$ Inches, nearly.
The fmall plano-convex Eye-Glars O muft always have one common Focus with the Telefcope, to wit, the Point R tranflated to r, by Reflection from the Bafe of the Prifm N ; for which Reafon it muft retain, at all times, an equal and invariable Diftance from the Lens GHIKLM; which Diftance will be the Focal Length of the faid Eye-Glafs more $\mathrm{HR}(=\mathrm{HN}+\mathrm{N} r$) the Diftance of the Lens from the Focus of the Telefcope R.

The Form and Pofition of the Prifm N, and the Contrivance of the other Parts neceffary, will be much the fame as in the Nerwtonians Telefcope.

If the Focal Length of the Eye-Glafs be $\frac{1}{4}$ of an Inch, the Telefcope will magnify about 200 times.

This Telefcope may be contrived in the Gregorian way, by ufing, inftead of a Lens and Prifm a fmall Speculum fpherically concave on one fide, and convex on the other; but we think it not worth while to attempt this Conftruction, as an Inveftigation of the Proportion between the two Surfaces neceffarily, in this fmall Speculum, to unite the Rays proceeding from the great one, into one Point, would be intricate, and the Practice alfo very difficult; by reafon that a little Inaccuracy will, in this Cafe, occafion Errors much more confiderable than a like Imperfection in the refracting Lens.

Of improving and perfecting Catadioptrical Telefcopes.

We have hitherto fuppofed the Radius of the Concavity greater than that of the Convexity; as being moft convenient and ufeful, on feveral Accounts, in forming this kind of Telefopes; however, it may be proper to remark, that the fame Method may be ufet for correcting the Errors of the Speculum, when the Radius of it's Concavity is lefs than that of the Convexity; only the refracting Superficies of the Lens placed between it's Vertex and Focus, will be convex, and not concave, as in the former Cafe. And there is another thing worthy of Remark, that the Focus, or Point (P), where the moft refrangible Rays are collected, will fall farther from the Vertex of this Speculum, than the Focus of the leaft refrangible (Q); a Circumftance which never happens by Refraction alone, in Glaffis of any Figure whatfoever, or howfoever they be difpofed.

Now all things being put as before, and naking H $\mathrm{Q}=d$, Fig. 4o. I fay the convex Superficies G H I of a Lens placed at H, that thall correct the Errors arifing from the different Refrangibility of Rays, in this kind of Speculum, will be part of a Sphere, whofe Radius is $=\frac{(\mu-m) \times\left(d d-1 d_{\varepsilon}\right)}{(\mu-m) d+n_{\varepsilon}}=v$. And H.R, the Diftance of the Point R, where the Rays of all forts will unite, after this Refraction, from H the given Point in the Axis, will be $=\frac{\mu d v}{(n-n) d-n_{u}}$; which Point R being taken as a Centre, defcribe thereon the Arch KLM, and the Figure GHIMLK will reprefent the Section of a Menifcus-Glafs, or Lens, which, placed at the Point H, affumed between the Vertex and Focus of the Speculum, will collect all forts of Rays proceeding therefrom into one and the fame Point, or Focus, R. We might alfo fhew, how this Error may be rectified by one or more Glaffes, placed in the Axis, at a Diftance farther from the Vertex than the Focal Point P; but the former Speculum is fo much preferable to this, for the conftructing of Telefcopes, that we think it not worth while to profecute this Matter farther. To, conclude this Effay;:

Whoever fhall think fitito put the Method here propofed in Execution, we dare venture (from a Trial that has been made) to affure him of Succefs; provided the fame Diligence, Care, and Accuracy, be applied, in choofing, figuring, polifhing, and foiling, the Glafs, that has of late been employed for the forming Speculums of Metal; and let none be difcouraged, though the firft and fecond Attempt fhould fail; for that muft be expected, if the ordinary way of grinding and polifhing be ufed: Greater Exactnefs is here required, than is ufually thought fufficient for the Object-Glaffes of refracting Telefcopes: Let it be alfo confidered how many Effays, for a long Term of Years, were made by Mr Gregory, Sir I. Nerwon, and others, to reduce their Conftructions of the reflecting Telefcope into Practice without anfwering,

A Catoptric Microfope.

in any tolerable Degree, what their Theories promifed: The Workmen they employed were chiefly Optical Inftrument-makers, and had it been left to fuch Perfons only to perform by themfelves, we have reafon to think, that it would have been pronounced impracticable to this Diy, to make a reflecting Telefcope that fhould equal or excel refracting ones of ten times it Length; though we now fee, that moft of thefe Artificers are capable of making them to fuch a Degree of Perfection as was formerly defpaired of. April 5. 1739.

1 Catoprris

 Alicrofoppe. By Robert Barker, M. D.III. Though Microscopes, compofed of Refracting Glaffes only, have been vaftly improved, as to their Effects of magnifying; yet they have been attended with fuch great Inconveniences, that their Application to many Arts, in which they might be very convenient, is not fo common as might be expected, and Mankind have reaped but a fmall Part of the Advantage obtainable from fo furprizing and ufeful an Inftrument.

Among the Inconveniences mentioned, thefe are the moft confiderable:

1. That in order to magnify greatly, it is neceffary the Object-Glafs be a Portion of a very minute Sphere, whofe Focus being very fhort, the Object muft be brought exceeding near; it will therefore be fladed by the Microfoope, and not vifible by any other Light than what paffes through itfelf; in this Cafe therefore, opake Objects will not be feen at all.
2. Objects illuminated this way, may be rather faid to eclipfe the Light, than to be truly feen, little more being exactly reprefented to the Eye. than the Out-line; the Deprefions and Elevations within the Out-line ; appearing like fo many Lights and Shades, according to their different Degree of Thicknefs or Tranfparency; though the contrary happens in ordinary Vifion, in which the Lights and Shades are produced by the different Expofure of the Surface of the Body to the incident Light.
3. Small Parts of large Objects cannot eafily be applied to the Microfiope, without being divided from their Wholes, which in the Cafe of Vivi-fection defeats the Experiment, the Part dying, and no more Motion being obferved therein.
4. The Focus in the Dioptrick Microfcope being fo very fhort, is exceeding nice, the leaft Deviation from it rendring Vifion turbid; therefore a very fmall Part of an Irregular Object can be feen diftinctly this way.

To remedy there Defeets I have contrived a Microfcope on the Model of the Nerwtonian Telefcope, in which I have been greatly affifted by that excellent Workman, Mr Scarlet, jun. I fhall fay nothing of the Effects of this Inftrument, excepting that it magnifies xrom the Diftance of 9 to 24 Inches.

An Account of Mr Leeuwenhoek's Microfcopes.

Fig. 50. The entire Microfcope mounted on it's Pedeftal, on a pro- Explantion per Joint, contrived to as to direct the Inftrument towards any Object. of the Figures,
lig. 51. The Scetion of the liaftrument, in which A B is the larger Fig. 50, 510 concave metalline Spectulum, C D is the leffer concave metalline Speculiom; EF a hollow Brafs Screw to falten in the ift Dioptrical Glafs, or Pla-no-convex Lens; G H another Screw faftening on the hollow Cylinder E F I K (in which the Dioperic Glaftes are contained) to the Body of the Microfcope; 1K a Cap with a finall Perforation, ferving as an Aperture to the E.ye-Glafs, or ad Iens (convex on both Sides); M L is a long Screw paffing through the Nuts P and V, ferving to bring the fmall Specultum to a proper Diftance from the larger; N Q a fliding Piece moved by the Screw, carrying the Stem QR, and little Speculunn CD ; Y X a Screw for the Cap, at Fig. 52; that at Fig. 53 is to be Fig. 52, 53. ferewed on the Aperture I K.

Fig. 54. Shews the Confruction of the Microfcope, in which i is Fig. 54. an Object fuppofed creet ; from which Rays falling on the Speculum $a b$, will be reflected to the Focus k, where they will form an inverted Inage, and being reflecled by the fmall Speculumn c d, they will pais through the Perforation of the great Speczum, and falling on the Planoconvex Glafs ef, converge again, and form an erect Image at l; which being brought very near to the Eye, and to confiderably magnified, will be dittinetly feen through the Fye Glais $g b$.
IV. I viewed attentively the Objects applied to thefe Microfoopes by Mr Leeuwenboek himfelf, which Mr Folkes* has given a Lift of in his Account; but the greateft Part of them were deltroyed by Time, or fruck off by Accident; which, indeed, is no Wonder, as they were only glewed on a Pin's Point, and left quite unguarded. Nine or ten of them, however, are fill remaining; which, after cleaning the Glaffes, appeared extremely plain and diftinct, and proved the great Skill of Mr Leeurvenboek, in adapting his Objects to fuch Magnifiers

An Acioure of Mr Leeawenhock's Micro. fropes; by M r Henry Biker, F. R.S. No. 458 P. 503. Sept. \&cc. 1740. as would fhew them beft, as well as in the Contrivance of the Apertures to his Glaffes, which, when the Object was tranfparent, he made exceeding fmall, fince much Light in that Cafe would be prejudicial: But, when the Object itfelf was dark, he enlarged the Aperture, to give it all poffible Advantage of the Light. The Lens being fet fo as to be brought clofe to the Eye, is alfo of great Ufe, fince thereby a larger Part of the Object may be feen in one View.

It muft be remembered, that all thefe Microfcopes are of one and the fame Structure, and that the moft fimple poffible, being only a fingle Lens, with a moveable Pin before it, on which to fix the Object, and bring it to the Eye at Pleafure.

Though I was fenfible it muft coft much Trouble to meafure the focal Diffances of thefe 26 Microfcopes, and thereby afcertain their Powers of magnifying, I confidered that, without fo doing, it would be im-
poffible to form a right Judgement of them, or make any reafonable Comparifon between them and our own. This Taik therefore I have performed, with as much Care and Exactnefs as I was able; and have fhewn, in the following Table, how many of them have the fame Focus, and confequently magnify in the fame Degree; how many times they magnify the Diameter, and how many times the Superficies of any Objects applied to them. I have given the Calculations in round Numbers, the Fractions making but an inconfiderable Difference ; and hope any Miftakes I may have made in fo nice a Mateer will be excufed.

A Table of the Focal Diftances of Mr Leeuwenhoek's 26 Microfopes, calculated by an Inch Scale divided into 100 Parts; with a Computation of their magnifying Poivers, to an Eye that jees fimall Objects at 8 Incbes, whicb is the common Standard.

Microfcopes with the fame Focus.	Difance of the Focus.	Power of magnifying the Diameter of an Object.	Power of magnifying the Superficies.
1.	Parts of an Inch. $\frac{1}{20}$ or $\frac{5}{100}$	Times. 160	Times. $25600 .$
1.	180	133 nearly.	17689.
1.	100	114 nearly.	12996.
3.	500	100	10000.
3.	$\frac{18}{105}$	89 almort.	7921 almoft.
8.	$\frac{1}{10}$	80.	6400.
2.	$\frac{11}{100}$	72 fomething more.	5184 fomething more.
3.	$\frac{12}{100}$	66 nearly.	4356 nearly.
2.	$\frac{14}{100}$	57. 1.	3249.
1.	$\frac{15}{100}$	53 nearly.	2809 nearly.
1. -	$\frac{1}{5}$	40	1600.
26.			

It appears, by the foregoing Table, that one only of thefe 26 Microfcopes is able to magnify the Diameter of an Object 160, and it's Superficies 25600 times; all the reft falling much fhort of that Degree. And therefore, I am fully perfuaded, and believe I fhall be able to prove, that many of the Difcoveries Mr Leeuwenboek gives an Account of, could not poffibly be made by Glaffes that magnify no more than this.

Our Cabinet is but the fecond in Mr Leeureenboek's Collection, and is very far from containing all the Microfcopes he had, as many wrongly
*This largef Magnifer of all is in the Box marked 25.

have imagined. We find here indeed, 26 Microfoopes in 13 thitle Boxes: each Box contains a Couple of them, and is marked in two Places with a Number, to diftinguifl it from the reft. Bur as the firft of thefe Boxes is marked 15, and the reft with following Numbers on tu 27 ; it neceffarily implics there were 14 preceding Boxes, fince no Man begins with the Number 15. Mr Leeuopenboek, then, had another Cabinet, that held 14 Boxes before ours in numerical Order, and probably each Box contained a Coupie of Microfcopes, as out Boxes do. But befides thefe two Cabinets, he had feveral other Microfcopes of different Sorts, as his own Writings will make appear.

Our Cabinet feems to have been only his Repofitory of Objects; for every Microfope hercin was engaged by an Object affixed to it, and thereby rendered ufelefs for any other Purpofe; whereas thofe he enrployed in his daily Obfervations mutt have been always ready, and at full Liberty, to examine whatever offered. Many of them too muft certainly have been much greater Magnifiers than any in our Poffeftion. And we are affured by himfelf, that fuch he had; for he often mentions his Shifting Objects from his common to his better, and thence to his moft exquifite Microfcopes: And, befides, (in the fecond Volume of his Works*) he fays, "I have an hundred and an heindreal Wiero"fcopes, mof whereof are able to thew Objects fo diftinctly, leven in "t the cloudyeft Weather, and by Day-light only, that if the' Alumalcula " in Semine mafoulino of Animals had the Extremity of their Tails "forked, (as defcribed by a certain Writer) I fhould eafily have dif"covered it." Among this Number, miny, without doubt, were contrived for the Examination of Fluids, finice great Part of his Obfervations were made on them: He informs us allo, that his Method was to put them into an exceeding fmall or capillary Tube of Glafs, which there does not feem to be any Means of applyihg to the Microfcopes in our Cabinet, even had they been at Liberty; and much lefs for the larger Tubes he made ufe of to view the Circulation of the Blood in Frogs, Eels, Fijhes, \&rc. his Apparatus for which we find in the fourth Volume of his Workst.-But to proceed:

Mr Leetreenboek, in a Letter to this Society concerning the Animalcula obferved by him in the Semen mafoulinum of a Dog, which he defcribes and gives a Draught of, fays, they were fo minute, that he believed a Million of them would not equal the Size of one large Grain of Sand If. Again, in his : $3^{\text {th }}$ Letter, fpeaking of the Semen ririle, he declares, that a Million of the Animalcuth feen therein would not equal a large Grain of Sand ; and yet he gives a full Deicription of their Form; for he fays, their Bodies are roundifh, fomewhat flat before, but ending Sharp behind, with Tails exceedingly tranfparent, five or fix times longer, and about five Times חenderer, than their Bodies; fo that their Figure cannot better be reprefented, than by a fmall Eartb-num with a long Root or Tail.

[^12]Now the Focus of the greateft Magnifier of his being $\frac{1}{20}$ of an Inch; as near as can well be meafured, it is capable of magnifying the Diameter of an Object (to an Eye that fees fmall Objects beft at eight Inches) no more thanr 160, and the Supcrficies 25600 times: So that Objects, one Million whereof fcarce equal a Grain of Sand, viewed through fuch a Lens, (as only the Superficies can be feen) could appear no larger than $2 \frac{1}{2}$ Grains of Sard would be to the naked Eye; and I fubmit it to be confidered, whether that is not too fmall a Size for any Man to deferibe fo particularly, and delineate the Form and Parts of.
But Mr Leewwenboek gocs yet abundantly farther: For, to mention only one Inftance, of which there are feveral in his Writings; he tells this Society in his Letter of $\mathrm{Yuly}^{25}, 1684$, that he could difcern Veffels in the human Eye, fo amazingly minute, that, defiring to know their Smallneis, he meafured them by the Diameter of a Grain of Sand, (the Procefs of which Menfuration is there fet down) and found by arithmetical Calculation, that a large Grain of Sand mult be divided into $18,399,744,000$ Jars**, ere it can be finall enough to enter thefe minute Veffels. He muft therefore certainly have had Glaffes, that were much greater Magnifiers than any we have of his.

It may perhaps be objected, that Mr Leeurvenboek declares, he did not ufe fuch fmall Glafies as fome Piople toanted of; and that, although for 40 Years together he had been poffeffed of Glaffes exceedingly minute, he had employed them very feldom; fince, in his Opinion, they could not fo well ferve to make the firt Difcoveries of Things, as thofe of a larger Diameter. In Anfwer to this, I muft obferve, that Mr Leeuwenboek, in this Place, is reflecting on a certain Phylician, who boafted of an extraordinary Microfcope \dagger, fcarce bigger than a vifible Point, whereby he pretended to difcover the Animalcules in Semine virili to be exactly of an human Shape, with only a Skin over it. For he fays, that while he was attentively obferving thefe Animalcules, one of them (a little bigger than the reft) prefented itfelf, having almoft ilipped off it's Skin: And then there plainly appeared two naked Thighs aind Legs, a Breaft, and two Arms, above which, the Skin being thruft up, covered the Head as it were a Cap. The Sex he confeffes he could not diftinguin, and adds, that it died in endeavouring to get clear of the Skin.

Mr Leeuzienboek very juflly expofes this romantic Difcovery, pretended to be made by this Speck of a Microfcope ; and takes occafion therefrom to let us know, he does not think fuch minute Glaffes are fo much to be depended on as thofe of a larger Diameter. But there are So many Degrees between the fmallen Glafs we have of his, (whofe Focus is at $\frac{1}{25}$ of an Inch) and this almoft invifible Point, that we muft not infer from hence he ufed none of a Size between. Nay, this very Letter feems to imply the contrary; for it tells us, that, in examining
the Semen virile, he made ufe of 8 or 10 Microfcopes of different magnifying Powers: But as all the Microfcopes we have of his, have O' jects faftened to them, and befides have no Apparatus for Fluids, I think they could not probably be the fame he employed for that Examination. May we not rather fuppofe he had 8 or 10 different Sizes of Microfcopes, that magnified more than ours? For we know, Fluids require to be examined by the greateft Magnifiers; and doubtlefs he made ufe of fuch for that purpofe.
There is no Advantage in employing a greater Magnifier for any Object, than what is requifite to thew the fame diftinctly; but when the Object is exceedingly minute, the magnifying Power of the Glafs nuf be proportionably great, or elfe it will be impoffible to fee the Object clenrly. A Lens, (for Example) that hews a whole Flea diftinetly, magnifies not near enough to fliew the Animalcules in the Somen of that Flea.

I am fenfible, that Mr Leeuseenboek, by long Practice, and uncommon Attention, might be able to difcern many Objects with thefe Microfcopes, which others, lefs accuftomed to Obfervations of this kind, cannot readily do: His Eyes too might be fomewhat different from the Standard I meafure by. But all thefe Allowances will not, I think, fuffice to reconcile the Paffages I have quoted with the Powers of the Glaftes under Examination.

While I was overlooking thefe Microfcopes of Mr Leeurwenboek, an Opportunity prefented of examining and comparing with them a curious Apparatus of Silver with fix different Magnifiers, belonging to Mr Folkes, and then newly made for him by Mr Cuff in Fleet-freet. The Body of this Inftrument, into which the Glaffes are occafionally to be faftened, is after the Farhion of Wilfon's Pocket-Microicope, and contrived to fcrew into the Side of a Scroll fixed on a Pedeftal, from which a turning Speculum reflects the Light upwards upon the Object: It is likewife contrived to be ufed with the Apparatus of the Solar Microfcope: Deferiptions and Figures of both of which I have fince given in a Book intituled, The Microfrope made eafy. Edit. $2^{\text {d }}$. Lond. $1743.8^{\text {vo }}$.

I meafured the focal Dittances, and magnifying Powers, of the Six Glaffes, and found them to be as follows.

A Table of tbe Six Magnifiers belonging to Mr Folkes's Microfcope, calculated by an Incb Scale divided into an bundred Parls, with a Computation of tbeir Powers, to an Eye that fees Objects at eight Inckes.

Glaffes. \begin{tabular}{c}
Diftance of the

Focus.

Magnifies the

Diameter.

\quad

Magnifies the

Superficies.
\end{tabular}

The above Calculation fhews, that Mr Folkes's Firt Glafs magnifies the Superficies of an Object 6 times as much as the greateft Magnifier of Mr Lecuwenbook: And that the Aivimalcula (a Million whereof, he fays, fcarce equalled the Bignefs of a Grain of Sand) would, if viewed with this Magnifier, appear as large as 16 Grains of Sand do to the naked Eye. And I cannot fuppofe but Mr Leeurdenboek had Glaffes to magnify even more than this, though they are not come to us. For I cannot otherwife conceive, how he could obferve the Animolcules in the Semen mafoulinum of a Flea, and of a Gnat, as we find he did, or affert *, as he does in the flrongeft Terms t, that he could fee the minuteft Sort of Animalcules in Pepper-water, with his Glaffes, as plainly as he could Swarns of Flies or Gnats hovering in the Air with his naked Eye, though they were more than ten Millions of Times Jefs than a Grain of Sand. And left this fhould be imagined only a random Guefs, he gives immediately a regular arithmetical Calculation to prove his Computation right. But I believe we muft all be fenfible, that no Glaffes in this Cabinet are able to render fuch minute Objects diftinguifhable.

I am defirous to do all poffible Juftice to thefe Microfopes, by acknowledging their Excellence, as far as their magnifying Power extends : But I fhould do wrong to Mr Leeurcbenboek, flould I fuffer the World to believe thefe were his greateft Magnifiers; fince whoever hereafter fhould examine them with that Imagination, would be apt to entertain a bad Opinion of his Veracity.

Experience teaches, that Globules of Glafs extremely minute, though they magnify prodigiounly, are feldom able to fhew Objects fufficiently diftinct, and therefore are very apt to lead People into Errors: Which
certainly was a good Reafon for Mr Leeurvcnboek's rejecting them : But a ground convex Lens, though much fmaller than any of his before us, if rightly applied, will thew exceedingly minute Objects magnified to a furprifing Degree, and with fufficient Light and Clearnefs, as Mr Folkes's firtt Glafs witneffes.

I hope I mall not be imagined to intend any Difrefpect to this famous Man, if I fuppofe, that our prefent Microfcopes are much more ufeful and convenient than thefe of his. Let him always be remembered with the highelt Honour, for the wonderful Difioveries he made, and the Microficopes he has left us, which are indeed extraordinary, when confidered as the firt almolt of their kind: Let us reverence him as our great Mafter in this Art. But the World fince mult have been ftrangely flupid, if it could have improved nothing, where there was room for fo much Improvement. I do not mean as to the Glaffes (for the Goodnefs of thefe before us, gives jult Reafon to believe he might have others as excellent as can perhaps be ever made); but as to the Structure of the Inftrument they are fet in, and the Manner of applying Objects to them. And I tancy moft People will allow, that herein great Improvements have been made: And it is with pleafure I find, that a large Share of the Credit belongs to our own Countrymen.

One thing alone (which, when nightly confidered, may appear but triling) has conduced greatly to thefe Improvements; and that is, the making ufe of fine tranfparent Mafcory Talc or Ifinglafs, placed in Sliders, to inclofe Objects in. Had Mr Leeuwernboek known this way, it would have faved him a valt deal of Expence and Trouble: For then, we may reafonably fuppofe, inftend of malsing an entire and feparate Microfcope for every Objeet he was defirous to keep by him in readinefs to fhew his Friends, he would probably have fecured his Objects in Sliders, as we at prefent do, and have contrived fome fuch Means as ours, of ferewing his feveral Glaffes of different magnifying Powers, occafionally, to one and the fame Inftrument, and of applying his Sliders to which of them he judged beft. A few good Glaffes, gradually magnifying one more than other, would, by fuch a Method, have aniwered all the Purpofes of his great Number, and his Objects would have been preferved in a much better Manner.

Two extraordinary Improvements have appeared within thefe two Years, which I beg leave to lay before you, as I think it has not been yet done. I mean, the Solar or Camera Obfoura Microfcope, and the MicroScope for opake Objects. Both thefe Inventions we are obliged for to the ingenious Dr Liberkbun, who, when he was in England laft Winter was Tweivemonth, fhewed an Apparatus of his own making, for each of thefe Purpofes, to feveral Gentemen of this Society, as well as to fome Opticians, amongft whom Mr Cuff, in Fleet- Atreet, has taken great Pains to improve and bring them to Perfection; and therefore the Apparacus prepared by him is what I am about to defcribe.

This Solar Microfcope is compofed of a Tube, a Looking-Glafs, a convex Lens, and a Microfcope. The Tube is of Brafs, near two Inches in Diaoneter, fixed in a circular Collar of Mabogany, which, turning round at pleafure, in a fquare Frame, may be adjufted eafily to a Hole in the Shutter of a Window, in fuch a manner, that no Light can pafs into the Room but through the aforefaid Tube. Faftened to the Frame by Hinges, on the Side that goes without the Window, is a Louking. Glafs, which, by means of a jouted brafs Wire coming through the Frame, may be either moved vertically or horizontally, to throw the Sun's Rays through the brais Tube into the darkened Room. The End of the brafs Tube, without the Shutter, has a convex L.ens, in collect the Rays, and bring then to a Focus; and on the End within the Ronm, Wilfon's Pocket-Microfcope is ferewed, with the Objeet to be examined applied to it in a Slider. The Sun's Rays being direeted by the Looking Glafs through the Tube upon the Object, the Image or Picture of the Object is thrown diftinctly and heautifully upon a Screen of white Paper, and may be magnified beyond the Imagination of thofe who have not feen it. I affifted lately in making fome Experiments with Dr Alexander Stuart, by means of this Inftrument, and a particular Apparatus contrived by him, for viewing the Circulation of the Blood in Frogs, Mice, \&re. and had the Pleafure of beholding the V eins and Arteries in the Mefentery of a Frog magnified to near 2 Inches Diameter, with the Globules of the Blood rolling through them as large almoft as Pepper-corns. We examined allo the Structure of the Mufcles of the Abdomen, which were prodigiounly magnified, and exhibited a moft delightful Picture.

The Microfcope for opake Objects remedies the Inconvenience of having the dark Side of an Object next the Eye: For by means of a concave Speculum of Silver, highly polifhed, in whofe Centre a magnifying Lens is placed, the Object is fo frongly illuminated, that it may be examined with all imaginable Eife and Pleafure. A convenient Apparatus of this kind, with 4 different Specula, and Magnifiers of different Powers, has lately been brought to Perfection by Mr Cuff. Thefe, with the large double reflecting Microfcope, are, I think, the chief, if not the only uffeul Sorts now made in Englond.

Imuft not omit tiking notice, that Mr Lecuzienboek fays*, that fometimes, to throw a greater Light upon his Objcits, he ufed a fmall convex Metal Speculum. How he applied it, I will not pretend to guefs; but it is highly probable our double reflecting Microfcope may be owing to this Hint. I muft alfo obferve farther, that + , after defcribing his Apparatus for viewing Eels in Glafs Tubes, Mr Leerrwenboek adds, that he had another Inftrument, whereto he ferewed a Microfcope fet in Brafs; upon which Microfcope, he tells us, he faftened a little Dinh (of Braifs alfo, I fuppofe,) that his Eye night be thereby affited to fee Objects

Defcription of an Inftrument for obferving the Moon's Diftance, छ'c.

better : For he fays, he had filed the Brals which was round his Microfcope, as bright as he could, that the Light, while he was viewing Objects, might be reflected from it as much as poffible. 'This Microfcope, with it's Difh, (which I give an exact Copy of from the Picture Fig. 55° in his Works) feems fo like our opake Microfcope with it's filver Speculum, that, after confidering his own Words, I fubmit to your better Judgment, whether he is not properly the Inventor of it. His Words are thefe, - "Supra boc Microfcopium Catillum ferruminavi, ut oculus "objeEta tanto melius videret: nam cuprum circa Microfcopium, quantums "pote, lima abraferam, ut Lumen in conspicienda objecta, quantum pote, " irradiaret."
V. In the annexed Scheme*, P QR S denotes a Plate of Brafs, accurately divided in the Limb $D 2$, into $\frac{1}{2}$ Degrees, $\frac{1}{2}$ Minutes, and $\frac{1}{12}$ Minutes, by a Diagonal Scale; and the: Degrees, and: Minutes, and \therefore Minutes, counted for Degrees, Minutes, and $\frac{1}{\circ}$ Minutes.
$A B$, is a Telefcope, three or four Feet long, fixt on the Edge of that Brafs Plate.
G, is a Speculum, fixt on the faid Brafs Plate perpendicularly, as near as may be to the Object-glafs of the Telefcope, fo as to be inclined 45 Degrees to the Axis of the Telefcope, and intercept half the Light which would otherwife come through the Telefope to the Eye.
$C D$, is a moveable Index, turning about the Centre C, and with it's fiducial Edge, fhewing the Degrees, Minutes, and ', Minutes, on the Limb of the Brals Plate P Q ; the Centre C, mutt be over-againft the Miedle of the Speculunn G.
H, is another Speculum, parallel to the former, when the fiducial Edge of the Index falls on $00^{d} 00^{\prime} 00^{\prime \prime}$; fo that the fame Star may
A true Cops of a Paper found in the Hand Writing of Sir I. Newton, α mong the Papers of the late Dr Haliey, containing a Defeription of an Lefrument for obferving the Moon's Dillance froms the fixt Stars at Sea Read OA $28,1742$. No. 465 . p. 155. then appear through the Telefiope, in one and the fame Place, both by the direet Rays and by the reflexed ones; but if the Index be turned, the Star fhall appear in two Places, whofe Diftance is fhewed, on the Brafs Limb, by the Index.

By this Inftrument, the Difance of the Moon from any Fixt Star is thus obferved: View the Star through the Perfpicil by the direct Light, and the Moon by the Reflext (or on the contrary); and turn the Index till the Star touch the Limb of the Moon, and the Index fhall fhew upon the Brafs Limb of the Inftrument, the Diftance of the Star from the Limb of the Moon; and though the Inftrument make, by the Motion of your Ship at Sea, yet the Moon and Star will move together, as if they did really touch one another in the Heavens; fo that an Obfervation may be made as exactly at Sea as at Land.

And by the fame Inftrument, may be oblerved, exactly, the Altitudes of the Moon and Stars, by bringing them to the Horizon; and thereby the Latitude, and Times of Obfervations, may be determined more exactly than by the Ways now in ufe.

In the Time of the Obfervation, if the Inftrument move angularly about the Axis of the Telefcope, the Star will move in a Tangent of
$V \ominus$ L. VIII. Part i. S the the Moon's Limb, or of the Horizon ; but the Obfervation may notwithftanding be made exaetly, by noting when the Line, defcribed by the Star, is a Tangent to the Moon's Limb, or to the Horizon.

To make the Inftrument ufful, the Telefcope ought to take in a large Angle: And to make the Obfervation true, let the Star touch the Moon's Limb, not on the Outfide of the Limb, but on the Infide.
VI. 1. This apparent Increafe of the Moon's Diameter (which a

An Atrempt 10 explain tbe Phanomenon of ble horizonsal Moon ap. fearing bigger. sban when sic. valld mamy
Degress above the Horizon: fupported by an Experiment. By sbe Rerv. J I. Dejagu-
liers, LL D. I. R.S. C.om municated Jan. 30,1734.5. No. 444 P. 390. Nov. E'c. 173^{6}. - Fig. 5% Telefcope with a Micrometer thews to be only apparent) is owing to the following early Prejudice, which we have imbibed from Children.

When we look at the Sky towards the Zenith, we jmagine it to be much nearer to us, than when we look at it towards the Horizon; fo that it does not appuar Spherical, according to the vertical Section E F G H1*, but Elliptical, according to the Section e Fg bi: For this I appeal to every body's Senfe of leeing; but not to their Reafon, which is apt to take off the Prejudice in Perfons that have fome Knowledge of Aftronomy. Whereas any other Perfon looking up very high towards the Sky, and then forwards near the Horizon, will (when afked) firy, that the Sky over his Head appears much nearer. The Sky thus feen, ftrikes the Eye in the fame Manner as the long arched Roof of the Ine of a Cathedral Church, or the Cieling of a long Room.

This being premifed, let us confider the Eye at C, upon the Surface of the Earth, and imagine C at the Surface to coincide with K at the Centre; to avoid taking into Confideration that the Moon is really farther from the Eye when in the Horizon, than when it is fome Degrees bigh. Now when the Moon is at G, we confider it as at g, not much farther than G; but when it is at H, we imagine it to be at b, almoft as far again. Therefore, while it lubtends the fame Angle as it did before (nearly), we imagine it to be fo much bigger as the Diftance feems to us to be increafed.

I have contrived the following Experiment to illuftrate this :
I took two Candles of equal Height and Bignefs, A B, C D, and having placed $A B$ at the Diftance of 6 or 8 Feet from the Eye, I placed C D at double that Diftance; then caufing any unprejudiced Perion to look at the Candles, I afked which was biggeft? and the Spectator faid they were both of a Bignefs; and that they appeared fo, becaufe he allowed for the greater Diftance of CD ; and this alfo appeared to him, when he looked thro' a fmall Hole. Then defiring him to Mut his Eyes for a Time, I took away the Candle C D, and placed the Candle E F clofe by the Candle A B, and though it was as thort again as the others, and as little again in Diameter, the Spectator, when he opened his Eyes, thought he faw the fame Candles as before. Whence it is to be concluded, that when an Object is thought to be twice as far from the Eye as it was before, we think it to be twice as big, though it fubtends but the fame Angle. And this is the Cafe of the Moon, which appears to us as big again, when we fuppofe it as far again, though it fubtends but the fame Angle.

The Difference of Diflance of the Moon in Perigeo and Apogeo, witl account for the different Bignefs of the horizontal Moon at different Times, adding alfo the Confideration of the Faintnefs which Vapours fometimes throw on the Appearance.
2. Having made an Experiment with three Ivory Balls for Confirmation of what I had advanced, that the Deception arifes from our judging the borizontal Moon to be much farther than it is ; fome Gentlemen of the Society were convinced by the Experiment, but others were not ; which obliges me to give this further Account of it, that People may judge of the Thing in Writing, which could not be fo well attended to in the Hurry of feveral Perfons viewing the Experiment in Hafte.

1. Two equal Ivory Balls were fet one beyond another in refpect of Fig. 59. the Eye at E, namely, A B at 20 Feet Diftance from the Eye, and CD at 40 .
2. It is certain, by the Rules of Optics, that the Eye at E or F will fee the Ball CD under an Angle but half as big as it fees the Ball AB ; that is, that the Ball CD mult appear no bigger than the BalloP placed by the Side of AB.
3. But when looking at the two Balls with the naked Eye in an open Room, we confider that C D is as far again from the Eyy as A R, we judge it to be as big as A B, (as it really is) notwithftanding it fubtends an Angle but of half the Bignefs.
4. Now if, unknown to the Spectator, (or while he turns his Back) the Ball C D be taken away, and another Ball o P of half the Diameter be placed in the fame Line, but as near again, at the Side of A B, the Spectator thinking this laft Ball to be at the Place of C D, muft judge it to be as big as C I, becaufe if fubtends the very fame Angle as C D did before.

It follows therefore, That if a Ball be imagined to be as far again as it really is, we make fuch an Allowance for that imagined Diftance, that we judge it to be as big again as it is, notwithftanding that the Angle under which we fee it, is no greater, than when we look at it, knowing it's real Diftance.

For this Reafon the Moon looks bigger in the Horizon, and near it, tian at a confiderable Height, or at the Zenith: Becaufe it being a common Prejudice to imagine that Part of the Sky much nearer to us which is at the Zenith, than that Part towards the Horizon; when we fee the Moon at the Horizon, we fuppofe it much farther; therefore as it fubtends the fame Angle (or nearly the fame Angle) as when at the Zenith, we imagine it fo much bigger as we fuppofe it's Diftance greater.

The Reafon why this Experiment is hard to make, is becaufe the Light from the Ball oP is too ftrongly rellected on account of it's Nearnefs; but if we could give it fo little Ligln as to look no brighter than the Ball CD, it would deceive every body. I have made the Experiment fo as to deceive fuch as were not very long-fighted; but I muft confefs I have found it very hard to deceive thofe who fee at a great Diftance; tho' they would all be deceived, if the Diftances were of 300 or 600 Feet. Now in the Cafe of the Moon, the Deceit is helped, becaule the Vapours, through which we fee it when low, take away of it's Brightnefs, and therefore have the fame Effect as would (or does) happen in the Experiment, when the Light of the Ball oP frikes the Eye no fronger than the Light of the Ball C D.

C•H A P. III.
 ASTRONOMY.

Obfervations of ibe Appear. ances among. sbe Fixt Stars, called Nebu. lous Stars, by W. Derham, D. D. Canon of Windfor. F.R.S. No. 428. p. -0.
I. HESE Apprarances in the Heavens, have borne the Name of Nebulcus Slars: But neither are they Stars, nor fuch Bodies as emit, or reflect Light, as the Sun, Moon, and Stars do ; nor are they Congeries, or Clufters of Stars, as the Milky Way: but whitifh Area, like a Collection of Mify Vapours; whence they have their Name.

There are mary of them difperfed about, in diverfe Parts of the Heavers. There is a Catalogue of them in Hevelius's Prodromus Aftronomie, which may be of good ufe to fuch as are minded to inquire into them.

Befides thefe Dr Halley * hath mentioned one in Orion's Sword; another in Sagittary; a third in the Centaur (never feen in England) a fourth preceding the right Foot of Antinous; a fifth in Ilercules; and that in Andromedn's Giralle.

Five of thefe fix I have carefully viewed with my excellent eight Foot Refeeting Telefcope, and find them to be Phænomena muchalike ; all except that precedirg the right Foot of Ancinous, which is not a Nebulofe, but a Clufcer of S:ars, fomewhat like that which is in the Milky-Way.

Between the other four, I find no material Difference, only fome are rounder, fome of a more oval Form, without any Fixed Stars in them $t 0$ caufe their Iight; only that in Orion, hath fome Stars in it, vifble only with the Telefcope, but by no means fufficient to caufe the I ight of the Nebulofe there. But by thefe Stars it was, that I firft perceived the Diftance of the Nebulofee to be greater than that of the Fixed Stars, and put me upon enquiring into the rett of them. Every one of which I could very vifibly and plainly difcern, to be at immenfe Difances beyond the Fixed Stars near them, whether vifible to the naked Eye, or Telefcopick only; yea, they feemed to be as far beyond the Fixed Stars, as any of thofe Stars are from the Earth.

And now from this Relation of what I have obferved from very good, and frequent Views of the Nebulofe, I conclude them certainly wot to be Lucid Bodies, that fend their Light to us, as the Sun and

[^13]

Moon. Neither are they the combined Light of Clufters of Stars, like that of the Milky-Way: But I take them to be raft Aree, or Regions of Light, infallibly beyond the Fixed Stars, and devoid of them. I fay $R e-$ gions, meaning Spaces of a vaft Extent, large enough to appear of fuch ${ }_{\text {a }}$ Size as they do to us, at fogreat a Diftance as they are from us.

And lince thofe Spaces are devoid of Stars, and even that in Orion itfelf, hath it's Stars bearing a very fmall Proportion to it's Nebulofe, and they are vifibly not the Caufe of it, I leave it to the great Sagacity and Penerration of this Illuftrious Society, to judge whether thele Nebulofer are particular Spaces of Light ; or rather, wh.ther they may not, in all probabality, be Chafms, or Openings into an immenfe Region of Liglt, beyond the Fixed Stars. Becaufe I find in this Opinion moft of the Learned in all Ages (both Philofophers, and I may add Divines ton) thus far concurred, that there was a Region beyond the Siars. Thofe that imagined there were CryAalline, or Solid Orbs, thought a Catum Empyraum was beyond them and the Primum Mobile; and they that maintained there were no fuch Orbs, but that the Heavenly Bodics Hoated in the 不ther, imagined that the Starry Region was not the Bounds of the Univerfe, but that there was a Region beyond thatr, which they called the Third Region, and Third Heaven.

To conclude thefe Remarks, it may be of ufe to take notice, that in Hivelius's Nebulofe, fome feem to be more large and remarkable than others; but whether they are really fo, or no, I confefs I have not had an Opportunity to fee, except that in Andromeda's Girdle, which is as confiderable as any I have feen. In his Maps of the Conftellations, the moft remarkable are the three near the Eye of Capricorn; that in Hercules's Foot; that in the third Joint of Scorpio's Tail; and that between Scorpio's Tail and the Bow of Sagittary. But if any ne is defirous to have a good View of thefe, or any other of the Nebullofa, it is abfolutely neceffary that he fhould make ufe of very good Glaffes, elfe all his Labour would be in vain, as I have found by Experience.
Anparent Time.
H. M. S.
$7 \quad 40 \quad 00$
The Moon's Body and Aldebaran feen together in the diftinct Bafe of the Telefcope.
$7 \quad 45 \quad 5^{2}$
The Moon's fouthern Limb running along the parallel
II. I. Thread, the weftern Limb came to the horary Thread.
74941 The Glats remaining fixed, and Aldcbaran running along the parallel Thread, (having the fame Declination with the Moon's foutherly Limb) came to the Interfection of the Threads.
13 of The Moon again running along the Parallel, came to the horary Thrcad.
91550 Aldebaran (the Glafs remaining fixed) came to the firft oblique Thread at c.

Obfervation of the Moon's Tranfie by Aldebaran, A. pril 3, 1736, made at London by John Bevis, M. D. No. 446. p. 90. July, ت̊c 1737. Fig. 60:

H. M. S.

85954 Aldebaran in the Line paffing through the Curps, his neareft Diftance from the Moon's Bolly, being fome. what lefs that the Length of Mare Crifum, or nearly $\frac{1}{30}$ of the Moon's Diamcter.

AnOctultration of Aldebaran, Dec. 23 , 1728, Seyl. Nov. obferved by D. Chrithfried Kirchius, Afronomer
Royal as Berin. No. 454 . p. 223. July, E゙\%. 1739. Fig. 61.
2.

The Situation of the Star, with regard to the lunar Spots was ob. ferved in the following Manner.

Before Obf . 1. $6^{\text {h }}$. 20^{\prime}. I obferved the Star in a right Line drawn from the fouthern Edge of Infula Macra (Pofidonius) through the northern Part of Ponius Euxinus (Middle of Mare Serenitatis) and M. Fima (Copernicus) and a Line from M. Sinai to the Star almoft toucher the Shore of Sinus Sirbonidis (M. Itumorum).

At the Time of Ob . I. the Star was in a right Line, drawn from the greater black Lake (Plato) through the ealtern Parts of Infula Cercinna (from Kepler toward the Eaft).

