$$
19 \text { golding plts }(14 / 5)
$$

Fllosofia y C. Educación

$$
\begin{gathered}
K .00001533299 \\
\text { F.A.O59 } \\
\text { V.U }
\end{gathered}
$$

1 39989

2elvicuth frim no swin omat

February 2. 1720-1:
At a Meeting of the ROYALSOCIETY,
Sir Isaac Newton, Prefident, in the Chair,
Mr. JONES prefented a Scheme and Specimen of an Abridgment of the Philosophical Transactionsg from the Year 1700 to the Year 1720. This Defign was approved of by the Society, and he was defired to proceed therein.

Edm. Halley, Secr. Reg. Soc.

$$
\text { Octob. } 27.1721 .
$$

TMPRIMATUR Epitome Tranfactionum Philofophicarum, ab Anno 1700 ad Annum 1720, a D. Hen. Jones compofita.

Isaac Newton, Reg. Soc. Prafes.

PHILOSOPHICAL

 TRANSACTIONS(From the Year 1700, to the Year 1720.)

$$
\text { AB R ID G' } D \text {, }
$$

Difpos'd under General Heads.

In Two Volumes.

By HENRY $\mathcal{O} O N E S$, M. A. and Fellow of King's College in CAMBRIDGE.

Vol. IV. Containing

Part I. The MATHEMATICAL Papers.
Part II. The PHYSIOLOGICAL Papers.
The Third Edition Corrected.
In which the $L A T I N$ PAPERS are now frit tranllated into $E N G L I S H$.

$$
L O N D O N:
$$

Printed for W. Innys, R. Ware, J. and P. Knapton, D. Browne, T. Loncman, C. Hitch, J. Hodges, S. Austen, A. Malar, J. and J. RIVINGTON, and J. WARD. N. IC. XLIK.

THDIHqOZOIIHq 2VOITDAZMAST

TOTHE

Right Honourable

T H O M A S
 Earl of Macclesfield,

Lord High CHANCELLOR

OF

GREAT BRITAIN, \&c.

My Lord,

S the confiderable Improvements, which Learning has receiv'd, are chiefly owing to the favourable Encouragement and propitious Influence of the Great ; So amongft the many Patrons of the Age there is no one, who has nhew'd more Encouragement to it than Your Lordhip, or who is happy in a greater Share of it.

The Dedication.

To Your Lordhlip therefore, as the worthieft Patron, I moft humbly offer thefe Difcourfes of the greateft Authors; which, if they have not fuffer'd in pafing through my Hands, are not only highly deferving of your Acceptance, but ought more particularly in Honour to be infcrib'd to Your LordThip's Name. For to whom could thefe Volumes be fo properly Dedicated, as to one, who is a perfect Mafter of the Subjects here treated of ? Who, like his great Predeceffor the Lord Chancellor Bacon, has taken in the wide Compafs of Phyfical, as well as Civil Knowledge; and is throughly acquainted with the Laws of Nature, as well as thofe of the Land? It was His Honour to lay, in fome Meafure, the Foundations of thofe Improvements, which Philofophy has fince receiv'd; and it is the peculiar Honour and Advantage of that Philofophy, to have fallen under Your Lordfhip's Protection in this its maturer State, in an Age abounding with ufeful Inventions and great Difcoveries: Happy are thofe Sciences in fuch a Patron ; they muft certainly continue to flourifh, when Your Lordfhip does not only encourage them by Your Liberality, but promote them by the Authority of Your own Example.

It is Matter of Surprize, my Lord, that one, whofe whole Life has been employ'd in the active Part of the World, and in the Bulinefs of a Profeffion very difficult and laborious, Thould have any Inclination or Leifure for thofe other Parts of

The DEDICATI ON.

Learning, which yout Lordfhip is by all allowed to poffefs in a very extraordinary Degree. Who, though you have receiv'd many public Addreffes of this kind from eminent Authors, yet you have been able (fuch are Your own natural Parts, and fuch are Your Improvements of them) to equal thofe Performances You have condefcended to patronize. In the Study of Divinity, my Lord, You may well be faid, to be inferiour to no one; the late Dr. Hickes has long fince told the World, that You are a Perfon, "Who to his great Underftanding " in our Common and Statute Laws, and in the "Englifb Conftitution before and fince the Con"quelt, has added fuch a Knowledge of all the " moft ufeful Parts of Divinity, that it is not ealy " to determine, whether he is better fkill'd in Hu" man or Divine Laws." And I may add, who to his great Acquifitions in the more learned Studies has join'd no lefs Attainments in the politer Arts; whofe own Speeches, on a very memorable Occafion, will tranfmit his Character, as a confummate Orator, to the lateft Pofterity: Compofitions applauded and admired by all; and, what is the trueft Teft of Merit, commended by thofe, who dinlik'd the Subject of them.

Thefe Talents fo various, there Qualifications fo uncommon, have recommended Your Lordihip to that High Office, which you now adorn: Others have ftruggled with great Competitors, and contending Equals in the Paths of Ambition; but in Juftice to your Lordfhip it is to be remember'd, that

The Dedication.

You were follicited and importun'd to accept the greateft Truft in the Nation.

But I muft not prefume to detain Your Lordhip any longer, much lefs can I pretend to do Juftice to Your Character: And as, in prefenting You with thefe Authors, I intend a Piece of great Refpect to Your Lordfhip; fo I muft efteem it a very great Honour done to me, that any Thing, in which I have had the fmalleft Share, can have the Favour of Your Lordfhip's Name, and obtain the Patronage of fo good a Judge. I am,

> My LORD,

Your Lordfbip's mof Obedient
and moft bumble Servant,

Henry Jones.
THE

CONTENTS.

 Vol. IV. Part I.
The MATHEMATICAL Papers.

C H A P. I.

GEOMETRY, ARITHMETIC, ALGEBRA, LOGARITHMOTECHNX.

1. HE Proportion of Mathematical Points to each other, by the Hon. Fr. Robartes, Efq;
II. Some Proterties of Con Page I dedre from the A deduc'd from the Nature of Focus's, by Mr. Abr. de Moivre
III. Tangents to Curves, deduced from the Doirrine of the Maxima and Minima, by Mr. H. Ditton
IV. A Metbod of Squaring fome kinds of Curves, or of reducing them to more simple ones, by Mr. Abr, de Moivre
V. The Quadrature of a Curve of the third Order, communicated by Mr. Abr. de Moivre 25
VI. A Specimen of a gineral Metbod to determine the Quadratures of Figures, by Mr. J. Craig
VII. A Problem of finding other Curves cqual in Lengtb to ary givien Geometrical Curve, fowed by Mr. I. Craig
VIII. The Conjtrutions and Propertics of a now Quadratrix to the Fiyperbola, by Mr. Perks 37
IX. Of the Length of Curve Lines, by Mr. J. Craig
X. A general Solution of a Probicm (concerning Curves) propofed in the Leiplic ACA, Oct. 1608, by-
XI. Mr. Leibnitz's Problems (concerning Curaes)

XII folved by Dr., B. Taylor 40
XII. The Conftruction and Mcafure of Curves, by Mr. C. Maclaurin $5 \mathbf{5}$
XIII. A Metbod of defrribing all kinds of Curves, by only giring tbe Angles and right Lines, by Mr. C. Maclaurin
XIV. The Doctrine of Combinations, and Alter-
nations improved and completed, by Major60
E. Thornycroft
XV. An univerfal Solution (viz. Analytical, Geometrical and Mechanical) of Cubic and Bi-quadratic Equations, by Mr. John Colion 66
XVI. An analytical Solution of Equations of the3^{d}, $5^{\text {th }}$, $7^{\text {th }}$, 9th, Evc. Powers, by Mr.Abr. de Moivre
77
XVII.tracting the Roots of Equations in Numbers)improved, by Dr. B. Taylor80
2. A General Series for exprefing the Root ofany Quadratic Equation, by the fame 86
3. A new Method of computing Logarithms, by
XVIII. 1. A Treatife of infinite Series's, the firltPart, by P. R. de Monmort90
2. An Appendix on the fame Subject, by Dr. B.
Taylor 130
XIX. The Newtonian differential Method illufira- $t \in d$, by $M r$. J. Sterling
XX. A general Method of making Logarithms, byMr. J. Craig
150
XXI. A new Metbod of making Logarithms, com-municated by Mr. J. Long
160
XXII. A Letter from Monfieur l'Abbè Conti, soMr. Leibnitz (concerning the Invention of theMethod of Fluxions) with Mr. Leibnitz'sAnfwer162
XXIII. Dr. Taylor's Apology againft Mr. J. Ber-noulli
$16 ;$
XXIV. A Vinaication of Mr. J. Gregory, by D_{r}.D. Gregory168
XXV. A Paper omitted 170
XXVI. Accounts of Books, \&cc. omitted

The CONTENTS.

C H A P. II.

O P T I C S.

1. $\int R$ Ifaac Newton's Experiments on Light and Colours rejeated, by Dr. J. T. Defaguliers
II. An Experiment to confirm Sir Ifaac Newton's Doctrine of the Refrangibility of the Rays of Light, by the fame
III. An univerfal Spharico-Catoptric Theorem, by Mr. H. Ditton
IV. A evay for Myopes to ufe Telefcopes witbout Eye-Glaffes, ξ^{c} c. communicated by Dr. J. '1. Defaguliers
V. Experiments upon Metals with the D. of Orleans's Burning-Glafs, by Monf. Geoffroy
VI. Experiments with Monfieur Villette's Burg-ing-Glafs, by Dr. J. Harris, and Dr. J. T. Defaguliers
VII. A Pocket Microfcope, by Mr. J. Wilfon VIII. The Manner of making Microfcopes, by 199 A. Adams

203
IX. An Account of a Book omitted

205

C H A P. III.

$$
A S T R O N O M X \text {. }
$$

${ }^{1} \mathrm{O}$F Caffini's Orbit of Planets, by Dr. Gregory
II. The Newtonian Solution of Kepler's Problem demonfirated, hy Dr. John Keil

208
III. The Parallax of the Sun to be found, by feeing

Venus between the Sun and the Earth, by
Dr. E. Halley
214
IV. Of the Maxima and Minima occurring in the Motions of the Heavenly Bodies, by Mr. Abr. de Moivre 220
V. Of a new Star in Collo Cygni, by Mr. G. Kirch

222
VI. A Hiftory of the new Stars for the laft 150 rears, by Dr. E. Halley
VII. Lucid Spots or Nebula amongft the fixt Stars, by 225 VIII. Of the Change of Latitude of fome of the fixt Stars, by Dr. E. Halley 227
IX. Of Mack--/uns and circular Arches, by Dr. E. Halley 228
X. 1. Spots obferved in the Sun, in June 1703, by Mr. S. Gray
2.- on the fame, by Mr. W. Derham 23°
3.-On the fame, 1704, by Capt. Stannyan 232
4.- on the fame, fiom 1703 to 1708, by Mr. W. Derham
5.- on the fame, from 1708 to 1711, by Mr.
240
-Mr. Crabtrie's Opinion of thefe Spots 241
XI. An E.ciple of the Sun, June 12. 1694, in New-England, by Mr.'T. Bratle 247
XII. An Ecliple of the Sun, Nov. 23. 1703. in

New-England, by the fame
249
XIII. 1. An Ecliple of the Sun, May 1. 1706, ob. ferved at Greenwich, by Mr. J. Flamftead

249
2. -at Canterbury, by Mr. S. Gray 250
3.-at Horton in Yorknire, by Mr. Abr. Sharp ${ }^{251}$
4. -Bern in Switzerland, by Capt. Stannyan Ib.
5.-at Geneva, by Mr. Mo C. Facio 25^{2}
6.-at Marfeilles, by Monfieur Chazelles and

Father Laval 253
7.-at Zurich, by Dr. J. J. Scheuchzer 254
XIV. An Eclipfe of the Sun, Sept. 3. 1708. at Upminfter, by Mr. W. Dertam 255
XV. 1. Obferations on the Total Eclipfe of the Sun, April 22. 1715. at London, by $D r$.
E. Halley.
ibid.
2. - Accounts of the fame from abroad 266
XVI. An Eclipre of the Sun, Feb. 19. 1718. at Nurenburgh, by M. Wurtzelbau, and at Berlin by Mr. G. Kirch 268
XVII. An Eclipie of the Moon at Cambridge in New-England, Feb. 11. 1700, by Mr. T. Brattle
ibid.
XVIII. 1. An Eclipfe of the Moon, Dec. 12. 1703. at Cambridge in New-England, by Mr. T. Brattle
2.- on the fame at London, by Mi. J. Hodgfon, with Remarks

The CONTENTS.

XIX. An Eclipfe of the Moon, April 5. 1707. at Bofon in New-England, by Mr. T. Brattle ibid.
XX. - on the Same at Zurich, by the two Doctors Scheuchzer's

272
XXI. An Ecliple of the Moon, Sept. 18. 1708. at Upminfter, by Mr. W. Derham 275
XXII. The Account of the Moon's Eclipfe at Streatham, Feb. 2. 1709-10. compared with the Calculation, by Mr. H. Creffener ibid.
XXIII. An Eclipfe of the Moon, Jan.12. 1711-12. at Upmintter, by Mr. W. Derham 277
XXIV. An Eclipfe of the Moon, Oet. 30. 1715. at Wanttead, by Mr. J. Pound

278
XXV. Aftronomical Obfervations for 1711. and 1712. at Greenwich, by Mr. J. Flamflead
XXVI. - the fame for 1713 . by the fame 291
XXVII. Obfervations of the Occultations of the fixt Stars by the Moon, ufeful for finding the Longitude, with a Catalogue of the Places of the Hyades, EFc. by - 298
XXVIII. An Account of the Caufe of Venus being feen in the Day-time, for feveral Days together, by Dr. E. Halley

300
XXIX. The Occultation of a Star by the Moon, and an Eclipfe of the Moon follorving in Nov. 21. 1713. by Mr. F. Blanchini 302
XXX. Tbe Occultation of Jupiter by the Moon, July 14. in the Morning, 1715 . at Wanthead, by Mr. J. Pound

303
XXXI. The Occultation of a fxt Star in Gemini by Jupiter, Jan. I1. $1717 . \quad 304$
in the Forebcad of Scorpio, Feb. 5. 171% 305 XXXII. Emerfions of the firf Satellite of Jupiter, in 171 3. at Rome, by Mr. F. Blanchini 306
XXXIII. A Tranfit of Jupiter's fourth Satellite over the Disk of the Planet, Feb. 1719. Communicated by Mr. J. Pound

307
XXXIV. Tables for computing the Eclipfes of Jupiter's firft Satellite, by Mr. J. Pound 308
XXXV. Obfervations on fome of the primary Planets, and the Occultation of a fixt Star, ly Jupiter, by the fame.

318
XXXVI. A Rectification of the Motions of the five Satellites of Saturn; with Obfervations, by the fame

320
XXXVII. Caffini's Tables of the Motions of Saturn's Satellites correqled 323
XXXVIII. A Collegion of Aftronomical Obfervations, for 1717,718 , by - 329 -of an Eclipfe of the Moon, Aug. 29. 1718. at Wanttead, by Mr. J. Pound
XXXIX. A Collection of Altronomical Obfervations, for 1719. by-— 336 XL. Obfervations on the Comet, 1664 . at Rome, by Mr. J. Ray

339
XLI. - on a Comet, 1680 . in Saxony, by M. G. Kirch

340
XLII. - a Comet, 1718. at Berlin, by the fame

XLIIT A cmall Telefcopical Comet, 342
XLIII. A fmall Telefcopical Comat, June 10. 1717. by Dr. E. Halley
XLIV. Papers omitted 344
XLV. An Account of a Book omitted ibid.

C H A P. IV.
 MECHANICS, ACOUSTICS.

I. 1. \int_{0}^{0} find a Solid of the leaft Refiftance, by 2. On the fame, by Mr. N. Facio 346
II. To find a Line of the Quickeft Defcent, by Mr. J. Craig
III. Io find the Curve which a falling Body rwould defcribe, \&c. by Mr. J. Machin 351
IV. The Laws of Attraction, Evc. by Dr. John Keill 353
V. The Laws of the Centripetal Force, by the fame
VI. Of the Inverfe Problem of the Laws of the Centripetai Force, with Remarks on Bernoulli, by the fame

367
VII. To find the Centre of Ofcillation, by Dr. B. Taylor
VIII. Of the Motion of a Stretcht String, by ${ }^{384}$ the
lame fame
IX. The Invention of making Clocks to keep time with the Sun's Apparent Motion afferted, by
M. Experiments and Obfan
X. Experiments and Obfervations on the Motion of Sound, by Mr. W. Derham 396
XI. Of the Nature and Properties of Sound, by
XII. A Paper omitred

414
b 2

The CONTENTS.

CHAP. V.
HYDROSTATICS, HYDRAULICS.
O F the Afrent of Water between two Glafs Planes, by Dr. B. Taylor 423
IV. Of the Motion of running Waters, by the fame
V. The Heffian Bellorws improv'd, by Mr. D. Papin
VI. An Account of a Book omitted 447
III. The Action of Glars Tubes upon Water and 4^{28}
C H A P. VI.
GEOGRAPHY, NAVIGATION.1. A Demonfiration of the Number of Acres, inII. The Difference of Dr. N. Grew 449Difference of Longitude between Londonand Cambridge, in New-England, by Mr.J. Hodgron 451
III. The Longitude of the Cape of Good Hope,by Dr. E. Halleyibid.
IV. Of the Variation at Paraiba, and the Longitudeof the Magellan Straights, \&c. by the fame453
V. The Variation in 1706. in she Atlantic, and

Ethiopic Oceans, by Mr. J. Maxwell 456
VI. The Nautical Meridian Line mechanically divided, \&c. by Mr. J. Perks 456
VII. 1. A new rway of drawing a Meridian Line, by Mr. S. Gray

46 .
2 -on the Jame, by the fame 462
VIII. An Inftrument for finding the Meridian, by Mr. W. Derham
IX. Of a Meridian Line drarun through France,E\%c. communicated by Monf. Geoffroy 468
X. A Paper omitted 459

C H A P. VII. MUSIC.

I. T HE Theory of Mufic reduced to Arithmetical and Geometrical Proportions, by Mr. T. Salmon.
469
II. Of the Antient Greek and Roman Lyre; and a Paflage in Horace explained thereby, by Dr. T. Molyneux.

CONTENTS. Vol. IV. Part II.

 The PHYSIOLOGICAL Papers.

 The PHYSIOLOGICAL Papers.}

C H A P. 1.

PHYSIOLOGT, METEOROLOGT, PNEUMATICS.

AScale of the Degrees of Heat, by- Page I II. An Account of Dr. Hook's Marine Barometer, by Dr. E. Halley
III. A nezu Barofcope, by Mr. Cafwell
IV. A nerw Thermometer, by Monfieur Geoffroy
V. The Caule of the Variation of the Barometer, Ơc. by Dr. J. T. Defaguliers ibid.
VI. Experiments made with the Barometer in Switzerland, by Dr. J. J. Schenchzer

16
VII. Obfervations on the Weather, E®c. in a Voyage to China, 1700 . by Mr. J. Cunningham is
VIII. A Regifier of the Weather, 1700 at Chufan in China, by the fame 27
1X. A Regifter of the Weather for 1692 in Effex, by Mr. J. Locke

48
X. 1. Obfervations on the Weather, Rain, Winds, E'c. for $1609,1700,1701,1702$. by Mr. W. Derham

$$
62
$$

2. - on the fame for 1703,1704 . by the fame

$$
67
$$

3.-on the fame for 1705 , by the fame 74
XI. Tables of the Barometrical Alititudes, \&c. for 1708. at Zurich in Switzeriand, by Dr. Scheuchzer; atad of the Rain at Pifa in Italy by D_{r}. Tilli, Zurich, by D_{r}. Scheuchzer, and at Upminfter, for 1707, 1708. ruith Remarks, by Mi.W. Derham 77
XII. The Quantity of Rain at Upminter for 18 rears, compared zuith the Rain at Paris, by. Mr. W. Derham 100
XIII. A Storm of Rain at Denbigh in Wales,
XIV. 1. A Water-Spout obferved in the Downs, by Mr. P. Gordon

103
2. Spouts in the Mediterranean, by Dr. A. Stuart
3. A Spout in Yorkfhire, by Mr. Abr. de la Pryme
4. - Another by the fame 107
5. Another in Lancalhire, by Dr. R. Richardfon

108
XV. Of a Storm of Hail in Yorkfhire, by Mr. R.
XVI. 1. Obfervations on the great Storm, Nov. 26 1703. by Mr. W. Derham
ibid.
2.-on the fame in Suffex, by Mr. J. Fuller

112
3.-on the fame by Mr. Leeuwenhock ibid. XVII. Thie Hijtiory of the great Froft, 1708. by Mr. W. Derham 113
XVIII. I. Strange Effects of Thunder and Lightning in Ireland, communicated by Mr.S. Molyneux

126
2. Thunder and Lightning at Ipfwich, by $M r$. O. Bridgman

128
3.-The Effects of the fame at Colchefter, by Mr. J. Nelfon

129
4. Thunder, and Lightning, and Rain in YorkThire', by Mr. R. Thorefby 130
5.-in Yorkfhire, by the tame 131
6.-in Devonfhire, by Mr. J. Chamberlayne

The CONTENTS.

XIX. A Fiery Meteor, \&e. in Jamaica, by Mr.
H. Earham
XX. A Lunar Rainborv in Derbyfhire, communicated by Mr. R. Thoresby ${ }^{1} 3^{2}$
XXI. A Glade of Light in the Hearvens, 1706, $6 y$ Mr. W. Derham 133
XXII. A Pyramidal Appearance in the Heavens, 1707, by the fame \quad ibid, XXIII. A Meteor in Yorkmire, by Mr.R. Thorefby
XXIV. A firange Metcor, or Aurora Borealis, in Ireland, 1707, by Mr. Neve ibid. 2.-Arorber 1706, communicated by Mr. W. Derhan

135
XXV. An Account of feveral extraordinary Meteors, by Dr. E. Halley
ibid.
XXVI. 1. An Account of Lights, E®c. Jeen in she Air, March 6, 1715-16, by Dr. E. Haliey

139
2.- of the farne feen on the Ocean
3.-a Return of the fame
XXVII. 1. Trvo Northern Aurora's in Kent, 1717. by Mr. E. Barrel
2.-one of them feen at London, by M. Folkes Efq;

154 XXVIII. An Account of an extraordinary Meteor,

March 19, 1718-19, by Dr. E. Halley 150 XXIX. I. Of an extraor dinary Aurora Borealis, Nov. 10,41719 , ly Dr. E. Halley 163 2.- of the fame in Devonfhire, by W. Maunder 164
3.- of the fame at Dublin, by - 165
XXX. An Aurora Borealis, Dec. 11. 1719 ine Surrey, by Mr. T. Hearne 167 XXXI. Of Northern Aurora's feen abroad, by $D r_{\text {. }}$ T. Robinfon 168
XXXII. Experiments on the Motion of Pendulums in Vacuo, by Mr. W. Derham ibid. XXXIII. 1. Gunpowder fir'd in Vacuo, by Mr. F. Hawk ${ }^{\text {bee }}$ ibid.
2. - the Quality of the Air produc'd by Gunpowder, by the fame

172
XXXIV. The Defcent of Malt-Duft in Vacuo, by the fame
XXXV. An Experiment to prove an Interfperfed Vacuum, by Dr. J. T. Defaguliers itid. XXXVI. I. Experiments to find bow much the Refiftance of the Air retards Falling Bodies, by the fame

175

- Some farther Experiments on the fame Subject, by the fame
XXXVII. Papers of Mr. Hawkßee's omitted 180

C H A P. II.

H Υ D OLOG .

OF the Lake Vetter, in Sweden, by $D r$. U. Hearne

183
II. A Nerv Conerivance for Diving, by Dr. E. Halley 188 1II. Of an Evuption of Waters in Yorkfhire, by Mr. R. Thorelby

192
IV. Of Inurdations in Ireland, by Mr. Neve 193
V. Of the Lake Lough-Neagh in Ireland, by Mr. F. Neville
VI. The Eruption of a Burning-Spring in ShropThire, by Mr. R. Hopton

195
VII. Of a Chalybeat Water at Canterbury, by Dr.Sc. des Moulins

197
VIII. An Examen of the Spaw Waters, by Dr. F. Slare 198
IX, Of the Nature and Vertues of the Pyrmont Waters, by the fame

201
X. Accounts of Books omitted

204

The CONTENTS.

C H A P. III.

$\begin{array}{llllllllll}M & I & N & E & R & A & L & O & G & r\end{array}$

1. 1$H E$ way of Colouring Marble, by 2uarry of Marble in Ireland, by Mr. F. Neville

- 206
III. A Colliery blorin up near Newcatte, communicated by Dr. A. Charlett ibid.
IV. 1. An Eruption of Mount Vefuvius in 1707. by the Hon. J. Valetta

207
2.- -ther Eruptions in 1717. by Mr. E. Berke-
ley
V. An Earthquake in the North of England, 1703. by Mr. R. Thorelby 210
VI. 1. Of Subterraneons Trees in Hatfield-Chace, by Mr. Abr. de la Pryme 212
2.- on the fume Subject, by the fame 218
VII. Subterrancous Trees at Dagenham in Effex, by Mr. W. Derham

219
VIII. 1. Strange Bones dug up near Canterbury

- And of an Itthmus between Dover and Calais, by Mr. W. Somner 222
2.-on the fame, by Dr. J. Wallis 227
3.-on tbe fame Subject, by the fame 233
4.-on the fame by the fame ibid.
IX. 1. An Account of large Teeth dug $u p$ in Ireland, by Mr. F. Neville 236
2.-Remarks on them, by Dr. T. Molyneux 237
3.-Furtber Remarks, by Dr. E. Halley 244
X. An Account of large Bones found near Colchefter, by Mr. J. Luffkin 245
XI. 1. Coins, Eic. found under Ground in Lincolnhire, by - 246
2.- A Remark, by Mr. R. Thorefby 248
XII. Of an uncommon Sinking of the Earth in Kent, by Mr. J. Sachette ibid.
XIII. Part of a Hill Sinking down in Ireland, sommunisated by the Bijhop of Clogher 25°
XIV. Of the funk Ifland in the Humber recover ${ }^{-d}$ from the Sea; communicated by M. J. Chamberlayne
125π
XV. Of the Sinking of three Oaks into the Ground in Norfolk, commuxicated by Mr. P. le Neve
XVI. I. Of the Moffes, Ecc. in Scotland, by the Earl Cromerty

253
2.- On the fame, by Sir Hans Sloane $\quad 256$

XVII Of the Strata in Coal Mines, by J. Strachey, $E f_{q}$; 260
XVIII. 1. Of the Foffils, Esc. of Reculver Cliff, by Mr. S. Gray
2.-A Remark, by Sir Hans Sloane ibid.
XIX. I. Some Remarks on Foflils, by Mr. E. Lhuyd
2.- Of Harwich Cliff, and its Foffils, by ${ }^{26} \mathrm{Mr}_{4}$ XX. An Account of Land and River-Shells found zunder Ground, by Mr. J. Morton 270
XXI. An Account of the Skeleton of an Animal imprefs ${ }^{\text {s }} d$ in Stone, by D_{r}. W. Stukeley 272
XXII. Of Cryftal, Iron and Copper Ore, by Mr. R. Thoresby 274
XXIII. Of the Luminous Qualities and Electricity of Amber, Diamondss and Gum-Lac, by Dr. Wall

275
XXIV. A Treatife on Amber, by Father G. J. Camelli

279
XXV. 1. Of the Lapis Asbeftus, and the Way of making the incomtuffible Cloth, by J. Campani 282
2.-Afbeflus in Scotland, by Mr. J. Wilfon 283
3.-the fame, by Mr. P. Blair
XXVI. Papers omitted 285
XXVII. Accounts of Books omitted 286

The CONTENTS.

CHAP. IV.
 MAGNETICKS.

1. F $\begin{aligned} & \text { the Invention and Improvements of the } \\ & \text { Mariner's Compafs, by Dr. J. Wallis } 286\end{aligned}$
II. I. Magnetical Experiments and Obferwations, by Mr. W. Derham

290
2. Further Obfervations, by the fame 291
III. 1. Experiments concerning the Proportion of the Power of the Loadftone at Different Diftances, by Mr. F. Hawksbee

- Another Experiment on the fame, by Dr. B. Taylor

C H A P. V.

AGRICULTURE,BOTANY.

${ }^{1} \mathrm{O}$$F$ the Manuring Lands by Sea-Shells in Ireland, by the Lord Archbißpop of Dublin. 298
II. Of the Manuring Lands by Sea-Sand in DevonIII. Obfervations relating to the Motion of the Sap in Vegetables, by Mr. R. Bradley 302 IV. Of the Parts and Uje of the Flower in Plants, by Mr. S. Moreland 305 V. Of the quick Propagation of Moldinets in a Melon, by Mr. R. Bradley 308
VI. Of the Hufbandry of Canary-Seed, by Mr. E. Tenifon

309
VII. Experiments on Vegetation, by Mr. Abr. de la Pryme

310
VIII. Tbe great and speedy Vegetation of Turnips, rommunicated by J.T. Defaguliers 3II
IX. Of the Cul!ure of Tobacco in Ceylan, by Mr. Strachan 312
X. Of a Tartarian Plant called Gin-feng or Ninzin, by Father Jartoux

Gin-feng is a Species) communicated by Monfieur Vailiant to Dr. W. Sherard 319
XII. Of a new Prant from Brafil called Iquetaia, by Monfeur Marchand
XIII. Of the Atmella, and its Lithontriptic Vertue, by Dr. P. Hotton

322
XIV. Of the Jefuits Bark, by Dr. W. Oliver 323 XV. Of a new Kind of Walnut-Tree, by Monfieur Reneaume
XVI. Papers omitted 325
XVII. Accounts of Books omitted ibid.

THE

Philofophical Tranfactions A B R I D G' D.

P A R T I.

Containing the

Mathematical P A P E R S.

C H A P. I.

Geometry, Aritbmetic, Algebra, Logaritbmotecbny.

T has heretofore paffed for a current Maxim, That The Proportiall Infinites are equal. on of Matbe.
The Pofition neverthelefs is certainly erroneous, maical Points as Dr. Halley abundantly has fhown in the Philofo- to acch other, phical Transaftions for 0 a pbical Tranjactions for OEtober 1696. He there Robartes, n. gives divers Inftances of infinite Quantities which 334, p. 470. are in a determinate finite Proportion one to ano- Vid. fupra ther, and fome infinitely greater one than The like may be obferved of infinitely fmall Quantities, viz. Mathematical Points, as the following Propofition will make appear.

Vol. IV.
B
PROP.

Proportion of Mathematical Points.

P R O P. I.] The Points of Contaet between Circles and their Tangents, are in fubduplicate Proportion to the Diameters of the Circles.

Fig. . Let two Circles $a d c b$, $a f b g$, touch one another from within at
the Point a. Draw the Tangent $p a q$, and parallel to it the Line m. From the Point a draw the Diameter ac.

Let $a c$, the Diameter of the great Circle, be equal to R, and $a b$, the Diameter of the leffer Circle, be equal to S.

Let $d b$, the Chord of the Arch $d a b$, be equal to z, and $f g$, the Chord of the Arch $f a g$, be equal to y, and let the Abfcifs $a k$ be equal to x.

If the Line $m n$ be fuppofed to move till it becomes co-incident with the Tangent $p a q$, the Nature of a Circle will always give the following Equations.

$$
\begin{aligned}
& z z=4 R x-4 x x \\
& y y=4 S x-4 x x
\end{aligned}
$$

When the Line is arrived at the Tangent, z and y will become the two Points of Contact, and then $z z=4 R x$ and $y y=4 S x$. ($4 x x$ being laid afide as heterogeneous to the reft of the Æquation, by reafon of x being become infinitely little.) Therefore

$$
\begin{aligned}
& z z \cdot y y:: 4 R x \cdot 4 S x:: R . S . \\
& \text { Therefore } z, y:: \sqrt{ } R . \vee S \text {. SE.D. }
\end{aligned}
$$

PR O P. II.] The Point of Contait between a Sphere and a Plane, is infinitely greater than that between a Circle and a Tangent.

Fig. 2.
Let a be the Point of Contact between the Sphere $a d q f$ and the Plane $b c$. About the Sphere defcribe the Cylinder $n p g m$.

Draw $k b$ to reprefent a Circle parallel to the Plane. Let the Circle be fuppofed to move, till it becomes co-incident with the Plane. The Cylindrical Surface $k b g m$ will always be equal (according to Archimedes) to the Spherical Surface d a f.

Now when thefe Surfaces become infinitely fmall, one terminates in the Point of Contact, and the other in the Periphery of the Bafe of the Cylinder. Therefore the Point of Contact is equal to the Periphery of the Bale of the Cylinder (equal to a Periphery which has the fame Diameter as the Sphere) and by Confequence is infinitely greater than any Point of Contact between a Circle and a Tangent. थ. E. D.

PR OP. III.] The Points of Contait by Spheres of different Magnitude are to one anotber as the Diameters of the Spberes.

For dy the fecond Propofition the Points of Contach are equal to the Peripheries of fuch Diameters, whole Proportion is the fame as the Diameters. SE. D.
II. Let
II. Let $D E$ be the Tranfverfe Axis of the Ellipfis, $A O$ the other Some ProperAxis, and C the Center of the Section. Let P be any Point in its Cir- ties of Conic cumference, P Q a Tangent to the Curve at P, meeting the Traniverie Axis at 2 ; the Points S, F; the Foci ; $C P, C K$, Conjugate Semidiame- Nature of Foters; $P H$ half the latus rectum to the Diameter $P C ; P G$ a Perpendi- ciby $M r$. Ab. cular to the Tangent; let $H G$, perpendicular to $P C H$, meet this in the Point G, fo that $P G$ may be the Radius of Curvature of the Ellipfis in the Point P. Alfo let $S T, C R$, and $F V$, be Perpendiculars let fall upon the Tangent P 2; let $S O$ be joined, and $P L$ a Perpendicular let fall upon the Axis. Thefe Things fuppofed, I fay that,

1. The Rectangle of the Diftances from each Focus of the Ellipiss, or $S \mathrm{P} \times \mathrm{PF}$, is equal to the Square of the Semidiameter C K.

Demonftration.

$P s q=P C q+C s q-2 C s \times C L$, by $13 . \mathrm{II}$. El.
$P F q=P C q+C S q+2 C S \times C L$, by 12. II. El.
Whence $P S q+P F q=2 P C q+2 C S q$.
Now $P S+P F=D E={ }_{2} C D$; and therefore
$P S q+P F q+2 P S \times P F=4 C D q$.
Therefore by Tranfpofition, $2 P S \times P F={ }_{4} C D q-2 P C q-2 C S q$.
And by halling $P S \times P F=2 C D q-P C q-C S q$.
But it is $C S q=C D q-C O q$, and therefore
$P S \times P F=C D q+C O q-P C q$.
But $C D q+C O q=P C q+C K q$; by 12. VII. Conicks of Apollonius.
Therefore $P S \times P F=C K q$. Q $E . D$.
2. The Diftance from the Focus S P is to the Perpendicular let fall upon the Tangent, as the Semiconjugate C K is to the leffer Semiaxis CO .

Demonftration.] Becaufe of fimilar Triangles $S P \tau$ and $F P V$, it will be $P S . P F:: S T . F V$; and componendo, $P S+P F$ to $S T+F V$, or their Halves $C D$ to $C R$, as $P S$ to $S T$. Whence $C D \times C K$ to $C R$ $\times C K$ as $P S$ to $S T$. But $C R \times C K$ is equal to the Rectangle of the Semiaxes $C D \times C O$, by 31. VII. Conic. Therefore $P S$ is to $S T$ as $C D \times C K$ to $C D \times C O$, or as $C K$ to $C O$. And in like Manner it may be demonftrated, that $P F$ is to $F U$ in the fame Ratio. QE.D.
3. Alfo the Tranfverfe Semiaxis C D, to a Perpendicular C R let fall from the Center C to the Tangent, will be in the fame Ratio.

For fince the Rectangle $C R \times C K$ is equal to the Rectangle $C D \times$ $C O$, as faid before; we fhall have the Analogy $C D$ to $C R$ as $C K$ to CO. Q E. D.
4. Any Semidiameter PC is to the Diftance of the Point P from the Fo_{0} cus S, or to S P, as the Difance from the other Focus F P to balf the latus rectum belonging to the Vertex P , or to P H .

This is manifeft by Prop. I. fince the Square of $C K$ is equal to the Rectangle $S P \times P F$.

The Velocities of Bodies.

5. The Rectangle of the Semiaxes $\mathbf{C D} \times \mathrm{CO}$ is to the Square of the Semiconjugate C K, as CK to the Radius of Curvature PG in the Point P.

For the Triangles $P C R, P G H$ are fimilar ; whence $C R$ is to $P C$ as half the latus rectum $P H$ to $P G$; that is, by Property 3 aforegoing, $\frac{C D \times C O}{C K}=C R$ is to $P C$, as $\frac{C K q}{P C}=P H$ is to $\frac{C K c}{C D \times C O}=P G$. Whence this Analogy $C D \times C O . C K q:: C K . P G$.

General Theorem 1.] The Centripetal Force tending to the faime Point S , in all Curves is always proportional to the 2 uantity $\frac{\mathrm{S} \mathrm{P}}{\mathrm{PG} \times \mathrm{S} \mathrm{T} \mathrm{c}}$

This Theorem was found by me many Years ago, and then communicated to my Friends. Since then it has been confirm'd by the De-

Vid. infra
C. IV. S. V. monftrations of the learned Geometricians D. F. Bernoulli in the Leipfic AEts, D. 7. Keil in n. 317 of thefe Tranfactions, and by D. F. Herman in his Pboronomia, p. 70. who may be confulted.

Now if we write $C K \subset$ for $P G$, by Prop. 5. and $\frac{S P}{C K}$, by Prop. 2. for $S T$, (becaufe of $C D, C O$ being given) the Centripetal Force tending to the Focus S of the Ellipfis, will always be as $\frac{S P \times C K c}{C K C \times S P C}$, that is as $\frac{S P}{S P C}$, or $\frac{1}{S P q}$; or reciprocally as the Square of $S P$. Whence it appears if the Section be an Ellipfis defcrib'd by the Motion of a Body, the Centripetal Force will be reciprocally as the Square of the Diftance of the Center of Force. From thefe Properties follow fome Corollaries that may deferve Obfervation.

Corol. 1.] The Velocity of a Body revolving in an Ellipfss, at any Point P, to the Velocity in a Circle at the fame Diftance S P from the Center of Force, is in a Jubduplicate ratio of the Diftance from the other Focus PF, to the tranfverfe Semiaxis of the Section, or as a mean Proportional between PF and C D 60 CD .

For the Velocity of a Body revolving in an Ellipfis at the Diftance $S P$, to the Velocity of a Body revolving in a Circle or Ellipfis at the Diftance of the Semiaxis $C D$ or $J O$, is as $C O$ to $S T$; that is, by Prop. 2. as $V P F$ to $\checkmark S P$. But the Velocity of a Body revolving in a Circle at the Diftance $C D$, is to the Velocity of a Body revolving in a Circle at the Diftance $S P$, as $V S P$ to $V C D$. Therefore ex aquo the Velocity of a Body revolving in an Ellipfis at the Diftance $S P$, is to the Velocity of a Body revolving in a Circle at the fame Diftance, as $V P F$ to $\checkmark C D$.

Corol. 2.] Having given tbe Velocity in an Ellipfis, the Pofition of the Tangent, and the Focus or Center of Force, it will be eafy to determine the otber Focus.

For let the given Velocity be R; and let the Velocity by which a Circle would be defcribed at the given Diftance $S P$ from the Center be 2

Then by the foregoing Corollary 'tis R to 2 as $\checkmark P F$ to $\vee C D$, and therefore 22 is to $R R$ as $C D$ to $P F$, and $222-R R$ will be to $R K$ as $S P$ to $P F$. But $S P$ is given, and therefore $P F$ is given in Magnitude. It is alfo given in Pofition, becaufe of the Angle $V P F$ equal to $S P T$. Therefore the Point F the other Focus is given; which being known, the Section is eafily defrrib'd.

Now if $\frac{1}{2} R R$ is greater than 22, the Quantity 2 22- $R R$ will be negative, and inftead of an Ellipfis the Trajectory to be defcribed will be changed into an Hyperbola. And it will be $R R-2$ 22 to $R R$, as S P to $f^{\prime} F$, the Diftance of the other Focus, to be transferr'd to the other Side of the Tangent, that the Focus F may be had. Now all the Properties which we have demonftrated in the Ellipfis, changing what ought to be changed, will belong alfo to the Hyperbola.

Now if it frould happen that 22 is equal to half the Square of R, then $222-R R=0$, or the Quantity vanifhes, or the fourth Proportional $P F$ becomes infinite. Therefore the Trajectory to be defcribed will be a Parabola, the other Focus paffing to an infinite Diftance. But the Axis of the Trajectory is given in Pofition, for it is parallel to $P F$, the Angle $F P V$ being now equal to the given Angle $S P T$.

Corol. 3.] Tbe Velocity of a Body revolving in a given Conic Seetion, at the Diftance S P, is to the Velocity of the fame revolving at any other Diftance $S X$, as a mean Proportional between F P and $S X$, to a mean Proportional between $S P$ and $F X$.

For the Velocity in P is as $v \frac{F P}{S P}$, by Prop 2. And by the fame, the Velocity in X is as $v \frac{F X}{S X}$, whence the Propofition is manifeft.

Corol. 4.] Alfo the Katio of the Velocities of two Bodies revolving in the fame Syftem, but in different given Conic Sections, the Diftances of cach being given from the common Focus of the Orbits, may be cafliy obtain'd by Corol. I.

For fince the Velocity of the Body in P is to the Velocity in a Circle at the fane Diftance $S P$, as $V P F$ is to $V C D$; and in the other fuppofed Conic Section, whofe Semiaxis is $c d$ and Foci S, f; at the Diftance $S p$ thofe Velocities are as $v p f$ to $V c d$; but the Velocity of a Body revolving in a Circle at the Diftance $S P$, is to the Velocity in a Circle at the Diftance $S p$, as $V S p$ to $V S P$; thefe Ratio's being compounded, the Velocity in P will be to the Velocity in p, as $\overline{V P F \bar{F} \times d \times S P}$ to $\checkmark p f \times C \overline{D \times S P}$. Now if the other Section is a Parabola, $c d, p f$ will be infinite, but in the Ratio of 1 to 2. Therefore the Ratio of the Velocities will be as $\overline{V P P} \overline{S S P}$ to $\bar{V} 2 C D \times S \bar{P}$.

Corol. 5.] If in the Hyperbola the point p paffes to Infinity, it is plain from the foregoing, that the laft and leaft Velocity with which, a Body would afcend for ever, is equal to that with which a Body at the Diftance C D, equal to the tranfverfe Semiaxis, would defrribe a Circle.

Corol. 6.] From the given Diftance from the Focus, the Pofition of the Tangent is allo given, or the Angle S P T contain'd by the Diftance S P and the Tangent P .

For by Prop. 2. 'tis $P S$ to $S T$ as $C K$ to $C O$, or as $\overline{V S P \times P F}$ to $C O$; and fo is Radius to the Sine of Ang. $S P$. But in Ellipfes that approach near to Circles, it would be better to feek the Angle $P S T$, the Complement of the fame to a Quadrant. Now the Sine of this is to Radius as $\bar{V} \overline{S P \times P F} \overline{C O q}$ is to $\overline{\sqrt{S} P \times P F}$.

Corol. 7.] And bence the Velocities followe with which the Diftances S P increafe or decreafe.

For from the preceding Corollary fince it is as $\overline{\checkmark S P \times P F}$ to $\overline{\sqrt{S P} \times P F-C O} \bar{q}$, fo Radius to the Sine of the Angle $P S F$; and in the fame Ratio is the Velocity of the Body in P to the Velocity of the Moment of $S P$; but that Velocity in P is (by Prop. 2.) as $V \frac{P F}{S P}$; omittingthe fuperfluous Quantities, $\frac{\overline{V S P \times P F-C O q}}{S P}$ will always be proportional to the Velocity wherewith the Diftance $S P$ increafes or decreafes.

General Theorem II.] In every Curvilinear Trajeitory the Angular Velocities about the Center of Forces are reciprocaily proportional to the Squares of the Diftances fromi the Center.

For becaufe of the equal Arex of the nafcent Sectors, the Arches fubtended by thefe leaft Angles, or the Bafes, are reciprocally as the Radii. Therefore the Angles of thefe leaft Sectors equal in Area, are to one another in a duplicate Ratio of the Radii reciprocally, or as the Squares of the Diftances.

Corol 8.] Hence the Angular Velocities of Bodies revolving in different given Ellipjes may be compared to one another.

For the Angular Velocities by which Circles would be defcribed at Diftances equal to the traniverfe Semiaxes, are reciprocally in the fefquialter Ratio of the Axes, or as $\overline{C D} \frac{1}{\checkmark} C D$. But revolving Bodies have thefe mean Angular Velocities, when the Squares of the Diftances are equal to the Rectangles of the Semiaxes of the Ellipfes. Therefore by Theor. 2. it will be $S P q$ to $C D \times C O$, fo is $\frac{1}{C D \sqrt{C D}}$ to $\frac{C O}{S P q \times \sqrt{C D}}$; which Quantity is as the Velocity of the Angle at the Center S, defcribed in a given leaft Time by the Motion of the right Line $S P$.

Corol. 9.] The Angular Velocity by which the Tangent P T performs its Rotation, or the rigbt Line S T perpendicular to the Tangent, is to the Angular Velocity of the rigbt Line S P, as the tranfverfe Semiaxis CD is to the Diftance P F from tbe otber Focus.
Fig. 5. Demonftration.] Let the Points P, p, be very near each other, and drawing $S P, S p$, let $P \tau, p t$ be two Tangents, to which let be drawn the Perpen-

Perpendiculars ST, St. Parallel to thefe let the Radii of Curvature $P G, p G$, be drawn, meeting in G; and with Center S and Radius $\mathcal{S} P$ let the little Arch $P E$ be drawn, meeting $S p$ in E. It is evident that the Angle $P G p$ is equal to the Angle $T S t$, or to the Angular Velocity of the Perpendicular $S T$. But the Angle $P S p$ is the Angular Velocity of the right Line $S P$. So that $P G p$ is to the Angle $P S p$, as the Angular Velocity of $S T$ is to the Angular Velocity of the right Line $S P$; that is, as $\frac{P P}{P G}$ is to $\frac{P E}{P S}$. But Pp.PE::SP.ST::CK.CO, by Prop. 2. Therefore thefe Velocities are as $\frac{C K}{P G}$ to $\frac{C O}{P S}$. For $P G$ write $\frac{C K c u b \text {. }}{C D \times D O}$, by Prop. 5. and $\frac{C K}{P G}$ will become $\frac{C D \times C O}{C K q}=\frac{C D \times C O}{P S \times P F}$ Hence $\frac{C D \times C O}{P S \times P F}$ will be to $\frac{C O}{P S}$, or expunging what is fuperquous, $C D$ to $P F$, as the Angle $T S t$ is to the Angle $P S P$, or the Angular Velocity of the Tangent to the Angular Velocity of the Diftance S P. Therefore the Velocity with which the Tangent revolves will always be proportional to the Quantity $\frac{C O \times V C D}{P F \times S P q}$

In Sect 3. Lib. I. Of the Principles of Natural Pbilofopby, the Reader. may find moft of thefe Corollaries, derived from other Properties of the Conic Sections, or eafily to be derived from them.
III. I propofe a Method of Tangents, (immediately derived from the Tangents to Theory of the Maxima and Minima,) which is ealy and fufficiently ge-Curves. \&c. neral, nay the moft general of all, as being with the fame Labour appli-by Mr. H. Ditcable to all Curves. Nor fhall I fcruple to call it a new one, fince $n 0$ ton, n. 284. one of the celebrated Geometricians (as far as I have been able to learn) have ever publifhed any Thing of this Kind. I thall here only produce a few Inftances.

Let A G H be a Curve, whofe Vertex is A, its Axis A K, ordinate
Fig. 6. F D, and its Center (if it have any) the Point K. Taking L a Point in the Axis, make $\mathrm{A}=n, \mathrm{~A} \mathrm{D}=x, \mathrm{~F} \mathrm{D}=y, \mathrm{~F} \mathrm{~L}=z$. Of thefe Quantities the three laft are flowing Quantities, and n is a conftant Quantity; for this being always the fame, anfwers to the others which are always variable. From the right-angled Triangle F D L, we have this Equation, $z z=y y+n n-2 n x+x x$; and determining z to be an Extream, there arifes $2 y \dot{y}-2 n \dot{x}+2 x \dot{x}=0$; whence by interpreting $2 y \dot{y}$ according to the particular Nature of the Curve, the Quantity n will be left, exprefs'd in Terms that will alfo be proper to the Curve.

And now by this Means having z determined to its extreme V alue, that is, having the Line F L cither the greateft or leaft of all thofe which can be drawn to the Curve from the Point L, and therefore perpendicular to
the Curve in the Point F ; it is evident that D L is the Subnormal, from whence the Subtangent is eafily derived.

For an Example let us firt take the Apolionian Parabola, which Curve we will fuppofe to be here delineated. Therefore we have $2 y \dot{y}=r \dot{x}$, fuppofing r to be the Parameter; whence $r \dot{x}-2 n \dot{x}+2 x \dot{x}=0$, and $n=\frac{r}{2}+x$. Therefore the Subnormal DL $=\frac{1}{2} r$. Now the Meaning of this Theorem is this. If beyond the Limit D of the Ab foifs A D there is taken D L equal to the Semiparameter, and from the Point L be drawn LF ftrait to the Point F; the right Line fo drawn will be perpendicular to the Parabola in the Point F, and the leaft of all the Lines that can be drawn to the Curve from the Point L. I fay it is the leaft; for to any one that confiders the Nature of the Curve, it is evident it cannot be the greateft, (which I would have obferved in what follows;) but it is neceffarily either the greatelt or leaft, and therefore the latter. And this is the firt Part of Theor. 5. Lib. 7. of de la Hire's Conicks.

Let the Ordinate E B be drawn, and join the Points E, L. make the intercepted Line $\mathrm{BD}=f$, whence $\mathrm{A}=x-f$, and $\mathrm{B} \mathrm{L}=\frac{r}{2}+f$. Now L.E $q=\frac{r r}{4}+r x+f f$, and $\mathrm{FLq}=\frac{r r}{4}+r x$. Therefore $\mathrm{LEq}-\mathrm{FLq}=\mathrm{BDq}$, which is the latter Part of the fame Theorem.

The nearer the Point F approaches to the Point A, or to the Vertex, in which the Perpendicular cuts the Curve, the nearer alfo the Point L approaches to the fame. Therefore when F coincides with A, and fo the Ordinate FD vanifhes, then the Minimum itfelf lies in the Axis A K, and will be equal to the Semiparameter. That is, in this Care $n=\frac{r}{2} r$ only; the Abfcifs x belonging to the vanifhing Ordinate then alfo vanifhing. If therefore $\mathrm{A}=n=\frac{1}{2} r$, taking the Point D between A and L , make $\mathrm{AD}=x$; then there arifes $\mathrm{F} \mathrm{Lq}=\frac{r r}{4}+x x$, and therefore $\mathrm{FL} q-\mathrm{A} \mathrm{q}_{\mathrm{q}}=x x$, that is, $\mathrm{FL}_{\mathrm{q}}-\mathrm{AL}_{\mathrm{q}}=\mathrm{AD}_{\mathrm{q}}$. As it is Theor. 2. L. 7. Conic. de la Hire.

Secondly, Let there be a certain Curve of a fuperior Parabolic Order, whofe Equation is $r p-q x_{x}^{q}=y^{p}$
Then $y y=r \frac{2 p-2 q}{p} \times x^{\frac{2 q}{p} \text {, and therefore }}$

applied to Conic Sections.

2y $\dot{y}=\frac{2 q}{p} r \frac{2 p-2 q}{p} x \frac{2 q-p}{p} \dot{x}$. Now if we fubftitute this Value in-
Head of $2 y y$ in the general Equation, which determines z to be an Extram, we foal have from thence
$n=\frac{q}{p} r \frac{2 p-2 q}{p} x \frac{2 q-p}{p}+x$, and therefore the Subnormal is $\mathrm{DL}=\frac{q}{p} r \frac{2 p-2 q}{p} \times \frac{2 q-p}{p}$. Now this is eafily apply'd to any of there Curves, if the Indices p and q are rightly expounded, according to the Nature and Genius of each Curve.

Thirdly, let it be fuppofed that the Curve is an Ellipfis, of which A K is half the greater Axis. Now it follows from its Equation that $2 y y=$ $r \dot{x}-\frac{2 r x \dot{x}}{q}$. Whence there aries $\dot{x}-\frac{2 r x \dot{x}}{q}-2 n \dot{x}+2 x \dot{x}=0$, and $n=\frac{r}{2}+x-\frac{r x}{q}$. Wherefore $\frac{r-r x}{2 q}=\mathrm{D} \mathrm{L}$ the Subnormal.
Now if instead of the Ellipsis a Circle were fubftituted, by proceeding with the Equation in the fame Manner, we Could find $D \mathrm{~L}=r-x_{\text {, }}$ making r to be the Radius of the Circle.

But let us return back to the Ellipfis, another of whole Properties may be derived from hence, as was done in the Parabola.

Make $\mathrm{B}=f$, whence $\mathrm{A}=x-f$. Then we foal have $\mathrm{L} \mathrm{Eq}=$ $(\mathrm{LBq}+\mathrm{EBq}=) \frac{r r}{4}-\frac{r r x}{q}+\frac{r r x x}{q q}+f f+r x-\frac{r x x}{q}-$ $\frac{r f f}{q}$. And $\mathrm{FLq}=\left(\mathrm{FDq}+\mathrm{LDq} \Rightarrow r x-\frac{r x x}{q}+\frac{r r}{4}-\frac{r r x}{q}\right.$ $\frac{r r x x}{q q}$ Therefore $\mathrm{L} \mathrm{Eq}-\mathrm{LFq}=f f-\frac{r f f}{q}$. Now this is Theor. 6. Lib. 7. Conic. de la Hire.

The Method of the Maxima and Minima

For that great Geometrician requires, that it may be $q, r:: \frac{q}{2}-x_{r}$ L D, whofe Value therefore is $\frac{r-r x}{2 q}$ as found above. Therefore it is a fourth Proportional to the three Quantities before exhibited. This being granted to him he evidently demonftrates, that $\mathrm{L} F$ is the leaft of all the L ines that can be drawn from the Point L to the Ellipfis. Moreover becaufe it is $q \cdot q-r:: f \cdot f-\frac{f r}{q}$. Therefore the Rectangle $f f$. $-\frac{r f f}{q} f \times f-\frac{r f}{q}$ is the fame Rectangle which D. de la Hire calls his Specimen. But this Specimen, (according to his Definition) is a Rectangle like to the Rectangle that conftitutes the Difference between the Square of the traniverfe Axis and the Figure, (that is, the Rectangle $q q-q r_{\text {, }}$) being befides apply'd to the right Line BD or f. Now that the Rectangle $f f-\frac{r f f}{q}$ has all thefe Conditions is very evident.
It may be obferved, that it follows from the Value of n before found, that $n>\frac{r}{2}$. For $n=\frac{r}{2}+x-\frac{r x}{q}$. Therefore $q n+r x=$ $\frac{q r}{2}+q x$. But becaufe $q>r$, 'tis $q x>r x$, and therefore $q n>$ $\frac{q r}{2}$, and $n>\frac{r}{2}$.

When the Point F (as was juft now obferved in the Parabola) falls upon the Vertex A, the Minimum is determined in the Axis: And becaufe of x vanifhing, we fhall have $n=\frac{1}{2} r$. Then affuming any Point D between A and L, if A D is equal to any x, by Comparifon there arifes FLq-A Lq $=x x-\frac{r x x}{q}$. And this is Theor. 3. Lib. 7. of de la Hire's Conicks. For becaufe it is $q \cdot q-r:: x \cdot x-\frac{r x}{q}$, it appears that the Rectangle $x x-\frac{r x x}{q}$ is the Exemplar, but apply'd to the Abrcirs
*. And therefore this is the adequate Meafure of the Defect of the Square of the leaft Line, from the Square of any other right Line drawn
from the fame Point to the Curve. And this is what he demonftrates in the Place above cited.

Now the Theorems belonging to the leffer or conjugate Axis of the Ellipfis, (for hitherto we have infifted on the greater or tranfverfe Axis) are determined juft in the fame Manner. For now let A K, or half the leffer Axis, be $\frac{c}{2}$, R the Parameter; and the Point L is now fuppofed to be placed beyond the Centre, on the other Side of G K. By working as before, we fhall find A L or $n=\frac{\mathrm{R}}{c}+x-\frac{R x}{2}$, and the Subnormal $\mathrm{DL}=\frac{\mathrm{R}}{c}-\frac{\mathrm{R} x}{2}$. That is, c. $\mathrm{R}:: \frac{c}{2}-x \cdot \frac{\mathrm{R}}{2}-\frac{\mathrm{R} x}{c}$; and therefore drawing F L, it will be the greateft of all the Lines that can de drawn from the Point L to the Ellipfis; and $\mathrm{L} \mathrm{Fq}_{\mathrm{q}}-\mathrm{L} \mathrm{E}_{\mathrm{q}}=\frac{\mathrm{R} f f}{c}-f f=$ to the Rectangle, which is the Exemplar, apply'd to $\mathbf{B D}$ or f. For it appears that this is the Exemplar, for it is $c \cdot \mathrm{R}-c:: f \cdot \frac{\mathrm{R} f}{c}-f$, and therefore, according to the Definition, $\frac{\overline{\mathrm{Rf}}-f \times f \text { is equal to the Exem- }}{2}-$ plar. Now this is Theor. 7. Lib. 7. of de la Hire's Conicks.

Again, when the Point F coincides with A, becaufe of x vanifhing with the Ordinate then vanifhing, there is left $n=\frac{\mathrm{R}}{2}$, and AL is the greateft of all the Lines that can be drawn from the Point L to the Ellipfis, and $\mathrm{A} \mathrm{Lq}-\mathrm{F} \mathrm{L} q=\frac{\mathrm{R} x x}{\tau}-x x=$ to the Exemplar apply'd to AD or x. And the fame as to Theor. 4. of Lib. pred. Conicks.

But it ought to be obferved at the foregoing Cafe, (which fhould have been mentioned before) when we found $n=\frac{\mathrm{R}}{2}+x-\frac{\mathbf{R} x}{c}$, that $n \leqslant$ $\frac{\mathrm{R}}{2}$. For $c n+\mathrm{R} x=\frac{\mathbf{R} c}{2}+c x$; and becaufe $\mathrm{R}>c$, therefore $\mathrm{R} x>$. $c x$, and there will be left $c n<\frac{\mathrm{R}_{c}}{2}$, or $n<\frac{\mathbf{R}}{2}$.

Now as the Matter is perform'd in the Ellipfis, fo in the fame Manner it might be perform'd in the Hyperbola, and the leaft Lines may alfo be
determined in this Curve. But there is fuch a Connection between there two Curves, and the Tranfition from one to the other is fo eafy, that the Labour may feem unneceffary even to Novices. Therefore nothing more remains to determine the Subnormal, than that the Sign - may be changed into + . For fince in the Hyperbola it is $2 y \dot{y}=r \dot{x}+$ $\frac{2 r \dot{x} \dot{x}}{q}$, and $n=\frac{r}{2}+x+\frac{r x}{q}$; (the general Equation) there remains D L $=\frac{r}{2}+\frac{r x}{q}$.

Let it be conceived fourthly, that the Curve M S N (drawn on the other Side the Figure) is one of the Hyperboloids, whofe Afymptotes are AK, KH, and the right Line $\mathrm{S} R$ an Ordinate to the Afymptote K H ; make $\mathrm{S} \mathrm{R}=y, \mathrm{~S} \mathrm{P}=z, \mathrm{~K}=x, \mathrm{KP}=n$, which here muft needs be lefs than x, as will appear on Confideration. The Equation proper to the Curve is $y \mathrm{p} x \mathrm{q}=r \mathrm{q} s \mathrm{P}$, inftead of which, (becaufe of r and s being determinate Quantities) may be wrote $y \mathrm{P}=x^{-\mathrm{q}}$, and therefore
$y^{2}=x \frac{-2 q}{p}$ and $2 y \dot{y}=-\frac{2 q}{p} \dot{x} x-\frac{2 q-p}{p}$ Hence fince it is
$z z=y y+x x-2 n x+n n$, for an Extream we have
$2 y \dot{y}+2 x \dot{x}-2 n \dot{x}=0$, that is, $-\frac{2 q}{p} \dot{x} x-\frac{2 q-p}{p}$
$+2 x \dot{x}=2 n \dot{x}$ and $n=x-\frac{q}{p} x-\frac{2 q-p}{p}$
Therefore the Subnormal PR=(x-n=) $\frac{q}{p} x-\frac{2 q-p}{p}$.
Laftly, let us conceive the Curve A F G to be a primary Cycloid, and let the Radius be r, the Arch c, and the Ordinate of the generating Circle to be y, whofe Diameter may be reprefented by A K, and the Center pofited between L and K. Then calling FD the Ordinate of the Cycloid a, and the reft as before, the Equation of the Curve is $a a=y y+2 c y+$ $c c$, and therefore $z z=(a a+n n-2 n x+x x=) y y+2 c y+c c$ $+n n-2 n x+x x$, and z being determin'd for an Extream, $2 y \dot{y}$ $+2 \dot{c}+2 \dot{y} \dot{c}+2 \dot{c} \dot{c}-2 n \dot{x}+2 x \dot{x}=0$. But $\dot{y}=\frac{r \dot{x}-x \dot{x}}{y}$, and \dot{c} $=\frac{r \dot{x}}{y}$. Then fubftituting thefe Values, and duly reducing the Equation, we fhall have $2 r-x+\frac{2 r c-2 x c}{y}+2 r+\frac{2 c r}{y}=2 n-2 x$, and therefore
therefore $2 r-x+\frac{2 r c-x c}{y}=n-x=\mathrm{DL}$ the Subnormal.
The incomparable Dr. Barrow makes ufe of the Subtangent as already known, to determine the Maximum and Minimum. And Mr. Newentiit, in his Analyfis of Infinites, has done the fame after him. But fince the Maxima and Minima may be found by many other Methods, in which nothing need be prefuppofed about the Tangents of Curves, it is plain that we may fafely procted from the Maxima and Minima, to inveftigate the Method of Tangents.

Corol. r.] In going over again the foregoing Examples, it will appear from each, that $2 y \dot{y}-2 n \dot{x}+2 x \dot{x}=0$, by putting inftead of n in this Equation its Value derived from the Nature of the Curve. For Example in the Hyperboloids

$$
\frac{2 q}{p} \dot{x} \quad \frac{2 q-p}{p}-2 \times x-\frac{2 q}{p} x \times \frac{2 q-p}{p}+2 x x=0
$$

which appears by Infpection. And the fame will appear to be true in other Exan ples, without any Demonftration.

Corol. 2.] From the Invention of the Subnormals we may eafily determine the greateft and leaft Crdinates of Curves. In which Matter I fhall add, if the Subnormal belonging to any Point of the Curve be put equal to nothing, we fhall have the Ordinate of that Curve determin'd to be an Evtream. And it will be the greateft, it it is on the concave Side of the Curve, but the leaft, if it is on the convex Side. For Example in the Circle, (making the Subnormal $=l$) it will be $l=r-x$. Let r $x=0$, then $r=x$ and $y=r$; that is, the greateft Ordinate is equal to the Radius. In like Manner in the Ellipfis $l=\frac{r}{2}-\frac{r x}{q} ; \operatorname{let}_{2}^{r}-\frac{r x}{q}=$ o, then $r q=2 r x$, or $x=\frac{q}{2}$. Therefore $y y=\frac{r q}{4}$, equal to a fourth Part of the Figure as they call it, or the Square of the conjugate Semiaxis, and thercfore the greateft y is equal to that Semiaxis. And the fame Method may be ufed in other Curves. Let the Subnormal be found from the given Equation, and making that equal to nothing, we fhall have the Crdinate of the Curve determin'd to a Maximum or Minimum; the firft towards the concave Part of the Curve, and the other towards the convex Part.
POSTSCRIPT.

Firf, itwill be eafy by this Method to determine the Tangent, by operating at the convex Side of the Curve, as before on the concave Side.

For let A C be the vertical Tangent, and C a Point in it taken at Pleafure. Make $\mathrm{AC}=n, \mathrm{CO}=z$, (by which Symbol let all the Lines be denoted, which are drawn from the Point C to the convex Curve A E G.) Then drawing MO always perpendicular to AC , it will be $\mathrm{C} M=n-y$. And fince $\mathrm{O} \mathrm{M}=x$, it will be $z z=n n-2 n y+y y-x x$; and therefore (for an extream Value of z) $2 y \dot{y}+2 x \dot{x}-2 n \dot{y}=0$. In which Equation, if $2 x \dot{x}$ be expounded according to the Nature of the Curve, we fhall have the Line C Z determined, which in this Place performs the Office of a Subnormal. This is too clear to want any Illuftration by Examples.

Secondly, As in the foregoing Method we have found the Tangents of Curves, by determining to Extreams the Lines L E or C O, drawn from a given Point either in the Axis or in the vertical Tangent; thus by confidering the Lines Q E, \mathcal{F}^{c}. drawn from a given Point in the Axis beyond the Vertex, the fame may be perform'd, and that univerfally. For all the Lines Q E are of a flowing and variable Nature, but the Tangent QF alone, (fuppofing QF to touch the Curve) is conftant and determin'd to one Value. Therefore in this Place we fhall not infilt on the Hypothefis of an Extream, but thall only confider it as a permanent Quantity. Let two Points Q, L, be affumed, and thence to the fame Point of the Curve E let two Lines LE, QE, be always drawn. The Angle QE L between the Point of Contact F and the Vertex, will always be obtufe, but on the other Side of the Point F it will be acute ; fuppofing, as faid before, that QF touches the Curve, and F L is at right Angles to it. Make $\mathrm{QA}=p, \mathrm{AL}=n, \mathrm{AB}=x, \mathrm{BE}=y$, and QE $=z$. Alfo $\mathrm{VE}=v$, which is intercepted between the Points E and V , where Q V falls perpendicularly from Q upon LE produced. Now becaufe of the obtufe-angled Triangle $Q E$, we fhall have this Equation, $z z=p p+2 p n-y y-x x \pm \sqrt{y y+n n-2 n x+x x} \times 2 v ;$ or inftead of $\frac{1}{2} \sqrt{y y+n n-2 n x+x x}$ writing f,
it will be $z z=p p+2 p n-y y-x x+2 n x-2 f v$, and thence $2 z \dot{z}=y \dot{y}-2 x \dot{x}+2 n \dot{x}-2 f \dot{v}-2 v \dot{f}$. Now if z is a conftant Quantity, in which Cafe $\mathrm{Q} E$ will coincide with the Tangent Q F , it will be then $-2 y \dot{y}-2 x \dot{x}+2 n \dot{x}=0$, the Rectangle $2 f v$, and therefore its Fluxion intirely vanifhing. But this is the very general Equation, that was determined by the foregoing Method, which is deduced with the fame Eafe from the Suppofition of a conftant Quantity, as before from the Principle of an extream Quantity.
IV. Let A be the Area of a Curve, whofe Abfcifs is x, and Ordinate A Metbod of Squaring fome $x^{m} \sqrt{d x-x}$. . Let B be the Area of a Curve, whofe Abfcifs is the Kinds of fame as the former, but its Ordinate is $x^{m-n} \sqrt{d x-x} x$. Let $\sqrt{d x-x x}$ Curves, by $=y$, the Area will be
$d^{n} B \times \frac{2 m+1}{2 m+4} \times \frac{2 m-1}{2 m+2} \times \frac{2 m-3}{2 m} \times \frac{2 m-5}{2 m-2}, \mathcal{V}^{2 m} .=P$

$-\frac{d}{m+1} \times \frac{2 m+1}{2 m+4} x^{m-2} \quad y=-R$
$-\frac{d^{2}}{m} \times \frac{2 m+1}{2 m+4} \times \frac{2 m-1}{2 m+2} x{ }^{m-3} \quad y=-S$
$-\frac{d^{3}}{m-1} \times \frac{2 m+1}{2 m+4} \times \frac{2 m-1}{2 m+2} \times \frac{2 m-3^{m-4}}{2 m} \times{ }^{3} \quad y=-T ; \mathcal{V}^{2} c$.
Here it is to be obferved, firft, that n is fuppofed to be an integer and affirmative Number. Secondly, that the Quantity $\mathrm{d}{ }^{n} B$, in the Series denoted by P, munt be multiply'd into fo many Terms as there are Units in n. Tbirdly, that fo many of the following Series, denoted by - 2 . $-R,-S, \xi^{2} c$. ought to be taken, as there as Units in n. Now that this may be made plain by an Example or two, I fay, that if $n=1$, then the Area will be

$$
\begin{aligned}
A & =d^{n} B \times \frac{2 m+1}{2 m+4}-\frac{1}{m+2} x^{m-1} y \text {. And if } n=2, \text { then } \\
A & =d^{n} B \times \frac{2 m+1}{2 m+4} \times \frac{2 m-2}{2 m+2}-\frac{1}{m+2} x^{m-1} y \\
& -\frac{d}{m+1} \times \frac{2 m+1}{2 m+4} x^{m-2} y
\end{aligned}
$$

A Metbod of Squaring fome Kinds of Curves.

Corol. 1.] If m be fuppofed equal to any Term of this
Series, $-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2}, \delta^{3} c$.
the Quadrature of the Curve, whofe Ordinate is $x^{m} \sqrt{d x-x x}$, or $2^{m} \sqrt{d x+x x}$ becomes finite, and will be exhibited by our Series. To make this plain by an Example, let the Area of the Curve be fought, whofe Ordinate is $x-\frac{1}{\sqrt{d x}-x x}$. Suppofe this Curve to be compared with the Curve whofe Ordinate is $x-\frac{3}{5} \sqrt{d x-x x}$; becaufe in this Cafe $n=1$, therefore

$$
A=d^{n} B+\frac{2 m+1}{2 m+4}-\frac{1}{m+2}-x^{m-1} y^{3}
$$

But $m=-\frac{1}{2}$, and therefore $2 m+1=0$. So that

$$
A=-\frac{1}{m+2} x^{m \cdots x} y^{3}=-\frac{2 y^{3}}{3 \sqrt{ } x_{3}}
$$

Here it muft be obferved, that the Area thus found will fometimes be deficient from the true Area, and fometimes exceed it by a given Quantity. Now that that Excefs or Defect may become known, let the A rea thus found be fuppos'd to be increafed or diminifhed by a given Quantity q, and then putting $x=0$, let the Area thus increafed or diminifhed be made equal to o. Thus in the prefent Cafe q will be found $=\frac{2}{3} d V d$, and therefore

$$
A=\frac{2}{3} d V d-\frac{2 y^{3}}{3 \sqrt{x^{3}}} .
$$

Corol. 2.] If n is fuppofed equal to any Term of the following Series $3,4,5,6,7, \mathcal{E}^{2}$. the Quadrature of the Curve, whofe Ordinate is $x-n v \overline{d x-x x}$ or $x^{-\infty n} \sqrt{d x+x x}$, becomes finite, and is exhibited by our Series. Let the Area of the Curve be required, whofe Ordinate is $x^{-3} \sqrt{ } \sqrt{d x-x x_{0}}$ Suppofe it to be compared with the Area of the Circle, which may be called A. Then $m=0, n=3$, and therefore $A=P-2-R-S$. But fince the Quantity $2 m$ is infinitely little or nothing, and is found in the Denominator of the third Term by which $d^{\text {s }} B$ is multiply'd ; the Quantity denoted by P becomes infinite, and for the fame Reafon the Quantity denoted by $-S$ becomes infinite; and therefore the Quantities $A,-2,-R$ vanifh. Therefore $P=S$.

A Method of Squaring fome Kinds of Curves.

Now this Equation divided by $\frac{2 m+1}{2 m+4} \times \frac{2 m-1}{2 m+2}$ becomes
$d^{n} B \times \frac{2 m-3}{2 m}=\frac{d d}{m} \quad{ }^{\cdots 3} \quad y^{3} \quad$ or $d^{n} B \times \frac{2 m-3}{2}$
$=d d x^{m-3} y^{3}$. And writing o and 3 for m and n, there arifes

$$
d B \times-\frac{3}{2}=\frac{y^{3}}{x^{3}}, \text { or } B=-\frac{2 y^{3}}{3 d^{3}}
$$

Corol. 3.] If m is fuppos'd equal to any Term of the following Series, $-2,-1,0,1,2,3,4, \mathcal{O}_{\text {c }}$. The Quadrature of the Curve, whofe Ordinate is $x^{m} \sqrt{d} \overline{x-x} x$, depends on the Quadrature of the Circle. But the Area of the Curve, whofe Ordinate is $x^{m} \sqrt{d x+x x^{\prime}}$ depends on the Quadrature of the Hyperbola; and the Relation of that Curve to the Circle or Hyperbola, is exhibited by our Series in finite Terms.

Corol. 4.] If m is expounded by any other Number different from any before affigned, the Curve, whofe Ordinate is $x^{m} \sqrt{d x-x x}$ or $x^{110} \sqrt{d}+x x$, is neither exactly fquared, nor depends on the Circle or Hyperbola, but is reduced to a fimpler Curve by our Series.

Theorem 2.] Let A be the Area of a Curve, whofe Abfcifs is x and Ordinate $\frac{x^{m}}{\sqrt{d x-x x}}$. Let B be the Area of a Curve, whofe Abrcifs is the fame as the former, but its Ordinate is $\frac{x^{m-n}}{\sqrt{d x-x x}}$ Make $\sqrt{d x-x x}$ $=y$ Then

$$
\begin{aligned}
& A=d^{n} B \times \frac{2 m-1}{2 m} \times \frac{2 m-3}{2 m-2} \times \frac{2 m-5}{2 m-4} \times \frac{2 m-7}{2 m-6} G_{0}=P . \\
& \quad-\frac{1}{m} x^{m-1} y=-2 \\
& -\frac{d}{m-1} \times \frac{2 m-1}{2 m} \times \quad y=-R \\
& \text { VOL. IV. }
\end{aligned}
$$

$=\frac{d^{x}}{m-2} \times \frac{2 m-1}{2 m} \times \frac{2 m-3}{2 m-2} x \quad y=-S$
$-\frac{d^{3}}{m-3} \times \frac{2 m-1}{2 m} \times \frac{2 m-3}{2 m-2} \times \frac{2 m-5}{2 m-4} x^{m-4} y=-T, \mathcal{F}^{2} c$.
The Obfervations made upon the firt Theorem obtain here alfo, and likewife in the following.

Corol. 1.] If m is fuppofed equal to any Term of the following Series, $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2}, \xi \odot$. the Quadrature of the Curve, whofe Ordinate is $\frac{x^{m}}{\sqrt{d x-x x}}$ or $\frac{x^{m}}{\sqrt{d x+x x}}$, becomes finite, and is exhibited by this Series.

Corol 2.] If n is fuppofed equal to any Term of the following Series, $1,2,3,4,5,6,7, \mathcal{E}_{6}$. every Curve, whofe Ordinate is $\frac{x^{-n}}{\sqrt{d x+x x}}$ or $\frac{x^{-n}}{\sqrt{d x+x x}}$, is fquared in finite Terms by this Series.

Corol. 3.] If m is expounded by any Term of the following Series, $0,1,2,3,4,5, \Xi c$. the Curve whofe Ordinate is $\frac{x^{m}}{\sqrt{d x-x x}}$ depends on the Quadrature of the Circle. But the Curve whofe Ordinate is
Fig. 7. $\frac{x^{m}}{\sqrt{d x+x x}}$ depends on the Quadrature of the Hyperbola. For if Center C, and Diameter $A B=d$, a Circle $A E B$ is defcrib'd, and $A D=x$ is taken; raife the Perpedicular $D E$, and join $C E$. The Sector $A E C$ divided by $\frac{t}{8} d d$ is equal to the Area of the Curve whofe Ordinate is
Fig. 8. $\frac{x^{\circ}}{\sqrt{d x-x x}}$. After the fame Manner if Center C, and tranfverfe Axis $A B=d$ an equilateral Hyperbola $A E$ is defcribed; let there be taken

A Method of Squaring foome Kinds of Curves.

$A D=x$, let $D E$ be raifed at right Angles, and $C E$ be join'd. The Sector $A C E$ divided by $\frac{1}{8} d d$ is equal to the Area of the Curve whole Ordinate is $\frac{x^{\circ}}{\sqrt{d x+x x}}$.
Corol. 4.] If m be fuppofed equal to any other Number not within the foregoing Limitations, the Curve whofe Ordinate is $\frac{x^{m}}{\sqrt{d x-x} x}$ or $\frac{x^{m}}{\sqrt{d+x x}}$, can neither be exaetly fquared, nor does it depend on the Circle or Hyperbola, but however is reduced to a fimpler Curve.

Tbeor. 3.] Let A be the Area of a Curve whofe Abrcifs is x, and Ordinate $x^{m} \sqrt{r r}-x x$. Let B be the Area of a Curve whofe Abfcifs is the fame x, and Ordinate $x^{m-2 n} \sqrt{r r-x x}$: make $\sqrt{r r-x x}=y$. Then

$$
\begin{aligned}
& A=r^{2 n} B \times \frac{m-1}{m+2} \times \frac{m-3}{m} \times \frac{m-5}{m-2} \times \frac{m-7}{m-4}, \mathcal{G}_{C}=P \\
&-\frac{1}{m+2} x^{m-1} y^{3}=-2 \\
&-\frac{r^{2}}{m} \times \frac{m-1}{m+2} x^{m-3} y^{3}=-R \\
&-\frac{r^{4}}{m-2} \times \frac{m-2}{m+2} \times \frac{m-3}{m} \times y^{m-5}=-S, \delta_{c}
\end{aligned}
$$

Coral. - .] If m is expoumded by any Term of the Series $1,3,5,7$, \mho_{c}. the Qnadrature of the Curve whofe Ordinate is $x^{m} \sqrt{r r-x x_{3}}$ or $x^{m} \sqrt{r r+x x}$, becomes finite, and is exhibited by this Theorem.
Corol. 2.] If n is interpreted by any Term of the following Series,
 $x \rightarrow 2 n v r r+x x$, is fquared exattly by this Theorem。
Corol. 3.] If m is intespreted by any Term of the following series, $-2,0,4,6,8, \mathcal{E}^{2}$. the Quadrature of the Curve whofe Ordi.a:e is D 2

A Metbod of Squaring fome Kinds of Curves.

$x^{*} \sqrt{r r-x}$, depends on the Circle; and the Quadrature of the Curve. whofe Ordinate is $x^{m} \sqrt{r r}+x x$, depends on the Hyperbola.

Corol. 4.] If m is interpreted by any Number differing from thofe afore-mention'd, the Curve whofe Ordinate is $x m \sqrt{r r-x x}$, or $x^{m} \sqrt{r r+x x}$, is neither exactly fquared, nor depends on the Circle or Hyperbola, but is reduced to a fimpler Curve.

Tbeor. 4.] Let A be the Area of a Curve whofe Abfcifs is x, its Ordinate $\frac{x^{m}}{\sqrt{r-x x}}$, and let B be the Area of a Curve whofe Abfcifs alfo. is x, and its Ordinate $\frac{x^{m-2 n}}{\sqrt{r-x x}}$. Then

$$
A=r^{2 n} B \times \frac{m-1}{m} \times \frac{m-3}{m-2} \times \frac{m-5}{m-4} \times \frac{m-7}{m-6}, \mathcal{E}_{6}=P
$$

$$
-\frac{1}{n_{n}} x^{m-1} y=-2
$$

$$
-\frac{r^{2}}{m-2} \times \frac{m-1}{m} \times \sqrt{m--3} y=-R
$$

$$
-\frac{r^{+}}{m-4} \times \frac{m-1}{m} \times \frac{m-3}{m-2} x^{m \cdots-5} y=-S
$$

$$
-\frac{r^{6}}{m-6} \times \frac{m-1}{m} \times \frac{m-3}{m-2} \times \frac{m-5}{m-4} \times \quad y=-\tau, \exists_{c}^{m-7}
$$

Corol. 1.] If m be expounded by any Term of the following Series, 1, $3,5,7,9, \mathrm{EF}_{6}$, the Quadrature of the Curve whofe Ordinate is $\frac{x^{m}}{\sqrt{r-x x}}$, or $\frac{x^{m}}{\sqrt{x+x x}}$ is had by this Theorem in finite Terms.

- Corol 2.] If n is expounded by any Term in the following Series,

A Metbod of Squaring fome Kinds of Curves.

1, 2, 3, 4, 5, Efc. the Curve whofe Ordinate is $\frac{x^{-2 n}}{\sqrt{r-x x}}$ or $\frac{x^{-2 n}}{\sqrt{r r+x x}}$ is perfectly fquared by this Theorem.

Corol. 3.] If m is expounded by any Term in the following Series, $0,2,4,6,8, \delta \delta^{c}$. the Quadrature of the Curve whofe Ordinate is $\frac{x}{\sqrt{r-x x}}$ depends on the Quadrature of the Circle. For if Center C, Radius $C A=r$, a Circle $A E G$ is defcribed, make $D E$ perpendicular to $C D$, and join $C E$; the Sector $C A E$ divided by $\frac{1}{2} r r$ is equal to the Area of a Curve whofe Ordinate is $\frac{x^{0}}{\sqrt{r r-x x}}$. In the fame Manner if C be the Center, $C A=r$ the tranfverfe Semiaxis of an equilateral Hy perbola $E A M$; draw $C F=x$ perpendicular to $A C$, draw $F E$ parallel to the Axis till it meets the Hyperbola in E, and join C E. The Hyperbolical Sector $A C E$ divided by $\frac{1}{2} r r$ is equal to the Area of a Curve whofe Ordinate is $\frac{x^{0}}{\sqrt{r r+x x}}$.

Corol. 4.] If m is expounded by any Number different from the foregoing, the Curve whofe Ordinate is $\frac{x^{m}}{\sqrt{r r-x x}}$, or $\frac{x^{m}}{\sqrt{r+x}=x}$, is neither fquared exactly, nor does it depend on the Circle or Hyperbola, but is reduced to a fimpler Curve.

Theor. 5.] Let A be the Area of a Curve whofe Abfcifs is x, its Ordinate $\frac{x^{m}}{d-x}$; and let B be the Area of a Curve whofe $A b f i f s$ is alfo x, and its Ordinate $\frac{x^{m-n}}{d-x}$. Then the Area will be

$$
d_{n} B-\frac{x^{m}}{m}-\frac{d^{m--1}}{m-1}-\frac{d^{2} x^{m-z}}{m-2}, \delta_{c}
$$

Let the Ordinate be $\frac{x^{m}}{d+x}$; the Area will be

Corol.] If m is expounded by any Term of the following Series, $0,1,2,3,4,5, \xi^{3} c_{\text {. the }}$ Quadrature of the Curve whofe Ordinate is $\frac{x^{m}}{d-x}$, or $\frac{x^{m}}{d+x}$, depends on the Quadrature of the Hyperbola
Fig. 9. For drawing $D E$ and $E F$ at right Angles, take $E G=d$, draw G II perpendicular and equal to $E G$. Within the Afymptotes $D E, E F$, let an Hyperbola be ciefcrib'd, paffing through. H, then take $G K=x$ towards E in the firt Cafe, and towards F in the fecond, and draw the Ordinate $K L$. The Area $H G K L$, divided by $d d$, is equal to the Area of the Curve whofe Ordinate is $\frac{x^{\circ}}{d-x}$ or $\frac{x^{\circ}}{d+x}$. Hence the Solid generated by a Portion of the Cifoid, revolving about the Diameter of its generating Circle, is exhibited in finite Ierms, the Quadrature of the Hyperbola being granted.

Tbeor. 6.] Let A be the Area of a Curve whofe Abfcifs is x, its Ordinate $\frac{\alpha^{m}}{r r+x x}$; let B be the Area of a Curve whofe Abfcifs alfo is x, and its Ordinate $\frac{x^{m-2 \pi}}{r r+x x}$ The Area will be $A=\frac{x^{m-1}}{m-1}-\frac{r^{2} x^{m-3}}{m-3}+\frac{r^{4} x^{m \cdot-}}{m-5}, \xi_{c} c$. $r^{2 n} B$.

Corol.] If m be expounded by any Term of the following Series, $0,2,4,6,8, \mathcal{V}^{\circ}$. the Quadrature of the Curve whofe Ordinate is $\frac{x^{m}}{r r+x x}$ depends on the Rectification of the circular Arch. For if Center C, Radius $C B=r$ a Circle $A E G$ be defcrib'd ; draw the Tangent $A K=x$, join $C K$ meeting the Periphery in E. Then the Arch $A E$ divided by $r r$ is equal to the Area of the Curve whofe Ordinate is

A Metbod of Squaring forme Kinds of Curves.

A General Corollary to thele Six Theorems.

Any Mechanical Curve, whofe Quadrature depends upon any of the infinite Number of Curves, the Ordinates of which can acquire any of the following Forms,

$$
x^{m} \sqrt{d x \pm x x}, \frac{x^{m}}{\sqrt{d x \pm x x}}, x^{m} \sqrt{r r \pm x x}, \frac{x^{m}}{\sqrt{r r \pm x x}}
$$

$\frac{x^{m}}{d \pm x}, \frac{x^{m}}{r^{m} \pm x}$ may be fquared by thefe Series. We fhall fhow this by one Example.

Suppofing that the Cube of the circular Arch, correfponding to the verfed Sine, be made the Ordinate of a Curve, whofe Abfcifs is the fame verfed Sine; to find the Area of that Curve.

Let the Abicifs be x, the circular Arch v; then the Fluxion of the Area will be $v^{3} \dot{x}$.

Let the Area be $v^{3} x-q$. Then $v^{3} \dot{x}+3 v^{2} \dot{v} x-\dot{q}=v^{3} \dot{x}$, whence $\dot{q}=3 v^{2} v x$. But $\dot{v}=\frac{d \dot{x}}{2 v \overline{d x-x x}}$, and therefore $\dot{q}=\frac{3 d v^{2} x \dot{x}}{2 v d x-x \dot{x}}$. But by Theorem the $2 d, \frac{x \dot{x}}{\sqrt{d x-x x}}=\frac{d \dot{x}}{2 \sqrt{d x-x x}}-\dot{y}=\dot{v}-\dot{y}$.

So that $\dot{q}=\frac{3}{2} d v^{2} \dot{v}-\frac{3}{2} d v^{2} \dot{y}$, therefore $q=\frac{1}{2} d v^{3}-$ Fl. $\frac{3}{2} d v^{2} \dot{y}$.
Therefore we are come to this, that we muft find the flowing Qualntity of $\frac{3}{2} d v^{2} \dot{y}$.
Let this Quantity be $\frac{3}{2} d v^{2} y-r$.
Therefore $\frac{3}{2} d v^{2} \dot{y}+3 d v \dot{v} y-\dot{r}=\frac{3}{2} d v^{2} \dot{y}$.
Therefore $\dot{r}=3 d v \dot{v} y=\frac{3}{2} d^{2} v \dot{x}$. Make $r=\frac{3}{2} d^{2} v x-s$,
Therefore $\frac{3}{2} d^{2} v \dot{x}=\frac{3}{2} d^{2} v \dot{x}+\frac{3}{2} d^{2} x \dot{v}-\dot{s}$.
So that $\dot{s}=\frac{3}{2} d^{2} v \dot{x}=\frac{3 d^{3} x \dot{x}}{4 V d x-x \dot{x}}=\frac{3}{4} d^{3} \dot{v}-\frac{3}{4} d^{3} \dot{y}$,
by the fecond Theorem.
Therefore $s=\frac{3}{4} d^{3} v-\frac{3}{4} d^{3} y$. So that the Area required is $v^{3} x-\frac{1}{2}$ $d v^{3}+\frac{3}{2} d v^{2} y-\frac{3}{2} d^{2} v x+\frac{3}{4} d^{3} v-\frac{3}{4} d^{3} y_{0}$ produced by the fame Rotation, the Rectification of Curves, and the Centers of Gravity of all thefe, depend upon the Quadrature of Curves; there will be eafily computed if they depend upon any of thefe Curves.

After I had put thefe Theorems into Form, and had fhew'd them to the great Newton, as the fupreme Arbiter of thefe Matters; he was pleas'd to produce to me his own Manufcripts, by which it appear'd, that he had long been in Poffefion of a Method, by which, when any Trinomial Equation was given, expreffing the Nature of a Curve, he could either fquare the fame, or reduce it to fome finpler Curve.
I queftion not but thofe learned Men, whofe Writings in the Journals of Leipfick and elfewhere, have much contributed to the Improvement of the Mathematical Sciences; thofe Men (I fay) have Methods akin to thefe, and therefore I affume nothing to myfelf, but that I have found thefe Theorems, not knowing whether they may already be extant ; and that I have reduc'd them to fo eafy a Form, that all the Calculation requir'd is perform'd as it were by Intuition. Before I finifh writing this, I think it may not be amifs, if I fubjoin upon this Occafion a few Words in Anfwer to the Animadverfions of the learned -Offinding the Mr. Leibnitz, upon a certain Series publifh'd * by me, for finding the Root of an ir- Root of an infinite Equation. That famous Man is of Opinion, that finite Equation. Vid. sup. Vol. J. C. . . . x xxii. that Series is not fulficiently general, as not reaching the Cafes in which the Quantities z and y are multiply'd into one another; and therefore he fubftitutes another Series for mine, which he afferts to be infinitely more general than mine. Now I imagine he was led into this fmall Miftake, becaufe he took the Quantities $a, b, c, d, छ^{\circ} c$. for given Quantities, whereas they may be made Ufe of as given or as indeterminate Quantities at Pleafure. Let me produce one Example, by which it will appear, that our Series includes all Cafes whatever. Let the Equation be $n y z-z^{3}=y^{3}$. In our Theorem make $a=n y, b=0, c=$ - $1, g=0, b=0, i=1$. Or which is better, make $g=y y, b=0$, $i=0$. In either Cafe it will be $z=\frac{y^{2}}{n}+\frac{y^{5}}{n^{4}}+\frac{3 y^{8}}{n^{7}}+\frac{12 y^{11}}{n^{10}}$, E\%.

The Quadra. V. I have looked a little farther into that Curve which fell lately unture of a
Curre of the third Order, communicated $b y$ Mr. Ab. de Moivre, n . 345. p. 329. der my Confideration. It is not the Foliate as I did at firft imagine, but I believe it ought not to make a Species diftinct from it. $A E B$ is the Curve I thus defcribe. Let $A B$ and $B K$ be perpendicular to each other. From the Point A draw $A R$ cutting $B K$ in R, and make $R E=B R$, the Point E belongs to the Curve. Draw $B C$ making an Angle of 45 grad . with $A B$, this Line $B C$ touches the Curve in B; from the Point E draw $E D$ perpendicular to $B C$, and calling $B D, x ; D E$,

Fig. 10.

Curve, is $x^{3}+x x y+x y y+y^{3}=n x y$ or $\frac{x^{4}-y^{4}}{x-y}=n x y$. Taking $B G=A B$, and drawing $G P$ perpendicular to $B G, P G$ is an A/ymptote. In the Foliate the Equation is $x^{3}+y^{3}=\frac{1}{2} n x y$, in which the two Terms $x x y+x y y$ of the former Equation are wanting; and its Afymptote is diftant from B by $\frac{1}{3} B A$. Again, draw $E F$ perpendicular to $A B$: let $B F$ be called z and $F E$, v; the Equation belonging to the Curve $A E B$ is $v v=\frac{a z z-z^{3}}{a+z}$. In the Foliate the Equation is $v v=\frac{a z z-z^{3}}{a+3 z}$. From thefe two laft Equations, it feems that thefe Curves differ no miore from one another than the Circle from the Ellipfis.

The Quadrature of the Curve here defcribed has fomething of Simplicity, with which I was well pleafed. With the Radius $B A$ and Center B delcribe a Circle $A K G$, let the Square $H P S \mathcal{T}$ circumfcribe it, fo that $H P$ be parallel to $A G$; prolong $F E$ till it meet the Circumference of the Circle in M, and through M draw L M Q parallel to $H P$. The Area $B F E$ is equal to the Area $K H L M$, comprehended by $K H$, $H L, L, M$ and the $\operatorname{Arc} K M$. And the Area $B f e$ is equal to the Area $K m L H$ or $K M P$ 2. Therefore if $B F$ and $B f$ are equal, the two Areas $B F E, B f e$ taken together are equal to the Rectangle $H 2$, and therefore the whole Space comprehended by $B E A X B \in \Upsilon G Z$ (fuppofing Y and Z to be at an infinite Diftance) is equal to the circumferib'd Square $H S$.
N. B. This Quadrature is eafily demonfrated from the Equation: for by it $\mathrm{a}+\mathrm{z}: \mathrm{a}-\mathrm{z}:: \mathrm{zz}: \mathrm{vv}$, that is, AF:EF::MF:FB, and $f \circ \varphi F$ the Fluxion of A F to L1 the Fluxion of M F. Hence the Areola EF Qe will be always equal to the Areola $\mathrm{M} \mathrm{L} 1 \mu$, and therefore the Area A E F alroays equal to the Area M A L.

Hence it appears tbat this Curve requires the Quadrature of the Circle to Square it; whereas the Foliate is exactly quadrable, the whole Leaf thereof being but one Third of the Square of A B, which in this is above three Sevenths of the fame. Again in our Curve, the greatef Breadth is when the Point F divides the Line A B in extreme and mean Proportion: Whereas in the Foliate it is when A B is triple in Power to B F. And the greateft E F or Ordinate in the Foliate, is to that of our Curve nearly as 3 to 4 , or exaitly as $\sqrt{\frac{2}{3} \sqrt{\frac{1}{3}}-\frac{1}{3}}$ to $\sqrt{5 \sqrt{ } \frac{5}{4}-5 \frac{1}{2} \text {. }}$

But fill thefe Differences are not enougb to make them two diftinet Species, they being both defined by a like Equation, if the Afymptote S G P be saken for the Diameter. And they are both comprebended under the fortieth

Vol. IV.
E
Kind

Kind of the Curves of the third Order, as they ftand enumerated by Sir Ifaac Newton, in bis incomparable Treatife on that Subjeit.

1 gencral Method to deter-mining the Quadrature of Curvilinear Figures is fo well approved mine the Qua- by D. dratures of Fi- by D. D. Leibnitz and Cbs Co sures by Mr. unlike the Method found by himfelf, and the other conjectures it has J. Craig. n. fome Affinity with the Methods of Mr. Neroton. He himfelf has pur284. p. 1346. fued the fame with fuch Succefs, that the inverfe Method of Fluxions has been vaftly improved by him in a Book, which he has dedicated to D. Arcbibald Pitcairn, the Ornament of our Age and Country. But many neceffary Things yet remain to be difcover'd, for the Perfection of this inverfe Method. I fhall now deliver fome Reafons in fhort, which give me Occafion to think, that what remains cannot be obtain'd by any Methods yet in Uie.
And firft, when from the given Relation between z and y, the Fluent of $z y$ is required, all thofe Methods demand, that z may be exprefs'd by y and given Quantities; which yet cannot be done, when the Equation involving that Relation afcends beyond a Cubic or Biquadratic. For here the vulgar Algebra ftops, to the great Reproach of that Science. Secondly, tho' a general Rule were known for finding the Roots of Equations of any Degree, yet it would be wholly ufelef's in this inverfe Method. For the Root z would be involved in fo many complicated Surds, that by no Art hitherto known we could return from the Fluxion to the Fluent. For thefe Reafons I have attempted the Thing another Way, and with fome Succefs; a Specimen of which I fhall now impart to the Publick.

Secition I.] Let the Equation expreffing the Relation between the Ordinate z and the Abfcifs y, be $z^{m}+a y^{n}=b z^{r} y^{e}$, in which the Exponents m, n, e, r, denote any Numbers, integer or fracted, affirmative or negative. Make $r-n=c$. It will be

$m \times 2 c+1+n \times 2 e+1$

Concerning this Series the following Things are to be obferved. (1) The Capitals $B, C, D, \mathcal{\delta}^{\circ}$ c. denote the Coefficients of the Terms that immediately precede. (2) It exhibits the Quadratures of all quadrable Figures, whofe Curves are defined by an Equation of three Terms.
(3) Now they are always quadrable when $\frac{m r-r}{m n-r m-e n}$ is an integer
and affirmative Number, which we may call l. (4) Particularly $l+1$ gives the Number of Terms of the Series, to be taken from the Beginning, that conftitute the required Area. (5) If we fuppofe $e=0$, this Series will be changed into the famous Theorem of Newton for the common Binomial, which Theorem is therefore a particular Cafe of this Series. (6) When Application is made of this Series to any particular Figure, thefe Rules are to be obferved. Firf, let the Equation defining the given Curve be reduced to the general Form, and by comparing the particular Equation with the general, let the Coefficients a and b be found, as alfo the Exponents m, n, e, r. Secondhy, if the Exponents thus determined do not make l an integer affirmative Number, (according to the Condition enjoin'd in Not. 3.) then another Term of the particular Equation is to be freed from the Quantity z, and if the Exponents again determined do not give the Condition of Quadrability required, then the other Term is to be freed from the Quantity z, For every one of the three Terms, conftituting the given Equation, cannot by any Means be freed from the Quantity z. Tbirdly, if the aforefaid Condition of Quadrability does not belong to the Equation, when managed according to the foregoing Rule, then by the Series the Complement of the Area, E 2
or Fluent of $y \dot{z}$, muft be fought; which being found, the Area required will become known. For it is well known, that $z y$ - flu:y $z=\mathrm{flu}: z \dot{y}$. And that the Complement may be obtain'd by the Series without any Confufion, in the given Equation defining the particular Curve, for z we may write Y, and for y may be written Z. And this Change being made of the Ordinate into the Abfcifs, and of the Abfcifs into the Ordinate, the Equation may be managed according to the Precepts of the fecond Rule, till the Condition of Quadrability is known, or till it appears that no fuch Condition can be had.

Example 1.] Let $z^{3}+y^{3}=b z y$. Here becaufe $m=3, n=3$, $e=1, r=1, a=1$, therefore $l=1$, and $l+1=2$. Then according to Not. 4. the two firft Terms of the Series give the Area $=\frac{1}{2} z y-\frac{1}{6}$ $b z^{2} y^{-1}$.

Example 2.] Let $z^{7}+a y^{3}=b z y^{3}$. Then $m=7, n=3, \varepsilon=1$, $r=2$; which make $l=2$. Therefore by Not 4 . the three firit Terms of the Series give the

$$
\text { Area }=\frac{7}{10} z y-\frac{b}{15 a} z^{2}-\frac{2 b^{2}}{15 a^{2}} z^{3} y \cdots
$$

Example 3.] Let $z^{3}+k y^{5}=b z^{-2} y^{11}$. Here $m=r, n=5, e=2$, $r=11$; but becaufe thefe do not make l an integer affirmative Number; therefore by the fecond Rule I free the Term $b z^{-2} y^{11}$ from the Quantity z. Then the Equation becomes $z^{5}-b y^{1 x}=-k z^{2} y^{2}$, where $a=-b, b=-k, m=5, n=11 e=2, r=e$; which make $l=1$; whence the

$$
\text { Ârea }=\frac{5}{16} z y-\frac{5}{16 b} z^{3} y-5
$$

Example 4.] Let $z^{2}-b y^{2}=-k z^{2} y^{2}$. Here $m=2, n=2$, $e=2, r=2$; which do not make l an integer affirmative Number. Therefore I free the Term - $k z^{2} y^{2}$ from the Quantity z, and then $x^{0}+k y^{2}=b z^{2} y^{2}$. Here $a=k, b=b, m=0, n=2, e=-2$. which make $l=\mathrm{r}$. Therefore the

$$
\text { Area }=\frac{b}{k} z^{-1} y
$$

Example 5.] Let $z^{2}=\frac{4 g^{2}}{b} y^{6}=-\frac{g}{b} z^{2} y^{4} ;$ where $m=2, n=6$,
$e=2, r=4$; which do not make l an integer affirmative Number. And the fame Thing happens when each of the other Terms is freed from z. Therefore, according to the third Rule, I feek the Complement. Then, as before prefcrib'd, making $z=Y$, and $y=Z$, the given Equation becomes
$r^{2}-\frac{4 g^{2}}{b} \quad z^{6}=-\frac{g}{b} \quad z^{4} \quad r^{2 ;}$
which by Rule I , reduced to the general Form will ftand thus,
$Z^{6}-\frac{b}{4 g^{2}} Y^{2}=-\frac{1}{4 g} Z^{4} \quad r^{2}$. Here $m=6, n=2, e=4$,
$r=2$; which do not make l an integer affirmative Number. Therefore by Rule 2, I free the laft Term from Z; then

$$
z^{2}-\frac{l}{4 g} \quad r^{2}=\frac{b}{4 g^{2}} \quad z^{-4} \quad r^{2} . \quad \text { Here } m=2, n=2, e=-4,
$$

$r=2$; whence $l=1, a=-\frac{1}{4 g}, b=\frac{b}{4 g^{2}}$; whence the Complement of the Area required is
$\frac{1}{\div} Z X-\frac{b}{2 g} Z^{-3} \quad r$, or $\frac{1}{2} z y-\frac{b}{2 g} z y-3$. And therefore the Area required is $F l u: z \dot{y}=\frac{1}{2} z y+\frac{b}{2 g} z y-3$.
Section 2.] Let $z^{m}+a y^{n}=b z^{2 e} y^{2 c+n}+f z^{e} y^{c+n}$ be an Equation, expreffing the Relation between the Ordinate z and the Abfrifs y. The Area will be

$$
A z y+B z^{e+1} y^{c+1}+C z^{2 e+1} y^{26+1}+
$$

$D z^{3 e+1} y^{3^{c+1}}+E z^{4 e+1} y^{4 c+1}, \mathcal{E}^{c}$.
Making here $2 c+n=r, c+n=s$, it will be $A=\frac{n}{m+n}$;

$$
B=\frac{m-e+s \times A+e-m}{m \times c+1+n \times \bar{e}+1} \times \frac{f}{a}
$$

A Specimen of a Gmond Motiod to

$$
m a \times 5 c+1+n a \times 5 e+1
$$

Concerning this Series, the Progreffion of which may almoft be perceived by Infpection, the following Things are to be obferved. (I) That thofe Figures are quadrable, whofe Curves are defined by the foregoing Equation, when the Exponents m, n, e, c, and the Coefficients a, b, f, have the Relations here affigned; that is, when $\frac{\overline{2 c+m} \times \overline{n-2 e}}{-c m-e n}$ is an integer and affirmative Number, which we may call l : And l being greater than 2, when the Relation of the Coefficients is as follows.

Here U and P denote the Coefficients of two Terms, which immediately precede the laft Term of the Area required. That is, U is the Coefficient of the Term next to the laft, and P is the Coefficient of the

Term, remote from the laft. As if $F z^{5^{e}+1} y^{5 c+1}$ were the laft Term of the Area required, then U would denote E, and P would denote D. (2) That laft Term of the Area required is known from the Value of the Number l; for here alfo $l+\mathrm{I}$ gives the Number of the Terms of the Series, which are to be taken from the Beginning, which conflitute the Area required. (3) If $l=1$, then the Relation of the Coefficients muft be this :

If $l=2$, the Relation mult be this :

A Specimen of a General Metbod to

$m \times 2 c+1+n \times 2 c+1$
Section 3.] Let $z^{m}=a y+b z^{n} y^{c+n}+f z^{2 e} y^{2 c+n}+$
$g z^{3^{e}} y^{3^{c+n}}, \delta^{c} c$. be the Equation expreffing the Relation between the Ordinate z and the Abfcifs y, and confifting of as many Terms as you pleafe; the Area will be

$$
\begin{aligned}
& A z y+B z^{e+1} y^{c+1}+C z^{2 e+1} y^{2 c+1}+ \\
& D z^{3 c+1} y^{3 c+1}+E z^{4 e+1} y^{4 c+1}, E^{c} c . \text { which (if }
\end{aligned}
$$

I miftake not) is no contemptible Theorem. The Coefficients A, B, $C, D, E, \& x c$. are found by a very eafy Calculation, as alfo the Conditions of Quadrability, and how many Terms of the Series the Area requires. The Number of thefe Conditions increales, with the Number of the Terms of which the Equation confifts, which deffines the Relation of z and y. And particularly, if that Number of Terms is called N, then $N-2$ will be the Number of the Conditions of Quadrability; one of which fhews the Relation of the Exponents m, n, e, c, when

$$
\frac{N c-2 c+2 e-N e+n+n}{-c m-e n}
$$

is an integer and affirmative Number, which we call l. The other Conditions regard the Coefficients $a, b, f, g, b, \& c$. And laftly, $l+\mathrm{I}$ gives the Number of the Terms of the Series, to be taken from the Beginning, which conftitute the Area required.

Corol.] From this general Series, a Series may be deduced, which Thall exhibit the Quadratures of Figures, whofe Curves are defined by an Equation confifting of any Terms, which conftitute the general Equation of the third Section. For to obtain this there is Need only to compute a Series for an Equation confifting of fo many Terms of the general Equation taken from the Beginning, as the Equation defining the Curves includes Terms. - Then from the Values of the Quantities A, $B, C, \& c c$. the Coefficients $b, f, g_{2} \& x c$. may be eliminated, which do not belong
belong to the Equation propofed. The others will give the Area required. This will appear by an Example.

Section 4.] Let $z^{m}=a y^{n}+b z^{e} y^{c+n}+g z^{3 e} y^{3 c+n}$ be an Equation expreffing the Relation between z and y. Now becaufe
$z^{m}=a y^{n}+b z^{e y^{c+n}+f z^{2 e} y^{2 c+n}+g z^{3 e} y^{3 c+n}, n}$
is that Part of the Equation which includes the given Equation, taking the Terms in Order from the Beginning, which hereafter (for Brevity Sake) I will call the compleat Equation : Therefore the Areas of the Figures, whofe Curves are defined by the compleat Equation, will be
$A z y+B z^{e+1} y^{c+1}+C z^{2 e+1} y^{2 c+1}+$
$D z^{3^{c+1}} y^{3^{c+1}}+E z^{4^{e}+1} y^{4 c+1}+F z^{5^{e}+1} y^{5^{c+1}} \underbrace{c} c$.
Here the Coefficients a, b, f, g, enter the Values of the Quantities B, C, $D, E, F, 8 \tau c$. If therefore in thefe Values we put every where $f=0$, (be-

$$
2 e \quad 2 c+n
$$

caufe $f z \quad y \quad$ does not enter the given Equation) we fhall have the Values of the Quantities $A, B, C, D, E, \& c$. which being fubftituted in the Series will give the Areas required. Now by the Calculation I have found that

$$
A=\frac{m}{m+n} . \quad B=\frac{c-m-c-n \times A+m-c}{m \times c+1+n \times e-1} \times \frac{b}{a}
$$

$\underline{-g B+m-e \times 3^{c}+1+c+n \times 3 e+1 \times-b D}$
$+n a \times 4^{e}+1$

$\frac{-g C+m-e \times 4 c+1+c+n \times 4 e+1 \times-b E}{+n a \times 5 \overline{5^{e+1}}}$ $G=\frac{\overline{m-3} e \times \overline{3 c+1}+3 \overline{c+n} \times \overline{3 c+1} \times}{m a \times \overline{6 c+1}}$

$$
=g D+m-e \times 5 c+1+c+n \times 5 e+1 \times-b F
$$

$$
+x a \times \overline{6 e+1}
$$

From hence appears the Progrefion of the reft in infinitum. And thus will be had a Series exhibiting the Quadratures of all the Figures, whore Curves are defined by this Equation of four Terms,

$$
z^{m}=6 y^{n}+b z^{e} y^{c+n}+g z^{3 e} y^{3 c+n}
$$

And it mult be obferved, that the Conditions of Quadrability, and the Number of the Terms of the Series that conftitute any Area fought, are the fame with the Conditions of Quadrability, and Number of the Terms, which agree to the Figures whofe Curves are defined by compleat Equations.

Corol.] Befides thefe two Series in $\$.2$ and 4 for Figures of four Terms, in the fame Manner infinite other Series may be computed for other Cafes of Figures of four Terms, which is alfo to be underftood of all other Figures, whofe Curves are defined by Equations confifting of any Number of Terms.
I have not Time at prefent to give a minute Defcription of the Me thod, by which I arrive at thefe Series; yet to give fome fhort Account of it perhaps may not be amifs. I affume a Series compofed alike of z and y, fuch as this following.

$$
A z y+B z^{p} y^{q}+C z^{s} y^{b}+D z^{l k}, \text { scc. }=\text { Fluent of } z \dot{y} ;
$$

of which all the Terms except the firt have general Exponents. Then I form an Equation between two Values of the Quantity \dot{z}, one of which is derived from this Series, and the other is eafily found by the direct Method of Fluxions, from the Equation exhibiting the Relation between z and y. From the Terms of this Equation duly reduced, firft I determine the general Exponents $p, q, g, b, l, k, \& c$. and then the Coefficients $A, B, C, 8 r c$. And if there are more Comparifons than what are fufficient for determining thefe Coefficients, from the reft I deduce the Conditions of Quadrability. If you proceed the right Way, the Calculation will be very eafy; and I have many Rules relating hereto, which perhaps I may give another Time: As alfo the Ufe of this Method in finding finite irrational Quadratures, when rational ones cannot be had. For the whole Affair is now in my Power.
VII. The Solution of a Problem propoled by Mr. Jo. Bernoulli, in a French fournal, Feb. 1703.
Problem.] A Geometrical Curve being propofed, to find others T_{0} find other without Number which are equal to it in Length.

Solution. Let the Co-ordinates of the given Curve be w, s, and thofe of the Curve required be $x y$. Then from the Condition of the Problem it will be $\dot{w} \dot{w}+\ddot{s}=\dot{x} \dot{x}+\dot{y} \dot{y}$. Let us fuppofe $\dot{x}=\dot{w}-m \dot{z}$, then it

Curves equal
in Length to
any given Geometrical Curve, by Mr. .Craig, n. 289. p. 1527.
will be $\dot{y}=\sqrt{\dot{s}^{2}+2 m \dot{w} \dot{z}-m^{2}} \dot{z^{2}}$. In this Equation inftead of \dot{s} let its Value be fubitituted and expreffed by w, \dot{w}, and determinate Quantities; and for \dot{z} let fuch a Value be affumed, compofed of w, w, and determinate Quantities, as that the Fluents of \dot{x} and \dot{y} may be found. Thus x and y, the Co-ordinates of the Curve fought, will be had. $2 . E$. I.

Example 1.] To find a Curve equal to the Parabolic Line. Let 2 a be the latus rectum of the Parabola. Then $2 a s=w^{2}$, or $s=\frac{w^{2}}{2 a}$ whence $\dot{s}=\frac{w \dot{w}}{a}=a^{-1} w \dot{w}$, and $\dot{s}^{2}=a^{-2} w^{2} \dot{w}^{2}$, and therefore $\dot{y}=$ $\sqrt{a^{-2} w^{2} w^{2}+2 m w \dot{z}-m^{2} \dot{z}^{2}}$. That the Fluent of this may $b c$ found, affume $m \dot{z}=\frac{w^{2} \dot{w}}{a^{2}}$, whence $\dot{x}=\dot{w}-a^{-2} w^{2} \dot{w}$, and $\dot{y}=$ $\sqrt{3 a^{-2} w^{2} w^{2}-a^{-4} w^{4} w^{2}}=w \sqrt{3 a^{-2} w^{2}-a^{-4} w^{4}}$. Now the Fluents of thefe, by Methods already known, will be found to be $x=w$ $-\frac{w^{3}}{3 a^{2}}$, and $y=\frac{w^{2}-3 a^{2}}{3 a^{2}} \sqrt{3 a^{2}-w^{2}}$.

Example 2.] To find a Curve equal to the Circular Arch. Let a be the Radius of the Circle ; then 'tis $s=\sqrt{a^{2}-w^{2}}$; whence $\dot{s}^{2}=$ $\frac{w^{2} w^{2}}{a^{2}-w^{2}}$, and therefore $\dot{y}=\sqrt{\frac{w^{2} w^{2}}{a^{2}-w^{2}}+2 m \dot{w} \dot{z}-m^{2} z^{2}}$. That the Fluent of this may be found, let us affume $m \dot{z}=\frac{4 w^{2} \dot{\psi}}{a^{2}}$, and therefore $\dot{x}=\dot{w}-\frac{4 w^{2}}{a^{2}}$, and $\dot{y}=\frac{-3 a^{2} w+4 w^{3}}{a^{2} \sqrt{a^{2}-w^{2}}} \times \dot{w}$. Now the Fluents of thefe are $x=w-\frac{4 w^{3}}{3 a^{2}}$, and $y=\frac{a^{2}-4 w^{2}}{3 a^{2}} \sqrt{a^{2}-w^{2}}$.

Example 3.] To find a Curve equal to that of an Ellipfis. Let $2 r$ be the latus rectum, a the tranfverfe Axis. Then $s=\frac{r \sqrt{a^{2}-w^{2}}}{a}$, whence $\dot{s}^{2}=\frac{r^{2} w^{2} \dot{w^{2}}}{a^{4}-a^{2} w^{2}}$, and therefore $\dot{y}=\sqrt{\frac{r^{2} w^{2}}{a^{4}-a^{2}} w^{2}}+2 m \dot{w^{2}} \dot{z}-m^{2} \dot{z}^{2}$. That the Fluent may be had, make $m \dot{z}=\frac{2 a+2 r}{a^{3}} w^{2} \dot{w}$; whence \dot{x} $=\dot{w}-\frac{2 a+2 r}{a^{3}} w^{2} \dot{w}$, and $\dot{y}=\dot{w} x$
$\sqrt{\frac{r^{2} w^{2}}{a^{4}-a^{2}}+w^{2}}+\frac{4 a+4 r}{a^{3}} w^{2}+\frac{\overline{2 a+2 r})^{2}}{-a^{6}} w^{4}$; the Fluents of which, to be found by known Methods, are $x=w-\frac{2 a+2 r}{3^{a^{3}}} w^{3}$, and $y=$ $\frac{2 a^{3}-r a^{2}-2 a w^{2}-2 r w^{2}}{3 a^{2}} \sqrt{a^{2}-w^{2}}$.
Example 4.] To find a Curve equal to the Cubical Parabola, whofe Equation is $3 a^{2} s=w^{3}$. Thence $\dot{s}^{2}=\frac{w^{4} \dot{w^{2}}}{a^{2}}$, and therefore $\dot{y}=$ $\sqrt{a^{-4} w^{4} \dot{w^{2}}+2 m \dot{w} \dot{z}-m^{2} \dot{z}^{2}}$. Now in order to find a Fluent, make $m \dot{z}=\frac{w^{2} \dot{w}}{2 a^{2}}$. Hence $\dot{x}=\dot{w}-\frac{w^{2} \dot{w}}{2 a^{2}}$, and $\dot{y}=\frac{w \dot{w}}{2 a} \sqrt{3 w^{2}+4 a^{2}}$.
The Fluents of thefe are $x=w-\frac{w 3}{6 a^{2}}$, and $y=\frac{1}{18} \times \frac{}{3 a^{2}}+\left.4 a^{2}\right|^{\frac{3}{3}}$
$=\overline{\frac{w^{2}}{6 a}+\frac{2}{9}} a \times \sqrt{3 w^{2}+4 a^{2}}$.
From other infinite Values of the Quantity $m \dot{z}$ rightly affumed, may infinite Curves be derived, which are equal to the given Curve. And it may be obferved, that this Problem has fome Kind of Affinity with a certain Problem of Diophantus. His Problem is, to divide the Sum of two Squares into two other Squares, having their Sides rational. And Bernoulli's Problem is, to divide the Sum of two Squares into two other Squares, the Fluents of whofe Sides may be found. As the Solution of of Diophantus's Problem depends only on the vulgar Algebra, fo the Solution of Bernoulli's Problem requires only the common inverie Method of Fluxions. The Artifice of each confifts in a due Affumption of the Sides required ; that of Diopbantus that the Sides may be rational, that of Berroulli that the Fluents of the Sides may be found.
VIII. The Circle, Ellipfis and Hyperbola being not geometrically qua- A new Quadrable (as infinite others) there have been two Ways made ufe of to dratrix to the find their Area's. By Converging Series, whereby Approaches are made Hyperbola, nearer and nearer, according to the Exactnefs defired. 2. By 2uadra- by Mr. Perko, trices, that is, mechanical Curves, which determine the Length of cer- 2253. tain Lines, whofe Squares or Rectangles give the Area of the Figure defired. Of this Sort is the old Quadratrix of Dinoftratus, by which the Circle and Ellipfe are fquared; and another Sort (for the fame Purpofe)

Vid. fupra, V. 1. C. 1. S. VII.

Fig. 11.

The Conffruction and Properties of

I inferted in the Tranfariions about five Years ago. Since that, having found the Conftruction of a Curve, from whence (befides its own 2uadrature and Resification) the Quadrature of the Hyperbola is derived, I thought the following Account might not (to fome) be unacceptable.

Let $A B, C D$, be two ftrait Rulars joined at B, and there making a right Angle. (Their Length according to the Largenefs of the Figure you will defribe.) $E F$ is another Rular fomewhat longer than $A B$. Near the one End E, let a little Truckle-Wheel (reprefented edge-wife by $g b$, and made of a thin Plate of Brafs or Iron) be faftened to the Rular by a Pin $(i$,) through its Center, fo that the Wheel may turn about upon the Pin (i) tight to the Rular without joggling.

On the under Side of this Rular (the Side from the Eye in the Scheme) let there be pinn'd or glewed a little Piece of Wood (in the Form of a Quadrant, the Part which is feen being marked $k l$) whofe Edge (or Limb) $k l$, is an Arch of a Circle of Center (i,) and Radius ib (the fame with the little Wheel.) The Defign of this Piece of Wood is, that in the feveral Pofitions of the Rular $E F$, the circular Limb $k l$ always touching and niding by the Edge of the Rular $A B$, the Center of the Wheel may be always in a Line ($i m$) parallel to the Rular $A B$.

In the Rular $C D$ make $M B=i b$ or $i k$, and at M faften a little Pin, and another to the Rular $E F$ near the Wheel, as at P. To thefe two Ends let be faftened the two Ends of a String $M R$, fo that its whole Length (from Pin to Pin) $+P i$, be equal to the intended Axis of the Curve τW.

The Inftrument being thus prepared, let a ftrong Rular $S O$, be faftened (or held faft) upon the Paper or Plane that the Curve is to be drawn upon. Lay the Rular $E F$ from M towards A, and parallel to $A B$, fo that the String lie all ftrait along the Edge of the Rular $E F$ from M to p, the Point $S k$ of the Quadrantal Piece of Wood refting upon the Edge of the Rular $A B$. Then with a fmall Pin at M keeping the String clofe to the Edge of the Rular $E F$, and with your other Hand upon the End E, keeping the Wheel tight to the Paper or Plane, move the Pin, String and Rular E From M towards O, the Rular $C D$, fliding along by the faftened Rular $S O$ in a right Line, the Wheel $g b$ will by its Motion defcribe the defined Curve TV.

Nose, The Semidiameter of the little Wheel muft be about the Sum of the Thickneffes of the two Rulars $E F$ and $A B$, that it may touch the Paper. Alfo it will be convenient that its Edge be thin, and a little rough, that it may not flide flat-ways, and that it may leave a vifible Impreflion.

From this Conftruction the following Properties are demonftrable :
I. It is evident from the Conftruction, that the Sum of the Tangent and Subtangent is every where equal to the fame given Line ($=M R+R i$ $=\tau \mathscr{W}$) for the String (firft ftrait at τW, atterwards making an Angle

a new Quadratrix to the Hyperbola.

at R) being every where the fame; the Line $R i$ (or $R P+P i$) is always the Tangent, and the Remainder $R M$ the Subtangent ; the Contact of the Wheel with the Plane, being the Point of the Curve to which they belong.
2. It hence follows, that any affignable Part of the Curve is reitifiable, or equal to any affignable ftrait Line. In Fig. 12. Let $F A E$ be a Part of the Curve, its Vertex F. HDd is the Line defcrib'd by the Motion of the Pin R (in Fig 11.) and may be fhewn to be afymptote to the Curve. F H a Perpendicular to $H D$. Let A be the given Point in the Curve, $A D$ the Tangent, and $B D$ the Subtangent to the fame Point A. Let a be another Point in the Curve infinitely near to A, to which let $a d$ be the Tangent, and $b d$ the Subtangent. Draw $A G a g$ perpendicular to $F H$ and $A B, a b$ perpendicular to $H D$. By the Conftruction $A D+D B=a d+d b$. Let a or be made equal to $a D$, and draw D do $_{0}$ Then becaufe $a d+b d=A D+D B$. Subitiact $b D$ and $a D$ (or $a \AA$) from both Sums (Equals from Equals) there remains $n d+$ $d D=A a+B b$ (or $C a$). $A a C, D d$ a are like Triangles (or differing infinitely little from fuch) therefore $C a(B b): A a:: \delta d: D d$, and compounding $B b+A a: A a:: d d+D d: D d$. Alternating $B b$ $+A a: d d+D d:: A a: D d$. But $B b+A a=\delta d+D d$ (as is fhewn above) therefore $A a=D d . \quad A a$ is the fluxional Particle of the Curve $F A$, and $D d$ is the fluxional Particle of the Line $H D$: Thefe Fluxions or Augments being equal, and their flowing Quantities beginning together, are themfelves therefore equal, viz. $F A=H D$.

Let $F G=x . \quad G A(=H B)=y . \quad A D=t . \quad B D=S$. So is the Curve $F A=H D=y+S$: that is, the Curve from the Vertex to any given Point therein, is equal to the Sum of its Ordinate, and Subtangent to the fame Point which is its fecond Property.
3. The next Property (and whereupon I call it the Hjperbolic Quadratrix) is this: Let $F A E$ be a Part of the Curve, $\mathcal{E} c$. (as before.) $F I K H$ is a Square upon the Line FH. $\triangle I L$ is an Equilater Hyperbola, whofe Vertex is I, its Affymptotes $H O, H R$, its Axis $H I \mu$. From a given Point L in the Hyperbola (below its Vertex I) draw L A parallel to the Affymptote $R H$, interfecting the Diagonal IH in M, $F H$ in G, and touching the Quadratrix in A. I fay, that the Hyperbolic Area IL M is equal to a Rectangle, whore Sides are the Ordinate G, A, and twice $F H$, the Axis to the Quadratrix, that is, Trilin. $I L M$ $=2 F H \times G A$.

Let $F H=a, F G=x, G A=y$. Becaufe of the Hyperbola G L. X $G H(L S)=F H q$, therefore $G L=\frac{F H q}{G H}$; and $L M=\frac{F H q}{G H}-G$
$H(M G)$ that is, $L M=\frac{a a}{a x}-a+x=\frac{2 a x-x x}{a-x}$, and confequent-

The Conflruction and Properties of

ly the Fluxion of the Area $I L M=\frac{2 a x-x x}{a-x} \dot{x}$
In the Rectangle Triangle $A D B, A B=a-x, B D=S, A D=$ $t=a-S$; then is $A D q=A B q+B D q$: or $a a-2 a S+S S=$ $a a-2 a x+x x+S S$, which being thus reduced, gives

$$
S=\frac{2 a x-x x}{2 a}
$$

Let $l a$ be a right Line fuppofed infinitely near and parallel to $L A$, and interfecting $A B$ in C. Becaufe of like Triangles $A C a, A B D$; $A B: B D:: A C: C a$, that is $a-x: S\left(=\frac{2 a x-x x}{2 a}\right):: \dot{x}: \dot{y}$. therefore $\dot{y}=\frac{2 a x-x x}{2 a a-2 a x} \dot{x}$. Multiply each by $2 a$, and 'tis $2 a \dot{y}=$ $\frac{2 a x-x x}{a-x} \dot{x}$. The flowing Quantity of $2 a y$ is $2 a y$, and the flowing Quantity of $\frac{2 a x-x x}{a-x} \dot{x}$ is the Hyperbolic Area $I L M$ (as is fhewn before.) Thefe two Area's beginning together at F and I, and having every where equal Fluxions, or Augments, are therefore themfelves every where equal.
N. The Quadrature of the Trilinear Figure IL M being thus found, any other Area bounded with the Curve-line $I L$, and any other Right Lines is alfo given.
4. Suppofing the fame Things as in the precedent Propofition, I fay, that the Area of the Quadradrix $F a b H F$ is equal to half the Square of $F g$, wanting the Cube of $F g$ divided by $6 F H$, or $F a b H F$
$=\frac{x x}{2}-\frac{x x x}{6 a}$. The Fluxion of this Area is the Rectangle $C a b B$
$=\overline{a-x} \times \dot{y}=\overline{a-x \times} \frac{2 a x-x x}{2 a a-2 a x} \dot{x}=x \dot{x}-\frac{x x}{2 a} \dot{x}$. The flowing
Quantity of $x \dot{x}$

Quantity of $\dot{x} x$ is $\frac{1}{2} x x$: And the flowing Quantity of $\frac{x x}{2 a} \dot{x}$ is
$-\frac{x x x}{6 a}$ [as is eafily fhewn by bringing back thefe flowing Quantities to their refpective Fluxions.] And hence alfo it follows, that the whole Area continued on infinitely towards E, is one tbird of the Square FIKH; or $\frac{1}{5} a$. For fuppofing $x=a$, the Area above becomes $\frac{a a}{2}-\frac{a a}{6}=\frac{a a}{3}$.

While I was confidering the other Properties of this Curve, and had given fome Account of them to my ingenious Friend Mr. Fobn ColJon, he returned me a Letter with the Addition of the Quadrature of the Curves Area, which I had not then enquired into.
5. Suppofing fill the fame Things, I fay that the Solid made by the Converfion of the Area $F a b H F$ about the Line $H b$ as an Axis, is equal to a Cylinder whofe Radius is $F H=a$, and Height equal to $\frac{x^{x}}{2 a}-\frac{x^{3}}{2 a a}+\frac{x^{4}}{8 a^{3}}$. And the whole Solid made by Converfion of the whole Figure infinitely continued, is equal to an eighth Part of a Cy linder, whofe Radius and Height are each equal to $F H$ or a.

Let $\frac{P}{D}$ exprefs the Proportion of the Periphery and Diameter of a Circle. Then is $\frac{P}{D} a b$ quad. the Area of a Circle whofe Radius is $a b$. And becaufe $C a=y=\frac{x-\frac{x x}{2 a}}{a-x} \dot{x}$ the Fluxion of the Solid is $\frac{P}{D} \times a \quad$ b. q.

Yol. IV.
G
whore

The Confruction and Properties of

whofe flowing Quantity is $\frac{P}{D} \times \frac{a x^{2}-x^{3}}{2}+\frac{x^{4}}{8 a}$. Which Solid
being divided by $\frac{P}{D}$ a a (the Area of a Circle whofe Radius is a) gives $\frac{x x}{2 a}-\frac{x x x}{2 a a}+\frac{x 4}{8 a^{3}}$ for the Height of a Cylinder on the faid circular Bafe, and equal to the Solid made by Converfion of the Area $F a b H F$ about the Line $H b$ as an Axis. When $x=a$ (that is, when the whole Figure is turn'd about its Afymptote) the Height
$\frac{x^{x}-x^{3}}{2 a}-\frac{x^{4}}{2 a a^{3}}$ becames $\frac{1}{8} a$.
6. The Curve Surface of the Solid generated by the Converfion of the Figure $F a b H F$ about $H B$, is equal to the Curve Surface of a

Cylinder whofe Radius is a, and Height equal to $\frac{x}{2}-\frac{x x}{4 a}+\frac{x x x}{12 a a}$.
And the whole Curve Surface of the Solid infinitely continued, is equal to one tbird Part of the Curve Surface of a Cylinder whofe Radius and Heigbt are equal to FH or a. Which may be demonftrated after the Manner of the precedent Propofition.
7. The Radius of the Curvature of any Particle of the Quadratrix is

Fig. $13 \frac{t t}{a-x}$ and this found Geometrically. $F A E$ is the $2 u a d r a t r i x, H D$
the Afymptote, $A D$ the Tangent, $B D$ the Subtangent to a given Point A. Make $B V=A D$. Upon V raife the Perpendicular $V W$, from A draw $A W$ perpendicular to the Tangent $A D$, till it meet $A W$ in W. So is A W the Radius of the Curvature at A.
8. This Curve may be continued on infinitely above the Point F (but by a different and more operofe Way of Conftruction) whofe Properties will be thefe. r. The Difference of its Tangent and Subtangent (taking the Subtangent in the Line H S) will be always equal to the fame given Line $F H$ or a. That is, as $t+\xi=a$, below F, fo $t=s=a$ above F.

a new Quadratrix to the Hyperbola.

2. As below F the Curve Line is equal to the Sum of its Ordinate and Subtangent, fo above, it is equal to their Difference, or $s-y$. 3. As below $F, 2 a y=I L M$, fo above, $2 a y=I \wedge \mu$. All which (and its other Properties) may be demonftrated as the Precedent mutatis mutandis.
3. With a little Variation in the precedent Conftruction, may the Logaritbmick Curve be conftructed, which is alfo a Quadratrix to the Hy perbola. Omitting the String $M R P$, let the Diftance $M R$ be equal to the Subtangent of the intended Logarithmick Curve (which, as it is known, is invariable.) Stick a Pin at R in the Rular $C D$, to which apply the Rular $E F$, fo that the Edge of the little Quadrant $k l$, refting upon the Rular $A B$, the Diftance M ibe equal to $M R$. Then keeping the Rular $E F$ tight to the $\operatorname{Pin} R$ and Rular $A B$, fide the Rular $C D$ along in a ftrait Line (by the Rular or Line SO.) So will the Wheel g b defcribe a Part of the Logarithmick Curve TV, whofe Subtangent is every where $M R$.
4. Let $F A E$ reprefent the Logarithmick Curve, whofe Subtangent is equal to FH. LI is an Equilater Hyperbola ($\xi^{2} c$. as before §. 3.) Let $F G=x, G a=y . \quad F H(=B D)=a . \quad G H(=L S)=a-x$. $A C=x, C a=y$. Then $A C: C a:: A B: B D$, that is $\dot{x}: y:: a-x:$ $a:: a: \frac{a a}{a-x}$ therefore $a \dot{y}=\frac{a a}{a-x} \dot{x}$. The flowing Quantity of $a \dot{y}$ is $a y$; and the flowing Quantity of $\frac{a a}{a-x} \dot{x}$ is the Hyperbolick Area FIL G (for by the Nature of the Hyperbola $G L=\frac{a a}{a-x}$) therefore it the Hyperbolick Area FILG equal to a y a Rectangle, whole Sides are the Subtangent ($B D=F H$) and Ordinate $G A$ (as here accounted) of the Logarithmick Curve.
IX. Lemma.] To divide the Sum of two Squares into two other Of the Length Squares.

Let \dot{z}^{2} and \dot{s}^{2} be two given Squares whofe Sum is $\dot{z}^{2}+\dot{s}^{2}$. It is to be divided into two other Squares x^{2} and \dot{y}^{2}; and let m and n be any two Numbers taken at Pleafure. Now from the Condition of the Problem it is $\dot{x}^{2}+\dot{y}^{2}=\dot{z}^{2}+\dot{s}^{2}$; whence (as may appear from Diopbantus)

Of the Length of Curve Lines.

$$
\begin{aligned}
& \dot{x}=\frac{\overline{m m-n n} \times \dot{z}+2 m n \dot{s},}{m m+n n}, \text { and } \\
& \dot{y}=\frac{\overline{n n-m m} \times \dot{s}+2 m n \dot{z}}{m m+n n} . \text { Q. E. J. }
\end{aligned}
$$

Problem.] To find innumerable Curves, which are of the fame Length with any proposed Curve, whether Algebraical or Mechanical.

Let z and s reprefent the Co-ordinates of the Curve propofed ; x and y the Co-ordinates of the Curve required, which is to be of the fame Length as the Curve proposed. Therefore it is evident from the Elfments of Curves, that $\dot{x}^{2}+\dot{y}^{2}=\dot{z}^{2}+\dot{s}^{2}$; and therefore by the foregoing Lemma

$$
\begin{aligned}
& \dot{x}=\frac{\overline{m-n n} \times \dot{z}+2 m n \dot{s}}{m m+n n}, \\
& \dot{y}=\frac{\overline{n n-m m} \dot{m}+2 m n \dot{z}}{m m+n n} ;
\end{aligned}
$$

The Fluent of which are

$$
y=\frac{n n-m s+2 m n z}{m m+n n}
$$

And thus the Co-ordinates x and y of one of the Curves required will become known; and in like Manner from this a fecond may be derived, and from the fecond a third, and fo on, till as many as you pleafe are found. 2 E. 7 .

A Problem concerning Curves.