At the Time of $O b / .2$. the Star was in a Line, continued through the Middle of Palus Mrotis, and the Middle of M. Adriaticum (through the Middle of Mare Crijfum and S).

At the Tinie of the Immerfion of the Star, the following right Lines coincided with it, and marked the Place of the Circumference of the Moon, where the Star was hid. I. From the Shore of Pontus Euxinus (M. Serenitatis) to the Northward, through M. Etna (Copernicus). 2. From the Shore of the Sinus Apollinis, through the Loca Paludofa (from the Shore of S. Iridum through Kepler). 3. From M. Sinai (Tycho) through the fouthern Shore of S. Sirbonis (M. Humorum).

Mr G. Giaham's Obfervations with a Refecting Telefope, \&c.

The Emerfion of the Star happened over-againft M. Paropami/f (Frrnerii) and in a right Line drawn from the greater black Lake (Plato) through Byzantium (Menelaus), which touched the extreme Bay of Pontus (M. Nctaris).

At the Time of Obf.7. M. Porpbyrites (Ariftarcbus) the northern Edge of L. Theppitis (Fracaforius) and the Star in a right Line.
At the. Time of Olf. 8. the urper Lacus Hyperboreus (Kermes) the Middle of Palus Mreois (Mare Crifrum) and the Star in a right Lime.

b.	c.	"	Immerfion.
7.	29.	20	Emerfion.
1.	1.	45	Duration.

[^14]The Obfervation was miade by two Speetators at the fame time, with one Telefcope of 9 Feet, and another of 4.
The Immerfion and Emerfion were obferved about a Minute fooner by the long Tube than by the fhort one.
The Appulfe of the Star to the eaftern Edge of the Moon was about 163° of Herelius's moveable Scheme of the Full Moon. It emerged about 272° of the fame Scheme. Therefore a right Line, joining the Points of Immerfion and Emerfion, touches the Extremities of Mare Humorusis and Nubium, and paffes between Pi'alus and Mare Nubium.
The Sky was not clear at the time of the Immerfion, but thin Clouds almoft continually wandered before the Moon and Star; and therefore the Star appeared oblong a great while before the Occultation, through the Vapours of the Atmofphere.

The Sun's Tranfit at Noon at $11^{\text {h }} \cdot 59^{\prime} \cdot 52^{\prime \prime}$. the Clock gaining of the mean Solar Time about one fecond in a Day.
III. 1. This Obfervation was made in Fleet-fireet, London, with a Telefcope of 10 Feet in Length, fitted with a Micrometer.
App. Time.
At $5^{\text {h }} 44^{\prime} 45^{\prime \prime}$ It began.
$\begin{array}{lll}6 & 25 & 30\end{array}$
63730 The Eclipfe was greateft, the lucid Part of the Sun's Diameter meafuring 426 Parts, whereof the Sun's Diameter meafured 2311. So that the Eclipfe was 9) Digits.
$\begin{array}{llll}6 & 46 & 00 & \text { The Cufps were horizontal. } \\ 7 & 28 & 23 & \text { The Eclipfe ended. }\end{array}$
Selengrapl.
p. 364.

Of the fame by Mr Stephen Gray, F.R.S. Ibid. p. 114.
2. I obferved the late Eclipfe of the Sun, at Norton-Court, near Feverflam in Kent, the Seat of Yobn Godfrey, Eqq; and the Week following, being with Granville Wbler, Efq; at Otterden-Place, near Lenbam in Kent, he was pleafed to communicate to mie his Obfervations of the faid Eclipfe.

At Norton-
Court by Mr
Gray, P. 115.

Our Obfervations were made with an Heliofcope, or Inftrument, confifting of a Telefcope and Box, with a Digit Scheme at the End of it. The Telefcope was 6 Feet, the Box 2 Feet in Length, and the Sun's Image on the Scheme was 6 Inches $\frac{3}{6}$ in Diameter. The Clock was rectified on the Day of the Eclipfe, and proved to need no Correction for feveral Days afterwards, by Obfervations of the Sun on the Meridian. The Sun's Tranfit was taken by the Paffage of it's Rays through a Hole made in a Brafs Plate, the Center of which Hole was at 6 Feet and 3 Inches perpendicular Height, above the horizontal Plane on which the Meridian Line was drawn.

Al OtterdenPlace, by Mr Vibeler, p . 116.

Mr Wbelior obferved the Beginning at $5^{\text {h }} 49^{\prime} 0^{\prime \prime}$, and the End at $7^{\mathrm{b}} 31^{\prime} 49^{\prime \prime}$. His Obfervations were made with a Telefcope of 15 Feet in length, and his Time was alfo rectified by a Meridian Line ; but it was done by a Tranfit of the Rays through a Hole at a much greater Height. For the Brafs Plate, in which the Hole was made, was fixed to a Window in the Koof of his Hall, at the Height of 27 Feet above the Meridian Line on the Floor.
Obfervations with a Rifficting Telcfiope, \&cc.

Of the fame. by Mr. J. Mil. ner, at Yeovil in Somerfet. ihire. Ibid. p. 116.

I made ufe of a Quadrant 2 Feet Radius. Lat. Yiovil, 51°.
4. The Latitude of Gottenbury is $57^{\circ} \cdot 40^{\prime} \cdot 54^{\prime \prime}$.

The Beginning of the Eclipfe, which could not be obferved becaufe of the Clouds, feems to have happened before $6^{\text {b }} \cdot 26^{\prime}$. p. m.
6. ${ }^{\text {h }}$ 9. 43 The Sun was about 3 Digits eclipfed.
6. 49. 5^{2} Six Digits, more or lefs.
7. 14. 64 appeared.
7. 14. 4^{6} The whole Difk of the Sun began to be covered.
7. 15. 50. The greatet Darknefs, when all the Stars of the Great Bear, the Lion's Heart, Sirius, Procyon, the Bull's Eye, and fome others were vifible: but neither چֶ nor δ were feen.
7. 16. $5+$ The Sun began to dart his Rays with incredible Quicknefs.
7. 20. 12 थ ftill appearied.
7. 41. 38 The Sun was 6 Digits eclipfed.
8. 5. 50 The Find of the Eclipfe, the whole Difk of the Sun Chining. Total Duration of the Eclipfe at Gottenburg, $2^{\prime} 8^{\prime \prime}$.

The fotal Duration of this Eclipfe in a Place called Swenaker, 7 Swedifh Miles from hence, in Latitude $58^{\circ} 15^{\prime}$, was, according to the Obfervation of my Brother Torftanus Vaffenius by a Pendulum, $2^{\prime} 31^{\prime \prime}$.

Whi'f the Sun was totally covered, I faw not only the greateft Part of the Spots in his Difk, but alfo the Atmofphere of the Moon, with a Telefcope of about $2 ;$ Sruedif Feet; it was a little brighter at the weften Linib of the Moon, at the time of the greatef Immerfion; but without that Irregularity and Inequality of the luminous Rays, which afpeared to thole who looked without a Telefcope. But the noft worthy of Obfervation were 3 or 4 little reddifh Spots in it, feen without the Circumference of the lunar Difk; one of which was greater than the reft, about the middle Way between the South and Weft, according to the beft Judgment that could be made. This was compofed of 3 fmaller parallel Parts or Nubecule, of unequal Length, with fome Obliquity to the Circumference of the Moon. I faw it plainly prelerve the fame Situation for $40^{\prime \prime}$ or more: but at length a Ray of the Sun braking out like Lightning deprived me of any farther Opportunity of obferving fo beautiful a Pbienomenon.

At Witrem: berg in Sixony, by Joh. Frid.Weidler, Prof. Matb. and F.R.S. No. 433. p. 332. July,

Éc. 1734.
b $36{ }^{\prime \prime} 5 \mathrm{p}$. m. Beginning of the Eclipfe
3950 one Digit
45 two Digits
4850 three Digits
5250 four Digits
5 S 5 five Digits
Some light Clouds come over the Sun.
Phafes of the decreafing Eclipfe.

5. Phafes of the beginning Eclipfe.

h
7250 fix Digits 750 feven Digits 1050 eight Digits
1550 nine Digits
19) 50 ten Digits

2920 eleven Digits
h 11
74450 cight Digits 465 the Sun fiels

Fig. 62.

Eclifle of the Sun April 22 , 1734,obitirved
at Rome by
ties Ailibot Di. cacus de $R e$ vilhs, FR.S. and Andreas
Celius, F.R.S. yrof Altruri. Upial. No. 442. p. $=96$. July, \& © . 1:36.

The Circle drawn in the Figure reprefents the Image of the Sun, of the fame Magnitude as it appears at the Bottom of the Helofeope.

The Light of the Sun near the Orb of the Moon, which I have ufually oblerved, in other Solar Eclipfes, to have a vehement Motio: and Undulation, was in this Eclipfe perfectly ftill and quiet.

The Orb of the Moon difcovered a manifeft Afperity to all the Obfervers, efpecially in the weftern Part, in the Phafes that were obferved a litele before the Setting of the Sun; but there were fome Intervals, in which the Tops of the Lunar Mountains were diftinguifhed, but not very broad or decp. By the Application of a Scale nicely divided, I eftimated the Depth of one Valley to be $\frac{1}{200}$ Part of the Diameter of the Moon.

The laft decreafing Phafes were feen thro' thin Clouds, and yet the Moon did not hide from us above 11 Inches of the Dink of the Sun.

The Setting of the Centre of the Sun was then found by Calculation to be $7^{\text {h }} 39^{\prime} 49^{\prime \prime}$ for the Horizon of Wittemberg, and fo it was retarded near 6 Minutes by the Retraction of the Rays in the Clouds of the llorizon.
IV. This Eclipfe was obferved with a very good Telefcope, of about 6 Roman Palms in Length.

True Time $\mathrm{p} . \mathrm{m}$.
h $1 /$ Digits.
2222350 The Beginning feemed to be a fmall Matter over thro' 27 10:
3401
$4^{2} \quad 6 \quad 1 \frac{1}{3}$
$23 \quad 522$
$316=$ Or a little more, and the greateft Darknefs lecmej to be 10312 at Hand.
$28161 \frac{1}{1}$
$45 \mathrm{MI} \mathrm{O}_{\frac{1}{2}}$
5210 The End.

From the 4 th and 8 th Obfervations we may gather, that the greateft Darknefs was about $23^{\text {h }} 5^{\prime}$.
V.

Apparent Time. p. m.
h 1 "
41255 The northern Limb of the Sun running over the Parallel Thread P P, the weftern Limb touches the horary Thread HH.
1242 The fmall Spot near the northern Limb reaches the firf oblique Thread I .
13 I The Spot reaches the horary Thread H H.
1320 The Spot reaches the fecond oblique Thread 2.
1445 The eaftern Limb of the Sun reaches the horary Thread. Then cloudy.
4454 I The Sun getting out of the Clouds, the Eclipre appears thro' the Telefcope to be but juft begun.
4548 Still imperceptible to the Eye thro' a coloured Glafs.
46 oo Now very fenfible. Then cloudy.
$5 \quad 529$ The fouthern Limb running along the Parallel, the weftern Limb reaches the horary Thread.
541 The weftern Cufp of the Sun reaches the horary Thread.
75 The eaftern Cufp touches the horary Thread. Then the Sun Fig. 64. was covered with Clouds till it fet.
I place the Beginning at $4^{\text {h }} 45^{\prime} 31^{\prime \prime}$, p. m.
VI. i.

Appar. Time. p. m. At
2259 A fmall Impreffion appeared on the Sun's Limb; I judge the Beginning to have been about 5 or $6^{\prime \prime}$ fooner.
32128 The middle of the firft and larger Spot was covered.
2930 The middle of the fimallicr Spot.
404 The Cufps perpendicular.
$+33+$ The Cufps horizontal.
Eclipfe of the
Sur, Feb. 18,
1736.7 .06 .
ferved in Fleetliret, London, by Mr. Geo. Graham,

3532 The middlle of the larger Spot emerged.
$3^{3} 21$ The finaller emerged, or a little before.
45257 The Chord between the Cufps - - 1057
5500 The Chord
$\begin{array}{llll}56 & 32 & \text { The Chord - - - - } \\ 59 & 34 & \text { The Chord - }\end{array}$
Then a Cloud cover'd the upper Limb, and prevented a Sight of the ending, which was foon after.

Between twelve and one a Clock, I meafured the Diameter of the Sun with a Micrometer. At the Time of the greateft Obfcuration, the lucid Part of the Sun's Diameter was equal to 392 fuch Parts as his whole Diameter contained 2188.

I had a Tranfit of the Sun at Noon, and of Sirius at Night, which, compared with preceding ones, I found my Clock went too faft for mean Solar T'ime, about $1^{\prime \prime}$ in a Day.
——At the
Royal Obfervatory at Greenwich. obferved by
J. Bevis,
M. D. in

Company wisth
Dr Halley:

Ibid. p. 176

-Edinbuigh,

 by Colin Mac Laurin, Prof. Math F.R.S. Ibid. p. 177.2.

Appar. Time. p. m. At
h $1 / 1$
22539 The Beginning.

5	3	29

At the End, the Sun's Limb appeared fomewhat tremulous, an? a fmall thin Cloud came over it. Dr Bevis judged the Time might be relied on to 2 or $3^{\prime \prime}$.
3. In the Hiftory of Eclipfes collected by Ricciofus, there are very few faid to be Annular; and of thefe fome have been controverted, as that feen by Clavius at Rome, April 9, 1567, and rhat fien by Feffenius at Torgaw in Mi/nia, Feb. 25, 1593, which are both dilputed by Kopler. Some Aftronomers, Ancient and Modern, have been of Opinion, that no Eclipfe can be Annular: an! 1 fiace fuch feem to have been rarely oblerved, and I have not mat with a particular D) feription of ainy of them, I fhall give as full an Account of this Eclipfe as I can collect from the Obfervations that were made here, and thofe that have been communicated to me from the Country.

The Sky was generally favourable in the Southern Parts of Soollayd during the E.clipfe; and though there were great Showers of Snow in the North, they had fometimes a View of it. There was fonmething very entertainirg in the annular Appearance, a Pbenomenon that was equally new to all who faw it, that give great Delight to the Curious, without ftriking Terror into the Vulgar. It extended Southward al. moft to Morpeib in Noribumberland, and beyond Invernefs Northward; fo that a Part of England, and almoft a!l Scolland, were within it's Limits. I have not as yet learned how far the North Limit was from us; but I am inforned, that the Weather was very unfavourable there.

Ten Diss before the Eclipfe, I wrote to many of my Acquaintance in the Country, defiring that they would determine the Duration of the annular Appearance as exactly as poffible; in Hopes, by comparing their Obfervations, to have traced the Path of the Centre and the Limits of this Pkenomenon after the Example given in 1715 , by Dr Halley, to whom we owe the beft Defcription of an Eclipfe that Aftronomical Hiftory affords. I fhall give an Abftract of the Accounts I received in Anfwer to thefe Letters, after I have defcribed our Obiervations at Edinburgh.

The Times of the Apearances here were determined by a Pendufum Clock, which Mr Grabam gave me fome Years ago, from whom I alfo had the meridian Inftrument by which it is examined. The mesidian Line was often adjufted in the ufual Manner, and an exact Ac. count of the Sun's Tranfits in the Meridian, and of the Tranfits of

Procyon in a fixed Telefcope, was kept by Mr Sbort for a long Time before and after the Eclipfe; and, by comparing his Obfervations, I cannot doubt but that the Times were determined with fufficient Exactnefs. I was often with him when he examined the Meridian, and obferved thofe Tranfits; particularly the Day of the Eclipfe, when by tine Sun's Paffage in the M1eridian, we found that the Cluck was befure the apparent Time 13 Minutes 27 Seconds; and fo nauch I have libbducted from the Times that were marked during the Obfervation. The Latitude of this Place is commonly faid to be 55 Digrees 55 Mi nutes; and by fome Trials we have made lately, this mult bee near the Truth, though in fome Maps and Tables it be reprefented greater. By comparing an Obfervation we had here of the End of the Ectiple of the Moon, Nev. 20, 1732. with an Obfervation of the End of the fame Eclipfe by Mr Graiom in Flle:ftrect, the Longitude of this Place is a little more than 12' of Time further Weft.

Sume Days before the Eclipfe, Lord Aberciour fet up a Clock in the Cafte, and adjufted it with mine by a Watch that newed the Seconds. The Clocks were compared together the Day of the Eclipfe at Noon, by a Cannon fired from the Caftle, fome Perfons being appointed to attend each Clock, and mark the Seconds when they heard the Sound: An Allowance of $2^{\prime \prime}:$ being made for the Progrefs of the Sound, (which was determined by feveral Trials at Night) the Clock in the Cafle was found to be before the apparent Time $12^{\prime} 19^{\prime \prime}$, and fo much is fubducted from the Times that were marked in the Caftle curing the Oblervation. It was agreed that we nhould give Signals to one another mutually at the Beginning and End of the Eclipfe, and at the Beginning and End of the annular Appearance. His Lordhip's Signal from the Caftle was a Cannon, ours from the College a Mufquet, Perfons being appointed to mark our Signals from a proper Place of the Catte: There is no Regard however had to thofe Signals in marking the Times of the Appearances. Lord Aberdour made ufe of a reflecting Telefenpe of $15 \frac{1}{2}$ Inches focal Diftance, that magnified 90 times; only he obierved the annular Appearance with one of $5:$ Inches, that he might have a View of the whole Difk of the Sun at once. Mr Short obferved the Beginning of the Eclipfe with a Telefcope of ${ }^{15} 5^{1}$ Inches focal Diftance, that magnified 104 Times, but the annular Appearance with one of the fame Length, that alfo took in the whole Difk of the Sun, and magnified 50 times. The reflecting Telefcope with which I obferved the Eclipfe from the Beginning to the End, took in the whole Difk of the Sun, (having been made by Mr Sbort for this Purpofe) though the focal Diftance of the big Speculum be $9^{\frac{1}{2}}$ Inches; and though it bears a higher Charge, I made Ufe of an Eye-glafs on this Occafion, that magnifies only 50 times.

By a Computation that had been made here from Sir I. Newton's Theory, I expected that the Ediple would begin at $2^{\text {h }} 6$, apparent Time; we therefore looked attentively towards the South-weft Part

Eclipfes of the Sun.

of the Sun's Limb from Two o'Clock. At $2^{\text {h }} 5^{\prime} 3^{6 / 1}$ we perceived a Depreffion that was juf difeernible on the Sun's Limb near that Place; our Signal was then made, but by an Accident Lord Aberdour had been hindred from obferving the Sun at that Time: However, when he looked for it, he faw it was begun, and his Signal gave general Intimation of this to the Town, about $40^{\prime \prime}$ after we had firft perceived it; and, as far as I have learned, it was not difcerned by the Eye, though affifted with a fmoaked Glafs, till about this Time.
I obferved the P'rogrefs of the Eclipfe by a Heliofcope; but after 10 Digits were eclipfed, I returned to the Telefcope, to attend the Beginning of the annular Appearance. A litele before the Annulus was complete, a remarkable Point or Speck of pale Light appeared near the Middle of the Part of the Moon's Circumference, that was not yet come upon the Difk of the Sun; and a Gleam of Light more faint than this Point, feemed to be extended from it to each Horn: I did not mark the precife Time when I firft perceived this Light, but am fatisfied that it could hardly be lefs than 4 of a Minute before the annular Appearance hegan. Mr Sbort (who was in another Chamber at fome Diftance, and made ufe of a larger Telefcope) affures mee that he faw it $20^{\prime \prime}$ before the Annulus was completed; and this is confirmed by a Call that was then heard from the Chamber where he was, of which I did not underftand the Meaning till we met afterwards, and upon which the Perfon who made our Signals was about to fire, if I had not forbid him. I was furprized with this Light at firft, and did not immediately recoliect that it proceeded probably from the fame Crown that was feen about the Moon in a total Eclipfe of the Sun at Naples in 1605 ; and was obferved by many in different Parts of Europe, in the three late total Eclipfes- of 1706, 1715, and 1724. I did not expect to have feen this Light, when fo much of the Sun's Difk was uncovered ; but as I kept only fo much of the Difk in the Telefcope as was neceffary for afcertaining the Time of the Formation of the Aimulus, this muft have contributed to my difoovering it; for this Light was very faint, compared with that which appeared upon the Sun's Arch rear the fame Place the Moment it was uncovered, and the Anmulus completed.

Moft of thinfe who obferved the Eclipfe with Tclefcopes, mention in their Letters, that as the Annulus was forming, they perceived the Light to break in feveral irregular Spots near the Point of Contact, and thai the Limb of the Moon feemed to be indented there. Sume exprefs themfelves as if thefe irregular Parts had appeared to them in a kind of Mution. It is thus defcribed by Mr Bayne, Profeffor of she Municipal Law, 'What appeared to me mof entertaining, con-- fidered as an Objeit of Sight, was, when the Extremities of the - Horns fornued upon the Face of the Sun feemed as if they had been - in the Λ ction of uniting their Points, thic Inequalities on the - Extremity of the Moon's Difk gave the Appearance, as it were,

Eclipfes of the Sur.

- of fmall Bodies in particular Motion.' There was not any U'ndulation at this Time on the Circumference of the Sun. I find that fuch Appearances of a tremulous Motion in certain Periods of folar Eclipfes are mentioned by IIceelius and others. Lord Aberdour cbicerved she Beginning of the annular Appearance with a fmaller Tclefoope, and perceived only a nairow Streak of a dufky red Light to colour the dark Edge of the Moon, immediately before the Ring was completed, and after it was difiolved.

At $3^{\text {h }} 25^{\prime} 55^{\text {ll }}$ the Circumference of the Sun appearedi complete, and perfectly circular. We called at the fame Inftant to the Perfon who was appointed to make cur Signal, and in a Second or two the Camon from the Cafle was heard. The Annulus appeared to the Eye to be central for fome time, but in the Telefcope it was always broader toward the Sourlh-eaft than towards the North-weft Part of the Sun's Difk. The Breadth appeared much greater to the naked Eye, than could have been expeeted from the Difference of the Semidiameters of the Sun and Moon. This was fo remarkable, that fuch a Pb.e. nomenon mult have confirmed thofe Aftronomers in their Opinion, who imagined that the Diameter of the Moon is contracted in her Conjunctions with the Sun. This Appearance proceeded chiefly, I fuppofe, from the Lights incroaching on the Shade, as is ufual; tut whatever was the Caufe, every Borly feemed furprized that the Moon appeared fo fmall upon the Difk of the Sun.

It was oblerved, that the Motion of the Moon appeared more quick in the Formation and Diffolution of the Amnilus, than during it's Continuance. This is particularly deferibed by Mr Fullarion, of Fulliricn, in a very exact Account of the Eclipfe, as it appeared at his Seat at Crosby, near Aire, on the Weft Coaft of Scolland. He writes that, : the Annulus appeared to be nearly of an uniform Breadth, during the - greater Part of the Time of it's Continuance, but feemed to go off - very fuddenly; fo that when the Difk of the Moon approached to - the concave Line of the Sun's Difk, they feemed to run together - like two contiguous Drops of Water on a Table when they touch - one another;' and he adds, that it came on in the fame way. This A ppearance feems to be accountable from the fame optical Deception as the former.

During the Appearance of the. Annulus, the direct Light of the Sun was ftill very confiderable; but the Places that were fhaded from his Light appeared gloomy. There was a Dunk in the Atmofphere, efpecially towards the North and Eaft. In thofe Chambers that had not their Lights Weftwards, the Obfcurity was confiderable. Venus appeared plainly, and continued vifible long after the Annulus was diffolved, and I am told that other Stars were fien by fome: One Gentleman is pofitive, that being fhadied from the Sun, he diferned fome Sars Nurthwards, which he thinks by their Pofition were in Lirfa Major.

It was very cold at this Time; a little thin Snow full; and fome little Pools of Water in the College Area, where there was no Ice at two o'Clock, were frozen at Four. A reflecting Telefoope of a large Size, and of a much greater Aperture than ordinary, that took in the whole Sun, and burned Cloth very furldenly through the tinged Glafs at the Beginning of the Eclipfe, and on that Account could not then be ufed with Safety, was that by which Mr Short obferved the annular Appearance. Some curious Gentlemen found, that a common Burning-glafs, which kindled Tinder at $3^{\text {h }} 59^{\prime}$ and burned Cloth at $4^{h} 8^{\prime}$ had no Effect during the annular Appearance, and for fome time before and after it.

I have mentioned thofe Things mofly upon the Report of others; for during the greater Part of this Appearance I was obferving the Progrefs of the Moon upon the Difk of the Sun through the Telefcope. The firf internal Contact of the Difks, at the Formation of the Annulus, was confiderably below the Weft Point of the Sun's Difk; and the fecond Contact, at the Diffolution of the Aimulus, leemed to be about 10 Degrees Eaftwards from the North Point or Zenith of the Difk: But I did not find that the Pofition of thofe Points of Contact could be eftimated with Exactnefs on feveral Accounts. The Breadth of the Ammulus tuwards the South-eaft Part of the Sun's Dink, was at keaft double of it's Breadth towards the oppofite Part, about the Middle of this Appearance. An Apparatus, by which I was in Hopes of being able to determine thofe Things more accurately, was not ready. I propofed to have made fome Eftimation of the Ratio of the Continuance of the annular Appearance, where it was central to it's Continuance at Edinburgh, from that of the Arithmetical Mcan betwixt the Numbers that mould exprefs the Proportion of the greateft and leaft Bradth of the Anmulus to the Geometrical Mean betwixt the fame Numbers; or from the Ratio of the Radius to the Sine of half the Arch intercepted between the two Points of internal Contact ; but I did not cobtain thefe Ratio's with fufficient Exactnefs.

At $33^{11} 31^{\prime}+3^{\prime \prime}$ the Aimutus was diffolved, after having continued $5^{\prime} 4^{\prime \prime \prime}$. And here agilin our Signals were heard immeditely after one another: The Middle of the E.cliple was therefore at $3^{h} 28^{\prime \prime} 49^{\prime \prime}$. In this the Tine by Obfervation did not agree fo well with the Time by Computation as in the Beginning of the Eclipfe, the Dilference being here about four Minutes. The Irregularitics of the Moon's Suiface eccalioned the fime Appenrances, in fome meafure, as at the Formation of the Annulus. When I returned to the Heliofoope, there was fome Time loft in directing it towards the Sun; and when 1 got the Innage in a due Pofition, there was lefs than in Digits celipfed; and I fufpeet that it never amounted to full in Digits. I hid no Micrometer.

After taking fome more Digrits, I went with Sir Fobn Clerk to a neighbouring Houfe, to obferve the End of the E.clipfe, being

Eclipfes of the Sur.

afraid we fhould not be able to fee it from the College. By a Signal that was made to the Perfon who attended the Clock, ($2^{\prime \prime}$ being fubducted, that were loft in making the Signal) the End was at $4^{\text {h }} 44^{\prime} 5^{\prime \prime}$. The Wind blew hard at this Time, fo that the Telefcope could not be kept very fteady, and there was fome Undulation on the Circumference of the Sun; but I cannot think that the Error of this Obfervation can exceed 3 or $4^{\prime \prime}$, the Circumference of the Sun appearing to me complete at that Inftant.

I fhall now fubjoin the Obfervations that were made in the Caftle and College in one View, by which you will fee that they agree precifely as to the Continuance of the annular Appearance, a Coincidence that could not have been expected; but fo it is, according to the Numbers that were given me immediately after the Ectipfe by thofe whoattended the Clocks.

The Beginning of the Eclipfe at The Beginning of the annular Apppearance The End of the amnular Appearance The End of the Eclipfe

In the College.			In the Cafle.		
			h		71
2	5	36			
3	25	55	3	25	53
3	31	43	3	31	41
4	44	. 51	4	44	48

By Lord Aberdour's Obfervations, the lowermoft and biggeft of the two Spots that appeared upon the Difk of the Sun in the upper Part, was touched by the Moon at $3^{\text {h }} 4^{\prime} 40^{\prime \prime}$ and this Spot was wholly covered at $3^{\text {h }} 5^{\prime} 19^{\prime \prime}$. Mr Short obferved another Spot at the Circumference of the Moon, at $2^{h} 24^{\prime} 55^{\prime \prime}$. Though the Obfervations of the Digits could not be made with fo much Exactnefs as the preceding, on feveral Accounts, I hall fubjoin fome of them.

The Sun was eclipred

		h	1	11
2	Digits at	2	21	14
6	Dig.	2	50	54
9	Dig.	3	45	57
8	Dig.	3	52	55
7	Dig.	3	59	53
6	Dig.	4	6	51

At Hopeton-Houfe, nine Miles Weft, and a little Northwards from Edinburgh, Lord Hope oblerved the annular Appearance begin at $3^{\text {h }} 25^{\prime}$ the End of this Appearance at $3^{\text {h }} 31^{\prime}$ and the End of the Eclipfe at $4^{\mathrm{h}} 44^{1 \frac{1}{2}}$. His Lordfhip was obliged to obferve the Eclipfe at a Diftance from the Clock, and to determine the Times by a Pocket Watch, that had been adjufted by a very good Dial that Day at 120^{\prime} Clock; but affures me that the Duration of the annular Appearance was 61 , as near as could be judged by a Watch that did not V O L. VIII. Part i^{2} fhew
flew the Seconds. The Moon appeared to touch the larger Spot above-mentioned at $3^{\text {h }} 4^{\prime}$ and covered it in about half a Minute. The Emerfion of the fame Spot was at 4^{h} ' 3^{3} '. A leffer Spot, higher on the Sun's Difk, was not covered cill in ${ }^{\prime}$ after the greater Spot, but appeared rather fooner than it.
At Crosby, on the Wert Coaft of Scolland, about 4 Miles. North from Aire, Mr Fullarton obferved the Eclipfe to begin at 20^{\prime} Clock. A diftinct Annulas was formed about 201 after 3, which conitinued exacly 7^{\prime}, meafured by a Pendulum vibratiog Scconds. It appeared rather broader on the lower Verge of the Sun; but the Difiference muft have been very fmall, for it was but barely difcernible in a Species of the Eclipfe 6 Inches over, caft on a Piece of Paper behind the Eye-piece of a Telefcope 6 Feet long. He adds, that the Day-light was not greatly obfcured, appearing only fo much dimmer than ufuall, as that of the Sun is, when feen through a very gente Mift in a fine Morning in April or May. Sir Tbomas Wallace found that the annular Appearance continued at his Houfe-near Lookryan in Gollowxay 5^{\prime}.
From the Obfervation at Crosby, the Centre of the annular Pcnumbra feems to have entered Scotland not far from Irwine. It proceeded afterwards towards the Eaft, with a confiderable Inclination Northwards; and probably Left Scolland not far from Montrose on the Eaft Coaft: For the Reverend Mir Aucbterlony found, that the annular Appearance continued there 7^{\prime}, as near as he could judge by an ordinary Watch. The Annulus alfo appeared to him of an uniform Breadth, through a common Telefcope. This Oblervation, though not fo exact as that at Crosby, is however confirmed by that at Si Andrew's, to be mentioned afterwards. Thefe two Obfervations at Crosby and Montrofe, were male nearer the Path of the Centre, than arig others that have been communicated to me.

As for the Sourhern Limit of this Appearance, the Eclipfe was not annular at Necucoflle, and there wanted about 40 Degrees of the Limb of the Sun to apptar in order to form an Annulus, accordirg to the Obfervation of int fiface Thompfon. The whole Daration of the Eclipfe was $50^{\prime \prime}$ lefs by lis than by our Obfervation ; and the bigger Spot was hid $1^{\mathrm{h}} 9^{\prime} 35^{\prime \prime}$ by his Obfervation, the Digits eclipfed at it's Immerfion 7,7 ; at it's Emerfion 4, 1. Nor was the Ecliple annular at Morptib, whence Mr Fohn W.illjan writes, that the Body of the Moon appeared almoft encircly on that of the Sun; and that to the naked Eye, the Difk of the Sun feemed to be aimoft round.

But of all the Obfervations that have been communicated to me, that of Mr Long at Longfremlington*, determines the Southern Limit with the greateft Exactnefs. The Annulus, he fays was very fmall there upon the upper Part, and the Duration 40 or 41 half Seconds, meafured by a Pendulum 9, 8I Inches long; from which we may conclude,

[^15]Ecliffes of the Sun.
conclude, that the Limit was very near this Place. I have received no Accounts concerning this A ppearance from any Places on the Weft Coaft of Eingland. At Alnwick in Nortbunberland the Eclipfe was annular, but I have not heard that the Time of it's Continuance was meafured.

At Berwick, the annular Appearance continued betwixt 4 and 5^{\prime}. The End of the Eclipfe at Dunbar, by Mr Mark's Obfervation, was at $4^{\text {h }} 4^{8!} 1^{16 \prime}$, but there was fome Miftake committed in reckoning the Vibrations of the Pendulum in meafuring the Continuance of the dinulus.

At St Aidrese's, this Appearance was obferved to continue precifely 6', by a Pendulum Clock, by Mr Cbarles Gregory and Mi David 2oung, Profeflors in the Univerfity. By a Figure of the Annulus taken from it's Image, projected through a Telefope upon a Paper Screen, the Breadth towards the South-eaf Pare of the Sun's Difk is rather more than double of it's Breadth towards the oppofite Part.

I have already mentioned the Obfervation at Montrofe. At Aberdeen, the Animulits was obferved by Mr ' olon Stewart, Math. Prof. for $3^{\prime}{ }^{\prime \prime \prime}$ '. It was almolt central, when the Clouds deprived him of any further View of it; lie thinks it probable, that it continued there about 61 . Several Gentlemen, who live on the Coaft Northwards from Aberdeen, were defired to obierve the Continuance of the Amulus; but I do not find that any of them faw this Plaænomenon from the Beginning to it's. End.

At Elgin, the Ecliple was obferved amnular at $3^{h} 29^{\prime}$ the larget Part of the Ring being uppernoolt, by the Reverend Mr Irwin, who had a View of it for about $30^{\prime \prime}$; but by reafon of intervening Clouds could not determine the Beginning or End of this Appearance. At Caffet Gordon, Mr Grigory had one View of the Eclipfe while it was amnular, but could nake no further Oblervation for the fame Reafon.

At Inverincs, the Eclipfe was annular for fome Minutes, as I am informed by feveral Gentlemen; but they did not mealure the precile Hime how long it continued. By the Accounts I have had from Firt Augufus and Fort Wrilliam, it is doubtful whether the Ectipfe was ammular in thofe Places or not. Fort Augufus is at the Weft End of L.ocbnefs, and probably was not far from the Northern Limit of this Plocacincmon. I have as yet received no Accounts of this Appearance from any Place further Northwards, or from any Place in the Weft, but thofe I have mentioned. Some Gentemen in Argylefhire, who obferved this Eclipfe, were deprived of a View of the Aniulus by the Clouds.

Mr Walker, an ingenious Gentleman at Frazerburgb on the North Conft, found that from the Time of the Ring's beginning to appear upon the lower and Weftern Part of the Sun's Difk, till it began to break on the Eaf and upper Part, there were 300 Vibrations of a Pendulum,

Eclipfes of the Sun.

or 5^{\prime}. The Ring feemed fomewhat narrower even at the Middle of the Eclipfe on the lower Part.

This is the Sum of what I have been able to learn concerning the Obfervations of this Eclipfe, that were made in this Country, and in the neighbouring Parts of England. I have made fome Computations relating to the Extent of the annular Penumbra, and the Direction and Velocity of it's Motion; but fince I have not a fufficient Number of exact Obfervations, by which I might examine them, it would be of litte Ule io deferibe them. Had the Weather been more favourable in the North, and my Requett of having the Duration of the annular Appearance meafured, been made more public before the Eclipfe, after Dr Halley's Example in 1715; I doubt not but I fhould have been able to have given a more exact Account of the Progrefs of the Centre of this Phæonomenon, and of it's Limits; but I had been difcouraged from publifhing any Thing concerning it, by our bad Fortune in feveral late Eclipfes, of which the Clouds had not allowed us the leaft View.

I am informed, that there was very little Notice taken of this Ecliple by the Populace in the Country; and I cannot but add, that feveral Genteman of very good Credit, who are not in the leaft nort-fighted, affure me, that about the middle of the annular Appearance they were not able to difcern the Moon upon the Sun, when they looked without a fmoaked Glafs, or fomething equivalent.

I have taken Notice of this, becaufe it may contribute to account for what at firft Sight appears furprizing, that there are fo few annular Eclipfes in the Lifts collected by Authors. Kepler, in his Aftron. Optic. dors not feem to acknowlcige, that any Eclipfe, truly annular, had ever been obferved. There are none mentioned by Ricciolus, from the Year 334 till 1567 , though there are 13 or 14 total E.clipfes recorded within that Period; yet it is allowed, that the Extent and Duration of the annular Appearance may be confiderably greater in the former, than of the Darknefs in the latter. It may have contributed to this, that annular Eclipfes muft have been rather incident in the Winter Seafon in the Northern Hemifphere, and that Eclipfes have been more readily total in the Summer, when their Chance of being vifible was greater, and the Seafon more favourable for obferving them. But perhaps the chief Reafon why few annular Eclipfes appear upon Record, is, that they have not been diftinguifhed in moft Cales from ordinary partial ones. The Darknefs diftinguifhed total Fclipfes, or fuch as were very nearly total; and it is thefe chiefly, Hiftorians mention. There are two central Eclipfes of the Sun ftill famous amongft the Populace in this Country: That of March 29, 1652 was total here, and that Day is known amongft them by the Appellation of Mirk Monday. The Memory of the Eclipfe of Feb. 25,1598 , is alfo preferved amongft them, and that Day they term, in their way, Black Saturday. There is a Tradition, that fome Perfons
in the North loft their Way in the Time of this Eclipfe, and perifhed in the Snow.

There was a remarkable total Eclipfe of the Sun in this Country, Fune 17, 1433, the Memory of which is now loft among the Populace; but it appears from a Paffage in a Manufcript in our Library, that it was formerly called by them the Black Hour, after their ufual Manner. It is defcribed thus: - This year there was a wonderful - Eclipfe of the Sun, on Yune 17, about 3 in the Afternoon; and - for about half an Hour, a Darknefs like Night overfpread the Face - of the Earth; fo that nothing was vifible to human Eyes; whence ' it has commonly been called the Black Hour.' This Ecliple is not in Ricciolus's Catalogue, but is mentioned by him in another Place, Sibol. Cap. 2. L 5. By a Computation of this Eclipfe, the Sun was within ewo Degrees of his Apogerm, and the Moon within ${ }_{13}$ Degrees of her Perigeum; fo that this muft have been a remarkable Eclipfe. The Progrels of the Shadow was towards the South-eaft; and Setbus Caluifius cites the Turkish Annals for it's being total in fome Part of their Dominions.
P. S. We looked for the Orcultation of Aldibarans by the Moon on Feth. 25, in the Evening; but the Sar paffed by the upper Horn, without being hid, at a Diftance from ic, that was by Eftimation nearly cqual to the Diflance betwixt the neareft Part of the Spots Ludoxus and Arifotle.
4. We had a very fine bright Day for obferving the Eclipfe; and never was any Thing of that kind, I believe, obferved with more Exactnefs. In feveral Places for 10 Miles round this City, as well as in it, were fome fkilful Perfons ftationed for that Purpofe: I myfelf happened to be in the Caftle here, which is an Eminence at leaft of 500 or 600 Feet in Height, befides a great Afcent from the Level of the Sea to the Fuot of the Rock upon which it is fituated.

Mr Mac Laurin had placed himfelf at a Window in our College;

- At Edia. burgh, by the Hon. Sir John Clerk, Bart. one of the Barons of his Maje β_{1} 's Ex. chequer there. and F.R.S. 1bid. p. 195. others were fent where the Eclipfe we fuppofed, would be perfectly central, about 12 or 14 Miles farther North.

A Gun from the Caftle was fired at $22^{\prime \prime}$ after Twelve, mean Time, (or ${ }_{2}{ }^{\prime} 22^{\prime \prime}$ before Twelve, apparent Time) upon which, by Agreement, the Clocks and Watches of the Obfervers were adjufted. A fecond Cannon was difcharged precifely when the Eclipfe began, which was at $5^{\prime} 3^{\prime \prime \prime}$ after Two. A third was difcharged when the annular Appearance began, which was at $25^{\prime} 55^{\prime \prime}$ after Three; it's Continuation was $5^{\prime} 4^{\|!1}$. A fourth Cannon was fired at the End of the Eclipfe, which was at $44^{\prime} 50^{\prime \prime}$ after Four; all reckoned by apparent Time. We had half a fcore good rehecting Telefcopes to make thefe Obfervations, and our Calculations perfectly agreed, fo that you may depend upon them as moft exact.

This was not done by us as a Matter of mere Curiofity, but to affift in afcertaining the Motions of the Moon, on Sir I. Newton's

159
 Eclipfes of the Sun.

Theory upon which a good deal of the Doctrine of the Longitude will depend. Sir IJaac's Calculation, as to the Beginning of this Eclipfe, was pretty right; but not fo well as to it's central Appearance. Two Spots in the Sun made a very diftinct Appearance to us, as they entered under the Moon's Body; one was a little above the central or horizontal Line of the Sun, fhaped as in the Figure; the other was near the Edge, on the Eaft Quarter. The firt, by Comparifon with the Sun's Diameter, was larger than the Difk of our Earth; it was dark in the Middle, and certainly emitted no Fire or Light. The Edge of the Moon appeared a little ragged or rough, but not mountainous, becaule of the Sun's Light. There was no confiderable Darknefs, but the Ground was covered with a kind of a dark greenif Colour. Two Stars appeared, the Planet Venus, and another farther Eaftward. This Account is what you may depend on.

- 11 TrinityCollege, Cambridge, and at Ke:tering; communicated in a Letter from Mr Charles Mafon, Ibid. P. 197.

5. The Beginning by the Clock - ——at
The End -

 Piont

N. B, The Obfervatory Clock was $1^{\prime} 50^{\prime \prime}$ too flow, which being addechall the way will give true Time.
6. The Beginning of this Eclipfe was above feven Hours fooner than by our Calculations. For at $3^{\text {h }} 33^{\prime} 3^{6 \prime \prime}$, part of the Sun's Limb feemed to be obscured by the Moon, as we looked through a fmoaked Glass, fitted to a Telefcope of in Feet, whereas but a little before, at $33^{\prime \prime}$, the Sun appeared quite round thro' the fame Telescope. But the Calculations placed the Beginning of the Eclipfe at $3^{\text {h }} 41^{\prime}$.