I add no Examples now, becaufe there will be a fitter Occafion hereafter, in which this Method fhall be apply'd to feveral Problems of this Kind, and the Solution of this Problem fhall be illuftrated by a Variety of Examples. And I have fo plainly pointed out this Solution more than once, that it might eafily have been deduced, by any one verfed in thefe Matters, from what is fubjoin'd to the Solution of a particular Cafe of this Problem, in which the Curve propofed is Algebraical, and which I ex-Vid. fup. hibited in the Philofophical Tranfactions for fan. 1704. So that it may S. VIt. appear to Mr. Fo Bernoulli, the learned Propofer of the Problem, that its Solution may be obtain'd from the common Rules of the inverfe Method of Fluxions, fince he infinuated, in his private Letters to Dr. Cheyney, that the fame could not be exhibited by our Theorems publifh'd in the Philofophical Tranfactions for March 1703. And becaufe Vid. fup. I perceive from the Acts of Leipfick of Auguf 1705, that our Solution S. VI. did not pleafe that learned Man, though enough, and more than enough to the Purpofe ; for that Reafon only I publifh the foregoing Solution, which can be liable to no Objection. Therefore the learned Ecrnoulli muft ingenuoully acknowledge, that hardly any Problem can be propofed, the Solution of which is deduced with more Eafe from the inverfe Method of Fluxions, than this his Problem of the Transformation of Curves.

Now I fhall declare, in a few Words, what I cannot approve in Mr. Bernoull's Solution of his own Problem. Firft, That he has apply'd it only to Algebraical Curves. Secondly, That it is Mechanical, and depending wholly upon what he calls Creeping Motion. Huygens is certainly deferving of immortal Honour, for his Invention of the Motion of Evolution, becaule from thence not only himfelf but others have derived admirable Theorems Geometrically. But neither Leibnitz's Motion of Traction, nor Bernoulli's Crecping Motion, will ever be comparable to Huygens's Motion of Evolution, till thofe ingenious Men, as Huygens has done, fhall reduce the Curves generated by their Motions to the Laws of Geometry. Now, fince neither of them have yet perform'd this, the Solutions of Problems, depending upon Curves prociuced by their Motions, can only be reputed as Mechanical.
X. In the AEta Eruditorum for OEtober 1698. pag. 471. Mr. F. Ber-A General Sanoulli writes thus. "At length I have obtain'd the general Method lution of a "I wifh'd for, for the orderly cutting of Curves given in Pofition, " whether Algebraical or Tranfcendental, in an Angle either right or Curves, by " oblique, whether invariable or varying according to a given Law ; n. 347. " to which, according to the Opinion of Mr. Leibnitz, not a Jot can be P. 399 .
"s added for its farther Perfection, and for this Reafon, that it always
"t leads to an Equation. In which, if the indeterminate Quantities are "fometimes infeparable, the Method is not the lefs perfect for that; \because for it belongs not to this, but to fome other Merhod to feparate them.

Mr. Lcibnitz's Problem

"I intreat my Brother, that he will try his Strength in a Matter of this "Weight; nor will he repent of his Labour, if he happens to be fuc"cefsful. I know he will then forlake the Method he is now fo fond " of, which can only be apply'd in a very few Occafions.

Thefe three great Men had been ufed to exercife one another, for about the Space of four or five Years, in propofing and folving fuch Kind of Problems. It would be very difficult to give the very fame Solution as that of Mr. Bernoulli, without one had the Spirit of Divination. It is fufficient that the following Solution is general, and always brings us to an Equation.

Problem.] A general Metbod is required for finding a Series of Curves, zubich foll cut at a given Angle, or at an Angle that Jhall vary in a given Law, Curves that are confituted in amy otber given Series.

Solution.] The Nature of the Curves to be cut gives the Tangents of the fame at any Points of Interfection; and the Angles of Interfection give the Perpendiculars of the cutting Curves; and two Perpendiculars coinciding, by their latt Concourfe give the Center of Curvity of the cutting Curve at the Point of any Interfection. Let an Abfcifs be drawn in any convenient Situation, and let its Fluxion be Unity ; and the Pofition of the Perpendicular will give the firf Fluxion of the Ordinate belonging to the Curve requirgd; and the Curvity of this Curve will give the fecond Fluxion of the fame Ordinate. And thus the Problem will always be reduced to Equation. 2. E. F.

Scbolium.] It does not belong to this, but to another Method, to reduce the Equations, and to feparate the indeterminate Quantities, abfolutely if it may be done, if not, by infinite Series. As this Problem is hardly of any Ufe, for that Reafon it has remain'd neglected and unfolved for many Years, in the Aifa Eruditorum. And for the fame Reafon I fhall not profecute its Solution any farther.

Mr. Leib. nitz's Problem concerning Curves, folv'd by Dr. B. Taylor, n. 354. p. 695 .
XI. Since the deceafed Mr. G. G. Leibnilz, in the Controverfy lately moved about the Inventer of the Method of Fluxions (which he has thought fit to call the Differential Method, and obftinately to appropriate the Invention to himfelf) has given no Anfwer to thofe Arguments which are alledged in Favour of Mr. Nerwton, as the Difcoverer of that noble Method; yet by his Encouragement Mr. Fob. Bernoulli has propofed a Problem, to be folved by the Englijh Geometricians. But whether the Problem is folved by them or no, it can be no Prejudice to the Right of Mr. Newton. However, leaft they fhould make it an Occafion of Triumph, if this Problem fhould not be attempted by the Englifh, I have ventured to give my Solution, fuch as it is, tho' the Problem is no ways remarkable either for its Ufe or Difficulty.

The Problem at firft propofed by Mr. Leibnitz was fo underfood, as if nothing elfe had been required, than that Conic Hyperbola's, defcrib'd
with the fame Center and Vertices, fhould be cut at right Angles. But when he was inform'd, that this Cafe had been immediately folved by fome Englifh-men, he wrote Word, that the Solution of a particular Cafe was not required, but a general Solution. For which Reafon thofe particular Solutions were not publifh'd; tho' in the Philofophical Tranfactions Numb. 347. [See Sect. X. above] a Solution appear'd which was univerfal. But Mr. Leibnitz and his Affociates were not content with this, but feem'd rather to defpife it, as if the Author was not able to apply it to any particular Cafe. If they could not perceive how Equations were to be deduced from it , that is to be imputed to their Unskilfulnefs. A little before the Death of Mr. Leibnitz the following Pioblem at laft came out, which may be folved after different Manners, by purfuing the Steps of the general Solution before-mentioned; but at prefent we fhall folve it as follows.

Problem.] Upon the right Line A G as an Axis, frome the Point A to drawe an infinite Number of Curves, Juch as A B D, which are to be of Juiba Nature, that the Radii of Curvature B O, drawon every where in the feveral Points B, may be cut by the Axis A G in C, in a given Ratio, or so that it may be B O.B C:: 1 . n.

Then are to be confructed the Trajeitories E B F, wobich Ball cut the former Curves A B D at right Angles.

Firft Part of the Solution.] To find the Curves $A B D$, which are to be cut. 1. Drawing the Ordinate $B H$ perpendicular to the A xis $A G$, make the Abfcifs $A H=z$, the Ordinate $H B=x$, the Curve $A B=v$. Then by the direct Method of Fluxions it will be $B C=\frac{v x}{\ddot{z}}$, and if v fiows uniformly, $B O=\frac{\dot{v} \dot{x}}{\ddot{z}}$. Whence by the Condition of the Problem 'tis $B O\left(\frac{\dot{v} \dot{x}}{\ddot{z}}\right) \cdot B C\left(\frac{\dot{v} x}{\dot{z}}\right):: 1, n$, and therefore $\ddot{z} x-n \dot{z} \dot{x}=0$.
2. This Equation being compared with the fecond formula of Fluxions, at the End of Prop. 6. of the Method of Increments, there is found
$x^{-n}=\dot{v} a^{-n} ; a$ being a given Line, by the Value of which the Curve $A B D$ may be accommodated to any Condition that is annex'd to the Problem.
3. Inftead of v its Value $\sqrt{ } \overline{x^{2}+z^{2}}$ being written, the Equation $\dot{z} x^{-n}=\dot{v} a^{-n}$ is changed into this $\dot{z}=\frac{x x^{n}}{v^{a^{2}}-x^{2 n}}$. Whence z

Mr. Leibnitz's Problem

is given when x is given, by the Quadrature of the Curve, whofe Abfcifs being x, its Ordinate is $\frac{x^{n}}{\sqrt{a^{2 n}-x^{2 n}}}$.
4. Let σ and r be integer Numbers, either affirmative or negative, fuch as that the fimpleft of the Curves produced in this Manner may be that, whofe Abfcifs is y, and Ordinate is $\frac{1-n+2 \sigma n}{2 n} \times \frac{\tau-\frac{1}{2}}{}$; then it will be the fimpleft of all the Curves, by the Quadrature of which the Abfifs x is given from the given Ordinate x.
5. The Curve $A B D$ is a Geometrical Curve, as often as the Reciprocal of any odd Number is affumed for n.
6. Hitherto we have confidered the Curve $A B D$ as concave towards the Axis $A G$, in which Cafe the greateft Ordinate x is equal to the given right Line a, which we may conveniently call the Parameter of the Curve. And in this Cafe the Curve will actually meet the Axis. Whence the Fluent of $\frac{\dot{x} x^{n}}{\sqrt{a^{2 n}-x^{2 n}}}$ being sightly taken, that is, fo that z and * may vanifh together, the Curve will pafs through the given Point A, as the Problem requires.
7. But if a Curve $A B D$ be required, which is convex towards the Axis, in the fame Manner we fhall come to the Equation $z=$ $\frac{a^{n} x}{\sqrt{x^{2} x}-a^{2 n}}$; which alfo may be derived from the former Equation, by changing the Sign of n. And in this Cafe the Curve $A B D$ is Geometrical, as often as the Reciprocal of any even Number is taken for n. But in this Cafe the leaft Ordinate x is equal to the Parameter a; and therefore the Curve no where meets with the Axis. Therefore the Problem is limited to the former Cafe.
8. From the foregoing it is eafily soncluded, that all the Curves $A B D$ are fimilar, and fimilarly pofited about the given Point A, their homologous Sides being proportional to the Parameters a.
The other Part of the Solution: Or the Invention of the cutting Curve.
9. From $\S .2$. tis $\dot{v} \cdot z:: a^{n}, x^{n}$. But it is $B C, B H:: v, z$. Therefore it is $B C \cdot B H:: a^{n}$. x^{n}. But from the Condition of the Problem $B C$ is a Tangent to the Curve fought $E B F$. Wherefore if we take now $A H(z)$ and $B H(x)$ for Co-ordinates of the Curve $E B F$, the Curve itfelf $E B$ being call'd r; it will be by the direct Method of Fluxions $\dot{r}_{0}-\dot{x}::(B C, B H::) a^{n} \cdot x^{n}$. Whence it is $\frac{x^{n}}{a^{n}}=\frac{=\dot{x}}{r}$.

10. In the Curve $A B D$ imagine the Equation $\dot{z}=\frac{\dot{x} x^{n}}{\sqrt{a^{2 n}-x^{2 n}}}$
to be transform'd into the Equation $\dot{z}=\frac{A \dot{x} x^{n}}{a^{n}}+\frac{B \dot{x} \times 3^{n}}{a^{3^{n}}}+\frac{C \dot{x} \times 5^{n}}{a^{5^{n}}}, \xi^{v} c$. which is not affected with Radical Signs; then by returning to the Fluents it will be $z=\frac{1}{n+1} \times \frac{A x^{n+1}}{a^{n}}+\frac{1}{3^{n+1}} \times \frac{B \times 3^{n+1}}{a^{3^{n}}}+\frac{1}{5^{n}+1} \times$ $\frac{C x^{5^{n+1}}}{a^{5^{n}}}, \xi^{3} c$. where no new Coefficient is introduced, becaufe by the Condition of the Problem z and x are nafcent at the fame Time. Here in_ ftead of $\frac{x^{n}}{a^{n}}$ fubftituting its Value $\frac{-\dot{x}}{\dot{r}}$, as found \S. 9 . we fhall have $z=\frac{1}{n+1} A x \times \frac{-\dot{x}}{\dot{r}}+\frac{1}{3^{n}+1} B \times \times \frac{-\dot{x}^{3}}{\dot{r}^{3}}, छ c$. which is a fluxional Equation of the firft Degree belonging to the Curve required EBF. Now this is reduced to a more fimple Form in finite Terms after the following Manner.
11. Let r flow equably, and a being a conftant Quantity, make $\frac{-\dot{x}}{\dot{r}}=\frac{s^{n}}{a^{n}}$. This Value of $\frac{-\dot{x}}{\dot{r}}$ being fubftituted in the Equation laft found, and the Equation being multiply'd by $\frac{s}{x}$, it will betransform'd intothis $\frac{z s}{x}=\frac{1}{n+1} \times \frac{A s^{n}+1}{a^{n}}+\frac{1}{3^{n}+1} \times \frac{B s 3^{n+1}}{a^{3^{n}}}, \delta^{2} c$.whence taking the Fluxions, it will be $\frac{s z x+s \dot{z} x-s z \dot{x}}{x^{2}}=A \dot{s} \times \frac{s^{n}}{a^{n}}+B \dot{s} \times \frac{s 3^{n}}{a 3^{n}} \mathcal{E}^{g} c$. $=\frac{\dot{s} s^{n}}{\sqrt{a^{2 n}-s^{2 n}}}$. This laft is manifeft from the Analogy of the Series $A \dot{x} \times \frac{x^{n}}{a^{2}}, \mathcal{E}^{c}$. and $A \dot{s} \times \frac{s^{n}}{a^{n}}, \mathcal{E} c$. Here for s and $s f u b f t i t u t i n g ~ t h e i r ~$ Vol. IV.

Mr. Leibnitz's Problem, \&cc.

 Values derived from the Equation $\frac{-\dot{x}}{\dot{r}}=\frac{s^{n}}{a^{n}}$, there will arife the Equation $n \dot{x^{2}} \dot{z} \cdot z-\ddot{x} x \dot{z} z-n \dot{x} x \dot{z}^{2}-\ddot{x} \dot{x} x^{3}=0$; which is reduced to firt Fluxions in the following Manner.12. In the laft Term - $\ddot{x} \dot{x} x^{2}$ inftead of $\ddot{x} \dot{x}$ writing its Value - $\ddot{z} \dot{z}$, and then applying the Equation to \dot{z}, there arifes $n \dot{x}^{2} \approx-\ddot{x} x z-n \dot{x} x \ddot{z}$ $+x x \ddot{z}=0$. Which Equation multiply'd by x^{-n-1} is the Fluxion of the Equation- $\dot{x} x^{-n} z+x^{1-n} \dot{z}=a^{1-n} \dot{r}$, the Quantities a and \dot{r} being conftant. Therefore this Equation, or $\dot{z} x-z \dot{x} \times a^{n-r}=\dot{r} x^{n}$ is a fluxional Equation of the firlt Degree, belonging to the Curve fought E B F.
13. Now in this Equation a is the Value of the Ordinate $B H$, when the L'oint H falls in the Point A.
14. It will not be very eafy, while n continues to be general, to bring this Equation to an Equation involving only Fluents, or to the Quadrature of Curves. But the Points of the Curve $E B F$ may conveniently be found by the Defcription of the Curve $A B D$, and of a certain Geometrical Curve. By a Geometrical Curve I underftand one, into whofe Equation no Fluxions enter, nor Fluents into the Indices of the Powers. For let the Curve $A B D$, whofe Parameter is a, be cut in B by a Geometrical Curve whofe Equation is $a a^{n} x^{n}-z a^{n} x^{n}=x a^{n} \sqrt{a^{2 n}-x^{2 n}}$; then that Point of Interfection B will be in one of the Trajectories fought, which paffes through the Point E; $A E$ being equal to a, and perpendicular to $A G$.
15. Hence if $A B D$ be a Geometrical Curve, $E B F$ will alfo be a Geometrical Curve.

Scbolium. The Equation $\overline{z x-z x} \times a^{n-1}=\dot{r} x^{n}$ may be found another Way. For by a certain Analyfis, which at this Time I think fit to conceal, I have found the Equation $\frac{\dot{c}}{\alpha}=\frac{\dot{r} \dot{r}}{\dot{z}+\dot{x} \dot{x}}$, which being compared with the Equation $\frac{x^{n}}{a^{n}}=\frac{-\dot{x}}{\dot{r}}$ (\$.9.) by eliminating a and $\dot{\alpha}$, we at laft arrive at the foregoing Equation $\overline{\dot{z} x}-\bar{z} \dot{x} \times a^{n-x}=\dot{r} x^{n}$.

Example. A very fimple Example may fuffice to prove the Truth of this Solution. Make $n=\mathrm{r}$, in which Cafe $A B D$ will be a Semicircle detcrib'll
defribed with the Diameter $A G$; alfo $E B F$ will be a Semicircle likewife, defcrib'd with the Diameter $A E$. But in this Cafe $\frac{x^{n} x^{n}}{\sqrt{a^{2 \pi}-x^{2 n}}}$ $=\frac{\dot{x} x}{\sqrt{a^{2}-x^{2}}}$. Whence in §. 3. tis $\dot{z}=\frac{\dot{x} x}{\sqrt{a^{2}-x^{2}}}$. Therefore $z=$ $a-\sqrt{a^{2}-x^{2}}$, which is an Equation to a Circle, defcribed with the Diameter $A G=\alpha$, as it ought to be. Alfo for n writing I, the Equation $\bar{z} x-z \dot{x} \times a^{n-1}=\dot{r} x^{n}$ is changed into $\dot{z} x-z \dot{x}=\dot{r} x$. Whence exterminating \dot{r} by Means of the Equation $\dot{r} \dot{r}=\dot{x} \dot{x}+\dot{z} \dot{z}$, there arifes $\frac{2 \dot{z} z x-\dot{x} z^{2}}{x^{2}}=-\dot{x}$, and therefore returning to the Fluents, it will be $\frac{z z}{x}=-x+a$, which is an Equation to a Circle defcribed with Diameter $A E=a$, as it ought to be.
XII. Whereas in every Curve Line there is a certain Regularity of Confruation Curvature, tho' perhaps involved, according to which the Figure is de- and Miafure termin'd; therefore Geometricians define the various Characters of Mr. Curves, MacCurves, by an Equation expreffing the Relation of the Ordinates to the laurin, n. 355°. Abfciffes of any Axis or Diameter. Now fince the fame Thing may be p. 803. done from the Confideration of the Curves in refpect of one given Center, nay the moft fimple Uniformity of Nature often requires this fhould be done in this Inquiry; therefore we fhall have Recourfe at prefent to this Method of confidering Curves, and firt we fhall fhew, how eafy it will be (according to this Method of determining Curves, by the Affiftance of the Arithmetick of Infinites) to derive the more complicate from the fimple ones.

Serf. I.] Let the Points L and l be as near as may be in the Curve
Fig. 15. BlL; let 10 be an Arch defcribed with Center S, perpendicular to $S L$, and $L l$ will be as the Moment of the Curve, and $L o$ the Moment of the Radius SLL. And if the Ratio of $L l$ to $L 0$ be given, or to l_{0} in the Diftance $S L$, the Equation of the Curve will be given at the Center S. Let $L P, l p$, be Tangents to the Curve in the Points L and l, upon which from S let be drawn the Perpendiculars $S P, S p$, meeting them in the Points P and p. In like Manner upon all the Tangents of the Curve let Perpendiculars be drawn from the given Point S, and a Curve will be conftructed paffing through all the Interfections of the Tangents and Perpendiculars. The Elementary Triangle of this $P n p$ will be $\mathrm{f}_{1}-$ milar to the Triangle $L o l$, which therefore will be given from the given Curve $B l L$. For becaufe of equal Angles $S n P, P n L$, and the gular, and therefore $P n . p n:: L n . S n:: L o . l o$. Likewife becaufe of equal Angles $P n p, S n L, L o l$, the Triangles $P n p, S n L, L \circ l$, will be fimilar. Since therefore there is the fame Ratio of $L l$ to $l 0$, as of $P p$ to $p n$, and $S L$ to $S P$; it is plain that the Ratio of $L l$ to $l o$ being given, and the right Line $S L$, the Ratio of $P p$ to $p n$ will be given, and the right Line $S P$, and therefore the Curve $D P p$. And by the fame Method a third may be conftructed from $D P$, and from this a fourth; and by proceeding thus an infinite Series of Curves may be derived, all which from one that is known will become known. Now if $L N$ and $l n$ are erected perpendicularly upon the Radii $S l, S l$, meeting one another in n; and if through all the Points of perpendicular Concourfe that are alike defined, a Curve $E N$ is defcribed: That will be the very Curve from whence BL may be deduced, by the fame Method as we conftructed $D P$ from $B L$. In like Manner another Curve may be conftrueted from $E N$, and on this Side likewife an infinite Series of Curves may be conftructed.

Seif. 2.] But of all the Curves produced in this Manner, the moft fimple will be, in which $L l$ is to $L o$ in the Ratio of fome Power of the Radius; fo that if a be a given Quantity, and r denotes the Radius of the Curve, and n any Number whatever; it may be as $L l$ to $l o$ fo a^{n} to r^{n}, which will be their general Equation. But all thefe will have an Apfid, when $r=a$, becaufe in that cafe $L l=l o$. To inveftigate the Equation of the Curve $D P$; fince in $B L$ it is, as $L l$ to $l o$, fo is a^{n} to r^{n}, fo is r to $S P=\frac{r^{n}+1}{a^{n}}$, fo is $a \frac{n}{n+1} \times S P^{-\frac{1}{n+1}}$ to $S P$, fo is $a \frac{n}{n+1}$ to $S P \frac{\pi}{n+1}$, fo is $P p$ to $p n$. Therefore if \dot{s} reprefents the Moment of the Curve, y the circular Arch defcrib'd by the Radius from the Center S, and r the correfponding Radius; whatever the Curve be whofe Equation is fought, the Equation of the Curve $B L$ will be $\dot{s} \cdot \dot{y}:: a^{n}$. r. But the Equation of the Curve $D P$ is $\dot{s} \cdot \dot{y}:: \frac{n}{a_{n+1}}, r \frac{n}{n+1}$. And the Angle $P S P$ will be to the Angle $L S l$, as $\frac{p n}{S P}$ is to $\frac{l_{0}}{S L}$, or as $\frac{P n}{S p}$ is to $\frac{L o}{S L}$, or as $\frac{\dot{x}}{x}$ to $\frac{\dot{r}}{r}$, if $S P=x$, and $S L=r$; that is (becaufe $x=$ $\frac{r^{n+1}}{a^{n}}$) as $\frac{n+1}{r} \dot{r}$ is to $\frac{\dot{r}}{r}$, or as $n+\mathrm{I}$ to I . Hence $B S P$ is to $B S L$
as $n+1$ to 1 ; whence the Curve $B P$ may be drawn more cafily, without the Affiftance of the Tangents. If the Angle $B S P$ to $B S L$ is taken in the Ratio of $n+1$ to 1 , and a Perpendicular is let fall from L upon $S P$, the Meeting of the Perpendicular with $S P$ will be in the Curve $B P$, which was defcribed before by the Help of the Tangents.
Sect. 3.] We have fhewn how from one, an infinite Series of Curves may be deduced; I fhall now go on to demonftrate, how the Lengths of each may be known, from the Lengths of that and another being given. Since the Angle $S P p=S L l$, and $L S l$ is to $P S p$ as 1 to $n+1$; $L l$ will be to $P p$ as $S L$ to $n+1 S P$; or (becaufe of $S L . S P:: L l$. $l_{0,}$) as $L l$ to $\overline{n+1} l_{0}$; and therefore $P p=\overline{n+1} l_{0}$. But $l_{0}=l n$ $-0 n=l n-L n+N n$. Therefore $P p=\overline{n+1} \times \ln -L N+N \bar{n}$. But $l n-L n$ is the Moment of the right Line $L N$ perpendicular to $S L$; $P p$ is the Moment of the Curve $B p$; and $N n$ is the Moment of the Curve $B N$. And fince $B P, B N, B L$, vanifh together in B, they will be in the Ratio of their Moments, and therefore $B P=\overline{n+} \times \bar{B} \bar{I} L N$. Whence the Curve $B P$ is to the Sum or Difference of the laft Curve but one in the Series, and its Tangent intercepted by the intermediate Curve, as $n+1$ to n; or, putting m for the Index of the Equation of the Curve $B P$, (becaufe $m=\frac{n}{n+1}$) as I to $\mathrm{I}-m$.

Hence firft, in the infinite Series of Curves above defcribed, if the Lengths of two of the neareft are given, the Lengths of all will be given. For the Meafure of every one depends always on the Meafure of the laft but one in the Series, and therefore one Pair will fuffice for meafuring all. If one Curve is commenfurable to right Lines, or incommenfurable, half the intire Series will be commenfurable to right Lines, or incommenfurable. Hence fecondly, altho' the Curves $B P$ and $B N$ fhould be incommenfurable to right Lines, yet the Difference of the Curve $B P$ from $n+{ }_{1}$ Part of the Curve $B N$, would be equal to an affignable right Line. Thirdly, if the Curve paffes through S, the right
Line $L N$ vanifhing in S, it will be $B P S=\frac{B N S}{1-m}$.
Sect. 4.] Of all the Curves about which we have treated, whofe Property is $\dot{s} \cdot \dot{y}:: a^{n} \cdot r^{n}$; the Circle is the moft remarkable, S being in the Circumference whofe Equation is $s: y:: a . r$, as is evident from the Similitude of the Triangles Lol, $B L S$. Therefore $n=1$, and confequently $m=\frac{n}{n+1}=\frac{1}{2}$; and the Equation of the Curve $B P$ will be $s, y:: a \frac{1}{2}, r \frac{1}{2}$, which is the very Equation of the Epicycloid defrribed by the Revolution of a Circle upon a Bafe equal to itfelf, to the Point where the defcribing Point touches the Bafe; which Mr. Pafchal calls Mr. Roberval's Snail, and which Mr. de la Hire confiders as a Conchoid with a circular Bafe, in the

Memoirs of the Academy of Paris, An. 1708. All the Perpendiculars $L N, l n$, concur in the Point B, and therefore $B N=0$. Whence $B P$ $=\frac{B N+N L}{1-m}+2 B L$. Therefore the whole Curve $B P S=2 B S$, or the Length of the Epicycloid is always double to the Chord of the correfponding Arch in the Circle. Secondly, From the Epicycloid let the Curve Bil S be defribed, in the fame Manner as we defcribed the Epicycloid from the Circle. In this Cafe $n=\frac{1}{2}$, and $m=\frac{n}{n+1}=\frac{\frac{1}{2}}{\frac{1}{2}+1}$ $=\frac{1}{3}$, and therefore the Equation of the Curve $B \Pi S$ will be $\dot{s}^{\prime} \cdot y:: a^{\frac{1}{3}}$. $r \div$ The Length of the Curve will be $\frac{B L+L P}{1-m}=\frac{3}{2} \times \overline{B L+L P}$
$=\frac{1}{2} \times \overline{B L+} \bar{L}$, and therefore $B \Pi$ is fercuple the Sum of the circular Arch and its right Sine. Now if we take $C D=B D$, and with Radius $S D$ and Center S defcribe a Circle meeting the right Line $S P$ in H, and $H K$ is made perpendicular to $B S$; becaufe $D H=\frac{2}{\gamma} B L$, it will be $B \Pi=D H+H K$. Hence the Arches $B \Pi$ are neither commenfurable to right Lines nor to circular Arches, yet the Difference of the Arches $B \Pi$ and $D H$ is the right Line $H K$. The Line $L G$ vanifhes in the Point S, and therefore $B \Pi S$ is $=\frac{3}{2} B L S$; whence the whole Curve is fefcuple of the Semicircle. Yet no Part of this affignable Curve can be commenfurable to the whole, nor is the intire Curve divifible in any given Ratio, fo that the Portions may have an affignable Ratio to one another or to the whole. If this Curve could be divided Geometrically in any given Ratio, the Quadrature of the Circle would be compleated. For Inftance, if it were $B \Pi$ to $B \Pi \mathcal{S}$, as I to m, and $B L$ to $B L S$ as I to n, it would be $B \Pi=\frac{B \pi S}{m}=\frac{3 B L S}{2 m}=\frac{3 n B L}{2 m}=\frac{3}{2} \times \overline{B L+L} \bar{G}$. Whence it would be $B L=\frac{m L G}{n-m}$ and $B L S=\frac{n m}{n-m} L G$. Thbirdly, by the Method already explain'd, from $B \cap S$ let the Curve $B R$ be conftructed ; and becaufe $n=\frac{r}{\mathrm{~T}}$, it will be $n=\frac{n}{n+1}=\frac{\mathrm{r}}{+}$, and the Equation of the Curve $B R$ will be $\dot{s} . \dot{y}:: a^{\frac{1}{4}} \cdot r^{\frac{2}{4}}$. Hence the Length of the Curve will be $4 \times 2 \overline{2 B L+P \Pi}$, and the whole Length of the Curve $B R S$ is $\frac{3}{3}$ of the Diameter $S B$. If the Conftructions of thefe Curves are continued, there will arife fuch a Series of Equations as this following, which is eafily continued at Pleafure.

Of the Epicycloid.
Of the Second.
Of the Third.
Of any.
2. $s \cdot y:: a^{\frac{1}{2}} \cdot r^{\frac{2}{2}}$.
3. $s \cdot \dot{y}:: a^{\frac{1}{3}} \cdot r^{\frac{x}{3}}$.
4. $\dot{s} \cdot \dot{y}:: a^{\frac{\pi}{4}} \cdot r^{\frac{\pi}{4}}$.
5. $\dot{s} \cdot \dot{y}: \because a^{\frac{1}{n}} \cdot r^{\frac{1}{n}}$.

Here it may be obferved in general, that all thofe are capable of perfect Rectification, the Denominators of whofe Indices are even Numbers; and fince every one to that before it is as I to $\mathrm{I}-m$, it will appear to any one that confiders it, that the Length of any Curve will be $\frac{1}{1-m} \times \frac{1-2 m}{1-3 m} \times \frac{1-4 m}{1-5 m} \times \frac{1-6 m}{1-7 m}, 8^{2} c, \times S B$, continuing the
Series till the Fraction is reduced to nothing. Now if the Denominator of the Index be an odd Number, the Curves will be incapable of perfect Rectification, and any of their Arches will be incommenfurable to each other, to the Wholes, to any right Lines, and circular Arches: Yet all may be expreffed by circular Arches and right Lines. But the total Length of any Curve will be to the Semicircle, as $\frac{1}{1-m} \times \frac{1-\frac{2 m}{1-3 m}}{1 m}$ $\times \frac{1-4 m}{1-\frac{m}{5}}, \mathcal{E}^{2}$. to Unity. Laftly, if the little Area, defcribed by a Body revolving in any one of thefe, be taken as conftant, that is, if $r y$ $\equiv 1$, the Subtenfe of the Angle of Contact, to which (becaufe of the Time being given if the Area is given) the Centripetal Force tending to S will always be proportional, will be reciprocally as the Power of the Diftance whofe Index is $2 m+3$. And this is no contemptible Privilege of thefe Curves, that in all of them the Centripetal Force tending to S, is as fome Dignity of the Diftance reciprocally; which is the moft fimple, and moft ufeful Law of Centripetal Forces, in fearching into Nature.

Sert. 5.] Of all the Curves in which $\dot{s} \cdot \dot{y}:: a^{n} \cdot r^{\prime \prime}$, the right Line itfelf is next to be confider'd, (which is indeed properly called a Curve) the Point S being without that right Line. In this Line becaufe of fimilar Triangles P $p n$, P B S, if. B. $S=c$, and $S P=r$, it will be $\dot{s} \cdot \dot{y}:: r$. a. By the direct Method nothing can be conftructed from the right Line but the Point B; but by the inverfe Method, or from the Concourfe of the Perpendiculars $\mathrm{PL}, p l$, a Curve may be conftructed,
whole

Fig. 18.

The Conftruction and Meafure of Curves

 whofe Index will be equal to $\frac{m}{1-m}$, if m be the Index of the Curve B P. For if the Index of the Curve B L is n, then it will be $m=\frac{n}{n+1}$, and therefore $n=\frac{m}{1-m}$. Whence in this Cafe, fince $m=-\mathrm{I}$, it will be $n=\frac{-1}{2}$, and the Equation of the Curve BL will be $\dot{s} \cdot y:: r^{\frac{1}{2}} \cdot a^{\frac{1}{2}}$, which is an Equation of the Parabola in refpect of its Focus. From this conftruct another, by making the Angle $\mathrm{LSN}=\mathrm{LS}$ B, and raifing $\mathrm{L} N$ perpendicular to $S \mathrm{~L}$, meeting $S \mathrm{~N}$ in N . Now becaufe $m=\frac{-1}{2}$ it will be $n=\frac{-1}{3}$ and the Equation of the Curve will be $s \cdot y:: r^{\frac{1}{3}} \cdot a^{\frac{1}{3}}$, and $B P=\frac{B N^{3}-L N}{I-n}=\frac{1}{2} B N-L N$, and therefore $B N=$ ${ }_{2} \mathrm{BP}+\mathrm{LN}$; and therefore this Curve is rectifiable. If the Series is continued, the Equations will arife as before in this Order.$$
\begin{aligned}
& \text { Equation of the right Line, } \quad s \cdot y:: r \text { a. } \\
& \text { Of the Parabola, } \quad \dot{s} \cdot \dot{y}:: r^{\frac{1}{2}} \cdot a^{\frac{1}{2}} \text {. } \\
& \text { Of the Second, } \quad ; \cdot y:: r^{\frac{1}{3}} \cdot a^{\frac{1}{3}} \text {. } \\
& \text { Of the Third, } \quad \text { s. } y:: r^{\frac{1}{4}} \cdot a^{\frac{1}{4}} \text {. } \\
& \text { Of any, } \\
& \dot{s} \cdot \dot{y}:: r^{\frac{1}{n}} \cdot a^{\frac{1}{n}} \text {. }
\end{aligned}
$$

In this Series the firlt are the right Line and the Parabola, whence it appears that half this Series, as well as the former, are commenfurable to right Lines; and the other half may be exhibited by right Lines and Arches of a Parabola. In all thefe the Centripetal Force at S is reciprocally as that Power of the Diffance, the Index of which is $3-2 \mathrm{~m}$; and therefore is always between the duplicate and triplicate Ratio of the Diftance reciprocally.

Sect. 6.] The Equation of the Equilateral Hyperbola at the Center is s. $y:: r^{2} \cdot a^{2}$. From which by the direct Method fuch a Series may be deduced,

$$
\begin{aligned}
& \text { 1. } \dot{j} \cdot \dot{y}:: r^{2} \cdot a^{2} \\
& \text { 2. } \dot{j} \cdot \dot{y}:: a^{2} \cdot r^{2} \\
& \text { 3. } \dot{j} \cdot \dot{y}:: a^{\frac{2}{3}} \cdot r^{\frac{2}{3}} \\
& \text { 4. } \dot{s} \cdot \dot{y}:: a^{\frac{2}{3}} \cdot r^{\frac{2}{3}} \cdot \\
& \text { 5. } \dot{s} \cdot \dot{y}:: a^{\frac{2}{2 n-1}} \cdot r^{\frac{2}{2 n-1}} \text {. }
\end{aligned}
$$

A new Metbod of deforibing all Kinds of Curves.

Of thefe Curves, thofe the Denominators of whofe Indices are in this Progreffion, - $1,3,7,11, \mathcal{V}_{i}$, may be exhibited in right Lines and Arches of the Hyperbola; the reft in right Lines and Archest of the Curve, whofe Equation to the $A x: A B$, (making x che Abcifs, and y the Ordinate) is $\overline{x x}+y y=a^{2} x-a^{2} y^{2}$, and which is conftructed (See fig. 17.) by bilecting the Argle ©' $S L$, and taking $S N$ a mean Proportional between S B ame S L.
The Curves which may be confructed from the Hyperbola in the inverfe Method, proceed as in this Series.

where the Curves, the Denominators of whofe Indices are in the Pro-- greffion $1,5,9, d 3, \mathcal{F}^{\circ} c$, may be exprefs'd in right Limes and Hyperbolic Arches; but the others in right Lines and the irches of the Curve juft now explain'd.

If other Curves were defired which fhould exlibit other Series, this may be done very eafily by Means either of a Circle or of a right Line. For by one of them all the Curves may be conitructed, in which if. $\dot{y}:: a^{n} \cdot r^{n}$; by taking (if the Problem is to be folved by Means of the Circle) $B k S$ to $B S L$ as 1 to n, and $S N$ in $S R=a^{\frac{n-1}{n}} \times S L^{\frac{2}{m}}$. ${ }^{3}$ For the Equation of the Curve drawn through all the Points N, will be $\dot{s} \cdot \dot{y}:: a^{n} \cdot r^{n}$. In like Manner Curves may be conftructed by Means of a right Line, whofe Equation will be $\dot{s} \cdot \dot{y}:: r^{\prime \prime} \cdot a^{n}$.

We have exhibited two infinite Series of Curves, that are commenfurable to right Lines; we have demonftrated another to be conmenfurable to circular Arches, another to Parabolical, another to Hyperibolical together with right Lines; but thofe feem reducible to the Meafure of right Lines by infinite Art only, as they are expreffed in right Lines only by an infinite Equation.
XIII. Whereas the great Neroton has not extended his Method for defcribing Curves, to thofe of the third Order which are without a double Point, or to thofe of an higher Order deftitute of a punitum multiplex; and pronounces their Defcription to be reckoned among the more difficuit Problems of Geometry; I hope the following Method will not be unacceptable to Geometricians, by which Geometrical Curves of any Order are conftructed, (by the Help only of given Angles and Right Lines,) though ${ }^{\text {p }}$

A New Man

 thont of defrib. ing all Kindio ofCurves, by Mr. C. Macaurin, n. 359 . p. 939. they may be without a punctum duplex or multiplex.
I. Lines of the firf Order are only right Lines themfelves, which can meet one another only in one Point. Lines of the fecond Order are
V OL. IV. I Canic

Fig. 1g.

Conic Sections, which cannot be cut by a right Line in more than two Points. Now all thefe may be thus conftructed, accorting to Lem. 21 . Lib. 1. of Newson's Principia. Let two given Angles M C R and L S N

Fig. 24. move about two given Points C and S, to that Q the Concourfe of the Legs C M, S L, may alwat's defcribe the indefinite right Line A E given in Pofition; then the Concourfe of the other Legs CR and SN in the Point P, will defcribe a Line of the fecond Order, or a Conic Section.
2. Let the Angle MCR (as before) move about the given Point C ; and the given Angle L N Q by its Angular Point N always run over the given right Line A E, fo that the Leg N Q may always pafs through the given Point S. Firt, if the Concourfe of the Legs CR and S N, and alfo the Point Q, be drawn through the infinite Line A B, the Concourfe of the Legs C M and N L will defcribe a Curve-line of the third Order, having a double Point in C. Secondly, the reft remaining as before, if the Concourfe of the Legs C M and N L is drawn through the indefinite right Line A B; the Concourfe of the Legs C R and SN in P, will defcribe a Curve of the third Order, having a double Point in S.

Example of Cafe I. Let the Angles MCR and LN S be right Angles, and A E, D B, CS, be parallel ; alfo let SA and SD be perpendicular to A E. and D B refpectively, and let $S \mathrm{D}=2 \mathrm{SA}$. Thefe things fuppofed, if SD be lefs than the Line C S, a Curve defcribed according to the Rule of the firft Cafe, will be a Parabola with a Node and an Oval, of the 68th Species of Newton's Curves. Now if SD=C S, the Oval vanifhes, and the Node becomes a Cufpis, and the Curve fo defcribed will be Neil's or the femicubical Parabola. But if SD be greater than C S, the Curve will be a Parabola with a Point and Campaniform, of the 69th Species.

 Point
4. Now in the firft Cafe of this Conftruction, if the right Lines CMR and SNK coincide together with CS ; then the Points C and S become fimple, and the Curve will be of the third Order without a double Point. For Example, let the right Lines $\mathrm{B} \mathrm{M}, \mathrm{A} Q, \mathrm{D} N$ be parallel to one another, and all perpendicular to CS. Alfo let the Angles R M T and KNL be right; and if a Curve be defcribed according to the Rule of the firft Cale, the Legs CMR and SNK will coincide with SC; and
and by this Conftruction may be defcribed the Curves of Newton, 10 , 11, 20, 21, 40, according to the various Pofitions of the Points C and S in refpect of the three right Lines $\mathrm{BM}, \mathrm{A} \mathrm{Q}, \mathrm{DN}$; but all thefe Species will be without a double Point.
5. But Lines of the fourth Order, which have a treble Point, may be thus conftructed. Let there be three right Lines A $\mathrm{Q}, \mathrm{BN}, \mathrm{D} \mathrm{M}_{;}$given in Pofition. Alfo let the Angles Q CT, S N M, NM L, be given and invariable. Let the Points N and M run through the right Lines BN and $D M_{\text {, }}$ fo that the Leg NQ may always pafs through the given Point S. Let QCT fo revolve about C, that the Concourle of the Legs CK and S N may run through a third right Line A Q. Then the Concourfe of the Legs C T and ML will defcribe a Line of the fourth Order, having a triple Point in C.
6. I have fhewn how Lines of the fouth Order may be defcribed, which have a triple Point or two double Points. Others having only one double Point may be thus conveniently defcribed. Let thete be three Lines A Q, BN, DM, given in Pofition as before; alfo let the Angles S NK, S ML, R C T be given. Let the Points N, M; S, be always in the fame right Line. Let the Points N, M, move as before through the right Lines B N, D M ; if the Concourfe of the Legs C R, N K, is drawn through the indefinite right Line A Q, then the Concourfe of the Legs C T, M L; will defcribe a Line of the fourth Order, having one double Point in C. Now thefe two laft Propofitions fupply us with new Methorts for deftribing Lines of the third Order, as well thofe that have double Points, as thore that have none. But in this fhort Specimen of ourr Method thefe muit be omitted.
7. Let the Angles and right Lines remain, as in Prop.3. and let the Concourfe of the right Lines M T, N K, now be drawn through the indefinite righe Line AQ ; and the Concourfe of the Legs MR atid NL will defcribe a Litre of the fifth Order, having a quadruple Point in S. I have alfo other Merhods for defcribing Curves of the fifth Order, which have a double of ttiple Point; or two double Points, ot none but fimple Points, but there may fuffice to fhew the Simplicity and Univerfality of the Method. But it mift be obifervel, that in particular and fimpler Circumftances of the Angles and right Lires, fometimes a Line will pafs into a Curve of an Order inferior to that which is explain'd it' the Propofition. Nay, all the Propofitions fupply particular Methods of defcribing fome Curves of every inferior Order.
8. General Propofition. Let right Lines be takent at Pleature any where pofited in the fame Plain, of which let the Number be π; as B N, ER, F T, alfo let other right Lires be taken at Pleafure, as D M, G L, $\mathrm{HK}, \mathrm{\vartheta}^{2} c$. of which let the Number be m. Let the Angles C N R, NR T, R T Q, \mathcal{F}° c. alfo the Angles S M L, MLK, L K Q, $\mathcal{E}^{\circ} c$. be invariable, whilf the Angular Points $\mathrm{N}, \mathrm{R}, \mathrm{T}, \mathrm{M}, \mathrm{L}, \mathrm{K}$, perambulate the indefinite right Lines $B N, E R, F T, D M, G L, H K$; let the Concourfe of the

Fig. 30.

Legs T Q and K Q be drawn thro' the indefinite right Line A Q ; to find the Order of the Curve which fhall be defcribed by the Concourfe of the Leg S M with any one of the right Lines C N, N R, R T, T Q, छ'c. for Inftance, with the Line R T.

In the Series of the right lines CN, NR, R T, $\mathrm{TQ}_{2} \mathrm{E}^{\circ}$ c. let s denote the Number of the right Line R T, by the Concourle of which with SM the Curve is to be delcribed, from the Line C N inclufively; which in this Cafe is the third, or $n=3$. Then will the Curve be of an Order which is exprefs'd by the Number $s m+s+n+1$. Whence in the Cale denoted by the Figure, finces $=m=n=3$, the Curve will be of the fixteenth Order.

In thefe Defcriptions we have only poftulated, that right Lines and Angles Should be given. But generally the more complicated Curves are more catily defcribed by the Help of fimpler Curves. And I have inveftigated Propofitions of this Kind, not le's univerfal than thefe. But I omit thefe at prefent, with the Demontrations of thefe, becaufe they would be too prolix, tho' perhaps I may publifh them hereafter.
XIV. In order to underftand what follows, it munt be obferved, iff, That as in the Notation of Powers, a a a a $b b b c a$ is defigned by $a^{+} b^{5} c^{2}$, and univerfally p times the Pofition of a, q times the Pofition of b, r times the Polition of c, by ae b q c^{r}, fo in Things expoted likewife; (unlefss where 'tis propoled they hould be all cifferent) which Indices, as they have here no Relation to Powers, but exprefs only the Occurrences of: thofe Things to which they refpectively bulong; I therefore call Indices of Occurrences.

2dly, That as often as I fhall hereafter mention the Combination of Alternations of the $p^{s} q^{s} r^{s}$ or s^{s}, (which, confidered by themfelves, are capable of no Variation, I mean of thofe Things whofe Indices they are. $3 d l y$, That m is gen rally put for the whole Number of Things expofed, whetlier all different or not, i. e. equal to the Sum of their Indices; and n, for fuch a Number of them, as each Combination and Alternation muft confift of; (unlefs prefuppofed equal) which explains what is hereafter meant by the Combinations and A termations of n Things taken n and n; or of m Things taken m and m; and the like Expreffion, by whatevers Symbols the Number of Things, ont oi which the Combinations and Alternations are to be made, or of which they are to confift, may be delign'd.
Lemma 1.] If in a right Line, at any Ditances, be placed any Namber of Things $a b c d, \xi_{c} c$. the Number of the Intervals $a b, b c, c d, \delta_{6}$ c. terminated each by two adjacent Things, is one lefs than the Number of Things.

For, whereas ever. Interval is terminated by two adjacent Things, if to any Number of Things, be added one Thing more, one Interval only is thereby added. \& E.D.

Lemma 2.] The Number of the Alternations of mh Things $a b c d, 88 \mathrm{c}$ different from each other, taken m and m, is m times the Number of the Alternations of $m-1$ Things $a b c$, taken $m-1$ and $m-1$.

Alternations improved and compleated.

For (by Lem. $1 / f$.) the laft Letter d, befides the Pofition it hath, may have $m-2$ Pofitions, viz. in the Intervals which are between $m-1$ Things $a b c$; but it may alfo have one more, for it may be put firt of all, it may therefore have m Pofitions; and thore in all the different Orders whereof $m \rightarrow$ I Things are capable; which being all the polfible Pofitions of d, in all the Varieties of $a b c$, is all the Yariety whereof the whole Number of Things expofed $a b c d, E c$. is capable. 2. E. D.

Lermana 3.] The Number of the Alternations of m Things a, b, c, d, Ere. different each from other, taken m and m, is equal to $m \times m-1 \times m$ $m-2 \times m-3 \times m-4, \xi c$. continued to m Places.
For let $m O$ exprefs the Number of the Alternations of m Things different from each other; $m-10$, of $m-1$ Things, and the like.
'T is evident that if $m=1$, it will be $m O=m$; for there can be but onte Order of one Thing.

And if m be greater than Unity, then it will be (by Lem. 2.) $m=m$ $\times m-10=m \times m-1 \times m-2 O=m \times m-1 \times m-2 \times m-3 O=\xi^{2} c$. till we have art Equation confifting of m Places; i. e. $=m \times m$ - $1 \times$ $m-2 \times m-3 \times \delta^{2} c$. continued to m Places. Q. E. D.

Lemma 4.] If $m \omega$ exprefs the Number of the Alternations of m Things d^{p} bp cp do af $f, \xi^{3} c$. taken m and m, and a the Number of p^{s}, β the Number of q^{\prime}, γ the Number of $r s$, it will be

$$
m{ }^{x} m-1^{x} m-2^{x} m-3^{x} m-4^{x} m-5^{x} 8^{2} c . \text { continued to } m \text { Places. }
$$

$m \omega=p^{x} p-1^{x} p-2^{x} \delta_{i} \cdot a^{\times} q^{x} q-1^{x} \delta^{\beta} c^{\beta \times r^{-x} r-1 \times \delta} c^{2} \gamma$ each Series continued to p, q, r, \mathcal{F}_{c}. Places refpectively.

For the Number of the Alternations of any Number of Things, however divided into Parts, is produc'd by a continual Multiplication of the Alternations of thofe Things among themfelves refpectively, which compofe each Part, into the Number of their Alternations one amongft the other; i.e. in the prefent Cafe (the feveral Occurrences being fuppofed to compofe the feveral Parts, and confequently the Number of the Alternations of the Things compofing each Part equal to Unity) $m_{\omega}=$ to the Number of the Alternations of the Things compofing the Parts one amonglt the other; but the Number of their Alternations one amongft the other, is the fame in this Cafe, as if the Things expofed, being all different, were divided into the fame Parts; for the Things which compofe each Part in both Cafes, are different from the reft of the Things expofed, i, e. by Lein. 3 .
 ries continued to p, q, r, Places refpectively. 2, E. D.

Lemma 5.] The Number of the Combinations ol m Things $a b c d, \varepsilon_{2} c$. different from each other, taken n and n, is equal to $\frac{m \times m-1 \times m-2 \times m-3 \times \varepsilon^{2} c}{n \times n-1 \times n-2 \times n-3 \times \varepsilon^{2} c}$. each Series continued to n Places.

The Dostrine of Combinations and

For if the Things expos'd be divided in two Parts, viz. in the Ratio of n and $m-n$, 'tis evident that their different Combinations taken n and n, are produced by the Alternations of the Things compofing the Parts one amongtt the ocher: And therefore the Number of thofe $=$ to the Number of thefe $=$ to the Number of the Alternations of m Things taken m and m, the Indices of whofe Occuirences are n and $m-n=m \times m-1 \times n-2 \times m-3 \times \xi^{\circ} c$. continued to m Places. n and $m-n$ Places refpectively (by Lem. 4.) i.e. becaufe $n+m-$
 2.E. D.

But the Number of the Alternations in every Combination is $=n \times n-1$ $\times n-2 \times n-3 \times \underbrace{3} c$. continued to n Places, (by Lem. 3.) therefore

Lemma 6.] The Number of the Alternations of m Things $a b c d, \dot{\xi} c$. different each from other, taken k and n, is $=m \times m-1 \times m-2 \times m$ $-3 \times \mathcal{E}^{c}$ c. continued to n Places. 2. E. D.
Scbolium.] Since in the Things expofed the fame Things may occur more than once, and alfo n be lel's than m, the Indices of the Occurrences, which are in fome of the Combinations of m Things taken n and n, may differ from thofe which are in others ; but thofe Combinations, the Indices of whofe Occurrences are the fame, are faid to be in the fame Form : Therefore whereas n is equal to the Sum of the Indices which are in each Combination taken n and n, if n be expreffed by all the different Combinations of fuch Indices only (being integer Numbers) whereof no one may exceed the higheft Index of the Things expofed, and being more than one in a Combination, are each of them, which are in the fame Combination, comprehended in a diftinct Index thereof; thefe Expreffions of n will neceffarily be the feveral Forms of the Combinations taken n and n, whereof m 'Jhings are capable: Whence is derived a general Theorem for finding the Combinations and Alternations of m Things taken n and n univerfally : i.e. Whether m confift of Things all different or not, and whether n be equal to, or lefs than m.

Theorem.] If n be expreffed, according to all the different Forms of Combination which the Things expofed are capable of,

and $b=a+\beta, c=b+\gamma, d=c+d, \varepsilon^{\circ} \sigma$.

Alternations improved and compleated.

I fay the Number of the Combinations of m Things taken n, and n in any one Form of Combination, flall be $\frac{A \times A-1 \times A-2}{6 \times 1 \times 2-2} \xi^{\circ}$.
$\times \frac{B-a \times B-\alpha-1}{\beta \times \beta-1} \times छ^{\circ} c \frac{C-b \times C-b-1}{\gamma \times \gamma-1} \times \sum_{c} \times \frac{D \cdots \times D-c-1}{\square \times \Lambda-1} \mathcal{F}^{3} c$. continued to fo many Terms as thereare different indic s in the "orm of Combination, and each Term to α, , and this Number multiplied into
$x_{n-1} x_{n-2} x_{n-} 3^{x} n-4^{x} n-5^{x_{n}}-6$ Eic contimued to n Places.
 ries continued to $p q r, E_{i}$. Places refpectivcly, fhall be the Number of their Alternations.

But the Sum of all the Combinations and Alternations which are in every Form of n, fhall be the whole Number of Combinations and A1ternations of m Things taken n and n.
Demonfration.] Firft then 'tis evident, That thofe Combinations which are in different Forms, differ from each other.

Again, 'tis evident, that the Combinations of m Things, as $a^{p} b^{p} c^{p} d^{p}$ eq f g $g^{q} b^{r} i^{r}, \mathcal{E}^{\circ} c$. (the Indices fimply confidered) taken n and n, in a Form wherein are $p^{\prime} q^{s} r^{3}$, Thall be equal to the Number of the Combinations of the p, which are in the Things expofed, taken a and a, multiplied into the Number of the Combinations of the q^{2} taken β and β_{2}, multiplied into the Number of the Combinations of the r taken γ and γ.

But becaufe p and all leffer Indices are comprehended in every Index, which is greater than themfelves; therefore is $A=$ to the Number of p, which are in the Things expofed, and for the fame Reafon would $B=$ the Number of the q^{\prime}, and C the Number of r_{s} : But the Number of the p, which are in every Form of Combination, is $=\alpha$; therefore is $B-\infty$ $=$ to the Number of q^{s}; alfo becaufe the Number of p^{s} and q^{s} together, which are in every Form of Combination, wherein there are q^{s}, is $=\alpha+$ $\beta=b$; therefore is $C-b=$ to the Number of r^{\prime}, and fo on, how many foever were the different Indices in any Form of Combination.

But (by Lemma 5.) the Number of the Combinations of the p_{t}, which are in the Things expofed, whofe Number is A_{2} taken a and μ_{2}, is $=\frac{A \times A-1 \times A-2}{\alpha \times \alpha-1 \times \alpha-2}, E_{C}$. continued to a Places, and the Number of the Combinations of the q^{s}, whofe Number is $B-a$, taken β and β, is $=\frac{B-\alpha \times B-a-1}{\beta \times B-1} \times B-a-2, \delta^{c} c$. continued to β Places, and the Number of the Combinations of the r, whofe Number is $C-b$, taken γ and γ, is $=\frac{C-b \times C-b-1}{\gamma \times \gamma-1}, \mathcal{O}_{2}$. continued to γ Places. 2. E. D.

The Doatrine of Combinations and

But every Combination in one and the fame Form, affords the tame Number of Alternations: Therefore the Number of Alternations, in any one Forms, is fo many Times the Number of Combinations, as is the Number of Alternations in any one of thefe Combinations.

But (by Lem. 4.) the Number of Alternations in any of thofe Combinations flyall be
$n^{\times} x_{1}{ }^{\times} x_{n-2} x_{n}-3^{x_{n}}-4^{\times} x_{n-} 5^{x} n-6^{x} 8 c$. continued to n Places.
 continued to $p q r, \mathcal{E}^{2} r$. Places refpectively. \&E. E.

Now to make an Application of this general kut, to thofe particulat Cates which have already been confiteret by others, and which are contained in our $3^{\text {th }}$, $4^{\text {th }}$, 5 th, and Geh Lenima's, and by us more generally demonftrated; I fay

If $n=m$, there can be but one Form of Combination, and but one Combination in thate Form; and therefore the Number of Alternations $m^{\times} x_{m-1} x_{m-2} x_{m-3} x_{m-} 4^{x} \varepsilon^{2} c$. continued to m Places.
 \mathcal{E}^{2}. Places refpectively, i. e (if $p=1$) $=m \times m-1 \times m-2 \times m-3 \times$ $m-4 \times 8 c$. continued to m Places, which are the Cafes of the 4 th and 3d Lemma's.

But if the Things expofed are all different, and n be lefs than m, which is the Cafe of the "5th and Gth Levma's, then alfo can there be but one Form of Combination, and it will be $\Lambda=13$ and $a=n$, and the whole Number of Combinations $=\frac{x^{2} \times A-1 \times A-2 \times \theta^{2} c}{\alpha \times a-1 \times \alpha-2 \times \delta_{c}^{2}}$ i. e. $=\frac{m \times m-1 \times m-2 \times \mathcal{E}^{3} c}{n \times n-1 \times n-2 \times \xi^{3} c}$. cach Series continued to n Places, and therefore the Number of Alternations $=m \times m-1 \times m-2 \times \mathcal{E}^{c} c$. continued to n Places.

But fully to iliuftrate this Theorem, which may feem fomewhat too abftracted, I thall fubjoin one fhort Example.

Example.] Let the Things expofed be a a a $b b b c c$, or according to our Way of Notation $a^{3} b^{3} c^{2}$; 'Tis required to find the Number of their Combinations and Alternations taken 4 and 4.

Then (becaufe in the Things expofed, there is no one Thing occurs more than thrice, nor more than three Things different from each other) will all the Forms of Combination, which the Things expofed are capable of, be thefe,

Alternations compleated and improved.

In the ift Form will $p=3, q=1, \alpha=1, \beta=1, A=2, B=3$,
In the 2 d Form will $p=2, \square, a=2, \square, A=3$,
In the $3^{\text {d }}$ Form will $p=2, q=1, a=1, \beta=2, A=3, B=3$.
The Number of Combinations in the ift Form

$$
=\frac{A}{\alpha} \times \frac{B-\alpha}{3}=\frac{2}{1} \times \frac{2}{1}=4
$$

The Number of Combinations in the 2 d Form

$$
=\frac{A \times A-1}{\alpha \times \alpha-1}=\frac{3 \times 2}{2 \times 1}=3
$$

The Number of Combinations in the 3 d Form

$$
=\frac{A}{\alpha} \times \frac{B-\alpha \times B-\alpha-1}{\beta \times B-1}=\frac{2 \times 1}{2 \times 1}=3
$$

And the whole Number of Combinations $=1 \varnothing$
Alfo the Number of Alternations.
In the ift
Form

$$
\left.=4 \times \frac{n \times n-1 \times n-2 \times n-3}{p \times p-1 \times p-2 \mid \alpha \times q \beta}=4 \times \frac{4 \times 3 \times 2 \times 1}{3 \times 2 \times 1} \right\rvert\, \times=4 \times 4=16
$$

In the 2 d
Form

$$
=3 \times \frac{n \times n-1 \times n-2 \times n-3}{p \times p-\left.1\right|^{\alpha}}=4 \times \frac{4 \times 3 \times 2 \times 1}{2 \times 1}=3 \times 6=18
$$

In the 3 d
Form

$$
=3 \times \frac{n \times n-1 \times n-2 \times n-3}{p \times p-1 \mid \alpha \times q \cdot 3}=3 \times \frac{4 \times 3 \times 2 \times 1}{2 \times\left. 1\right|^{1} \times 12}=3 \times 12=36
$$

And the whole Number of Alternations $=70$
Many are the Properties of this Theorem in common with others, as, To find an Uncic of a Multinomial raifed to any integer Power. To raife an infinite Series to an integer Power, though of an interrupted Order, without introducing any Thing immaterial, or which muft afterwards be expunged, and many others. But then fo many Terms of the Series muft be taken in at firft as fhall ferve to the Purpofes of the inthe Operation muft be begun de novo.
Many likewife are the Properties peculiar to this Tbeorem, and great Variety of Problems might be framed; and I fcruple not to fay, many may occur in Practice, which are folvable by this, and no other Method
whatever. whatever.

Hence may be found the Number of Words whereof the 24 Letters are capable, from one Letter in each Word, to any Number of Letters
given.

An Univerfal Solution, Analytical and Geometrical,

Hence may be found the Number of all Numbers, to any given Number of Places, which may be produced from any Number of Figures given.

Hence alfo the Compafs of a Mufical Inftrument being given, the Time and Number of the Bars, whereof each Tune fhall confift, the Number of Tunes may be found which that Inftrument is capable of.

To give an Inftance of the prodigious Variety that there is in Mufick, I have calculated the Number of Tunes in common Time, confifting of eight Bars each, which may be played on an Inftrument of one Note Compais only, and it is this, viz. 27584. 270157. O1 3570. 368586. 999728. 299176. whereas the Changes on 24 Bells is but 620448. 401733.239439. 360000. which is but
of the Number of Tunes, and yet Dr. Wallis in his $4445^{83} .6045^{83}$

Alrebra demonftrates, could not be difpatch'd in 31557.600000 .000000 Years.

If then the Inftrument were of as many Notes Compafs as any Inftrument now in Ufe, how prodigiounly mult the Number of Tunes be encreafed! the Calculation of which (though much more intricate and operofe) would be equally attainable by our Theorem.

The Univerfal Solution of Cisbic and Bigua. dratic Equa-
sions, as wull
Analytically as Geometrically and Mechanisally: By John Colfon, M. A. \&F.R.S. n.
309. p. 2353 .
XV. §. s. Of the Univerfal Cubic Equation

$$
\begin{aligned}
& x^{3}=3 p x^{2}+3 q \times x+2 r \\
&+3 p^{2} \\
&+p^{3} \\
&-3 p q
\end{aligned}
$$

The three Roots are
$x=p+\sqrt[3]{r+\sqrt{r^{2}-q^{3}}}+\sqrt[3]{r-\sqrt{r^{2}-q^{3}}}$
$x=p-\frac{1-v-3}{2} \times \sqrt[3]{r+\sqrt{r^{2}-q^{3}}}-\frac{1+v-3}{2} \times \sqrt[3]{r-\sqrt{r^{2}-q^{3}},}$
$x=p-\frac{1+v-3}{2} \times \sqrt[3]{r+\sqrt{r^{2}-q^{3}}}-\frac{1-v-3}{2} \times \sqrt[3]{r-\sqrt{r^{2}-q^{3}}}$.
Or to make the Arithmetical Calculation the more eafy and ready, we may fuppofe $m+V n$ to reprefent the Cubic Root of the irrational Binomial $r+\sqrt{r^{2}-q^{3}}$. Then the three Roots of the foregoing Equasion will be $x=p+2 m$, and $x=p=m \pm \vee=3 n$.

Therefore

of Cubic and Biquadratic Equations.

Therefore when any Cubic Equation is given, we muft make a Comparifon between its Terms, and the feveral Terms of the Univerfal Cubic Equation refpectively, by which Means the Values of p, q, and r will be eafily found: And when thefe are known, the Roots of the given Equation will thence be known. Of this Solution here follow fome Examples in Numbers.

1. Let the Root x be propofed to be found in this Equation, $x^{3}=$ $2 x^{2}+3 x+4$. Firf, as order'd above it will be $3 p=2$, or $p=\frac{2}{3}$ Secondly, $3 q-3 p^{2}=3$, that is, $3 q-\frac{4}{3}=3$, or $q=\frac{13}{9}$. Third$1 y, 2 r+\overline{p^{2}-3 q} \times p=4$, or $2 r-\frac{70}{27}=4$, that is, $r=\frac{89}{27}$; and
$r=-q^{3}=\frac{212}{27}$. Therefore $x=\frac{2}{3}+\sqrt[3]{\frac{89}{27}+v^{212}}+\sqrt[3]{\frac{89}{27}-V^{\frac{212}{27}}}$ The other two Roots are impoffible.
2. In the Equation $x^{3}=12 x^{2}-41 x+42$, it will be firft, $3 p=$ 12, or $p=4$. Secondly, $3 q-3 p^{2}=-4 \mathrm{I}$, or $3 q-48=-4 \mathrm{I}$. that is, $q=\frac{7}{3}$. Laftly, $2 r+\overline{p^{2}-3 q} \times p=42$, that is, $2 r+$ $36=42$, or $r=3$. Thence $r^{2}-q^{3}=-\frac{100}{27}$. But the Cubic-root of $r+\sqrt{r^{2}-q^{3}}$, that is, of the furd Binomial $3+V-\frac{100}{27}$, being extracted by the Methods which the Arithmetick of Surds will fupply, will be found to be $-\mathrm{I}+V-\frac{4}{3}$, which is reprefented by $m+$ $\checkmark n$. And therefore the $\operatorname{Root} x=(p+2 m=) 4-2=2$. Alfo $x=$ $\left(p-m \pm v-3^{n=}\right) 4+1 \pm \sqrt{ }=7$ or 3 . Or again, another Cubic-root (for it has three) of the fame Binomial $3+\vee-\frac{100}{27}$ is $\frac{3}{2}$ K 2

An Univerfal Solution, Analytical, and Geometrical,

$+\vee-\frac{1}{12}$, which is reprefented by $m+\sqrt{ } n$. Therefore the Root $x=(p+2 m=)_{4}+3=7$. Alfo $x=(p-m \pm \vee-3 n=)_{4}$ $\frac{3}{2} \pm \vee \frac{1}{4}=3$ or 2 . Laftly, the third Cubic-root of the fame Bi nomial $3+V-\frac{100}{27}$ is $-\frac{1}{2}-V-\frac{25}{12}(=m+V n$.) And therefore the Root $x=(p+2 m=)_{4}-1=3$; and alfo $x=(p-m \pm$ $v-3^{n} \Rightarrow 4+\frac{1}{2} \pm v^{25} \frac{25}{4}=7$ or 2 .
3. In the Equation $x^{3}=-15 x^{2}-84 x+100$, it will be $p=-5$, $\eta=-3, r=135 ;$ and the Cubicroot of the Binomial $135+$ $\sqrt{ } 18252$ is $3+\sqrt{ }$ 12. Therefore the Root $x=-5+6=1$, and $x=-5-3 \pm V-36=-8 \pm \sqrt{ }-36$, imponible.
4. In the Equation $x^{3}=34 x^{2}-310 x+1012$, it will be $p=\frac{34}{3}$, $q=\frac{226}{9}, r=\frac{5536}{27}$; and the Cubic-root of the Binomial $\frac{5536}{27}+$ $\sqrt{7075} \frac{60}{27}$ is $\frac{16}{3}+\sqrt{10}$. Therefore the Root $x=\frac{34}{3}+\frac{32}{3}=22$, and $x=\frac{34}{3}-\frac{16}{3} \pm \vee-10=6 \pm \vee-10$, impoffible.
5. In the Equation $x^{3}=28 x^{2}+61 x-4048$, it will be $p=\frac{28}{3}$, $q=\frac{967}{9}, r=-\frac{25010}{27}$; and the Cubic-root of the Binomial -$\frac{25010}{27}+V-382347$ is $\frac{41}{6}+V-\frac{243}{4}$. Therefore $x=\frac{28}{3}+\frac{41}{3}=$ 23, and $x=\frac{28}{3}-\frac{41}{6} \pm \frac{27}{2}=16$ or -13 .
6. In the Equation $x^{3}=-x^{2}+366 x-660$, it will be $p=-$
$\frac{1}{3}, q=\frac{499}{9}, r=-\frac{9658}{27}$; and the Cubic-root of the Binomial $-\frac{9658}{27}$
$+V-\frac{1147205}{27}$ is $-\frac{22}{3}+V-\frac{5}{3}$. Therefore $x=-\frac{1}{3}-\frac{44}{3}=$
-15 , and $x=-\frac{1}{3}+\frac{22}{3} \pm \sqrt{ }=7 \pm \sqrt{5}$, irrational.
7. In the Equation $x^{3}=6_{3} x^{2}+99673 x+9951705$, it will be $p=2 \mathrm{I}, q=\frac{100996}{3}, r=6031680$; and the Cubic-root of the Binomial $6031680+V-\frac{478871750+3136}{27}$ is $183+V-\frac{529}{3}$. There fore $x=21+366=387$, and $x=21-183 \pm 23=-139$ or -185 .

And fo we muft proceed in other Examples. Now the Theorem may be inveftigated in the following Mannet. I fuppofe the Root of fome Equation to be $z=a+b$, and multiplying cubically there will arife $z^{3}=\left(a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \Rightarrow a^{3}+3 a b \times a+b+b^{3}\right.$. Now inftead of $a+b$ fubftituting its Value z, it will become $z^{3}=3 a b z+a^{3}+b^{3}$, which is a Cubic Equation conitructed from the Root $z=a+b$, in which Equation the fecond Term is wanting. Now that this may be reduced to a better Form, I affume the Equation $z_{3}=3 q z+2 r$, which is now to reprefent the Equation $z^{3}=$ $3 a b z+a^{3}+b^{3}$. Therefore to tranimute this into that, we fhall have firft $3 q=3 a b$, and therefore $q^{3}=a_{3} b_{3}$. Secondly, $2 r=a_{3}$ $+b^{3}$, or $2 r a^{3}=\left(a^{6}+a^{3} b_{3}=a^{6}+q^{3}\right.$. Then refolving this Quadratick Equation, we fhall have $a^{3}=r+\sqrt{ } r^{2}-q^{3}$, and thence $b_{3}=2 r-a_{3}=r-\sqrt{r^{2}-q^{3}}$. So that at laft it will be $a=$ $\sqrt[3]{r+\sqrt{r^{2}-q^{3}}}$, and $b=\sqrt[3]{r-\sqrt{r^{2}-q^{3}}}$. Therefore in the Cu bic Equation $z 3=3 q z+2 r$, we fhall have the $\operatorname{Root} z=(a+b=)$ $\sqrt[3]{r+\sqrt{r^{2}-q^{3}}+\sqrt[3]{r-\sqrt{r^{2}-q^{3}}} .}$

But this Root is really three-fold, according to the three-fold Value which $\sqrt[3]{r+\sqrt{r^{2}-q^{3}}}$ and $\sqrt[3]{r-\sqrt{r^{2}-q^{3}}}$ an acquire. For the Cubic-root of any Quantity whatever is three-fold, forasmuch as the Cubic-root of Unity iffelf is either 1 , or $-\frac{1}{2}+\frac{1}{2} V-3,0 r-\frac{1}{2}-\frac{1}{2} \vee-3$.

An Univerfal Solution, Analytical, and Geometrical,

 And this will appear by Cubing any one of thefe Quantities. Therefore if $r+V r^{2}-\overline{q^{3}}$, or $\mathrm{x} \times \overline{r+\sqrt{r^{2}-q^{3}}}$, be confider'd as a Cube, its. Cubic-root or Roots will be $\sqrt{3}_{1} \times \sqrt[3]{r+\sqrt{r^{2}-q^{3}}}$; that is, firf$1 \times \sqrt[3]{r+\sqrt{r^{2}-q^{3}}}$, which we have above call'd $m+V n$, or $\leq x$ $\overline{m+\sqrt{n}}$ Secondly, $\frac{-1+\vee-3}{2} \times \sqrt[3]{r+\sqrt{r^{2}-q^{3}}}$, which there. fore will be $\frac{-1+v-3}{2} \times \overline{m+v}=\frac{-m-v n+m v-3+v-3^{n}}{2}$. Thirdly, $\frac{-1-V-3}{2} \times \sqrt[3]{r+V \overline{r^{2}-q^{3}}}$, which therefore will be $\frac{-1-v-3}{2} \overline{\times m+v} n=\frac{-m-v n-m v-3-v-3 n}{2}$. In like Manner the Apotome $r-\sqrt{r^{2}-q^{3}}$ or $1 \times \overline{r-\sqrt{r^{2}-q^{3}}}$, being confider'd as a Cube, will have the Cubic-root or Roots $\sqrt[3]{1}$ x $\sqrt[3]{r-\sqrt{r^{2}-q^{3}}}$; that is, firt, $1 \times \sqrt[3]{r-\sqrt{r^{2}-q^{3}}}$, which we have calld $m-V n$, or $1 \times \overline{m-V n}$ Secondly, $\frac{-1+V-3}{2}$ $\times \sqrt[3]{\sqrt{-\sqrt{r^{2}-q^{3}}}}$, which therefore will be$\frac{-1+V-3}{2} \times \overline{m-V n}=$ $\frac{-m+v n+m v-3-v-3 n}{2}$. Thirdly, $\frac{-1-v-3}{2}$ $\times \sqrt[3]{r-\sqrt{r^{2}-q^{3}}}$, which therefore will be $\frac{-1-V-3}{2} \times \overline{m-V n}$ $=\frac{-m+v n-m v-3+v-3 n}{2}$. And by a due Connexion of, thefe Roots, we fhall have $z=\sqrt[3]{r+\sqrt{r^{2}-q^{3}}}+\sqrt[3]{r-\sqrt{r^{2}-q^{3}}}$ $=m+V n+m-V n=2 m$. And fecondly, $z=\frac{-1+V-3}{2}$ $x \sqrt[3]{r+\sqrt{r^{2}-q^{3}}+\frac{-1-\sqrt{-3}}{2}+\sqrt[3]{r-\sqrt{r^{2}-q^{3}}}=.2}$ $\frac{-m-v n+m v-3+v-3 n}{2}+6$$$
\begin{aligned}
& \text { of Cubic and Biquadratic Equations. } \\
&= m+v n-m v-3+v-3^{n} \\
& 2-m+v-3 n . \text { Laftly, } z= \\
& \frac{-1-v-3}{2} \times \sqrt[3]{r+\sqrt{r^{2}-q^{3}}}+\frac{-1+v-3}{2} \times \sqrt[3]{r-\sqrt{r^{2}-q^{3}}} \\
&= \frac{-m-v n-m v-3--v-3 n}{2}+\frac{-m+v n+m v-3-v-3 n}{2}
\end{aligned}
$$

$=-m-\sqrt{ }$ 3. Thefe therefore will be the three Roots of the $\mathrm{Cu}-$ bic Equation $z^{3}=3 q z+2 r$. Now that the Parts are duly connected in the foregoing Manner, may be farther proved by being continually multiply'd together in the ufual Method. Finally, make $z=x-p$, and, by Subititution, the Equation will become $x_{3}-3 p x^{2}+3 p^{2} x-$ $p^{3}=3 q \times-3 p q+2 r$; which, by Tranfpofition, will be the fame Equation as above, and its Roots are the fame as are there exhibited.
'Here it deferves to be obferved, that all the Roots of any Cubic Equation are then real and poffible, when the irrational Member of the Binomial $\sqrt{r^{2}-q^{3}}$ includes an Impoffibility; that is, when q is an affirmative Quantity, and at the fame Time its Cube is greater than the Square of r. But if this Member $\sqrt{r^{2}-q^{3}}$ is pofiible, that is, if q is a negative Quantity, or being affirmative if its Cube be lefs than the Square of r; then the Equation has but one real and poffible Root, and the other two will be impoffible.

In this Theorem if it fhould be $p=0$, that is, if the fecond Term of the Equation is wanting, we fhall defcend to the Cafe of thofe' Rules which are afcribed to Cardan; the Solution of which is contain'd in what is here exhibited.
§. 2. In the Univerfal Biquadratic Equation

$$
\begin{aligned}
& \qquad x^{4}=4 p x^{3}+2 q x^{2}+8 r x+4 s \\
& -4 p^{2}-4 p q-q^{2} \\
& \text { The four Roots are } x=p-a \pm \sqrt{p^{2}+q-a^{2}-\frac{2 r}{a}} \\
& x=p+a \pm \sqrt{p^{2}+q-a^{2}+\frac{2 r}{a}}
\end{aligned}
$$

Here a^{2} is the Root of this Cubic Equation following,

$$
\begin{aligned}
a^{6}= & p^{2} a^{4}-2 p r a^{2}-r^{2} \\
& +q-s
\end{aligned}
$$

Now when any Biquadratic Equation is given, a Comparifon muft be made between its Terms, and the feveral Terms of this univerfal Equation, by which Means the Quantities p, q, r, s, will foon be found. And when thefe are known, the Value of a may be difcover'd by the foregoing Theorem,

Theorem. And then all the Roots of the given Equation will become known.

An Example or two may fuffice to illuftrate this Solution.
I. Suppole we were to extract the Roots of this Biquadratic Equation, $x^{4}=8 x^{3}+53 x^{2}-162 x-936$. Firft, by what is prefcrib'd we Shall have $4 p=8$, or $p=2$. Secondly, $2 q-4 p^{2}=83$, or $q=\frac{99}{2}$ Thirdly, $8 r-4 p q=-162$, or $r=\frac{117}{4}$. Laftly, $4 s-q^{2}=-$ 936, or $s=\frac{6057}{16}$. Hence $p^{2}+q=\frac{107}{2}, 2 p r+s=\frac{7929}{16} r^{2},=\frac{13689}{16}$. Wherefore $a^{6}=\frac{107}{2} a_{4}-\frac{79^{29}}{16} a^{2}-\frac{13689}{16}$. Now that this Equation, which is really Cubic, may be refolved into its Roots, we muft have Recourle to the foregoing Theorem : In which $p=\frac{107}{6}, q=\frac{22009}{144}, r=$ $\frac{2903923}{1728}$, and $r^{2}-q^{3}=-\frac{11940075}{16}$. But the Cubic-root of the Binomial $\frac{2903923}{1728}+\checkmark-\frac{11940075}{16}$ is $-\frac{53}{12}+\checkmark-\frac{400}{3}$; and therefore $a^{2}=\frac{107}{6}-\frac{53}{6}=9$, and alfo $a^{2}=\frac{107}{6}+\frac{53}{12} \pm \checkmark 400=\frac{169}{4} \mathrm{or} \frac{9}{4}$. Or which comes to the fame, the fix Roots of the foregoing Equation, which in reality is Cubo-cubick, are $a= \pm 3, a= \pm \frac{13}{2}, a= \pm \frac{3}{2}$, any one of which may be taken indifferently for the true Root of the Equation, and will be fubfervient to our Purpofe. Suppofe in the prefent Cafe, that $a=3$. Then by the Theorem it will be $x=p-a \pm$ $\sqrt{p^{2}+q-a^{2}-\frac{2 r}{a}}=2-3 \pm \sqrt{4+\frac{99}{2}-9-\frac{39}{2}}=-1 \pm 5=$ 4or - 6. Alfo $x=p+a \pm \sqrt{p^{2}+q-a^{2}+\frac{2 r}{a}}=2+3 \pm$ $\sqrt{4+\frac{99}{2}-9+\frac{39}{2}}=5 \pm 8=13$ or -3 ; which are the four Roots of the given Equation.
2. In the Equation $x^{4}=20 x^{3}+252 x^{2}-6592 x+21312$, it will be $p=5, q=176, r=-384, s=13072$. Hence $p^{2}+q=201,2 p r+$ $s=923^{2}$, and $r^{2}=147456$. And thence $a^{6}=201 a 4-9^{2} 3^{2}$

of Cubic and Biquadratic Equations.

$a^{2}+147456$. Now in the Theorem for Cubics, it will be $p=6 \%$, $q=\frac{4235}{3}$, and $r=65219$. And the Cubic Root of the Binomial $65219+\sqrt{ } \frac{38889307072}{27}$ will be $\frac{77}{2}+\sqrt{847} 12$. Therefore $a^{2}=67+$ $77=144$, or $a=12$. Therefore $x=5-12 \pm \sqrt{25+176-144+64}$ $=-7 \pm 11=4$ or -18 . Alfo $x=5+12 \pm \sqrt{25+176-144-64}$ $=17 \pm \sqrt{V}-7$, which two Roots are impoffible.

Now the Inveftigation of this Theorem is in this Manner. By the Multiplication of the two Quadratic Equations $z^{2}+2 a z-b=0$, and $z^{2}-2 a z$ $-c=0$ intoeach other, I conftruct the Biquadratic Equation $z^{4}=\overline{4^{a^{2}+b+c}}$ $x z=+\overline{2 a c-2 a b} \times z-b c$, in which the fecond Term is wanting, and which I make equivalent to this Equation $z^{4}=e z^{2}+f z+g$. Whence firit, $4 a^{2}+b+c=a$, or $b=e-4 a^{2}-c$. Secondly, $2 a c$ $-2 a b=f$, or $2 a c-2 a e+8 a^{3}+2 a c=f$, whence $c=\frac{f}{4 a}+\frac{1}{2} c$ $-2 a^{2}$, and thence $b=e-4 a^{2}-\frac{f}{4 a}-\frac{1}{2} e+2 a^{2}=-\frac{f}{4 a}+\frac{1}{2} e$ $-2 a^{2}$. Thirdly, $-b c=g$, or $-\frac{f f}{16 a^{2}}+\frac{1}{4} e^{2}-2 e a^{2}+4 a^{4}=$ - g, that is, $a^{6}=\frac{1}{2} e a^{4}-\frac{1}{4} g a^{2}-\frac{1}{16} e a^{2}+\frac{1}{6_{4}} f f$, which is as it were a Cubic Equation, compofed of the Root a^{2}, and the known or affumed Quantities e,f,g. Now that Root may be exhibited by the foregoing Theorem, and by the fame Calculation the Quantities b and c will be known. But the Roots of the Equations $z^{2}+2 a z-b=0$, and $z^{2}-2 a z-c=0$, are $z=-a \pm \sqrt{a^{2}+b}$ and $z=a \pm \sqrt{a^{2}+c_{y}}$ or $z=-a \pm \sqrt{\frac{1}{2} e-a^{2}-\frac{f}{4 a}}$, and $z=a \pm \sqrt{\frac{1}{2} e-a^{2}+\frac{f}{4 a}}$, which therefore will be the Roots of the Equation $z_{4}=e z^{2}+f z+g$, when a or a^{2} is known from the Equation $a^{6}=\frac{1}{2} e a^{4}-\frac{1}{4} g a^{2}-\frac{1}{16}$ $e a^{2}+\frac{f f}{64}$. Now that this Equation may become univerfal, and furnifhed with all its Terms, make $z=x-p$, then $x^{4}-4 p x^{3}+6 p^{2} x^{2}$ $-4 p^{3} x+p^{4}=e x^{2}-2 p e x+p^{2} e+f x-f p+g$, alfo $x=p-a$ Vol. IV.
$\pm \sqrt{\frac{1}{2} e-a^{2}-\frac{f}{4 a}}$, and $x=p+a \pm \sqrt{\frac{1}{2} e-a^{2}+\frac{f}{4 a}}$. Laftly, for
Concinnity and Brevity Sake, make $e=2 q+2 p^{2}$, and $f=8 r$; then $x^{4}-4 p x^{3}+4 p^{2} x^{2}=2 q x^{2}-4 p q x+2 p^{2} q+p^{4}+8 r x-8 p r$ $+g, x=p-a \pm \sqrt{p^{2}+q-a^{2}-\frac{2 r}{a}}$, alfo $x=p+a \pm$ $\checkmark \overline{p^{2}+q-a^{2}+\frac{2 r}{a}}$, and $a^{2}=\overline{p^{2}+q} \times a_{4}-\frac{-}{\ddagger} \overline{g+\frac{1}{4} p^{q}+\frac{1}{2} p^{2} q+\frac{1}{4} q^{2} a^{2}}$. $+r^{2}$. Finally, make $g=4 s-q^{2}+8 p r-p^{4}--2 p^{2} q$, and the foregoingEquations become $x_{4}=4 p x^{3}+2 q x^{2}+8 r x+4 s$, and $a^{6}=p^{2} a^{4}-2 p r a^{2}+r^{2}$;

$$
-4 p^{2}-4 p q-q^{2}
$$

$+q$
that is, all Things become as fuppofed above.
§. 3. Hitherto concerning the Analytical Solution of Cubic and Biquadratic Equations. Now becaufe their Geometrical Effection by the Parabola is commonly taught, and is much valued by fome, 1 fhall exhibit it here more univerfally, and yet more compendioully.

Any Cubic or Biquadratic Equation being given, a Comparifon muft be made between its Terms, and the refpective Terms of this Equation following.

$$
\begin{array}{r}
x^{4}=\frac{2 p}{q} x^{3}+\frac{4 p r}{q} x^{2}+\frac{2 p^{2}}{q} x+p^{2} \\
-4 r-4 r^{2}-\frac{2 p s}{q}-q^{2} \\
+2 s+4 r s-s^{2} \\
-1-2 q+t^{2}
\end{array}
$$

by which Means the Values of p, q, r, s, t, will eafily be found, any one of them being affumed at Pleafure. Then in any given Parabola $A V B$, whofe principal Vertex is V, its Axis $V S$, and $V \tau$ perpendicular to the Axis; let there be taken $V S=p$, within the Parabola, and in the Angle $S V \mathcal{T}$ let there be infcribed $S T=q$, which being produced let it cut the Parabola in two Points N and O. Let $O N$ be bifected in M, and thro' M let $M A$ be drawn, parallel to the Axis and meeting the Parabola in A. Draw $A L$ parallel to $O N$, and let $A L$ be the Latus rectum of the Parabola to the Diameter $A M$, and let the fame be Unity. In $A L$, produced both Ways if neceffary, take $A G=r$, and from G draw $G R$ pasallel to the Axis, fo that it may cut the Parabola in B, from whence take $B R=s$. From the Point laft found R draw $R E$ parallel and equal to $V \tau$, and let it lie to the left Hand in refpect of R, if q is an affirmative Quantity, otherwife to the right Hand if q be negative. And the fame Thing is to be undertood of $A G$ and $B R$, which mult be drawn on the contrary Side, if the Values of r and s happen to be negative. Laftly,

of Cubic and Biquadratic Equations.

Laftly, with Center E and Radius $E C=t$, let a Circle $C K k c$ be defcribed, which will cut the Parabola in fo many Points, as there are real Roots in the given Equation. For from thofe Points C, K, let there be drawn $C P, k \Pi, \mathcal{E}_{c}$ c. parallel to $S \tau$, and terminated at the right Line $G R$ produced if need be. Every one of thefe will be x, or the required Root of the given Equation. Thofe lying to the right Hand will be affirmative Roots, and thofe on the left Hand will be negative. A Point of Contact, if any fuch fhould be, is here taken for two Points of Interfection, that are infinitely near to each other.

This will be the only Difference between Cubic and Biquadratic Equations, conftructed after this Manner, that in the former, becaufe of the laft Term being abfent in the foregoing Equation, it will always be $p p$ $q q-s s+t t=0$, or $t=\sqrt{s s+q q-p p}$. Therefore Center E and Radius $E C=\sqrt{B R q+(E R q) S T q-U S q}$ any Circle $C K k c$ being defcribed, one of the Roots $C P$ in the foregoing Conftruction becomes nothing.

Now thefe Pofitions are demonftrated in the following Manner. Suppofing all Things as before conftructed, and producing $C P$ if needful till it meets $A M$ in $H, C H$ will be the Ordinate of the Parabola to the Diameter $A H$, and therefore $C H q=A L \times A H=A H$, becaufe of $A L=1$. But $C H=C P+A G$, and $A H=G B+B P$, and therefore $C P q+2 A G \times C P+A G q=G B+B P$. But becaufe of the Nature of the Parabola it will be $A G q=B G$, whence $C P q+$ $2 A G \times C P=B P$. Now from the Point C let there be drawn $C D$ perpendicular to $B P$, which may alfo meet $E I$ parallel to $B P$ in the Point I. Now becaufe of fimilar Triangles $C D P$ and $\tau V S$, it will be $D P=\frac{V S \times C P}{S \tau}$, and $C D=\frac{V \tau \times C P}{S \tau}$; and therefore $C P q+2 A G$ $\times C P=B P=D P+D B=\frac{V S \times C P}{S \tau}+B R-I E$. Or $C P q+$ $2 A G \times C P-\frac{V S}{S T} C P-B R=-I E . \quad$ But $I E q=C E q-C I q$ $=C E q-C D q-V \tau q-2 C D \times V \tau=C E q-\frac{V \tau q \times C P q}{S \tau q}$ $-V \tau q-\frac{2 V \tau q \times C P}{S}=($ becaufe of $V \tau q=S \tau q-S V q) C E q$ $-C P q+\frac{S V q}{S T q} C P q-S T q+S V q-2 S T \times C P+\frac{2 S V q}{S T} C P_{;} ;$ this therefore will be equal to the Square whofe Side is $C P q+2 A G \times$ $C P-\frac{V S}{S T} C P-B R$. And when this Equation is reduced to the Terms p, q, r, s, t, it will become the very Equation propofed.

An Univerfal Solution, Analytical, \&c.

Hence it appears, that any the fame Biquadratic Equation will admit of innumerable different Conftructions by the Parabola, according to the different Values of that Quantity which we faid might be affumed at Pleafure. But the moft fimple Cafe is, by making $V S=p=0$, and the Conftruction paffes into the common one (as to the Thing itfelf) in which the right Lines $C P, \mathcal{E}^{\circ}$ c. which are the Reprefentatives of the Roots, are perpendicular to the Axis. Then the Equation becomes

$$
\begin{array}{r}
x^{4}=-4 r x^{3}-4 r^{2} x^{2}+4 r s x-q^{2} \\
+2 s \quad-2 q-s^{2} \\
+1 \quad+t^{2}
\end{array}
$$

which is eafily confructed as above.
§. 4. Bur Icaft the Organical Defrription of the Parabola fhould feem too difficult, we may have Recourfe to a certain Mechanical Artifice, to be perform'd by Means of a Plummet, or Thread with a Weight hanging at the End of it ; by Help of which the laft Equation may be conftructed very eafily and exactly, and therefore the Roots of any Cubic or Biquadratic Equations may be found. This Conftruction, which we may call a Mechanical one, is after this Manner.

Againft a fmooth and upright Wall, or any other Plain perpendicular to the Horizon, at any Point F let there be hung a very fine flexible Thread $F P$, with any Weight P hung at its Extremity. In this Thread Set any Point N be mark'd, which is at a fufficient Diftance from the Point of Sufpenfion F; or it may be tyed with a fmall Knot N. Then taking at Pleafure NO for Unity, at the middle Point M (and in the aforefaid Plain,) let the right Line A 2 be drawn parallel to the Horizon, and produced both Ways as far as is neceffary. Thefe Things being prepared in general, for Application to any particular Cafe, make $A Q=r$; the Quantities q, r, s, t, being firft determined in the laft Equation, either Arithmetically or Geometrically, according to the Exigence of the given Equation. Then with a fmall Style or Bodkin, or with the nender Point of a Pair of Compaffes, let the Thread be inflected and moved from its Place, till the Point of Inflection falls upon a certain Point B, and the Knot N falls at the fame Time on the Point laft found Q. In B Q from that Point B take $B R=S$, and at R raife the Perpendicular $R E=q$ to the Line $B R$. But thofe Lines $A 2, B R, R E$, mult fall the contrary Way from their initial Points, if it fhould happen that the Values of r, s, q, thould come out negative. Laftly, let one Leg of the Compaffes be fixed in the Point found E, and let the other Leg, extended to the Diftance $E Z=t$, be carried about with a circuJar Motion, taking with it the Thread F Z P. By this Circulation of the Thread the Weight P will fometimes afcend, and fometimes defcend with a reciprocal Motion, and the Knot N will fometimes be above and fomerimes below the Horizontal Line $A 2$ But whenever the Knot N Thall be found in the Line $A 2$, fuppofe in the Points $D d_{\Delta \delta}$, fucceffively; it will cut off the right Lines $D \mathscr{Q}, \underset{Q}{\mathcal{L}} \Delta \mathscr{Q}, \delta \mathscr{Q}$ which
will be all the real Roots of the given Equation: That is, thofe on the right Hand will be the affirmative Roots, and thofe on the Left the negative. The Demonftration will be manifeft from what goes before, and attending to the Parabola that will pals through the Points $B C c k K$. For making F the Focus of the Parabola, whofe Diftance from the Vertex is $\frac{ \pm}{4} O N$, it is known that all the Lines as $F B+B Q, F C+C D$, E'c. always make the fame Sum.

And from the Principles here laid down it will not be difficult to conftruct an Inftrument, which will be neat enough, and as accurate as you pleate, by the Help of which, and with very little Trouble, the Roots of all thefe Equations may be found, and exhibited to Ocular Infpection.
XVI. Let n be any Number whatever, y an unknown Quantity, and Equations of let a be any Quantity intirely known, or what they call the Homogeneunt the 3d, 5 th, Comparationis; and let the Relation of thefe be expreffed by the Equation. 7 Powers golv'd
$n y+\frac{n n-1}{2 \times 3} n y^{3}+\frac{n n-1}{2 \times 3} \times \frac{n n-9}{4 \times 5} n y^{5}+\frac{n n-1}{2 \times 3} \times \frac{n n-9}{4 \times 5} \times$ Analytically by Mr. Abr. de Moivre, $\frac{n n-25}{6 \times 7} n y^{7}$, Ezc. $^{7}=$ a. n. 309. p.

It is plain from the Nature of this Series, that if n is taken any odd Number, (that is, an Integer, but it is all one whether affirmative or negative) then the Series will ftop of its own Accord, and the Equation becomes one of thofe defribed in the Title; the Root of which is

$$
\begin{aligned}
& \text { (1) } y=\frac{1}{2} \sqrt[n]{\sqrt{1+a}+a}-\frac{\frac{1}{2}}{\sqrt[n]{\sqrt{1+a}+a}} \\
& \text { or (2) } y=\frac{1}{2} \sqrt[n]{\sqrt{1+a}+a}-\frac{\sqrt[n]{2} \sqrt{\sqrt{1+a}-a}}{\sqrt[n]{\sqrt{1+a}-a}}-\frac{1}{2} \sqrt[n]{\sqrt{1+a}-a} \\
& \text { or (3) } y=\frac{\frac{1}{2}}{\sqrt[n]{\sqrt{1+a}}} \\
& \text { or (4) } y=\frac{\sqrt[n]{2} \sqrt{\sqrt{1+a}-a}}{\sqrt[n]{\sqrt{1+a}-a}}
\end{aligned}
$$

For Examble, let it be this Equation of the fifth Power, $5 y+20$ $y^{3}+16 y^{5}=4$, whore Ront is ta be found. In this Cafe 'tis $n=E$, and $a=4$. Then the Root, according to the firt Form, will be
$y=\frac{1}{2} \sqrt[5]{\sqrt{17+4}}-\frac{\frac{1}{\frac{1}{2}}}{\sqrt[5]{\sqrt{17+4}}}$, which is reduced very expedidiouny to common Numbers in this Manner. 'Cis $\sqrt{ } 17+4=8$, 1231, whofe Logarithm is 0, 9097164, the fifth Part of which is 0,1819433 , and the Number anfwering to this is $1,5203=\sqrt[5]{\sqrt{17+4}}$. Now the Arithmetical Complement of o, 1819433 is $9,818056 \%$, to which anfwers the Number $0,6577=\frac{1}{\sqrt[5]{\sqrt{17}+4}}$. Therefore the half-Difference of there Numbers is $0,4313=y$.

It may observed, that inftead of the general Root it may be fufficient to take $y=\frac{\dot{V}}{2} 2 a-\frac{\dot{\dot{v}}}{\sqrt[n]{2}}$, whenever the Number n is very large in refpect of Unity. As if the Equation were $5 y+20 y^{3}+16 y^{5}=682$; the Log. of $2 a=3,1348143$, a fifth Part of which is 0,6269628 , and the Number anfwering to this is 4,236 . The Arithmetical Complement is 9,3730372 , whole Number is 0,236 , and the Half-differene of thee Numbers is $2=y$.

Again, if in the foregoing Equation the Signs are made alternately affirmative and negative, or which is the fame Thing, if we had fuch a Series as this following,
$n y+\frac{1-n n}{2 \times 3} n y^{5}+\frac{1-n n}{2 \times 3} \times \frac{9-n n}{4 \times 5} n y^{5}+\frac{1-n n}{2 \times 3} \times \frac{9-n n}{4 \times 5} \times \frac{25-n n}{6 \times 7}$ $n y^{7}, \Xi^{2} c_{0}=a$, the Root will be

$$
\begin{aligned}
& \text { (1) } y=\frac{1}{2} \sqrt[n]{a+\sqrt{a a-1}}+\frac{\frac{1}{2}}{\sqrt{a} \sqrt{a-\sqrt{a}-1}} \\
& \text { or (2) } y=\frac{1}{2} \sqrt[n]{a+\sqrt{a a-1}}+\frac{\pi}{2} \sqrt[n]{a-\sqrt{a a-1}} \\
& \text { or (3) } y=\frac{\frac{1}{2}}{\sqrt{a-\sqrt{a} a-1}}+\frac{1}{2} \sqrt[n]{a-\sqrt{a a-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9th, ©oc. Powers folv'd. } \\
& \text { or (4) } y=\frac{\frac{1}{2}}{\sqrt[n]{a-\sqrt{a a-1}}}+\frac{\frac{1}{2}}{\sqrt{a+\sqrt{2}} a-1}
\end{aligned}
$$

Here it is to be obferved, that if $\frac{n-1}{2}$ mould be an odd Number, the Sign of the Root when found muft be changed into its contrary.

Let this Equation be propofed $5 y-20 y^{3}+16 y^{5}=6$; whence $n=5$ and $a=6$. Then the Root $y=\frac{1}{2} \sqrt[5]{6+\sqrt{35}}+\frac{\frac{1}{2}}{\sqrt[5]{6+\sqrt{ } 35^{\circ}}}$

Or becaufe $6+\sqrt{25}=11,916$, the Logarithm of this will be 1, 0761304 , and its fifth Part 0,2152561, and its Arithmetical Complement 9,7847439 . The Numbers belonging to thefe Logarithms reipectively are 1,6415 and 0,6091 , whofe Semifum $1,1253=y$.

But if it Phall happen that a is lefs than Unity, then the fecond, Form of the Root is rather to be made Choice of, as fitter for the Pur-
pofe. Thus if the Equation were $5 y-20 y^{3}+16 y^{5}=\frac{61}{64}$, then

Means the Root of the fifth Power of Binomials can be extracted, the Root would come out true and pofible, notwithftanding that the Expreffion feems to include an Impoffibility. Now the fifth Root of the

Binamial $\frac{61}{64}+v \frac{-375}{4096}$ is $\frac{1}{4}+\div v-15$; and of the Binomial $\frac{6 r}{64}$
$-\vee \frac{-375}{4096}$ the fifth Root is alfo $\frac{1}{4}-\frac{1}{4} \checkmark-15$: And half the
Sum of thefe Binomials is $\frac{1}{4}=y$. Now if this Extraction cannot be perform'd, or fhould feem any Thing difficult ; the Refult may always be found by the Table of Natural Sines in the following Manner.

The Method of Approximating in the Extraction

To Radius 1 let $a=\frac{61}{64}=0,95112$ be the Sine of a certain Arch, which therefore will be $72^{\circ} .23^{\prime}$, a fifth Part of which, (becaufe $n=5$) is $14^{\circ} \cdot 28^{\circ}$. The Sine of this is 0,24981 , which is nearly $\frac{1}{4}$. Nor is it otherwife in Equations of higher Degrees.

The Mctbod of XVII. Dr. Halliey has publifh'd * a very compendious and ufeful Approximating, in E_{x} traeling the

Roots of E -

 quations in Numbers, im. prov'd by $D r$.> B. Taylor, n. 352:p. 610. *Vid. fup. V.I. C.I. S. XX. Method of extracting the Roots of adfected Equations of the common Form in Numbers. This Method proceeds by affuming the Roor defired nearly true to one or two Places in Decimals (which is done by a Geometrical Conftruction, or by fome other convenient Way) and correcting the Affumption by comparing the Difference between the true Root and the affumed, by Means of a new Equation whofe Root is that Difference, and which he fhews how to form from the Equation propofed, by Subititution of the Value of the Root fought, partly in known, and partly in unknown Terms.

In doing this he makes Ufe of a Table of Products (which he calls Speculum Analyticum) by which he computes the Coefficients in the new Equation for finding th: Difference mentioned. This Table, I obferved, was formed in the fame Manner from the Equation propofed, as the Fluxions are, taking the Root fought for the only flowing Quantity, its Fluxion for Unity, and after every Operation dividing the Product fucceffively by the Numbers $1,2,3,4, \xi^{\circ}$. Hence I foon found that this Method might eafily and naturally be drawn from Cor. 2. Prop. 7. of my Metbodus Incrementorum, and that it was capable of a further Degree of Generality, it being applicable, not only to Equations of the common Form, (viz. fuch as confift of Terms wherein the Powers of the Root fought are pofitive and integral, without any radical Sign) but alfo to all Expreffions in general, wherein any Thing is propofed as given which by any known Method might be computed; if vice versa, the Rout were confidered as given: Such as are all radical Expreffions of Binomials, Trinomials, or of any other Nomial, which may be computed by the Root given, at leaft by Logarithms, whatever be the Index of the Power of that Nomial; as likewife Expreffions of Logarithms, of Arches by the Sines or Tangents, of Areas of Curves by the $A b f c i f a s$, or any other Fluents or Roots of fluxional Equations, E'c.

For the Sake of this great Generality, it may not be improper to fhew how this Method is derived from the forefaid Corollary; therefore z and x being two flowing Quantities (whofe Relation to one another may be expreffed by any Equation whatfoever) by this Corollary, while

Plate II. Vol IV. Part I, Pad. 80.

Fin: 15 .

Fig: 16.

UsED
of the Roots of Equations in Numbers, improv'd.
z by flowing uniformly becomes $z+v, x$ will become $x+\underset{1, \dot{z}}{\dot{x}} v$
$+\frac{\ddot{x}}{1 \cdot 2 \dot{z}^{2}} v^{2}+\frac{\ddot{x}}{1 \cdot 2 \cdot 3 \dot{z}^{3}} v^{3}+\delta^{3} c$ or $x \frac{\dot{x} v}{1}+\frac{\ddot{x} v^{2}}{1 \times 2}+\frac{\ddot{x} v^{3}}{1 \cdot 2 \cdot 3}+\delta^{c} c$.
for \dot{z} putting I .
Hence if y be the Root of any Expreffion formed of y and known Quantities, and fuppofed equal to nothing, and z be a Part of y, and x be formed of z and the known Quantities, in the fame Manner as the Exprefion made equal to nothing is formed of y; and let y be equal to $z+v$; the Difference v will be found by extracting the Root of this Expreffion $x+\frac{\dot{x} v}{I}+\frac{\ddot{x} v^{2}}{1 \cdot 2}+\frac{\ddot{x} v^{3}}{1 \cdot 2 \cdot 3}+\xi^{2} c=0$. For in this Cafe z being become $z+v=y, x$, which is now become $x+\dot{x} v+\frac{\ddot{x} v^{z}}{2}$ $+E^{3} c$. mult become equal to nothing.

The Root v in the Equation $x+\frac{x v}{1}+\frac{x v^{2}}{1 \cdot 2}+\frac{\kappa v^{3}}{1 \cdot 2 \cdot 3}+\xi^{c} c=0$, is to be found upon the Suppofition of its being very fmall with refpect to z, (as it muft be, if z be taken tolerably exact) by which Means the Terms $\frac{\therefore v^{3}}{1 \cdot 2 \cdot 3}+\frac{\ddot{x} v^{4}}{1 \cdot 2 \cdot 3 \cdot 4}+\vartheta^{\circ} c$. may be neglected, upon account of their Smallnefs with refpect to the other Terms, fo as to leave the Equation $x+\frac{\dot{x} v}{I}+\frac{\ddot{x} v^{2}}{1 \cdot 2}=0$, for finding the firft Approximation of ϑ.

By extracting the Root of this Equation, we have
$v=\sqrt{\frac{\dot{x}^{2}}{\ddot{x}^{2}}-\frac{2 x}{\ddot{x}}}-\frac{x}{\dddot{x}}$. That is,
Vol, IV.

The Metbod of Approximating in the Extraction

Firft, $\sqrt{\frac{\dot{x}^{2}}{\ddot{x}^{2}}-\frac{2 x}{\ddot{x}}}-\frac{\dot{x}}{\ddot{x}}$, if $x+\dot{x} v+\frac{\ddot{x} v^{2}}{2}=0$.
Second, $\sqrt{\frac{\dot{x}^{2}}{\ddot{x}^{2}}+\frac{2 x}{\ddot{x}}}-\underset{\ddot{x}}{\dot{x}}$, if $-x+\dot{x} v+\frac{\ddot{x} v^{2}}{2}=0$.
Third, $\frac{\dot{x}}{\ddot{x}}-\sqrt{\frac{x^{2}}{\dot{x}^{2}}-\frac{2 x}{\dddot{x}}}$ if $x-\dot{x} v+\frac{\ddot{x} v^{2}}{2}, \forall_{c}=0$.
Fourch, $\frac{\dot{x}}{\ddot{x}}-\sqrt{\frac{\dot{x^{2}}}{\ddot{x}^{2}}-\frac{2 x}{\ddot{x}}}$, if $-x-\dot{x} v+\frac{\ddot{x} v^{2}}{2}, \forall c \cdot=0$.
This Λ pproximation gives v exact to twice as many Places as there are true Figures in z, and therefore trebles the Number of true Figures in the Exprefion of y by $z+v$, which may be taken for a new Value of z, for computing a fecond v, feeking other Values of $x, \dot{x}, \ddot{x}, \mho \smile c$. Though when z is tolerably exact (which it may be efteemed when it contains two or three or more Figures true in the Value of y, according to the Number of Figures the Root is propofed to be computed to) the Calculation may be reftor'd without fo much Trouble, only by taking $\sqrt{\frac{x^{\dot{x}}}{\dot{x}^{\dot{2}}} \pm \frac{2 \dot{x}}{\ddot{x}}-\frac{2 \ddot{x}}{2 \cdot 3 \ddot{x}}}$ v3$-\frac{2 \ddot{x}}{1 \cdot 2 \cdot 3 \cdot 4 \ddot{x}} v^{* 4}$, छc. inftead of $\sqrt{\frac{x^{2}}{x^{3}} \pm \frac{2 x}{\ddot{x}}}$ taking every Time for v its Value laft computed, From the fame Equation $x+\dot{x} v+\frac{\ddot{x} v^{2}}{2}+\frac{\ddot{x} v^{3}}{1 \cdot 2 \cdot 3}+छ_{c}=0$, may be gather'd alfo a rational Form, viz, $v=\frac{-x}{\dot{x}-\frac{x \dot{x}}{2 \dot{x}}}$ For neglect-

of the Roots of Equations in Numbers, improv'd.

$=\frac{-x}{\dot{x}}$. Therefore in the Divifor inftead of o writing $\frac{-x}{i}$ we have
more exactly $v=\frac{-x}{\dot{x}-\frac{\ddot{x} x}{2 \dot{x}}}$ that is,

$$
\begin{aligned}
& \text { 1. } \frac{-x}{\dot{x}-\frac{\dot{x} x}{2 \dot{x}}} \text {, when } x+\dot{x} v+\frac{\ddot{x} v v^{x}}{2} \ddot{\theta}_{0}=0 \text {. } \\
& \text { 2. } \frac{x}{\dot{x}+\frac{\ddot{z}}{2 \dot{x}}}, \text { when }-x+\dot{x} v+\frac{\ddot{x} v^{2}}{2} \dot{\theta} \cdot=0 \text {. } \\
& \text { 3. } \frac{\tilde{x}}{\dot{x}-\frac{\ddot{x} x}{2 \dot{x}}} \text { when } x-\dot{x} v+\frac{\ddot{x} v p}{2} \dot{B} n=0 \text {. } \\
& 4-\frac{-x}{\dot{x}+\frac{\dot{x} \dot{x}}{2 \dot{x}}} \text {, when }-x-\dot{x} v+\frac{\ddot{x} v v^{2}}{2} \dot{b} u=0 \text {. }
\end{aligned}
$$

This Formula will alfo triplicate the Number of true Figures in $z=$ And the Calculation may be repeated, after every Operation, taking For a Divifor $\dot{x} \pm \frac{\ddot{x}}{2} v+\frac{\ddot{\ddot{x}} v^{2}}{1 \cdot 2 \cdot 3}+\frac{: \ddot{x} v^{3}}{1 \cdot 2 \cdot 3 \cdot 4}+$ Ec. inftead of $\dot{x}+\frac{\dot{x} x}{2 \dot{x}}$.

Dr Halley has fully explained the Manner of ufing both thefe Fa*mula's in Equations of the common Form; wherefore I thall be the fhorter in explaining two or three Examples of another Sort.:
M_{2}
Ex. I.

Ex. 1. Let it be propofed to find the Root of this Equationyz+1 ${ }^{\sqrt{2}}$ $+y-16=0$. In this Cafe, for y writing z, and for o writing x, we have $\left.\overline{z^{2}+1}\right|^{2}+z-16=x$. Whence by taking the Fluxions, we have $\dot{x}=2 \vee 2 \times z \times\left.\overline{z^{2}+1}\right|^{2-1}+1$, and $\ddot{x}=\overline{2 \sqrt{2} \times \overline{8-4 \sqrt{2}} z^{2}}$ $x \overline{z^{2}+1} \mid \sqrt{2}^{2-2}$. For finding the firf Figures of the Root y, for $\sqrt[V]{ }$ take $\frac{3}{2}$, and we have the Equation $\overline{y^{2}+1}{ }^{\frac{3}{2}}+y-16=0$, which being expanded gives $y^{6}+3 y^{4}+2 y^{2}+32 y-255=0$.

By this Equation I find that for the firf Suppofition we may take $z=2$. Therefore in order to find v, let us now make $V 2=\frac{7}{5}$, (which is nearer than before) and we have $x=\left.\overline{z^{2}+1}\right|^{\frac{7}{5}}+z-16=\left.\overline{z^{2}+1}\right|^{\frac{2}{5}}$ $-14=5^{\frac{7}{3}}-14=-4,48 ; \dot{x}=10,66 ; \ddot{x}=4,72$. Whence by the fecond rational Form $v=\frac{4,48}{4,72 \times 4,48}=0,38 ;$
which muft be too big, becaufe $\frac{7}{5}<\boldsymbol{V} 2$, and therefore will require a larger Value of y to exhauft the Equation, than where $\checkmark 2$ is exact. For the fecond Suppofition therefore, let us take $z=2,3$, and make $\sqrt{ } 2$
$=1,4142136$, and by help of the Logarithms we fhall have $\left.\overline{z^{2}+1}\right|^{V^{2}}$. $=13,47294$, whence $x=-0,22706 ; \dot{x}=14,93429$, and $\ddot{x}=$ 5, 18419 . Hence by the $2 d$ irrational Formula
$v=\vee \frac{14,93429^{2}}{5,18419^{2}}+\frac{0,45412}{5,18419}-\frac{14,93429}{5,18419}=0,0516$, which gives
$y=z+v=2,31516$, which is true to fix Places. If you defire it more exact than to the Extent of the Tables of Logarithms, taking $z=2,31516$ for the next Suppofition, the Calculation muft be repeated

of the Roots of Equations in Numbers, improv'd.

muft be done by the Binomial Series, or by making a Logarithm on Purpofe, true to as many Places as are neceffary.

Ex. 2. For anotherExample, let it be required to find the Number whofe Logarithm is O , 29, fuppofing we had no other Table of Logarithms, but Mr.Sbarp's of 200 Logarithms to a great many Places.'This amounts to the refolving this Equation $l y=0,29$, or $l y-0,29=0$. Hence therefore we have $x=l x-0,29, x=\frac{a}{z}$ (a being the Modulus belonging to the Table we ufe, viz. $0,434294481 \mathrm{~g}, छ^{\circ} c$.) $\ddot{x}=\frac{-a}{z^{2}},: \dot{x}=\frac{2 a}{z^{3}},: \ddot{x}=\frac{-6 a}{z^{4}}, छ$ छ. In this Cafe becaufe \ddot{x} has a negative Sign, changing the Signs of all the Coefficients, the Canon for v will be found in the fourth Cafe,
which in the irrational Form gives $v=\frac{\dot{x}}{\ddot{x}} v \frac{\check{x^{2}}}{\ddot{x}^{2}}+\frac{2 x}{\ddot{x}}-\frac{2 \ddot{x}}{2 \cdot 3 \ddot{x}} v^{3}-$

$+\frac{2 v^{5}}{5 z^{3}}, \xi^{c}$. In this Cafe to avoid often dividing by z, it will be moft convenient to compute $\frac{v}{z}$, which is got from this Equation $\frac{v}{z}=1$ $\sqrt{1+\frac{2 l z-0,5^{8}+\frac{2 v^{3}}{3 z^{3}}-\frac{2 v^{4}}{4 z^{4}}+\frac{2 v^{5}}{5 z^{5}}}{a}}$ छic. The neareft Logarithm, in the Tables propofed, to the propofed Logarithm 0,29 is o, 2900346114 , its Number being 1, 95. Therefore for the firtt Suppofition taking $z=1,95$, we have $x(=l z-0,29=0,2900346114$ $-0,29)=0,0000346114$, and $\frac{2 l z-0,5^{8}}{a}=\frac{0,0000692228}{0,4342944^{819}}=$ 0,00015939139 , and $\mathrm{x}+\frac{2 l z-0,5^{8}}{a}=1,00015939139$. Whence
$-0,00007969247$, and $v=-0,00015540032$, and $y=z+v=$ 1,94984459968 . Which is true to eleven Places, and may eafily be corrected by the Terms $\frac{2 v^{9}}{3 z}, \xi^{2}$. which I leave to the Reader's Curiofity.

Being upon the Subject of Approximations, it may not be amifs to fet down here two Approximations I have formerly hit upon. 'The one is a Series of Terms for expreffing the Root of any Quadratic Equation ; and the other is a particular Method of approximating in the Invention of Logarithms, which has no Occafion for any of the Tranfcendental Methods, and is expeditious enough for making the Tables without much Trouble.

Ageneral Series for exprifling the Root of any Quadratic E. quation.
2. Any Quadratic Equation being reduc'd to this Form $x x-m q x$ $+m y=0$, the Root x will be exprefs'd by this Series of Terms.

$+\mathrm{D} \times \frac{1}{c^{2}-2} \delta^{2} c$, which muft be thus interpreted.

1. The Capital Letters A, B, C, \mathcal{E}°. ftand for the whole Terms with their Signs, preceding thofe whereen they are found, as

$$
\mathrm{B}=\mathrm{A} \times \frac{1}{\frac{m q^{2}}{y}-2}
$$

2. The little Letters $a, b, c, \mathcal{E}^{2} c$. in the Divifors, are equal to the whole Divifors of the Fraction in the Terms immediately preceding; thus $b=a^{2}-2$.

For an Example of this, let it be required to find \vee 2. Putting $\sqrt{2}=x+1$, we have $x^{2}+2 x-1=0$, which being compared
with the general Formula, gives $m q=-2$, and $m y=-1$; therefore for m taking - 1 , we have $q=2$, and $y=1$, which Values fubftituted in the Series give $x=\frac{1}{2}-\frac{1}{2 \times 6}-\frac{1}{2 \times 6 \times 34}-$
$\frac{1}{2 \times 6 \times 34 \times 1154}-\frac{1}{2 \times 6 \times 34 \times 1154 \times 1331714}, \xi^{3} c$. The Frac-
tions here wrote down giving the Root true to twenty three Places.
3. This Method is founded upon thefe Confiderations.

A New Mc. thod of com-
I. That the Sum of the Logarithms of any two Numbers is the puting LogaLogarithm of the Product of thofe two Numbers multiplied together. rithms.
2. That the Logarithm of Unit is nothing ; and confequenly that the nearer any Number is to Unit, the nearer will its Logarithm be to o. 3 dly , That the Product by Multiplication of two Numbers, whereof one is bigger, and the other leifs than Unit, is nearer to Unit than that of the two Numbers which is on the fame Side of Unit with itfelf; for Example, the two Numbers being $\frac{2}{3}$ and $\frac{4}{5}$, the Product $\frac{8}{4}$ is lefs than Unit, but nearer to it than $\frac{2}{7}$, which is alfo lefs than Unit. Upon thefe Confiderations, I found the prefent Approximation; which will be the beft explain'd by an Example. Let it therefore be propofed to find the Relation of the Logarithms of 2 and of 10 .

In order to this, I take two Fractions $\frac{128}{100}$ and $\frac{8}{10}$, viz: $\frac{\overline{21^{7}}}{101^{2}}$ and $\frac{\overline{21^{3}}}{101^{3}}$
whofe Numerators are Powers of 2, and their Denominators Powers of 10 ; one of them being bigger, and the other lefs than I . Having fet thefe down in Decinal Fractions in the firft Column of the Table annexed, againft them in the fecond Column I fet A and B for their Logarithms, expreffing by an Equation the Manner how they are compounded of the Logarithms of 2 and 10 , for which I write l_{2} and l_{10}. Then multiplying the two Numbers in the firf Column together, I have a third Number 1,024, againft which I write C for its Logarithm, expreffing likewife by an Equation in what Manner C is formed of the foregoing Logarithms A and B. And in the fame Manner the Calculation is continued; only obferving this Compendiunn, that before I multiply the two laft Numbers already got in the Table, I conider what Power of one of them muft be ufed to bring the Product the neareft to Unit that can be. This is found, after we have gone a little Way in the Table, only by dividing the Differences of with the neareft, for the Index of the Power wanted. Thus the two laft Numbers in the Table being 0,8 and 1,024 , their Differences from Unit are 0,200 and 0,024 ; cherefore $\frac{0,200}{0,024}$ gives 9 for the Index; wherefore muttiplying the ninth Power of 1,024 by $0,8,1$ have the next Number 0,990352031429 , whofe Logarithm is $D=9$ $C+B$. In feeking the Index in this Manner by Divifion of the Differences, the Quotient ought generally to be taken with the leaft: but in the prefent Case it happens to be the moft, becaufe inftead of the Difference between 0,8 and I , we ought ftrictly to have taken the Difference between the reciprocal 1, 25 and 1 , which would have given the Index 10; and that would be too big, becaufe the Product by that Means would have been bigger than 1, as $\mathbf{1 , 0 2 4}$ is. Whereas this Approximation requires that the Numbers in the firf Co lumn be alternately greater and lefs than \mathbf{I}, as may be feen in the Table.

When I have in this Manner continued the Calculation, till I have got the Numbers fmall enough, I fuppofe the laft Logarithm to be equal to nothing. Which gives me an Equation, from which having got away the Letters by Means of the foregoing Equations, I have the Relation of the Logarithms propofed. In this Manner if I fuppofe $G=0$, I have $2136 l_{2}-643 l$ Io $=0$. Which gives the Logarithm of 2 true in feven Figures, and too big in the Eighth; which happens becaufe the Number correfponding with G is bigger than Unit.

There is another Expedient which renders this Calculation ftill fhorter. It is founded upon this Confideration, that when x is very
fmall $\left.\overline{\mathrm{I}+x}\right|^{n}$ is very nearly $\mathrm{I}+n x$. Hence if $\mathrm{I}+x$, and $\mathrm{I}-z$ are the two laft Numbers already got in the firft Column of the Table, their Powers $\left.\overline{1+x}\right|^{m}$ and $\left.\overline{1-z}\right|^{n}$ are fuch as will make the Product $\left.\overline{1+x}\right|^{m} \times\left.\overline{1+z}\right|^{n}$ very near to Unit, m and n may be found thus: $\left.\overline{1+x}\right|^{m}=\overline{1+m x}$ and $\left.\overline{1-z}\right|^{n}=1-n z$, and confequently $\left.\overline{1+x}\right|^{m}$
$\left.\overline{x-z}\right|^{n}=1+m x-n z-m n z x$, or (neglecting $m n z x$) $1+$
$m x-n z$. Make this equal to I , and we have
m: $n:: z: x:: \overline{1-z}: l$
$\overline{1+x}$. Whence $x \overline{1-z}$ $+z l \overline{I+x}=0$. To give an Example of the Application of this, let 1,024 and 0,990352 be the laft Numbers in the Table, their Logarithms being C and D. Then we have $1,024=1+$ x, and $0,9903.5^{2}=1-z$, and coniequently $x=0,024$, and $z=0,009648$. Whence the Ratio $\frac{z}{x}$ in the leaft Numbers is $\frac{201}{500}$. So that for finding the Logarithms propofed we may have 500 $D_{1}+201 C=48510 / 2$ $14603 l 10=0$; which gives $l_{2}=0,3010307$, which is too big in the laft Figure ; but it is nearer the Truth than what is got from the Logarithm F fuppofed equal to nothing. So that by this Means we have faved four Multiplications, which were neceffary to find the Number 9989595, \& correfpondent to F, and which mult have been had if we would make the Loga-

Of the fim. XVIII. I Prop. i. Proo. To find the Sum of any Number of Terms ming of lnf. of this Series.

R. de Mon-
mort. n. 353.
p. 633.

$$
\begin{aligned}
& +\overline{a+n} \times \overline{a+2 n} \times \overline{a+3 n} \times \overline{a+4 n}, \delta \tau c \times \overline{a+p} \\
& +\overline{a+2 n} \times \overline{a+3 n} \times \overline{a+4 n}, 8 \mathrm{c} \cdot \overline{a+\overline{p+1} n} \\
& +\overline{a+3 n} \times \overline{a+4 n} \text {. \&rc. } \times \overline{a+p+2 n} \\
& +\overline{a+4 n}, 8 c \cdot \times \overline{a+\overline{p+3}} \\
& \text { Ec. }
\end{aligned}
$$

Here n is the given Difference both of the continued Factors $a, a+n$, $a+2 n, \xi^{2} c$. of every the fame Tcrm, as of the homologous Factors of the fucceffive Terms of the Series continued; and p denotes the Number of fuch Factors in every Term.

Solution. Let x denote the firft of the Factors in the laft of the Terms whofe Sum is required; then that Sum will be
$\frac{x \times \overline{x+n} \times \overline{x+2} n, \mho^{3} c, \times \overline{x+p n}-\overline{a-n} \times a \times \overline{a+n} \times \xi^{3} c \times \overline{a+\overline{p-1} n}}{\overline{p+1} n}$ 2. E. I.

Example I. Let the Series of natural Numbers be propofed, $\mathrm{I}+2+3$ $+4, \mathcal{E} c$. and let the Sum be found of fo many Terms as there are Units in the Number z, which in this Cafe is alfo the laft of the Terms whofe Sum is required. Then in this Cafe it will be $a=1, n=1, p=1$, and $x=z$. whence
$\alpha \times \overline{x+n} \times \xi c \cdot \times \overline{x+p}=z \times \overline{z+1}$, and $\overline{a-n} \times a \times \vartheta^{\vartheta} c \cdot \times \overline{a+\overline{p-1} n}=0$, and $\overline{p+1} n=2 \times 1$. Therefore the Sum required is $z \times \overline{z+1}$.

Example 2. In the Series $1+3+6+10, \mathcal{E}^{2} c$. of Triangular Numbers, let the Sum of fo many Terms be found as there are Units in the

Number z. The Numbers in this Series may be wrote thus: $\frac{1 \times 2}{2}$, $\frac{2 \times 3}{2}, \frac{3 \times 4}{2}, \frac{4 \times 5}{2}, \varepsilon^{\circ} c$. By this Means, if we fet afide the given

Divifor 2, the Series is reduced to the Form of the Propofition, it being $a=1, n=1, p=2$, and $x=z$. Whence the double Sum of the Series is $\frac{x \mathrm{x} \overline{x+1} \times \overline{x+2}-0}{3}=\frac{x \times \overline{x+1} \times \overline{x+2}}{3}$. And having Re-
gard to the Divifor 2, the Sum of the Series will be $\frac{x \times \overline{x+1} \times x \overline{+2}}{2 \times 3}$, or $\frac{z \times \overline{z+1} \times \overline{z+2}}{2 \times 3}$, in this Cafe x and z being the fame. And after
the fame Manner the Sums of the other figurate Numbers may be found, whofe Forms are now commonly known.

Example 3. Let $a=1, n=2, p=3$, that the propofed Series may be $1 \times 3 \times 5+3 \times 5 \times 7+5 \times 7 \times 9, \varepsilon c$. In this Cafe the Form of the Sum is $\frac{x \times \overline{x+2} \times \overline{x+4} \times \overline{x+6}-\overline{1-2} \times 1 \times 3 \times 5}{4 \times 2}=$ $\frac{x \times \overline{x+2} \times \overline{x+4} \times \overline{x+6}+15}{8}$. For Inftance, if the Sum of ten

Terms is required, then $x=19$, which is the tenth Term in the Series of Arithmetical Proportionals $\mathrm{I}, 3,5,7, \mathcal{B}^{2}$. and therefore the Sum is
$19 \times 21 \times 23 \times 25+15=28630$. Now the Propofition is thas demonftrated:

Demonftration. Let there be a Series of Quantities, $A, B, C, D, \exists^{2} c$. whofe Differences conftitute the Series a, b, c, d, ξ_{c}. fo that it may be $a=B-A, b=C-B, c=D-C, \mathcal{E}^{c} c$. Hence we immediately gather, that $a+b=C-A, a+b+c=d-A, a+b+c+d=E-A$; and in general, that the Aggregate of any Number of Terms of the Series a, $b, c, d, \xi^{3} c$, is equal to the next following Term of the Series A, B, C, D, \mathcal{E}^{\prime}. leffen'd by the firt Tern A. For $A, B, C, \xi^{\circ} c$, take the Terms.
$\frac{\overline{a-n} \times a \times \delta_{c} \times \overline{a+p-1} n}{p+1 n}, \frac{a \times \overline{a+n} \times \delta_{c} \cdot \overline{a+p} n}{\overline{p+1} n}$
$\overline{\overline{a+n} \times \overline{a+2 n} \times \mho^{2} c \cdot \overline{a+\overline{p+1} n}} \overline{p+1 n}, \delta^{2} c$. that is, the fucceffive Values of
$\frac{x \times \overline{x+n} \times \mathcal{E}^{2} c \times \overline{x+p n}}{\overline{p+1} n}$; and their Differences being taken for a, b, $c, d, \delta^{2} c$, then will $a \times \overline{a+n}, \times \mathcal{S}_{c} \times \overline{a+\overline{p-1} n}, \overline{a+n} \times \overline{a+2} n, \times \mathcal{V}^{2} c$.
$\times \overline{a+p n}, \mathcal{E}^{2} c$. which are the very Terms of the Series propos'd. But by comparing thefe Series, if any Term of the latter Series is $x \times \overline{x+n, \times} \mathcal{E}^{2} r$. $x \overline{x+1} n$, it is plain that the Term one Step farther in the former Series will be $\frac{x \times \overline{x+n}, \times \mathcal{\vartheta}^{2} c \times \overline{x+p} n}{p+1 n}$. Therefore the Sum of the latter Series, as far as the Tcrm $x \times \overline{x+n} \times \mathcal{\vartheta}^{2} c \times \overline{x+\bar{p}-1} n$ inclufively, is

$$
\frac{x \times \overline{x+n} \times \varepsilon_{c} \times \overline{x+p} n-\overline{a-n} \times a, \times \delta_{c} \times \overline{a+\overline{p-1} n}}{\overline{p+1} n} \text { ๑. E. D. }
$$

Scbolium 1. In this Propofition is contain'd fome little Part of the Metbodus Incrementorum, concerning which two Years ago my very good Friend Dr. Brook Taylor, Secretary to the Royal Society at London, publifh'd a Book. He that would know more of this Method fhould confult that Work. It is fufficient for our Purpofe to obferve, how great an Affinity there is between this Method and the Method of Fluxions, or the Differential Merhod. For as in the Method of Fluxions, to find the Fluxion of x^{m} any Dignity of x, one Side is to be converted into the Fluxion \dot{x}, and the Quantity arifing is to be multiply'd into m the Index of the Dignity, that the Fluxion fought $m \dot{x} x^{m-1}$ may be produc'd; fo in the Method of Increments, to find the Increment of fuch a
Product $x \times \overline{x+n} \times \overline{x+2} n$, (where the Factors $x, x+n, x+2 n$, are in Arithmetical Progreffion, whofe common Difference is n the given Increment of x, the leaft of the Factors x is to be converted into the Increment, and the Quantity arifing is to be multiply'd by the Number of the Factors, fo that $3 n \times \overline{x+n} \times \overline{x+2} n$ may be the Increment lought, the Number of Factors in the Cafe propofed being 3. Thus alto the Increment of $x \times \overline{x+n}$ becomes $2 n \times \overline{x+n}$.
2. Alfo by the fame Rule are found the Increments of the Reciprocals of fuch Products. But here it muft be obferved, that as Divifion is contrary to Multiplication, inftead of taking away the leaft of the Factors, now another Factor muft be added, which is greater ftill by one Increment. Alfo that the Number of the Factors mult be wrote with a
negative Sign. By this means the Increment of $\frac{\mathrm{I}}{x}$ will be $\frac{\mathrm{I} \times n}{x \times x+n}$
The Increment of $\frac{1}{x \times x+n}$ will be $\frac{-2 n}{x \times x+n \times x+2 n}$. And fo in
all others of this Kind. This is eafily proved by taking the Differences between two continued Values of the Integrals.
3. By treading in the Steps of the Direct Method, we may hence collect the Rules of the Inverfe Method, by which the Integrals of any given Increments are to be found. For let the given Increment be apply'd to the known lacrement of the Side; let a Factor be added which is ftill lefs by one Increment, and let the Quantity that arifes be apply'd to the Number of the Factors fo increafed. Thus for Example, if the given

Increment were $n \times x \times \overline{x+n} \times \overline{x+2} n$, it becomes firft $x \times \overline{x+n} \times \overline{x+2 n}$; then $\overline{x-n} \times x \times \overline{x+n} \times \overline{x+2 n}$ adding the Factor $x-n$; laftly,
$\frac{\overline{x-} n \times x \times \overline{x+n} \times \overline{x+2 n}}{4}$, which is the Integral required. This obtains when the Factors are Multipliers; but when the Factors are in the Place of Divifors, then mutatis mutandis the Rule is thus. Let the given Increment be apply'd to the known Increment of the Side; let the greatelt of the Factors be rejected, and let the Quantity arifing be apply'd to the Number of the Factors remaining with a negative Sign. For Ex-
ample, let be given the Increment
 : Firft it be-
comes

or $\frac{-1}{2 x \times \overline{x+n}}$, which is the Integral required.
In this laft Cafe the Integral found, with a contrary Sign, is equal to the Sum of all the Increments in the Series being continued to Infinity.

For Example it is $\frac{1}{2 x \times x+n}=\frac{n}{x \times x+n \times x+2 n}$
$+\frac{n}{x+n \times x+2 n \times x+3 n}+\overline{x+2 n \times x+3 n \times \bar{x}+4 n}$, \overbrace{c}
For in this Cafe, x becoming at laft infinite, $\frac{1}{2 x \times \sqrt{x+n}}$ vanifhes, that
is, the laft of the Terms $A, B, C, \xi^{2} c$. becomes nothing; and becaufe of the Contrariety of the Signs of the Integral and Increment, inftead of $-A$ the Aggregate is exprefs'd by $+A$.

Lemma 1. In any Series of Numbers $M, N, O, P, E^{\circ} c$. let any Term be denoted by X, and let the Place of that Term in the Series be denoted by x; that is, let $x=\mathrm{I}$, when X denotes the firft Term or M; let $x=2$, when X denotes the fecond Term N, and fo on. And of the Terms $M, N, O, P, \mathcal{E}_{c}$. let b be the firlt of the firtt Differences, c the firt of the fecond Differences, d the firft of the third, e the firft of the fourth,
and fo on. Then it will be $X=M+b \times \frac{x-1}{1}+c \times \frac{x-1}{1}$
I
$\times \frac{x-2}{2}+d \times \frac{x-1}{1} \times \frac{x-2}{2} \times \frac{x-3}{3}+e \times \frac{x-1}{1} \times \frac{x-2}{2}$
$x \frac{x-3}{3} \times \frac{x-4}{4}, \xi^{2} c$. This follows from the Table of Equations,
pag. 60. of our Treatife call'd Eflay d' Analyse, \&c.
Lemina 2. The fame Things fuppofed, let any Term in the Series of Arithmetical Proportionals $a, a+n, a+2 n, \dot{\text { ® }} c$. be denoted by z, and now let it be $X=A+B z+C z \times \overline{z+n}+D z \times \overline{z+n} \times z \overline{z+2}$ $+E z \times \overline{z+n} \times \overline{z+2 n} \times \overline{z+3^{n}}, \varepsilon^{\prime} c$. Then the Values of A, B, $C, D, E, E^{\circ} c$. will be thefe following.

$$
\begin{aligned}
A=M & +b \times \frac{-a}{n}+c \times \frac{-a}{n} \times \frac{-a-n}{2 n} \\
& +d \times \frac{-a}{n} \times \frac{-a-n}{2 n} \times \frac{-a-2 n}{3 n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Of Infinite Series's. } \\
& +e \times \frac{-a-a-n}{n} \times \frac{-a-2 n}{2 n} \times \frac{-a-3^{n}}{3 n}, \varepsilon^{2} c . \\
& B=\frac{1}{n} \times b+c \times \frac{-a-n}{n}+d \times \frac{-a-n}{n} \times \frac{-a-2 n}{2 n} \\
& +e \times \frac{-a-n}{n} \times \frac{-a-2 n-a-3^{n}}{2 n}, \varepsilon^{2} c . \\
& C=\frac{1}{n} \times \frac{1}{2 n} \times c+d \times \frac{-a-2 n}{n}+e \times \frac{-a-2 n-a-3 n}{n}, \delta^{\circ} c . \\
& D=\frac{1}{n} \times \frac{1}{2 n} \times \frac{1}{3 n} \times d+e \times \frac{-a-3 n}{n}, \varepsilon \sigma_{0} \\
& E=\frac{1}{n} \times \frac{1}{2 n} \times \frac{1}{3 n} \times \frac{1}{4 n} c, \delta_{i} i
\end{aligned}
$$

The Order of forming the Coefficients of $b, c, d, c, \mathcal{E}^{c} c$. in thefe Vilues, is fufficiently manifelt of itfelf.