We then obferved the Digits of the Eclipfe on a white Table, upon which the Rays of the Sun were thrown, by an Optical Tube of 6 Feet; there was a Circle inscribed on the Table, meafured by the Image of the Sun, and divided into Digits and half Digits. The Observation was pretty much difturbed by the Wind flaking the Infrument. The following feem to have been the mont certain Piafics.
h 1
340 about one Digit was eclipfed.
348 two Digits.
357 three Digits.
46 four Digits.
415: five Digits.
4.35
feven Digits.
445 fever Digits i which feemed to us the greater Darknefs.
455 feven Digits again, the Eclipfe now decreafing.
When the Appearance of the Sun going down began to appear too fluctuating and trembling, and disfigured from a round 1 into an oval Shape, we lift off meafuring the Digits, becaufe it was not attended with Sufficient Certainty.

Some Spots appeared in the Sun, efpecially 3, the Pofitions of which at Noon that Day, being defribed from the ObServations, is

Eclipes of the Sun:

extibited in the Scheme. We have thus determined the Occultation:s of two of thefe by the fame Tube of 11 Feet.

42318 The Limb of the Moon touches the Corona of the Spot A,
2349 It begins to touch the Nucleus of the Spot A.
2425 It hides the whole Nucleus.
$26 \quad 14$ It touches the Spot B.
2631 It covers the whole.

- On Mount Aventine at Rome, by the Abbot Didacus de Ravillas, F.R.S.

—At Wito temberg in Saxony, by J. Frederick Weider.
Ibid. p. 20 I.
Fig. 67.

7. The Image of the Sun was thrown thro' a Telefcope of Campanus upon a white Table, with a Circle equal to the Image, divided into 12 Digits. The Phafes obferved by this Inftrument are as follow.

Ibid. p. 200.

Afterwards, as the Sun went down, it was hid in Clouds. The Beginning could not be feen becaufe of Clouds.

- At Phila-
delphia in
Penfylvania,
by Dr Kearly.
No. 446.
p. 121. Joly,

Ev6. 1737.
9. The Eclipre Fcb. 18. could not be well obferved here, by Reafon of Clouds. I rectified my Clock by one of Heath's large Ring Dials. At $7^{\text {h2 }} 18^{\prime}$ there was a fmall Dent in the Sun's Edge, whence the Beginning 1 or 2^{\prime} fooner: Juft before the End, viz. $10^{\text {b }}$ 11 or 1^{1}, I had a Sight of the Sun again, and there was then a Dent in the Sun's Edge, fo that the End muft be $10^{\mathrm{h}} 13$ or 14^{\prime} in
the Morning: About the Middle of the Eclipfe, there was a large Spot near the Middle of the enlightened Part which was the North Side of the Sun.
VII. 1. This Obfervation was made by a Refracting Telefcope Eclipfe of the of 12 Feet Focus, arned with a Micrometer, and by a reflecting Duration — - - — —————200 16

Telefcope of 9 Inches focal Length.

dig. min.
Quantity of-Obfcuration by the Micrometer $-\mathbf{O}_{2} 28$
h. 11

Fleetfreet, London. No. 453. p. 91. April, E゙c. 1739.
Aug.4, 173^{3}.
b.) Mr George

Graham and
Mr Short,
Sun, obferved
(1)
N. B. The Perfon who was obferving the Tranfit of the Sun over the Meridian, obferved the End to be at the fame Inftant with the above Obfervation.
2. This Obfervation was made with a Tube of 7 Feet, armed with - At Upfal, one of Mr Grabam's Micrometers.

True Time.

h 11
$12 \quad 19 \quad 52$ Beginning of the Eclipfe.
$1235 \quad 57$ Digits eclipfed o $5 \frac{7}{3}$

$12 \quad 37 \quad 47$ O 12	13

$12 \quad 42 \quad 22$ End.

- 2330 Duration.

Becaufe of the Clouds that covered the Sun at times, I could not oblerve the greateft Darknefs and other Phafes of the Eclipfe; but we may deduce from thefe Obfervations, that the greatef Obfcuration waso 8^{\prime} Digits at $12^{\mathrm{h}} 30^{\prime} \cdot 37^{\prime \prime}$.
3. I could not obferve either the Beginning or End of the Eclipfe, - At Witbecaufe of the Clouds; but as they were fometimes broken by the temberg, by Wind, I had an Opportunity to obferve the following Phafes,

II 30 The firft Phafe of the increafing Ecliple was oblerved, 1 Fig. 68. Digit.
1219 p. m. Another Phafe was feen, 2 Digits 30 !
1237 The third Phafe of the decreafing Edilipfe was feen.
There were alfo feen at the fame Time 10 Spots in the Dirk of the Sun.

VO L. VIII. Part i. X

The

Eclipfes of the Sun.

The Difk of the Moon under the Sun fhewed the Circumference exactly terninated, without any Inequality, and very black. No Trace of any Atmofphere on the Orb of the Moon could be perceived.

The Calculation taken from the Ludovician Tables erred both as to the Magnitude and Time: For the Magnitude was predicted to be 2 Digits 20 , and the Middle to be $12^{\text {h }} 5^{\prime}$.
-ABBologna, 4. As the Difk of the Sun abounded with Spots at this Time; by Eultachius on the Morning of the approaching Ecclipfe, about $21^{\mathrm{h}} 30^{\prime} \mathrm{p} . \mathrm{m}$. Manfredi, Euftacbius Zanolli Pbil. Dist. and Math. Prof. Publ. my Collegue,
F. R. S. F.R.S. 1bid. P. 94. traced out the Pofition of the chief of them, by the Help of a Micrometer, fitted to a Tube of 8 Feet. There occupied chiefly the fouthern Part of the Sun, which the Moon was to cover. It was not neceffary to defcribe them all, nor could it be done for the Multitude of Spectators. Thofe, of which the Places could be determined, are fhewn in the Scheme.
Fiz. 69.
The Beginning of the Eclipfe was not perceived before $22^{\text {h }} 5^{\prime \prime} 25^{\prime \prime}$, p. m. tho' I had long obferved it with a Tube of if Feet, and others with other Tubes. I am of Opinion however, that the Contact of the Luminaries happened at leaft a Minute fooner, than I perceived it; which feems to be confirmed by the fuccecding Phafes.

The Digits deforibed by Circles on a Table, after the ufual Manner, and the Parts of Digits are determined by Eftimation. The Telefcope was 6 Feet; the Image was 2 Inches or thereabouts. The Phafes of the Emerfion are more certain than the Phafes of the Immerfion for many Reafons.

Mesy

Eclipfes of the Sun.
In the mean Time, the Spots of the Sun were covered and uncovered after the following Manner.

Truc Time.
h 111
23350 Spot C covered by the Moon, with a Tube of 8 Fect.
213 Spot A begins to be hid, with a Tube of in Feet.
21 49 The Centre of the Spot A is hid.
224 I The whole Spot immerges.
2354 The ficf of the 2 Spots at B begins to immerge.
25 10 The Centre of the fame Spot is hid.
2545 The whole Spot is hid.
2624 The latter of the 2 Spots at B touches the Limb of the Moon with it's Centre. Hitherto I obferved with the fame Telefope of is Feet.
272 The Spot D begins to be hid, with the Tube of 8 Feet.
3 I 2 The whole Spot is hid with the fame Tube.

- 3: 45 The Spot A begins to appear on the Image of the Sun thrown on the Table.
3230 The fame Spot had entirely emerged, with it's Ring with the Tube of in Feet.
3325 Emerfion of the Centre of the firft of the two at B.
3459 Total Emerfion of the fame Spot.
35 51 Total Emerfion of the latter; all thefe with the fame Tube of II Feet.

The Obfervations both of Spots and Digits were made by feveral other learned Men befides Zanotic; and all obferved the Time by the fame Clock, which was afterwards corrected by Obfervations of the Meridian.

During the Eclipfe, I obferved the Tranfit of the Moon over the Sun by the Plane of a mural Semieircle fufpended at the Meridian.

To determine the Tranfit of the Moon, I noted the Time, when a very fmall Segment of the Difk of the Moon, vifible upon the Sun, under the horizontal Thread of the Telefcope, appeared to be bifected by the vertical Thread; for then the very Centre of the Moon muft have been on the vertical one. But the Centre of the Moon paffed over the Centre of the Sun at $23^{h} 59^{\prime} 26 \prime \prime$. p. m. The Meridian Altitude of the Northern Limb of the Moon was $59^{\circ} 3^{61}$ $15^{\prime \prime}$; of the Northern Limb of the Sun, $59^{\circ} 53^{\prime} 0^{\prime \prime}$.

Eclipfe of the VIII. Increafing Phafes,
Sun obferved as Wittemberg in Sax-
ony, July 24, 1739. by Joh. Frid.Weider.

- No. 454° p. 226 July, छึ\%. 1739.

Fig. 70.

Decreafing Phafes.

Obfervation of Immerfions.

the Immerfion
and Emerfion of the Spoes,
whish were
conficicuous on the Difk of the
Sun at the
Time of the Eclipfe.
Fig. 71.
h $1 /$
43435 Appulfe of the Moon to the Spot a.
3445 The whole Spot a is covered.
5 I 30 Appulfe of the Moon to the Spot d.
520 _ mo the Spot e.
715 to the Spot b.
1000 Toral Immerfion of b.
1630 Appulfe of the Moon to the Spot c.
1800 Total Immerfion of the Spot c.

Emerfions.
h 1 所
53050 The Spot 6 begins to emerge.
3230 The Middle of the Emerfion of b.
3400 Total Emerfion of b.
3900 The Spot c begins to emerge.
39.50 Middle of the Emerfion of c.
[144040 Total Emerfion of c.
4100 The Spot a begins to emerge.
4140 Total Emerfion of a.
$\begin{array}{lll}6 & 430 & \text { Emerfion of } d \text {. }\end{array}$
615 Emerfion of e.
Fig. 70. Shews the Difk of the Sun in the Situation in which it appears thro' the Heliofcope.
Fig. 71. Reprefents the Spots of the Sun in that Situation which they had about the Beginning of the Eclipfe; of which the Immerfion and Emerfion were obferved during the Eclipfe.

The Moon came upon the Sun at about 102° from the Zenith; and went off at about 53° from the fame Zenith.

At the Time of the greateft Darknefs the Orb of the Moon did not appear

Defcription of an Infrument to reprefent Eclipfes.

appear quite black thro' the Telefcope, but tinged with red; but the Spots of the Moon were not diftinguifhable.
The Edge of the Muon on the left Side toward the South, about the Time of the greatelt Darknefs, fhewed the Tops of it's Mountains, which were alfo perceivable in the Image painted by the Telefcope: The reft of the Edge appeared even.

During the whole Eclipfe, the Circumference of the Moon appeared naked, without any Miitt or Cloud, which fometimes hang over it in other Eelipfis. But about the End, when one Digit about the Difk of the Sun was ftill hid, there was a vehement Motion of the Solar Light on the rough Edge of the Moon.

In the laft Place, 1 muft not omit, that a Friend of mine very Nilful in thefe Affairs, who viewed the Sun thro' a Tclefcope of 9 Feet, about $4^{\text {b }} 3^{1}$! obferved a Light in the dark Difk of the Moon refembling lightning; and that the fame Oblerver about $5^{\text {h }} 50^{\prime}$, affirmed to all the Company, that he faw again 3 Times fuch Corufeations breaking out on a fudden.
IX. The Obfervation was made with a reflecting Telefcope of 16 Inches Focus, that magnified about 40 Times.

The Beginning could not be feen for Clouds about the Horizon.
About 35^{\prime} after $80^{\circ} \mathrm{Clock}$, there was an Opening, when the Sun feemed to be about 2 or 3 Digits eclipfed.

End was exactly oblerved at $9^{\mathrm{h}} 1^{\prime} 45^{\prime \prime}$, Time apparent. No. 459. 8.633. J
X. A Projection of the Arches and Circles, conceived upon the illuminated Hemifphere of the Earth, upon a Plane, may ferve very well to fhew any Eclipfe of the Sun; and if the Places fittated on the Surface of the Earth, as Cities, Shoars, Inands, Ėc, are inferted in the Projection, and if a Circle is added, to exprefs the Pofition and Magnitude of the Lunar Penumbra, and fome fmaller Circles concentrical with it, we have then in one View thofe Places, where the Sun is covered by the Moon, and where any Part of it is withdrawn from our Sight.

But fuch an Image is momentary, and as it fhews with great Accuracy what happens at any precife Point of Time; as for Inftance, when the Centre of the Lunar Pcnumbra firft enters the Difk of the Earth, it cannot exhibit the other Pbenomena, which depend, partly on the Rotation of the Earth, partly on the Motion of the Moon. Thus if we would exhibit in this Manner all the Appearances of an Eclipfe, as they fucceed each other, we muit delineate a great Number of Projections; which would be an Alfair of infinite Labour, and would hardly be recompended by the Pleafure expected.

Whalt the Earth curns round, the Circles of Latitude indeed, and confquently the Projection of them, remain the fame; but the Meridians, or Circles of Longitude, are continually changed, and confequently

Dejcription of an Infrument to reprefent. Eclipfes. fequently the Projection of them, and the Situation of the Places of the Lirth, fol lar as depends upon them.

But the artificial Globe of the Earth, fhews the Hemifphere illumimated by the Sun at any Point of Time, with very little Trouble. For the Pule being elevated above the Horizon, or depreffed below it, fo that the Elevation or Depreffion may be equal to the Declination of the Sun at that given Time; or, which comes to the fame End, the Sun's Place being put in the Ecliptic of the Globe in it's Zenith, the artificial Horizon becomes the Boundary of the Light and Shade; for it diftinguithes the illuminated Hemifphere of the Earth from the dark one, and nothing remains to exhibit plainly the illuminated Hemifphere, but to turn the Globe round upon it's $A x i s$, till it obtains the Situation which the Hour of the Day requires.

Thus what is very difficult in Projections, is with great Eafe performed by the Globe, and alfo more conformably to Nature. When 1 confidered this, I found we ftill wanted, in order to reprefent all the Pbicnomena of any Eclipfe of the Sun, to project the Lunar Penumbra upon the Globe, and to make an Inftrument, to reprefent the Situation of it at any Time, and to refer it to thofe Places of the learth which are marked upon the Globe. By which Facility of doing the Thing, I was induced to think of fuch an Inftrument; and accordingly I have attempted to execute it after the Manner reprefented in Fïg. 72.

It is a common terreftrial Globe, furnifhed with it's Horizon, Meridian, and Hour Circle. To the Horizon are faftened two wooden Arms, A B, ab, in Length a little exceeding the Semidiameter of the Globe ; one End of each of thefe Arms, is made to embrace the Horizon, and may be faftened to any Part of it by Means of Skrews, one of which is Thewn at D.

On the oppofite Extremities B b, are placed wooden Columns, perpendicular to the Horizon BE, be, of the Height of the Semidiameter of the Globe, and of the Breadth of the Brazen Meridian, fo that a right Line being drawn thro' the Tops of the Columns cannot touch the Meridian.

On the Top of each Column is a little Ball of Brafs; each of thefe Balls is perforated by an Iron Axis, appearing on both Sides, and firmly joined to the Ball. The lower Parts of the Axes were fixed into the Columns, fo that the Balls are held faft in a Situation pasallel to the Horizon of the Globe.

The upper Parts of the Axes are round and polifhed, as well as the upper Surfaces of the Balls; and receive round Plates of Brafs EFG, ef g, which reft upon the Balls in fuch a Manner, that being turned round the Axes they always remain parallel to the Plane of the Horizon. The Plates are about 3 Inches in Diameter, and each of them has a Notch in the Circumference, to receive a Thread. The Plate ef g, is fomething lefs than the Plate EFG; and this Diffe-
rence in Magnitude is no Injury to the Infrument. Befides it has nothing Particular in it; and therefore it is only faftened with a Ball to keep it from f_{3} lling off the Axis.

But the other Plate EFG has a Circle infcribed upon it, divided into Degrees, and an Index H is added, to Thew the Number of thofe Parts. This is fo fituated, as to turn round the Axis without moving the Plate, or being affected iefeif by any Motion of the Plate. In order to this, a little immoveable Ball is placed between the Plate and the Index, for the Index to turn round upon it any Way.

Then there are thrce Rays of Brafs, $i k$, $i /$, $i m$, connected in i, containing equal Angles $k i l$, $l i m, m i k$; and the Plane i is perforated with a very fmall Hole. The Rays are elattick, and as chin as could be made to be firm, and nearly of the Length of \ddagger Part of the Globe. The Rays have alfo little Perforations at l and m, thro' which a Thread bcing drawn is brought round the Plates by in $\mathrm{FG} g$ $f e l$, the Ends being faftened together between l and m, wherefore the Skeleton of the Penumbra is allo rendered inmoveable at the Part of the Thread clmE, it's third Ray lying freely on the Part of the Thread $g \mathrm{G}$; hence the Skeleton is turned either away in a right Line, upon the Turning of the Plate EF G, or of g.

By this Conftruction might be difcovered how many Parts of the Divifion of the Plate EFG would aniwer to the Diameter of the Globe, after this Manner. The Arms A B, ab, are fo placed, that upon the Skeleton's being moved, it's Centre i would run thro' the Diameter of the Globe; and to effect this, the Horizon of the Globe is placed in a Situation parallel to the Horizon of the Earth, and a Pendulum in is let fall from that Centre, to fhew the Points of the Horizon, over which the Centre would hang. Therefore moving the Centre forward, according to the whole Length of the Diameter of the Globe, we might note the Number of Parts of the Plate EFG, which have paffed in the mean Time thro' the Index H ; which being carefully obferved, muft be retained in Memory, fince the Ufe of if, as well as of every 'Thing that has hitherto been defcribed, will occur in the Reprefentation of all Eclipfes. Thefe that follow muft be clianged according to each particular Eclipfe.

The Principal of thefe is the Difk of the Penumbre, which I have endeavoured to effect after the following Manner. Having found, by the Tables for the Eclipfe which I would reprefent, the Semidiameter of the Lunar Penumbra on the Difk of the Earth, as alfo the horizontal Parallax of the Moon, I argued thus; as the horizontal Parallax of the Moon is to the Radius of the penumbrous Difk, fo is the Semidiameter of the terreftrial Globe, that I made ufe of, to the Quadrant, which expreffed the Radius of the Penumbra required by the Magnitude of the Globe.

As the Size of the Infrument feemed not to admit of a Divifion into 12 Parts, I divided that Radius into 6, and defcribed concentri- cal Circles on a thicker Paper, which I cut into Armille according to them. I pafted the biggeft of there to the Skeleton k ' m , fo that the Centre might agree with the Centre of the Skelotons; then I rejected the fecond, and patted the third to the Skeleton in the like Mamer, and rejecting the fourth, I pafted on the fifth, rejecting - alio the inner Circle ; fo that the Figure night arife, as it is defcribed between k / m. The Ufe of it is to fhew, that all the Places marked upon the Globe, which lie under the outer Edige of the greateft Circle, fee the Beginning or End of the Liclipfe, that thofe which are fituated under the inner Edge of the fame Circle, foe 2 Digits eclipled; that thole which lie under the outer Eilige of the fecond Circle have an Eclipfe of 4 Digits, and fo on; buit that thofe which lie under the Centre fee the Ecliphe total; for I have thought it fufficient to mark the Sinadow, becaufe of it's Smallnetis, thro' the very Cencre.

To fet every Thing in order for any Moment of a given Eclipfe, we muft proceed in the following Manner. Having found by Calculation the Points of the Bound of Light and Shadow, by which the Centre of the Moon firft enters the Dink of the Earth, and again departs from it, they are to be marked on the Horizon of the Globe, and the Arms A B, ab, are to be placed fo that the Plate EFG being turned round, the Centre i of the Difk of the Penumbra $k l n$ may pals over them; and whether this is done or not, will be fhewn by the Pendulum in. Then I find the Time when the Centre of the Penambra is in any remarkable Place, as when it firft enters the Difk of the Earth, and place the Globe, by means of the Meridian and Equator, without the Help of the Hour Circle, in fuch a Manner, that the Part above the Horizon may fhew the Hemifphere of the Earth at that Time illuminated by the Sun. I then turn the Plate EF G till the Centre of the Penumbra i, is perpendicularly over that remarkable Place, as the Bound of Light and Shadow, for Example; which I call the primary Situation of it, and this being obtained, I move the Index H1 of the Plate to the Beginning of the Divifion. Thus every Thing is rectified for this Time, and it's Pbenomena may be collected.

Now the horary Motion of the Moon from the Sun, being taken from the Tables, I infer, that as the horizontal Parallax of the Moon, is to this horary Motion of the Moon; fo is the Number of Parts of the Plate E F G, which anfwers to the Semidiameter of the Globe, found above, to the Quadrant, which fhews how many Parts, upon turning the Plate round, are to be drawn thro' the Place of the Index, that the Situation of the Difk of the Penumbra may be had, an Hour before or after the Time, which anfwers to the primary Situation. The Dik therefore being brought to this Place, and the Globe being turned round the Axis, the Pbenomena of this Time may be had in like Manner.

Now the Situations of the other Times are eafly obtained For the Number of Parts of the Plate jufl found being divided, nathely that which anfwers to the horary Motion, in order to otitaint the Motion of half an Hour, a Quarter of an I Mour, and a Minute, a Table miny be conitructed only by Addition and Suberaction, in which having marked the Times, the Parts are put to the Plate, by which the Difk of the Penumbra ought to be moved forward and backward, that it may receive the Situation accommodated to that Time. When this is done, it remains only to turn the Globe according to the Time, and the Plate in fuch a Manner, that it's Index may shew the Number afcribed to the Time.

Laftly the Places marked upon the Surface of the Globe, lying perpendicularly under the Difk of the Pennmbra in any Situation of it, may be found by the Pendulum. But they are feen at one View, if the whole Apparatus is expofed to the Rays of the Sun reffected from a plain Speculum, in fuch a Manner, that the Rays may fall perpendicularly upon the Horizon of the Globe. For then fuch'Shadows will be projected from the Difk of the Penumbre upon the Globe, as are like the Penumbre which the Moon cafts upon the Earth, by which the Phafes of the Eclipfe, for any Place may be feen.

This Motion of the Sun is inconvenient; perhaps thore who have a large burning Glafs, will make Ufe of a Lamp, the Rays of which may be thrown upon the Globe from the Glafs, in a Pofition perpendicular to it's Horizon. I have thought alfo of viewing the Globe from a Diftance thro' a Perfpective Glafs, by which Method the Difk klm , being brought upon the Surface of the Globe, exhibits the Pemumbra. But this requires a very large Telefoope; for if the Globe is fet at fuch a Diftance, that the whole may be feen thro' a fmall Telefcope, I am afraid the Places marked upon it will not be diftinguinable.

I have thought alfo of giving a Motion to the Machine, by means of two feparate Clocks, one of which might turn the Globe, and the other the Plate; and thefe might be brought to agree exactly by the Help of Pendulums. But I have faid enough already on this Subject. XI. I. The Obfervations were made with a Telefcope of 10 Palms. Eclipfe of the True Time.
h 111 p. m.

84528 The Penumbra begins to be fenfible.
4914 The Penumbra thicker.
5119 Beginning of the Eclipfe.
44 Grimaldus begins to immerge.
5247 All Grimaldus hid.
54 Galilæus.
5348 The Shadow at Gaffendus.
$56 \quad 2$ All Gaffendus hid.
5723 Schikardus.
VOL. VIII. Part i.
5
Moon, Nov.
20, 17312.
obfirved at
Rome by the
sibbots Dida-
cus Revillas,
and Jo. Bot-
tarius, and by
Euflachius
Manfredi.
No. 428.
p. 85 . April,
\&c. 1733.

Eclipfes of the Moon.

True Time
p.
$9 \quad 243$ Kepler.
453 All Ariftarchus hid.
5 I Lanfbergius, and alnoof all the Mare Humorum hid.
613 Bullialdus.
bra 53 Capnanus.
am 8 The Shadow at Mare Nubium.
82 Copernicus begins to immerge.
29 Thro' the Middle of Copernicus.
1027 The Shadow at Eratofthenes ; and all Copernicus hid.
1412 Tycho begins to immerge.
45 Injula Sinus mediii.
1537 Heraclides.
1622 Tycho hid.
1812 Tymocharis.
204 Archimedes.
214 Harpalus.
2310 Manilius.
16 Helicon.
40 Plato.
2621 Menelaus.
2855 Catharina and Cyrillus.
3011 Pliny.
5^{6} Dionyfius.
3231 Ariftotle.
33 11 Promontorium acutum.
3427 Fernclius.
3451 Snellius.
3611 Poffidonius.
41 Petavius.
-3745 Promontorium Somnii.

- $3^{8} 25$ I angrenus.

4024 Hermes.
410 Pruchis.
30 Mare Crifrum begins.
4232 Cleomedes.
4510 The Shadow thro the Middle of Mare Ciiffum.
4620 Mcffala.
4824 The total Immerfion.

- 575 Duration of the total Immerfion.

119113 The Emerfion had without Doubt begun.
3.313 Grimaldus had emerged.

463 The Middle of Copernicus.
5117 Tycho.
52 Plato.
53.13 Archimedes.

True Tine.
. 111 p. m.
if $5^{6} 36$ Infula Sinus Medif.
5457 Eudoxus.
12210 Manilius.
326 Ariftotle.

+ 25 Menclats.
8 1! Poffidonius.
136 Pliny.
${ }^{7} 714$ Promontorium acutum.
203^{3} Langrenus.
232.1 The whole Mure Crifrum.

26-55 End.
33536 Duration of the whole Eclipfe.
Some Phafes of the Inmerfion taken by another Obfervation with
a Newionian Telefcope.
True Time.
h 1 Il p. m.
85013 The Penumbra thick.
11 28 The certain Beginning of the Obfcuration,
548 Ali Grimaldus hid.
32. The Shadow thro' the Middle of Galileus.

9 o 5^{8} All Kepler hid.
218 The Shadow at Ariftarchus.
337 All Ariftarchus hid.
83 The Shadow at the Beginning of Copernicus.
920 Thro' the Middle of Copernicus.
10 32 All Copernicus is covered.
1447 The Shadow at the Beginning of Tycho.
2311 At the Beginning of Manilius.
26 At the Beginning of Plato.
55 The Shadow thro' the Middle of Plato and Manilius.
2440 All Plato is covered.
3935 The Shadow at the Beginning of Proclus.
40 I 8 The Shadow at Hermes.
41 o All Proclus is covered.
31 At the Beginning of Mare Crifium.
4420 Thro' the Middle of Mare Crifumm.
46 15. All Mare Crifsum is Maded.
493 The total Immerfion of the Moon in the Shadow.
2. h 111 apparent Time. -ob/eruez

Obferved with a fmall Telefcope about 18 Inches long, which magnifies about 13 times.
N. B. Mr Hodg fon at Cbrije's-Hojpital, with a 4 Foot Tclefcope, obferved the Beginning at $8^{\mathrm{h}} 1^{\prime \frac{1}{2}}$ and the End $11^{\mathrm{h}} 3^{6 \prime}$..

Eelipfe of the
Moon, Oate, b 1 il Temp-europ, ante Mer.
1732. Styl.
Nov.obferved ${ }^{4} 30$ 'The Penumbra near Schikard
at Wittemberg in Saxony, by Jo Frider. Weider, F. R. S.

No. 443.
p. 359. OR. 12530 The obfcured Portion of the Moon is blackened, and the 1736.

1 I 30 The Shadow touches Schikard. The Eige of it is rough and unequal. Soon after the Clouds hide the Moon.
1150 Tycho is quite flated. The Moon again covered with Clouds.

Spots cannot be difcerned thro' the Shade by a Telef- cope of 9 Fcet.
130 - The Shadow touches Grimaldus. Now the Spots are feen thro' the Shadow.
14430 The Shadow covers all Grimaldus. Now the flazed Portion is red. The Moon is again covered with Clouds.
22530 The Shadow receding touches Lanforgius. It's Edge is ftill rough.
2440 The Shadow touches Gaffendus.
3 II 0 . Tycho begins to emerge.
336 o The End upon Snellius, the Sky being clear round the Moon.

Eclipfe of the XIII. I.
Moon objerved h $1 /$
by Mr Geo.
Graham in
Fleetitreet,
March 15.
1735-6. No.
445. P. 14.

Jan. \&ec.
1737.

- Obferved
by Dr Halley as Greenwich, Ibid.
- Objerved at Mr Gra-
ham's bouje in
Fleetfreet, by Mr Celfus. Ibid.
$10 I_{3} \circ$ The Beginning:
il 11 The total Immerfion.
1249 - The Emerfion.
1347 O The End.

2. The Beginning
The Immerfion. $\quad \begin{array}{rrrr}\text { h }\end{array}$
3. The Obfervation was made with a reflecting Telefcope of 4 Inches, made at Edinburgh, and magnifying 63 times.
h 111
10225 The Shade on the Middle of Kepler.
2315 Entering the Mare Humorum.
2816 Entering on Copernicus.

Eclipfes of the Moon.

h 111
102934 Entering the Middle of Copernicus.
3026 Copernicus entire.
3328 Enters on Timocharis,
$3^{8} 44$ Enters on Tycho.
3912 The Middle of Tycho.
4048 Tycho entire.
46 O Enters on Menelaus.
4920 Plinius.
11040 Enters on Mare Crifum.
53^{6} Mare Crifzum entire.
917 The total Immerfion is about to begin.
131355 Tycho is emerged out of the Shade.
29 - Mare Serenitatis is totally emerged.
4045 Mare Crifrum is totally enmerged.
4550 The Eclipfe is nearly ended.
$46: 2$ The Eclipfe is certainly ended.
4.

True Time.
$\begin{array}{llll}6 & 5347 & \mathrm{P} . \mathrm{m} \text {. } \\ \text { Saturn in the Point where the Threads of the Micrometer }\end{array}$

[^16] crofs.
7 31 5 Firft of the Hyades at δ paffes the Thread a.
$73^{1} 50$ It paffes over the Thread b.
73235 It paffes over the Thread c.
74239 Saturn again in the Interfection of the Threads.
$81957 \frac{1}{2}$ Firtt of the Hyades at δ paffes the Thread a.
$8204^{\frac{1}{2}}$ It paffes the Thread b.
$82127^{\frac{1}{2}}$ It paffes the Thread c.
950 - The Difk of the Moon runs over the horary Thread, 139 horary Seconds.
956 o Again $139^{\prime \prime}$.
1010 Again $139^{\prime \prime}$.
10940 A thin Penumbra feems to cloud the Moon near Hevelius,
101020 Now very fenfible.
10 II 40 I reckon the beginning of the Eclipfe.
$10{ }^{1} 43^{8}$ The Edge of the Sladow, as I think, paffes thro' Grimaldus and Cavalerius.
101946 Thro' Ariftarchus.
102415 The Shade enters the Mare Humorum,
103244 It touches the Sinus Roris.
104018 The Shade divides Tycho.
104226 It touches the Mare Serenitatis.
1046 I It touches Menelaus, a black Cloud comes over.

Eclipfes of the Moon.

True Time.
h 111 p. m.
105346 On the Departure of the Cloud the whole Mare Nectaris was found covered. Very thick Clouds obfcure the Moon again.
it 056 The: Shacow touches Mare Crifum.
if 548 Mare Crifum and Mare facundum are immerged.
1110 O The total Immerfion of the Moon into the Shadow.
134220 The eaftern Limb of the Moon grows clear.
$1246 \quad 5$ It grows ftill more clear.
12475^{6} A Thread of pure Light is reftored in the twinkling of an Eye. Many light Clouds.
12575 The Edge of the light touches the Mare Iumorum.
$13 \quad 4 \quad 3$ The whole Mare Humorum is recovered.
${ }^{1} 31340$ Tycho is half covered.
1314 o Quite uncovered.
${ }_{13} 1722$ Waleherus emerges. Many dark Clouds, which feem likely to laft fome Time.
134344 Mare feecundum is feen out of the Shadow.
134625 The true Shadow ends.
$134^{8} 30$. The Penumbra no longer fenfible.
In thefe Obfervations I made Ufe of a very good Clock, corrected by 5 correfponding Altitudes of the Sun this very Day, and feveral Diys before, and a Telefcope 6 Feet long. About the middle of the Obfcuration, the Moon appeared as thro' a darkith Cloud, but at the Edges it was red like hot Iron. The Limit of the Light and Shade was not well determined thro the whole Eclipfe.

- Obferied as Yeovil in Sumerfethire, by Mr. John Milner.

5. The Latitude of Yeovil is $50^{\circ} \quad 5^{\prime}$. The Clock was firft adjufted by the Equation Table.

Eclipfes of the Moon.

XIV. 1.

Ecliple of the
Begining of the Eclipfe - $-\quad-125^{8} 0$
The Shadow touched Grimaldi - - - 1300 touched Kepler - - - 930 touched Copernicus - - 1710 touched the Eaft Side of Tycho $25 \quad 5$ touched the Eaft Side of Plato 343° touched the Eaft Side of Manilius 3640 touched the E. S. of Mare Crijbem 5620
Beginning of total Darknefs - - - 14345
The Obfervation made with a 5 : Inches reflecting Telefcope, magnifying about 3^{8} times.
2. The Obfervation was made with a Telefcope of 5 Feet.

- In CovenisGarden, Losidon, by J . Bevis, M.D. lbid.

125325 The Penumbra touches the North Eaft Limb. Clear. 5425 Now very con fpicuous. Clear.
56 50 The erue Slaadow, as I judge, touches the Limb. Clear.
5730 The Simatow touches Grimaldi. Clear.
13 o 25 Grimaldus covered. Ciear.
223 It enters the Mare Humorun thro thin Clouds. Clear.
2839 The Shadow touches the Mare Vaporum. Clear.
3119 The dark Part of the Moon is of a reddifh Colour. Very clear.
$3^{6} 53$ The Limit of the Shadow bifects Manilius and touches Mare Serenitatis. Very clear.
-3848 If louches Mare Tianquillitatis. Clear.
4721 Mare Serenitatis is covered. Clear.
5526 It touches Mure Criffum. Clear.
585 Mare fecunditatis is covered.
$14 \quad 2 \quad 25$ 'Tocal Immerfion of the Moon. Very thick Clouds come over and hide the Moon.
1643 - Mare Tranquilitatis feems quite uncovered thro a Gap of, the Clouds.
4330 Clouds again.
173^{22} The Clout going off, the Moon feems to be free from all Obfcurity:
The Clock was fitted to true Time by equal Altitudes of the Sun; and it's Agreement with Mr Grabum's Chronometer was marked by a very good Watch.
3. The
sember Wit. Grived by
J. Frederick Weidler. F.R.S. Ibid. p. 34.

1 $3^{6} \quad$ o The Penumbra comes upon the Eant Pati of the Muon, like a Mift or Smoak.
I 50 o Beginning.
I 5030 The Shadow touches Grimaldi.
$15^{2} 0$ - - -n-me. Galileus.
200
2130
270
A Portion covers Kepler.
A Portion of the Lunar Difk, immerged deeper into the Shadow, appears clearer than that which was nearer the Edge of the Shadow.
28 o The Shadow touches Copernicus.
1050 ———— covers all Copernicus.
1610 ——— touches Tycho.
220 O Half of the Moon darkenct.
25 - The Shadow touches Mare Serenitatis.
2910 - -- - Menelaus.
3^{6} o All Mare Serenitatis covered. 'The Moon looks red thro' the Shadow like a Coal of Fire.
4530 The Shadow at Mare Crifiurn. At this Time the Eilge of the Shadow is bent inwards about Mare Crifium; and during the whole Ecliple, the Circumference of the Shadow appeared rough and rugged, and feemed in the extreme Part to be furrounded with a Sort of light Smoak.
250 O All Mare Crifium Maded.
53 - Total Darknefs, Now about $\frac{1}{3}$ of the Lunar Difk towards the Eaft appears darker than the Weft part.
343 o The Shadow darker in the Middle, but paler about the
48 o The Moon is covered with Clouds.
44 - Emerfion of the Moon out of the Shadow.
45 - The Shadow leaves Grimaldi. After this the Moon was hid by Clouds, out of which it now and then emerged, but a Mift or thin Cloud fhaded it fo, that the Spots could not be diftinguihed. At Length the whole Moon was hid by thick Clouds.
The Obfervation was made with a Telefcope, 8 Paris Feet long.

- Obferved in Hudfon's. Bay, by Capt. Cbrifopher Middleton, F. R. S.

Ibid. p. 96.
4. I made the Obfervation in Hudfon's-Bay, in Lat. $55^{\circ} 34^{\prime} \mathrm{N}$. and on the Meridian of the Norib-Bear Ifand, which lies 30 Miles to the Weftward of Cbarlion. The Weather was very clear, but the Motion of the Sea rendered my Telefcope ufelefs, and I miffed the Beginning.

1
h

The total Immerfion of the Moon's Body into $\} 822$ by my Watch.
the Shadow - - -
The Emerfion - - - - - 108
The End - - - - - - - 1116
In order to rectify my Watch, and be certain of the true Time, I took three feveral Altitudes next Morning, and one in the Afternoon, by Mr Hadley's and Mr Smith's Quadrants; which (having made proper Allowances for the Refraction of the Atmolphere and the Height that I ftood above the Surface of the Sea) were as follows.

The fourth Altitude taken in the Afternoon the fame Day - 2129 Latitude - 5533

Hence the true Time is $--325+$
The Time by my Watch
Watch too now - $-\frac{117}{}$

If 21 Minutes therefore be added to the Times above-mentioned, for the Error of the Watch, we fhall have the true Times of the feveral Obfervations on the Meridian of the Nortb-Bear IJland, as follows, viz.
The total Immerfion of the Moon's Body into the Shadow - 843
The Emerfion - - - - - - - - - 1029 The End - - - - - - - - - II 37

This fame Eclipfe was obferved by Dr Bevis at London, and he made the true Time of the total Immerfion of the Moon's Body into the Shadow, $14^{h}, 2^{\prime}, 2^{\prime \prime}$; confequently the Difference of Longitude between London and Nortb-Bear Ifland in Hudfon's-Bay, is 5^{h}, $19^{\prime}, 25^{\prime \prime}$, or $79^{\circ}, 51^{\prime}$.

Eclipfes of the Moon.

An Eclipfe of tbe Moon, Dec 21, 1.740. at tbe Ifland of St Catharine on the Coaf of Brafil, obfroved ly the Hon. Edw.
Lerge, Efq: Capsain of bis Majeff's Ship the Severn. No. 462. p. 18. Read Jan. 21, $174 \frac{1}{2}$. Remarks on the foregoing account by ibe Rev. Jofeph Atwell, D D. F.R.S. Ibid.
XV. I. It began very nearly at $7^{\text {h }} 5^{\prime}$; but the Horizon being hazy, I could not obferve exactly the Beginning: However, it ended exactly to a Moment, at $9^{4} 50^{\prime}$. I fet my Watch by two Obfervations before, that I might be exact in Time, and contirmed it by one after; fo that I belicve I may venture to fay it was right: A nd I obferved with one Telefcope on buard, and fent another on Shore, which agreed exactly together.
2. The Captain places the Inland in Lat. 27°. 3^{\prime}. Mr Gael Morris has calculated the faid Eclipfe; and the Middle of it, ap. parent Time, at Greenwich, was,

II 4450

By the Captain's Obfervat. fuppofing the the Beginning exact 82730
 The End of it, by Calculation at Greenrexich — - - $x_{3} 6.57$ by Capt. Legose's Obfervation - - 9500 Difference of Meridian — -- — - - - $30^{16} 57$

$$
=49^{\circ} 14^{\prime}
$$

Capt. Legge obferves, that in attempting to pafs Cape Horn, they thought themfelves to have been more to the Weftward than they really were: By which Miftake, turning too foon to the North, they fell in with high Lands, and met with thofe Misfortunes, which, if they had kept out more at Sea, might probably have been avoided. By comparing the Longitude at St Catbarine's as above fettled, with Senex's Maps, the Coafts appear to be placed about 6 Degrees too much Eaftward; and if the other Parts of America about the Cape are laid down as faultily in the Charts, this Error will probably account for their Misfortunes.

- $A t$ Cam-
bridge in
New-Eng-
land, by Mr
John Win-
shrop Holli-
fian, Prof.
Matb. and
Afron, at
Cambridge in
New Eng-
land. No. 47 I .
p. 577. Read

Nov.3, 1743.
3. Dec. 2I, 1740.

524 A plain Penumbra.
35 The true Shadow feems to enter.
47 Touches Palus Marcootis.
53 Reaches Mount Sinai.
After this the Clouds thickened, and covered the Moon till the End of the Eclipfe, which was about $8^{\text {h }}, 30^{\prime}$, as near as I could guefs through the Clouds.

The Night before the E.clipfe, viz. 20 December, at $12^{\text {h }}$, 14 ', I faw the Moon eclipfe a fixed Star, which, I think, is in the Heel of Caficr.

Thefe two Obfervations were made with an eight Foot Telefiope, my Watch being rectified to the apparent Time by correlpondent Altitudes of the Sun, taken with the before-mentioned Quadrant for feveral Days together, before and after the Eclipfe.
XVI. In the Morning.
h 111
6418 The Shadow was obferved to have juft touched the Edge of the Moon, with a Tube of $3 \frac{1}{2}$ Feet.
540 The certain Beginning between Vieta and Scbikardus with a Tube of 6 Feet.

An Ecliple of the Moon, Jan. 2, 1741. obferved at the Collgege at Pekin, by the Jefuits.
No. 468.
10 - The Shadow at Schikardus. f. 309. Jan.

1742 3.
14 ○ ———. Mare Humorum.
16 o ————— Grimaldi.
1610 - Capnanus.
1720 Gaffendus begins to be immerged. The Centre of Grimaldi in the Shadow.
1830 All Grimaldi immerged.
19 o The Shadow at Campanus.
1930 - -n Herigonius.
2230 ——Tycho.
2310 ————Bullialdus.
24 - Tycho immerged.
2420 The Shadow at Pitatus.
$3^{2} 0$ ———— Galilæus.
42 o ————— Kepler.
43 - Reinholdus.
55 - Fracaftorious is immerged. The Shadow at Copernicus
72 O All Copernicus feems to be in the Shade.
6 o The Shadow at Wendelinus.
1020 The Centre of the Moon in the Shade.
14 O The Moon is hid behind Mountains at the Setting, before the Middle of the Eclipfe.