Demonftration. Becaufe by x and z the refpective Terms of thefe Arithmetical Progreffions are denoted, $1,2,3,4, \mathcal{E}^{2} c$. and $a, a+n$, $a+2 n, a+3 n, \varepsilon^{2} c$, therefore x - I will denote the Number of the Differences n which is contain' d in z, fo that it is $z=a+\overline{x-1} n$. Hence it is that $x-1=\frac{z-a}{n}, x-2=\frac{z-n-a}{n}, x-3=$ $\frac{z-2 n-c}{n}, \delta^{\circ} c$. Therefore by fubftituting thefe Values $x-1, x-2$,
$x-3, \xi^{c}$. in the Series of the forcooing Lemma, and reducing the Terms into Order, the Values of $A, B, C, \mathcal{F}^{\circ} c$. come out as here exhibited.

Corol. When $a=n$, the Values of $A, B, C, \xi^{\circ} c$, beçome more fimple, as
$A=M-\dot{b}+c-d+e, \delta c$.

$$
\begin{aligned}
& B=\frac{1}{n} \times \overline{b-2 c+3 \bar{d}-4 e, \xi c} . \\
& C=\frac{1}{n} \times \frac{1}{2 n} \times \overline{c-3 d+6 e, \xi c .} \\
& D=\frac{1}{n} \times \frac{1}{2 n} \times \frac{1}{3 n} \times \overline{d+4 e, \xi c .}
\end{aligned}
$$

Lemme 3. The Symbols X and x being interpreted in the fame Mantner as in the firtt Lemma, let $q, r, s, t, u, \mathcal{E}^{\circ} c$. be the Generators of the Arithmetical Triangle, whofe tranfverfe Line is occupy'd by the Series $M, N, O, P, Q, \mathcal{B}_{6}$. but in an inverted Order, fo that $q(=M)$ may be the laft Generator, r the laft but one, s the laft but two, and fo on, Then it will be

$$
X=q+r \times \frac{x-1}{1}+s \times \frac{x-1}{1} \times \frac{x}{2}+t \times \frac{x-1}{1} \times \frac{x}{2} \times \frac{x+1}{3}, \delta c .
$$

This is plain from the Confideration of the Arithmetical Triangle itfelf, which we have exhibited pag. 63 . of the Treatile Effay d'Analyfe, \mathcal{F}^{c}. where the fame is more fully explain'd.

Lemma 4. The fame Things being fuppofed, and the Symbol z being interpreted in the fame Manner as in Lemma 2 : If it is $X=A+B z$ $+C z \times \overline{z+n}, \xi_{c}$. as in Lemma 2. the Values of the Coefficients $A, B, C, D, \mathcal{E}^{2} c$. will be

$$
\begin{aligned}
& A=q+r \times \frac{-a}{n}+s \times \frac{-a}{n} \times \frac{-a+n}{2 n} \\
& +t \times \frac{-a}{n} \times \frac{-a+n}{2 n} \times \frac{-a+2 n}{3 n}, \xi^{\circ} c \\
& B=\frac{1}{n} \times r+s \times \frac{-a}{n}+t \times \frac{-a}{n} \times \frac{-a+n}{2 n}, \varepsilon \sigma c . \\
& C=\frac{1}{n} \times \frac{1}{2 n} \times s+t \times \frac{-a}{n}, \varepsilon^{2} c .
\end{aligned}
$$

$D=\frac{1}{n} \times \frac{1}{2 n} \times \frac{1}{3^{n}} \times t, \mathcal{E}^{2}$.
The Order of the Coefficients is manifeft in thefe Values, and the Lemma is demonftrated in the Manner of the fecond Lemma.

Cor. I. When $a=n$, the Coefficients $A, B, C, D, \mathcal{E}^{\circ} c$. come out in fimpler Forms thus.

$$
\begin{aligned}
& A=q-r, \quad B=\frac{1}{n} \times \overline{r-s}, \\
& C=\frac{1}{n} \times \frac{1}{2 n} \times \overline{s-t}, \quad D=\frac{1}{n} \times \frac{1}{2 n} \times \frac{1}{3 n} \times \overline{t-u}, \varepsilon^{*} c .
\end{aligned}
$$

Cor.2. Whence if fome of the Generators $q, r, s, t, u, \mathcal{E} c$. are equal to one onother, X will be exhibited by a fimpler Form, fome of the Coefficients $A, B, C, \mathcal{E}^{\circ} c$. vanifhing.

Thus for Example, a Series of Numbers being propofed 4, 69,530, $2676,10350, \Xi^{6} c$. which conftitute the tenth tranfverfe Line in the Arithmetical Triangle, whofe three firft Generators are $54,-18,5$, and the feven laft are equal to 4 ; it being $a=\mathrm{I}=n$; the Term X is exhibited by a Form of four Terms only,
$-\frac{z}{1} \cdot \frac{z+1}{2} \cdot \frac{z+2}{3} \cdot \varepsilon c \cdot x \frac{z+6}{7}+23 \cdot \frac{z}{1} \cdot \frac{z+1}{2}, \varepsilon$ scc.

$$
x \frac{z+6}{7}-72 \cdot \frac{z}{1} \cdot \frac{z+1}{2} \cdot \operatorname{sc} \times \frac{z+7}{8}+54 \cdot \frac{z+1}{1}
$$ ing.

9
Prop. 11. Prob. To find the Sum of any Number of Terms of this Series.
$\frac{M}{a \times a+n, \delta_{c} \times a+p-1}+\frac{N}{\overline{a+n} \xi^{2} c_{0} \times \overline{a+p n}}$
Vol. IV.

Of Infinite Series's.

N, O, \mathcal{F}_{c}. confiture any Series of Terms whole Differences are given, whether frt, fecond, third, \mathcal{E}°. or which is the fame, they confiture any tranfverfe Line in any given Arithmetical Triangle. But the Denominators confiture the Series exhibited in Prop. I.

Solution. Let the first of the Factors $a, a+n, a+2 n, \mathcal{E}^{2}$. be reprefented by X in the Denominator of the fame Term, fo that X and z may be the fame as in the foregoing Lemma's ; and therefore let any Term of the Series be reprefented by

By Lemma 2 or 4, (as may fem
convenient, either to admit the Differences, or the Generators of the Arithmetical Triangle,) let X be refolved into the Multinomium $A+B$
$x z+C z \times \overline{z+n}+D z \times \overline{z+n} \times \overline{z+2 n}, \mho_{c}$. By this Means (the Terms of the Multinomium being apply'd to the Denominator $z \times \overline{z+n}, \mathcal{B}_{6} \times \overline{\times z+\overline{p-n}}$) every Term of the Series will be reduce to the Form $\frac{A}{z \times \overline{z+n} \varepsilon^{c} \cdot \times \overline{z+p-1 n}}$

Whence (by Schorl. 4. Prop. i.) the Aggregate of the whole Series continued in infnitum from the $\operatorname{Term} \frac{x}{z \times \overline{z+n}, \xi c \cdot \times z+\overline{p-1} \pi}$
inplufively, is $\frac{A}{p-1 \times n \times z \times \overline{z+n} \%}$

$$
+\frac{B}{p-2} \times n \times \overline{z+n}, \delta_{c} \times \frac{z+p-2 n}{}
$$

Of Infinite Series's.

If this Aggregate be taken from the Value of the fame Aggregate when $z=a$, the Remainder will be the Sum of all the Terms before the

Term $\frac{X}{z+\xi_{0} c_{0}}$, that is, of fo many Terms as there are Units in $\frac{z-a}{\kappa}$. 2. E. I.

Ex. 1. Let the firlt Example be the Series $\frac{5}{3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13}$

'Tis here $a=3, n=2, p=6, M=5$. And taking the Differences of the Numerators, it will be $b=36, c=54, d=0=e=\vartheta^{\circ} c$. Hence in the fecond Lemina'tis $A=5+36 \times \frac{-3}{2}+54 \times \frac{-3}{2} \times \frac{-5}{4}=\frac{209}{4}$, $B=\frac{1}{2} \times 3^{6}+54 \times \frac{-5}{2}=\frac{-99}{2}, C=\frac{1}{2} \times \frac{1}{4} \times 54=\frac{27}{4}$, $D=0=E=\varepsilon^{\circ} c$. Therefore the Sum of the whole Series is

$$
\begin{aligned}
& \frac{209}{4 \times 5 \times 2 \times 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}+\frac{-99}{2 \times 4 \times 2 \times 5 \cdot 7 \cdot 9 \cdot 11} \\
& +\frac{27}{4 \times 3 \times 2 \times 7 \cdot 9 \cdot 11}=\frac{283}{80 \times 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11} . \text { And the Sum of }
\end{aligned}
$$

$$
\text { The Terms in Number } \frac{z-3}{2}\left(=\frac{z-a}{0_{2}^{n}}\right) \text { is } \frac{283}{80 \times 3.5 \cdot 7.9 \cdot 11}
$$

$-\frac{209}{40 \times z \cdot z+2 \cdot z+4 \cdot z+6 \cdot z+8}+\frac{2}{16 \times \overline{z+2} \cdot \frac{99}{z+4} \cdot \overline{z+6} \cdot z+8}$

- For Inftance, let eight Terms be required; then it is $\frac{z-3}{2}=8$, or $z=19$; which Value being introduced into the Formula, the Sum is $\frac{155891}{2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \cdot 23}$
- The fame Numerators poffefs the third tranfverfe Line in the Arithmetical Triangle

$$
\begin{array}{r}
54 \cdot 54 \cdot 54 \cdot 54 \cdot 54 \cdot 54 \cdot 8^{6} 6 \\
-18 \cdot 3^{6} \cdot 90 \cdot 144 \cdot 19^{8} \cdot 8^{6} c \\
5 \cdot 41 \cdot 13^{1} \cdot 275 \cdot \mathrm{E}_{6}
\end{array}
$$

Whence in the Formula of Lemma 4. the Generators are $q=5 r r=$ - $18, s=54, t=0=\delta_{c} c$. and the Coefficients come out $A=5$
$-18 \times \frac{-3}{2}+54 \times \frac{-3}{2} \times \frac{-3+2}{4}=\frac{209}{4}, B=\frac{1}{2} \times-$
$\overline{18+54 \times \frac{-3}{2}}=\frac{-99}{2}, C=\frac{1}{2} \times \frac{1}{4} \times 54=\frac{27}{4}, D=0=E=$ E' $^{\circ}$ the fame as above.

Ex 2. Let the Series be $\frac{4}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11}$

$$
+\frac{69}{2 \cdot 3 \cdot \xi^{2} c \cdot 12}+\frac{520}{3 \cdot 4 \cdot \xi^{6} \cdot 13}+\frac{2676}{4 \cdot 5 \cdot \xi^{3} c \cdot 14}+\frac{10350}{3 \cdot 6 \cdot \xi_{6,14}}
$$

$\mathcal{B}^{\circ} c$. where it is $a=1, n=1, p=11$, and the Numerators constitute the Series exhibited Cor. 20. L. 4. Therefore applying the Value of X in that Corollary to the Denominator $z \times \overline{z+1}, \xi^{2} c, x \overline{z+10}$, the

Of Infinite Series's.

Term of the proposed Series becomes

$+\frac{54}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \times \overline{z+9} \times \overline{z+10}}$. Therefore by this Propofition the Sum of the Series continued from that Term in infinitums

$$
\begin{aligned}
& \text { is } \frac{\frac{-1}{4 \times 1 \cdot z \cdot 3 \cdot 4 \cdot 5 \cdot 6 \times \overline{z+6} \times \overline{z+7} \times \overline{z+8 \times \overline{z+9}}}}{+\frac{2 z}{3 \times 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \times \overline{z+7} \cdot \overline{z+8} \cdot \overline{z+9}}} \\
& -\frac{72}{2 \times 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \times \overline{z+8} \times \overline{z+9}} \\
& +\frac{54}{1 \times 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \times \overline{z+9}} .
\end{aligned}
$$

ming 1 , the Sum of the whole Series is
$\frac{305}{12 \times 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10}$ And in general the Sum of the Terms in Number $\frac{x-1}{1}$ will be
$12 \times 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10$

$$
+\frac{1}{4 \times 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \times z+6 \cdot \overline{z+7} \cdot \overline{z+8} \cdot \overline{z+9}}
$$

$$
-\frac{23}{3 \times 1 \div 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \times \overline{z+7} \cdot \overline{z+8} \cdot \overline{z+9}}
$$

$$
+\frac{7^{2}}{2 \times 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \times \overline{z+8} \times \overline{z+9}}
$$

54

$1 \times 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \times \overline{z+9}$
Scbolium 1. In computing the Sums of this Kind of Series, generally the Calculation is made eafier by making Ufe of the Generators of the Arithmetical Triangle, than by making Ufe of the Differences. Therefore I have a Mind to take this Occafion, to fhew how the Generators of the Arithmetical Triangle may be found, from the Differences being given.

Therefore let ω be the firt Term of the Series, a the laft Difference given, b the firft of the laft Order but one of the Differences, c the firft of the next Order before, and fo $d, e, \xi^{c} c$, and let $t, u, x, y, \xi^{\circ} c$. be the Generators of the Arithmetical Triangle required, whofe tranfverfe Line in Order p is occupied by the Series propofed. Then it is evident from the Confideration of the Arithmetical Triangle, that

$$
a=t
$$

$$
b=\frac{p-1}{1} t+u
$$

$$
c=\frac{p-1}{1} \times \frac{p-2}{2} t+\frac{p-2}{1} u+x
$$

$$
\begin{aligned}
& d=\frac{p-1}{1} \times \frac{p-2}{2} \times \frac{p-3}{3} t+\frac{p-2}{1} \times \frac{p-3}{2} u \\
& p-3
\end{aligned}
$$

Of Infinite Series's.

Whence the Values of the Generators are collected,

$$
\begin{aligned}
& t=a, \\
& u=b-\frac{p-1}{1} t, \\
& x=c-\frac{p-1}{1} \times \frac{p-2}{2} t-\frac{p-z}{1} u_{5} \\
& y=d-\frac{p-1}{1} \times \frac{p-2}{2} \times \frac{p-3}{3} t-\frac{p-2}{1} \times \frac{p-3}{2} u \\
& -\frac{p-3}{1} \times, \delta \sigma_{0}
\end{aligned}
$$

Now the laft Generator is equal to a the firt Term of the Series.
2. After I had communicated thefe Things to D. de Monfoury, he found another Solution of this Prublem, the Formula of which I Phall here fet down, becaufe of its wonderful Simplicity. Therefore in the Series of Numerators let ω be the firf Term, b the firft of the firit Order of Differences, c the firft of the fecond, d the firft of the third; and fo on ; and let the Denominator of the firft Term be $z \times \overline{z+n}, \mathcal{E}^{\circ} c$. $x \overline{z+p-1} n$. Then the Sum of the whole Series continued in. infnitum will be exhibited by this Formula,

Let us take an Example in the Series $\frac{5}{3 \cdot 5 \cdot \xi^{2} c \cdot 13}+\frac{4 \mathrm{x}}{5 \cdot 7 \cdot \mathrm{E}^{3} \cdot 15}$
$+\frac{131}{7 \cdot 9 \cdot \xi^{2} c \cdot 17}+\frac{275}{9 \cdot 11 \cdot \xi^{2} c \cdot 19}$ Ec. the Sum of which we have already exhibited. In this Cafe it is $\omega=5, b=36, c=54, d=0=e=\varepsilon_{0} c$. Whence by the Formula the Sum of the whole Series is $\frac{5}{2.5 \times 3 \cdot 5 \cdots 11}$ $+\frac{3^{6}}{4 \cdot 5 \times 4 \cdot 5 \ldots 11}+\frac{54}{8 \cdot 5 \cdot 4 \cdot 3 \times 7 \ldots 11}=\frac{283}{80 \times 3 \cdot 5 \ldots 11}$, as it was exhibited by our Formula. If it is required to find the Sum of the fame Series beginning from the tenth Term $\frac{2273}{21 \ldots \cdots 31}$, in this Cafe it is $\omega=2273, b=522, c=54$, and the Sum would be $\frac{2273}{2 . \cdot 5 \times 25 \ldots 29}+\frac{522}{4 \cdot 5 \cdot 4 \times 23 \ldots 29}+\frac{54}{8 \cdot 5 \cdot 4 \cdot 3 \times 25 \ldots 29}$.

This Formula is very convenient, and exhibits the Sum with very little Trouble, as often as the Sum of the whole Series is required; for the Differences are not too many. But when the Differences are many, and the whole Series is not required, but only fome of the initial Terms, then our Forms will be the more convenient.
3. When the Terms of the Series are formed only by Multiplication, and are not affected by variable Divifors, the Sums may always be found by the Method delivered in Prop. 1. though the Formulæ are never fo complicate: For they may always be reduced to fuch Terms as that Propofition requires. Thus if the Differences of z and x are m and n, and a Term in the Series is denoted by $z x$; this Term will be reduced
to $\overline{\overline{-n} n} z+\frac{n}{m} z \times \overline{z+m}$ whofe Integral may be had by Prop 1. For
becaufe $d x=n$ and $d z=m$, ${ }^{\text {'tis }} d x=d z \times \frac{n}{m}$: And returning to the Integrals it will be $x=\frac{n}{m} z+a$, (the invariable Quantity a being added,
added, that an Account may be taken of the Relation between z and.x in the firlt Term of the Series) which may be thus written, $\overline{a-n}+$ $\frac{n}{m} \times \overline{z+m}$, that afterwards being drawn into z, it may acquire the
neceffary Form. And in the fame Manner we may proceed in other Cafes of the fame Kind. But when the Forms propofed are affected with Divifors, the fame Difficulties occur as in the integral Calculus, as it is called, or in the inverfe Method of Fluxions, which are to be overcome with the fame Induftry. Nor can they always be overcome. For befides as it hardly can be known for a Certainty what muft be the Relation between the Numerator of the Fraction, and the Denominator, that the propofed Formula may be reduced to an Integral; fo it is often very difficult to find, whether fuch a Relation is already in that Formula, or, if it is not, whether it can be introduced. What I have chiefly found of Ufe in this Matter, is contained in the three following Propofitions,

Prop. III. Prob. The Quantities $z, u, y, x, \delta^{2} c$. increafing by the given Differences $n, m, l, o, \mathcal{V}^{c}$. to find the Value of the integral Numerator N, fo as that the Denominator being $z \cdot \overline{z+n}, \varepsilon_{c} c \overline{z+p n} \times u$.
 $\xi^{\circ} c$. the Fraction may be reduced to an Integral.

Solution. Make $N=\overline{z+p} n \times \overline{u+q n} \times \overline{y+r l} \times \overline{x+s 0}, \xi c$. $z u y x . \mathfrak{E}^{9}$. and the Integral will be a Fraction whofe Denominator is $z \cdot \overline{z+n} \cdot \delta^{c} \cdot \overline{z+} \overline{p-1} n \cdot u \cdot \overline{u+m} \cdot \varepsilon^{3} \cdot \overline{u+q-1} m \cdot y \cdot \overline{y+}$ छc. $\overline{y+x-1} l \cdot \overline{x+0} \cdot \mho_{c} \cdot \overline{x+\overline{s-1} 0, \xi_{c}}$. the Numerator being I.

For the Difference of this Fraction is a Fraction whofe Numerator is the exhibited Value of N, and the Denominator is the fame rs the Denominator propofed, as it ought to be.

Ex. 1. Let the Denominator propofed be $z \times \overline{z+2} \times u \times \overline{u+3}$. In this Cafe Cafe 'tis $n=2, m=3, p=1, q=1$; Therefore $N=\overline{z+2}$ $\times \overline{u+3}-z u=3 z+2 u+6$. And by $\frac{3 z+2 u+6}{z \cdot z+2 \times u \cdot u+3}$ is reVol. IV.
prefented a Term of a fummable Series, the Sum of which, when con, tinued in infinitum, is exhibited by $\frac{1}{z u}$. For Inftance, let the firft common Value of z and u be 1 , and the Series to be fum'd will be $\frac{1}{1.3 \times 1.4}$ $+\frac{23}{3 \cdot 5 \times 4.7}+\frac{35}{5 \cdot 7 \times 7.10}, \mathcal{E}^{c}$. for the Sum of the whole is 1. By p let be denoted the Order of any Term in this Series, then it will be $p=\frac{z-1+2}{2}=\frac{u-1+3}{3}$, and therefore $z=2 p-1$, and $u=$ $3 p-2$; which Values being fubftituted for z and u, the Term will be denoted by this Form $\frac{12 p-1}{2 p-1 \times 2 p+1 \times 3 p-2 \times 3 p+1}$. But the Sum of all the Terms before this, that is, of the initial Terms which are $\frac{z-1}{2}=p-1$ in Number, will be $1-\frac{1}{z u}=\frac{z u}{z u}-1$; that is, $\frac{6 p p-7 p+1}{2 p-1 \times \frac{1}{3 p-2}}$. Wherefore writing $p+1$ for p, the Aggregate of fo many initial Terms as there are Units in p, will be $\frac{p \times 6 \overline{p+5}}{2 p+1 \times 3 p+1}$.

Ex. 2. The fame z, u, n, m ftill remaining, let the Denominator be $z \cdot \overline{z+2} \cdot \overline{z+4} \times u, \overline{u+3}$. Then by the Formula the Numerator will be $\overline{z+4} \times \overline{u+3}-z u=3 z+4 u+12$, and the Sum of the Series will be exhibited by the Formula $\frac{1}{z \cdot z+2 \times u}$. Of z and u let the firt common Value be \mathbf{x}, and hence will be deduced the Series
$\frac{19}{1 \cdot 3 \cdot 5 \times 1.4}+\frac{37}{3 \cdot 5 \cdot 7 \times 4 \cdot 7}+\frac{55}{5 \cdot 7 \cdot 9 \times 7 \cdot 10}, 8_{6}=\frac{1}{7}$

Scholium. In the Series now exhibited there is every where the fame Difference between the continual Factors of any the fame Term, as between the homologous Factors of the continual Terms. In the following are fome Examples of Series, whofe Sums may be exhibited in a finite Number of Terms, although that Rule is not obferved.

Prop. IV. Prob. The Quantity z increafing by given Differences $q n$, to find the Integer Numerator $N_{\text {, }}$, fo that the Fraction may be reduced to its Integral, whofe Denominator confifts of a certain Number p of the Terms $z, z+n, z+2 n, \varepsilon_{c}$. of Arithmetical Proportionals drawn into one another. But q muft be an integer Number lefs than the Number of Factors p.

Solution. It will be $N=\overline{z+\overline{p-1} n} \times \overline{z+\overline{p-2} n}: \xi^{c} c \times$ $\overline{z+\overline{p-q} n}-z \times \overline{z+n} \times \varepsilon^{3} c_{0} \times \overline{z+\overline{q-1} n}$, the Integral being

It is demonftrated after the

Manner of the foregoing Propofition.
The Quantities n, p, q, being affumed at Pleafure, and the firf Value of z, hence will arife an infinite Number of fummable Series, fuch as the three following.

$$
A=\frac{5}{1 \cdot 2 \cdot 3 \cdot 4}+\frac{9}{3 \cdot 4 \cdot 5 \cdot 6}+\frac{13}{5 \cdot 6 \cdot 7 \cdot 8}+\frac{17}{7 \cdot 8 \cdot 9 \cdot 10}, 86
$$

16

IO.II •I2•I3•I4

$$
C=\frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}+\frac{14}{5 \cdot 6 \cdot 7 \cdot 8 \cdot 9}+\frac{55}{9 \cdot 10.11 .12 .13}+
$$

140
$13 \cdot 14 \cdot 15 \cdot 16 \cdot 17$
I communicated there Series long ago to Come principal Geometriclans, to whom they did not rem contemptible. That very skilful Geometrician Mr. Nicolas Bernoulli thus writes to me in a Letter of July 25, 1716. "You will very much oblige me, Sir, if you will com" municate to me the Solution of this Problem of yours. Having a "Series of Fractions given, the Numerators of which are any figurate "Number whatever, and of which the Denominators are formed of " the Product of an equal Numbers of Factors which are in Arith" metical Progreffion ; to find their Sum. And chiefly how you have "found the fe two Forms $\frac{p}{24 \times 4 p+1}$ and $\frac{p \times p+1}{12 \times 3 p+1 \times 3 p+2}$ Thefe Forms belong to the Series C and B, the Number of Terms whole Sum is required being denoted by p. And thus alfo Dr. Taylor writes to me, in his Letter of Aug. 22, 1716. "As alpo by what " Method you fell upon the Summation of the Series exhibited by you,

9

But now let us return to our Examples.
In the Series A 'is $p=4, q=2, n=1$, the first Value of z being

1. Therefore 'tic $\overline{z+3} \times \overline{z+2}-z \times \overline{z+1}=2 \times \overline{2 z+3}$; whence (rejecting the given Number 2) are derived there Numerators $5,9,13$, 17, Ec. Also the Formula of the Sum is $\frac{1}{z \times \frac{1}{z+1}}$. Then taking an Account of the Number 2, which we rejected out of the Numerators, the Sum of the whole Series, continued in infinitun from the Term in which is z, will be exhibited by the Formula $\frac{1}{2 z \times z+1}$; and therefore the Sum of the intire Series is $\frac{1}{2 \times 1 \times 2}=\frac{1}{4}$.

Of Infinite Series's.

In the Series B^{\prime} 'tis $n=1, p=5, q=3$, the firft Value of z being

1. Therefore $N=\overline{z+4} \times \overline{z+3} \times \overline{z+2}-z \times \overline{z+1} \times \overline{z+2}$ $=6 \times \overline{z+}^{2}$. But the continued Values of $z+2$ are $3,6,9, \mathfrak{v}^{\circ} c$. which becaufe they are all divifible by 3 , making $z+2=3 x$, it will be $N=6 \times 3)^{2}=6 \times 9 x^{2}=54 x^{2}$, the continued Values of x being $1,2,3, \mathcal{V}^{c}$. Therefore the given Number 54 being rejected, hence proceed the Numerators $1,2^{2}, 3^{2}, \delta^{3} c$. that is, $1,4,9, \delta^{\circ} c$. Alfo the integral Formula is $\frac{1}{z \times z+1}$, wherefore taking Account of the

Number 54 rejected out of the Numerators, the Sum of the Series continued in infinituin from the Term in which is z, will be

Laftly, in the Series C 'tis $n=1, p=5, q=4$, and the firft Value of z is I . Whence $N=\overline{z+4} \times \overline{z+3} \times \overline{z+2} \times \overline{z+1}-z \times \overline{z+1}$ $\times \overline{z+2} \times \overline{z+3}=4 \times \overline{z+1} \times \overline{z+2} \times \overline{z+3}$. But the Values of N arifing by this Formula can always be divided by $4 \times 2 \times 3 \times 4=96$. Therefore this Divifor being rejected, there come out the Numerators 1, 14, 55, 140, Ec. And the Formula of the Sum, admitting the Number 96 , is $\frac{1}{96 z}$. And therefore the Sum of the intire Series is $\frac{1}{96}$.

Scholium. By thefe two laft Propofitions we may eafly find as many fummable Series as we pleafe. And on the contrary, having a Series given of this Kind, if it can be fum'd its Sum may generally be reduced to one of thele two Propofitions. Yet there is Need of grood Sagacity in the Tryal. But it proceeds beft if the Terms of the given series are reduced to the Form of Prop. HI. Thus for Inftance, having this Series propofed $\frac{7}{3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}+\frac{11}{7 \cdot 9 \cdot 11 \cdot 13 \cdot 15}+$
$15 \cdot 15 \cdot 17 \cdot$, the Denominators may thus be written, 11.13.15.17.19
 according to $\operatorname{prop.3}$. 'tis $n=4, m=4, p=2, q=1$, the firft Value of z is 3 , the firft Value of u is 5 . Hience the Form of the Numeratar is found to be $4 \times \overline{z+2 u+8}$. But this is always divifible by 3 ; wherefore
wierefore rejecting the given Diviors 4 and 3 , by this Formula the Numerators come forth, $7,11,15, \mathcal{G}_{6}$. the fame as the Numerators in the propofed Series, whiel therefore -may be fum'd by that Propofition.
2. After I had communicated thofe Series A, B, C, to Dr. Taylor, he wrote me Word, that he had found their Sums, of the firtt A and the third C by reducing them to limple Cafes of his Method of Increments; that he had reduced the third C to this Form
$\frac{1}{24} \times \frac{1}{1 \cdot 5}+\frac{1}{5 \cdot 9}+\frac{1}{9 \cdot 13}+\frac{1}{13 \cdot 17}$, Ec $_{c}$. that the Sum might be
had by the Precepts delivered in the Scholium of Prop. I. But in the fecond Series B, when this did not fucceed fo well, he ufed the following Analylis, which, becaufe of its great Elegance, having firft obtained his Leave, I fhall here infert. "The Term of that Series (to ufe his own Notation) is exhibited by this Formula
$\frac{\overline{z+2} \times z}{27 z \times z+1 \times z \times \overline{z+1}}$; writing in the Denominator z for $z+3$, becaure it is $z=3$. Suppofe $\frac{B}{{ }^{27} C}$ to be equal to the Integral required, that is $\frac{B}{C}$ is the Integral of $\frac{\overline{z+2} \times z}{z \times \overline{z+1} \times z \times z+1}$, fetting afide the given Divifor 27. But the Increment of $\frac{B}{C}$ is $\frac{B C-B C}{C C}$. Therefore

$$
\underbrace{B C-B C}_{C C} \text { and } \frac{\overline{z+2} \times z}{z \times z+1 \times z \times z+1} \text { ought to be the fame. Then }
$$

comparing the Denominators, it is found that $C=z \times \overline{z+1}$. And taking the Increments it becomes $C=2 z z+z^{2}+z(=2 z z+4$ z) becaufe it is $z=3$.) Thefe Values being fubftituted in the Place of C and C, there arifes $B C-B C=\overline{z z+2} B-2 z \times \overline{z+2} B$, which ought to be the fame as $\overline{z+2} \times z$. Let $B=a+v, a$ being the invariable Part of B, and v the variable Part. Then taking the In crements 'tis $B=v$. Whence to find a and v we have the Equation
$\overline{z z+z v}-2 z \times \overline{z+2} \times \overline{a+v}=\overline{z+2} \times z$, which may thus b_{e} written $\overline{z z+z} v-2 z \times \overline{z+2} v=z \overline{z+2} \times \overline{1+2 a}$, or alfo $C v$. $-C v=z \times \overline{z+2} \times \overline{1+2 a}$. Make $1+2 a=0$, (whence $a=$ $\frac{-1}{2}$, and it becomes $C v-C v=0$, in which it may be $v=0$, (becaufe each Term of the Equation is affected either by v or v, hence it is $B=a=\frac{-1}{2}$, and therefore $\frac{B}{C}=\frac{-1}{2 z \times z+1}$. Then reftoring the Divifor 27 , the Integral required will be $\frac{-1}{54 \times z \times z+1}$. Now by comparing the Equation $C v-C v=0$ with the general Formula $\frac{B C-B C}{C C}=0$, we may thence conclude, that $\frac{v}{C}$ is equal to a given

Quantity, becaufe its Increment is 0 . So that affuming n for any given Number, it will be $v=n C$, and $B=-\frac{1}{2}+n C$. By which the Integral required becomes $\frac{B}{C}=\frac{-\frac{1}{2}+n C}{C}=\frac{-1}{2 C}+n$; which differs From the Integral found before only by the given Quantity n. This proceeds from hence, that as in the Quadrature of Curves the Area when found may be increafed or diminifhed by a given Area, fo in the Method of Increments, the Integral when found may be increafed or diminifhed by a given Quantity. But by the firft Integral, where n is abfent, the Sum of the Series is exhibited when continued ad infinitum.

Prop. 5. When z increafes by Units, and $a, b, c, \mathcal{E}^{2} c$, are given Quantities, none of which are equal to one another, to find the Integral of $\frac{1}{z \times \overline{z+a} \times \overline{z+b+c} \times \varepsilon^{3} c^{\circ}}$

Solution. Multiplying both the Numerator and Denominator of the Fraction into the Terms $z+1, z+2, \mathcal{E}_{0} z+a+1, z+a+2, \mathcal{E}^{\circ} c$.
$z+b+1, z+b+2, \mathcal{E}^{\circ} c, z+c+1, z+c+2, \varepsilon^{\circ} c$. deficient in the Denominator, let the Denominator be reduced to the Form $z \times \overline{z+1}$ $x \overline{z+2}, \varepsilon^{c} c$. of the Denominator in Prop. 1. Schol. n. 3. Then let the Numerator be reduced to the Form $A+B z+C z \times z+1+D z \times$ $\overline{z+1} \times \overline{z+2}, \mathcal{E} c$. Then applying the Terms to the new Denominator $z \times \overline{z+1} \times \overline{z+2}, \xi^{2} c$. let the Fraction be reduced to this Form

$+\frac{D}{z+3 \times z+4, \mathcal{E}_{c}}$ 承c. whence laftly let the Integral be fought by Scbol. Prop. 1. n. 3.

The Reafon of the Solution is manifeft of itfelf.
Scholium 1. The whole Difficulty of this Solution lies in the Reduction of the Numerator to the Form required, which yet how it may be done will appear from one Example. Therefore let the Product $\overline{z+2}$ $\times \overline{z+3} \times \overline{z+7}$ be propofed to be reduced to the required Form. Therefore I evolve the Terms by Degrees as follows. The firlt Factor $z+2$ I thus write $2+z$, whofe firlt Term 2 I multiply into $3+x$, whence it becomes $6+2 x$. The fecond Term z I multiply by $2+$ $\overline{z+1}(=z+3)$ whence it is $2 z+z \times \overline{z+1}$. Then collecting the Products it is $\overline{z+2} \times \overline{z+3}=\begin{array}{r}6+2 z+z \times \overline{z+1}=6+ \\ +2 z+\end{array}$ $4 z+z \times \overline{z+1}$. It remains to multiply this into $z+7$. Therefore I multiply the firf Term 6 into $7+z(=z+7)$ whence it is 42 $+6 z$. I multiply the fecond Term $4 z$ into $6+\overline{z+1}(=z+7)$ whence it is $24 z+4 z \times \overline{z+1}$; the third Term $z \times \overline{z+1}$ I multiply into $5+\overline{z+2}(=z+7)$ whence it is $5 z \times \overline{z+1}+z \times \overline{z+1} \times$ $z+2$. Therefore the Products being collected together as before 'tis $\overline{z+2} \times \overline{z+3} \times \overline{z+4}=42+30 z+9 z \times \overline{z+1}+z \times \overline{z+1}$ $x \overline{z+2}$. And fo we may proceed in other Cafes.
2. Let us take an Example of the Propofition in the Fraction

Of Infinite Series's.

which are deficient in the Denominator, the Fraction becomes $\overline{z+1} \times \overline{z+3} \times \overline{z+4}$
$\overline{z \times \overline{z+1}} \times \overline{z+2} \times \overline{z+3} \times \overline{z+4} \times \overline{z+5}$
merator is to be reduced to the Form required. Now by the Method already delivered, 'ti frt $\overline{z+1} \times \overline{z+3}=1 \times \overline{3+z}+z \times \overline{2+\overline{z+1}}$ $=3+\overline{z+2} z+z \times \overline{z+1}=3+3 z+z \times \overline{z+1}$. Then $\overline{z+1}$ $\times \overline{z+3} \times \overline{z+4}=3 \times \overline{4+z}+3 z \times \overline{3+\overline{z+1}}+z \times \overline{z+1}$ $\overline{\mathrm{x}+\overline{z+2}}=12+\overline{3 z+9 z+3 z \times \overline{z+1}+2 z \times \overline{z+1}+z} \times$ $\overline{z+1} \times \overline{z+2}=12+12 z+5 z \times \overline{z+1}+z \times \overline{z+1} \times \overline{z+2}$. By applyiug this Product to the Denominator $z \times \overline{z+1} \times \varepsilon^{2} c, z+5$, the Fraction will be reduced at aft to this Form

12
$\overline{z \times \overline{z+1}} \times \overline{z+2} \times \overline{z+3} \times \overline{z+4} \times \overline{z+5}+$
$\overline{\overline{z+1}} \times \overline{\overline{z+2}} \times \overline{z+3} \times \overline{z+4} \times \overline{z+5}+$
$\overline{\overline{z+2} \times \overline{z+3} \times \overline{z+4} \times \overline{z+5}}+\frac{5}{\overline{z+3} \times \overline{z+4} \times \overline{z+5}}$,
the Integral of which is
-12

3. When there are two Faclors only z and $z+a$, the Integral will alfo be exhibited by the Formula $\frac{1}{2}-\frac{1-a}{2 z \times \overline{z+1}}-\frac{\overline{1-a} \times \overline{2-a}}{3 z \times \overline{z+1} \times \overline{z+z}}$ $\overline{1-a} \times \overline{2-a} \times \overline{3-a}$ $-\overline{4 z \times \overline{z+1} \times \overline{z+2} \times \overline{z+3}}, \mathcal{E}^{2}$. where the Series is to be continued till it breaks off by the vanifhing of the Terms. If there are two Factors z and $z-a$, the Integral will be exhibited by the Formula $\frac{-1}{z-1}$ $-1+a \quad \overline{-1+a} \times \overline{-2}+a$ $\overline{2 \times \overline{z-1} \times \overline{z-2}}-\overline{1} \times \overline{z-1} \times \overline{z-2} \times \overline{z-3}, \mathcal{E}^{2}$. The fame
Integral may be exprefs'd either Way, according as the Factor of the given Fraction is taken either lefs or greater than z.
4. If the firt Value of z is $a+1$, the latter Formula will be changed into this $\frac{-1}{a} \times \frac{1}{1} \times \frac{1}{2} \times \frac{1}{3}, \delta c$. to $\frac{1}{a}$ inclufive, by which with a contrary Sign is exhibited the Sum of this Series continued in infinitum, $\frac{1}{1 \times \overline{1+a}}+\frac{1}{2 \times \frac{1}{2+a}}+\frac{1}{3 \times \overline{3+a}}$, Eoc. For Inftance, let $a=1$, the Series will be $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}, \delta^{3} c . \times \frac{1}{1} \times \frac{1}{1}=1$. If $a=2$, the Series will be $\frac{1}{1 \times 3}+\frac{1}{2 \times 4}+\frac{1}{3 \times 5} \xi_{c}=\frac{1}{2} \times \frac{\overline{1}}{1}+\frac{1}{2}$ $=\frac{3}{4}$. If $a=3$, the Series will be $\frac{1}{1 \times 4}+\frac{1}{2 \times 5}+\frac{1}{3 \times 6}+\frac{1}{4 \times 7}$, $\xi_{\varepsilon_{4}}=\frac{1}{3} \times \frac{1}{1}+\frac{1}{2}+\frac{1}{3}=\frac{11}{18}$.

Of Infinite Series's.

5. From the fame-Series
$\frac{11}{1 \times 1+a}+\frac{1}{2 \times \overline{2+a}}+\frac{1}{3 \times \overline{3+a}}$

E ic. according to the different Values of a, feveral Series will arife, which in Form will be elegant enough. To fet forme of there before the Eye of the Reader, perhaps will not be unacceptable.

If the even Numbers $2,4,6,8, \mathcal{\delta}^{\circ} c$. are made fucceffively equal to a, the Series will be as follows.

$$
\begin{aligned}
& \text { If } a=2) \frac{1}{1 \times \overline{1+2}}+\frac{1}{2 \times \overline{z+2}}+\frac{1}{3 \times \overline{3+2}}+\frac{1}{4 \times \overline{4+2}}, \delta_{c} . \\
& \text { 4) } \frac{1}{1 \times \overline{1}+4}+\frac{1}{2 \times \overline{2+4}}+\frac{1}{3 \times \overline{3+4}}+\frac{1}{4 \times \overline{4+4}}, 8_{0} \text {. } \\
& \text { 6) } \frac{1}{1 \times \overline{1+6}}+\frac{1}{2 \times \overline{2+6}}+\frac{1}{3 \times 3+6}+\frac{1}{4 \times \overline{4+6}}, \mathrm{~F}_{\mathrm{c}} \text {. } \\
& \text { 8) } \frac{1}{1 \times \overline{1+8}}+\frac{1}{2 \times \overline{2+8}}+\frac{1}{3 \times 3+8}+\frac{1}{4 \times \overline{4+8}}, \theta_{6} . \\
& \text { Or } \frac{1}{4-1}+\frac{1}{9-1}+\frac{1}{16-1}+\frac{1}{25-1}, \text { Es. }^{2} . \\
& \frac{1}{9-4}+\frac{1}{16-4}+\frac{1}{25-4}+\frac{1}{36-4}, \xi^{2} c . \\
& \frac{1}{16-9}+\frac{1}{25-9}+\frac{1}{3^{6}-9}+\frac{1}{49-9}, \text { sc }^{2} \text {. } \\
& \frac{1}{25-16}+\frac{1}{36-16}+\frac{1}{49-16}+\frac{1}{64-16}, 8 \% \text {. } \\
& \text { Or } \frac{1}{4-1}+\frac{1}{9-1}+\frac{1}{16-1}+\frac{1}{25-1}, \mathfrak{V}_{6} \\
& Q^{2}
\end{aligned}
$$

Of Infinita Series's.

$\frac{1}{4+3}+\frac{1}{9+7}+\frac{1}{16+11}+\frac{1}{25+15}$, है.

$$
\frac{1}{4+5}+\frac{1}{9+11}+\frac{1}{16+17}+\frac{1}{25+{ }_{1}^{23}}, \text { er }
$$

If for a are taken ithe odd Nunibers fucceffively, $1,3,5,7$, EF. . the Series will be

$$
\begin{aligned}
& a=1) \frac{1}{1 \times 1+1}+\frac{1}{2 \times \overline{2+1}}+\frac{1}{3 \times \overline{3+1}}+\frac{1}{4 \times \overline{4+1}}, \mathcal{E}^{\circ} c . \\
& \text { 3) } \frac{1}{1 \times 1+3}+\frac{1}{2 \times \overline{2+3}}+\frac{1}{3 \times \overline{3+3}}+\frac{1}{4 \times 4+3}, \varepsilon^{\circ} c \text {. } \\
& \text { 5) } \frac{1}{1 \times \overline{1+5}}+\frac{1}{2 \times \overline{2+5}}+\frac{1}{3 \times \overline{3+5}}+\frac{1}{4 \times \overline{4+5}}, \mathcal{E}_{6} \text {. } \\
& \text { 7) } \frac{1}{1 \times \overline{1+7}}+\frac{1}{2 \times \overline{2+7}}+\frac{1}{3 \times \overline{3+7}}+\frac{1}{4 \times \overline{4+7}}, \delta c \text {. } \\
& \text { Or } \frac{1}{2} \times \frac{1}{1}+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}, \operatorname{sc} \text {. } \\
& \frac{1}{2} \times \frac{1}{3-1}+\frac{1}{6-1}+\frac{1}{10-1}+\frac{1}{35-1}, \delta c_{0} \\
& \frac{1}{2} \times \frac{1}{6-3}+\frac{1}{10-3}+\frac{1}{15-3}+\frac{1}{21-3}, \delta c . \\
& \frac{1}{2} \times \frac{1}{10-6}+\frac{1}{15-6}+\frac{1}{21-6}+\frac{1}{28-6}, \delta^{\circ} c \\
& \text { Or } \frac{1}{2} \times \frac{x}{1+0}+\frac{1}{3+0}+\frac{1}{6+0}+\frac{1}{10+0}, \mathcal{E}_{6}
\end{aligned}
$$

Of Infuite Series's.

6. Some Years ago that great Geometrician Mr. Fames Bernoulli found the Sum of any Series, whole Numerators conftitute a Series of Equals, and the Denominators were a Series of Squares diminifh'd by any given Square 2, or a Series of Triangles diminifh'd by any given Triangle τ. This he found by obferving, that fuch Series arife, by taking away a truncated Series of harmonically Proportionals from the fame Series when intire ; that is, fo that the Number of deficient Terms in the truncated Series may be either double of the Side of the given Square 2 , or the double increafed by Unity of the Side of the given'Triangle T. He oblerved alfo, that the Sum of a reciprocal Series of Squares would be fought after in vain. And the fame is true alfo of the Reciprocals of Cubes, or of any other Powers of Numbers in Arithmerical Progrefion. The Reafon is, becaufe no Difference intercedes between the Factors of the Denominators, which is always required for fuch Summations, as appears from the Method of taking the Differences explain'd in the Scholium of Prop. I. For if the Sum required could be exhibited by any Formula, the Difference of that Formula would exhibit the Terms of the propofed Series; but in fuch a Difference the Denominator is always affected by the Factors which are different from one another ; which becaufe it does not take Place in the aforefaid Series, the Sums of fuch Series cannot be had in finite Terms. Almoft in the fame Manner, by an Argument derived from Prop. 3, 4. it may be demonftrated, that the Sums of Series cannot be exhibited in a finite Number of Terms, whofe Numerators confitute a Series of Equals, but the Denominators confift of a certain Number of Terms in Arithmetical Progreffion, the greatelt Factor of every Term being lefs than the leaft Factor in the Term next following, fuch as is this Series $\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\frac{1}{5 \cdot 6}+\frac{1}{7 \cdot 8}, \mathcal{E}^{\circ}$.
7. Now I might give fome-Rules which I have contrived for certain fingular Cafes; but this would lead us too far. It may fuffice therefore to have explain'd the more general, and to take Notice at the fame Time, that nothing would more conduce to the Improvement of this new Doctrine of Infinite Series, than if fome very ge eral Forms of Sums were digefted in Order, from the Differences of which being computed by
the Rule above, Canons might afterwards be form'd of fummable Quantities; juft as is already done in the Integral Calculus, or what Sir I. Newton calls the Inverfe Method of Fluxions.
8. By reftoring the Factors which are deficient in the Denominator, the prefent Problem might be reduced to Prop. 2. Alfo it might be propofed in more general Terms, or for the Numerator might any Formula be taken, of which any Difference is given. Yet with this Condition, that the Dimenfions of the Denominator fhould exceed the Dimenfions of the Numerator at leaft by two, for otherwife the Sum of the Series could not be had in finite Terms. Let there be an Example of this in the Series $\frac{1}{1 \cdot 3 \cdot 5 \cdot 7}+\frac{4}{2 \cdot 4 \cdot 6 \cdot 8}+\frac{9}{3 \cdot 5 \cdot 7 \cdot 9}+\frac{16}{4 \cdot 6 \cdot 8 \cdot 10}$,
$\xi^{\circ} c$. where the Numerators are the Squares of the natural Numbers. Then applying both the Numerators and Denominators to the natural Numbers, the Series will be reduced to a more fimple Form $\frac{1}{3 \cdot 5 \cdot 7}+$ $\frac{2}{4 \cdot 6 \cdot 8}+\frac{3}{5 \cdot 7 \cdot 9}+\frac{4}{6 \cdot 8 \cdot 10}, \mathcal{F}_{6}$. The natural Numbers $\mathrm{I}, 2,3,4,5$, $E^{2} c$. being denoted by p, a Terın of the Series will be reprefented by the Form $\frac{p}{p+2 \times \overline{p+4} \times \overline{p+6}}$, or by the Formula $\frac{z-2}{z \times \overline{z+2} \times \overline{z+4}}$ writing z for $p+2$. Now in proceeding from Term to Term, becaufe z is increafed by Units, the deficient Factors $z+1, z+3$, are to be reftored in the Denominator, and by this Means the Term of the Series will be reduced to this Form

$$
\overline{z \times z+1} \times \overline{z+2} \times \overline{z+3} \times \overline{z+4}
$$

By the Method already explain'd in this Propofition, the Numerator is reduced to $-6-6 z-z \times \overline{z+1}+z \times \overline{z+1} \times \overline{z+2}$. Whence having Refpect to the Denominator, the Term is reduced to this Form $\frac{-6}{z \times \overline{z+1} . \mathrm{gc.}^{\times z+4}}+\frac{-6}{\overline{z+1} \times \overline{z+2} \times \overline{z+3} \times \overline{z+4}}+$ $\frac{1}{\overline{z+2} \times \overline{z+3} \times \overline{z+4}}+\frac{1}{\overline{z+3} \times \overline{z+4}}$. Therefore by taking the
Integral we fhall find it $\frac{6}{4 z \times \overline{z+1} \times \overline{z+2} \times \overline{z+3}}+\frac{6}{3 \times \overline{z+1} \times \overline{z+2} \times \overline{z+3}}+$

be exhibited the Sum of the Series continued in infinitum, beginning from the Term $\frac{z-2}{z \times \overline{z+2} \times \overline{z+4}}$. Therefore the Sum of the whole Series beginning from the Term $\frac{1}{3 \cdot 5 \cdot 7}$ will be $-\frac{31}{240}$.
If we had a Mind to proceed by Prop. 2. from the Formula $\overline{z-2} \times$ $\overline{z+1} \times \overline{z+3}$ the firft Numerators being collected, 24, 70, 144, 252, taking their Differences we fhould have $46=b, 28=c, 6=d, c=0$ $=\delta^{\circ} c . M$ being 24 ; whence by Lem. 2. the Formula $-6-6 z-$ $z \times \overline{z+1}+z \times \overline{z+1} \times \overline{z+2}$ would arife, by which the Term is denoted as above. And proceeding by Prop. 2.- the Sum is had.

Prop. 6. Prob. To find the Sum of any Number of Terms of a Series of Fractions, whofe Numerators and Denominators make any two tranfverfe Lines in Pajchal's Arithmetical Triangle; that is, whofe Generators are Units.

Solution. Let the Order of the Series of Numerators in the Arithmetical Triangle be denoted by n, and let p be the Difference between the Order of the Numerators and Denominators, and let the Number of the Terms whofe Sum is required be denoted by q. Then if the Denominators are of more Dimenfions than the Numerators, the Sum will be exhibited by the firft Formula following. But if the Dimenfions of the Numerators are more than thofe of the Denominators, the Sum will be exhibited by the fecond Formula.

Formula I.
$\frac{n+p-1}{p-1}-\frac{n \cdot \overline{n+1} \cdot \overline{n+2} \cdot छ^{2} c \cdot \overline{n+p-1}}{\overline{p-1} \times \overline{n+q} \cdot \overline{n+q+1} \cdot छ^{2} c \cdot \overline{n+q+p-2}}$
Formula II.
$-\frac{n-p-1}{p+1}+\frac{\overline{q+n-1} \cdot \overline{q+n-2} \cdot \text { Ec. }^{q+n-p-1}}{p+1} \times \overline{n-1} \cdot \overline{n-2} \cdot \mathcal{E}^{2} \cdot \overline{n-p}$
Ex. 1. Let it be propofed to find the Aggregate of the fix firf Terms of the Series $\frac{1}{1}+\frac{4}{7}+\frac{10}{28}+\frac{20}{84}+\frac{35}{210}+\frac{5^{6}}{462}, \xi^{6}$ c. where the
the Numerators conflitute the fourth Line, and the Denominators the feventh, in the Arithmetital Triangle. Therefore it is $n=4, p=3$, $q=6$, and becaufe the Dimenfions of the Denominators exceed the Dimenfions of the Numerators, the Sum will be given by the firt Formula ; that is, $\frac{4+3-1}{3-1}-\frac{4 \cdot 5 \cdot 6}{3-1 \times 4+6 \times 4+7}=3-\frac{6}{11}$ $=2-\frac{5}{11}$.
Ex. 2. Let the Sum be required of the fix firft Terms of this Series, $\frac{1}{1}+\frac{7}{4}+\frac{128}{10}+\frac{84}{20}+\frac{210}{35}+\frac{462}{56}, 8^{8}$. the Terms of which are the Reciprocals of the Terms of the foregoing Series. ' ${ }^{\prime}$ Tis therefore $n=7$, $p=3, q=6$, and therefore by the fecond Formula the Sum is -$\frac{-1}{3}+\frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \times 6 \cdot 5 \cdot 4}=24$
Scholium I. Two Years ago I communicated the Forms in this Propofition, to thofe learned Geometricians M. de Moivere and the Bers noulli's. They may eafily be derived from the Precepts delivered in Prop. I. We will take for Example the foregoing Scries $\frac{1}{1}+\frac{4}{7}+$ $\frac{10}{28}, 马 6$, The Place of the Term in this Series being denoted by p, the Term will be exhibited by the Formula $\frac{4 \cdot 5 \cdot 6}{p+3 \cdot p+4 \cdot p+5}$; whence returning to the Integral, the Sum of the Series beginning from that Term will be exhibited by the Formula $\frac{4 \cdot 5 \cdot 6}{2 \times \bar{p}+3 \times \bar{p}+4}$.
Therefore taking I for p, the whole Series is $\frac{4 \cdot 5 \cdot 6}{2 \cdot 4 \cdot 5},=3$, and the
Sum of the fix firf Terms will be $3-\frac{4 \cdot 5 \cdot 6}{2 \cdot 10 \cdot 11}$, juft as it was now exhibited by the Formula.
2. In the firt Formula the Sum of the Series continued in infunitum is $\frac{n+p-1}{p-1}$, the other Pars of the Formula now vanißaing. But in the

Cafe

Cafe of the fecond Formula, the Sum is an infinite Quantity, whofe Species, in refpect of the infinite Number q, is exhibited by the other Part of the Formula, which in this Cafe becomes $\frac{q}{\overline{p+1} \times \frac{1 n-1}{p+1} \cdot \overline{n-2} \cdot \mathcal{S}^{c} c \cdot \overline{n-p}}$.
3. Concerning Series of this Kind, that great Geometrician Mr. Leibnitz, in a Letter of May 1716, wrote to me in the following Manner : The Death of which great Man, lately taken from us, we now lament.
" It feems to me that heretofore I fum'd certain Series of this Kind, "fuch as $\frac{1}{1}+\frac{2}{4}+\frac{3}{10}+\frac{4}{20}+\frac{5}{35}+\frac{6}{56}$, Ec.. The Term of this "Series exprefs'd Analytically is
" $\frac{x}{x \cdot x+1 \cdot x+2 \times \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3}}=\frac{1 \cdot 2 \cdot 3}{x+1 \cdot x+2}=\frac{6}{x x+3 x+2}$.
"'Tis required to find the Sum of a given Series, one of the Terms of " which is $\frac{l l}{x x+3 l x+2 l l}$, where x fignifies the natural Numbers " $1,2,3, \mho_{c}$. and l fignifies Unity, or the Difference of the feveral x. "Let us fuppofe that the Term required of the Summing Series is " $\frac{f x}{m x+n l}=\frac{\odot}{D}$. But the Difference of $\frac{\odot}{D}=\frac{-\odot}{D}+\frac{\odot+d \odot}{\nu+d \nu}=$ " $\frac{D d \odot-\odot d D}{D D+D d D}$. But $d \odot=f d x$, and $d D=m d x=m l$. Therefore "theDifference of $\frac{\odot}{D}=\frac{n f l l}{m m x x+2 m n l x+n n l l}$. Now we muft make $+m m l x+m n l l$
$\frac{n f l l}{m m_{i} x+2 m n l x+n n l l}=\frac{m f l l}{m m x+3 m m l x+2 m m l l}$, that is
" thefe two Forms muft be identified, wherein the given Quantity is multi-
"ply'd by $\frac{n f}{m m}$. Then making the refpective Terms equal, fince the " x 's are the fame, we fhall have by fimple $x, 2 n+m=3 m$, that is to "fay, $m=n$. Then by the abfolute Terms $n n+m n=2 m m$, which $"$ is again $m=n$. Therefore the Identification fucceeds, and we may ${ }^{*}$ make $n=m=l=1$, and $f=1$, (for f may be taken at Pleafure) and Vol. IV.

Of Infinite Series's.

a the Term of the Summing Series will be $\frac{x}{x+1}$. For the Difference
" of $\frac{x}{x+1}$ gives $-\frac{x}{x+1}+\frac{x+1}{x+2}=\frac{1}{x x+3 x+2}$, and confe.
" quently $\frac{6 x}{x+1}$ gives the Sum of the $\frac{2}{x \cdot \overline{x+1} \cdot \sqrt{x+2} \times \frac{1}{1} \cdot \frac{3}{2} \cdot \frac{3}{3}}, 3$,
" $4, \frac{9}{2}, \frac{24}{5}, 5, \frac{36}{7}, \delta^{2} c$. the Summing Series whofe Term is $\frac{6 x}{x+1}$.
"Alfo $\frac{1}{1}+\frac{2}{4}+\frac{3}{10}+\frac{4}{20}+\frac{5}{25}$, Esc. is the Series to be fum'd,
os whofe Term is

$$
\frac{x}{x \cdot \frac{1}{x+1} \cdot x+2 \times \frac{1}{1} \times \frac{1}{2} \times \frac{1}{3}}
$$

And to make Ufe
's of them for Summations, the five Terms, for Example, of the given "Series fhall be $\frac{3^{6}}{7}-3=\frac{15}{7}$. And in general, the Sum of " the Terms as far as any Term $\frac{x}{x \cdot x+1 \cdot x+2 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{3}}$ exclu"f fively, fhall be $\frac{6 x}{x+1}-3$. And for the Sum of the intire Series " ad infinitum, x then becomes infinite, and therefore $\frac{6 x}{x+1}=6$:
"Therefore the Sum of the whole Series is $6-3=3$, as you have " found it.
"This Method is the Calculation of Differences apply'd to Numbers; "s and I muft own to you, that before I apply'd it to Figures, and even " before I commenced Geometrician, I practifed it in fome Meafure " upon Numbers : Having found, when I was yet but young, that "Series whofe Numerators are Units, and the Denominators any figu" rate Numbers, as Triangular, Pyramidal, \mathcal{E}°. were the firft, fecond, " third, ξ°. Differences multiply'd by the conftant Quantities of this "Series $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}, 8^{\circ} c$. and confequently were fummable. "But after I became fomething of a Gcometrician and an Analyft, 1 "faw it was pofible to arrive at thefe Summations by a general Me" thod, when it could be done; and that the Calculus of Differences " was ftill more convenient in Geometry than in Numbers, becaufe there

Of Infuite Series's.

\% there are more Frequent Coincidences, and that the Differences have "Place in the Tangents, as the Sums have in Quadratures. This ge" neral Method of finding the Summing Series of the Series given,
" when it is poffible, always fucceeds, when the Term of the Series " given exprefs'd Analytically has no variable Quantity involved in a " Radical Sign, nor entring in the Exponent ; and then one may al" ways determine the Summing Series, or prove it impolfible to be " found. And the Thing very often fucceeds, even when the variable " Quantity enters the Exponent. But as there are fometimes particular "Quadratures of fome Portions of a Figure, when one cannot give the " general Quadrature, or the Quadratrix ; fo fometimes one may find " the Sum of the whole Series, or of a certain Part, though one cannot " find the Sum of every Part. Then we mult have Recourfe to parti" cular Methods, which we have not always in our Power, our Analy" fis being not yet carried to its due Perfection.

Prop. 7. Prob. To find the Sum of a Series, whofe Numerators confitute any ereet Line in Pafchal's Arithmetical Triangle, and the Denominators conftitute any tranfverfe Line.
Solution. Let p denote the Order of the erect Line, and q the Order ${ }^{-}$ of the Tranfverfe Line; and let m be the Aggregate of fo many of the firft Terms in the erect Line of the Order $p+q-1$ as there are Units in $q-1$; and the Sum required will be $\overline{2 p^{7} q^{-2}-n} \times$
$\frac{1 \cdot 2 \cdot 3 \cdot \varepsilon^{2} c \cdot \overline{q-1}}{p \cdot \overline{p+1} \cdot \varepsilon^{2} c \cdot \overline{p+q-2}}$.

Ex I. Let this Series be propofed $\frac{1}{1}+\frac{5}{4}+\frac{10}{10}+\frac{10}{20}+\frac{5}{35}+\frac{1}{56}$, where the Numerators conftitute the fixth erect Line, and the Denominators poffefs the fourth tranfverfe Line. Therefore in this Cafe 'tis $p=6, q=4, p+q-1=9, q-1=3$, and therefore $m=1+8$ $+28=37$, that is, equal to the three firft Terms of the ninth erect Line. Whence the Sum required will be $\overline{2^{8}-37} \times \frac{1 \cdot 2}{5 \cdot 7 \cdot 3}=\frac{219}{56}$.

Ex. 2. Let the Numerators conftitute the hundredth erect Line, and let the Denominators be the Trigonal Numbers, which poffefs the third tranfverfe Line. Then it will be $p=100, q=3, m=102$, and therefore the Sum required is $\overline{2^{101}-102} \times \frac{1 \cdot 2}{100 \cdot 101}$.

Cor. If $q=2$, the Formula becomes $\frac{2 p-1}{p}$, by which the Aggre-
gate will be exhibited, of the whole firt Term, with half the fecond, a third Part of the third, a fourth Part of the fourth, and fo on, of any erect Line of the Order p of Pajchal's Arithmetical Triangle. Thus for Inftance, $\frac{1}{1}+\frac{5}{2}+\frac{10}{3}+\frac{10}{4}+\frac{5}{5}+\frac{1}{6}=\frac{2^{6}-1}{6}=10 \frac{1}{2}$.

Prop. 8. Prob. To find the Sum of the fame Series, when the Signs of the Terms are alternately + and - .

Solution. The Sum required will be exhibited by this very fimple Formula, $\frac{q-1}{p+q-2}$.

Ex. Let it be propofed to find the Sum of this Series, $\frac{1}{1}-\frac{6}{9}+$ $\frac{15}{45}-\frac{20}{165}+\frac{15}{495}-\frac{6}{1287}+\frac{1}{3003}$, where the Numerators conftitute the feventh erect Line, and the Denominators the ninth tranfverfe Line. Therefore in the Formula for p and q writing 7 and g, and the Sum will
be $\frac{8}{14}=\frac{4}{7}$.
The fame Series of Numerators remaining, (that is, the feventh ereft Line) if for the Series of Denominators be taken the fecond, third, fourth, E®c. tranfverfe Lines fucceffively, the Sums will be $\frac{1}{7}, \frac{2}{8}, \frac{3}{9}$,
$\frac{4}{10}, \frac{5}{11}, 8 c$. which may be wrote thus, $\frac{1}{7}, \frac{7}{28}, \frac{28}{84}, \frac{84}{210}, \frac{210}{462}$,
$\xi^{c} c$. where both the Numerators and Denominators are taken out of the tranfverfe Line of the feventh Order. The fame would obtain if inItead of the feventh, the Numerators fhould conititute any other erect Line of the Order p. For the Sums would arife from the Application of the Terms of the tranfverfe Line of the fame Order p to the Terms next following in the fame Line.

Thefe two laft Propofitions are rather neat than ufeful; therefore we will leave the Demonftration of our Formula, to be found by the Ingenuity of the Reader, and betake ourfelves now to the latt Propolition, which contains a third Species of Series, remarkable enough for its great Ufe.

Lemina 5. Let there be any Series $\frac{M}{b}, \frac{N}{b^{2}}, \frac{O}{b^{3}}, \frac{P}{b^{4}}, \mathcal{V}^{2} c$. the Denominators of whofe Terms conititute any Geometrical Progreffion, b,

Of Infinite Series's.

$b^{3}, b^{3}, b^{4}, \xi^{3}$. Alfo let the firft of the Numerators $A(=M)$ be the firtt of the firft Differences B, the firft of the fecond C, the firft of the third D, of the fourth E, and fo on. And let $\frac{a}{b}, \frac{\beta}{b^{2}}, \frac{\gamma}{b^{3}}, \frac{\alpha}{b^{4}}, \mathcal{E}^{2} c$. refpectively be the Aggregates of one, two, three, four, or more Terms of the Series $\frac{M}{b}, \frac{N}{b^{2}}, \frac{O}{b^{3}}, \delta^{c} c$. and let the firft of the Numerators be $a(=\alpha)$ the firft of the firft Differences be b, the firft of the fecond c, the firft of the third d, and fo on.: And let $b-1=q$. Then the Values of $a, b, c, d, \mathcal{E}^{\circ} c$. will be
$a=A=a=M$
$b=b A+B$
$b=b A+B$
$c=q b A+b B+C$
$d=q^{2} b A+q b B+q b C+D$, and fo on.
Demonfiration. It is plain that $a=\alpha=A=M$.
The Terms $\frac{M}{b}, \frac{N}{b^{2}} \cdot \frac{O}{b^{3}}, \frac{P}{b^{4}}, \mathcal{E}^{c} c$ ((the Numerators M, N, O, P, \mathcal{E}^{2}. being exprefs'd by $A, B, C, D, \mathcal{J}^{2}$.) are transform'd into the Terms $\frac{A}{b}, \frac{A+B}{b^{2}}, \frac{A+2 B+C}{b^{3}}, \frac{A+3 B+3 C+D}{b^{+}}, \mathcal{E}^{\circ} c$.
Whence by collecting the Sums of the Terms are found the Numerators $\alpha, \beta, \gamma, \alpha, \mathcal{E}^{\circ} c$. that is,

$$
\begin{array}{lc}
\therefore= & A \\
\beta= & \overline{b+1} A+B \\
\gamma= & \overline{b^{2}+b+1} A+\overline{b+2} B+C \\
\delta=\overline{b^{3}+b^{2}+b+1} A+\overline{b^{2}+2 b+3} B+\overline{b+3} C+D, \varepsilon_{c} .
\end{array}
$$

Whence taking the Differences, they become
$b=b A+B$
$c=q b A+b B+C$
$d=q q b A+q b B+b C+D$, and fo on, as in the Propofition.
Cor. 1. Of the Numerators $M, N, O, P, \mathcal{E}^{\circ} c$. if the firft, fecond, third, or any other Difference is given; in the Series $A, B, C, D, \mathcal{S}^{3} C$. all the Terms after fome of the firft vanifhing, the Differences $b, c, d, \mathcal{E}^{2} c$. will at laft become a Geometrical Progreffion in the Ratio of ito q. For Example, of the Numerators $M, N, O, P, \mathcal{E}^{\prime} c$. if the firt Difference B is given, then $c, d, \varepsilon^{\circ} c$. will be in the continued Geometrical Ratio of I to q; as appears by their Values $q b A+b B, q q b A+q b B, \mathcal{V}^{\circ} c$. it being $C=0=D, छ^{\circ} c$.

Cor. 2.

Of Infinite Series's.

Cor. 2. But the Order of the firt of the Differences $B, C, D, \mathcal{J}^{\circ} C$. which vanifh in this Manner, is the fame as the Order of the Differences b or $c, \varepsilon^{\circ} c$. whence that Geometrical Progreffion begins. Thus if $B=$ $0=C,\}^{c} c$, then $b, c, d, \xi^{c} c$. will be in a Geometrical Progreffion. If $C=0=D, \mathcal{E}^{c} c$. then c, d, \mathcal{E}_{c}. will be in a Geometrical Progreffion. And fo on.

Lemma 6. The fame Things being fuppofed, let r be that Term by which the Geometrical Progreffion begins in the Series of Differences b, $c, d, \delta^{c} c$. and by $p+1$ let the Order in the Term be denoted in the Se. ries $\frac{\alpha}{b}, \frac{\beta}{b^{2}}, \frac{\gamma}{b^{3}}, \frac{\alpha}{b^{4}}, \Xi^{2} c$. Then that Term will be denoted by a Fraction, the Denominator of whieh being $b p^{+1}$, the Numerator is

$$
\frac{a+b p+c p \times \frac{p-1}{2}+d p \times \frac{p-1}{2} \times \frac{p-2}{3}, \delta^{2} c+\frac{r}{q^{n}}}{\times b p-1-q p-q^{2} p \times \frac{p-1}{2}-q^{3} p \times \frac{p-1}{2} \times \frac{p-2}{3}, \varepsilon^{2} c .}
$$

the Order of the vanifhing Difference of the Series $B, C, D, \mathcal{E}^{3} c$. being denoted by n, as alfo the Number of the Terms $a+b p, \mathcal{E}_{c} c$ and likewife of the Terms - $1-q p, \mathcal{E} c$.

Demonftration. By Lemma 1, the Numerator of that Term is exhibited by the Formula $a+b p+c p \cdot \frac{p-1}{2}+d p \times \frac{p-1}{2} \times \frac{p-2}{3}, \mho_{c}$. (if $p+1$ fupplies the Place of x in that Lemina.)

Therefore if it is for Example $n=2$, by Lem. 5. Cor. 2. it will be c, $d, \varepsilon^{3} c$. in the continued Ratio of I to q. Therefore the Numerator in this Cafe is $a+b p+c p \times \frac{p-1}{2}+c q p \times \frac{p-1}{2} \times \frac{p-2}{3}+c q^{2} p \times$ $\frac{p-1}{2} \times \frac{p-2}{3} \times \frac{p-3}{4}, \mathcal{E}^{2} c$. But if the Terms $c p \times \frac{p-1}{2}+c q p \times$ $\frac{p-1}{2} \times \frac{p-2}{3}, \Xi_{c}$, are multiplied by $\frac{q^{2}}{c}$, and to the Product be added the Terms $1+q p$, a Series will arife, by which the Dignity $\overline{1+q} p=$ $b p$ of the Binomial $I+q$ is exprefs'd. Therefore that Product is equal to $b p-1-q p$; and therefore the Terms $c p \times \frac{p-1}{2}+c q p \times \frac{p-1}{2}$ $\times \frac{p-2}{3}, \varepsilon_{c_{0}}=\frac{c}{q^{2}} \times \overline{b p}-1-q p$, by which the Numerator be-
comes $a+b p+\frac{c}{q q} \times b p-1-q p$; the two Terms being $a+b p$, as alfo the two - 1 - $q p$, according to the Senfe of the Propofition, becaufe $n=2$. And there is the fame Demonftration in other Cafes. As to the Denominator, the Thing is manifeft of itfelf.

Prop. 9. Prob. To find the Sum of any Number of Terms of any Series $\frac{M}{b}, \frac{N}{b^{2}}, \frac{O}{b^{3}}, \frac{P}{b^{4}}, \mathcal{F}^{\circ} c$. of the Terms of which the Denominators conflitute any Geometrical Progreffion $b, b^{2}, b^{3}, \mathcal{E}^{2} c$. and the Numerators are Quantities having any conftant Difference.

Solution. Of the Numerators $M, N, O, P, \mathcal{E}^{2} c$. let the firft be A, the firt of the firft Differences B, the firft of the fecond C, the firft of the third D, and fo on. And of $A, B, C, D, \mathcal{E}^{\circ} c$. let the Number be n, and $b-1=q$. Then let $a=A(=M) b=b A+B, c=q b A+b B$ $+C, d=q^{2} b A+q b B+b C+D, \xi^{2} c$. that there may be fo many Terms, $a, b, c, \delta^{c} c$. as there are Units in $n+1$. Let the laft of thofe Terms be called r, and by $p+1$ let the Number of Terms $\frac{M}{b}, \frac{N}{b^{2}}$, $\frac{0}{b^{3}}, \frac{P}{b^{4}}$, be denoted, whofe Sum is required. I fay that Sum will be exhibited by a Fraction, whofe Denominator being $b p+{ }^{+1}$, the Numerator will be -

$$
\frac{a+b p+c p \times \frac{p-1}{2}+d p \times \frac{p-1}{2} \times \frac{p-2}{3}, \delta^{2} c \cdot+\frac{r}{q^{n}}}{\times b p-1-q p-q^{2} p \times \frac{p-1}{2}-q^{3} p \times \frac{p-1}{2} \times \frac{p-2}{3}, \delta \sigma_{0}}
$$

Demonfration. For (by Lem. 6.) by this Formula is reprefented the $\rho+I$ Term in order of the Series $\frac{a}{b}, \frac{\beta}{b^{2}}, \frac{\gamma}{b^{3}}, \frac{a}{b^{+}}, \mathcal{E}^{2} c$. which Term (by the Conftruction of Lem. 5.) is equal to the Aggregate of Terms in Number $r+1$ of the propofed Scries $\frac{M}{b}, \frac{N}{b^{2}}, \frac{0}{b^{3}}, \frac{P}{b^{4}}$, छc. 2. E. D.
Ex. 1. Let there be found the Sum of nine Terms of the Series $\frac{1}{2}$, $\frac{2}{4}, \frac{3}{8}, \frac{4}{16}$, Ec $_{c}$. In this Care 'tis $b=2, q=b-1=1, p+1=$ $9, p=8, A=1, B=1, C=0=D, \delta c$. and therefore $n=2$, (becaufe there are two, A, B,) Hence it is $a=A=1, b=b A+B=2 \times$

Of Infinite Series's.

$1+1=3, c=q b A+b B+C=2 \times 1+2 \times 1+0=4=r ;$ and therefore by the Formula the Sum required is $1+3 \times 8+\frac{4}{I^{2}} \times$
$\frac{\overline{2^{6}-1-1 \times 8}}{2^{9}}=\frac{1013}{512}$.
Ex. 2. Let the Sum of fix Terms be required of this Series $\times 3+$ $3 \times 3^{2}+6 \times 3^{3}+10 \times 3^{4}+15 \times 3^{5}+21 \times 3^{6}, \mathcal{B}^{\circ} \mathrm{c}$. In this Cafe 'tis $b=\frac{1}{3}, q=\frac{-2}{3}, p+1=6, p=5, A=\mathrm{r}, B=2, C=\mathrm{I}, D=0$ $=E, \mathcal{E}^{2} c$. and therefore $n=3$, and $a=1, b=\frac{1}{3}+2=\frac{7}{3}, c=$ $\frac{-2}{9}+\frac{2}{3}+1=\frac{13}{9}, d=\frac{4}{27}-\frac{4}{9}+\frac{1}{3}=\frac{1}{27}=r$. Whence the Sum required is 1995^{6}, or

$$
\frac{1+\frac{7}{3} \times 5+\frac{13}{9} \times 5 \times 4+\frac{-1}{8} \times \frac{1}{3^{5}-1+\frac{2}{3} \times 5-\frac{4}{9} \times 5 \times \frac{4}{2}}}{\frac{1}{3}^{6}}
$$

Corol. i. The Sum of the fame Series, continued from the firft Term $\frac{M}{b}$ in infunitum, is exhibited by a very fimple Formula $\frac{A}{b-I}+$

$$
\frac{B}{b-1)^{2}}+\frac{C}{b-11^{3}}+\frac{D}{b-1)^{2}}, \mathcal{F}_{0} .
$$

Corol. 2. If $b=2$, the Sum of the whole Series continued infinitely is had by the Addition only of the Terms $A, B, C, D, \mathcal{E}^{\circ} c$. And this Sum is the fame as the Sum of the erect Line anfwering to the firft Term A in the Arithmetical Triangle, whofe tranfverfe Line is occupied by the Numerators $M, N, O, P, \xi^{\circ} c$. which eafily appears from the Confideration of the Triangle. If therefore $M, N, O, \mathcal{E}^{\prime} c$. are figurate Numbers of any Order n, the Sum of the Series $\frac{M}{2}+\frac{N}{4}+\frac{O}{8}+\frac{P}{16}$, v_{c}. will be equal to this Dignity of the Number 2, that is $\overline{2})^{n-x}$.
the Series $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}$, Ec. $^{2^{1-1}=1 \text {, as is commonly }}$ known. The Series $\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16}, E^{2} c_{.}=2^{n-1}=2$; and the Series $\frac{1}{2}+\frac{3}{4}+\frac{6}{8}+\frac{10}{16} 8^{\circ} c=2^{3-1}=2^{2}=4$. And fo on.

Scbolium. The celebrated Mr. Fames Bernoulli, in his Treatife about infinite Series, has folved this Problem. "To find the Sum of an in" finite Series of Fractions, whofe Denominators increafe in any Geo" metrical Progreffion, but the Numerators proceed either according " to the natural Numbers $1,2,3,4, \mathcal{E}^{c}$. or Trigonals $1,3,6,10_{2}$ " ξ^{2} c. or Pyramidals 1, 4, $10,20, \mathcal{E}^{c} c$. or according to Squares 1, 4, " $9,16, \mathcal{V}^{\circ}$ c. or Cubes $1,8,27,64, \varepsilon^{\circ} c$. or the Multiples of thefe. The Reader may confult his Solution. Mr. Nic. Bernoulli his Nephew found another Solution much more general, and was pleas'd to communicate is to me in a Letter of September 18,1715 , after I had fent him this, but without a Demonftration. His Letter was full of admirable Difcoveries, fuch as that learned Gentleman often imparts to me. Concerning this Problem he writes thus. As to the Sum of any determinate Number n of Terms of the Series of your feventh Theorem, (the firft

Corollary of this Propofition) I have found this Formula $\frac{1}{m^{n}} \times$
$\frac{n-1}{m-1} a+\frac{A-n}{m-1} b+\frac{B-n \cdot \frac{n-1}{2}}{m-1} c+\frac{C-n \cdot \frac{n-1}{2} \cdot \frac{n-2}{3}}{m-1}, d \xi^{c} c$.
where the Letters $A, B, C, \xi^{2} C$. denote the Coefficients of the Terms im-* mediately preceding. And in this Formula putting $p+1$ for n, b^{m} for m, and multiplying the whole by e^{m-1}, we fhall have the Solution of your Prob. 9. And this able Mathematician acquaints me, that this his general Formula will be changed into our particular one, (Corol. 1. of this Propofition) when $n=\infty$. For then $\mathrm{I}, n, n, \frac{n-1}{2}, n, \frac{n-1}{2}$. $\frac{n-2}{3}, E^{2}$. will vanifh in refpect of the Terms $m^{*}, A, B, C, S^{\circ} c$, fo that the Series in that Cafe will be $\frac{1}{m-1} a+\frac{A}{m-1} b+\frac{B}{m-1} c$, \&r. which intirely coincides with ours $\frac{a}{m-1}+\frac{b}{m-1)^{2}}+\frac{c}{m-1}{ }^{2}$, Eic. Vol. IV.

Dr. Taylor has found another Solution of this Problem, very different from thefe by the Help of his Method of Increments. At the Defire of that very learned Man I had fent him my fecond Formula for the Solution of Prob. 2. as alfo the other Forms belonging to the third, fourth, and fifth Propofitions, but without their Demonftrations. For 1 did not doubt but fo acute a Man, and the Inventer of the Method of Increme ts, would be able to find out thefe, or others like to them. He wrote back that he had found the Solutions, and at the fame Time communicated fereral other Things, tending much to the Improvement of this Method. Thefe, at my Requeft, he has thought fit to fubjoin to this Difcourfe of mine.

An Appendix, sicating of the fume Matter in a differmt Manner ; by D_{r}. B. Tay- cafion of finding them.
Lor, ib. p. 676. Definitions. I. I denote the prefent Value of any variable Quantity by the Letter fimply wrote down, as x; the foregoing Values I diftinguifh by little Lines put at the Top of the Letter, and the following Values I diftinguifh by little Lines put under the Letter. So that by the Force
of this Definition " x, x, x, x, x, are five continual Values of the fame variable Quantity, x being the prefent Value, x the Value laft paft, ${ }^{\prime \prime}$ the fecond paft; x is the Value next to come, and x the fecond to come.
And lo of others. After the fame Manner are to be underftood the litthe Lines which are put to Increments. Thus $\begin{array}{llllll} & x, & x, & x, & x, & x \text {, are five } \\ & . . & \cdots & , \ldots, /\end{array}$ fucceffive Values of x; and fo ${ }^{\prime \prime}$.. is the fecond Increment of x, and ${ }^{\prime} x$ is the fecond Increment of ${ }^{\prime} x$; and the like of others.

Cor. By vertue of this Definition $\hat{x}+\hat{x}=x, x+x=x, x+x=x$, And fo of all others of this Kind.

When Occafion requires that a variable Quantity, fuppofe x, is to be look'd upon as an Increment, I denote its Integral by the Letter included between two Hooks []. Alfo the Integral of the Integral [x] or the fecond Integral of x. I denote by putting the Number 2 over the 2
firft of the Hooks, as $[x]$. Alfo the Integral of this Integral, or the third Integral of x, I denote in the fame Manner by putting the Number

Of Infinite Series's.

3 over the Hooks, as [x]. And fo on. Therefore by virtue of this Definition $\left.{ }^{3} x\right],{ }^{2}[x],[x], x$, conftitute a Series of Terms, every one of which is the firlt Increment of the Quantity immediately before it ; fo that it is $\left.\left.[x]={ }_{0}^{3} x\right],[x]={ }_{0}^{2}{ }_{0}^{x}\right], x=[x]$.

Lemma. The Increment of the Product $x v$, made by the Multiplication of the two variable Quantitics x and v, is $x v+x v$.

For the Variables being increafed by their proper Increments, becomes the new Product $\overline{x+x} \times \overline{v+v}$, or $x v+x v+\overline{x+x} \times v$, that is, $x v$ $+x v+x v$, writing x for $x+x$, by Def. I. From whence taking the former Product $x v$, there remains the Increment $x v+x v$.

Prop. I. Theor. The Increment of the fame Product $x v$, either firt, fecond, third, or any other, the Order of which is denoted by the Symbol n, will be exhibited by this general Formula.

In this Formula thefe Things are to be obferved. Firf, the Coefficients of the Terms $I_{2} n, n \times \frac{n-1}{2}, n \times \frac{n-1}{2} \times \frac{n-2}{3}$, छf c. are the fame as of the Binomial raifed to the Power n. Secondly, the Numbers $n, n-1, n-2 ; \mathcal{E}^{\circ} c$. writteh below every x, denote the Number of the Points by which the Increments are determin'd. Thirdly, the little Lines , in, III, $\varepsilon^{c} c$. written under x, are to be interpreted according to Def. r. Fourthly, in every Term the Number of the Points together written under x and v, always make n. For Inftance, let $n=4$, then by the $+4 \underset{I \prime \prime}{x} \because+x$ vill :

Prop. 2. Tbeor. The firt Integral of $x v_{2}$ or $[x v]$, is exhibited by the Series $[x] v-[x] v+\left[\begin{array}{l}2 \\ x\end{array}\right] v-\left[\begin{array}{l}4 \\ x \\ \prime \prime \prime\end{array}\right] v, \vartheta^{2} c$.

Of Infinite Series's.

But the Series is thus terminated, that it may be $[x v]=[x] v=$

For by taking the Increments, the propofed Quantity x v will be reftored.

Car. I. Two of thofe $[x],[x v],[[x] v]$, being given, the third will be given. Alfo any three of thefe being given $[x],[x],[x v]$, $\left[\begin{array}{ll}2 & \\ {\left[\begin{array}{l}x\end{array}\right]}\end{array}\right]$, the fourth is given; and fo on.

Cor. 2. If $v=0$, then $[x v$] is given when $[x]$ is given. If $v=0$, then $[x v]$ is given from the two $[x]$ and $[x]$ being given. If $v=0$, then $[x v]$ is given from the three $[x],[x],[x]$ being given. And fo on.

Ex. i. For an Example of this Formula, let us find the Integral of $\frac{y}{2 z z z}$ from z being given, and $v=0$; which is a particular Cafe of of the fecond Propofition of the foregoing Treatife of Mr. Monmort. Making therefore $x=\frac{1}{z \underset{y_{1} z \prime \prime \prime}{ }}$, 'tis $\left[x_{i}\right]=\frac{-1}{3 z z z[x]}=\frac{1}{2 z \times 3 z z z}$ and $\left[{ }_{\prime \prime}^{x}\right]=\frac{-1}{1 z \times 2 z \times 3 z z}$. Whence by the Formula it is. $[x v]$, that is $\left[\frac{v}{z z z z} 1 / \prime \prime \prime \prime=-\frac{v}{3 z z z z}-\frac{v}{2 z \times 3 z z z}-\frac{v}{1 z \times 2 z \times z z}\right.$

Ex. 2. Let another Example be the Invention of the Integral of nax, where $z=1$, and a is given. Then for x affuming a^{z}, and for v taking x_{2} 'tis $x=a^{\prime}$, that is $x=a x_{3}$ or $x+x=a x$, and therefore $x=\overline{a-1}$

Of Infinite Series's.

x, and $x=\frac{x}{a-1}$. Therefore returning to the Integrals, it is $[x]=$ $\frac{x}{a-1} ;$ alfo $[x]=\frac{[x]}{a-1}=\frac{x}{a-1)^{2}}$. Alfo ${ }^{3}[x]=\frac{x}{a-1)^{3}}$; and fo on. Therefore becaufe $x=a x$, 'tis $[x]=\frac{x}{a-1},[x]=\frac{a x}{a-1)^{2}}$, $[x]=\frac{a^{2} x}{a-1)^{3}}, \mathcal{B}^{3}$. Whence by the Formula there comes out $\left[n a^{z}\right]$ $=\frac{a^{x} n}{a-1}-\frac{a^{x+1} n}{a-1)^{2}}+\frac{a^{x+2} n}{a-1)^{3}}, \varepsilon_{c} c$.

In this Example is contained the Solution of the Problem, treated of by Mr. Monmort in the ninth Propofition. And the Formula coincides with that which he gives us in his firf Corollary of the fame Propofition.
Scholium. Other Values alfo of the Integral required may be derived from this Form, according to the different Manner in which the Factors of the propofed Increment are interpreted. Thus in the fecond Example the Integral of $n a^{z}$ may be exhibited by the Formula $a^{z}[n]-$
$\left.\overline{a-1} a^{z}\left[\begin{array}{l}2 \\ n \\ n\end{array}\right]+\overline{a-1}\right)^{2} a^{z}\left[\begin{array}{l}3 \\ n \\ n\end{array}\right]$, $\mathcal{B}^{3} c$. that is, taking n for x, and a^{z} for v. Bit we may treat more of this perhaps on another Occaficn.
Prop. 3. Theor. The Integral of the fame $x v$, either firt, fecond, third, or any other whofe Order is denated by the Symbol n, is exhibited by a Series proceeding in this general Form, $\left[\begin{array}{ll}n & v\end{array}\right]={ }^{n}[x] v-n$.
$\left[\begin{array}{l}n+1 \\ x, \\ x\end{array}\right] v+n \times \frac{n+1}{2}\left[\begin{array}{l}n+2 \\ x\end{array}\right] v-n \times \frac{n+1}{2} \times \frac{n+2}{3}\left[\begin{array}{l}n+3 \\ \cdots, \prime \prime\end{array}\right] v, \varepsilon_{0} c$.
The Form of the Series being derived from the foregoing Propofition, the Coefficients $\mathrm{I}_{2}, n_{2}, n \times \frac{n+1}{2}-n \times \frac{n+1}{2} \times \frac{n+2}{3}, \mathcal{E}_{6}$. are thus found by the Method of Increments. Suppore ${ }^{n}[x v]=A^{n}[x] v+B$.
 Augment $n=1$, and the Quantities $A, B, C, D, \mathcal{E}_{C}$. by their fynchro-

Of Infinite Series's.

nat Increments $A, B, C, D, \mathcal{E}^{\circ}$. that they may now become n, A, B, C, D, $E^{3} c$ a new Integral (which is the Integral of $[x v]$) will be had, that is
 fore the firm Increment of this ought to coincide with the Integral fop. poled above. Therefore taking the Increments; it will be $\left[\begin{array}{ll}x & v\end{array}\right]=$ $A\left[\begin{array}{c}n \\ ,\end{array}{ }^{n+1} v+A_{1}\left[\begin{array}{l}x \\ 1\end{array}\right] v+B\left[\begin{array}{c}n+2 \\ x \\ \prime \prime\end{array}\right] v+C_{1}^{n+3}\left[\begin{array}{c}x \\ \prime \prime\end{array}\right] v, \varepsilon c^{\prime}\right.$. the fame as the $+B+C+D$
Integral above fuppofed. Therefore comparing the homologous Terms with one another, it is firth $A=A$. Whence A is a given Quantity.
But when $n=0$, then $A=1$; therefore $A=1$. Secondly, $B=$ $B+A$, that is, $B=B+B+1$, or $B=-1=-n$. Therefore returning to the Integrals it is $B=-n+a$. But when $n=0$, it is $B=0$. Therefore $a=0$, and $B=-n$. Thirdly, $C=C+B$, that is, $C=n$. And returning to the Integrals 'is $C=\frac{n n}{2}+b$. But when $n=0$, 'ti $C=0$; therefore $b=0$, and $C=\frac{n n}{2}$, that is, $n \times$ $\frac{n+1}{2}$. Fourthly, in the fame Manner it will be found, that $D=-n \times$ $\frac{n+1}{2} \times \frac{n+2}{3}$. And proceeding thus the other Coefficients will be found.

Scholium I. In this Propofition compared with the firs Propofition, it may be perceived that there is a certain fingular Relation between Increments and their Integrals. For as in vulgar Arithmetick Multiplication and Divifion are fo contrary, that if Multiplication is denoted by an affirmative Index, Divifion will be denoted by an Index with a contray Sign; fo in the Method of Increments, if an Increment be denoted by an affirmative Index, a negative Index will affect the Integral. Thus in the firf Propofition, if for n be taken the Number 2, by the FormuJa the fecond Increment of $x v$ will be exhibited, that is $x v+2 x v+x_{1 \prime} v$.

Of Infinite Series's.

But if for n the negative Number -2 is taken, that now may be fought the negatively fecond Increment (if we may fay fo) of $x v$, which is the fame Thing as the fecond Integral, the Coefficients come out the fame as if n were taken affirmatively in the prefent Propofition; and as the

Quantities $x, x, x, \xi^{\prime} c$. moreover being interpreted by $[x],\left[\begin{array}{l}3 \\ x\end{array}\right],\left[\begin{array}{l}4 \\ \mu\end{array}\right]$, $\xi^{\circ} c$. the Series becomes intirely the fame as by the former Propofition, where the fecond Integral is required.
2. And from thefe Formulæ, as it were on their own Accord, proceed the Formulæ of the eleventh and twelfth Propofitions of the Book concerning the Method of Increments. For if for the Increments are wrote the Fluxions, and the Increments vanifhing all the $x, x, x, x, \xi^{c} c$. become equal ; then this fecond Propofition will immediately be changed into that eleventh, and the prefent third into that twelfth, which is a remarkable Example of the Nerwtonian Method, by which he collects the Ratio's of the Fluxions from the laft Ratio's of the vanifhing Increments, or the firft Ratio's of the nafcent Increments.

Supplement. Being wholly engaged in the printing of the foregoing A Poffcript $b y$ Treatife, and taking care to correct the Errors of the Prefs, and upon the fame. ibid. that Occafion thinking often on thefe Matters, that Artifice came into p. 683. my Mind, which Mr. Fames Bernoulli formerly made Ufe of, in the Invention of certain Series, by the Help of an harmonical Progreffion, which Mr. Momnort mentions in Schol. 6. Prop. 5. aforegoing: That it may be conveniently apply'd to the finding Mr. Monmort's Propofitions $2,3,4,5$, and others of that Kind perhaps fomething more general. To fhew this in the few following Words, I thought would not be unacceptable to the Reader.

Theor. Let there be an Arithmetical Progreffion $p, p+n, p+2 n, p+3 n$, $E^{\circ} c$. whofe feveral Terms may fucceflively be denoted by x. And let b, c, d, \mathcal{E}^{c}. be any Multiples of the given Difference n of the Terms of that Progreffion. Let $A, B, C, D, \mathcal{E}_{c}$. be any given Numbers, and let them conftitute any Fractions $\frac{A}{x}, \frac{B}{x+b}, \frac{C}{x+c}, \frac{D}{x+d}, \mathcal{B}^{2} c$. For x writing fucceffively its Values $p, p+n, p+2 n, \exists^{2} c$. and from any of thefe Fractions will arife a Series of harmonically Proportionals. Thus for Inftance, from the firft Fraction $\frac{A}{p}$ arifes the Series $\frac{A}{p}, \frac{A}{p+n}$ $\frac{A}{p+2 n}, \mho^{2} c$. I fay that the Aggregate of any Number of fuch Series continued in infinitum may be exhibited in a finite Number of Terms,
if only the Aggregate of the Numerators $A, B, C, D, \mathcal{E}^{3}$. be equal to nothing. This will be evident from the two following Examples.
Ex. I. Let there be only two Fractions $\frac{A}{x}$ and $\frac{-A}{x+3^{n}}$, it being $b=$
in. Let harmonical Series be wrote arifing from there Forms, in fuck an Order, that the Terms in which are the equal Denominators may anfer one another, and the Sums of the homologous Terms being collected, the Aggregate of the feveral Series will arife in a finite Number of Terms, as may be feen in the Calculation following.
$\frac{A}{p}+\frac{A}{p+n}+\frac{A}{p+2 n}+\frac{A}{p+3^{n}}+\frac{A}{p+4 n}, \mathcal{B}_{r}=$ to the Series from $\frac{A}{x}$. $+\frac{-A}{p+3 n}+\frac{-A}{p+4 n}, \mathcal{E}_{c}$. $=$ to the Series from $\frac{-A}{x+3 n}$. $\overline{\frac{A}{p}+\frac{A}{p+n}+\frac{A}{p+2 n}+0+0 \delta_{c} c=}$ Aggregate of the two Series. Ex. 2. Let there be three Fractions $\frac{A}{x}, \frac{B}{x+2 n}, \frac{C}{x+3^{n}}$, and let $b=2 n, c=3 n$, and $A+B+C=0$. In this Cafe the Calculation is thus. $\frac{A}{p}+\frac{A}{p+n}+\frac{A}{p+2 n}+\frac{A}{p+3 n}, \mathcal{B}_{c}=$ to the Series arifing from $\frac{A}{x}$. $+\frac{B}{p+2 n}+\frac{B}{p+3 n^{n}}, \mathcal{B}^{2} .=$ to the Series from $\frac{B}{x+2 n}$. $+\frac{C}{p+3^{n}}, \delta_{0} c=$ to the Series from $\frac{C}{x+3^{n}}$. $\bar{A}+\frac{A}{p+n}+\frac{A+B}{p+2 n}+\left(\frac{A+D+C}{p+3 n}=0\right)=$ to the Aggregate of the three Series.

Here the Aggregate of the Series comes forth in a finite Number of Terms, that is $\frac{A}{p}+\frac{A}{p+n}+\frac{A+B}{p+2 n}$, because the Aggregate of the Numerators A, B, C, is equal to nothing. And in the fame Manner may the Theorem be demonstrated in all Cafes whatever.
Cor. 1. From thee Principles may be derived an Infinity of infinite Series, which yet are fummable in finite Terms.
Cos. 1. Let $\frac{1}{x}$ and $\frac{-A}{x+b}$ be the Formula of two harmonical Sefries

Of Infinite Series's.

ries, the Aggregate of which comes out in a finite Number of Terms by what is demonitrated above. Then thofe Formulæ being collected, $\frac{A b}{x \times \bar{x}+b}$ becomes the Formula of the fummable Series. Make for $\operatorname{In}-$ ftance $A=\frac{5}{6}, p=1, n=2$, and $b=3 n=6$. Then the Formulæ of the harmonical Series will be $\frac{1}{6 x}$ and $\frac{1}{6 \times \bar{x}+6}$. The Formula of the compound fummable Series will be $\frac{1}{x \times \overline{x+6}}$, that Series being $\frac{1}{1 \times 7}$ $+\frac{1}{3 \times 9}+\frac{1}{5 \times 11}+\frac{1}{7 \times 13}, E^{c} c$. and the Sum of the Series, by the Calculus demonftrated before will be $\frac{1}{6 \times 1}+\frac{1}{6 \times 3}+\frac{1}{6 \times 5}$. Let there be three Formulx of harmonical Series, $\frac{A}{x}, \frac{B}{x+b}, \frac{C}{x+c}$, it being A $+B+C=0$, that the Aggregate of the three Series may be finite, by what goes before. Then the Formulæ being collected into one, will be $\frac{A \times \overline{x+b} \times \overline{x+c}+B x \times \overline{x+c}+C x \times \overline{x+b}}{x \times \overline{x+b} \times \overline{x+c}}$, or (the Terms being reduced to the Form of the Factors $x, x \times \overline{x+b}, x \times \overline{x+b} \times \overline{x+c}$ $\frac{A c b+\overline{A c+\overline{c-b} B} \times x+\overline{A+B+C} \times \times \times \overline{x+b}}{x \times \overline{x+b} \times \overline{x+c}}$, that is, (becaufe of $A+B+C=0) \frac{A c b+\overline{A c+B \times \bar{c}-b} \times x}{x \times \overline{x+b} \times \bar{x}+c}$, the Formula of the fummable Series,
If there are four Fractions $\frac{A}{x}, \frac{B}{x+b}, \frac{C}{x+c}, \frac{D}{x+d}$, if $A+B$ $+C+D=0$, the formula of the fummable Series will be found in the lame Manner to be
$\frac{\overline{A b c d+A c d+B \times \overline{c-b} \times \bar{d}-\bar{b}} \times x+\overline{A d+B \times d-b+C \times \overline{d-c}} \times x \times \overline{x+b}}{x \times \overline{x+b} \times \overline{x+c} \times \overline{x+d}}$.
And fo we might go on to ftill more compounded Formulx.
Vol. IV.

Of Infinite Series's.

Cafe 2, And if there are feveral Formulæ of fuch fummable Series, the Factors of whofe Denominators are taken out of different Arithmetical Progreffions, by the Addition of any Number of thofe Formule into one, a new Formula will be compofed of a fummable Series. For Example Sake let there be two Formulx of fummable Series $\frac{1}{x \times x+3}$ and $\underline{1}, x$ being taking out of the Arithmetical Progreffion 1, 2, 3, $z \times z+2$
$4, \mathcal{E}^{\circ} c$. and z out of the Progreffion $1,3,5,7, \mathcal{E}^{2} c$. then of thefe Formule collected into one Sum will be made a new Formula
$\frac{z \times \overline{z+2}+x \times \overline{x+3}}{x \times \overline{x+3} \times z \times \overline{z+2}}$, or $\frac{\overline{2 x-1} \times \overline{2 x+1}+x \times \overline{x+3}}{x \times x+3 \times 2 x-1} \times \overline{2 x+1}$, when z is expounded by x and given Numbers.

Cor 2. Hence every infinite Series is fummable, whofe Terms are denoted by a Fraction, the Factors of whofe Denominator are taken out of any Arithmetical Progreffion; and the Numerator is a Multinomium whofe Dimenfions are at leaft fewer by two than the Dimenfions of the Denominator. For every Fraction of this Kind may be refolved into fo many fimple Fractions, as are the Dimenfions (that is, the Number of Factors) of the Denominator, of which Numerators the Aggregate is nothing. For Example, let the propofed Formula be $\frac{a+\beta x+\gamma x \times \overline{x+b}}{x \times x+b \times \overline{x+c} \times \overline{x+d}}$. Suppofe this Formula to be equal to the Aggregate of the Fractions $\frac{A}{x}+\frac{B}{x+b}+\frac{C}{x+c}+\frac{D}{x+d}$. Then thofe Fractions being collected into one Sum, it will be $A b c d+\overline{A c d+B \times \overline{c-b} \times \overline{d-b}} \times x+$ $\overline{A d+B \times \overline{d-b}+C \times \overline{d-c}} \times \times \overline{x+b}+\overline{A+B+C+D} \times \times \times$ $\overline{x+b} \times \overline{x+c}$, apply'd to $x \times \overline{x+b} \times \overline{x+c} \times \overline{x+d}$, is equal to the Fraction $\frac{\alpha+\beta x+\gamma x \times \overline{x+b}}{x \times \overline{x+b} \times \overline{x+c} \times \overline{x+d}}$.

Then by comparing the homologous Terms, it is $A b c d=a, A c d$ $+B \times \overline{c-b} \times \overline{d-b}=B, A d+B \times \overline{d-b}+C \times \overline{d-c}=\gamma$, $A+B+C+D=c$, and therefore $A=\frac{a}{b c d}, B=\frac{\beta-A c d}{6-b \times d-b}$,

Of Infinite Series's.

$C=\frac{\bar{\nu}-A d-B \times \overline{d-b}}{d-c}, D=-A-B-C$. By which Means the propofed Formula is refolved into the fimple Fractions $\frac{a}{b c d x}+$ $\frac{B-A c d}{\overline{c-b} \times \overline{d-b} \times x+b}+\frac{\gamma-A d-B \times \overline{d-b}}{d-c \times \overline{x+c}}+\frac{-A-B-C}{x+d}$. by which the Aggregate of the arifing Series, that is, the Sum of the Series ariing from the propofed Formula $\frac{a+\beta x+\gamma x \times \overline{x+b}}{x \times \overline{x+b} \times \overline{x+c} \times \overline{x+d}}$, comes forth in finite Terms, by what has been faid. Now that the Dimenfions of the Numerator in the propofed Formula muft be fewer by two at leaft than the Dimenfions of the Denominator, will appear from hence, that in the Reduction of the Fractions $\frac{A}{x}, \frac{B}{x+b}, \frac{C}{x+c}$, $\frac{D}{x+d}$, every Numerator A, B, C, D, is multiply'd into all the Denominators except one, which is its own. Whence the Dimenfions of the Numerator come forth one lefs than the Dimenfions of the Denominator. But by the Equation $A+B+C+D=0$ the higheft Dimenfion in the Numerator is loft; whence there remain the Dimenfions of the Numerator fewer at leaft by two than the Dimenfions of the Denominator. Now to this Corollary may be reduced Mr. de Monmort's Propofitions 2 d and 5 th.
Cor. 3. Alfo a Formula being propofed according to Caf. 2. Cor. I. ftill more compounded, it may be perceived from the fame Principles whether the Series be fummable. Let there be two Arithmetical Progreffions 1, $3,5, \mathcal{E}^{2}$. 2, $4,6, \xi^{c}$. the homotogous Terms of which may be denoted by x and z, and let the propofed Formula of the Series be
$\frac{a+\beta x+y x^{2}}{x \times x+2 \times z \times z+2}$ or (for z writing $x+1$, and the Factors of the Denominator being reduced into Order, $) \frac{\alpha+\beta x+\gamma x^{2}}{x \times x+1 \times x+2 \times x+3}$. Suppofe this Formula to be equal to the Aggregate of the Formule $\frac{P}{x \cdot x+2}, \frac{2}{\overline{x+1} \times \overline{x+2}}$, of Series that are fummable by what is

Of Infinite Series's.

faid above, that (when thefe laft Formulæ are collected into one Sum) it may be

$$
\begin{aligned}
& \frac{P \times x+1 \times \overline{x+3}+2 \times x \times \overline{x+2}}{x \times \overline{x+1} \times \overline{x+2} \times \overline{x+3}}, \text { or } \\
& \frac{3^{P+4}+\overline{P+2} \times x+\overline{P+2} \times x^{2}}{\times \times \overline{x+1} \times \overline{x+2} \times \overline{x+3}}=\frac{\alpha+\beta x+\gamma x^{2}}{x \times \overline{x+1} \times \overline{x+2} \times \overline{x+3}} .
\end{aligned}
$$

Hence comparing the homologous Terms, thefe Equations arife, ${ }_{3} P=\alpha, 4 P+2 Q=\beta, P+2=2$. Whence P and 2 being eliminated by juft Analytical Reductions, there will arife the Equation $2 a-3 \beta+\gamma=0$, by which the Relation will be determined, which muft obtain among the Coefficients α, β, γ, in order that the Series may be fummable, which arifes from the propofed Formula

the propofed Formula of the Denominator are taken out of three Arithmetical Progreffions, two Equations will be found, by which the Relations of the Coefficients of the Numerator will be determined, in order that the Series may be fummable. If there are four Arithmetical Progreffions, the Relation of the Coefficients will be determin'd by three Equations. And fo on. And in fuch Formulx, in order that the Series may be fummable, it is farther to be obferved; firft, that the Dimenfions of the Numerators may at leaft be lefs by two than the Dimenfions of the Denominators; likewife that out of each of the Arithmetical Progreffions be taken at leaft two Factors of the Denominator. Laftly, if two or more Factors of the Denominator are equal to each other, it muft be fuppofed that fo many Arithmetical Progreffions, out of which they are taken, are alfo equal. The Premifes being duly confider'd, thefe Things will be evident. Now to this Corollary are eafily reduced the third and fourth Propofitions of Mr. de Monmort.
XIX. Profo-

The Newtonian Differential Method.

XIX. Propofition. To find a Parabolical Line, which fall pars through the Extremities of any Number of equidiftant Ordinates.

$$
\begin{aligned}
& \begin{array}{c}
E \begin{array}{lllllll}
E & 2 & E & 3 & E & 4 & E
\end{array} \\
F \\
F
\end{array} \\
& \mathrm{H}_{2}
\end{aligned}
$$

Cal. I. Let $A, A_{2}, A_{3}, A_{4}, \xi_{c}$. denote equidiftant Ordinates infifting upon an Abfcifs in a given Angle. Collect their Differences $B_{3} B_{2}, B_{3}, B_{4}, \mathcal{E}_{c}$ and the Differences of thee $C_{,} C_{2}, C_{3}, \mathcal{E}^{2}$. and the Differences of thefe $D, I_{2}, D_{3}, \xi^{\circ}$. and of there $E, E_{2}, E_{3}, \Xi^{\circ}$ c. and of there $F, F_{2}, F_{3}, \mathcal{E}_{c}$. And fo on. Now the Differences mut be collected by always taking the former from the latter. That is, making $B=A_{2}-A_{1} B_{2}=A_{3}-A_{2}, B_{3}=A_{4}-A_{3}, B_{4}=A_{5}$ $-A_{4}, \xi^{2}$. Then $C=B_{2}-B_{1} C_{2}=B_{3}-B_{2}, C_{3}=B_{4}-B_{3}$, ξ°. Then $D=C_{2}-C, D_{2}=C_{3}-C_{2}, D_{3}=C_{4}-C_{3}, \mathcal{V}^{\circ} c_{\text {. }}$. And all the following Differences mut be collected in the fame Manner. Or let $\alpha, R, \gamma, \delta, \varepsilon, \zeta, H, \mathcal{F}^{2} c$. be equal to $A_{,} A_{2}, A_{3}, A_{4}, A_{5}, A 6$, $A 7, E^{2} c$. reflectively; then $A=\alpha, B=\beta-\alpha, C=\gamma-2 \beta+\alpha, D$ $=\delta-3 \gamma+3 \beta-\alpha, E=\varepsilon-4 \alpha+6 \gamma-4 \beta+\alpha, F=\zeta-5 \varepsilon$ $+10 \Omega-10 \gamma+5 \beta-\alpha, G=n-6\}+15^{\ell}-20 \delta+15 \gamma-$ $6 \beta+\alpha, \xi^{2} c$. In there Values the numeral Coefficients of $\alpha, \beta, \gamma, \delta, \varepsilon$, ϑ° c. are generated as in the integer Powers of the Binomial $\left.1-z\right)^{\circ}$, $\left.\left.\left.\overline{1-z}\right|^{\prime},\left.\overline{1-z}\right|^{2}, \overline{1-z}\right)^{3}, \overline{1-z}\right)^{4}, \xi^{2} c$. by writing the Numbers $1,2,3,4,5, \mathcal{E}^{2}$. in the Series $1 \times \frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}$, Ec. n. inftead of n fucceffively. Now let P 2 be any Ordinate intermediate to the reft, and let $A P$ its Distance from the first Ordinate A be called. z, then it will be

$$
\begin{aligned}
& P Q=A+ \\
& B \times \frac{z}{1}+ \\
& C \times \frac{z}{1} \times \frac{z-1}{2}+
\end{aligned}
$$

$$
\begin{aligned}
& D \times \frac{z}{1} \times \frac{z-1}{2} \times \frac{z-2}{3}+ \\
& E \times \frac{z}{1} \times \frac{z-1}{2} \times \frac{z-2}{3} \times \frac{z-3}{4}+ \\
& F \times \frac{z-2-1}{1} \times \frac{z-2}{2} \times \frac{z-3}{3} \times \frac{z-4}{4}+ \\
& G \times \frac{z-1}{1} \times \frac{z-2}{2} \times \frac{z-3}{3} \times \frac{z-4}{4} \times \frac{z-5}{5}+\varepsilon^{2} c .
\end{aligned}
$$

Here the Sign of z is to be changed, whenever P Q falls on the other Side of the firft Ordinate, as $p q$.

Cal. 2. Now let A_{5} be an Ordinate in the Middle of all; make $A=$ $B_{4}+B_{5}, B=D_{3}+D_{4}, C=F_{2}+F_{3}, D=H+H_{2}, \mathcal{E}^{2} c$. and $a=C_{4}, b=E_{3}, c=G_{2}, d=I, \xi^{2} c_{\text {. that }}$ is, if it be $A 6=\alpha, A_{7}$ $=k, A_{8}=\gamma, A_{9}=\delta, छ^{2} c . \quad A_{4}=x, A_{3}=\lambda, A_{2}=\mu, A=\nu, \delta^{2} c$. Make $A=\alpha-x, B=\beta-2 \alpha+2 x-\lambda, C=\gamma-4 \beta+5 \alpha-5 x$ $+4 \lambda-\mu, D=\delta-6 \gamma+14 \beta-14 \alpha+14 x-14 \lambda+6 \mu-\nu$, Ec. $a=\alpha-2 A 5+x, b=\beta-4 \alpha+6 A_{5}-4 x+\lambda, c=\gamma-$ $6 \beta+15 \alpha-20 A 5+15 x-6 \lambda+\mu, d=\delta-8 \gamma+28 \beta+56 \alpha$ $+70 A_{5}-56 x+28 \lambda-8 \mu+\nu, 8 \sigma_{0}$. And let $A 5 P$ be called z. Then it will be

$$
\begin{align*}
P Q=A_{5}+ & \frac{A z+a z z}{1.2}+ \\
& \frac{2 B z+b z z}{1.2} \times \frac{z z-1}{3.4}+ \\
& \frac{3 C z+c z z}{1.2} \times \frac{z z-1}{3.4} \times \frac{z z-4}{5.6}+ \\
& \frac{4^{D D z+d z z}}{1.2} \times \frac{z z-1}{3.4} \times \frac{z z-4}{5.6} \times \frac{z z-9}{7.8}+ \\
& \frac{5 E z+e z z}{1.2} \times \frac{z z-1}{3.4} \times \frac{z z-4}{5.6} \times \frac{z z-9}{7.8} \times \frac{z z-16}{9.10}+86 .
\end{align*}
$$

The Newtonian Differential Method.

Caf. 3. Now let A_{4}, A_{5}, be two Ordinates in the Middle of all. Make $A=\frac{A_{4}+A_{5}}{2}, B=\frac{C_{3}+C_{4}}{2}, C=\frac{E_{2}+E_{3}}{2}, D=$ $\frac{G+G_{2}}{2}, छ^{\circ} c . a=B_{4}, b=D_{3}, c=F_{2}, d=H, E^{\circ} c$. Or let $A_{5}=a$, $A 6=\beta, A_{7}=\gamma, A 8=\delta, A_{4}=x, A_{3}=\lambda, A_{2}=\mu, A=\nu, \xi_{c}$. Then it will be $2 A=\alpha+x, 2 B=\beta-\alpha-x+\lambda, 2 C=\gamma-3 \beta+$ $2 \alpha+2 x-3 \lambda+\mu, 2 D=\delta-5 \gamma+9 \beta-5 \alpha-4 x+9 \lambda-5$ $\mu+v, \xi \varepsilon$. And $a=\alpha-x, b=\beta-3 a+3 x-\lambda, c=\gamma-5 \beta+$ $10 \alpha-10 x+5 \lambda-\mu, d=\alpha-7 \gamma+21 \beta-35 \alpha+35 \alpha-21 \lambda$ $+7 \mu-v, \delta^{3} c$. And let O be the middle Point between A_{4}, A_{5}, and let $O P$ be called z. Then the Ordinate will be

$$
\begin{aligned}
P Q= & \frac{A+a z}{4^{\circ}+} \\
& \frac{3 B+b z}{4^{x}} \times \frac{4 z z-1}{2 \cdot 3}+ \\
& \frac{5 C+c z}{4^{2}} \times \frac{4 z z-1}{2 \cdot 3} \times \frac{4 z z-9}{4 \cdot \cdot 5}+ \\
& \frac{7 D+d z}{4^{3}} \times \frac{4 z z-1}{2 \cdot 3} \times \frac{4 z z-9}{4 \cdot 5} \times \frac{4 z z-25}{6 \cdot 7}+ \\
& \frac{9 E+e z}{4^{4}} \times \frac{4 z z-1}{2 \cdot 3} \times \frac{4 z z-9}{4 \cdot 5} \times \frac{4 z z-25}{6 \cdot 7} \times \frac{4 z z-49}{8 \cdot 9}+\xi^{2} c .
\end{aligned}
$$

Alfo in thefe two Cafes z is negative, when the Ordinate $P 2$ falls on the other Side of the Beginning of the Abfcifs. And in all the three Cafes the Common Diftance of the Ordinates is fuppofed Unity.

All the three Cafes are very eafily demonftrated by Calculation. In the firft Cafe for P \& I write fucceffively $a, b, \gamma, s, \mathcal{\sigma}^{2} c$. and for z at the fame Time $0,1,2,3,4, \mathcal{E}^{2} c$. which are the Lengths of the Abfcifs following in Order. Thence arife thefe Equations,
$\alpha=A, \beta=A+B, \gamma=A+2 B+C, \delta=A+3 B+{ }_{3} C+D, \varepsilon=A$ $+4 B+6 C+4 D+E, \xi^{2} C$.
$\beta-\alpha=B, \gamma-\beta=B+C, \delta-\gamma=A+{ }_{2} C+D, \varepsilon-\delta=B$ $+{ }_{3} C+3 D+E, E^{2} C$.
$\gamma-{ }^{2} \beta+\alpha=C, \delta=2 \gamma+\beta=C+D 2 \leq=2 \alpha+\gamma=C+2 D$ $+E, \xi^{3} c$.

Thefe Equations are eafly refolved, by taking their Differences, as may here be feen. And they give us the fame Values of A, B, C, D, $\xi^{\circ} c$. as are before fuppofed in the Solution. The other two Cafes are demonftrated after the fame Manner.

Every one of thefe three Series will converge to the Value of the Ordinate $P \mathscr{Q}$, when the Differences of the given Ordinates are of a proper Magnitude. But when they do not converge, other Expedients are to be try'd. At prefent we fhall add a few Things about the Ufe of this Proporition.

Let $\alpha, \Omega, \eta, d_{2} s, \zeta, n, \theta, \Xi^{\prime} c$. reprefent any equidiftant Terms, whofe Differences are very fmall; and let the Relations which they have to one another be nearly reprefented by the following Equations, which arife by taking the Differences, and the Differences of the Differences continually, and making them equal to nothing.
$\alpha-\beta=0$
$\alpha-2 \beta+\gamma=0$
$\alpha-3 \beta+3 \gamma-\delta=0$
$\alpha-4 \beta+6 \gamma+4 \delta+1=0$
$a-5 \beta+10 \gamma-10 \delta+5 \varepsilon-\zeta=0$
$a-6 \beta+15 \gamma-20 \Omega+15 ;-6\}+n=0$
$\left.\alpha-7 \beta+21 \gamma-35^{\alpha}+35^{\varepsilon}-21\right\}+7 \boldsymbol{1}-\theta=0$
$\alpha-8 \beta+28 \gamma-56 \delta+70 s-56\}+28 n-8 \theta+x=0$
$\alpha-9 \beta+36 \gamma-84 \delta+126 \varepsilon-126 \zeta+84 n-36 \theta+9 x-\lambda=0$ E'c.

This Table muft be kept for Ufe, to be confulted when Occafion requires. Now that thefe Equations either obtain accurately, or approximate to the Truth when the Differences of the Terms are fmall, may appear from the Demonffration of the Propofition of the firt Cafe.
 let the Term be fought which flands the next before $\frac{1}{10 \mathrm{O}}$. It is plain this is $\frac{1}{r o j}$; let us fee then what this Method will make it. Let a denote the Term required, then it will be

The Newtonian Differential Method.

Therefore it is evident, that this Method continually approximates. If the Differences of the Terms had been lefs, the Values would have approached fafter to the Truth, and on the other Hand flower, if thofe Differences hoould be greater. Hence if a Term fhould be wanting in Numeral Tables, it may be interpolated by this Method.

Allo by this Method come forth the very fame Algebraical Series themfelves, that are ufed to arife by other Methods. Let $\overline{1+z z})^{-1}$ be propofed as the Ordinate of a Curve which is to be fquared. It is the firft in the regular Series $\left.\overline{1+z z})^{-1}, \overline{1+z z}{ }^{\circ}, \overline{1+z z}{ }^{1}, \overline{1+z z}\right)^{2}$, $1+z z)^{3}, \mho^{3} c$. of Ordinates, all which except the firt give their Areas $z, z+\frac{1}{3} z^{3}, z+\frac{2}{3} z^{3}+\frac{1}{5} z^{5}, z+\frac{3}{3} z^{3}+\frac{3}{3} z^{5}+\frac{1}{7} z^{7}, \mathcal{E}^{2} c$. conftituting a new Series, of which the firft Term will be the Area required. This therefore will be found by putting α to reprefent it, and $\beta, \gamma, \delta, \varepsilon_{2}$ \mho°. for the reft in their Order. The firft. Equation gives $\alpha=z$: The fecond $\alpha=z-\frac{1}{3} z^{3}$: The third $\alpha=z-\frac{1}{3} z^{3}+\frac{1}{5} z^{5}$: The fourth $a=z-\frac{1}{3} z^{3}+\frac{1}{5} z^{5}-\frac{1}{7} z^{7}$: And fo for the reft. Therefore the Area required is univerfally $z-\frac{1}{3} z^{3}+\frac{1}{5} z^{5}-\frac{1}{7} z^{7}+\frac{1}{9} z^{9}-\frac{1}{17} z^{15}, \xi^{c} c$. Which Series is the Arch whofe Tangent is z, in a Circle the Radius of which is Unity. This was found by our Mr. Fames Gregory, and come municated to Mr. Collins the Beginning of the Year 1671, from whom, by Means of Mr. Oldenburg, it came to the Hands of Mr. Leibnitz.

Now let $\xi^{3} c, e, d, c, b, a, P, a, k, \gamma, d, e, \xi^{\circ} c$. be a Series proceeding both Ways in infinitum, where all the Terms are given except P in the Middle of all. Make $A=\alpha+a, B=\beta+b, C=\gamma+c, D=\delta+d$, $E=\varepsilon+e, \xi^{2} c$. and it will be

Vol. IV.
7 A

This Series is found by the Equations, by taking thofe alternately in which the Number of the Terms is odd. For their Differences will leave the Terms in this Series, which therefore may be produced at Pleafure.

Let $1+z)^{-1}$ be the Ordinate of an Hyperbola, and let its Area be fought, which lies above the Abfcifs z, when that becomes Unity. This Ordinate is the Middlemoft in the Series of Ordinates, $\mathcal{E}^{2} c .1+z-5$, $\left.\left.\overline{1+z})^{-4}, \overline{1+z}-\overline{1+z}\right)^{-2}, \overline{1+2}-1, \overline{1+2}\right)^{\circ}, \overline{1+z}, \overline{1+2}{ }^{2}$, $1+2)^{3}, \mathcal{E}^{2}$. which are equidiftant, and proceed both Ways in infinitum. Therefore the Areas generated by thefe Ordinates will conititute a like Series, whofe middle Term will be the Area required; which therefore may be obtained by the foregoing Series. When z is Unity, as in the prefent Cafe, the Areas of the Curves become $\mathcal{E}^{2} c \cdot \frac{\frac{2}{6}}{6+}, \frac{7}{24}, \frac{3}{8}, \frac{1}{2}$, and 1 , $\frac{3}{2}, \frac{7}{3}, \frac{{ }^{2}}{7}, \mho^{2} C$. Hence $A=1+\frac{1}{2}, B=\frac{3}{2}+\frac{3}{8}=\frac{1,}{3}, C=\frac{7}{3}+\frac{7}{24}=$ $\frac{25}{5}, D=\frac{13}{4}+\frac{15}{64}=\frac{235}{84}, \mathcal{V}^{2} c$. Thefe being fubftituted in the Series, \boldsymbol{P} or the Area of the Hyperbola comes out $\frac{3}{4}-\frac{3}{48}+\frac{3}{480}-\frac{4}{4+80}$ E $^{\circ} c$. that is, $\frac{3}{4}-\frac{A}{4 \cdot 3}-\frac{2 B}{4 \cdot 5}-\frac{3 C}{4 \cdot 7}-\frac{4 D}{4 \cdot 9}-\frac{5 E}{4 \cdot 11}, E^{\circ} C$. where now A, B, C, D, \mathcal{E}^{c}. (after Newton's Manner) denote the Terms in Order from the Beginning. I add the Calculation.

The Newtonian Differential Method.

T ERMS.

Afirmative.
7500,0000,0000,0000,0 62,5000,0000,0000,0 $7440,4761,9047,6$ 97,5586,9130,8 1,3390,4086, 1 188,7745,5 2,7085,0 393,4 5,7

Negative.
062 5,0000,0000,0000,0 $6,6964,2857,1428,5$ $845,5086,5800,8$ I 1,38 I $8,4731,9$ 1585,7062,8 22,5708,7 3260, 2

47,5 7
$+7563,2539,3900,7494,1$

Subtracting the negative Sum from the affirmative, I have for the Area, that is, for the Hyperbolic Logarithm of 2, the Number: 6931,4718,0559,9453.
The Series that follows is very convenient for the Conftruction of any Numeral Tables. Let $\xi^{\top} c . e, d, c, b, a, \alpha, \beta, \gamma, \mathcal{A}, \varepsilon, \mathcal{E}^{2} c$. denote the alternate Terms in a Series proceeding both Ways in infinitum; put $A=\varepsilon$ $+a, B=\beta+b, C=\gamma+c, D=\alpha+d, E=t+e, \mathcal{V}^{3} c$. and the Term between a and a will be

$\mathrm{E}^{\circ} \mathrm{c}$.
This Series follows from the third Cafe of the Propofition, by making $z=0$. The numeral Coefficients of the Letters are thus produced; for Example, in the fourth Term the Coefficient of the laft Letter but one C is 5 ; make $5+1=n$, and the Numbers which arife from the Multiplication of the Terms $1 \times \frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5}$,
Ec. will be $1,6,15,20, \mathcal{E}_{6}$. The Differences of thefe $5,9,5, \mathcal{E}^{2}$. are the Numbers required; and therefore the Series may be produced at Pleafure.

Having given the Logarithms of the Numbers $46,48,50,52,54$, $56,58,60$, to find the Logarithm of the Number 53 , which is in the Middle of all. Make $l .52+l .54=A=3,4483,7910,34: l .50$ $+7.5^{6}=B=3,4471,5803,13: l .48+l .5^{8}=C=3,4446,6923$, 08: 7. $46+1.60=D=3,4409,0908,19$. Thefe Values being wrote in the Series, the firft four Terms will give 1,7242,2586,96 for the Logarithm of the Numb r 53 . And in the fame Manner any other intermediate Number may be found.

Therefore in the Conftruction of Tables it is fufficient, firft to find fome Terms at due Diftances, for the reft may be inferted in this Manner. For the Terms at firft found are to be continually intercalated, till we arrive at laft at thofe that are defired. By this Means the whole Table will be had, from a few given Terms at firft as a Foundation for the Work. But it is not convenient that the Terms we firft feek are all equidiftant thro' the whole Table; for if we omit them by Turns, where their Difference is the greateft, we may elfewhere per fatrum omit two, three, twenty, or perhaps more Terms. But the Number of Terms that are omitted, confifting between two given ones, ought always to be one of the following, $1,3,7,15,31,63, \varepsilon^{2}$ c. if we would intert them by this Series ; for this by no Means would be any Hindrance to the Work.

But for Practice the Terms may be collected into one Sum, as you fee done in this Table. The firt Expreffion is the firf Term; the fecond is the Sum of the firft and fecond; the third is the Sum of the firft, fecond, and third; and fo on.

Thus fome of the alternate Terms being given, the intermediate ones will be prefently found by thefe Expreffions, without taking any Notice of the particular Nature of the Table. For thefe Rules are the fame in all. The Areas of Curves are nearly equal to the Areas of the Parabolical Figure which paffes through the Extremities of its Ordinates. But becaufe it would be too laborious always to have Recourfe to the Parabola, I have computed the following Table, by which the Areas are exhibited directly from the Ordinates being given.

$$
\begin{aligned}
& 3 \left\lvert\, \begin{array}{l}
\frac{A}{1} R \\
\frac{A+4 B}{6} R \\
\frac{7 A+32 B+12 C}{90} R \\
\frac{41 A+216 B+27 C+272 D}{840} R \\
\frac{989 A+5888 B-928 C+10496 D-4540 E}{} R \\
\frac{16067 A+106300 B-485^{2} 5_{5} C+272400 D-260550 E+427368 F}{598752} R
\end{array}\right.
\end{aligned}
$$

Here the Number of the Ordinates is odd, A is the Sum of the firtt and latt, B of the fecond and laft but one, C of the third and laft but two; and fo on, till you come to that which is in the Middle of all, which is reprefented by the laft Letter in every Expreffion. R is the Bafe, or that Part of the Abfcifs which is intercepted between the firft and the laft Ordinate. The Expreffions are the Areas contained between the Curve, the Bate, and the extream Ordinates on both Sides. I have not added the Table for Ordinates that are even in Number, becaufe when every Thing elfe is alike, the Area is defined more accurately from an odd Number of Ordinates.
Let the Area be required which is generated by the Ordinate $1+z z)^{-1}$, and lies upon the Abfcifs z when it becomes Unity. In $1+\left.z z\right|^{-1}$ for z write $\frac{\circ}{10}, \frac{1}{15}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}, \frac{5}{10}, \frac{6}{10}, \frac{7}{10}, \frac{8}{10}, \frac{9}{10}, \frac{10}{10}$; and eleven Ordinates will arife $1, \frac{1000}{10}, \frac{25}{26}, \frac{100}{10}, \frac{25}{25}, \frac{1}{5}, \frac{25}{3}, \frac{100}{14}, \frac{25}{41}, \frac{100}{181}, \frac{1}{2}$. Hence
 $D=\frac{100}{10 \%}+\frac{1000}{149}=\frac{25800}{1624 i}, E=\frac{25}{29}+\frac{25}{34}=\frac{1575}{586}, F=\frac{4}{5}$. Thefe Values being fubttituted in the laft Expreffion, and Unity for R, you will find the Area to be 785398187 ; which Number is true in the feventh Figure, but in the eighth it is too much by 2.

If eleven Ordinates do not give the Area to fufficient Exactnefs, you muft erect more; and conceive the Area to be divided into more Parts; then feeking every one feparately, you may have the Whole to what Degree of Truth you pleafe.
The Value of $1+2)^{n}$ may be exprefs'd by any one of the three following Series,

$$
\begin{aligned}
1+Q^{n}= & 1+ \\
& 2 \times \frac{n}{1}+ \\
& 2 \times \frac{n}{1} \times \frac{n-1}{2}+ \\
& 23 \times \frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}+ \\
& 2 \times \frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}+ \\
& 2 \times \frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5}+\mathcal{E}
\end{aligned}
$$

The Newtonian Differential Method.
Or $\overline{1+2 n}=1+$

$$
\begin{aligned}
& R \times \frac{n}{1}+ \\
& R^{2} \times \frac{n}{1} \times \frac{n+1}{2}+ \\
& R_{3} \times \frac{n}{1} \times \frac{n+1}{2} \times \frac{n+2}{3}+ \\
& R_{4} \times \frac{n}{1} \times \frac{n+1}{2} \times \frac{n+2}{3} \times \frac{n+3}{4}+ \\
& R_{5} \times \frac{n}{1} \times \frac{n+1}{2} \times \frac{n+2}{3} \times \frac{n+3}{4} \times \frac{n+4}{5}+\xi_{6}
\end{aligned}
$$

Here you mut make $\frac{1+2}{2}=R$.
Or $\overline{1+2 n}=1+$

$$
\begin{aligned}
& \frac{2+\overline{n+1} \times 2}{\overline{1+2}} \times 2 \times \frac{n}{1.2}+ \\
& \frac{4+\overline{n+2} \times 2}{\overline{1+2}} \times 23 \times \frac{n}{1.2} \times \frac{n n-1}{3.4}+ \\
& \frac{6+\overline{n+3} \times 2}{1+22_{3}} \times 25 \times \frac{n}{1.2} \times \frac{n n-1}{3.4} \times \frac{n n-4}{5.6}+ \\
& \frac{8+\overline{n+4} \times 2}{1+24} \times 27 \times \frac{n}{1.2} \times \frac{n n-1}{3.4} \times \frac{n n-4}{5.6} \times \frac{n n-9}{7.8}+ \\
& \frac{10+n+5}{1+2} \times 25 \\
& +\frac{n}{1+2} \times \frac{n n-1}{3.4} \times \frac{n n-4 n n-9}{5.6} \times \frac{n n-16}{7.8} \times \frac{n}{9.10}
\end{aligned}
$$

The two firtt Series are demonftrated by Caf. I. of the Propofition.
For if $\overline{1+2}, \overline{1+2} ;, \overline{1+2}, \overline{1+2}, \overline{1+2}, \mathcal{E}^{2}$. denote fo many equiditant Ordinates in the Parabolical Figure ; then will $\overline{1+2}$. be an Ordinate of the fame, whofe Diftance from $1+2$ will be n. And fo comes forth the firt Series. But if in another Parabola the equidiftant Ordinates are $1+2 \cdot, \overline{1+2}-1, \overline{1+2}-1+2-3,1+2-$ Er. then will $1+2$ be an Ordinate in the fame, the Diftance of which from $1+2{ }^{\circ}$ will be $-n$. So will the fecond Series come forthNow in a third Parabola let \mathcal{B}_{6}. $1+2-4,1+2^{-3}, 1+2-$, $\overline{1+2}-1, \overline{1+2}, \overline{1+2}, \overline{1+2}, \overline{1+2}, \overline{1+2}{ }^{4}, \varepsilon^{\circ}$. be a Series of equidiftant Ordinates proceeding both Ways in infinitum, and in the fame the Ordinate $\overline{1+2}$ n will be removed from the middle Term $1+2^{\circ}$ at the Diftance n. And thus the third Series will come forth by the Second Cafe of the Propofition. The firt breaks off when x is an integer affirmative Number ; the fecond when n is integer and negative; and the third breaks off in either Cafe. The third converges much fafter than either of the other ; its fecond Term may be ufed as a Correction, when an Extraction is to be perform'd by the Repetition of the Calculus. By any of thefe the Roots of Numbers may conveniently be reduced to Series.

Dr. Halley in his Method of conftrucling the Logarithms, from the firt of thefe Series demonftrates Mercator's Series for the Quadrature of the Hyperbola. Let its Ordinate be $\overline{1+z}-1$ or $\overline{1+z})^{n-1}, n$ being here an infinitely frall Number. Whence by the Method for Quadratures, the Area which lies above the $\mathrm{Abfcifs} z$, that is, the Logarithm of the Number $1+z$, will be $\frac{\overline{1+z})^{n-1}}{n}$. But by the firt Series 'tis $\overline{1+z^{n}}$ $=1+\frac{n}{1} z+\frac{n}{1} \times \frac{n-1}{2} z^{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} z^{3}, \delta^{c}$. And therefore in the prefent Cafe, in which n is infinitely fmall, it will be
$\overline{1+z})^{n}=1+\frac{n}{1} z-\frac{n}{2} z^{2}+\frac{n}{3} z^{3}-\frac{n}{4} z^{4}+\frac{n}{5} z^{5}$, ®c. c which being fubftituted in the V alue of the Area, it becomes $z-\frac{1}{2} z^{2}$ $+\frac{1}{3} z^{3}-\frac{1}{7} z^{4}+\frac{1}{3} z^{5}, \mho^{8} c$ which is Mercator's Series.
In like Manner by the fecond Series this Rule comes forth. Let the given Number $1+z$; make $R=\frac{z}{1+z}$, and its Logarithm will be $R+\frac{1}{\frac{1}{2}} R^{2}+\frac{1}{5} R^{3}+\frac{1}{4} R^{4}+\frac{1}{5} R^{3}, \mho_{c}$.

The Newtonian Differential Method.

By the third Series comes out this Rule Let R be any Number; make $z=\frac{\overline{R-1}_{1}^{R}}{2}$, and its Logarithm will be $\frac{R R-1}{2 R}-\frac{1}{\top} A z$ ${ }^{2} B z-\frac{3}{7} C z-\frac{4}{9} D z-\frac{5}{15} E z, \mathcal{E}^{2} c$. where $A, B, C, D, \mathcal{E}^{2} c$. after Nerwton's Method, denote the Terms of the Series in Order. This Series, as well as that from whence it is deduced, approximates much fafter than the other two, and is exprefs'd much more generally than that which we gave before, from a Foundation not unlike this, for finding the Logarithm of the Number 2.