The Penumbra was fmall and the Shadow very black and diftinct, and the Eclipfe might very plainly and clearly be feen 'rill the Setting of the Moon. The Diameter of the Moon before the Eclipfe was in the Micrometer about $30^{\prime} 20^{\prime \prime}$, but at the Setting only $30^{\prime} 00^{\prime \prime}$. The Centre of the apparent Dink was from the Sinus FEfuum Occid. a little towards Hipparchus.

An Eclipfe of XVII. The Obfervation was made with a reflecting Telefcope of the Moonf, Jan. 2, 1740. obferved at MrGraham's House in Fleec. firect, by Mr Short. No.
459. p. 633 . Jan. हैं. 174.
N.B. The Beginning and End couled not be diftinetly feen for Clouds.

Eclipfe of the

 Moon, Ott.22, 1743, in tbe Morning, oblerved at Mr Graham's Houfo in Filetftreet. No. 471. p. 580. Read Nov. 3, 1743.

Of the Lurar Aimolphere, by M. Jean Paul Graoojean de Fouchy, of the R. Acad. at Paris. No. 455. p. 61. Nov. びఁ. 1739.
XVIII. The Sky was moftly overcarf with Clouds, fo that the following Obfervations are the only ones that could be made with any Degree of Certainty.
Beginning of the Eclipfe about - - - - 1210
The Shade touched Copernicus about - - - I 390
touched Plato about - - - ————145
touched Tycho about -
Total Immerfion about
XIX. By the Name of Atmofphere is undertood, a certain Congeries of pellucid Marter involving a Planet, and capable of turning the Rays of Light, that pafs thro' it, from a right Line; whether this Matter exifts in our Air jointly, or feparately from it, whatfoever it is, we treat here only of the refracting Matter, and that is what I only take upon me to prove in the Courfe of this Work, that there is no Matter about the Moon, which is able to turn the Rays of Light lenfibly from their ftrait Courfe. I would inform the Reader only of this, that I here conceive the Atmofphere to be a homogeneous Fluid, with a fpherical Surface, and of the fame Denfity every where, which is equal to the Sum of the decreafing Denfities in the real Atmofphere, purpofily omitting the Difference of the Denfity of it's Parts, which cannot diflurb our Demonftrations.
Fig. 74.
Now if the Moon is encompaffed with an Atmofphere, it's Diameter ought to be found greater than in the naked Planet; but that the Quantity of it's Increafe may be known, let A IB be the Body of the Moon, GEF it's Atmofphere, the Angle A HL will be the real Diameter of the Moon; and the Angle EHL comprehended under the $A x$ is LH, and the Ray AEM will be the Dianeter of the Moon obferved. Therefore the Angle EHA will be the Increafe of the Diameter of the Moon by ji's Atmorphere, hut the Angle EHA is oppofite to the Side EA of the Triangle EHA; and the Angle AEH the Supplement to 180 of the ho-

Defcription of the Lunar Atmofplicre.

rizontal Refraction in the Lunar Atmofphere, is oppofite to the Sile A II of the Diftance of the Moon from the Earth. Morcover the Side E A, is the Half of a Chord of the Linnar Atmoliphere, touching the Budy of the Moon itelf in A. Therefore the Sine of the Increafe EA H of the Diameter of the Monn by it's Armofphere, will be to the Sine of the Supplement of the horizontal Refraction AEH, as the Half AE of the Chord of the Atmofphere touching the Body of the Moon at the Dinance AH of the Moon from the Earth.

Hence it follows evidently, that this Increafe of the Lunar Diameter is infenfible; for if it arofe to $2 \frac{1}{2} / 1$, fuppofing the horizontal Refraction 5^{\prime}, that is, at leaft 30 Times greater than it can be fuppofed, as will be proved hereafter, then the Senichord E A would equal 276 French Leagues, and would far exceed a like Chord of the terreftrial Atmofphere. Therefore whether the Moon is covered with an Atmofphere or not, it's Diameter will always be obferved the fame; and the Obfervation of the Lunar Diameter can by no Means be equal to the Solution of the Queftion.

The Eclipfes of the Sun by the Moon, give a greater Handle Fig. 75. for deciding the Doubt; for the extreme Rays terminating the Cone of the Lunar Shade, as they touch the Buty of the Moon, and pals thro' it's Atmofphere, will neceffarily be inflected toward the Axis of the Cone; therefore the Cone will become fhorter and more obtufe; but to fhew the Quantity of that Variation, we mull obferve, that the Ray F A, or it's Parallel E G, which, if there was no Atmofphere, would be the Bound of the Lunar Shade F A C, would be refracted toward the Axis C A, at the Ingrets of the Atmofphere G, and at the Egrefs H; whence the Semiangle of the Cone of the Lunar Shade will be increafed by double the horizontal Refraction in the Lunar Atmofphere.

Hence it follows, that if we fuppofe a lunar Atmofphere, a total Eclipfe of the Sun will begin later and end fooner, than if we do not fuppofe it; moreover in certain Cafes, that there will be no total Eclipfe; which however the Diameters of the Sun and Moon obferved in the fame Digreee of Anomaly would require; for in thefe Cafes the Cone of the Lunar Shade is contracted, becaufe of the Atmofphere, and it might be fo contracted as not to touch the Difk of the Earth even with it's Point.

After the fame Manncr exactly, the Duration and Quantity of Fig. 76. the partial Eclipfes would be diminifhed; for the Beginning of a partial Eclipfe is obferved, when the Cone of the Penumbra G D I enters upon the Habitation of the Obferver; but a double Refraction FCE, EVH being fuppofed in the Aemofphere of the Moon, the Semiangle of the Cone of the Penumbra is diminifhed; and the Smidiameter of the Bufe GI is contracted into IH; therefore that the Begiming of an Ectiple may be obferved in a given

Defcription of the Lunar Atmofplere.

Phice, a Space GH equal to the Centre I of the Penumbra, murt be run over; the fame mult be faid of the Emerfion. Therefore a parcial E.clipfe will begin later and end fooner, fuppofing a Lunar Armofphere, than if the Moon is naked; and it will alfo be obferved to be leff, for the Habitation T being immerged into the Penumbra by the Quantity TN, fuppofing a Lunar Atmofphere, will enter it only by the Diftance T K. It may alfo be, that no Eclipfe may be obferved in that Place, where it would be obferved, if no At. mofphere is fuppofed to be about the Moon; for the Difk of the Penumbra being altered, the Place R, which if the Moon is naked, would be immerged into it, will become free from it by the Quantity R N. But they who fhall live in the Space YH, comprehended between the direct Ray X Y touching the Atmofphere, and the refracted Ray E.H, terminating the Penumbra, will fee the Sun free indeed trom the Body of the Moon, but obfcured by it's Atmofphere; and therefore a certain pale Pcnumbra, which, by what has bien already demonftrated, mult precede and follow the Difk of the Moon; moreover this Obfcuration may be oblerved without any Eclipfe.

Thefe Phenomena muft principally be obferved in the Solar Eclipfes, if there is any Atmofphere about the Moon; now let us fee what is really obferved.

In the frit Place, as the Axis of the Lunar Shade is extended to 55 Seniidiameters of the Earth, when greateft, and to $52 \frac{1}{2}$ when it is lealt, and as the leaft Diftance of the Moon from the Earth is 54 Semidiameters of the Earth, if the lunar Atmofphere was capable of a horizontal Refraction of $S^{\prime \prime}$, the Semiangle of the Mady Cone will be increafed by double the Quantity, that is, ${ }^{-1} 6^{\prime}$, and therefore it will be equal to $16^{\prime} 41^{\prime \prime}$, when it is moft open, and to $16^{\prime \prime} 5^{\prime \prime}$ when it is narrowent. Moreover the leatt Semiangle of the Cone being fuppofed equal to $1^{6 \prime} 5^{\prime \prime}$; it's Axis will be lefs than the Jcaft Diftance of the Moon from the Earth, of 54 Semidiameters of the Earth, and therefore the Point of the Lunar Shade, will reach to the Earth. If therefore there is an Atmofphere about the Moon, in which the horizontal Refraction is $8^{\prime \prime}$, there will be no total Eclipfe upon the Earth. Therefore either there is no Atmofphere about the Moon, or if there is any, it produces a horizontal Refraction lefs than $8^{\prime \prime}$.

But there are total Eclipfes of the Sun obferved with a Duration of the toial Darknefs. For Inftance, in the Eclipfe of 1724, the the Duration of the total Darknefs amounted to $2^{\prime} 16 \prime \prime$. The Moon at that Time ran over $1^{\prime} 52^{\prime \prime \prime}$ in it's horary Motion, and it's Shade always parallel to it in $\overline{\mathrm{D}}$ cgrees of the Dirk of the Earth went over a Space 54 Times greater, that is, equal to $1^{\circ} 7^{\prime} 30^{\prime \prime \prime}$; from which, if we take away the disrnal Motion of a Hibitation equal to 20', which may prolong the Duration of the Eclipfe, we

Defcription of the Lunar Atmoppere.

Shail have the Diameter of the Shadow equal to $47^{\prime} 30^{\prime \prime}$, or 45173 Toifes, or 22 Paris Lcagues. Whence, by Calculation, we find that the Axis of the Cone of the Lunar Shade, is greater by at leaft one Diameter of the Earth, than the Diftance of the Moon from the Eirth, which was then the leaft, the Moon being about the Perigreums. Moreover from the given Diameters of the Luminaries, oblerved in the fame Degree of Anomaly, the Axis of the Cone of the Lunar Shade is found to be equal at leaft to 55 Semidiameters: Whence it follows, that the Spot of the Lunar Shade on the Difk of the Earch, and the $A x i$ is of the Cone are found to be exactly the fance, as the Diftances of the Moon and the obferved Diameters of the Lunaries feems to require. There is therefore no Atmofphere about the Moon, or, if there is any, it cannot produce any fenfible Refraction. But that there may be no Room left for Doube, I hhall give a Reafon for thofe Pbenomena, which being obferved in the Solar Eclipfes, have given Room to imagine a Lunar Atmofphere.

Firft indeed, that diminutive Light, which is obferved in total Eclipfes, does not prove any Refraction in the Fluid, which encompaffes the Moon; for by M. Maraldy's Experiments, which have been repeated by me with the greateft Care, and with the fame Succefs, it is manifef, that the Shadow of Bodies not covered with any Atmofphere, if they are expofed to the Sun, are bright about the Axis of the Cone; and the more fo as it is the farther from the Body irfelf. Moreover the Habitation of the Ob ferver in a total Eclipfe is about the Axis of the Cone of the Lunar Shade, and in the Neighbourhood of it's Point. It is no wonder, therefore, that the Middle of the Shadow is covered with a malignant Kind of Light, which may otherwife be increafed by the Rays being refleeted by an illuminated Air furrounding the Shadow about the Middle.

Secondly, the lucid Annulus furrounding the Moon in total Eclipfes, by no Means proves the Exiftence of the Lunar Atmofphere, as will app. pear to any one that hides the Sun from him by Balls of Wood or any opake Matter. Wherefore it is to be afcribed not to a Lunar, but a Solar Atmolphere, as has abundantly been proved, by M. Mairan *, in his Treatife of the Ascrora Borealis.

Thirdly, the Diminution of the lunar Diameter, which in the Sular Feclipfes is obferved to be abour $30^{\prime \prime}$ lefs than when the Moon Thines whih a full Orb in the fame Degree of Anomaly, by no meints proves the Lunar Atmofphere; tho' forne Inequalities of Mountains are obfersed in the Circumference of the Difk of the Moon, which quite difappear in the Full-Moon; for lucid Objects ftrike the Fibres of the Eye fo ftrongly, that the Motion of them is communicated to the neighbouring Fibres, and to the Inage of the lucid Body is increafed beyond the due Quantity, which is known by common Experience; for if a Stick is placed between the Moon and the

[^17]the E.ye, the Diameter of the Stick over againft the Moon will fiem to be diminifhed; but if at that Time any Cloud comes over th: Luminary, the Diminution of the Scick will appear lefs, but if the Cloud take away the Sight of it there will be no D:minution ; and latlly it will be various according to the various Intenfenefs of the lunar I, ight.

As for the Inequalities of the Mountains, they are leaft obferved for the tame Reafon in the Full-Moon; for the lunar Mountains obfcure of themfilves, and feen in the bright Orb of the Sun, efcape the Eye much lefs, than when flining in the Full-Moon, they are extinguifhed in the neighbouring Splendor of that Luminary; efpecially as the Junar Light is fo intenfe, that a Star of the third Magnitude cim hardly be feen when near it. But, to take away all Doubt in this Affair, if the Limb of the Moon oppofed to the Sun was the Bound of it's Armofphere, and not of it's very Body, the Mountains in the Circumference of the Moon would never be obferved by the longer Telefcopes with narrower objective Apertures. I have often obferved feveral Inequalities of Mountains in the Difk of the FullMoon with a Telefiope of 36 Paris Feet, and an objective Aperture of one Inch; whence it follows, that the Difk of the Full-Moon is terminated by the Circumference of it's Body and not of it's Atmolphere.

Fourthly, I muft fpeak a little of that wonderful Obfervation, in 1715, of the lunar Corufcations, which was made by M. Delouville, in the Prefence of many Aftronomers of the Royal Socicty. We may fuppofe, that the vifible Limb of the Moon is compofed of the Tups of Mountams; which, in a total Eicliple, hide the Sun from the Obferver in the fame Manner as the Trees of great Woods obftruct the Sight. Whence if fome Rows of Mountains on the Surface of the Moon afford a free Paffage in a right Line to the folar Rays, they mult imitate a Sort of Corufcations, in the fame Manner, as when in a Camera Obfura, a Ray of the Sun by Means of a Speculum is fuddenly admitted, and the Picture of external Objects drawn on the Pocus of the Lens is taken away, it will be illuminated with luminous Tracts very much refembling Lightning; which I think is the more eafily to be allowed, becaufe thofe fudden Corufcations have always been obferved near the Limb of the Moon, as appears from the Scheme of this Eclipte in Sir Hans Sloane's Mufeum, drawn by his Daughter.

As for that pale Ring accompanying the I imb of the Moon in this Eclipfe, às nothing like it appeared either to me, or to any other Aftronomer in the Sular Eclipfes hitherto oblerved, which however, according to the Hypothefis of the Lunar Atmofphere, mult always and every where be obferved, we thall make no Mention of it here.

From all this it is manifeft, that there is nothing like a Lunar Atmofphere in the Eclipfes of the Sun. I fhall now fpeak of the Ecliples of the Fixed Stars and Planets by the Moon.

If the Moon is furrounded by an Atmofphere, the Planets and F:g. 77. fixed Stars will be feen by an Obferver placed oa the Surface of the Earth, to be hid later behind the Moon, and to emerge fooner from it's Difk, than if the Moon is fuppofed to have no Atmofphere; nay, and in fome Places, where an Eclipfe of a fixed Star or a Planet ought to be feen, there will be none. To make this plain, let ABC be the Body of the Moon, and let a Srar be placed as it were at ant infinite Diftance in S; the parallel Rays L. V, M X, touching the Body of the Moon on all Sides, conttitute a cylindrical Surface, of which Cylinder the Bafe V ZX comprehends in it's Compafs all the Habitations on the Difk of the Earth, in which the Star or Planet is covered by the Moon. The Obferver therefore will fee the Beginning of the Eclipfe at V , and the End of it at X , and will mealure the Duration of the Time, in which the Moon may run thro' it's Diameter, or rather a Space cqual to it. But if we fuppofe an Atmofphere of the Moon, the Ray IW will not remain parallel to the Axis of the Cylinder, and the Cylinder, itfelf will become a Cone, of which the Section YTU will mark the Habitations where the Eclipfe muft be. And the Bafe YTU being contracted, the Point Y will come upon the Habitation later than the Point V ; and the Limit U will forfake it fooner than X: Therefore, the Ecliple of a Star or Planet by the Moon will begin later and end fooner, if we fuppofe an Atmofphere about the Moon, than if there is none: And there will be no Eclipfe in that Place where it ought to be obferved without an Atmofphere; for the Place C being covered by the Circumference V Z X of the former Cylinder, will be free from the Section of a Cone YTU. Befides, fuppofing the horizontal Refraction in the Λ tmofphere of the Moon equal to 8^{11}, V Y will be equal to $13^{8}+$ Toifes, or ${ }^{\frac{1}{2}}$ of a Paris League; whence it follows, that no Eclipfe muft be obferved in the Places pointed out in the Calculation, as often as they are immerged into a cylindrical Area not exceeding i' of a League.

Another Pbicnomenon alfo arifes from the Suppofition of a Lunar Atmofphere; in the Part of the Cylinder Y R, the Star indeed will always be feen, but thro' the Interpofition of the Lunar Atmofphere; and therefore it will acquire a different Motion and Colour from the true; and that in all Eclipfes whatfoever, whether the Star is one of the biggeft or leaft.

Befides, the Duration of the Eeclipfes of the Fixed Stars and Planets by the Moon, does not feem in any Manner diminifhed, but is always found to be exactly agreeable to the Diameter of the Moon and it's Motion. As for thofe Obfervations, in which the Srar after the Contact is feen to proceed a Jittle in the Difk of the Moon before the Occultation, we frall refer the whole Catufe of them to the inY OL. VIII. Part i.

Defiription of the Lunar Atmospbere.

creafed Diameter of the Moon and Star; for if the Lunar Atmofphere was the Caufe of this Appearance, it would always be obferved the fame in all Scars, and in any Apertures of Objectives. Befides, I have not as yet obferved the Progreffion of any Saar in the Difk of the Moon, unlefs it was of the firlt, or at leaft of the fecond Magnitude, and that by half of it at moft, and the true Diameter of the Fixed Stars, as is manifeft to any Obferver, becomes infenfible, and is increafed only by fpurious Rays; whence the adventitious Rays both of the Star and the Moon, are mixed in the Butom of the Eye before she true Conjunction of the Bodies of the Sun and of the Moon; and if the vifible Limb of the Moon was the Bound of the Atmofphere, and not of the Body, no Mountains would be obferved on it's Circumference with greater Tubes and narrower objective Apertures; which however, as has been faid, are feen plainly enough.

From all this it is manifent, therefore, that the Moon is not furrounded with a refracting Atmofphere, the Refraction of which is capable of being obferved; for there might be an Atmofphere about the Moon, in which the horizontal Refraction amounted to $1^{1 /}$ or $2^{\prime \prime}$; for this Opinion feems to be countenanced by the greater Spots in the Moon, which cannot by any Means be taken for Woods, as Hartfoeker and others have imagined. For the Shadows of the Edges are always obferved nearer to the bright Limb of the Moon; whence it is rightly concluded, that they are Cavities and not Woods, which would project a Shadow from the other Side. Moreover fome Fluid nay be fuppofed to be in them, in which cafe it would be very agreeable to Philofophy, that fome Vapours fhould be raifed from them, the Congeries of which would reprefent a Sort of an Atmofphere about the Moon, which Atmofphere would not be found to be very thick; for by Sir I. Nerwion's Demonftrations, it would hardly equal 3 of the Denfity of the terreftrial Vapours, nor would be alike at different Times, thofe Vapours being deftitute of any other Addition.

A Corjumgion of Saturn and Mars, obferved at Wittemberg by Job. Frid. Weidler, F. R.S. No. 441. p. 238. April, ${ }^{\circ} 6$ 1736.
XX. Saturn and Mars were feen Feb. 5. $7^{\mathrm{h}} 30^{\prime}$ p. m. in the fame right Line with the Star $\mathrm{E} \notin$ Bayeri.

Pla XIII. Wol. vilI. puart s.pa. 17^{8}

Feb. 19. $7^{\mathrm{h}}{ }^{1} 5^{\prime}$ p.m. the Diftance of of from $o x$ was obferved, namely of $\delta_{0}^{80} 17^{\prime} 3^{\prime \prime \prime}$. Mars was diftant from the Star coward the North.
XXI. 1.

True Time. April 2, 1732.
h 111
$105^{6} 3$ Emerfion of the fecond Satellite of Jupiter out of the Shadow. Sky clear. Telefcope of 22 Fect.
13236 Emerfion of the fourth Satellite, Sky clear, Telefcope 22 Feet.
7 31 40 April 3. Emerfion of the inner Satellite from the Shadow, Sky clear, Telefcope 22 Feet.
13324 April 9. Emerfion of the fecond Satellite, Sky clear, Telefcope 22 Feet, a little doubtful.
94441 May 3. Emerfion of the inner Satellite, Sky clear, Telefcope 22 Fect.
May 4. Emerfion of the fecond Satellite, Sky cloudy, Wind.
103532 Telefcope 14 Feet.
10354^{1} Telefcope in Feet.
May 26. Emerfion of the inner Satellite, Sky clear.
9584 Telefcope 22 Feet.
95^{8} 21 Telefcope 11 Feet.
94347 Fune 2. Emerfion of the third Satellite, Sky cloudy, Telefcope 22 Feet.
if 724 Fune 9. Immerfion of the third Satellite into the Shadow, Sky clear, Telefcope 22 Feet.
10 825 Fune 18. Emerfion of the inner Satellite, Sky clear, Telefcope 22 Feet.
$73^{6} 5$ futy 27. Emerfion of the inner Satellite, Sky clear, Telefcope in Feet, doubtful.
Fan. 17, 1733. Immerfion of the third Satellite, Sky clear.
14845 Telefcope 22 Feet.
14833 Telefcope 14 Feet.
161329 Emerfion of the third Satellite, Sky clear, Telefcope 22 Feet.
March 12. Immerfion of the inner Satellite, Sky clear.
132334 Telefcope 22 Feet.
132322 Telefcope is Feet.

Ecriples of tbi
Satellizes of
Jupiter obferved by
Eultachios
Manfredi.
No. 429.
p. 117. July,

E'c. 1733.

- Obferved by Geo. Lynn, E/q; at Southwick, near Oundle in Northams. tonthire. Na. 440 F. 196. Jan.E゙く.1736.

2. The Telefcope I made ufe of is the fame as formerly, having ${ }^{2} 13$ Foot Object-Glafs, with an Aperture of $2 \frac{1}{10}$ Inches, and an Eye-Glafs of $2 \frac{1}{2}$ Inches. By apparent Time, at Soutbrecick, near Oundle in Norlbamplonfbire, Longitude Wett from London, $00^{\circ} 30^{\prime}$, as follows:
 But it began to fail of it's Light about 5 or 6 Minutes before.
3. The 2d Satellite immerged ———May 2810450 The 3d began to emerge - - Auguft 39 10 30 And was 4 or 5 Minutes before it came to it's full Brightnefs.
-Obfrrvedat 3. It was a great Pleafure to me to fee that Mr Fames Hodgfon has Peterburg, by been at the Pains to calculate the Eclipfes of the four Satellites of M. Jof. Nic. Hupiter, which were to happen in 1732 . It was to be wifhed he
De l'Ife. F.R.S. No. would continue to do fo for the Years following; but I would advife 441. p. 225. him, to do it a long while beforehand, that People in Foreign Ap $_{\text {P }}$ ©.. 1736. Countries might have Time to be informed of it. He fays, he has made ufe of Tables of the Satellites, which have not been corrected

[^18] thefe 50 Years*. Probably he means the Tables of M. Cafini, publifhed at the Royal Printing-Houfe at Paris, in 1693, at the End

Eclipfes of the Satellites of Jupiter.

feveral Voyages. However, the late M. Cafini, has from Time to Time made divers Corrections to thofe Tables, though they never were made publick. M. Maraldi has allo much worked at it after the Dath of M. Calfini, and has communicated to me his Corrections, on which I have taken Pains to calculate new Tables; but having in the Year 1724, received of Dr Halley a Copy of his Aftronomical Tables, among which, are thofe of the four Satellites of Fupiter by Mr Bradley, I judged there could not be any better, till fome Method nhall be found and explained geometrically to deduce from the Laws of Gravity, the Effect of the mutual Attraction of thefe Satellites on one another, and with relation to fupiter: But as I could not hope this could be done fo foon, I took the Pains again to calculate new Tables upon thofe of Mr Bradley, by reducing the Tables of the four Satellites into the fame Form with thofe Mr Pound has made of the firft Satellite only. Thefe Tables being thus made eafy, I have ufed them hitherto for comparing Obfervations; and my Brother has taken the Pains, fince the drawing up thofe Tables, in the faid Manner, to calculate a Year beforehand all the Eclipfes of the four Satellites. I commonly fent thofe Calculations to my Correfpondents, to prepare them for Obfervations, and fome Years of thofe Ephemerides have buen publifhed in the little Gazette of Literature of Leipzig, printed in High Dutch. My Brother lately prolonged thefe Calculations to the Month of January, 1737.

Herewith follow the laft Obfervations on the Satellites of Gupiler, which were made at Petersburg, fince thofe inferted in the third Volume of the Memoirs of the Academy of Petersburg, to the prefent Time.

	True Time	
1731. Dec. 6	$17 \quad 35$	Immerfion of the firft Satellite difficultly obferved with a reflecting Telefoope of 5 Foot. The true Tine was found only by Means of two Clocks.
1732. Jan.	133056	Immerfion of the fecond by the Refiecter, doubtful to a few Seconds. Fiupiter not being well defined nor fufficiently high. The true Time adjufted by two Clocks.
	18337	Immerfion of the fourth by the Rcflecter. The Sky not very ferene, and the true Time adjutted oniy by two Clocks.

Eclipfes of the Satellites of upiter.

True Time	
h	1

1732. Jalr. 92025 O The other Satellites difappearing by the Day-light, the fourth was not yet come vut of the Shadow. Telefcope the fame.
Fib. 22132534 The tirft Satellite, juft entering the Shadow, was yet vifible when a Mift covered fupiter.
132634 Fupiter being uncovered, the firt Sutellite did not now appear through the reflecting Telefcope. The true Time was adjufted only by two Clocks.
Marb 882220 Immerfion of the third by the reficeting Telefcope. The Wind was fomewhat troublefome, the true Time was adjufted by two Clocks.
April $35 \begin{array}{lllll}8 & 46 & 23 & \text { Emerfion of the firlt by the reflecting }\end{array}$ Telefcope. Doubtful to a few Se_{e} conds, by reafon of the Nearnels of the Satellite to Fupiter.

May 10

26
Dee. 24
h 111
$555 \searrow 5 a . m$. Full Immerfion of the firft Satellite, Telefcope 13 Feet.
8. $1216 \quad 5 \mathrm{p} . \mathrm{m}$. Full Immerfion of the 2 d Satellite.
12. $14165^{2} \mathrm{p} . \mathrm{m}$. Full Immerfion of the ift Satellite.
i5. $144924 p . m$. Full Immerfion of the 2d Sattellite.
16. $955 \circ p . m$. As the 3 d Satellite was going to immerge into the Shadow, it difappeared in a Cloud, fo that the Immerfion neither of this nor of the 4 th could be feen.
19. I6 9 10 p.im. Full Immerfion of the ift Satellite.
21. $103733 p . m$. Full Immerfion of the fame.
22. 172148 p.m. Full Immerfion of the 2d Satellite.
26. $18 \quad 125 p, m$. Full Immerfion of the ift Satellite.
30. 174740 p.m. Full Immerfion of the 3 d Satellite.

Dic. 3. $\quad 9$ 10 57 p.m. Full Immerfion of the 2d Satellite.
10. II $4^{2} 3^{2}$ p.m. Full Immerfion of the 2 d Satellite, Telefcope 10 Feet.
14. $103^{9} 20 \mathrm{p} . \mathrm{m}$. Full Immerfion of the it Satellite, Telefcope 10 Feet.
17. 141520 p.m. Full Immerfion of the 2d Satellite, Telefcope 10 Feet.
19. $183 \circ p . m$. Immerion of the ift Satellite, Telefonpe 10 Feet.
1741.
fan. I

1. 5306 p.m. Emerfion of the ift Satellite, Telefcope 10 Feet.
2. $125^{2} 25$ p. m. Emerfion of the it Satellite, Telefcope 18 Feet.
3. 72030 p.m. Emerfion of the fame, fame Telefcope, doubtful.
4. 13 51 22 p.m. Emerfion of the 2d Satellite. Telefcope 10 Feet.
5. $24^{2} 40 \mathrm{a} . \mathrm{m}$. Emerfion of the if Satellite. Telefcope 18 Feet.
6. 9123^{6} p.m. Emerfion of the fame. Telefcope 13 Feet.
7. 162615 p.m. Emerfion of the 2d, Telefcope 10 Feet.
8. 54157 p.m. Emerfion of the 2d, Telefcope 18 Feet. is $319 \mathrm{p} . \mathrm{m}$. Emerfion of the ift, Telefcope 18 Feet.
9. 53324 p.m. Emerfion of the ift, Telefcope 10 Feet.
10. $8 \quad 1816$ p.m. Emerfion of the 2d, Telefcope 13 Feet. 1257 Io p.m. Emerfion of the Ift,?
Feb. 3. $\begin{array}{rrrrr}8 & 18 & \circ & p . m \text {. Emerfion of the } 3 \text { d, } \\ \text { 5. } & 10 & 53 & 20 & p . m \text {. Emerfion of the } 2 d \text {, }\end{array}$ Telefcope 8 Fect. 5. $1053 \quad 20$ p. m. Emerfion of the 2 d ,
11.

2 5300 p.m. Emerfion of the ift,

$174{ }^{1}$.

Eclipes of the Satellites of Jupiter.

Feb. \%. 92035 p.m. Emerfion of the ift, Telefcope 8 Feet, 8. $1043 \circ p$. m. Full Immerfion of the 4th, Telefcope 13 Feet.
$14630 \mathrm{p} . \mathrm{m}$. The $4^{\text {th }}$ began to immerge. Same Tclefcope.
10. $91630 \mathrm{p} . \mathrm{m}$. Full Immerfion of the 3d. Same Telefcope.
12. I3 $32 \circ$ p. m. The 2d immerged, Telefcope 8 Feet.
14. II 1415 p.m. Emerfion of the ift, Telefcope 18 Feet.
16. $54345 p, m$. Emerfion of the fame, fame Telefcope.
23. $\quad 7 \quad 3929$ p.m. Firft emerged, Telefcope 18 Feet.
25. 82630 p.m. Emerfion of the 4 th, Telefcope 13 Feet.

Mar: 2. 03^{6} i1 $p . m$. Emerfion of the ift, Telefcope 18 Feet.
11. $\quad 6 \quad 2 \quad 45$ p.m. Emerfion of the fame, fame Telefcope.

Apr. 3. ${ }^{6} 2635$ p.m. Emerfion of the fame, fame Telefcope.
814 O Emerfion of the 2d, Telefcope 8 Feet.
10. 82037 p.m. Firft emerged, Telefcope 1_{3} Feet.

May 3. 84066 p.m. Emerfion of the ift, fame Telefcope.
$93^{6} 0 \quad$ Emerfion of the $4^{\text {th }}$, fame Telefcope.
Sept. 8. $44^{1} 4^{3} \mathrm{a} . \mathrm{m}$. Immerfion of the ift, fame Telefcope. O\&z. x. $5008 \mathrm{a} . \mathrm{m}$. Immerfion of the ift, Telefcope 13 Feet. 15. 17849 p. ma. Immerfion of the 2 d , Sky a littlc cloudy, Telefcope 13 Feet.

An Occultation
of Jupiter and
of Jupiter and by the Moon, Oetober 27,
1740, in the Morning; obfervedat Mr George Gra. ham's, F.R.S. Housf in FleesStrce, London, by D_{r} Bevis, and Mr James Short, F.R.S. No. 459. p. 647.
XXII.

Times by	Apparent
the Clock,	Times.
OETober 26.	Octaber 27.
Clock above	
Stairs.	
111	h

Times by the Clock, OEFober 26.	Apparent Times. OEfober 27.	
Clock below Stairs.		
11	h 111	
154115	$15 \quad 54 \quad 36$	fupiter's third Sitellite eclipfed by the Moon.
15 47 10	16031	fupier's fecond Satellite eclipfed by the Moon.
$\begin{array}{lll}15 & 55 & 4\end{array}$	16825	Iupiler's preceding limb immerged.
$15 \quad 57 \quad 20$	161041	Jupiter's fubfequent Limb immerged.
$16 \bigcirc 54$	$16 \quad 14 \quad 15$	Jupiter's firft Satellite eclipfed by the
		There Immerfions were taken
Clock above.		Reflecting Telefcope, of 16.5 Inches
$16 \quad 17 \quad 49$	$16 \quad 318$	Procyon paffed the Meridian.
- OEF. 27.	OEI. 28.	
$23 \quad 46 \quad 42$	- 0	The Sun's Centre paffed the Meridian.

N. B. The Clock in the lower Room was all along $2^{\prime \prime}$ flower than the Clock in the upper Room.

None of the Emerfions could be feen for Clouds. Whillt Yupiter was immerging, the Sky was perfectly ferene; and, at his neareft Approach to the Moon, he did not appear to alter his Figure in the leaft, nor to be tinged with any prifmatic Colours; neither did he (as is faid to have been fometimes obferved through Refracting Telefcopes) feem to enter at all upon the Moon's Body.

That Part on the Moon's Limb where 'fupiter entered, was a Hollow; and though fome are of Opinion, that the Circumference of the Moon, as it is bounded to our Eye, is a perfectly frooth Circle, and that no Hills or Hollows appear there, as on the Surface of the Moon; yet if it be looked at in a clear Night with a good Telefcope, that magnifics about 100 times, or even lefs, it will be feen rugged and uneven all round.

Notwithftanding Jupiter's Light feems to be more vivid than that of the Moon, when he is feen at a good Diftance from her, and far more fo when the Moon is away; yet the contrary is plainly difcernied when they are near one another: And in this Obfervation, whilft fupiter was immerging behind the Moon, his Difk appeared much dimmer, and of a more faint and duky Complexion, than the Difk of the Moon.

[^19]XXIII. 1. The firft Contact could not be feen for Clouds.
${ }_{h}$ Apparent Time.
At 142444 Mars appeared about half covered, but a diftinct View could not be had for flying Clouds.
142521 Mars totally covered, the laft Ray of Light being then loft.
15 II 22 The Moon appeared, but Mars was not feen, no Part being yet emerged.
151511 I judgred it was quite emerged, but Clouds prevented the Moon's Limb from being diftinctly feen.

The Obfervation was made with a Refracting Telefcope of 12 Feet.
-Objerved in Coven!-Garden, b_{y} J. Bevis, M.D. Ibid. p. 101.
2. Before the Eclipfe, I took feveral Differences of Right Afcenfion and Declination between δ and μ Pifcium, for afcertaining the true Mlace of Mars: As alfo feveral Differences of right Afcenfion and Declination between the Moon and Mors, before and after the Eclipfe, which I fhall give another Time.

Apparent Time.
${ }_{\mathrm{h}} 1 / 11$ p. m.
142410 I was furprized to fee Mars continue quite round, though hardly, to Appearance, disjoined from the fcabrous Edge of the Moon; but that Inftant I thought it began to lofe it's Figure. Clouds.
142526 The Moon fhone out bright again, but Mars was entirely vanifhed.
151446 The Moon being jutt clear of a Cloud, I faw Mars partly emerged.
151449 He fee:ned juft half out; then Clouds came on again, fo that If faw not the final Contact.

The Moon's Diameter was 21,157 Parts of the Micrometer and it's illuminated Part paffed over the horary Thread in 2 Minutes, 3 Seconds.
I am certain of the Time to 2 or 3 Seconds.

Occultation of
Mars by the Mars by tbe Moon, obfirved by the Jofuits as Pekin, No.468. p. j06. Jan. 1742.3.

Obfervations on Mars.

XXIV. 8. I. OEVober 10, 11, and 12, when of pafid near μx, observations Star of the 5 th Magnitude, I obferved the following Diftances of the Centre of Mars from that Siar.

St. N.	TrueTime.			Parts of the Micromet.	Valu: of Pars of the Mic.
	h 1.				11
OEF. 10	$94 \mathrm{Vc} / \rho_{p}$.	$\delta^{*} \mu x$	Telefc. 7 F	$4^{8 \frac{1}{2}}$	19 24
	946		Telefc. 9 F .	65	1921
OFT. 11	10	$\sigma^{2} \mu$	Telefc 9 F .	$22^{\frac{1}{2}}$	642
	104		Telefc. 7 F	16	$6 \quad 24$
	109		Tulefi. 7 F .	$16:$	636
	1012		Telefc. 9 F.	22	633
Oct. 12	$855 \mathrm{Ve} \int \mathrm{P}$.	$\theta^{*} \mu x$	Telefc. 9 F	$7{ }^{1 \frac{1}{2}}$	218
	859		Telefc. 7 F	53	$21 \quad 12$
			Telefc. 7 F .	$53^{\frac{1}{2}}$	$21 \quad 24$

on Mars in the Autumn of 1736, at Berlin, by Chirit. Kirch, Appro. nomer of tbe R Sociry stbere. No. 459 p. 573. Jian s.c. 1741.

Conjun.gion of
Mars \& μ. x.
\$2. In order to obtain from thefe Diftances the Time of the Connjunction of Mars with the Star $\mu \notin$, I chofe the three following Diftances.
h. $\quad 1$

1. OEF. 10. $943 \mathrm{Ve} / \mathrm{p}$. Diffance of the Centre of 8 from
2. Oit. 11. 10 6Vefp. ——————————6 34
3. OEF.12. 9 OVCJP. - — — — — - 218

I fuppofed from the Ephemerides, the diurnal Motion of Mars in Longitude $19^{\prime} 30^{\prime \prime}$, in Latitude $3^{\prime} 40^{\prime \prime}$: Therefore the diurnal Motion of Mars in his proper Orbit, is $19^{\prime} 51^{\prime \prime}$, and the Angle of the Orbit of Mars and the Ecliptick (or rather with the Parallel of the Ecliprick) is $10^{\circ} 39^{\prime}$.
§3. In the oblique-angled Triangle $a \mu b$, three Sides being given Fig. 78. namely,
ab, the Motion of Mars, which anfwers to $24^{h} 23^{\prime}$ (the $\}_{20} 10$
Time between Obf. I and 2) - $\begin{array}{ll}\text { a } \mu \text {, the Diftance firft obferved - — - - - - } 19 & 22 \\ b \mu \text {, the Diftance fecondly obferved - - - } & 34\end{array}$ From μ I drew a Perpendicular to the apparent Orbit of, Mars $\mu \chi$, and in the rectangular Triangle $b \chi \mu$ fought the 151 Particle of the Orbit of Mars $b \chi$, and found is to be and the leaft Diftance of δ and $\mu, \chi \mu$, which I found to be $-6{ }^{18}$

The Particles of the Orbit of Mars χ^{b} anfwer to - 214 Which being fubtracted from the fecond Fime of $\mathrm{Ob}-310 \quad 6$ Vefp.
fervation, Oit. 11. Leave the true Time of of $\mu *$ in the Orbit, OEf. 11 . - $75_{2} \mathrm{Vefp}$.
§. 4 . In the oblique angled Triangle $b \mu c$ the Motion of ${ }^{1}{ }^{1}{ }^{\prime} 55^{\prime \prime}$ Mars between Obf. 2, and $3, b c_{2}$ is - - - - 5^{185} The Diftance of δ from $\mu *$ by the Obf. 2.6μ - - - 634 The Diftance of ${ }^{\circ}$ from $\mu *$ by Obf. $3 . c \mu$ —————28 18

Thefe three Sides being given, I fought the Angle c, and found it to be $17^{\circ} 35^{\prime}$. Then I drew a Perpendicular from μ to the Orbit of Mars $\mu \chi$, and in the rectangular Triangle $c \chi \mu$, the Hypothenufe $c \mu$ being given, I fought the Sides $\mu \chi$, and $\tau \chi$, and found $\mu \chi$, the lealt Diftance $6126^{\prime \prime}$ and $c x$ —— — — $20^{\prime} 18^{\prime \prime}$ From which the Side $b c$ being fubtracted - — - $18 \quad 55$ Leaves $b x$ - - - — — — —— 123 To which anfwers in Time - - - - - $\mathbf{I}^{\mathrm{h}} 40^{\prime}$ Which being fubtracted from the Time of Obf. 2. OEt.11. 106 Vefp . Gives the true Time of the leaft Diftance, or of the ?

Conjunction of δ and μx in the Orbit, O\&F. ir. \& 826 Vefp.
§. 5. The Deductions in the two preceding Paragraphs, as ufual, differ but little. If I had taken the diurnal Motion of Mars about \ddagger of a Minute lefs, the Difference would have been fmaller. In the mean Time, if I choofe a mean between the 2 Deductions, I can err but very little from the Truth; and thus, I gather the true Time of $\delta \delta \mu x$ in the Orbit of Mars, OEZ. 11. $8^{\text {h }} 9^{\prime}$ the leaft Diftance of δ from μx $6^{\prime} 22^{\prime \prime}$ North.
§6. Tho' this might have been fufficient, yet I fet about ${ }^{\prime \prime}{ }^{\prime \prime}$ a new Calculation, fuppofing the diurnal Motion of 8 in $\} 1915$ Longitud In Latitude - - - — — - — — 340 Therefore the diurnal Motion of 8 in the Orbit was - $19 \quad 36$ And the Angle of the Orbit of Mars with the Parallel of the Ecliptick $10^{\circ} .47!^{\prime}$ the Spaces of Time between Obf. 1, and 2, and between 2 and 3, this diurnal Motion of Mars in the Orbit $19^{\prime} 3611$ being given, make $a b 19^{\prime} 55^{\prime \prime}$, and $b c 18^{\prime} 4^{\prime \prime \prime}$; the Diftances, $a \mu, b \mu$ and ${ }_{c} \mu$ remain the fame as in the former Calculations. Thefe being granted, I found in the firt Place by the Triangle $a b_{\mu}, \mu \chi 6^{\prime} 2_{2}^{\prime \prime}$, and $b \chi^{1} 37 \frac{1^{\prime}}{}{ }^{\prime \prime}$.
To which anfwers - - - — - - I $\begin{array}{llll}\text { h } & \text { I }\end{array}$
Which being fubtracted from $O \varepsilon \approx$. 11. - ———n 1059 Vefp . Leaves the Time of the leaft Diftance, Oct. I I. - - 8 Y Vcsp. Then by the Triangle $b c \mu$, I found $\mu x=\square=\square^{\prime \prime}{ }^{\prime 2} 1^{\prime \prime}$

Older rations on Mors.