A Metbod for finding the Values of Arithmetical Series, that converge never So Nowly.
In fome Series the Sum of the Terms cannot be had, except to a very few Places of Figures; till fome other Artifice is made Ufe of, more than their meer Addition. Now let any Series be propofed, all 'whofe Terms are affected with the fame Signs, and whofe neareft Terms conti-
nually tend to Equality. Such are the following $\frac{\mathbf{1}}{1 \cdot 2}+\frac{\mathbf{1}}{3 \cdot 4}+\frac{\mathbf{1}}{5 \cdot 6}$ $+\frac{1}{7 \cdot 8}, \varepsilon_{c} c_{.}+\frac{1}{4}+\frac{1}{5}+\frac{1}{16}+\frac{1}{25}, \delta^{2} c$. Collect the Sum of fome of the Terms from the Beginning, and let thofe that are next to be added be $\alpha, \beta, \gamma, \delta, \varepsilon, \mathcal{E}^{\circ} c$. In Numbers near the Truth, let $r=$
$\frac{\alpha \gamma-\beta \beta}{\alpha \beta-2 \alpha \gamma+b \gamma}$, and of the Quantities $\alpha \times \frac{\alpha+r \beta}{\alpha-\beta}, \overline{\alpha+\beta} \times \frac{\beta+r \gamma}{\beta-\gamma}$,
$\overline{\alpha+\beta+\gamma} \times \frac{\gamma+r \delta}{\gamma-\delta}, \overline{\alpha+\beta+\gamma+\delta} \times \frac{\delta-r \varepsilon}{\delta-\varepsilon}, \overline{\alpha+\beta+\gamma+\delta+\varepsilon}$
$\times \frac{+r \zeta}{\varepsilon-\zeta}, \mathcal{E}^{2} c$. let the Differences be $a, b, c, d, e, \mathcal{J}^{2} c$. Then in the neareft Numbers let $s=\frac{a c-b b}{a b-2 a c+b c}$, and of the Quantities $a \times$
$\frac{a+s b}{a-b}, \overline{a+b} \times \frac{b+s c}{b-c}, \overline{a+b+c} \times \frac{c+s d}{c-d}, \overline{a+b+c+d} \times \frac{d+s e}{d-e}$,
Ec. let the Differences be $A, B, C, D, \xi^{2} c$, and let $t=\frac{A C-B B}{A B-2 A C+B C}$; and fo proceed as far as you pleafe. Then will $\alpha+\beta+\gamma+\alpha+\varepsilon+\cdots+$ Vol. IV.

The Newtonian Differential Metbod.

 $\}_{2} \mho_{c} c=a \times \frac{a+r \beta}{\alpha-\beta}+a \times \frac{a+s b}{a-b}+A \times \frac{A+t B}{A-B}, \mho^{2} c$. And there wikfeldom be Occafion to proceed beyond the two firt Terms of this new Series.

As if the Value of this Series were defired, $\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\frac{1}{5 \cdot 6}+$ $\frac{1}{7.8}, \mho^{\circ}$ c. collect the firft 21 Terms, the Sum of which I find to be ,6813,8410, 1885. The Terms next to be added are $\alpha=, 0005,2854$, $1226, \beta=, 0004,8309,1787, \gamma=, 0004,4326,2411, \Omega=, 0004$, $0816,3265, \mathcal{E}^{2}$. Hence it is that $r=\mathrm{I}$, nearly, and $\alpha \times \frac{\alpha+r \beta}{\alpha-\beta}=$, $0117,6449,6282, a=-, 0000,0017,5096, b=-, 0000,0014$, $74 \mathrm{IO}, c=-, 0000,0012,4986$, छc $_{6}$. Whence $s=\frac{1}{3}$ nearly, and $a \times$
$\frac{a+s b}{a-b}=-, 0000,0141,8111$, which becaufe of the negative Sign I fubtract from $\alpha \times \frac{\alpha+r \beta}{\alpha-\beta}$, and there remains, $0117,6307,8171$; this being added to the Sum before found, $, 6813,8410,1585$, gives the Number, $6931,4718,0056$ for the Sum of the whole Series, which is true in the ninth Decimal. But before thefe two Corrections, the Sum was true in the firft Figure only. If you have a Mind to come nearer the Mark, you may proceed to the following Approximations. If the Terms of the Series have different Signs, they are to be fo join'd, that all may have the fame. Thus in the Series $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}, \mathcal{E j}^{\circ}$.
by collecting the Terms by two and two, it becomes $\frac{2}{1 \cdot 3}+\frac{2}{5 \cdot 7}+$ $\frac{2}{9.11}+\frac{2}{13.15}, \mathcal{E F}_{6}$. But here it is to be noted, that the Differences
$a, b, c, d, e, \Xi_{c}, c$ as alfo $A, B, C, D, \mathcal{J}^{c} c$. muft be collected by fubtracting. the antecedent Quantities from the fubfequent. And in all this Kind of Series, if p, q, r, reprefent three Terms following one another in Order, p the firf, q the fecond, and r the third; and the Rectangle $\frac{p+r}{2} \times q$ is not greater than $p r$, the Value of the Series will be infinitely great : But it will always be finite when the contrary happens. This Rule may fome-

The Newtonian Differential Method.

fometime fail, when the Terms p, q, and r are but little diftant from the Beginning of the Series; but if they are fuch Terms as are pretty remote from the Beginning, the Rule then becomes very fafe and fure.

To other Kinds of Series other Rules muft be apply'd. Let there be a Series of Regular Polygons infcribed in a Circle, the Radius being Unity; as

$$
\begin{array}{l|r}
H=2,0000,0000,0000,000 & 4 \\
G=2,8284,2712,4746,190 & 8 \\
F=3,0614,6745,8920,718 & 16 \\
E=3,1214,4515,2258,051 & 32 \\
D=3,1365,4849,0545,938 & 64 \\
C=3,1403,3115,6954,752 & 128 \\
B=3,1412,7725,0932,772 & 256 \\
A=3,1415,1380,1144,299 & 512
\end{array}
$$

Now let the laft Polygon be called A, the laft but one B, the taft but two C, and the reft in their Order, but backwards, $D, E, F, \Xi^{\circ} c$. and the

${ }_{4} A-84 B+21 C-D \quad 4096 A-5440 B+1428 C-85 D+E$ $3 \cdot 15 \cdot 63$
$3 \cdot 15 \cdot 63 \cdot 255$
\mathcal{E}°. where if for $A, B, C, D, E, \mathcal{V}^{\circ}$. are wrote their proper Values, the firf four Terms will give the Area of the Circle 3, $1415,9265,3589$, 790. Now this Series is general, and does not at all depend on the Nature of the Circle. It is applicable whenever the former Differences of the approximating Numbers are as it were quadruple of the latter. The Factors in the Denominators are the integral Powers of the Number 4 diminifh'd by an Unit. Which being had, the Coefficients of the Letters in the different Terms are form'd by the continual Multiplication of the Numbers $1, \frac{n}{3}, \frac{n-3}{15}, \frac{n-15}{63}, \frac{n-63}{255}, \mho^{2} c$. where the $1^{\text {aft }}$ of the Factors of the Denominators mult be fubftituted for n.
The laft of the Quantities $x-1,2 \sqrt{2}_{x-2,4}^{\sqrt{4}^{x}-4,8} 8^{8} x-8$, 16 $16 \vee x-16, \xi^{\circ} c$. is equal to the Logarithm of the Number x. For $*$ write 2, and by a repeated Extraction of the Square Root, the following Numbers will arife.

A General Method of

$M=1,0000,0000,0000,0000$,
$L=8284,2712,4746,1901$,
$I=7568,2864,0010,8843$,
$H=7^{2} 40,6186,1322,06133$
$G=7083,8051,8838,6214$,
$F=7007,0875,6931,7337$,
$E=6969,1430,7308,8294$,
$D=6950,2734,2438,7611$,
$C=6940,8641,2851,8363$,
$B=6936,1658,4759,4014$,
$A=6933,8182,9699,9493$,
Let the laft of the Numbers be called A, the laft but one B, and fo on back wards; and the Logarithm required will be $A+\frac{A-B}{\mathrm{I}}+\frac{2 A-3 B+C}{\mathrm{I} \cdot 3}$ $+\frac{8 A-14 B+7 C-D}{1 \cdot 3 \cdot 7}+\frac{64-120 B+70 C-15 D+E}{1 \cdot 3 \cdot 7 \cdot 15}$, Esc. 2.

The firft five Terms will give 6931, 4718,0559, 9457 for the Hyperpolic Logarithm of the Number 2. And how this Series proceeds in infinitum is eafily infer'd from what we have faid of the former. It is alfo univerlal, having no Regard to the particular Properties of the Hyperbola.

Alfo this Differential Method may be extended to the Refolution of Equations, and to many other Speculations which we forbear to mention here. And it contains the moft general Foundations of Series, as perhaps I may fhew in a fhort Time, by applying it to the Reduction of Irrational Equations, as alfo Fluxional Equations.

AGeneral Method of makivg
Logarithms. Logarithms, by Mr. J. by Mr. J. finding all the Logarithmical Series. Now fuch is this that follows, being p. 191.
XX. For the Perfection of this moft ufeful Part of Arithmetick, this only feems to be wanting, the Difcovery of fome General Method for eafy and genuine, as being derived from the veryNature of the Logarithms.
By the Letter l prefix'd to any Number is denoted (as is commonly known) the Logarithm of that Number. Now becaufe the Logarithm of any Number propofed may be found in two Manners, thenefore we Thall conftitute two Parts of this Logarithmotechny. In the firft we deduce immediately the Loogarithm from the Number. In the latter we derive the Logarithm of the propofed Number from the known Logarithms of fome antecedent Numbers.

Part 1. Let +1 be any Number propofed, and x its Logarithm to be found. Now by the Hyfothefis $x=l \cdot \overline{a+1}$, which Equation may be call'd a general Canon. (i.) Let there be an Equation among Terins any how compofed of a and y, with any other Numbers, com-
bined in any Manner by Addition, Subtraction, Multiplication, Divifion, or Extraction of Roots. (2.) By the Help of the Equation fo affumed at Pleafure, let a be exterminated out of the general Canon, and an Equation will be had expreffing the Relation between the indeterminate Quantities x and y. (3.) By Bernoulli's Rule let the Differential of this Equation be found, [or its Fluxion,] and by known Methods let the Integral [or Fluent] of this be found, exprefs'd by an infinite Series. This will give the Value of the Logarithm x required.

Example 1. Let it be affumed $a=y$; then by the general Canon $x=l .1+y$, whofe Fluxion is $\dot{x}=\frac{\dot{y}}{1+y}$. And the Fluent of this exprefs'd by an infinite Series is $x=y-\frac{1}{2} y^{2}+\frac{1}{3} y^{3}-\frac{1}{7} y^{+}+\frac{1}{3} y^{5}-$ ty ${ }^{6}$, $\mho^{\circ} \mathrm{c}$.

Example 2. Affume $y=\frac{a}{a+2}$, whence $a+1=\frac{1+y}{1-y}$, and therefore by the general Canon $x=l \cdot \frac{1+y}{1-y}$, the Fluxion of which is $\dot{x}=$ $\frac{2 y}{1-y y}$, and the Fluent of this exprefs'd by a Series is $x=2$ into $y+\frac{1}{3}$ $y^{3}+\frac{1}{3} y^{5}+\frac{1}{7} y^{7}, \xi c$. Where the Number 2 prefix'd muft be multiply'd into all the Terms of the Series. Nor is there Occafion to add more Examples here, fince from hence it appears, how innumerable Logarithmical Series may be found, which, without any Refpect to the Logarithms of other Numbers, 'exhibit the Logarithm of the Number propofed. 2. E.I.

Lem. 1. Let z be the Logarithm of any Fraction $\frac{b}{a+1}, x$ the Logarithm of the Denominator $a+1$; then will $l \cdot \overline{-z}=x$. Or if z is the Logarithm of the Fraction $\frac{a+1}{b}$, it will be $l \cdot \overline{b+z}=x$.
Lem. 2. Let e be the Exponent of any Poiver of the Number b; then will $l . b^{c}=e \times l . b$. Therefore the Logarithm of the Number b^{c}, and the Exponent e being given, the Logarithn of b will alfo be given. Both thefe Lemmata are plain from the Nature of Logarithms.

Part 2. Let $a+1$ be the Number, as before, whofe Logarithm is to be found, and let b^{c} be a Number produced by the Multiplication of Numbers, the greateft of which is lefs than $a+1$. And let z be the Logarithm of the Fraction $\frac{b}{a+1}$, that is, $z=l \cdot \frac{b}{a+1}$. And let this Equation be called the general Canon, Then (t .) for b let there be taken

A General Metbod of

a Quantity any how compofed of a, and any determinate Numbers, and let this Value of the Number b, fo taken at Pleafure, be fubftituted in the Fraction $\frac{b}{a+1}$, whence it will be exprefs'd by a and given Numbers. (2.) Let there be any Equation between y and a, with Numbers taken at Pleafure; and by the Help of this let a be exterminated out of the general Canon; whence an Equation will be had, expreffing the Relation between the Indeterminates x and y. (3.) By Bernoulli's Rule let the Fluxion of this Equation be found, and then by known Methods find the Fluent of this exprefs'd by an infinite Series, which will give the Logarithm z of the Fraction $\frac{b}{a+1}$. And when z is found, the Logarithm $x=1 . \overline{b-z}$ of the propofed Number $a+1$ will be had by Lem. 1. For by Hypothefis b^{e} is produced by the Multiplication of Numbers, the greateft of which is lefs than $a+1$; and by Hypothefis the Logarithms of all Numbers are known, which are lefs than the propos'd Number $a+1$. Therefore alfo the Logarithm of the Number which is the Product of all, or b^{e}; and therefore (by Lem. 2.) the Logarithm of b will be given.

Example 1. Affume if you pleafe $b=a$, whence $z=b \cdot \frac{a}{a+1}$. Then (by Art. 2.) take ad libitum $y=2 a+1$, by which let a be exterminated, and it will be $z=l . \frac{y-1}{y+1}$, whofe Fluxion is is $z=\frac{2 \dot{y}}{y y-1}$. The Fluent of this, exprets'd by a Series, is $z=-2$ into $\frac{1}{y}+\frac{1}{3 y^{3}}+\frac{1}{5 y^{5}}$ $+\frac{1}{7 y^{7}}, B_{c}$. whence by Lem. I.

$$
x=l . b+2 \times \frac{1}{y}+\frac{1}{3 y^{3}}+\frac{1}{5 y^{5}}+\frac{1}{7 y^{7}}+\frac{1}{9 y^{9}}, \delta_{c}
$$

Example 2. Make $b=\sqrt{a a+2 a}$, whence $z=l \cdot \frac{\sqrt{a a+2 a}}{a+1}$. Take alfo at Pleafure $y=a a+2 a$, whence $z=l \cdot \frac{1}{y} \sqrt{y y-4}$, of which the Fluxion is $\dot{z}=4 \dot{y} \times y^{3}-4 y$,r, and the Fluent of this is $z=-2$ into $\frac{1}{y^{2}}+\frac{2^{2}}{2 y^{4}}+\frac{2^{4}}{3 y^{6}}+\frac{2^{6}}{4 y^{5}}$, Ec. whence by Lem. I. 2.

$$
x=l . b+2 \times \frac{1}{y^{2}}+\frac{2^{2}}{2 y^{4}}+\frac{2^{4}}{3 y^{6}}+\frac{2^{6}}{4 y^{8}}+\frac{2^{3}}{5 y^{10}}, \xi_{c} .
$$

Example 3. Make $b=\sqrt{a a+2 a}$, as in the foregoing, but now alfume y y $=2 a a+4 a+1$; if by thefe two Equations are extermi. nated b and a out of the general Canon, it will be $z=l \cdot \frac{\sqrt{y y} \overline{-1}}{\sqrt{y y+1}}$, of which the Fluxion is $\dot{z}=2 y \dot{y} \times y^{4}-1-1$, of which the Fluent exprefs'd by a Series is $z=-\frac{1}{y^{2}}-\frac{1}{3 y^{6}}-\frac{1}{5 y^{10}}-\frac{1}{7 y^{14}}, छ^{\circ} c$. Therefore by Lem. . . $x=l . b+\frac{1}{y^{2}}+\frac{1}{3 y^{6}}+\frac{1}{5 y^{10}}+\frac{1}{7 y^{14}}+$ $\frac{1}{9 y^{18}}, E^{2} c$.

But it mult be obferved, that the Number 2 prefix'd in the Series of the firft and fecond Examples, is fuppoted to be multiply'd into all the Terms of the following Scries. And that like Series may be derived from $z=l \cdot \frac{a+1}{b}$ in the fame Manner ; but then $x=l \cdot \overline{b+z}$, as appears from the fecond Part of the firt Lemma. Therefore from hence it appears very plain, that the Logarithmotechny now explain'd is very ealy and genuine, and fo general, that by thefe two Ways immumerable Series may be found, exhibiting the Logarithm of any Number propofed. For we may affume innumerable Equations at Pleafure, expreffing the Relation between y and a, every one of which will give us a new Logarithmic Series. Yet Care fhould be taken that fuch Equations may be affumed, that fhall caufe the Terms to converge as faft as may be, fo that the Logarithm may be found with the leaft Trouble pofiible. To perform this, the Series exhibited in the laft Examble will be very proper, which is the fame as that given by the learned Dr. Halley, the firft Inventer of it, in his very elegant Method of conftructing the Logarithms.

Here by the Way I defire the Reader to take Notice, that the Curve, which is derived from our Analyfis of the Problem, concerning the Length of Curve-Lines, publifhed in the Philofophical Tranfactions for the Year 1708, is the fame with that propofed. As I was wholly intent about the Analyfis, I took no Notice of the Coincidence of the Curve propofed with that which was found, till the learned D. $\mathcal{F} 0$. Bernoulli inform'd me of it, in his Letter to Mr. Will. Burnett, F. R.S. By which alfo that learned Man was pleafed fully to fatisfy all my Objections againt his Creeping Motion; as I now readily own, out of that pure Love which I bear to Truth.
XXI. Log.

- A New Me. XXI. Log. Nat. Num. thod for making Logarithms, communicated by Mr. J. Long, n. 339. P. 5^{2}.

0,9	7,943282347
0,8	0,309573445
0,7	5,011872336
0,6	3,981071706
0,5	3,162277660
0,4	2,511886432
0,3	1,995262315
0,2	1,584893193
0,1	1,259925412
0,09	1,230268771
0,08	1,202264435
0,07	1,174897555
0,06	1,148153621
0,05	1,122018454
0,04	1,096478196
0,03	1,071519305
0,02	1,047128548
0,01	1,023292992
0,009	1,020939484
0,008	1,018591388
0,007	1,016248694
0,006	1,013911386
0,005	1,011579454
0,004	1,009252886
0,003	1,006931669
0,002	1,004615794
0,001	1,002305238
0,0009	1,002074475
0,0008	1,001843766
0,0007	1,001613109
0,0006	1,001382506
0,0005	1,001151956
0,0004	1,000921459
0,0003	1,000691015
0,0002	1,000460623
0,0001	1,000230285

Log.
Nat. Num.

0,00009	
0,00008	
0,00	
06	
0,00005	
0,00004	
$\bigcirc 3$	
,	1,000046053
0,00001	
,,0000	
0,000008	
0,000007	I,
0,000006	
00	
0,000004	
,,00	
0,000002	
0,00	
0,0000009	
0,00	I,
0,0000007	I,
0,0000006	1,00000
0,0000005	I,
0,00	
0,0000003	1,0
0,0000002	
0,0000001	
0,00000009	1,0
,0000000	1,000
0,0000000	1,000000
0,0000000	5
0,00000004	1,000000092
0,00000003	
0,00000002	1,000000046
,0000000 I	1,000000023

This Table is what I fometimes make Ufe of for finding the Logarithm of any Number propofed, and vice versî, for finding the Number correfponding to a Logarithm given. For Inftance: Suppofe I had Occafion to find the Logarithm of 2000 , I look in the firft Clafs of my Table, (the whole Table confifts of 8 Claffes) for the next lefs to 2 , which is 1.295262315 , and againft it is 3 , which confequently is the firt Figure of the Logarithm fought. Again, dividing the Number propofed 2, by 1. 995262315 , the Number found in the Table, the Quotient is 1.002374467 ; which being look'd for in the fecond Clafs of the Table, and finding neither its equal, nor a leffer, I add o to the Part of the Logarithm before found, and look for the faid Quotient I.002374467 in the third Clafs, where the next lefs is 1.002305238 , and againft it is I , to be added to the Part of tha Logarithm alieady found; and dividing the Quotient 1.002374467 , by I.002305238, laft found in the Table, the Quotient is 1.000069070 ; which being fought in the fourth Clafs gives O , but being fought in the fifth Clafs gives 2, to be added to the Part of the Logarithm already found; and dividing the laft Quotient by the Number laft found in the Table, viz. 1.000046053 , the Quotient is 1.000023015 i which being fought in the fixth Clafs, gives 9 to the Part of the Logarithm already found : and dividing the laft Quotient by the new Divifor, viz. 1.000002072 , the Quotient is 1.000000219 , which being greater than 1.000000115 , fhews that the Logarithm already found, viz. 3.301099 is lefs than the Truth by more than half an Unit, wherefore adding 1, you have Briggs's Logarithm of 2000, viz. 3.3010300 .

If any Logarithm be given, fuppofe 3.3010300 , throw away the Characteriftic, then over-againft thefe Figures $3 \ldots 0$. . $1 . .0 .03 . .6 \ldots$. , you have in their refpective Claffes $1.995262315 \ldots \ldots 0$.......0023052.380.....1.000069080....0...0 which multiplied cantinually inta one another, the Product is 2.000000019966 , which by reafon the Characteriftic is 3, becomes 2000.000019966 , that is, 2000 , the natural Number defired. I fhall not mention the Merhod by which this Table is framed, becaufe you will eafily fee that from the Ufe of it.
It is obvious to the intelligent Reader, that thefe Claffes of Numbers are no other than fo many Scales of mean Proportionals. In the firt Clafs, between I and Io; fo that the laft Number thereof, viz. 1.258925412 is the tenth Root of 10, and the reft in order afcending are the Powers thereof. So in the fecond Clafs, the laft Number 1.023292992 is the hundredth Root of 10 , and the reft in the fame Manner are Powers thereof. So 1.00230523^{8} in the third Clafs, is the tenth Root of the laft of the fecond, and the relt its Powers, $E_{c} c$. Or, which is all one, each Number in the preceding Clafs, is the tenth Power of the correfponding Number in the next following Clafs : Whence 'tis plain, that to conftruet thefe Tables requires no more than Vol. IV.

Of the Invention of the Method

one Extraction of the fifth or furfolid Root for each Clafs, the reft of the Work being done by the common Rules of Arithmetick; and for extracting the fifth Root, you will find more than one very compendious Rule in Num. 2 10. of thefe Tranfactions, if any one fhall defire to examine the computus of there Tables.

The Procefs is exactly the Reverie of Mr. Briggs's Ductrine, in Cap. XII. of his Aritbmetica Logaritbmica Vlacq's Edition; and had Briggs been apprized hereof, it would have greatly eafed the Labour of deducing the Logarithms of the firft prime Numbers, which appear to have coft him fo much Pains.

1 Letter of Mr.l'Abbe Conti to Mr. Leibnitz, concerning the Invention of tbe Matbod of Fluxions, n. 359. p. 923.
XXII. I. I have defer'd till now to anfwer your Letter, becaufe I had a Mind to accompany my Anfwer with that which Mr. Newton ${ }^{2}$ has lately made, to the Pofffcript which you have added to it. I fhall not enter into the Particulars of the Difpute between you and Dr. Keil, or rather Mr. Newton. I can only relate Matters of Fact, what I have feen, and what I have read, and what I fhall ftill fee and read, in order to make a true Judgment of the Affair.

I have read with great Attention, and without the leaft Prepoffeffion, the Commercium Epifolicum, and the little Book ${ }^{b}$, which contains an Extract from it. I have feen at the Royal Society the original Papers of the Letters of the Commercium ; a fmall Letter ${ }^{c}$ wrote in your Hand to Mr. Newton; and an old Manufcript ${ }^{\text {d }}$ that Mr. Nerwton fent to Dr. Barrow, and which Mr. Fones has lately publifh'd.

From all which I collect, that if we leave out of the Difpute all foreign Digreffions, all we have to do is to examine, whether Mr. Neroton had the Calculus of Fluxions, or of Infinitefimals, before you, or whether you had it before him. You publifh'd it firft, that is true ; but you have likewife own'd, that Mr. Nerwton had given great Hints of it, in the Letters that he had wrote to Mr. Oldenburg, and to others. This is proved at full Length in the Commercium, and in the Extract from it ; what is your Anfwer to this? This is what the Publick wants, in order to make a fure Judgment in this Matter.

Your Friends expect your Anfwer with much Impatience, and it is their Opinion, that you cannot avoid returning fome Anfwer; if not to Dr. Keil, yet at leaft to Mr. Nerwton himfelf, who gives you a Challenge in exprefs Terms, as you will fee in his Letter.

[^0]I thould be glad to fee you on good Terms with one another. The Publick receives but fmall Advantage from fuch Difputes, but rather lofes for many Ages all the Improvements, which fuch Difputes deprive it of.

His Majeity has been pleafed to lay his Commands upon me, to acquaint him with all that has paffed between Mr. Neroton and you. I did it to the beft of my Power, and I wifh it might be with Succefs to you both.

Your Problem has been refolved very eafily, and in a little Time. Several Geometricians, both at London and Oxford, have given a Solution of it. It is general, for it extends to all Sorts of Curves, whether Geometrical or Mechanical. The Problem is propofed a little equivocally; but I think M. de Moivre is not miftaken, when he fays, that our Ideas of it fhould be reftrained to a Series of Curves. For Example, we may fuppofe it to have the fame Subtangent to the fame Abfcils; which will not only agree to the Conic Sections, but to infinite other Curves, as well Geometrical as Mechanical. Other Suppofitions might be made, to fix the Idea of it.

I fhall fpeak to you another Time concerning Mr. Nerwton's Philofophy. We muft firtt agree upon the Method of Philofophizing, and very carefully diftinguin between the Philofophy of Mr. Newton, and the Confequences that many are apt to draw from it, though very rafhly. Many Things are afcribed to this great Man, which he does not own, as he has proved to thofe French Gentlemen, who came to London, on Account of the great Eclipfe.

> London, March 1716.

I am, with all poffible Refpect,
N. B. Mr. l'Abbé Conti fpent fome Hours alfo in looking over the old Letters and Letter Books kept in the Arcbives of the Royal Society, to fee if be could find any Thing which made either for Mr. Leibnitz, or againft Mr. Newton, and bad been omitted in the Commercium E.piftolicum Collinii \& aliorum; but could find nothing of that Kind.

$S 1 R$,

Hanover, -Apr. I4, 1716.
2. Not to make you wait, I fhall tell you before Hand, that I have Mr. Leib. anfwer'd already to the Letter which I had the Honour of receiving mitz's divfiwer. from you, and at the fame Time to that which Mr. Newton has wrote to you. I have fent the Whole to Mr. Remond at Paris, who will not fail of tranfmitting them to you. I made ufe of this Way, that I might have impartial and intelligent Witneffes of our Difpute: And Mr. Remond will alfo communicate them to others. I have fent him at the fame Time, a Copy of your Letter, and of that of Mr. Newwton. After this you will be able to judge, whether the Petulance of fome of your new Friends gives me much Difturbance.

Of the Invention of the Method, \&c.

As to the Problem, of which fome among them have thought fit to refolve fome particular Cafes, to fix their Ideas, as they call it; it is probable they have pitched upon fome eafy Cafes. For there are fome fuch among the tranfeendent Curves, as well as among thofe that are common. But the Bufinefs is to find a general Solution. This Problem is no new one. Mr. Fobn Bernoulli has already propofed it for the Month of May in the Leip/ic Journal, 1697. p. 211 . And as Mr. Facio defpifed what we had done, the Propofal was repeated for him, and for others like him, in the Journal of May 1700. p. 204. It may ftill ferve to this Day, to thew fome People, how far they are gone in Methods, and whether they have gone as far as we. And, in the mean Time, till they find out the Means of arriving at a general Solution, they may try what they can do in fixing their Ideas upon a particular Cafe, which we here propofe to them in the Paper hereto annexed. Its Solution proceeds ftill from the fame Mr. Bernoulli. So I hope you will have the Goodnefs, not to give yourfelf up too much to the Infinuations of thofe who are oppofite to us; as when they would make you believe, that our Problem was eafy to them. $I \mathrm{am}, S I R$, with muib Zcal, yours, \&c.

A Problem containing a particular Cafe of the general Problem, for finding a Series of Curves, every one of which is perpendicular to anotber Series of Curves.

Upon the right Line A G, as an Axis, from the Point A any Number of Curves being conftruEted, fuch as A BD, of fuch a Nature, that the Radius of Curvature BO, drazon from all the Points B of the fercral Curves, may be cut by the Axis A G in C , atway in the fame given ratio: That is, bat it may be as BO to BC, fo is m to n . Now let Trajectories be confiructed juch as ENF, that may cut the forner Curves ABD at right Angles.

Thbus far this Letter.] Mr. Leibnitz firft propofed the general Problem to M. l ' Abbé Conti in thete Words; To find a Line BCD, which may cut at rigbt Angles all the Curves of a determinate Series of the fame Kind ; for Example, all the Hyperbola's, $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$, wbich bave the fame Vertex and tbe fame Center; and this by a general Metbod. And in the AEta Euriditorum for OEDOber, 1698. p. 470,47 1. he calls the Curves in this determinate Series, Curves given as to their Ordinates, and given in Poftion, and given in Pofition as to their Ordinates. And by all this, the Series of Curves to be cut is given, and nothing more is to be found, than the other Series which is to cut it at right Angles. But Mr. Leibnitz being told, that his Problem was folved, he changed it into a new one, of finding both the Series to be cut, and the other Series which is to cut it. And the particular Problem, propofed in this Letter, is a fpecial Cafe, not of the general Problem firft propofed, as it ought to have been, but of this new double Problem. And the firf Part of this double Problem, (viz, by any given Property of a Series of Curves to

Dr. Taylor's Apology againft J. Bernoulli.

find the Curves) is a Problem harder than the former, and of which a general Solution is not yet given. Mr. Leibnitz, in a Letter to Mr. Fobn Bernoulli, dated 16 December, 1694. and publifhed in the AEEa Eruditorum for OEFober, 1698. p. 47 I. fet down his Solution of the Problem, when the given Series of Curves is defined by a finite Equation, expreffing the Relation between the Abfcifs and Ordinate. The fame Solution holds, when the Equation is a converging Scries, or when the Property of the Curve to be cut, can be reduced to fuch an Equation, by the Analy/is by Series that are infinite in the Number of their Terms. But Mr. Leibnitz was for folving the Problem without converging Series.
XXIII. In an Epiftle for an eminent Mathematician, AEF. Lipf. 1716. Dr. Taylor's I am accufed of Plagiarifm, as if I arrogated to myfelf the Inventions of Bernoulli and others. Let them produce their Examples, and then they fhall have an Anfwer. 'Tis true I have treated of many Things p. 955 in common with others, but I have by no Means ufed other Mens Inventions as my own. I have every where ufed by own Analyfis, (if you will except the Problem of Ifoperimeters, of which Mention fhall be made hereafter) that it cannot be faid in any wife I have cheated others. They fhould have named their Authors, from whom I have taken my Methods. I have fo great a Veneration for the illuftrious Names of Huygens, de l'Hoppital, Varignon, Leibnitz, and others, that I cannot tell but that I have err'd on the contrary Side, when I may feem to have been wanting to myfelf, who always thought it an Honour to myfelf to quote fuch Men as thefe. Perhaps there might be a little Lazinefs in the Matter, that being wholly intent upon Things, I neglected little Pieces of Hiftory. Yet I hoped I could not fall under the Sufpicion of fuch a Fraud, fince the celebrated Works of fuch great Men would eafily difcover it. What Problems I have treated of in common with Bernoulli are, of the Funicularia, of the Center of Ofcillation, and of Ifoperimeter's. In the two firt I have ufed my own Analyfis entirely. In the Ifoperimeters I ufed the Analyfis of the Author James Bernouili, a Man very deferving in Mathematicks, to whom I now pay the Honour which is due to him. My Solution of the Problem concerning the Center of Ofcillation was communicated to my Friend's ever fince the Beginning of the Ycar 1712, as I can appeal to the manufrript Letters of Dr. Keil for Witneffes. As alfo my Book was in the Cuftody of the Royal Society, and communicated to almoft all our Mathematicians, from the Month of April of the Year 1714; which I thought neceffary to mention here, left Bernoulli fhould claim alfo that Solution to himfelf. His two Solutions are extant ${ }^{2}$, both publifhed in the fame Year; the latter of which fo perfectly agrees with mine, as to its Principles, that you would fwear they were both invented by the fame Perfon. The Matter of the Ifoperimeter's was

[^1] the Analyfis is extant in the Leipfic Journal for the Year 1701. His Brother's Analyfis is extant in the Memoirs of the Royal Academy of Sciences for the Year 1706. A Solution is alfo extant in my Book. Bernoulli has lately publifhed a Commentary about the fame Subject in the Leeipfic Acts for the Year 1718. There, leaft he fhould feem to do the fame Thing over again b, he fpitefully endeavours to detract, not only from mine, but from his Brother's Solutions alfo, objecting Prolixity to his Brother ${ }^{c}$, and Obfcurity to me ${ }^{d}$. He promifes every Thing that is great of thofe his new Undertakings ${ }^{c}$, and by the Help of a certain Principle, fetch'd from the Law of Uniformity, which nobody has hitherto obferved, he will compleat the whole Matter almoft without Calculation, and with very little Trouble. But I know not by what Farality, in this Matter about the Ifoperimeters, Bernoulli never finds the Gods propitious. For firft, that former Analyfis of his from Beginning to End makes only one continued Blunder. Secondly, that to much boalted Principle of his', fetch'd from the Law of Uniformity, which nobody has hitherto obferved, (for fo he boldly affirms) has already been obterved by me. Laftly, the Analyfis which he here exhibits as a new one, is merely that of his Brother. For it is the Precepts which make the Analyfis, according to which the Calculation is afterwards performed; which is not itfelf the Analyfis, but only the Inftrument of the Analyfis. The Precepts being once laid down, every one eafily performs the Calculation, each in his own Way, one more copiouny, another clofer or neater, according as his Genius directs.

[^2]
Dr. Taylor's Apology againf J. Bernoulli.

It muft not be denied, that Bernoulli has made the Calculation more neat and elegant, but he has done it in his Brother's Analyfis and not his own. Nor is it to be doubted but that his Brother, if he had lived till now, would have illuftrated this Matter as well. We faid before, that the Analyfis confifts wholly in the Precepts; but all the Precepts are his Brother's. For that he confiders a little Arch of the Curve required, as compofed of three little Elementary right Lines, is wholly owing to his Brother, as he himfelf has confefs'd ${ }^{\text {f }}$. That from the giver Length of that little Arch he feeks the ratio of the Differences of the Ordinates in his Lemma's, is from his Brother. That he feeks the fame ratio over again, by fuppofing the little nafcent Area, compofed of the Functions as he calls them, to be either the greateft or leaft, is from his Brother. Lafly, that from that double Expreffion of that fame ratio he obtains the Equation, by which the Nature of the Curve fought is determined, is from his Brother. But thefe are the Things which conftitute the Solution : Therefore the Solution is entirely his Brother's. I faid that I heretofore made Ufe of that Principle, which Bernoulli arrogates to himfelf with fo much Ottentation. Here are two Examples of it in the fame Page. In Page I_{3}. of my Book are found thefe,

$$
\frac{m^{R}}{R}=\frac{m}{R} . \quad \text { But } \frac{m}{R} \text { is a new Value of } \frac{m}{R} \text {. Whence } \frac{m}{R} \text { will be }
$$

a given Quantity. Here it is as clear as the Light, that in this Place, from obferving the Uniformity of the Expreffions $\frac{m}{R}$ and $\frac{m}{R}$, I cons cluded that $\frac{m}{R}$ is a given Quantity. I did the fame in what follows: Suppofe $\frac{m n}{n R}=\frac{\dot{m}}{R}$, that is $\frac{m n n}{n \cdot}=\frac{\dot{m} n n}{R}, \mho_{c}$. where that the Uniformity might appear between the Formule, $\frac{m n n}{R}$ and $\frac{i n n}{R}$, I transform'd the Equation. I fancy you will now perceive how happiIy I have penetrated into Bernoulli's profound My Plteries. Will he fay that this is obfcure too?

[^3] fitution, which is ridiculous enough, fetch'd I fuppofe from his profound Speculations, he transforms the Equation $F O \times \Delta R O=0 . x$ $\Delta e \omega$ into this $F O \times \Delta P F=\varnothing \infty \times \Delta+\rho$; which in a particular Cafe, (that is, when the Functions are as the Squares of the Ordinates) comes to this, that at the fame Time $F O \times R O=\rho \omega \times \rho \mathrm{m}$, and $F O \times P F$ $=00 \times \pi \%$. Whence it follows that $P F \cdot R O:: \pi 0 . p \omega$. But this is imponible, becaufe it is $P F<R O<\rho \omega<\pi c$, or elfe $P F>R O>$ $p^{\circ}>\pi 0$; neither of which can be reconciled with the propoled Analogy. For if $P F \leftarrow R O<P=\pi$, by the Analogy it will be alfo To $\subseteq \rho$ (becaule of $P F<R O$) contrary to the Hypothefis. Or if $P F>R O>\rho^{\omega}>\sigma a$, by the Analogy it will be alfo $\pi \varphi>\rho^{\circ}$, , contrary to the Hypothefis. Sccondly, he very unskilfully fuppofes the Curvature in F to be to the Curvature in 0 , as $\$ O$ to $F O$; fince there is nothing in the whole Analyfis that can reftrain this Property to the Point O, tather than to any orher Point ω in the little Arch $F O \omega$ taken any where: Nor indeed can Curvitude be eftimated in fo ridiculous a Manner. Tbirdly, with but little Skill he makes $m n=\ddot{x}, n l=\ddot{y}$, and $m l=\frac{\ddot{i} y}{\dot{x}}$; when they ought to be $m n=\frac{1}{2} \ddot{x}, n l=\frac{1}{2} \ddot{y}$, and $m l=\frac{i \ddot{y}}{2 \dot{x}}$. Lafly, what is worft of all, to thefe very erroneous Principles he has affix'd a very perfect Conclufion. I fay this in the firft Problem; for in the fecond the Off-fpring is more worthy of fuch Parents. You imagine that I am only expofing fome of Bernoulli's old obfolete Blunders: But it is not fo, for thus he goes on. "All thefe "Things I have laid-by a good While, and now difcuffing them over " again very accurately, I have weigh'd them in the Scale of a fevere "Examination ${ }^{5}$. And it is to be noted, that the Solution of the firt "Problem, in my Paper inferted in the Memoirs of the Academy, "p. 235. is perfectly right "." Therefore he has again adopted his old Miftakes. Now perhaps any one would enquire, by what Right he pretends to the firft Rank in the fublimer Analyticks, with fuch a fubborn Ambition? So that nobody can makic any Advances in it, but he muft be immediately accufed of having penetrated into Bernoulli's profounder Science ${ }^{i}$. Whence does it appear to be true, what has been lately affirm'd by fomebody, that the Rules now extant in the Treatife Analyse des lnfiniment Petits, were firt derived from Bernoulli ${ }^{\text {k }}$? That

[^4]the Praife ufually given to the moft excellent Marquis de l'Hospital, mult be now transfer'd to his Preceptor? Is fuch a Man fit to teach others the Rules of Differencing Differences ${ }^{2}$? With many other Things which there is no Occafion now particularly to enumerate.
XXIV. Twelve Years ago I undertook the Defence of that learned Man Mr. Fames Gregory my Uncle, againft the Calumnies of Abbot Galloyse ; who alfo impeached before the learned World the great Dr. D.Grego Dr. Barrowe ${ }^{\text {b }}$, as if he had ftolen from Robervall his Propofitions concerning 308. p. $22 ; 20$. the Transformation of Curves. Now fince Galloye has thought fit to revive the fame Controverfy again ${ }^{c}$, give me Leave again to vindicate my Uncle's Reputation.
Robervall lived feven Years after Gregory's Book was publifhed. He that was catching at every little Advantage, was challenging every Thing to himfelf, and would leave no one in quiet Poffeffion of his own; would he fuffer himfelf to be rifled of his Propofitions, while he was alive and had the Ufe of his Eyes? But Galloyse fays, he did not fee it, he read no new Book all that Time, he patiently fuffer'd himfelf to be robb'd of all his Difcoveries, he gave up his Fame together with his Mathematicks. I wonder with what Face he can throw out fuch Fictions as thefe, which can fo eafily be refuted. There is fo little Truth in his Affertion, that from the Year 1668 , Robervall lived in Retirement, remote from the Converfation of learned Men, and had renounced his Mathematical Studies; that from the Year 1670 , he was a Profeffor of Mathematicks in the Academy of Paris, and communicated to the Royal Academy of Sciences his Invention of a new Balance, as their Acts teftify, which were publifhed for that Year ${ }^{\text {d }}$. Therefore Robervall was prefent at the Affemblies of the Academicians; and if he then read nothing himfelf, yet can it be thought he heard nothing in Converfation about Mr. Gregory's Inventions, which were then fo celebrated in France? Did he hear nothing about them from Mr. Huygens, who at that Time difputed very eagerly againtt Gregory among the Academicians '? But if there was no Familiarity between him and Huygens, as Galloyfe affirms, (perhaps becaufe he was difpleafed that Huygens has found out the chief and moft ufeful Property of his Trocboid) could he hear nothing for the whole Space of feven Years, from all the reft of the Academicians? Or if he did hear, did he make no Complaint to his Brethren and Friends? Who can believe he had fuch a Contempt for Fame, that has but once heard of his Squabbles with the Italians, with his own People, and with every body? If of a fudden he was be-

[^5]come fo indolent, and fo indifferent to Reputation, that he could eafily fuffer to fee all his Difcoveries afcribed to others; and that what he had happily invented rather to lie dormant in his Ecritoire, than to bring them to Light; How could it be that Gregory fhould fteal thefe Things from him? Let us fee by what Strength of Argument Galloyse proceeds to fix this Accufation upon him. Firft (fays he) it appears ${ }^{\text { }}$, that this Metbod for the Transformation of Curves, which was invented by Robervall, was known in Italy before the Year 1668 ; for Torricellius, who died An. 1647, tefifies in his Letters, that it was communicated to bim by Robervall. Secondly, the Adverfary, bowever unwilling, is obliged to confefs, that this Melbod is the fame with that of Gregory. Thirdly, it muft therefore appear very probable, that Gregory, when upon bis Travels in Italy, might learn ibis Metbod from the Italians, which bad been fo long known in Italy.

That this Method, which came out in the Year 1692, under the Name of Robervall, is the fame as that which Gregory had publifhed 24 Years before, Prop. XI. Math. Univerf, as it is plain to any one that views them both, fo I had granted it without any Hefitation. Indeed I faid, that in the Writings of the French, wherein it is afcribed to Roberreall, it was drefs'd out with a miferable and fhameful Demonftration. But that it was the fame with that of Gregory, I never once queftion'd, nor made any Difpute about it ; tho' Galloyfe made this the chief Point of the Controverly, and triumphs as tho' I had yielded him the Victory. But I by no Means grant him, either that it was known before to the Italinns, or that it was communicated by them to Gregory. For how does it appear that it was known to them? Becaufe Robervall had communicated it to Torricellius. How does this appear? From the Letter of Torricellius himfelf. But where is this Letter? Galloyse has it. When was it wrote? About 60 Years ago. Where has it been hid fo long? Where all wonderful Things are hid, in Robervall's own Treafury. Whether this Epiftle is genuine or no, or whether there be any fuch Thing or no, we muft not prefume to doubt, fince there are fo many credible Witneffes. But by what Literary Monuments does it appear, that Torricellius communicated thefe Inventions to the Italians? About this there is ftill a profound Silence. Or if he had imparted thefe to any, they might by this Time have been quite extinct and unknown, fince Torricellius himfelf had been dead 20 Years before Gregory went into Italy. Or if they had not been yet out of Memory, Galloyfe fhould tell us, who among the Italian Mathematicians imparted thefe Secrets to Gregory, which had been intrufted to him by Torricellius. Perhaps he will fay, (for he can take the Liberty of faying any Thing) that they wereknown to many in Italy. But would the Italians truft thefe Geometrical Secrets to Gregory, a meer Foreigner, which they had concealed from every body for 20 Years? Would he dare, in the Midft of Italy, (for his Book was printed at Padua) publifh Things as his own, which he had but juft learn'd of the Italians? Or if he had been fo de-

Account of Books, \&cc. omitted.

void of Shame, could he have done it without being cenfured by the Italians, whereas he was rather applauded by them? This I confefs is beyond my Faith to believe.

XXV. A Paper omitted.

Logometria, auctore Rogero Cotes, Trin. Coll. Cantab. Soc. Aftron. N. 338. p. 5. \& Ph. Exp. profeffore Plumiano, \& R. S. S.
XXVI. Accounts of Books, \&c. omitted.

1. Lexicon Technicum, or an Univerfal Englifh Dictionary of Arts and N. 292. Sciences; explaining not only the Terms of Art, but the Arts them- P. 16g9. felves, by 7. Harris, M. A. and F. R. S. Folio, 1704.
2. Euclidis que fuperfunt omnia Gr. Lat. ex Recenfione Davidis Gre- N. 289. gorii M. D. Aftronomiæ profeffore Saviliano, \& R. S.S. Oxon. 1703 . Folio. p. 155^{8}.
3. Apollonii Pergrai Conicorum Libri octo, \& Sereni Antifenfis de Sectione Cylindri \& Coni Libri duo. Fol. Reg. e Theatro Oxon. 1710. p. 732.
T be $5^{\text {th }}, 6^{\text {th }}$, and $7^{\text {th }}$ Books of Apollonius are bere tranflated out of Arabic from a MS. by Dr. Hally, in which Language they are only to be found; who bas alfo endeavour'd to reftore the $8^{\text {th }}$ Book, which was wholly loft. The Greek Text of Serenus Antiffenfis was never publifb'd before.
4. De Locis Solidis fecunda Divinatio Geometrica, in quinque Libros in- N. 29 r. juria Temporum amiffos Arifteei fenioris Geometræ; Auctore Vincentio p. 160%. Viviani, Magni Ducis Etruria Mathematico Primario, \& Regalis Societatis Londini Sodali. Opus Conicum in lucem prolatum, An. i yo r. Folio.
5. Methodus Incrementorum, Auctore Brook Taylor, LL. D. \& R. S. S. N. 345.

An Error in the $25^{\text {1h }}$ Propofition of this Book is bere corrected by Dr. Taylor. p. 339 .
This Error does not affect the Reafoning by which I find the Diftance of the Center of Percufion from the Axis of Rotation ; but it is this, that I fuppofed the Center of Percuffion to be in the Plane paffing thro' the Center of Gravity, and perpendicular to the Axis of Rotation; which is a Miftake, and is corrected by the following Propofition.

PROP. PROB.] To find the Difance of the Center of Percufion froms the Plane pafing through the Center of Gravity and perpendicular to the Axis of Rotation.
SOLUTION.] Let this Figure be fuppofed in the Plane paffing through the Axis of Rotation, and in which the Center of Percuffion is fought.

Let $A B$ be the Axis of Rotation, $A G C$ be the Interfection of this Figure with tie Plane paffing through the Center of Gravity, and perpendicular to the Axis of Rotation; G be the Point whereon a Line, raifed perpendicular to this Figure, will pafs thro'
 the Center of Gravity ; $B E$ be a Line parallel to $A G$, wherein is the Center of Perculfion. Then to find the Diftance $A B$, let p ftand for an Element of the Body propofed, ftanding per- $A B$ will be equal to the Sum of all the Quantities $p \times G C \times C D$ taken with their proper Signs, divided by the Body itfelf multiplied into the Diftance $A G$.

Having thus found the Diftance $A B$, fuppofe the Plane of the Figure in Prop. 25. to cut the prefent Figure at Right-Angles in the Line BE, and the Center of Percuffion will be rightly determined by that Propofition.
6. Commercium Epifolicum Collinii Es aliorum de Analyi promota. Pub-
N. 342 . P 173. viid. rupra D. 162 .

- Did infra
 c. IV.S.V.

 lifhed by the Order of the Royal Society, in relation to the Difpute between Mr. Leibnita and Dr. Fobn Keill, about the Right to the Invention of the Methad of Fluxions, by fome call'd the Differential Metbod.This Book confifts of Letters, and other Papers, which pafs'd many Years ago between Mr. Collins, Sir Ifaac Newton, Mr. Leibnilz, Dr. Barrow, Dr. Wallis, Mr. Oldenburg, Mr. Y. Gregory; the Occafion of their being publifh'd was this:

The Editors of the Aeta Lipfenfia for Fanuary 1705, (in giving an Account of Sir Ijanc Newton's Treatife of Quadratures) began to reprefent, that Mr. Leibnitz was the firf Inventor of the Differential Method, and that Sir Ifanc Newton had fubftituted Fluxions for Differences; Dr. Fobn Keill upon this, in a Paper publifh'd in the Pbilofopbical Tranfactions, (for September and Oatober 1708.*) afferted the Invention to Sir Ifaac Nervton, appealing to the Letters which Dr. Wallis had printed in the Collection of his Works, publifh'd many Years fince. Mr. Leibnitz upon this complain'd to the Royal Sociely of Dr. Keill in 1711 ; whereupon the Sociely appointed a numerous Committee of Gentlemen of feveral Nations to fearch old Letters and Papers, and to report their Opinion, which was,

That from thefe Papers it appears, that Sir Ifaac Nerwton had found the Method of Fluxions in or before the Year 1669.

That it does not appear from thefe Papers, that Mr. Leibnitz had the Method of Fluxions or Differential Method before the Year 1677°

Dr. Wallis (in the fecond Volume of his Works publif'd) in 1695 , afferted the Invention to Sir Ifaac Neroton in thefe Words. - Nerwtoni Methodus de Fluxionibus - quam ego defcripfi ex binis Newtoni Literis, aut carum alteris, Junii 13 , \& Octob. 24, 1676 , ad Oldenburgum datis, sum Leibnitio tum communicandis -ubi Methodum hanc Leibnitio exponit tum ante decem Annos nedum plures [i. e. ann. 1666 vel 1665_{5}.] ab ipfo excogitatam - Several Letters follow'd hereupon, between Mr. Leibnilz and Dr. Wallis, in which Mr. Leibnitz did not deny that Sir Ifaac Necwton had the Method Ten Years before thofe Two Letiers ; pretended not that he had the Method fo early ; brought no Proof that he had it before the Year 1677; no other Proof befides the Conceffion of Sir IJaac that he had it fo early; affirm'd not that he had it earlier; and commended Sir IJaac Necoton for his Candour in this Matter.

When Mr. Fatio in 1699 fuggefted that Mr. Leibnitz, the Second Inventor of this Caiculus, might borrow fomething from Sir Ifaac New-

Sir Ifac Newton's Experiments, \&cc.

toh, the oldeft Inventor by many Years, Mr. Leibnitz, in his Anfwer in the ACF. Erud. for May 1700, allow'd that Sir Ifaac had found the Method apart, and did not deny that Sir Ifaac was the oldeft Inventor by many Years ; and afferted then no more to himfelf, than that he alfo had found the Method apart, or without the Affiftance of Sir Ifaec; nor did he put in his Claim to be the firft Inventor, till after the Death of Dr . Wallis, the laft of the old Men who were acquainted with what had pass'd between the Englifh and Mr. Leibnitz forty Years ago. The Doctor died in OEtober 1703, and Mr. Leibnitz began not to put his new Claim before January 1705.

C H A P. II.

$\begin{array}{llllll}O & P & T & I & C & S\end{array}$

I.HE Manner of Separating the primitive Colours of Light to fuch Sorte of Sip a Degree, that if any one of the Separated Lights be taken apart, Ihace New. its Colour fhall be found uncbangeable, was not publifh'd before ments of Light Sir Ifaac Newton's Optics came abroad. For want of knozving bow this and Colours was to be done, fome Gentlemen of the Englifh College at Liege, and Mon- repeated, by fieur Mariotte in France, and fome others, took thofe for primitive Co- Mir. J.T.Delours which were made by immitting a Beam of the Sun's Light into a dark Room tbrough a fmall round Hole, and refraEting the Beam by a tri- P. 433. angular Prifm of Glass placed at the Hole. And by trying the Experiment in this Manner, they found that the Colours thus made were capable of Change, and thereupon reported that the Experiment did not fucceed. And lately the Editor of the Acta Eruditorum for October 1713, pag. 447, defired that Sir If. Newton would remove this Difficulty. The Objections (fays he) which have been made by learned Men, both in France and England, againft that Theory of Colours, have been very fuccefffully anfwer'd by the moft perfpicatious Neroton; as is abundantly manifeft from the Englifh TranfaEtions, N. 84, 85, 88, 96, 97, 121, 123, 128. Whence Vid. fupra, it is defired by many, that he would be pleafed to explain himfelf upon V.I. C.IIf. that Difficulty, which was ftarted by the moft ingenious Mr. Mariotte, in his Treatife of Colours, p. 207, \mathcal{F}° c. who while he lived was a very indefatigable as well as fuccefsful Enquirer into the Nature of Things. His Difficulty was this. At the Diftance of about 25 or 30 Feet he received upon a Paper an entire Ray, let in through a fmall Hole into a darkned Chamber, which was tranfmitted through a triangular glaís Prifm; and the violet Colour, which poffefs'd a Space of above three Lines, he let pafs through a Slit of two Lines, which he received upon another Prifm placed very obliquely. When this was done, he obferved fome Part of this Light to be changed into Red and Yellow. In like Manner he found,
found, that Part of this red Light would be changed into Blew and Violet. Now if this Tranfmutation is admitted, the whole Nervtomian Theory mult fall, as is plain from the Tranfactions for 1706, p. 60. Now Mariotte took the Diftance of 30 Feet, left in a fmaller Diftance any one fhould pretend, that there was not a compleat Separation of the heterogeneous Rays. To us the Experiment of Mariotte would appear decifive, if the whole Blue Light had been changed into fome other. Tbus far the Editor of the Acta. In Anfwer to which it is to be obferved, that the Red and Yellow which came out of the Violet, and the Blue and Violet which came out of the Red, might proceed from the very brigbt Light of the Sky next encompafing the Sun, and that Several Sorts of Rays which come from Several Parts of the Sun's Body are intermixt in all Parts of the colour'd Spectrum, which falls upon a Paper at any Diftance from the Prifm. In this Manner of Trial, for making the Experiment fucceed, the Light of the bright Clouds, immediately furrounding the Sun, Joould be intercepted by an opake Skreen placed in the open Air witbout, at the Diftance of ten or twenty Foot from the Hole tbrough which the Sun fines into the dark Room. And in the Skreen there foould be a fmall Hole for the Sun to Jine through. The Hole may be citber round or oblong, and not above one eighth or one tenth Part of an Inch broad; So that the Skreen may intercept not only the bright Light of the Clouds next encompafing the Sun's Body, but allo the greateft Part of the Sun's Light: For thereby the Colours will become lefs mixed. Tbe Beain of Light which paffes tbrougb this Hole, mujt afterwards pafs thro' the otber Hole into the dark Room, and the Primm muft be placed parallel to the oblong Hole in the Skreen, and the refraiting Angle therioof be fixty Degrees or above. In this Manner the Experiment may be tried weith Succefs, but the Trial will be lefs troublefome if it be made in fuch a Manner as is defrribed in the fourth Propofition of the firft Book of Sir Ifaac Newton's Optics.

Sir Ifaac Newton therefore, upon reading what bas been cited out of the Acta Eruditorum, defired Mr. Defaguliers to try the Experiment in the Manner defcribed in the faid Propofition; and be tried it accordingly zeith Succefs before feveral Genilemen of the Royal Society, and afterwards before Monfieur Monmort and others of the Royal Academy of Sciences: How this and otber concomitant Experiments were tried and fucceeded, is defcribed as followes.

Experiment 1.] Having few'd together end-wife two Pieces of Ribbon four Inches long each, the one Blue and the other Red, whofe common Breadth was $\frac{3}{7}$ of an Inch; I caufed it to be held in fuch Manner, that the Light which fell from the Clouds thro' the Window was fo reflected, that the Angle made by the Rays of Light, which came in at the Midde of the Window, with the Plane of the Ribbon produced, was equal to the Angle made by a Line drawn from the Ribbon to my Eye, and the faid Plane of the Ribbon. My Eye was placed as far behind the Ribbon as the Window was before it, the Diftance from which to me was about 12 Feet. Then looking thro' a Prifm at the Ribbon, it appear'd broken afunder in the Place where the Blue and Red Half
join'd.
join'd. If the Prifm was held with the refracting Angle downwards (or laid with one of its Planes flat upon the Nofe) the blue Half of the Ribbon appear'd to be carried down lower than the Red, as at B, R; but Fig. 36 . if the refracting Angle of the Prifm was turn'd upwards, (as when the Prifm has one of its Planes laid flat to the Forehead) then the blue Half of the Ribbon was lifted up, as at C_{p}.

The Prifm was of white Glafs, having every Angle of 60 Degrees; but when inftead of it, one of a greenifh Sort of Glafs, fuch as Object Glaffes of Telefcopes are made of, was ufed, having the refracting Angle which I look'd through of about 48 Degrees; the fame Pnænomenon was more diftinct, this Glafs having no Veins, but the Red and Blue were nearer to a ftreight Line; in fuch Manner, that if A reprefent the Ribbon feen through the firf Prifm, B will reprefent the Ribbon feen through the fecond Prifm, Fig. 37. If the refracting Angle of the Fig. 37. laft Prifm had been as great as that of the firf, the Light being tranfmitted through too great a Body of greenifh Glafs, the Phænomenon would not have fucceeded fo well.

The blue Ribbon being fomewhat too pale, and the Red a little dull, I repeated the Experiment with a Skain of Blue, and one of red Worfted join'd together in the Middle as the Ribbons were before; and the Colours of both being very intenfe, the Experiment fucceeded better with both Prifms. All that were prefent trying the Experiment found it to fucceed, and that every Circumftance anfwer'd to the Account given in Prop. x. Theor. I. Book 1. of Sir Ifaac Newton's Optics, as far as the Directions there given were follow'd. So that it appear'd that the Blue being carried lower than the Red in the firft Cafe, and lifted higher in the fecond, was owing to the greater Refraction of the blue Ray: For though each Part of the Ribbon or Wortted reflected all Manner of Rays, yet the Phrenomenon was very apparent; as alfo that the blue, Ribbon or Worfted reflected the blue Rays more copioufly than the red Rays, and that the red Ribbon or Wortted reflected the red Rays more than the blue ones, becaufe the Red of the blue Half feen through the Prifm was lefs intenfe than that of the red Half, and the Blue or Purple of the red Half feen thro' the Prifm was lefs intenfe than that of the blue Half.
N. B. If the Ribbon or Wortted is laid upon any enlightened Body, the Phænomenon will not fucceed fo well; the Colours of the Body feen through the Prifm mixing with thofe of the Ribbon or Worited. Even a black Body will not rio, if Light fall upon it : But there muft be a black Cloth behind, in fuch Manner, that no Light falling upon it can be reflected fo as to difturb the Phenomenon. And if a fhortfighted Perfon looks through the Prifm, a concave Lens between his Eye and the Prifm, will render the Phænomenon more diftinct than it would otherwife be.

Exp. 2.] Some Days after the Sun flining, I made two Holes H, h, Fig: 38. in the Window Shut S, s, of a darkned Room ; through which letting the Sun's Beams pafs, by Means of two Prifms $A B$, (one near each

Hole) I opened the Rays coming from the Sun into the two coloured Speltra α, ρ, where the following Colours were very diftinct, viz. red, Orange, Yellow, Green, Blue, Purple and Violet. Now the Reafon of their being more diftinct than ordinary was, that the Prifins which I made Ufe of, were made of the greenifh Glafs mentioned before; which is very free from thofe Veins by which the Colours are too much thrown into one another, by the beft white Prifms of the common Sort.

The forementioned colour'd Speatra being thrown into the Room, to the Diftance of about 20 Feet from the Window where the Sun's Light came in, I caufed a Piece of white Paper $\pi, \frac{3}{4}$ Inch broad, and 5 Inches long, to be held within the refracted Rays (at a Diftance of io Feet from the (Window) which produced thefe Colours in fuch Manner, that by turning the Prifms round their Axis, I could make the red Ray of the Spectrum made by the one Prifm, fall upon one Half of the Paper, and the purple Ray of the Speorrum made by the other Prifm fall upon the other Half; for the Speitra were both vertical, the Lines which terminated the long Sides of them towards each other juft touching, as appears in Fig. 3%. Then at the Diftance of 9 Foot, looking through the Primo C at the Paper thus colour'd, the red half appear'd very much leparated from the Purple, the one feeming lifted up from the other ; the Red or Purple appearing the higheft, according as the refracting Angle of the Prifm was either held upwards or downwards. The Phænomenon is much much diftinct this Way than any other; for the Paper not only leems divided into two, when it is colour'd by a red and a purple Ray, but alfo by a red and blue, Fig. 39. by a red and a green Ray, Fig. 40, or indeed by any two Colours that are different, how near foever their Places in the Spectra be to each other. The Halves of the Paper appear, when view'd through the Prifm, to be farther from each other, when the Paper is tinged with fuch Colours, as are farther from each other in the Series of Colours in the Spectrum; and neareft, though ftill divided, when neighbouring Colours fall upon the Paper, as Yellow and Green, or a light and a deep Green. But the Paper appears no
Fig. 41. Way divided, when colour'd with the Red of the two Speetra, Fig. 41. if thofe Reds are equally intenfe; and fo of the other Colours.

Exp. 3.] I held a Lens of about three Foot Radius, at the Diftance of fix Feet from the oblong Paper, (on which a red and a purple Ray falling, made it look half red and half purple) and I projected the Image of the faid coloured Paper at the Diftance of about fix Foot on the other Side of the Lens, on a white Sheet of Paper; where it was obfervable, that when the red Half was diftinctly painted on the white Paper (which was known by the Edges of the Image being regularly terminated) then the blue Half of the Image was confufed: But if the white Paper was brought about two Inches nearer to the Lens, the Image of the blue Half became diftinct, and that of the red Half confufed.

I tried the Experiment with a Paper coloured half Red and half Blue, the Red with Carmine, and the Blue with Smalt, making the Candle to enlighten
enlighten the Paper, (the Room being otherwife dark) and the Experiment fucceeded in the fame Manner. The Experiment thus made, is the fame that Sir IJaac Newton gives an Account of, Book 1. Part i. Theor. I. of bis Optics. Only it is to be obferved, that when the oblong Paper is coloured with Red and Blue from the Prifms, the focal Place, where the red Part of the Image is diftinct, is more diftant from the Place where the blue Part of the Image is diftinct, than when the Paper is coloured with the Painter's Powders, and much more vivid.

The $42^{\text {d }}$ Figure fhews the Projection of the Paper tinged with the Fig. 42. Rays; and Fig. 43. the Projection of it when painted; where a black Fig. 4ぇ Thread is wrapp'd round the red and the blue Part, that the Diftinetnefs of the Image of the Thread may fhew when the red or when the blue Part of the Image of the Paper is moft diftinct.
N. B. When the Candle enlightens the painted Paper, fet an opaque Body as B between the Candle and the Lens; left the Image of the Candle being alfo projected, fhould difturb the Experiment.

Exp.4.] Having made an Hole of $\frac{1}{4}$ Inch Diameter in the WindowShut of the darkened Room, I fuffer'd a Sun-Beam to come into the Room, which I intercepted with a Prifm at the Diftance of five Inches from the Hole; and after its Refraction in paffing through the Prifm, I received it upon a Sheet of white Paper, where it was coloured, making an oblong Image of the Sun or Specirum of about nine Inches in Length, and two in Breadth ; which Breadth was nearly equal to the Diameter of the round Image of the Sun received upon a Paper at the fame Diftance from the Hole, which here was 18 Foot. Or if the Sun be too high, a Looking-Glafs being put in the Room of the Prifm, will throw a white round Spectrum upon the Paper, which held at the laid Diftance of 18 Foot, will have its Diameter equal to the Breadth of the colour'd Speetrum.

The Colours of the Spectrum were thefe; red, orange, yellow, green, blue, purple, and violet, though the Violet was fo faint in this as to be fcarce perceivable. See Fïg. 44.

Fig. 44.

N. B. The Axis of the Prifm in this, and all the other Experiments hereafter mentioned, muft be perpendicular to the Ray that falls on it ; and the Plane, into which the Ray enters, muft be held in fuch a Pofition, that the Angle, which fuch a Ray makes with that Plane when it enters, may be equal to the Angle made by the middle Line of thofe Rays which emerge after Refraction, on the other Side of the refracting Angle of the Prifin, with the Plane out of which they emerge. That is $\tau B D G=\ulcorner A E H$.
If the Plane $A C$, on which the Sun-Beam falls, be turned nearer to a Perpendicular to the Sun-Beam than before, the Speetrum will be much longer: If it be more inclined to the faid Beam, the Spectrum will be fhorter, and in both Cafes lefs diftinct. See the Spectrum DE and the Fig. 45, 46 speitrum de where Hb reprefents the Hole in the Window-fhut in each Cafe; $A C, a c$ the Plane of the Prifm on which the Rays enter; $B C, b c$ that out of which they emerge; P, p the perpendicular, and C_{2} s the refracting Angle.

Fig. 5\%.

If the Plane $A C$ be ftill more oblique to $H F$, all the Light will be reflected, and there will be no colour'd Image or Spectrumb made by Refraction at all.

But if it be held fo as to be more nearly perpendicular to the SunBeam than in Fig. 47. the whole Beam will indeed enter the Prifm; but meeting with $B C$ the lower Surface of the Prifin, or rather the Surface of the Air contiguous to it, fome of the Light will by the Plane $B C$ be reflected to $d e$, pafing almoft perpendicularly through $A B$; and the reft will emerge through $B C$, and by Refraction make the imperfect Speetrum D E. See Fig. 45 .

If the Sun-Beam enter $A C$ perpendicularly and in the Middle of it the Light will be all reflected as in Fig. 48. fome of it by the Plane $B C$ to R, and the reft by the Plane $A B$ to p. But if the Beam fall nearer to A, (ftill perpendicularly) it will be all reflected by the Plane $A B$; if nearer to B, it will be all reflected by the Plane $B C$.

In order therefore to have the coloured Spectrum as it ought to be, Care muitt be taken that the emerging coloured Light may make the fame Angle with the Plane $B C$, as the immerging Light does with the Piane $A C$; that is, the Angle $A E H$ mult be equal to $B D G$, as was faid before, Fig. 44. which may alfo be feen on the enlightened Duft in the Air. But the beft Way is to turn the Prifm on its Axis, and at the fame Time look at the coloured Specirum, which will rife and fall and become longer and fhorter as you turn your Prifm ; and between the Afcent and Defcent of the Image, will appear ftationary ; there ftop the Prifm, and the Reflection will be fuch as is required for all the Experiments hereafter mention'd.

In order to have the Prifin move freely on its Axis, and ftop any where, I fix'd each End of it into a triangular Collar of Tin, from the End of which came a Wire, which was the Axis of the Prifm produced ; and fo I laid it on two wooden Pillars, with a Notch on the Top to receive the Wires, and fixed it to a fmall Board juft broad enough to ftand faft. Sce Fig. 49.

Exp. 5.] I took the Prifm CD, and thro' it looked at the coloured Spettrum $R P$, which appeared then round and white as at S, jult as if it had been the Sun's Light received on a Paper from the Hole H, and feen with the naked Eye. In this Cafe the Prifm $C D$ muft be held in directum with $A B$, and the refracting Angles in the two Prifms muft be equal. This Spectrum appearing white but juft in one Point, is not fo readily found ; but the beft Way is to look through the fame Prifm $-A B$ which makes the Spectrum, which may eafily be done if it be pretty long, and then $R P$ will be feen white and round, and as at S, as if coming directly from H. See Fig. 50 .

Exp.6.] I held a broad Lens $L l$, ground to a Radius of $2 \frac{1}{2}$ Feet, in fuch Manner that the whole coloured Speitrum fell upon it; and after Refraction all the Colours appeared to converge, if received on a Paper at $p p$; bur when the Paper was held in the Focus at F in the Pofi-
tion $\pi F \pi$, the SpeEtrum was round and perfetly white by the Union of all the coloured Rays. If the Paper was held at $\Pi \Pi$, the Colours appeared to diverge from each other, but then the red was uppermoft, which before ufed to be the lowelt, and fo on in an inverted Order.
I tried the fame Experiment with a Lens of one Foot Radius, with one of 9 Inches, and with another of 7 , and the Succefs was the fame. See Fig. 51. where the $R O, X, G, B, B, P, V$, exprefs the Colours.
N. B. Care muft be taken that the very End of the Red, and the Extremity of the Violet, be taken in by the Lens; otherwife the Spectrum will not be perfectly white with the Glafs's Focus. ?
There is no fixed Diftance of the Prifin from the Lens, but it ought to be brought fo near the Prifin, that the two Ends of the Spectrume may fall nearer the Axis of the Lens than the Edges of the Lens; becaufe there the Refraction is not fo regular.
Behind the Lens L, which made the Colours converge into white at the diflinct Bafe or Focus F, I placed the Lens l, which made the white be at f the diftinct Bafe of the two Glaffes combined; and the Experiment fucceeded as before. Fig. 52.

When the Paper was held in the Focus of the Lens, fo as to receive the white Image of the coloured Spectrum projected by the Lens; if with a Card I intercepted the red Ray, the white appeared tinged with purple, and if I intercepted the violet or purple Ray, or both, the white appeared tinged with red; and if the red was intercepted at the fame Time, the Specitrum appeared to be a Mixture of yellow, green and blue. If any fingle Colour was fuffered to fall upon the Lens, the reft being intercepted, that Colour would continue the fame; only it would be more intenfe in the Focus of the Lens.
Exp.7.] I took a Board (Fig. 53.) qhs which ftood reclining on a Fig. ss: Prop t, having an Hole of a Quarter of an Inch Diameter at b, and behind it a Prifm B fupported on two Props as abovementioned, fo as to turn eafily about its Axis; and having fet this Board on the Ground with the Prifm behind it at B; by turning the Prifm $A C$ about its Axis, I firft made the red Ray of the coloured Spectrum pafs through the Hole b, and fall obliquely upon the fecond Prifm B. This Ray after its Refraction in paffing through the fecond Prifm, was carried up to the Cieling of the Room at the Hlace marked R; then I made the purple Ray fall upon the Board, and pafs through the Hole b, as the red had done before ; and after Refraction through the Prifm B it was carried up the Ceiling at P. And the green Ray being afterwards made to pafs the fecond Prifm in the fame Manner, went up to G : And fo of all the intermediate Rays, which were by this fecond Refraction thrown to the intermediate Places on the Ceiling between R and P.

Care is to be taken that the fecond Prifm be placed oblique to the Rays which come through the Hole b, left they be reflected, as they would be, if the Board being in the Pofition $2 S$, and the fecond Prifm in the Pofition $L N M$, the Ray from the firlt Prifm be ρb; for

Sir Ifaac Newton's Experiments of, \&cc.

Fig. 54 .

Fig. 53.
then it will be reflected upwards to σ inftead of being refracted, Fig. 54. Neither muft the Plane of Immerfion be too oblique, left the Incident Ray be reflected downwards by it, as the Ray $R b$ is by the Prifm B thrown to E, in Fig. 55. Several have confeffed to me that they at firt ufed to fail in this Experiment, for want of fetting the feconil Prifm in a due Inclination.

Though the Colours by the fecond Refraction on the Ceiling appeared unchanged, when feen by the naked Eye, yet if viewed through a Prifm, they afforded new Colours, (except fome Part of the Red, and fome Part of the Violet) which was owing to their not being fully feparated; for which Reaion I made the following Experiment, to prove, that if the Colours be well feparated, they are truly homogeneal and unchangeable.
N. B. When the Prifms are good, and no Clouds are near the Sun, the Extremity of the Red or Violet will afford unmixed Colours in this Experiment; otherwife not.

Exp.8.] Having made a Hole in the Window-Shut 2 Inches wide, I applied to it a Tin-plate, which fliding up and down hid all this Hole in the Wood, and only tranfmitted a fmall Beam through its own Hole H, whote Diameter was $=\frac{1}{16}$ Inch. This Beam, by Means of the Looking-Glats L, placed on the Board of the Window $X W$, I reflected horizontally to the other End of the Room. But to correct the Irregularity of the Reflection of the Looking-Glafs, I made Ufe of the Frame of Pafte-board $P p$, which had an Hole in it b of $\frac{1}{1}$ Inch likewife; and placing it at $P \rho$, I fuffered fome of the reflected Beams to pals through it, fo as to tall upon the Lens $F E$ (convex on both Sides, and ground to a Radius of $4 \frac{1}{2}$ Feet) at the Diftance of 9 Feet, fo that the Image of the Hole b was projected to f on the other Side of the Glaifs, at the Diftance of 9 Feet more. Juit behind the Lens, which by a Screw in the Stand S might be raifed or fet down, fo as always to receive the Beam along its \AA xis, I placed a Prifin A (upright on one of its Ends and eafily moveable about its Axis, by reafon of its Wire turning freely in an Hole in the folid Piece of Wood \mathcal{T}, which food on another Stand behind the Lens) as near as I could to the Lens $E F$, fo that the Image of b inftead of being round, white, and projected to f, was caft fidewife on a white Paper ftretched on a Frame, and appear'd coloured, and 30 or 40 Times its Breadth, as at $M N$. The Colours in this Cafe were very vivid and well feparated, only the Violet had fome pale Light clarting from its End, upon Account of fome Veins in the Prifm A, and the Light not coming directly from the Sun, reflected; which ought not to liave been, if the Sun had been low enough to have thrown the Rays a good Way into the Room without the Help of a Looking-Glafs.

To thew that the Colours in this Spectrum were fimple and homogeneal Lights, I made the following Experiments.

Exp. 9.] Having made an Hole b in the Paper which received the coloured Speefrum, I fuffer'd the red Light to pals; which being re-

An Experiment to confirm the Doctrine, \&cc.

fracted by a fecond Prifm, fell upon anothes Paper at T, where it appeared ftill red, whether feen with the naked Eye or Prifms of different Fig. 57. refracting Angles. To the Eye which faw it through the Prifm V, it appeared indeed lower as at t, but red, round and unchanged. I made the Experiment upon all the Colours, which by this Means appeared to be fimple and homogeneal. See Fig. 57 . where the fame Letters denote the Lens, Prifm and firft Paper.

Through the fame Lens and Prifm the SpeEErum was made to fall on a Book; then through the Prifm F it appeared unchanged; and the Letters in the Book which crofs'd the SpeEIrum were as diftinct as when feen with the naked Eye. See Fig. 58.

```
Fig, 5%.
```

N. B. The Axis of the Prifm F ought to be perpendicular to the long Axis of the SpeEirum sm thrown on the Book, which will appear as at $\sigma \mu$; and the Prifm in the Pofition reprefented at F, with its flat Side towards the Nofe: For that is the moft convenient Pofition for looking at the Spectrum in thefe Experiments.

I fuffer'd the purple Ray only to pais through the Hole h, and fall upon a Book at P, the Letters of which appear'd at π, and were as diItinct through the Prifm 2 as when feen with the naked Eye ; and I had the lame Succefs with all the other Rays. See Fig. 59.

But if a Sun-beam as r comes through the Hole H directly upon the Book at W, an Eye looking at it through a Prifm at X will fee this Beam at r oblong and coloured, and the Letters on which it falls, confufed. See Fig. 59.
N.B. The Lens ought to be very good, without Veins or Blebs, and ground to no lefs a Radius than I mention'd in the Experiment ; though a Radius of a Foot or two longer is not amifs. The Prifm ought to be of the fame Glafs as the Object-Glaffes of Telefcopes, the white Glafs, of which Prifms are ufually made, being commonly full of Veins. And the Room in thefe laft Experiments ought to be very dark.

A few Days after, having got very good Prifms made for the Purpole of the abovementioned Glafs, I made all the Experiments over again, before feveral Members of the Royal-Society, with better Succefs; and had the Spectrum very regularly terminated, without any pale Light darting from the Ends of it .

For a further Account of Experiments to this Purpofe, fee Sir llaac Newton's Optics, book 1. Part 1. to which I might have referr'd the Reader altogether; but that I was willing to be particular in mentioning fuch Things as ought to be avoided in making the Experiments abovementioned; fome Gentlemen abroad having complained that they had not found the Experiments anfwer, for want of fufficient Directions in

Sir IJaac Nereton's Optics; though I had no other Directions than what I found there.

An Experiment to confirm the Dostrine of Re . II. After the Experimentum Cirucis made by two Prifms, I Mould not frangebibility, give the following Experiment, but that it is fo eafy to be made, that
by it thofe who want the Apparatus (or are unwilling to be at the Pains) to make the Experimentum Crucis, may at any Time fatisfy themfelves of the Truth of the forementioned Doctrine.

Let the Candle A be fet before the Bar of a Chimney Looking-Glafs,

5 ig.

Fig. 60.
Fig. 61.

Fig. 62. fucli as is reprefented by $H H$, Fig. 60. which is a Piece of LookingGlafs Plate confoting of four Planes, feen in the Section of it a $f d r$, viz $d \rho$, which is quick-filver'd behind, $f a$ a Plane parallel to it, $f d$ one of the Side-pianes bezzell'd towards $d e$, or inclined to it in an Angle of about 40 Dcgrees, (though from 30 to 40 will do, but the greater the Angle the better, if it does not exceed 45°.) \& 6 the other Side-plane inclined in the fame Angle to βd.

The Rays of the Candle which come from A to γ fall obliquely on the Plane a $:$, jo that inftead of going on to a, they are by Refraction made to incline more towards the Perpendicular $p p$, namely, to go on in the Line γc, and then are reflected from the Point c on the quick-filver'd Surface, in the Direction $c \%$, fo as to make the Angle $x c d=\gamma c R$. Now as the Rays which would go to x, if not refracted, emerge obliquely from the Plane a β they leave the Direction $c x$, and decline from the Pcrpendicular $\pi \pi$, and, being differently refracted, open into four differently colo!r'c! Rays, viz. $b R$ a red Ray, $b Y O$ a Ray made up of orange and yellow; $b G B$ a Ray made up of green and blue, or a Sea-green, and $\& P$ a purple Ray.

If from the Place E e you look full upon the Point b, the Spectrum or Image of the Candle at \dot{b} will appear double ; but not mixed; that is, there will appear a Sea-green Spot, and a red Spot, as it were, one upon another, but not $f 0$ as to produce a mixed or intermediate Colour. Then if the right Eye or Eye at E be fhut, there will appear only a green Spot to the Eye at e; if the Eye at e be fhut, the Eye at E will fee only a red Spot.

If you come nearer to b, fo that the Eyes at $\varepsilon 1, \& 2$ receive the mof and the leaft refrangible Rays, there will be a double Speefrum, viz. a red and a purple one juft touching, or upon one another : And the Phænomenon will anfwer as before, Fig. 60.

If keeping both Eyes open, you direct their Axes towards O a Point nearer than the ufual Place of the compound Speetrum S, Fig. 6r. which Point is in a Line from the Nofe N to the Point S; or in other Words, if you look full at O, or at the End of your Finger held in O, the red and the blue (or purple Spot) will appear to be divided from each other after the Manner reprefented at pr in Fig. 62. where the red will appear to be on the Right-hand, and the blue on the Left.

To make plain what is meant by feeing the Spestra p and r whilf we look full at O, I beg Leave to explain the Diftinction between looking and feeing; that I may the better fhew how this Phænomenon proves that the Senfation of different Colours is caufed by Rays differently refracted.
Definition 1.] The Optic Axis is a Line which, going thro' the Center

the Doctrine of Refrangibility.

of the Convexity of all the Coats and Humours of the Eye, falls upon the Middle of the Retina, as αa or A a, Fig. 63.

Def. 2.] To look at any Point, is to turn both Eyes towards it in fuch Manner, that the Optic Axes making an Angle at the faid Point as a, the Rays from a may have the Optic Axis for their Axis, and (by their Convergence upon the Retina after Refraction in the Eve) may paint the Image of the faid Point upon the Middle of the Reina of each Eye, where the Optic Axis in each Eye falls.

Def. 3.] To fee without looking, is to direct the Optic Axis to fome other Place than to the Point which is then feen; and in fuch a Cafe, the Image of the Point feen will be projected upon a Part of the Retina of each Eye, where the Optic Axis does not fall, namely, either nearer to the Nofe N, as in Fig. 61. at the Points of the Retina mark'd $n n$; or far- Fig. 61. ther from the Nofe than the Middle of the Retina, as at 00 in Fig. 6_{4}.

Whatever is Jeen, by being look'd at with both Eyes, always appears fingle, by reafon of the Communication between the Middlle of the Retina in one Eye, and the Middle of the Retina of the other ; there being no fuch Communication between any other Part of the Retina in one Eye, and the correfpondent Part of the Retina in the other, when thefe correfpondent Parts are equally diftant from the Nofe.
There is indeed a Communication between the nervous Fibres on the Rightfide of the Retina of one Eye, and the nervous Fibres on the Rigbt-jide of the Retina of the other Eye, and fo of those on the Left; but no fingle Object can be fo painted in each Eye, as to bave its Image on the riybt or left Part of one Retina that communicates with the right or left Part of the otber, of the fame Bignefs and at the fame Time as in the other; becaufe in whatever Pofition the ObjeEt is, it muft be nearer to one Eye than to the other, except it be juft in a Line from the Nofe betwixt the two Eyes ftreight forward.

Hence it is, that if there be two Candles fet before any one, the firft at the Diftarice of one Foot, and the fecond at the Diftance of two Feet, from the Eyes; he that looks at the fecond Candle at B will fee it fingle, but fee the firft Candle, or the Candle A double; one Appearance being in the Line $A D_{\boldsymbol{\gamma}}$, the other in $0 A E$, becaufe it paints itfelf upon 00 in the Retina of each Eye; which Points are not the middle Points, but farther from the Nofe than the Middles $m m$.
So if B be the firt Candle, and C the fecond, he that looks at B will fee C double, becaufe it is painted in the Retina at the Points $n n$ nearer the Nofe than $m m$; and fo will appear to be in the fame Pofition as $p r$, in Fig. 62.
If γp be two Candles fo difpofed, that by the Interpofition of a per- Fig. 65. forated Board $F F, \gamma$ can paint itfelf only in the Eye R, and p in the Eye L. Upon making the Optic Axes meet at B, and to tend towards ρ and γ, ρ and γ will each paint an Image on the Middle of the Retina of each Eye, by crofing their Rays at B : And thus the two Candles will appear to be but one, or rather to be in one Place, upon the Account of the Communication of the Middle of each Retina. But if inttead inftead of the Candles, e be a Piece of red Silk, and γ a Piece of green Silk, the fame Pofition of the Eyes will make an Image at B, appearing like a red and green Spot together, without a Mixture of the Colours. If ρ be a red hot Iron, and γ a Candle of Sulphur, the Phe. nomenon will be more diftinct. If the Optic Axes be turned direetly towards γ and ρ, as if there was no Board $F F$ in the Way, there will appear two Holes in the Board, the one having the red hot Iron in it, the other the Candle.

Now if, of the refracted Rays of the Candle in the firft Cafe, thofe which diverge from each other, fo as to fall into each Eye, caufe the fame Senfations refpectively, as the Rays which come from a red hot Iron, and thofe which come from a blue Candle; it is evident that the Candle in the firt Cafe affords red-making and blue-making Rays after Refraction, and that thofe Rays are differently refrangible; the red $b R$ the leaft refrangible, as declining lefs from the Perpendicular ** and the purple as $b P$, declining moft from the faid Perpendicular.

The fame will (cateris paribus) be found true in the intermediate Rays, and to be certain that the Experiment is as I have related it, the Planes αf and $f d$ of the Bar may be covered with Paper.

In Univerfal Spharico-Catoptric Theorem, by Mr. H. Ditton, n. 275. p. 1810.
III. The Finding of the Foci, both in Dioptrics and Catoptrics, eafly follows from the Calculation for the Curves called Cauftics. For nothing more is required, than that the Locus may be known in which the Radius (perpendicular to the Curve either refracting or reflecting) is a Tangent to the Diacauftic or Catacauftic Curve. Concerning which Method Mr. Hayes's Book of Fluxions lately publifhed may be confulted. We fhall undertake the Matter upon other Principles, as far as Catoptrics are concerned.

Fig. 66.

Let $D E F$ be a Portion of a concave Spherical Speculum, whofe Center is B, Semidiameter $B E$ or $B D$; alfo let A be a radiating Point placed in the Axis, from whence proceeds the Ray $A D$, which at the Point D is reflected in $D C$. Now the Diftance of the Focus C, from the Vertex of the Speculum E is to be inveftigated.

It is to be obferved, that we fuppofe the Point D to be very near E. For the remoter Rays go befide the Eye, which we place in the Axis $A E$, nor do they contribute any Thing to Vifion. And becaufe of the indefinitely fmall Arch $D E$, the Angles $D A B, A D B$, and alfo their Sum $D B C$, are the fmalleft poffible, and therefore will have the fame ratio to one another as their oppofite Sides. By making this the Principle of his Reafoning, Dr. Halley, Profeffor of Geometry at Oxford, arrived at his Dioptrical Theorem.

Thefe Things being premifed, let $A B=b, B D=B E=r$, $B C=z, C E=r-z$, which for Brevity we will call f. The Quantities b and r are known; for the Semidiameter of the Speculum, and the Diftance of the lucid Point from the Vertex are given; but z and f are unknown and required. Now in the Triangle $D A B$, it will
be Ang. $D A B . A D B:: r$. b. Alfo in the Triangle $D B C$, 'tis Ang. $B D C=A D B$ from the Nature of Reflection; and Ang. $D B C=$ $D A B+A D B$, by $E l$. Eucl. Therefore fince Ang. $D B C$ is as $r+b$, and Ang. $B D C$ as b; it will be alfo Ang. $D B C . B D C:: r+\bar{b} \cdot b$. And then it follows from the Principle above-mentioned, $D C, B C:$: $r+b . b$. But becaufe the Point D is very near the Point $E, D C$ will be eftimated as equal to $C E$; and therefore it will be $C E . B C:: r+b$.b, that is, $f . z:: r+b . b$. And by comparing the Sums of the Antecedents and Confequents to the Antecedents, $f+z . f:: r+2 b$. $r+b$. But $f+z=r$, therefore $r . f:: r+2 b \cdot r+b$, whence $f=$ $\frac{r+b r}{r+2 b}$. Q. E.I.

If we make $r+b=A E=d$, the Theorem will be abbreviated thus $f=\frac{r d}{2 d-r}$. But in either Cafe the Theorem will ferve for finding the Focus, whatever be the Form of the Speculum, or the Condition of the Rays.
Corol. 1. It will be $z d=d f-r f$, or $A E \times B C=A B \times C E$, or which is the fame Thing, the Line $A E$ is harmonically divided in the Points A, B, C, E. For the foregoing Equality of Rectangles is the Property of a Line divided in harmonical Proportion. This appears to be true, becaufe $f=\frac{d r}{2 d-r}$, and $z=r-f=r-\frac{d r}{2 d-r}$; whence by fubftituting thefe Values, the Equation becomes plane. So that in every fpherical Speculum, the Lines $D A, D B, D C, D E$, are Harmonicals ; and the radiating Point, the Center, the Focus, and the Vertex, are Points that conftitute an harmonical Divifion.
Corol. 2. Firft, if you make $d>r$, then by the Calculation f, or $\frac{r d}{2 d-r}$, is alwas greater than $\frac{1}{2} r$. That is, if the Diftance of the radiating Point is greater than the Semidiameter of the Speculum, the Diftance of the Focus will always be greater than a Quarter of the Di. ameter.
Alfo it will always be $\frac{r d}{2 d-r} \leftarrow r$. That is, the Diftance of the Focus will always be lefs than the Semidiameter of the Speculum.
Secondly, If you make $d=r$, it will be $f=\frac{r d}{2 d-r}=r$. That is, if the radiating Point be placed in the Center of the Speculum, its Image will there be united with it.
Thirdly, if you put $d<$ then the Expreflion of f will either be
Volitive,
pofitive, or negative, or infinite, according as the Quantity $2 d$ is either greater or lefs than the Quantity r, or equal to it.

If $2 d>r$, that is, if $d>\frac{1}{2} r$, then the radiating Point and the Focus lie on the fame Side of the Speculum.

If $2 d<r$, or $d<\frac{1}{2} r$, then the Image will be in the Axis of the Speculum produced beyond the Vertex.

If $2 d=r$, or $d=\frac{1}{2} r$, the Image is at an infinite Diftance, or the reflected Ray becomes parallel to the Axis.

Corol. 3. It may be determin'd very readily by Means of this Calculus, how the Motion of the Image correfponds with the Motion of the radiating Object in refpect of the Speculum. Let the Diftance of the Image from the Speculum be as before $\frac{d r}{2 \cdot d-r}$, when the Diftance of the Object is d. Now let the Diftance of the Object be any how changed, and of d let it become $n d$, making n to ftand for any Number Integer or Fraction. Then inftead of the former Equation $f=\frac{d r}{2 d-r}$, we Thall have another Equation to a new Focus $F=\frac{n d r}{2 n d-r}$. And if n is fuppofed to ftand for an integer Number, this fecond Diftance of the Object will be greater than the firft; but if n be a Fraction, then it will be lefs than the firft.

Thefe Things fuppofed, if $d>r$, and n be an Integer, it will be $F<f$, that is, it will be $\frac{n d r}{2 n d-r}<\frac{d r}{2 d-r}$, or $2 n d d r-n d r r<2 n d d r$ -dr r as is manifett.That is, in a concave Speculum if the Diitance of the Object be greater than the Semidiameter, then the Object withdrawing from the Speculum, the Image will approach nearer the Speculum. Again, let n denote a Fraction, and then it will be found, that $2 n d d r$ - $n d r r>2 n d d r-d r r$, or $F>f$. That is, as the Object approaches nearer the Speculum, the Image at the fame Time will withdraw farther from it.

Now let it be fuppofed that $d<\frac{1}{2} r$; and let $n d$ be any other Diftance of the Object, which is always lefs than $\frac{1}{2} r$. Then will $2 n d d r-n d r r$ and $2 n d d r-d r r$ be negative Quantities, or $n d r r-2 n d d r$ and $d r r-2 n d d r$ will be pofitive Quantities. And if n be an integer Number, then will $n d r r-2 n d d r>d r r-2 n d d r$, or $F>f$. But if n be a Fraction, then will $n d r r-2 n d d r<d r r-2 n d d r$, or $F \Sigma f$. That is, if in the Concave Speculum the Diftance of the Ob -
ject be lefs than a fourth Part of the Diameter of the Speculum, then the Object withdrawing from the Speculum, the Image will withdraw alfo. Or if the object approaches towards the Speculum, the Image will alfo approach towards it.
Now all thefe Conclufions which we have deduced, by tracing the Footfteps of the Calculation, are included in one Scholium, which Dr. Gregory, Profeffor of Aftronomy in the Univerfity of Oxford, has delivered in his Catoptricks.

Corol. 4. In the Equation $f=\frac{d r}{2 d-r}$, if d be fuppofed infinite, it will be $f=\frac{1}{2} r$, which is a Rule for parallel Rays, or for a radiading Object placed at an infinite Diftance. The fame Thing will follow, if b be made infinite in the Equation $f=\frac{r r+r b}{r+2 b}$.

Corol. 5. In the Equation $\frac{d r}{2 d-r}=f$, the negative Sign of the Quantity r being made pofitive, it will be $f=\frac{d r}{2 d+r}$; or in the Equation $f=$ $\frac{r r+b r}{r+2 b}$, changing the pofitive Sign into a negative, it will be $f=$ $\frac{r b-r r}{2 b-r}$; which gives a Rule for a Speculum which is convex towards the radiating Object. This Change of the Sign is very plain; for as in the concave Speculum it is $d=r+b$, fo in the convex it will be $d=b-r$.
Corol. 6. In a convex Speculum, (thofe Things remaining which we have taken Notice of at Corol.3. abouta concave Speculum) it will appear, that if n be an integer Number it will be $2 r n d d+n d r r>2 r n d d$ $+d r r$; and if n is a Fraction it will be $2 r n d d+n d r r<2 r n d d$ $+d r r$. That is, if the Object withdraws from the Speculum, or if it approaches towards it, the Image in like Manner will recede or approach.

Alfo it appears in a convex Speculum, that if the Object withdraws to an immenfe Diftance, yet that its Image will not recede from the Vertex beyond a fourth Part of the Diameter, but will there ftop in the middle Point between the Center and the Vertex. For fuppofing d or b to be infinite, it will be $f=\frac{d r}{2 d}$ or $\frac{b r}{2 b}$, in each Cafe $f=\frac{r}{2} r$.

To thefe may alfo be join'd the Solution of a Catoptrical Problem. To find fuch a Pofition of the radiating Point in refpect of a given Speculum, that the radiating Object may have a given Ratio to its Image made by the Speculum. Let the given Ratio be that of r to q, and by the Symbol O let the Magnitude of the Object be denoted, let I be the Image, d the Diftance of the Object, and f of the Image from the Speculum. Now as Dr. Gregory has demonftrated, it will be $0, I: ; d, f$. That is, the

Object and the Image are directly proportional to their Diftances from the Vertex of the Speculum. And becaule it is required that it may be a $I:: r \cdot q$; it muft alfo be $d . f:: r \cdot q$; or inftead of f taking its Value, $d \cdot \frac{d r}{2 d-r}:: r . q$, whence $2 d q-r q=r r$, and $d=\frac{r r+r q}{2 q}$. Now becaufe $d r=\frac{r^{3}+r^{2} q}{2 q}$, and $2 d-r=\frac{r r}{q}$; it will be f or $\frac{d r}{2 d-q}$ $=\frac{r^{3}+r^{2} q}{2 q} \div \frac{r^{2}}{q}=\frac{r^{3}+r^{2} q}{2 q} \times \frac{q}{r^{2}}=\frac{r+q}{2}$, which is the Diftance of f or of the Image from the Speculum, agreeing to the Diftance of the Object. Therefore if the Object be fet at the Diftance $\frac{r r+r q}{2 q}$, its Image made at the Diftance $\frac{r+q}{2}$ being compared to it, will have the Ratio of q to r. Or it will be, O. $I:: r, q$. For it is $O . I:: d . f::$ $\frac{r r+r q}{2 q}, \frac{r+q}{2}:: r, q$.

Here we have confidered the radiating Object and the Image as if they were Lines; but if we confider them as Surfaces then it will be $0 . I::$ $d d . f f:: r \cdot q$; fo that then we Chall come to this Equation $4 d d$ $4 q d r=r^{3}-q r^{2}$, from whence the Value of d may be found very eafily by the common Methods.

A Way for My opes 5 o uf
Teleficopes Telefcopes
wwitbout
EyeGlafes, \&c. communnicated by Dr. J. T. Defaguliers,n. 361. p. 1017.

Fig. 67.
IV. Myopes may ufe Telefcopes without Eye-Glaffes, an Object-Glafs alone becoming as ufeful to them, and fometimes more than a Combination of Glaffes.

Lemma 1.] What is required of a Telefcope is to give large and diftinct Vifion ; that is, to make the Object (as in Galilcoo's Telefcope) or its Image (as in the Telefcopes made up of convex Lentes) appear under a great Angle, and to have all the Rays of thofe Pencils that enter the Eye, meet in a Point upon the Retina of the Eye, on their refpective Axes.

The 67th Figure reprefents the Combination of two convex Lentes for the aftronomical or inverting Telefcope; where the abovementioned Requifites are obtain'd. $A B$ is the Object fuppofed at a vaft Diftance from the objective Lens $L L$, fo that Rays coming from the Extremity A of the Object, will fall upon the Lens $L L$, in the fame Manner as if they were parallel to their Axis $A X$; and after paffing the Glafs unite at a, where they project the Image of the Point A, from whence diverging, they fall on the Eye-Glafs $i l$, and having paffed through it, go on parallel to each other, and enter the Cornea of a common Eye E, which unites thofe parallel Rays upon its Retina $R R R$ at d, where the Image of a is projected: The fame may be faid of the Rays that come from B, and after their feveral Refractions thro' the two Glaffes and the Coats and Humours

without Eye-Glaffes, \&c.

the Eye, meet upon the Retina at β, where they projeet the diftinct Image of the Point b. The Rays that come from all the Points of the Object $A B$, being affected after the fame Manner, give a diftinct Image of thofe Points upon the Retina, and therefore the Object does appear diftinct.

The Object will alfo appear magnified in the fame Proportion as the Angle $l C l=$ to $b M a$ (under which its Image is feen) is greater than the Angle $A C B$ under which the Object $A B$ would be feen by the naked Eye; as is more at large demonftrated by dioptrical Writers.
Lemma 2.] If parallel Rays fall upon the Cornea of a Myops, or Mortfighted Perfon, they will unite in the Eye before they come to the Retina, the farther from it, the more convex the Eye is ; but if the Rays which fall upon the Cornea, diverge in Proportion to the too great Convexity of the Eye, as from D, fuch Rays will be fo refracted by the Coats and Humours of the Eye, as to mett in one Point upon the Retina $R R$, where I have in the Scheme neglected the Refraction of the Rays paffing out of the cbryftalline K into the vitreous Humour V, as I do in the other Cafes.

This Lemma is alfo demonftrated by dioperical Writers.
Lemna 3.] If two Pencils of Rays (in each whereof all the Rays are parallel to the Axis, as a C) fall upon different Parts of the Cornea, at the greateft Diftance from one another that can be allow'd for thofe Rays to enter the Pupil P P, their Axes will, after entring the aqueous Humour, converge, and meet either in the vitreous or chryftalline Humour, according to the Convexity of the Cornea through which they paffed, and diverge again before they come to the Retina; the Rays of each Pencil converging upon their refpective Axes, to the Place where Fig. 7o. the faid Axes crofs one another.

Demonftration.] The Axes $a C a, \& \alpha$, falling obliquely upon the Cornea at C C and entring from Air into the aqueous Humour, will be refracted towards the Perpendicular to K, where ftriking more directly upon the chryftalline, they will go on to α, , upon the Retina $R R R R$, decuffating at V within the vitreous Humour. The other Rays r, r; $\rho \rho$, after their Refraction in the aqueous Humour, fall more obliquely on the chryfalline, and therefore are refracted again f o as to meet at V, where the Axes alfo meet, and thence go on to the Retina $R R R R$.
Lemma 4.] But if the Axes of the abovementioned Pencils are parallel, the Rays that accompany them diverging from a Point fo near the Eye, that the Divergence may be proportionable to the too great Convexity of the Eye ; then only the Axes will meet in the Eye before they come to the Retina (by Lemma 3.) but the other Rays will not unite upon their refpective Axes, till they come to the Rictina, (by Lemma 2.)

Prop.] I fuppofe the Eye of the Myops fo convex that he can fee no farther than a common Eye, with the Eye-Glafs of a Telefcope before it: Then the Eye of the Myops being in the Place of the Eye-Glals, will receive the Rays diverging from the feveral Points

Experiments upon Metals with the

of the Image (projected by the Object-Glafs in its Focus, in fuch Manner, that they will, after the feveral Refractions, meet in refpective Points on the Retina; and the Axes of the Pencils, which come from the Extremities of the Object, will, in the Eye, make the Angle BVA $=$ to $b c a$, under which the Image $a b$ is feen, by Lemma 4. The Cornea and aqueous Humours here fupply the Place of the Eye-Glafs, and the

Experiments upon Meials, with the D. of Orleans's Burning glaff, by Mr. Geof froy, n. $3=2$. p. 374 .
chryftalline and vitreous Humours that of a common Eye. In the Figure R is the Retina, V the vitreous Humour, and $K K$ the chryftalline Humour ; and the Image $b a$ is fuppofed to be brought down from the 67 th Figure, which reprefents the Afronomick Telefcope; the too great Convexity of the Eye here being in the Place of an Eye-Glafs.

An Objection may be made to this, viz. that $P P$ the Pupil of the Fye being fimall, will take in but a very little Image, or a fmall Part of the Object: But then if the Eye be moved fucceffively, to all the Parts of the Space where the Eye-Glafs was, it can take any Part of the Object; and if the Object-Glafs be large, which may more eafily be made than a large Eye-Glafs, and the Tube a Foot wide or wider, as much may fuccelfively be taken in, as if an Eye-Glafs might be had of a Foot Diameter. A little Practice may make any Myops to ready, as to keep an Object when once found, though the Place where he ftands be fhaken. It would not be amifs to hold a Lens in one's Hand (for an EyeGlafs) to find the Objeet at firf, till Cuftom has made it eafy without it : When once the Object is found, it may be eafily kept.

An Eye more fhort-fighted than I have fuppofed, will perform the Office of a more convex Eye-Glafs, being brought nearer to the diftinct Bafe of the Object-Glafs; and an Eye lefs convex, the Office of a lefs convex Eyc-Glafs: But with this Difference, that the more convex the Eye is, the cafier may any Part of the Object be found, and the larger and more lucid it will appear.

I have feen Saturn's Ring very plain with an Object-Glafs of little more than fix Foot Radius, without an Eye-Glafs.

I have alio found out a Way for the Presbita to make ufe of an Ob-ject-Glass, by placing their Eye nearer the Lens than its Focus, by fo much as their Eye is flatter than a common Eye, fo as to make (as it were) the Telefcope of Galilao; the flat Eye ferving as a common Eye armed with a concave Lens. I have fo fixed the Telefcope as to make a Presbita read at a great Diftance a fimall Print. The Truth of this may be eafily demonftrated, if it be required.

It this Experiment be made at Sea with a very large Tube, big enough to put in the Head and move it about, and the Object-Glafs be alfo large, ie may not perhaps be difficult to obferve the Eclipfes of the Satellites of Yupiter, which I would recommend to the Confideration of thofe that would try for the Longitude by fuch-like Obfervations.
V. The Burning-Glafs is three Foot in Diameter; it collects the Rays of the Sun at ten Foot Diftance, where it forms a Focus of about three Inches over, which is again contracted by means of another Glafs-

D. of Orleans's Burning-Glafs.

Leins to an Inch Diameter, and confequently is rendered three Times as frong.

I Thall only relate here what I have obferved upon the four Imperfect Metals, viz. Iron, Copper, Tin and Lead : I fhall fay nothing at prefent of Gold or Silver; becaufe as their Analyfis feems to me much more difficult than of the other Metals, I fhall forbear Inquiries upors them, till I have examined as far as poffible into the Nature and Compofition of the former.

What was a great Hindrance to me in making thefe Experiments in the Focus of the Glafs, was the Difficulty I had to find any Matter capable of holding the Metals in Fufion.

Charcoal, which is commonly made Ufe of, is indeed a very proper Subftance; but it is impoffible with it to vitrify any one of the Metals : The Particles of the Metal, when held any long Time in Fufion in the Focus of the Glafs, diffipate and fly away in Fume or fmall Particles; and as long as any Part remains, that little that does remain, is always metellick, until the whole be quite evaporated.

The Reafon of which I take to be this. Charcoal is a Subftance deeply impregnated with oily or fulphurous Parts (if I may fo call them.) The firft Effect that Fire has upon Metals is to feparate the fulphurous Parts: Now, if in Proportion as the Sulphur is feparated from the Metal, the Body that fupports the Metals furnilhes it anew with other fulphurcus Parts, the other Principles will never feparate, and the Metal will always remain Metal. And nothing but the greateft Degree of Fire is able to raife and feparate the Sulphur, and that but by little and little, and in very fmall Particles.

I had then Recourfe to another Matter, that could not any ways be fufpected of containing any oily Parts. Tfcbirnbaus (to whom we are obliged for making of thefe large Glaffes, and the firt Experiments that have been made with them) fays, he has vitrified Metals by holding them in Cbina-Ware. It is true, this fucceeds pretty well, provided the Pieces be very thick, and the Glazing taken off: But the Difficulty I had to find a fufficient Quantity of thick and proper Cbina-Ware to make all thefe Experiments, forced me to have Recourfe to more common Subjects, as well as fuch, if poffible, as were lefs capable of melting.

Of all the different Sorts of Matter that I made Trial of, what feemed beft were the common Coppels and Plates of grey Fire-ftone. The Coppels hold the Metal a long Time in Fufion in the Focus of the Glafs without melting; excepting Lead, which eafily runs through them as foon as it vitrifies, and helps to diffolve them. The Plates of Fireftone bear the Heat of the Focus much longer than any other Matter; but great Care is to be taken in heating them without breaking, 'till they become red hot, and when they are hot the leaft cold Air makes them melt. Neverthelef this is the only Subftance that I have ufed with moft Succefs, to hold iMetals a long Time in Fufion, though with the greateft Caution that was poffible to avoid the Inconveniencies aforementioned.

Another Thing that has hinder'd me from carrying on thefe Inquiries upon Metals fo far as I could have wifhed, has been the few clear Days we have had for thefe two Years paft; for the greateft Part of thefe Experiments require a bright, Atrong, and conftant Sun, to keep the Mattér a long Time in perfect Fufion: And I have fcarce had, for this laft Year, above three or four fuch Days as I could wifh for; the Sky having been almoft every Day covered with Clouds about Noon, which is the Time of the Day fit for thefe Experiments.

I placed in the Focus of the Burning-Glafs a Piece of forged Iron of about a Drachm Weight: It turned red hot, and its Surface was cover'd with a black Matter like Pitch or Tar. If one withdraws the Iron out of the Focus in this State, this Matter fixes itfelt on the Surface of the Metal, and there forms a fmall Skin, or a very fine blackifh Scale, which is commonly very eafily feparated by ftriking upon it; and that Part of the Iron that was covered with this Scale appeared blacker than ordinary: This Scale is fome of the fulphureous Part of the Iron that rifes to the Surface of the Metal when it is ready to melt, and there remains for fome Time before it exhales. It is plainly this fulphureous Part that rifes upon Iron and polifhed Steel when heated, and gives them all thofe different Colours, from a Yellow to a Violet, Water-colour, or Black.

If one continues to hold this Piece of Iron on the Charcoal, it intirely meits; and at the fame Time cafts forth very bright Sparks in a great Quantity, fometimes to above a Foot Diftance from the Coal.
If one faves what flies off during this Sparkling, by holding a Sheet of Paper under the Coal ; we find that they are fo many very fmall Globules of Iron, and the greateft Part of them hollow.

All the Iron that is held in Fufion upon the Coal, flies away in Sparkles after this Manner, till none remains. Sometimes the Metal leaves off fparkling, when the Coal is in part confumed, and covered with a Bed of Cinders, upon which lies the melted Iron. For as the fparkling of the Iron feems to me to proceed from nothing but the oily Parts of the Coal acting upon thofe of the Metal, the Cinders hinder this Oil from paffing from the Coal to the Iron, fo that it remains quietly in Fufion. But if through any Shake, or the like Accident, the Cinders are fo removed, that the Iron comes to touch immediately the Coal, it will begin to fparkle afrefh. Sometimes the Heat, that keeps in Fufion the Metal, vitrifies alfo the Cinders; and this vitrified Matter mixing with the Metal makes a confiderable Ebullition. If one at this Inftant withdraws the Metal out of the Focus, it appears half vitrified, or reduced to a blackifh friable Mafs. Other Times this vitrified Matter fwims on the Surface of the Metal, and there forms itfelf into Drops, that are fometimes clear and tranfparent, and other Times opaque, according as it is more or lefs mixed with the Metal.

D. of Orleans's Burning-Glafs.

Furthermore, if after having let the melted Iron cool upon the Coal, one expofes it again to the Focus of the Glafs upon the Stone, it fparkles afrefh till it is all confumed ; which common Iron will not do, that has not been expofed to the Heat of the Focus upon Charcoal. This Sparkling probably proceeds from the fudden Rarefaction of the oily Parts of the Coal, with which the Pores of the Iron are fo plentifully faturated; or perhaps it may be caufed by the Salts of the Iron acting on the Oil of the Coal.
I expofed to the Focus, upon a Stone-ीate, Iron and Steel; they grew red hot, and melted without crackling or cafting off any Sparks; they fmoaked very confiderably, and the melted Metal turned by little and little like an Oil. After having withdrawn this melted Matter out of the Focus, it fixed in a Regulus-like, friable Mafs, and appear'd fometimes lightly ftriated, or fhot into Sharp Points like Needles. Tho' this Matter does not appear at all tranfparent, yet we may look on it as the Beginning of Vitrification, or a middle State between Metal and Glafs; for it would vitrify in the End like other Metals, if one could hold it a fufficient Time in the Focus without melting or mixing with what fuftains it: But continuing it long in the Focus, the extreme Heat of the Sun, that is neceffary to keep it in perfect Fufion, melts likewife the Stone or Coppel that contains it, the Refult of which Mixture is a brown or greyifh Sort of Ennamel.
We may then take this Regulus Mafs to be a half vitrified Iron, by reafon it is deprived of a great Part of its Sulphur. If one adds to this Mafs a Sulphur like that which was taken from it, from being friable it turns very hard and malleable; and the Dulnefs it had before, changes to the Brightnefs of a Metal. This is what I have experienced in expofing again this Matter to the Focus upon Charcoal: It melts, and for continues a confiderable Time in Fufion without fparkling, but at laft it fparkles with the fame Brifknefs as Iron itfelf; and when withdrawn from the Focus, appears nothing different from melted Iron.
It appears from thefe Experiments, that Iron contains a Sulphur or oily Subftance, that renders it bright, malleable, and eafy to melt.
That this Sulphur is raifed by the Fire of the Sun, when the Metal is for fome Time held in Fufion in the Focus of the Glafs.
That this fame Sulphur may be raifed by the Flame of common Fire, which tho' not ftrong enough to melt the Iron, yet is able to reduce it to an Efchar or Sort of Ruft.
That Iron deprived of this fulphureous Part, melts into a Regulus, or brittle and friable Mafs, in Colour much like Antimony.

That if one can hold a fufficient Quantity of this Matter long enough in the Focus by itfelf, without melting or mixing with the Body that contains it, it perfectly vitrifies.

That this Glafs or metallick Regulus, with the Help of a little Oil, returns to its former State of a Metal.

[^6]That it reaffumes this metallick Form upon Charcoal, by drawing thence this oily Subftance.

That, in fhort, this oily Part contained in the Coal, is little different from the Sulphur of Iron. Neverthelefs we muft imagine it to differ in fome Particulars ; in that melted Iron, that has been faturated with it, crackles and fparkles very much when meited again upon the Stone or Coppet.

Iron being the only Metal in which I have obferved this Sparkling, I takic it to be a Property peculiar only to Iron, and not to any other Metal. Perhaps we may attribute it to the vitriolick Salt that this Metal fo plentifully abounds with, which is very greedy of Sulphurs.

To this fame Greedinefs alfo, with which the vitriolick Salt of Iron abforbs the oily Part of the Coal, we may attribute the Eafinefs with which Iron confumes the Coal; for there is no other Metal that fo foon waltes the Coal in the Fccus of the Glass, as Iron does.

Another Obfervation is, that it is the only one of the four imperfect Metals, on which vitrified Drops arife, while it is in Fufion upon the Coal : The Reafon of which I have not yet been abie to difcover.

O: Copper.

Copper expofed to the Focus of the Burning-Glais, at firlt turns white on its Surface, and afterwards grows black, and is covered with a Kind of Skin, or black, furrowed, and uneven Scales, till at laft it quite melts.

I have withdrawn this Metal out of the Focus, as foon as this white Colour has appear'd, and after it has been cold, found nothing extraordinary on its Surface, which has again by little and little recover'd very near the fame Colour as it had before.

I have not been able to difcover from whence this white Colour proceeds, unlefs we may attribute it to fome volatile arfenical Salt contained in the Copper, and driven by Extremity of Heat to the Surface of the Metal; or whether it purely proceeds from the Alteration that is made in the groffer Parts of the Surface of the Metal when it begins to melt. The black Colour that Copper afterwards takes, feems to be caufed by the fulphureous Matter that melts firlt in this Metal as well as Iron, and is raifed to its Surface by the extreme Heat.

I placed a Piece of Copper in the Focus upon Charcoal: It melted, and emitted a very thin Fume, and by little and little diminifhed till it was all evaporated.

I put a Piece of red Copper on a Coppel into the Focus of the Glafs: It melted, and fent forth fome thin Fumes; and after it had been fome Time in Fufion, it turned liquid like an Oil. I withdrew this melted Matter, and as it grew cold, it fixed into a Regulus of a reddifh brown Colour, which was hard, brittle, and not ductile under the Hammer. If one breaks it, it turns into a red Powder like Cinnabar of Antimony; and when viewed with a Microfoope, appears fo many little, red, tranfparent Grains, like fmall Rubies; infomuch that

D. of Orleans's Burning-Glafs.

one would readily take this Regulus to be a deep coloured red Glafs.

I endeavoured to make this vitrified Copper fpread abroad in melting, by mixing it with common white Glafs; for which End I powder'd fome of this vitrified Copper and common Glafs, and mixing them, melted them together; but the Mixture when in Fufion took at firlt a beattiful green Colour, and continuing it longer in the Focus, it turned bluifh. I believe we may attribute this Change of Colour to the Alcali Salts of the Glafs acting on the Particles of Copper ; for thofe Salts ufually draw a green or bluifh Tincture from this Metal.

To preferve therefore this red Colour of the vitrified Copper, when mixed with common Glafs, I made Ufe of this Expedient. I melted in the Focus upon a Coppel a Piece of Copper, and as foon as it began to vitrify, I caft upon it fome common Glafs 3 as foon as the Glats was melted, I took them together out of the Focus withnut confufing them ; and as foon as they were cold, feparated the Regulus from the Glafs as well as poffible ; and picked out of it fome Pieces of the Glafs, loaded with fome very fmall red tranfparent Particles of the Regulus.
This vitrified Copper is then nothing but Copper, deprived, by Means of Heat, of the fulphureous Part, that gave it the Form of a Metal. A Proof, that this metallick Form proceeds from nothing elfe but this Sulphur, is, that if one expofes this vitrified Copper to the Focus upon Charcoal, it reaffumes, in a little Time, the Colour and Confiftence of meited Copper ; and as it grows cold, fixes into a good red malleable Copper, as fine and hard as it was before it was vitrified.

It follows from thefe Experiments, that the Bafis of Copper is a red Earth fufceptible of Vitrification.

That this Earth receives its metallick Form from a fulphureous Subftance, in Appearance no Ways different from the Oil of Vegetables or Animals.

That one may deprive Copper of this Oil, by holding it long enough in the Focus, or by calcinating it in the Flame of common Fire.

That Charcoal reftores again this oily Part to Copper, and at the fame Time its metallick Form.

It appears further, that the Oil of the Coal has not fo confiderable an Effect upon Copper, as it has upon Iron.

Copper expofed a long Time to the Focus upon a Stone or Coppel, fumes very much, and diminifhes in Weight very confiderably. don't think that this Fume is only the fulphureous Part of the Metal, the Evaporation of which muft be infenfible; but I believe that with this Oil there is mixed a great deal of the earthy, vitrifiable Part of the Metal, which the Heat of the Sun fublimes and raifes in Flowers.

Tin expofed upon Coal to the Focus of the Burning-Glafs, melts and emits a grofs, white, thick Fume, until it is all confumed in Vapours.

If one melts Tin upon a Coppel in the Focus of the Glafs, it fumes very much, and its Surface is covered with a white rarefied Calx; on which, by little and little, arifes a Tuft, or Heap of harp, Needle-like, tranfparent chryftalline Particles, confifting of an infinite Number of fmall Points.

If one continues to hold this Mafs in the Focus upon the Stone, thefe Chryftals at Length leave off fuming, and remain fixt, while the Stone melts and vitrifies.

I took Calx of Tin, which is Tin reduced to a grey Powder by Means of Fire, that has taken away by Calcination great Part of its oily Subftance, and expofed it on a Coppel to the Focus, where it fumed again very much, and was reduced into fharp chryitalline Particles confifting of other fmall Points.

In re-expofing thefe chryftalline Particles to the Focus upon Charcoal, they melted very eafily, and took again the Form of Tin ; the Coal having furnifhed them with the fulphureous Part that the Fire had before taken away. Every body knows, that if one add any Fat, or the like inflammable Matter, to the Calx of Tin, when red hot in the Crucible, it realfumes immediately the Form of Tin.

Thefe Experiments fhew, that Tin contains a Sulphur that is very eafily feparated, fince common Fire can do it fo readily; and that this Metal calcined, or deprived of its Sulphur, is eafily faturated again with it from the oily Part of any inflammable Matter whatfoever.

It proves alfo, that the metallick Earth, which is the Bafis of Tin, is a chryftalline Earth, very difficult to be melted; fince common Fire cannot vitrify this Metal by itfelf, and that the Heat of the Sun, in the Focus of this large Burning-Glafs of the Palace-Royal, cannot perfectly melt the Calx, into which this Metal is reduced. We may prefume, that the Chryftallization, or reducing of this Metal into fharppointed Particles, proceeds from the Force of the Sun's breaking and melting together into a Sodder (if I may fo fpeak) fome of thefe fmall Chryitals, by Degrees, as the fulphureous Part leaves them; it not being ftrong enough to melt them all down together in one entire Mafs.
On Lead. I took Lead, and held it in Fufion upon Charcoal in the Focus of the Glafs : It all wafted away in Abundance of Fumes.

I expofed the like Quantity of Lead upon a Stone to the Focus, where it caft forth great Quantities of Fumes, and by little and little changed into a fluid Liquor like Oil or melted Rofin. This Liquor, as it grew cold, fixed into Glafs; which has this peculiar to itfelf, that it is difpofed into Plates like Venetion Talk, and that it is fabby,

D. of Orleans's Burning-Glafs.

foft to the Touch, tranfparent, and in fome Parts of a greenifh or rechdifh Yellow.
In continuing this Matter in the Focus, it fpread upon the Stone like Varnifh ; and at laft penetrating it, helped to melt it.
I placed this talky Earth in the Focus upon Charcoal: It melted, and in a little Time after reaffumed the Form of melted Lead. I withdrew it from the Focus, and having let it cool, found it nothing different from Lead.
Thefe Experiments fhew, that there is in Lead, as well as the other imperfect Metals, a fulphureous Part, that is eafily leparated by common Fire, or the Heat of the Sun; and that this Metal has for its Bafis a foliated or talky Earth.
I fhall add here fome Experiments, that I have made upon Quick- On 2uickfilver; though I cannot yet draw any pofitive Conclufions from them, filver. not having profecuted them fo far as is neceffary for that Purpofe.

I placed Quickfilver in the Focus of the Burning-Glafs upon Charcoal, upon the Coppel, and upon the Stone: It all immediately difperfed, and exhaled in a very thick Fume.
I expofed upon the Stone to the Focus fome Mercury Prscipitate per $\int e_{2}$ in a Degree of Heat equal to that of Digeftion: It feemed to melt, but prefently difperfed in Vapours; there remained a fmall Quantity of a very rarefied Duft like a Froth or Scum ; but continuing it in the Focus, it melted, and gathered into a yellowifh Glafs, in which one might diftinguifh fome Particles of Metal like Silver.
I expofed fome Mercury Precipitate per fe upon Charcoal : It fumed very much ; and, as it melted, one might fee little Globules of Mercury unite and form themfelves together upon the Coal, but they difperfed again prefently in Vapours.

Thefe Experiments feem to prove, that there is in Quickfilver a Sulphur, that may be feparated by a very gentle Heat, fuch as that of Digeftion.

That as foon as this Sulphur is taken away, it lofes its Fluidity and. Brightnefs.
That the Bafis of Mercury is a Calx, or red Earth.
That this Calx does not melt into Glafs as the Calx of other Metals, becaufe it is too volatile, and as foon as it melts is evaporated by the Heat.

That if one reftores to this Calx a Sulphur, by expofing it again to the Focus upon Charcoal, it reaffumes immediately its metallick Brightnefs and Fluidity, and becomes Quickfilver.

I cannot tell whether this light Earth, that remains upon the Stone after the Evaporation of the Calx of the Mercury, be a Part of the Earth of the Mercury more exactly deprived of its Oil, and confequently more fixt and proper for Vitrification; or whether it may not be fome Matter foreign to the Mercury, that fixes itfelf, and remains hereafter.

The Refult of all thefe Experiments is, that thefe four Metals, which we call imperfect, viz. Iron, Copper, Tin, and Lead, are compofed of a Sulphur or oily Subftance, and of a metallick Earth capable of V_{i} trification.

That from this Sulphur proceeds the Opacity, Brightnefs, and Malleability of a Metal.

That this metallick Sulphur does not appear at all different from the Oil of Vegetables or Animals.

That it is the fame in Mercury as in the four imperfect Metals.
That thefe four Metals have, for their Bafis, an Earth fufceptible of Vitrification.

That this Earth is different in every one of thefe four Metals, in that it vitrifies differently in each of them.

And that on this Difference in vitrifying depends the Difference of Metals.

It remains, that I fhould examine more particularly the Nature of thefe Earths, or metallick Vitrifications, to know if any other Principles or Subftances may be feparated from them: But this I fhall endeavour to do hereafter, in profecuting the Analylis of thefe Metals, as far as poffible.

Expcriments ewitb Mr. Villette's Burn-ing-Glafs in June, by $D r$. J. Harris, and Dr. J. T. Defaguliers, n. 300. p. 9;6.
VI. This Miroir is a Concave 47 Inches wide, and ground to a Sphere of 76 Inches Radius; fo that its Focus is about 38 Inches diflant from the Vertex of the Glars. The Metal of which it is made is a Mixture of Copper, Tin and Tin-Glafs, whofe Reflection has fomething of a yellow Caft. The Concave-Surface has fcarce any Flaws, and thofe very fmall ; but the Convex-Side, which is alfo polifhed, has fome Holes in it.

Having held feveral Bodies in the Focus of this Miroir, we obferved what happened to them whilft expofed to this great Heat; and with a half-fecond Pendulum, took Notice of the Time in which any material Change happened to them.

The Experiments were as follow, and made from Nine till Twelve in the Morning.
$\mathbf{N}^{0}{ }_{1}$. A red Piece of a Roman Patera, which began to melt in 3 Seconds, was ready to drop in 100.
2. Another black Piece melted at 4 , and was ready to drop at 64 Seconds.
3. Chalk taken out of an Ecbinus Spatagus filled with Chalk only, fled away in 23 Seconds.
4. A Foffile-Shell calcin'd in 7 Seconds, and did no more in 64 .
5. A Piece of Pompey's Pillar at Alexandria was vitrified in the black Part in 50 Seconds, and in the white Part in 54.

6. Copper-Oat

A Pocket Microfope.

6. Copper-Oar, that had no Metal in it vifible, vitrified in $8 \mathrm{Se}-$ conds.
7. Slag, or Cinder of the ancient Iron-work faid to have been wrought by the Saxons, ready to run in 29 Seconds and an half.

Here the Glafs growing bot, burned with much lefs Force.
8. Iron-Oar fled at firlt, but melted in 24 Seconds.
9. Talk began to calcine at 40 Seconds, and held in the Focus 64.
10. Calculus bumanus in 2 Seconds was calcined, and only dropped off in 60 .
11. An anonymous Fifh's Tooth melted in 32 Seconds and an half.
12. The Asbeftos feemed condenfed a little in 28 Seconds; but it was now fomething cloudy : Monf. Villette fays, that the Glafs ufually calcines it.
13. A golden Marchafite broke to Pieces, and began to melt in about 30 Seconds.
14. A Silver Sixpence melted in 7 Seconds and an half.
15. A King Willien's Copper Halfpenny melted in 20 Seconds, and ran with an Hole in it in $3 \mathbf{1}$.
16. A King George's Halfpenny melted in 16 Seconds, and ran. in 34.
17. Tin melted in 3 Seconds.
18. Caft Iron in 16 Seconds.
19. Slate melted in 3 Seconds, had an Hole in 6.
20. Thin Tile melted in 4 Seconds, had a Hole, and was vitrified. through in 80 .
21. Bone calcined in 4 Seconds, and vitrified in 33.

An Emerald was melted into a Subftance like a Turquois Stone.
A Diamond weighing 4 Grains loft $\frac{7}{6}$ of its Weight.
VII. Experience (as well as the Authority of Dr. Hook in his Pre- A Pocket-Miface to his Micrograpbia) affures us, that fingle Magnifying-Glaffes (when they can be ufed) are preferable to Microfcopes, compofed of two or more Magnifying-Glaffes: Nor are the late Improvements, made by Magnifying-Glaties, fo much owing to the making Them, and compofing Microfcopes, as to the Metbods of applying Objects for the Advantage of Light; in which, I hope, the following defcribed Inftruments will not be found inferior to any yet made, ar leat commonly fold.

This Sett of Microfcopes has eight different Magnifying-Glaffes; feven of which may be ufed with two different Inftruments, for the better applying them to various Objects : One of thefe Inftruments is reprefented Fig. 72. AAAA, and is made of Ivory; it has three thin Fig. 72 . Brafs Plates EE, and a Spring of Brafs H within it; to one of the thin Plates of Brafs is fixed a Piece of Cork F, with a Concavity $G \ldots .$. . both in the Cork and Brals to which it is affixed: In one End of this Inftrument

A Pocket Microfocope.

Inftrument there is a long Screw D, with a Glafs C, fcrewed in the End of it: In the other End there is a hollow Screw 00 , wherein any of the Magnifying-Glafies are ferewed when they are to be made Ufe of. The 8 different Magnifying-Glaffes are all fet in Ivory, 7 of which are fet in
Fig. 75. the Manner of Fig. 76. n. 4. The greateft Magnifyer is marked upon the Ivory, whercin it is fet, with n. 1. the next 2.2 . and fo on till n. 7. the $8^{\text {th }}$ Glafs is not marked, but fet in the Manner of a little Barrel

Fig. 74.
Fig. 73.

Fig. 75.

Fig. 76.

Fig. 72.
Fig. 73. Box of Ivory, as in Fig. 74.

Figure 73 is a flat Picce of Ivory e e, whereof there are 8 belonging to this Sett of Microfcopes, (though any one, who has a Mind to keep a Regifter of Objects, may have as many of them as he pleafes) in each of which there are 3 Holes $f f f$, wherein 3 or more Objects are placed between two thin Glaffes or Talks, when to be ufed with the greatent Magnifyerś.

The Inftrument Fig. 75. is made of Brafs or Prince's Metal, with Joints PPP, to turn eafily any Way with a fmall Pair of Tongs $G G$, which open at the Points k, by preffing together the two Heads of the Pins II for taking up of Objects: There is a round Piece of Ivory H, forewed upon the other End of the Tongs, white on one Side for black Objects that are opaque Bodies, (fuch as are Seeds or Sands) and black on the other Side for white ones of that Nature.

Upon the fharp End A, of this brafs Inftrument, all the 8 Glaffes may be fixed, as you fee Fig. 76. n. 4. there being a Hole in the Ivory whercin the Glaffes are fet for that Purpofe, with a thin Piece of Brafs B in the Manner of a Spring, that holds it firmer: So when any Object is taken up in the Points of the Tongs k, or laid upon the other End H, it may be very eafily (as any one who fees the Inftrument will perceive) applied to the true Diftance of any of the Glaffes, by the Help of the Joints PPPP, as alfo the Screw C, and Wheel D, which will bring the Object to the Exactnets of the Center or true Diftance, being regulated by a Spring E.

The Ufe of the firft mentioned Inftrument, Fig. 72. $A A A A$, is thus: Take one of the flat Pieces of Ivoryec, or Regifters, Fig. 73. (as they may be called) and nide it in betwixt the two thin Plates of Brafs E E , in the Body of the Microfcope, Fig. 72. fo that the Object, you intend to look upon, be juft in the Middle, remarking, that you put that Side of the Plate $e c$, where the Ring is furtheft from your Eye: Then you are to fcrew into 00 (the hollow Screw in the End of the Body of your Microfcope) the $3^{\text {d }}, 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}, 7^{\text {th }}$ Magnifying-Glafs ; which being done, while you are looking through the Magnifying-Glafs upon the Object, you are to fcrew in or out the long Screw D in the other End of the Body of the Microfcope, till you bring the Object to the true Diftance; which you will know by feeing the Object clearly, and diftinctly: But fince in the greater Magnifyers you can fee but a fmall Part of the Object, viz. the Legs or Claws of a Flea; while you are looking upon any Part of the Object, if you take hold of the End of

MDED

A Pocket Microfcope.

the Plate ee, whercon the Object lies, and move it gently, you may fee the whole Object fucceffively, or any Part of the Object you pleafe; and if that Part of the Object, you defign to look upon, be out of the true Diftance, remember your End-fcrew D can always bring it in, by fcrewing it nearer or farther off.
After this Manner may be feen all tranfparent Objects, Dufts, Liquids, Chryftals of Salts; fmall Infects, fuch as Fleas, Mites, \mathcal{E}° c. If they be Infects that will creep away, or fuch Objects as one intends to keep, they may be placed between the two Regijter-Glaffes ff. For by Fig. 73. taking out with the Point of a Penknife the Ring that keeps in the Glaffes $f f$, where the Object lies, they will fall out of themfelves; fo you may lay the Object between the two hollow Sides of them, and put the Ring in as it was before: But if the Objects are Dufts or Liquids, a fmall Drop of the Liquid, or a little of the Duft laid on the Outfide of the Glafs $f f$, and applied as before, will be feen very eafily.

As to the firtt and fecond Magnifying-Glaffes, being marked with a Crois upon the Ivory wherein they are fet, they are only to be ufed with thofe Regifter-Plates, that are alfo marked with a Crofs, wherein the Objects are placed between two thin Talks, becaufe the Thicknefs of the Glaffes, in the other Regifters or Plates, hinders the Object from approaching to the Centre, or true Diftance of thefe great Magnifyers. But the Manner of ufing them is the fame with the former ; only remember when you put in or pull out the fame Plate or Regifter $e e$, Fig. 73: (whereon the Object lies) or move it from one Object to another, not to let it rub your Magnifying-Glafs, which is done by unfcrewing a little the End-fcrew D, when you put in or pull out the Plate, or move it Fig. 7z: from one Object to another.

For feeing the Circulation of the Blood at the Extremities of the Arteries and Veins, in the tranfparent Parts of Fifhes, Eels, \mathcal{E}^{2} c. there are two Glafs-Tubes, the one bigger and the other leffer, is defigned in Fig. 77. wherein the Fifh is to be put; when this leffer Tube is Fig. 77. ufed, you are to unfcrew the End-fcrew D in the Body of the Microfcope until the Tube g g, Fig. 77. can eafily enter into that little Cavity G of the Brafs-Plate fattened to the Cork F, under the other two Fig. 72. thin Plates of Brais $E E$; when the Tail of your Fifh lies flat to the Glafs Tube, fet it oppofite to your Magnifying-Glafs, and by fcrewing in or out the End-fcrew D, as is faid before, you may eafily bring it to the true Diftance, and fee the Blood circulate with great Pleafure.
When the bigger Tube is to be ufed with a larger Fifh or Frog; then you are to take out the Brafs-Plate $G F$ faftened to the Cork, by pref- Fig. 7 . fing down the other two Plates $E E$, and the Spring H, to the End of the Microfcope B; and by turning the Cork and Brafs-Plate GF fideways, you may eafily take it out, and put it in again ; when the CorkPlate $G F$ is out, the larger Tube will eafily enter into the Body of the Inftrument, and is to be ufed as the other leffer one.

Vol. IV.

A Pocket Microocope.

If you would fee the Blood circulate in a Frog's Foot, chufe fuch a Frog as will juft go into your Tube, then with a little Stick expand the hinder Foot of the Frog, and apply it clofe to the Side of the Tube, obferving, that no Part of the Frog hinders the Light coming on its Foot ; and when you have it at the juft Diftance by Means of the Screw D, as abovefaid, you will fee the rapid Motion of the Blood in its Veffels, which are very numerous, in the tranfparent thin Membrane that is between the Frog's Toes : For this Object the $3^{\text {d }}$ and $4^{\text {th }}$ Magnifyers will do very well; but you may fee the Circulation in the Tails of Water-Newts with the $5^{\text {in }}$ and $6^{\text {is }}$ Glafs, by Reafon the Globules of the Blond of thofe Newts are as big again as the Globules of the Blood of Frogs or fmall Finh, as
Vid. infra V. v. C.VI.S.iii, has been taken Notice of by Mr. Cowper in N° 280, of thefe Tranfations.
N. B. The Circulation cannot be fo well feen by the in and $2^{\text {a }}$ Magnifyers, becaufe the Thicknefs of the Glafs wherein the Fiilh lies, hinders the Approximation.
Fig. 74.

Fig. 75.
The Glars placed in the Manner of a Barrel-Box, Fig. 74. is only to be ufed with the Brafs Inftrument, (or in your Hand) being the leaft Magnifyer for greater Objects, fuch as Flies and common Infeets, $\xi_{c}{ }^{\circ}$. The Hole a in the Side of this Box is to be fixed on the Point A of the Brafs Inftrument, remembring to put the End b next your Eye, and the other to the Object; fo if you take up any Infect in the Point of the Tongs k, or lay any opaque Object on C, the other End, you may approach them to the true Diftance, by the Help of the Joints and Screw C, D, P, E, (fpoken of before) and fee them diftinctly.

In the Viewing of Objects, one ought to be careful not to hinder the Light from falling upon them, by the Hat, Peruke, or any other Thing, efpecially when they are to look upon opaque Objects : For nothing can be feen with the beft of Glaffes, unlefs the Object be in a due Diftance, with a fufficient Light.