And $b x^{1^{1 /}} 3^{81 \prime}$, which anfwer in Time to - -2_{2}^{h} o

Leave the Time of the leaf Diftance, OAf. 11. - - 8 GVefP. Thus thee Calculations agree very well together, and with the mean of the former Calculations.
§. 7. If from μ a Right Line μd be drawn, which with the Line $\chi \mu$, perpendicular to the Orbit of Mars, makes an Angle at μ equal to the Angle of the Orbit of Mars with the parallel of the Ecliptick, $d \mu$ will be perpendicular to the Ecliptick. I found this Angle at firft to be $10^{\circ} 39^{\prime}$ (§.2.); and then the Diurnal Motion of Mars being corrected, 1 found it to be $10^{\circ} 4^{\prime}$ (§. 6.). Now in the Rectangular Triangle $d \chi \mu$, befides the Angles, the Side $\chi \mu$ is known to be $6^{\prime} 22^{\prime \prime}$, and the other Sides are fought. Affuming therefore the Angle $\chi \mu d 10^{\circ} 39^{\prime}$, the Side χd is found to be $1^{\prime} 12^{\prime \prime}$. But if I make fe of the more correct Angle $10^{\circ} 47^{\prime}$, the Side $x d$ will be $1^{\prime} 1^{\prime \prime}$.
 Which being added to the time of the leapt Diftance? ORE.
Gives the true time of $\delta \delta^{\circ}$ and μx in the Ecliptick Oft. 11. 一 $d \mu$, or the difference of the Latitude of Mars, from the Latitude of the Star in δ in the Ecliptick is $\} 0 \quad 6 \quad 29$ found -
Which being fubtracted from the Latitude of the $\begin{array}{lll}0 & 1 & 11 \\ \text { Star - - - } & 4 & 25 \\ 3 & 4 & \end{array}$ Leaves the Latitude of Mars - - — — 25056 S . The Longitude of Mars is equal to the Longitude? of the Star according to the accurate Brilannick
Calaioguc - - — $19 \begin{array}{lll}19 & 25 & 40\end{array}$
§. 8. At the Time of the Conjunction of Mars and μx in the Ecliptick, at Berlin, true time Oc- $\} 93^{6}$ o
 By Manfredi's. Ephemerides the Longitude of Mars $\}$ n 19° 14 40
is found to be -
Which falls fort of the Oblervation - - - - 110 Gbifer's Ephemerids make the Longitude of 8 - $\begin{aligned} & 19\end{aligned} 0$ Almont 2_{2} I Short of the Observation, and the Ephem. $\}$ r 19 25 o of Displaces make it - - -
agreeable enough to the Observation.

Manfredi's E.phemerides make the S. Latitude of * 21.57×0 that is, about I' lets than the Iatitude oblerved; According to Cbifer's it is - - . 257 30 And according to thofe of Defplaces $-\cdots \quad \cdots \quad-\quad 2 \quad 5930$

The Place of Mars in oppo. fivion 10 ibe Sun.
μx in the Ecliptick, the Place of the Sun is found by: $6 \Omega \times 8$. 462 I Manfredi's Tables to be
At which time the Longitude of Mars wis to - o r 19.25 .40 And therefore δ was almof in oppoficion to the Sun, and
only $39^{\prime} 19^{\prime \prime}$ from the oppofite Place to the Sesis.
The diurnal Mution of the Sun wats - - - 0 59 34 And the diurnal Motion of o retrograde in the Lislipt. - 0 I5, The Sum gives the diurnal Motion of \odot from 3 - \quad IB 49
§.2. As $1^{\circ} 18^{1} 49^{\prime 1}$ the diurnal Motion of e from $h \quad 1 \quad 11$ δ is to 24 hours, fo is $39^{\prime} 19^{\prime \prime}$, the Diltance of os from \} II 58 . 0 the oppofite Place to \odot to - — - - - -
Which being added to the true Time of $\delta \delta \mu x$ in $\} 9{ }_{3} 6$
the Ecliprick OET. II. —————— 9.10 Makes the Time of the Oppofition of Mars and the Sun,
at Berlin, OEF. 1L. true time $-\quad-\quad-\}^{21}$
Subtract the Equation - - - - - $\quad 133^{2}$
There will rentain mean Time at Berlin, O CFF. II. - $2120^{\frac{1}{2}}$ For the Difference of Meridians, between Bologna and \}

Berlin, fuberact - - - - - 0 Remains mean Time at Bologna, OCF. 11. - - - 21120
§. 3. As 24^{h} to $19^{\prime} 5^{\prime \prime \prime}$ the diurnal Motion of Mars ${ }^{0} \quad 1 \quad 11$ in Longitude, fo $11^{\mathrm{h}} 5^{81}$, the time between δ o and $0 \quad 9 \quad 3^{6}$ μx in the Ecliptick, and the Oppofition of \odot and δ, to Which being fubsracted from Longitude os in $\delta \delta$ and $\mu x-$ ——————oort $25 \quad 40$ Leaves Longitude of 8 in 8.0 ————or 19164 $\left.\begin{array}{l}\text { The Place of } \odot \text { by Manfredi's Tables OCF. II. }\} 6 \approx 19 \\ 21^{\text {h }} 12^{\prime} \text { mean Time at Bologna is found - }\end{array}\right\}$ A Difference of only $1^{\prime \prime}$ (befides the Seni-circle) from the Place of Mars, which may fafely be neglected.

Leaves Latitude of in $8 \odot-$ —————2 $5^{6} 6 \mathrm{~S}$. Obfruations Mars was among the Stars e, ε and ζ of Pijces, and other fmaller on din's about Stars; from which I often meafured the diftances of Mars, with 3 different
different Telefcopes, of 7,9 and 2 feet, and once with a Tclefcope his fecond Staof 18 feet. By the longer Telefcopes more accurate Diftances may tion Novembe taken; but becaufe they do not comprehend any great Space, 1 ber 1736 . could meafure only the fmaller Diftances by them. Large Diftances might indeed be obferved by the Telefcope of 2 feet, but fometimes a Doubt of 1 or 2 Minutes may creep in, efpecially if the Diftances are too large for the Capacity of the Telefcopes Such Errors are moff feen when the Situation of the Stars is drawn upon Paper, and the Diftances of a Planet from different Stars, do not interfect each other in one Point. I have taken out the Stars, from which I ineafured Mars, from the Britannick Catalogue, and by the Diftances of Mars from thefe Stars, I have traced out the Place of the Planet by means of a Circle. I fhall firft exhibit the Diftances taken, and then the Places of Mars found therchy. Where it is to be obferved, that I have made ufe of a Delineation, in which the Margnitudes of Degrecs and Diftances Fig. 79. of the Stars were double of thofe in the Scheme.

Styl. nov.	$\begin{aligned} & \text { True } \\ & \text { time } \\ & \text { Vefp. } \\ & \hline \end{aligned}$		Parts of the Micrometer	Value of parts of the Microm.
Oct. 27.		Telef. 7 feet	121.	-1111
Oct. 29.		Telef. 7 feet Teler. 9 feet		$\left\|\begin{array}{r} 0.48 \cdot 24 \cdot \\ 24 \cdot 4^{8} \\ 24 \cdot 43 . \end{array}\right\|$
Nov. 1.	$\begin{array}{ll} 11 . & 6 \\ 11 . & 10 . \end{array}$	$\begin{array}{\|lll} \hline \text { Telef. } & 9 & \text { feet } \\ \text { Tclef. } & 7 & \text { feet } \end{array}$	$\begin{aligned} & 38 . \\ & 28 . \end{aligned}$	$\begin{aligned} & 24 . \\ & \hline 11 . \\ & \hline 18 . \\ & 11 . \\ & 12 . \end{aligned}$
Nov. 5.		$\begin{array}{\|ccc\|} \hline \text { Tulef. } & 7 \text { feet } \\ \bullet & \cdot & \cdot \\ \text { Teler. } & 9 & \text { feet } \end{array}$	$\begin{array}{cc} 34 & \frac{1}{2} \\ 100 & \frac{1}{2} . \\ 105 . \\ 44 . \end{array}$	13. 48 40. 12. 42. 0 13. 6
Nov. 6.			17. 116. $110^{\frac{1}{2}}$. $23 \div$.	$\begin{array}{rr} 6 . & 48 \\ 46 . & 24 \\ 44 . & 0 \\ 44 & 12 . \\ 6 & 59 . \end{array}$
Nov. 7.		Telef. 18 feet Telef. 7 feet	$\begin{gathered} 16 . \\ 52 . \\ 129 . \\ 118 . \\ \hline \end{gathered}$	2. 17. 2. 12. 51. 36. 47. 12.
Nov. 12.	$\begin{array}{lll}\text { 9. } & 19 . & \text { d a } \\ \text { 9. } & 27 \\ \text { 9. } & \text { d } & \text { e } \\ \text { d }\end{array}$	Telet. 7 feet	$\begin{array}{r} 52 . \\ 172 . \\ 165 . \\ \hline \end{array}$	$\begin{array}{\|ccc} \hline 0 . & 20 . & 48 . \\ 1 & 8 . & 48 . \\ 1 & 6 . & 0 . \end{array}$

Siyl. nov.	True time Verp.		Parts of the Micrometer	Value of parts of the Microm.
Nov. 13.		Teler. 9 feet Telef. 7 feet	$\begin{array}{r} 77 . \\ 58 . \\ 175 . \\ 17 \mathrm{r} \\ \hline \end{array}$	O. 22. 56. O. 23. 12. I. 10 0. I. 8. 24.
Nov. 15.	$\begin{array}{lllll} 7 . & 2 . & 8 & a \\ 7 . & 9 . & 8 & e & x \\ 7 . & 1 & 0 & c \\ 7 & 18 & 8 & c \\ \hline \end{array}$	Telef. 7 fect Teief. 9 feet	$\begin{array}{r} 72 . \\ \mathbf{1 7 9} \\ 186 \\ 96 . \\ \hline \end{array}$	O. 23. 48. I. 11 36. 1. 14. 36. o. 28 35. 22 35
No		Telcr. 2 feet	91. 106. 94. 143° 113. 92.	$\left\lvert\, \begin{array}{rrr} 1 . & 22 . & 6 . \\ 1 & 35 . & 38 . \\ \text { r} & 24 . & 48 . \\ 2 . & 9 . & 2 . \\ 1 . & 41 . & 57 . \\ \mathrm{I} . & 23 . & 0 . \end{array}\right.$
	6. 32. \% t .		103.	1. $3^{2 \cdot} 55$.
N	6. 43 $\overline{0}$ e \bar{x} 6. 46 8 ζ ζ 9. 34. 8 x x 9. 37. 8 e x 9. 41. 8 ζ x better	Telef. 2 feet	$\begin{array}{r} 104 . \\ 82 . \\ 103 . \\ 105 . \\ 82 . \\ 81 . \end{array}$	1. 33.50 . 1. 13. 59. I. 32 . 55 . 1. 34.44 . 1. 13.59. 1. 13.
De		Telel. 2 feet Teler. 7 feet Telef. 9 feet	$\begin{array}{c\|c} \text { te } & 160 . \\ 157 . \\ \text { et } & 56 . \\ 75 . \frac{1}{2} \\ 76 . \\ \hline \end{array}$	$\begin{array}{\|rrr\|} \hline 2 . & 24 . & 23 . \\ 2 . & 21 . & 40 . \\ 0 . & 22 . & 24 . \\ 22 . & 29 . \\ 22 . & 38 \\ \hline \end{array}$
$\overline{\text { Dec. }} 6$.		Telef. 2 feet \vdots Tcler. 7 feet Telef. 9 feet	201. 204. 50. $113=$. 153.	28. 3. 1. 22. 3. 4. 4. O. 45 8. O. 45. 24. o. 45. 34.

Thefe Diftances are always to be underfood from the Centre of Mars, efpecially by the longer Telefcopes.

Now follow the Places of Mars deduced from the Diftances enumerated, and his Places taken from the different Ephemerids, to fhew the Agreement or Difagreement between the Calculations and the Obfervation.

Obfervations on Mars.

On the 2 laft Days，namely the third and efpecially the fixth of December，the Places of Mars，deduced from Obfervation，are doubt－ ful；thefe therefure may be rejected．

The Places of the fixt Sars in the Scheme annexed，from the Britannic Catalogue，to the Beginning of the Year 1690，are taken withour any Reduction：therefore to the Longitudes of Mars，ex－ hibited by the Figure，mult be added 39^{\prime} or $39^{\prime} 5^{\prime \prime}$ for the Motion of the fixt Stars in 46 Years and about 10 or in Months．

The Obfervations of Novenber 9 are omitted above，and I fhall add them here，with the Place of Mars deduced from them．

Styl．nov．	True time Vefp．		Longitude of Mars．	Latitude of Mars．
Nov． 9.	9． 34.	Obfervation． Manfredi． Ghifler． Defplaces．	0 11 r 13. 13． 22. 20. 13.22. 13. 11. 13. 25.	0 1 11 1． 1． 30. S. I． 0. 30. 1． 3.30. 1． 2. 30.

in Obfirvati－ on of the Tran－ St of Mercury aver the Sun， Ot． 31.1736 ， bs Mr Gcorge Graham，
F．R．S．made in Fleetifreet， London．No． 446．p． 102. July，ビゥ． 173%

XXV． 1.
Apparent Time．
92200 Mercury not yet feen，then Clouds．
92537 I firft faw Mercury for a few Scconds，and judged he was got entirely within the Sun＇s Difk，or perhaps a little more；then Clouds again，with fome Inter－ vals of a few Moments between，which allowed us a Sight of Mercury about three or four feveral times； then quite cloudy till near 12，when we had a Sight of the Sun for a few Minutes，and took his Tranfit upon the Meridian；at which time we judged

A Tranfit of Mercury over the Sun.

b II Mercury to be about two of his Diameters, or a little

 more, within the Sun's Dink, and a little gaft the vertical Line.$1210 \quad 2.7$ We had again a Sight of the Sun, but Mercury was gone off.
2. The Sky was very clear, and the Air not difturbed by any -oterved as Wind. Roverfus happened to be the firft who perceived the Planet at the edge of the Sun at $22^{\mathrm{h}} 8^{\prime} 37^{\prime \prime} \mathrm{p}$. m. and it's inner Contact with the Sun at $22^{\mathrm{h}} 11^{\prime} 1^{\prime \prime}$ we made ufe of Clocks regulated by a

Bologna, by Euflachius Manfredi, F. R. S. Ibid. Meridian Line drawn by Zanotti, by equal Altitudes of the Sun in p. 103. the Morning and Evening, taken feveral times.

The Planet was perceived fomething later by other Obfervers in the Limb of the Sun. For my own part, I did not perceive it, with a Tclefcope of 11 feet, till $22^{h} 9^{\prime} 5^{\prime \prime}$ when it had plainly entered che Sum, and I eftimated it's inner Contact to be at $22^{\mathrm{h}} 10^{\prime} 53^{\prime \prime}$ But the former Obfervation is far more certain, as being made with a better Inftrument. But fince from the times of the Egrefs of the Planet, which will afterwards be mentioned, it is manifert that it's Body fpent $3^{\prime} 1611$ in going out, if we fubduct to much from the time of the inner Contact obferved by Roverfius, the exterior Contact, or firt Appulfe of Mercury to the Sun will be ftill more cercain, at $22^{\mathrm{h}} 7^{\prime} 5^{61 \text { I。 }}$

The fubfequent Obfervations tended to find fome Points of the Path, which the Planet was feen to defrribe in the Sun. We referred each of thofe Points to a Horary Circle, and alfo to a Parallel drawn through the Centre of the Sun, according to Cafini's Method, marking the times by the Clock, at which the Limbs of the Sun and Moriury paffe:1 over the Horary Thread of the Micrometer. Zanotti obtained many of thefe Points with a Telefcope of 8 feet; and I obtained 1 or 2 with a Tube of 6 feet, to which an excellent Micrometer was fitted, made by Jo. Facobus Marinoniss. Roverfius and T'bomas Perellus. M. D. determined fome other Points with the fame. Hither alfo belongs the Obfervation made by Perellus on the Meridian, with a mural Semi-circle, by which Obfervation the right Afcenfion of the Planet was found to be $1_{1} 1^{\frac{1}{2}}$ of Time greater, and the Declination $5^{11} \frac{1}{3}$ of Time leifs than of the Centre of the Sun. Befides Zanotti took upon himfelf to defcribe the Pofitions of the more remarkable Spors, many of which were feen that Day in the Sun. It was eafy to diftinguifh between the Planet and thofe Spots, becaufe it was exactly round, and very blaek, and furrounded with no Ring.
Francifcus Algarostus, F. R. S. obferved the Beginning of the Egrefs with a Telefcope of 8 feetat $50^{\prime} 1^{\prime \prime}$ p.m. the End at $53^{\prime} 6^{\prime \prime \prime}$. I obferved the Beginning with a Telefcope of 11 feet at $51^{\prime} 7^{\prime \prime}$ the End at $53^{\prime} 44^{\prime \prime}$. Rover/fus ebferved only the End with a Telefcope of 14 feet at $54^{\prime} 1^{\prime \prime \prime}$; but thefe Obfervations are not very certain, becaufe the Telefcopes were but indifferent, and the Wind rifing about that Time Mook them
a little. Therefore we muft prefer the Obfervation which was made with a Telefcope of 22 feet, by Francifcus Vandellius, Profeffor of Military Architecture. He determined the inner Contact at $50^{\prime} 50^{\prime \prime}$, and the outer at $54^{\prime} 6^{\prime \prime \prime}$, whence the Stay of the Planet in the Limb was $3^{\prime} 1^{\prime \prime \prime}$, and the Time of the Egrefs of the Centre $5^{\prime}{ }^{\prime} 28^{\prime \prime}$, which, according to my Obfervation, Mould be $5^{\prime} 25^{\prime \prime}$.

Thus much for the Obfervations themfelves; I fhall now mention what I have deduced from comparing them with Zanotti. Affuming the Diameter of the Sun to be $3^{2!} 34^{\prime \prime}$, and the Time of it's paffing thro ${ }^{\circ}$ the Horary Circles $2^{\prime} 17^{\prime \prime}$ (which Numbers are fet down in the Tables of the Modern Aftronomers, and confirmed by the Obfervations themfelves) we have fet down thofe Points by obferving the Bounds of the planetary Path; and as an Account of the fmall Fallacies of the Obfervations they would all fall exactly upon the fame Right Line, we thought none more proper to reconcile them, than if we determined a Perpendicular Line drawn from the Centre of the Sun to the Path of the Planet, to contain an Angle of $23^{\circ} 40^{\prime}$ to the Eaft with the Horary Circle; and if we fettled the Length of that Perpendicular from the Centre to the Path to be $13^{\prime} 5^{\prime \prime \prime}$ to the North. From thefe we have calculated all the reft after the following manner.

Fig. 80. $\quad{ }^{\text {h }} \quad 1 \quad 11$ In $\quad 76$ Ingrefs of Mercury into the Difk of the Sun.
22934 Ingrefs of the Centre.
22 II 12 Total Ingrefs.

10548 O Angle of the Ecliptick with the Horary Circle from the Afronomical Tables, to the Eaft.
828 O Is therefore the Angle of the Ecliptick with the Per-
752 O Is alfo the Angle of the apparent Path with the Eclip-

- 111
- 1358 Diftance of the Path from the Centre of the Sun to the North, found by Obfervations.
- $16 \quad 17$ Semi-Diameter of the Sun.
- 1645 Length of the Path within the Sun's Dink.
- 822 Half of it's Length.
- 6 10 Horary Motion of Mercury in the apparent Path.

066 Apparent Horary Motion in the Ecliptick.

- 158 Portion of the Path between the middle of the Tranfit and the Conjunction.
- 1020 Portion of the Path from the Ingrefs to the Conjunction.
- 624 Portion of the fame from the Conjunction to the Egrefs.
- 1015 Difference of Longitude of Mercury and the Sun in the Ingrefs.
- 621 Difference of Longitude in the Egrefs.
h $\quad 1$
0
19

A Iranjt of Mercury under the Sun.

- 111

41547 Motion of Mercury feen in the Orbit out of the Sun at the Distance of $16^{\mathrm{h}} 39^{\prime}$ about this Time, or Argus: mont of Latitude in Conjunction.
4135^{6} The fan ie Motion reduced to the Ecliptick.

- 11 of Taurus

15934 Place of the afcending Node of Mercury feen out of the Sun.

Log. 449301 Diftance of Mercury from the Sun at the Time of Conjunction by Cafini's Tables.
Log. 499503 Diftance of the Earth from the Sun by the fame Tables.

Wittemburg, ${ }^{-O b / r v e}$ 3. Mercury appeared within the Sun's eaftern Limb (as in the Wittemburg, Scheme)
Nov 11.
Nov 11.
1736. by
J. Frid.Weid-

Ier, F. R.S.
bid. p. 110 .
Fig. 81 .

Mercury under XXVI. I went to Greenwich, OEF. 3 1. 1736, early in the Morning, the Sun Oat. to observe the Conjunction of Mercury with the Sun, being invited by 31. 1736, b, Dr Halley, who condefcended to affiant me. The Sky was very clear J. Bevis,M.D. at the rifing of the Sun, but the Wind was very brink. Dr Halley was No. 471. p. in the fame Room with me, and was pleated to attend the Clock,
622 . Read 62 . Read
December 15, 1743.

ATranfit of Mercury over the Sun.

about 8, being afraid of miffing the Ingrefs, if there flould be any Error in the Calculation: But I could fee nothing in the Sun befides Spots. The Sky was prefently after covered with Clouds. About ten the Clouds opened a little, ard gave me the firt Opportunity of feeing Mercury under the Sun, which was taken away in a Moment by very thick Clouds. I had not waited long before I faw him again, and fhewed him to Dr Hallyy on the Face of the Sun. Then came a long Succeffion of dark Clouds. About Noon it began to be clear, and Dr Hailey obferved the Sun culminating with his great Mural Quadrant. I had now great Hopes of feeing the Egrefs of Mercury, and renewing my Application, made the following Obfervations.

OEF. 30. $23 \quad 50 \quad 45$ The Centre of Mercury was 11811 diftant from the Sun by the Micrometer.
31. O 239 Mercury was diftant from the Sun's Limb about his own Diameter.
74 The Centre was judged by the Eye to be gone out.
833 The exterior Conract, the Sky being very clear.
XXVII. I have fent you a Scheme of the Phafe of the Sun, OET. 3 ift, $1 \mathrm{I}^{\mathrm{h}} 5^{\prime} \mathbf{1 2}^{\prime \prime}$ as taken by my Telefcope, which is a very good one of 10
feet ; but as I had neither Crofs-Hairs, Micrometer, or other exact Inftruments, the Obfervation may not be very exact: Befides, I had only a Glimpfe of the Sun for 7 or 8 Minutes.

A Tranfit of Mercury over the Sun, ()et. 31. $173^{8,}$ b John Huxham M.D.F.R.S

No. 459 . p. 645 - Fig. 82.
XXVIII. April 2 1, 1740, I had an Opportunity to obferve Mercury, then near his defcending Node, tranfiting the Sun's Difk. Being advertifed by Dr Halley's Calculations, that the former Part of this Tranfit would be vifible in our Horizon, I was refolved to obferve it in the beft manner I could, with thofe few Inftruments I was furnilhed with; which were only thofe I had received from my Predeceffor Mr If. Greckwood, and are the fame that are mentioned by the late Mr Tbomas Robie* being a 24 Foot Telefcope, another of 8 Foot, and a brafs Quadrant of 2 Foot Radius, fitted with telefcopic Sights, and having Crols-Hairs fixed in the Focus of the Glaffes. All thefe I got in Readinefs, being the more defirous to make this Obfervation, becaufe Mercury had never as yet been feen entering upon or going off the Sun's Limb at his defcending Node, and this Tranfit ought to be invifible to Europe. The better to obferve Mercury's Ingrefs on the Sun, I determined to make ufe of my ${ }_{24}$ Foot Tube, while an Affitant 1 had with me ufed that of Eight Foot: Aiter which I propofed, in order to find out his Path in the Sun, to obferve the Paffages of Mercury and the Sun's Limbs by an horizontal and vertical Hair in the Telefcope of the Quadrant; and

$$
\text { * See Vol. VI. p. }{ }^{15} 3^{\circ}
$$

ATranfit of Mercury over the Sun, A pril 21. $17+0$ by Mr JohnWin. chorp, Hol. lijian Prof. Matb. and Aflron. at Cambridge is New-Eng-
land. No. 471. p. 572. Read Nov. 3. 1743.

I chofe rather to deduce Mcicury's Right Afcenfions and Declinations by Calculation from hence, than to obferve them immediately in the common way of placing one of the Crofs-Hairs parallel to the Equator, $\mathcal{E}^{\circ} \mathrm{C}$. beciafe, as the Sun was likely to be low before Mercury made his Enirance, Refraction would have caufed confiderable Errors in the Places of Mercury determined in this Manner. Having no Clock, I was wbliged to make ufe of my Pocket-Watch, which I know to be a good onc: and by this it was eafy to difinguith Time to a Quarter of a Minute, which would have ferved pretty well for the Ingrefs of the Planet. But as it was by no means fufficient for thofe other Obfervations 1 defigned to make, I procured another Watch, which fhewed Seconds; and both thefe Watches I adjufted to the apparent Time, by feveral Altitudes of the Sun taken with the Quadrant before the Tranfit began; and by Altitudes taken the next Day, I found that the Watches had kept time exactly enough. I expected that the Centre of the Planet would enter upon the Sun at $5^{\text {h }} 2^{\prime}$; but being apprehenfive that he might be carlier than the Calculation, I, for fome time before that, with my ${ }^{2}+$ Foot Tube directed to the Sun, kept my Eye fixed on that Part of his Limb where the Planet was to enter, as fteadily as I could for the Wind, which then blew frefh. This Precaution was not needlefs; for, at $4^{\text {h }} 54^{\prime} 59^{\prime \prime}$, I perceived that Mercury had made a Impreffion on the Sun's Limb; by the Quantity of which I concluded, that almoft $\frac{1}{7}$ of his Diameter might be entered. After I had beheld this very plainly about a Minute, a timall Cloud covered the Sun near 3^{\prime}; which then clearing off, and the Sun hhining very bright, as before, I had again a diftinet View of the Planet, and faw much more than half his Body on the Sun. I continued to fee him till $5^{\text {h }} 0^{\prime} 40^{\prime \prime}$, at which Time he feemed to be gotten almoft wholly within the Sun; for he appeared now very near round, though I could not yet difcern the Sun's Light behind him. By the fraking of the Tube, I unfortunately miffed the Moment of his interior Contact with the Sun's Limb, but am certain it could be but very little later than this; for I prefently after faw him fairly within the Sun. Upon which, I repaired to my Quadrant; but this being at my Lodgings, at.fome Diftance from the long Telefcope with which I obferved the Ingrefs, and which I had no Convenience for raifing nearer Home, almoft half an Hour nlipped away before it was poffible for me to begin my Obfervations. I began them as foon as I could, and continued them till Sun-fet, excepting when I was interrupted by the Clouds; and I obferved fometimes one and fometimes the other Limb of the Sur, as I found it moft convenient. It will be needlefs, I fuppofe, to give a Detail of all the Obfervations I made; I fhall therefore felect Two or Three, which I look upon as moft exact, and moft fuitable to my prefent Purpofe. One was as follows:

This Obfervation gave me the Azimutb and Altitude of Mercury at his Paffage by the yertical Hair; from whence I computed his Right Afcenfion and Declination, and from thence his Longitude and Latitude. The Method of obtaining which being fufficiently known, I fhall fay nothing upon it, but only mention the Refult of the Numbers, which was, that at $5^{\text {h }} 59^{\prime} 1^{6 \prime \prime}$, when Mercury paffed the Vertical, his Longitude was $12^{\circ} 43^{\prime} 5^{\prime \prime} 8$; and the Sun being then in $12^{\circ} 4^{\prime} 27^{\prime \prime}$ of that Sign, Mercury was in confequence of the Sun's Centre, 3^{811}, his Latitude at the fame time being $15^{\prime} 2^{\prime \prime}$ North. Another Obfervation was thus:

From hence I concluded, that at $6^{\mathrm{h}} 4^{\prime \prime} 25^{\prime \prime}$ Aircury was in Antecedence of the Sun $3^{\prime} 57^{\prime \prime}$ with $14^{\prime} 20^{\prime \prime}$ North Latitude. 1 made another Obfervation after this; but the Sun being then very near the Horizon, his Limbs were not well defined, fo that I look upon this Obfervation as much preferable to that. I fhall fet down only two more, which were made about the middle between thefe two; and were made by the Sun's upper limb.

The Sun at the Vertical — - - - $6{ }^{66}$
Mercury at the Vertical - - - - 0.78
Mercury at the Horizontal - - - - $0{ }_{3} 4^{2}$
The Sun at the Horizontal - — - 0945

The Sun at the Vertical -
Mercury at the Vertical
Mercury at the Horizontal
The Sun at the Horizontal
At the former of thefe Obfervations, viz. $6^{\text {h }} 7^{\prime} 8^{\prime \prime}$ I computed the Longitude of Mercury to be in $12^{\circ} 4^{\prime} 17^{\prime \prime} 8$, which being taken from the Sun's Place in $12^{\circ} 43^{\prime} 35^{\prime \prime} 8$, leaves $1^{\prime}, 1^{\prime \prime \prime}$ for the Difference of Longitude between the Sun and Mercury; and his Latitude was then
V O L. VIII. Part i.

D d
$1+1$

A Tranfit of Mercury over the Sun.

$14^{\prime} 47^{\prime \prime}$. At the latter Obfervation, the Difference of Longitude was $1^{\prime} 55^{\prime \prime}$, and the Latitude of Mercury $14^{\prime} 42^{\prime \prime}$.

From thefe Places of Mercury it appears, that his Horary Motion in Longitude from the Sun was now $3^{\prime} 5^{\prime \prime \prime}$; according to which, if we fuppole the central Ingrefs to have been at $4^{\text {h }} 57^{\prime}$, we fhall find the Difference of Longitude at that time $3^{\prime}, 20^{\prime \prime}$; and the Semi-diameter of the Sun being $15^{\prime} 57^{\prime \prime}$, the Latitude of Mcrcury mult be $15^{\prime} 36^{\prime \prime}$. Now the Angle of Mercury's vifible Way with the Ecliptic being, by the Theory of his Motion, $10^{\circ} 23^{\prime}$, we muft conclude the former of the obferver Latitudes about $4^{\prime \prime}$ too fmall, and the latter as much too large; -an Error very inconfiderable in this kind of Obfervations. From thefe things we may gather by an obvious Computation, that Mercury was in Conjunction with the Sun, in refpect of Longitude, at $5^{\text {h }} 47^{\prime}$ with $14^{\prime} 59^{\prime \prime}$ North Latitude; and that his neareft Diftance to the Centre of the Sun was $14^{\prime} 44^{\prime \prime}$; and when he was at his neareft Diftance, the Difference of his Longitude from the Sun's was $2^{\prime} 39^{\prime \prime}$ which he pafied over in 40^{\prime} of Time, and confequently arrived at the middle of his Courfe in the Sun at $6^{\mathrm{h}} 27^{\prime}$: Whence the Semi-duration of the central Tranfit was $1^{\mathrm{h}} 30^{\prime}$, and the End at $7^{\mathrm{h}} 57^{\prime}$, an Hour after Sun-fet.

As to the Place of Mercury's Nodes, the Inclination of his Orbit to the Ecliptic, and the other Elements of his Theory, I pretend not to determine any thing from fo fhort a Series of Obfervations as this. I content myfelf with the foregoing Determinations, which, I hope, are not far from the Truth, having taken all the Care I could, both in the Obiervations and Calculations.

Tranfic of Mercary over the Sun, Oct. 25. 1743. in the Morning. ebfervied al Mr Geo. Graham's Houfe in Fleet- Itreet. No. 471 . p. 5-8. Riad Nov. 3.1743
XXIX. 1. The Beginning could not be feen by reafon of Clouds, but about $\mathrm{S}^{\mathrm{h}} 45^{\prime}$ Mercury was feen (through a Rellecting Telefcope three Foot Focus, magnifying about 50 times) about four or five of his Diameters within the Sun's Limb.

At Mr Sborl's Houfe in Surrey-freet, Mercury was feen juft paft the interior Contact $8^{\mathrm{h}} 30^{\prime} \quad 59^{\prime \prime}$ through a Reflecting Telefcope two Foot Focus, magnifying about 70 times; the Perfon who obferved it fays, that the Thread of Light between Mercury and the Sun's Limb was So fmall, as fcarcely to amount to the 20th or 30th Part of Mercury's Diameter.

The following Differences of Rigbt Afcenfon between the Sun's preceding Limb and Mercury, were taken at Mr Short's Houfe.

Sun's preceding Limb touched the Wire at -
Mercury touched the fame Wire at
Sun's preceding Limb touched the Wire at -
Mercury touched the fame Wire at -
Sun's fubfequent Limb touched the fame Wire at -

A Tranfit of Mercury coer the Surz.

Mr Grabam got an Obfervation madeby a Perfon in his Neighbourhood, by which it appears, that at $11^{\text {h }} 59^{\prime} 50^{\prime \prime}$, Mercury preceded the Sun's Centre 4_{2} /! in Right Afcenfion.

The Sky clearing up towards one o'Clock, the following Times were obferved at Mr Grabam's Houfe with great Accuracy.
Laft interior Contact at - - - - - - 1004^{2} End, or Mercury juft leaving the Sun's Limb at - $\quad 1 \quad 2 \quad 16$

This laft Obfervation agrees to a Second with the fame Obfervation made by Dr Bevis at Mr Siflon's Houfe in the Strand.

During the Time of thefe Obfervations it blew a violent Gale of Wind, fo that both Obfervers and Inftruments were fomewhat difturbed.
2. I made this Obfervation at London, in Beoufort-Buildings, fituated about $\frac{1}{2}$ a Minute Weft from the Royal Obfervatory. The Weather was the fame as in my former Obfervation*, only the Wind blew harder, which caufed a little Ahaking of the Telefcope, tho' ftrongly Sup-
-by John Be. vis, M. D, No. 471. p. 624. Read Dec. 15.1743. ported. I could not eafily apply the Micrometer, and the fingle Obfervation made with it was found to be fo inaccurate, by comparing it with a contemporary Obfervation made in a clofe Room at Greenwich, that I thall not mention it. Mr Fer. Siffon counted the Clock, whilft I obferved the Sun. At 8 in the Morning nothing appeared in the Sun, and it was foon after obfcured by many Clouds. At about $10 \frac{1}{2} 1$ firft difcovered Mircury, having then finifhed almoft half his Paffage. The Sun was then covered with Clouds again, but at Noon grew bright, when the afcenfional Difference of the Sun and Mercury appeared: for having placed three vertical Threads in the Focus of the meridional Paffage. OEt, $24 \cdot 23^{\mathrm{h}} 57^{\prime} 4^{\prime \prime \prime} \mathrm{T}$. App. the preceding Limb was come to the firft of them, and in $25^{\prime \prime}$ the Centre of Mercury canse thither. It then grew very cloudy with Rain, fo that I thought of giving over the Obfervation, but the Clouds breaking again, I proceeded, and had the Pleafure to fee Mercury exceeding black upon the bright Body of the Sun, and fet down the following Phafes exactly.

[^20] and Mercury nearly cqual to the Diameter of Mercury:
10.33 The laft interior Contact.

125 The Egrefs of the Centre, judged by the Eye.
216 The laft exterior Contact.
The Day before, a little before Noon the Diameter of the Sun was meafured $3^{2} 27^{\prime \prime}$ with an excellent Telefcope of 12 Feet, armed with a Micrometer.

Mr Bird made a good Obfervation, about the Beginning of the Tranfit, with a catadioptrical Telefcope that magnified much, in Surreyfireet about $\mathbf{1}^{1 / \frac{1}{2}}$ of Time Eaft from the Place of my Obfervation. He perceived a very fmall Thread of Light between the Limbs of the Sun and Mercury, which had juft entered, fcarce equal, as he faid to $\frac{5}{10}$ of the Diameter of Mercury, at $8^{\mathrm{h}} 30^{\prime} 56^{\prime \prime}$, that is, at $8^{\mathrm{h}} 30^{\prime} 54^{\prime \frac{1}{2}}$ in Beaufort-Buildings, as appeared by an exact comparifon of the Clocks; wherefore I may venture to refer the total Ingrefs at Beaufort-Buildings to $8^{\mathrm{h}} 30^{\prime} 40^{\prime \prime}$ as near as pofible.

I may therefore, from what has been faid, fet down the whole Tranfit, as feen at Benufort-Buildings, in the following manner.

$-b_{y} M_{r}$ john 3. \quad h 11
Catlyn, No. The Equal Time of the true © at Greenveich - Oif. 24.22 15 $\begin{array}{lllll}88\end{array}$ 466. P. 235. The Equation of Natural Days add - - I6 if RcadNov.25. Apparent Time of the true o - — — Off. 24. $22.32 \quad 329$

At which Time the true Place of the Sun and? of Mercury feen from the Earth — - -	$\begin{array}{lllll}\mathrm{m}, & 12 & 3^{6} & 44\end{array}$
The Geocentric Latitude of Mercury	South. $9 \quad 37$
The Elongation in 5 Hours (i.e.) the 2 immediately preceding and following the o	$29 \quad 16$
The Difference of Latitude in the fame time	4.24
Therefore the Angle of the apperent Way of $¥ ?$ with the Ecliptic -	33
And the Diftance of their Centres at the Time ? of their neareft Approach	9
And the Motion of Interval between that and the	

And the hourly Motion of Mercury in his Path ? over the Difk of the Sun
And the Motion of the $\frac{1}{3}$ Duration from the firft to the laft exterior Contacts of the Limbs -
And the Motion of the fame for the interior Contacts
Hence the Time of the Interval from the ob to
the Middle
of $\frac{1}{2}$ the exterior $\mathcal{T}_{r a n / i t ~ — — — — — — ~}^{\text {- }}$
of $\frac{1}{2}$ the interior $\operatorname{Tran} f t \quad-\quad-\quad-\quad, \quad 11_{2}^{2} \quad 1230$
Hence
The firft exterior Contact of the Limbs - $8 \quad 32$
The firt interior Contact - - - 834
The nearent Approach of the Centres, or ? 1046
Middle - - - - - jiO 46
The laft interior Contact ————— 59
The laft exterior Contact, or End of the? 1 I
$555 \frac{1}{12}$
$13 \quad 15$
$13 \quad 4$
$14 \quad 32$
22

19
1I! OEF. 25.
Morning.
41
11
3 Aftrenoon.
h 111 This Computation is made from Tables* which give the afcending Node of Mercury at the Time of this Transit 61 1711 ton forward, according to the Refult of very accurate Obfervations made of that in the Year ${ }^{1723}$, by Dr Halley, Dr Bradley, and Mr Grabam. Therefore making the Calculation with this Correction of the Place of the Node, the Times of the feveral Circumitances of the Tran/it will be as follows:
The firt exterior Contact - - ——— 8 29 21 ? ORT. 25 in The firft interior Contact - - - $\left.833^{2} \quad 5\right\}$ the MornThe neareft Approach of the Centres - - 1046463 ing. The laft interior Contact - - - 1117$\}$ Afternoon The lat exterior Contact

This Tranfit may be very aptly compared with that which happeised on the 24th Day of OETober 1697 t; as happening at the End of a remarkable Period in Mercury's Motion, by which he is nearly in the fame Situation, with refpeet to the Sun, at every Completion of it. Dr Haller in his Series of Moments, in which Mercury is joined to the Sun, Ecil. makes the Middle of this Tranfst at 111 paft Six in the Morning the 24th Day, or the 23d Dayat $1 \delta^{h} 11^{\prime}$ p.m. and the Diftance of the Centres of the Sun and Mcrcury $10^{\prime} 4^{\prime \prime}$.

It may not be amifs to examine and compare thele Numbers by fuch Obfervations as were made of this Traiffit, and may be depended on, and thereby to collect the Difference between Computation and Oblervation; and whatever Error arifes in Excefs or Defect by a proper

[^21]$$
\text { || Vol. I. Chap. IV. \&. } 100 .
$$

Application to the Tranfit of 1743 , it is imagined, will foretel it with a greater Degrec of ExaEtnefs, than a Calculus from any Theory whatfoever.

There was oniy the Egrefs of Mercury in the Tranfit of 1697, capable of being oblerved in Europe * which was done at Nuremberg in Germuyy, by Mr Wuriselhaut, and at Paris by M. Cafini; at Greensuich Clquds prevented it. At Nuremberg Mr Wurtzelbaur obferved Mercury to g o off of the Dikk of the Sunt at $8^{\mathrm{h}} 45^{1 \frac{1}{2}}$ mane about $73^{\frac{1}{2}}$ Degrees from the Vertex of the Sun to the Right-Hand; and M. Caffini oblerved the fame accurately at $8^{h} 10^{\prime} 24^{\prime \prime}$ mane; therefore from the known Difference of Meridians of thefe Places, the Egrefs muft have happened at Greenswich at $8{ }^{h}{ }_{1} 1$ mane.

The Obfervation of Mr Wurizelbaur will greatly avail at coming at the Duration of the Tranft. It is mentioned, that Mercury left the Limb of the Sun $73^{\circ} 30^{\prime}$ from his Vertex to the Right. Now at that time at Nuremburg, the Angle of the Ecliptic with the Vertical paffing through the Sun's Centre, was $42^{\circ} 3^{\prime} 5^{\prime \prime \prime}$; therefore the laft Point of Contact on the Sun's Limb was obferved $31^{\circ} 26^{1} 55^{11}$ from the Ecliptic to the South, and confequently his Latitude was $8^{\prime} 28^{\prime \prime}$ South at that time.