The beft Light for the Plates or Regifters, (where the Object lies between the two Glaffes) is a clear Sky-light, or where the Sun fhines on any white Thing, or the Reflection of the Light from a Looking-Glafs. The Light of a Candle is likewife good for the Circulation of very fmall Objects, though it be a little uneafy to thofe who are not practifed in Microfcopes to find out the Light of the Candle; but Ufe will make every Thing eafy.

For the Conveniency of thofe who would draw or make any Sketches or Defigns after Microfcopical Objects, I have alfo made a Pedeftal to fix the two Inftruments above defcribed, and make them itationary to any convenient Light. This Pedeftal may be placed on a Table, $\varepsilon^{\circ} c_{0}$ and after the Object, and Light are fixt, as many Perfons as pleafe may view the Object, without any Trouble or Difficulty in finding the Light.

The Manner of making Microfoopes.

The following Figures were drawn by this Microfcope from feveral Some Objeds Objects :
A, B, C, D, E, F reprefent the Feathers of the Wings of Butterfies cope. and Motbs; A, B are the fame, but differently magnified. A was ex-Fig. 78. preffed by the $4^{\text {th }}$ Glafs, and B as it appeared by the ift. The reft being taken from different Parts of thofe Infects, C, D, E, F were all viewed by the $4^{\text {th }}$ Glafs.
G is one Grain of the Farina of the Capilaments of Maloes by the Fig. 79. firft Glafs.
$H H$ is the Tail of a fmall Fifh, viewed when living by the $4^{\text {th }}$ Glafs; Fig. 80. $i i$ is the Part of the Tail next the Body of the Fifh, where the Trunks of the Veins and Arteries pafs together. IIII their Extremities which appear united, $k k k$ other Inofculations, with the Arteries and Veins appearing in the tranfparent Membrane, between the Cartilages $K K$. LLLL the Cartilages compofed of feveral Joints, on each Side of which the Trunk of a Vein and Artery paffes. M an Animalculum, whereof a great Number appeared moving themfelves up and down on the Tail of Fig. 81: the Fifh, while the Circulation was viewing.
N reprefents a Side-view of the fame Animalculum. Fig. 82.
0 is another Animalculum of a different Figure from the former, that Fig. 83. ftuck to the Tail of the Fifh by its jagged Extremity, and frequently drew its long Body out and in again.

P2 one of the Lice found on the Beetle, called Scarabeus Pediculofus Fig. 84. by the $4^{\text {th }}$ Glafs. P its Amus. Q its two Claws, not unlike thofe of a Lobfter, rrrr the Extremities of its Feet, which have a remarkable Contrivance for fticking faft to the polifhed Surface of the Beetle, not in the Manner of Claws, as many other Infects, but divided into Capilaments, as expreffed in the Figure.
S the fame Animal as it appeared to the naked Eye.
Fig. 85.
VIII. I think that all the Microfcopes, which preceded Mr. Leeu- The Manner wenboeck's, are fo much out-done by his, that it will be proper only to of making Mitake Notice of thefe and the reft of later Invention, not defigning to crofcopes, \&c. leffen their Ufefulnefs, but only to add a few Thoughts which may be by $\mathrm{D}_{\text {r }}$. A. of Service.

Ádàms, n .
325. p. 24.

I had not an Opportunity of examining Mr. Leeureenboeck's Glaffes particularly, which is a Favour he allows to none; therefore I am not capable at this Diftance to defcribe either their Make or Ufe, any further than that to me they appeared to be Spherules lodged between two Plates of Gold or Brafs, in a Hole whofe Diameter might not be bigger than that of a fmail Pin's Head; and the Objects I faw through them were pretty and diverting; but ftill their Make and Truth are unknown.
Mr. Butterfield is very curious in melting his Glafs, but I fuppofe unfuccefsful in cafting his Spheres; for befides that a fufficient Quantity of beaten Glafs cannot flick to the moiftened Point of a fine Needle ;
fo neither can it run equally, hold the Needle how you will, nor the Globule, when run, ftick to the Needie, but muft unavoidably drop; and wherefoever it happens to fall, it muft in that almoft liquid State receive Imprefficns fufficient to fpoil the Figure of a Sphere.

Mr. Gray has fhewn the Defect of his Method, which he ufed to recover by grinding and poliffing his Glaffes on a Brals-Plane, and fo reduce them to Hemifpherules; but how far fhort polifhed Glafles (I fpeak of fmall ones) come of thofe which are caft, I leave to any one to juige who has feen both. His Water and Quickfilver Microfcopes I never faw, fo can fay little to them.

After what Manner Mr. Wilfon's Glaffes are made I know not, but fure his greatef Magnifyers are ill placed, they being funk to fo great a Diftance from the Eye, the Object cannot appear to that Advantage it otherwife would; if therefore inftead of a hollow Cap, he would contrive a plain Plate of any Metal for the Reception of the Glafs, then the Eye and the Object might come to their due Diftance; neither ought there to be any Calx or Glafs between the Object and the Spherule, when we ufe the greatelt Magnifyers; becaufe if the Fiocus of a Sphere be upon the Extremity of its Circumference, any fmall Diftance from that muft fpoil the Truth of the Object's Appearance.

I cannot fay, that the Glaffes I have made are without Fault, but I think they magnify more than any I have yet feen; and were they placed to the beft Advantage, they would magnify much more than they do: They are made thus.

I take a Piece of fine Window-Glafs, and I rafe it with a Diamond into as many Lengths as I think needful, not exceeding an Eighth of an Inch in Breadth; then holding one of thefe Lengths between the Fore-finger and Thumb of each Hand, over a very fine Flame, until the Glafs begins to foften, I draw it out till it be as fine as a Hair, and break: Then inuring each of the Ends into the pureft Part of the Flame, I have two Spheres prefently, which I can make larger or lefs as I pleafe ; if they ftay long in the Flame, they will have Spots, fo I draw them out prefently after they turn round. As for the Stem, I break it off as near the Ball as I can, and lodging the Remainder of this Stem between the Plates, and by drilling the Hole exactly round, all this Protuberance is buried between the Plates, and the Microfcope performs to Admiration; infomuch, that the fame Thread of very fine Munlin appeared 3 or 4 Times bigger in one of thefe, than it did in the firft or fecond of Mr. Wilfon's. I thought I faw Animals in fine old Brandy; but they were fo nimble in their Motion, that I

A Remark on Blood.

 can give no particular Defcription of them. Human Blood. is fo far from fhowing any red Globules fwimming in Serum, that immediately after its Emifion it appears to be a Body of infinite Branches, running in no certain Order, variounly coloured; where it lies thickert on the Glafs, it is of a dull Red ; where thin, inclining to Yellow; but the Whole to blepded, as to teprefent very near the Top of a Yew-
An Account of a Book omitted.

Tree in a very fine Landskip, having its fuppofed Branches of a Red and Yellow confufedly intermixt. But not fatisfied with this Appearance, though the fame as to Quality in eleven different Glaffes, and as many different Sorts of Blood, I refolved to view it another Way, which was, by diluting one Third of Thick in the Serum of Blood; and laying it upon my Glais, I could fee the red Branches as before, and the Traniparent filled with Particles of great Variety of Figures, which I took to be the Salts of the Blood, but feweft globular, and they were pellucid.
If the Fluids moving in an evanefcent Artery appear globular, I fuppofe it is becaufe the Canal is round, which alters the Cafe much.
Ihad at the fame Time an Opportunity of viewing fome Pluritic \qquad Biood; and thought that its Branches did fpread in a different Me-ritic Blood. thod from the Sound, and more ftrongly perplexed with overthwart Branches, which appeared black like Blood that had ftood two or three Days. Whether the Attraction of Particles arifing from the Difference of Figure, may not render the Blood incapable of paffing through the capillary Arteries of the Pleura in that Cafe, let others judge; but If fould think, that fince the propellent Force of the Heart is leaft at the capillary Arteries, then there the attractive Force of the Particles of the Blood Should be greateft ; and fince Spherical Bodies are the moft attractive of any, Refpect being had to their Solidities, were the Blood fo plentifully ftocked with Globules, as fome fay, we thould never be free from Obftructions, the natural Confequence of this attractive Force. If my Glaffes have deceived me, and if this that I have written be found to be a Miftake, no one fhall more readily retract and acknowledge it.

IX. Account of a Book omitted.

Linear Perpective, or a neev Method of Reprefenting jufly all Manner N. 344 . of Objects, Eic. By Brook Taylor, LL. D. and R.S. Secr. $8^{v o}$. Lon- p. 300. don, 1715.

The Author having in his Book obferved, that there might be a very An Addiicon good Expedient made Ufe of in painting of large Rooms and Churches, ibid. p. 303. which is drawn from the Nature of thofe Rays which produce the $V a$ nifbing Points, but not having mentioned it in his Book, has thought proper to take Notice of it in the Account.
The Expedient is this: Having fome Way or other found the Reprefentation of one Point of a Line that is wanted in the Picture, to find the whole Line, pafs a Thread ftretched through the Place of the Spectator's Eye, in a Direction, parallel to the Direction the original Line ought to be in, and the Shadow of that Thread caft by a Candle, fo as to pafs through the given Point on the Picture, will be the Reprefentation fought. The Reafon of this Conftruction is, becaufe the Rays of Light that pafs from the Candle to the Thread fo ftretched, make the Plane which generates the Reprefentation fought; (Vid. Prop. I.) and there may be other Expedients of the like Nature gathered from the fame Principle.

CHAP. III.

C H A P. III.

ASTRONOM .

Of Caffini's Orbit of the Planets, by Dr $^{\text {. }}$ Gregory, n . 293. P. 1704.
I.

5IN CE the Time that the celebrated Mr. Calini, in his Treatife of the Origin and Progress of Aftronomy, has propofed to the Aftronomers a certain Curve for the Orbit of a Planet; there has been much Debate among the Learned concerning the Nature of this Curve, and the I.aw of Gravitation required in order to its being defrribed. As I have thought again upon the fame Subject, not only the different Species of this Curve, but fome of their Properties not fufficiently examined, have occur'd to my Enquiries.
Fig. 86. It is now well known, that the Nature of this Curve is this. If from two given Points F and G to any Point of the Curve I two Lines are drawn $F H$ and $G H$; the Rectangle under $F H$ and $G H$ is equal to a given Space. The right Line lGG, being produced each Way till it meets the Curve, will thew the two Vertices A and B; and $A B$ is the principal Axis. And C the middle Point between the Vertices will be the Center of the Figure. And DE drawn through C perpendicular to $A B$ will be the leffer Axis: And the Points F and G are the Foci.

In this Figure, if the leffer Axis is greater than the Diftance of the Foci, the Curve terminating the Figure is every where concave towards the Center, fuch as the Figure is commonly defcribed. But if the Diftance of the Foci is leffened, while the principal Axis continues the fame, the leffer Axis will be increafed, which yet remains lefs than the Axis of an Ellipfis, deferibed with the fame principal Axis and the fame Foci : Till at laft when the Foci unite, it becomes equal to the greater Axis, and the Figure changes into a Circle. But on the contrary, if the Diftance of the Foci increafes, the leffer Axis will be leffen'd, and will become equal to the faid Diftance, when this is to the principal Axis, as Unity is to a mean Proportional between Unity and the Number 3.

If the Diftance of the Foci be farther encreafed, the leffer Axis will be fill leffen'd, and the Curve at its Extreams will be no longer con-

Fig. 87.

Fig. 88. cave towards the Center, but convex as in Fig. 87. till the Diftance of the Foci being fo far increafed, that it is to the greater Axis, as the Side of a Square to its Diameter; the leffer Axis will become nothing, and the Curve will reach on each Side to the Center.

If the Diftance of the Foci is greater than the aforelaid ratio, the leifer Axis becomes impoffible, and the Figure changes into two conjugate Figures, as in Fig. 88. which will be leffen'd as the Diftance of the Foci increafes, till at laft the Figures pais into two conjugate Points only.

The

The Diftance of the Foci fill increafing, the two conjugate Figures emerge again, which increafe in the fame Manner as they decreafed before, being different from the former in the Order of the Foci and Vertices, and go on increafing till they become infinite. And afterwards this Syftem will again approach to the Circle by the fame Degres as before it receded from it.

Hence it appears at the firf View, that this Figure cannot be at all proper to conftitute the Orbit of a Planet. For not to mention the Cafe wherein it becomes two Figures, and forfakes the Nature of an Orbit, that is, whenever its Excentricity is fo great as the Comets require, (if they turn about the Sun like Planets, as is moft probable) to defcribe their refpective Courfes: To pafs over thefe Cafes, as faid before, even in thofe Cafes in which it returns into itfelf, and compleats its Orbit, fome of its Excentricities are fo large, that near D and E the Curve Fig. 87 ? becomes convex towards the Sun, and therefore the Planet would have Occafion for a Centrifugal Force from the Sun, that it may defcribe this Part of its Orbit, whilft at the fame Time both in Places that are nearer and more remote B and A there ought to be a Centripetal Force towards the Sun. That is, it muft be allow'd, that the Circumfolar Bodies may move by fuch a Law, that at equal Intervals from the Sun here a Centripetal Force, and there a Centrifugal can obtain, which how contrary it is to the known Laws of Nature is eafy to perceive. And tho' none of the Planets have fo great Excentricity, yet fince it is known to Geometricians, that if all the Species of a Figure beyond a certain Limit are unfit for performing a natural Function, the remaining Species of that Figure on this Side the Limit, cannot be admitted as fit for performing the fame Function: This Curve of Caffini's muft of Necefity be rejected out of Aftronomy, not only for the Reafons alledged, Prop. 8. Lib. 3. of the Elements of Aीtronomy, that it neither agrees to the Obfervations of the Heavens, becaufe of the Brevity of the Borter Axis, nor do Pbyical Reafons correfpond, fince for the Defcription of this a Centripetal Force towards the Sun is required, greatly deviating from that which Nature makes Ufe of; but likewife becaufe of the utter Impoffibility of it. For it is impoffible that any Species of this Figure thould be defcribed by a Planet, fo that the Angles at that Focus, which is different from the Sun, may be proportional to the Times; for thus the Area defcribed by the Radius tending to the Sun could not be proportional to the Times. For the. Angle at one Focus being increafed by equal Increments, the contemporary Increments of the Area to the other cannot become equal; contrary to the Opinion I lately entertain'd of this Matter.
In Figures 87,88 . the greateft Breadth of the Figure is found, if with Fig. 87, 88. Center C a Circle is defcribed thro' the Foci; for this will cut the Curve in the Points L, L, which are the Points required. And the greateft Ordinate $K L$ is a third Proportional to the right Lines $G F$, and $F D$ is the firft of thefe, or a fourth Proportional to $G F, G A$, and $A F$, in both of them,

The true Motion

$D E$ remaining, the Ordinate $F P$ from the Focus is equal to the leffer Semiaxis $C D$, when the leffer Axis is to the Diftance of the Foci, as the Side of a Square is to its Diameter. If the Diftance of the Foci is greater than in this ratio, $F P$ will exceed $C D$.

The Nextoni- II. Kepler was the firft that demonftrated, that the Planets were not an Solution of Kepler's Problem dentorArated, \&.c. by Dr. J. Keil, n. 337. P. 1. carried about in Circular Orbits, but in Elliptical ones; and that they furrounded the Sun, placed in one of the Foci of the Ellipfis in fuch a Manner, that a Radius extended from the Planet to the Sun's Center, alway defcribes Elliptical Areas, which are proportional to the Times of Defcription.

This Divine Difcovery of the moft fagacious Kepler is owing to the very exact Obfervations of $T y$ cho Brabe; and is fo much the more to be efteemed, that by the Help of this Nereton has mott happily laid open the Laws of Motion, and the Philofophy of the Syftem of the Univerfe.

Since therefore the Planets move about the Sun according to this Law, that their Places in their own Orbits may be determined to any given Time, there is Occafion that the following Problem fhould be folved.

To firid the Pofition of a right Line, which pafing through eitber of the Foci of a given Ellipfis, may cut off an Area defcribed by its Motion, which may be to the wibole Area of the Ellipfis in a given ratio.
Fig. 89. Let the Ellipfis be $A P B$, either of whole Foci is S. The Pofition of the right Line $S P$ is to be found, which may cut off the Trilinear Area $A S P$, to which the Area of the whole Ellipfis has the fame ratio, as the periodical Time of the Planet defcribing the Ellipfis, has to any other given Time. This being found, the Point P will be given, where the Planet will be at that given Time. Or let $A Q B$ be a Semicircle defrribed upon the greater Axis of the Ellipfis; a Line $S 2$ is to be drawn thro' S cutting off the Area $A S 2$, to which the Area of the whole Circle is in the lame ratio. For if from 2 a Perpendicular $2 H$ is let fall upon the Axis, meeting the Ellipfis in P; drawing the Line $S P$ it will give the Elliptic Area required, and the Point P will be the Place of the Planet at the given Time. For the Semifegment of the Ellipfis APH is to the Semifegment of the Circle $A 2 H$, as $H P$ to $H 2$; that is, as the Area of the whole Ellipfis is to the Area of the whole Circle. But the Triangle $S P H$ is to the Triangle $S 2 H$ in the fame ratio of $P H$ to QH. Therefore the Area $A S P$ is to the Area of the whole Ellipfis, as the Area $A S Q$ is to the Area of the whole Circle. Therefore if we had a Method of cutting the Area of the Circle in a given ratio, by a Line drawn through the given Point S, it would be eafy to cut the Elliptic Area in the fame ratio.

Kepler himfelf, who firt propofed the Problem, had no direct Method of computing the Planets Place from the Time being given. He was fain to proceed thro' the feveral Degrees of the Semicircle $A Q B$, from the given Arch A2, which they call the Anomaly of the Excentrick, and to calculate as well the Time by the Area 152 , which is proportional to

of the Planets.

the mean Anomaly, as the Angle $A S P$, that is the Place of the Planet, or the coequated Anomaly correfponding to this Time.

Therefore as the Solution of this Problem was difficult, Aftronomers betook themfelves to other Hypothefes, feigning fome other Point to be that, about which the Motion was equable or proportional to the Time, and thence the mean Anomaly being given, they determined the coequated Anomaly. But Computations founded upon thefe Hypothefes were found not to agree with the Obfervations. Therefore Geometers had Recourfe to various Approximations, by which from the given Area $A S Q$, which is analogous to the Time, the Angle $A S P$, or the Place of the Planet may be had very nearly. But the eafieft of all thefe, and moft ready for Practice, feems to me to be that Method which is taught by Mr. Nerwton in his Principia, P. 111, and 112 of the firf Edition, which is very much like that Method, by which Analyfts extract the Roots of affected Equations; and indeed is fo much the more to be efteemed, as that it not only exhibits the Places of the Planets, whofe Orbits approach very nearly to the Form of Circles, but almoft with the fame Facility may be applied to Comets, which move in Orbits that are very excentrick.

Therefore I thought it not amifs to explain that Method here, for the Sake of fuch Artifts as are defirous of conftructing Aitronomical Tables, according to the true Laws of Motion, and not by any fictitious Hypothefes.

Therefore let $A Q B$ be a Semicircle defcribed upon the greater Axis Fig. 90. of an Ellipfis, whofe Center is C, and S is the Focus in which the Sun is placed. Let $C \mathcal{Q}$ be drawn, upon which, produced if Need requires, let fall the Perpendicular SF. The Area ASQ is equal to the Sector $A C Q$ added to the Triangle $C S Q=\frac{1}{2} C Q \times A Q+\frac{1}{2} C Q \times S F$; and therefore becaufe of $\frac{5}{2} C Q$ being given, the Area $A S Q$ will always be proportional to the Arch $A Q$, added to the right Line SF, when the Motion is from the Aphelium towards the Perihelium. But when the Planet tends from the Perihelium towards the Aphelium, as in Fig. 92. the Area $B S Q=$ Sector $B C Q$ - Triang. $C S Q$, and therefore it will be proportional to the Arch BQ- right Line $S F$. Hence if there is taken the Arch $A N$, in Fig. 90, 91 . and $b N$ in Fig. 92. proportional to the Fig $90,91,93$. Times, it will be $A \mathscr{Q}+S F=A N$, and $B \mathscr{Q}-S F=B N$. Whence $S F$ will be equal to $2 N$, if $A N$ or $B N$ are proportional to the Times in which the Areas $A S 2$ or $B S Q$ are deferibed. Now that the Meafure of the Arch in the Periphery $A Q B$, which Arch is equal to the right Line SF, may be found in Degrees and Parts of a Degree: Let it be made as CQ to CS, fo is the Arch of 57,29578 Degrees, (which is equal to the Radius $C Q$) to a fourch Arch, which will be equal to $C S$. Let that Arch be B. But it is CS to SF; as Radius to the Sine of the Angle SCF or ACQ. Therefore let it be made, as Radius to the Sine of the Angle $A C Q$ or the Arch $A Q$, fo is the Arch B to anather D; that Arch D will be equal to the right Line $S F$; therefore if, at a given Time, the Area $A S Q$ were proportional to the Time, the Arch D wousd Vol. IV.
E.e

ED
be equal to $N 2$; and taking the Arch $N P=D$, the Point P would fall upon 2. But if the Area ASQ fhould not exactly anfwer to the Time, the Point P will fall above or below 2 , according as the Area $A S Q$ is greater or lefs than the true Area which anfwers to the Time. Let it be $A S Q$, and let $S H$ fall perpendicularly upon $C q$. By what has before been demonftrated, it will be $S H=N q$. But it is $S F=N P$, whence it will be $S H-S F$, or $S F-S H$, that is nearly $H E=q P$ $=2 P-2 q$, or $2 q-2 P$. And if the Angle $2 C q$ be a fmall one, it will be $C H . C 2:=H E .2 q:: 2 P-2 q \cdot 2 q$. Whence $C 2+$ CH.CQ: : QP. Q q, when the $\operatorname{Arch} Q A$ is lefs than a Quadrant. But when it is greater than a Quadrant, it will be C Q-CH.CQ: : Q P. 2 9 . And in like Manner when the $\operatorname{Arch} B 2$ is lefs than a Quadrant, it will be C Q-CH.C $2:=$ 2P. Qq.

If the Angle $A C Q$ or $B C Q$ is a fmall one, that is, if the Planet is near the Apfids, it will be $C A+C S . C A:: 2 P .2 q$.

Let it be made, as $C S$ to $C Q$, fo is Radius R to a certain Length L; it will be $C Q=\frac{C S \times L}{R}$. But it is, as Radius to the Cofine of the Angle $A C 2$, fo is $S C$ to $C F$ or $C H$; (for $C H$ and $C F$ are nearly equal) wherefore it will be $C H=\frac{S C \times \operatorname{Cof} . A C Q}{R}$; and therefore $2 P .2 q::$ $\frac{C S \times L+C S \times \operatorname{Cor} . A C Q}{R} \cdot \frac{C S}{R}:: L+\operatorname{Cof} . A C Q . L$, when the Arch $A Q$ is lefs than a Quadrant. But if $A 2$ be greater than a Quadrant, it will be $2 P \cdot 2 q:: L-C o f . A C 2 . L$.

And in this Method if an Arch $A Q$ be any how taken, which is fomething lef's or greater than the Truth, thence will be found an Arch $\mathscr{Q}^{2} q$ to be added to it, or taken from it, which will make the Area $A S q$ very nearly proportional to the Time. And if inftead of $A 2$ be taken an Arch $A q$, and a Procefs be made with this like the former, another $A q$ will be found, which in like Manner by repeating the fame Procefs, will give another $A q$; and thus we may approach as near the Truth as we pleafe.

The Angle $A C q$ being found, we fhall eafily have the Angle $A S q$, fince in the Triangle $q C S$ are given the Sides $C q$ and $C S$, and the Angle $q C S$. Thence will be given the Angle $C S q$, whofe Tangent is to be leffen'd in the ratio of the leffer Axis of the Ellipfis to the greater, that at laft may be had the Tangent of the Angle $A S P$. Or perhaps the Angle $A S P$ may be thus found more eafily. Let F be the Number which expreffes the Length CS is fuch Parts as C2 is 100000 . From the Point q to the Axis let $q r$ be a Perpendicular, which will be the Sine of the given Arch $A q$, and $C r$ will be the Cofine of the fame, and $S r$ will be equal to the Sum or Difierence of the right Lines Cr and CS; that is, $S r=F \pm$ Cofin. $A C q$. Therefore in the right anyled Triangle
$r s q, s r$ and $r q$ being given, the Angle $r s q$ may be found. Hence if the Logarithm of the Sine of the Angle $A C q$, and the Arithmetical Complement of the Logarithm of Sr, and the Logarithm of the Ratio of the leffer Axis of the Ellipfis to the greater, be added together into one Sum; the Logarithmical Tangent of the Angle $A S P$ will be given.
But the Readinefs of this Method is fo great, that it requires rather to be illuftrated by Examples, than by any farther Explanation. Therefore we may try it in the Motion of the Planet Mars, in the Orbit of which, according to the Caroline Tables, the Excentricity is to the midde Diftance, as 14100 to 152369 , and therefore the Logarithm of the Arch B, which is equal to the right Line $S C$, will be 0.7244451 . Alfo in this Example L will be 108063 I Parts, fuch as the Radius is 100000 : Let the Angle AC 2 be found, when the mean Motion, or the Arch proportional to the Time computed from the Aphelium, is of one Degree. Becaufe $C S$ is here nearly one tenth Part of $C A$, I fuppofe the Arch AQ to be 0.9 Degrees, that is, one tenth Part lefs than the mean Motion. Let there be added the Logarithmical Sine of the $\operatorname{Arch} A \Omega$ to the Logarithm of B, and the Sum 8.9205471 is equal to the Logarithm of the Number 0.083281 , which Number expreffes an Arch equal to the right Line $S F=N P$. And if the Arch AQ had been rightly affumed, it would be $A N-N P=A \mathscr{Q}$, and $\mathscr{Q} P=0$. But here it is $2 P=0.016719$, from whence if we take away its 11 Part, fince $A S$ exceeds $A C$ by about an eleventh Part of itfelf, there will remain $2 q=0,0152$; which being added to $A Q$, gives $A Q=0.9152$, which does not differ from the true $A q$ by a thaufandth Part of a Degree. Secondly, let the Arch $A N$ or the mean Motion be 2 Degrees. Imake $A Q=1,83$ almoft double the former $A q$, and to its Logarithmical Sine let be added the Logarithm of B. The Sum will be 9,2286997 , which is equal to the Logarithm of the Number $0,16931$. Whence it will be $2 P=0,00063$, and $A q=1,83063$, which does not differ from the true $A q$ by the ten thoufandth Part of a Degree. After the fame Manner let the mean Motion, or the Arch proportional to the Time, be ${ }_{3}$ Degrees. Make the $\operatorname{Arch} A$ Q2,745 $=1,83+0,915$, and to its Logarithmical Sine adding the Logarithm of B, there will be had the Logarithm of the Number $0,2539^{2}=N P$, and $A N-N P=$ 2,74608 , and therefore $2 P=0,00108$. Whence $2 q=0,001$ nearly, and $A q=2,746$. Thus by one Addition of two Logarithms, the Arch $A q$ will be found, which will be true to the thoufandth Part of a Degree.
Now if the Angle $A C q$ is to be found, not by proceeding by Degrees but per faltum, when the mean Motion is 45 Degrees: I make the Arch A 2 to be 40 Degrees, and to its Logarithmical Sine adding the Logarithm of B, the Sum is 0,5325125 , which is the Logarithm of the Number $3,408 \mathrm{I}$. This Number fubtracted from 45 leaves $A N-N P$ $=41,5919$, whofe Excefs above the Arch ΛQ is 1,5919 . Whence if it be made, as $L+$ Cofin. AC Q to L, fo is 1,5919 to another, the Arch $2 q$ will be found to be 1,4865 Degrees: Therefore $A q=$

41,4865, which differs from the Truth not much above the thoufancith Part of a Degree. But without this Proportion $A q$ may be found, by taking a new Arch $A \mathscr{Q}$, which is a little lefs than $A N-N P$, yet nearly equal to it. For Inftance, make $A \mathcal{Q}=41,50$, and adding the given Logarithm of B to its Logarithmical Sine, there will be had another $N P=3,35131$, which fubtracted from $A N$ gives 41,4869 for a new $A q$. And this Arch is derived with lefs Trouble, and comes nearer the Truth than the former Aq.

After $A q$ is found correfponding to the mean Motion 45 Degrees, proceeding again by Steps, by one Addition of two Logarithnis will be had $A q$ to all the fubfequent Degrees of the mean Motion. For Inftance, when the mean Motion is 46 Degrees, I make $A \mathscr{Q}=42,4249$; and adding its Logarithmick Sine to the conftant Logarithm of B, it will be $A N-N P=42,4249$; to which Arch if a new $A Q$ be put equal, there will be had $A q$, which will not differ from the true $A q$ by the thoufandth Part of a Degree. So when the mean Motion is 47 Degrees, I make $A Q=43,36$, equal to the former $A q$ added to the Increment of that Arch for one Degree of mean Motion, and adding its Logarithmick Sine to the Logarithm of B, the Sum will be the Logarithm of the Number 3,6402, which fubtracted from $A N$ leaves $A N-N P=$ 43, 593 equal to the new $A q$, which differs from the true $A q$ about the ten thoufandth Part of a Degree.

If omitting the intermediate Degrees, the Arch $A q$ is to be found when the mean Motion is 100 Degrees; make $A Q 96^{\circ}$, and adding its Logarithmical Sine to the Logarithm of B, the Sum will be equal to the Logarithm of the Number 5,273 , whence $A N-N P=94,727$. Therefore, fecondly, make $A Q=94,72$, and adding its Sine to Log. B. there will arife the Logarithm of 5,285 , which fubtracted from $A N$ leaves $A N-N P=94,715=A q$ very nearly. In like Manner, if the mean Motion be 101°. make $A \mathscr{Q}=95,7 \mathrm{I}$, whofe Logarithmical Sine added to the Logarithm of B, gives the Logarithm of the Number 5,2756 , which Number taken from 1or, there will remain $A N-N P$ $=95,7244,=A q$. And in this Manner the mean Motion being given by a gradual Procels the Angle at the Center will be had, by the Addition only of two Logarithms, one of which being conftant may be preferved upon the Paper, that the Labour may be fpared of writing it down too often.

Now let us proceed to an Orbit of the other Species, fuch as the Diftance of the Aphelium may be to the Diftance of the Perihelium, as 70 to 1. Such nearly was the Orbit of that Comet, which compleats its Period in $75^{\frac{1}{2}}$ Years; as was firt found by that fagacious Aftronomer and Geometrician Dr. Edmund Halley. In this Orbit AC or C2 will be 35,5 and $C S 34,4$, of fuch Parts as $S B$ is one. And the Arch $B q$ is to he found, when the mean Motion is one hundredth Part of a Degree. Since the middle Diftance exceeds the leaft Diftance about 35 Times, I make $B Q=0,35$, when the mean Motion is 0,01 . In this Orbit the con-
itant Logarithm of B is found $\mathbf{1}, 7457 \mathbf{1 3 3}$. Therefore this Logarithm being added to the Logarithmical Sine of the Arch 0,35, gives the Logarithm of the Number 0,34013, which added to the Arch 0,01 will make 0,35013 . If this Sum had been equal to 0,35 , the Arch $B 2$ would have been rightly affumed; but the Difference is 0,00013 . Whence becaufe $C B$ is to $S B$ as 35,5 to 1, let the Difference 0,00013 be multiplied by 35,5 , and there will arife $2 q=0,004615$; whence it will be Arch $B q=0,354^{6}$ 15, which hardly differs from the Truth by three Parts of ten Thouland.

Secondly, let the mean Motion be 0,02, and fuppofe B2 to be 0,71 . To its Logarithmick Sine adding the Logarithm of B, the Sum will be the Logarithm of the Number 0,68998 ; whence $B N+N P=0,7099$, and therefore the affumed Arch $B 2=0,7$ I was too much, and the Difference is 0,00002 . Which if it be multiplied by 35,5 , and the Product fubtracted from $B 2$, there will remain $B q=0,7092$, deviating from the Truth hardly the ten thoufandth Part of a Degree.
Let the mean Motion be 0,03. Suppofe B Q to be 1,06 Degrees, adding its Logarithmick Sine to the Logarithm of B, the Sum will be the Logarithm of the Number ?,03008. To which if $B N=0,03$ is added, the Sum will be 1,06008 , which Number is greater than B Q ; wherefore if the Difference 0,00008 is multiplied by 35,5 , and added to $B 2$, it will be $B q=1,06284$. In like Manner, when the mean Motion is 0,04 , I fuppofe $B Q=1,40$ Degrees, and find $N P=1,3604$; to which Number adding $B N=0,04$, the Sum is 1,4004 , which exceeds 1,40 by 0,004 . Let this Difference be multiplied by 35,5 , and the Product $0,01+20$ will be equal to $2 q$; whence $B q=1,41420$. In all thefe Inftances the Errors are very fmall, and feldom gro beyond the thoulandth Part of a Degree.
Now let the Arch $B q$ be to be found, when the mean Motion is equal to one Degree. Suppofe $B 2=20^{\circ}$, and adding its Logarithmick Sine to the Logarithm of B, there will be had the Logarithm of the Number 19,045 ; to which adding $B N=1^{\circ}$, the Sum 20,045 exceeds 20 by 0,045. And fince in this Cafe L - Cofin. $B Q$ is to L, as 1 to 11,5 nearly, I multiply the Difference 0,045 by 11,5, and the Product 0,5175 added to $B Q$ makes 20,5175. Therefore I fuppofe fecondly $B \mathcal{Q}=20,51$, and there will arife, in the fame Manner as in the foregoing, $N P=$ 19,5092 ; to which adding $B N$, the Sum is 20,5092 , which is lefs than BQ. Wherefore if the Difference 0,0008 is multiplied by 11,5 , and the Product 0,0092 is fubtracted from $B \stackrel{(}{\varrho}$, there will remain $B q=20,5008$.

Laftly, let the mean Motion be equal to 2°. I fuppofe $B \Omega 30^{\circ}$, and there is found $N P=27,84$; to which adding 2°, the Sum 29,84 is lefs than 30. And if the Difference 0,16 is multiplied by 6,3 (for L Cofin. $B Q$ is to L, as 1 to 6,3 nearly) it will be $1,008=2 q$. Therefore this Arch fubtracted from $B Q$ gives $B q=28,982$. Now that $B q$ may be corrected, I affume (fecondly) $B Q=29$ Degrees; and by a like Procefs we fhall find $B q=28,9672$.
III. No

The Paraliax of the Sun to be found, by feeing V enus between the Sun and the Earth. by Dr. E. Halley, n. 348. p. 454 .

Of the Parallax of the Sun, \&cc.

III. No Problem feems more difficult than that, of determining the Diftance of the Sun from the Earth near to the Truth; which yet may be perform'd with no great Labour, by having certain accurate Obfervations, perform'd at chofen and forefeen Times. This I fhall lay before this Society in the prefent Differtation, that I may thew a Way how it may be done to our younger Altronomers, who may have an Opportunity of obferving this; fo that they fhall be able to meafure truly the immenfe Diftance of the Sun, within the five hundredth Part of that Diftance.

Now it is known, that by different Authors of Aftronomy this Diftance is variounly fuppofed, as it feems probable by Conjecture to every one. By Ptolomy and his Followers, as alfo by Copernicus and Tycho Brahe, it is made a thoufand and two hundred Semidiameters of the Earth, and by Kepler nearly three thoufand five hundred. Ricciolus doubles the Diftance of Kepler, which Hevelius only enlarges by one Half. But when the Planets Venus and Mercury are feen in the Difk of the Sun by Means of a Telefcope, and fo ftript of their borrow'd Splendor, it is at laft found out, that the vifible Diameters of the Planets are much lefs than they were thought to be hitherto ; and that the Semidiameter of Venus feen from the Sun does not fubtend above a Quarter of a Minute. That the Semidiameter of Mercury, at its mean Diftance from the Sun, is feen only under an Angle of ten Seconds; and that the Semidiameter of Saturn is feen from the Sun under the fame Angle. That the Semidiameter of Fupiter, the greateft of the Planets, does not fubtend at the Sun an Angle of above a third Part of a Minute. Whence fome of our modern Aftronomers have been of Opinion, that keeping to the fame Analogy, the Semidiameter of the Earth alfo, when feen from the Sun, fubtends an Angle of an intermediate Magnitude, or greater than that of Fupiter, and lefs than that of Saturn and Mercury, being equal to that of Venus, or about 15 Seconds : And therefore the Sun is diftant from the Earth near 14000 Semidiameters of the Earth. But with the fame Authors another Argument has a little enlarged this Diftance. For fince the Diameter of the Moon is fomething greater than a fourth Part of the Diameter of the Earth, if the Parallax of the Sun is fuppofed to be 15 Seconds, the Body of the Moon would become greater than the Body of Mercury. That is, a fecondary Planet would be greater than a primary one ; which would feem contrary to that Concinnity which fhould obtain in the Syitem of the World. And on the contrary, the fame Concinnity will hardly allow, that Venus an inferior Planet, and deftitute of Satellites, fhould be greater than our Earth a fuperior Planet, and attended with fo remarkable a Companion. Therefore that we may keep a Medium, let the Semidiameter of the Earth feen from the Sun, or which is the fame Thing, let the horizontal Parallax of the Sun be 12 Seconds and an Half; whence the Moon will be lefs than Mercury, and the Earth greater than Venus, and the Diftance of the Sun from the Earth will come out 16500 Semidiameters of the Earth

Of the Parallax of the Sum, \&cc.

very near. Now at prefent I give my Affent to this Diftance, till it may appear more certainly how great it is, by the Experiment I fhall now propofe. Nor am I fwayed by the Authority of thofe, who enlarge the Diftance of the Sun immenfely beyond thefe Limits, relying upon the Oblervations of the Vibrations of a Pendulum, which cannot be trufted, (as I think) in determining fuch minute Angles. Surely to any one that trys to find the Parallax this Way, fometimes it will come, out nothing, fometimes negative; that is, the Diftance will be infinite or more than infinite, which is abfurd. Moreover, to diftinguifh certainly to Seconds, or even to ten Seconds, by Inftruments never fo artificially made, is hardly allow'd to mortal Man. And therefore it is not at all to be wonder'd at, if the great Subtilty of the Thing has hitherto eluded all the many and ingenious Attempts of the greateft Aftrifts.
But-now almoft 40 Years ago, when I was in the Ifland of St. Helena, where I was employ'd in Obfervations of the fixt Stars which furround the South Pole ; 1 had an Opportunity of obferving Mercury paffing through the Disk of the Sun, which I did with the greateft Diligence. I obtain'd moft accurately, with an excellent Tube of 24 Feet, the Moment in which Mercury entring the Sun's Limb was feen to touch it within; and in like Manner, the Moment in which at going out he touch'd the Sun's Limb, making an Angle of inward Contact. Whence I was fure of the Interval of Time, in which the whole Body of Mercury appeared at that Time within the Disk of the Sun, and that without an Error of one Second of Time. For the Thread of the Solar Light, intercepted between the obfcure Limb of the Planet and the bright Limb of the Sun, nender as it was, appear'd to ftrike the Eye, and in ftriking the Eye, the Denticle made in the Limb of the Sun by the Entrance of Mercury, vanifh'd, as that made by his going out began as it were in a Moment. When this was known, I was immediately affured, that the Sun's Parallax might be truly determin'd from this Kind of Obfervations, if only Mercury being nearer the Earth fhould have a greater Parallax from the Sun. For this Difference of Parallaxes is fo very little, that it is always lefs than that of the Sun which we enquire after. Wherefore Mercury, tho' often to be feen within the Sun, will not be thought very proper for this Bufinefs.

There remains therefore the Tranfit of Venus through the Sun's Disk, whofe Parallax, almoft four Times as big as that of the Sun, will make very fenfible Differences between the Spaces of Time, in which Venus will be feen to pafs over the Sun, in the different Regions of our Earth. Now from thefe Differences, if obferved after a due Manner, I fay the Parallax of the Sun may be determin'd within a fmall Part of a Second. Nor are other Inftruments required than Telefcopes and common Clocks, but good ones; and in the Obfervations nothing is required but Fidelity and Diligence, with a moderate Skill in Aftronomy. For there is no Neceffity that the Latitude of the Place fhould be determin'd with much Scrupulofity, or that the Hours, in refpect of the Meridian, fhould.
thould be accurately determin'd. It will be fufficient to have the Clocks well corrected to the Revolutions of the Heavens, and that the Times be reckoned from the total Ingrels of Veinus within the Sun's Disk, to the Beginning of its Egrefs from the fame. That is, when firft the opaque Globe of Vcrus begins to reach the lucid Limb of the Sun; which Moments, as I know by my own Experience, may be obferved to a Second of Time.

But becaufe the Laws of Motion are greatly confined, Venus can be feen but very rarely within the Orb of the Sun; and for a Series of above 120 Years, it will not be feen th re once: That is, from the Year 1639, (when our Horrox enjoy'd this Spectacle, who was the firlt and only one from the Creation of the World to this Day) to the Year 1 7 61, May 26, in the Morning, when the Planet Venus will again pals under the Sun, accorling to thofe. Theories which hitherto we have found to agree with the Heavens; fo that at London, at about Six in the Morning, fhe may be expected to be found in the Middle of the Sun's Disk, nor will the be above four Minutes more Southerly than the Center of the Sun. And the Duration of this Tranfit will be nearly eight Hours, or from Two in the Morning to almoft Ten. Therefore the Ingrefs will not be vifible in England. And whereas the Sun at that Time will be in 16 Degrees of Gemini, declining Notherly almoft 23 Degrees; it may be feen not to fet through the whole Northern frigid Zone. So that they which inhabit the Sea-fhore of Norway, beyond the City Nidrofa, which they call Drontbem, as far as its Northern Promontory, may obferve Venus at its entring upon the Sun's Disk. And perhaps that Ingrefs into the rifing Sun may be feen by the Northern Scots, and the Inhabitants of the Inand of Sbetland. Now at the Time that Venus will be neareft to the Center of the Sun, the Sun will be vertical above the Northern Shores of the Bay of Ganges, or rather of the Kingdom of Pegu. And therefore in the adjacent Countries, as the Sun at the Ingrefs of Venus will be diftant almoft four Hours to the Eaft, and at the Egrefs almoit as much to the Weft ; the apparent Motion of Vemus within the Sun will be accelerated by almoft the double of the horizontal Parallax of Venus from the Sun; becaufe then Venus moves retrograde from Eaft to Weft, and at the fame Time an Eye upon the Earth's Surface has a contrary Rotation from Weft to Eaft.

Now if the Sun's Parallax be fuppofed $12 \frac{1}{2}$ Seconds, the Parallax of V enus will be 43 Seconds. And taking away the Sun's Parallax, there will remain at leaft Half a Minute for the horizontal Parallax of Venus from the Sun, and therefore the Motion of Venus will be advanced by that Parallax at leaft three Quarters of a Minute, while it runs over the Sun's Disk; in thofe Altitudes of the Pole as are near the Tropick, and ftill more near the Equator. Now at that Time V'enus will move four Minutes an Hour within the Sun pretty exactly, and therefore at leaft eleven Minutes of Time belong to the three Quarters of a Minute, by which the Duration of this Eclipfe of Venus will be contracted becaule

Of the Parallax of the Sun, \&c.

caufe of the Parallax. And from this Contraction alone we might fafely conclude atout the Parallax we feek, if the Diameter of the Sun and the Laritude of Venus were given exactly; yet to poftulate thefe for Computation, in a Matter fo fubtile as this is, is hardly allowable.
Therefore another Obfervation is to be provided, if it may be done in thofe Places where Venus has Poffeffion of the Middle of the Sun at Midnight, or under the Meridian which is oppofite to the former ; that is, at a Place that is about 6 Hours or go Degrees more Wefterly than London, and where $V e$ mas enters the Sun a little before its Setting, and comes out a little after its Riling. This will be in the faid Meridian under the North Pole's Altitude of about 5^{6} Degrees: That is, in that called Hudfon's Bay, at a Place call'd. Nelfon's Harbour. For in Places near this, the Parallax of Venus will protract the Duration of the Tranfit, and will make it at leaft fix Minutes longer; becaufe while the Sun feems under the Pole to proceed from Eaft to Weft, thofe Places in the Disk of the Earth will feem to move with a contrary Motion towards the Weft, that is, by a Motion confpiring with the proper Motion of Venus. Therefore Venus will feen to move more flowly within the Sun, and to pafs over his Disk with more Delay.
If therefore it fhould happen, that in each Place this Tranfit fould be obferved by proper Obfervers, it is plain that the Mora to be obferved in Nelfon's Harbour would be full feventeen Minutes longer, than what is to be expected at the Eaft-Indies. Neither is it much Matter whether the Obfervation be taken at Fort St. George commonly call'd Maderas, or at Bencoulen on the Weftern Shore of the Inand of Sumatra near the Equator, if the Englifh at that Time fhall be inclined to do it. Or if the French fhall think fit to do it, the Obferver will be conveniently fituated at Poudecberry, on the Weftern Shore of the Sinus Gangeticus, under the Altitude of the Pole about 12 Degrees. To the Dutch, their famous Emporium of Batavia, will fupply an Obfervatory convenient enough, if they have a Mind to advance this Part of Aftronomy. And indeed I could wifh, that Obfervations of this Phænomenon might be made by feveral Obfervers in different Places, as well for the greater Confirmation of the fame by their Agreement, as for Fear a fingle Obferver might be prevented by the Interpofition of Clouds, and hinder'd from a Sight which I know not whether the Men of this and the following Generation will ever fee again; and on which depends the certain and adequate Solution of a moft noble Problem, which is not otherwife to be attain'd. Therefore we recommend again and again, to the curious Enquirers into Sydereal Affairs, to whom thefe Obfervations are referved, that being mindful of this our Admonition, they would apply themfelves ftrenuoully and with all their Power, to the due Performing this Ob fervation; wifhing them all profperous Succefs, and that the Magnitudes of the Celeftial Orbs, being then determin'd within more exact Limits, may reward them with perpetual Fame and Glory.
Now we have affirn'd above, that by this Method the Parallax of the Sun may be difcover'd within a five hundredth Part of its own Magnitude, which, without doubt, to fome will feem wonderful. But if in both the Vol IV. Ff

Places

Places here mark'd out, an accurate Obfervation be made, we have already Thew'd, that the Durations of thefe Venereal Eclipfes may differ from one another by full 17 Minutes, from the Hypothefis that the Parallax of the Sun is 12 Seconds and an half. Now if this Difference be found by O'ofervation to be either greater or lefs, the Parallax of the Sun will be greater or lefs almoft in the fame Proportion. And fince is Minutes of Time correfpond to $12 \frac{1}{2}$ Seconds of the Solar Parallax, for every Second of Parallax will arife a Difference of above 80 Seconds of Time. Therefore if this Difference is had true and approved within two Seconds, it will appear within a fortieth Part of a Second how great the Sun's Parallax is. And therefore his Diftance will be determined within a five hundredth Part of itfelf, at leaft of its Parallax, fhall be found nat lefs than we have fuppofed it: For 40 Times $12 \frac{1}{2}$ make 500 .

Hitherto I have explained the Matter enough, or perhaps more than enough, to Aftronomers; whom I would alfo inform, that in this Argument I have took no Account of the Latitude of the Planer, as well to avoid the Trouble of an intricate Calculation, which would make the Conclufions lefs evident, as becaufe of the Motion of Venus's Nodes not yet found out, nor to be truly determin'd but by fuch corporal Conjunctions of the Planet with the Sun. For it is not concluded that Venus will pafs in four Minutes under the Sun's Center, but upon Suppofition, that the Plain of Venus's Orbit, immoveable in the Sphere of fixt Stars, will have its Nodes in the fame Places where they were found in the Year 1639. Now if in the Year 1761 , it fhould pafs in a Path that is more Southerly, it will plainly appear that the Nodes go backwards; but if in a more Northerly, that they go forwards among the fix'd Stars; and that in the Ratio of $5^{\frac{1}{2}}$ Minutes in 100 Julian Years, for every Minute, in which the Path of Venus fhall be diftant at that Time more or lefs from the Sun's Center, than the faid four Minutes. But the Difference between the Durations of thefe Eclipfes will be a little lefs than 17 Minutes, becaufe of Venus's South Latitude; but it will be greater, as the Nodes go on , if $_{2}$ it paffes the Sun to the North of its Center.

Now for the Sake of thofe who delight in Celeftial Obfervations, and yce have not imbibed the whole Doctrine of Parallaxes, I fhall farther explain the Matter with a Scheme, and with a Calculation that is fomething more accurate.

Let us fuppofe therefore, that in the Year 1761, May 25.17 $7^{\mathrm{h}} \cdot 55^{\prime} \cdot$ at London, the Sun will be in $I I 15^{\circ} \cdot 37^{\prime}$. and therefore at its Center the Eclipsic will tend towards the North in an Angie of 60°. 10^{\prime}. But at that Time the vifible Path of Venus within the Sun's Disk will defcend towards the South, making an Angle with the Ecliptic of $8^{\circ} .28^{r}$; therefore the Path of Venus will tend a little towards the South in refpect to the Equator, interfecting the Parallels of Declination in an Angle of 2°. 18^{\prime}. Let us alfo fuppofe, that at the fame Time Venus is neareft to the Center of the Sun, and is diftant from the fame towards the South four Minutes, and that every Hour with a retrograde Motion it runs four Minutes within the Sun. But the

(00 N Fig. 82 Fig ${ }^{\mathrm{M}} 81$.

Fig. 85
s

the Sun's Semidiameter will be nearly $15^{\prime} \cdot 51^{\prime \prime}$, and that of Venus $0^{\prime} .37^{\prime \prime} \frac{1}{2}$. And let us fuppofe for Experiment Sake, that the Difference of the horizontal Parallaxes of Vemus and the Sun, which we are enquiring for, to be $0^{\prime} \cdot 3^{1^{\prime \prime}}$, as is derived from fuppofing the Sun's Parallax to be $0^{\prime} .12^{\prime \prime} \frac{1}{2}$. Therefore with Center C let a little Circle $A E B D$ be defrribed, whofe Se- Fig. 93. midiameter is o $0^{\prime} .3 \mathrm{I}^{\prime \prime}$. reprefenting the Disk of the Earth, and in it the ElJippes of the Parallels of 22 and 56 Degrees, North Latitude, in a Marner now ufed by Aitronomers for the Conftruction of Solar Eclipfes, at $D a b E$, cde: And let BCA be the Meridian in which the Sun is, to which let the right Line FHG, denoting the Path of Venus, be inclined in an Angle of 2°. 18^{\prime}, whofe Ditance from the Center C ' is 240 fuch Parts as $B C$ is 31 ; and from C let fall the right Line $C H$ perpendicular to $F G$. And fuppofing the Planet in H at $17^{\mathrm{n}} \cdot 55^{\prime}$, or $5^{\mathrm{n}} \cdot 55^{\prime}$ in the Morning, let the right Line FHG be divided into the Horary Spaces III. IV, IV. V, V. VI, $\mathcal{F}^{\circ} c$. equal to $C H$, that is to four Minutes. Allo make the right Line $K L$ equal to the Difference of the apparent Semidiameters of the Sun and Venus, or $15^{\prime} .13^{\prime \prime} \frac{1}{2}$. And a Circle defrribed with Radius $K L$, and its Center any Point within the little Circle of the Earth's Disk, will meet the right Line FG in a Point denoting the Hour which will be reckoned at London, when Venus with its Angle of Contact fhall touch the Limb of the Sun within, in that Place of the Earth's Surface which lies under the Point affumed in the Disk. But if the Circle defcribed with Center C and Radius $K L$ fhould meet $F G$ in the Points F and G, the right Lines $F H, H G=14^{\prime}, 41^{\prime \prime}$, which Venus will feem to pafs over in 3 Hours and 40 Minutes. Therefore F will fall in $2^{h} .{ }^{1} 5^{\prime}$, at London; and G in $9^{h} \cdot 35^{\prime}$, in the Morning. Whence :t appears, that if the Magnitude of the Earth thould vanifh as it were into a Point, becaufe of its immenfe Diftance, or if deprived of its diurnal Motion, it fhould have the Sun always vertical to the fame Point C, the entire Mora of this Eclipfe would continue for $7 \frac{\frac{\pi}{3}}{3}$ Hours. But as the Earth revolves in the mean Time with a Motion contrary to that of Venus through ${ }^{110}$ Degrees of its own Longitude, and therefore the Duration of the faid Mora being contracted, fuppofe 12 Minutes, it will come out $7^{\mathrm{h}} \cdot 8^{\prime}$ nearly, or 107 Degrees.
Now in the Meridian itfelf Venus will be next the Center of the Sun, at the Eaftern Mouth of the River Ganges, where the Altitude of the Pole is about 22 Degrees. Therefore that Place will be equally diftant from the Sun on each Side, at the Moments of Ingrefs and Egrefs of the Planet, that is at $53^{\circ} \frac{1}{2}$, as the Points a and b are in the greater Parallel DabE. But the Diameter $A B$ will be to the Diftance $a b$, as the Square of the Radius is to the Rectangle under the Sines of $53^{\circ} \frac{1}{2}$ and 68°, that is, as $1^{\prime} .02^{\prime \prime}$. to $0^{\prime} .46^{\prime \prime \prime} \cdot 13^{\prime \prime \prime}$. And when the Calculation is rightly perform'd, (which I omit that I may not be tedious) I find that the Circle defrribed with Center a and Radius $K L$, will meet the right Line $F H$ in the Point M, at 2^{n}. 20^{\prime}. $40^{\prime \prime}$; but when defcribed with Center b, it will meet $H G$ in N, at $9^{h} .2^{2} 9^{\prime}$. $2^{22^{\prime \prime}}$: That is, if the Hours are reckon'd at London. Therefore all Vemus will be feen within the Sun upon the Banks of the Ganges, for $7^{\mathrm{h}} .8^{8} \cdot 42^{\prime \prime}$.

Of the Maxima and Minima, $\mathscr{E}^{\circ} \mathrm{c}$.

Therefore we have rightly fuppofed its Duration will be $7^{\mathrm{b}} \cdot 8^{\prime}$, fince here a Part of a Minute is of no Confideration.

Now the Calculation being adapted to Nelfon's Harbour, I find that V_{e-} nus will enter the Sun's Disk when it is ready to fet ; and that it will come out of the fame prefently after its Rifing. In the mean Time that Place will be transfer'd from c to d through the Hemifphere oppofite to the Sun, with a Motion confpiring with the Motion of Venus. Therefore the Mora of Venus within the Sun will be longer becaufe of the Parallax, perhaps by four Minutes, that it may be full $7^{\mathrm{h}} .24^{\prime}$, or 1 I I Degrees of the Equator. And fince the Latitude of the Place is 56 Degrees, it will be as the Square of the Radius to the Rectangle under the Sines of $55 \frac{1}{2}$ and 34 Degrees, fo in $A B$ or $\mathbf{1}^{\prime} \cdot 02^{\prime \prime}$ to $c d$ or $28^{\prime \prime} .33^{\prime \prime \prime}$. And when the Calculation is rightly perform'd it will appear, that a Circle defcribed with Center c and Radius $K L$, will meet $F H$ in O, at $2^{h} .12^{\prime} .45^{\prime \prime}$; but defcribed with Center d, it will meet $H G$ in P, at $9^{\text {h }} \cdot 3^{6^{\prime}} \cdot 37^{\prime \prime}$. Whence the Duration of the Mora at Nelfon's Harbour will be $7^{h} \cdot 23^{\prime} \cdot 52^{\prime \prime}$, that is greater than at the Mouth of the Ganges by $15^{\prime} .10^{\prime \prime}$, of Time. Now if Venus thould pafs without Latitude, the faid Difference would be $18^{\prime} \cdot 40^{\prime \prime}$; and if it Chould be 4 Minutes more Northerly than the Center of the Sun, the fame Difference will be increafed to $21^{\prime} .40^{\prime \prime}$; and it would be much greater, if the Planets Northern Latitude fhould be greater.

Now it follows from the aforefaid Suppofitions, that at London Venus will rife after it has enter'd within the Sun; and that at $9^{h} \cdot 37^{\prime} \cdot$ in the Morning it will touch the inward Limb of the Sun at its Egrefs; and laftly, that it will not leave its Orb entirely till $9^{\text {h. }} \cdot 56^{\prime}$.

From the fame Suppofitions it follows alfo, that in the Year 1769 , May 23 , at $1 I^{\mathrm{h}} .00^{\prime}$. the Center of Venus muft skim by the utmoft Northern Limb of the Sun; fo that, becaufe of the Parallax, it may wholly appear not to immerge in the Sun, in the Northern Parts of Norway; whilft upon the Shores of Peru and Cbili it will be feen as it were riding upon the Disk of the fetting Sun, with a very fmall Segment immerfed: As in the MoTucca Iflands and the neighbouring Places, on the Disk of the rifing Sun. Now if the Nodes of Venus are found to go backwards, (as is fufpected becaufe of fome late Obfervations) then being every where confpicuous with its whole Body within the Orb of the Sun, by the very great Difference of thefe Eclipfes, it will fupply a much more convincing Argument of the Sun's Parallax.

But how from Obfervations made fomewhere in the Eaft-Indies, An. 1761, of the Ingrefs and Egrefs of Venus, and compared with Obfervations of the Exit made here, the fame Parallax may be fettled, by adapting the Angles of a Triangle given in Species to the Circumferences of three equal Circles, fhall be fhewn upon another Occafion.
of the Max-
im and Minima in fbe
Matimi of fice
Celeftial $B O_{0}$ dies, bjn. 360 . p. 948 .
IV. The Theory we now receive is owing to Kepler, that the Heavenly Bodies furround the Sun, placed in the common Focus of the Elliptical Orbits, on this Condition, that by Lines drawn to the Sun, they defcribe

Of the Maxima and Minima, $\Xi^{3} c$.

defcribe Areas which are proportional to the Times of Defcription. But it requires the moft fublime Geometry to fhew, by what Caufe this is perform'd, and that it could not be otherwife. This was referved to be the Glory of the famous Newton.
Treading in his Steps, that excellent Mathematician Mr. A. de Moivre, F. R. S. has deliver'd certain Corollaries mentioned before, which are ready Theorems by which the Velocities or Moments both of real and apparent Motion about the Sun are determin'd, as alfo of the Approach or Recefs to or from the Sun; in any given Points of given Orbits. Then farther to improve the Theory of the Planetary Syftem, he has enquired after the Moments of the faid Moments by Means of the fame Theorems, and Thews in what Points of the Orbits are the greateft Changes of thefe Velocities, and this by Solutions that excel in Neatnefs and Facility.

Let $A B P$ be the Elliptical Orbit of a Planet, $A P$ the Tranfverfe Axis, Fig. of. $C B$ the Conjugate Semiaxis, S the Sun, 2 the other Focus of the Ellipfis. Through S draw $S M$ parallel to $C B$; and the Point M will be that in which the Diftance from the Sun is increafed or diminifhed with the greateft Velocity, $S M=A C-\frac{S C}{A C}$.

But if $S L$ is taken a mean Proportional between the Semiaxes $A C, C B$, the Point L will be that in which there will be the greatelt Equation of the Center, as they call it, or where the Angular Motion is equal to the mean Motion. Now if the Eccentricity does not exceed that which inoft of the Planets obtain, it will be $B L=\frac{ \pm}{4} B M$ very nearly. For it is $S L=$ $\sqrt{A C q q-A C q S C q}$.

If the Point N be required in which is the greateft Change of Velocity of the real Motion in the Curve, the Problem will be folid. For it is 2 NS $=4 A C-2 N Q$, to $3 N Q-A C$, as $A C q-C S q=C B q$ to $N Q q$. And therefore if we make $A C=a, B C=c$, and $N Q=y$, we fhall have the Equation $y^{3}-2 a y^{2}+\frac{1}{2} c c y-\frac{1}{2} a c c=0$, which being refolved y or N Q will be the Diftance of the Point fought N from the other Focus of the Ellipfis. But in Orbits that are but lietle excentric, fuch as thofe of the Planets, if it be made $C D=S q$, and joining $A D$ if $A K$ be made equal to it, the remaining Part of the Axis KP=NS will be the Diftance of the Point N from the Sun very nearly. But if the Orbit be parabolical, $\mathcal{S N}$ will be to $S P$, as 5 to 4 , and the Angle $N S P$ will be $53^{\circ} \cdot 8^{\prime}$, nearly, whofe Sine is $\frac{4}{5}$ of the Radius.

But the Point O, in which is the greatelt Acceleration of the apparent or angular Motion of the defcending Planet, or the greateft Retardation of the afcending, will be had in this Manner. In $A C$ let there be taken $G C=$ $\frac{1}{5} A C$, and let CSF be made an Angle of 30 Degrees, and drawing $S F$ let $C E$ be made equal to it, and let $G H$ be made equal to $G E$. I fay, that if the Diftance $S O$ be made equal to $P H$, that in the Point O will be the greateft Change of the Angular Motion of the Planet moving in the Elliptical Orbit $A B O P$; for in that Place of the Orbit the fecond Differences of the Equations of the Center of the Planet will be found the greateft. But
it is $S O=\frac{7}{6} A C-\sqrt{\frac{1}{36} A C q+\frac{+}{+} S 2 q}$. Now if the Orbit is Parabolical, as in the Comets, it will be $\mathcal{S O} O S P:: 8 \cdot 7$, and the Angle OSP will be $41^{\circ} \cdot 24^{\prime} \frac{1}{2}$, or whofe Sine is to Radius as $\sqrt{ } 7$ to 4 .

Lafly, The Direction of the Tangent of the Orbit will be changed with the leaft Velocity in R, if $S R$ be made equal to two third Parts of the greater Axis $A B$. But if the Eccentricity $S C$ is lefs than $\frac{1}{3} P C$, this Minimum does not take Place, but this Velocity with which the Tangent revolves is always decreafing, as far as the Aphelium itfelf, as it is in the Motions of all the Planets. But it does not obtain in a Parabolical Orbit, becaufe of its Axis continued in infinitum.

All thefe Things are demonftrated from the foregoing Theorems of Mr. Aor. Derwoivre, according to the Precepts of the Doctrine de Maximis et Mininis.

A new V. Though many Varieties and Changes happen in the Heavens, among Star in the Swan's Neck, by the fixt Stars, as to their apparent Magnitude, yet among all the mutable解 Mr. G. Fabricius firft obferved Ann. 1596, in the Whale's Neck. For though at Kirch, n. firft it was accounted as fuch a new Star as had no Exiftence before, and 343.p. 226 Mifcel. Berol. p. 208. after it had difappear'd that it would return no more; yet now Experience has fufficiently proved that it conftantly exifts, and that without all doubt it has always exitted from the Beginning of the World in that Place, which it ftill poffefles. This only is wonderlul in it, that it fhews itfelf yearly of a different Magnitude, and generally at certain Times it is not at all to be feen by the naked Eye. For this Reafon it is call'd by Hevelius the wonderful Star.

Like to this I have alfo found another in the Swan's Neck, but much lefs, and which may be feen yearly for a fhorter Space of Time. Therefore it is no wonder that it has folong continued unknown. Nay, it is to be confider'd as a fingular Felicity, that it was vifible at that very Time, and appear'd in its greateft Magnitude, when Bayer contemplated and de-
Fig. 95. lineated the Stars in the Swan, where he denoted it by the Character χ, and reckon'd it among the Stars of the fifth Magnitude which conftantly appear. As alfo the above-mention'd Star in the Whale's Neck, when he confider'd and delineated this Conftellation, he found it of the fourth Magnitude, and mark'd it with the Letter 0 , and look'd upon it as a Star that always appears.

To find out the mutable Appearance of the Star χ in the Swan's Neck, Occafion was given by a neighbouring Star in the Swan's Head, which Hevelius obferv'd Amk. 1670, and 167 I . For when I had entertained fome Hope, that the fame Star would often appear again, not otherwife than the Star in the Wbale's Neck, which after its firft Difappearance would foon appear again, as was evident to Hevelius; I fought for it on the ift and $6 t b$ of fuly (or 11° and 16°) in the Year 1686 in clear Nights, but could not find it. I rather took Notice, that that Star of the fifth Magnitude in the Neck of the Swan was wanting, which Bayer marks with the Greek

in the Swan's Neck.

Letter χ. But on the 9 th (19) Day of OEtober, I found it very plainly with my naked Eye. And becaufe I was eafily perfuaded to think, that it might again difappear to my naked Eye, I delineated fome Stars that ftood round it, by the Help of a two Foot Telefcope of large Capacity, that by a Comparifon of thefe with it I might examine its Magnitude when it decreafed, as is reprefented in the Figure A.
I alfo found, that that Star decreafed by little and little, till I could no longer perceive it with a Tube of eight Feet ; whereas I could always diftinguifh another in the Whale's Neck, through a Tube of four Feet, when it could no longer be perceived with the naked Eye.

Fig. 96.
From that Time I fought in vain for that Star feveral Nights together, yet at laft I found it again, Auguft 6, (16) 1687, by Help of an eight Foot Tube, though it was very fmall. From thence I obferved it to increafe daily; and it happen'd that $O E E .23 \%($ Noo. 2, $)$ it firft prefented itfelf to my: raked Eye, though ftill very fmall. On the $2 d$ Day of November, (12°) it was very confpictrous, and even after Nov. 26, (Dec. 6,) though on this laft Day it was again in a State of Decreafe. Afterwards it could not be diftinguifh'd but by the Tubes, and foon became fo fmall, that I could not find it again with the eight Foot Tube. And thus it was obferved, that from one Difappearance to another, there pafs'd about one Year, one Month, and one Week. Alfo the following Obfervations have inform'd me, that this Star kept a pretty conftant Time in its Appearance, yet at every Period it did not arrive at an equal Magnitude. Nay it happen'd fometimes, that it continued altogether invifible to the naked Eye, whilf through the Tube it was confpicuous, and increafed to its greateft Magnitude. As at the End of the Year 1688, and the Beginning of 1689. On the contrary, in the Year 1690, this Star could be feen better, and was notably greater than its Neighbour, which Bayer has placed near χ, without the Swan's Neck, but has mark'd it with no Letter ; but only for the Help of my Memory I have mark'd it with the Hebrew Letter 3. And after I had often obferved the Appearance of this Star, I found it to be very regular, and to obferve the Revolution of $404 \frac{1}{2}$ Days.
N. B. Whereas the Berlin Mifcellanies come late to our Hands, we did not obferve this new Star, which Mr. Kirch bas inform'd us of, before the Year laft paft, and that near the Ides of July, \boldsymbol{A}. vet. when it appear'd much brigbter than the neigbbouring Star 1 , and almoft equal to the middle Star ine the Swan's Neck, mark'd by Bayer n. But becoming inconfpicuous to the naked. Eye, at lafo it vanifb'd alfo in the Telefcope. According to the Period in which it is faid to revolve, it muft bave arriv'd at its gxeatef Brigbtnefs at leaft in the Month of Auguft of the current Year 1715.

Now that it may be found more eafly in the Heaven, we bave added two Fig. 95; Scbemes, one of which fheres the Swan's Neck, with tbe Stars adjoining to this 95.
new one, and with two otber new ones that bave appear'd near it witbin this laft Age; of which that before the Swan's Brealt is fill to be feen as it were of the fifth Magnitude. But that which is under the Head was feen only for wwo Years, and now difappears. The otber Figure, wbich is Mr. Kirch's

A Hiflory of the new Stars

A, Sews the Telefcupick Stars which are near the new one, that it may be known in what Place exasily it may be look'd for, and where the diligent Obfer. vers of the Heavens, affifed by their Tubes, may expeet its firft Ray at its Return.

A Hifacy of the new Stars for the laft 150 Yeart, by
.... n. 346 . p. 354 .
IV. Although it be faid that Hipparchus, on Occafion of a new Star that appeared in his Time, was induced to number the Stars, and make the firft Cataloguc of them, which was, in the Opinion of Pliny, a rafb Tbing to be attempled even by a God; yet neither he nor any of the Ancients have left us the Place of that new Star, to compare with thofe lately feen, one of which might perhaps be the fane with it, re-appearing after a long Period of Years, Now though feveral Authors have feverally defcribed thofe that have been feen nearer to our Times, it may not be amifs to give a fhort Recapitulation of what was principally remarkable in each of them, with the Times of their firft Appearance, as fär as can be collected.

And firft, That in the Cbair of Caffopeia was not feen by Cornelius Gemma on the 8th of of November 1572, who fays, he that Night confidered that Part of Heaven in a very ferene Sky, and faw it not; but that the next Night, November 9°, it appeared with a Splendour exceeding all the fixt Stars, and fcarce lefs bright than Venus. This was not feen by Tycho Brabe before the inth of the fame Month, but from thence he affures us, that it gradually decreafed and died away, fo as in March 1574, after fixteen Months, to be no longer vifible ; and at this Day not the leaft Signs of it remain. The Place thereof, in the Sphere of fixt Stars, by the accurate Obfervations of the fame Tycho, was $0^{\circ} \cdot 9^{\circ} \cdot 17^{\prime} \cdot$ à $1^{\text {ma }} * \boldsymbol{r}^{\text {is }}$, with 53°. 45'. North Latitude.

Such another Star was feen and obferved by the Scholars of Kepler, to begin to appear on Sept. 30°. At. vet. anno 1640, which was not to be feen the Day before; but it broke out at once with a Luftre greater than that of $\mathcal{F} u$ piter; and like the former it died away gradually, and in much about the fame Time difappear'd totally, there remaining no FootIteps thereof in $7 a$ nuary $160 \frac{5}{6}$. This was near the Ecliptick, following the Right Leg of Serpentarius; and by the Obfervations of Kepler and others, was in $7^{\circ} \cdot 20^{\circ} .00^{\prime}$ à $I^{\mathrm{ma}} * . r$, with North Latitude $I^{\circ} \cdot 5^{6}$. Thefe two feem to be of a diftinct Species from the reft, and nothing like them has appear'd fince.

In the Year 1596, we have the firt Account of the wonderful Star in Collo Ceti, feen by David Fabricius on the 3d of Auguf, ft. vet. as bright as a Star of the third Magnitude, which has been fince found to appear and difappear periodically ; its Period being precifely enough 7 Revolutions in fix Years, though it return not always with the fame Luftre. Nor is it ever entirely. extinguifhed, but may at all Times be feen with a Six-foot Tube. This was fingular in its Kind, till that in Collo Cygni was difcovered. It precedes the firft Star of Aries $1^{\circ} \cdot 40^{\prime}$, with $15^{\circ} \cdot 57^{\prime}$ South Latitude.

A nother new Star was firft obferved by Will. Janfonius in 1600 , in PeElore or rather in eductione Colli Cygni, which exceeded not the third Magnitude. This Star having continued fome Years, became at length fo fmall, as to be thought by fome to difappear entirely; but in the Years 1657,58 , and 59 ,
it again arofe to the third Magnitude, though foon after it decayed by Degrees to the fifth or fixth Magnitude, and at this Day is to be feen as fuch in $9^{\circ} \cdot 18^{\circ} \cdot 38^{\prime} \cdot a ̀ 1^{m \mathrm{~m}} * \cdot r$, with $55^{\circ} \cdot 29^{\prime}$. North Latitude.

A fifth new Star was firft obferved by Hevelius in 1670 , on $\mathcal{F u l}_{1}{ }_{15}, ~ A$. vet. as a Star of the third Magnitude, but by the Beginning of OEtober was fcarce to be perceived by the naked Eye. In April following it was again as bright as before, or rather greater than of the third Magnitude, yet wholly difappeared about the Middle of Auguft. The next Year, in March 1672, it was feen again, not exceeding the fixth Magnitude; fince when it has been no farther vifible, though we have frequently fought for its Return; its Place is $9^{5} \cdot 3^{\circ} \cdot 17^{\prime} \cdot \grave{\lambda} 1^{m a} * \cdot r$, and has Lat. North $47^{\circ} \cdot 28^{\prime}$.
The fixth and laft is that we defcribed before from the AEta Berolinenfia, A Return difcovered by Mr. G. Kirch in the Year 1686, and its Period determined to be of $404 \frac{1}{2}$ Days ; and though it rarely exceed the fifth Magnitude, yet is it very regular in its Returns, as we have found in the Year 1714. Since then we have endeavoured, as the Abfence of the Moon and the Clearnefs of Weather would permit, to catch the firft Beginning of its Appearance in a fix-foot Tube, that bearing a very great Aperture difcovers moft miof the new Star in
Coll $\xrightarrow{\text { Collo }}$ Cygni. Vid.fupra. §. V. nute Stars. And on Fune 15. laft, it was firft perceived like one of the very leaft Telefcopical Stars ; but in the reft of that Month and $\mathcal{F u l y}$ it gradually increafed, fo as to become in Auguft vifible to the naked Eye; and to it continued all the Month of September. After that it again died away gradually, and on the $8 t$ th of December at Night was fcarce difcernible by the Tube, and as near as could be guefled, equal to what it was at its firft Appearance on Fune the 15th; fo that this Year it has been feen in all near fix Montis, which is but little lefs than half its Period; and the Middle, and confequently the greateft Brightnefs, falls about the 10 th of September. Thofe that pleate to leek for it, may expect its firf Appearance in \mathcal{F} uly next, and find it in $9^{\circ} \cdot 6^{\circ} \cdot 30^{\prime} \cdot$ circiter is $1^{\text {ma }} *$. r, with Lat. Bor. $52^{\circ} \cdot 40^{\prime}$.
VII. Wonderful are certain luminous Spots or Patches, which difcover Lucidspots themfelves only by the Telefcope, and appear to the naked Eye like fmall orNebula, fixt Stars; but in Reality are nothing elfe but the Light consing from an extraordinary great Space in the Ether ; through which a lucid Medium is diffuled, that flines with its own proper Luftre. This feems fully to amongh the reconcile that Difficulty which fome have raifed againft the Defcription fixt Stary, Mofes gives of the Creation, alledging that Light could not be created without the Sun. But in the following Inftances the contrary is manifeft; for fome of thefe bright Spots difcover no Sign of a Star in the Middle of them; and the irregular Form of thofe that have, fhews them not to proceed from the Illumination of a central Body. Thefe are fix in Number, all which we will defribe in the Order of Time, as they were difcovered, giving alfo their Places in the Sphere of fixt Stars.
The firtt and moft confiderable is that in the Middle of Orion's Sword, marked with θ by Bayer in his Uranometria, as a fingle Star of the third Magnitude ; and is to accounted by Ptolemy, Tycbo Brabe and Hevelius; but is in Reality two very contiguous Stars environed with a very larged Vol. IV.

Lucid Spots, or Nebulx, $\mathcal{O}^{\circ} c$.

tranfparent bright Spor, through which they appear with feveral ochers. Thefe are curiounly defcribed by Hugenius in his Syftema Saturnium, pag. 8. who there calls this Brightnefs, a monftrous Thing, the like of which he could no where obferve among the other fixt Stars; affirming that he found it accidentally in the Year 1656 . The Middle of this is at prefent in 1119°. oo', with South L.at. $28^{\circ} \frac{3}{4}$.

About the Year 1661, another of this Sort was difcovered (if I miftake not) by Bullialdus, in Andromeda's Girdle. This is neither in Tycbo nor Bayer, having beeh omitted, as are many others, becaufe of its Smallinefs: But it is inferted into the Catalogue of Hevelius, who has improperly called it Nebulofa inftead of Nobula; it has no Sign of a Star in it, but appears like a pale Cloud, and feems to fend forth a radiant Beam into the North Eaft, as that in Orion does into the South Eaft. It proceeds in Right Afcenfion the Northern in the Girdle, or ν Bayero, about a Degree and three Quarters, and has Longitude at this Time r. 24°. 00^{\prime} with Lat. North $33^{\circ} \frac{1}{3}$.

The third is near the Ecliptick between the Head and Bow of Sagittary, not far from the Point of the Winter Solitice. This was found in the Year 1665, by a German Gentleman M. 7. Abrabam Ible, while he attended the Motion of Saturn then near his Apbelion. This is fmall but very luminous, and emits a Ray like the former. Its Place at this Time is if $40 \frac{1}{2}$ with about half a Degree South Lat.

A fourth was difcover'd by M. Edmund Halley in the Year 1677, when he was making the Catalogue of the Southern Stars. It is in the Centaur, that which Ptolemy calls the Star in the Excrefcence on the Back, which he names the Cloud on the Horfe's Back, and is Baver's a; It is in Appearance between the fourth and fifth Magnitude, and emits but a fmall Light for its Breadth, and is without a radiant Beam ; this never rifes in England, but at this Time its Place is $m 5^{\circ \frac{3}{4}}$ with $35^{\circ \frac{1}{5}}$ South Latitude.

A fifth was difcovered by Mr. G. Kircb in 168 I , preceding the Right Foot of Antinous: It is of itfelf but a fmall obfcure Spot, but has a Star that fhines through it, which makes it more bright. The Longitude of this is at prefent w. 9°. circiter, with $17^{\circ} \frac{1}{6}$. North Latitude.

The fixth and laft was accidentally hit upon by M. Edmund Halley in the Conftellation of Hercules, in the Year 1714. It is nearly in a Right Line with ζ and n of Bayer, fomewhat nearer to ζ than n : and by comparing its Situation among the Stars, its Place is fufficiently near in $m^{2} 26^{\circ} \frac{1}{2}$. with 57°. oo. North Lat. This is but a little Patch, but it fhews itfelf to the naked Eye, when the Sky is clear, and the Moon abfent.

There are undoubtedly more of thefe, which have not yet come to our Knowledge, and fome perhaps bigger, but though all thefe Spots are in A ppearance but fimall, and mott of them but of few Minutes in Diameter; yet fince they are among the fixt Stars, that is, fince they have no annual Parallax, they cannot fail to occupy Spaces immenfely great, and perhaps not lefs than our whole Solar Syftem. In all thefe fo vaft Spaces it fhould feem, that there is a perpetual uninterrupted Day, which may furnifh Matter of Speculation, as well to the curious Naturalift as to the Aftronomer.

Cbanges of the Latituide, \&c.

VIII. I have compared the Declinations of the fixt Stars delivered by Change of Prolemy, in the $3^{\text {a }}$ Chapter of the $\eta^{\text {tin }}$ Book of his Almag. as obferved by qimocharis and Arifyllus near 300 Years before Cbrijt, and by Hipparcbus about 170 Years after them, that is about 130 Years before Cbrijt, with fixt sor the what we now find, and by the Refult of many Calculations, I concluded that the fixt Stars in 1800 Years were advanced fomewhat more than 25 Degrees in Longitude, or that the Preceffion is fomewhat more than $50^{\prime \prime}$ per ammun. But that with fo much Uncertainty, becaufe of the imperfece Obfervations of the Ancients, that I have chofen in my Tables to adhere to the even Proportion of five Minutes in fix Years, which from other Principles we are affured is very near the Truth. But while I was upon this Enquiry, I was furprized to find the Latitudes of three of the principal Stars in the Heaven directly to contradict the fuppofed greater Obliquity of the Ecliptick, which feems confirmed by the Latitudes of moft of the reft; they being fet down in the old Catalogue, as if the Plane of the Earth's Orb had changed its Situation, among the fixt Stars, about 20^{\prime} fince the Time of Hipparcbus. Particularly all the Stars in Gemini are put down, thofe to the Nortbward of the Ecliptick with fo much lefs Latitude than we find, and thofe to the Soutbrvard with fo much more Scutberly Latitude. And yet the three Stars Palilicium or the Bull's Eye, Sirius and Arcturus do contradict this Rule; for by it, Palilicium, being in the Days of Hipparchus in about 10 gr . of Taurus, ought to be about 15 Min . more Soutberly than at prefent; and Sirius being then in about 15 of Gemini ought to be 20 Min. more Soutberly than now; yet Ptolemy places the firft 20 Min. and the other 22 more Northerly in Latitude than we now find them. Nor are thefe the Erors of Tranfribers, but are proved to be right by the Declinations of them fet down by Ptoleny, as obferved by Timocharis, Hippar- $^{\text {ren }}$ chus and himfelf, which fhew that thofe Latitudes are the fame as thofe Authors intended. As to Arcturus, he is too near the Equinoctial Colure, to argue from him concerning the Change of the Obliquity of the Ecliptick, but Potolemy gives him 33^{\prime} more North Latitude than he now is found to have; and that greater Latitude is likewife confirmed by the Declinations delivered by the abovefaid Obfervers. So then thefe three Stars are found to be above half a Degree more Soutberly at this Time, than the Ancients reckoned them. When on the contrary at the fame Time the bright Shoulder of Orion has in Ptolemy almoft a Degree more Soutberly Latitude than at prefent. What fhall we fay then? It is farce to be believed, that the Ancients could be deceived in fo plain a Matter, three Obfervers confirming each other. Again, thefe Stars being the moft confpicuous in Heaven, are in all Probability the neareft to the Eiarth; and if they have any particular Motion of their own, it is moft likely to be perceived in them, which in ${ }_{\text {fol }}$ long a Time as i 800 Years may fhew itfelf by the Alteration of their Places, though it be intirely imperceptible in the Space of ore fingle Century of Years. Yet as to Sirius it may be obferved, that Tycho Brabe makes him 2 Min. more Nortberly than we now find him, whereas he ought to be above as much more Soutberly from his Ecliptick, (whofe Obliquity he
makes $2 \frac{r}{2}$ greater than we efteem it at prefent) differing in the whole $4 \frac{\pi}{2}$ Min. One half of this Difference may perhaps be excufed, if Refraction were not allowed in this Cafe by Tycho; yet two Minutes, in fuch a Star as Sirius, is fomewhat too much for him to be miftaken.

But a more evident Proof of this Change is drawn from the Obfervation of the Application of the Moon to Palilicium, Anno Cbrifi 509. Mart. $11{ }^{\circ}$. when in the Beginning of the Night the Moon was feen to follow that Star

 i. e.the Star was apply'd to that Part, by which the illuminated Limb of the Moon was bifected. Now, from the undoubted Principles of Aftronomy, this could never be true at Atbens, near it, unlefs the Latitude of Paliliciuin were much lefs than we at this Time find it. Vide Bullialdi A/tr. Pbilolaica, pag. 172.

This Argument feems not unworthy of the Royal Society's Confideration, to whom I offer the plain Fact as I find it, and would be glad to have their Opinion.
But whether it were really true, that the Obliquity of the E.cliptick was, in the Time of Hipparchus and Ptolemy, really 22 Min. greater than now, may well be queftioned; fince Pappus Alexandrinus, who lived but about 200 Years after Ptolemy, makes it the very fame that we do. Vide Pappi Collect. Lib. VI. Prop. 35°

MockSuns, and Circular Asches, Seen by Mr

n. 278 .

p. 1127.

Fig. 97.
IX. On the 8 th of April 1702 , walking in London Strects about Ten in the Morning, the Air being clear, I obferved the Sun to fhine faintly, or as we call it waterifh; whereupon cafting up my Eye, I perceived feveral Arches of Circles about him. I made what Hafte I could to get on the Top of a Houfe, which I did at Mr. Mordens by the Royal-Exchange, and found the Appearance as is defcribed Figure 97, wherein
S is the true Sun, Z the Zenith.
$S T P P$ a great wide Circle paffing through the Sun, and as well as I could judge, parallel to the Horizon. It was very diftinct and entire, about two Degrees broad in the Northern Part about \mathcal{T}; and held much the fame Breadth in the Eaft and Weft, but grew narrower towards the Sun; its Edges were not very well defined, the whole appearing like a faint white Cloud, and a Part of it would have been taken for fuch, but the whole Circle feen in the pure Azure Sky was a very furprizing Sight.
$V N X \Upsilon$ a Halo, or rather Iris, that was likewife an entire Circle, having the Sun for its Center. I meafured the Semidiameter of this to be much about 22 Degrees; the Breadth of this Arch, which was well defined, was by Eftimate equal to the Sun's Diameter, and it was coloured with the Colours of the Iris, but nothing near fo vivid as in the common Rainbow. The Reds were next the Sun, and the Blews in the outward Limb. Within this Circle the Sky appeared fomewhat obfcure, efpecially near the Arch; and I take it, that the Caufe of that Obfcurity was likewife the Caufe that the Sun fhone fo faint and waterifh. I expected two Parbelia at X and Y in

Spots in the Sun.

the Interfections of this with the white Circle, having often feen them at that Diftance and Pofition from the true Sun, but at this Time none fuch. appeared.
PVP, an Arch of another Circle, of which only the upper Part appeared, it was in all Refpects, both for Breadth and Colours, like the Circle V $N X Y$, which it touched in the vertical Point V, but its Center was below at N, or near it. In the Interfections of this Arch with the white Circle on both Sides, were two very bright Parbelia, fo luminous, that I do not remember to have feen the like, which were alfo tinged with Colours, efpecially on the Side next the Sun, where they were very red. I meafured their Diftance from the true Sun, and found it $31 \frac{1}{2}$ Degrees. About V where the two Arches were coincident, it was very bright likewife, and the red on the Infide very ftrong, that fome might have imagined another Sun there allo, but the Species thereof was drawn out fo in Length, that it could not properly be called a Parkelion: This Arch $P V P$ broke off on both Sides, about five or fix Degrees below the Parbelia P. P.

At N or the lower Part of the Circle $V N X \Upsilon$, there appeared likewife a fmall Piece of an Arch, which touched it there, after the fame Manner as $P V P$ touched in V; it feemed to have its Center in V, and about N there appeared another longifh red Species, fuch as at V, but not altogether fo. bright.

The Height of the Sun, during the Obfervation, was from 40 to 45 Degrees, when Clouds interpofing, no more was to be feen; the Weather was cooler than ordinary, with a gentle N.W. Wind. And it was plain, that the Vapour which caufed this Appearance, was higher than the Clouds, for they were feen to drive under the Circles.
X. Fune 15, 1703 , between Four and Five of the Clock in the After-Spots obnoon, I faw a Spot in the Sun, by placing a white Paper fo far behind the Jerved in Telefoope of fix Foot, as to give the Image of the Sun nine Inches Dia- the Sun, in meter ; the Spot was in the lower Right-hand Quadrant of the Sun's Difk; Juneryr. s. its Form was almoft round, inclining to an. Elliplis ; it was diftant from the Gray, Limb of the Sun about fix or feven Minutes, and its Diameter I judged to ${ }^{\text {n. }} 288$. be about 10 or 12 Seconds: A little before the Sun fet I faw the Spot with P. 1502. a 16 Foot Telefcope, and could perceive that it was environed with a Miftinefs. On the $16 t b$ I faw the Spot again about Two in the Afternoon, and found it advanced near to the Weftern Limb of the Sun ; the ${ }^{17} 7^{\text {th }}$ was cloudy, and fo was the Night, which hindered me from obferving the Eclipfe of the Moon; the 18 tb in the Afternoon it cleared up, and a little before Five, I faw the Spot with the 16 Foot Glafs through thin Clouds, and found it was now very near the Limb of the Sun, little more than half a Minute; it was much contracted in its Breadth, fo as to be four or five Times longer than broad: On the $1 \mathrm{~g}^{\text {th }}$ in the Morning, I tooked for it ayain, but could not fee it ; fo I concluded, it was then either gone off the Difk of the Sun, or if it adhered to the Limb, the great Tremulation of the Atmofphere hindered me from feeing it.

Spots in the Sun.

Aftronomers have by thefe Spots found, that the Sun revolves on its Axis, fo as that in 27 Days the fame Point in the Sun's Difk, returns to the fame Place feen from the Earth; hence its Semi-revolution in $13 \frac{1}{2}$ Days, and confequently the Spot going off the Sun's Difk the 19 th of 7 fune, may be expected to return the $2 d$ of July next to the Eaftern Limb of the Sun's vifible Hemifphere, if it be not diffolved before that Time. I have in the
Fig. 104. Figure endeavoured to exprefs the Appearance, but had not the Conveniency of meafuring the Angle of the Spot's Way, with the Vertical, which is only gueffed at.

Fune the $26 t b$ 1703. In the Evening I looked to fee, whether there were 2 gencrated any new Spots in the Sun, but found none; but on the 27 th, about half an Hour after Eight in the Morning, by receiving the Sun's Image on white Paper from the fix Foot Glafs, I faw a Spot near the Vertical of the Sun towards the lower Limb; betwixt Nine and Ten I elevated the 16 Foot Tube, the Clouds now being of a convenient Thicknefs to let me fee the Sun without Prejudice to my Eyes, and found that this Spot was of a triangular Form, and that it was accompanied with two other
Fig. 98. leffer ones, as is exprelt in the Figure; the Sides of the great Spot were curvilinear, this with two leffer ones, made an Equicrural Triangle ; at Four in the Afternoon the triangular Spot had a fmall Fragment feparated from it, and itelf was now become Elliptical, the Spot b was much augment-
Fig. 99. ed, but the Spot c diminifhed, and become longifh, as in Figure 99; at half an Hour atter Five the Fragment from the great Spot was itfelf divided into two, and the Spot c was fo narrow as fcarce to be feen; as at
Fig. 100. Fig. 100. at Six a Clock, and 30 Minutes, there was a fmall Fragment fe-
Eig. 101. parated from the lower End of the great Spot, as at Fig. 10I ; at Seven a Clock the Spot b was much encreafed, but c was vanifhed; the Obfervations made this Afternoon with the 16 Foot Glafs, were when the Air was clear, and fo to fecure my Eye, the Eye-Glafs was fmoaked with a WaxCandle.

The 28 th, about Seven in the Morning, I faw that the great Spot was much augmented, but the leffer ones that Yefterday attended it, were vanifhed, and that there were two new ones generated at about $1 \frac{1}{2}$ Minutes Diftance from the great one below, and towards the Left-hand of it the Fig. 102. great one was a Paralellogram, with a black Diagonal croffing it Fig. 102; Fig. 10j. at Ten a Clock there was another Diagonal crolfing the former, Fig. 103. and the two leffer Spots which before were longifh, had now taken a round Form, the Spot c being much larger than the other at b.

I am not yet furnihed with proper Intruments to find the Pofition of the Sun's Spots, with refpect to Longitude and Latitude on the Sun's

On the
fame by
Mr. W.
Derham,
ibid.
p. 1504.

Fig. 105, Disk, fo I contented myfelf with oblerving the Pofition and Variation of the Spots among themfelves, which afforded me a moft ftrange and wonderful Variety.
2.] The two Circles Fig. 105, 106. reprefent the Sun's Disk, and N. the Northern Part thereof, S. the Southern, E. the Eaftern, and W. the Weftern Past.

The Place of the Spots, and the Manner of their Appearance every Day, is reprefented with the Day of the Month on the Sun's Disk.
But I defire it may be obferved, that altho' the Figures of the Spots are done pretty exactly, yet their Places on the Sun are not fo, for being unprovided with convenient Inftruments for the Purpofe, I could not exactly fet of their Delincations, nor their Diftances from the Sun's Limb, but was forced to reprefent them only as well as I could, by taking the Species of the Sun upon Paper, through a Telefcope, and fo marking out their Places.
But fince the laft Appearance of the Spots, I have invented, and have provided myfelf with an exceeding nice Micrometer, and a Watch that beateth half Seconds, hoping to have been able to have feen another Revolution of them.
My Micrometer is not, as ufually, to be put into a Tube, but is to meafure the Species of the Sun on Paper, (of any Radius) or to meafure any Part of it, which I am inclined to think is more exact than the common Way. By this Means I can eafily, and very exactly, with the Help of a fine Thread, take the Declination of a Spot, at any Time of the Day'; and by iny half Second's Watch, and a fine crofs Hair, (which latter Way I learnt from my Friend Mr. Flamffead) I can meafure the Diftance of the Spot from the Sun's Eaftern or Weftern Limb.
This crofs fine Hair, I advife, from my own Experience, fhould be fet, not at the exact focal Dittance from ${ }^{\text {t the Eye-Glars, (as ufually) but a little }}$ out of that Diftance, nearer towards the Object-Glafs, becaure the Shadow of the Hair will be thereby much narrower, and more ftrongly appear crofs the Species of the Sun rectived on the Paper, which I take this Occafion to note, not only becaufe I believe it hath fcarcely ever been before obferved, but becaure it may be of good Ufe in taking the Sun's Alritude, meafuring his Diameter, \mathcal{E}^{c} c. this being a more eafy, and perhaps a more exact Way, than by looking through the Tube.
Being thus provided, if I could have íeen another Revolution of the Sun's Spots, I fhould have been able to have given a more accurate Account of their Pofition and Motion. They feemed ftrong enough to have lafted another, or more Revolutions, but none have been vifible fince the fixth of this Month, on which Day I think I had a Glimple of a Spot on the Sun's Weftern Limb, about Seven of the Clock in the Morning.
The Appearances of the Spots, being in the Figures above, fet with every Day of the Month, I need fay but little, only take Notice of a few Things, that the Figures do not fo well exprefs.
The Spot in Fig. 105, was as reprefented, viz. Ift round and ftrong, afterwards long, and with a Nucleus. The very fame Spot (I doubt not) I faw again on the Sun's Eaftern Side on F^{\prime} ly 5 , but very faint, finall and long, (as in Fig. 106.) fo as to be but juft difcernable. On 7uly 6, it quite difappeared, both through my Tubes, and on Paper, which is better.
The Spots in Fig. 106, had thefe remarkable Appearances and Variations. On fune 28, viewing the Sun towards Evening, I efpied a large, ftrong dark Spot, with two or more glaring Nubeculce behind it, fomewhat like the Reprefentation in the Figure. Thefe the next Day were become four ftrong

Spots in the Sunn.

dark Spots, the foremort with a Tail to it, conjoining the little Spot next it, as in the Figure. On fune 30, I faw Spots; but it being a cloudy Morning, and I abfent from my Tubes in the Afternoon, the Reprefentation of them in the Figure is not exactly as they were. $\mathcal{F u l y}$, , between two long Spots appeared fomething like a round Nubecula, as in the Figure. The reft as in the Figures.

Thus I have given the beft Account I could of the late Solar Spots. The fingle Spot in June may be feen to have paffed above half over the Disk, before a Friend of mine gave me Notice of it: And that and fome others were, I hear, feen in May; but it was not my Fortune to fee them fooner ; which if I had, I fhould have been able to have made my Account better.

Spotsobfer On Saturday, May the $15^{\text {th }}, 1703$, As I was obferving the Setting of the Sun, in Sun, in order to examine my Clocks, there appeared two Suns, the Mock1704. by fun feemed above the Real one, which was then only five Degrees above the Capt. Stan-Horizon. Whereupon I took a good feven-Foot Telefcope, with a finall Apernyan, n. ture, and foon difcover'd a Solar Spot near the Sun's Center, which I defign'd p. 1756. to oblerve more exactly the Day following, but it proved cloudy.

May Sunday no Sun-fhine.
Monday, May the 17th, At Six a Clock in the Morning I took the fame Telelcope, armed with a clouded Eye-Glafs, and immediately perceived that the Spot was advanced confiderably towards the Sun's Weftern Limb; it feemed of a ftrong Confiftence, very compact, refembling a Face, and was diftant by Noon from the anterior Limb of the Sun's Disk 61 Seconds of Fig. 10\%. Time. See Fig. 10%.

Tuefday, May the 18 th, At Noon I found the Spot diftant from the preFig. 107. ceding Limb 46 Seconds of Time. Fig. 107.

Wednefday, May the 1gth, At Noon I obferved the Solar Spot to be moFig. 107. ved within 33 Seconds of Time of his Weftern Limb. Fig. 107.

Tburfday, May the 20th, At Noon the Spot was arrived within 2 I Seconds of Time of the preceding Limb, and moving nearly in a ftrait, Line; inter-
Fig. 107. fecting the Parallel of Declination paffing thro' the Sun's Center. Fig. 10\%.
Friday, May the 2 Ift, We had no Sun-fhine.
Saturday, May the 22d, At Seven o'Clock in the Morning I obferved the Fig. 107. Solar Spot was advanced very near the Limb of the Sun's Disk. Fig. ro7.

Sunday, May the 23d, At Six in the Morning I faw the Spot, which by that Time was got to the very Edge of the Sun's Disk, refembling a Barley Corn, lean and flender, and of a duskifh Colour, wanting only its own fhorteft Diameter of the Sun's Limb. At Eight a-Clock I obferved it again: Alfo at Ten, and at Twelve. At Two I perceived it was flid into the very Circumference, and hardly vifible, had I not had an Eye upon it all the Day long. At Four I examined the Sun's Body with my eighteen Foot Glafs, which is a good one, but could not perceive the leaft Glimpfe of it ; fo that Fig. 107, about Three in the Afternoon it totally difappeared. Fig. 107.

June
On Thburday, Fune the 3d, About Six in the Evening I obferved with my cighteen Foot Glafs four Spots in the Sun's Disk, environed with a Miftinefs,
thicker on the Right-hand than on the Left, fituated in the upper Left-hand Quadrant, about the 12th Part of the Sun's Diameter diftant from his neareft Limb. From the Cloud aboitt them proceeded both Ways five long curve Rays, of a yellower Colour than the Sun's Body. Thefe Spots I could never fee more, though I watched them for feveral Days together. Fig. $108 . \quad$ Fis
On Monday, 7une the 7 th, 1703 , At Three a-Clock in the Afternoon, I difcovered the fame Spot (to my thinking) that I faw go off the Sun's Disk on May the 23d, re-entring the Sun's Face juft at the Time and Place that I expected it.
At Four of the Clock, the Sun being extremely clear, I mounted my eighteen Foot Telefcope, through which the Spot appeared diftinct, but nender like a Spider, with an Elliptical fpeckly Mift about it, and 5 or 6 light colour'd Streaks. It feemed to me to be as it were divided near the Top, as in Fig. 109.
Tuefday, Fune the 8th, At Six in this Morning the Spot was very vifible, and I faw it trace again its former Path, coming in exactly where I expected; it kept its Shape, but thofe Limon coloured Streaks difappeared, though iffelf and the Mift about it grew bolder and broader vifibly, as it re-entred the Sun's Disk.
Wednefday, Fune the gth, At Five of the Clock this Evening I obferved the Spot with the eighteen Foot Glats, but could not perceive it had altered its Shape, but advanced gradually over the Sun's Disk, as it had formerly done.
Tburfday, Fune the Ioth, At Noon the Sun Thining very bright, I had an Opportunity of being affured it was the fame Spot; I plainly faw it move over its former Path, and was then diftant from its neareft Limb 29 Seconds of Time. At Five in the Evening I obferved its Shape (with my eighteen Foot Tube) to be altered, appearing bigger and blacker than ever, as in Fig. 1 ro. Fig. Ho.
Friday, Fune the I Ith, was an ill Day for Obfervations, but I had a Sight on't with the eighteen Foot Glafs; it continued black and bold, as before.
Saturday, Fune the 12th, At Seven a-Clock in the Morning, the Sun's Boly being very clear, I faw the Spot through the cighteen Foot Glafs, retaining its former Shape.
Sundav, June the $13^{\text {th, }}$ By this Day Noon the Spot was arrived at the fame Point of the Sun's Disk, that I found it in on Monday at Noon, May the r 7 th, which makes me inclinable to believe it was the very fame Spot.
Mondey, fune the Iqth, according to Rules received Yefterday from Mr. Flamftead, I meafured the Diftance of the Spot from the next Limb of the Sun's Disk, which I found to be 45 . Seconds of Time from the anterior Edge of the Sun's Body: And upon Tuefday, May the 18 th, it was obferved to be in the very fame Place of its Path, within a fingle Second of Time. At Four Iobferved it with my 18 Foot Glafs, and perceived that it had alter'd its Shape, appearing as at Fig. in 11. I received it on the Scheme, and it was diffant from Fig. 11s. the preceding Limb 6_{12} fuch Parts, as the Sun's Semidiameter is 900. Tueflly, fune the 15 th, At Noon the Solar Spot was diftant 32 Seconds of Time, from the leading Limb of the Sun's Disk, and cowered the very Place, where the fame Spot hai been obferved on Wednciany the Igth of May.

$$
\text { Vol. IV. H } h \quad \text { Wedne } \int d a y \text {, }
$$

Spots in the Sun.

Wednefday, fune the 16 th , No Sun-fline. Tburdday, June the 1 yth, No Sun-fhine.
Friday, Fizne the I8th, At Noon I obferved the Solar Spot waxing very nender, but notwithftanding that, it was black and bold to Appearance, the Miftinefs about it on the Right-hand perceiveable, and that on the Left grown flender, in Proportion with the Spot itfelf, and found it diftant 5 Seconds of Time.

Saturday, fune the 1 gth, At Five this Morning, it being clear Weather, I faw the Spot diftinctly with my feven Foot Tube: At Nine a-Clock I mounted my eighteen Foot Glafs, obferving once in half an Hour all the Morning : At Twelve I perceived, that all the Cloud or mifty Matter, that ufed to furround the Spot, was invifible, and the Spot itfelf reduced to little or no Breadth, in Comparifon to what it had been towards the Sun's Center, and fo clole to the Limb of the Disk, that I could only perceive a fmall Streak of the Sun's Light between it, and the Limb of the Sun's Body : At Two a-Clock I could juft perceive it, but grown extremely nender.

The firf Revolution, I law the Spot half in the Circumference of the Sun's Limb at Two a-Clock on Sunday, May the 23 d : And the fecond Revolution, I juft perceived it with the eighteen Foot Glafs, at half an Hour after Two a-Clock on Saturday the 1 gth Day of June.

On Sunday, Fune the 27 th, About Six a-Clock in the Evening, I obferved feveral Spots in the Sun's Disk, but had not the Conveniency to ufe my longeft Telefcope, becaufe of fome Trees that were in my Way to Weftward, fo that I made no Obfervation till Tweflday following.

Tuefday, Fune the 29 th, About Seven in the Morning I counted 16 remarkable Spots in the Sun's Body, and near his Center they appeared as in Fig. if 2 , through the cighteen Foot Glafs; then I took my feven Foot Telefcope and Frame, and oblerved, that the foremof Center of fix, that looked on the Paper as one Spot, was diftant from the Sun's anterior Limb 8 I Seconds of Time, and the laft Cluiter 87.

This Day the foremoft Spot was diftant from the following Limb, according to the Path of the Spot, juft 55 Seconds of Time. The Sun's Diameter was always 136 Seconds in the Tranfit, and the Spot was 126: So that the Spots Path was ro Seconds fhorter than the Sun's Diameter.

Wednefday, June the 3oth, At Eight a-Clock this Morning, obferving the Solar Spots with my eighteen Foot Telefcope, I perceived very plain, that they had wonderfully increafed in Number, and frangely changed their Places. The Clufter of feven Spots feemed to me to move gradually, as the fingle Solar Spot did in May, but the Clufter 4 went too faft forward, the
F:g. 113: 12 Spots without a Mift about them ftraggled all Manner of Ways, and the 9 Spots and the 5 black little ones went backward and unbent itfelf at the fame Time as it were into a ftreight Line. I am apt to believe it went backward, as that the other went too faft, or fafter than ordinary forward; for in 24 Hours, the foremoft Clufter advanced 2 I Seconds of Time, which is more by 6 Seconds than ever the fingie Spot moved in that Time, even when

Spots in the Sun.

neareft the Sun's Center ; and the Diftance in Time between the firt and the laft Clufter this Day was greater by three Seconds than the Day before.
The foremoft Clufter of 4 Spots was diftant from the advancing Limb of the Sun 60 Seconds of Time.
At half an Hour paft Four the advancing Clufter paffed the Interfection in ${ }_{55}$ Seconds of Time, after the Sun's foremoft Limb had paffed conformable to the Spots Path ; and the laft Spot paffed in 63 Seconds of Time, the laft Limb paffing the Interfection, according to the Path of the Spot, in 126 Seconds of Time, the Sun's largeft Diameter paffing in 136 Seconds; the Spots by this Time appeared ftrangely black, and of very odd Shapes, as in the upper Part of the Circle.
Tburday, Fuly the IA, At Eight a-Clock in the Morning, I obferved the fuly. Solar Spots with my eighteen Foot Telefcope, the Weather being good, and faw that they had ranged themfelves in refpect of one another, as is repreFented in the upper Part of the Scheme: The leading and largen Spot being Fig. Ir. diftant from the anterior Limb 44 Seconds of Time, the laft Clufter lying a little awry, paffed in 53 Seconds: After the anterior Limb had fo done, the following Limb alfo paffed the Interfection, according to the Path of the Spot, in 125 Seconds of Time.
Friday and Saturday, No Sun-fhine.
Sunday, Fuly the 4th, This Morning at Eight a-Clock the leading Spot was diftant from the advancing Limb 10 Seconds of Time, the Spots and Clufters retaining nearly the fame Shape, but beginning to contract themfelves, the foremoft methought looked ftrong enough to make another Revolution, and paffed in 127 Seconds.
Monday, Fuly the 5 th, At Seven a-Clock I found the Spots had quite altered their Shape, appearing dull and flender, as in the lower Part of the Scheme, and diftant about 4 Seconds, being all included in a Cloud.
Tuefday, Fuly the 6th, At Ten a-Clock the Sun's Disk; viewed with my eighteen Foot Telefcope, was found clear of all Spots.
On the 1 yth Day of $\mathcal{F} u b$;, about Four a-Clock in the Afternoon I obferved fome Spots in the Sun's Body, refembling thofe I faw on Tburfday the 3d of fune, only with this Difference, that thefe appeared to me as if they had been heated red hot ; they feemed to be in the fame Part of the Sun's Disk. Iobferved them above an Hour together that Day, but could never afterwards fet Eye on them, nor difcover whether they were coming in, or going of his vifible Disk. I continued to obferve the Sun as often as was poffible, with my eighteen Foot Glafs, till the End of the Month, but without farther Succefs.
4.] I have endeavoured to render this Account of the Spots of the Sun Spots in inore complete than my former; few of thofe Appearances having efcaped the Sun my Sight; and being alfo better provided with competently good Inftruments from $1,-0$; to take their Places on the Sun, viz. a Micrometer (after Mr. Gaicnign's Man- by Mr.W. ner) to take their Diftance from the Sun's Northern or Southern ILimb, Derhan, which is parallel with the Pole of the Earth; and a Half-Second's Movement, ${ }^{3}$ n. 330. to meafure their Diftance from the Sun's Eaftern or Weftern Limb.

1 Table of all the Spots and Facula on the Sun, visible at Upminfter Since July 1703.

In this Table the Facule are noted with an Aiterisk; and the Duration of every Appearance of the fame Spots or Facule, or the Time they difappeared, with a Line.
Out of many Things that I took Notice of in viewing the Spots and Facule, I fhall felect only fome few Obfervations, which are the moft remarkable.
And firt, as to the Figure of the Spots. They are well known to change frequently ; and therefore I think it of little Ufe to give their Figures every Time I obferved them. But it is fomewhat remarkable, that the Spots generally appear longifh near the extreme Parts of the Disk. If they are never fo round near the Middle of the Disk, they become longer and longer towards the Extremes, till (at going off) they feem to be nearly a furait Line, nearly parallel to the Sun's Limb. Which is a manfelt Argument, that the Sun is a Globe, and that thefe Spots are on, or very near its Surface.

Another Thing remarkable is, the Mutability of the Sbape of the Spots. I have more than once manifeitly perceived them to change in the very Time I have been looking upon them. Thus Nov. 19, 1703, I faw three or more Spots not far off the Middle of the Disk; and whilft I was looking upon them, they feemed to vary, both as to their Shape and Strength; fometimes feeming longer, fometimes fihorter ; fometimes fpifs, fometimes languid. And this they feemed to do, not only through my fixteen Feet Tube, (which I thought at firt was from the different Difpofition of my Eye) but alfo when I received the Sun's Image through a fix Feet Telefcope, on a white Paper, in a darkened Room. Thefe mutable Spots the Weather hindred me from feeing again till November the 22 d following; and then they were become only like a thin Smoak, or Nebula.
So again April I 1, 1704, there were divers Spots with Umbre about them. Thefe Unrbre, or Nebula, I could plainly perceive, whilft I was looking on them, to be fometimes very faint and thin, and fometimes much darker and thicker. Thefe Mecule and Usisbra I obferved fuddenly brake out in the Sun: For on April 9 , the Disk was free. But this April 11 . laft mentioned, I perceived them advanced near a quarter Part on the Disk: And confequently they brake out in the Sun within 48 Hours before. On April I 3, the Spots were become Umbre in the Morning ; and at Four of the Clock in the Afternoon, there were no Remains of either Maculce or Umbres.
From this flort Continuance of thefe Spots on the Sun, it is more than probable, they were in a perpetual Flux and Changre; and that thofo Mutations, which I perceived in them, whilft I was looking on them, were real, not imaginary.
Alfo it may be farther remarked, (which I have frequentily obferved, and which as I remember scheiner obferved long ago) 'That thofe Spots and Umbree, which fuddenly arife, do as fuddeniy decay, and are foon

Spots in the Sun.

extinet. And fuch Spots, I have farther obferved, do felclom turn to Fiacule, as they commonly do when longer on the Sun.

Again, May 5,1705 , I could perceive two Spurs or Branches (running from a Spot) to change, and be fometimes darker, fometimes thinner.

So March 30, 1706 , I obferved fuch another Variation. This Day, or but a little before, Spots with Facule arofe in the Sun, which remained not above three Days on him. One of thefe Spots I could manifeitly perceive to be fometimes quite extinct, and then again immediately to appear: And the Faculce alfo, in half an Hour's Time, had plainly altered their Shapes.

October 29, the fame Year, I could plainly perceive the Macule and Facule both to change : And whilft I was carefully viewing them, I faw a Spot arife in one of the brighteft Facule, and again nearly difappear; and then again appear ftrong and fpifs. I fhould have been glad to have feen how they appeared next Day ; but the Weather was ftormy, cloudy, and wet for feveral Days after.

Another Thing I have obferved (and not having the Book by me, I forget whether Scbeiner obferved the fame or not) is, That the Macule do generally, if not always, become Nebule or Umbre, before they quite vanifh; and after that, very frequently turn to Faculce, or bright golden Spots, more illuftrious and fulgid than the other Parts of that glorious Globe. If the Spots are of a fhort Duration, Facule feldom enfue: Or if they do, they are commonly the Remains of fome Spots that had been on the Sun, and vanifhed perhaps on the Side oppofite to us. But Spots that long continue, if they vanifh, before that Part of the Sun revolveth out of our Sight, do very often become Faculre: Of which the Table affordeth feveral Inftances, particularly July 3 , 1705°

From thefe preceding Particulars, and their Congruity to what we perceive in our own Globe, I cannot forbear to gather, That the Spots on the Sun are caufed by the Eruption of fome new Vulcano therein; which at firf, pouring out a prodigious Quantity of Smoak, and other opacous Matter, caufeth the Spots : And as that fuliginous Matter decayeth and fpendeth itfelf, and the Vulcano at laft becomes more torrid and flaming, fo the Spots decay and grow to Umbre, and at laft to Facule; which Facule I take to be no other than more flaming brighter Parts than any other Parts of the Sun. Thefe Faculce I have obferved never continue long on the Sun: And the Reafon I conceive is, becaufe the Vulcano, after its Smoak is over, doth not long emit its Flames, by reafon the fiery Pabulum is then near fpent, when once it begins to flame: After which the torrid Vulcano foon returneth to the natural Temperature of the Sun, fo nearly at leart, as to efcape our Sight, at fo vait a Diftance as the Sun is from us.

Another Thing, that may be accounted for, and indeed doth in fome Meafure confirm alfo what I have faid, is the Nuclei, or darker Part

OF M

IIII

of the Spots ; generally in moft Spots, and towards the Middle of them. Now it is very ufual in culinary Fires in this our Globe, when they emit Smoak, that the Middle is the darkeft Part. If, for Intance, we were from aloft in the Air, to fee a thick Smoak come tumbling out of a Cbimney, or the Mouth of a Vulcano juft kindled, we fhould find the middle Part, juft over the Mouth of the Cbimney, or Vulcano, to be the more fpiifs and dark, and towards the Extremes clearer and thinner. And fo I take it to be in the Eruptions of the Sun; that the Nucleus is juft over the Mouth of the ignivomous Cavern, and that the mifty Parts of the Spot are the thinner Parts of the Smoak, fwimming about in that Fluid, or Atmofphere, which I fuppofe dorll furround the Sun, as well as our Globe, and the Moon manifeftly; yea, and in all Probability, every Planet of this our Solar Syftem.
From what hath been faid, we may give a Reafon, why there are fometimes Spots frequently on the Sun, and fometimes none in many Years. One Thing I believe there is in this, That there may be Spots, but not always feen. But there are doubtlefs great Intervals fometimes, when the Sun is free; as between the Years 1660, and 1671, 1676, and 1684. In which Time Spots could hardly efcape the Sight of io many curious Obfervers of the Sun, as were then perpetually viewing him with their Telefcopes in England, France, Germany, Italy, and all the World over ; whatever might be before, from Scbeiner's Time. The Reafon of this long Difappearance of the Spots, I take to be from the Want of extraordinary Eruptions in that fiery Globe. The fulphureous, or other Matter, or Pabulum of thofe Eruptions, is fpent or diffipated, and that Globe continues in its natural ordinary burning State, till there happens to be a frefh Collection of fmoaking, difiplofive, and extraordinary Matter, that caufeth a new Eruption: Which Eruptions generally happen between what we may call the Sun's Tropicks, or in his Torrid Zone : For I never obferved any Spots to be near the Sun's Poies. And if I mifremember not, the Spots in scbeiner's Cuts are all about the middle Zone of the Disk. The greateft Evagation I ever obfierved of them was March 8, $17^{\circ} 0_{4}^{3}$. On which Day, befides the dark Spots in the ufual Zone, I perceived fome faint Spots, fcarce vifible, murch nearer the Southern Pole, than I ever had feen them. But this was, no doubt, in fome Meafure owing to the Pufition of the Earth in refpeet of the Sun, as well as to the Southerly Place of the Spots on him: For, about the Equinoxes, the Spots feem to march pretty far towards the Poles of the Sun, as may be feen by the Scbemes.
Having thus obferved, what Part of the Sun the Spots commonly Fig. 115,116. polfefs, I fhall next take Notice of their Stages and Patb over the Sun. That the Sun moveth round his own Axis, is manifet, beyond Doubt, from the Motion of the Spots. And that the Spots feem to traverfe the Sun, fometimes in ftrait Lines, fometimes in Cuive Lines, curved
curved this Way, and that Way, hs as manifeft alfo, and well known, and is fet forth in the Figures: Which Figures fhew the Stages of the Spots, every Day that 1 obferved them, and the Lines they defcribe in feveral Months of the Year. The daily Stages i in both Figures are exaet; or if they feem orherwife, it is by reafon the Obfervations were made at difierent Times of the Day; as One in the Morning, the other fome following Day in the Evening, or Afternoon. But the Declinations of the Spots, or their Diftances from the Sun's Northerh or Southern Limb, are lefs exact in the 116 th Figure than the 19 sth, in which Jatter they are very near the Truth.

And the Caufes of the Defegs in the 1 roth Figgure I fhall mention, to prevent the fame Firrors in others I my felf ran into.

1. The Diminution of the Sun's vertical Diameter by the Refractions was the principal Caufe of my Errors. This, although I was fufficiently aware of, yet I did not think had been 1o confiderable, for Want of experimenting, or well confidering the Matter: Fior I have fometimes Found the perpendicular or vertical Diarreter of the Sum diminifhed, from $32^{\prime}, 21^{\prime \prime \prime}$ on the Meridian, to $26^{\prime}, 3^{\prime \prime}$ at the Horizon, in one and the fame Day.
2. For the fame Reafon I was not aware of the Time being fo long, before the Sun goes round, as I found it.
3. Another Error was meafuring the Sun's Image on the Scene of white Paper, with the Shade of the Micrometer ; and not by looking through the Tube, and fo clafping the Limb of the Disk with the parallel Edges of the Micrometer. The former, although practifed by fome eminent Aftronomers, is a far more eafy and indulgent, than accurate Way. Fig. i17. the Spots of huguft 1, 1708, (reprefented Fig. 117.) where fome were
-Spors--fiom $1707, t 01711$,
by the fame ibid, p. 278.

Fig. 817.
5.] I have fince feen other Spots on the Sun, whofe Times are expreffed in the following Table.
From my Obfervation of thefe Spots, I am farther confirmed in the Opinion I expreffed in the foregoing Paper : Particularly in viewing large and dark, others lefs and thinner, and all encompaffed with Nebule. In viewing thefe, I obferved great Alterations at the very Time I was looking on them. Sometimes the Nuclei were very dark and black, fometimes lefs fo; and the fame Thing I obferved alfo in the Nebulde encompafing them. One of the leffer Spots 6 in Fig. 117, which the Day before was fufficiently vifible and ftrong, was, this Day now thick and ftrong, and A non languid and lefs vifible. And from the two Spots a and $d I$ could plainly fee a Smoak iffuing out to c and f, fometimes vifible for 5 or 6 Minutes, and then difappearing for a Quarter of an Hour, or more ; and then again fmoaking out, and again difappearing, as before. All which Particulars I faw over and over again repeated, for a good While together, till I was weary of the Obfervation.

There Spots I was hindred from viewing until Auguft 5, following: And then I Fig. 117. found the Spot b quite extinct, (as I expected) as alfo fome of the other Spots; together with the Nebulce grown lefs. But the great Spot a continued dark and ftrong, only fometimes fainter, and then again ftronger ; and fometimes like a half, or horned Moon ; fometimes roundiih, or rather of an oval Figure ; of which latter Figure they commonly are, when they are near the Sun's Limb, which this Spot was not far off at this Time.

Thefe Particulars are Confirmations of what I faid, That the Solar Spots are no otber than a Smoak rijing out of the Body of the Sun. Of which Opinion I have been, almoft ever fince I firft obferved them, and find that I am not lingular in this Opinion, as I fhall fhew from Part of a Letter (which with fome others is lately fallen into my Hands) from Mr. Crabtrie to Mr. Gafoigne, the Inventor of the Micrometer.
'I writ to Mr. Townley my Opinion in Brief of the Sun's Spots, ' (which you conceive to be Stars) and it feems he, or Mr. Kay, writ ' to the fame Purpofe to you, defiring your Opinion: Which you free-- ly deliver: Yet give me Leave to fpeak my Mind likewife freely con-- cerning thefe Appearances. I do not value the Authority of Galileus, ' or Kepler, further than either demonftrative, or the moft probable

- Reafons confirm their Opinions. I acknowledge you fay more for 'the Stellifying of thefe Solar Obfcurities, than I have heard before ; ' yet I conceive not fufficient, either demonftratively or probably to 'countermand thofe, which Galileus, Kepler, and others have produced ' to the contrary ; nor yet fuch as can be cleared from fuch Objections, ' as Reafon, Demonftration, and Obfervation may lay againft them.
${ }^{\text {' }}$ My Occafions will not admit a full Difquifition hereof at this Time; ' yet fomething I would fay for the prefent, the better to furnim' you ' where to object, when I fee you.

Vor. IV,

- I have often obferved thefe Spots; yet from all my Obfervations - cannot find one Argument to prove them other than fading Bodies. - But that they are no Stars, but unconftant (in regard of their Gene-- ration) and irregular Excrefcences arifing out of, or proceeding from
- the Sun's Body, many Things feem to me to make it more than
- probable.
- For firft, for their Form ; they are feldom round, but of irregu-
- lar Shapes, and, as I have often feen, one Side, or End of the Spot
- more thin than the reft, like to a certain mifty Darknefs, and by De-
- grees thicker, groffer, and darker, nearer to the main Body of the
- Spot; juft as the Smoak of fome pitchy Fire, which is in one Part
- very grofs, and in another more rare and thin, turning at laft into
- mere Air: Or like a Cloud, Fog, or Mift, more thick, dark, and
- grofs in the Midft; and more thin, fluid, penetrable, and eraníparent
- towards the Sides; which I fuppofe is not compatible with any of the
- Stars.
- Secondly, for their Colour : The Lightnefs thereof differenceth them from Stars, or Planets ; they being never of fuch abfolute Darknefs,
- as I obferved Venus the 24th of November laft: Though I have feen
- Spots fometimes little lefs than fhe, yet always of a far paler and
- whiter Colour, looking (at leaft in fome Parts) like fome thin diffipa-
- ted Subftance.
- Thirdly, for the Manner of their Appearance. I have feen many
- Spots, which in the Middle of the Sun appear of a round Body, but
- coming towards the Side of the Sun, appear long. Which is a de-
- monftrative Argument, that they are not Globes, as all the Planets
- and Stars are : For Globes always appear of one Form (round) in
- every Pofition ; but Exhalations, or fuch like fluid Subftances, ex-
- tended to a broad flat Form, like our Clouds, which being over our
- Heads, and fo in their full Breadth, appear large and broad; but
- driven with the Wind, till they turn one Edge upon us, feem of a
- long Shape. So thefe Solar Clouds, being turned about the Sun, may
- in the Middle fhew their full Breadth to l:s, and about both Edges
- of the Sun, turn their Edges to us: Which anfwereth to the Appear-
- ance.
-Fourthly, for their Continuance. Some of thefe Spots, arifing at the
- Eaft-fide of the Sun, vanim before they come to the Midft of the Sun.
- Others appear firt in the Middle of the Sun, and vanilh before they
- come to the Weftern Limb; and for the moft Part they vanifh, be-

6- fore they have made a full Revolution about the Sun. Which argues

- them to be but thin, vanifing, fading Subftances, not like the per-
- manent Bodies of the Stars.
- But to take off thefe Reafons, you anfwer, That you conceive - thefe Spots to be Stars moving regularly in their own Orbs, which
' are many, though none of greater Extent than about $\frac{\text { ' }}{1 \circ}$ of the $\odot \mathrm{Se}$ ' midiameter from its Circumference ; and that the fwifter Movers in © the lower Orbs, overtaking the nower in the higher Orbs, caule an
- Appearance. You feem therefore to think, that they being fo thin
- Bodies, the Sun's Rays pafs through them, and fo one cannot be feen
- alone, till more being together, one heaped behind another, they fop
'the Light of the Sun's Rays, and fo caufe an Appearance. This I
- conceive is your Meaning: Or elfe (as you feem to infinuate after-
- wards) that the higher reflects the Sun's Rays ftrongly enough upon
- the lower, (when they come within the Angle of Reflection) to make - the interjacent Planet indifcernible.
- But to thefe I anfwer, that
I. 'If it be by their coming within the Angle of Reflection, that 'the Light of the Sun reflected from the outer Planet upon the inner, ' doth make it (as you fpeak) indifcernible, then that Light fo re-
- flected, is reflected either upon all Places, as the Moon and Planets
- Light; or but upon one, as is the Keflection of a plain Looking-
- Glafs. If the Firf, there would never be many feen, (feldom above

6 one or two becaufe the outermof would continually make the inner
' undifcernible. But Gaffendus affirins, there are feen fometimes 40 at
' once in the Sun's Body. If the fecond, there would always be many

- feen, becaufe the reflected Light would but occupy a little Room,
' and that but for a ímall Time, till the fwifter were paft the Place of
- Reflection: Whereas many Days there are none at all feen in the
- Sun's Hemifphere : And in both thefe Cafes, the outermoft Planet
' of all would always in the Space of 27 Days, be feen in the fame
' Place, being never obfcured, none of the Inferior being able to re-
- flect Light upon it. Add hereunto, if any Kind of Reflection fhould
' make them to appear bright like the Sun, and fo not diftinguifhable
' from the Light of the Sun, what fhould ${ }^{2}$ hinder, but we fhould fee
' them alfo bright Bodies by the Side of the Sun, when they are paf-
' fing either by the Weft or Eaft-fide of the Sun's Body? The Light
- being then reflected upon them by the inferior Planets, as well as at
' other Times, and that alfo upon much of that Side of them which we s fhould behold.

[^7]- But if you wave this Conceit, as infufficient, and fly to your for-- mer, That the fwifter Movers in the lower Orbs, overtaking the - nlower in the higher Orbs, caufe an Appearance. To this I anfwer :

6 1. The Thing you fuppofe feems to me neither neceffary nor probable,

- nor do I conceive, why they fhould not be feen, being themfelves

6 alone, as well as conjoined, feeing all other Stars and Planets are fo.
6 2. If it be, becaufe they are of a thin, tranfparent Subftance, till

- many, being one behind another, make them to feem groffer; then
- they are not of the Nature of other Planets, as is proved in $¥$ and q,
- who of themfelves appear dark Bodies, when they come between us

6 and the Sun; nay, they mult be more thin than our Clouds, which

- will eafily be feen between us and the Sun, and hide it from us. 3. If
- it be, becaufe they are fo little, that the Imperfection of our Glaffes
- cannot difcover one alone, there muft be, without doubr, many Mil-
- lions of them ; which how they can be included within the Compals

6 of $\frac{1}{10}$ of the © Semidiameter, we fhall confider anon. I have feen one

- of an ordinary Darknefs, (yea darker than many greater) yet not
- above $5^{\prime \prime}$ Diameter. If this confift of two, or many, of themfelves
- invifible, how many were in thofe which Gaffendus faw of $1^{\prime} \frac{1}{2}$ Dia-
- meter? 4. The Figure of thefe great ones (being neceffarily compofed
- of Stars of fuch different Orbs and Motions) would quickly vary',
- by reafon of the Diverfity of their Motions; like as we lee in a Flock
- of fmall Birds. But 5 thly, You fay the furtheft of thefe Orbs is not
- above $\frac{1}{10}$ of the Sun's Semidiameter from its Circumference. But
- there would not, in that fimall Space, be Room enough for fo many
- Orbs of Planets, as have been feen at once. Which I prove thus:
- 1. Gaffendus affirms, there are fometimes tome of about the $\frac{1}{10}$ Part
- of the © Semidiameter; which is the whole Space allowed by you
- for them all. And myfelf have feen of the $\frac{1}{\top}$ of the \odot Semidiameter:
- And yet you muft confefs, thefe great ones courd only be Conjunctions
- of fome, not all. 2. There are many Times feen in the Sun's Super-
- ficies, a great Number of Spots, whofe Diameters added rogether,
- would do more than twice fill the Space you fpeak of. I myfelf have
- feen it, and fo I believe have your. Gaffendus affirms, there are fome-
- times 40 feen at once: If this was by Conjunction of Planets, in every
- Appearance, there were at lealt 80 Bodies at once on this Side the \odot;
- it may be as many on the other Side, befides thofe unfeen, (by your
- Reflection or otherwife) which doubtleis nuft be far more than feen.
- For it is a moft rare, and I think unheard of Thing, to fee but three
- (which is lefs than the Half) of our Planets, conjoired in vifible o at
- once : So that without Quettion, if they be Planets, they are many
- Hundreds; which muft have fo many feveral Orbs, and which cer-
- tainly cannot be done in fo narrow a Compars, as the $\frac{1}{10}$ of the © Se-
- midiameter. And that they cannot have any larger (I fuppofe not fo

Spots in the Sun.

- large an) Extent from the © Superficies, may be proved by their Mo-- tion through the vifible Hemifphere of the Sun's fpherical Body, by - comparing the Swiftnefs of their Motion towards the Middle and Sides ' together. 6. If one of thefe (imagined) Planets be fwifter than an-- other, as they muft needs be, then the δ of 2 or 3 fwifter ones would - make a Spot of fpeedier Motion than the of of 2 nower ones: But - the Motion of all about the \odot Center, is always equal ; yea, and the - Spots retain the fame Pofition one to another, (confidering the Sun's - Sphericity, and the Angle of their Appearance to us) jult like the
- fixed Stars. So affirms Gaffendus, They all move with the fame uni-- form Motion, fo that when there are feveral of them, no one over-- takes another, but they all preferve the fame Diftances in the Sun's - Difk, as the fixt Stars do in the Firmament.
- As for that other annual Motion of the Spots, you fpeak of, from
- Weft to Eaft, upon their Axis inclined above 8 Degrees to the
- Ecliptick; I fuppofe it is not any real Motion of the Orbs of thofe
- folar Planets or Spots, but only a vifible Motion fo appearing,
- caured (in Kepler's Syftem) by the Sun's rolling upon its own Center
(in the Midit of all the Orbs, and not exactly in the Way of the Tem-
' porary Ecliptick, but in the Via regia (as Kepler calls it) inclined cer-
' tain Degrees to the Temporary; thereby turning about with him, the
- fame Way, his adventitious, or excrementitious Parts, the Spots, by
- his magnetical or fympathetical Rays. And hence may be demonftrated - the Appearance of that annual Motion in the Sun's Spots you fpeak - of. See Galileus, Syf. Cofm. p. 339, E^{3} feq. So alfo in Ptolemy's and
- Tycho's Syitem, the fame Appearance may be demonftrated, fuppofing
- the Θ fixed in the Middle of the Univerfe, and the \odot rolling round
- upon the fame Poles of that Via regia (or way of the Spots) and keep-
- ing his Axis in Parallelifm continually towards one and the fame Part - of the Univerfe. This may be certainly demonftrated, although Go-
- lileus there affirms the contrary. Other Hypothefes of that Motion
' may be feigned, as by the annual Converfion of the Poles of the Via ' regia about the Poles of the Ecliptick in the Sun's Body: But none I
' conceive fo compendious, as the one of the former. For my Part, - I incline to the firt.
- Thus you have, what for the prefent, I conceive of thefe Macule - Solares. Fromurdus mentions one '7o. Tarde Gallus, who thinks them ' to be fecondary Planets; who hath written a Book of that Subject, ' and calls them Aftra Borbonia: But I could never yet fee it. What - you, or he, or others may alledge for that Opinion, I know not. In
- the mean Time I cannot acknowledge them Stars, unlefs I fee at leaft
- fome Poffibility how they may be fo, or fome Probability why they
- Thouk not rather be Spots. Which when you, or they do procuce
- from better grounded Reafons, O_{Y} tical Experiments, or Demonftra-
- tions, I fhall willingly recant my Opinion.

Spots in the Sun.

Of the Dia: . ${ }^{6}$ It is true which you fay, That I found Venus's Diameter much lefs neter of Ve-' 6 than any Theory extant made it. Kepler came neareft, yet makes her มนร.

- Diameter five Times too much. Tjcho, Lansberge, and the Ancients, - about 10 Times greater than it was. So alfo they differ in the Time 6 of the of as far from the Truth. By Lansberge the of Thouid have - been $16^{h} 3^{\prime}$ before we oblerved it: By Tycho and Longomontane $1^{\text {d }} 8^{\text {b }}$ - 25^{\prime} hefore. By Kepler (who is ftill nearelt the Truth) 9^{h}. 40^{\prime} before. - So that had not our own Obfervations, and Study, taught us a better - Theory than any of thefe, we had never attended at that Time for - that rare Spectacle. You fhall have the Obfervation of it, when we - fee you. 'The Clouds deprived me of Part of the Oblervation, but ' my Friend Mr. Jeremiab Horrox, being near Prefton, obferved it - clearly from the Time of its coming into the Sun, till the Sun's fet-- ting; and both our Obfervations agreed, both in the Time and Dia-- meter, moft precifely.
- Langsberge in E.cliples, 'efpecially of the D, comes often nearer the - Truth than Kepler, yet it is by packing together Errors ; his Diame-- ter of the \odot and D being falle, and his Variation of the Shadow be-
- ing quite repugnant to Geometrical Demonftration. His circular
- Hypothefis Mr. Horrox (before I could perfuade him) affayed a long
- Time with indefatigable Pains and Study to correct, and amend;
- changing and turning them every way (ftill amazed and amufed with
- thole lofty Titles of Perpetuity and Perfection, fo impudently im-
' pofed upon them) until we found, by comparing Obfervations in fe-
- veral Places of the Orbs, that his Hypothefes would never agree with
- the Heavens for all Times, as he confidently boafts; no, nor fcarce
- for any one whole Year together, alter the equal Motion, Proftha-
- phrerefes, and Excentricity howfoever you will.
- Kepler's Elliptick is undoubtedly the Way which the Planets defcribe
- in their Motions: And if you have read his Comment. de motu δ is, and
- his Epit. Aftron. Copern. I doubt not you will fay his Theory is the
- moft rational, demonitrative, harmonious, fimple, and natural, that
- is yet thought of, (or I fuppofe can be; all thofe fuperfluous Fictions
- being rejected by him, which others are forced fo abfurdly to intro-
- duce. And although in fome Refpects his Tables be deficient, yet be-
- ing once corrected by due Obfervations, they hold true in the reft:
- Which Lansberge's and all others want.
- Your Conceit of turning the Circle into $100,000,000$ Parts, were 6 an excellent one, if it had been fet on foot, when Aftronomy was
- firf invented. Mr. Horrox and I have often conferred about it. But
- in refpect that all Aftronomy is already in a quite different Form, and
- the Tedioufnefs of reducing the Tables of Sines, Tangents, and all
- other Things we fhould have occafion to ufe, into that Form; as alfo
- fome Inconveniences, which we forefaw would follow in the compofing

6 the Tables of Celeftial Motions, together with the Greatnefs of the

Eclipfes in the Sun.

- Innovation, deterred us from the Conceit. Only we intend to ufe - the Centefmes or Millefmes of Degrees, becaufe of the Eafe in Calcu-- lation. I have turned the Rudolphine Tables into Degrees and Mil-- lefmes, and altered them into a far more concife, ready, and eafy - Form, than they are done by Kepler.