To find the Point on the Sun's Limb of the Ingrefs, in order to come at the Duration of the Iranfit, we muft be beholden to Computation, and the Theory of Mercury's Motion: I have therefore, from the Tables from which the above Times of the Tranfil of 1743 are drawn, carefully computed his Motion along his Path croffing the Difk of the Sun, and find that he moved along it after the Rate of $5^{\prime} 53^{\prime \prime \frac{1}{+} \text { in an }}$ Hour, and the Difference of Eatitude in 5 Hours $4^{\prime} 21^{\prime \prime}$, and his Elongation $2^{2 g^{\prime}} 7^{\prime \prime}$: Therefore the Angle of his virible Way was $8^{\circ} 29^{\prime} 50^{\prime \prime}$, which, doubled, and added to $3^{1^{\circ}} 26^{\prime} 55^{\prime \prime}$, gives $4^{8^{\circ}} 26135^{11}$, his Dittance, on the Limb of the Sun from the Ecliptic allo to the South ward at his Ingrefs on it; therefore the neareft Approach of his Centre to that of the Sun was ro' $19^{\prime \prime}$, and the Length of the Path run during the Tranfit $25^{\prime} 1^{\prime \prime}$, and confequently the time of running it $4^{\text {h }} 17^{\prime}$ the half of which $2^{\text {h }} 8^{1 \frac{1}{2} \text {, fubtracted from } 20^{h} 1^{\prime} \text {, the }}$ Find of the Tranflat Greenwich, gives the Middle there at $17^{\mathrm{h}} 5^{\prime} 2^{\prime} 30^{\prime \prime}$ earlier by $18^{1} \frac{1}{2}$ than the Series of Moments, ξ^{3} c. give it.

Now as the faid Series makes the Middle of the Tranfit of 1743 , at $11^{\mathrm{b}} 21$ mane, and as it correfponds with that of 1697 ; and the Computation of that is $18 \frac{1}{2}$ too late by the Series of Moments, $E^{3} c$. it may be reafonably expected, that the fame Computation for this of 1743 will be fo much too late too; and if fo , the Middle may be put down at $43^{\prime \frac{2}{2}}$ paft 10 , or 44^{\prime} at fartheft, OEfober $25^{\text {th }}$ in the Forenoon.

[^22]By Computation from the Tables above-mentioned, with the Correction of the Node, I make the Diftance of the Centres at the neareft Approach in 1697 , to be $10^{\prime} 33^{\prime \prime}$, but by the Obfervations of Mr Wurtzelbaur it turns out only $10^{\prime} 19^{\prime \prime}$, lefs by $14^{\prime \prime}$. Should therefore their Diftance in 1743 computed in the fame manner at $9^{\prime} 10^{\prime \prime}$ be as much diminifhed, the Duration of the Tranfit will be protracked no lefs than $5^{\prime} 24^{\prime \prime}$, and the firft Contact will be $2^{\prime} 42^{\prime \prime}$ earlier, and the laft fo much later, than the Times abovernentioned for them.
N. B. In the Computation of the Tranfil of 1743, the Semidiameter of the Sun is fuppofed $16^{1} 14^{\prime \frac{1}{2}}$ and that of Mercury $4^{\prime \frac{1}{2}}$; but in that of 1697, have taken Mercury's only $3^{\prime \prime \frac{1}{2}}$, imagining the precife Moments, of the firft and laft exterior Contacts are not obfervable; but that the Ingrefs is feen fome little Time later, and the Egrefs fooner, than the true Times thereof. I have all along fpoke of the Motion of Mcrcury without mentioning that of the Sun, whereas, in Reality, it is that of them both jointly; but as we may fuppofe the Sun to ftand ftill during the Tranfit it will then be confidered as the apparent Motion of Mercury alone for that Time.
XXX.

Apparent Time.

h) 11

I 373 The preceding Limb of Venus paffes the Meridian, the Centre from the Verlex $25^{\circ} 46^{\prime} 35^{\prime \prime}$; but I could not fee Mercury within the Telefcope.
949 The Centre of Mercury preceded the preceding Limb of Venus $12^{\prime \prime}$ of Time.
620 The fame preceded, as before, the fame Quantity of Time.
28 - As Mercury ran along the parallel Thread of the Micrometer, the fouthern Cufp of Mercury was cut by the fame Thread D \&, whence I gathered that Venus would cover Mircury, or at leaft touch him ; therefore I drew out the Micrometer, that I might difeern the inner Contact the better, with a Tube of 24 Feet.
+3 4 Mercury is not diftant from V'chus more than $\frac{1}{10}$ or $\frac{1}{12}$ of the Diameter of Venus: then interpofing Clouds.
51 10 Venus fhines out again very-bright, but all Mercary lies hid under l'enus: The Clouds now cover Venas again, hindering any farther Contemplation of to rare a Spectacle.
May 18. p.m. Meridian Diftance of the Sun from the Virlex $30^{\circ} 4^{\prime}$.
1 3153 The preceding Limb of Venins paftes the Meridian. The Centre difant from the Verici: $25^{\circ} \quad 57^{\prime}{ }^{1} 5^{\prime \prime \prime}$.

An Occultation of Mercury by Venus, May 17 1737. at the Objervatory at Greenwich, is J. Bevis M.D. No. 450 p. 394. Ott. E̛c. 1738. Fig. 8 3.

I could not fee Mercury culminating this Day, tho' the Sky was very clear.
N. B. The Diftances from the Verlex are not cleared from the Refractions.

In Obermatisn or the Pia * ${ }^{2}$ Venus,
(ruith regard so ber baroing a Sate!lite) made by Mr fames Shors, F.R.S. at Sun rife, OAT. 23. 1480. No. 459. p. 646. jun. E゚c. $17+1$.
XXXI. Directing a Reflecting Telefcope of $\mathbf{1 6 . 5}$ Inches Focus, (with an) Ajparatus to follow the diurnal Motion) towards Venus, I perceived a finall Star pretty nigh her; upon which I took another Tclefcope of the fane focal Diftance, which magnified about 50 or 60 times, and which was fitted with a Micrometer, in order to meafure it's Diftance from Venus; and found it's Diftance to be about 10°. Finding Vcruus very diftinct, and confequently the Air very clear, I put on a magnifying Power of 240 times, and, to my great Surprize, found this Star put on the fame Phafis with Venus. I tried another magnifying Power of 140 times, and even then found the Star under the fame Phafis. It's Diameter feemed about $\frac{1}{3}$, or fomewhat lefs, of the Diameter of Venus; it's Light was not fo bright or vivid, but exceeding fharp and well defined. A Line, paffing through the Centre of Venus and it, made an Angle with the Equator of about 18 or 20 Degrees.

I faw it for the Space of an Hour feveral times that Morning; but the Light of the Sun increafing, I loft it altogether about a Quarter of an Hour after Eight. I have looked for it every clear Morning fince, but never had the good Fortune to fee it again.

Cafini, in his Aftronomy, mentions inuch fuch another Obfervation.

I likewife obferved Two darkifh Spots upon the Body of Venus; for the Air was exceeding clear and ferene.

Several Apromomical Ot/ierreations made at Pekin, by the Jefuits. No. 468. p. 306 jan. 1742-3.

XXXII.

9. $18 \quad 34 \quad 0 \quad$ p.m. of following yefterday's Star, was more Eaft in the right Afcenfion I^{\prime} of Time, and more South in the Declination $15^{\prime} 40^{\prime \prime}$ Diftance $21^{\prime} 53^{\prime \prime}$.
22. $18 \quad 43<p, m$. i followed the Star $\{$ in 吹 in right Afcenfion $4^{\prime} 27^{\prime \prime}$ of Time, and was more fouthern in the Declination $1^{\prime} 20^{\prime \prime}$.
26. $74 j$ OVefp. The Star τ in $=$ ftood in the Line of Dichotomy of D, from the fouthern Cufp in the Declination more fouthern $13^{\prime} .0^{\prime \prime}$.

Dec. 2. 1720 ○ p.m. The Star s in \& was above D in the fame right Afcenfion with the Centre of Plato, more North in the Declination $12^{\prime} 20^{\prime \prime}$, Plato was diftant from the northern Limb of $D 4^{\prime} 0^{\prime \prime}$.
4. 1226 O p.m. D covered the Star n in II, which immerged againft Byrgius; the Emerfion was not obferved becaufe of a Cloud.
1741 fans. 1. 7 mane diftant from the Stary in $m \neq 34^{\prime}$. It followed it in right Afcenfion I'50/lof Time: more North in the Declination 19^{\prime}.
$55930 \mathrm{p} . m$. The weftern Limb of D at the horary Thread in the Telefcope.
$6 \quad 0 \quad 24$ ut at the Day-Thread, was diflant from the northern Limb of D 13^{\prime}.
115 -Thecaftern Limb of D at the fameThread.
653^{6} —The weftern Limb of D againat the fame horary Thread.
$6 \quad 18 \quad$ I at the fame Thread, diftant from the North Limb $1_{2}{ }^{\prime} 3^{\prime \prime \prime}$.
755 - Eaftern Limb of D at the fame Thread. II 340 - 4 culminated, Altitude $73^{\circ} 26^{\prime}$. 43 O—D culminated, Altitude of the Centre $73^{\circ}{ }^{15}$.
21. 530 ○p.m. o preceded the Star of yefterday cin in ${ }^{\prime}$ ' 8 " of Time in right Afcenfion, it was more fouthern in declination 5^{1}.
22. 515 ○ p. \%in. of preceding the 'Star of yefterday $2^{\prime} 45^{\prime \prime}$ of Time in right Afcenfion, more fouthern in Declination 2^{\prime}.
28718 Vefp. 24.was diftant from the Edge of D $9^{\prime} 50^{\prime \prime}$.
Feb. 22. II $4426 \mathrm{p}, \mathrm{m}$. The Moon covcred the Star n in 8 ftanding in a right Line with Manilius and Cenforinus. The Emerfion could not be feen.
24. 927 op.m. The Star n in x below the D food in a Right Jine with Tycbo and Plato, being diftant from this to the South $1^{\prime} 20^{\prime \prime}$.
133845 p.m. The Star μ in us was covered by D in a right Line thro' Tycho and I'ofidonius; which did not emerge before $33^{\text {h }} 55^{1}$ when ofet behind a Houfe. was to the Weft of 4.
D touched the Limb of $410^{\text {h }} 57^{\prime} 35^{\prime \prime}$ was the full immerfion of him in the middle between each Cufp of D direetly toward the Centre. The other Satellites were not very difcernable, beciufe of the Atmolipherc, and the Moon hid itfelf foon after behind the Houles.
Sept. 24. 8 Y 15 p.m. D covered the preceding Star of the Quadrangle before the fouthern Tail of the Whale, which juft emerged: at the rifing of Cleoftratus.
The fame emerged very near Berofus.
XXXIII. I. I made feveral Obfervations on the late Comet, during the laft 5 Weeks of it's Appearance, which enabled me to find out the Elements of a Parabolic Trajectory, upon which a Calculus might be founded, that would correfpond with each of my Obfervations within about I^{\prime} of a Degree: But the firft of them being taken many Days after the Time of the Peribelion, and the whole Series comprehending but a very fmall Portion of the Trajectory; I was fenfible, that a little Error, either in the Obfervations themfelves, or in the Places of the Fixt Stars. with which the Comet was compared, might occafion a confiderable Difference in the Situation and Magnitude, $\xi^{c} c$. of the Orbit deduced from them alone; and therefore I was defirous of having fome earlier and accurate Oblervations, in order to determine thofe Elements with more Certainty: But I have not yet been able to procure them.

I firft faw the Comet Feb . 15 th 1737, between 6 and 7 in the Evening, when it's Nucluus appeared fmall and indiftinct, and it's Tail (extending above a Degree from the Body) pointed towardis the Star in Lino Aufral. Pifium, marked ξ by Bayer. Applying my Micrometer to agood 7 Foot Tube, I oblerved, that at $7^{\text {lt }} 3^{1}$ I Temp. Equat. the Comet preceded the faid S:ar $I^{\circ} I^{\prime} 40^{\prime \prime}$ in Right Afcenfion, and was $20^{\prime} 20^{\prime \prime \prime}$ more Southerly than the Star. Note, That the equal Time is likewife made ufe of in all the following Oblervations.

Affuming the Place of this Star, as it is fettled in the Brilijb Catalogue, (as I hall likewife the Places of others hereafter mentioned) it follows, that the Comet's Right Afcenfion was $23^{\circ} 5^{\prime \prime}$, and it's Declination $1^{\circ} 31^{\prime} 55^{\prime \prime}$, North.

Feb. 17. $7^{\text {h }} 33^{\prime}$ the Comet followed a in Nodo Lin. Pifciunn $31^{\prime} 25^{\prime \prime}$ in Right Afcenfion, and was $5^{\prime} 30^{\prime \prime}$ more Northerly. Hence the Comet's Right Afcenfion was $27^{\circ} 33^{1} 20^{\prime \prime}$ and it's Declination $2^{\circ} 21^{\prime} 10^{\prime \prime}$ North.

Fib. 18:-7 14 a fmall Star (whofe Right Afcenfion was afterwarcus Found to be $29^{\circ} 0^{\prime} 5^{\prime \prime}$ and Declination $2^{\circ} 5^{\prime \prime} 3^{\prime \prime \prime}$ North) preceded the Comet 24^{\prime} in Right Afcenfion, and was $15^{\prime} 30^{\prime \prime}$ more Northerly. Hence the Comet's Right Afcenfion was $29^{\circ} 24^{\prime} \quad 5^{\prime \prime}$, and it's Declination $2^{\circ} 34^{\prime}$ North.

Fob. 21. $7^{\text {h }} 25^{\prime}$ the Comet preceded ${ }^{\text {Ceti }}{ }^{\circ}{ }^{\circ} 61$ in Right Afcenfion, and was $3^{81} 20^{\prime \prime}$ more Southerly. Hence it's Right Afcenfion was $34^{\circ} 25^{\prime} 10^{\prime \prime \prime}$, and it's Declination $3^{\circ} 47^{\prime} 20^{\prime \prime}$ North.

Feb. 22. $7^{\text {h }} 45^{\prime}$ the Comet followed $\mathrm{C}_{6 / 1} 30^{\prime} 5^{\prime \prime \prime}$ in Right Afcenfion, and was $18^{\prime} 45^{\prime \prime}$ more Southerly. Hence the Comet's Right Afcenfion was $36^{\circ} 1^{\prime} 1^{\prime \prime}$, and it's Declination $4^{\circ} 6^{\prime} 55^{\prime \prime}$ North.

Feb. 25. $7^{\prime \prime} 45^{\prime}$ a finall Star (whofe Right Afcenfion was aftervards found to be $40^{\circ} 34^{\prime}$, and Declination $5^{\circ} 5^{\prime} 30^{\prime \prime}$ North) followed the Comet $2^{\prime} 30^{\prime \prime \prime}$ in Right Afcenfion, and was $2^{\prime} 30^{\prime \prime}$ more Northerly than the Comet. Hence the Comet's Right Afcenfion was $40^{\circ} 31^{\prime} 30^{\prime \prime}$, and it's Declination $5^{\circ} 3^{\prime}$ North.

The Difference of Right Afcenfion and Declination between this Star and the Comet was taken with a 15 Foot Telefcope; but the Place of the Star was determined by one Obfervation made with the 7 Foot Tube.

Fib. $278^{\text {h }} 45^{\prime}$ the Comet preceded a fmall Star $1^{\circ} 161$ in Right Afcenfion, and was $2^{\prime} 15^{\prime \prime}$ more Southerly. The Right Afcenfion of this Star was afterwards (by a fingle Obfervation) found to be $44^{\circ}-37^{\prime} 40^{\prime \prime}$, and it's Declination $5^{\circ} 38^{\prime \prime} 30^{\prime \prime}$ North. Hence the Comet's Right Afcenfion was $43^{\circ} 21^{\prime} 40^{\prime \prime}$, and it's Declination $5^{\circ} 3^{61} 1_{5} 11$ North.

March 4. $8^{\text {h }}$ a fmall Star (whofe Right Afcenfion was found to be $49^{\circ} 30^{\prime} 30^{\prime \prime}$, and it's Declination $6^{\circ} 3^{8^{\prime}} 30^{\prime \prime}$ North) preceded the Comet $7^{\prime} 30^{\prime \prime \prime}$ in Right Afcenfion, and was 10^{\prime} more Southerly. Hence the Right Afcenfion of the Comet was $49^{\circ} 3^{8^{\prime}}$, and it's Declination $6^{\circ} 4^{\prime} 30^{\prime \prime}$.

March 12. $8^{\text {h }} 25^{\prime}$ the Comet preceded μ Tauri $2^{\circ} 5^{\prime} 50^{\prime \prime}$ in Right Afcenfion, and was $4^{\prime} 25^{\prime \prime}$ more Northerly than the Star. Hence the Comet's Right Afcenfion was $58^{\circ} \quad 122^{\prime} 40^{\prime \prime}$, and it's Declination $8^{\circ} 16^{1} 50^{\prime \prime}$ North.

March 14.9 $9^{\text {b }}$ the Comet followed the 47 th Ster of Taurus in the Britifl Catalogue $12^{\prime} 50^{\prime \prime}$ in Right Afcenfion, and was $15^{\prime \prime}$ more Northerly than the Star. Hence the Comet's Right Afcenfion was $60^{\circ} 8!55^{\prime \prime}$, and it's Declination $8^{\circ} 34^{\prime} 5^{\prime \prime}$ North. This, and all the following Obfervations, were made with a good 15 Foot Telefope, the Comet now appearing too faint to be well obferved with the 7 Foot Tube.

March $17.8^{\text {h }} 40^{\prime}$ the Comet followed r Tauri $25^{\prime} 5^{\prime \prime}$ in Right Afcenfion, and was $9^{\prime} 40^{\prime \prime}$ more Northerly. Hence it's Right Afcenfion, was $62^{\circ} 47^{\prime} 55^{\prime \prime}$, and it's Declination $8^{\circ} 5^{\prime^{\prime}} 45^{\prime \prime}$ North.

March 19. $7^{\text {n }} 50^{\prime}$ the Comet followed the fame Star $2^{\circ} 4^{\prime}, 50^{\prime \prime \prime}$ in Right Aicenfion, being $23^{\prime} 55^{\prime \prime}$ more Northerly. Hence iit's Right Afcerfion was $64^{\circ} 27^{\prime} 4^{\prime \prime \prime}$, and Declination $9^{\circ} 13^{\prime}$ North.

$$
E c_{2}
$$

The fame Night, at $9^{\text {h }}$ the Comet preceded d Tauri $47^{\prime} 40^{\prime \prime}$ in Right Afcenfion, and was $22^{\prime} 5^{\prime \prime} 1$ more Southerly. Hence it's Right Afcenfion was $64^{\circ} 30^{\prime} 20^{\prime \prime}$, and Declination $9^{\circ} 1^{\prime} 35^{\prime \prime}$ North.

March 20. $8^{\prime \prime} 5^{\prime}$ the Comet preceeded d Tauri $30^{\prime \prime \prime}$ in Right Afcenfion was $1^{\prime \prime} 35^{\prime \prime}$ more Southerly than the Star. Hence it's Right Alcenfion was $65^{\circ} 17^{\prime} 30^{\prime \prime \prime}$, and Declination $9^{\circ} 18^{\prime} 50^{\prime \prime}$ North.

Marcb 22. $8^{\mathrm{h}} \mathrm{I}^{\prime}$ the Comet followed the fame Star $1^{\circ} 3^{61} 10^{\prime \prime}$ in Right Afcenfion, and was $3^{\prime} 5^{\prime \prime \prime}$ more Southerly. Hence it's Right Afcenfion was $66^{\circ} 54^{\prime} 10^{\prime \prime}$, and Declination $9^{\circ} 3^{1 /} 35^{\prime \prime}$ North.

This was the laft Night that I faw the Comet; for the Moon being then in her Increafe, entirely obftructed it's further Appearance. The Light of the Comet was indeed (even in the Moon's Abfence) fo very weak, thit I found it difficult, in fome of the latter Obfervations, to take it's Place with any tolerable Certainty; which is, in part, the Caufe of fome little Difagreement obfervable in the Comet's Places taken from the fame Stars on different Nights; though there are likewife other Irregularities that occur in this Series of Obfervations, which feem to arife from fmall Errors in the affumed Places of the Fixt Stars.

Suppofing the Trajectory defcribed by this Comet to be nearly Parabolical, conformable to what Sir I. Newton has delivered*. I collect from the foregoing Obfervations, that the Motion of this Comet in it's own Orbit was direct, and that it was in jt's Peribelion, Jan. 19. $8^{\mathrm{h}} 20^{\prime}$ Temp. AEquat. Lond. That the Inclination of the Plane of the Trajectory to the Ecliptick was $18^{\circ} 20^{\prime}$ $45^{\prime \prime}$. The Place of the Defcending Node y $16^{\circ} 22^{\prime}$. The Place of the Peribelion $\approx 25^{\circ} 5^{\prime}$. The Diftance of the Peribelion from the Defcending Node $80^{\circ} 27^{\prime}$. The Logarithm of the Peribelion Diftance from the Sun 9347960 . The Logarithm of the Diurnal Motion 0.938188.

From there Elements (by the Help of Dr Halley's general Table for Comets, to which they are adapted) I computed the Places in the following Table; which alfo contains the Longitudes and Latitudes of the Comet, calculated from the obferved Right Afcenfions and Declinations above-mentioned, together with the Differences between the obferved and computed Places.

[^23]| Oxon. 1737.
 Tomp. Equat. | Com. Longif. Obforvat. | Lat. Auf. Objoruat. | Com. Longit. Computas. | Lat. Auft. Compus. | $\begin{aligned} & \text { Diff. } \\ & \text { Long. } \end{aligned}$ | $\begin{aligned} & \text { Diff. } \\ & \text { Laf. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Day h | 11 | - 11 | -111 | - 111 | | |
| Fibr. 15732 | V22 457 | 75327 | r22 4500 | 753 | | +26 |
| 17733 18 | 263030 | $\begin{array}{cccc}8 & 27 & 21 \\ 8 & 44 & 20\end{array}$ | 263044
 28
 8 | $\begin{array}{llll}8 & 28 & 6 \\ 8 & 43 & 57\end{array}$ | $\begin{array}{r}1 \\ \hline\end{array}$ | + 45 |
| 18714 | 281814 | 84420 | 281746 $\times \quad 32653$ | $\begin{array}{llll}8 & 43 & 57 \\ 9 & 26 & 46\end{array}$ | + 28 | a $+\quad 4$ $+\quad 3$ |
| $\begin{array}{lll}21 & 7 \\ 22 & 7 & 45 \\ \end{array}$ | $\begin{array}{lllll}8 & 3 & 26 & 3+ \\ & 5 & 4 & 53\end{array}$ | 92650 94000 |
 3 26 53
 5 5 28 | 8 9 9 9 3946 | - 19 | |
| 227 | | | | | | |
| | 94218 | 101221 | 94119 | 101222 | | |
| 27845 | 123643 | $1031{ }^{1}$ | 123616 | 103123 | + 27 | + 29 |
| r. 4800 | 19300 | $\begin{array}{lll}11 & 6 & 46\end{array}$ | 1935 | $\begin{array}{llll}11 & 7 & 8\end{array}$ | - 5 | - 22 |
| 12825 | 274958 | $\begin{array}{lll}11 & 43 \\ 11 & \end{array}$ | 274953 | 1114319 | + 5 | - 16 |
| 14900 | $\begin{array}{lll} 29 & 47 & 42 \end{array}$ | 114959 | 294719 | 114926 | + 23 | $+33$ |
| 17840 | II 23057 | 115631 | II 23050 | 115649 | | |
| 19750 | 41236 | 120019 | 41245 | 12 co 47 | | |
| 900 | 1511 | 12.12 | 41513 | $1200 \quad 52$ | | |
| 2085 | 310 | $12 \begin{array}{lll}12 & 3 & 5\end{array}$ | 3 | $\begin{array}{ll}12 & 233\end{array}$ | - 22 | |
| 22815 | 4130 | $12 \quad 615$ | | $12 \quad 542$ | | |

From the fmall Differences between the Comet's obferved and computed Places, exhibited in the two laft Columns of this Table, we may reafonably conclude, that the Orbit, as above determined, cannot differ much from the Truth, and muft therefore be near enough to enable future Aftronomers to diftinguifh this Comet upon another Return, and thereby to fettle it's Period; which I cannot at prefent pretend to do, not having met with an Account of any former Comet that feems likely to have been the fame with this, whereof a Defcription has been given particular enough to determine this Point.
2. Fib. 16. about $\eta^{h} p .9$. the Comet firft appeared to us in the wettern Part of the Heavens, 8° or 9° lower than Venus; and declining a little from her vertical Circle toward the South. With the naked Eye we faw only a whitih Line, fhining with a doubtful Light. But with an excellent Telefcope of 6 Feet, befides the Tail, which was extended into the Part turned from the Sun, and appeared

On Mount

 Aventine, al Rome, by the Abbot Didacus de Revillas, F. R. S. Ibid. p. 118.
Obfervations a cosset.

in the Nights between the $1 \mathrm{~g}^{\text {th }}$ and 26 th, we could not accurately determine the apparent Place of the Comet, any otherwife than by comparing it's Pbenomenon with Venus, becaufe we ufed only a fmall Quadrant, of which the Optical Tube was fcarce equal to an Eng. lifh Foot. Therefore from the vertical Altitudes both of the Comet and of Venus, obferved at the fame Time, we collected the vertical Differences of both, as follows.
D.zy p.m. Vert. diff.

20	7	59	5	22
22	7	00	3	56
23	7	20	3	13
24	6	15	2	30
25	7	30	1	47

The Tail of the Comet on the 22 d , paffing over the vertical Thread of the Micrometer, impended $1^{\prime} 7^{\prime \prime}$. The Micrometer was fitted to the abovementioned Telefcope.

24803 Venus and the Comet appeared under an Angle of $7^{\circ} 35^{\prime}$ 25750 They appeared under an Angle of - - -8 05
-at Philadelphia in Penfyivania, by Dr Kearfly. Ibid. p. 119.
3. Fanuary 27 , about Six in the Evening, I taw a dull Star about 3 or 4 Degrees above Mercury, and a litcle to ne Southward of a
 thinking of a Comet; but by comparing $\xlongequal[y]{ }$'s Place with the Fixt Stars, I afterwards thought it might be a Comet.--On the 3 Ift, about $6^{h} 30^{\prime}$ p.m. I took it's Diftance from Venus, by a Reffecting Inftrument of Mr Hadley's Make, $14^{\circ} 40^{\prime}$, but by a Foreftaff; 14° 50^{\prime}, and a Right Line paffed over the Comet, Venus, and the Pleiades. The Night following, about $6^{\text {h }} 20^{\prime}$ it's Diftance from Venus was, by Mr Hadley's Inftrument, $13^{\circ} 25^{\prime}$. The reft of my Obfervations, by fuch Inftruments as I had, being none of the beft, and the Comet's growing very dull, are as follow: V enus paffed over the bright Star in the Side of Perfeus.

$$
\begin{aligned}
& \text { 11. - }-714 \text { Comet from Venus } 7^{\circ} 12^{1} . \\
& 720 \text { A Right Line over the Comet, } \\
& \text { Venus, and Head of Caffiopeia. }
\end{aligned}
$$

17. - - 720 The Comet was in a Right Line, and to the Northward of two Stars; Diftance of the Stars 1 fuppofed by the 'Telefcope.
307 Comet from Aldebaran 34° from Lucida Cap. थ $19^{\frac{1}{2}}$.
2I. about - 308 Wanted about a Degree of Oculus Ceti.——Which was the latt Sight I had of it.
18. The Comet was firt perceived about fon . 26, but muft, by it's -at Spamint Plainnefs then, have been vifible for fome Time before. It was in Town in Jathe Weft firft of all, fome Degrees below and directly under Venus : Every Night it appeared nearer to that Star, but inclined Northerly. In about a Fortnight, it was parallel to it, and in a Week after, was F. R. S. Ibid. so more to be feen.
19. Feb. 9. for 7 Days laft paft, about $7^{\text {h }} V_{e / p}$. there hath appeared a -at Madras, dim Comet, as we took it to be: It is feen in the Weft, under Kinus towards the S. W. It Jooks through a Tube of 10 or 11 Feet long, like a dim or pale Planet; it's Tail tends upwards.
20. Jon. 29. 1736-7, at $6^{h} 49^{\prime}, p . m$. we faw a Comet with a long bruh Tail, at which Time it's Altitude was found $5^{\circ} 15^{\prime}$, it's Diftance from Venus $18^{\circ} 5^{\prime}$; and Venus's Altitude was obferved $20^{\circ} 40^{\prime}$. It bore due Weft.
XXXIV. The Motion in it's own proper Orbit was retrograde.

The Peribelion was in —————— 5 II
The defcending Node in - — - r 2518
The Peribelion from the Node - - - 6953
d h

The Comet was in the Peribelion - - June $9 \quad 9 \quad 59$ in the defc. Node July $18 \quad 4 \quad 57$
The Peribelion of the Comet's Orbit was within the Sphere of the Orbit of Veuns, and without that of the Orbit of Mercury; being diftant from the Sun $0,66^{6}+$ Parts of the Earth's mean Diftance from the Sun.

The Plane of the Orbit flood inclined to the Plane of the Ecliptic in an Angle of $53^{\circ} 25^{\prime}$.

The Diurnal mean Motion, according as it is interpreted by Dr Halliy in his Lilements of Cometical Aftronomy, was $1^{\circ}, 570 \%$.

Observations 2 bs F. Frantz, a Jefuit at Austria, Feb. 1743. No. 470. P. 457. Read April 21, 1743

Some Coniestares concern ing she Polis. sion of the Co . lure in the an cient Sphere; by the Rev.
Ebenezer la that, M. D. No. 466. p. 221. Nov. 1742
Fig. 84.

XXXV.

Sty. Nov.
Feb. 11. Vc fp. The Comet in a right Line with $\{\varepsilon \& \varepsilon$ of Urfa 12. - - $-\left\{\begin{array}{l}\gamma \text { of Urfa Major } \& \lambda \text { of Draco, }\end{array}\right.$ 13. - \quad in a right Line with x of Urfa Major \& λ of Draco, 54. almoft in a right Line with $\{\alpha$ of Lee \& v of Urfa Major, β of Leo \&x β of Virgo. $\{$ almost in a right Line with β of Leo is β of Virgo 15. $\{$ in a rect. Triangle with $\cup \& \xi$ of Urfa Major.

1\%. - - almoft in a right Line with β of Leo $\& \beta$ of Virgo ; at which Time the Comet $\& \beta$ of Virgo were almoft equally diftant from β of Leo. 21. - In the Tail of Leo near a little Star of the Goth Magnitude, which confitures $\delta \& \alpha \beta$ of Leo, β of almoft a right Line with 2 Leo, $\& \pi$ of Virgo.
On the other Days it could not be obferved with any Telefcope, therefore the Comet was lan feen at Vienna, near the abovementioned Star, of which the Long. $13^{\circ} 16^{\prime} \quad 28^{\prime \prime}$ 物 and N. Lat. $17^{\circ} 30^{\prime}$ the Comet declined from this Star $F e b .21$. $8^{h} 8^{\prime} 22^{\prime \prime}$ towards the N. $23^{\prime} 1^{\prime \prime \prime}$ more to the W. $1^{\circ} 1^{\prime} 5^{\prime} 1^{\prime \prime}$.
XXXVI. I fend you a Draught of the Conftellation Aries, as it was exactly copied by Dr White, from a Book in the fine Library of Samuel Saunders, Eq; F. R. S. I do not know whether it may not be efteemed of fome Moment towards the determining the famous Controverfy with refpect to Sir 1. Newton's Chronology. Dr Halley obferves*, "That the Difpute is chiefly, Over what Part of the ' Back of Aries the Colure paffed. Sir I. Newton takes it to be over ' the Middle of the Conftellation; P. Souciel will have it, that it - paffed over the Middle of the Dodecatemorion of Aries, which by - Confequence would make it pals about Mid-way between the Rump ' and firft of the Tail ; " which Situation could never be faid to be over the Back: Whereas, if the Ring in this Cut was defined, as I apprehand, to image the Colure in the antient Sphere, it exactly anfwers
 $x \times \tau \grave{x} \pi$)ár(G). and justifies the Conftruction Sir Ifaac put on thole Words beyond Exception. The Sculptures from whence this was taken, have the Title of Avatar, fire Sign Calefia, in quibus Afronotice Speculationes Vetcrum ad Archetypa vetufiffimi Araticorum Cafaris Germanici Codicis (44) ob oculos ponuntur a Facobo de Gen ex Bibliotb. Aced. Lugged. Bat. Araftel. 1652 . \dagger

[^24]I will beg Leave to obferye farther, that as this Catalogue begins with the Draco, which the Ancients feem to place at the Hcad of their Conftellations; perhaps it may give fome Light into the Time of the Book of yob , as well as into the Senfe of that Place. For when he fays, By lis Spirit be bas garnifbed the Heavens; bis Hand Chap xxvi. bes formed the crooked Serpent; I fubmit it to the Judgment of the Critics, whether it is not highly probable the Writer muft have lived within that Perind of Time wherein a Star of that Conftellation might pafs for the Polar Star: And then, if the Afterifms are fuppofed to be placed in fome fuch Order as here, the exprefs Mention that he only makes of this was fufficient to refer us to the whole Syftem or Furniture of the Heavens.
XXXVII. 1. As we now have the Globes of the Heavens, they are A Propefal so only formed for the prefent Age, and do not ferve the Purpofes of Chronology and Hiftory, as they might, if the Poles, whereon they turn, were contrived to move in a Circle round thofe of the Ecliptic, according to the prefent Obliquity of this. By this Means we might have a View of the Heavens fuited to every Period, and that would anfwer the ancient Defcriptions, thofe of Eudoxus, for Inftance, who is luppofed to borrow his from the moft early Obfervations; and of Hipparchus, $\mathcal{E}^{2} c$. Nor could any Contrivance better enable the loweft Reader to judge of the Merits of the Controverfy about the Argonautic Expedition, as far as it depends on this : For it will verify to the Sight Arbe Poies of a Globe of the Heavens move in a Gircle round the Poles of the Eeliptic : by the fame.
No. 447. p. 201. April 1738. the Path of the Colures, $\varepsilon^{\circ} c$, at any Time.
2. The Poles of the Diurnal Motion do not enter into the Globe, but are affixed at one End, to two Shoulders or Arms of Brafs, at the Diftance of $23^{\circ} \frac{1}{2}$ from the Poles of the Ecliptic. Thefe Shoulders at the other End are ftrongly faftened on to an Iron Axis, which paffeth through the Poles of the Ecliptic, and is made to move round, but with a very ftiff Motion ; fo that when it is adjufted to any Point of the Ecliptic, which you defire the Equator may interfect, the Diurnal Motion of the Globe on jt's Axis will not be able to difturb it.

When it is to be adjufted for any Time, patt or to come, bring one of the brafen Shoulders under the Meridian, and holding it faft to the Meridian with one Hand, turn the Globe fo about with the other, that the Point of the Eecliptic, which you would have the Equator

A Contrivance to make the Poles of the Diurral Mo. tion in a CeIeflial Globe pafs round tbe Poles of the Ecliptic. $I n$ vented by John Senex, F. R. S. ibid. p. 203. May 1738. to interfect, may pals under o Degrees of the brafen Meridian : Then holding a Pencil perpendicular to that Point, and turning the Globe abour, it will deferibe the Equator as it was pofited at that Tinse; and transferring the Pencil to $23^{\circ} \frac{1}{\frac{1}{2}}$, and $66^{\circ} \frac{1}{2}$ on the brafen Meridian, the Tropics and Polar Circles will be defcribed for the fame Time.

By this Contrivance, the Celeftial Globe may be fo adjufted as to exhibit not only the Rifings and Settings of the Stars, in all Ages, and in all Latitudes, but the other Pbenomena likewile, that depend upon the Motion of the Diurnal Axis round the Amnua! Axis.
VOI.. Vlli. Part i. Ff aace

Inprovements on the Globes.

anaa. A Section of the Celeftial Globe.
EE. A ftrong Iron Axis, paffing through the Poles of the Ecliptic. $b c$. Two ftrong Arms of Brais, fcrewed on to the Ends of the Iron Axis, at d.
P P. The Axis or Poles of the Diurnal Motion, (by which the Globe is hung in the brafon Meridian) rivetted on to the other Ends of the brals Arms, and which may be carried round the Poles of the Ecliptic, by the Iron Axis, but with fo ftiff a Motion, as not to difturb the Diurnal Rotation on the Poles P P.

The true Delineation of the Afterifms in the ancient Spbere By the Rco.Ebenezar Lathai, M.D. No. 460. p. 230. April छ'6. 1741 .

Fig. 86. Fig. 86. A Vertical Section of the Globe.
P. P. Tbe Poles of the diurnal Motion.
A. The Axle of the Globe, which terminates in the Poles of the
Ecliplic, and receives the otber End of the Brafs Arms upon
A. The Axle of the Globe, which terminates in the Poles of the
Ecliplic, and receives the otber End of the Brafs Arms upon each of ii's Pivots.
王. A brafs Equator fixed 10 the brafen Meridian.
K. K. A Koy, wekich, on Occafion, being put tbrough a IHole in the
K. K. Arajen Meridian, is juft over the Place wbere the Poles of the Ecliptic pafs, by means of a Square Hole in the Hend of a Screw, firves 10 fix that End of the Brafs Arm, or give it Liberly 10 more zuith Eafe: And the Key, being left in when the Sirew is flackened, scill binder the Globe from moving on the Poles of it's diurnal Motion, till you bave adjufted it to your Mind, fraitened the Scriwe again, and taken out the Keys; as many be feen more plainly in,
Fig. 87. XXXYII. I never heard of Mr Senex's Invention, till I faw the Tranfaction $\mathrm{N}^{0} 4 \cdot 17^{*}$, and am pleafed with the Opportunity I had of producing it to the World. It is many Years fince I firft thought of this Method, and have often fuggefted it to fome Students. The Difpute that arofe about Sir Ifaac Newton's Chronological Index, communicated by Abbé Conti, confirmed my Opinion of the Advantage that would attend it; efpecially the Admonition Dr Halley gave Father Souciet, (' to inform himfelf in the Splaciques, fo as to give © us the right Afcenfion of the Stars truly from their given Latitude - and Longitude') made me yet more fenfible how neceffary fomething of this kind was, to let common Readers into the Merits of the Controverfy. But it was perfectly accidenta!, that I ever prefumed to mention this Alteration in the Conftruction of the Globes, which I had fo often wifhed might obtain for the Ufe of feveral Sciences. You will receive, with this, one Scheme, among feveral, which I have projected, that is neareft Mr Senen's, and leaft defaces the Globe.

Fig. 87. Which is nothing but the Windlais Part, or the Arm, Pole, and Part of the ftrong Axis of the Globe, with the Screw and Key more at large, and feparate from one another for the more dittinct View.

If I may take the Liberty to add any thing farther on this Head, next to the accurate Obfervation of the Brilijh Catalogue in placing the Stars themfelves, it fhould be the Revival of the ancient l"ggures and Colours, as far as we can recover them. It is certain the Invention was very ancient, if we fuppofe the Defcriptions Eudoxus has given us, taken from Obfervations long before his Time, when the Solltitial Colure paffed through the Middle of the Great Bear, and the Crab, through the Neck of I7ydra, and cut the Ship between the Poop and the Maft, Éc. \qquad Now I have mentioned the Sbip, you will indulge a Conjecture, that the Situation of this [juft on the Horizon (where they imagined the Scat) in an erect failing Pofture for fome Eaftern Expedition, and terminating their farthelt View to the South,] may both give fome Light into their Laritude, that impofed this Name, and (from that, which muft have been the Place of the Poleto anfwer this Form) the Era of Trime, whercin it was done; for, in the prefent Difpofition, the Inhabitants of Greece could not have a proper View of that Conftellation, or be led to form it in the Manner the Ancients have done. I hall not here urge all the Difficulties in the old D.fcriptions, that might have a Solution from this Method ; but if an Alteration could be made either in the Colour or Absitude of the Figures to anfwer them better, it would add to the Pleafure of reading fome Authors, and, together with thatnew Conftruction, might afford us fuch a View of the Heavens, as Mr Addifon had of Italy, when he made the Tour of it with the Claffics in his Hands: And, fince I have brought thofe Writings into the Account, you will allow me to cite fome Paflages, which might receive both Trutb and Beauty from fuch an Improvement: Where Homer fays,

The Pleiais, IIyads, with the Northern Team, And great Orion's more refulgent Beam;
To which around the Axle of the Sky,
The Bear revolving points bis golden Eye,
Still fhines exalted on th" ethereal Plain,
Nor bathes bis blazing Forehead in the Main.

Mr Popt.

Mr Pope, amidft a fmall Miftake of the Sex, keeps only the Forehead above Water; but the Poet feems to exempt her entirely; and fo F F_{2}
dues Virgit, when he makeds Fear account for the fame Pbenomerion, that Ovid (who preferves all the Fable of the Ancients) afcribes to Force.

Maximus bic Flexu finuofo elabiiur Anguis
Circkm, perque duas in morem fuminis Argios:
ArEtos Ociani metuentes /4quore tingi.
Virgil. Georg. Lib. I. 244.
Around our Pole the fpiry Dragon glides, And like a winding Strean the Bears divides,
The Lefs, and Greater, who by Fate's Decree
Abhor to dive beneath the* Soutbern Sea.
Dryden.
Nuper bonoratas fummo mea Vulnera Calo Videritis Stellas illic, ubi Circulus Axem Ullimus extremum Spatioque breviffrmus ambit. Ovid. Mer. Lib. II. 515.
— — — New Stars you'll fee, In this approaching Night's Obfcurity, With hateful Beams i'th' Arckic Circle fline.

He immediately adds,
At vos folafe contemptus tangit Alumne,
\dagger Gurgile creruleo Septem probibete Triones:
Sideraque in Calo ftupri mercede recepta
Pellite, ne puro tingatur in Equore Pellex.

Ne'er let thofe fpurious Stars approach the Deep,
Nor in the purging Ocean's Bofom fleep, But their eternal Stain, their whorif Tincture keep.

And when he defcribes them as a Team, it is with the fame Referve.
Tum primum Radiis gelidi caluere Triones, Et vecito fruftra tentärunt Equore tingi.
-171.
Then the Sev'n Stars firft felt Apollo's Ray, And wifhed to dip in the forbidden Sea.