Forafmuch as every Thing of Mr. Crabtrie's is valuable, I have taken this Occafion from my own Obfervations of the folar Spots (for the moft Part drawn up near four Years ago) to give Mr. Crabtrie's Letter at large (which I faw not till about a Month ago) containing as well fome Things of another Nature, as what relates to the Spots; I have two other of his Letters concerning the Spots (with Mr. Gajcoigne's Anfivers.) One contains his Theory of their Motion and Appearances; the other his Way of obferving them. But being long, I fhall omit them for the prefent.
Fig. 115. Sbowes the Stages and Lines defcribed by the Spots upon the Fig. 115: Sun in Sept. and Novemb. 1706, and int Feb. and March, $170_{\%}^{6}$, and in Sept. and Novemb. 1707.
Fig. i16. Shows the Stages and Lines defcribed by the Spots upon the Fig. 116. Sun in Jan. 170^{3}, and in May, June, and Octob. 1705°
XI. On the 12 th of fune 1694 , in the Morning, I went to the College at Cambridge, about four Miles from Boflon, and oblerved with the Brafs Quadrant there, with Telefcopick Sights, the Rays of the Sun being tranfmitted through one of the faid Sights, on a clean Paper, Mr. T.Bratte, pafted on a plain Piece of Board, and faftned at right Angles at about a Foot diftance from the faid Sight, on which Paper I had drawn a Circle between 2 and 3 Inches Diameter, equal to the Sun's Difk, and within that feveral Concentric Circles dividing the Diameter into 24 equal Parts, whereby 1 could obferve to $\frac{1}{2}$ a Digit: The Room in which the Oblervation was made, was darkened with Blankets, and in order to render the Obfervation more exact (Mr. Henry Newman affifting me all the while) I took the Altitude of the Sun with the forefaid Quadrant, as folioweth.
Obfervations made of the Sun's Altitude before the Eclipfe began, in. order to rectify the Watci.

The Eclipte was firt perceived at $9^{h} 25^{\prime}$ by the Watch, at which Time the Sun had fcarcely been eclipfed I Minute, fo that:

Eclipfes in the Sun.

Obfervations made after the Ecliple was done, of the Sun's Altitude; in order to rectify the Watch.

Time by the Watch Comp. Altit. True time. Differ.

Hence it appears, that the Watch went about 10 Minutes too fatt during the whole Eclipfe, as we have all the Way allowed.

So that the Eclipfe

Bcgan at	14 Mane.
Ended	38 P. M.
Laftin	

Note, That in the Calculation, the Latitude of Boffon was allowed to be 4^{2}. 25^{\prime}.
XII. At half an Hour paft Eight in the Morning, I fet my Clock Eclipfe of rie exactly by my Ring-Dial, and at half an Hour paft Nine they nicely Sun, Nov. 23. agreed, at
h
10
06 The Moon enter'd on the S. S. W. Point as near as I could judge.
15 The Eclipfe was confiderably advanc'd:
20 Seem'd to be about half a Digit eclipfed, rather more than lefs, and the Section to be a fmall Matter more Weftwardly.
1025 Much the fame, and near the fame Point.
30 Seem'd to be lefs.
$33^{\frac{1}{2}}$ The Middle of the Section nearer the S. W. and the Diameter of the Section lefs every way.
$37^{\frac{1}{2}}$ Much lefs and nearer the Weft.
$44 \frac{1}{2}$ It ended, and was juft over, going off near the S. W. fo that all the while it was within a Point or two of the Place where it firlt came on, or between the S. S. W. and the S. W.

I judg' d, when it was at the Height, that the Chord of the eclipfed Part was neareft equal to the Side of an infcrib'd Decagon, or fubtended about $\frac{1}{10}$ of the Periphery of the Sun's Disk.
Iobferv'd this Eclipfe with a Telefcope of one Joint, 4 Foot and a half in Length, and had only two Glaffes, fo that it inverted the Object ; and I had a red Glafs, which fuited it, fo that I could fcrew it in juft before the Eye-Glafs, and was not fain to hold it in my Hand, as when I obferv'd the Sun's Altitude with the Brafs Quadrant, which was a great Convenience.

XIII, 1.] The Morning was cloudy and moift, till about Eight a Ecliffe of sbe Clock, when the Clouds began to break, and we had fometimes a Sun, May $\frac{1}{T_{1}^{2}}$. Sight of the Sun thro' the Spaces betwixt them. A feven-foot Tele- Greenwich, rcope was fitted up with a Scene to receive the Species of the Sun by Mr. Flamcaft through it, and on which it was about feven Inches Diameter,
$V_{0 L}$. IV

$$
\mathrm{Kk}
$$

divided into Digits by fix concentrick Circles. But Clouds covering the Sun frequently rendred this wayy of obferving inconvenient, and therefore laying afide the Apparatus of the Scene, I viewed him through the Telefcope with fmoaked Glaffes, to fave my E.yes, and noted

Correct Time
by the Pend. Clock.

-at Canter-
bury by Mr Glaf Mr. S. Cray had prepared a Scene placed behind his feven Foot S. Gray, ibid. Glais, 10 that the Species of the Sun projected on it was feven inches over ; but having the fame Sort of Weather that was at Greenwich, he faw not the Beginning, by reafon of Clouds, but other Phafes with the End he noted, as follows.

Correct Time by the Pend. Clock.

3.] Mr. Abr. Sharp caft the Species of the Sun on a Scene-plate, \rightarrow at Horton behind his feven Foot Glafs, fo as it appeared feven Inches over. By inar Bradford reafon of cloudy Weather, he faw neither the Beginning nor End: But in Yorkhinc, other Phafes near the Middle, as follows.

Time correct by the

4.] Captain Stannyan, from Bern in Switzerland, writes ' That the -at Bern in - Sun was totally darkned there for $4 \frac{1}{2}$ Minutes of Time; that a fixed Switzerland, - Star and a Planet appeared very bright; and that bis getting out of by Capt. Stan'the Eclipfe was preceded by a Blood-red Streak of Light, fromi its Left nyan, ibid.

- Limb; ruhich continued not longer than 6 or 7 Seconds of Time; then
' Part of the Sun's Disk appear'd, all on a Sudden, bright as Venus
' was ever feen in the Night; nay, brighter ; and in that very Inftant
' gave a Light and Shadow to things, as ftrong as Moon-light ufes ' to do.

The Captain is the firf Man I ever heard of, that took Notice of a red Streak of Light preceding the Emerfion of the Sun's Body from a total Eclipfe: And I take Notice of it, becaufe it infers that the Moon bas an Atmosphere; and its fhort Continuance of only 6 or $7 \mathrm{Se}-$ conds of Time, tell us, that its Height is not more than the 5 or 6 bunaredtb Part of ber Diameter.
-at Geneva, by Mr. J. C. Facis Duillior,
5.] A little after the Sun's rifing, the Sky did feem clear; tho' the Air was thick already with fome Vapours. Many little Clouds did afterwards arife here and there, and the Vapours did much increafe. For want of a Pendulum Clock, in a convenient Place, the Moment of the total Immerfion, the Moment of the firft Emerfion, and that of the End of the Eclipfe, could not be accurately obferved. Tho' the Sky was fomewhat overcaft, the Heat of the Sun was already felt, when the Eclipfe did begin: But a very fenfible Coldnefs took Place, as the Moon did by degrees cover a greater and greater Part of the Sun, and the Light decreafe. The Eclipfe was obferved only with fome Glaffes, either darkned with Smoak, or but little tranfparent; and by receiving the Sun's Image through a fix Foot Telefiope, which reprefented the Objects inverted, upon a white Paper, placed at fome Diftance, from the Eye-Glafs. When the Sun was near being totally dark, the bright Crefcent, which did remain, was feen to diminifh more and more, upon the Paper, where its Image was received. And when that Crefcent was reduced to a very narrow Breadth, and to a very little Length, it was feen on a Sudden to difappear: And in that Moment the whole Sun was eclipfed. At the fame Inftant of Time, the Darknefs, which was already very confiderable, did become much greater. The Clouds did change on a Sudden their Colour, and became red, and then a pale Violet. There was feen, during the whole Time of the total Inmerfion, a Whitenefs, which did feem to break out, from behind the Moon, and to encompafs it on all Sides equally. The fame Whitenefs was but little determined, in its outward Side, and was not broad the twelfth Part of the Diameter of the Moon. This Planet did appear very black, and her Disk very well defined, within the Whitenefs, which encompaffed it about, and whofe Colour was the fame with that of a white Crown, or Halo, of about four or five Degrees in Diameter, which accompanied it, and had the Moon for its Center. The Star of Venus was feen, at the Fame Time, at fome Diftance, without that Crown, between the Ealt and N. E. in reference to the Sun. The Planets of Saturn and Mercury were feen alfo by many, Eaftward from the Sun's Place. And if the Sky had been clear, many more Stars might have been feen, and with them the Planets of $\mathcal{F u p i t e r}$ and Mars; that towards the Eaft, and this towards the Weft: And fo the feven Planets might have been feen, almoft all at once. Accordingly fome Gentlewomen being in the Country, did tell, as it is faid, more than fixteen Stars. And many People, which were on the Neighbouring Mountains, did fee the Sky ftarry, in fome Places, where it was not overcaft, as during the Night, in the Time of the full Moon. The total Emerfion did begin about three Quarters paft Nine. The Duration of the total Darknefs was precifely three Minutes, or 180 Seconds, to the Moment that the firt Ray of the Sun did begin to appear again, with much Brightnefs.

Eclipfes of the Sun.

Brightnefs. And this Time was obferved, with a fimple Pendulum; which was afterwards compared with a Pendulum Clock, Thewing the Seconds, and regulated upon the mean Motion of the Sun. A little after the Sun had begun to appear again, the Whitenefs and the Crown, which did encompafs the Moon, did entirely vanifh. The Sun did then fhew itfelf more and more; appearing at firft as a little Crefcent, which did fill encreafe; and whofe concave Side did feem terminated, as by an Arch defcribed with the Compafs. A little before the total Obfcuration, the Country, on the Weft-fide, did already feem overcaft with Darknefs ; and after the total Obfcuration, the Darknefs was feen to leave us more and more, and to fly Eaftward. According to Mr. Profeffor Gautier's Obfervations, from the firt Emerfion of the Sun, to the End of the Eclipfe, there was $1^{\text {h }} 9^{\prime} 30^{\prime \prime}$. As to the accurate Times they are uncertain, the Pendulum Clock having been fet only by a fmall Sun-Dial. I fend you alfo the following Account, which the fame Gentleman did communicate to me.

c.] ' At Marfeilles the Eclipfe did begin at	8	28		
${ }^{\text {- }}$ It did reach the Sun's Center at	9	6		feilles by Mr.
It was total at	9	34.		5 Chazelles, and
The Sun did begin to appear again	9	37		9 ibid.
he Eclipfe did come again to the Center at		12	2	
did entirely end at		47		

- Three Stars were diftincily feen; and during three Minutes it was - not poffible to read. And there did remain one bright Digit, all - about the Globe of the Moon.

The Manor-Houfe of Drillior is in the Latitude of $46^{\circ} 24^{\prime}$. In Longitude it is $4^{\circ} 13^{\prime} 45^{\prime \prime}$ to the Eaftward of the Royal Obfervatory at Paris. And St. Peter's Church at Geneva is, in Latitude, $0^{\circ} 12^{\prime}$ to the Southward, and in Longitude, $0^{\circ} 5^{\prime} 2^{\prime \prime}$ to the Weftward of Duillier.
Before I make an End, I muft take Notice, that, according to thefe Obfervations, the Altitude of the Moon's Atmofphere cannor well be fuppofed lefs than of 130 Miles in perpendicular Height: Of which Miles 60 go to one Degree of Earth. Neither could that Atmofphere be difcovered before the Time of this Eclipfe, by any Refraction of the Stars; probably becaufe of this Refraction's Smallnefs, and for Want of proper. Oblervations. And though it was very plain that the Atmofphere of the Moon muft needs fhew itfelf in the Time of a total Eclipfe of the Sun; yet I do not know that any Body did think of this, till, in the laft Month of May, many Perfons did actually fee it.

Eclipfes of the Sun.

Some particular Obfervations, which are intended to be made publick, do evince that our Atmofphere is fometimes vifible, all along, from the Surface of the Earth to the perpendicular Height of one Semidiameter of the Terreftrial Globe. And the continued Appearance of a Crown, of only four or five Degrees Diameter, about the Sun, during the whole Time of the total Obicuration, does thew, that the正thereal Matter, in which that Crown was proctuced, muft be at a very great Height above the Surface of the Earth. But if that Crown was to be feen, fo far as the Weather did permit, in all the Places where the Eclipfe was total, it muft - be concluded, that the Caufe of it was not in our Air, but in fome Vapours encompafing the Sun: And probably, in thofe very Vapours, which produce that pointed Light, that has been obferved lying in a Manner along the Ecliptick, and that has the Sun for Center. Now either of thefe Conclufions, viz. concerning the great Height of the Parts of our Atmofphere, capable of producing that Crown, or elfe concerning a Meteor oblerved, not in our Air, but in the Vapours that encompafs the Sun, is very fingular, and deferves a great deal of Attention. If ever fuch another Appearance fhould be feen, in the Time of a total Eclipfe, it would be proper to obferve accurately the leaft Diameter of the Crown, from Infide to Infide: And to take Notice, whether, during the whole Time of the total Immerfion, the inward Circle be every where continued, and of an uriform Figure. The lefs the faid Diameter, and the greater the Excefs of the Moon's apparent Diameter above that of the Sun; as alfo the greater the apparent Altitude of the Sun is above the Horizon, the higher the Caufe, which produces the Crown, muft be above the Surface of the Earth. And the Pofition upon the Moon's Disk, in Reference to the Zenith, of the Points of Contact, where the Sun difappears, or begins to fhew itfelf again, is here alio of fome Confideration.
-at Zurich, 7.] We have had here, May 12. both a total and Annular Eclipie of by Dr. J. J. the Sun; total, becaufe the whole Sun was cover'd by the Moon; An-
Scheuchzer. nular, though

Fig. 119. nular, though not properly fo called, but by Refraction, for a ruddy Brightnefs appear'd about the Moon, arifing from the Rays refracted by the Moon's Atmofphcre.

The Beginning of the Eclipre was in the Morning $\quad 8^{\text {h. }} 54^{\prime}$.

The Middle	9.	54^{\prime}.
The End	II	12^{\prime}.

The Mora of the mean and full Obfcuration
Both the fixt Stars and Planets might be feen. The Birds betonk themfelves to their Nefts. The Bats came out of their Holes, and the Fifhes fwam upon the Water. We ourfelves perceived a fenfible Degree of Cold, and the Dew fell down upon the Plants.

The Corr.	
App. Time.	
h	1
6	44
15	

XIV. The Beginning of the Eclipfe we could not fee Eclipferf the for Clouds.

The Sun peeped out of the Clouds, and I judged, by my Mr. Derham, Eye, that about one Tenth of a Digit was eclipfed.

Sun, Sipt. 3 . 1708. at Upmintter, by Then Clouds nearly all the Time of the Ecliple. But at A little Obfcuration appeared through the Telefcope. A very little Obfcuration through the Telefcope. Then Clouds. And at We could difcern no Remains of the Eclipfe through the Telefcope.
From thefe Obfervations I imagine the End of this Solar Eclipfe was much about $8 \mathrm{~h} .33^{\prime}$ in the Morning.
XV. I. Though it be certain from the the Principles of Aftronomy, that there happens neceffarily a Central Eclipfe of the Sun, in fome that there happens neceflarily a Central eclipte of the Sun, in fome Eclipfe of tho
Part or other of the Terraqueous Globe, about twenty-eight Times in Sun, A pril 22 . each Period of eighteen Years; and that of thefe, no lefs than Eight 1715 , at Londo pafs over the Parallet of London, three of which eight are total with Contintance : Yet, from the great Variety of the Elements, where-

Ot/rrvations of the Total don, by $D r$. E. Halley, n. 343. p. 245- of the Calculus of E.clipfes confifts, it has fo happened, that fince the 20th of March, - Anno Cbrifi 1140 , I cannot find that there has been a total Ecliple of the Sun feen at London, though in the mean Time the Shade of the Moon has often paft over other Parts of Great Britain.

Having found, by comparing what had been formerly obferved of Solar E.cliples, that the whole Shadow would fall upon England, I thought it a very proper Opportunity to get the Dimenfions of the Shade afcertained by Obfervation ; and accordingly I caufed a fimall Map of England, defcribing the Track and Bounds thereof, to be difperfed all over the Kingdom, with a Requeft to the Curious to obferve what they could about it, but more efpecially to note the Time of Continuance of total Darknefs, as requiring no other Inftrument than a Pendulum Clock, and as being determinable with the utmoft Exactnefs, by reafon of the momentanous Occultation and Emerfion of the luminous Edge of the Sun, whofe leaft Part makes Day. Nor did this fail of the defired Effeet, for the Heavens having proved generally favourable, we have reeived from fo many Places fo good Accounts, that they fully anfwer all our Expectations, and are fufficient to eftablifh feveral of the Elements of the Calculus of Ecliples, fo as for the Future we may more fecurely rely on our Predictions: Though it mult be granted, that in this our Aftronomy has lof no Credit.

Eclipfes of the Sum.

Having received the Orders of the Society to provide for the Obfervation to be made at their Houfe in Crane-Court, I procured a Quadrant of near 30 Inches Radius, exceedingly well fixt with Telefcope Sights, and moved with Screws, fo as to follow the Sun with great Nicety; as alfo a very good Pendulumz Clock well adjufted to the mean Time, and feveral Telefcopes to accommodate the other Obfervers.

In order to examine both Clock and Quadrant, I, on the 20th of April, obferved the Diftance of the upper Limb of the Sun from the Zenith 36° 16^{\prime}, and the next Day $35^{\circ} \cdot 5^{8^{\prime}}$; by which it appeared, that the Diftances from the Zenith, taken by this Quadrant, ought to be increafed by about one Minute: And that Allowance being made, by many Obfervations taken before and after Noon on the faid 2 ift Day, the Clock was found to anfwer the apparent Time or Hour of the Sun with fufficient Exactnefs, as not going above 10". too faft. The next Day, April 20°, juft before the Eclipfe began, we took the Diftances of the Sun, from the Zenith, viz. at $7^{\mathrm{h}} \cdot 42^{\mathrm{\prime}} \cdot 52^{\prime \prime} \mathrm{A}$. M. the correct Diftance of the Sun's Center ì vertice was $62^{\circ} \cdot 1^{\prime}: 40^{\prime \prime}$. at $7^{\text {h }} \cdot 45^{\prime} \cdot 48^{\prime \prime}$. it was $61^{\circ} \cdot 34^{\prime}$. $40^{\prime \prime}$. And again at $7^{\mathrm{h}} \cdot 48^{\prime}, 55^{\prime \prime}$ it was $61^{\circ} \cdot 6^{\prime} \cdot 40^{\prime \prime}$: Which, with the given Declination of the Sun and Latitude of the Place, fhew the true Times refpectively to have been $7^{\text {h }} \cdot 42^{\prime} \cdot 3^{8^{\prime \prime}}, 7^{\text {h }} \cdot 45^{\prime} \cdot 35^{\prime \prime}$. and $7^{\text {h }} \cdot 48^{\prime}$. $39^{\prime \prime}$; all agreeing, that the Clock was only 1_{4} Seconds too faft, and had gained fcarce any Thing fenfible in a Day's Time : So that it might be entirely depended upou during the Continuance of the Eclipfe.

Having computed that the Eclipfe would begin at 8^{h}. 7^{\prime}, I attended foon after Eight, with a very good Telefcope of about fix Foot, without ftirring my Eye from that Part of the Sun whereat the Ecliple was to begin: And at $8^{h} \cdot 6^{\prime} \cdot 20^{\prime \prime}$. by the Clock, I began to perceive a fmall Depreffion made in the Sun's Weftern Limb, which immediately became more confpicuous; fo that I concluded the juft Beginning not to have been above five Seconds before, that is, exactly at $8^{h} \cdot 6 \cdot 00^{\prime \prime}$. correct Time.

From this Time the Eclipfe advanced, and by Nine of the Clock was about ten Digits, when the Face and Colour of the Sky began to be changed from perfect ferene azure Blue, to a more dusky livid Colour, having an Eye of Purple intermixt, and grew darker and darker till the total Immerfion, which happen'd at $9^{h} \cdot 9^{\prime} 17^{\prime \prime}$ by the Clock, or $9^{h} \cdot 9^{\prime}$. $3^{\prime \prime}$ true Time. This Moment was determinable with great Nicety, the Sun's Light being extinguifh'd at once ; and yet more fo was that of the Emerfion, for the Sun came out in an Inftant with fo much Splendor, that it furprized the Beholders, and in a Moment reftored the Day, viz. at $9^{\prime \prime} .12^{\prime} \cdot 26^{\prime \prime}$. true Time, after he had been totally obfcured for $3^{\prime} .23^{\prime \prime}$ of Time. And as near as I could eftimate the Points on the Moon's Limb, where the laft Particle of the Sun vanifhed was about the Middle of the South Eaft Quadrant of her Limb, or about 45 Degrees from her Nadir to the Left-hand: "And the firft Emerfion was about ten Degrees below the Horizontal Line through the Moon's

Eclipfes of the Sun.

Center on the Weft-fide and at 14 Minutes paft Nine, correct Time, 1 judged the Horns of the Eclipfe to have been exactly perpendicular, and by Confequence, the Centers of the Sun and Moon to be in equal Altitude.
It was univerfally obferved, that when the laft Part of the Sun remained on his Eaft-fide, it grew very faint, and was eafily fupportable to the naked Eye, even through the Telefcope, for above a Minute of Time before the total Darknefs; whereas on the contrary, my Eye could not endure the Splendour of the emerging Beams in the Telefcope from the firft Moment. To this perhaps two Caufes concurred; the one, that the Pupil of the Eye did neceffarily dilate itfelf during the Darknefs, which before had been much contracted by looking on the Sun. The other, that the Eaftern Parts of the Moon, having been heated with a Day near as long as thirty of ours, mutt of Neceffity have that Part of its Atmofphere replete with Vapours, raifed by the fo long continued Action of the Sun; and by confequence, it was more denfe near the Moon's Surface, and more capable of obftructing the Luftre of the Sun's Beams. Whereas at the fame Time the Weftern Edge of the Moon had fuffered as long a Night, during which there might fall in Dews all the Vapours that were raifed in the preceding long Day; and for that reafon, that Part of its Atmofphere might be feen much more pure and tranfparent.
About two Minutes before the total Immerfion, the remaining Part of the Sun was reduced to a very fine Horn, whofe Extremities feemed to lofe their Acutenefs, and to become round like Stars. And for the Space of about a Quarter of a Minute, a finall Piece of the Southern Horn of the Eclipfe feemed to be cut off from the reft by a good Interval, and appeared like an oblong Star rounded at both Ends, in this Form : Which Appearance could proceed from no other Caufe, but the Inequalities of the Moon's Surface, there being fome elevated Parts thereof near the Moon's Southern Pole, by whofe Interpofition, Part of that exceedingly fine Filament of Light was intercepted.

A few Seconds before the Sun was totally hid, there difcovered itfelf round the Moon a luminous Ring, about a Digit or perhaps a tenth Part of the Moon's Diameter in Breadth. It was of a pale Whitenefs, or rather Pcarl Colour, feeming to me a little tinged with the Colours of the Iris, and to be concentrick with the Moon; whence I conclude it the Moon's Atmofphere. But the great Height of it, far exceeding that of our Earth's Atmofphere; and the Obfervations of fome who found the Breadth of the Ring to increafe on the Weft-fide of the Moon, as the Emerfion approached; together with the contrary Sentiments of thofe, whofe Judgment I fhall always revere, makes me lefs confident, efpecially in a Matter whereto I gave not all the Attention requifite.

Eclipfes of the Sun.

Whatever it was, this Ring appeared much brighter and whiter near the Body of the Moon, than at a Diftance from it ; and its outward Circumference, which was ill defined, feemed terminated only by the extreme Rarity of the Matter it was compofed of; and in all Refpects refembled the Appearance of an enlightned Atmofphere viewed from far: But whether it belonged to the Sun or Moon, I fhall not at prefent undertake to decide.

During the whole Time of the total Eclipfe, I kept my Telefcope conftantly fixt on the Mcon, in order to obferve, what might occur in this uncommon Appearance, and I faw perpetual Flafhes or Corufcations of Light, which feemed for a Moment to dart out from behind the Moon, now here, now there, on all Sides, but more efpecially on the Weitern Side, a little before the Emerfion: And about two or three Seconds before it, on the fame Weftern Side, where the Sun was juft coming out, a long and very narrow Streak of a dusky, but ftrong red Light, feemed to colour the dark Edge of the Moon, though nothing like it had been feen immediately after Immerfion. But this inftantly vanifhed upon the firft Appearance of the Sun, as did alfo the aforefaid luminous Ring.

As to the Degree of Darknefs, it was fuch, that one might have expected to have feen many more Stars than were feen at London: The three Planets, Fupiter, Mercury and Venus were all that were feen by the Gentlemen of the Society from the Top of their Houfe, where they had a free Horizon: And I do not hear that any one in Town faw more than Capella and Aldebaran of the fixed Stars. Nor was the Light of the Ring round the Moon capable of effacing the Luftre of the Stars, for it was vaftly inferior to that of the full Moon, and fo weak, that I did not obferve it calt a Shade. But the under Parts of the Hemifphere, particularly in the Souch Eaft under the Sun, had a crepufcular Brightnefs; and all round us, fo much of the Seg:nent of our Atmofphere as was above the Horizon, and was without the Cone of the Moon's Shadow, was more or lefs enlightned by the Sun's Beams; and its Reflection gave a diffufed Light, which made the Air feem hazy, and hindred the Appearance of the Stars. And that this was the real Caufe thereof, is manifeft by the Darknefs being more perfect in thofe Places, near which the Center of the Shade paft, where many more Stars were feen, and in fome, not lefs than twenty, though the Light of the Ring was to all alike.

During the Time whilft the Sun recovered his Light, feveral Altitudes were taken to examine the Regularity of the Clock's Motion, and tho' the Sun now rofe much nower than at the Beginning, yet they all confpired within a very few Seconds, that the Clock went fill one Quarter of a Minute too faft. And the End of the Eclipfe approaching, I attended the Moment thereof, with all the Accuracy I could, and concluded the complete Separation of the Sun and Moon at $10^{\mathrm{h}} .20^{\prime} \cdot 15^{\prime \prime}$ by the Clock, or exactly $10^{\text {h }} .20^{\prime}$ correct Time.

Hitherto

Hitherto I exhibit only what myfelf faw, but there were with us a great many Members of the Society; and the Right Honourable the Earl of Abingdon, and the Lord Chief Juftice Parker were of the Number: The latter of which fhewed an uncommon Curiofity and Defire of Exactnefs, his Lordfhip doing us the Honour to affift at moft of the Obfervations made for determining the Error of the Clock, and did himfelf, at the Moment of the Emerfion from total Darknefs, obferve the Diftance of the Planet 7 upiter from the Zenith $48^{\circ} \cdot 29^{\prime}$. by which the Time thereof is verified.
There were alfo prefent feveral Gentlemen of other Nations, and among them Monfieur le Cbevalier de Louville and Mr. Monmort, both of them Members of the Royal Academy of Sciences at Paris: The firtt whereof came purpofely to obferve this Eclipfe with us, and having feen the Beginning applied, himfelf to take Digits with his Micrometer, and to obferve the Occultations of three Spots at that Time feen in the Sun; and communicated the following Notes, viz.

And he determined the Time of the total Darknefs $3^{\prime} \cdot 22^{\prime \prime}$, or one Second lefs than by my Account.
The Heavens were all the while very favourable to us, and there was very little or no Wind, and not fo much as one Cloud interrupted our View from the Beginning to the End; but no fooner was the Eclipfe over, but a great Body of Clouds hid the Sun for many Hours after.
Thefe Obfervations having been made with all the Care we could, are not, 'tis hoped, far from the Truth.

What we have received from other Places is as follows:
The Reverend Mr. Fames Pound, Rector of Wanfed in Effex, gives the following Account of the principal Phænomena obferved there; he being furnifhed with very curious Inftruments, and well skilled in the Matter of Obfervation, and having rectified his Clock by feveral Altitudes of the Sun taken both before and after, viz.

Eclipfes of the Sun.

h.

At 8 6 37 The Eclipfe firft perceived.
9928 The total Immerfion.
91248 The Emerfion.
102032 The juft End of the Eclipfe.

- 3 20 The Continuance of total Darknefs.

The near Agreement of this Obfervation with our own (the Difference being only what is due to the Difference of the Meridians) makes us the lefs folicitous for what was noted at the Royal Obfervatory at Greenwich; from whence we can only learn, that the Duration of total Darknefs was 3^{\prime}. I $1^{\prime \prime}$.

The Reverend Mr. William Derbam, Rector of Upminfter in Effex, affitted by Samuel Molineux, Efq; Secretary to his Royal Higbne/s the Prince, and other Perfons of Quality, made the following Oblervations there, viz.

At 8 ' 7 "I The Eclipfe began.
83346 The Moon touched the greater Spot.
83436 She touched the middle Spot.
83541 She touched the third Spot.
91058 The total Darknefs began on a fudden, and Aldebaran appeared.
9146 The Emerfion, or the End of total Darknefs.
o 38 Continuance of total Darknefs.
94241 The third and laft Spot difcovered.
102145 The End of the Eclipfe, by a $13 \frac{1}{2}$ Foot Glafs.
And a little before the Beginning of the Eclipfe, he found the greater and preceding Spot to be more Northerly than the Sun's Center $373^{\frac{1}{3}}$ fuch Parts as the Sun's Diameter was 1647 , and that it followed his Weftern Limb o'. $43^{\prime \prime}$ of Time : By which Data the Situation of that Spot is well determined.

The Profeffors of Aftronomy in both Univerfities were not fo fortur nate : Dr. Keill, by reafon of Clouds, faw nothing diftinctly at Oxford, but the End, which he obferved at $10^{h} \cdot 15^{\prime} 10^{\prime \prime}$. As to the total Darknefs, he could only eftimate it by the fudden Change of the Light of the Sky; and reckoned its Continuance but $3^{\prime} \cdot 30^{\prime \prime}$; which Was certainly too little, the Center of the Shadow having without doubt paft very near Oxford. And the Reverend Mr. Cotes at Cambridge, had the Misfortune to be oppreft by too much Company ; fo that though the Heavens were favourable, yet he mifs'd both the Time of the Beginning of the Eclipfe, and that of total Darknefs. But he oblerved the Occultations of the three Spots, viz. of the firt and greateft

Eclipfes of the Sun.

greateft at $8^{\prime \prime} \cdot 34^{\prime} \cdot 11^{\prime \prime}$. of the fecond at $8^{\mathrm{h}} \cdot 35^{\prime} \cdot 15^{\prime \prime}$. and of the laft at $8^{\mathrm{h}} \cdot 36^{\prime} \cdot 55^{\prime \prime}$. He noted alfo the End of total Darknefs at $9^{\mathrm{h}} \cdot 14^{\prime} \cdot 37^{\prime \prime}$, and the exact End of the Eclipfe at $10^{h} \cdot 21^{\prime} \cdot 57^{\prime \prime}$.
We have received feveral Accounts from fome Places, which lay near the Track of the Center of the Shade, and which might have been very proper to determine the greateft Continuance of the Darknefs; as from Plynouth, Exeter, Weymouth, Daventry, Nortbampton and L.ynn-regis, all agreeing that the whole Sun was oblcured at thofe Places full four Minutes, and fome of them rather more. But as thefe Obfervers give us no Account how they meafured this Time, it may well be fuppofed they took it in a round Number, and perhaps from Pocket Minute-Watches. What I think may beft be relied on for this Purpofe, are two correfponding Obfervations made, the one at Barton near Kettering in Nortbampton/bire, where by the Oblervation of Yobn Bridges, Efq; Treafurer of his Majefty's Revenue of Excife, with a good Pendulum Clock and all due Care, the whole Sun was hid no more than $3^{\prime} .53^{\prime \prime}$. The other was by Mr. Jobn Whitefde, A. M. Keeper of the Afbmolean Mufeum at Oxford, and a skilful Mathematician, who obferved after the fame Manner, at King's Walden in Hertfordfoire near Hitchen, that the total Eclipfe continued but $3^{\prime} \cdot 52^{\prime \prime}$. Hence it follows, that the Center of the Shade paft near the Middle between thefe two Places, which are but 30 Geographical Miles diftant from one another, and fituate near at right Angles to the Way of the Shade, and therefore that the total Obfcurity, where longeft, could laft but about $3^{\prime} \cdot 57^{\prime \prime}$, or perhaps a Second or two more at Lymn, and lefs at Plymouth, the Velocity of the Progrefs of the Shade gradually decreafing, and its Diameter increafing as it paft on to the Eaftward. And this Situation of the middle Line is confirmed by an Oblervation made at the Seat of the Right Honourable the Lord Foley at Witley, eight Miles bevond Worrefer, by his Order, and communicated by his Lordfhip to the Society; whereby it appears, that the total Darknefs lafted there $3^{\prime} \cdot 15^{\prime \prime}$. Hence it follows that Witley was about three or four Miles farther from the Center of the Shade on the North-fide than London on the South : And Willey being, by Ogilby's Menfuration, 118 Meafured Miles from London, it is plain that the Center paft over IJip, which is, by the fame Admeafurement, 57 fuch Miles on that Road, and about five Miles almoft due North from Oxford; fo that the Center of the Shade left Oxford but very little upon the Right-Hand. This Situation agrees perfectly well with the former between Barton and King's Walden, and as far as the Geography of our Country may be depended on, I conclude the Center to have entred upon England about Plymouth, and to have paft over Exeter, the Devizes, Illip, Buckingbam, and Huntington, leaving Oxford and Bedford on the Right, and Lynn on the Left, and to have quitted the Coalt of Norfolk about Wells and Blakency.

As to the Southern Limit or Term, where the Eclipfe ceafed to be total on the South-fide of the Sun, we have received an Account of an Obfervation made at Norton-court, about Ten Miles on this Side Canterbury, by the Reverend Dr. Harris, affifted by that accurate Obferver Mr. Stephen Gray, by which we learn that the Eclipfe began there at $8^{\mathrm{h}} \cdot 8^{\prime} \cdot 55^{\prime \prime}$. and ended at $10^{\mathrm{h}} .24^{\prime} \cdot 47^{\prime \prime}$; and that the total Darknefs continued but about one Minute or rather lefs, the Middle thereof being at $9^{\text {h. }} 13^{\prime} \cdot 52^{\prime \prime}$. From this Duration it will follow, that Norton-court was but about three or four Miles within the Shade. And that it was really fo , is confirmed by the Relation of the Inhabitants of Bocton, about Midway between Norton-court and Canterbury, who affured Mr. Gray, that the Eclipfe was not total there, but, as one of them expreft ir, before the Sun had quite loft his Light on the Eaft-fide, he recovered it on the Weft : And that there was a fmall Light left on the lower Part of the Sun that appeared like a Star. And from Cranbrook in Kent we are informed, by the Relation of William Tempeft, Efq; that he obferved there the Sun to be extinguifhed but for a Moment, and inftantly to emerge again : So that the Limit paft exactly over this Town, which is about 38 Geographical Miles from London, and very near the right Angle, where the Perpendicular from London falls on the Line of the Limit, being 3^{\prime}. on' of Time to the Eaftward of London, in the Latitude of $51^{\circ} .6^{\prime}$, as near as I can gather.

How it paft over Suffex we have no authentick Relations, but have learnt that it was total at Wadburft beyond Tunbridge-wells, as alfo for fome fhort Time at Lewwis; but that it was not fo at Brigbtling, which Place being fituated on an Eminence, all the Country to the Northward was feen in Darknefs, whilft they there had fome Benefit of a finall Remainder of the Sun.

From thefe Oblervations we may conclude, that this Limit came upon the Coaft of England, about the Middle between Nerobaven and Brigbtbelmfon in Suffex, and paffing by Cranbrook and BoEton, about four Miles on the Right-hand, quitted the Coaft of Kent not far from Hern toward the ancient Regulbium, now called Reculver. So that fcarce one third Part of Kent, and not fo much of Suflex, out of all the South Coaft of Great-Britain, efcaped being involved in this Darknefs.

The Northern Limit, having paft over a much greater Space, has had more Obfervers, and is not lefs curiouny determined than the other. By the Account given by the Reverend Mr. Roger Proffer, Rector of Haverford-Weft, the Eclipfe was total there a Minute and a half; whence it follows, that Haverford was but about 6 Miles within the Shade, and therefore that it entred on Pembrokefbire about the Middle of St. Bride's Bay, leaving St. David's and Cardigan on the left Hand; and having traverfed thofe two Counties and Montgomeryfbire, it entred

Shropfbire, leaving the Town of Sbrecesbury $\mathbf{1}^{\prime} \cdot 40^{\prime \prime}$ in the Shadow, as was obferved there by Dr. Hollings ; whereby it appears that Sbrewesbury was about 8 Miles within the Limit. Thence it proceeded by the Eatt-fide of Cbefoire, leaving Whitcburch and Nantwich a very little without, and paffing by Congleton, went over the Peak of Derby/bire into York/bire, and crofs'd the great Northern Road between Pontefraif and Doncafter, fomewhat nearer the former than the latter. For by the Obfervations of Tbeopbilus Sbelton, Efq; at Darrington, about two Miles on this Side Pontefract, (in Lat. $53^{\circ} \cdot 40^{\prime}$ and Long. Weft from London $4^{\prime} \cdot 40^{\prime \prime}$. of Time, as may be concluded from Norwood's Meafure of a Degree) the Sun at $9^{6} \cdot 11^{\prime}$. was reduced almoft to a Point, which both in Colour and Size refembled the Planet Mars; but while he watched for the total Eclipfe, that Point grew bigger, and the Darknefs diminifhed; whence he argued the Limit to have been very little more Southerly. And fince has been informed, that it was juft total in Barnfdgle, three Miles South from thence. And that it was fo at Badjworth, about the fame Diftance from Darrington, we are told by a Letter of the Reverend Mr. Daubuz, that he has a certain Account from that Place, that the luminous Ring round the Moon was feen there, which was no where vifible but while the Eclipfe was total. From thefe Data we may fecurely determine the Remainder of this Track, and that the Edge of the Shadow, having paft over the reft of York/bire, paffed off to Sea about Flumborougb Head.

So that of the forty Counties, into which England is fubdivided, only the five moft Northerly have not had the Sun wholly hid from them ; and fix others have efcaped but in Part, viz. Sbropfhire, Chefhire and Yorkhire, and the extreme Part of Derbybire on the North, and Kent and Suffex on the South; all the reft of the Kingdom having more or lefs fuffered an Interval of total Darknefs.
I fhall not at prefent confider this Eclipfe as univerfal, but only as it related to England; and it Thall fuffice to fay, that the Shadow came out of the Atlantick Ocean, having paft over the Inands Azores; and that the Southern Limit of it reach'd the Ine of UJhant, and the North-weit Coafts of Britawny between Breft and Morlaix ; and dividing our Ilands of Guernfey and Ferfey, juft touched upon the Promontory of Norinandy called Cape de Hague. And that after it had quitted England, and traverfed the German Ocean, it fell on Futland on the South-fide, and Norway on the North; and thence proceeded to the Eaftward over Sweden, Finland, \&c.
It remains now to confider the Figure, Pofition, Direction, Velocity and Magnitude of the Shadow as it paffed over us. As to the Figure, 'tis obvious that the Shadow of the Moon being a Cone, and the Earth's Surface fufficiently Spherical, the apparent Shadow on the Earth will be the common Interfection of a Cone and Sphere, which is a Figure hitherto little confidered by Geometers ; and not being in Plano, is not

Eclipfes of the Sun.

to be exactly defcribed but in the fpherical or conical Surface. How to find the Points of this Curve, in all Cafes, is fhewn by P. Coufier, in a very fcarce Latin Book printed ar Dijon in Burgundy, and publifhed at Paris in the Year 1663 : Nor do I know of any orher Author, that has handled the fame Subject fince, though capable and worthy of further Improvement. By what he there delivers, Prop. 11, 12. Lib. I. it will be eafily underfood, that the Convexity of fo fmall a Part of the Earth's Surface, as the Shadow commonly occupies, can produce only an inconfiderable Effect; fo that without fenfible Error we may take it for a Plane, and the Section for a true Apollonian Ellipfis, whofe tranfverfe Axis, by reafon of the Smallnefs of the Angle of the Cone, will be to its Conjugate nearly as Radius to the Sine of the Sun's Altitude at its Center, eipecially if he be confiderably elevated. But when he is near the Horizon, it will be neceflary to have Regard to the true Figure, by reaton of the great Length, to which the tranfverfe Axe is extended, and particularly when the Shade is entring upon, or leaving the Earth's Disk.

As to the Pofition of the Axis of the Shadow, it is manifeft, that it muft always lie in the Plane of a great Circle of the Earth, paffing through the Axis of the Cone of the Shade; and therefore all that is required, is, to obtain the Azimuth and Altitude of the Sun, at the Place where the Center of the Shade at any Time is found, to determine the Situation of the Axe and Species of the Ellipfe required. Thus the Middle of the Ecliple at London having been obferved at g^{h}. $10^{\prime} .45^{\prime \prime}$, by the given Latitude and Declination, we find his Azimuth about $59^{\circ} \cdot 00^{\prime}$. and Altitude $40^{\circ} \cdot 46^{\prime}$. that is juft 40 Degrees high, at the Center of the Shadow. Wherefore the traniverie Axe of the Ellipfe was to its Conjugate very near as Rad. to the Sine of 40°, or as 1000 to 643 proximiè ; and did make an Angle of 59°, or very little more, with the Meridian paffing at that Time through the Center of the Shade.

The Direction and the Velocity of the Motion, wherewith the Center of the Shade paft over England, is next to be confidered, wherein it is to be obferved, that the Shadow paffes in a very compound Curve, which as the former is not in Plano, and only defcribable on the Surface of the Sphere: Nor is its Motion equable, but compounded of very many Elements, producing a great Variety. By what Method its Points, and its Tangents in thofe Points, are to be obtained, I referve to another Opportunity ; only I obferve, that for fo fmall a Part of the Curve, as went over England, it may be efteemed a right Line, with more Exactnefs than we ufually find in moft of our Geographical Charts. And the fame may be faid for the Velocity, which, though in our prefent Inftance, it was continually decreafing, may, for fo fhort a Time, be fuppofed to have been the fame without fenfible Error.

Eclipfes of the Sum.

By a careful Calculation, I have determined the Velocity of the Motion, at the Time of the Middle of the Eclipfe at London, to have been 29Geographical Miles in a Minute of Time quam proximè: And that its Way made an Angle of $5^{\circ} \cdot 45^{\prime}$. with the Meridian towards the Eaftwards of the North; wherefore the faid Way made an Angle with the Axis of the Ellipfis of $68^{\circ} .15^{\prime}$. And the greatelt Duration of total Darknefs having been $3^{\prime} \cdot 57^{\prime \prime}$, it will follow, that that Diameter of the Elliptick Figure, according to which the Shade paft, was no lefs than $114^{\frac{1}{2}}$ Geogr. Miles. And from the Elements of the Conicks 'tis eafy to be proved, that fuppofing the Figure of the Shade a true Ellipfe, whofe Axes are as Radius to the Sine of 40 Degrees, the greater Axis would be 171 Geographical Miles, and the leffer 110 ; and the neareft Diftance between the Limits fuppofed Parallel 164 fuch Miles.

And this Length of the Axis of the Shade, derived purely from the Duration of total Darknefs, is fully confirmed by the obferved Dittance of the parallel Limits; the one paffing by Badfworth in Yorkfhire, the other by Cranbrook in Kent. For by the two Latitudes $53^{\circ} \cdot 37^{\prime}$ and $51^{\circ} \cdot 6^{\prime}$, with the Difference of Longitude $7^{\prime} \cdot 40^{\prime \prime}$. of Time, or $1^{\circ} \cdot 55^{\prime}$, the Diftance of thefe two Places is given $166_{\frac{1}{2}}$ Geogr. Miles; with the mean Angle of Pofition 25 Degrees from the North Weftwards; wherefore this Arch makes an Angle with the Track of the Shade of $77^{\circ}{ }^{\frac{3}{4},}$ and hence the neareft Diftance of the Parallels becomes 16_{3} fuch Miles, which by the other Way was found 164 .
If then we conclude the $A x$ is of the Shadow, when the Sun was juft 40 Degrees high, to have extended over $2^{\circ} .50^{\prime}$ of a great Circle, we may fecurely determine the Difference of the Sun and Moon's Diameters at this Time. For the Difference of the Horizontal Parallaxes of the Sun and Moon being found to be $60^{\prime} \cdot 38^{\prime \prime}$. (as fhall be hereafter fhewn, but is not required with extreme Exactnefs for this Purpofe) the Difference of the Parallaxes in Altitude at both Ends of the Axis, will be found to be $1^{\prime} \cdot 56^{\prime \prime}$, and by fo much did the Diameter of the Moon, when forty Degrees high, exceed that of the Sun : Hence the Horizontal Diameter of the Moon, in this Anomaly is found $33^{\prime} \cdot 27^{\prime \prime}$, which may ferve for a Rule in all other Cafes.
I forbear to mention the Cbill and Damp, with which the Darknefs of this Eclipfe was attended, of which moft Spectators were fenfible, and equally Judges; or the Concern that appear'd in all Sorts of Animals, Birds, Beafts and Fifhes upon the Extinction of the Sun, fince ourfelves could not behold it without fome Senfe of Horror.
Lafly, I have added the following Synopfis of fuch Obfervations as have hitherto come to my Hands.

Eclipfes of the Sun.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Place \& Oblervers. \& Beginn. \& \begin{tabular}{l}
Iminerf. \\
h.
\end{tabular} \& \begin{tabular}{l}
Emerf. \\
h.
\end{tabular} \& Tot. \& \begin{tabular}{l}
End. \\
h.
\end{tabular} \\
\hline \begin{tabular}{l}
Barton \\
Bell-bar \\
Broadway? \\
Carmarth. 5 \\
Cambridge \\
Canterbury
\end{tabular} \& \begin{tabular}{l}
M. Bridges M. Fones \\
M. Cotes M. Gray
\end{tabular} \& \[
\left|\begin{array}{ccc}
8 . \& 6.25 \\
8 . \& 10 \& 00
\end{array}\right|
\] \& \[
\left|\begin{array}{ccc}
9 \cdot \& 9 \& 45 \\
8 \& 47 \& 00
\end{array}\right|
\] \& \[
\left|\begin{array}{lll}
9 \& 1 \& 3
\end{array} \cdot 27\right|
\] \& \(\begin{aligned} \& 3 \cdot 53 \\ \& 3 \cdot 42 \\ \& 2 \cdot 30\end{aligned}\) \& \\
\hline \begin{tabular}{l}
Cbefter \\
Crews \\
Dublin \\
Dublin \\
Exon
\end{tabular} \& \begin{tabular}{l}
M. Ward \\
M. Wright \\
L. Arcbbijh. \\
M. Hawkins \\
L. Bijhop
\end{tabular} \& \[
\left|\begin{array}{lll}
7 \cdot \& 57 \cdot \& 40 \\
7 \cdot \& 42 \cdot \& 11 \\
7 \cdot \& 41 \& 30
\end{array}\right|
\] \& 9. 20.8 \& \& 4.00 \& \[
\begin{array}{rr}
10 \& 6.35 \\
10 \& 9.00 \\
9 . \& 49.40 \\
9.48 .45 \\
10 . \& 0.00
\end{array}
\] \\
\hline \begin{tabular}{l}
Exon \\
Greenwich \\
King's Wald \\
Llanidan \\
Anglefey \(\}\) \\
L.ondon
\end{tabular} \& \begin{tabular}{l}
M. Hudjon M. Flamifeed M. Whitfode \\
M. Rowlanh \\
R. Society
\end{tabular} \& \begin{tabular}{|ccc}
\(7 \cdot\) \& 47 \& 30 \\
7 \& \& 52 \\
8. \& 30 \\
8. \& 6 \& 00
\end{tabular} \& \& 12. 26 \& \(3 \cdot 30\)
\(3 \cdot 11\)
\(3 \cdot 52\)

$3 \cdot 23$ \&

\hline | Nortbampt. |
| :--- |
| Norton-court |
| Oxore |
| Paris |
| Plywoutb | \& | M. Hawhins |
| :--- |
| D. Harris |
| D. Keill |
| R. Acaderiy |
| M. Heines | \& | 8. 8. 55 |
| :--- |
| 8. If. 00 |
| 7. 41.00 | \& | 9. $5 \cdot 22$ |
| :--- |
| 9. $13 \cdot 23$ |
| 8. $45 \cdot 30$ | \& | 9. 9. 24 |
| :--- |
| 9. 14. 22 |
| S. 50. 00 | \& 4.

0.

39
$3 \cdot 30$

$4 \cdot 30$ \& $$
\begin{aligned}
& 10.15 \cdot \\
& 10 .
\end{aligned} 24 \cdot 35
$$

\hline | Forfabefter |
| :--- |
| Sclop |
| Upininfter |
| Wanfed |
| Weymouth | \& | C. Cibandler |
| :--- |
| D. Hollings |
| M. Derbam |
| M. Pound |
| M. Hobbs | \& \[

$$
\begin{aligned}
& 7 \cdot 41 \\
& 6 . \\
& 67
\end{aligned}
$$

\] \& | 9. | 2. | 25 |
| :---: | :---: | :---: |
| 9. | 10 | 58 |
| 9. | 9. | 28 |
| 8. | 53 | 00 | \& $\begin{array}{llr}\text { 9. } & 6 . & 15 \\ \text { 9. } & 14 . & 6 \\ \text { 9. } & 12 . & 48 \\ \text { 8. } & 58 & 00\end{array}$ \& \[

$$
\begin{array}{|cc|}
3 & 50 \\
1 & 40 \\
3 & 8 \\
3 & 2 c \\
4 \cdot & 0 c
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 10.6 .00 \\
& 10.21 .45 \\
& 10 . \\
& 10 .
\end{aligned}
$$
\]

\hline Withey \& M. Buxter \& 59. \& \& \& 3. 15 \& I 3.00

\hline
\end{tabular}

Accounts of the fame from in Englayd, and particularly at London, of this Eclipfe, we have received proad, n. 345 . from Foreign Parts the following Obfervations.

- near the 1fland Forte ventura, by, Mr. J. Edens.

Mr. F. Edens, being on his Voyage to the Pike of Teneriff, obfervecł the Eclipfe at Sea, in Latitude by Obfervation $34^{\circ}, 20^{\prime}$, and Longitude $0^{n} 54^{\prime}$, Weft from London, as he concluded by their Diftance and Pofition from the Inland ForteVentura, which they foon after fell in with. He writes, that it began at VI ${ }^{h} \cdot 49^{\prime}$, and ended at VIII ${ }^{\text {h. }} \cdot 47^{\prime}$. this latter very exactly, though not quite fo nice as to the Beginning.

Had this Gentleman fignified, what Difference of Meridians there was found between the Place of Obfervation, and the Weit End of Forte Venhura, we might, without fenfible Error, have concluded the true Longitude, not only of that Inand, but alfo of the Pike of Teneriff, where our Geographers and the Dutch have fixed their firlt Meridian. He adds, that the greateft Darknefs was about $\frac{1}{7}$ of the Sun's Diameter, or nine Digits on the North Side.

From Germany we have received the following Accounts.
At Nurenburg, The Beginning and greatelt Obfcurity could not be - at Nurenfeen for Clouds, bur the End happen'd at $\mathrm{XI}^{\mathrm{h}} \cdot 10^{\prime} \cdot \frac{1}{5}$.
At Hamburg, The Beginning was obferved at viri ${ }^{\mathrm{b}} 57^{\prime}$. the greateft -at HamObfcurity at $x^{n} \cdot 5^{\prime} \cdot 30^{\prime \prime}$. when xi $\frac{1}{2}$ Digg. were darkned. The End burgh. could not be obferved for Clouds.
At Keil in Holfein, The Beginning $1 x^{h}$. 14 4^{\prime}. The greateft Obfcurity - at Kiel in $x^{n} \cdot 19^{\prime} \cdot 20^{\prime \prime}$, and the Quantity then eclipfed xi Digg. 20^{\prime}. The End Holltein. was at $\mathrm{xI}^{\mathrm{h}} .29^{\prime}$.
At Berlin, The Beginning could not be obferved for Clouds, but the - at Berlin. greateft Obfcurity was at 22 min . paft Ten, when xi Digg. were eclipfed. The juft End was at $\mathbf{x I}^{\mathrm{h}} .34^{\prime}$.
At Frankfort on the Meine, The Eclipfe began at vini ${ }^{\text {h }} .50^{\prime}$. The - at Francisgreateft Darknefs at \mathbf{x}^{h}. II^{\prime}, but peirbaps 乃bould be \mathbf{X}^{h}. OI min. the Digits fort on the ${ }^{\text {Meine. }}$ being x. and 34 min. The End was obferved at 10 min. paft Eleven.
By whom thefe Obfervations were made, and with what Inftruments, we are not as yet informed, but hope they may be exact enough to confirm the Longitudes of thofe feveral Places, which are at prefent reafonably well known.
In a Book entituleci, Nouvelles Literaires, publifhed at the Hague, pag. - at Upral 404,405 , there is an Account of the Obfervation of this Eclipfe at in Sweden. Upfal in Sweden, made by M. Fo. Waller, Profeffor of Mathematicks by Mr. J.Walin that Univerfity, who was very careful to obferve it exactly; the Times being verified by three Clocks perfectly agreeing with one another and with the Sun: But more efpecially by a Quadrant of five Foot Radius for taking the Sun's Altitude. By this Inftrument he determined the Height of the Pole at Upfal $59^{\circ} \cdot 51^{\prime} \cdot 54^{\prime \prime}$. And by the fame, a little before the Beginning of the Eclipfe, he found the Height of the Sun $39^{\circ} \cdot 36^{\prime} \cdot 42^{\prime \prime}$. his Clocks then fhewing the Hour $\mathrm{Ix}^{\text {h }}$. $47^{\prime} \cdot 50^{\prime \prime}$, which proves that they were very near the true Time. At xh. $5^{\prime \prime} \cdot 15^{\prime \prime}$. the Altitude of the Sun being $44^{\circ} \cdot 17^{\prime} \cdot 29^{\prime \prime}$, was the Beginning of the total Darknefs, and at $\mathrm{xI}^{\mathrm{h}} \cdot 2^{\prime} \cdot 24^{\prime \prime}$. was the End thereof, alto fole $44^{\circ} \cdot 29^{\prime}$. $13^{\prime \prime}$. Fo that here the Duration of the total Eclipfe Was $4^{\prime} \cdot 9^{\prime \prime}$, and the Middle thereof but one Third of a Minute after Eleven. And laftly, the End is faid to have happen'd about 4 Minutes before Noon, the Sun being $45^{\circ} .42^{\prime} .6^{\prime \prime}$. high: But in this is a manifeft Error, for it makes the Time of Emerfion, or from the Midcle to the End, but $55^{\prime} \cdot 20^{\prime \prime}$; whereas being fo near the Meridian, 'tis certain that this Emerfion was the greater Part of the Duration of the
whole Eclipfe, and confequently more than an Hour. Perhaps the Times might be deduced from the Altitudes anly, and then the Miftake might be in fuppofing the End fo much before Noon, as it was really after it. However, to prevent all Doubts, we have compared this Obfervation with what we obferved of this Eclipfe at London, and find, that in the Latitude of $59^{\circ} \cdot 50^{\prime}$, the Place where the Middle of total Darknefs was at $\mathrm{xI}^{\dagger} . \mathrm{O}^{\prime} \cdot 20^{\prime \prime}$, was near 19 Degrees more Eatterly than Lonidon, (that is exactly in the Meridian of Dantzick) and that the Eclipfe began there at $\mathrm{XI}^{\mathrm{h}} \cdot 5^{\frac{1}{2}} \frac{1}{2}$, and ended at $\mathrm{XII}^{\mathrm{h}} .1 \mathrm{IO}^{\prime \prime}$, wherefore the Duration could not be $2^{n} \cdot 7^{\prime \prime} \cdot 50^{\prime \prime}$, as the Editor of the faid Nouvelles has publifhed; not confidering, that the Beginning could not be feen for Clouds, as in the very next Words he affures us.

As to the Darknefs, it was fuch, that they could fcarce diftinguifh one another; and befides \mathcal{F} upiter, Mercury and Venus, of the fix'd Stars, Caflopea, Capella, Oculus Tauri and Orion (Sirius not being yet rijen) were vifible.

Eclipfe of the Sun, Feb. 19, 1718. O. S. at Norimberg, by $M r$. Wurtzelbau, and at Berlin, by Mr. G. Kirch, n. 357 . p. 822.
XVI. From the Literary Newes of Berlin we have obtain'd two Obfervations of a fmall Solar Eclipfe, Feb. 19, St. Vet. 171 8. One at Norimberg, by Mr. Wirtzelbau; the other obferved at Berlin by Mr. Kirch.

At Norimberg the Sun rofe fomething deficient in his upper Limb, which Defect increafed to 3 full Digits. The Eclipfe ended at $8^{h} .8^{\prime}$. $4^{\prime \prime}$, about 60 Degrees from the Vertex of the Sun to the left Hand. But at Berlin the Sun began to be eclipied prefently after his Rifing, or at $6^{3} .49^{\prime}$ or $49^{\prime \frac{1}{2}}$. About the Middle of the Eclipfe, or at $7^{h} \cdot 35^{\prime}$, the lucid Parts remaining in the Sun were $24^{\prime} \cdot 40^{\prime \prime}$. Whence the Digits obfcured were $2^{4} \cdot 50^{\prime}$. The End happen'd at $8^{h} \cdot 28^{\prime} \cdot 10^{\prime \prime}$.

Eclipfe of the Moon at Cambridge in New-Eng. land, $F_{t} b$. 11 , 1700, by Mr . T. Bratcle, n. 202. P. 1633.
XVII. On Feb. 11, the Moon rofe eclipfed, and the Horizon was $\mathfrak{f o}$ overcaft, that I defpaired of having any Oblervations; but at $\frac{1}{2}$ an Hour paft 6. The came from under the Cloud, and at $6^{\mathrm{h}} \cdot 25^{\prime}$. I had juft a Sight of her, and judged her eclipfed about 5 Digits ; at
$6 \quad 29$ The Section equidiftant from M. Etna and Horminius.
32 Palus Marrotis begins to be feen.
$34 \frac{1}{2}$ Palus Marcotis and Mons Apollonius $\frac{1}{2}$ out.
37° Palus Marcootis quite free, and Palus Mareotis and Palus Mesotis in the Perpendicular.
$42 \frac{1}{2}$ The Shadow near an Inch from Palus Marieotis, Mons Horminius, and Mons Hercules.
$46 \frac{1}{\ddagger}$ Palus Marcotis in the Nadir, and that Part of Palus Maotis to my Right-hand in the Prime Vertical.
57 The upper Part of the Section is now, and has been for a long Time, in Infula Major in Mare Cafpio, (and the Section now perpendicular, and the lower Part wheeling about from Palus Maraotis.

Eclipses of the Moon.

b

720 Mount Sinai fist appears at 22^{\prime} wholly free.
$25^{\frac{1}{2}}$ Palus Marcotis and Mons Horminius near perpendicular.
43 The Eclipte over in the Telefcope, and at 49 to the naked Eye.
My Clock was et by my Ring-Dial about Nine of the Clock in the Morning, as exactly as I could judge; and the Obfervation was made with my $4 \frac{1}{2}$ Foot Telefcope, with all four Glaffes in it.
XVIII. 1.]

Time by the Clock.
h
II 45 In the Morning, that Part of the Moon's Difk near Alabaftrinus, look'd fomewhat duskifh, and the Eclipfe beginning to enter between Palus Mercotis and M. Porpbyritis.
1153 The true Shadow was well entred.
5^{8} M. Porpbyritis jut cover'd.
$1203 \frac{1}{2}$ Near 3 Digits darkened.
$7^{\frac{1}{2}}$ Mount Etna begins.
$9^{\frac{1}{2}}$ Quite cover'd.
${ }^{1}+\frac{1}{2}$ Laius Niger Major and M. Sinai almoft equidiftant from the Section of the Shadow, Laces Niger Major being fomewhat the nearer of the two.
${ }_{18}^{1} \frac{1}{\ddagger}$ Lacks Niger Major begins $19^{\frac{1}{2}}$ quite covers.
21 $\frac{3}{*}$ Mount Sinai begins.
$21^{\frac{3}{4}}$ Quite cover'd, and the Moon about 6 Digits eclipfed.
$3224 \frac{1}{2}$ Besbicus begins.
26 Quite cover'd.
$28^{\frac{3}{*}}$ Byzantium begins.
$29^{\frac{1}{2}}$ Cover'd, and Mount Horminius begins.
32 Apollonia begins.
33 Cover'd.
37 The Shadow equidistant from M. Corax and Mount Paraphmijus, or fomewhat nearer to M. Corax.
$39^{\frac{1}{2}}$ Between 9 and 10 Digits eclipled.
43 M. Corax begins.
12 444 talus Meotis begins, and at $45^{\frac{3}{4}}$ the Inner of M: Paropamifus begins.
50. Palus Meotis quite cover'd.
$51 \frac{1}{2}$ The Moon not quite eclipfed.
52 Nor yet.
53 Nor yet.
54 Scarce.
$54 \frac{1}{2}$ Quite immerge and the Mora begins.
439 Precifely, the emerged between Palus Marcotis and Mons Porpbyritis.

42 Palus Mareotis begins.
43. Quize clear.
47. M. Porpbyritis quite clear.

55 About 3 Digits reftored.
59. Mount \notin tha begins.

15 02 That and Lacus Niger Major at the fame Time clear.
$8 \frac{1}{2}$ Mount Sinai about half free.
$9 \frac{1}{2}$ Quite free, and about 6 Digits reftored.
15 Besbicus free.
19: By antium free.
$29 \frac{1}{2}$ About 9 Digits feem'd to be reftored.
$30 \frac{1}{4}$ Mons Herculis free.
$3^{2 \frac{3}{4}}$ Palus Maotis begins.
$3^{8 \frac{1}{2}}$ Quite free.
$41 \frac{1}{2}$ Infula Major in Mare Cafpio free, and in the Middle of the Section.
$42 \frac{1}{2}$ Not yet wholly clear.
45 Fully over in the Telefcope, tho' a Kind of a Smoak remained fome little after to the naked Eye.

In order to the Adjufting of the Time, I fet my Clock with the greateft Exactnefs I could the Morning preceding, both from my Ring-Dial and the Rifing of the Sun, which I very narrowly watch'd and obferved, and found it to agree with the Sun's fetting the following Evening; fo that it went all the Time the Eclipfe was, very fteadily and regularly ; but for the greater Certainty and Satisfaction, I took the Altitudes of the following Stars with the Brafs Quadrant with Telefcope Sights out of my Chamber Window, the Lownefs whereof would not permit me to take them, when they were at all higher elevated.

* in dextro humero Orionis.

By the Watch. Comp. Alt
Differ.

2. I Ihad the good Fortune at London near the Excbange to make - the fame fome few Obfervations of the Eclipfe of the Moon of December the irth, 1703. (of which I gave an Account to the Society fome Time fince) as follows :

The Heavens being cloudy moft Part of the Night, it was 35^{\prime} after fon, n. 291. Four in the Morning following, before I could perceive that the Moon 292. p. 1637. was eclipfed; and then as near as I could judge, fhe had been fo about three or four Minutes at moft, from whence we may conclude it began at Londion about 31 or 32 Minutes after Four the fame Morning.
Mr. Brattle found, that at 44 Minutes after Eleven at Night, Part of the Moon's Disk look'd fomewhat duskifh, and that at 52 Minutes, the Snadow was well enter'd, fo tbat from bence, as well as from a Comparijon of the Ingrefs and Egrefs of the principal Spots, it probably began there about 49 Minutes after Eleven, whence it follows, that Cambridge in New-England lies $4^{\mathrm{h}} 42^{\prime} \frac{x}{2}$ or 7037^{\prime} to the Weftrward of the Meridian of London.
I happen'd to fee the Moon the fame Morning at 35 Minutes after Hive, when the wanted at moft but three Minutes of being totally eclipfed; fo that at London fhe immerged at 38 Minutes paft Five.
Mr. Brattle faw her immerge exactly at 54 Minutes after Twelve, whence it follows, that the Difference of the Meridians found by comparing thefe Obfervations, is $4^{h} 43^{\prime} \frac{1}{2}$, or $70^{\circ} 52^{\prime}$, agreeing very well with the former; fo that by taking a Mean between them, the Difference of Longitude of the two Places $4^{h} 43^{\prime}$, or $70^{\circ} 45^{\prime}$.
I faw no inore of the Eclipfe that Morning, by reafon of the Clouds, and fhould be very glad to meet with fome other Obfervations to confirm thefe; but their mutual A greement gives great Reafon to believe that the Deductions are good, and may be rely'd upon; for during the Eclipfe I had a View of the Moon at leaft twenty Times, tho' Clouds frequently intervening have made this Account of mine lefs accurate and certain than otherwife it would have been.

XIX.

Inmerfions.
A very notable Penumbra, (Evening)
Palus Mareotis is cover'd
Mons Porphyrites begins Is cover'd
Mount Etna begins Is quite covered
Mount Sinai begins Quite cover'd
The Ine of Corfica is cover'd
The greater black Lake is cover' d^{\prime}
The Inand Besbicus
Bizansium

Time corrected
by Altitude.

			Eclipfe of the
6	52		Moon, Apr. ${ }^{\text {5, }}$
6	58		1707, at Bo-
7	8	15	England, by
7	9		Mr. T. Brat-
7	16		tile, n. 312.
7	17	15	p. 2471 .
7	21	40	
7	22	40	
7	24		
7	3 I	40	
7	33		
7		30	
	Imm		

Immerfions.
Mount Horminius h
Mount of Apollo
$7 \quad 40$
$7 \quad 40$ 30 30Mount HerculesMount Corax
Palus Meotis begins
Palus Meotis begins
The great Ifland in the Ca/pian begins
52 45
Is cover'd
Is cover'd $\begin{array}{lll}7 & 54 & 45\end{array}$
44 30
$7 \quad 51$ 30 56
Palus Maotis is quite cover'd
Palus Maotis is quite cover'd
The Moon quite immerfedEmerfions.
The Complement of the Altitude of ArEturus $53^{\circ} 34^{\prime} \quad 8 \quad 28$
The Complement of the Altitude of the Star that follows? $\begin{array}{llll}51 & 30 \frac{1}{2} & 8 & 39\end{array}$ 15the bright Star in the Northern CrownLatitude $44^{\circ} 33^{\prime \prime}$The Moan plainly began to emerge$\begin{array}{ccccc}60^{\circ} & 2^{\prime} & 9 & 0 & 30 \\ 56 & 57 & 9 & 17 & 15\end{array}$
Mount Eina was wholly illuftrated $9 \quad 46$ 30
Mount Sinai wholly appear'd
$10 \quad 9$ 30
The Ine Besbicus 15
$10 \quad 10$
$10 \quad 10$
Bizantium
10 25
The Mount of Apollo 30 $10 \quad 28$
Mount Hercules 10 33
Palus Mcotis begins
The greater Ine in the Cafpian is reftor'd
$10 \quad 36$ 30
Palus M.eotis wholly uncover'd
IO 44
The Moon is fully illuminated$10 \quad 47$
10 49$10 \quad 54$Moon, April11, 1707, atZurich, by thetrwo Dociors
Scheuchzer's,
n. 310 .
p. 2394.XX .
12 9ad 18 "The Penumbra on the Side of Mareotis.18 - 40 The true Shadow within the Disk.
2015 Palus Marcootis in the Shadow.
The Beginning of Mare Eoum.
2520 The Mount of Alabafter. The Middle of Mare Eoum.
2740 The Beginning of the Bay of Sirbon.
The Middle of the Bay of Sirbon, and Mare EEgyp-
tiacum.
2920 The Beginning of the Inand Cercinna.
2930 The Southern Lake.
3030 The Middle of Cercinna
3140 The End of Cercinna.
33
The utmoft Promontory of Mount Sopher.The Inlands between Sicily and Cercinna.
35 The Beginning of Mauritania, and of Sirus Hyper- boreus.
3640 The Middle of Sinus Hyperboreus.37

Eclipfes of the Moon.

920 The Beginning of the Promontory of Hercules, and of the Cappion Sea.
1140 The Begirning of Palus Amadoca.
1620 The Middle.
18 - 10 The End.
20 The bitter Marfhes and the Leffer Lake.
2040 The Greater Lake.
22 10 A very flender lucid Margin.
2320 The whole Body of the Moon in the Shadow.
2440 The Moon's Disk was almoft entire, except the Mediterraneon See. It fhin'd with a Kind of dilute Brightnefs, fo that the Seas might be diftinguifh'd thro' the Tube.

45 through the Tube.
45 The middle Disk of the Moon is obfcured more and more, the Circumference continuing brighter.
N n

2 12 through the Tube. more, the Circumferenc
N n

Eclipfes of the Moon.

nutes before
Mount Atbos and the Inand Malta come out.
Mauritania emerges.
——Corfica and Sicily.
——The Adriatick Sea.
The Middle of Propontis.
Besbycus.
——Byzantium.
Promont. Acberuf.
The Euxine Sea, and the Middle of the CaJpian came out.
Palus Mrotis begins.
The Cafpian emerged, and the Middle of Meotis.
Meotis emerged.
The Penumbra.
All the Moon entire.
The Shadow feem'd to me more diftinct in the Emer-
fion than it was in the Immerfion.

12	18	40
1	23	20
3	9	40
1	46	30
4	14	20
3	55	50

The Disk of the Moon fhined to the naked Eye with a reddifh Colour, nor could any Spot be diftinguifhed through the Telefcope.
The whole Disk grew more and more obfcure, the Circumference remaining a little brightifh.
The Disk was brighter over againit Palus Marcotis, and there was a very denfe Shadow towards Palus Meootis.
By Degrees the whole Disk became brighter; but a greater Obfcurity cover'd Palus Meotis, and the neighbouring Places.
By Degrees the Images of the Seas return.
The Euxine Sea and the Cafpian continue in the Middle of Obfcurity, as it were cover'd by a thick Cloud.
Mare Eoum and the neighbouring Places might be diftinguifh'd, tho' the Moon had not yet emerged out of the Shadow.
The true Beginning of the Emerfion.
Palus Mareotis begins to emerge.
It is emerged.
Mare Eoum begins.
Sinus Sirbonius and the Egyptian Sea emerged.
Cafliotis Reggio comes out, and the Ine Circinna fome Minutes before.
Mount Atbos and the Inand Malta come out.
Mauritania emerges.
——The Adriatick Sea. The Middle of Propontis.
——Besbycus.
-Byzantium.

- Promont. Acberuf.

The Euxine Sea, and the Middle of the Cafpian came out.
The Cafpian emerged, and the Middle of Meotis.
Meotis emerged.
The Penumbra.
All the Moon entire.
The Shadow feem'd to me more diftinct in the Emerfion than it was in the Immerfion.
The Beginning of the Eclipfe in the true Shadow.
The greateft Obfcuration.
The Beginning of Emerfion.
The Duration of total Obfcuration.
The End of the Emerfion.
The whole Duration.

h	1	"	From the Beginning to the total Immerfion of the Moon.
i	5	40	From the Emerfion of the total Eclipfe to the End.

XXI. As I was coming from London, Sept. 18, in the Evening, I Eclipfe of the obferved, for Half an Hour or more, a thin Shade to poffefs that Part of Moon, Sept. the Disk where the Eclipfe began, which remain'd a good While after the $\begin{aligned} & 18,1708, ~ a t ~ \\ & \text { Upminfler, by }\end{aligned}$

The Corr.		
App. Tine.		
h	16	11
7	56	30
7	57	40
7	59	00
8	00	00
9	01	00
9	16	40
10	23	11
10	25	00
10	26	00
10	28	15

p. 312.

A thin Penumbra.
A darker Penumbra.
Yet darker, which may pals for the Beginning of the Eclipfe.
The Eclipfe no Doubt begun.
The lucid Parts of the Moon, not long before the Middle of the Eclipfe, wete 925 Parts of my Micrometer.
Diameter of the Moon 1634 Parts of the Micrometer.
The End of the Eclipe draws nigh.
A little Obfcuration.
Lefs.
A very little, excepting the Duskifhnefs before mentioned.
XXII. In the laft Lunar Eclipfe on Feb. 2, 1709-10, the Time of the $\tau_{\text {he Account of }}$ End, (which was what alone the Want of a proper Apparatus, and a fa- the Moon's vourable Sky would give me Leave exactly to determine) I found to be Eclipfe, Feb. the fame (with but a very inconfiderable Difference) which che Calculation, according to Sir lfaac Nereton's admirable Theory, promifed me to with the Calexpect.
I have added the Calculation from Mr. Flamftead's Tables according to Mr. Horrox's Theory, as I find them publifh'd in Mr. Whifton's Aftronomical Lectures, with the Radix's or the mean Motions, corrected according to their firt Author's later Obfervations, which are the fame with thofe affumed in Sir IJaac Nerwton's Theory.

By comparing thefe two Calculations, we may obferve, that tho' moft of the additional Equations in Sir Ifaac Newton's Theory be very fmall in this Situation of the Moon, yet they all confpire fo as to make its Place confiderably more agreeable to Obfervation, than thofe of Horrox's Syftem.

The Obfervation was made at Streatbam, about fix Miles near direct South of London, with a very good eight Foot Telefcope. To correct the Clock, (for Want of an Inftrument) I carried with me next Day two Watches, that were before adjufted to the Clock, and compared them with Mr. Flamfead's at the Royal Obfervatory, having firft noted its Error by an Obfervation of the Sun's Tranfit of the Meridian his Af-

Ecliples of the Moon.

fiftant communicated to me. Upon my Return I found my Watches ftill to agree together, and to my. Clack, which proved them to have gone true, and gave me the exact Error of my Clock, and the true Time at Obfervation.

Mr . Flamfead has fince been pleafed to acquaint me, that by his Ob fervation of the meridional Tranfit of the Lyon's Heart during the Eclipfe, his Clock needed a yet farther Correction of one Minute, which I have here accounted for. $17 \div \frac{\circ}{\circ} \stackrel{F e b}{\circ}$.
D. H. M. Sect

The mean Time of the mean Oppofition
The mean Time of the true Oppofition
At which the true Place of the Sun is 10245550
$\begin{array}{llll}2 & 4 & 9 & 42\end{array}$ And its Æモquation to be added.

The Place of M
the Moon from
Mean Motion of the Moon
Annual Æquation Subrr.
ton's Theory. The correct mean Motion
Mean Motion of Apog.
Annual Æquation of Apog. Ad,
Correct mean Motian of Apog.
Second Æq. from the Dift. of Ap. from Sun Ad.
Place of the Moon the $2^{\text {d }}$ Time Æquat.
Mean Motion of Node
Æquation of Node Subt.
Correct mean Motion of Node
The 3^{4} Æquation of the Moon from Node's Arpect with $\}$ the Sun Subt.
Place of the Moon the $3^{\text {d }}$ Time Æquated

834

$+264903$
$\begin{array}{llll}11 & 18 & 13 & 54\end{array}$
$\begin{array}{r}1431 \\ \hline 11182825\end{array}$
-257
$4 \quad 26 \quad 5200$
II OI 3425
$\begin{array}{r}06 \quad 54 \\ \hline\end{array}$
II OI 2731

Second Æquation of Apog. Subtr.
True Place of Apog.
Mean Anomaly
Æquation of Center Sub.
Moon's Place the 4 th Time æquated
The Variation Ad.

426 51 50 7 45 41

Moon's Place the 5 th Time æquated
11104244
$05 \quad 16 \quad 0906$
 Apog. Ad
Moon's Place 6th Time æquated
The 7 th Æquation. Ad.

$1 \quad 533^{1}$
$45^{24} 19$

The 6th Æquation from the Diftance of Luminaries and?

True Place of the Moon in its Orbit
$4 \quad 2459 \quad 50$
Tru Plat of Mor $\quad 4 \quad 250024$
True Place of the Sun
$10 \quad 24 \quad \frac{55 \quad 50}{434}$
Moon beyond the Oppofition
Which divided by the Horary Motion of Moon from? $7 \quad 42$ Sun, gives
The mean Time therefore of Oppofit. Feb.
And the true Time
$2 \quad 104706$
$2 \quad 10 \quad 3^{2} 20$

Eclipfes of the Moon.

Mean Motion of the Moon
Phylical Parts Sub,

Correct mean Motion
Mean Motion of Apog.
Æquation of Apog. Sub.
Mean Anomaly
Equation of the Center Sub.
Place of Moon in its Orbit
Diftance from the Oppofition
That is in Time to be added
The mean Time therefore of true Oppofition is ex- , D. H. antly

$$
\int_{2} \quad 105533
$$

The apparent Time
Place of Moon in Ecliptick
$2 \quad 10 \quad 4041$
$\begin{array}{ll}4 & 24 \quad 57 \quad 27\end{array}$
Reduction between the true Oppofition and Middle of $\}$ Ecliple. Ad.
Middle of Eclipfe
Continuance of Eclipfe
Digits eclipfed
Beginning of Eclipre
End of Eclipfe.
End of Eclipfe by the Moon's Place from Sir IJano Neru-? ton's Theory
End by Obfervation
End by Calculation from Horrox's Theory \}D. H.
$2 \quad 1043 \quad 34$
25506
955
2916 or
121107
$\}$
$\int 120200$
120130.

121108

The Error therefore of Sir Ifaac Newton's Thereory is by this Obfervation but half a Minute, or none ; of Horrox's Syftem, nine Minutes and a Half.
XXIII. The Evening being clear, gave me a good Opportunity of Eclipfe of the obferving the Lunar Eclipfe. The Times are very nice, and the Obiervations made with an excellent Six-foot Telefcope, as followeth.
h
${ }^{6} \quad 15$ A Duskifhnefs upon the N. Eaft-fide of the Moon.
$6{ }^{6} 6$ A thick Penumbra on the Moon.
6 37. The Penumbra fo denfe, that it may be taken for the Beginning of the Eclipfe.
639 The Eclipfe undoubtedly is begun.
6 4I The Shadow fo dark, that it nearly hid the Moon's N. Eafter-
ly Limb.

Eclipfes of the Moon.

$\begin{array}{ccc}\mathrm{h} & 21 \text { Moon's Diameter by the Micrometer } 1612 \text { equal Parts, equal }\end{array}$ to $31^{\prime} 25^{\prime \prime}$.
725 The Diftance of the Shadow from the oppofite luminous Limb of the Moon, reprefented by the Line l.u. was 1025 Parts of the Micrometer, equal to 20 Minutes.
8 3I End of the Eclipfe is very near.
$8 \quad 32$ End of the Eclipfe.
$83^{2} 45^{\prime \prime}$ Eclipfe is undoubtedly ended.
83^{6} A Penumbra is left.
It unluckily fell out, that I difordered my Micrometer at the Beginning of the Eclipfe; fo that I could not take with any Exactnefs the Inclination of the Cufps, and fome other Matters I had a Mind to have obferved ; to fupply which Defect in fome Meafure, I have fent a Type of the Eclipfe, as well as I could, by Guefs. And from the fame Defect I cannot warrant the Micrometrical Meafures of the Moon's Diameter, and her eclipfed Parts to be otherwife, than fomewhat near the Truth ; perhaps not exactly true.
Fig. 1:0. A Type of the Lunar Eclipfe, Jan. 12, 1711 112.
m. i. c.r. reprefents the two Clafpers of the Micrometer, parallel to the Equator.
N. The Northern, S. the Southern Part of the Moon's Disk, running between the Clafpers of the Micrometer.
l. u. The enlightened Part of the Moon, being 1025 Micrometrical Parts, or 20^{\prime}.

I am forry I had not Hevelius's Map of the Moon, to have noted the Spots the Shadow paffed over.
XXIV.
E.cliple of the Moon, Oct.
30, 1715, at Wanfled, by Mr. J. Pound.

At $17^{\text {h }} \cdot 39^{\prime}$. the Eclipfe was thought to be ended; and was vifibly fo at $1 \eta^{\eta^{\mathrm{h}}} \cdot 4 \mathrm{I}^{\prime}$: But by comparing the laft Obfervations of the Chords between the Horns, it follows, that the true End of the Eclipfe was

The middle cannot be fuppofed to be very accurately determined by thefe Obfervations, which are not fufficiently diftant from the Time of the greatelt Obfcuration. However by comparing feveral of them together, the Middle will be obtained, viz.

By Obr . 3. compared with Obf. 24. at

By reafon of Clouds I could not fee the Beginning of the Eclipfe, nor make fuch Obfervations of the Moon's immerging into the Shadow, as I did of her emerging out of it.

By Obfervation 11. compared with Obfervation 15. the Digits eclipfed were $8 \frac{3}{4}$.

The Angles were meafured by a Micrometer in a 15 Foot Telefcope: I have not confidered how far they are confiftent with one another; they being fet down here exactly, as they were firft taken.

This, Eclipfe is the more confiderable, as happening very near the Mopn's Perigee, and therefore ufeful to verify her Anomaly; as alfo to limit the greateft Diameter of the Shadow of the Earth, and confequently the Parallax of the Moon. This may very properly be compared with that of the 19 th of OEtober, 1697 , whole middle was at $7^{\text {h. }} 41^{\prime}$. P. M. at London, and Quantity the fame as now.

The Times by the Clock were $17^{\prime} \cdot 45^{\prime \prime}$. fooner than the apparent Time, as were found by the following Obfervations of Cor Leonis and Arcturus, which through the Clouds were but juft difcernible.

Apparen Zenith Diftanc	Time by the Clock		Apparent Time by Calculat.	$\left\|\begin{array}{l} \text { The Dif- } \\ \text { ference } \end{array}\right\|$	
$\begin{array}{cc} \hline \text { of Cor } \Omega \\ \circ & \\ \text { co } & 16 \\ 69 & 38 \\ 69 & 09 \\ 68 & 40 \\ 68 & 40 \end{array}$				$\begin{array}{ll} 11 \\ 17 & 11 \\ 17 & 52 \\ 17 & 54 \\ 17 & 45 \\ 17 & 50 \\ 17 & 50 \\ 17 & 59 \end{array}$	Mean $17 \quad 50$
$\begin{array}{ll} \text { of Ariur } \\ 6_{5} & 19 \\ 6_{5} & 06 \\ 6_{4} & 41 \\ 6_{3} & 47 \end{array}$	17 37 40 39 12 41 49 47 40	2017	$\begin{array}{ll} 55 & 24 \\ 56 & 48 \\ 59 & 29 \\ 05 & 17 \\ \text { Clock } \end{array}$	$\begin{array}{ll} 17 & 44 \\ 17 & 36 \\ 17 & 40 \\ 17 & 37 \end{array}$	$\begin{aligned} & 17 \quad 40 \\ & 17 \quad 45 \end{aligned}$

The

The Latitude of Wanfled is $55^{\circ} \cdot 34^{\prime}$. Its Longitude is $8^{\prime \prime}$ in Time Eaftward from the Obfervatory at Greenwich.
N. B. The Account given of this Eclipfe by the Reverend Mr. William Derham, who obferv'd it at Upminfter, is agreeable to this, as far as Clouds would pernit bim to obferve.

Obfervations on the Heavens.

10	10		
Wednefday, Feb. 28. 8 18 3 8 1 5 ool Saturn pafs'd over \qquad 1294300 $\begin{array}{lllllll}8 & 27 & 11 & 8 & 23 & 39 & \mu \text { pafs'd over in the Northern Foot of } \\ 29 & 5 & 40\end{array}$ the Crab over IO 3959 IO 3627γ the bright Star of the Lion's Neck 301205 pafs'd over $\begin{gathered}\text { pals'd over } \\ \text { Saturn's Right Afcenfion } \\ \text { I } \\ \text { I } \\ \text { Diftance from the North Pole } \\ \\ 68.31 .30 \\ 68.00\end{gathered}$			
Friday, Nov. 9. $17 \begin{array}{llllllll}17 & 21 & 12 & 17 & 21 & 23 & \text { The Star following } \pi \text { in the Crab pafs'd' } 352110\end{array}$ over - 11729491730 oo Saturn pafs'd over pals'd overSaturn's Right Afcenfion Sale Diftance from the North Pole 36.58 .00 72.42 .00			

Time by the Clock	Time corrected.	Monday, Nov. 19, 171x.	Diftance from the Zenith.
$\left\|\begin{array}{lll} 16 & 46 & 20 \\ 16 & 59 & 31 \\ 17 & 29 & 59 \end{array}\right\|$	$\begin{array}{lll} 16 & 41 & 00 \\ 16 & 54 & 11 \\ 17 & 24 & 33 \end{array}$	Saturn pafs'd over \qquad A Teleícopic Star a pafs'd over The South Star n in the Lion's Neck pals'd over Saturn's Right Afcenfion 136.58 .30 Diftance from the North Pole 72.40 .05	$\begin{array}{rrr} 34 & 8 & 00 \\ 33 & 45 & 30 \\ 33 & 18 & 30 \end{array}$

Thurfday, Nov. 22.

$16243^{6} \mid 16 \quad 1930$ The Star following π in Cancer pafs'd 352130
 Saturn's Right Afcenfion
Diftance from the North Pole
Sunday, Dec. 30.
 $\left|\begin{array}{lll}\text { over } & \\ \text { Saturn's Right Afcenfion } & \text { I34.10.00 } \\ \text { Diftance from the North Pole } 72.20 & 5\end{array}\right|$ Saturday, Fan. 12, 1712.

$124316123^{6} 30$ The Star following π in Cancer pafs'd 352220 over
$\begin{array}{lllllll}13 & 3 & 6 & 44\end{array}$ I3 2958 The Lion's Heart pafs'd over $-\left\lvert\, \begin{array}{lll}38 & 6 & 55\end{array}\right.$ Saturn's Right Afcenfion I34.12.00 Diftance from the North Pole 71.44 .00

Saturday, Fan. 19.
$114531|113655|$ The Soutbern A/s pafs'd over - - $\begin{array}{lllll}32 & 17 & 10\end{array}$
$\begin{array}{llll}11 & 5^{8} & 14 & 49 \\ 3^{8} & \text { The Southern Star at } 0 \text { in Cancer pals'd }\left|\begin{array}{ccc}35 & 3 & 50\end{array}\right|\end{array}$
$\begin{array}{llllll}12 & 11 & 36 & 12 & 3 & 00 \\ \text { Saturn pafs'd over }\end{array}$
1220 oo in 24 The Telefcopical Star b pafs'd over - $\begin{array}{lllll}32 & 33 & 20\end{array}$
Saturn's Right Afcenfion $\quad 133.37 .00$
Diftance from the North Pole 71.34 .10

Monday, June 4.

| 10 | 11 | 51 | 10 | 7 | 19 | The middle Star in the Front of Scorpio\| | 73 | 12 | 00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 12 | 10 | 18 | 12 | 5 | 46 The Nebulous Stars b of Sagit. pals'd over 75 | 10 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $12243^{2} \mid 1220$ oo Fupiter pafs'd over $\quad 1 \quad 74 \quad 38 \quad 10$

$1 \begin{array}{lll}13 & 4 & 45\end{array} \mathbf{I}_{3} \quad 0 \quad 13$ The preced. Star at v in Sagit. pafs'd over $\begin{array}{lll}74 & 29 & 10\end{array}$

| 13 | 5 | 41 | ${ }^{1} 3$ | 1 | 09 |
| :--- | :--- | :--- | :--- | :--- | :--- | The fubfequent Star at y pals'd over - 742450 Fupiter's Right Afcenfion 269.07.00 Diftance from the North Pole I 13.13 .00

Saturday, June 9.
$9 \begin{array}{lllllll}52 & 16 & 9 & 49 & 5 & \text { The middle Star in the Front of Scorpioj } 73 \text { II } 55\end{array}$
 Diftance from the North Pole 113.13 .15 Sunday, funne 10.

Time	Time corrected.	Satu	Diftance from the Zenith.
$\begin{array}{ll}8 & 5 \\ 9 & 10 \\ 9 & 10 \\ 9 & 21 \\ 9 & 40\end{array}$	$\begin{array}{ccc}8 & 50 \\ 9 & 2 & 2 \\ 9 & 1 & \\ 9 & 0 \\ 9 & 32 & 4\end{array}$	48 of Serpentarius, or C pafs'd over 54 of the fame, or D pals'd over fupiter pafs'd over , μ in the Bow of Sagittary pafs'd over $\mid 7 u p i t e r$'s Right Afcenfion 264.12.30 Diftance from the North Pole 113.12 .40	$\begin{array}{lll} 5 & 7 & 20 \\ 2 & 56 & 00 \\ 4 & 37 & 50 \\ 2 & 31 & 30 \end{array}$
$\begin{array}{lr}8 & 54 \\ 9 & 6 \\ 9 & 16 \\ 9 & 36\end{array}$	$\begin{array}{lll} 8 & 46 & 24 \\ 8 & 58 & 44 \\ 9 & 9 & 00 j \\ 9 & 29 & 2 \mu \end{array}$	Sunday, July 15. C of Serpentarius pafs'd over D of Serpentarius pals'd over 'Fupiter pafs'd over μ of Sagittarius pas'd over fupiter's Right Afcenfion Diftance from the North Pole 113.12 .4	$\begin{array}{llll}5 & 7 & 20 \\ 2 & 56 & 00 \\ 4 & 37 & 50 \\ 2 & 31 & 35\end{array}$
$\begin{array}{ll}\text { II } 1 & 36 \\ 12 & 4+ \\ 12 & 44 \\ 12 & 45 \\ 12 & 57 \\ 13 & 16\end{array}$		Tuefday, Fuly 3,1712. $\mid \sigma$ under the Eye of Capricorn pafs'd over π in Capricorn's Nofe pals'd over \qquad ρ in Capricorn pafs'd over fupiter pafs'd over \qquad \qquad 20 inCapricorn by the Britifb Catalogue pals'd over fupiter's Right Afcenfion 306.09 .20 Diftance from the North Pole 1 io. 0.30	$\begin{array}{ll} 1 & 2440 \\ 0 & 3300 \\ 0 & 0950 \\ 1 & 2620 \\ 1 & 33 \\ \hline \end{array}$
$\begin{array}{lll} \text { I } & 39 \\ & 55 \\ \text { I2 } & 19 \\ & 24 \end{array}$		Tburfday, July 15. . σ in Capricorn pafs'd over 'fupiter pals'd over 20 in Capricorn pafs'd over n in the Body of Capricorn pafs'd over Fupiter's Right Afcenfion Diftance from the North Pole I 10.23 .30	$\begin{array}{lll} 1 & 24 & 45 \\ 1 & 49 & 20 \\ 1 & 33 & 10 \\ 2 & 23 & 25 \end{array}$
$\begin{aligned} & 73^{2} \\ & 738 \\ & 742 \end{aligned}$	$\begin{array}{llll} 7 & 31 & 5 \\ 7 & 3 & & 00 \\ 7 & 3^{1} & 37 \\ 7 & 4 & 37 \\ 7 \\ 7 & & & \\ 7 \end{array}$	Wednesday, Sept. 17. The Telefcopic Star preceding $\mathfrak{f u p i t e r}$ pafs'd over Fupiter pars'd over The Telefcopic Star following Fupiter pafs'd over 7upiter's Right Afcenfion 299.43.00 Diftance from the North Pole I I 1.25 .30	$\begin{array}{ll} 40 & 40 \\ 51 & 10 \\ 14 & 40 \end{array}$
7 30 8 19	$\begin{array}{cccc} \begin{array}{lll} 7 & 32 & 00 \\ 8 & 20 & y_{1} \\ & & 5^{2} \\ & & y_{n} \\ \mathrm{D} \end{array} \end{array}$	Friday, Sept. 19. Yupiter pafs'd over n in Capricorn pafs'd over fupiter's Right Afcenfion Diftance from the North Pole 111.25 .05	$\begin{array}{ll} 50 & 45 \\ 23 & 40 \end{array}$

Time by the Clock			Diftance from the Zenith.
$\begin{array}{llll}6 & 25 & 35 \\ 6 & 36 \\ 6 & 22 \\ 6 & 4 & 36\end{array}$	$\begin{array}{ll}6 & 31 \\ 6 & 42 \\ 6 & 52\end{array}$	corn's Nofe pafs'd over corn's Neck pafs'd over Right Afcenfion 300	$\begin{aligned} & 25 \\ & 30 \end{aligned}$
Objervations of MARS, 171			
$\left\|\begin{array}{lll} 12 & 40 & 35 \\ 12 & 40 & 56 \\ 12 & 5 & 8 \\ 1 & 45 \\ 13 & 27 & 15 \\ 13 & 50 & 5 \\ 14 & 00 & 39 \\ 14 & 20 & 1 \end{array}\right\|$	$\begin{cases}12 & 38 \\ 12 & 39 \\ 12 & 57 \\ 13 & 25 \\ 13 & 49 \\ 1 & 59 \\ 13 & 28\end{cases}$	The Southern Star at 0 in Cancer pafs'd over The Northern Star at o in Cancer pafs'd over The fubfequent Star at π in Cancer pafs'd over * in the Lyon pafs'd over The Southern Star at n in the Lion's Neck pafs'd over Mars pafs'd over k the Northern Star in the Lion's Belly pafs'd over Mars's Right Afcenfion $\quad 150.20 .00$ Diftance from the North Pole 73.23.35	44800 52120 6 8 50 31900 $45^{1} 30$ 54540
$1040 \quad 59^{\prime}$ 10 $41 \quad 30,20$ of Cancer, or the firft at d pafs'd over 32 It 10 Io 5016 Io 5047^{n} in Cancer pals'd over12 8 2912 9 00 Mars^{2} pafs'd over $12252712255^{1 n}$ the Southern Star in the Lion's Neck 32 14 0 $\left\lvert\, \begin{array}{lllllll}12 & 37 & 59 & 12 & 38 & 302\end{array}\right.$ pafs'd over the bright Star in the Lion's Neck 30 II 50 pafs'd over Mars's Right Afcenfion 143.37 .00 Diftance from the North Pole 70.36 .00 Diftance from the North Pole 70.36.00			
12 I 50 II 59 ool Mars pafs'd over $\begin{array}{lllll}12 & 21 & 58 & 12 & 19 \\ 12 & 08 \\ n\end{array}$ $123431123141 / \gamma$ the bright Star in the Lion's Neck pafs'd over Mars's Right Afcenfion 142.49 .30 Diftance from the North Pole 70.30 .50			

Obfervations on the Heavens.

$1 \begin{aligned} & 10 \\ & 11 \\ & \text { I2 } \\ & \text { I2 }\end{aligned}$	10, 103025		45 35 5 5
	$\begin{array}{ll}8 & 55 \\ 9 & 23 \\ 0 & 19 \\ 0 & 32\end{array}$	Thurjday, March I. in Cancer pafs'd over he Nortbern A/s pals'd over ars pafs'd over in the Lion pass'd over bright Star in the Lion's Neck pars'd over $\begin{array}{lr}\text { I } & \text { I } 33.37 .30 \\ \text { Itance from the North Pole } & 68.38 .20\end{array}$	$\begin{array}{rrr}5 & 35 \\ 0 & 15 \\ 6 & 20 \\ 19 & 50 \\ 12 & 00\end{array}$

Obfervations on the Heavens.

Obfervations on the Heavens.

Obfervations on the Heavens.

Time by the Clock.	Time corrected.	Tuefday, April $7,1713$.	Ditance from the Zenith.
$\left\|\begin{array}{ccc} h . & 1 & 11 \\ 7 & 43 & 1 \\ 50 & 46 \\ & 57 & 36 \\ 8 & 6 & 39 \\ 1 & 16 & 7 \\ 8 & 21 & 1 \end{array}\right\|$		ψ of the Lion pafs'd over The Center of Saturn pass'd over v of the Lion (Bayer) pafs'd over n in the Lion's Neck pafs'd over \qquad 34 of the fame (Brit. Cat.) pafs'd over 38 of the fame pafs'd over Saturn's Right Afcenfion Diftance from the Pole Longitude of Ω Latitude	0 1 11 36 9 25 35 31 10 37 40 20 33 19 25 36 19 30 35 3 50
$\left.\begin{array}{rrr} 7 & 47 & 43 \\ 54 & 34 \\ 8 & 3 & 37 \\ 13 & 4 \\ 8 & 18 & 14 \end{array} \right\rvert\,$	$\begin{array}{lll} 7 & 46 & 00 \\ & 52 & 51 \\ 8 & 1 & 54 \\ & 11 & 1 \\ 8 & 16 & 11 \end{array}$	Wednefday, April 8. The Center of Saturn pafs'd over - v in the Lion pafs'd over " in the Lion pafs'd over 34 of the Lion pafs'd over 38 of the Lion pafs'd over Saturn's Right Âfcenfion Diftance from the Pole Longitude of 4 's Ω Latitude 1.31.10 aturn was almoft Stationary.	$\left\|\begin{array}{rrr}35 & 31 & 15 \\ 37 & 40 & 20 \\ 33 & 19 & 20 \\ 36 & 19 & 35 \\ 35 & 3 & 45\end{array}\right\|$
$\left\|\begin{array}{rrr} 18 & 22 & 00 \\ 30 & 8 \\ & 30 & 8 \\ 19 & 11 & 35 \\ 19 & 26 & 5 \end{array}\right\|$	$\left\lvert\, \begin{array}{rrr} 18 & 15 & 37 \\ & 23 & 45 \\ & 48 & 12 \\ 19 & 4 & 42 \\ 19 & 20 & 00 \end{array}\right.$	Tburfday, Nov. 5. ${ }^{\pi}$ in the fubfequent Knee of the Lion pafs'd over The Lion's Heart pals'd over ρ in the Lion's Sboulder pafs'd over l in the Lion's Belly pafs'd over The Center of Saturn pafs'd over Saturn's Right Afcenfion Diftance from the Pole 162.23 .20 80.43 .00 Lontitude, Virgo North Latitude 10. 3.40 I. 39.37	$\left\|\begin{array}{ccc} 42 & 4 & 00 \\ 38 & 7 & 5 \\ 40 & 42 & 0 \\ 39 & 25 & 15 \\ 42 & 10 & 40 \end{array}\right\|$

Tuefday, OET. 27.

Obfervations on the Heavens.

Time by the Clock	Time corrected	Tburday, OEt. 29, 1713.	Diftance from the Zenith.
Obfervations of MARS, 171			
$\text { Wednefday, Feb. } 18 .$			
Tuefday, March 3.			

Obfervations on the 'Heavens.

Friday, May I.

Saturday, May 2.

Obfervations on the Heavens.
Observations of the MOON, 1713.

VoL. IV.
Objet

		Friday, OEF. 30. The fourth Satellite is feen emerging out of the
65630	5235	Shadow, being diftant from the Third near it on the Right Hand, by a Diameter of Jupi ter; with a Tube of eight Foot.
$7 \quad 400$	700	It fhined bright, and drawing a Line from that nearelt one through the Center of Fupiter, it left the emerging one to the South; but in an inverted Situation.
$73^{6} 31$	73230	The Star in μ in Pegafus pafs'd over the Arch of the Meridian. Saturday, Nov. 7.
7132	$7 \quad 500$	The fecond Satellite emerged, or rather began to emerge ; in a Tube of eight Feet.
9511	85700	\& of the Conttellation Pijces in the Southern String pafs'd over.

Vid. Infr. S. XXXI.
N. B. That Telefcopic Star a, which Jan. 25. went before the Moon, then bad its Right Afcenfion $81^{\circ} \cdot 28^{\prime \frac{1}{2}}$, and was diftant from the Pole $66^{\circ} \cdot 5^{8^{\prime}} \cdot 20^{\prime \prime}$; whence its Longitude was $\Pi 122^{\circ} \cdot 9^{\prime 2}$, with Southern Latitude 9°. $13^{\prime \frac{1}{2}}$. Now this is the very Star to which Jupiter applied in bis fecond Station, Feb. 6, 1634, and left it to the South not more than three Diameters of bis own Body, according to the Obfervation of Gaffendus; as is deliver'd in bis Book, P. 174. And Mars was obferved near the fame, Sept. 6, 1644 , in the Morning, as may be feen in the Prolegomena of Hevelius before bis Selenographia, p. 65. Fig. 1. Now it will much conduce to the accurate Determination of Jupiter's Node, and bis Motion, if the Plain of bis Orbit among the fixt Stars does not remain immoveable. For after the Term of 83 Years, in which Jupiter compleats feven Periods enough exaEt, that is, An. 1717, Jan. 10, in the Morning, the Planet will either cover that Star with bis Body, or at leaft will pafs very near it ; a Sigbt very rare, nor yet granted, as I know on, to any Aftronomer in regard to Jupiter.

Now the Star itfelf, tho' called a Telefcopic Star, in a clear Sky and in the Abfence of the Moon, may be feen by the naked Eye, and has a Companion

Obfervations

 of the Occultations of the fix'd Stars by the Moon, ufeful for finding the
Xifful for
finding the
Longitude, by tudes of Places for Geographical Ufes, none feems more adapted to
p. n n. 354 . the Purpofe, than that by the Occultations of the fixed Stars by the
Poon P. 693. following it to the South, and diftant about the Sun's Diameter; near which Jupiter will be feen clafely joined, July 20, in the Morning, the preceding Year 1716.

Moon obferved in diftant Places : For thofe Immerfions of the Stars, which happen on the dark Semicircle of the Moon, and their Emerfions from the fame, are perfectly momentaneous, without that Ambiguity, to which the Oblervations of the Eclipfes of the Moon, and thofe of Jupiter's Satellites are fubject. Befides, whilft the Moon is horned, and her weaker Light lefs dazzling, an ordinary fhort Telefcope, fuch as is found to be manageable on Ship-board, fuffices to obferve thofe Moments, even in the Occultations of very minute Stars: On which Account, this Way feems to bid faireft for finding the Longitude at Sea. But fince it would be needlefs to enquire exactly what Longitude a Ship is in, when that of the Port to which the is bound is ftill unknown ; it were to be wifh'd, that the Princes of the Earth would caufe fuch Obfervations to be made in the Ports, and on the principal Head-Lands of their Dominions, as might once for all fettle truly the Limits of the Land and Sea. This Work however, being likely to be left to the Care of private Perfons, it may not be amifs to give Notice of the prefent Opportunity of performing it in this our Northern Hemifphere, by Means of the frequent Appulfes of the Moon, to the more Southerly of the Hyades, many of which the eclipfes in each monthly Revolution, and will continue fo to do, during the Years 1718,1719 and 1720 .

Thefe Stars are but three or four in all former Catalogues, but the Britifh of Mr. Flamfteed encreafes them to Sixteen; to them we have added three others fomewhat finaller, viz. c, i, and n in the Figure of Fig. 121. the Hyades hereto annexed. In it the principal Stars are mark'd with Bayer's Marks, and the reft with the Letters of the Italick Alphabet; their Longitudes are fitted to the Beginning of the Year 1718, and being truly laid down, may ferve to inftruct the Oblerver, when and where to look for them, when the Moon is among them.

It appears by this Scheme, that the Diftance between a and a or $P a$ lilicium, is about nine Hours Motion of the Moon, in which Time, fuppofing her to pafs one to the other, fhe muft eclipfe γ and e, and four or five of thofe about θ, and mult apply very clofe, with her Southern Limb, to all thofe, which have about fix Degrees South Latitude; which would be a very entertaining Sight. But if the Times of the Occultations of any one of thefe Stafs, or even of any two of them in the fame Night, be accurately obferved under diftant Meridians, the Difo ference of thofe Meridians may be truly obtained thereby; efpecially fince the Moon's Parallax, and all other Parts of her Theory thereto required, are at prefent fufficiently ftared and known.

For the Sake of fuch, as are willing to make ufe of this Merhod, we have added the Places of all the Hyades fitted to the prefent Time, and chielly taken from the Britifh Catalogue, which being faulty in the Stars we call k and l, we have here rectified them.

A Catalogue of the Hyades, for the Beginning of the Year 1718.

Names of	Long. I S	South	Mag
Which goes betore y in the Bull \qquad a In the Bull's Noftrils, That under γ \qquad \qquad b In the End of the Bull's Nofe Between the Noltrils and the North? Eye of the Bull \qquad	$\begin{array}{ll} 51 & 3 \\ 50 & 54 \\ 56 & 31 \\ 54 & 25 \end{array}$	$\begin{array}{cc} 50 & 14 \\ 46 & 22 \\ 19 & 57 \\ 47 & 5 \\ 0 & 34 \end{array}$	$\begin{array}{r}7 \\ 3 \\ 7 \\ 7 \\ \hline\end{array}$
Joyning this to the South The Northern one of thofe before θ The bright Southern one of the fame That which follows, of \qquad g The Northern of the near ones between? the Noftrils and the Bull's Eyc \qquad	$\begin{array}{ll\|l} 10 & 33 \\ 17 & 21 \\ 25 & 3 & 4 \\ 35 & 2 & 3 \\ 59 & 45 & 5 \end{array}$	$\begin{array}{rrr}9 & 4 \\ 41 & 50 \\ 2 & 44 \\ 43 & 27 \\ 47 & 16\end{array}$	6 8 6 5 4
The more Southern one of the fame The Northern of the two above θ The Southern one of the fame The firft of the 3 in a right Line under $\theta \mathrm{k}$ The Middlemoft of the fame	0 11 5 2 32 5 7 44 5 19 27 6 26 55 6	$\left.\begin{array}{rrr} 5 & 52 & 55 \\ 5 & 23 & 43 \\ 5 & 36 & 40 \\ 6 & 9 & 45 \\ 6 & 7 & 35 \end{array} \right\rvert\,$	4 7 8 $\frac{4}{7}$ $\frac{7}{7}$
The Northern one of the two following $\theta \mathrm{m}$ The Northern Eye of the Bull The Southern of thofe following θ5 $n$$\qquad$ The Subfequent of the 3 under θ Palilicium, or the Bull's Eye, or a ac-2 cording to Bayer.	$\begin{array}{llll} 4 & 30 & 26 \\ 4 & 30 & 31 & 5 \\ 4 & 32 & 35 & 5 \\ 4 & 45 & 55 & 6 \\ 5 & 50 & 20 & 5 \end{array}$	$\begin{array}{ccc} 5 & 37 & 49 \\ 2 & 35 & 58 \\ 5 & 41 & 00 \\ 6 & 0 & 35 \\ 5 & 29 & 50 \end{array}$	7 3 8 7
The next following this The Southern of the contiguous ones? following The Northern one the brighter of the two σ	$\begin{array}{cc} 17 & 35 \\ 30 & 34 \\ 33 & 12 \end{array}$	$\begin{array}{rr} 3 & 20 \\ 19 & 19 \\ 12 & 35 \\ \hline \end{array}$	7

An Account of XXVIII. The late Appearance of Venus in the Day-time, for many Venus being Days together, was generally taken Notice of about London, and elfefeen in the Day-time by the En Dr.E.Halley. be fo plainly feen by Day ; whereas the rarely fhews herfelf fo, unlels n. 349. p. 46 . to thofe, who know exactly where to look for her. To refolve this, the following Problem arofe, viz. To find the Situation of the Planet in refpect of the Earth, when the Area of the illuminated Part of her Disk is a Maximum.

To inveftigate this Maximum, I found it requifite to afiume the following Lemmata. I. That the vifible Areas of the Disk of the fame Planet, at differing Diftances, are always reciprocally as the Squares of thole Diftances ; which is evident from the firt Principles of Opticks. II. That the Area of the whole Disk of the Planet is to the Area of the enlightned Part thereof, as the Diameter of a Circle to the Verfed-Sine of the exteriour Angle at the Planet, in the Triangle, at whofe Angles are the Sun, Eartb, and Planet. III. That in all plain Triangles, four Times the Rectangle of the Sides containing any Angle, is to be the Excefs of the Square of the Sum of the Sides above the Square of the Bafe, as the Diameter is to the Verfed-Sine of the Complement of the contained Angle to a Semicircle, which I call the exteriour Angle : This is a new Theorem of good Ufe in Trigonometry, and is eafily to be proved from the $12 t b$ and $3^{\text {tb }}$ of the II. Elem. Euclid.

This premifed, putting m for the Diftance of the Sun, and Earth, and n for that of the Sun and Venus, and x for the Diftance of the Earth and Venus, or the third Side of the Triangle which we feek; by the third Lemma, $4 n x$, will be to the Excefs of the Square of $n+x$ above the Square of m, as the Area of the whole Disk of Venus to the Area of the Part enlightned; and by the firft Lemma, the Area's of her whole Disk, are at all times as the Squares of x reciprocally; whence the Quan-
tity $\frac{n n+2}{n x+x x-n m} \frac{4^{n x^{3}}}{}$ will in all Cafes be proportional to the
Area of the enlightned Part.
Now that this fhould be a Maximum, it is required that the Fluxion thereof be equal to 0 , or that the negative Parts thereof be equal to the Affirmative ; that is, that $2 n x+2 x x \times 4 n x^{3}=12 n x^{2} x \times$
$\overline{n n+2 n x+x x-m m}$; and dividing all by $4 n x^{2} \dot{x}$, the Equation becomes $2 n x+2 x x=3 n n+5 n x+3 x x-3 m m$. Confequently $3^{n n+4 n x+x x}=3 m m$, and therefore $x=\sqrt{3^{m} m+n n}-2 n$.

From hence a ready and not inelegant Geometrical Conftruction becomes obvious; for with the Center S, and Radius $S T=m$; defcribe the Semicircle $\mathcal{T} D A$; and with the fame Center and Radius $S E=n$, Fig. 121, the Semicircle $E V B$; which two Semicircles fhall . reprefent the Orbs of the Earth, and Venus. Then make the Chord $A D=$ to the Radius $S T$, and from D towards A, lay off $D F=S E$; draw τF, and thereon place $F G=B E=2 n$, and with the Center τ and Radius τG defcribe the Arch $G V$, cutting the Semicircle $B V E$ in V;
and draw the Lines $S V, \mathscr{T} V$; I fay the Triangle $S T V$ is fimilar to that, at whofe Angles are the Sun, Eartb, and Venus; at the Time when the Area of the inlighted Part of that Planet's Disk, as feen from the Earth, is greateft. How this Geometrical Effection follows from the Equation is too evident to need repetition.

In confequence then of this Solution, I find this Maximum always to happen, when the Plonet is about' 40 Degrees diftant from the Sun; and the Times thereof, about the Middle between her greateft Elongations on both Sides from him, and her retrograde Conjunctions with him ; when little more than a Quarter of her vifible Disk is luminous, and refembling the Moon of about 5 Days oid; and tho' her Diameter is at that Time bur. 50 Seconds, yet fhe flines with fo ftrong a Beam, as to furpafs the united Light of all the fixt Stars that appear with her, and cafts a very ftrong Shade on the Horizontal Plain, whereon they all thine; an irrefragable Argument to prove, that the Disks of the fixt Stars are inconceivably fmall, and next to nothing; fince fhining with a native Light, fo many of then do not equal the reffex Light of one quarter of a Disk of lefs than a Minute Diameter.

In this Situation Venus was found in F̛uly laft, on the tenth Day; about which Time, when the Sun grew low, fhe was very plainly feen in the Day Time, for feveral Days together; as fhe might have been in the Mornings, about the latter End of September. But this, arifing from the Cautes we have now fhewn, is nothing uncommon; for every eighth Year it returns again, fo that the Planet may be feen on the fame Day of the Month and Hour, very nearly in the fame Place.

Laftly, It may not be amils to note, that the Equation $x=$ $\sqrt{3 m m+n n}-2 n$ has a Limit; for if n be equal to $\frac{\div}{4} m$, the Point V will fall on B; and the whole Disk of a Planet at that Diftance frons the Sun would be the Maximum, viz. when in its fuperior Conjunction with the Sun. And the like if n were lefs than $\frac{1}{\mp} m$; the Arch $G V$ in fuch Cafe not interfecting the Semicircle $B E$.
XXIX. Tbe Occultation of a Star by the Moon; and an Ecliple of the Moon follocring it. Nov. 21, O.S. 1713. by Mr. F. Blanchin, n. 340 . p. 88.

Obfervations on the Heavens.

The Star τ, which had emerged fome Minutes out of the Moon's Limb, in its diurnal Revolution precedes the Weftern Limb of the Moon by 33 Seconds of Time, and it precedes the Center of the Moon by 103 Seconds, or $1^{\prime} .43^{\prime \prime}$.
$144^{2} 50$ The fame precedes the Limb of the Moon by $48^{\prime \prime}$, and the Center by $\mathrm{I}^{\prime} \cdot 5^{8^{\prime \prime}}$.

The Difference of Right Afcenfion of the Star and of the Limb is 1^{\prime}. $03^{\prime \prime}$. But of the Center of the Moon and the fame Star is $2^{\prime} .13^{\prime \prime}$.
1500 The Penumbra in the Limb of the Moon, which before was pretty dilute, is now become fenfibly denfer.
15220 The Penumbra is more apparent, but the true Shadow does not yet appear.
15420 The Beginning of the Incidence of the Moon into the true Shadow, on that Part of the Limb which is next to the Spot Scbickard.
I5 521 The true Shadow now covers one Part, fuch as the Diameter of the Moon in the Micrometer makes 37.
15720 Now two fuch Parts of the Moon's Diameter are cover'd as make 37.
151620 Now $\frac{5}{37}$ Parts of the Moon's Diameter are cover'd.
153120 Now ํํㄱ of the Moon's Diameter are hid.
16120 Now $\frac{12}{3 T}$ Parts are conceal'd.
161720 The latent Parts are 15 as before.
165020 Now the latent Parts are $\frac{17}{77}$.
I6 5435
The firft Limb of $\mathcal{T} y c b o$ begins to emerge.
$1656 \quad 9$ Now all Tycho emerges.
171330 Five Parts of 37 of the Moon's Diameter lye hid.
172745 . The true Shadow comes out of the Limb of the Moon, in a Place mark'd out by drawing a Diameter between Ariftarchus and Plato.
> N. B. This Objervation is fo much the more to be valued, becaufe the Occultation of the Star thappens fo near to the Sun's oppofite Point, that bis Place anong the fixt Stars may from bence be truly examin'd.
XXX. Having after Midnight carefully corrected the Clock by no ${ }^{T}$ be $O_{\text {ccultati- }}$ lefs than ten Obfervations of the Altitude of the bright Star in Aries, the on of Jup Moom Error thereof was found 5^{\prime}. $13^{\prime \prime}$ too faft, the Extremes not differing July 14 , in above $6^{\prime \prime}$: And in the Morning about 7^{h}, by as many Altitudes of the the Morring, Sun, with a like Agreement, the fame Error was found $5^{\prime} \cdot 14^{\prime \prime}$ to be fed, by $M r$. deducted from the Times fhewn by the Clock.
n. 347. P. 401.

Fuly 13. P. M, N.	Time by the Clock.	Time corrected.
The third Satellite of $7 u p i t e r$ was hid by the Moon	$\left\lvert\, \begin{array}{cccc}\text { h. } & \prime & \prime \prime \\ 13 & 27 & 33\end{array}\right.$	h. ${ }_{\text {L }}$
The firt Satellite was hid		$\begin{array}{llll}13 & 22 & 20\end{array}$
The fecond Satellite was hid	32 34 34	$1 \begin{array}{lllll}13 & 27 & 22\end{array}$
The firit Contact of the Limbs of ψ and \mathbb{a}	$1 \begin{array}{llll}13 & 34 & 54\end{array}$	1382941
Yupiter wholly hid	$1 \begin{array}{llll}13 & 36 & 2\end{array}$	133110
$\left.\begin{array}{l}\text { The third Satellite came out from behind the } \\ \text { dark Side of the Moon }\end{array}\right\}$	$14 \begin{array}{lll}4 & 7 & 25\end{array}$	142
The firf Satellite	$14 \begin{array}{llll}12 & 12 & 25\end{array}$	$14 \quad 712$
The fecond Satellite	$14 \begin{array}{llll}14 & 38\end{array}$	$14 \quad 925$
The firft Limb of Jupiter came out	141445	$14 \quad 932$
The following Limb of 4 or laft Contact	141615	14 II 2
The fourth Satellite emerged	1+1849	141336

Fupiter and the Satellites were to the Northward of the vifible way of the Moon's Center.

This Occultation was obferved through a Telefcope, in which the focal Length of the Object-Glats was $14 \frac{1}{2}$ Feet, and of the Eye-Glafs $2 \frac{1}{4}$ Inches. And the Aperture of the Object-Glais was $1 \frac{1}{10}$ Inch.

I could perceive no Colours on $7 u p i t e r ' s$ Limb, either at his Immerfion or Emerfion, when the Axis of the Tube was directed to him.

Tlic Occultation of a fixt Star in Gemini b; Jupiter, fan. 1s, O. S. 1717.
ic. by ก. 351 . p. 546 . * Vid. Supr. p. 298.
XXXI. Two Years* ago we gave Notice that Fupiter would cover a certain fixt Star with his Body, mentioning the tenth Day of Fanuary of this Year. But as fupiter was almoft Stationary, and fomething farther advanced towards the Eaft than by our Tables, the forefaid Occultation did not happen till the eleventh Day; which becaufe of Clouds we could not obferve at London as we wifh'd.
Our Aftronomers did not watch for it in vain. Martin Folkes, Efq; at London, with fome others of the Royal Society, on Fan. ir, at Eight at Night, faw the Center of Jupiter to follow the fixt Star at the Diftance of one Diameter of his Body, which Star was more to the North of the faid Center by about $\frac{3}{7}$ of 'Jupiter's Semidiameter. Afterwards Clouds intercepted fupiter. Now taking an Account of Fupiter's Motion he concluded, that the Star was in Conjunction with fupiter after Midnight, and was cover'd by the Northern Part of his Disk.

The Reverend 7. Theoph. Defaguliers, and Mr. Stephen Grey, at Weftminfler, faw the fixt Star at Six in the Evening, when it was diftant from 'fupiter's Limb his whole Diameter, towards the North Weft. Whence, and from the Obfervations of the following Days, it appears that the Conjunction happen'd about Midnight.

Obfervations on the Heavens.

Alfo the Rev. Dr. $\begin{aligned} & \text { F. Pound at Wanfeed made the following very ac- }\end{aligned}$ curate Obfervations, which were taken by a very long Tube with a Micrometer.

Jan. 5. at $5^{\mathrm{h}} \cdot 6^{\prime}$, equal Time, the Center of Fopiter was diftant from the faid fixt Star $31^{\prime} \cdot 49^{\prime \prime}$: which at $5^{\text {h }} \cdot 3^{8^{\prime}}$ it follow'd with $34^{\prime} \cdot 12^{\prime \prime}$ of Right Afcenfion. And at the fame Time the Southern Limb of Fupiter had the fame Declination with the Star.

On the ninth Day following at $6^{b} .6^{\prime}$ the Center of Fupiter was diftant from the Star $10^{\prime} .49^{\prime \prime}$; and after 8 Minutes the Difference of Right Afeenfions was $11^{\prime} \cdot 32^{\prime \prime}$. And then the Center of the Planet was fo little more Southerly than the Star, that the Difference could hardly be perceived.
On the eleventh Day at $5^{\text {h }} \cdot 30^{\prime}$, equal Time, the Diftance of their Centers was $\mathrm{I}^{\prime} .24^{\prime \prime}$, and at the fame Time the Star was feen to be about a Quarter of Jupiter's Diameter more to the North than his Center. Now the leaft Diameter of Jupiter is found to be o'. $43^{\prime \prime}$. Then Clouds came on.
But upon the twelfth Day at $5^{\mathrm{h}} .17^{\prime}$. the Diftance of the Centers was $3^{\prime} \cdot 7^{\prime \prime}$. And at $5^{\mathrm{h}} \cdot 50^{\prime}$. 7upiter preceded the Star by $3^{\prime} \cdot 30^{\prime \prime \prime}$ of Right Afcenfion. And at the fame Time the Northern Limb of Jupiter had the fame Declination as the fixt Star exactly.

Now by comparing thefe Obfervations it appears, that this fixt Star was in Conjunction with Fupiter on fan. 11, at 13^{h} nearly, and was not more Northerly than his Center than $17^{\prime \prime}$ or $18^{\prime \prime}$, and therefore underwent an Occultation by him.

This fixt Star, tho' yet enter'd in no Catalogue, had its Place then in II 22°. 13^{\prime}, with South Latitude 0°. $13^{\prime \frac{1}{2}}$, and has a Companion more Northerly by 7 Minutes, which precedes him by 17 Minutes, or is in II $21^{\circ} \cdot 5^{6^{\prime}}$, with South Latitude $0^{\circ} 6^{\prime \frac{1}{2}}$, to which 7 fupiter was feen to be joined 7 an. 16 , at $6^{\mathrm{h}} \cdot 30^{\prime}$, in the Evening.
Thus in a Space of lefs than two Months Jupiter has corporally eclipfed two fixt Stars, of which Thing we have not one Inftance fince the Invention of the Telefcope, Wherefore thefe Obfervations are to be laid up for the Ufe of Pofterity, among the moft precious Curiofities of Urania.
Now our Star in the Year 1634, Feb. 6, was in Conjunction with $7!$ piter then ftationary, and was more to the South than him by three of his Diameters; as Gaffendus obferved. Whence it will appear, by a due Calculation, that the Nodes of fupiter as to Senfe have continued im. moveable for the 83 Years laft paft ; and that at two Signs, $8^{\circ} \cdot 35^{\circ}$. from the firt Star of Aries.

The fame Aftronomers have been watchful of another Obfervation of A Tranfit of a Tranfir of Mars near the Northern Star of the Forchead of Scorpio, which was not lefs remarkable, For Mars on Feb, 5, in the Morning, Star Northern or the $4^{\text {th }}, 16^{h}$. was feen fo near the fame Star, that it could not be per- Forehead of ceived with the naked Eye; but by the Telefcope it was found above Scorpio, Fio,
Vos. IV.
R

Objervations of

towards the Eaft, and therefore Mars was not yet join'd with it. At $16^{\text {h }} .10^{\prime}$, apparent Time, Mars was in a right Line with the Northern Star in the Forehead, and the Telefcopic Star which follows it to the North, at the Diftance of about 8 Minutes. At $16^{h} \cdot 35^{\prime}$ Mars was intermediate in the right Line with the Northern Star, and that in the Middle of the Forehead ; and after a Quarter of an Hour, with that in the Southern Part of the Forehead; fo that at $16^{h} .54^{\prime}$, apparent Time, it was eftimated to be the very Conjunction as to Longitude, at what Time Mars with fufficient Exactnefs was only two Minutes more to the South than the Star. Alfo Dr. Pound obferved the Conjunction in refpeet of Right Afcenfion to be $17^{\prime \prime} .25^{\prime}$, apparent Time, with the Diftance of the Centers 2^{\prime}. $7^{\prime \prime}$. It was a pleafant Sight to fee Mars gradually approaching the Star, and manifeftly to difcover his Motion, tho' a very flow one.

With this let the Obfervation of our Horrox be compared, Ann. I $\sigma_{3} 8$, Feb. 7, in the Morning, as may be feen in his Letters, p. 304. For then Mars had an Appulfe to the fame Star, and came much nearer it, but the Conjunction was over before his rifing.

To thefe add the Obfervation of Saturn, Jan. 25.121.25', equal Time, made by Dr. Pound. Then the Planct was diftant from the Star, which is the 5^{8} of Virgo in the Britifs Catalogue, $13^{\prime} .16^{\prime \prime}$ towards the South, and follow'd it, with $2^{\prime} .30^{\prime \prime}$. Right Afcenfion. The Star was in \bumpeq $19^{\circ} \cdot 21^{\prime} \cdot 52^{\prime \prime}$, with North Latitude $2^{\circ} \cdot 47^{\prime} \cdot 25^{\prime \prime}$.

Emerfions of the firyl Satellite of Jupiter, at Rome, ©r. 1713, by Mr. F. Blanchin, n. 340 . p. 89.
XXXII. Sept $\cdot \frac{1}{2} \frac{1}{2}$, Afternoon $8^{\mathrm{h}} \cdot 38^{\prime} \cdot 20^{\prime \prime}$, the inmoft Satellite of $7 u$ piter began to emerge over-againft the Space which is extended between the two Belts of 7 upiter. The Obfervation was made with a Telefcope of Mr. Andrew Cbiarelli, of the Length of 40 Roman Palms. Afterwards at $8^{h} \cdot 44^{\prime}$ the third Satellite appeared to be fo united with the fourth, that both feem'd to be but one Satellite. They were diftant from the Center of 7 upiter about $5 \frac{1}{2}^{\circ}$ of his Diameters. But at $9^{h} ; 4^{\prime}$ they were again disjoined. The Fourth in an inverfe Situation appear'd fomething more deprefs'd than the Third, and fomething more diftant from Fupiter. Therefore it was more Northerly than the Third.

Sept. $\frac{18}{295}$, at $10^{h} \cdot 36^{\prime} \cdot 23^{\prime \prime}$, the firft or the inmoft Satellite began to emerge from the Shadow, in a Tube of 25 Palms, of Mr. Campani.

Nov. $\frac{12}{23}$, at $7^{\mathrm{n}} \cdot 32^{\prime} \cdot 22^{\prime \prime}$, the firlt Satellite began io emerge, when feen thro' a Tube of Mr. Cbiarelli of 40 Palms. Afterwards the fame Night at $7^{\mathrm{h}} \cdot 4^{6^{\prime}}$ the Firft and Second are very near, and at $7^{\mathrm{h}} \cdot 53^{\prime}$ the fame were fo near, that they could fcarce be diftinguifhed from one little Point.

Dec. 9, n.ft. or Nov. 28, old ft. at $5^{\text {h }} \cdot 45^{\prime} \cdot 45^{\prime \prime}$, the firft Satellite began to emerge from the Shadow of Gupiter.

Dec. 2 r, old ft. at $5^{\text {h }} \cdot 50^{\prime} \cdot 22^{\prime \prime}$, the firt Satellite was again feen as beginning to emerge out of the Shadow.
N. B. From thefe Obfervations reduced to an accurate Calculation, it is very plain, that the fecond Equation, which we fuppofe to arife from the progreflive Motion of Light, muft neceffarily be admitted. For afier 57° Revo-
lutions of the inmof Satellite, in wbicb Jupiter bas witt drarwn from the Earths n2ore than by a Radius of the Orbis Magnus, the laft Eclipfe is feen almoof 9 Minutes later than it ougbt, according to the Tenor of the firft Obfervation: Which agrees witb the Hypotbefes of Mr. Caffini
From the faine it is alfo confrm'd, (wbich we aljo bave observed before) that the Motion of the inmol Satellite of Jupitcr is a little quicker than in the moff elaborate Tables of Mr. Caffini, conmmunicated to the Publick now 20 Years ago. Now that little Error feems bardly to cxceed two Minutes of Time in each Revolution of Jupiter, or in 12 Years; by whicb the Heaverns anticipate the Calculation of Mr. Caffini. But when this Correstion is taken in, the Agreement weill be fufficiently accurate.
XXXIII. On the 16 th of February 1719 , at $6^{h \frac{1}{4}}$, thro' a flort Tube, Tranifit of the we faw all the 4 Satellites, the 3 outermoft on the Eaf Side of Fupiter, and the innermoft near the Weffern Limb approaching to an Eclipfe. The Fourth at that Tine was about half a Semidiameter of Jupiter from the Eaftern Limb. Then it proved cloudy till about 8^{h}, at which Time (thro' the Hugenian Telefcope) we could fee only the fecond and third Satellites, the firt being behind $\mathcal{F u p i t e r}$ in the Shadow, and the fourth entred upon the Disk. We faw at this Time a dark Spot, a little Northsward of the great Nortbern Zone, and near the Eaftern Limb, where the Satellite was to enter on the Disk; which Spot we took for the Shade of the Satellite. The Clouds then again intercepted our View, till $8^{\mathrm{h}} \cdot 53^{\prime}$. Eq. T. at which Time the firf Satellite was lately emerged out of the Shadow, and the Spot advanced fo far, that we perceived it would arrive at the Middle of Jupiter, near two Hours fooner than the Shade ought to have done by our Computation; but not imagining, that this dark Spot could be any Thing elfe but the Shade, we concluded there had been fome Error in the Calculation, which we thought to re-examine afterwards. On this Prefumption we left off obferving till $9^{h} \cdot 35^{\prime}$. at which Time we were furprized to fee a Notch in the Limb of Fupiter, near the Place where the former Spot entred. This laft Appearance agreeing well with the Time, that the Shade of the Satellite ought to have entred the Disk, foon made us alter our former Opinion, and conjecture, that this, and not the other Spot, was the faid Shade. At $9^{\mathrm{h}} \cdot 39^{\frac{1}{2}}$, AR q. T. the Notch vanifhing, a round black Spot appeared within the Limb, but in Contact with it. At $9^{h} \cdot 45^{\prime}$. we judged the firft Spot, and at $11^{h} \cdot 45^{\prime}$. the fecond, to be in the Middle of fupiter:

At $11^{h} \cdot 50^{\prime}$. the firf Spot touched the Limb, being within the Disk; foon after which the Limb in that Place feemed a little protuberant. At $12^{\mathrm{h}} \cdot 5^{\prime}$ appeared the fourth Satellite juft come out of the Disk, and touching the Limb in the Place where the Protuberancy was. At $12^{\text {b }} \cdot 7^{\prime}$. we could perceive the Satellite feparated from the Limb. At $13^{h} \cdot 5^{\prime}$. the fecond black Spot, Atill within the Disk, juft touched the Weftern Limb; foon after which there appear'd a Notch in this Part of the Limb, as it did on the other at the coming on of this Spot. At $14^{b} \cdot 6^{\prime}$. the Spot

Ecliples of Jupiter's firft Satellite.

was all gone off, and the Limb appear'd clear and entire. The firt Spot, when in the Middle of 'yupiter, was almoft as black as the fecond when near the Limb, but fomewhat lefs and a little more Nortberly.

At the Time that the firt Spot was in the Middle of the Disk, the three innermoft Satellites appear'd to the Eaft of $\mathcal{H} u p i t e r$; the firft (as aforefaid) having lately emerged out of the Shadow; the fecond being almoft at its greateft Diftance; and the third having paffed the Axis of the Shade about twelve Hours before, and appearing at this Time about three Diameters of Jupiter from his Limb. The Times that thefe Spots arrived at the Middle of the Disk are agreeable to the Times found by Calculation, in which the fourth Satellite and its Shade ought to have appeared there. From all which 'tis very plain, that the firft of thefe Spots was the fourth Satellite itfelf, and the fecond its Shadow.

We have feen the firlt and fecond Satellites appearing not as dark Spots, but as bright ones (fomewhat different from the Light of Fupiter) for fome little Time after they entred his Disk, but as they approached nearer the Middle we loft Sight of them. And we have frequently obferved, that the fame Satellites appear brighter at fome Times than at others; and that when one of them hath thined with its utmoft Splendous, the Light of another hath been confiderably diminifhed. From whence 'tis very probable at leaft, not only that the Satellites revolve upon their proper Axes, but alfo that fome Parts of their Surfaces do very faintly (if at all) reflect the Solar Rays to us.

All which hath for fome Time fince been obferved and taken Notice of by Meff. Caflini and Miraldi, as may be feen in the Memoirs of the Academie Royale for the Years 1707 and 1714.
T Tables for computing the Eclipfes of the firt Satellite of Jupiter, by Mr. J. Pound, n. 361 .
XXXIV. It being now 26 Years fince Mr. Cafini's Tables were publifhed, Length of Time hath difcovered, that the Motion of the firf Satellite is a fmall Matter fwifter than M. Caflni hath fuppofed it; and Mr. Pound has of late applied himfelf to rectify by frequent Obfervation what he found amils in his Calculus; and has put it into a Form more eafy and compendious, by bringing what M. Caflini had given us in odd Numbers, to the Millefimals of a Circle, both as to Numb. I. which he calls Numb. A. being the mean Anomalie of Jupiter in fuch Parts; as alfo to Numb.II. or our Numb. B. which is the Diftance of the mean Place of Fupiter, from the true Place of the Sun, and which, with the Addition of the Equation of Numb. B. gives the true Angle of Commutation in the fame Millefimals of a Circle. And having deducted from the Epoches the greateft Equations both of Numb. A. and B. he reftores them again by adding as much to the Equations themfelves, by which Means they all become affirmative, fo that the whole Computation is performed by Addition only. 5. XCII,

In $\mathrm{N}^{\circ}{ }_{214}$. of the Pbil. Tranf. * there is an Epitome of M. Caflim's Tables, where the Method of his Calculus is explained at large, for which Reafon this fhorter Defcription may at prefent fuffice.

Epects of the Conjunctions of the firft Satellite with fupiter.