- Northern. t In the Ordeal by Water it was adjured, not to receive the Guilty, in Terms like thefe.

All which is a proper Hint for the Difpcfricn of she Globe, that mulut correfpond to thefe Appeorances then, and which can only be obtained by this Method: By the Help of which we may alfo apprehend the Light thefe Defcriptions give us into the Age of the Writers. I may illuftrate this from Hefod's Account of the Seafons, of which we have not only a better Idea by this artificial Difpofition of the Globe to anfwer them, but alfo of the Time wherein he lived, when we come to adjuft the Heavens to the accurate Inftructions he gives us, according to his Laticude at Afcra, allowing $50^{\prime \prime}$ per Annum for the apparent Motion of the Stars.

$$
\begin{aligned}
& \text { X }
\end{aligned}
$$

When the glad Sun, approaching with his Rays, Has from the Tropic run out Sixty Days; Arcturus, riling from his facred Bed, Is firtt difcover'd in the Ev'ning Shade.

But when Orion, and the Dog-Star, come To the Mid-region of the heav'nly Dome, The Morn, that bluming draws away the Night, Beholds ArElurus in the dawning Light.

If we fix the Pole almoft in the Mid-way betwcen the Star in the Shoulder of the leffer Bear, and another of the Serpent, we fhall have the Satisfaction to obferve all thefe Phonomena anfwer the Defcription. I fhall not enter into the Calculation; for I would not anticipate the Pleafure, one, that hath no Notion of the Age of Hefiod, mult have, when he finds himfelf able, with fo much Eafe and Precifion, to determine it by thefe Characters*.

[^25]Hefioits Account of the Pleiads is too particular not to demand ous Attention, and require an Explanation in the fame way t.
*AP
Kexpúpaizu, "Hewio. "Epf, Bi6入. 6'. 1.

Begin the Harveft, as the Pleiads rife.
And take the Plough, when they withdraw the Skies;
For Forty Days and Nights their glimm'ring Light, Obfcur'd to us, no longer cheers the Sight.

To this I might add Homer's Image of the Dog-Star, but efpecially the exact Defcription in Hefod.

'Lasád. E'.5.
Like the red Star, that fries th'autumnal Skies, When frefh he rears his radiant Orb to Sight; And, bath'd in Ocean, fhoots a keener Light.

For then the Dog-Star governs in his Courfe, Walks o'er the Heads of Men, who feel his Force, Comes in the Day, but chiefly fhares the Night.

How beautifully does the fame Writer exprefs the Gefture of Oriox, as he is following the Pleiads?

- Arcfurus rofe juft at Sun-fet; and thence it follows, that Hefiod flourifhed about 100
- Years after the Death of Solomon, or in the Generation or Age nextafter the Trgjar War,
- as Hefrod himfelf deciares.'
'Tis what we may compute by the prefent Globe; for, bringing Arcturus to the Eaftern Horizon, the Sun we fhall find in the Ninth Degree of Aries. Now it enters be Dec. 11. and 60 Days after, or Feb. 10. it is in $\mathcal{H}^{2} 2^{\circ}, 30^{\prime}$ when allowing for the Northern Latitude of Archurus to make it vifible on the Horizon, it's Longitude mult have been ग15 14°, $\mathrm{Eg}^{\circ} c$. whereas it's Place now is about $\bumpeq 20^{\circ} 27^{\prime} 12^{\prime \prime}$. And the Difference both ways one Sign $6^{\circ} 18^{\circ} \mathrm{g}^{\circ}$. which makes him to have lived 2614 Years ago.
\uparrow Hirae Signis weteres Agricole, Eo ex corum Traditionibus Scrippores rei rufica, nee non छo Medici, Poita, Ef Hiforici funt uf ad Anni Timpefates defgnandas, \&c. Greg Aftron. p. 130.

The Pleiads, flying from the threat'ning Scourge Of frong Orion, plunge into the Surge.

Perhaps this may give fome Light to a Paffage of Virgil, that hath very much puzzled his Commentators.

Taygete fimul Os terris oftendit bonefums Pleias, \& Oceani dpretos pede reppulit Amnes: Aut eadem Sidus fugiens, ubi Pijcis aquofi Triftior bybernas Catio defcendit in Undas.

Georg. Lib. iv. 23^{2}.
Firf, when the pleafing Pleiades appear, And fpringing upward fpurn the briny Seas: Again when their affrighted Choir furveys The watry Scorpion mend his Pace behind, With a black Train of Storms, and Winter-wind, They plunge into the Deep, and fafe Protection find.

Some, I know, by this Sidus underftand the Soutbern-Fi/h, others the Hydra, and fome the Sun; but how Mr Dryden came to infert Scorpio, I fhall not inquire. Nor fhall. I trouble you with any Conjectures with regard to the ancient Figures: It is certain there have been Variations in this refpect, fince Polemy mentions a Star in the Horn of Aries; and it is thought Hipparchus reckoned one, that is now in the Line, to the firf Foot of Aries *. Whether the Epithet. Ovid gives Capella, does not imply fome little Difference, in the Situation of it, from ours, I leave to the Critics.
> - Es Olenixe Sidus pluviale Capeile, Taygetcnque, Hyadajque Oculis, Arcionque notavi.

Met. Lib. III. 594.

[^26]I might infift on the Etymology of Arcturus, and others; for it appears from the Accounts the Ancients themfelves give us, there was not always the greateft Uniformity in their Drawings. Orid fays of Bootes.

- - - - E te tua Plaufira tenebant.

Nay, and 'tis faid, Bootes, too, that fain
Thou would'ft have fled, though cumber'd with thy Wain.
Addison.
And he lets us know, that Scorpio took up 60°.
Eft Locus, in geminos ubi Bracbia concavat Arcus
Scorpios; छ Cauda, flexiJque utrinque Lacertis, Porrigit in Spatiam Signorum Membra duorum.
-195.
There is a Place above, where Scorpio, bent In Tail, and Arms, furrounds a valt Extent : In a wide Circuit of the Heav'ns he fhines, And fills the Space of Two celeftial Signs.

This might be one Reafon of that Compliment which Virgil paid Auguftus, apart from the other, which Scaliger affigns.-

Anne novum tardis fidus te menfibus addas, Qua locus Erigonem inter, CbelaSque Sequentes Panditur? ipfe tibi jam Bracbia contrabit ardens Scorpius, E Cali jufta plus parte reliquit.

Georg. Lib. I. 32.
Where in the Void of Heav'n a Space is free, Betwixt the Scorpion, and the Maid, for thee: The Scorpion, ready to receive thy Laws, Yield half his Region, and contracts his Claws.
'Tis true, this Poet knew Libra very well; but, perhaps, it made no great Figure among the Afterims then.

Improvements on the Globes.
Libra die Somnique pares ubi fecerit boras,
Et medium Luci, atque Umbris jam dividit Orbens.
But when Aftrea's Balance, lung on high, Betwixt the Nights and Days divides the Sky.

$$
-208 .
$$

Dryden.
How Taurus was painted at that Time, we learn from his Deferip. tion.

* Candidus auratis aperit cum Cornibus Annum Taurus, E averfo cedens Canis occidit Aftro.
-21%.
When with his golden Horns, in full Career, The Bull beats down the Barriers of the Year; And Argos, and the Dog, forfake the Northern Sphere.

In the laft Verfe we have, perhaps, no Occalion for Heinfus's Correction of adverfo, if we compare the Diction here with Ovid's.

Per tamen adverf gradieris Cornua Tauri.
Met. Lib. II. 80.
The Bull's oppofing Horns obftruct the Way.
The Infructions Virgil gives in the fame Place, as to Hufbandry, are beft underftood from this new Difpofition, and may render us fenfible how much earlier thefe Pbenomena were then in the Year, to what they are at prefent \dagger.

Ante tibi Eox Allantides abfondantur, \&c.
Georg. Lib. I. 221.
But if your Care to Wheat alone extend, Let Maia with her Sifters firt defcend, And the bright Gnofian Diadem downward bend.

[^27]I know we caunot depend upon all the Exactnefs in a Poet, that might be expected from an Aftronomer: But, Virgil feems to have made it his favourite Study.

Me vero primum dulces ante omnia Mufa, 2uaram facra fero ingenti perculfus Amore, Accipiant; Calique Vias, EJ Sydera monferent.

Lib. II. 475 .
Would you your Poet's firt Petition hear, Give me the Ways of wand'ring Stars to know.
Ovid appears alfo perfectly acquainted with the ancient Figures, and the moft accurate way of delineating them, at the fame time that he enlivens them with their Fillions.

Confjtuntque Loco, Specie remanente Corona, 2 2ii medius nixique Genu, anguemque tenentis.

 Met. VIII. 18 I.— — — - The Crown retains
It's proper Figure, and a Station gains Where Hercules in bending Pofture ftands, And ftrives to gripe the Dragon in his Hands.

Vid. Lib. XIV. 846 .
How we came by the Account, it is not material to inquire ; but there is one Line, wherein he feems to have preferved fome ancient Tradition, as to the Pole.

2uaque Polo pofita ef glaciali proxima Serpens.
Lib. II. 173.
The folded Serpent next the frozen Pole.
And there is Reafon to believe one of the Stars of that Confellation was the ancient Polar Star, and might firtt give Rife to the Denomination; for one in the Tail of the Dragon, of the Tbird Magnitude, comes neareft it of any other. About the Time of the Flood, it was within 10 ' of the Pole, and might pafs for the Polar Star a Thoufand Years after among thofe Writers, from whom Ovid copied his Exprefion. However, this is certain, that anotber Siar of that Conftellation, one of the Fourth Magnitude, was really nearer than any other, when the old Obfervations were made, which literally juftifies Orid's Account. I might take notice of his exact Reprefentation of the Difpofition of ibe Ara, and Anguis, when he makes them the two Extremes.
-Media.
 Neu te dexserior tortum declinet in Anguem, Neve finifterior preffam Rola ducat ad Aram. Inter atrunque tene.
ib. 137.

- - - The middle Way is beft, Nor where in radiant Folds the Serpent twines Direct your Courfe, nor where the Altar Mines. Shun both Extremes.

But the Infpection of the Globe, when it is fixed in a proper Pofition, will convey the beft Idea of all thefe Appearances; for we derive this Advantage from the new Conftruction of it, that it will enable us to place the feveral Pb.enomena before every Eye; by which means thofe who have the leaft Acquaintance with thefe Studies, muft be greatly furprized, and pleafed to obferve the ancient Accounts minutely verified. It is a fort of living over again the former Ages, allowing $1^{\circ} \cdot 23^{\prime} \cdot 30^{\prime \prime}$. for every bundred Tears, according to Ricciolus and Flamfed, which is a fort of Mean between the other Computations.

I fhall not now fuggeft fome other Purpofes, that might be ferved by this Method. It is fufficient to recommend the Invention, that it throws fo much Light on the common Claffics, to which I have confined this Examination, and which muft be my Excufe for the Citations.

P A PERS omitted.

1. A Catalogue of Eclipfes of Fupiter's Satellites, for the Year 1734, by Fames Hodgfon, F. R. S. Matter of the Royal Mathematical School at Cbrift's Hofpital London.
2. The fame for the Year 1735.
3. The fame for the Year 1736 , computed to the Meridian of the

No. $427 . \mathrm{p}$. 26.

No. 432. p.
279.

No. 436. p. Royal Obfervatory at Greensuich, by the fame.
5.
4. The apparent Times of fuch of the Immerfions, and Emerfions of Jupiter's Satellites, as are vifible at London, in the Year 1736, together with their Configurations at thofe Times, reprefented in a Plate.
5. An Account of fome Obfervations of the Eclipfes of the firft Ibid. p. ig. Satellite of Jupiter, compared with the Tables, by the fame.
6. The apparent Times of the Immerfions and Emerfions of $\mathcal{F} u p i t c r ' s$ No. 440. p. Satellites, which will happen in the Year 1737 , computed to the Me- 179. ridian of the Royal Obfervatory at Greenceich, by the fame.
7. The apparent Times of fuch of the Immerfions and Eimerfions of Ibid p .184 , fupiter's Satellites, as are vifible at London, in the Year 1737, by the fame.

Gg 2
8. The 301.

Ibid. p. 3 co.

No. 445 . p . 69.

1bid. p. -6.

No. 449 . p. 332.

1bid. p. 340. 13. The apparent Times of fuch of the Immerfions and Emerfions
of '̛upiter's Satellites, as are vifible at London, in the Year 1740, by
1bid. p. 340. 13. The apparent Times of fuch of the Immerfions and Emerfions
of foupiter's Satellites, as are vifible at London, in the Year 1740, by
1bid. p. 340. 13. The apparent Times of fuch of the Immerfions and Emerfions
of foupiter's Satellites, as are vifible at London, in the Year 1740, by the fame.
No. 478 . p.
602.
3. The Immerfions and Emerfions of the four-Satellites of ffupiter, for the Year 173^{8}, computed to the Meridian of the Royal Obfervatory at Grecnazich by the fame. of The apparent Times of fuch of the Immerfions and Emerfions of Fupiter's Satellites, as are vifible at Lonion in the Year 1738, by the fame.
10. The apparent Times of the Immerfions and Emerfions of fupiter's Satellites for the Year 1739, computed to the Meridian of the Royal Obfervatory at Greenzeich, by the fame.
11. The apparent Times of fuch of the Immerfions and Emerfions of Iupiter's Satellites, as are vifible at London, in the Year 1739, by the fame.
12. The apparent Times of the Immerfions and Emerfions of the four Satellites of Fupiter, for the Year 1740, computed to the Meridian of the Royal Obfervatory at Greenwich, by the fame. 14. De Difparitione Annuli Saturni An. 1743, \& 1744, ex Epiftola a Domino Godofredo Heinfio, ad Dominum Petrum Colinfonum,

PAPERS omitted.

 R. S. S. data.
C H A P. IV. Of SURVEYING.

A new Plot. ting Table for taking Plans and Maps in Surveying : Invented in the Year 1721, by
Heory
Beighton,
F. R. S.

No. 4^{61}. p.
747. Aug.

EG. 174 .
Fig. 88.
Fig. 89.

IT is a plain fmooth Board, about 18 Inches fquare, and Threequarters of an Inch thick, Fig. 88. A B C D, made of Mabogany, Walnut, Pear-iree, or Norway Oak, well clamped at the Ends, or a brafs Frame round it, to prevent it's warping, and, as much as pofible, fhrinking and fwelling.

Within Six-tenths of an Inch of two of it's oppofite Sides (and parallel to them and one another) are two Grooves $E F, G H I$, cut on the Face half an Inch deep, to let in two brafs Holders in the Siape of NO, Fig. 89. which are each of one Piece of caft Brals, like two brafs Rulers, joined together at Right Angles. The perpendicular Part is io and $\frac{30}{}$ Parts of an Inch thick, as at d, $\frac{1}{2}$ an Inch deep, and a little fhorter at each End than the upper Part, which is 17 Inches long, $1^{\frac{3}{3}}$ broad, and abour 8 Parts of $1 \frac{1}{60}$ of an Inch thick; about $2 \frac{1}{3}$ Inches from each End of the Holder, are thick Parts of Boffes in the upright Piece, as at P and 2 , through which are Holes tapped, to receive the Screws $P S, 2 R$, which Screws go each through a brais Plate as τ and V, fixed by Rivets on the under Side of the Table, and little round Nuts, (as at a and b) put on them,

Of SURVE YING.

to confine them to their Shoulders in turning in the Plates, that they neither rife nor fall ; thefe Holders muft go eafy in the Grooves, to fiok ealy and even with the upper Surface of the Table. Then, when the Screws enter the Holes of the Holders, by turning R and S at the fame Time forward, the Holders will fall, and pinch down any Papers, \mathcal{E}° c. that are under them; and, turning backward, will rife and releafe them. In the Middle of one End of the Table is a Groove to receive the Brafs W, which has the fame fort of Screw and Fixing as the other, to raile or fall it. But the Groove is quadrantal, that the Holder IV may on Occafion be turned fo as to lie all on the outfide the Line $E H$, and to crofs it, in cafe of high Winds, for $\mathrm{fe}-$ curing the Papers down, on Three Sides; and a Fourth might be added, but there is feldom any Occafion for it.

To the Centre of the Table underneath, is fixed a brafs Socket, fo truly made, that the Table may, when fer, turn round truly horizonsudly: And a Machine, cafed with Glafs, in which a Plummet, hangs to fet the Table level; or the parallel Plates, and glafs Tubes of Spirit of Wine, may be ufed, to fet it horizontal, as any one fees Occafion to fanfy them.

To any one of the four Edges underneath, is fcrewed a Box and Needle, fet to the Variation.

There belongs to this Inftrument, a Atrong three-legged Staff, and an Index with plain or telefcopical Sights, near two Feet long.

The Papers, or Charts, for this Table, are to be either a thin fine Paftboard, fine Paper pafted on Cartridge-paper, or two Papers pafted together ; cut as exactly fquare as is poffible, each Side being nearly 16 Inches and an half long, juft as they may nide in eafily between the upright Part and under the flat Part of the Holders.

Any one of thefe Charts will be put in the Table any of the four ways, be fixed, taken out, and changed at Pleafure: Any two of them may be joined together true on the Table, if you make each of them meet exact at the Line $L M$, whilft near one half of each will hang over the Sides of the Table; or by crefting and doubling each, the whole of them ftill be within the Table. And if Occafion fhould happen, as feldom it does, by crefting each Paper both Wiys through the Middle, four of them may be put on at one time, meeting in the Centre of the Table.

Each Chart is always croffed by Right Λ ngles through the Middle, for the Purpole above, and to make any of them anfwer to the GuideLines on the Table, Fig. 88. I K, L. M, drawn quite through the Cen- Fig. 88 tre, and the whole Table.-So the grand Objection of mifting Papers is obviated.

> Il's Facility and Difpatch,

As alfo it's Certainty, compared with any of the moft celebrated Inftruments, I hhall now briefly fet forth.

But, ill order thereto, it may not be improper to premife, or lay down, as Lemmala, thefe three Things:

1. T'se efiential Bufinefs or Aims in furvering of Lands or Countries, is citber to bave an cxact Plan, or to fund tbe Area in Jome known Menfure.
2. Every thing that is fuperfluous or foreign to fuch Defign, is better omitted tban taken.
3. If a true Survey, and exaet Plan be made, every Part will bave it's juft Proportion, and every Angle it's true Opening or Quan. tity.

Then what need have we of Digrees, Minutes, E'c.? They are never made any Ufe of in the Practice of cafting up, or any thing related thereto: For, if from a Station two Lines be drawn by a good Index to two diftant Objects, will it not be the very Angle, and identically the fame, as if it had been taken by the moft celebrated Inftrument, in Degrees and Minutes, and laid down by a Protractor?

The firft is much more expeditious, eafy, and certain, than the other. More expeditious, becaufe thofe two Lines are fooner drawn than an Angle can be taken, which done, two thirds of the Work is behind, viz. Writing down and Plotting. More eafy, as done with $\frac{1}{4}$ of the Trouble. More certain, becaufe one may be liable to Miftakes in taking the Degrees or Minutes; in fetting down, and in protracting. And if it fhould fo happen, that one numerical Angle fhould be taken, fet down, or plotted to the wrong Coaft, (where they depend on one another) fo great an Error would enfue, that could not be retrievable, but by going on the Spor, and performing the Operation anew. Now the Plotting-Table, after two Stations, proves every thing on the Spot; for, from every Station you are upon, the Index muft point at the fame time to any Station on your Map, and it's correfponding Object in the Field; which is a demonftrative Proof, for nothing but Truth will agree.

In feveral Branches of the Mathematics, it is abfolutely neceffary to take Angles in Degrees, Minutes, and their Subdivifions, as Aftronomy, Trigonometry, Navigation, Longimetry, inaiceffible Heights and Diftances, $\mathcal{E}^{\circ} c$. and allo in taking large Plans, to calculate and prove Things by Trigonometry; which would not only be a Work of Curiofity, but very commendable. But where the Nature of the Thing will admit of as good Proof, with $\frac{1}{10}$ part of the Trouble and Time; it would be like running the Solution of an eafy Queftion into a long Procefs of Algebra or Fluxions, when the plain Rule of Proportion would juftly anfwer the fame.

It is objected, That, in furveying by the Plotting-Table, the fininking or fwelling of the Papers, are a great Inconveniency.

In Anfwer to this, it may be faid, The fame Inconvenieney attends the furveying by any other Inftrument, fo foon as it is plotted; for both Velum and Paper will thrink and fwell in the Houfe on the Alteration of Weather (as well as all Bodies); for a Line of 48 Chains, plotted by ${ }^{2}$ Scale of 3.2 per Inch, in a hazy Morning, in a clear Afternoon the fame Day, meafúred but 47 and an half: And there are various Shrinkings and Swellings, according to the Weather, and Difference of Paper, E'c.

In the Plotting-Table this Inconveniency is in a great meafure remedied. For in what State foever of the Weather you put Lines on the Chart, the Holders give Marks on the Chart as it then ftuod; if it was moift and fiwelled up in the middle Part, you may, when you either caft up or meafure Lines, by laying it on a damp Floor, put it in the fame Condition as it was when you plotted the Lines. If you plotted in dry hot Weather, and are cafting up in damp or moift, a little heating by the Fire will reduce it to the fame State again. Another Remedy I have long ufed is, to plot and meafure by Scales of the fame Paper, which will frink or fwell in proportion as your Map does.

But it will be well to obferve here, that the Ihrinking and fwelling alters the Lines only, and not at all the Angles: For, let a Polygon be never fo much uniformly extended or contracted, each Angle muft contain the fame Number of Degrees and Minutes as before. Hence this Objection falls no harder on the Table, than on all other Inftruments.

And here I intended to have ended this Difcourfe: But as I have fome other fmall Improvements, not only in the Inftrumental Part, but in a new Method of difpofing the Maps, and better adapting them to all fublervient Ufes; I proceed.

I fhould have faid before, that each Chart has a Flower de Lys on it's North Edge; and, as the Needle is moveable to any Side, Care muft be taken, that the North End of the Needle, when it ftands, fhould point the fame Way as the Flower de Lys on the Charts.

I ure a Needle about 5 Inches long, placed in an oblong wooden Box, but juft fo wide as the Needle may play double the Degrees of the Variation Wef, viz. 30°. In the Middle of one End is the Flower de Lys, and the Box is by Studs and Holes always put on the Table oblique to the Quantity of the Magnetical Variation. I make no other Ufe of the Needle, than to fet the Table in the Meridian, and to prevent any great Miftakes, in joining or placing the Charts wrong.

I have no more than $\frac{1}{2}$ an Inch of the Needle that appears from under the Table, for the Reafon it fhould not be in the Way, or fo fubject to be damaged: The making the Box fo narrow, is to check it's playing, that it may fooner hang ftill over the Flow'sr de Lys. The wooden Box, Jined with Paper, I find preferable to a large brafs Box, and large Glafs, which in cold and hazy Weather, condenfes the Vapour and Air fo much, as to make the Necdle very languid and dull.

Furlier Vtu. b) caki:g a Sur vey in the new Therbod by tie Plothing Table.

of $S \cup R V E T I N G$.

The Charts, thus taken, are more readily laid together by Numbers on their Edges, which tally, and make up the whole Map in one Plan, or View, and are, in thefe Squares, more portable.

In the fecond Place, they are more readily copied, extended, or contracted. For, by having a Frame of Wood that juft encompafles a Chart, divided by 19 Threads at equal Diftances, and the fame at Right Angles, the other Way; each Five or Ten, $\Xi^{\circ} c$, being diftinguifhed by Silk of a different Colour; a Reet is made of 400 Geometrical Squares, from which, having a Velum or Paper fo divided by leffer or greater Squares; then drawing or copying by Help of the Lines into thofe new Squares, you have your true Map contracted or extended.

Large Maps of Lordfhips are not any ways convenient, or portable, to theve recourfe to on the Spot or Place they reprefent; being fubject to Damages, unfit to be opened in rainy Weather, very troublefome in the Wind, and very difficult to find out the Part you want. To remedy all thefe Inconveniences, fome Years ago I contrived a new Method of difpofing them, in fuch Manner as makes them more fure, fafe, ready, convenient, durable, and portable, than any other Method.

And this is done by imitating the Geography of the World, which firft gives the whole, then the feveral Kingdoms, Countries, Provinces, and minuter Parts and Divifions, feverally and more at large.

Firft, It will be highly neceffary, that a General Map of the whole Lordfhip (Country, E'c.) be drawn in one Sheet of Paper or Velum, to give the Form, Idea, and Proportion, that the Parts bear to the whole, and one another; by which Situations, Bearings of the Towns, Villages, Roads, and remarkable Places, will be feen at one View: And this mutt be reduced to fo fmall a Scale, as the intended Sheet may comprehend the whole. A Scale of about 11 or 12 Chains in an Inch, will plot a Lordfhip of more than 2000 Acres, in the Compafs of 16 Inches fquare; which may be a convenient Size to make two Leaves, and open in a Folio Book. This Map may exprefs the Roads, Rivers, Strects, Boundaries, Inclofures, and common Field Lands fingly, in cafe they be not lefs than 40 or 50 Links in Breadth: The Pieces that contain not lefs than about so Acres, will admit of Room to write the Owners Names and Quantities in Statute Meafure, as in
Fig. 91. Fig. 93 But for all the fmall Parts, there will not be room to explain them: Therefore I divide the general Map into as many Geometrical Squares, as it took Charts in furveying by the Table, by red Lines, as in Fig. 90 horizontally and perpendicularly, as noted by $0,0,0,0, \mathcal{E}^{\circ}$. which, by a Scale of 32 per Inch, may take about 15 Charts in Number: In the openelt Place near the Middle of each Square, in a Imall Circle, I number them with red Figures 1, 2, 3, E c. correfponding to the original Charts: And in the Middle of each of their Sides, Numerical Letters, fhewing how the particular Maps are to join to tach other.

Of SURVEVING.

The particular Maps are each as large as the general, and numbered at the Top I. II. III. छc. correfionding to the Squares in general, as Fig. 91. where, in the Right Hand Margin, is put V, and at the Botrom IX, thewing the Fitth Map tallies to the Side, and the Ninth to the Buttom, or South Part: The general Map being an Index, fiewiug how they join to each other.

By thefe particular Maps may be fhewn all the leffer Quantities, with their Tenure, Owners Names, and Contents; and, by the Scale, ate capable of flewing the Lengths of any Lines, and the Dimenfions, fo as to difcover any Encroachments, and record their Shape and Extents to Pofterity: A moft valuable Ufe of a Survey and Map.

All thefe Maps are bound up in Order, in a Folio Book, to open freely, which will be not only very portable, but ufectul to have recourle to on any Occafion; fecure from Damages of Weather, as well as more durable and ornamental.

The Terriers to thefe Maps are made in the following Manner: either bound in a Book of a Pocket Size by themfelves, or along with the Maps.

The Names of the Freeholders, Copyholders, Cottagers, Tenants, $\mathcal{G}^{\circ} \mathrm{C}$. are put in an Alphabetical Order.

Tho. Pozer.

In like Manner, under every different Name, may all the Parcels. be expreffed feparately.
To find any Piece or Parcel of Land in the Lordhip readily, firf find tbe Tenant's or Owner's Name in the Alphabetical Order, under which, in the Second Column, may the Parcel be found. The 3d thews whether it is Free or Copyhold; the $4^{\text {th }}$ or 5 th, the Quantity in Statutc Mcafure, either Free or Copyhold.

The numerical Letter in the Margin on the Left IV. Thew's it is in the lourth particular Map; f. 6. refers to the Parts of the Map; find f. at the Top, and 6 on the Left Side, and in the Angle of Meeting of thofe Squares is the Houfe, Clofe; and fo for any other.

- There is but one Objection I can at prefent forefee, that can bear any Weight againft this Method of dividing the gencral Map, viz. © VO L. VIII. Part i.

That by dividing the fame into geometrical Squares, many of the Parcels, Lands, and Grounds, will be cut into two feparate Pieces; one Part whereof will lie in one particular Map, and the reft in another; as in Fig. 91. Map IV. Part of Calmer and Broad-Clofe will be in the Vth Mäp.

In this Cafe, it is ufual to put the Owner's Name, and Quantity, in that which is the greater Part, and in the Terrier refer allo to the Remainder; where, if the Shape; Lengths, ξ° c. are required, they may be difcovered.

But as this may not be fatisfactory, or fully anfwer the Objection; the two following Merhods will entirely obviate the Difficulty, and make them as fully fubfervient to all Purpofes, as any large and entire Map on one Piece.

The ift Method is, to take juft fo much in a particular Map as is circumferibed by fome known Roads, Lanes, Brooks, Boundaries of particular Owiers, or Tenants Lands: This, indced, will often make the Map very difproportional, and irregularly fhaped; but cannot be a material Objection, by reafon, in Surveys, there is feldom any thing regularly fhaped.
2. The 2 d Method is, to have a wider Margin, or rather draw the particular Maps by a fmaller Scale, as 4 Chains in an Inch, inftead of 3 Chains 20 Lines; and that will allow Room to add the Parts of the

To reduce Seale to fis exally jour general Mop. Parcels fo cut off in the Margin, as in Fig. 92. the IVth particular Map varied, where the Whole of Broadmoor and Caliner is drawn; then in the Vth and IXth particular Map, may the fmall Parts, which are in the IVth, be drawn in full: Then will they join by indenting or tallying one into anotherr

Firft fee what Extent the whole Survey takes on the Charts you laid it down by in the Field, viz. the greateft Depth and Breadth, as from the Specimen of the general Map it may appear.

Depth

On the upper Chart is N°

Then having fixed on the Size of the general Map to be 16,37 Square, I form a Scale of $60 \frac{1}{2}$ per Inch, that may jut extend the whole Breadth of the 16,37 Inches; by which you may form all the Squares, and Parts of Squares, in Depth and Length, as above; and at Fig. 90. is
divided.

Figg gs. Piscuieller Mrap ITO IV

Fig 92

(1)

$$
\text { Of } S \cup R V E X I N G .
$$

The Breadth of the whole Map, by a Scale of 32, is 60,62 Inches, which I would reduce into the Compars of $16 \frac{1}{5}$ and $\frac{1}{5}=16,37$ Inches.

Divide 60,62 by 16,37 , gives 3.7 , which multiplied by 3,20 , makes the Product 11,84 , that is 11 Chains 84 Links in an Inch, the Scale for the general Map.

Thus have I done all I intended; but fhall obferve, that feveral of thefo Tables have been made, and, as People have fanfied, with Alterations and Additions; but all Variations are not really Improvements. The letting it horizontally by Spirit-Tubes, may be curious enough : But as the Difference is very inconfiderable and indifcernable, when it ftands 2 or 3 Degrees out of the Level, I hhall not trouble myfelf or others about it; only further obferve, that when Grounds are declining much, and very uneven, if the Table ftands horizontal, unlefs the Sight or Mark on the lower Part is fo high as it's Top makes a Level with the upper Part of the Table, which is feldom done, or practicable, I do not fee why fuch a Strefs fhould be laid on the Inftrument's being level, when neither the View by the Index, nor the Meafure of the Line, either can be, or is taken horizontally: If the Sight of the Index ftand nearly perpendicular at every Obfervation, it is more than fufficient for any Exactnefs requifite in a Survey.

> CHAP. V.
> $M E C H A N I C K S$.
I. AV I N G laft Year hhewn feveral Perfons in Holland the Expe. riment contrived by Mr Geo. Grabam, to explain the Doctrine relating to the Momentum of Bodies (viz. That the Momentum, or Quantity of Motion in Bodies, is always as the Mafs multiplied into the Velocity) which Experiment is made with a flat, pendulous Body, that receives the Addition of a Weight equal to itfelf at the lower Part of it's Vibration, and by the Reception of that equal Quantity of Matter always lofes half it's Velucity. Dr Mufcbenbroek, Proteffor of Mathematicks and Aftroromy at Uirecbt, communicated to me the following Experiment, made in Oppofition to that which I was Thewed by Mr Profeffor s'Gravefande. In this laft a Spring equally bent every time, pufhes forward, unequal Quantities of Matter fucceffively, and in every Experiment the Product of the Mafs of the Body by the Square of the Velocity is the fame; and therefore, as the Quantity of Motion mult always be the fame from the fame Caufe (viz. the fame Tenfion of the Spring) it follows, by every Experiment, that it is as the Mafs multiplied into the Squmre of the Velocity.

Exp. 1.] The pendulous Cylinder is fhot by the Spring from o Deg. to 7 Deg. meafured upon a Tangent Line.

Exp. 2.] The Cylinder with a leaden Weight in it that makes it's Weight double, is foot forward to ${ }_{4}$ Deg. $\frac{9}{10}$.

Exp. 3.1 The Cylinder with a Weight in it that made it's Weight triple, was fhot forward to + Degrees and a little farcher.
Exp. 4.] The Cylinder with a triple Weight of Lead ro as to quadruple the whole Weight, was fhot forward to $3^{\frac{1}{2}}$ Deg.

Thefe 4 Experiments at fift feem agreeable to the new Hypothefis; for according to the old, the Cylinder in the ad Experiment ought to have gone but to $3:$ Deg. in the 3 d Experiment but to $3 \div$ Deg. and in the laft but to 2 Deg.

But if we take in the Confideration of Time, all will be reduced to the old Principic. As for Example, let us compare the firft and hart Experiments.

In the firft, the Spring during a certain time acts upon the Cylinder which is driven forward with the Velocity 8. When the quadrupled Weight is driven forward with the Velocity 4 inftead of 2 , it is becaufe the fame Spring acts twice as long upon the Cylinder before it ceafes to impel it; and certainly the fame Caufe acting twice as long muft produce a double Effect.
Afort Account of Dr Jurin's Nintb and laft Difiertation De Vi Mo. trice, by Mr John Eames, F.R.S. No. 459. p. 60%
 Squares of the Velocities, when the Maffes are equal. The Original of this difpute among the Mathematicians, the Author afcribes to a Slip committed by the celebrated Mr Leibuiz, in the Year 1686, and the Continuance, to the Neglect of the Times, wherein equal Effects are produced. The one Side afferts all Caufes to be equal, whofe Effects are fo, whether the Times, during which the Caufes act, are fhorter or longer. The other, on the contrary, maintains, that equal Effects may arife from unequal Caufes, if the Times of Action are unequal; that confequently the Times, as well as the Effects, ought to be taken into the Account.

He wihhes the Gentlemen on the other Side of the Queftion would produce fome Experiment in their Favour, where the Equality of the Times is preferved; fince all the Experiments they have hitherto made, and argued from, may juftly be fet afide, as incompetent, on the Account of the Inequality of the Times of Action.

The Author then proceeds to prove the Truth of the common Opinion of the Forces in equal Bodies being proportional to their Velocities. This he does by Three Mediums, the Firft taken from

[^28]the Aetion of a fingle Spring upon the fame Body: The Second from fome Experiments of Mr Mariotle; the Third from the joint Action of feveral Springs upon two unequal Bodies.
I. A fingle Spring, fixed to a moveable horizontal Table, is made to communicate to the fame Body, Degrees of Force unqueftionably equal, while the Degrees of Velocity communicated at the fame tinae are alfo undoubtedly equal ; therefore the Forces are proportional to the Velocities.
II. In Mr Mariolte's Experiments, the Impreflions made upon equal Surfaces in the fame Point of 'Time, are found to be in the Duplicate Ratio of the Velocities; but the Maffes or Numbers of impinging Particles are in the fimple Ratio of the Velocities; confequently, the Maftes and Velocities conjunctly being in the Duplicate Ratio, i. e. as the Impreffions, muft allio be as the Forces which made them: Which is the old Opinion.
III. A complicated or bent Spring interpofed between two unequal Bodies, acting upon each with an equal Preffure, and during an equal Time, mutt communicate equal moving Forces to each; but their Velocities are by Experiment reciprocally proportional to their Maffes; therefore their Maffes, drawn into their refpective Velocities, are alfo equal, as were their moving Forces; and by confequence their moving Forces are as the Maffes and Velocities conjunclly: Which is the generally received Opinion.

In the Appendix, the Author anfwers fome of the principal Arguments brought in fivour of the contrary Side.

1. The firf is drawn from the compound Motion of a Body along the Diagonal of a Rectangle, whole Sides reprefent the fimple Motions. Here it is faid, that the fimple Forces are no ways contrary to each other; that being unitect or added together in the compound Force, that compound Force will not be to both or either of the fimple Forces, as the Diagonal is to both or either of the Sides; but as the Square of the Diagonal to the Sum of the Squares of the Sides, or to the Square of cither Side refpectively. He anfwers, The fimple Forces, while they act in their proper Directions, are not contrary to each other, either Wholly or in Part; but when confidered as contributing to the Motion of the Body in the Direction of the Diagonal, Part of the onc aets contrary to Part of the other, and deftroys it; as is evident, if you refolve each fimple Force into two others, one acting along the 1) iagonal, the other in a Direction perpendicular to it. And then it is to be oblerved, that the Sum of the two former is cqual to the Diagonal (while the two latter deftroy each other): Which is perfectly agreeable to the old Opinion, but not at all to the new; for the demonftrating of which this Argument is brought.
II. The fecond Proof is taken from the equal Compreffion of 4 equal Springs, before the Force was confumed, by the fame Body moving with
with double the Velocity; and labours at the Bottom under the fame Prallogifan.
III. The laft Argument is founded upon the learned and ingenious Mr Poleni's Experiment, whercin equal Cavities are formed in foft Subftances, by equal Bodies falling from Heights reciprocally proportional to their Mafics. This the Author fets afide, as infufficient, fiace the Times of forming thefe equal Cavities are unequal, and unequal Cuufes may produce equal Effeets in unequal Times. The learned Mr Poleni does, indeed, reply, and fay, that the Formation of thefe Cavities feens to be inftantaneous: But the ingenious Author hews the contrary, and that from a Pofition allowed of by Poleni himfelf, in his Reply.

Citfervations made in Londan, by $M r$ George Gra. bam, F.R.S. and as Black River in Ja. maica, by CO lin Campbell, E/g; F. R. S. concerning the
Going of a
Clock ; in or der is ieter. mine the Dif: ference be. trueen the Lengibs of ifo. chronal Pendulums in thofe Places. Communnicated by I. Bradley, M. A. Aflr. Prof. Savill Oxon.E.R.S. No. 432 . P . \$02 Apr Be 1934.
III. 1. A!tho' it is now above 60 Years fince Mr Ricber firft difcovered, that Pendulums of the fame Length, do not perform their Vibrations in equal Times in different Latitudes; and tho' feveral Experiments made fince in different parts of the Earth concur to prove, that Pendulums fwinging Seconds are in general Morter as we approach the Equator; yet what the real Difference is between their Lengths in different Latitudes, does not feem to have been determined with fufficient Exactnefs, by the Obfervations that have hitherto been communicated to the Publick; as may be gathered from Sir I. Newton's Principia *, where they are compared as well with each other, as with the Theory of that illuftrious Author. It were therefore to be wifhed, that more of this kind of Experiments could be made with greater Accuracy in proper Places, by fuch Perfons as have fulficient Skill and Opportunities to do it; that we might thereby be enabled to judge with more Certainty, concerning the true Figure of the Earth, and the Nature of it's conttituent Parts.

As an Inducement to fuch as may have it in their Power to put the like again into Practice, I fhall lay before the Society, an Account of a very curious Experiment of this Sort lately made in Famaica, by Colin Campbell, Efq; He has furnifhed himfelf with an Apparatus of Infruments not unworthy the Obfervatory of a Prince; among which is a Clock whofe Pendulum vibrates Seconds, made by Mr George Graban, who judging that an Opportunity was now offered of trying with the utmoft Exactnefs, what is the true Difference between the Lengths of Ifochronal Pendulums at London and Famaica, readily embraced it ; and in framing the Parts of the Clock, carefully contrived, that it's Pendulum might at pleafure be reduced to the fame Length, whenever there fhould be occafion to remove the Clock from one Place, and fet it up in another.

This Clock being chiefly defigned for Aftronomical Obfervations, had no ftriking Part, and it's Pendulum was adjuited to fuch a Lengrh, that in London is vibrated Seconds, of Siderial, and not of Solar Time.

[^29]$$
M E \subset H A N Y C K S .
$$

When it was finifhed, Mr Grabam fixed it up in a Room fituated backward from the Street, and on the North-fide of his Houfe, to prevent it's being difturbed by Coaches, or other Carriages that paffed through the Street, and that it might be as litele affected by the Sun as poffible. Having fet it going, he compared it with the Tranfits of the Star Luaida Aquils over the Meridian, which palfed

Hence it appears, that the Clock gained $121 /$ in 10 Apparent Revolutions of the Star.

In order to eftimate how much the Pendulum may be lengthened by greater Degrees of Heat, or how much nower the Clock would go on that Account when removed into a warmer Climate, a Thermometer was fixed by the Side of it; and between the Hours of 10 and II in the Morning, and at Night, notice was taken at what Height the Spirits ftood, and the mean Height for each Day was as follows:

	th	Therm.
	21	$32:$ Divifoas.
	22	$30 \frac{1}{4}$
	23	28 4
	24	$27 \frac{1}{4}$
-Auguf, 173i.	25	28 \% Hence the mean Height for all thefe Days was about $28 \frac{1}{3}$
	26	$27 \div$ Divifions.
	27	27 :
	28	$27 \frac{1}{2}$
	29	$27 \frac{1}{1}$
	30	$27 \stackrel{1}{+}$

The Clock. Weight that keeps the Pendulum in Motion is 12 tb . $10 \frac{1}{2} 0$. and is to be wound up once in a Month. The Weight of the Pendulum itfelf is 17 th. and (during the Time that the Clock was compared with the Tranfits of the Star) it vibrated each way from the Perpendicular $1^{\circ} 45^{\prime}$. The Magnitude of the Vibrations was eftimated by means of a Brafs Arc, which was fixed juft under the lower end of the Rod of the Pendulum, and divided into Degrees, \mathcal{E}° c.

MECHANGCKS.

Luguf 31, Mr Grabain took off the Weight belonging to the Clock, and hung on another of 6 \% H .30 z . and with this Weight the Pendslum vibrated only $1^{\circ} 15^{\prime}$ on each Side; and the Clock went Il $^{\prime \prime}$! nower in 24 Hours, than when it's own Weight of $12 \mathrm{Hb} \cdot 10 \frac{1}{1} \mathrm{oz}$. was hung on.
T his Experiment Thews, that a fmall Difference in the Arcs deferibed by the Pendulum, or a fmall Alteration in the Weight that keeps it in Motion, will caufe no great Difference in the Duration of che Vibrations; and therefore a little Alteration in the Tenacity of the Oil upon the Pivots, or in the Foulnefs of the Clock, will not caufe it to alcelerate or retard it's Motion fenfibly; from whence we may conclude, that whatever Difference there Shall appcai to be, between the going of the Clock at London and in Famaica, it mult wholly proceed from the lengthening of the Pendulum by Heat, and the D:minution of the Forec of Gravity upon it.

A particular written Account of the Obfervations and Experiments hitherto taken Notice of, was delivered to me by Mr Grabaim in Sept. 173r, abour the fame Time the Clock was put on Ship-board to be carried to \mathcal{F} amaica. He likewife fent very full Directions to Mr Campbell, deferibing in what manner the Clock was to be fixed up, and how the Pendulum might be reduced exatly to the fame State as it was when in Eigland; but no Intimation was given concerning the going of the Clock, that the Experiment might be made with all pofible Care, and Caution, and without any Byafs, or Prejudice, in Favour of any Hypothefis, or former Obfervations.

In Fuly 1732, we received an Account of the Succefs of the Experiment, by the Hands of Mr ofeph Harris, who was prefent at the making of it in 7 amaica, whither he went the Year before with Mr Campbell, in order to affift him in his Defign of erecting an Obfervatory for the Improvement of Aftronomy, and the promoting other Parts of Natural Knowledge in that inand: But his ill State of Health obliging him to return into England, he brought with him the Original Journal of the Obfervations of the Tranfits of two Stars (viz. Syrius \& β Canis Majoris) over the Meridian, compared with the Clock, after it was fixed up in Yamaica, as Mr Grabam had directed; together with the Height of the Spirits of the forementioned Thermometer, upon the feveral Days of Obfervation.

The chicf of thofe Obfervations are contained in the following Table, the ift Column whereof fhews the Day of the Month; the 2 d , the Namie of the Star, and the Time by the Clock of it's obferved Tranfit over the Meridian; the 3 d contains the Hour of the Day, when the Thermometer was obferved, together with the Height of the Spirit at thofe Hours; the Morning Hours being denoted by the Letter A, and thofe of the Afternoon, by the Letter P.

MECHANICKS.

The Pendulum, during this Interval, vibrated about $1^{\circ} 5^{1}$ each way from the Perpendicular.

The Tranfits of the Stars over the Meridian, were obferved with a Telefcope, fixed at Right Angles to an Horizontal Axis, whofe Ends lay exactly Eaft and Weft ; by the turning of which Axis, the Line of Collimation of the Telefcope, was conftantly directed in the Plain of the Meridian. This Inttrument was daily adjufted to a Mark, fixed in the Meridian : and in the Journal, between the 2d and 3 d of February, the following Remark was made.
N. B. Thbis Day was botter than ufual, as appears by the Thermometer; and the Tranfit Inftrument bad lof the Level a little, but after we bad adjufted it, it painted exactly to our Meridian Mark, and therefore we are at a lojs for the Couse of this Difference in the Clock.

From the foregoing Table it appears, that the Clock loft $54^{\prime} 21^{\prime \prime}$ in 26 Revolutions of the Stars; that is, about $2^{\prime} 5^{\prime \frac{1}{2}}$ in one Revolution, the Difference from this Medium fomewhat varying, upon account of a greater, or lefs Degree of Heat on different Days.

The Mean of all the obferved Heights of the Thermometer from January 26th, to February 18th, was about $12 \frac{2}{3}$ Divifions. Therefore, the Difference between the mean Heights of the Thermometer, at Famaica and London, during the Intervals of the refpective Obfervations, was $15^{\frac{1}{2}}$ Divifions; the Spirits ftanding fo much higher in Famaica, becaufe of the greater Heat in that Inand.

That we might be able to judge, how much the different Degrees of Heat, correfponding to any Number of Divifions upon this Thermometer, would caufe the Clock to go flower, by lengthening it's Pendulum, Mr Grabam took Notice of the loweft Point, to which the Spirits funk at London in the Winter, 173I; and the greateft Height to which they rofe in the following Summer; and comparing the Motion of the Spirits in this Thermometer, with the Alterations in another made with Quickfilver; which he has for fome Years made ufe of; he concluded, that at London the Spirits in this Thermometer would fand (communibus Amis) about 60 Divifions higher in Summer than in Winter.

By feveral Years Experience, he has likewife found, that his Clocks (of the fame fort with Mr Campbell's) when expofed, as ufual, to the different Degrees of Heat and Cold of our Climate, do not vary in their Motion above 25 or 30 Seconds in a Day.

From thefe Obfervations and Experiments therefore we may reafonably conclude, that fufficient Allowance will be made for the Lengthening of the Pendulum by Heat, if we fuppofe the Clock, upon that Account, to go one Second in a Day flower, when the Spirits of this Thermometer ftand two Divifions higher, and in the fame Proportion for other Heights.

Admitting then, that the mean Height of the Thermometer, while the Clock was compared with the Stars at \mathcal{F} amaich, exceeded that at

London between 15 and 20 Divifions; if we allow 8, or 9 Seconds, upon that Account, the remaining Difference mutt be wholly owing to the Difference of the Force of Gravity in the two Places.

Upon comparing the Obfervations, it appears, that in one apparent Revolution of the Stars, the Clock went $2^{\prime} 6^{11} \frac{1}{2}$ nower in Jfamaica, than at London; deducting therefore $8^{\prime \prime} \frac{1}{2}$, on account of the greater Heat in Famaica, there remains a Difference of $1^{\prime} 5^{\prime \prime \prime}$, which muft neceffarily arife from the Diminution of Gravity, in the Place neareft the Equator.

I have allowed the Clock to have loft fomewhat more, on account of the Difference of Heat, than the mean Heights of the Thermometer may feem to require, upon a Suppofition, that the total Heat of the Days, compared with the Cold of the Nights, bears a greater Proportion in \mathfrak{f} amaica, than London; but if that Suppofition be not admitted, then the Clock in Fannica, mift have gone rather more than i) 5^{11} in a Day nower than in England.

Mr Campbell's Obfervations were made at Black-River, in 180 North Latitude. Now if we fuppofe, with Sir I. Nerwon, that the Difference in the going of the Clock, is owing to the greater Elevation of the Parts of the Earth towards the Equator, it will follow from thefe Obfervations, and what is delivered by him in Lib. III. Prop. 20. of his Principia, that the Æquatorial Diameter is to the Polar, as 190 to 189 ; the Difference between them being $41^{\frac{1}{2}}$ Miles; which is fomewhat greater than what Sir I. Newolon had computed from his Theory, upon the Suppofition of an uniform Denfity in all the Parts of the Earth.

I fhall not enter into the Difpute about the Figure of the Earth, but at prefent fuppofe, with Sir 1 . Newton, that the Increafe of Gravity, as we recede from the Æquator, is nearly as the Square of the Sine of the Latitude; and that the Difference in the Lenget of Pendulums, is proportional to the Augmentation, or Diminution of Gravity. Upon thefe Suppofitions, I colleat from the furementioned Obfervations, that, if the Length of a finiple Pendulum (that fivings Seconds at London) be 39.126 Englifh Inches, the Length of one at the Aquator, would be 39.00 , and at the Poles 39.206. And (abftracting from the Alteration on account of different Degrees of Heat) a Pendulum-Clock that would go true Time under the Aqquator, will gain $3^{\prime} 4^{\prime H} \frac{1}{4}$ in a Day at the Poles; but the number of Seconds which it would gain in any other latitude, would be to $3^{\prime} 4^{\prime \prime / 2} 4$ nearly, as the Square of the Sine of that Latitude is to the Square of the Radius: From whence it follows; that the Number of Seconds which a Clock will lofe in a Day, upon it's Removal to a Place nearer in the Fquator, will be to $3^{\prime} 4^{8 \prime \prime}$ nearly, as the Difference between the Squares of the Sines of the latitudes of the two Places to the Square of the Radius. Thus the Difference of the Squires of the Sines of 51°, and 5°, the Laritudes of London and Brak-River being to

MECHANICKS.

the Square of the Radius, as in 8 to 228!, the Clock will go is' 58 " in a Day nower at Black-River than at London, as was found by Obfervation.

It inay be hoped, that Mr Campbell's Succeis in this Experiment, and the fitcle Trouble there is in making it, will induce thofe Gentlemen who may hereafter carry Pendulum-Clocks into diftant Countries, to attempt a Repetition of it after his manner ; that is, by keeping or reftoring the Pendulums of their Clocks to the fame Length in the different Places, and carefully comparing them with the Heavens, and at the fame Time taking notice of the different Degrees of Heat, by means of a Thermometer. From a Variety of fuch Experiments, we foould be enabled to determine how far Sir I. Neioton's Theory is conformable to Truth, with mucl greater Certainty than from thofe Trials which are made by actually meafuring the Lengths of fimple Pendulums; becaufe a Difference of $\frac{1}{10}$ Part of an Inch, in the Length of a Pendulum, correfponds to 1^{11} in a Day; and it being eafy to obferve how much a Clock gains, or lofes in a Day, even to a fingle Second; it is certain, that by means of a Clock, compared in the manner abovementioned, we may diftinguifh a Difference (in the Lengths of Ifochronal Pendulums) of $\frac{1}{1000}$ Part of an Inch, or lefs; whereas it will be farce pofible to meafure their true Lengths, without being liable to a greater Error than that. Befides, by taking Notice how nuch a Clock gains, or lofes, upon the falling or rifing of a Thermometer, we can better allow for the different Degrees of Heat in this, than in the other Method of making the Experiment, by actual Meafurement; fince it may not be eafy to determine how much the Meafure itfelf, which we make ufe of, will be lengthened by different Degrees of I Heat.

For thefe Reafons, I efteem Mr Campbell's Experiment to be the moit accurate of all that have hitherto been made, and propereft to determine the Difference of the Gravity of Bodies in different Latitudes ; and therefore I fhall fubjoin a Table, which I computed from it, containing the Difference of the Length of a fimple Pendulum, fwinging Seconds at the Aqquator, and at every $5^{\text {th }}$ Degree of Latitude, together with the Number of Seconds that a Clock would gain in a Day, in thofe feveral Latitudes, fuppofing it went true, when under the AEquator; by means of which any one may readily compare other the like Ob fervations with his; and thereby difcover whether the Alteration of Gravity in all I Places be uniform, and agreeable to the Rule laid down hy Sir I. Newton or not.

The Latitude of the Place.	The Difference of the length of the Pendu. lum in Parts of an Englifb Inch.	Seconds gained bya Clock in one Day.	The Latitinde of the Place.	The Difference of the Length of the Pendulum in Parts of an Englifh Inch.	Scconds gained by a Clock in one Disy.
Drg	Inch.	Seconds.	Deg.	Inch.	Seconds.
5	0. 0016	1.7	50	-. 1212	134.0
10	-. 0062	6. 9	55	O. 1386	153.2
15	-. 0139	15.3	60	-. 1549	171.2
20	-. 0246	26. 7	65	o. 1696	187.5
25	-. 0369	40. 8	70	O. 1824	201. 6
30	o. 0516	57. I	75	O. 1927	213.0
35	-. 0679	75. 1	80	o. 2003	221. 4
40	-. 0853	94. 3	85	O. 2050	226.5
45	-. 1033	114. 1	90	O. 2065	228. 3

Experimenes concerning the Vibrations of Pendulums. By the late W. Derham, D. 1). F. R.S. and Caron of Windfor.
No. 440 . p. 20r. Jan.
ジ, 1736 . Pamp. And as the Vibrations were larger or horter, fo the Times were augmented, or diminifhed accordingly; viz. 2^{11} in an Hour nower, when the Vibrations were largeft, and lefs and lefs, as the Air was re-admitted, and the Vibrations Mortened.

But notwithftanding the Times were flower, as the Vibrations were larger, yet I had Reafon to conclude, that the Pendulum really moved quicker in Vacuo, than in the Air, becaufe the fame Difference, or En. largement of the Vibrations (as two Tenths of an Inch on a Side) would caule the Movement, inftead of 211 in an Hour to go 6 or $7^{\prime \prime}$ nower in the fame Time; as I found by nice Experiments.

The next Experiments I fhall mention, I made at feveral Times, in 1705,1706 , and 1712 , by the Help of a good Month Piece that fwings Seconds. The Weight that then drove it, was about 12 or 13 tt, and it kept Time exactly by the Sun's mean Motion: But by hanging oil 6 H more, the Vibrations were enlarged; yet the Clock gained but 13 or $14^{\prime \prime}$ in a Day.

And as the Increafe or Diminution of the Power that drives the Clock, duth accelerate or retard it's Motion; fo, no doubr, doths

[^30]
MECIANICKS.

Chammefs or Tounefs affect it, and fo doth Heat and Cold; for all have the fime Eiffect upon the Pallets and Pendulum.

The laft Experiments I Chall mention, I made in 1716 and 1718 , (1) try what Eiffects Heat and Cold had upon Iron Rods of the fame I ength, or as near as I could to thofe that fwing Seconds. I made my Experiments with round Rods of about \ddagger of an Inch Diameter, and with iquare Rods, of about + of an Inch Square. The Effects on both which were the fame.

At firt I took the exact Length of the Rods, in their natural Temper. Then I heated them as well as I could in a Smith's Fire, from End to End nearly to a Flaming Heat; by which means, they were lengthened $\frac{2}{15}$ of an Inch. Then I quencbed them in cold Water; which made them $\frac{7}{100}$ of an Inch fhorter than in their natural State.

Then I warmed them to (as near as I could guefs) the Temper of my Body; by which means they were about $\frac{1}{100}$ of an Inch longer than in their natural Temper.

Afterwards I cooled them in a ftrong frigorifick Mixture of common Salt and Snow, which Hhortened them $\frac{3}{100}$ Parts of an Inch.

Afterwards I meafured thefe Rods, when heated in an bot Sun, which lengthened them $\frac{2}{100}$ Parts of an Inch more than their natural Temper.

All thefe Experiments feem to concur in refolving the Phrenomenon of Penduiunt-Ciocks going fower under the Aquator than in the Latitudes from it: Bur yet I confefs, that I have too good an Opinion of Sir I. Niwton's Notion of the Sphreroidal Figure of the Earth, to part eafily with it; and therefore I leave it to the Confideration of others, how. far the Figure of the Eartin, and iow far Heat and Élid, and the Karity and Denfity of the Air, are concerned in that Phænomenon.

An Account of the Influence subichi, izo Pendulums. Clocks weere obferved to bave xpon each otber, by Mr John Ellicott, F. R.S. No. 453. P. 126. April $0^{\circ} \mathrm{C}$. 1739.
IV. 1. The two Clocks upon which the following Obfervations were made, being defigned for Regulators, particular Care was taken to have every Part made with all poffible Exactnefs: The two Pendulums were hung in a manner different from what is ufual ; and fo difpofed, that the Wheels might act upon them with more Advantage. Upon Trial they were found not only to move with greater Freedom than common, but an heavier Pendulum was kept in Motion by a fmaller Weight. They were in every refpect made as near alike as poffible. The Ball of each of the Pendulums weighed above 23 tt ; and required to be moved about $\mathrm{I}^{\circ} 5^{\prime}$ from the Perpendicular, before the Teeth of the fwing Wheel would fcape free of the Pallets; that is, before the Clocks would be fet a-going. The Weight to each was 3 tb, which would caufe either of the Pendulums in their Vibrations to defcribe an Arch of 3°. The two Clocks were each in Cafes, which Mhut very clofe, and placed Sideways to one another, fo near that when the Pendulunis were at Reft, they were little more than about 2 Feet afunder. The odd Pbenomena obferved in them were thefe: In lefs than 2 Hours after they were fet a-going, one of them (which I call N° 1.) was found to ftop;
and when fet a-going again, (as it was feveral times) would never continue going two Hours together. As it had always kept going with great Freedom, before the other Clock (which I call $\mathrm{N}^{\circ}{ }_{2}$.) was placed near it, this led me to conceive it's fopping muft be owing to fome Influence the Motion of one of the Pendulums had upon the other; and upon watching them more narrowly, I found the Mution of $\mathrm{N}^{\circ}{ }_{2}$. to increafe as $\mathrm{N}^{\mathrm{O}}{ }_{1}$. diminifhed; and at the time N^{0} 1. ftopped, $\mathrm{N}^{\circ}{ }_{2}$. defcribed an Arch of 5°, that is nearly 2° more than it would have done, if the other had not been near it, and more than it did move in a fort time after the other Pendulum came to be at Reft: This made me imagine that they had a mutual Infuence upon cach other. Upon this I ftopped the Pendulum of N° 2. leaving it quite at Reft, and let N^{0} I. a-going, the Pendulum defcribing as large an Arch as the Cafe would permit, viz. about 5°. In about 20 Minutes after, I went to obferve whether there was any Motion communicated to the Pendulum $\mathrm{N}^{0} 2$. when, to my great Surprize, I found the Clock going, and the Pendulum to defrribe an Arch of 3°, whereas at the fame time N° I. did not move 4°. In about half an Hour after, N° I. ftopped, and the Motion of $\mathrm{N}^{\circ} 2$, was increafed to very near 5°. I then ftopped $\mathrm{N}^{\circ} 2$. a fecond time, and fet N^{e} 1. a-going, as before; and ftanding to obferve them, 1 prefently found the Pendulum of $\mathrm{N}^{\circ} 2$. to begin to move, and the Motion to increafe gradually, till in $17^{\prime} 40^{\prime \prime}$ it defcribed an Arch of $2^{\circ} 10^{\prime}$, at which time the Wheel difcharging itfelf of the Pallers, the Clock went. The Arches of the Vibrations continued to increafe, till (as in the former Experiment) the Pendulum moved 5°; the Motion of the Pendulum N^{0} 1. gradually decreafing all the while, as the other increafed; and in three Quarters of an Hour after, it ftopped. I then left the Pendulum of N° 1. at Reft, and fet N° 2. a-going, making it defcribe an Arch of 5°; it continued to vibrate lefs and lefs, till it defcribed but about 3°; in which Arch it continued to move all the time I obferved it, which was feveral Hours. The Pendulum of N° 1. feemed but little affected by the Motion of $\mathrm{N}^{\circ}{ }_{2}$. I tried thefe Experiments feveral times over, without finding any remarkable Difference. The freer the Room was from any Motion (as Peoples walking about in it, \mathcal{V}^{3} c.) I found the Experiments to fucceed the better; and once I found N° 2. fet a-going in $16120^{\prime \prime}$, and N°. , at that time ftopped in $36140^{\prime \prime}$.
2. In my former Account I tonk Notice, that the two Clocks were in feparate Cafes, and that the Backs of them refted againtt the fame Rail; that the Pendulums, when at Reft, were about 2 Feet afunder, and weighed about 23 to each, and were made to move with fuch Freedom, that a Weight of 3 th would caute either of the Pendulums to delcribe an Arch of three Degrees. The moft remarkable Particulars then obferved in them were thefe: If the Pendulum of one of the Clocks, which (for Diftinction fake) I called N° 2. was left at Reft, and that of the other, which I called No I. was fet a-going, this would, in abou:
-Furtior Od. frestions creid Experiments; by the fame. 1bid. p. 128.

MEGHANICKS.

16 Minutes, communicate fo great a Quantity of Motion to N° 2. as would make it's Pendulum deferibe an Arch of above two Degrees, and would fet the Work a-going: That the Motion of the Pendulun of N^{2} 1. conftantly decreafed as that of $\mathrm{N}^{\circ} 2$. increafect, and after about 30 Minutes it did not defcribe an Arch fufficient to free the Teeth of the Wheel from the Pallets, io that the Clock ftopped. At the fame time the Pendulum of $\mathrm{N}^{\circ}{ }_{2}$. defcribed an Arch of five Degrees, which was two Digrees more than it would have done, had it not been affeeted by the Motion of N° I. Upon leaving the Pendulum of N^{0} 1. at Reft, and fetting N° 2. a.going, the Pendulum of N^{0} 1. was found to be but little afficted, and never moved fufficiently to fet the Work a-going. There feeningly different Effects, which the two Clocks had upon each other, I fhall now endeavour to account for.

The Manner in which the Motion is communicated to the Pendulum at Rent, I conceive to be thus: As the Pendulums are very heavy, when either of them is fet a going, it occafions by it's Vibrations a very fmall Motion, not only in the Cafe the Clock is fixed in, but, in a greater or leffer Degree, in every thing it touches; and this Motion is communicated to the other Clock, by means of the Rail, againft which both the Cafes bear. The Motion thus communicated, which is too fmall to be difcovered but by means of fome fuch-like Experiments as thefe, will, I doubt not, be judged by many, infufficient to make fo heavy a Pendulum deferibe an Arch of 2°, or large enough to fet the Work agoing; and indeed it would be fo, but for the very great Freedom with which the Pendulum is made to move, arifing from the Manner in which it is hung. This appears from the very fmall Weight required to keep it going, which, when the Clock was firt put together, was little more than one $\frac{1}{6}$. And if the Weight was taken off, and the Pendulum made to fwing two Degrees, it would make 1200 Vibrations before it decreated half a Degree, fo that it would not lofe the $\frac{1}{3000}$ part of an Inch in each Vibration. Indeed if the Weight was hung on, the Friction would be increafed, and the Pendulum would not move quite fo freely; but even in that Cafe it was found to lofe but little more than the $\frac{x}{2005}$ part of an Inch, or about three Seconds of a Degree, in one Vibration; and therefore if the Motion communicated to it from the other, will make it defcribe an Arch exceeding 3^{11}, the Vibrations muft continually increafe till the Work is fet a.going. And that the Motion is communicated in the manner above fupposed, is confirmed by the following Experiments:

A Prop was fet againft the Back of the Cafe of N° 2, to prevent it's bearing againft the Rail; and $\mathbf{N}^{0} 1$. was fet a-going; then obferving them for feveral Hours, I could not perreive the leaft Motion communicated to $\mathrm{N}^{\circ} 2$. Ithen fet both the Clocks a-going, and they continued going feveral Days; but I could not find they had any Influence upon each other. Intlead of the Prop againft the Back of the Cafe, I put Wedges under the Bottoms of both the Cafes, to prevent their bearing againft the Rail ; and ftuck

MECHANICKS.

a Piece of Wood between them, juft tight enough to fupport ic's own Weight. Then fetting N^{0} I. a-going, Ifound the Influence fo much increafed, that $\mathrm{N}^{\circ}{ }_{2}$, was fet a-going in lefs than fix Minutes, and $\mathrm{N}^{\circ} 1$. ftopped in about fix Minutes after. In order to try what Difference would arife, if the Clocks were fixed on a more folid Floor, 1 placed them (exactly in the fame manner as in the laft Experiment) upon the Stone Pavement under the Piazza's of the Royal Excbange, and ftuck the Piece of Wood between them, as before; and fetting N^{0} 1. a-going, the only Difference I could perceive, was, that it was 15 Minutes before N° 2. was fet a-going, and N° 1. continued going near half an Hour before it ftoppen. From thefe Experiments 1 think it plainly appears, that the Pendulum which is put in Motion, as it moves towards either fide of the Cafe, makes the Preffure upon the Feet of the Cafe to be unequal, and, by it's Weight, occafions a fmall Bearing or Motion in the Cafe on that Side towards which the Pendulum is moving ; and which, by the Interpofition of any folid Body, will be communicated to the other Clock, whofe Pendulum was left at Reft. The only Objection to this, I conceive, is the different Effects which the two Pendulums feemed to have upon each other. But this I hope to explain to Satisfaction.

For, notwithftanding thefe different Effeets, I foon found, by feveral Experiments, that the two Clocks mutually affected each other, and in the fame Manner, though not with equal Force; and that the Varieties obferved in their Actions upon each other, arofe from the unequal Lengths of their Pendulums only.

For, upon moving one of the Clocks to another Part of the Room, and fetting them both a-going, I fotind that $\mathrm{N}^{\circ}{ }_{2}$. gained of $\mathrm{N}^{0}{ }_{1}$. about one Minute 36 Seconds in 24 Hours. Then fixing both againtt the Rail, as at firft, I fet them a-going, and made the Pendulums to vibrate about four Degrees; but I foon obferved that of $\mathrm{N}^{\circ}{ }_{1}$. to increafe and that of N° 2. to decreafe; and in a fhort time it did not deferibe an Arch large enough to keep the Wheels in Motion. In a little time after it began to increafe again, and in a few Minutes it defcribed an Arch of two Degrees, and the Clock went. It's Vibrations continued to increafe for a confiderable Time, but it never vibrated four Degrees, as when firt fet a-going. Whilf the Vibrations of $\mathrm{N}^{\circ}{ }_{2}$. increafed, thofe of N° 1. decreafed, till the Clock fopped, and the Pendulum did notdeferibe an Arch of more than one Degree 30 Minutes It then began to increafe again, and $\mathrm{N}^{\circ} 2$. decreafed, and flopped a fecond time, but was fet a-going again, as before. After this N^{0} 1. ftopped a fecond time, and the Vibrations continued to decreafe till the Perdulum was almof at Reft. It afterwards increafed a fmall matter, but not fufficiently to fet the Work a-going. But N° 2. continued going, it's Pendulum defcribing an Arch of about three Degrees.

Finding them to act thus muually and alternatily upon each other, 1 iet them both a going a fecond time, and made the Penculunis V OL. VIII. Part i.

K k
defribe
defcribe as large Arches as the Cafes would permit. During this Experiment, as in the former, I fometimes found the one, and at other times the contwary Pendulum to make the largeft Vibrations. But as they had folarge a Quantity of Motion given them at firt, neither of them loft fo much during the Period it was acted upon by the other, as to have it's Work ftopped, but both continued going for feveral Days without varying one Second trom each other; though when at a Diftance, as was before oblerved, they varied one Minute 36 Seconds in 24 Hours. Whilt they continued thus going together, I compared them with a third Clock, and found that $\mathrm{N}^{\circ}{ }_{1}$. went $1^{\prime} 17^{\prime \prime}$ fatter, and $\mathrm{N}^{\circ}{ }_{2}$. $19^{\prime \prime}$ nower, than they did when placed at a Diftance, fo as to have no Influence upon each other.

Upon altering the Lengths of the Pendulums, I found the Period in which their Motions increafed and decreafed, by their mutual Action upon each other, was changed; and would be prolonged as the Pendulums came nearer to an Equality, which from the Nature of the Action it was reafonable to expect it would. This difcovers the Reafon why the Pendulum of $\mathrm{N}^{\circ}{ }_{2}$. when left at Reft, would be fet a-going by the Motion of $\mathrm{N}^{0}{ }_{1}$. whereas if $\mathrm{N}^{0}{ }_{1}$, was left at Rett, it would not be fet a-going again by the Motion of $\mathrm{N}^{\circ} 2$.

For Ifound by feveral Experiments, that the fame Pendulum, when kept in Motion by a Weight, would gofafter, than when it only moved by it's own Gravity. On this Principle, which may eafily be accounted for, it follows, that during the Time in which the fhorteft Pendulum, N° 2. was only acted upon by N° I. it would move flower, and the Times of it's Vibrations approach nearer to an Equality with thofe of N^{0} 1. than after it came to be kept in Motion by the Weight; and by this means the Time which $\mathrm{N}^{\circ} \mathrm{r}$. would continue to act upon it, would be prolonged, and be more than was required to make the Penclulum defcribe an Arch fufficient to fet the Work a-going. But on the contrary, while the Pendulum of N^{0} I. which was the longet, was only acted upon by N° 2. as it would move flower, the Difference of the Times of the Vibrations would be increafed; and confequently the Time which N° 2. would continue to act upon it, would for this Caufe be fhortened, fo that before the Pendulum of N° I, would defrribe an Arch fufficient to fet the Work a-going, the Period of it's being acted upon would be ended, and it would begin to act upon $\mathrm{N}^{\circ}{ }_{2}$. at which time it's Vibrations would immediately decreafe, and continue to do fo till it came to be almoft at Reft. And thus it would continue fometimes to move more, and at other times lefs, but never fufficiently to fet the Clock a-going.

SomeConfidera-
tions, rwbether Pendulums are difisurted by any centrifugal Force; by 10 .

MECHANICKS.

MECHANICKS.

eafily, I fhall begin with mentioning what the learned Huygens has laid annes Marchio down, in his Differtation on the Caufe of Gravity, when he endeavoured to difcover how much a Pendulum ought to be fhortened, which is carried from France to the Equator. But as his Figure is fo conftructed, that all the Lines feem to be in the fame Plane, Ihave endeavoured to Poleni, F. R. S. No. 468. p. 299. that all the Eines feem to be in the Rue Pin, Ihave end form a new Scheme to reprefent feenographically a Part of an armillary Sphere, which will help the Imagination better, and at the fame Time be more convenient for the Addition of thofe Parts, which ferve to explain what I propofe.

The Circle PA Q E (fays Inygens) reprefents the Earth, cut ly a Plane paffing thro' cack Pole P Q (therefore this Circle will be a Meridian). The Centre is C: the Equinoatial Circle EF A G: The Parallel of Paris D N O: Paris D: K H reprefints a Rope fufaining a laden Weight H: wibich recedes from the Porpendicular K D C, becaufe it is throwien back by the circular Moition, according to the Line D M, webich I fuppoje to pass tbro the Weight H. Now DM is a Tangent to the Circle D NO, the Parallel of Paris, in the Point D.

Now if we would know what flouid be the Situation of the Thread K H, and bow much lefs the Lead H Bould gravitate, than if it bung ferpendicularly according to K D , we muft confder the Point H , as if drazen by 3 Threads HC , H M, H K ; of wbich HC draws toward the Centre of the Earth with tbe wbole Weigbt wobich the Plumsict seculd bave, if tbe Earth frood fill: H M draw's according to it's proper Dircction, with the (ccntrifugal) Force given by the Motion of the Earth, in tbe Circle D N O: and HK is drawn, or drazes, with that Force which is fought. Therefore if C H be produced, and K L, dratun perallel to D M, it is known tbat the 3 Sides of the Triangle HLK arc proportional to the Poseers which dara the Point H ; and that the Side LH anfevers that which draws by HC; the Side K L to that zabicb draws by H M ; and the Side H K to that which drawes or fuftains the Plummet by the T'bread KH. But the Triangle K DH is imagined to bave it's Sides equal to the Sides of the Triangle H L K ; becaife CH L is as it weve parallel to CD K . Tberefore the Sides of the Triangle K D H anfwer to the fame Powers: namely, the side KD io the abfolute Gravity of the Weight H , which it acould bave. if the Earth fiood immorvable; D H to the Power wibich the daily Motious (producing the cenerifugal Force by the Tangent D M) gives it; and K H to the Gravi'y Jought. But I confider the Power of the centrifugal Force, namely that which anfwers to the Tangent DH.

Thus far I have laid down from Iluygen's Mechod what greatly related to my Parpofe; but to far only as is neceflary to confider the Plummet H , as drawen by the 3 Threads $\mathrm{HC}, \mathrm{H} \mathrm{M}, \mathrm{HK}$; when the Plummet H is held immoveable by thefe 3 Threads, or by thefe 3 Powers. But if it muft be moveds that is, if the Pendulum ofcillates; I lufpect that new Confiderations muft be had of that Motion of Ofcillation: Therefore I thall make a ftep towards them, and now treat of the Pasts, which muft beadded to the Figure.

MECHANICKS.

But before I fpeak of thefe, I thall obferve, that I have made ufe of a Figure accurately formed of folid Parts of a thicker iron Wire. I thall alio obferve (confidering the Hyporbefis of the Earth's being moved) that one and the fame Arch is not perfectly defcribed in the fame Plane, in one Ofcillation of the Pendulum, from it's Centre; and at the fame time, as the differences thence arifing do not difturb my Purpofe, that I may fifely neglect them,

With regard to my Figure, I defire it may be perfectly underfloud, that thro' che Point I a Plane is drawn parallei to the Meridian P A QE, and that in this Plane an Arch is marked B T V; which, when the Pendulum K H ofcillates in fuch a manner, that the Centre of she Plummet H never departs from that Plane, would be defcribed by the fame Centre in the fame Plane. Let this Arch B T V be called the firf Arch.

Then imagine another Plane to be extended thro' the Tangent D M and the Radius D C, and the Arch R I S to be delineated on this Plane, which, when the Pendulum K H ofcillates in fuch a manner, that the Centre of the Plummet H never departs from this Plane, would be defcribed from the fame Centre in this Plane. Now it is manifert, that thofe 2 Arches B T V, R I S interfect each other in right Angles at H .

Thefe things being thus laid down, two Cafes worthy of particular Attention occur; or 2 Directions of ofcillating Pendulums are chiefly to be confidered : one by the firft Arch B TV, the other by the fecond R I S.

As to the firt: when the Pendulum ofillating by the firt Arch BTV, is moved in a Plane which is always equidiftant, by the Space of the Length of the Line D H, or is always fo much diftant as the value of the whole centrifugal Force by the Tangent D H; it feems to be clear in this cafe, that the Power of the centrifugal Force by DH, the Power of the Gravity by HC, and the Power of the Thread by H K, notwithftanding the Ofcillation of the Pendulum, are always tempered together by the fame Proportion, which Hrygens has explained, ferving alfo to keep the Pendulum immoveable, as I mentioned before.

As to the other; in which the Pendulum is moved by the fecond Arch R I S in the fame Plane, in which the Line of Direction of the centrifugal Force is DM. In this Cafe that Force does not feem to act, fo as to endeavour to draw the Centre of the Plummer H from this it's Plane; but whilft the Pendulum tends from R to S, this Force feems alfo (as it acts in the fame Plane by it's Direction from D to M) to concur in increafing the Motion of the Pendulum. But, on the contrary, whilft the Pendulum retires from S to R , that Force feems, by it's Direction from D to M , to retard the Motion of the Pendulum.

Therefore the proper Motion of the Pendulum, or that which would be referred to one central Gravity acting according to DC , in the firft

Cafe of the Excurfion by the Arch B TV, is varied by the centrifugal Force, becaufe it is affected by the Motion arifing thro' DH, from that centrifugal Force, with which Motion it muft neceffarily be compounded. But in the fecond Care of the Excurfion by the Arch RIS, it is varied, becaufe in one entire Excurfion toward S, it is accelerated by the fame Force, directed from D to H ; but it is retarded alfo by the fame Force in the contrary return towards the oppofite Side R.

Therefore as it feoms confonant both to Reafon and Calculation, that the Variation made in the Arch B T V is not equalled by that made in the Arch R I S; it alfo becomes probable, that there muft be fome difference between thofe 2 Cafes, namely, between the Motions of an ofcillating Pendulum according to the fecond Arch RIS, and thofe according to the firft Arch B TV.

Thefe few things being now propofed, I have fufficiently fhewn what I think I have dificovered, by the Obfervation of that difference. For I think I have difcovered a Method of finding, by the help of Obfervations, fomething about the centrifugal Force, which has been applied to the Rotation of the Earth about it's own Axis, tho' no Alteration of Place is made between the making of the Obfervations.

To the Cafe of the firt Arch will anfwer a Pendulum placed upon any Meridian Line, fo that the Oicillations may be made as near as pomble according to that Line: And to the Cafe of the fecond Arch a Pendulum will be accommodated, if it is fo placed, that the Line of the Ocillations is at right Angles with the Meridian Line. We might have longer Pendulums to our Clocks for fuch Experiments, namely, of the Length of 9 horary Feet.
VI. Dr furin having propofed* two Queftions in Gunnery to be The Report of examined, the Society was pleafed to appoint a Committee for that the Commitre Purpofe.

The Quentions were,

1. Wheiber all the Powder of the Cbarge be fired, before the Bullet is Senfibly moved from il's Place?
of the Royal
Society ap.
pointed to $c x$. amine fome 2uefions in
2. Whetber the Diftance to which the Bullet is tbrown, may not become Gunnery. No. greater or lefs, by changing the Form of the Cbamber, though the Cbarge of Powider and all otber Circumfances continue uncbanged?

At the Meeting of the Committce it was propofed to divide the Firft Queftion into two Parts.

1. Whether all the Pourder of the Cbarge be fired?
2. Whetber all the Poviler that is fired, be fired before the Bullit is fenfibly moved from it's Place?

As to the Firft part of the Firft Queftion, the Commitree are of Opinion, that all the Powder of the Cbarge is not fired.

They found their Opinion upon the following Experiments:

[^0]: * The Defcription of this Machine is fince printed by Monf. Gallen, in his Collection of Machines and Inventions approved by the Academy of Sciences, at Paris, (publifhed in Frencb at Paris. 1735, in Quarto, in f1x Tomes) in Tom. IV. p. 137; and likewife another by Monf. Lefpine, Tom.IV. p. 13: ; and three more by Monf. Hellerin de Baififundeau, Tom. V. p. 103, 117, and 121.

[^1]: - See Bayle's Distionary, Article Zeno.

[^2]: - See Euciidrs Filmente, Def. I. Lib. I.

[^3]: * The Papers here hinted at are printed in a Treatife, intituled, Exercitatio Geometrica - Defcriptione Curvarum. Authore Gulielmo Braikenridge, Lond. 1733. 410.

[^4]: * The Paper on this Subject I have, is dated July 31, 1722, at Saa, being then in my Way to London, going for Cambray.

[^5]: - See Chap. VII. of this Volume.
 - Princip. Math. Edit. 3. P. 416.
 infinuates

[^6]: * See Sect. xxiv.

[^7]: * Elem. Aftron. Lib. 3. Sid. S. Prop. 52. + See Chap. III. of this Vol.

[^8]: - Pxincip. Math. Ed. 3. p. 430. + Ef exceffus longitudinis Penduli Parifanfis fupra kengitudines Pend:ulorum ifochronorum in bis latisudinibus obfervatas, funt paulo majores quam poo Tabula longitudinum Penduli fuperius compusata. Es propserea Terra aliquanto alfior of fub aquatore, quam pro fuperiore, calculo, 80 denjior ad serervim ouam in fodinis prope fuper: fyim, \#Elem. Afron. Lib. 3. 5.8. Prop. 5z. Schol.

[^9]: *Opt. Lę. 1. 2. + Pbil. Tranf. No. 80. | Princip. Schol. ad fon. Lib. 1. "Pbil. Tranf. No. 80. a + 十Opt. Ed.2.p.91.

[^10]: * See Fig. 48.

[^11]: *Sel his Opricks, Eds.2. p. 97.

[^12]: - Part II. p. 290.

[^13]: -See Vol. I. Chap. iv. §. I3. and Vol. IV. Chap. iii. §. 7.

[^14]: AiWitterberg in Saxony, obferved by jo. Frid. Weid'er, F. R. S. Ibid. p. 225 .

[^15]: - Lergfaraminglan is 7 somputed Mies on this Sile of Morpetb.

[^16]: - Obfrued in CoventGarden, by J. Bevis, M. D :
 Ibid. p. 16.

[^17]: * Sect. I. cap. i. pag. 14.

[^18]: - He means

 Tables of the late Mr Flamfead.

[^19]: V OL. VJII. Part i.
 B b
 XXIII.

[^20]: - Vide Supra, §. xxvi.

[^21]:

[^22]: *Flamfead's Hiff. Calef. Lib. II. Fol. 32. + Vertex to the Right, it fays, a Nadir Solis ad dextras; but it is a manifert Mintake, as any one upon Trial may find.

[^23]: - Princip. Math. Lib. iii.

[^24]: * Vol. Vil. Part IV. §I. 2.
 + Hug. Grotii Batavi Syntagnia Aratrorum : ex office. Plantin. qto. Sic Germanicus's Interpretation, p. 35, the Figure of the Confle!lation Aries.

[^25]: - Since I wrote this, I had the Pleafare to find Scaliger concur with me

 Hefodus fiorcbat co Scculo. quo Ardurus axxpóvux (ow oricbatur in Baotia, viij Die Marrii. Si geis bor ad Conjisiuram facit, faltem apud excctlentes Afpologos, gui ex hoc Paragegmare infra fepsuaginta plus minus Annos Saculum Hefodi deprebendere poffunt. Animadiverf. in Cbron. Eufobii, p. 6\%. Edit. Lugd. Barav. 1606.

 The following Paflige in Sir ljacs Nowton's Chron. p. 95, hath come 10 my Hands fince the former. : Hefod selts us, that, 60 Days after the Winses Soldice, the Star : Arciarus

[^26]: - Since I wrore this, I fird Sir Ifasi Newtom, in this way, recover to their former Places the Siars below, by reclifying the Deliweation.
 - In the exteme Fluxure ef Eridamu, a Sarr of tise Fourth Magnitude, of lasc - referred to tice Bofem of Cerus.
 - In the Head of Pcsfies. a Star of the Fourth Magnitude.
 - In the Righe Hand of Porfia, a Siar of the Fourth Magnitude.
 - In the Neck of Hydrus, a Star of the Fourth Magnitude.
 - In the Leff Hand of Copbers, one of the Fifth Magritude.'

 All whore Charaders be deligns from Bager.

[^27]: - By reafon the Firf Month of the old Luni-folar Year (on account of the intercalary Month) began fometimes a Fortnight after the Requinox. This may, perhaps, account better for the Propriety of Virgil's Expreffion siperit Anrum, than any of his Commentators have done.
 + Paulatim Obfarvatio bujuis Ortus EO Occafus negleria jaces, nee ab aliis ufurpatur. guìm is Poïis, qui tempora pir Circumfantias sam rvarii Ortus Eo Occafus tot Syderum (quitas nibil julchrias) defcribere, Eiveluti pingere folent, quamvis plerumque erronsé, quippe qui Calendarii nofiri Diern per ejufdem Sulle Ôrtum deforibunt nunc, per quem defrribebatur eempore Crefaris, cùm samen tempsra diferepent it diebus fere. Greg. Aftron. p. 132.
 VOL.. VIII. Part i. Gg

 1 know

[^28]: * The Eight preceding Differtations had been before printed feparately; but were now all collected together, with the Addition of this Ninth, and publifhed in one Volume in Oifavo, Londen, 1732.

[^29]: * Lib. IIf. Prop. 20.

[^30]: : Sce Vol. IV. Part II. Chap. I. \&. $3 z$.