Revolutions of the fixt Satellite of Fupiter in Montbs of

Auguft. ${ }^{\text {N }}$. Nu.	Oftober. ${ }^{\text {N }}$. ${ }^{\text {Nu. }}$
	D. h. , "A. B.
$\begin{array}{lllll}23 & 9 & 23 & 43 & 54584\end{array}$	31 9 59 5
$\begin{array}{llll}25 & 3 & 52 & 1855\end{array}$	November.
$\left[\begin{array}{llll}26 & 22 & 20 & 54 \\ \hline 155593\end{array}\right.$	
$\begin{array}{lllll}28 & 16 & 49 & 3056597\end{array}$	
$\begin{array}{llllllllll}30 & 11 & 18 & 6 & 5602\end{array}$	
September.	$17 \quad 24 \quad 5371772$
$5 \quad 46: 425660$	7 11 53 29 72 776 0 6 22 5 787
- 15 18857610	$\begin{array}{lllll}9 & 6 & 22 & 5\end{array}$
$\begin{array}{llllll}4 & 18 & 43 & 5457615\end{array}$	11005041737785
$\begin{array}{llllllllllll}6 & 13 & 12 & 30 & 58619\end{array}$	$\begin{array}{lllll}12 & 19 & 19 & 17773790\end{array}$
10 2 9 42 18 58	16 8 16 29 174799
11 20 3^{8} 18859 632	$\begin{array}{llll}18 & 2 & 42 & 5 \\ 19 & 74804\end{array}$
13 15 6165459637	
15 90935	
$\begin{array}{\|cccc\|}17 & 4 & 4 & 660646\end{array}$	23 10 10 52776817
$\begin{array}{lllll}18 & 22 & 32 & 42 & 60650\end{array}$	25 4 39 28 778822
20 17 1 181655	$\begin{array}{lllllll}26 & 23 & 8 & 4778827\end{array}$
22 11 29 54 659	$\begin{array}{lllll}28 & 17 & 36 & 40 & 77 \\ 30 & 12 & 51\end{array}$
$\begin{array}{llll}24 & 5 & 5^{8} & 30\end{array} 6^{62663}$	30 12 5 16 77 836
26 0 27 62688 27 8 55 462672	
27.188504262672	December. 0 12 5 1677836
$\begin{array}{lllll}29 & 13 & 24 & 18 & 63677\end{array}$	0 12 5 16 2 6 33 5278
OETober.	$4 \begin{array}{llll}4 & 1 & 2 & 28788845\end{array}$
$\begin{array}{llllll}7 & 52 & 54 & 63681\end{array}$	$\begin{array}{llll}5 & 19 & 31 & 4788849\end{array}$
	$\begin{array}{llll}7 & 13 & 59 & 40798854\end{array}$
$\begin{array}{llllll}4 & 20 & 50 & 664590\end{array}$	9 8 28 16
$\begin{array}{lllllll}6 & 15 & 18 & 41 & 55595\end{array}$	11 2 56 5280863
8 9 47 17 65 699	$\begin{array}{lllll}13 & 21 & 25 & 28880868\end{array}$
$1 \begin{array}{lllll}11 & 22 & 44 & 29 & 66 \\ 1008\end{array}$	16 10 $222404^{81} 8877$
$1 \begin{array}{lllll}13 & 17 & 13 & 5166 / 713\end{array}$	$18 \quad 45^{1} 1016818882$
$1501184104167 / 717$	
$19 \quad 0 \quad 38 \quad 537726$	23 12 17 4 82 8 897
20 19 7 29 68 1730	25.65045408839900
$\begin{array}{lllll}22 & 13 & 3^{6} & 568 & 735\end{array}$	$\begin{array}{llll}27 & 1 & 14 & 16833905\end{array}$
	$\begin{array}{llllll}28 & 19 & 42 & 52 & 84909\end{array}$
$\left[\begin{array}{llll}26 & 2 & 33 & 17 \\ \hline 69 & 744\end{array}\right.$	30 14 II 28 84 184
$1 \begin{array}{llll}29 & 15 & 30 & 29\end{array} 701753$	

Firf Equations of the Conjunctions of the firf Satellite with Jupiter.

Firft Equations of the Conjunctions of the firf Satellite wirb Jupiter.

Second Equations of the ConjunEtions of the firft Satellite with Jupiter.

Addende.

	m. 0	100	00	300	400	500	600	700		800		900
	Equ.	Equ.	Eq.	Eq.	Eq.	Aq.	Eq.	Eq.		Equ.		Equ.
										, "		
	014	1252	945	53	137		37	5		945		2
		12	936	520	130		I 44			954		25^{8}
	81359	12	926	$5 \quad 9$	123		152	5	110	10		
	121359	1235		459	116	- 2	I 69	6	110	10 ± 2		
	${ }_{16} 1358$	1229		448				${ }^{6}$ I	110	1021		3
	201357	1223	85^{8}	43^{8}				62		1031		3
	24.135^{6}	1217	848	428	- 57	-				10		
	281354	1211	${ }^{3} \quad 38$	418	- 5^{2}		232	6	4410	1049		325
	321353	124	488		- 46	0	241	65	5510	1057		329
	36.1351	1156	8^{8}	358	- 40	- 13	250	7	511	115		333
	401349	1149		358	- 35		259					3
	1347	1142	757	33^{8}	- 31							
	481344	1134	747	$3 \begin{array}{ll}3 & 29\end{array}$	- 27	- 23	319			1127		341
	521341	1127	736	$6 \begin{array}{ll}3 & 19\end{array}$	- 23	- 27	329	7		II 34		344
	$5_{6}^{6} 133^{88}$	II 20	726		- 19	- 31	33^{8}	75	5711	1142		347
	60133^{6}	1113		259	- 16	- 35	348			1149		349
	641333			520	O-13							
	681329	1057	765	241	0 -10	- 46		82	2812	12		353
	72.1325	1049	1644	23^{2}	O 7	- 5^{2}	418		3812			3
	761320	1040	633	324	-	- 57	428	84	481	120	213	35
	80 I 316	$10 \quad 31$	6	215	-		43^{8}	85		122		357
										1229		135^{8}
	8813	1012	6	159		116				123	51	
	92.13	10	55^{1}	15^{2}		$1{ }_{1} 123$	5	92	261	124	1	
	961258	954	4540	144	- 0	130	520	093	361	124	46	14
	00112 5^{2}	945	5153	137	710	137	1530	0194	451	125		

The

The Eclipfes of the firft Satellite of Yupiter afford the bef Means of The Ufe of tor determining the Longitude of Places on the Land, where Telefcopes of a convenient Length may be ufed; thirteen of thefe Eclipfes happening every 23 Days; and that the Obferver may know near the Matter, when thefe Opportunities offer themfelves, he may readily compute the Times of the Immerfions or Emerfions of this Satellite with great Exactnefs, by following very fhort Precepts, which admit of no Exception or Caution, viz.
Out of the firt Table take the Epoche for the Year, with its correfponding Numb. A and Numb. B; and to them add out of the Tables of Months, the Day, Hour, Minute and Second, neareft lefs than the Time of the Eclipfe you feek for, together with its Numb. A and B; the Sum of the Times is the mean Time of the Middle of the Eclipfe. 2. With Numb. A thus collected take out the firt Equation of the Conjunctions; as alfo the Æquation of Numb. B always to be added to Numb. B before found. 3. With Numb. B fo equated, take out the fecond Æquation of the Conjunctions; and in the laft Table, the third Equation, as alfo the Semi-duration of the Eclipfe anfwering to Numb. A. 4. To the mean Time of the Middle of the Eclipfe, add all thofe three Æquations; the Sum fhall be the true equated Time of the Middle of the Eclipfe fought. 5. If Numb. B equated be lefs than 500 , fubtract the Semiduration, and you will have the Time of the Immerfion, or if it be more than 500, adding the fame, it will give the Time of the Emerfion.
But Note, the Times thus found are equal Time, ftill to be reduced to the Apparent : And that in the Biffextile Year, after February, one Day is to be deducted from the Day of the Month.
Let it be required to find the Time of the Iminerfion of this Satellite
 Work ftands thus,

So that by this Calculus, on the $9^{t b}$ of November, at four Minutes after Six in the Morning, equal Time, may be feen the Immerfion of this Satellite into fupiter's Shadow.

Another Example fhall be of the Emerfion on the 5 th of April 1720 , viz.

Hence it appears, that at one Minute after Midnight following the $5^{\text {th }}$ of April, equal Time, will happen the Emerfion required.

It may not be amifs to inform the Reader, that we have learnt, by the Experience of many Years Obfervation, that the fecond Inequality of this Satellite proceeds from the progreflive Propagation of Light, and is common to all the reft of the Satellites: Light being found to proceed, in about feven Minutes of Time, as far as from the Sun to the Earth, whether with an equable Motion or otherwife is itill a Queftion. For this Reafon we have added a third Equation, whereby to account for the greater Diftance of Fupiter from the Earth in Apbelio than in Peribelio, as the fecond Equation anfwers to the greater Diftance of the Planet, when near the Conjunction of the Sun, than when near his Oppofition.

Obfervations on fonse of the primary Planets ; and toe Occultation of a fixt Star, by Jupiter; by Mr. J. Pound, n. 350 . p. 506 .
XXXV. The Reverend Dr. Pound, fecond to none in Art or Induftry, has offered the following Obfervations to be communicated to the Publick, made by him at Wanftead with great Accuracy, with very long. Tubes and a Micrometer.

Anno 1715, Aug. 21, $8^{\mathrm{h}}: 5^{\prime \frac{1}{2}}$ equal Time, Mars preceded in Right Afcenfion the middle Star in the Forehead of Scorpio (Bayer d') by 6'. $54^{\prime \prime}$, being more to the North than the Star by $9^{\prime} \cdot 47^{\prime \prime}$.
Sept. 18, $7^{\mathrm{h}}-30^{\prime}$, Mars preceded the bright Star in the Foot of Serpentarius, (Bayer θ) by $17^{\prime} \cdot 48^{\prime \prime}$, and had the fame Declination exactly.

November $30,18^{\text {h }} .8^{\prime}$, Saturn preceded γ_{2} or the Second in the Wing of Virgo, by $23^{\prime} \cdot 19^{\prime \prime}$, and was more South than the fixt Star by $25^{\prime} \cdot 3^{\prime \prime}$. But December 4, $17^{\mathrm{h}} \cdot 25^{\prime}$. it preceded it by $10^{\prime} \cdot 50^{\prime \prime}$, and was more South by 29^{\prime}. oo ${ }^{\prime \prime}$.

Anno 1716, Feb. 22, $7^{\text {h}} \cdot 23^{\prime}$, equal Time, Mars preceded ζ in Pifces, or the fubfequent of the three bright Stars in the SouthernString of Pifces, by

Objervations on Jome of the primary Planets.

by $3^{\prime} .25^{\prime \prime}$, and was more to the South than the fame by $1^{\prime} .23^{\prime \prime}$, which therefore he ought to cover before two Hours, perhaps corporally.
Fune 22, $8^{\text {h }} \cdot 5^{2}$, equal Time, Venus follow'd the Lion's Heart at $34^{\prime} .50^{\prime \prime}$, and was more South than the fixt Sear by $7^{\prime} \cdot 23^{\prime \prime}$.

Aug. 14, 15 h. 0^{\prime}, Fupiter preceded Propus by only one Minute, with Northern Declination lefs than $14^{\prime} .26^{\prime \prime}$.
Aug. 19, $13^{\text {h }}, 2^{\prime}$, Jupiter preceded the Telefcopic fixt Star which is call'd b, by 50^{\prime}. $08^{\prime \prime}$, having the fame Declination exactly.
Akg. 24, $12^{\mathrm{h}} .19^{\prime}$, Jupiter in the Micrometer was diftant from the aforefaid $b, 5^{\prime} \cdot 5 t^{\prime \prime}$, and at the fame Time from another brighter fixt Star $a, 7^{\prime} \cdot 17^{\prime \prime}$. The Diftance of the fixt Stars was $12^{\prime} \cdot 31^{\prime \prime}$. Then the leffer Diameter of $\mathcal{F u p i t o r}$ was $0^{\prime} \cdot 3^{8^{\prime \prime}}$.
Sepl. $12,17^{\text {h }} 0^{\prime}$, Venus newly come from her fecond Station follow'd a Telefcopic Star at $17^{\prime} \cdot 40^{\prime \prime}$, and was more Southerly than it by $5^{\prime} \cdot 30^{\prime \prime}$. This fixt Star was then in $\Omega, 27^{\circ} \cdot 44^{\prime} \frac{1}{2}$, with South Latitude $5^{\circ} \cdot 39^{\prime}$.
Ociob. $15,17^{\mathrm{h}} \cdot 12^{\prime \prime} \frac{1}{n}$, Venus in the Micrometer was diftant $27^{\prime} \cdot 55^{\prime \prime}$, from a fixt Star τ in the Leg of the Lion.
Nov. 20, $6^{\text {h }}$. $18^{\prime} \frac{1}{2}, 7$ fupiter went back to the Stars a and b, at which he was cbferv'd $A u \xi \cdot 24$, and was diftant from $b 6^{\prime} \cdot 21^{\prime \prime}$, from $a 11^{\prime} \cdot 36^{\prime \prime}$.
Nov. $21,7^{\text {h }} \cdot 3^{8^{\prime}}$, 7upiter was diftant from $b 9^{\prime}, 19^{\prime \prime}$, and from a 3^{\prime}. $48^{\prime \prime}$. The Stars were diftant from one another $12^{\prime} .30^{\prime \prime}$. Fupiter's Axis
 to adhere as it were to $\mathcal{F u p p l e r}^{\prime}$'s Limb, and was about $\frac{2}{3}$ of his Semidiameter, or $0^{\prime} .15^{\prime \prime}$, more to the North than the Center of fupiter. Now according to thefe Obfervations it appears, that the Middle of the Occultation of the fixt Star, by the Body of Fupiter interpofing, happen'd Nov. $21,19 \mathrm{~h} .55^{\prime \prime}$, very nearly. Afterwards
Nov. 30. $5^{h} \cdot 41^{\prime}$ 生 preceded Propus 12'. $36^{\prime \prime \prime}$ more Southerly $7^{\prime} \cdot 3^{6 \prime \prime}$
Dec. 4. 6. o 4 follow'd it 22. 49 - 7. 47
Dec. 5. 6. ○ Repeated \quad 31. 35 7. 50
Dec. 6. 6. o Again \quad 40. 30 - 7. 5^{2}
Dec. 7. 6. o Again \quad 49. 15 7. 54
From thefe laft Obfervations it appears, that fupiter and I'ropus had the fame Longitude Dec. 1, $15^{\text {h }} \cdot 29^{\prime}$, at what Time ' $7 u$ upiter was more to the South than the Star by $7^{\prime} \cdot 40^{\prime \prime}$. From the fame it will alfo appear, that Jupiter was in Oppofition to the Sun, as to Right Alcenfion, Dec. 6, $12^{\text {h }} .46^{\prime}$; but as to Longitude Dec. 6, $12^{\text {h }} \cdot 34^{\prime \frac{1}{2}}$.
N. B. Thofe Telefcopic Stars, call'd a and b, are had in Mr. Flamfreed's Britifh Catalogue of the fixt Stars, wherein, at the Beginning of the Year 1690 , the Place affign'd to a is $427^{\circ} \cdot 54^{\prime} \cdot 29^{\prime \prime}$, with South Latitude $0^{\circ} \cdot 21^{\prime} \cdot 55^{\prime \prime}$. The Place of the other b is $\overline{I I} 28^{\circ} \cdot 5^{\prime} \cdot 24^{\prime \prime}$, with South Latitude $28^{\prime} \cdot 5^{\prime \prime}$. Neither do we know any other fixt Stas hid by the Body of Fupiter, and obferved fince the Invention of the Telefoope, except the aforefaid Star a; to which heretofore Fupiter apply'd himfelf very clofely 83 Years ago, Dec. 9, it. n. in the Year 1633 ,
in the Evening. Then at Dinia, Gaffendus faw Fupiter in Conjunction with this fixt Star, and not above five Semidiameters of his Body above it. Whence a Calculation being duly made, it will appear that the Nodes of this Planet, and the Plain of its Orbit, keep their Situation immoveable in the Sphere of fixt Stars, or at leaft are moved with a very flow Motion. See Gaffendus's Obfervations, Tom. IV. p. 162.

Reftification of the Motions of the firee Su tellites of Saturn ; with Obiervations by Mr. J. Pound, n. 355. p. 768.

* Vid. Supr.
V.I. C.IV.
S. LXXXII.
XXXVI. M. Cafini above 30 Years communicated to the World his Difcovery of the two new Satellites of Saturn, which made their Number Five. Much about the fame Time Mr. Huygens made the So ciety a Prefent of the Glaffes of a Telefcope of 125 Foot Length, with the Apparatus for ufing them without a Tube; by Help whereof we might have fatisfied ourfelves of the Reality of thefe Difcoveries. But thofe here, that firft tried to make ufe of this Glafs, finding, for want of Practice, fome Difficulcies in the Management thereof, were the Occafion of its being laid afide for fome Time.

In the mean Time the French Aftronomers, giving us in their yearly Memoirs no Obfervations of thefe Satellites till very lately, nor having feem'd willing to fhew them in their Glaffes to fuch as requefted it, occafioned in fome Perfons a Sufpicion of the Reality of this Difcovery: And Mr. Derbam having borrowed of the Society their long Glafs, could not thereby affure himfelf, that the finall Stars he fometimes found about Saturn, were really his Satellites, their Situation not agreeing with their Places derived from the Tables of their Motions exhibited in $\mathrm{N}^{0} 18 \%$ * of Pbil. Tranfact. befides that he wanted a fufficient Height to raife the Obiect Glafs, fo as to view Saturn to Advantage, above the Vapour of the Horizon. But in the Memoirs for 1714, M. Cafini, the worthy Succeffor of his great Father, has given us fome Obfervations, which clear up the Point, and by fhewing the Errors of thofe firft Tables, has enabled us to be affured, that we have feen the whole $S a-$ tellitium of Saturn ourfelves.

The Subftance of thefe Obfervations is as follows :
Anno 1714, May 6, St. N. about Mid-night, Saturn being then Stationary in 吹 $4^{\circ}: 27^{\prime}$, the fifth and outermoft Satellite was in its fuperior Conjunction with the Planet, and at the fame Time, the Earth was nearly in the Plain of this Satellite's Orbit, fo th it appeared to pafs very near the Center of Saturn: From hence, and from fome other preceding Obfervations, M. Cafini concludes, that the Nodes of this Satellite's Orb are in four Degrees of 吹 and x, and that its Inclination to the Ecliptick is not much more than half that of the other Sa_{2} tellites. Hence it fhould follow that the Ellipfes it defcribes by its apparent Motion about Saturn, when in II and \hat{f} are much flatter and nearer to his Body, than thofe of the other four, which he allows to move in the Plain of the Ring, and to have their Nodes in ${ }_{21}$ gr. of π^{2} and \notin, with an Inclination to the Ecliptick of ${ }_{31}$ Degrees. To confirm this Difcovery, he produces another Obfervation of his Father's,

of the five Satellites of Saturn.

ther's, near thirty Years before, viz. that Anno 1685 , May 31, St. N. about Noon, the fame Satellite was obferved in fuperiour Conjunction with Saturn, with lefs than one Diameter of the Ring Norit Latitude, Saturn being then in ${ }^{\prime \prime} 11^{\circ} \cdot{48^{\prime}}^{\prime}$. So that the Satellite wanted but $7^{\circ} .21^{\prime}$ of completing 134 Revolutions, in the Interval of Time between them. From thefe Data it was eafy to fettle the Theory of this Satellite.
As to the Fourth, or the Hugenian Satellite; in the Memoirs for 1715 , we find a very curious Obfervation of it, and the firft of its Kind, viz. that Mart. 25°.S.N. about II ${ }^{\mathrm{h}} . P . M$. this fourth Satellite, then in Apogeo, did immerge behind the Body of Saturn. With this Emendation the Place of this Satellite may for the future be computed with a fufficient Exactnefs.
The third Satellite, by an original Miftake in the Letters in $\mathrm{N}^{\circ} .187$, * is all wrong; its daily Motion being there printed $2^{\circ} .18^{\circ}, 41^{\prime}$. $50^{\prime \prime}$ inftead of $2^{3} \cdot 19^{\circ} \cdot 4 \mathrm{I}^{\prime} \cdot 50^{\prime \prime}$; as may be perceived by the Period thereof being deternined in the aforefaid Mencirs of 1714 , to be 4^{4}. $19^{\mathrm{h}} \cdot 25^{\prime} \cdot 12^{\prime \prime}$. that is, that it makes 400 Revolutions in 1807 Days. This Satellite was obferved by M. Cafini, April 4^{10} St. N. $10^{\text {h }}$. P. M. to have newly paft its inferior Conjunction with Saturn, and a Perpendicular from it fell on the Extremity of the Weftern Anfe, fo that at about $5^{\mathrm{h}} . P . M$. it was with the Center of the Planet then in $\mathrm{n}_{2} .5^{\circ}$. 23^{\prime}. and confequently in $\mathcal{5} 5^{\circ}$. 23^{\prime}. But at the Beginning of the Gregorian Year 1686, the Epocbe thereof was "10 $9^{\circ} \cdot 39^{\prime}$. So that from the Noon of the laft of December 1685 , to April $4^{\text {e }}$. $6^{\text {h }}$. 18^{\prime}. anno 1714, that is, in 10320 Days 6^{h}. 1^{\prime}, there have been made $2284 \frac{1}{2}$ Revolutions of this Satellite to the Kquinoctial ; from which Data, the Tables of its Motion are readily derivable.
The Radix of the Penintime or fecond Satellite, according to the aforefaid Letter, at the Beginning of the Gregorian Year 1686, was in 吸 9°. 10'. But by the Obfervations of M. Caffini made the Nights before and after, this Satcllite was in its fuperior Conjunetion amo 1714 , April 4^{4}. $21^{\prime} \frac{1}{2}$. St. N. that is, in $\pi^{\prime} 5^{\circ} \cdot 21^{\prime}$, where Saturn then was: So that April $4^{4^{\prime}}$. 22^{h}. 12^{\prime}, an entire Number of Revolutions were performed fince the Epocke of 1686, that is, in 10320 Days 22 h . 12^{\prime} : Which Number can be no other than 3771 , according to the Period thereof given in this Memoire, ziz. $2^{\text {d }}$. $1^{\text {h }} \cdot 41^{\prime} \cdot 22^{\prime \prime}$.
Laftly, The innermoft or firlt Satellite, at the fame Time, viz. 1754, sipril $4^{\circ} \cdot 21^{\mathrm{h}} \cdot 30^{\prime}$. St. N. was in its inferior Conjunction proxime, and
 5^{\prime}. which Place the Satellite had palt 40 gr. $3 \mathrm{I}^{\prime}$ at the Time of the Obfervation. This Arch it moves in $5^{\text {h }} \cdot 6^{\prime}$: Whercfore from the Time of the Epoche to April $4^{\mathrm{d}} \cdot 16^{\mathrm{h}} \cdot 24^{\prime}, 1714$, or in 10320 Days $16^{\mathrm{h}} \cdot 24^{\prime}$. the Sateliite has performed 5467 Revolutions, its Period being determined to be I Day, 2 I Hours, $18^{\prime} \cdot 27^{\prime \prime}$, in this Memoire.

Having by the Help of thefe late Obfervations corrected the Motions of the Satellites, and having fixed their Epoches for the prefent Year, we were enabled to know where to expeet them with more Certainty, and to diftinguifh them one from another, and from the fmall fixt Stars appearing with them. And Mr. F. Pound having, by Means of his, Steeple of Wanted, provided a Gnomon high enough for the Purpofe, and having fitted a very commodious Apparatus for ufing the Sociely's aforefaid long Telefoope, foon difcovered by it all thefe five Satellites; and lately communicated to them the following Obfervations.
1718. April $21^{\text {d }} \cdot 10^{\text {h }} \cdot 40^{\prime}$. The third and fourth Satellites of Saturn were in Apogreo, a little paft their Conjunction with Saturn: A Perpendicular from the fourth to the tranfverfe Axis of the Ring (or Line of the $A n f_{\text {e }}$) fell a little without the Eaftern Anfa; and a Line through the fourth and third touched the Eaftern Limb of Saturn, Fig. 132.

The firft was Northward of the Line of the $A n \int e$ (and therefore in the Apograon Semicircle alfo) diftant from the faid Line about as far as the End of the conjugate Axis of the Ring was from the Center of h, viz. nearly ${ }^{\frac{3}{4}}$ of Saturn's Semidiameter; and it was about a Semidiameter of the Ring from the Weftetn Anfa.

The fecond was a very little Southward of the Line of the Anfe (and therefore in the Perigeon Semicircle) above a Semidiameter of the Ring + the Semidiameter of b) from the Weftern Anfa. And the third, firft and fecond were in a ftrait Line.

At $10^{\text {h }} .50^{\prime}$. A Perpendicular from the third to the Line of the Anfe fell almoft on the Middle of the bright Part of the Eaftern Anfa, but fomewhat nearer the Center than the faid Middle.

April $22^{\mathrm{d}} .1 \mathrm{I}^{\mathrm{h}} .5^{\prime}$. The four innermoft Satellites were all Eaftward of 5 . The 2^{d} and $4^{\text {th }}$ in the Apogaon, and the 1^{\AA} and 3^{d} in the Perigaon Semicircle. A Line thro' the 2^{d} and $4^{\text {th }}$ touched the Soutb-Eaft Limb of h. A Line paffing through the 3^{4} and the End of the conjugate Axis of the Ring, was parallel to the Line of the Anfe.

At $1 I^{\mathrm{h}} .10^{\prime}$. A Perpendicular from the firft to the Line of the Anfe, fell on the Eaftern Extremity of the Ring, Fig. 133.

Thefe Diftances and Directions were taken only by Eftimation, and not by any actual Meafurement.

The fifth (or outermoft) Satellite being at this Time near its greateft Elongation Eaftward, among feveral very fmall Telefcopick Stars, he could not determine its Pofition. But by obferving the Motion of this fome other Nights before, he was now fully fatisfied, from the Motions rectified as above, that there are five Satellites of Saturn, as M. Caflimi had long fince afferted.

In the bright Part of each $A n f a$ was a darkifh Ellipfe nearer to the Outfide than the Infide of the Ring, as if it was compofed of two Rings near to one another.

On the Body of 5 , befide the Ring on the South-fide, there appeared on the North-fide a Zone not fo far from the Center as the Ring, and

of the five Satellites of Saturn.

not much unlike the fmalleft of fupiter's Belts. Which Appearances were firt taken Notice of by M. Cafimi, in Pbil. Tranf. *N0 128. *Vid. fupra. Vide Fig. 134.

It is not to be expected that thefe Satellites, exceedingly minute in S. LXXYI. themfelves, and fo faintly illuminated, fhould appear when the Air is but ordinarily ferene, they requiring not only the Medium to be fummo modo defecate and limpid, but withal in perfect Darknefs. For which Reafons it may well be underftood why the Gentlemen of the Parifian Obfervatory may have fometimes made a Difficulty to undertake to Shew them upon Demand.
XXXVII. By Help of the late Obfervations, and making fome Cor-Correez Tarection in the Motions, we owe the whole Syftem of Saturn's Satellites to Mr. Huygens's Telefcope: And taking in the accurate Obfervations Motions of of the Reverend Dr. Fames Pound, we have obtain'd the following Ta- Satellites, by bles, which very well agree with the Heavens. That is, by adding 2°. n. n. 356. 9^{\prime} to the Motion of the Inmoft, and $3^{\circ} \cdot 25^{\prime}$ to that of the Inmoit but p .776. one, retaining the Epochs of M. Caflini to the Year 1686. Alfo in- V. I. C.IV. creafing the annual Motion of the Outmoft by 9^{\prime}, and taking away S. LXXXII. 16° from the Epoch, which in the Epiftle $\mathrm{N}^{\circ} 187$, was faultily wrote $\neq 16^{\circ}, 19^{\prime}$ for $* 0^{\circ} .16^{\prime}$, we found that of Huygens to be yearly 6^{\prime} nower. But we have been obliged intirely to reform the Tables of the Third, yet ftill retaining the Epoch, becaufe the daily Motion deliver'd in that Epiftle was utterly falfe.

Table of the mean Motions of the inmoft of Saturn's Satellites, difcover'd by M. Caflini, An. 1686.

ATable of the Mean Motions of the Inmoft but one of the Satellites of Saturn, difcover'd by M. Cáffini, Anno 1686.

A Table of the Mean Motion of the Midalemof of Saturn's Satellites, difcover'd by M. Cafini, Anno 1671.

ATable of the Mean Motion of the Outmof but one of the Satellites of Saturn, difcovered by Mr. Huygens, Anno 1655.

A Table of the inean Motion of the outward Satellite of Saturn, difcovered by M. Caffini, Anno 57 I.

A Collection of Aftronomical Objervations.

The mean Motion of the Satellites being thus fettled, their Revoiutions very near the Truth will be thefe following.

	D.	h.	1	11
Of the firft or inmoft	1	21	18	$26^{\frac{1}{2}}$
Of the fecond or inmoft but one	2	17	41	$10 \frac{1}{2}$
Of the third or Middlemot	4	12	25	10
Of the fourth or that of Huygens	15	22	41	28
Of the fifth or outmoft	79	7	46	00

Now according to the univerfal Law of Nature, at leaft in this our Syftem, and which obtains as well in the Motions of Jupiter's Satellites and of the Moon, as in thofe of the Primary Planets about the Sun; if we fuppofe their Centripetal Forces towards Saturn to be in a reciprocal duplicate Ratio of their Diftances, and therefore the Cubes of their Diftances from the Center to be as the Squares of their Periodical Times: From the given Diftance and Period of that of Huygens, the Diftances of the others will come out as follows.

$$
\begin{array}{lc}
\text { Semidiam. } & \text { Semidiam. } \\
\text { Saturn's Ring. } & \text { Saturn's Body. }
\end{array}
$$

Diftance of the	Firft	$\mathbf{1 . 9 2 8 9}$	4.3400
	Second	2.4708	5.5593
Third	3.4508	7.7643	
	Fourth	8.0000	18.0000
Fifth	23.3146	52.4578	

And thefe Diftances very well agree with M. Caflimi's Obfervations. Now the four inmoft Satellites defcribe their Orbits nearly in the Plain of Saturn's Ring, that is, in a Plain which to Senfe is parallel to the Plain of our Equator, whatever fome may alledge to the contrary. But as to the Fifth, Mr. Fames Caffini, Son to the former, and Heir of his Talents, has lately found, that the Situation of its Orbit is fomething different from the others. See the Memoirs of the Academy of Paris, for the Year 1714.
XXXVIII. The following Obfervations, of which we have made a Col- A Collection lection, are extremely accurate, the Meafures being taken with very long of AftronomiTubes and Micrometers made with unufual Nicety. ons for 1717,
An. 1717, April 15. $9^{\mathrm{h}} .49^{\text {II }}$, equal Time, Dr. Pound obferved at Wan- 1718. by feead, that Fupiter was returned to that Star, which Nov. 22, 1716, in the n. 357. . P. 840 . Morning, he cover'd with his Body; concerning which fee Pbil. Tranf. - of the Plan. 350, (or before, P. 319. Now the Center of * Fupiter at that Time was * Vid. fupra, diftant from that Star, (which is the third of Gemini in the Britifb Catalogue) p. 319. $23^{\prime} \cdot 22^{\prime \prime}$ towards the North; and at the fame Time from another near it, n.354. p.723. (which is the fourth in Gemini in the fame Catalogue) $27^{\prime} .1 I^{\prime \prime}$, and the Planet was very nearly joined to this.
April 25 following, by the fame Obferver and Place, at $\mathbf{I O}^{\text {h. }} 3^{\prime}$, equal Time, Jupiter was feen at four fmall fixt Stars, going before them all, and at the very Beginning of Cancer. The Center of the Planet was diftant from ${ }^{\circ} 13^{\prime} \cdot 00$, from $b 11^{\prime} \cdot 32^{\prime \prime}$, from $f 19^{\prime} \cdot 53^{\prime \prime}$, and from $g 9^{\prime} \cdot 27^{\prime \prime}$.
Vol. IV.
Uu

The Day after, April 26 , at $9^{\mathrm{h}} .7^{\prime}$, the Center of \mathcal{f} upiter was diftant frons $e 8^{\prime} \cdot 35^{\prime \prime}$, from $f 9^{\prime} \cdot 0^{\prime \prime}$, from $g 4^{\prime} \cdot 5^{\prime \prime}$, and from $b 13^{\prime} \cdot 50^{\prime \prime}$. And he had now gone beyond them all, except f to which he was going, and which he ought to leave very little below him the next Day.

Almoit at the fame Moment, that is, at Nine a-Clock at London, the Star g was feen in the Vertex of an Equicrural Triangle, or almoft Equilateral, with the Center of $\mathcal{F} u$ fiter and his third Satellite, then diftant fix Diameters of Jupiter towards the Weft; unlefs that the Leggs of the Triangle were fomething longer than the Bafe. And within a Quarter of an Hour the Angle at the Center of fupiter, which before was greater than that at the Satellite, grew fenfibly lefs.

But the three Stars h, g, e, are the 10, 11, and 12 of Gemini in the Britif Catalogue, according to which they had at that Time this Situation; b in Is $0^{\circ} \cdot 22^{\prime} .15^{\prime \prime}$, with Northern Latitude $0^{\circ} \cdot 11^{\prime}$. $25^{\prime \prime}$. And g in $\sigma_{5} 0^{\circ}$. $28^{\prime} \cdot 25^{\prime \prime}$, with Northern Latitude $0^{\circ} \cdot 3^{\prime} \cdot 40^{\prime \prime}$. Laftly e in os $0^{\circ} \cdot 29^{\prime} \cdot 20^{\prime \prime}$. with Lat. $0^{\circ} \cdot 8^{\prime} ; 5^{\prime \prime}$. Nor. But the fourth f is diftant from the Star g ir r^{\prime}. $40^{\prime \prime}$, from e $12^{\prime} .15^{\prime \prime}$, and laftly from $b_{20^{\prime}} 36^{\prime \prime}$, whence its Place is given. From hence it appears, that fupiter had very little North Latitude, not greater than Half a Minute, at leaft if Credit may be given to the aforementioned Places of the Stars. This may be of Ufe to Pofterity, in determining the Motion of ${ }^{\prime}$ upiter's Nodes, if they have any Motion at all.

The fame Year, June 18, at London, in the Houfe of the Royal Society, Saturn was feen very near a Telefcopic fixt Star, from whence it was diftant towards the South hardly one Diameter of the Ring, and a Perpendicular let fall from the Star upon the Line of the Anfa, fell upon the Middle of the Eaftern AnJa. This little fixt Star, inferted in no Catalogue, then was in $\bumpeq 12^{\circ} \cdot 58^{\prime \frac{1}{2}}$, with Northern Latitude $2^{\circ} .33^{\prime}$, veary nearly; and had a Companion joined with it of equal Magnitude four Minutes diftant from it towards the Eaft, but fomething more Southerly; whence it may eafily be diftinguifhed, and its Places verified at Pleafure.

The fame Night at $10^{\text {h }} \cdot 30^{\prime}$, Mars was feen near the Star which precedes 35 of Scorpio, from which it was diftant $7^{\prime} \cdot 16^{\prime \prime}$. as meafured by a Tube of ${ }_{24}$ Feet; and that in a right Line drawn through the bright $\operatorname{Star} \theta$ in the Foot of Opbiucbus, and the faid fixt Star. Now this Star precedes 35 of Scorpio $30^{\prime} .27^{\prime \prime}$, of Right Afcenfion, and is more Southerly than it by 2^{\prime}. $28^{\prime \prime}$. Whence its Place at that Time was Sagittary $15^{\circ} \cdot 24^{\prime} \cdot 20^{\prime \prime}$. with South Latitude $3^{\circ} \cdot 59^{\prime} \cdot 25^{\prime \prime}$. But θ in Opbiucbus was then Sagittary $17^{\circ} \cdot 28^{\prime}$. with North Latitude $1^{\circ} \cdot 47^{\prime} \cdot 3^{8^{\prime \prime}}$. So that Mars preceded that Stat in Longitude $4^{\prime} \cdot 58^{\prime \prime}$. and was more Southerly than it by $5^{\prime} \cdot 3^{\prime \prime \prime}$.

Afterwards, Sept. 13, at $8 \mathrm{~h} .30^{\text {. }}$. equal Time, Mars was een by Dr. Pound to precede the bright Star σ in the Shoulder of Sagittary 11^{\prime}. $54^{\prime \prime}$. At $8^{\text {h }}$. 25^{\prime}. the Diftance of the Planet from the Star was 25^{\prime}. o0 ${ }^{\prime \prime}$. exactly.

Dec. 5 , at $18^{\mathrm{b}} .30^{\prime}$. equal Time, by the Agreement of Obfervations feveral Times repeated, Dr. Pound found Saturn to precede the bright Telefcopic Star that was near it 27^{\prime}. $19^{\prime \prime}$. Right Afcenfion, and that it was more Southerly than the Star 1^{\prime}. $59^{\prime \prime}$. At the fame Time Saturn preceded x in the Virgin's Garment $1^{\circ}, 25^{\prime} \cdot 21^{\prime \prime}$. and was more Southerly than it 4^{\prime},
$05^{\prime \prime}$. Hence the Place of Saturn was Libra 29°. $16^{\prime} .21^{\prime \prime}$. Its Northern Latitude was $2^{\circ} \cdot 22^{\prime} \cdot 21^{\prime \prime}$. The Telefcopic Star was then Libra $29^{\circ} \cdot 40^{\prime}$. $5^{6^{\prime \prime}}$. Its North Latitude 2°. $33^{\prime} \cdot 43^{\prime \prime \prime}$.
An. 1718, fan. 7 , at $5^{h} \cdot 30^{\prime}$. equal Time, Venus was obferved near two Stars, which are omitted in the Briilifh Catalogue. Now the Planet was more to the South than either of the fixt Stars, being diftant from the preceding $32^{\prime} \cdot 30^{\prime \prime}$. and from the fubfequent $17^{\prime} \cdot 30^{\prime \prime}$. The preceding Star was then in Pifces, $14^{\circ} \cdot 42^{\prime} \cdot 20^{\prime \prime}$. with South Latitude 40^{\prime}. $10^{\prime \prime \prime}$. The other fubfequent Star was in Pijces $15^{\circ} .21^{\prime}$. $55^{\prime \prime \prime}$. with South Latitude 27^{\prime}. $15^{\prime \prime}$. as may be collected froin Mr. Flamjfeed's Obfervations.
 $3^{\circ} \cdot 3^{\prime} \cdot 50^{\prime \prime}$ Right Afcenfion, and was more Southerly than the fixt Star 14^{\prime}. ${ }_{15} 5^{\prime \prime}$. Hence 'Yupiter's Slace was Cancer 28°. 20^{\prime}. with North Latitude 36^{\prime}. $45^{\prime \prime \prime}$.
March 11, at $10^{0^{h}} \cdot 36^{6}$. equal Time, Saturn preceded x in the Virgin's Garment $18^{\prime} .51^{\prime \prime}$. and was more Southerly than that Star $5^{\prime} .23^{\prime \prime}$. Hence the Place of Saturn was Scorpio $18^{\circ} .3^{\prime}$. with North Latitude $2^{\circ} \cdot 44^{\prime} .8^{\prime \prime}$. That is fuppofing, according to the Britifh Catalogue, that κ in Virgo was m 0°. $34^{\prime} \cdot 10^{\prime \prime}$. with Latitude $2^{\circ} \cdot 55^{\prime} \cdot 40^{\prime \prime}$. The lame Night at 17°. o0 0 . at W eft ${ }_{m}$ minfer Dr. Defaguliers and Mr. Gray obferved Saturn to precede the Star $19^{\prime} .00^{\prime \prime}$. with a greater Declination Southerly $4^{\prime} .45^{\prime \prime}$.
April 8 , at $11^{\text {h }} .30^{\prime}$. at London, Saturn was lately feen Acronych very little more Wefterly than a bright Telefcopic Star, and more Northerly than the fame by 5 Minutes. Whence the Place of the fixt Star was Libra 28°. $18^{\prime} \cdot 30^{\prime \prime}$. its North Latitude $2^{\circ} \cdot 41^{\prime}$. Now a great Circle drawn through this Star and Saturn feem'd to be directed to a Star of the fifth Magnitude omitted in the Britijb Catalogue, but which according to Hevelius is in the Point of the Northern Wing of Virgo, whofe Place he affigns Libr. 26°. 10'. with North Latitude 14°. 43^{\prime}.
The fame Night at $13^{\text {h }} \cdot 20^{\prime}$. at Wanfed, a Perpendicular let fall from the faid Telefcopic Star upon the Line of Saturn's Anfe preceded the Center of the Planet about one and a half of the Diameters of the Ring; and the Star was diftant towards the South $4^{\prime} \cdot 30^{\prime \prime}$. from the Anis of the Anfa. Allo the Extremity of the Eaftern Anfa was found in a right Line between this Star and another joyn'd to it as it were in Longitude, which was then diftant from Saturn $24^{\prime} \cdot 48^{\prime \prime}$. towards the North. But the Place of the former Star was then Libra $28^{\circ} .18^{\prime} \cdot 3^{\prime \prime}$. with North Latitude $2^{\circ} \cdot 41^{\prime}$. nearly.
Sept. 7. about Noon, there happen'd a very near Conjunction of Yupittor and V enus, the View of which was obiftructed by the Clouds from our Aitronomers. But on the 6th Day aforegoing in the Morning, or $5^{d} \cdot 22^{\text {b }} \cdot 57^{\prime}$ $30^{\prime \prime}$. equal Time, at Wanfead, Venus was diftant from fupiter $1^{\circ} \cdot 3^{\prime}: 28^{\prime \prime}$. to the Weft. But on $7^{\mathrm{d}}, 17 \mathrm{~h} \cdot 21^{\prime}$. Vernus now to the Eaft was diftant from $7 u p i t e r ~ 43^{\prime} \cdot 18^{\prime \prime}$. and at $17^{n} \cdot 34^{\prime}$. Venus was more Southern than $7{ }^{\prime} 1$ piter by the Difference of Declinations $14^{\prime} .23^{\prime \prime}$. And at $17^{\circ} \cdot 39^{\prime}$. the Diitance of the Planets was taken $44^{\prime} \cdot 4^{\prime \prime}$. Hence by the Calculation of a very accurate Obferver, they were in Conjunction Sept. $7.0^{\text {h }}, 9^{\prime}$. equal Time; the Center of Venus being more South than fupiter's only $1^{\prime \prime} \cdot 42^{\prime \prime}$.
Sept. 18, in the Morning, at Wanffead, Fupiter was feen near Cor Leonis,

A Callection of Aftronomical Obfervations.

with which he had been in Conjunction the Day before, Sept. 17. at 16 ${ }^{\text {b }}$. 51^{\prime}. cqual Time. Fupiter's Center was diftant from Cor Leonis $24^{\prime} \cdot 22^{\prime \prime}$; and at $17^{\mathrm{h}} \cdot 6^{\prime} \cdot 20^{\prime \prime}$. the Difference of Declination was $12^{\prime} \cdot 43^{\prime \prime}$. Then an Hour after, or at $17^{\mathrm{h}} \cdot 54^{\text {f }}$. the Diftance became $24^{\prime} \cdot 44^{\prime \prime}$, and at 18^{h}. 7^{\prime}. the Difference of Declinations was found $12^{\prime}: 35^{\prime \prime}$. Hence by Dr. Pound's Calculation, on Sept. 1%, at $1 \mathrm{~S}^{\text {b }} . \mathrm{o}^{\prime}$. equal Time, the Place of $\mathcal{F u p i t e r}$ was Leo 26°. $11^{\prime} \cdot 7^{\prime \prime}$. with $45^{\prime} \cdot 32^{\prime \prime}$. North Latitude.

- of the Ainno 1717, Эan. 12. at Weft minfter, Mr. Stephen Gray obferved an Appulfe Moon and of the Moon to four contiguous Stars under the South Horn of Taurus, near Eclipfes. which the Moon was obferved An. 1683 , March 23, old Stile, by Hevelius and Flampead. Therefore at $9^{h} \cdot 45^{\prime} \cdot$ apparent Time, the Moon being gibbous, was feen as in Conjunction with the preceding Star of the four, which is 107 of Taurus in the Britifh Catalogue, and which was then more Southern than the Southern Limb of the Moon, by a Minute and half; at $1 I^{\text {b }} \cdot 29^{\prime}$. another which is lefs, and therefore omitted in the Catalogue, was hid a little below the Middle of the obfcure Limb. At $12^{\mathrm{n}} \cdot 24^{\prime}$. the third and brighteft (1 ro of Taurus) almoft in Conjunction, was diftant 6^{\prime} from the Northern Li:nb. Laftly, At $12^{\text {h }} .54^{\prime}$. the laft of the four (III of Taurus) was higher than the Northern Limb by $3^{\prime} \cdot 30^{\prime \prime}$. Now the Place of the preceding, or $10 y$ of Taurus, by the faid Catalogue was then Gemini 18°. 12^{\prime}. With Southern Latitude $5^{\circ} \cdot 18^{\prime}$. And 110 of Taurus was Gemini $19^{\circ} \cdot 26^{\prime} \frac{1}{7}$. with South Latitude $4^{\circ} \cdot 44^{\prime}$. And the Confequent, or 111 of Taurus, was in Gemini 19°. 45^{\prime}. with South Latitude $4^{\circ} \cdot 48^{\prime \frac{1}{6}}$. The fecond little Star, as appear'd from other Obfervations, had then its Place in Gemini $19^{\circ} \cdot 17^{\prime}$. and its Latitude nearly $5^{\circ} \cdot 5^{\prime}$.

The fame Year, March 16, in the Morning, there was a partial Eclipfe of the Moon, not confpicuous with us, becaufe of the cloudy Weather. But at Cambridge in New England, Mr. Robie, a very skilful Aftronomer, faw the Beginning of the Eclipfe about Nine a-Clock. And the End near Palus
Vid. Infra Mrootis, at $1 I^{\text {h}} \cdot 42^{\prime} \cdot 30^{\prime \prime}$. exact enough. But Cambridge is under the Altititude of the Pole $42^{\circ} \cdot 25^{\prime}$. more Weftern than London, 71°. or $4^{h} \cdot 44^{\prime}$. as appears from many former Obfervations.

Sept. 9, in the Evening, at the Houfe of the Royal Society at London, fome obferved the End of the Lunar Eclipfe at $7^{\mathrm{h}} \cdot 26^{\prime}$. But the Moon arofe at the Middle of the Eclipfe, nor had freed herfelf from the Clouds about the Horizon till a little before the End.

Sept. 14, in the Evening, now for the firft Time, after a long Interval, the Moon returned to eclipfe the Bull's Eye. The Sky at London was clearer than uftual, fo that the Moon and the Star were feen as it were rifing together in the Horizon. The Immerfion of the Star happen'd at $9^{\wedge} \cdot 6^{\prime \prime} \cdot 20^{\prime \prime}$, the Moon being not yet 3° high, in the very Middle as it were of the Eaftern Limb, that is, over-againtt the Northern Part of that little Spot, which Hevelius calls the Lake of Marris, and which Ricciolus has denoted by his own Name. But it emerged a little below the Middle of the obfcure Limb, at $9^{h} \cdot 5^{8^{\prime}} \cdot 20^{\prime \prime}$, and in the twinkling of an Eye fhone forth with its whole Brightnefs. Hence alfo is proved, that even this remarkable Star has next to no Diameter.

A Collection of Aftronomical Obfervations.

Sept. 23 , in the Evening, there happen'd an Eclipfe of the Sun, that was hardly to be feen in any Part of Europe. But from our Parts of America we have obtain'd two Obfervations of it, one by a Letter from the worthy Mr. Keith, Governour of the Province of Penfylvania, who at Pbiladelphia, under the Altitude of the Pole $40^{\circ} .0^{\prime}$. nearly, faw the Eclipfe already begun, (but which was not begun a Minute before,) at $11^{\mathrm{h}} .55^{\prime}$. About the Middle there were about ten Digits. The End was feen exactly at $2^{h} \cdot 46^{\prime} \cdot 35^{\prime \prime}$.

But the other Obfervation of this was made at Cambridge, the Univerfity of New England, by Mr. Robie. The Beginning of the Eclipfe was obferved there at $0^{h} \cdot 23^{\prime} \cdot 0^{\prime \prime}$. after Noon. At $1^{n} \cdot 47^{\prime}$. nine Digits were eclipfed. At $3^{\text {h }} \cdot 5^{\prime} \cdot 10^{\prime \prime}$. the Eclipfe ended, the whole Sun being feen through a Te lefcope of 24 Feet. Mr. W. Derbam communicated this from the Letters of this exact Obferver.

Dec. 5. The Moon pafs'd a little above the Bull's Eye. This near Tranfit was oblerved by that Learned Youth Mr. Fa. Bradley, M. A. (the Moon being now almoft at full,) who compared the Star with that remarkable Spot, which Ricciolus cails Tycbo, but Hevelius, Sinai; and from feveral equal Diftances, taken with the Micrometer before and after, he concluded that the Star approached near to the Center of the faid Spot at $11^{h} \cdot 15^{\prime} \cdot 8^{\prime \prime}$. equal Time, at Wanfead. At $11^{\mathrm{h}} .15^{\prime} \cdot 42^{\prime \prime}$. the Bull's Eye was diftant from the neareft and Southern Limb of the Moon $5^{\prime} \cdot 55^{\prime \prime}$. But the Spot T'ycho was diftant from the fame $\operatorname{Limb} 4^{\prime}$. $16^{\prime \prime}$. At $11^{\text {h }}$. $18^{\prime} .42^{\prime \prime}$. the Star was in a right Line with the Spots Tycbo and Copernicus, or Sinai and Etna; and at $11^{\mathrm{h}} \cdot 25^{\prime} \cdot 27^{\prime \prime}$. equal Time, it was in a right Line with Tycho and Kepler. Among thefe Oblervations the Moon's Diameter was found $32^{\prime} .45^{\prime \prime}$.

Anno 1718, Fan. 29, in the Evening, Dr. Defaguliers and Mr. Gray at Weftninffer, expected another Occultation of the Bull's Eye; but by the Interpofition of Clouds they could only fee, that at $5^{\text {h }} \cdot 52^{\text {' }}$. the Star was not yet immerfed; but afterwards the Clouds growing thinner, the Emerfion was concluded to be at $7^{\text {b }}$. 20^{\prime}, over-againft Hevelius's Spot called the Promontory of Afralic Sarmatia.

Fcb. 19, in the Morning, the fame Obfervators in the fame Place, variouny firuggling with the Clouds, could hardly fee the Eclipfe of the Sun. Yet at $6^{\text {n }} \cdot 59^{\prime}$. two Digits were feen to be eclipfed, and after a Minute of Time the Chord between the Cufpids feem'd to be equal to the Semidiameter of the Sun.

But at Wanfead Dr. Pormd obferved, that at $6^{\text {b }} \cdot 54^{\prime} \cdot 7^{\prime \prime}$. apparent Time, the Chord between the Cufpids was $18^{\prime} \cdot 30^{\prime \prime}$. At η^{h}. 17^{\prime}. $0^{\prime \prime \prime}$. it was 10^{\prime}. $18^{\prime \prime}$. At $7^{\text {h. }} 19^{\prime} \cdot 30^{\prime \prime \prime}$. the fame was found to be $8^{\prime} \cdot 5^{\prime \prime}$. The Eclipfe ended at $7^{\text {h}} \cdot 23^{\prime} \cdot 20^{\prime \prime}$.

Feb. 25, in the Evening, at $6 \mathrm{~h} .44^{\text {. }}$. at Wefminfter, the firft Star of the Byades in the Bull's Snout, (γ according to Bayer,) was feen in a right Line through the Cujpids of the Moon, and therefore nearly in Conjunction. Now its Diftance from the Southern Limb of the Moon was $5^{\prime} \cdot 51^{\prime \prime}$. The Diameter of the Moon meafured with a Micrometer was $31^{\prime} .45^{\prime \prime}$.

Feb .28 , at $8^{\text {h }} \cdot 3^{6^{\prime}}$. apparent Time, alfo at Weftmingter, an Inmerfion was feen of the Star in the Knee of Pollux, (according to Bayer a of Gemini,) under
the obfcure Limb of the Moon, on that Side which is fomething more Northerly than the Spot which Hevelius calls Crete. The Emerfion was not feen, becaufe the Sky was not clear enough. But at $9^{\text {h }} \cdot 51^{\prime}$. the Star was come out, over-againft the Northern Part of the greater Cafpian Inland.

Aug. 8, The Moon arofe a little below the Bull's Eye, but becaufe of the Clouds, could not be compared with it. But at Wanfead, at $13^{\text {h }} \cdot 2^{\prime} \cdot 0^{\prime \prime}$. apparent Time, the preceding Star of the Contiguous ones at a of Taurus according to Bayer, (or the laft but one in our catalogue of the Hyades, in Fid. fupra, N. 354. of the Pbilofopbical Tranfactions, mark'd with the Letter q,) was feen p.' 300 . in a right Line through the CuJpids of the Moon, diftant from the Southern $4^{\prime} \cdot 3^{6^{\prime \prime}}$. At $13^{\mathrm{h}} \cdot 7^{\prime} \cdot 15^{\prime \prime}$. the Star p of the fame Catalogue emerged a little below the Middle of the obfcure Limb. At $13^{\mathrm{h}} \cdot 19^{\prime} \cdot 4^{\prime \prime}$. the Confequent of the faid contiguous Stars emerged, as much diftant from the Southern Horn, as thofe contiguous Stars were diftant from one another, that is, 7 Minutes.

Aug. 29, in the Evening, the Moon almoft in her Apogæ, fuffer'd almoft a total and central Eclipfe; but fhe arofe after the Eclipfe was begun. The Reverend Dr. Pound exhibited very perfpicuous Obfervations of this Eclipfe, in the Order they are here defcribed.

A Collection of Aftronomical Obfervations.

At $10^{\text {h }} \cdot 30^{\prime}$. the Diameter of the Moon was taken $29^{\prime} \cdot 45^{\prime \prime}$. Now the Obfervations being compared with one another, where the Chords of the deficient Parts were found to be equal, the Middle of the Eclipfe is difcover'd. Middle.

Martin Folkes, Efq; with fome other Members of the Royal Society, obferved the fame Eclipfe with like Diligence at London in Fleet-freet, with the Inftruments and an excellent Telefcope of Mr. George Grabam, a very skilful Watch-maker ; which Obfervations are as follow.
h.
63^{8} " ${ }^{\prime \prime}$ The Moon was hardly feen through the Smoke and Vapours of the City.
65413 The Chord between the Cufpids $2 I^{\prime}$. $17^{\prime \prime}$. or thereabouts.
72 o The total Immerfion into the Shadow.
74215 A pretty bright Star. was diftant from the Eaftern Limb of the Moon $19^{\prime} .21^{\prime \prime}$.
83518 The fame fixt Star was hid, about ro Minutes more to the South than the Center of the Moon.
84550 Now, or as fome thought a Minute later, the Moon began to emerge.
84938 Palus Mareotis emerged with its firf Margin.
85014 The whole Palus was without the Shadow.
905 The Middle of Mount Porphyrites emerged.
9739 The firft Margin of Sinai emerged.
998 Mount Sinai was quite without the Shadow.
91035 The Shadow pafs'd through the Middle of Eina.
912 O All Mount Etna was without the Shadow.
$918{ }^{18}$ The Shadow pafs'd through the Middle of the Greater Black Lake.
92735 The Inand Besbicus wholly emerged.
94221 The Chord between the Cufpids was $19^{\prime} .9^{\prime \prime}$.
95 - 25 The End of the Eclipfe as was judged by fome.
$95^{2} 45$ The End concluded from the foregoing Diftance of the Cufpids.
$95^{6} 45$ The Diameter of the Moon was $29^{\prime} \cdot 54^{\prime \prime}$, and again $29^{\prime} \cdot 48^{\prime \prime}$.
The Shadow was very thin, whence arofe fome Difficulty to diftinguilh the Moments of Emerfion and the End. And even the oblcurer Spots were plainly feen feveral Minutes before they reach'd the Margin of the Shadow. The Star which was hid during the Eclipfe was then in $\because 17^{\circ} \cdot 16^{\prime} \frac{1}{2}$, with Southern Latitude $I^{\circ}, 6^{\prime}: 30^{\prime \prime}$. very near.

A Collection of

We have alfo received Obfervations of this Eclipfe from the Rev．Mr． Derbam，made at Upisixfter in the County of Effex；from Mr．Wright at Crew in Chefbire；and from Mr．Hasokius at Wakefield in the County of Tork；every where almoft agreeing with the foregoing，having Regard to the Difference of Meridians：That is，fuppofing Upminfter to be $1{ }^{\frac{1}{7} \text { ．Minutes }}$ more Eafterly than London，Crew to be 10 Minutes，and Wakefield 5 Mi － nutes，more to the Weft．

Laftly，to fum up all，we will add a very notable Obfervation，and the firft of its Kind that we know of，fince the Difcovery of the Telefcope，and which we owe to the unwearied Application of Dr．Fames Bradley．For on the 5th of September in the Morning，the Sun being nearly 30 Degrees high， he faw at Wanfead a moft near Tranfit of the Moon below the Bull＇s Eye， the Diftance of which from the next Limb he found with a Micrometer to be $5^{\prime} \cdot 3^{8^{\prime \prime}}$ ．at $7^{\text {h }} \cdot 59^{\prime} \cdot 0^{\prime \prime}$ ．of equal Time．At $8^{\text {h }} \cdot 17^{\prime}$ ． $5^{\prime \prime}$ ．it was diftant from the Limb $1^{\prime}, 25^{\prime \prime}$ ．And at $8^{h} \cdot 33^{\prime}, 15^{\prime \prime}$ ．the Star was in a right Line through the Cufpids of the Moon，which at that Time were fomething blunted，nor was it diftant from the Northern above $0^{\prime} .13^{\prime \prime}$ ．and at $8^{\prime \prime}$ ． $41^{\prime} .0^{\prime \prime}$ ．it had left that Cufpid $3^{\prime} \cdot 42^{\prime \prime}$ ．And at $8^{\text {h }} \cdot 45^{\prime} \cdot 37^{\prime \prime}$ ．it was dif－ tant from the fame $5^{\prime} \cdot 36^{\prime \prime}$ ．The Moon＇s Diameter taken at $8^{h} \cdot 5^{8^{\prime}}$ ．was $31^{\prime} \cdot 7^{\prime \prime}$ ．

AColleati－XXXIX．Our late Obfervations are thefe；1718，OEtob，10，in the Morn－ on of Af－ tronomical Obfervati－ ons for
1719，by
－n． 263 ．
p． 1109 ． －of the Planets．
－Vid，in－ fra，\oint XLI． ing，Fupiter applied to the Telefcopic fixt Stars，the Places of which the Rev．Dr．Pound has carefully enquired into，on Occafion of the firft Appear－ ance of the Comet of the Year 1680，（of which fee Pbil．＊Tranf．n．342．） and having verified them lately，has communicated them to us，together with an accurate Obfervation of a Tranfit of 7 upiter near them at this Time， and afterwards another Feb．11．prefently after the Oppofition of Fupiter and the Sun．Now at the Beginning of Fanuary 1719，the Places of the Stars were thus．

		Lonsitude．	Nortb Latitude．
d		$29^{\circ} \cdot 59^{\prime} \cdot 43^{\prime \prime}$	50
e	吹	0． $6 \cdot 13$	1－10 • 18
c		－． 3 ． 13	0． $32 \cdot 50$
a	吸	－． $25 \cdot 41$	． 28 ． 54
	吸	－． $5 \cdot 43$	－ $5^{1} \cdot 5^{6}$

Where it is to be obferved， that the Stars d and e have the fame Declination exactly in this our Age；but x is a very little Star，which becaufe of its Small－ nefs was omitted in the former Defcription．
Now OEIob： 9° ，at $17^{\mathrm{h}} \cdot 5^{\prime}$ ．equal Time，the Eaftern Limb of Fupiter reach＇d the Line joyning the Stars e and c ，and at the fame Time his Center was diftant from e $21^{\prime} \cdot 20^{\prime \prime}$ ．and from $c 16^{\prime} \cdot 25^{\prime \prime}$ ．and was prefently diftant from d $19^{\prime}: 35^{\prime \prime}$ ．The little Star x being very near Fupiter was hid，or over－ power＇d with his Light．

Dec．II．at $18^{\text {h }} \cdot 30^{\prime}$ ．equal Time，the Center of Saturn was diftant from μ in Libra（according to Bayer） $28^{\prime} \cdot 32^{\prime \prime}$ ．and was more to the North than the fixt Star by $4^{\prime} \cdot 3 \mathbf{1}^{\prime \prime}$ ．Hence the Obferver Dr．Pound concluded the Place of Saturn to be $m 1^{\circ}, 41^{\prime}, 10^{\prime \prime}$ ．with Northern Latitude $2^{\circ}, 16^{\prime} \cdot 43^{\prime \prime}$ ．

A Collection of Aftronomical 0 bjervations.

1719, Feb. 11. at $6^{\text {h }} .56^{\prime \frac{1}{4}}$. equal Time, the Center of Jupiter being recrograde was diftant from the above defcribed Star
6. $5^{8 \frac{1}{4}}$ The fame Center was diftant from e
$9 \cdot 37^{\frac{1}{3}}$ The Diftance taken again from d
9. $43^{\frac{1}{2}}$ Again from e
9. 49 The Center of Fupiter was diftant from $a \quad 25.21$
9. $5^{8 \frac{1}{2}}$ The fame Center from the fmall Star x

About Seven a-Clock the Eaftern Limb of Jupiter reach'd the Line extended through x and e; $7 u p i t e r$ then was in $v^{\prime} 0^{\circ} .6^{\prime}$. with North Latitude 1°. $16^{\prime} \cdot 30^{\prime \prime}$. Then

Feb. 13, at $8^{\text {h }}$. 0^{\prime}, equal Time, the Declination of fupiter's Center, meafured by the Micrometer, was more Northerly than that of either of the Stars d and e, by $11^{\prime} \cdot 37^{\prime \prime}$. and at $8^{h} \cdot 20^{\prime}$. the fame Difference was found $11^{\prime} \cdot 36^{\prime \prime}$. But at $8^{\text {h }} .48^{\prime}$. the Center of 'yupiter was diftant from $e 17^{\prime} \cdot 40^{\prime \prime}$.
April 22, at $10^{h} .45^{\prime}$. equal Time, the Center of Saturn follow'd μ in L_{i-} bra $4^{\prime \frac{1}{2}}$ Minutes of Time, or 1^{\prime}. $8^{\prime \prime}$. of Right Afcenfion. Being meafured with the Micrometer, he was found more Northerly than the fixt Star 35^{\prime}. $25^{\prime \prime}$. Now in the Britifh Catalogue the Star was then in $m 10^{\circ} \cdot 16^{\prime} .8^{\prime \prime}$. North Latitude 2°. $3^{\prime} \cdot 54^{\prime \prime}$.
May 16, at 8^{h}. 0^{\prime}. equal Time, fupiter follow'd Cor Leonis at $1^{\circ} \cdot 34^{\prime \prime} \frac{1}{2}$. of Right Afcenfion ; but was $0^{\prime} \cdot 41^{\prime \prime \frac{1}{2}}$. more to the North than that Star. In Time this is $10^{\prime} .7^{\prime \prime}$. of an Arch of the Heavens.
The fame Night at 15^{h}. 18^{\prime}. apparent Time, Mr. Stephen Gray obferved Mars, in refpect of Right Afcenfion, to follow the Eaftern Star in the Tail of Capricorn at $16^{\prime} \cdot 15^{\prime \prime}$. and at the fame Time it was more to the South than thie fixt Star only O^{\prime}. $11^{\prime \prime}$.
Fune 7 , at $10^{\mathrm{h}} .15^{\prime}$. apparent Time, Fupiter being direct, return'd again to the faid Telefcopic Stars, and then follow'd the Star \boldsymbol{d} at $0^{\prime} .35^{\prime \prime}$. of Right Afcenfion, and at $10^{h} \cdot 30^{\prime}$. the Star was diftant from the neareft Limb of Fupiter 4^{\prime}. $18^{\prime \prime}$.
The next Day, Fune 8, at $10^{\text {h }} .20^{\prime}$. Jupiter follow'd the other Stare at $1^{\prime} \cdot 30^{\prime \prime}$. of Right Afcenfion, and immediately the Diftance of the neareft Limb of 'Yupiter from the Star was taken with the Micrometer $7^{\prime} \cdot 30^{\prime \prime}$.
Fuly 5, at $8^{\mathrm{h}} .26^{\prime}$. apparent Time, Fupiter and Venus were in clofe Conjunction; fhe more to the North, then preceded Fupiter according to Right Afcenfion $1^{\prime} \cdot 20^{\prime \prime}$. But the Diftance of their Centers being taken, or the middle Diftance of ten repeated Diftances was $13^{\prime} \cdot 36^{\prime \prime}$. Martin Folkes, Efq; a great Cultivator of thefe Sciences, communicated thefe three ObferVations made at London.
Auguft 3, at $12^{\text {b }} .20^{\prime}$ equal Time, Mars nearly Acronich follow'd the Star τ of Aquary (according to Bayer) at $10^{\prime} .58^{\prime \prime}$. of Tine, or $2^{\circ} \cdot 44^{\prime} \cdot 57^{\prime \prime}$. of Right Afcenfion. Mars was only 0^{\prime}. $36^{\prime \prime}$. more to the North than the Star. Whence the Place of the Star being granted as in the Britifle Catalogue, the obferved Place of Mars will be $\nrightarrow 7^{\circ} \cdot 10^{\prime}, 11^{\prime \prime}$. with South Latitude $6^{\circ} \cdot 38^{\prime} \cdot 10^{\prime \prime}$.

Auguf Io, at $1 I^{\text {h }} \cdot 50^{\prime}$, equal Time, Mars follow'd the leffer Star which
Vol. IV.
precedes $\boldsymbol{\tau}$ in Aquary $\mathbf{I}^{\circ} \cdot 39^{\prime} \cdot 30^{\prime \prime}$. in refpect of Right Afcenfion, but more Southerly than the fixt Star $10^{\prime} .42^{\prime \prime}$.

Auguft 16, at $7^{\text {n }}$. 18^{\prime}. equal Time, Spica Virginis preceded the Center of Venus $5^{\prime \prime \prime}+$ of Time, or $1^{\prime} .20^{\prime \prime}$. of Right Afcenfion, more Southerly than the Planet $18^{\prime \prime} \frac{1}{2}$ of Time, or $4^{\prime} \cdot 35^{\prime \prime}$.

Auguft 17, Mars the Day before Achronich, and next the Earth, was obferved at two contiguous little Stars, for the Sake of inveitigating his $\mathrm{Pa}-$ rallax, according to the Method exhibited by M. Caffini, in his Book concerning the Comet of the Year 1680. Whence we thall endeavour to deduce the Parallax of Mars in the next Tranfaction. Now the more Northerly of thefe little Sears was then in $\times 3^{\circ} \cdot 5^{\prime} \cdot 50^{\prime \prime}$. with South Latitude $6^{\circ} \cdot 6^{\prime \prime} \frac{\text { t }}{4}$ nearly. But the more Southerly one was in $x 3^{\circ} \cdot 5^{\prime} \cdot 30^{\prime \prime}$. with South Latitude $6^{\circ} \cdot 10^{\prime \prime} \frac{1}{4}$ nearly. But at $10^{h} \cdot 40^{\prime \prime}$. equal Time, Mars follow'd that to the South $41^{\prime} \cdot 40^{\prime \prime}$. of Right Afcenfion, and was more to the South than it $7^{\prime} \cdot 50^{\prime \prime}$.

Sept. 18, at 9h. 20'. equal Time, Mars was feen to precede the Star which in the Britijb Catalogue is the 33 of Aquery, by $3^{\prime} \cdot 45^{\prime \prime}$. of Time, or 56^{\prime}. $24^{\prime \prime}$. of Right Afcention; and at the fane Time the Star was more Northerly than the Northern Limb of Mars only by one Diameter of the Planet. The Place of the Star was $=29^{\prime} \cdot 57^{\prime \prime \prime} \frac{1}{2}$. South Latitude $4^{\circ} \cdot 4^{\prime \frac{1}{2}}$.

OEt. 30 , in the Evening, at $5^{\text {h }} \cdot 45^{\prime}$. apparent Time, Mars was near two contiguous Stars at $b=$ by Bayer, which are \rightleftharpoons the 73 and 74 in the Britijh Catalogue. It had pafs'd by the right Line drawn through the fame, and the Angle at the Center of Mars was a right one according to Senfe. The more Northern of the Stars had the fame Declination with the Southern Limb of the Planet. At $5^{\mathrm{h}} \cdot 53^{\prime}$. the Diftance of the Star from the Center of Mars was $2^{\prime} \cdot 30^{\prime \prime}$. At $5^{\text {h }} \cdot 56^{\prime}$. the Center of Mars was diftant from the third and more Southerly one at h, or the 75 of Aquarius, $17^{\prime} \cdot 4^{\prime \prime}$. At $6^{\text {h }}$. $18^{\text {' }}$. the Diftance of the Center from the more Northerly, or the 73 , was $3^{\prime} \cdot 5^{\prime \prime}$. Hence we may conclude, that at $3^{\text {h }} \cdot 30^{\prime}$. nearly, Mars was in Conjunction with the Northerly Star, and left it only one Minute to the North. But the Place of the fixt Star from the Britifh Catalogue was then $x 10^{\circ} \cdot 29^{\prime} \cdot 0^{\prime \prime}$. with South Latitude $1^{\circ} \cdot 40^{\prime \frac{1}{2}}$. And the 74 was then in x $10^{\circ} \cdot 29^{\prime} \cdot 50^{\prime \prime}$, with South Latitude $1^{\circ} \cdot 44^{\prime \prime}{ }^{\prime}$.

Nov. 16, at $19^{\text {h. }} 18^{\prime}$. equal Time, Venuts preceded the Southern Scale of Libra $3^{\prime} .13^{\prime \prime}$. of Time, or $4^{\prime} .23^{\prime \prime}$. of Right Afcenfion, and at the fame Time the Center of Venus was more Northerly than the fixt Star $7^{\prime} \cdot 45^{\prime \prime}$. V enus was ftationary as it were at her afcending Node.

Dec. 3, at $19^{\text {h }}$. equal Time, Saturn preceded the third at ζ of Libra, or Libra 29 , by the Britijh Catalogue $\mathrm{o}^{\prime} .46^{\prime \prime \prime}$. of Time, or $11^{\prime} .32^{\prime \prime}$. of Right Afcenfion. It was more Southerly than the fixt Star $15^{\prime} \cdot 29^{\prime \prime}$. the Difference being taken by a Micrometer. Whence the Place of Saturn was $m 20^{\circ}$. $25^{\prime \frac{1}{2}}$. with North Latitude $2^{\circ} \cdot 5^{\frac{1}{4}}$.

- of the

Moon and We have given above * an Obfervation of the Lunar Eclipfe, An. 1717, Eclipfes. March 15, Afternoon, Old Style, made at Cambridge in Nere-England, which p. 332 . . becaufe of Clouds was not feen by tis. There the Eciipfe ended at $11^{\text {n }}$.

Obfervations on a Comet at Rome.

$4_{2} 2^{1 /} \frac{1}{n}$ nor at that Time had we any other Obfervation of it. But afterward Mr. Cbandler, a Captain of one of the King's Ships, brought us from America, and communicated to us the Phafes of the fame Ecliple, as they were objerved at Lima in Peru, by D. Peter Pcralta the King's Mathematician, and there printed. He makes the Beginning of the Eclipfe at Lima, at $8^{\mathrm{h}} \cdot 4^{\prime} \cdot 8^{\prime \prime}$. and the End at $11^{\mathrm{h}} \cdot 19^{\prime} \cdot 55^{\prime \prime}$. At the fame Time the faid Mr . Cbandler communicated his own Obfervation, made at an Illand which they call Virgin Gorda, where the Eclipfe ended at $12^{\text {h }}$. 13^{\prime}. Afternoon. Becaute of a clear Sky the End was feen very diftinctly. Among the Acts of the Royal Academy of Sciences for that Year, we alfo find two Obfervations of this Ecliple agreeing very well with ours; one made by M. Caffini, the other by M. de la Hire in the Royal Obfervatory. This makes the Beginning at $13^{\text {h }} \cdot 54^{\prime}$. But the End more furely at $16^{\text {b }} \cdot 3^{8^{\prime}} \cdot 10^{\prime \prime}$. The other puts the Beginning at $13^{\mathrm{h}} \cdot 55^{\prime}$. and the End at $16^{\mathrm{h}} \cdot 38^{\prime} \cdot 25^{\prime \prime}$. The greateft Obfcuration with this was $7 \frac{1}{3}$ Digits, with the other $7 \frac{1}{2}$ Digits.

Hence from the End, which feems to be taken more accurately in each Place, the Difference of Longitude between Paris and Lima is $5^{\text {h }}$. $18^{\prime} \cdot 20^{\prime \prime}$. Between Paris and Cambridge $4^{\mathrm{h}} \cdot 55^{\prime}: 50^{\prime \prime}$. Between Paris and the Iland Virgin Gorda $4^{\mathrm{h}} \cdot 2^{\prime} \cdot 20^{\prime \prime}$. From which if you fubtract $9^{\prime} \cdot 40^{\prime \prime}$. there will come out the Longitudes to the Weft of London; that of Lima 77°. 10^{\prime}. of Cambridge in New England $71^{\circ} \frac{1}{2}$. And laftly of the Inland Virgin Gorda $63^{\circ} \cdot 55^{\prime}$. Whence the Geographers may correet with Certainty the Situation of the neighbouring Iflands.

The other Eclipfe of the Moon of the fame Year, Sept. 9, in the Evening, was feen by the fame Obfervers, and M. Maraldi at Paris. In the Houfe of the Royal Society at London, we obferved the End at $7^{\text {h }} \cdot 26^{\prime}$. At Paris the End was oblerved by M. Caflimi at $7^{\mathrm{h}} \cdot 34^{\prime} \cdot 50^{\prime \prime}$. by M. Miraldi at $7^{\mathrm{h}} \cdot 35^{\prime} \cdot 30^{\prime \prime}$. and by M. de la Hire at $7^{\mathrm{h}} \cdot 34^{\prime} \cdot 15^{\prime \prime}$. Alfo M. Wurtzelbaur at Norimburg faw the fame End at $S^{\text {h }} \cdot 10^{\prime} \cdot 45^{\prime \prime}$. Hence the Difference of Meridians is confirm'd between London and Paris, efpecially from the Obfervation of M. Maraldi, to be $9^{\prime} \cdot 30^{\prime \prime}$. as alfo between Londors and Norimburg $44^{\prime} \cdot 45^{\prime \prime}$. The fame we have often found before. Now on the fifth Day after the Eclipfe, Sept. 14, in the Evening, at Paris the Moon eclipfed the Bull's Eye, as M. Maraldi and M. Delife the Younger obferved feparately. The Star difappear'd over againft the Spot Grimald, or Palus Mareotis, at $9^{h} \cdot 11^{\prime} \cdot 35^{\prime \prime}$. And it emerged from the obfcure Limb of the Moon at $10^{\text {b }}$. $3^{\prime} \cdot 55^{\prime \prime}$. We have given above * an Obfervation of this Occultation at London. *id. fu-

We are obliged to the Rev. Dr. Pound for tbofe Obfervations, in robich equal pra,p.33z. Time is made Ufe of; being taken with a Telefcope of 15 Feet, they may be efteemed as very accurate.
XL. December the 20 hh, 1664, N. S. about Three a-Clock this Morning, I obferved the Comet; it was in the Conftellation of Hydra, not far from the Foot of Crater. It appeared about the Bignefs of a Star of the firft Magni- - Mre $_{r}$ J.Ray, tude, but nothing fo lucid and bright. It had a very long Tail, which pointed communialmoit directly towards the Heart of Hydra: The Tail nhewed fomewhat cated by like Rays of a Candle burning in a Mift; the Figure of it was conical ;

Obfervations on a Comet at Rome.

the Length of it 5 or 6 Degrees; the Breadth at the Bafe not above a Degree and an Half. The Body of this Comet was about 3 Degrees to the Fig. 123. South-Eaft of the moft Southerly Star in the Foot of Crater; it food very near in a Right Line with the two lowermoft Stars in the Foot of Crater, which are common to it and Hydra.

December 21, In the Morning, about the fame Hour, it was removed about a Degree and an Half from the Place where it food, Weftward, and
Fig. 124. a little to the South. The Tail pointed fill towards the Heart of Hydra, and appeared io Degrees long at the leaft.

December 22, At the fame Time it was removed from the Place where it food the Day before, to the fame Point, and about the fame Diftance as
Fig. 125. the Night before. The Tail of it ftill pointed to Cor Hydra, or a little Thought above it, as the two former Days, and was rather longer than Shorter: It alfo, to my Thinking, appeared brighter and larger; the Body of it being bigger than any fixt Star, except Sirius.

Deceinber ${ }_{2} 3$, It was removed to the fame Point, and about the fame
Fig. 126. Diftaince as the Day before; the Tail of it was as long as ever, and the Comet brighter. The Tail pointed aimoft directly to Cor Hydra.

December 24, 25, 26, All thefe three Nights were cloudy, fo that I could make no Obfervations.

December 27 , We found it ftrangely removed from the Place where it Fig. 127. was : It was ftill Weftward, and a little to the South, as before. The Body of the Star was ftill brighter, and the Cauda about it greater, and more bufhy, and yet as long as before; it pointed almoft directly againft Canis major. The Body of it was amongtt the Stars of Argo.

December 28, The fame Time it was removed above two Degrees towards Fig. 128. the fame Point, and come within four or five Degrees of the moft Eaftern Stars in the bright Triangle in the Buttocks of Cenis major. The Moon thining, we could not fo well judge, either of the Bignefs of the Body, or the Length and Bufhinefs of the Tail.

December 29, It was ftrangely removed, and got before, not the Eaftern Star only of the mentioned bright Triangle, but alfo the moft Northern. I
Fig. 129. think, at leaft, in this laft twenty-four Hours, it had moved four Degrees. The Moon fhining bright, the Tail could not well be obferved, yet ftill it feemed to point directly to Canis minor.
Obfervati-
ons on the
Comet
1680. Jeen
in Saxony
by $M r$. G.
by Mr. G.
Kirch, by

- $\mathrm{n} .344^{2}$.
p. 170 .
XLI. The Comet, which was feen at the End of the Year 1680 , for many Reafons is to be confider'd as the principal of its Kind ; as well on Account of its Courle for four Months, in which it pals'd through nine whole Signs, as becaufe of the immenfe Magnitude and Brightnefs of its Tail : But chiefly of the remarkable Curvity of its Orbit, by the Help of which the Theory of Comets is at laft difcover'd by the illuftrious Nereton, who firft of all Mortals proved that Comets deferibe Orbs, which very nearly approach to the Form of Parabolic.

Now it happen'd, I know not by what Fate, that this Comet, (which in the Evening was fo much attended to by Aftronomers, in the Morning before it reach'd the Sun, was not once obferv'd either at Paris or at Greenwich. And
thofe that faw it and obferv'd it, deliver'd incongruous and contradietory Things about it, and but little fuitable to the Nicety of the Affair. Nor was it feen by any intelligent Obferver till Nov. 17, in the Morning. Hence it was that that Part of the Orbit, in which the Comet approach'd towarde the Sun, could not be determin'd but with fome uncertainly. But we lately happen'd upon a Book of a very deferving Aftronomer Mr. Gottfried Kirch; ${ }_{a}$ German, printed at Norimberg, An. 1681, called Deur himmels 3eitung, that is, a new Celeftial Meffenger; in which the very diligent Author explains to us, by what good Fortune he difcover'd this fomet, being as yet obfcure without a Tail, and hardly vifible to the naked liye: While he was taking his View in order to obferve the Moon and Mars that was near her, Nov. 4, old Stile, in the Morning, at Coburg in Saxiny, which Town is is Degrees more Eafterly than London, under the Pole's Altitude 50°. 20^{\prime}. nearly; he was urged, as he fays, by the Rumour of a Comet feen in Germany, and fat up at Night with his Face towards the Eaft, thrat if any Thing new thould arife in the Heavens, which were then very ferene, he might take Notice of its Situation. Now as the Moon approach'd to a certain Star, hot taken Notice of by Tycho, (but which is put down in Flammfend's Britifh Caztalogue, and is 44 in Leo, he had a Mind to determine the Place of the faid Star by thofe which were near it ; and as he turn'd about his Tube which was capable of receiving three Degrees, he fell upon a Kind of cloudy Light; making an unufual Appearance, and which he immediately concluded to be either the new Comet, or a nebulous Star like that which is in Andromeda's Girdle.
Now he firt faw the Comet at $4^{\mathrm{h}} \frac{1}{2}$ in the Morning, being a little higher Fig. 130 . than the two little Telefcopic Stars, which are mark'd with the Letters a and 0 , with which however at 6^{h}. it was exactly in a right Line. Whence it was plain that it moved, and with a direct Motion. Between the Hours of Five and Six he view'd this Phenomenon with a 10 Foot Tube, and faw two other little Stars contiguous, but lefs than the former, mark'd with the Letters e and d, and above thofe a third g. Now the Diftance of the Comet from e was fomething lefs than that from a, but greater than the Diftance d e. At $6^{h} \cdot 38^{\prime}$. the Diftance of the Comet from e was the Double of the Interval between them $d e$, and the Line $d e$ produced left the Comet * below it, * By a yet fo that it reach'd its upper Margin. At $6^{\text {h }} \cdot 45^{\prime}$. the Comet was now Tube infenfibly more remote from e than from a, and was diftant from a fomething verting more than half the Diftance of the little Stars a and g.
Now it is to be obferved, that the Clock was before the Heavens full 14 Minutes, as appeared from the Altitudes of Cor Leonis which were then taken.
This is truly a noble Obfervation, and therefore we have inquired into the Places of the little Stars then adjoining to the Comet by more than one Method; Mr. Fames Pound affording us his moft expert Hand and very excellent Inftruments. Whence it appear' d_{2} that at that Time thofe little Stars had the following Situations.

	Longitude.			Latilude.		
a	$\Omega 29^{\circ}$	54	$20^{\prime \prime}$	1	29	20
6	29	27	20	1	8	00
C	29	34	30	1	10	45

the Qb.
jeets.

Now a great Circle drawn through a and c was foundito pafs through the laft Star of the Tail of the greater Bear，and therefore ithat the Angle with a Circle of Longitude at a was $15^{\circ} \cdot 3^{\frac{1}{9}}$ ．And whereas the Diftance of the Comet from a towards c was fomething greater than halfithe Diftance $a \mathrm{~g} 3$（ which with a Tube of 16 Feet，and a Micrometer，we find to be $22^{\prime} \frac{3}{5}$ ，） we may fuppore it to have been 12 Minutes．And from what is given the Place of the Comet will come out $\Omega 29^{\circ}-51^{\prime}$ ．with North Latitude 1° ． $17^{\prime 3} \frac{3}{4}$ ．The Hour of the Clock being 6，but at London $5^{\text {h }} \cdot 2^{\prime}$ ．apparent Time， Again，Nov．6，in the Morning，at $4^{\text {h }} \cdot 42^{\prime}$ ．with a two Foot Telefcope he found the Comet to be juft in a right Line between Mars and the little Star N ；which in the Britijh Catalogue is the 45 of Lro，and was then in 呗 2° ． 42^{\prime} ．with South Latitude $0^{\circ}, 16^{\prime \frac{1}{2}}$ ．but Mars at that Time，by comparing Obfervations made before and after）was in 股 $^{\circ} \cdot 46^{\circ} \frac{1}{2}$ ．with North Latitude $5^{\circ} .5^{\prime}$ ．Whence，becaufe of its Part being given，the Comet was in 听 3% 23．With North Latisude 6＇，at Lomion＇at $3^{\text {h }} \cdot 5^{8^{\prime}}$ ．apparent Time，in the Morning．
Fig．131．Alfo Nov．I 1，at 5^{h} ． 15^{\prime} ．in the Morning，the Comet was equally diftant from the Stars σ and τ of the Lion，according to Bayer，but had not yet reach＇d the right Line joining the fame，but was at a little Diftance from it．）In the Britigh Catalogue σ was then in 叫 $14^{\circ} \cdot 15^{\prime} \cdot$ wirly North Latitude $1^{\circ} \cdot 4^{\prime}$ ．nearly ；and τ was in $\mathrm{m}_{1} 17^{\circ} \cdot 3^{\prime \frac{1}{2}}$ ．with South Latitude $0^{\circ} \cdot 34^{\prime}$ ． Therefore the Latitude of the Comet was fomething lefs than a Mean be－ tween them，that is，than $0^{\circ} \cdot 33^{\prime \frac{1}{2}}$ Northerly ；and its Longitude than $m^{1} 15^{\circ}$ ． 39＇．But this is not to be much rely＇d on，fince it depends upon the efti－ mated Equality of the Diftances，which is a llippery Matter．Now the Tail was not yet begun，except by the Length of half a Degree，view＇d by a ten Foot Tube．

He that would know more muft have recourfe to the Book itfelf，wrote in the German Language．

Obfervati－XLII．Mr．Cbr．Kirch，Yan．18，new Stile of the prefent Year，as he was ons on a diligently obferving the Motions of the Heavenly Bodies，in the Evening

Comet

 foun in1718，at Berlin，by Mr．G． Kirch，
ก． 357.
p． 820. in the Middle of the Week，by chance perceived a Comet towards the North． It was near and to the Right Hand of Bayer＇s Stars γ and β in the leffer Bear，and appear＇d much more diftinct to the naked Eye than β in Urra minor，tho＇that be a remarkable Star of the fecond Magnitude ；it being indeed much paler，yet of a greater Diameter，and of a pretty bright Light， efpecially towards the Center．When feen through the Tube it fhew＇d as a bright round little Cloud；but no Foot－fteps of a Tail could be obferved， nor any Nucleus．It went on with a very fwift Motion from the Hour Seven to Eleven，and compleated $4 \frac{1}{2}$ Degrees，as was concluded by Obfer－ vation．

Fan． 19 and 20，the Heavens were cover＇d with Clouds．But on the $21 / t$ the Comet had departed far from its former Place，and was found in Caflopea，where it made a Triangle（was it equicrural ？）with the Stars ε and \＆，at $5^{\mathrm{h}} \cdot 45^{\prime} \cdot$ in $17^{\circ} \cdot 34^{\prime} \cdot 8$ ，under Northern Latitude $49^{\circ} \cdot 54^{\prime}$ ．After－ wards at $9^{\mathrm{h}} .15^{\prime}$ ．it was feen in 16° ． 38^{\prime} ，8，under Northern Latitude 49° ．

Obfervations on a Comet at Berlin.

z^{\prime}. But it was much decreafed, and came fhort of its former Velocity ; as alfo it appear'd paler than before, and being feen with the naked Eye, feem'd hardly to exceed in Magnitude a Star of the fourth Dignity; and had proceeded in its Orbit not above a Degree and a Half in four Hours and a Half. By the Affiftance of the Tube its Diameter was found to be feven Minutes.
Fan. 23, at Four in the Morning, the Comet made an equicrural Triangle with δ and in Caffiopea, being diftant $2^{\circ} \cdot 41^{\prime \frac{1}{2}}$, from each. This Morning it hardly moved half a Degree in the Space of two Hours. At Ten in the Evening it was feen in a right Line with \& of Caffopea and \varnothing of Perfeus, and was diftant from the former $3^{\circ}: 38^{\prime}$. from the latter $3^{\circ} \cdot 9^{\prime}$. Its Diameter was five Minutes, and view'd with the naked Eye feem'd a Star of the fifth Magnitude.

Fan. 24, at Six in the Morning, it had not reach'd o of Perfeus, but made an equicrural Triangle with v and g of the fame Conftellation, and was diftant from each not quite $3^{\circ} \frac{1}{2}$. This very accurate Perfon will inform us of more Things from his Obfervations, in that more copious Hiftory of this Comet, which he is now preparing.
Hitberto the Treatife call'd the Literary Journal, p. 43, 44, in which are wanting the Obfervations of the 18th Day, when the Comet was neareft to the Earth, and moved with greateft Velocity, whence we might make a furer fudgment of its true as revell as apparent Courfe. Now it is evident that on Jan. 19, it paffed neareft to the Nortberis Pole of the Equator. If any one foould bave a Mind to bring thefe Obfercations to a Scrutiny, and to make tbem fubnit to a fricter Galculation; for this Purpofe bere are fubjoined the Places of the fixt Stars bexe mention'd, taken out of the Britifh Catalogue; whence it will plainly appear, that fome Things cannot be right in the Defcription of the Motion of this Comet, sebich we bope will be corrected in that fuller Account which be promifes.

The Places of the fixt Stars at the Beginning of An. 1718 .

According to Buyer.	Ongitude.				North Lat.			
		-	,				,	"
Of Urfa Minor - $\left\{\begin{array}{l}\beta \\ \gamma\end{array}\right.$	缺	9 17	$\begin{aligned} & 18 \\ & 35 \end{aligned}$	$\begin{array}{r} 0 \\ 15 \end{array}$			58 13	10 15
Of Caflopea $-\left\{\begin{array}{l}n \\ \varepsilon \\ 0\end{array}\right.$	४	14 20 11	00 50 36	35 8 35		6 7 5		25 50 $4-5$
Of Perjeus $-\left\{\begin{array}{l}u \\ 0 \\ g\end{array}\right.$	¢	8 10 12	$\begin{array}{r} 32 \\ 41 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ 35 \\ 20 \\ \hline \end{array}$		$\begin{aligned} & 35 \\ & 6 \end{aligned}$	23 49 18	$\begin{array}{r} 45 \\ 15 \\ 37 \\ \hline \end{array}$

A jinail 'Telefcopical Comet feen June 10, 1717 , by Dr. E. Halley, n. 354. p. 7^{21}.
XLIII. That the Number of Comets is much greater than fome, on Account of the late Rarenefs of their Appearance, have fuppofed, may be collected from feveral fnall ones, which have within few Years been defcribed in the Memoirs of the Frexch Royal Academy of Sciences; thofe Obfervers affuring us, that they difcovered one in Sept. 1698. another in Feb. 1699, a third in April 1702, and again a fourth in Nov. 1707, none of which, as far as I can learn, were ever feen in England; all of them having been very obfcure and without Tails, by Means whereof Comets ufually firft fhew themfelves. And befides thefe, two other Comets with remarkably long Tails, the one in Nor. 1689. the other in Feb. 1702. paft by unoblervable in thefe our Northern Climates, they having great Southing Latitude, and their Motions directed toward that Pole. Hence we may juftly conclude, that the Returns of Comets are much more frequent than is vulgarly reckoned, and that it is only contingent, that for thefe Thirty Five Years no one of them has been feen and oblerved by our Aftronomers.

But there may be ftill a much greater Number of thefe Bodies, which by reafon of their Smallnefs and Diftance are wholly invifible to the naked Eye; fo that unlefs Chance do direct the Telefcope of an Obferver, almoft to the very Points where they are, it will not be pofible for them to be difcovered: And that this is not barely a Conjecture, take the following Inftance.

On Monday June 10, in the Evening, the Sky being ferene and calm, directing my Twenty-four Foot Telefcope towards Mars, I accidentally fell upon a fmall whitifh Appearance near the Planet, refembling in rid. Supr. all Refpects fuch a Nebula as I defcribed in Pbil. Tranf. N. 347 . but p. 224. fmaller. It feemed to emit from its upper Part a very fhort Kind of Radiation directed towards the Eaft, but Northerly withal; which, confidering its Situation, was nearly towards the Point oppofite to the Sun. The great Light of the Moon, then very near it, and alfo near full, hindered this Pbenomenon from being more diftinctly feen; but its Place in the Heavens was fufficiently afcertained from the Neighbourhood of Mars, from whom it was but about half a Degree diftant towards the Southweft, the Difference of Latitude being fomewhat more than that of Longitude; and Mars being at Time in $\ddagger 17^{\circ} \cdot 30^{\prime}$ with 3°. 4^{\prime} South Latitude. I concluded the Place thereof in $\hat{1} 17^{\circ} \cdot 12^{\prime}$. with 4°. 12^{\prime}. Latitude South, or thereabouts; the which may yet be more fecurely determined by Help of two fmall fixt Stars I found near it, the more Northerly of which I judged to have the fame Latitude with it, and to follow it at about the Diftance of fix Minutes; the other Star was about four Minutes more Southerly than the former, and about one Minute in confequence thereof; the Angle at the Northern Star was a little obtufe, as of about 100 Degrees, and the Diftance of our Nebula from it Sefoualter to the Diftance of the two Stars, or rather a little more. The Reverend Mr. Williams, Mr. Tbomas, and myfelf, contem-

Uned

A frall Telefcopical Comet.

plated this Appearance for above an Hour, vizz, from half an Hour paft 10 to near 12, and we could not be deceived as to its Reality; but the Slownefs of its Motion made us at that Time conclude, that it had none, and that it was rather a Nebula than a Comet.
However, fufpecting that it might have fome Motion, I attended the next Night at the fame Hours, and in the fame Company; when with fome Difificulty, by Reafon of the Thicknefs of the Air, we found the two little Stars; but the Nebula could not at that Time be feen, which we then imputed to the Want of a clearer Sky: But on Saturday Yune 15, the Moon being abfent, and the Air perfectly clear, we had again a diftinct View of the two Stars, with an entire Evidence that there remained no Foottep or Sign of it in the Place where we had firft feen this Phenomenon, which we therefore now found to be a Comet, and that being far without the Orb of the Earth, and in itfelf a very fmall Body, it appeared only like a little Speck of a Cloud, fuch as would fearce have been difcerned in an ordinary Telefcope, much lefs by the naked Eye.

XLIV. Papers omitted.

1. Extracts from Mr. Gafcoigne's and Mr. Crabltrie's Letters, proving n. 552.p. 603. Mr. Gafcoigne to have been the Inventer of the Telefcopick Sigbis of Ma_{a} thematical Inftruments, and not the French, by the Reverend Mr. W. Derbam, Prebend of Windfor, and F. R. S.

Mr, De la Hire, in the firf Part of his Tabula Aftron. publifhed in 168\%, having afcribed to Mr. Picard the Application of Telefcopick Sights to Aftronomical Infruments (which alfo was in Effect claimed as his, by Mr. Auzout, in a Letter in the Pb. Tranf. N. 21. in the Year 1666.) Mr. Derbam, from thefe Letters of Mr. Gafooigne and Mr. Craberie, proves that Mr. Gafcoigne, as early as the Year 1640 , made Ulie of thefe Telefcopick Sigbts in two or more Sorts of his Micrometers, and in his 2uadrant and Sextant.
2. Aftronomiæ Cometice Synopfis, Autore Edmundo Halleio apud Oxo- n. z92. p. nienfes Geometriæ Profeffore Saviliano, \& R. S. S.

XLV. Account of a Book omitted.

Aftronomix Phyficx \& Geometricæ Elementa, Auctore Daride Gre- ${ }_{1312}^{\text {n. } 28 \text { 3. p. }}$ gorio, M. D. Aftronomiæ Profeffore Saviliano, \& K. S. S. Oxonice 1702. Folio.

Mechanics. Acouffics.

τ_{0} find a Solid I. I. THE Problem of finding a Round Solid, which moving in of the leall Refiftance, \&c. by Mr. J.
Craig, n. 258 . attempted by thofe great Men the Marquifs of Hoppital and Mr. 7 p. 747. Bernoulli; becaufe Mr. Newton thought fit to fupprefs his Analyfis.

Dec.21.1700. Our Solution of the fame Problem is as follows.
Lemma. To find the Ratio between the Refiftance which the right angled Triangle $A I G$ fuffers, and the Refiftance which the circumfcrib'd Rectangle $A I G g$ fuffers, when both are moved in a Fluid according to the Direction of the Line $I A$, from I towards X.

From any Point B let $B C$ be drawn perpendicular to $A G ;$ and $B b$ parallel to $A I$, alfo $B M$ perpendicular to $A I$. Then in $B b$ take $b H$ $=\frac{C M q}{B C}$, and $b E=B C$; and through the Points H, E, draw the right Lines $H A, E A$, which produced may cut $G g$ in K and F. I fay the Refiftance of the Triangle $A I G$ is to the Refiftance of the Rectangle $A I G g$, as the Area of the Triangle $A K G$ is to the Area of the Triangle $A F g$. Alio the Refiftance upon any Part of the Line $A G$ is to the Refiftance on the correfponding Part of the Line $A g$, for Example, on $A B$ and $A b$, as the Area $A H b$ to the Area $A E b$. The Demonftration depends on the general Theorem, which I eafily derived from Prop. xxxv. p. 324. of Neroton's Principia.

Corol. 1. Now let $B G, b g$, be infinitely fmall Parts of the Lines $A G, A g$, and let $b B$ be produced to L. I fay the Refiftance upon $B G$, (which we may call e) is to the Refiftance upon $b g$, (which we may call E) as $G L q$ to $G B q$.

Fore. $E:: K H b g \cdot F E b g$, that is, $e \cdot E:: b g \times b H . b g \times b \cdot E$, (by the foregoing Lemma;) therefore $\varepsilon, E:: b H . b E$, that is, $e . E::$ $\frac{C M q}{B C} \cdot B C$, (by the Conftruction of the foregoing Lemma;) therefore e. $E:: C M q$. BCq. But $C M q$. B $C q:: G L q, G B q$, (becaufe of the fimilar Triangles $B M C, G L B$,) therefore $e . E:: G L q \cdot G B q$. 2. E. D.

Corol. 2. The Refiftance upon an infinitely fmall Part $G B$ is equal to the Cube of the Line $G L$ divided by the Square of the Line $G B$. For if all the infinitely little Parts in the Line $A g$, as $b g$, are fuppofed equal, then the Refiftance upon $b g$ may be exprefs ${ }^{\circ} \mathrm{d}$ by $b g$ itfelf, that is, $E=b g$, and therefore $E=G L$. Therefore by the firft Corollary, e. GL i: $G L q . G B q$; whence $e=\frac{G L c u b .}{G B q}$. $E . D$.

of the leaft Reffitance, scc.

Corol. 3. Let r be the Radius and c the Circumference of any Circle; I fay that the Refiftance upon a conical Superficies produced by the Rotation of the little Line $G B$ about $A I$, is equal to the Product of $\frac{c \times B M}{r}$ into $\frac{C L c u b \text {. For the Refiftance upon that Conical Super- }}{G B q}$. ficies is equal to all the Refiftances upon the little Line $G B$, that is, to all the e 's; which is equal to the Circumference of a Circle whofe Radius is $B M$, multiply'd into e. That is, the Refiftance upon that Conical Superficies is equal to $\frac{c \times B M}{r} \times e$; and therefore by Cor. 2 . is equal to $\frac{c \times B M}{r} \times \frac{C L c u b}{G B q}$. Я $E . D$.

Problem. To find the Curve Line, by the Rotation of which a round Solid is produced, which if moved in a fluid Medium, according to the Direction of its Axis, fhall fuffer the leaft Refiftance poffible.

Let $O G, G B$, be two infinitely fimall Particles in the Curve required, which revolving about A Q may produce the round Solid of leaft Re fiftance. Draw $B M, G P$, perpendicular to $A Q$, alfo $B L, G N$, parallel to $A Q$, and $O N$ parallel to $B M$. Now $\frac{c \times B M \times G L c u b \text {. }}{r \times G \bar{B} q}$ is the Refiftance upon the Superficies produced by the Rotation of the litthe Line $G B$ about $A 2$, and $\frac{c \times G P \times O N c u b \text {. }}{r \times O G q}$ is the Refiftance upon the Superficies produced by the Rotation of $O G$, by Cor. 3. Now thefe two Refiftances taken together, ought to be the leaft poffible, that is, $\frac{c \times B M \times G L c u b .}{r \times G B q}+\frac{c \times G P \times O N c u b}{r \times O G q}=$ Min. Therefore in the Line $R S$ parallel fo to $A Q$, that $O N=G L$, the Point G is to be fought that this may happen. Now fuppofing the Points O and B to be fix'd, this will be eafily found, by the known Method of Maxima and
Minima. By purfuing the Calculation we fhall come at laft to $\frac{B M \times B L}{B G}$ $=\frac{G P \times N G}{O G q q}$; whence it appears that $\frac{B M \times B L}{B G q q}=$ a conftant Quantity. Thus if the Abfcifs $A M$ is called x, and the Ordinate $B M$ is y, it will be $B L=\dot{x}, L G=\dot{y}$, (which I have fuppofed to be conftant in all this Calculation) and therefore $B G q=\ddot{x} x+\ddot{y}$, whence $\frac{y \dot{x}}{x^{3}+y^{3}}=$ conftant Quantity. Let a be any conftant Line, and therefore (that the L.aw of Homogeneity may be obferved) it will be $\frac{y \dot{x}}{\dot{x}^{2}+\dot{y}^{2}}=$

A:d here by the bye I take this Opportunity to fignify to Mr. Bernoulli, that I am very much pleated with his Method of conftructing Curves from Fluxional Equations, in which one of the indeterminate Quantitics x or y is wanting; as it is publifhed in the Leipfic AEts for the Menth of May, An. 1700. And from whence he has deduced the Conftruction of the Curve here required, Nov. 1699. p. $5^{1} 5$.
fame by ${ }^{\text {on the }}$ the N. Facio, n. 337. p. 172. Mig17,1712.
2. The celebrated Mr. Yobn Bernoulli has wrote many Things about my Solution (printed at London) of the Problem for finding a round or taper Solid, againft which the leaft Refiftance flaall be made. He denies that it is in my Power, tho' I am quite unknown to him, from fuch a Solution involved in fecond Fluxions, to go back to Nereton's Solution, a like to which Bernoulli himfelf has found. And infinuates by fuch Affertions, that at the Time Bernoulli was writing this, fuch a Regrefs would be eafy to him. But the Letters of the celebrated fames Bernoulli are not a little contrary to this, from which it appears, that at the Time he wrote, neither he nor his Brother were acquainted with that Transformation of ours, of Equations in which Fluxions are involved; in which they are multiply'd for duly determining a Product, fuppofe tor Inftance $x^{*} y^{2}$, or any other complex Quantity. Now under Multiplication alfo Divifion is contained. Now with this Transformation, lound by me in the Years 1687 and 1688, I acquainted Mr. de Moivre and Mr. Huygens, by whom perhaps the Knowledge might be communicated to others. And upon Inquiry I found, that our moft worthy Prefident Nerwton at that very Time was not ignorant of it, or rather had found it the firlt of all.

But though I could have anfwered many Ways the Cavils of the famous Mr. Fobn Bernoulli, yet I chofe to infert in the Leipfic AEts that Inveftigation which is far the fimpleft of all, and which Mr. Fobn Bernoulli could not reject : And from which he might farther underftand, that he had vainly accufed of Falfity what I had wrote befides, of finding the Line of $2 u i c k e f t$ Defent ; duly admitting the Confideration of the Motion (as it were) of a Ray of Light continually refracted, according to Fermat's Doctrine of Refractions.

What I am to perform is this; I am to commit to Writing an Equation involving only firft Fluxions, which is rightly deduced, from that Equation which I have exhibited in pag. 16. This is what Mr. Fobn Bernoulli required, and afferts I cannot find any fuch. Nor can theie be committed to Writing, but at the fame Time a Way will be opened to Mathematicians, for the farther Advancement of the more abftrufe Geometry.

Our little Treatife may be confulted, as to what belongs to the fecond Figure of the fame.

In the adjoin'd Figure let C be the Center of the equicurved Circle
$A E F$, which in the Point A may coincide as intimately as may be with the Section of the Solid required, whofe Axis is SY. And the Radius of this Circle will be $C A$, or $u=\frac{3 p s x}{t t}-\frac{p x}{s}$, which was our Solution.
Make as before $A S=x$, perpendicular to the Axis of the Solid $\boldsymbol{r} S$, the Fluxion of which $A B=\dot{x}$ let it be of an invariable Magnitude, and let $B E=j$ be parallel to the Axis; and again raife the Perpendicular $E G=\dot{x}$, and $G F=\dot{y}+\ddot{y}$ will be parallel to the Axis.
Now it will be $p, t:: u=\frac{3 p s x}{t t}-\frac{p x}{s} \cdot \frac{3 s x}{t}-\frac{t x}{s}=\frac{3 \dot{y} x}{\dot{x}}-\frac{\dot{x} x}{\dot{y}}$; which will be equal to n, or $A D$, parallel to the Axis, fuppofing $C D$ to be perpendicular to the fame Axis. Make $C D=m$.

Again it will be $p . s:: u=\frac{3 p s x}{t t}-\frac{p x}{s} \cdot \frac{3 s s x}{t t}-x=\frac{3 \dot{y} \dot{y} x}{\dot{x} \dot{x}}-x ;$ which will be equal to m or $C D$. The Value of this is indeed unneceffary here, but it will be of Ufe in what follows.
Now from the Property of the equicurved Circle $A E F$, producing $B A$ and $B E$ to the other Part of the Circumference, we fhall have $\dot{x \times 2 m+x}=\dot{y \times 2 n-y}$.

And again from the Property of the fame Circle, producing $G E$ and $G F$ to the other Part of the Circumference, we fhall have $\dot{x} \times$ $\overline{2 m+3 \dot{x}}=\overline{y+\ddot{y}} \times \overline{2 n-3 \dot{y}-y}$.
Therefore fubftracting the former Equation from the latter, it will be ${ }_{2} \dot{x} \dot{x}=-2 y y-\ddot{y} y+2 n y-3 y y-\ddot{y} y$.

And thofe Terms being expunged which are infinitely lefs than the others, it will be $2 \dot{x} \dot{x}=-2 \dot{y} \dot{y}+2 \ddot{x}$

And the Value of n being fubftituted, it is $\dot{x} \dot{x}=-\dot{y}+$ $\frac{3 x y y}{\dot{x}}-\frac{x x y}{y}$; that is $\dot{x}^{3} \dot{y}+\dot{x} \dot{y}^{3}-3^{x} \dot{x} \dot{y} \dot{y} \dot{w} \ddot{y}+x \dot{x} \dot{x} \ddot{y}=0$.

This Equation is compofed only of the indeterminate Quantities x, y, and their Fiuxions \dot{x}, \ddot{y}, and the invariable Quantity \dot{x}, and of given Coefficients. And there are two Pairs of Terms in which the lame Letters occur, and Powers of Letters, except that the flowing Quantity exprefs'd by one Letter is converted into a Fluxion, or a Fluxion into

To find a Solid, \&xc.

a Fluent. Thofe Pairs of Terms are $x^{3} y+x x^{3} y$ and $x y^{3}-3 x \dot{y}^{2} y$, arifing only from two generating Terms. For nothing hinders in the whole Equation, but that it may be transform'd, that is, Multiplication being made into $x^{x} \dot{y^{\lambda}}$; the Indices x and λ being rightly determin'd, that by that Means the new Equation arifing may become manageable.

Therefore according to our Theory of fuch Transformations, in the generating Term, from whence arifes the firft Pair of Terms mark'd with one Afterifk, the Number of Dimenfions of the Indeterminate x, to the Number of Dimenfions of the Indeterminate y, that is, $1+x$ will be to $I+\lambda$, as the Coefficient I in the Term $\dot{x}^{3} \dot{y}$ is to the Coefficient 1 in the Term $x \dot{x}^{2} \ddot{y}$. Again in the generating Term, from whence arifes the other Pair of Terms mark'd with two Afterifks, the Number of Dimenfions of the Indeterminate x will be to the Number of Dimenfions of the Indeterminate \dot{y}, that is, $1+x$ will be to $I+\lambda$, as the Coefficient I in the Term $\dot{x} \dot{y}^{3}$ is to the Coefficient - 3 in the Term - $3 x \dot{y}^{2} \ddot{y}$; whence it is $x=-\frac{3}{2}$, and $\lambda=-\frac{3}{2}$, and therefore the Multiplier $x^{x} \dot{y}^{\lambda}=x^{-\frac{3}{2}} \times y^{-\frac{1}{2}}$.

Therefore it will be $-x^{-\frac{1}{2}} \dot{x}^{2} \dot{y}^{-\frac{1}{2}}-x^{-\frac{1}{2}} \dot{y}^{\frac{3}{2}}= \pm q$, which is the generating Equation of the former Equation multiply ${ }^{\text {d }} \mathrm{d}$ by
$x^{-\frac{3}{2}} y^{-\frac{3}{2}}$; where q is a determinate Quantity. Now if you \{quare this generating Equation, (others call it a Fluent) that the Roots may be taken away, there will arife $x^{-1} \dot{x}^{4} \dot{y}^{-1}+2 x^{-1} \dot{x}^{2} \dot{y}+$ $x^{-1} \dot{y}^{3}=q q$, or $\frac{\dot{x}^{4}+2 \dot{x}^{2} \dot{y}^{2}+\dot{y}^{4}}{x \dot{y}}=q q$. Which is the very
Equation of Newton, which 7 . Bernoulli has alfo found, and I myfelf have derived formerly, by the moft eafy Inveltigation of all, that can be hoped for this Equation. Now the Quantity $q q$ may be determined, either from the Polition of the indefinite Axis $\check{Y} S$, the Point A, and the Tangent of the Solid in A being given; or from the Pofition of the Point A, the Center of the equicurved Circle C, and $A D$ parallel to the Axis of the Solid being given.
II. Problem.
II. Problem. To find the Line of fwiftert Defcent.

Let $B C, C D$, be two infinitely fmall Particles in the Curve required. Now this Curve mult be fuch, that the Paffage from B to D, after Craig, n. 26B. the Fall from the Horizontal Line $A 2$, may be perform'd in the p. 755°. fhorteft Time. Therefore a Point is to be found in the Line RS, Det.21.1700. (parallel to $3 A 2$ in fuch a Manner, as that the Differences of the Ordinates $G C, D E$, may be equal) fuch a Point C that this may happen.

Fig. 139,
Now the Velocity in the Point C is fuch, as will be reprefented by $\checkmark L C$, and the Velocity in the Point D will be $\checkmark 2 D$. Therefore $\frac{B C}{\sqrt{L C}}$ is the Time of Defcent along $B C$, and $\frac{C D}{\sqrt{V D}}$ is the Time of Defcent along C D; (by Prop. 54- p. 158. of Newton.) Therefore the Point C muft be fuch, that $\frac{B C}{\sqrt{L C}}+\frac{C D}{\sqrt{2 D}}=$ Minim. Suppofe B and D to be fixt, and make the conftant Lines $G C=D E=m, L C=b, 2$ $D=p$; the indeterminate Lines $B G=u, C E=z$; whence $v^{m^{2}+u^{2}} \frac{b}{b}$ $+V^{m^{2}+z^{2}} \frac{u}{p}=$ Min. Therefore $\frac{u \dot{u}}{b \frac{1}{2} V m^{2}+u^{2}}+\frac{z \dot{z}}{p^{\frac{1}{2}} \sqrt{m^{2}}+z^{2}}$ $=0$. But $\dot{u}=-\dot{z}$, becaufe $u+z$ is equal to a conflant Quiantity. Therefore $\frac{u}{b^{\frac{1}{2}} \sqrt{m^{*}+u^{-}}}=\frac{z}{p^{\frac{1}{V} \sqrt{m^{2}}+z^{2}}}$; whence it appears that $\frac{u}{b^{\frac{1}{2}} \sqrt{m^{2}+u}}$ is equal to a conitant Quantity. Now make the $A b-$ fcils $A L=x$, the Ordinate $L G=y$, and therefore $B G=\dot{x}, G C=\dot{y}$, $B C=\sqrt{\dot{x}^{2}}+\dot{y^{2}}$, and let a be any conftant Line. Then it will be $\frac{\dot{x}}{y^{\frac{1}{2}} \sqrt{\dot{x}^{2}}+\dot{y}^{2}}=\frac{1}{\sqrt{ } a}$; whence $\dot{x} \vee a=\vee y \times \sqrt{\overline{x^{2}}}+\overline{\dot{y}^{2}}$. But in every Curve 'tis $\dot{x}, \sqrt{\dot{x}^{2}+\overline{y^{2}}}::$ Subtangent. Tangent. Therefore the Nature of the Curve required is fuch, that the Subtangent is to the Tangent as V a to $\vee y$. But all know that this is a Property of the Cycloid, who know that the Tangent of the Cycloid is parallel to the Chord of the conterminate Arel in the generating Circle, whofe Diameter is a, and whofe Vertex points downwards.
And with the fame Facility we may find the Curve of fiwifteff Defcent, in any other Hypothefis of Gravity.
III. To find a Curve which a falling Body would defribe in the $\overline{M r . ~ J . ~ M a-~}$ Ihorteft Time, being urged by a Centripetal Force tending to a given chin, n. $35^{8 .}$

The Curve a Falling, $\mathscr{E}^{2} c$.

Point; which Force increafes or decreafes according to any Powet of the Dillance from the Center; when the lowert Point of the Curve is given, and the Altitude in the Beginning of the Fall.

Let the Center of Force be C, from which Center, with the Diftance C B equal to the Alcitude from whence the Body falls, let a Circle $B E G$ be defcribed, and let the Angle $B C G$ be a right Angle. Let A be the loweft Point of the Curve, where it meets the Axis $C B$ at the given Diftance $C A$. 'Tis required to find a Point Q, where the Curve of quickeft Defcent $E \mathcal{Q} A$ mects the Circle $\mathcal{Q} F$ at another given Diftance $C F$. This Problem has two Cafes, one of which depends on the Hyperbola and Circle, the other on the Ellipfis and Circie,
Fig. ifo.
Caf. I. If the Centripetal Force be reciprocally as the Diftance from the Center, let $K L M$ be any rectangular Hyperbola, defcribed with Center C and Afymptote $C B$, which meets the Perpendiculars $B K, A M$, erected upon $B C$, in the Points K, M; but any intermediate Ordinate $F L$, erected at F, in the Point L. Let it be $C D$ to $C G$ as $\checkmark A F L M$ to $\checkmark A B \mathcal{Z} M$, and let $D H$ be perpendicular to $C G$. Then let the Sector $R C B$ be taken to the Area $H D C B$, as the given Hyperbolical Area $A B K M$ to the given Rectangle $C A \times A M$. Then the right Line $R C$ will meet the Circle F Q in the Point Q, which will be in the Curve of fwifteft Defcent E2A.

Now the Point E may be had, from whence the Fall of the Body fhould begin, by taking the Sector $B C E$ to the Area of the Quadrant $B C G$, in the fame Ratio as is the Hyperbolic Area $A B K M$, to the Rectangle contained under $C A$ and $A M$.

Corol. Hence if the right Line $R C$, revolving about the Center C, makes the Sectors R CB proportional to the Areas HDCB, in which the Squares of the Bafes $C D$ are taken in Arithmetical Progreffion; then the right Lines $C R$ will interfect the Curve E Q A at Diftances from the Center $C Q$, which will decreafe in Geometrical Progreffion.

Caf. 2. Now if the Centripetal Force fhould be reciprocally as any other Power of the Diftance from the Center, let $n+1$ be the Index of that Power, (where n may be any Number Integer or Fraction, affirmative or negative) and let $H=C B$ be the greateft Altitude of the Curve required $E Q A, b=C A$ be the leaft Altitude of the fame, and $A=C F$ be any other intermediate Altitude.

In the right Line $C G$ let there be taken $C D$ to $C B$ as $V b^{n}$ to $V H^{n}$, Fig. 141. and alfo $C H$ to $C D$ as $\sqrt{A^{n}-b^{n}}$ to $\sqrt{H^{n}-b^{n}}$. Then Center C, and with the Semiaxes $C D, C B$, let the Ellipfis $B L D$ de defcribed, which let the Ordinate $H L$ meet in L. And draw the right Line $L K$, touching the Ellipfis in L, and meeting the leffer Axis $C D$ produced in K. Then draw $N M$ parallel to the Tangent $K L$, touching the Circle $B E$ $M G$ in M, and meeting $C D$ in N. Laftly, take the Sector $R C B$, which may be to the Area $N M B, L K N$, comprehended between the Circle and Ellipfis and the Tangents of each and the right Líne $N K$, in the Ratio of the Number 2 to the Number n. Then the right Line $R C$ will interfect

The Laws of Attraction.

the Circle F2 in the Point 2, which will be in the Curve of the quickeft Defcent

 E 2 A.Now if the Sector $B C E$ be to the Area $B D G$, intercepted between the Quadrants of the Ellipfis and Circle, in the aforefaid Ratio of 2 to n, that is, the Points L, D, as alfo M, G, coinciding (becaufe of $A^{n}=H^{n}$) the Point E will be that from whence the Fall of the Body fhould begin which defcends to A in the fhorteft Time, and which by its Motion defcribes the Curve EQA, which the right Line $C E$ touches in E, and which $C B$ cuts at right Angles in A.

The Demonftrations of thefe Conftructions, which are derived from the Quadratures of the celebrated Nerwton, and from his Principles of natural Philofophy, (Prop. 39, E c c.) fhall be given on fome other Occafion. Now it is a Problem of another Kind, to defcribe Curves through which Bodies would move from the higheft Point E, which is the Beginning of the Fall, with the fwifteft Defcent to lower Points 2 which are given, when urged by any centripetal Force; the Solution of which Problem I have in my Power. At prefent it may fuffice to have given a general Idea of thefe Curves, and to fhew their Relation to the Quadratures of the Circle and Hyperbola, without which it will hardly be very eafy to conftruct them Geometrically.
IV. We muft lay down thefe three Principles as a Foundation, on which the The Laws *hole Science of Phyficks is to be built. I. That there is a Vacuum, or empty Space, of Atrrac2. That Quantity is divifible in infinitum. 3. That Matter has an attractive Force: tion, \&\% That there is a Vacuum is evident from the Motion of Bodies: From the Nature of continued Quantity, Geometricians have demonitrated the infinite Divifibility of JohnKeill Matter: And Experience informs us, that Matter has an attractive Force. Now p. 77. from the two firft Principles it follows :
Theor. I. That any the fmalleft Particle of Matter may fo occupy any Space tho' ever fo large, that the Diameters of all the Pores or Interftices fhall be lefs than any given right Line, or that all the Particles thall be at a Diftance from one another, which fhall be lefs than any given Interval.
Theor. 2. Two Bodies may be given equal in Bulk, but as unequal as you pleafe in Weight or Denfity, (that is, in Quantity of Matter) in which the Aggregates of the Pores or Interftices fhall be nearly equal.
For Inftance, let there be a cubical Inch of Gold, and another of Air; tho' the Matter in the Cube of Gold be 20000 Times more than the Matter in the Cube of Air ; yet it may be fo order'd, that the empty Spaces in the cubick Inch of Gold fhall be nearly equal to the empty Spaces in the cubick Inch of Air: That is, that the Vacuities in the Gold fhall be to the Vacuities in the Air, as 999999 is to 1000000.

Tbeor. 3. The Particles which conftitute Water, or Air, or any other fuch Fluid, (if they touch one another) are not abfolutely folid, but are compofed of other Particles, containing many Pores and Interftices within themelves.
The leaft Particles of Bodies being abfolutely folid, that is without any Vasuum, may be call'd Particles of the firft Compofition. Little Parts arifing from feveral of thefe Particles growing together may be calls ${ }^{3}$ Particles of the fecond Compofition. Lumps of thefe made by feveral of thefe Parts compounded together may be call'd Particles of the third Compofition; and fo on, till we at latt arrive at Vol. IV.

Z z
Particles

Particles, of which the laft Compofition of Bodies is made, and into which they are refolved again by their firft Reiolution.
That there is an attractive Force in Matter, by which every Particle of Matter attracts to itfelf every other Particle of Matter, and is mutually attracted, was firt difcover'd by Sir IJaca Newton from obferving the Pberomena. In a given Parcel of Matter this Force is, at different Diftances, reciprocally proportional to the Squares of thole Diftances. From hence arifes that Force which we call Gravity, by which all Terreftrial Bodies are urged directly towards the Earth, and is the Weight of Bodies always proportional to the Quantity of their Matter. By extending this attrastive Force of Matter, of which he was the firft Difcoverer, he has molt beautifully explain'd all the Motions of the Planets, and the Appearances of Comets.

After frequently revolving in ny Mind the Divine Difcoveries of this moff fa. gacious Man, Ifell at laft upon this Thought, that a certain Principle might be apply'd, not uniike to this of Neewton's, to the Explaining of the Terreftrial Pbenominena. After Experiments oiten repeated, I perceived there was a certain attractive Force in terreftrial Matter ; from whence the Reafon of many Pbenomens is to be derived. And thefe Thoughts of mine about five Years ago I open'd to Mr. Newton, and I underitood from him, that he had long ago obferved the fame Things that I had found. Mr. Newton propoted fome Queries relating to this artractive Force, at the End of his Opticks, publifhed in Latin about two Years ago. Now as it cannot be expected that that great Man thould proceed fill to improve thefe Studies, both by reafon of his Age and other Bufineis; I thought it would not be amifs if I Thould purfue his Steps herein, tho' at a great Diftance from him. At prefent I fhall barely propofe fome Theorenss, which I may hereater farther enlarge upon, and give their Demonftrations in a juft Volume.
Theor. 4. Befides that attractive Force, by which the Bodies of the Planets and Comets are retain'd in their proper Orbits, there is allo another Power in Matter, by which the feveral Particles of which they are compofed attract one another, and are mutually attracted. Which Power decreales in a greater than a duplicate Ratio of the increafing Diftance.
This Theorem may be proved by a Multitude of Experiments. But the Ratio in which this Power is diminif'd, when the Particles recede from one another, whether it be a triplicate, quadruplicate, or any other Ratio of the increafing Diftances, which is greater than the Duplicate, cannot fo well be known by Experiment. Yet perhaps a Time will come, when by a more accurate and diiigent Enquiry it may be difcover'd.
Theor. 5. If a Body confifts of Particles, each of which is endued with an attractive Force decreafing in a triplicate, or more than a triplicate Ratio of the Diftances ; the Force by which a Corpufcle is urged by that Body, in Contact itfelf, or at an infinitely fmall Diftance from Contact, will be infinitely greater, than if that Corpufcle were placed at a given Diftance from the fame Body. See Prop. 80, and 91, of Nereton's Principles.
Tbeor. 6. The fame Things being fuppofed, if that attractive Force at an affignable Diftance has a finite Ratio to Gravity, the fame will be infinitely greater than the Force of Gravity in Contact, or at an infinitely fmall Dif tance.

The Lawes of Attraction.

Theor. 7. But if in Contact the attractive Force of the Bodies has a finite Ratio to Gravity, the fame at every affignable Diftance is infinitely lefs than the Force of Gravity, and will therefore vanifh.
Theor. 8. The attractive Force wherewith all the Particles of Matter are endued in Contact, exceeds the Force of Gravity almoft immenfely ; yet is not infinitely greater than the Force of Gravity ; therefore in a given Diftance that Force will vanifh.
Therefore this Force being fuperadded to Matter, is only diffufed thro' Spaces that are vartly little. At greater Diftances it is nothing at all. Therefore the Motions of the Heavenly Bodies, which are feparated from one another at very great Ditances, will not at all be difturbed by this attractive Force, but will continually perform their Courfes in the fame Manner, as if Bodies had no fuch Force.
Theor. 9. If any Corpufcle touch a Body, the Force by which that Corpufcle will be urged, that is, the Force by which it adheres to the Body, will be proportional to the Quantity of Contact. For the Parts that are any Thing remote from the Contact will contribute nothing to the Coherence.
Therefore various Degrees of Coherence will arife according to the various Contact of the Particles. But thofe Forces of Coherence will be greateft of all, when the Superficies are plain by which the Bodies touch one another. In which Cafe, when other Things are alike, the Force by which a Corpufcle coheres with others, will be as the Parts of the Superficies that touch one another.
Hence appears the Reafon, why two Marble-ftones that are exactly polifhed, and touching one another according to plain Superficies, cannot be pull'd directly from each other, unlefs by a Weight that much exceeds the Gravity of the incumbent Air.
Hence may be derived a Solution of that moft celebrated Problem, concerning the Cohefion of Matter.
Theor. 10. Thofe Corpufcles are moft eafily feparated from one another, the Contacts of which with others are the feweft and the leaft. Such are the Contacts of Globular Corpufcles that are of an infinitely little Magnitude.
Hence is given the Reafon of Fluidity.
Theor. II. The Force by which any Corpufcle is attracted to another Body which is very near it, does not change its Quantity, whether the Matter of the attracting Body is increafed or diminifhed, the Denfity of the Body remaining the fame, and alio the Diftance of the Corputcle.
For fince the attracting Forces of the Particles are diffufed only through very fmall Spaces; it is plain that the remoter Parts at C, D, and E, contribute nothing to the Attraction of the Corpufcle A. Therefore the Corpulcle will be attracted towards B with the fame Force, whether thefe Parts are prefent or not, or others are annexed to them.
Theor. 12. If the Texture of any Body be fuch, that Particles of the laft Compofition are a little removed from their original Contact by any external Force, fuch is a Weight comprefing them, or a Blow proceeding from another Body, nor do they pafs into new Contacts ; the Particles mutually approaching by the attractive Force will foon return to their original Contacts. But the lame Contacts and Pofitions returning of the Particles that compofe any Body, the fame Figure alfo of the Body will return; and therefore by the attractive Force Bodies may again recover their former Figures which they have loft.

The Lawes of Attraction:

Hence a Reafon may be given for Elafticity. For whereas Bodies impinging againft each other, by their elaftic Force mutually rebound from one another; from the attractive Force of Bodies, (as is demonitrated in my Phyfical Lectures) a Refilition from one another ought thence to arife.

Theor. 13. Now if the Texture of a Body be fuch, that the Particles being removed from their former Contaغts by an impreffed Force immediately come into others which are of the fame Degree, that Body will not reftore itfelf to its former Figure.
Hence it may be underftood, of what Texture foft Bodies fhould be, or in what the Softnefs of Bodies confifts.

Theor. 14. The Particles of Matter may be endued with different attractive Forces, according to their different Structure and Compofition; the Attraction for Inftance will not be fo ftrong when a Particle of a given Magnitude is perforated with feveral Pores and Paffages, as If it were entirely folid and without any Vacuity.
Theor. 15. The attractive Forces of perfectly folid Particles very much depend upon their Figures.
For if any fmall Particle of Matter were form'd into a circular Plate of an indefinitely fmall Thicknefs, and a Corpufcle were placed in the right Line paffing through the Center, and were put at a Plain of a perpendicular Circle, and the Diftance of the Corpufcle was equal to to a tenth Part of the Semidiameter of the Circle ; the Force by which the Corpufcle is urged will be thirty Times lefs than if the attracting Matter fhould put on the Form of a Sphere, and the Virtue of the whole Particle were diffufed as it were from one Phyfical Point. Alfo the fame circular Plate would attract a Corpufcle more ftrongly to itfelf than another Particle of the fame Weight, which fhould be formed into a thin and long Cylinder.

Tbeor. 1.6. Salts are Bodies whofe Particles of the laft Compofition are endued with a great attractive Force, among which Particles however many Vacuities are interfperfed, which are pervious to the Particles of Water of the laft Compofition: Which therefore being ftrongly attracted by the faline Particles, rufh upon them with Violence, and disjoin them from their mutual Contact, and diffolve the Coherence of the Salts.
Ibeor. 17. If two Corpufcles mutually approach to each other, with attractive Forces decreafing in a triplicate or more than triplicate Ratio of their Diftances; their Velocity when they impinge upon one another will be infinitely greater than when they are at a given Diftance from one another. See Newt. Prin. Pr. 39.
Theor. 18. The Magnitude of a Body which is heavier than Water may be fo far diminifh'd, that at laft it may float fufpended in the Water, and not defeend by vertue of its Gravity.
Hence appears the Reafon, why the Particles of Salt, Metal, and others of the like Kind, being reduced to the fmalleft Particles, hang as it were fufpended in their proper Menfitur.

Tbeor. 19. Greater Bodies approach to one another with lefs Velocity than leffer Bodies.
For the Force by which the Bodies A and B approach to one another, belongs only to the Particles that are neareft; for the more remote have no. Force at all.

The Laws of Attraction.

Therefore a greater Force is not applied to the moving of the Bodies A and B, than to the moving of the Particles c and d. But the Velocities of Bodies that are moved with the fame Force, are reciprocally proportional to thofe Bodies. Whence the Velocity with which the Body A tends towards B, will be to the Velocity with which the Particle c, not connected with the Body, would tend towards the fame B, as the Particle c to the Body A. Therefore the Velocity of the Body A is much lefs than the Velocity of the Particle c would be, if at Liberty from the Body.
Hence it comes to pafs, that the Motion of the greater Bodies is fo llow and languid of its own Nature, that it is commonly hinder'd by an ambient Fluid, and other Bodies that are round about it. But in the fmaller Corpufcles the Virtue is vigorous, and very many Effects are produced by them. So much is the Energy greater in the fmaller Bodies, than in the greater.
Hence appears the Reafon of that Chemical Axiom, that Salts do not act but when in Solution.
Theor. 20. Two Corpufcles not touching one another may be placed fo near, that the Force by which they affeet one another, may much exceed the Force of Gravity.
Theor. 21. If a Corpufcle placed in a Fluid is equally attracted on all Sides by the furrounding Particles, no Motion will thence arife to the Corpufcle. But if it be urged more by fome Particles, and lefs by others, the Corpufcle will tend that Way where the greateft Attraction is. And the Motion produced will anfwer the Inequality of Attraction, or in a greater Inequality the Motion will be greater, but lefs in a leffer Inequality.
Theor. 22. Corpufcles floating in a Fluid, and attracting one another more than the intermediate Particles of the Fluid; having difpel'd the Particles of the Fluid they will approach to one another with that Force, by which their mutual Attraction exceeds the Attraction of the Particles of the Fluid.
Theor. 23. If any Body is placed in a Fluid, whofe Parts more attract the Particles of the Fluid, than the Particles of the Fluid are attracted by one another ; and if in the Body there are many Paffages and Pores that are pervious to the Particles of the Fluid; that Fluid will foon diffufe iffelf thro' thefe Interfices. And if the Connexion of the Parts of the Body is not fo firm, but that it may be overcome by the Violence of the rufhing Particles, a Diffolution of the immerged Body will thence arife.
Hence three Things are required, that a Menftruum may be fit for diffolving a given Body. 1. That the Parts of the Body may more attract the Particks of the Menfruum, than they are attracted by one another. 2. That the Body may have Pores and Interfices open and pervious to the Menfruum. 3. That the Coherence of the Particles conftituting the Body may not be fo great, but that it may be overcome by the Violence of the rufhing Particles of the Menfruum. Hence it-is alfo plain, that the conftituent Particles of Spirit of Wine are more attracted by one another, than by the Particles of a faline Body immerfed in Spirit of Wine.
Theor. 24. If the Corpufcles floating in a Fluid, and attracting one another, are Elaftic, after Congrefs they will rebound from one another. And then other Corpufcles impinging again, will be again reflected. From whence there will be innum rable Conflicts with other Corpufcles, and continual Reboundings. But by the attractive Force the Velocity of the Corpufcles will continually increafe, and the inteftine Motion of the Parts will be apparent even to Senfe.

The Laws of Attraction.

Now as the Corpufcles may attract one another either more ftrongly or more weakly, according to the different Elafticity they are endued with, thefe Motions will be various, and will become fenfible in different Degrees and at different Times.
Theor. 25. If Corpufcles that attract touch one another, no Motion will arife; for they cannot come nearer than Cuntact. If they are feparated from one another at a very fmall Diftance, a Motion will arife. But if they are farther from one another, they will not attract one another with a greater Force than the intermediate Particles of the Fluid, and fo no Motion will be produced.
On thefe Principles depend all the Pbenomena of Fermentation and Effervefcence. Hence the Reafon appears, why Oyl of Vitriol ferments and bubbles, by the Infufron of a little Water. For the faline Corpufcles are fomething removed from mutual Contact by the Affulion of the Water; and as they attract one another more forcibly than the Particles of Water, and as they are not equally attracted on all Sides, a Motion muit thence neceffarily arife.

Hence alfo the Reafon appears, why fo great an Ebullition is produced, when Filings of Steel are fuperadded to the forefaid Mixture. For the Particles of Steel are endued with a great Elafticity, whence a ftrong Reflexion arifes. And hence we may fee, why certain Menftrua act with a greater Force, and diffolve any Body fooner, if they are fomething diluted with Water.

Theor. 26. If Corpufcles that attract one another are without any Elaftic Force, they will not rebound from one another, but will compofe Lumps or Congeries of their Particles. Hence a Coagulum or Curdling is produced. And if the Gravity of the accumulated Particles exceeds the Gravity of the Fluid, a Precipitation or Subfiding will fucceed. Alfo a Precipitation may arife from the Gravity of the Menftruum being either increafed or diminifh' d, in which the Corpufcles floated.
Theor. 27. If the Figures of the attracting Corpufcles, and thus floating in a Fluid, be fuch, as that in fome of their given Parts they are endued with a greater attractive Force than in others, and alfo a greater Contact is in the fame, thofe Corpufcles will go together into Bodies having given Figures, whence Chryftallizations will be produced. And the Figures of the compounding Corpufcles may be determin'd by Geometry, from the Figure of the Chryftal being given.
Theor. 28. If the Corpufcles are more attracted by the Particles of the Fluid than by one another; they will be made to recede as if they fled from one another, and they will foon be diffufed through all the Fluid.
Ibeor. 29. If any Corpufcle intervenes between two Particles of a Fluid, the two oppofite Faces of which are endued with very great attractive Forces; this intervening Corpufcle will conjoin the Particles of the Fluid to one another ; and many Corpufcles of this Kind difperfed through the Fluid will fix all the Particles into a firm Body, or will reduce the Fluid into folid Ice.
Theor. 30. If any Body fhould emit a very great Plenty of Efluvia, the attractive Forces of which are very ftrong; when thefe Effuvia approach to any light Body, their attractiveVirtues will at laft overcome the Gravity of the lighter Body ; and the Effluvia will attract that Body upwards to themfelves; and as the Effiuvia are much more denfe in leffer Diftances from the emitting Body than in greater, the light Body will always be urged towards the denter Effuvia, till
at laft it adheres to the Body itfelf that emits the Effuvia. Hence many of the Pbenomenc of Electricity may be explained.
Perhaps it may be objected againit this Doctrine of ours concerning attractive Forces, that if this Power of Attraction was in all Matter of every Kind, the more panderous Bodies having more Matter within a given Space ought to attract mott, or more than lighter Bodies, which is contrary to Experience. But this Objection may eafily be anfwer'd. For Particles of the lant Compofition, (to which only the attractive Virtue is imputed) being placed very thick near one another, may make a Body ponderous, tho' they may be more rare among themfelves than thofe Particles, which conftitute a light Body of the laft Compofition, being more remote from one another, and having more and wider Vacancies.
There are many other Pbenomena of Nature, which feem to me capable of being explain'd from the fame Principles; as the Aicent of the Sap in Plants and Trees, the conitant and determinate Figures of Leaves and Flowers, and their fpecifick Virtues, छc. And many Things alfo, which daily occur in the Animal Body, efpecially which have a Relation to the Motion of the Fluids and the secretions, and depend on the fame Properties of Matter; and hence the Theories of Difeafes and the Effects of Medicines may be eafily derived.
V. The learned Dr. Halley communicated a Theorem to me, by which the Law of the Centripetal Force may be exhibited in finite Quantities, which was fhew'd him by M. de Moivre, who faid that Sir Ifaac Nereton had before found a Theorem which was like this. Now as the Demonftration of this Theorem is very eafy, I had a Mind to communicate it to the Publick, with fome other Thoughts on the fame Subjects.
Theorem. If a Body moves in any Curve by Means of a Centripetal Force tending to n, any Center; in every Point of the Curve that Force will be in a Ratio compounded of the ${ }^{p}$ diret Ratio of the Difance of the Body from the Center of Force, and the reciprocal Ratio of the Cube of a Perpendicular let fall from the Center upon the right Line toucbing the Curve in the fame Point, drawn into the Radius of Curvature belonging to the fame Foint.
Demonffration. Let QAO be any Curve, which is defcribed by the Motion of a Fig. 145.. Body, attracted by a Centripetal Force tending to the Point S. And let AO be an Arch which is defcribed in any the leaft Time, P_{m} its Tangent, AR the Radius of ${ }_{a}$ Circle of equal Curvature, that is, the leaft Part of whofe Periphery coincides with the Arch AO. And let SP be a right Line falling perpendicularly from the Point S upon the Tangent. Draw Om and On parallel to SA and SP. And let $O m$ denote the Force by which the Body in A is urged towards S. The Force by which Body recedes perpendicularly from the Tangent will be as On ; that is, the Force tending towards R , and cauling the Body, moving with the fame Velocity as before, to defcribe a Circle equicurved to the Arch AO, will be to the Force tending toward's S, by which the Body moves in the Curve $A O$, as O_{n} to $\mathrm{O} m$, or becaufe of equiangled Triangles, as S P to SA. But the Centripetal Forces of Bodies moving in Circles are as the Squares of the Velocities applied to the Radii, by Cor. of Theor. 4. of Nerwton's Principles. But the Velocity is reciprocally as SP , or directly as $\frac{1}{\mathrm{SP}}$ and therefore the Square of the Velocity will be as $\frac{1}{S P} q_{q}$. Therefore the Force at $\mathrm{O} n$, or the Force with which the Body could move
in an equicurved Circle, will be as $\frac{1}{S P q \times A R}$. Now it has been fhewn, that it is $S P$ to $S A$, fo is the Force tending towards R, by which the Body may move in an equicurved Circle, to the Force tending towards S. But the Force tending towards R is as $\frac{1}{S P q \times A R}$, and therefore fince it is $S P . S A:: \frac{1}{S P q \times \overline{A R}}$. $\frac{\mathrm{SA}}{\mathrm{P} \times \mathrm{AR}}$, the Force tending toward S , will be as $\frac{\mathrm{SA}}{\mathrm{SPC} \mathrm{\times AR}}$. Q.E.D. Fig. 146. Corol. If the Curve QAO is a Circle, the Centripetal Force tending towards S will be as $\frac{S \mathrm{~A}}{\mathrm{SP} C}$. And therefore if the Centripetal Force tends towards S a Point fituate in the Circumference, it will be (by 32 of the Third) Ang. $\mathrm{PAS}=\mathrm{AQS}$; and therefore becaufe of fimilar Triangles ASP, ASC, it will be AQ A AS:; $A S . S P$, whence $S P=\frac{A S q}{A Q}$, and $S P c=\frac{A S c c}{A Q c}$, whence $\frac{S A}{S P c}=\frac{S A \times A Q c}{A S c c}$ $=\frac{A Q_{c}}{A S q}$, that is, becaure of $A Q$ being given, the Force will be reciprocally as $A S q c$.
Fig. 147. Let DAB be an Ellipfis, whofe Axis is DB, and Foci F and S, AR, OR, two Perpendiculars to the Curve very near each other. Draw KL, OT, perpendicular to SA , and KM perpendicular to $O R$. Becaufe 'tis $S A . S K:: F A+S A$. FS, (by Prop. 3. El. 6.) that is, in a given Ratio, the Fluxions of SA, SK, that is, $\mathrm{AT}, \mathrm{K} k$, will be proportional to SA, SK. And it is (by Propofition 6. of Part 4. of Milhs's Conic Sections) AL $=\frac{r}{2}$ the Latus Rectum $=\frac{1}{2} \mathrm{~L}$. Moreover becaufe of KA parallel to SP , 'tis Ang. ASP $=\mathrm{KAL}=$ TOA, becaufe the Angle TAO is the Complement of each to a right Angle. Wherefore KA. AL :: SA . SP, whence $S P=\frac{L}{2} \times \frac{S A}{K A}$, and $K A=\frac{L \times S A}{2 S P}$. Again, becaure of equiangled Triangles KMk, GPS, and OTA, SPA.

It will be KM. AO :: $\mathrm{AP}_{q} . \mathrm{SAq}_{q}:: S \mathrm{~S} q-\mathrm{SPq} \cdot \mathrm{SA}_{q}:: \mathrm{SA} q-\frac{\mathrm{L}_{q} \times \mathrm{SAq}_{q}}{4 \mathrm{AKq}}$. SAq :: $4 \mathrm{AK} q-\mathrm{Lq} \cdot 4 \mathrm{AK} q$. Whence $\mathrm{L} q .4 \mathrm{AK} q::(\mathrm{AO}-\mathrm{KM} . \mathrm{AO}::)$ $\mathrm{AK} . \mathrm{AR}$; and therefore $\mathrm{AR}=\frac{4 \mathrm{AK} q}{\mathrm{Lq}}$. And by the fame Way of Reafoning in the Hyperbola, the Radius of Curvature will be found $\frac{4 \mathrm{AK} q}{\mathrm{~L} q}=\frac{\mathrm{L} \times \mathrm{SA} c}{2 \mathrm{~S} c}$.
Fig. 148.
But in the Parabola the Calculation will be eafier. For becaufe of the Subnormal being given, 'tis always $\mathrm{K} k=\mathrm{A} T$ equal to the Fluxion of the Axis : and the Triangles $\mathrm{K} k \mathrm{M}$, A TO, SPA, A LK , are equiangular, whence $\mathrm{KM} . \mathrm{K} k::$ AP $S A$; alfo it is AT (Kk).AO $::$ AP. SA, whence $K M . A O:: A P q$. SA $q::$ $S A q-S P q . S A q$, whence it will be SPq.SAq::AO-KM.AO: $K A . A R$, and therefore $A R=\frac{S A q \times A K}{S P q}$. But $A L=\frac{1}{2}$ the Latus Rectum

The Laws of the Centripetal Force

$=\frac{L}{L}$, and AK. AL: S SA.SP; wherefore it will be $\frac{L_{2}}{2} \times \frac{S . A}{A K}$ $=S \mathrm{P}$, and $\mathrm{SP}_{q}=\frac{\mathrm{L} q \times \mathrm{SA} q}{4 \mathrm{AKq}}$. Therefore it is $\mathrm{AR}=\frac{4 \mathrm{AK} \mathrm{K}_{c}}{\mathrm{~L}_{q}}$, or becaure it is $A K=\frac{L \times S A}{2 S P}$, it will be $A R=\frac{L \times S A c}{2 S P C}$.

And hence arifes a moft eafy Conftruction, for determining the Radius of Curvature in any Conic Section. For let A K be perpendicular to the Section meeting the Axis in K ; from K upon $\mathrm{A} K$ let the Perpendicular H K be erected, meeting A S produced in H. From H let H R be erected perpendicular upon A H, and AR will be the Radius of Curvature. In the Parabola the Conftruction becomes ftill fomething more fimple. For becaufe by the Nature of the Parabola 'tis $S A=S K$, and the Angle A K H is a right one, S will be the Center of a Circle paffing through A K H. Whence the Radius of Curvature is found by producing SA to H , that $\mathrm{SH}=\mathrm{SA}$, and at H erecting the Perpendicular HR. Then R will be the Center of the Circle that coincides moft intimately with the Parabola in A.
The Centripetal Force tending to the Focus of the Conic Section, is which the Body moves, is reciprocally proportional to the Square of the Diftance. For becaufe $\mathrm{AR}=\frac{\mathrm{L} \times \mathrm{SAc}_{\mathrm{A}}}{2 \mathrm{SP}_{c}}$ it will be $\frac{\mathrm{AR}}{\mathrm{SPc} \times \mathrm{AR}}=$
$\frac{S A \times 2 S P t}{S P c \times L \times S A c}=\frac{2}{L \times S A q}$. That is, becaufe of $\frac{2}{\mathrm{~L}}$ being given, the Centripetal Force will be as $\frac{1}{S A q}$.
Let B A D be an Ellipfis, which the right Line G E touches in A. And let S P paffing through the Center of the Ellipfis, and K A paffing through the Point of Contact, be both perpendicular to the Tangent. S P $\times K$ A will be equal to a fourth Part of the Figure of the Axis, or it will be equal to the Square of the leffer Semiaxis, $=B O \times D E$. For becaufe of equiangular Triangles GBO, GLA, GAK, GPS, and GDE,

$$
\begin{aligned}
& \text { SP.S G } \because: \text { BO.GO. } \\
& \text { SG.DG } \because: B G \cdot L G: G O \cdot G A . \\
& \text { DG.DE }:!
\end{aligned}
$$

Whence SP.DE::BO.AK, and SP $\times A K=D E \times B O=\frac{1}{\div} \times S B$.
Hence if a Body moves in an Ellipfis with a Centripetal Force tending to the Center of the Ellipfis, that Force will be directly as the Diftance. For it is $\frac{\mathrm{SP} c \times 4 \mathrm{AK} c}{\mathrm{Lq}}=$ to a given Quantity, becaufe $S \mathrm{P} \times \mathrm{AK}$ is a given Quantity. Therefore a Force as $\frac{S A}{S P C \times A R}$ will be as the Diftance $S A$.
In Fig. 147. from the other Focus F letting fall a Perpendicular F I upon the Tangent; becaufe of fimilar Triangles S A P F F A I, it will be

Fig. 147.
Fig. 149.

Fig. 150.
$S A \cdot S P:: F A \cdot F I=\frac{S P \times F A}{S A}$. Whence it will be $S P \times F I=$ $\frac{S P q \times F A}{S A}$ equal to the Square of the leffer Semiaxis. Whence if the greater Axis be call' d, and the leffer $2 d$, it will be $S P q=\frac{d d \times S A}{b-S A}$, and $S P=\frac{d \times v S A}{\sqrt{b}-S A}$.
But in the Hyperbola it is $S \mathrm{P}=\frac{d \times V \mathrm{SA}}{\sqrt{b+S A}}$.
In the Parabola it is $S P=V d \times S$ A, fuppofing its Latus rectum $4 d$. Becaufe it is TA q. TO $q:: \mathrm{AP}_{q}$. $\mathrm{SP}_{q}:: \mathrm{SA}_{q}-\mathrm{SP}_{q} . \mathrm{SP}_{q}::$ SAq- $\frac{d d S A}{b-S A} \cdot \frac{d d S A}{b-S A}:: S A-\frac{d d}{b-S A} \cdot \frac{d d}{b-S A}:: b \mathrm{SA}-S A q$ - $d d . d d$, it will be $\sqrt{6 \text { SA-SA } q-d d} . d::$ TA. T O. And as it is $T A=S^{\circ} A$, it will be TO $=\frac{d S^{\circ} A}{\sqrt{b S A-S A q-d}}$.
Now let Q A O be any Curve, one of whofe leaft Arches is A O, the Tangents in the Points A and O are A P and O , the Radius of Curvature $A R$, and Perpendiculars upon the Tangents are $S P$ and $S p$. It will be $\frac{S \mathrm{~A} \times \mathrm{TA}}{f \mathrm{P}}=\mathrm{AR}$. For becaufe of fimilar Triangles it is $f \mathrm{P}$. AO::PA.RA. And AO.TA ::SA.PA; whence ex aquo it will be $f \mathrm{P}$. TA or $\mathrm{SA}^{\prime}:$: SA.RA. But it is $f \mathrm{P}=\mathrm{S}^{\prime} \mathrm{P}$; wherefore it will be RA $=\frac{S A \times S A}{S P}$.

Hence if the Diftance S A be drawn into its Fluxion, and divided by the Fluxion of the Perpendicular, we fhall have the Radius of Curvature. By which Theorem the Curvature is eafily determined in Radial Curves or Spirals. For Example. Let A Q be the Nautical Spiral ; becaufe the Angle SAP is given, alfo the Ratio of S A to $S P$ will be given. Let that Ratio be a to b. Then it will be $\mathrm{SP}=\frac{b S \mathrm{~A}}{a}$, and $\mathrm{S} \mathrm{P}=\frac{b \dot{S A} \mathrm{~A}}{a}$, and $A R=\frac{S A \times S A}{S P}=\frac{a S A}{b}$. Whence it plainly appears, that the Evolute of the Nautical Spiral is the fame Spiral in another Pofition.
Becaufe $A R=\frac{S A \times S A}{S P}$, it will be $\frac{S A}{S P 6 \times A R}=\frac{S P}{S P 6 \times S A}$. And

The Larws of the Centripetal Force:

And from hence again from the given Relation of S A and SP, the Law of the Centripetal Force will eafily be found.
Example. Let V A B be an Ellipfis whofe Focus is S, the greater Axis $\mathrm{V} B=b$, the leffer Axis $2 d$, the Latus rectum $2 R$. And let $\mathrm{V} a \mathrm{Q}$ be another Curve fo related to this, that the Angle V S A may be always proportional to the Angle V S a, and let $\mathrm{S} a=\mathrm{S} A$. The Law of the Centripetal Force tending to S is required, by which the Body may move in the Curve $\mathrm{V} a \mathrm{Q}$.
Becaufe the Angle V S A is to V S a in a given Ratio; the cotemporary Increments of thefe Angles will be in the fame Ratio, and let this be the Ratio of m to n. Whence it will be ot $=\frac{n \times \mathrm{OT}}{m}$. But it is $\mathrm{OT}=$ $\frac{d \mathrm{SA}^{\circ}}{\sqrt{b \mathrm{SA}-\mathrm{SAq-d} d}}$; whence ot $=\frac{n d \mathrm{SA}}{m \sqrt{b} \mathrm{SA}-\mathrm{SA} q-d d}$.
Now becaufe it is $\mathrm{SA} q+\mathrm{SPq} . \mathrm{SP} q:: t a \times t a+o t \times \circ t . o t \times$ of $:: \mathrm{SA} q+\frac{n^{2} d^{2} \mathrm{SA} q}{m^{2} \text { inbSA-SAq-d }} \cdot \frac{x^{2} d^{2} S \mathrm{~A} q}{m^{2} \text { inbSA-SAq-d }}:: \mathrm{I}$ $+\frac{n: d^{2}}{m^{2} \text { in } b S A-S A q-d d} \cdot \frac{n^{2} d^{2}}{m^{2} \operatorname{in} b S A-S A q-d^{2}}:: m^{2} b S A-$ $m^{2} S A q-m^{2} d^{2}+n^{2} d^{2} \cdot n^{2} d^{2}$. Whence it will be $\sqrt{m^{2} b S A-m^{2} S A q-m^{2} d^{2}+n^{2} d^{2}} \cdot n d:: \mathrm{SA} . \mathrm{S} \mathrm{P}$, and therefore $S \mathrm{P}=\frac{n d S \mathrm{~A}}{\sqrt{m^{2} b S A-m^{2} S A q-m^{2} d^{2}+n^{2} d^{2}}}$. Now that the

Fluxion of this may be had, for $m^{2} b S A-m^{2} S A q-m^{2} d^{2}+n^{2}$ d^{2} let x be wrote, and it will be $S P=\frac{n d S A}{\sqrt{x}}$, and $\mathrm{SP} c=\frac{n^{3} d^{3} S A c}{x^{\frac{3}{2}}}$; and then $\dot{x}=m^{2} b \mathrm{SA}^{\circ}-2 m^{2} \mathrm{SA} \times \mathrm{SA}$, and $\mathrm{SP}=n d \mathrm{~S}^{\circ} \mathrm{A} \times x^{-\frac{x}{2}}$
$-\frac{1}{2} \times \frac{n d \mathrm{~S} \mathrm{~A} \dot{x}}{x \frac{3}{2}}$ And reducing the Fractions to the fame Denominator it will be $\dot{S P}=\frac{n d \dot{S A} x-\frac{1}{2} n d S A \dot{x}}{x \frac{3}{2}}$. And in the Numerator inttead of x and x putting their Values, and reducing to Order, it will be $\dot{S P}=\frac{n d S \mathrm{~A} \times \frac{1}{2} m^{2} b S \mathrm{~A}-m^{2} d^{2}+n^{2} d^{2}}{x^{\frac{3}{2}}}$. Whence it will be $\frac{S_{P}}{\mathrm{SP} c \times S A}=\frac{\frac{1}{2} m^{2} b \mathrm{SA}-m^{2} d^{2}+n^{2} d^{2}}{n^{2} d^{2} S A c}$. But $\frac{S P}{S P C \times S A}$ is as the centripetal Force; therefore this Force will beas $\frac{\frac{1}{2} m^{2} b S A-m^{2} d^{2}+n^{2} d^{2}}{n^{2} d^{2} S A c}$;
or becaure of the givesin $n^{2} d^{2}$ in the Denominator, this: Force will bed as $\frac{\frac{1}{\frac{1}{2}} m^{2} b \mathrm{SA}-m^{2} d^{2}+n^{2} d^{2}}{\mathrm{SA} \mathrm{A}}$. Or inftead of d^{2} putting $\frac{b R}{2}$, the Force will be as $\frac{\frac{1}{2} m^{2} b S A-\frac{1}{2} m^{2} b \mathrm{R}+\frac{1}{2} \cdot n^{2} b \mathrm{R}}{\mathrm{SAc}}$, or becaufe of the given $\frac{b}{2}$, as $\frac{m^{2} \mathrm{SA}-\mathrm{R} m^{2}+\mathrm{R} n^{2}}{S A c}=\frac{m^{2}}{S A q}+\frac{\mathrm{R} n^{2}-\mathrm{R} m^{2}}{S A_{c}}$. All which exactly coincide with what is deliver'd by Sir If. Newton, in Prop. 44. of his Primcipia, concerning the Centripetal Force of a Body moving in the faine Curve.

Becaufe the Centripetal Force tending to the Point S, by which a Body may move in a Curve, is always as $\frac{S_{P}}{S P C \times S A}$; hence from the Law of the Centripetal Force being given, the Relation of S A and S P may be found, and therefore by the Inverfe Method of Tangents the Curve may be exlibited, which fhall be defrribed by a given Centripetal Force.

For Inftance, let the Force be reciprocally as any Dignity m of the Diftance; that is, let $\frac{S P}{S P C \times S A}=\frac{b}{a^{2} \times S^{m}}$. It will be $\frac{S P}{S P C}=$ $\frac{b S^{\circ}}{a^{2} S A^{m}}$; and taking the Fluents of thefe Fluxions, it will be $\frac{1}{2} \mathrm{SP}^{-2}=$
 tiplying both the Numerator and the Denominator of the Fraction by S $A^{m}-1$, and inftead of $\frac{m n-1}{2} a^{2}$ putting d^{2}, it bccomes $\frac{d^{2} S A^{m-1}}{d \mp \& A^{m i n}}$
$=\mathrm{SP} q$. Therefore $\mathrm{S} \mathrm{P}=\frac{d \sqrt{ } \mathrm{~S} \mathrm{~A}^{m-1}}{\sqrt{ } b+8 S \mathrm{~A}^{m-x}}$
Now if the conftant Quantity $e=0$, it will be $S P=\frac{d \downarrow S A^{m-1}}{\checkmark b}$
Thus if the Force be reciprocally as the quare of the Diftance, it may be put $S P=\frac{\checkmark d^{2} S A}{\sqrt{ } b}$, and the Curve will be a Parabola, whafe Latus Rectum is $\frac{4 d d}{b}$. Or it may be $S \mathbf{P}=d \times \frac{V S A}{V,-A}$, and the Curve will be an Ellipfis, Or laftly, it may be $S P=d \times \frac{v S A}{\sqrt{b+S A}}$, and the Curve becomes an Hyperbola.

If the Force is reciprocally as the Cube of the Dirtance, it may be fuppored that $S \ddot{\mathrm{P}}=\frac{d S \mathrm{~A}}{b}$, and the Curve becomes the Nautical piral. Or it may be $S \mathrm{P}^{i}=\frac{d S A}{\sqrt{6-C S A^{2}}}$, and the Curve will be the fame as that, whore Confruction Sir If. Nepeten has derived from the Sector of the Hyperbola Or it may be $S \mathrm{P}=\frac{d S A}{\sqrt{b+e S A^{2}}}$, the Conftruction of which
Curve Neweton has deliver'd by the Sectors of the Ellipfis, Cor. 3. Prop. 1. Eib. 1. Princip.

If the Centripetal Force be reciprocally as the Diftance, the Relation between S A and SP cannot be determined by an Algebraical Equation; yet the Curve may be conftructed by the Logarithmic Line, or by the Quadrature of the Hyperbola. For it is then $S P=\frac{d}{\sqrt{6-L \cdot S A}}$. where L.S A denotes the Lagarithm of S A.

All thefe Things follow froin the now fo much celebrated Method of Fluxions, of which ir Ifaac Nerwton, without any Doubt, was the firft Inventer, as will eafily be evident to any one, that fhall read thofe Epiftles of his, which were firft publifhed by Dr. Wallis. Yet afterwards the fame Arithmetick was publih'd by Mr. Leiknitz in the AIFa Eruditorum, with only changing the Name, and the Manner of Notation.

Now let a Body move in the Curve Q A O, by Means of a Centripetal Force tencing to S; and let the Velocity of the Body in A be called C. Now the Velocity with which a Body at the fame Diftance, and with the fame Centripetal Force would defcribe a Circle, may be call'd c. It is plain from the firft Theorem, that if $S A$ reprefents the Centripetal Force tending to S, the Centripetal Force tending to R, by Means of which the Budy with the Velocity C will defrribe a Circle whofe Radius is A R, will be reprefented by SP. But the Centripetal Forces of Bodies defcribing Circles, are as the Squares of the Velocities apply'd to the Ractii of the Circles. Thercfore it will be $S \mathrm{P} . \mathrm{SA}: \frac{\mathrm{C}^{2}}{\mathrm{AR}} \cdot \frac{c^{2}}{S A}$; whence $S P A R . S A q:: C^{\square}, c^{2}$, and therefore $C . c:: V P \times A R$. $S A$. If P coincides with $S A$, as it is in the Vertices of the Figures, it will be C. $c:: \vee A R, \vee S A$. Now if the Curve be a Conic Section, AR the Radius of Curvature at its Vertex will be equal to half the Latus rectum, or $\frac{1}{2}$, and therefore the Velocity of the Body in the Vertex of the Eection will be to the Velocity of the Body defcribing a Circle at the fame Diftance, in a fubduplicate Ratio of the Latus rectum to the double Dillănce.

Becaufe it is $A R=\frac{S A \times S A}{S}$, it will be $C^{2} \cdot c^{2}:: \frac{S P \times S A \times S_{A}}{S}$. $S A q:: \frac{S P \times S^{\prime}}{S P} \cdot S A:: S P \times S^{\circ} A . S A \times S^{\circ} P$; and therefore from the given Relation of S P to S A, the Ratio of C to c will be given. For Example, if the Centripetal Force be reciprocally as the Dignity m of the Diftance, that is, if it be $\frac{S \mathrm{P}}{\mathrm{SPC} \times \mathrm{SA}}=\frac{b}{a^{2} S A^{m}}$; it will be $\mathrm{SP}=$ $\frac{b \mathrm{SPc} \times \mathrm{S} \dot{\mathrm{A}}}{a^{2} \mathrm{SA}^{m}}$, and therefore it will be $\mathrm{C}^{2} \cdot c^{2}:: \mathrm{SP} \times \mathrm{S}^{\circ} \mathrm{A}$. $\frac{b S P c \times S A \times S A}{a^{2} S A^{m}}:: a^{2} S^{m-x} \cdot b S P c$. Whencc if we putSP $q=$ $\frac{d^{2} S A^{m-1}}{b}=\frac{\frac{m-1}{2} a^{2} S A^{m-1}}{b}$, it will be $C^{2} \cdot c^{2}:: a^{2} S A^{m-1} \cdot \frac{m-1}{2} a^{2} S$ $\mathrm{A}^{m-1}:: m-1.2$; and therefore C. $c:: \sqrt{ } \cdot \sqrt{m-1}$

Now if it be put S P $q=\frac{d^{2} S A^{m-1}}{b-e S^{m-1}}=\frac{\frac{m-1}{2} a^{2} S A^{m-1}}{b-e S A^{m-1}}$, it will be $\mathrm{C}^{2} \cdot c^{2}:: a^{2} \mathrm{SA}^{m-1} \frac{\frac{m-1}{2} a^{2} b \mathrm{SA}^{m-1}}{b-e \mathrm{SA}^{m-1}}$, that is, as $b-e \mathrm{SA}^{m-1}$ to $\frac{m-1}{2} b$; but the Ratio of $b-e S^{m-1} \operatorname{to} \frac{m-1}{2} b$ is lefs than the Ratio of b to $\frac{m-1}{2} b$, or than the Ratio of 2 to $m-1$; whence C will be to c in a lefs Ratio than that of $\sqrt{2}$ to $\sqrt{m-I}$.
In like Manner if there be taken $S P=\frac{d^{2} S A^{m-1}}{6+e S^{m}}$ it will be found that C will be to c in a greater Rettio than that of $V 2$ to $\sqrt{m-1}$.

Cor. If a Body move in a Parabola, and the Centripetal Force tends to the Center S; the Velocity of the Body will be to the Velocity of the Body defcribing a Circle at the fame Diftance, every where as the $\checkmark 2$ to 1. For in that Cafe it is $m=2$, and $m-\mathrm{I}=\mathrm{I}$. The Velocity of the Body in an Ellipfis is to the Velocity of the Body moving in a Circle at the fame Diftance, in a lefs Ratio than that of $\sqrt{2}$ to \mathbf{I}. And the Velocity in an Hyperbola is to the Velocity in the Circle, in a greater Ratio than that of V_{2} to 1 .
If a Body moves in the Nautical Spiral, its Velocity is every where equal to the Velocity of a Body defcribing a Circle at the fame Diftance; for in this Cafe 'tis $m=3$, and $m-1=2$.

Problem. Suppofing that the Centripetal Force, (whofe abfolute Quantity is known,) be reciprocally as the Square of the Diftance, and a Body be projected according to a given right Line with a given Velocity; to find the Curve in which the Body will move.

Let a Body be projected according to a given right Line A B, with a given Velocity C. Now becaule the abfolute Quantity of the centripetal Force is known, the Velocity will thence be given, with which a Body can defcribe a Circle at the Diftance S A, by the fame Centripetal Force. For it is equal to that which is acquired while the Body falls through $\frac{\div}{2} S A$, if urged by the fame Force. Let that Velocity be c. From A upon A B let the Perpendicular A K be erected, and in that take A R, a fourth Proportional to c^{2}, C^{2}, and $\frac{\mathrm{SA} q}{\mathrm{SP}}$; and AR will be the Radius of Curvature in A. From R upon A S let fall the Perpendicular R H, and from H upon A R the Perpendicular H K , and drawing the right Line $S \mathrm{~K}$, it will give the Pofition of the Axis. Make the Angle F A K equal to the Angle S A K ; and if F A is parallel to S K , the Figure in which the Body moves will be a Parabola. But if S K meets the Axis in F , and the Points S and F fall on the fame Side of the Point K, the Figure will be an Hyperbola. If the Points S and F fall on the contrary sides, the Figure will be be an Ellipfis. Then with the Foci 5 and F, and with the Axis $=S A \pm F A$, the Section in which the Body will move may be defcribed.
VI. To find the Curve defcribed by a Body, which is urged by a given Law of Centripetal Force, when projected with a given Velocity from a given Place, according to a given right Line; is a Problem of the great- Forces; wuitb eft Dignity. Newton, in his Matbematical Principles of Natural Pbilo- Remarks on
 dratures of Curvilinear Figures. Since which the celebrated Mr. Fobn n. $340 . \mathrm{p.g1}$, Bernoulli has again undertaken the fame Problem, in the Memoirs of the Nov. 24.1713 . Acadomy of Paris for Ann. 1710. I have compared his solution with that of Nereton, and made the following Remarks upon them.

Mr. Bernoulli premifes the fame Propofition which Newton makes ufe of, for demonitrating his Problem ; which is the XLth in his Principia, and is no lefs elegant than eaiy to be demonftrated. It is as follows.

If a Body moves any how by Means of a Centripetal Force, and another Body afcends or defcends directly, and their Velocities are equal in any Cafe of equal Altitudes; their Velocities will be equal in all equal Altitudes.

Bernoulli fays the Demonftration of this Propofition is deliver'd by Neroton in too perplex a Manner; and therefore he fubftitutes his own in its Room, which he calls a more fimple one. But give me Leave to fay, without offending fo great a Man, that if there be any Difference between the Demonftrations of Newton and Bernoulli, it is this, that Newo-

Tbe Inverfe Problem of Centrijetal Dr.Johri Keil,

8on's feems to be much the eafier, and lefs perplex than the other. For if with Center C the two Circles DI, EK, are defcribed, the Diftance of which $D E$ is as finall as may be, and the Velocities of the Bodies in D and I are equal, and if from N to $I K$ the Perpendicular $N T$ is let fall; Neruton fully fhews, that the accelerating Force according to $D E$ is to the accelerating Force according to $I K$, as $I N$ to $I T$. For if the Force according to $D E$ or $I N$ be reprelented by the right Lines $D E$ or $I N$, that Force, according to $I N$, may be refolved into two, $\mathcal{T} I, \mathcal{T} N$, of which that only which is as τI accelerates the Motion according to the Direction IK. But the Accelerations or Increments of the Velocities are as the Forces and the Times in which they are generated conjunctly. But becaufe of the equal Velocities in D and I, the Times are as the Ways defcribed DE, IK. Wherefore the Accelerations in the Motion of the Bodies along the Lines $D E$ and $I K$, are as $D E$ and $I T$, and $D E$ and $I K$ conjunctly; that is, as $D E q$ or $I N q$ to the Rectangle $I T \times I K$, and therffore, becaufe of $I N q=I \tau \times I \mathrm{~K}$, the Increments of the Velocities are equal. Therefore the Velocities in E and K are equal, and by the fame Way of arguing they will always be found equal at equal Diftances. This is the Sum of Newton's Demonftration, which is explain'd fo clearly by him, that we fhall find but few eafier even annong the Elementary Propolitions. But berioulli does not proceed thus. He is contented to fay, that Micchanicks fhew the Force according to $D E$ is to the Force accorling to $I K$, as $I K$ to $D E$. Alfo that Mechanicks fhew the Increments of the Velocities to be in the Ratio of the Forces and Times conjunctly. And that at the Beginning of the Motion fuppofing the Velocities to be equal, the Timics are as the Ways defcribed $D E, I K$. And hence he concludes, by an Argumentation altogether like that of Nerwow, that the Increment of the Velocity acquired by the Body whilit it deforibes $I K$, is to the Increment of Velocity while $D E$ is defcribed, as $D E \times I K$ to $I K \times D E$, and therefore that the Increments of the Velocitics will always be equal in equal Diftances.

But if he had had a Mind to give an eafy Demonftration for the Sake of Novices, he ought to have cited the Mechanical Propofition, and have accommodated it to the prefent Cafe. And indeed there was Occafion for many Words, that this may become the Theorem which he feems to hint at, in which is treated of the Defcent of heavy Bodies along inclined Plains. For here no Plain is given, which may hinder the direct Defcent of Bodies. Nay, the Body is fo far from being hinder'd by a Plain, that on the contrary it is continually attracted by a certain Force from the Plain or Tangent. Therefore without Doubt the Force of his Keafoning would have been more manifett, if forbearing to introduce his Propofitions of Mechanicks, he had demonftrated the whole Matter from its own genuine Principles, as Nerwton has done. For by refolving the right-angled Triangle $K N I$ into two fimilar Triangles, it is $K I$ to $I N$ as $I N$ to $I T$, and therefore inftead of the Ratio $I N$ to $I T$, he might have put the Ratio of $K I$ to $I N$ or $D E$.

the Laws of the Centripetal Force.

If the Body falls from any Place A in the right Line $A C$, and from its Place E a Perpendicular $E G$ be always raifed, which may be proportional to the Centripetal Force, and if BFG be the Curve Line which the Point G always touches ; Newe ton demonftrates (Prop. 39. and 40. of his Principia,) that the Velocity of the Body in any Place E is as the Squareroot of the Curvilinear Area $A B G E$. Therefore if the Velocity be called v, then v^{2} will be as the Area $A B G E$. And if P be the greatelt Altitude to which the Body revolving in the Trajectory can afcend, when projected upwards from any Point of it with the Velocity which it has there ; and if A be the Diftance of the Body from the Center in any other Point of its Orbit ; and if the Centripetal Force be always as any Dignity of A, fuppofe as A^{n-1}; the Velucity of the Body in every Altitude A will be as $\sqrt{n P^{n}-n A^{n}}$.
In like Manner Mr. Bernoulli fhews; that if the Diftance from the Center be called x, the Velocity v, and the Centripetal Force φ, it will be $v=$ $\sqrt{a b-F l u: \varphi x}$; where it is plain from Quadratures, that the Area $A B G E=a b-F h u: \circ \dot{x}$. Therefore it is all one, whether the Square of the Velocity is exprefs'd by the Area $A B G E$, or by the Quantity $a b-$ Flu: φx which is equal to it. And if the Centripetal Force φ be as $n A^{n-1}$ or $n x^{n-1}$, it will be $a b=P^{n}$, and Flu: $\varphi \dot{x}=A^{n}$; fo that $a b-$ Flu: $Q \dot{x}$ is as the Quantity P^{n} - A^{n}.
Let the Body defrribe the Curve $V K$ with a Centripetal Force tending to C, and let the Circle $V X Y$ be given, defrribed with Center C and any Radius CV. Let 2 be a conftant Quantity, and make $\frac{2}{A}$ $=z$. And let $K I$ be an Element of the Curve, $I N$ or $D E$ an Element of the Altitude, $X X$ an Element of the Arch. Newton demonfrates, that the Element of the Arch or $X Y$ may be exprefs ${ }^{\prime} d$ by this Formula $\frac{2 \times I N \times C X}{A A \sqrt{A B E-z z}}$. Likewife from the Premifes Mr. Berroulli making the Arch $V X=z$, and the Altitude or Diftance $=x$, reduces the Element of the Arch to this Form $z=$
$\frac{a^{2} c \dot{x}}{\sqrt[a b x^{4}-x^{+} \times \text {Flu: } \rho x-a^{2} c^{2} x^{2}]{ }}$.
Now even at firf View the Formula of Newton fhould feem fomething more fimple than that of $B e^{r-}$ noulli, as confifting of fewer Terms. But when I had examin'd the Matter carefully, I faw that Bernoulli's Formula exactly coincided with that of Newton, and differ'd from it only in the Manner of denoting the Quantities. For if for $a b$ - Flu: ϕ we put $A B G E$, and for $a c$
VoL. IV.
Bbb
We
we put \mathcal{Q}, and for x we put A, and for a we put $C X$, and for \dot{x} we put $I N$; then $\frac{a^{2} c \dot{x}}{\sqrt{a b x^{+}-x^{+} \times F l u: q x-a^{2} c^{2} x^{2}}}=\frac{2 \times C X \times I N}{\sqrt{A^{+} \times A B G E-\frac{2^{2} A q q}{A q}}}$ $=\frac{Q \times C X \times I N}{A^{2} \sqrt{ } \frac{2}{A B E-Q^{2}}}$; or putting $z z$ inftead of $\frac{Q^{2}}{A^{2}}$, (which Newton does for the Sake of a more commodious Notation) Bernoulli's Form becomes $\frac{Q \times C X \times I N}{A^{2} \sqrt{ } \overline{B G E}-z z}$. Whence it appears, that his Formula does not differ from that of Newton, any otherwife than-as any Thing written in Latin Characters would differ from the fame Thing if written in Greek Characters.

After having deliver'd the general Formula, Mr. Berroulli defcends to a particular Cafe, in which the Centripetal Force is reciprocally as the Square of the Diftance. And through various Reductions and troublefome Operations, he fhews the Conftruction of Curves which may be defcribed by means of that Centripetal Force, and by reducing them to Equations he proves they are Conic Sections. Then he complains, that Necoton fuppofes, without any Demonftration, that Curves deffribed with fuch a Force would be Conic Sections.
It is impoffible he fhould think, that Newton was not acquainted with the Demoniftration of this Matter. For he knew very well that Neweton was the firtt and only one that had treated of this. Doetrine about Centripetal Forces in a Geometrical Manner, and had brought it to fuch Perfection. Bernoulli alfo knew, that befides giving the general Solution of the Inverfe Problem, Newton had shew'd how Curves might be conftructed, which are defcribed by a Centripetal Force decreafing in a triplicate Ratio of the Diftance, and therefore he could not be ignorant of that other Cafe. Nor indeed can I undertand for what Reafon Bernoulli objects to Newton, that he had omitted the Demonftration of this Cafe ; fince he himfelf has often propofed Theorems, whofe Demonfrations he has no where given. And why may not Newton do the fame, when in Hafte to proceed to other Matters? But now in the new Edition of the Principia, he has a Demonfration of this very Thing, which, though very flort, is yet much eafier and clearer than that of Bernoulli.

Laftly, that Bernoulli might fhew the Neceffity of his Demonftration of the Inverfe Problem in this particular Cafe, he thus adds. It muft be confider'd, fays he, that the Force which caufes a Body to move in the Logarithmic Spiral muft be reciprocally as the Cube of the Diftance from the Center. But it does not follow from thence, that fuch Curves muft always be defrribed with fuch Forces, fince the like Forces may alfo be the Caufe, that the Body may move in the Hyperbolical Spiral.

I wonder truly how this great Man could imagine, that Nerwion ever drew fuch a Confequence. For befides the Logarithmic Spiral Nereton fhews, how other Curves, infinite and different in Number, may be form'd, all which may be defcribed with the fame Centripetal Force as the Logarithmic Spiral. And among thefe this very Hyperbolical Spiral may be reckon'd, as we fhall fhew hereafter.

Now from hence Nerwton concludes, that only Conic Scetions can be defribed by a Centripetal Force which is reciprocally proportional to the Square of the Diftance ; becaufe the Curvature of any Orbit is given, by having given the Velocity, the Centripetal Force, and the Pofition of the Tangent. But the Focus being given, the Point of Contact, and the Pofition of the Tangent, a Conic Section may always be defrribed, which fhall have a given Curvature. This I have fhewn above. Therefore, by Virtue of this Force, the Body fhall move in this Curve and Vid. Supra no other. Since a Body fetting out from the fame Place, according to the fame Direction, with the fame Velocity, and urged by the fame Centripetal Force, cannot defcribe different Courfes.
In Imitation of Mr. Bernoulli, let me attempt to refolve this Problem of the Inverfe Method of Centripetal Forces, but after a very different Manner ; and alfo to apply it to a particular Cafe, in which the Force is reciprocally as the Cube of the Diftance; and at the fame Time produce a Demonftration of Cor. 3. Prop. 4 I. of Nervton's Principia.
In Order to do this I muft premife a few Things which I have already Vid. Supra explain'd above.
S. V.

Let $V I L$ be any Curve which a Body defcribes by Means of a Centripetal Force tending to the Center C. Let this Curve be touch'd by the right Lines $I P, K p$, in two Points I and K which are infinitely near ; to which from the Center let fall the Perpendiculars $C P, C F$, and with Center C let the Circles $K E$ and $I D$ be defcribed, and draw $C I$.
The Centripetal Force will be as the Quantity $\frac{P f}{P C c \times I N}$; which Theorem, though we have demonitrated it before, yet here is another Demonftration. From K draw $K m$ parallel to $C P$, and $K n$ to $C I$. Then becaufe of like Triangles ICP,IKN, and $n K m$, alfo 1 Km and $I p P$, it will be

$$
\begin{aligned}
& I p \text { or } I P . I K: \because P P \cdot K m, \\
& P C . I P: \because K m \cdot m n, \\
& I N . I K: \because m n \cdot n K . \\
& P C \times I N . I K q: Q P \cdot n K, \\
& \text { Therefore } n K=\frac{p P \times I K q}{P C \times I N} .
\end{aligned}
$$

Now the Time in which the Arch $I K$ is defcribed, is as the Area or Triangle $I C K$, or its double $P C \times I K$; therefore if the Time be given, $P C \times I K$ will be a conftant Quantity. But in a given Time the Centripetal Force will be as the little Line $K n$, which is defcribed by that Force ;

$$
\text { Bb b } 2
$$

Of the Inverfe Problem of

and therefore the Centripetal Force is as that little Line $K n$ drawn into the conftant Quantity $\frac{1}{P \cdot C \cdot q \times I K q}$; that is, the Centripetal Force will be as $\frac{1}{P C q \times I K q} \times \frac{P p \times I K q}{P C \times I N}$, or as the Quantity $\frac{P p}{P C c \times I N} \times E . D$.

The Velocity of the Body in any Place is as the Path defrribed in any the leaft Time directly, and as that Time inverfely; and therefore is as $I K \times \frac{1}{P C \times I K}$; that is, the Velocity will be reciprocally as the Perpendicular from the Center to the Tangent.
If the Diftance of the Body from the Center be called x, and the Perpendicular upon the Tangent p; it will be $I N=\dot{x}$, and $P p=\dot{p}$, and the Centripetal Force may be expounded by the Quantity $\frac{f^{4} \dot{p}}{p^{3}}$, by af fuming any Quantity for f_{4}.
Therefore if with Mr. Bernoulli we call the Centripetal Force q, then $\frac{f^{4} \dot{p}}{p^{3} \dot{x}}=q$, and $\frac{f^{4} \dot{p}}{p^{3}}=\dot{x} \phi$; and taking the Fluents of thefe Quantities, it will be $\frac{f^{4}}{2 p^{2}}=$ Flu: \dot{x}_{ϕ}.
Now fince the Velocity of the Body is reciprocally as the Perpendicu: lar p, its Square may be expounded by $\frac{f^{4}}{2 p^{2}}$. If therefore the Velocity is call'd v, it will be $v^{2}=\frac{f^{4}}{2 p^{2}}$, which is equal to the Fluent of the Quantity $\dot{x} \phi$. And if A be the Place from whence a Body fhould fall, in order to acquire the Velocity v in D or I, and from the Place of the Body D the Perpendicular $D F=\phi$ be ereted, then the Retangle $D E x$ $D F=\dot{x}$ ¢ . Now let the Curve $B F G$ be the Curve-line, whofe Ordinates expound the Centripetal Forces, or the Quantities 甲. The Flowing Quantity of $\dot{x} \phi$ will be the Curvilinear Area $A B F D=v^{2}=\frac{f^{4}}{2 p^{2}}$, and therefore v will be as the Square-root of the Area $A B F D$. Now if the Velocity be fuch as is acquired by falling from an infinite Diftance, then v^{2} or the Fluent of $\dot{x} q$ will be equal to the Area ODFO indefinitely extended.

the Lares of the Centripetal Force.

Hence the Quantity p will always be given in finite Terms, when that Curvilinear Area can be exprefs'd in finite Terms. For Inftance, let the Centripetal Force be reciprocally as the Dignity m of the Diftance, that is, let $\dot{x}_{\theta}=\frac{g \dot{x}}{x^{m}}$. If the Velocity of the Body be fuch as is acquired by falling from an infinite Diftance, then $v^{2}=\frac{g}{m-1 \times x^{m-1}}=\frac{f^{4}}{2 p^{2}}$.
And in all thefe Cafes the Area indefinitely extended will be a finite Quantity. But the Body may revolve in a Trajectory with a Velocity, the Square of which may be either greater or lefs than the Quantity
$\frac{g}{\sqrt{11}-1} \times x^{m-1}$, or what is equal to it. Therefore it will be $v^{2}=\frac{f^{4}}{2 p^{2}}$
$=\frac{g}{m-1} \times x^{m-1} \pm e^{2}$.
Hence by the Action of there Forces, three kinds of Curves may be defcribed, according as e^{2} is a pofitive, or negative, or no Quantity.
For Example, if the Velocity is greater than that which is acquired by falling from an infinite Diftance, it will be $\frac{f^{4}}{2 p^{2}}=\frac{g}{m-1} \times x^{m-1}+e^{2}$ If the Velocity be lefs, it will be $\frac{f^{4}}{2 p^{2}}=\frac{g}{m-1 \times x^{m-1}}-e^{2}$: If equal, it will be $\frac{f^{4}}{2 p^{2}}=\frac{g}{m-1} \times x^{m-1}$.
Make $\frac{f^{4}}{x}=a^{2} e^{2}$, and $\frac{1}{m-1} g^{2}=b^{2} e^{2}$, and if the Velority of the Body be fuch as is acquired by falling from an infinite Diftance, it, will be $p^{2}=\frac{a^{2} x^{m-1}}{b^{2}}$, or $p=\frac{a x^{\frac{m-1}{2}}}{b^{2}}$.
But if the Velocity be either greater or lefs than this Velocity, it will be as has been thewn, $\frac{f^{4}}{2 p^{2}}=\frac{g}{m-1 \times x^{m-1}} \pm e^{2}=\frac{1}{\frac{m-1}{} g \pm e^{2} x^{m-1}} \frac{x^{m-1}}{x^{m-1}}$. Where for $\frac{1}{2} f 4$ and $\frac{g}{m-1}$ putting their Values $a^{2} e^{2}$ and $b^{2} e^{2}$, it will be $\frac{a^{2} e^{2}}{p^{2}}=\frac{b^{2} e^{2} \pm e^{2} x^{m-1}}{x^{m-1}}$, or $\frac{a^{2}}{p^{2}}=\frac{b^{2} \pm x^{m-1}}{x^{m-1}}$; and $p^{2}=\frac{\frac{a^{2} x^{m-1}}{b^{2} \pm x^{m-1}}}{ \pm}$,

Therefore if the Centripetal Force be reciprocally as the Cube of the Diftance,

Diftance, that is, if it be $m=3$, and $n x-1=2$; then $p^{2}=\frac{a^{2} x^{2}}{b^{2}}$, or p^{2} $=\frac{a^{2} x^{2}}{b^{3}+x^{2}}$, or laftly $p^{2}=\frac{a^{2} x^{2}}{b^{2}-x^{2}}$

In the firft Cafe it is plain, that the Curve will be a Logarithmic Spiral; for let $p=\frac{a x}{b}$, or $b . a:: x \cdot p$, and therefore becaufe of the comftant Ratio b to a, the Angle CIP will be conftant.
Now let us fuppofe it is $p^{2}=\frac{a^{2} x^{2}}{b^{2}+x^{2}}$, from which Suppofition three different Species of Curves will arife, according as a is greater, or equal to, or lefs than b.
Fig. 156. And firft, let a be greater than b. With Center C, at any given Dirtance, let the Circle $H \Upsilon X$ be defcribed, which let the right Lines $C K$, $C I$, produced meet in r and X. And it is $I N q . K N q:: I P q . P C q$, and therefore $C I_{q}-P C q \cdot P C q:: x^{2}-p^{2} \cdot p^{2}:: x^{2}-\frac{a^{2} x^{2}}{b^{2}+x^{2}}$ $\frac{a^{2} x^{2}}{b^{2}+x^{2}}:: 1-\frac{a^{2}}{b^{2}+x^{2}} \cdot \frac{a^{2}}{b^{2}+x^{2}}:: b^{2}+x^{2}-a^{2} \cdot a^{2}$. Therefore it will be $\sqrt{x^{2}+b^{2}-a^{2}}, a:: I N, K N:: \dot{x} \cdot \frac{a \dot{x}}{\sqrt{x^{2}+b^{2}-a^{2}}}$ $=K N$. And becaufe a is greater than b, the Quantity $b^{2}-a^{2}$ will be negative. Let it be $-c^{2}$, whence $K N=\frac{a x}{\sqrt{x^{2}-c^{2}}}$. Let the Radius of the Circle ΥH be called b, and it is $C K . K N:: C \Upsilon . \Upsilon X$; that is $x \cdot \frac{a \dot{x}}{\sqrt{x^{2}-c^{2}}}:: b \cdot \frac{b a \dot{x}}{x \sqrt{x^{2}-c^{2}}}=X Y=\dot{y}$, if the Arch $H Y$ be called y.

Let it be $x=\frac{c^{2}}{z}$, whence $\dot{x}=-\frac{c^{2} \dot{z}}{z^{2}}$, and $\frac{\dot{x}}{x}=-\frac{z^{\dot{2}}}{z}$. Alfo it will be $x^{2}-c^{2}=\frac{c^{4}}{z^{2}}-c^{2}=\frac{c^{4}-c^{2} z^{2}}{z^{2}}=\frac{c^{2}}{z^{2}} \times \overline{c^{2}-z^{2}}$. Whence $\vee \overline{x^{2}-c^{2}}=\frac{c}{z} \times \sqrt{c^{2}-x^{2}}$. Which Values being fubftituted, it will
will be $\frac{b a \dot{x}}{x \sqrt{x^{2}-c^{2}}}=\frac{-b a \dot{z}}{c \sqrt{c^{2}-x^{2}}}$. Let it be $a \cdot c:: n, \mathrm{I}$, that is, let $a=n c$, and it will be $X X$ or $\dot{y}=-\frac{n b \dot{z}}{\sqrt{c^{2}-z^{2}}}$. But it is $\frac{n b \dot{z}}{\sqrt{c^{2}-z^{2}}}$ $\frac{c \dot{z}}{\sqrt{c^{2}-z^{2}}}:: n b . c$, that is, in a given Ratio. And therefore their Fluents, if they begin together, will be in the fame Ratio. That is, it will be $H \Upsilon$ or y to the Fluent of the Quantity $\frac{c \dot{z}}{\sqrt{c^{2}-z^{2}}}$, as $n b$ to c.

Now if Center C and Radius $C V=c$ a Circle $V L$ be defrribed, and if $C G=z$, and $n_{0}=\dot{z}$, then the $\operatorname{Arch} m n=\frac{c z}{\sqrt{c^{2}-z^{2}}}=$ Fluxion of the Arch $2 m$ when the Fluxion is a pofitive Quantity ; but when it is negative, its Fluent is the Arch $V m$ the Complement of the former. For an Arch and its Complement have the fame Quantity denoting its Fluxion, but affected with contrary Signs; for when one increafes, the other decreafes.

Hence it is $H \Upsilon . V m:: n b . c$; but it is $C V . C H:: V e . H Y$, that is, $c, b:: V e \cdot \frac{b \times V e}{c}=H Y$. Therefore it will be $\frac{b \times V e}{c}$: $V m: i n b$.c. Whence V e. $V m:: n$. r.

Moreover from the Nature of the Circle it will be CG.CV::CV $C \tau$, when $m \tau$ touches the Circle; that is, it will be $z \cdot c:: c \cdot \frac{c^{2}}{z}$
$=C \tau=x$. Hence if the Angle $V C e$ be taken to the Angle $V C m$ as n to I , and $C e$ be produced to K, fo that $C K$ may be equal to the Secant CI, K will be a Point in the Curve required.
Here it may be obferved by the Way, that if n be a Number, that is, if it be a to c, or a to $\sqrt{a^{2}-b^{2}}$ as Number to Namber, the Curve $V I$ will be an Algebraical one. For in this Cafe the Relation of $m C$ to the Sine of the Angle $V C e$ is defined by an Equation, and thence will be had the Relation of the Sine of the Angle $V C e$ to $C T$, or $C K$, by fome determinate Equation; and then at laft an Equation will be given, which will exprefs the Relation between the Ordinate and Abfcifs, beginning from the Point C.
The Orders and Degrees of thefe Curves, in the Algebraick Scale of Equations, will be different according to the Magnitude of the Number
n. In all thefe Curves thus defrribed, the Pofition of the Alymptote may be thus determined, Make the Angle $V C L$ to a right Angle'as n to 1. In' that Angle the Ditance of the Body from the Center becomes infinite. Now the Square of the Perpendicular upon the Tangent $P C$ is equal to $\frac{a^{2} \cdot x^{2}}{b^{2}+x^{2}}$, when x is infinite, it becomes $P C q=\frac{a^{2} x^{2}}{x^{2}}$, or $P C$ $=$ at. Therefore let $C \cdot R$ be drawn perpendicular to $C \mathcal{L}$, and equal to the right Line a; and if through R be drawn $R S$ parallel to the right Line C L, this will touch the Curve at an infinite Diftance, or will be: an Afymptote to the Curve.
If in any of thefe Curves the Body by defcending fhould arrive at the lowetb Apfid; , it will -2gain aftend from hence in inffuitiuin," and will defcribe another Curve fimilar to the former, or rather a like Portion of the fame Curve by its Afcent.
-Thefe Curves may wind about the Center with many Circumvolutions, before they begin to converge towards their Afymptote, and the Angular Motion of the right-Line $C K$ will be equal to fo many right Angles as the Number n confifts of Units. For Inftance, if $n=100$, twentyfive intire Revolutions' 'will be compleated before the Diftance from the Center becomes infinite.
If the Number n is increas'd, a remaining the fame, c will be diminifh'd. For it is $\frac{a}{n}=c$, and $\frac{a^{2}}{n^{2}}=c^{2}=a^{2}-b^{2}$; whence $\overline{n^{2}-1} \times$ $a^{2}=n^{2} b^{2}$, and therefore $a^{2} \cdot b^{2}:: n^{2} \cdot n^{2}-1$. Therefore if b^{2} approaches to Equality with $a=$, alfo $n^{2}-1$ will approach to a Ratio of Equality with n^{2}, and therefore n will be increafed, and c will be diminifhed in the fame Ratio. Therefore let b^{2} be fuppofed nearly equal to a^{2}, fo that when the Difference is infinitely little, let the Number n be infinitely great, and let the Radius of the Circle c be infinitely little, or let the Circle be contracted into its Center. But although c vanifhes thus, yet $C T$ will not vanifh in like Manner, if the Angle $V C M$ be nearly a right Angle. For in every Circle, though never fo little, the Secant of a right Angle will be an infinite Quantity. Therefore becaure of the infinite Number n, this Curve will wind about the Center with infinite Revolutions, before it will begin to converge towards its Afymptote.

But when c vanifhes, it is $b=a$, and $p=\frac{a x}{\sqrt{x^{2}+a^{2}}}$. And becaufe in every Cafe it is $\dot{y}=\frac{b a \dot{x}}{x \sqrt{x^{2}+c^{2}}}$, when c vanifhes it will be $\dot{y}=\frac{b a \dot{x}}{x^{2}}$. Whence taking the Fluents it will be $y=\frac{b a}{x}$, or $x y=b a$, which is a given Quantity.

the Lates of the Centiplipetal Force.

This Curve is the Hyperbolic Spiral, which has many remarkable Psoperties, If fany Rodills CI X bo drawn, meeting the Curve in I, and the Periphery of the Circle in \mathscr{X}, and if from C a Perpendicular $C T$ is raifed to $C I$, and $I T$ touches the Curve in I, and meets the right Line C I' in τ; then C IWill be a conftant right Line, which will be equal to the Arch VE. In which Property it refembles the Logarithmic Curve, fince G I may be called the Subtangent of the Curve. For let the Radius of the Circle C E be b, the Arch $V E$ be a, and let $C I$ be called $x_{\text {, }}$ and $V Y$ be y. Becaule it is b a $\equiv \dot{x} y$, it will be $\frac{b a}{x}=y$, and $\frac{b a \dot{x}}{x^{2}}=$ y. Airo it is CY.CI $:: \Upsilon X, N K$, that is, $b, x:: \frac{b a \dot{x}}{x^{2}}, N K$, which therefore is $\frac{a \dot{x}}{x}$. And becaufe it is $I N . N K: C I . C T$, that is $\dot{x} \cdot \frac{a \dot{x}}{x}$ $:: x \cdot C \tau=a$.
If with Center C, and any Diftance $C G$, an Arch of a Circle $G F$ is defribed, this Arch being intercepted between the right Line CV and the Curve, will always be equal to the conftant right Line $C T$ or a. For becaufe it is $V L \times C F=C V \times V E$, it will be $V L . V E:: C V, C F::$ $V L . G F$; whence $V E=G F$. If from C be raifed $C R=V E=F G$ $=a$ perpendicular to $C G$, and through R de drawn $R S$ parallel to $C V$, $R S$ will be the Afymptote to the Curve. For the right Line $M S$ is equal ta the Arch $G F$, and therefore $F S$, the Diftance of the Curve from $R S$, is always equal to the Excefs by which the Arch exceeds its Sine. But when the Diftance increafes in infinitum, that Excefs will be diminif'd in infinitum, and at latt will be lefs than any given Line, and therefore $R S$ will be an Afymptote to the Curve.

Now let b be greater than a; and in like Manner it will be found, as in the former Cafe, that $K N=\frac{a x}{\sqrt{x^{2}+b^{2}-a^{2}}}$. But becaufe b exceeds a, therefore $c^{2}=b^{2}-a^{2}$ will be a politive Quantity, and $K N=$ $\frac{a x}{\sqrt{x^{2}+c^{2}}}$

Then making the Radius of the Circle $H \Upsilon=b$, we Thall find $X Y=\frac{b a \dot{x}}{x \sqrt{x^{2}+c^{2}}} \cdot$ Make $x=\frac{c^{2}}{z}$, and it will be $\dot{x}=-$ $\frac{c^{2} \dot{z}}{z^{2}}$, and $\frac{\dot{x}}{x}=-\frac{\dot{z}}{z}$. It will be alfo $x^{2}=\frac{c^{4}}{z^{2}}$, and $x^{2}+c^{2}=\frac{c^{4}}{z^{2}}$ $+c^{2}=\frac{c+c^{2} z^{2}}{z^{2}}=\frac{c^{2}}{z^{2}} \times \overline{c^{2}+z^{2}}$. Whence $v x^{2}+c^{2}=\frac{c}{z} \times v \overline{c^{2}+z^{2}}$
C C c
Therefore IED

Therefore thefe Values being fubftituted, it will be $\frac{b a \dot{x}}{x \sqrt{x^{2}+c^{2}}}=-$ $\frac{b a \dot{z}}{c \sqrt{c^{2}+z^{2}}}=-\dot{y}$. For the Beginning of the Arch $H Y$ may be taken fuch, that it may increafe and decreafe together with the Fluent of the Quantity $\frac{-b a \dot{z}}{c \sqrt{c^{2}+z^{2}}} \cdot$ Make $n c=a$, and it will be $\frac{n \dot{b} \dot{z}}{\sqrt{c^{2}+z^{2}}}=$ \dot{y}, and $\frac{\frac{1}{2} n b^{2} \dot{z}}{\sqrt{c^{2}+z^{2}}}=\frac{1}{2} b \dot{y}=$ the Sector $C X X$.

But it is $\frac{\frac{1}{2} n b^{2} \dot{z}}{\sqrt{c^{2}+z^{2}}} \cdot \frac{\frac{7}{2} c^{2} \dot{z}}{\sqrt{c^{2}+z^{2}}}:: n b^{2} \cdot c^{2}$; that is, in a given Ratio ; and therefore the Sector $C X Y$ will be to $\frac{\frac{1}{2} c^{2} \dot{z}}{\sqrt{c^{2}}+z^{2}}$ always in a given Ratio. Therefore the Fluents of thefe Quantities will be always in the fame Ratio, fince they are fuppofed to begin together. But the Fluent of the Sector $C X Y$ is the Sector $C V Y$; and the Fluent of the Quantity $\frac{\frac{1}{\div} c^{2} \dot{z}}{\sqrt{c^{2}+z^{2}}}$ is the Sector of the Hyperbola, which is thus fhewn.

With Center C, and half the tranfverfe Axis $C V=c$, let an equilateral Hyperbola be defcribed, and from the two Points D and F, which are very near each other, let the Ordinates $D B$ and $E F$ be drawn to the Conjugate Axis; alfo draw $C D$ and $C F$. Now the Increment or Fluxion of the Triangle $B C D$ will be equal to $B E \times D B$ - Sector $D C F$. Whence the Sector $D C F$ (which is the Fluxion of the Sector $C V D$) will be equal to $B E \times D B$ - the Increment of the Triangle $B C D$. And if $B C$ be called z, becaufe of the Hyperpola it is $B D q=B C q+C V q$ $=z^{2}+c^{2}$. Whence $B D=\sqrt{c^{2}+z^{2}}$, and $B E \times B D=\dot{z} \times$ $\sqrt{c^{2}+z^{2}}$. But the Triangle $B C D$ is $\div z \times \sqrt{c^{2}+z^{2}}$, whofe Fluxion is $\frac{1}{2} \dot{z} \times \sqrt{c^{2}+z^{2}}+\frac{\frac{1}{2} \dot{z} z^{2}}{\sqrt{c^{2}+z^{2}}}$. Let this Quantity be fubtracted from $\dot{z} \sqrt{c^{2}+z^{2}}$, and there will remain the infinitely little Hyperbolic Sector $C D F=\frac{1}{2} \dot{z} \sqrt{c^{2}+z^{2}}-\frac{\frac{1}{2} \dot{z} z^{2}}{\sqrt{c^{2}+z^{2}}}=\frac{\frac{1}{z} \times c^{2}+z^{2}-\frac{1}{2} \dot{z} \times z^{2}}{\sqrt{c^{2}+z^{2}}}=$

the Lawis of the Centripetal Force.

Therefore the Fluent of the Sector $C D F$ is equal to the Fluent of the Quantity

$$
\frac{\frac{1}{2} c^{2} \dot{z}}{\sqrt{c^{2}+z^{2}}}
$$

Therefore the Sector CVD will be the Fluent of the Quantity Moreover let the right Line $D \tau$ touch the Hyperbola, and meet the Conjugate Axis in τ. From the Nature of the Hyperbola it is $B C . C V:: C V . C \tau$, that is, $z \cdot c:: c \cdot \frac{c c}{z}=C T=z$. And hence arifes this following Conftruction.
With Center C, and half the tranfverfe Axis $C V$, let an Equilateral Hyperbola $V m$ be defcribed, and alfo a Circle $V e$. Let the Circular Sector $C V e$ be taken in Proportion to the Hyperbolic Sector $C V m$, as n to 1 ; let the right Line τm touch the Hyperbola in m, meeting the Conjugate Axis in T, let $C e$ be produced to k, fo that $C k=C T$, and the Point k will be in the Curve required. For that Curve is fuch, that if $C k$ be called x, the Perpendicular let fall from C upon the Tangent will always be equal to $\frac{a x}{\sqrt{b^{2}+x^{2}}}$. When x is infinite b^{2} vanifhes, and the Perpendicular becomes equal to a, and then $C R$ coincides with $C V$. If therefore in the Conjugate A xis be taken $C R=a$, and $R S$ be drawn parallel to $C V$, this will be the Afymptote of the Curve.
If a be fo far increafed that the Quantity $b^{2}-a^{2}$ may become infinitely. little, then c^{2} will vanifh, and the Quantity $\frac{b a \dot{x}}{x \sqrt{x^{2}+c^{2}}}$ will be $\frac{b a \dot{x}}{x^{2}}=$ y. Whence if the Fluents of thefe Quantitics are taken, we fhall have $\frac{b a}{x}=y$, and $b a=x y$. That is, the Rcctangle under the Circular Arch and the Diftance of the Curve from the Center will always be a given Quantity. And upon this Account the Curve will pafs into the Hyperbolic Spiral. Therefore the Hyperbolical Spiral is a Kind of intermediate Limit between fuch Curves as are conftructed by Circular Sectors, and thofe that are conftructed by Hyperbolical sectors. Therefore that Hy perbolical Spiral may be conceived to be formed, either by a Sector of a Circle or Ellipfis, or by a Sector of an Hyperbola, whofe tranfverfe Axis is diminifh'd ad infinitum, and the Number n is increafed in the fame Ratio.
Now we come to that Cafe, in which the Velocity of the Body is lefs than that which is acquired by falling from an infinite Diftance, and wherein $p^{2}=\frac{a^{2} x^{2}}{b^{2}-x^{2}}$. And here by a like Reafoning as in the former

$$
\mathrm{Ccc}_{2}
$$

Cafe

Of the Inverfe Problem of

Care we fhall find $K N=\frac{a \dot{x}}{\sqrt{b^{2}-a^{2}-x^{2}}}$, where b^{2} mult neceftrarity be greater than a^{2}. Hence if b^{2} - a^{2} is called φ^{2}, it will be $K \cdot N=$ $\frac{a \dot{x}}{\sqrt{c^{7}-x^{3}}}$, and therefore $X X$ or $y=\frac{b a \dot{x}}{x \sqrt{c^{3}-x^{4}}}$

Now let it be $x=\frac{c^{2}}{z}$, and it will be $\frac{\dot{x}}{x}=-\frac{\dot{z}}{z}$, or $\frac{b a \dot{x}}{x}=-\frac{b a \dot{z}}{z}$, and it will be $c^{2}-x^{2}=\frac{c^{2}}{z^{2}} \times \frac{z}{z^{2}-c^{2}}$; which Values being fubftituted it will be $-\frac{b a \dot{z}}{c \sqrt{z^{2}-c^{2}}}=\frac{b a \dot{x}}{x \sqrt{x^{2}}-c^{2}}=-\dot{y}$. For fuch a Beginning is to be affigned to the $\operatorname{Arch} K X$, that it may begin together with the Fluent of the Quantity $\frac{b a \dot{z}}{c \sqrt{z^{2}-c^{2}}}$. Whence it will be $\frac{\frac{1}{2} b^{2} c z^{2}}{c \sqrt{z^{2}-c^{2}}}$ $=\frac{1}{2} b \dot{y}=\operatorname{Sector} C X Y=\frac{\frac{1}{2} n b^{2} \dot{z}}{\sqrt{z^{2}-c^{2}}}$, by making $n c=a$. But it is $\frac{\frac{1}{2} n b^{2} \dot{z}}{\sqrt{z^{2}-c^{2}}} \cdot \frac{\frac{1}{2} c^{2} z}{\sqrt{z^{2}-c^{2}}}: \because n b^{2} \cdot c^{2}$, that is, in a conftant Ratio. Wherefore the Fluents of thefe Quantities are in the fame Ratio. That is, the Fluent of the Quantity $\frac{1}{2} b \dot{y}$ or $\frac{\frac{1}{2} n b^{2} \dot{z}}{\sqrt{c^{2}-z^{2}}}$, will be to the Fluent of the Quantity $\frac{\frac{1}{2} c^{2} \dot{z}}{\sqrt{z^{2}-c^{2}}}$, as $n b^{3}$ to c^{2}. But the Fluent of the Quantity $\frac{1}{2} b \dot{y}$ is the Sector $C V X$, and the Fluent of the Quantity $\frac{\frac{1}{2} c^{2} z}{\sqrt{z^{2}-c^{2}}}$ is the Seetor of the Hyperbola, which is thus proved.
Fig. 160. With Center C, and tranfverfe Semiaxis $C V=c$, let an Equilateral Hyperbola be defcribed, and from two Points B and D that are infinitely near, let the two right Lines $B E$ and $D F$ be drawn as Ordinates to the Axis. Alfo draw $C B, C D$. And the Fluxion o Increment of the Triangle $C B E=$ to the Triangle $C B D+B E \times E F$. Whence the Triangle $C B D$, or the leaft Sector $C B D$, will be equal to the Increment of the Triangle $C B E-B E \times E F$. Let $C E$ be called z, and it will be $B E=\sqrt{z^{2}-c^{2}}$, and $B E \times E F=\dot{z} \sqrt{z^{2}-c^{2}}$. Alfo the Triangle $C B E=\frac{1}{z} z \sqrt{z^{2}-c^{2}}$, whofe Fluxion is $\frac{1}{2} \dot{z} \sqrt{z^{2}=c^{2}}+\frac{x}{x}$

the Laves of : ithe Qentripetal Force.

$=\frac{10}{2 z^{2}-土 \dot{z} x^{2}-\infty}=\frac{y c^{2} \dot{z}}{\sqrt{z^{2}-c^{2}}}$. Whence it is plain, that the
Sector $C B E$ is the Fluent of the Quantity $\frac{1}{2} c^{2} \dot{z}$. Moreover if
 $B \tau$ the Tangent of the Hyperbola meets the tranfverfe Axis in τ, from the Natife of the Hyperbola it will be CE.CV::CV.CT; that is, $z \cdot c:: c \cdot \frac{c^{2}}{z}=C \mathcal{T}=x$.

Hence we deduce the following Conftruction. With Center C, and tranfverfe Semiaxis $C V=c$, let an Equilateral Hyperbola $V B$ be defcribed, and a Circle $C \in G$ from the fame Center C. To the Hyperbola draw the right Line $C B$, and let the Tangent of the Hyperbola $B \mathcal{T}$ meet the tranfverfe Axis in T. Let a Sector of the Circle CVe be taken, which may be to the Hyperbolical Sector CVB as n to 1. In $C e$ take $C K=$ $C T$, and K will be a Point in the Curve required; whofe Perpendicular let fall from the Center C to the Tangent at K, if $C K$ be called x, will be equal to $\frac{a x}{\sqrt{b^{2}-x^{2}}}$:

And a Body will move in this Curve, if acted upon by a Centripetal Force which is reciprocally as the Cube of the Diftance, if it proceeds with a due Velocity according to the Direction of the Tangent. Now what this Velocity mult be, which fhall make the Body delcribe any of thefe Curves, will be thus found.

Since the Velocity with which a Body moves in any Trajectory is reciprocally as the Quantity p, affuming any conftant Quantity a, that Velocity may always be expounded by $\frac{a}{p}$. And if to the Axis $C V$ Crdinates are drawn, which are reciprocally as the Cubes of the Diftances from the Center, or as the Centripetal Forces, and by this Means a Curvilinear Figure is defcribed; its Area indefinitely extended may always be expounded by $\frac{b^{2}}{x^{2}}$, as is manifeft from the Doctrine of Qliadratures. But that Area is as the Square of the Velocity which is acquired by falling from an infinite Diftance, and therefore the Veiocity acquired in this Cafe will be as $\frac{b}{x}$. Hence if this Velocity is called y_{2} and the Velocity with

Of the Inverfe Problem of

with which the Body moves in the Trajectory be called v; and a and b be affumed fuch Quantities, that in any one Diftance from the Center it may be $y \cdot v:: \frac{b}{x} \cdot \frac{a}{p}$; it will be every where and at all Diftances y. $v:: \frac{b}{x} \cdot \frac{a}{p}:: p \cdot \frac{a x}{b}$. Wherice if $y=v$, it will be $p=\frac{a x}{b}$, and the Curve defcribed with this Velocity will be the nautical Spiral, or a Circle if $p=x$, and $a=b$.

If y is greater than v, then p will be greater than $\frac{a x}{b}$, and it will be equal to $\frac{a x}{\sqrt{b^{2}-x^{2}}}$, as appears from the foregoing. Now the Curve will be conftructed by the Hyperbolical Sector, as was fhewn in the laft Cafe, where the Diftance of the Body from the Center is determined by the Concourfe of the Tangent of the Hyperbola with the tranfverfe Axis. If y be greater than v, but in fo fmall a Ratio that b continues greater than a; the Curve will be form'd by the fame Hyperbolical Sector. But the Diftance of the Body from the Center is taken from the Concourfe of the Tangent with the conjugate Axis.

If it be $y . v:: p, x$, in this Cafe it will be $a=b$, and the Curve becomes an Hyperbolical Spiral, in which it is $p=\frac{a x}{\sqrt{a^{2}-x^{2}}}$. Hence if the Boily be projected from any Place according to a given right Line, with fuch a Velocity as may be to the Velocity acquired by falling from an infinite Diftance, as the Diftance of the Body from the Center to a Perpendicular let fall from the Center to the Line of Direction; that Body will move in an Hyperbolical Spiral. Laftly, if v be fo much greater than y, that a may alfo be greater than b, the Curve will be conftructed by Circular Sectors. And thus from the given Velocity the Relation of the Quantities a and b may always be determin'd, and therefore the Curve will be defcribed in which the Body will move with that Velocity. And on the contrary the Curve being given, or the Quantities a and b being given, the Velocity may be found with which that Curve will be defcribed.

The Areas of all thefe Curves, excepting the Circle, which can be defcribed by the Action of this Centripetal Force, are perfectly Quadrable. For firft in the Logarithmic Spiral, becaufe it is $p=\frac{a x}{b}$, it will be $K N=\frac{a \dot{x}}{\sqrt{b^{2}-a^{2}}}=\frac{a \dot{x}}{c}$, fuppofing $b^{2}-a^{2}=c^{2}$. Fig. 155°

the Laws of the Centripetal Force.

and therefore the Triangle $C K I=\frac{\frac{1}{2} a x x^{*}}{c}$, whofe Fluent is $\frac{a x^{2}}{4 c}$, which is the Area of the Curve.
If it is $p=\frac{a \dot{x}}{\sqrt{b^{2}+x^{2}}}$, and a be greater than b, it has been fhew' d that $K N$
$=\frac{a \dot{x}}{\sqrt{x^{2}+c^{2}}}$; whence $K N \times \frac{1}{2} C I=\frac{\frac{1}{2} a x \dot{x}}{\sqrt{x^{2}+c^{2}}}$, whofe Fluent is $\frac{\dot{c}}{2}$
$a \sqrt{x^{2}-c^{2}}=$ Area of the Curve. But if a be lefs than b, it is $K N=$ $\frac{a \dot{x}}{\sqrt{x^{2}+c^{2}}}$, and $K N \times \frac{1}{2} C I=\frac{\frac{1}{2} a x \dot{x}}{\sqrt{x^{2}+c^{2}}}$, whofe Fluent is $\frac{1}{2} a \sqrt{x^{2}+c^{2}}$ $-2=$ Area of the Curve. Suppofe $x=0$, and it will be $\frac{x}{2} a c-2$ $=0$, whence $2=\frac{1}{2} a c$, and the Area is $\frac{1}{2} a \sqrt{x^{2}+c^{2}}-\frac{1}{2} a c$.
In the Hyperbolical Spiral the Quantity c vanifhes, and the Area of the Curve becomes $\frac{1}{2} a x$.
If $p=\frac{a x}{\sqrt{b^{2}-x^{2}}}$, it has been fhewn that $K N=\frac{a \dot{x}}{\sqrt{c^{2}-x^{2}}}$; whence $\div C I \times N K=\frac{\frac{1}{2} a x \dot{x}}{\sqrt{c^{2}-x^{2}}}$, whofe Fluent is $2-\frac{1}{2} a \sqrt{c^{2}-x^{2}}=$ Area.
Make $x=0$, and it will be $2-\frac{1}{2} a c=0$, or $\mathscr{Q}=\frac{1}{2} a c$. Whence the Area will always be $\frac{1}{2} a c-\frac{1}{2} a \sqrt{c^{2}-x^{2}}$. Make $c^{2}-x^{2}=0$, or $x=r$, and the Area of the Curve will be $\frac{1}{2} a c$. Whence if the Beginning of the Area is not taken from the Beginning of x, or where $x=0$, but where $x=\sigma$ is the greateft, that is, if the Area begins from V, (See Fig. 160.) the Area will always be equal to $\frac{1}{2} a \sqrt{c^{2}-x^{2}}$.

The moft fkilful Dr. Halley has obferved what follows, concerning the Areas which are defcribed by Bodies, by Means of a Centripetal Force which is as the Cubes of the Diftances reciprocally. Which is, if Bodies by this Law defcribe different Circles, or different Hyperbolical Spirals ; the Areas of the Sectors, as well in Circles as in all thofe Spirals, will always be equal when defcribed in equal Times. For the Velocities of Bodies moving in Circles by this Law, ought to be reciprocally proportional to the Radii or Diftances, and therefore the Arches defcribed in the fame Time will alfo be in the fame reciprocal Ratio of the Radii; whence it eafily appears, that the Sectors defcribed in the fame Time will be equal.
In all other Curves, fince the Velocity is to the Velocity of a Body moving in a Circle at the fame Diftance, as $\frac{a}{b} \times *$ to $p,($ Fig. 156.) or as

Line $I K$, another Body moving at the fame Diftance will deêcribe an Arch $=\frac{b}{a} \times K N$. And the Area of the Circular Sector, and that of the Trajectory deferibed in the fame Time, will be $\frac{b}{a} \times K N \times \frac{7}{2} C N$, and $K N \times \frac{1}{1} C N$, which two Areas are in the given Ratio of b to a. Wherefore when it is $a=b$, as it is in the Hyperbolical Spiral, the Area fo defcribed will always be equal to the Area of the Circular Sector, defcribed in an equal Time.

To find the Center of O Fcillation; by Dr. Br. Taylor, n. 337. p. 11 .

Fig. 162. Let A.BD be a Section of the propofed Body in a Plain perpendicular to the Horizon, in which the Center of Gravity G is moved, C being the Center of Sufpenfion: Let the Body be diftinguifhed into Prifmatical Flements perpencicular to the Plain AB D, and therefore always parallel to the Horizon; as will eafily appear from the Motion of the Center of Gravity G in that Plain A B D. And becaufe of this Situation, any fuch Element may be confidered as a Phyfical Point p, placed in the fame Plain A BD at the Point z. Therefore let the Body propofed be reduced to the Phyfical Plain A BD, confifting of fuch Particles p.

In this Plain that the Point O may be found, whofe proper Acceleration is not changed by the Actions of the other Particles, we muft give Attention to the Force of every fingle Particle p fituate in the Point z. For from thefe Forces being conjoin' d, arifes the abfolute Motion of the whole Plain. By means of this is given the Motion of every Point propofed, whence in its Turn is found that Point, the Motion of which is given.

But the Particle p will be urged by the Force of its own Gravity, which in a given little Time, if the Cohefion of the Particles were diffolved,
folved, would produce a given Acceleration of Motion in the Perpendicular to the Horizon $z y$. Draw $y x$ perpendicular to $C z$, and the Acceleration $z y$ will be refolved into the Parts $z x$ and $x y$. Becaufe of the Rigidity of the Body the Force $z x$ will be taken away by the Refiftance of the Point C. But by the other Force $x y$ the Space ABD is drawn round ${ }_{\text {a }}$ bout the Point C. And drawing an Horizontal Line C o, and a Perpendicnlar $z s$, it will be as $\frac{\mathrm{C} s}{\mathrm{C} z}$; becaufe of the given Force of Gravity, and the fimilar Triangles $x y z$ and $s \mathrm{C} z$. Therefore the Force of the Particle p, to move the Space ABD, will be as $\frac{\mathrm{C} s}{\mathrm{Cz}} \times p$.

To collect thefe Forces together, let O be an invariable Point, in a Line drawn at Pleafure, and at a Diftance C O, which is yet unknown. Then the Force of the Particle p to move the Point O, will be as $\frac{\mathrm{C} z}{\mathrm{CO}} \times \frac{\mathrm{C} s}{\mathrm{Cz}} \times p$, that is, as $\frac{\mathrm{C} \mathrm{s}}{\mathrm{CO}} \times p$. But the Acceleration which p contributes to the fame Point O , will be as $\frac{\mathrm{CO}}{\mathrm{C} z} \times \frac{\mathrm{C} s}{\mathrm{Cz}}$. Therefore the Force $\frac{\mathrm{C} s}{\mathrm{CO}} \times p$ being apply'd to the Acceleration $\frac{\mathrm{CO} \times \mathrm{CS}}{\mathrm{C} z q}$, the Quotient will be $\frac{\mathrm{C} z q}{\mathrm{CO} q} \times$ Particle p, which if it be fuppofed to move in the Point O with the fame Acceleration $\frac{\mathrm{CO}}{\mathrm{C}} \times \mathrm{C} s$, would produce the fame Motion intirely, as the Particle p produces in the fame Point O. Thus at laft the Problem is reduced to a well known Theorem of Motion ; for the Sum of the Forces $\frac{\mathrm{C} s}{\mathrm{CO}} \times \rho$ being apply'd to the Sum of the Particles $\frac{\mathrm{C} z q}{\mathrm{CO}} \times p$, the Quotient' will be the abfolute Acceleration of the
 celeration to be equal to the given Acceleration $\frac{\mathrm{C}_{0}}{\mathrm{CO}_{0}}$ of the Point O , the Diftance CO will be given. For let $\frac{\mathrm{C} 0}{\mathrm{CO}}=d$, and by the Method of Fluxions 'tis $\mathrm{C} s \times p=\dot{\mathrm{M}}$, and $\mathrm{C} z q \times p=\dot{\mathrm{C}}$. Then becaufe of CO being invariable, the Sum of all the Forces will be $\frac{\mathrm{C} s}{\mathrm{CO}} \times p=\frac{\mathrm{M}}{\mathrm{CO}}$, and the Sum of all the Particles $\frac{\mathrm{Czq}}{\mathrm{COq}} \times p=\frac{\mathrm{C}}{\mathrm{CO}}$. Whence applying the VoL. IV. D d d

Sum of the Moments to the Sum of the Bodies, it will be $\frac{\mathrm{M}}{\mathrm{C}} \times \mathrm{CO}=$ d, and therefore $\mathrm{CO}=\frac{\mathrm{C}}{\mathrm{M}}$. Therefore C and M being found, CO will be given by the inverfe Method of Fluxions.

Cor. From the Center of Gravity G draw $\mathrm{G} g$ perpendicular to the Horizontal Line $\mathrm{C} a$, and let the Body itfelf ABC be called A . Then from the well known Property of the Center of Gravity, it will be $\mathrm{M}=\mathrm{C} g \times \mathrm{A}$. Whence it is $\mathrm{CO}=\frac{d \mathrm{C}}{\mathrm{C} g \times \mathrm{A}}$.

Prop. 2. Theor. I. The fame Things being fuppofed, let the Point O be fought, in the right Line C G paffing through the Center of Gravity G; then will O be the Center of Offillation of the Body A.

Fig. 163.
For in this Cafe it is $\frac{\mathrm{C} 0}{\mathrm{CO}}=\frac{\mathrm{C} g}{\mathrm{CG}}=d$. Whence $\mathrm{CO}=\left(\frac{d \mathrm{C}}{\mathrm{C} g \times \mathrm{A}}\right.$, by Cor. of Prop. 1. $=\int \frac{\mathrm{C}}{\mathrm{CG} \times \mathrm{A}}$. But A is given, and the Point C being given, C G and the Quantity C are given. Whence CO is given, whatever be the Inclination of the vibrating Body to the Horizon. Therefore by the Definition, and by Prob. i. O is the Center of Ofcillation of the Body A. 2. E. D.

Prop. 3. Theor. 2. The fame Things being fuppofed, let D be the Aggregate of all the $\mathrm{G} z^{2} \times p$. Then it will be $\mathrm{CO}=\mathrm{CG}+\frac{\mathrm{D}}{\mathrm{CG} \times \mathrm{A}}$.

Draw $z F$ perpendicular to $C G$, and it will be $C z q=C G q+G z q$ $-2 C G \times G F$, when F falls between C and G. But when F falls in C G produced, it will be $\mathrm{C} z q=\mathrm{CG} q+\mathrm{G} z q+{ }_{2} \mathrm{CG} \times \mathrm{G} f_{0}$ Therefore $\mathrm{C}=$ (Aggregate of all the $\mathrm{C} z q \times p=$) Aggregate of all the $\mathrm{CG} q \times p+G z q \times p-2 \mathrm{CG} \times \mathrm{GF} \times p+2 \mathrm{CG} \times \mathrm{GF} \times p$. But becaufe of G the Center of Gravity, the Aggregate of all the $2 \mathrm{CG} \times \mathrm{GF}$ $\times p=$ Aggregate of all the ${ }_{2} \mathrm{CG} \times \mathrm{G} f \times p$. Wherefore it is $\mathrm{C}=$ the Aggregate of all the $\mathrm{CG} q \times p+\mathrm{C} q q \times p=\mathrm{CG} q \times \overline{\mathrm{A}+\overline{\mathrm{D}}}$. But by Tbeorem 1 . it is $\mathrm{CO}=\frac{\mathrm{C}}{\overline{\mathrm{CG} \times \mathrm{A}}}$. Therefore $\mathrm{CO}=\mathrm{CG}+\frac{\mathrm{D}}{\mathrm{CG} \times \mathrm{A}}$. 2. E. D.

Cor. Hence the Parallelogram $\mathrm{CG} \times \mathrm{GO}$ is given. For it is $\mathrm{GO}=$ $\frac{D}{C G \times A}$. But A and D are given: Therefore $C G \times G O=\frac{D}{A}$ is given.

The Center of Ofcillation.

prop. 4. Theor. 3. The fame Things being fuppofed, if in the Point 0 the Phyfical Particle $\frac{C . G \times A}{C O}$ is conftituted, which being actuated by its own Gravity fhall vibrate about the Point C ; the Motion of the Space A B C fhall be juft the fame, as if it were agitated by the Ofcillation of the Body A.
It is evident, as well from the Nature of the Center of Gravity, as by Prob. 1. For $\frac{C G \times A}{C O}$ is the Aggregate of all the $\frac{\mathrm{C} q q \times p}{\mathrm{COq}}=\frac{\mathrm{C}}{\mathrm{COq}}$.

Prot. 5. Prob. 2. The Magnitude of any Body A, the Center of Gravity G , and the Point of Sufpenfion C being given; to find O the Center of Ofillation of the fame.
It is perform'd by Theor. I. by finding the Quantity C; or by Theor. 2. by feeking the Quantity D.

Scbolium. For performing the Calculation in a particular Cafe, the Quantity C or D is to be made choife of, according as the Nature of the propofed Figure fhall fuggeft. Then either of them being given, the
 Whence alfo will be given the Parallelogram $C G \times G O=\frac{D}{A}$, (Cor. Prop.3.) $=\frac{C}{A}-C$ G q, by Help of which, from the Center of Gra-
vity and the Point of Sufpenfion being given, the Center of Ofillation is given by Divifion only. Therefore in every Example it will always be moft convenient to find this Parallelogram firt, either by the Computation of D , or by the Quantity C, by a proper Affumption of the Center of Sufpenfion.

What remains is, to illuftrate this by fome Examples.
Ex. 1. Let the Figure propofed be the Pyramid A D C, whafe Bafe is the Parallelogram AD, and let the Motion of the Center of Gravity be in a Plain paffing through the Vertex C, and the Diameter of the Bafe EF parallel to the Side A B.

To perform the Calculation moft conveniently, let the Vertex itfelf C be the Point of Sufpenfion. Then in the Manner of Prob. I. let the Figure be reduced to a Phyfical Plain of the Ifofceles Triangle CEF, in which ef parallel to E F reprefents a Phyfical Line compofed of Particles p. Let $\mathrm{CH}=a, \mathrm{HF}=b$, and $\mathrm{C} b=x$. Then from the Nature of the Figure it will be $e b=\frac{b x}{a}$, and the Particle p placed at the Point z will be as x. Or rather, making $b z=v$, then \dot{x} will be the Bafe of the Elementary Prifm, and p will be as $v x x$. D d d 2

Fig. 165.

Fig. 165.

Whence it will be $\mathrm{C}=\mathrm{C} z q \times v \dot{x} x=\dot{v} \dot{x} x^{3}+\dot{x} v v^{2} x$. Therefore the Sum of all the $\mathrm{C} z q+p$ in the Line $b z$ will be $v x x^{3}+\frac{1}{5} x x v^{1}$; and in the Line $e f$, (putting $\frac{b x}{a}$ for v) that Sum will be $\frac{5 b a^{2}+2 b^{3}}{3 a^{3}}$ $x \dot{x} x^{4}$. Whence again taking the Fluent, and writing a for x, it will be $\mathrm{C}=\frac{6 b a^{2}+2 b^{3}}{15} \times a^{2}$. But the Pyramid irfelf is $\mathrm{A}=\frac{3 b a a}{3}$, and the Diftance of the Center of Gravity G from the Vertex C is C G = 3. Whence $\frac{\mathrm{C}}{\mathrm{A}}-\mathrm{CG} q=\frac{\mathrm{D}}{\mathrm{A}}=\mathrm{CG} \times G \mathrm{O}=\frac{3 a^{2}+16 b^{2}}{80}$.

Ex, 2. Let the Figure propofed be an ereet Cone, defrribed by the Rotation of the Ifofceles Triangle EC F about the Perpendicular C H.
Here again taking the Vertex C for the Center of Sufpenfion, and making $\mathrm{CH}=a, \mathrm{HE}=b, \mathrm{C} b=x, b z=v$, as above; it will be $p=2 \dot{x} v \vee \sqrt{\frac{b b}{a b} \times x-v} v$; whence $\dot{C}=2 \dot{v} \dot{x} \times \overline{x x+v v} \times$
$\sqrt{\frac{b}{a b}} x x-v v$. Let B be the Segment of a Circle defribed with the Diameter ℓf, which adjoins to the $\operatorname{Abfcifs} b z=v$, and to the Ordinate $\sqrt{\frac{b}{a b}} \times x-v v$. Then the Sum of all the $\mathrm{C} z q \times p$ in the right Line $\left.b z=2 \dot{x} \times \frac{4 a^{2}+b^{2}}{4 a^{2}} \times x^{2} \mathrm{~B}-\frac{1}{2} \dot{x} v \times \overline{b^{2}} \frac{a^{2}}{a^{2}}-v^{2}\right)^{\frac{3}{2}}$. And fince $v=e b$, this Sum will be $2 \dot{x} \times \frac{4 a^{2}+b^{2}}{4 a^{2}} x^{2}$ B, the Double of which $\frac{4 a^{2}+b^{2}}{a^{2}} \times \dot{x} x^{2} \mathrm{~B}$ is a Part of C in $e f$. But the Area B is as x^{2}; therefore $\mathrm{B}=c x^{2}$. And that Part of C will be $\frac{4 a^{2}+b^{2}}{a^{2}} \times c \dot{x} x^{4}$. Whence takìng the Fluent it will be $\mathrm{C}=\frac{4 a^{2}+b^{2}}{5} \times c a^{3}$. But the Cone itfelf $\mathrm{A}=\frac{4}{5} c a^{3}$, and $\mathrm{CG}=\frac{3}{4} a$. Wherefore $\frac{\mathrm{C}}{\mathrm{A}}-\mathrm{CG} q=$ $\frac{\mathrm{D}}{\mathrm{A}}=\frac{3 a^{2}+12 b^{2}}{80}$.
And in the fame Manner the Calculus proceeds in other Figures, wherein the Ratio's of $\mathrm{C} b$ to $b e$, and of $b z$ to p, are fill more compounded.

The Center of Ofcillation.

Ex.3. That the Manner of the Calculation of the Quantity D may appear, let the propofed Figure be a Parallelepiped, whofe Face perpendicular to the Horizon is A B D, parallel to the Plain of the Motion of the Center of Gravity. Draw the Diameters E F and H I, and let the Altitude of the Elements be p, and draw $t r$ parallel to $H I$. Make $G F=a_{2}$ $\mathrm{GH}=b, \mathrm{G} s=x$, and $s z=v$. Then it will be $\dot{\mathrm{D}}=\dot{v} \dot{x} x x+\dot{x} \dot{v} v v$. Whence the Part of D in the right Line $t r$ will be $2 b \dot{x} x^{2}+2 b^{3} \dot{x}$; and again taking the Double of the Fluent, it will be $\mathrm{D}=\frac{4 b a^{3}+4 b^{3} a}{3}$. But $\mathrm{A}=4 a b$. Whence $\frac{\mathrm{D}}{\mathrm{A}}=\frac{a^{2}+b^{2}}{3}=\frac{r}{T^{2}} \mathrm{DB} q$.

Ex. 4. Let the laft Example be in the Sphere, whofe greateft Circle is $B t r$, Diameter $A B$, and Center G. Then drawing Lines as in the Scheme, it will be $\dot{\mathrm{D}}=\mathrm{G} s q \times p+\mathrm{GM} q \times p$. But the Sum of all the $G s q \times p$ in the right Line $t r$ is $G s q$, drawn into the Area of the Circle defcribed with the Diameter $t r$. Alfo the Sum of all the $\mathrm{GM} q$ $x p$ in the right Line $k i$ is $\mathrm{G} \mathbf{M} q$, drawn into the Area of the Circle defribed with the Diameter $k i$. whence it eafily appears, that D is equal to four Times the Fluent of Gsq into the Area of the Circle whofe Diameter is $t r$. Let therefore c be the Area of the Circle, the Square of whole Radius is I , and let it be $\mathrm{GA}=a$, and $\mathrm{Gs}=x$. Then it will
be $\dot{\mathrm{D}}=4 \dot{x} x^{2} \times c a^{2}-c \dot{x}^{2}=4 c a^{2} \dot{x} x^{2}-4 c \dot{x} x^{4}$. Whence taking the Fluent, and making $x=a$, it will be $\mathrm{D}=\frac{8}{15} c a^{5}$. But $\mathrm{A}=$ $\frac{4 c a^{3}}{3}$ Whence $\frac{D}{A}=\frac{2}{5} a a$.
Becaufe of the Affinity of Solution, I have a Mind to add here a Problem concerning the finding the Center of Percuffion.
Prop. 6. Prob. 3. To find the Center of Percufion of any Body, having a Rotation about a given Point, which Point muft be fuch, that a Body ftriking againft it, and at the fame Time being let loofe from the Center of Sufpenfion, fhall incline neither this Way or that Way.
Firft it appears, that this Point muft be fought for in the Plain of Motion of the Center of Gravity. For if the Body is refolved into Prifmatic Elements perpendicular to that Plain, they will be carried by a Motion parallel to one another ; whence the Moments on each Side of that Plain will be equal : Therefore by the Refiftance made in this Plain, no Point of the Body will be driven out of it. Therefore let that Plain be A B, to which let the Body be reduced, by a Contraction of the Prifo matic Elements into Particles p fituated at the Points z, as in Prob. I. In this Plain let C be the Center of Rotation, or at leaft its Projection made

Fig. 169.
made by a Line let fall perpendicularly upon this Plain; and let 2 be the Point fought. Through C draw C at Pleafure, in which take two Points z and ξ, fo that drawing $z \mathrm{Q}$ and $\xi \mathrm{Q}$, the Angle $\mathrm{C} z \mathrm{Q}$ may be obtufe, and the Angle $\mathrm{C} \xi \mathrm{Q}$ acute; and in the Points z and ξ let there be Particles p and \neq. Then drawing $z r$ and ξr perpendicular to $\mathrm{C} \xi$, which may be to each other as $\mathrm{C} z$ to $\mathrm{C} \xi$, by there will be reprefented tho abfolute Velocities of the Particles p and π. But certain Parts of there Velocities, which are in the Directions of $z \mathrm{Q}$ and $\xi \mathrm{Q}$, are taken away by the Refiftance of the Point Q. Draw C D and $C d$ perpendicular to $\mathrm{Q} z$ and $\mathrm{Q} \xi$, and becaure of equal Angles $z \mathrm{CD}=r z \mathrm{Q}$, and $\xi \mathrm{C} d=r \xi \mathrm{Q}$, the other Parts of the Velocities, which are in Directions perpendicular to $\mathrm{Q} z$ and $\mathrm{Q} \xi$, wili be as $z \mathrm{D}$ and ξ d. So that in refpect of the Diftances $Q z$ and $Q \xi$, the Forces of the Particles p and π, to move the Space A B the contrary Way, will be as $\mathrm{D} z \times z \mathrm{Q} \times p$, and $d \xi \times \xi \mathrm{Q} \times p$. Now by the Conditions of the Problem thefe Sums of contrary Forces ought to be equal..

Becaufe of the right Angles at D and d, the Points D and d are in the Circumference of a Circle defribed with the Diameter CQ. Let E be the Center of this Circle. Then drawing E z and E , meeting the Circle in F and I, f and i, it will be $\mathrm{D} z \times z \mathrm{Q}=\mathrm{F} z \times z \mathrm{I}=\mathrm{EF} q$ $\mathrm{E} z q=\mathrm{EQ} q-\mathrm{E} z q$; and $d \xi \times \xi \mathrm{Q}=\mathrm{E} \xi q-\mathrm{EQ} q$. Then the Sum of all the $\mathrm{E} \mathrm{Q} q \times p-\mathrm{E} z q \times p$ will be equal to the Sum of all the $\mathrm{E} \xi q \times \pi-\mathrm{E} \mathrm{Q}_{q} \times \pi$. And tranfpofing the Terms, the Sum of all the $\mathrm{E} Q \times \overline{p+\pi}$ will be equal to the Sum of all the $\mathrm{E} z q \times p+\mathrm{E} \xi q$ $x \pi$: That is, if p be put as well for the Particle p within the Circle, as for the Particle π without the Circle ; the Sum of all the $\mathrm{E} \mathrm{Q} q \times p$ will be equal to the Sum of all the $\mathrm{Ezq} \times p$. Draw $z s$ perpendicular to CQ : Then it will be $\mathrm{E} z q=\mathrm{C} z q+\mathrm{EC} q-\mathrm{Q} \mathrm{C} \times \mathrm{C} s$. Now this Value of $\mathrm{E} z q$ being fubftituted inftead of it, and the Equation being rightly managed, you will find at laft the Sum of all the CQ $\times \mathrm{C} s \times p=$ to the Sum of all the $\mathrm{Czq} \mathrm{\times p}$. Whence it will be $\mathrm{CQ}=$ Sum of all the $\mathrm{C} z q \times p$. But the Sum of all the $\mathrm{C} z q \times p$ is the
Sum of all the $\mathrm{C} s \times p$ Quantity C irfelf in the Calculation of the Center of Ofcillation; and if the Center of Gravity be G, and $\mathrm{Gg} g$ be drawn perpendicular to $\mathrm{C} Q$, and the Body itfelf be called A, the Sum of all the $\mathrm{C} s \times p$ will be equal to $\mathrm{G} g \times \mathrm{A}$. Whence it is $\mathrm{CQ}=\frac{\mathrm{C}}{\mathrm{C} g \times \mathrm{A}}$. Let the Center of Ofillasion be O ; then by T beor. 1. $\mathrm{CO}=\frac{\mathrm{C}}{\mathrm{CG} \times \mathrm{A}}$. Whence it is Cg, CG $: \mathrm{CO}, \mathrm{CQ}$. Wherefore a Perpendicular to CO being drawn through
O , it will pars through the Point Q . 2 E . I.
VIII. A

VIII. A Lemma. Let ADFB, A Δ © B, be two Curves, the Rela- Of the Motion tion of which is fuch, that the Ordinates $C \Delta D, E \Phi F$, being drawn, of a Stretch'd it may be $\mathrm{C} \Delta . C D:: E \Phi, E \mathrm{~F}$. Then the Ordinates being diminifh'd ${ }_{\mathrm{B} .}$ Taylor, n . ad infinitum, fo that the Curves may coincide with the Axis A B; I fay 337. p. 26. that the ultimate Ratio of the Curvature in Δ will be to the Curvature in D, as $C \Delta$ to $C D$.
Demonff. Draw the Ordinate $c \& d$ very near to $C D$, and at D and Δ draw the Tangents $\mathrm{D} t$ and $\Delta \theta$, meeting the Ordinate $c d$ in t and θ. Then becaufe of $c \delta . c d:: C \Delta . C D$, (by Hypothefis) the Tangents being produced will meet one another and the Axis in the fame Point P. Whence becaufe of fimilar Triangles CDP and $c \& P, C \Delta P$, and $c \theta P$, it will be $6 \theta \cdot c t:: C \Delta . C D:: c \delta, c d$ (by Hyp.) $:: \delta \theta \cdot(c \theta-c \delta)$.$d t(c t-c d$.) But the Curvatures in Δ and D are as the Angles of Contact $\theta \Delta \delta$ and $t \mathrm{D} d$; and becaufe $\delta \Delta$ and $d \mathrm{D}$ coinciding with $c \mathrm{C}$, thofe Angles are as their Subtenfes of $\theta, d t$; that is, by the Proportion above, as C $\Delta, C \mathrm{D}$. Therefore, ξ^{3}. 2. E. D.
Lem. 2. In fome Inftant of its Vibration, let a String ftretch'd beaneen the Points A and B put on the Form of any Curve $\mathrm{A} p \pi \mathrm{~B}, \mathrm{I}$ fay that the Increment of the Velocity of any Point P , or the Acceleration arifing from the Force of the Tenfion of the String, is as the Curvature of the String in the fame Point.
Demonff. Conceive the String to confift of equal rigid Particles, which are infinitely little, as $p \mathbf{P}, \mathrm{P}_{\pi}, \mathcal{\mho}^{\circ} c$. and at the Point P erect a Perpendicular P R, equal to the Radius of Curvature in P, which let the Tangents $p t, \pi t$, meet in t, the Parallels to them $\pi s, p s$, in s, the Chord $p \pi$ in c. Then by the Principles of Mechanicks, the abfolute Force by which the two Particles $p P$ and $P x$ are urged towards R, will be to the Force of the Tenfion of the String, as st to $t p$; and half this Force, by which one Particle $p \mathrm{P}$ is urged, will be to the Tenfion of the String, as $c t$ to $t p$, that is, (becaufe of fimilar Triangles $c t p, t p \mathrm{R}$) as $t p$ or $\mathrm{P} p$ to $\mathrm{R} t$ or PR. Wherefore, becaufe of the Force of Tenfion being given, the abfolute accelerating Force will be as $\frac{\mathrm{P} p}{\mathrm{PR}}$. But the Acceleration generated is in a compound Ratio of the Ratios of the abSolute Force directly, and of the Matter to be moved inverfely, and the Matter to be moved is the Particle itfelf \mathbf{P} p. Wherefore the Acceleration is as $\frac{1}{\mathrm{PR}}$, that is, as the Curvature in P . For the Curvature is reciprocally as the Radius of Curvature in that Point. 2. E. D.
Prob. I. To determine the Motion of a Atretch'd String.
In this and the following Problems I fuppofe the String to move from the Axis of Motion through an indefinitely little Space; that the Increment of Tenfion from the Increafe of the Length, alfo the Obliquity of the Radii of Curvature, may fafely be neglected.
Therefore let the String be ftretch'd between the Points A and B, and with a Bow let the Point z be drawn to the Diftance $C z$ from the

Axis A B. Then taking away the Bow, becaufe of the Flexure in the Point C alone, that will firlt begin to move, (by Lem. 2.) But no fooner will the String be bent in the neareft Points ϕ and d, but thefe Points alfo will begin to move; and then E and e, and fo on. Alfo becaufe of the great Flexure in C, that Point will firf move very fwiftly, and thence the Curvature being increafed in the next Points, $\mathrm{D}, \mathrm{E}, \mathcal{\xi}^{\circ}$. they will immediately be accelerated more fwiftly; and at the fame Time the Curvature in C being diminifh'd, that Point in its Turn will be accelerated more nowly. And in general, thofe Points which are flower than they fhould be, being accelerated more, and the quicker lefs, it will be brought about at laft, that the Forces being duly attemper'd one with another, all the Motions will confpire together, and all the Points will at the fame Time approach to the Axis, going and returning alternately ad infinitum.

Now that this may be done, the String mult always put on the Form of the Curve A C D E B, the Curvature of which in any Point E is as the Diftance of the fame E n from the Axis; the Velocities of the Points C, $D, E, \xi^{\circ} c$. being alfo in the Ratio of the Diftances from the Axis $C z$, D $\theta, E \nu, \mathcal{E}^{2}$. For in this Cafe the Spaces $\mathrm{C} x, \mathrm{D} \uparrow, \mathrm{E} \varepsilon, \mathcal{E}^{\circ} c$. defcribed in the tame infinitely little Time, will be as the Velocities, that is, as the Spaces defcribed $\mathrm{D} z, \mathrm{D} \approx, \mathcal{J}^{2}$. Wherefore the remaining Spaces $x z$, $\delta \mathfrak{s}, \varepsilon n$, $\mathcal{E}^{\circ} c$. will be to each other in the fame Ratio. Alfo by Lemma 2. the Accelerations will be to one another in the fame Ratio. By which Means the Ratio of the Velocities always continuing the fame with the Ratio of the Spaces to be defcribed, all the Points will arrive at the Axis at the fame Time, and always depart from it at the fame Time. And therefore the Curve A C D E B will be rightly determined. 2. E. D.

Moreover the two Curves ACDEB and A $x \delta \in \mathrm{~B}$ being compared together, by Lemma 1. the Curvatures in D and of will be as the Diftances from the Axis D ϑ and $\delta \vartheta$; and therefore by Lemma 2. the Acceleration of any given Point in the String will be as its Diftance from the Axis. Whence, (by Sect. 10. Prop. 51. of Newton's Principia,) all the Vibrations both great and fmall will be perform'd in the fame periodical Time, and the Motion of any Point will be fimilar to the Ofcillation of a Body vibrating in Cycloid. 2. E. I.

Cor. Curvatures are reciprocally as the Radii of Circles of the fame Degree of Curvature. Therefore let a be a given Line, and the Radius of Curvature in E will be equal to $\frac{a a}{\mathrm{E} \eta}$.

Prob. 2. The Length and Weight of a String being given, together with the Weight that ftretches the String, to find the Time of a fingle Vibration.
Fig. 173.
Let the String be ftretch'd between the Points A and B by the Force of the Weight P , and let the Weight of the String itfelf be N, and its Length L. Alfo let the String be put in the Pofition A Fp C B, and at the middle Point C let C S a Perpendicular be raifed, equal to the Radius of the Curvature in C , and meeting the Axis AB in D ; and taking a Point p near to C , draw the Perpendicular $p c$ and the Tangent $p t$.

The Vibration of a Stretclid String.

Therefore it appears, as in Lemma 2. that the abfolute Force by which the Particle $p \mathbf{C}$ is accelerated, is to the Force of the Weight \mathbf{P}, as $c t$ to $p t$, that is, as p C to CS. But the Weight P is to the Weight of the Particle $p \mathrm{C}$, in a Ratio compounded of the Ratio's of P to N ; and of N to the Weight of the Particle $p \mathrm{C}$, or of L to $p \mathrm{C}$; that is, as $\mathrm{P} \times \mathrm{L}$ to $\mathbb{N} \times p \mathbf{C}$. Therefore compounding thefe Ratio's, the accelerating Force is to the Force of Gravity, as $\mathrm{P} \times \mathrm{L}$ to $\mathrm{N} \times \mathrm{C} \mathrm{S}$. Let therefore a Pendulum be conftructed, whofe Length is CD; then by Sect. X. Prop. 52. of Neroton's Principia, the periodical Time of the String will
 But by the fame Propofition, the Force of Gravity being given, the Longitudes of the Pendula are in a duplicate Ratio of the periodical Times. Whence $\frac{\mathrm{N} \times \mathrm{CS} \times \mathrm{CD}}{\mathrm{P} \times \mathrm{L}}$, or writing $\frac{a a}{\mathrm{CD}}$ for CS, by Cor. Prob. I. $\frac{\mathrm{N} \times a a}{\mathrm{P} \times \mathrm{L}}$ will be the Length of a Penduluin, the Vibrations of which are ifochronous to the Vibrations of the String.

To find the Line a, let the Abrifs of the Curve be $\mathrm{AE}=\boldsymbol{z}$, and the Ordinate $\mathrm{EF}=x$, and the Curve itfelf $\mathrm{AF}=v$, and $\mathrm{CD}=b$. Then by Cor. Prob. 1. the Radius of Curvature in F will be $\frac{a a}{x}$. But \dot{v} being given, the Radius of Curvature is $\frac{\dot{v} \dot{x}}{\ddot{z}}$. Whence $\frac{a a}{x}=\frac{\dot{v} \dot{x}}{\dddot{z}}$, and therefore $a a \ddot{z}=\dot{v} x \dot{x}$, and taking the Fluents $a a \dot{z}=\frac{\dot{v} x^{2}}{2}-\frac{\dot{v} b^{2}}{2}+$ v a^{2}. Here the given Quantity $-\frac{\dot{v} b^{2}}{2}+\dot{v} a^{2}$ is added, that it may be $\dot{z}=\dot{v}$ in the middle Point C. And hence the Calculus being compleated, it will be $\dot{z}=\frac{a^{2} x-\frac{1}{2} b^{2} x+\frac{1}{2} x^{2} x}{\sqrt{a^{2} b^{2}-a^{2} x^{2}-\frac{1}{d} x^{4}-\frac{1}{4} b^{7}+\frac{1}{2} b^{2} x^{2}}}$: Now let b and x vanifh in refpect of a, that the Curve may coincide with the Axis, and it will be $\dot{x}=\frac{a \dot{x}}{\sqrt{b b-x x}}$. Now with Center C, and Radius $\mathrm{DC}=b$, a Quadrant of a Circle D PE being defcribed, and making $\mathrm{CQ}=x$, and erecting the Perpendicular QP ; then the Arch

Fig. 174: D Pbeing $=y$, it will be $\dot{y}=\frac{b \dot{x}}{\sqrt{b b-x x}}=\frac{b}{a} \dot{x}$.

$$
\begin{aligned}
& \text { Whence } y=\frac{b}{G}, z, \text { and } z=\frac{a}{b} y \text {. And making } x=b=C D_{s} \text { in } \\
& \text { VOL. IV. }_{\text {E e }}
\end{aligned}
$$

Clocks agreeing with

 which Care it is alfo $y=$ Quadrantal Arch DPE, and $z=A D=\frac{1}{2} L$; it will be $\frac{1}{2} \mathrm{~L}=a \times \frac{\mathrm{DE}}{\mathrm{CD}}$, and $a=\mathrm{L} \times \frac{\mathrm{CD}}{2 \mathrm{DE}}$. Let it be therefore CD . ${ }_{2}$ D E $::$ Diameter of a Circle. Circumference $:: d . c$; and it will be $a a=\mathrm{LL} \times \frac{d d}{c c}$. Therefore this Value being fubstituted for $a a ; \frac{\mathrm{N}}{\mathrm{P}}$ $\times \mathrm{L} \times \frac{d d}{c c}$ will be the Length of a Pendulum which will be ifochronous to the String. Therefore let D be the Length whofe periodical Time is 1 , and $\frac{d}{c} \sqrt{\frac{\mathrm{~N}}{\mathrm{P}} \times \frac{\mathrm{L}}{\mathrm{D}}}$ will be the periodical Time of the String. 2.E.I. For the Periodical Times of Pendulums are as the Square-roots of their Lengths.Cor. 1. The Number of Vibrations of the String in the Time of one Vibration of the Pendulum D, is $\frac{c}{d} \sqrt{\frac{P}{N} \times \frac{D}{L}}$.
Cor. 2. Becaufe $\frac{d}{c} \times \sqrt{\frac{1}{D}}$ is given, the periodical Time of the String is as $\sqrt{\frac{\mathrm{N}}{\mathrm{P}} \times \mathrm{L}}$. And the Weight P being given, the Time is as $\sqrt{\mathrm{N} \times \mathrm{L}}$. And the Strings being made of the fame Thread, in which Care 'tis \mathbf{N} as L , the Time will be as L .

Tbe Invention IX. In a Frencb Book lately publifhed, the Author fpeaks of making of making Clocks to agree with the Sun's apparent Motion; and fuppofed that it was

Clocks to kect Time witb tbe Sun's apparent Mo-
Kion, aflirted by Mr. J. Williamfon, n . which theweth both equal and apparent Time according to the Tables of the Equation; and which went 400 Days without winding up. This I am well fatisfied is a Clock of my own making; for about fix Years before that Time, I made one for Mr. Daniel Quare, which agrees with the Defcription he gives of it, and went 400 Days as he faith. This Clock Mr. Daniel Quare fold, foon after it was made, to go to the faid King Cbarles the Second of Spain: And it was made ro, that if the Pendulum was adjufted to the Sun's mean Motion, the Hands would fhow equal Time on two fixed Circles, on one the Hour, and on the other the Minute. But there were other two moveable Circles of the fame kind, that moved forwards and backwards, as the Time
of the Year required; on which the fame Hands fhew apparent Time likewife, according to the Equation Tables. This Method the Author owns he knew of, and applied the fame Motion to Pocket Watches 12 or 14 Years ago, which I confefs I never did; being well fatisfied that Watches with Springs and Balances are very unfit to fhew the minute Difference, as it increafeth and decreafeth, between equal and apparent Time.
Soon after this Clock was fent to Spain, I made others for Mr. Quare, which fhewed apparent Time by lengthening and fhortening the Pendulum, in lifting it up and letting it down again, by a Rowler fomewhat in the Form of an Ellipfis, through a Slit in a Piece of Brafs, which the Spring at the Top of the Pendulum went through. By this Means every Vibration of the Pendulum, would agree to a fecond of Time of the Sun's apparent Motion; that Rowler, which lifted up the Pendulum, and let it down again, being continually moving about all the Year; fo that it may feem very ftrange, that this Author never heard of it fo many Years after they were made : For one of thofe, and not the firft, made with the rifing and fetting of the Sun, Mr. 2 uarc fold to the late King William, and it was fet up at Hampton-Court, where it hath been ever fince. This Contrivance of lengthening and fhortening the Pendulum, I thought of feveral Years before I made any of them. Since then I have made others for Mr. Quare likewife, which thewed the Difference between equal and apparent Time according to the Equation Tables, by a Hand moving both Ways from the Top of a Circle; on one Side fhewing how much a Clock, keeping equal Time, ought to be fafter than the Sun ; on the other Side how much nower.

But thefe Clocks that I then made to agree with the Sun's apparent Time, were done according to the Equation Tables, which I found not to agree very exactly with the Sun's apparent Motion: Neither can any other be made to keep equal Time, that will gain and lofe all the Year agreeable to the faid Tables; for though the Tables themfelves may be true, yet fome Difference in Motion does proceeds, in both Sorts of Clocks, from Cold or Heat altering the Length of their Pendulums. This Difference, by fome Ob fervations I have made, I fuppofe to be about the $\frac{1}{\circ}$ Part of an Inch, in the Length of a Pendulum vibrating Seeonds, which will alter the Motion of the Clock about 12 Seconds in 24 Hours. But to make my Clocks of keeping apparent Time, to go as exact as poffible, I made a Table my felf by Objervation: For obferving the Sun, as often as it was feen, when it came on the Meridian, for feveral Years together, always fetting down the Difference between its coming to the Meridian and the Time, by a Clock I had adjufted as well as I could to equal Time, and always taking Notice how much my Equal-Time Clock gain'd or loft at the End of every Year, I compleated my Table in the Year 1711. Since then I have made many of thefe Clocks: So that I think I may jufly claim the greateft Right to this Contrivance, of making Clocks to go with apparent Time; and I have never yet heard of any fuch Clock fold in England, but what was of my own making, though I have made of them fo long.

Experi- X. I. The Difagreement among the moft famous Authors, concerning ments and the Velocity of Sound, may be feen at one View in the following Table, in Obfervations on tbe which, in Englifh Feet, the Space is exhibited, which they afcribe to the ProMotion of gre's of a Sound in one Second of Time.
Sound, by

Mr. W.
Derham.
n. 313 .
p. 2.

Feet.

Ifaac Newion	968	Princip. Nat. Phil.
Hon. Mr. Robarts	1300	Phil. Tranf. n. 209.
Hon. Mr. Boyle	1200	Eflay on Languid Motio
Mr. Walker	13388	Phil. Tranf. n. 247.
Mer \int ennus	1474	Balintic. Prop. 39.
Mr. Flamfeed and Halley	1142	
Florentine Philofophers	1148	Exp. per Acad. del Cim
Frencb Philofophers	1172	Du Hamel, Hift. Acad. Reg

There is no great Difagreement of Opinion among the three laft, but of the reft there is. The Reafon of which is manifeftly this, either becaufe of the Infufficiency of the Inftruments, or becaufe of the Diftance, or from the Winds.
I. The Inftrument by which fome of them have meafured, was not a Watch or Clock, but a fufpended Plummet, which vibrated Seconds. But it is plain, that a Plummet is much lefs convenient, nor can be fo accurate as a Clock; becaufe it is neceffary that the Eye muft firt be employ'd in obferving the Corufcation, and then muft obferve the Plummet or Pendulum. This waftes Times, and caules Confufion. But efpecially if, 2. The Diftance between the Thing founding and the Oblerver be but fmall. Now it is evident that mof of thefe made their Experiments at the Diftance of only'a few Feet, and meafured by the Return or Echo of the Sound. Some of thefe extended their Meafure hardly beyond fix or feven hundred Feet, others not above a fingle Mile. But I have always obferved, that in fo fmall a Dittance an Uncertainty would neceffarily atife, even tho' the beft Inftrument was made ufe of. And a very fimall Error in fucis Thort Diftances is to be accounted a great one. For perhaps the Penduluin has already pafs'd over half its Swing or Arch from the laft Pulfation, when the Sound was firt emitted. But we reckon that Pulie as if the Vibration were fully compleat, or perhaps we anticipate the Vibration. And after the Sound has reached us, perhaps we count more or lefs than we flould do.

Or if the Diftance be long enough, yet an Error may thence arife, if
3. We take not the Winds into our Reckoning.

Thefe are certain Inconveniencies, which attend the Menfuration of the Progrefs of Sounds.

Yet it may be obferved, that the Spaces affign'd by the three laft Obfervations of the Table, agree pretty well with one another. Doubtlefs this proceeds from hence, that the Obfervers were furnifh'd with good Clocks. In the Ufe of thefe the Ear alone is employ'd in catching the Vibrations of
the Pendulum, while the Eye attends to the Corufcation, or fome other Emiffion of the Sound. Alfo thefe Obfervations were made at great Diftances, in which a fmall Eiror could be of no great Moment. The Obfervations of Flamfeed and Halley were made at an Interval of almoft three Miles, within a few Perches, from the Royal Obfervatory, upon Shooter's Hill; and the Sound return'd in $13 \frac{1}{2}$ Seconds of Time. The noble and celebrated Florentimes, of the Academy del Cimento, made their Experiments at nearly the fame Diftance. And fome at the Diftance of one Mile only. And Cafini, Picard, and Roeimer at the Diftance of 1280 French Toifes, which is more than a Mile and half Englifh Meafure.
I my felf have made very many Experiments, at various Diftances, from one Mile to twelve and more. And for meafuring of Time I have a molt accurate Watch, with a Pendulum that vibrates half Seconds.
I propofed to my felf to determine the following Queries.
r. How much Space a Sound paffes through in a Second of Time, or any other Interval of Time?
2. When a Gun is difcharged towards the Obferver, whether it fends its Sound in the fame Interval of Time, as when it is cifcharged the contrary Way?
3. In every State of the Atmofphere, when the Mercury in the Barometer afcends or defcends, whether Sounds defrribe the fame Space in the fame Time?
4. Whether Sounds fly fwifter in the Day-time than in the Night?
5. Whether the Sound is accelerated by a favourable Wind, or retarded when the Wind is contrary ? Or how the Wind affects Sound, if it affects it at all ?
6. Whether Sound moves fwifter in calm Weather, than when the Wind blows?
7. Whether a violent Wind, blowing crofs to the Courfe of the Sound, accelerates or retards the Motion of the Sound?
8. Whether Sounds have the fame Motion in Winter and Summer, by Day and by Night?
9. Whether they are the fame in Snowy Weather, and in fair?
io. Whether a great and fmall Sound have the fame Motion?
11. Whether in all Elevations of the Gun, a Horizontal, at 10,20 , as far as 90 Degrees, the Sound arrives at the Ear of the Obferver at the fame Diftance of Time?
12. Whether all Kinds of Sounds, thofe of Guns, Bells, Hammers, and fuch like, have the fame Motion?
13. Whether the different Forces of Gumpowder vary the Motion of Sound?
14. Whether at the Tops of high Mountains, or in Vales, or in the higheft and lowett Parts of the Atmofphere, Sounds pafs over the fame Spaces in the fame Intervals of Time?
15. Whether a Sound afcending or defcending obliquely has the fame Motion?

The Motion of Sounds.

tion? Or whether it afcends from the Bottom to the Top of a Mountain with the fame Velocity, as it defcends from the Top to the Bottom ?
16. Whether a Sound moves fwifter at the Beginning, and nower towards the End, as happens to many other violent Motions?
17. Or is it not rather equable, that is, does it not defcribe Half its Courfe in half the Time, one Fourth in a Fourth of the Time, and fo on?
18. Has it not the fame Motion in all Countries, Northern or Southern, in England, France, Italy, Germany, \&xc.
19. Does Sound pafs from Place to Place in a Right Line, or the fhorteft Way, or according to the Surface of the Ground between ?

For determining thefe Inquiries I requefted my Friends, that they would difcharge Guns from Towers and other Eminencies, at the Diftance of 1, 2, 3, as far as 8 Miles, which I found to be the greateft Diftance at which I could hear the Report of a Gun, in this Country which is fo thick fet with Trees and other Things. Thefe Guns were of great Ufe to me. But thofe great Guns, call'd Sakers, were moft for my Purpofe, upon Blackbeath, with which the young Ingeniers of the Train are there exercifed. The Flafhes of thefe Guns I could fee from the Steeple of my Church, and I could hear their Report in almoft all Weathers; nay even in the Day-time with the Help of my Telefcope I could fee the Flafhes. Therefore I apply'd my felf with the utmoft Care and Diligence to the Obfervation of thefe Guns, from February 1704-5.

After a few Obfervations made upon thefe Explotions, I procured a certain fpecial Experiment to be made. Two Cannons or Sakers were placed near one another, the Mouth of one of which was towards me, and of the other from me. Thefe two Pieces were difcharged February 13, 1704-5, every half Hour, from Six in the Afternoon to Midnight, a gentle Gale blowing directly againft the Sound. The Diftance of Time between the Flafhing of every Gun, (which I could fee with my naked Eye,) and the coming of the Sound, was always about 120 or 122 Half-feconds of Time. I fay 120 or 122, becaufe the Sound came double; that is, the firt Sound within 120 Half-feconds, (which was the Fainter,) and the fecond within 122, which was more intenfe. And in the fame Manner during the whole Time of Obfervation, the Noife of every Gun came doubled.

This Reduplication of the Sound to me feems an Echo, which was reflected, as I imagine, by the Mill upon Blackbeath, or by the neighbouring Houfes. Of which I fhould have no Reafon to doubr, if it was not for the Opinion of a cersain learned Friend, who believes that no Echo can be heard, but which is made by reflecting Objects not far from the Obferver, and not by thofe which are near the fonorous Body, or orher diftant Objects.

Of $a n$
Echo at
a great
Difance.
2. But this I think not to be contrary to the Nature of an Echo. Then it is to be obferved, that this double Sound came directly from Blackbeath. Nor did the firt Sound come from thence, and the other (like an Echo) fram elfewhere, either beyond me, from the Right Hand or Left, or from any other Side. And the fame Thing I have frequently obferved, when great Guns were difcharged from the Ships in the River Thames, efpecially if the

The Motion of Sounds.

Air was calm and ferene, either in the Evening or Morning, when thofe they call the Watch-guns were difcharged. After the Sound of the Gun had reached the Ear, I heard it ftill running along the River, and echoing from the Shores, the Hills, and the Rocks, (which are in great Plenty along the Kentifh Shore) and that for many Miles together.

All thefe Things, according to my Friend's Opinion, proceeded from the Reperculfion of the Houfes and other Objects that were near me. But to fay nothing of the Weaknefs of the Sound, after it has pafs'd on for feveral Miles, and of its Incapacity to produce fuch an Effect, if it had come fo far, and was then repell'd by reflecting Objects near the Obferver, rather than by reflecting Objects that were near the fonorous Body; I thall give an Example or two, whence it will appear, that an Echo made by reflecting Objects near the founding Body may be heard for feveral Miles, as well as the primary Sound, and fometimes more intenfely than the fame.

I have often obferved, that Cannons difcharged in the Evening on the River Thames, about Deptford and Cuckbold's-Point, often made a Report which was double, treble, four-fold, and ftill more multiply'd; and that the later Reports are Aill the louder. And when I have gone crofs-wife this Way or that Way perhaps a Furlong, or a Quarter or Half a Mile, yet ftill the Sound was the fame. I remember that on the 8 tb of March laft paft, feveral great Guns were difcharged fome where between Deptford and Cuckbold's.Point aforefaid, from a Ship which I then faw upon the Tbames from my Church. Their Sound was repeated five or fix Times, after this Manner,

I counted 122 Half-feconds between tive Flafh and the Sound, the Wind blowing obliquely. Therefore at that Time the Guns were diftant from me above 13 Miles. The two firft Cracks were fainter than the third; but the laft Cracks were louder than any of the reft. And going a Quarter of a Mile to my Right Hand, the multiply'd Sound was the fame, and likewife when I went to my Left Hand. And befides in fome of my Stations, befides the multiply'd Sound, I plainly heard a faint Echo, which was reflected by my Church and the Houfes adjacent: Which I obferved then very often, when ever the Guns were difcharged.

Another Obfervation of a like Kind was made on a certain Sunday, about two or three Years ago, on the Sound of a large Cannon difcharged fomewhere in the River T bames, on this Side or beyond the Town of Gravefend. The Sound of this Gun was multiply'd at leaft eight, nine, or ten Times,
according to this Meafure of this Time

Many thought this multiply'd Sound was the Noife of many Gurs belonging to the Ship; but I conceive it to be nothing elfe but a reiterated Echo, from the Sound of one or two Guns, which was reverberated from feveral Ships, or the neighbouring Shore. I did not only hear this my felf, but many others who were

Tha Motion of Sounds.

Far off. Mr. Barret heard the fame repeated Sound at his own Houfe, which is near four Miles diftant from Upminfer where I heard it.
3. I will add an Example alfo of the Repercuffion of Sound in the Air, by Acrial Particles.

When I heard the Reports of great Guns, efpecially, when the Air was calm and ferene, I often obferved Murmuriag to go before the Crack, in the Air above. And in a thin Cloud, I often heard the Sqund of Guns above, juit over my Head, which ran along for feveral Miles in the Air; fo that this Murmuring continued for 15 Seconds of Time. This continual Murmuring, in my Judgment, proceeds from Particles of Vapour fufpended in the Asmofphere, which oppore the Coure of the Undulations of Sounds, and beat them back to the Ears of the Obferver, after the Manner of an indefinite Number of Echos; which we call a Murmuring in the Air.

Thele Things being duly contider' $h_{\text {d }}$ it will be evident that an Echo may be heard which is made a far off; and that the aforefaid Reduplication of the Report of the Guns upon Blackbeath proceeded without doubt from Blackbeath it felf, as I juft now affirm'd.

No Variation of Sound from the Different Elcroation, or Direaion of the Gun.
4. Now to go on to my Oblervations concerning the Progrefs of Sounds. What I have fuggefted about the Sound of the Guns at Blackheath, I have found to be true in all others; that the Motion of Sound is neither fwifter or flower, whether the Gun be dilcharged towards the Obferver or from him.

Alfo in all Pofitions of the Gun, Horizontal, or upright, and in all Elevations of the fame, whether io Degrees, or 20, \&ic. there is no Variation of the Sound. So true is the Obfervation of the famous Florentine Academy del Cimento in this Matter.

Alfo the Force of Gunpowder, whether ftrong or weak, a greater or a fmaller Quantity, tho' it may increafe or leffen the Intenfity of the Sound, yet it neither accelerates or retards its Motion.
The Mo- 5. Kircher affirms, that he always found a different Velocity of Sound, at tion of Sound not alter'd $b s$ theAltera. tions in the Air.

Sounds

 produced from dif. ferent $B o$ dies move ruith the fame Viclo. cieg.different Times, in the Morning, at Noon, in the Evening, in the NightTime. But as I had the Convenience of a better Time-keeper, and a more commodious Diftance, I never found there was any Diverfity in the Motion of Sound at thefe Seafons. But in all Kinds of Weather, whether the Sky was clear and ferene, or cloudy and turbid; whether Snow fell, or it was mifty; (for both of thefe ftrongly abate the Audibility of Sound,) whether it Thunders or Lightens, whether it be Hot or Cold, Day or Night, Sum, mer or Winter; whether the Mercury in the Barometer afcends or defcends, In all Changes of the Atmofphere whatever, (Winds only excepted, the Motion of Sound is neither fafter or nower, but is only more or lefs loud from that Variety of the Medium; which perhaps has deceived the fagacious Kircher.
Hence it will follow, that the Conclufions are erroneous, which Walker has deduced from the Obfervations of Dr. Plot, Kircher, and thofe of his own.
6. Though Kircher is of a contrary Opinion, yet I do not at all doubt but that the Sounds of all Bodies, of Guns, Bells, Hammers, ξ°. have the fame Velocity.

The Motion of Sounds.

Velocity. In the Year 1704 , I compared together the Beats of a Hammer and the Report of a Gun, at the Diftance of a Mile, which is the fartheft that I could hear the Sound of the Hammer; and I found that the Sound of both came to me in the fame Time. And that they pafs'd $\frac{3}{6}, \frac{1}{2}$, and $\frac{1}{4}$ of the fame Space in $\frac{3}{4}, \frac{1}{2}$, and $\frac{1}{4}$ of the fame Time.

As for what belongs to intenfe and languid Sounds, I doubt not but that they pafs over the fame Space in the fame Interval of Time; as may partly appear from thefe Experiments.
Fan. 13, 1704-5, The Mafter Gunner of Tilbury Fort, at my Requeft, difcharged a Gun or two, and a great Mortar in which he ram'd the Gunpowder very well. The Noife of all thefe came to me in the fame Time, being diftant about three Miles.
Alfo Sept. 1 1, 1705 , the Head Gunner of England, on my Account, upon Black-Heath after Sun-fet, difcharged fome Muskets, Sakers, and Mortars. The Muskets I could not hear, becaufe of the great Diftance, or becaufe the Air was not very clear. But I heard the Sound of the Sakers and Mortars in the fame Interval of Time, tho' the Noife of the Mortars was much more dull and remifs than that of the Sakers.
7. As to the Equability of the Motion of Sounds, I found it to be fo as the Mothe Academy del Cimento had determin'd long ago. That Sounds pafs half tion of their Space in Half the 'Time, a fourth Part in a fourth Part of the Time, and Sound unifo on. Which will appear from the Examples in the following Table.

The Motion of Sounds.

	The Number of the Vibra trions of the Pendulur.	The liftance of Places.		The Courfe of the Winds.
The Place in which the Difcharge was made.		Trigonometrically	By the Sound.	
		Miles.	Miles.	Oblique.
Nortb Okendon Church	$18{ }^{9}$	0,93 2,004	2,	Oblique.
Upminjler Mill	$\left\{22 \frac{1}{2}\right.$		$\{2,$	Favourab
itte Warley Church	$27^{\frac{1}{5}}$,	2, 97	A flrong fair Wind
Rainbain Church	33°	58	3,	Oblique.
Alveley Mill	33	$3 \times \quad 5^{8}$	3, 5	Oblique.
Dagenibanz Church	35	3, 85	3, 7^{8}	Favourable.
Souib IPeal Church	,	4, 59	4,86	Oblique.
Eeft Tborridon Church	$46 \frac{1}{2}$	5, 09	5, 03	Little favourable.
Barking Church	$70^{\frac{1}{2}}$	7,7	7,62	Fayurable.
Blackiseath Guns	116	12,	12, 55	Oblique.

The Diftances of Places from Upminfer, (the Place in which I obferved) as fet down in this Table, were meafured with all the Exactnefs I was able, either by a meafuring Rod, or by Trigonometry. And from the great Agreement there is found between the Diltances meafured in this Mainner, and likewife by the Motion of Sound, the Excellence of my Inftruments, as alfo the Truth of my Obfervations and Calculations, appear very plainly. For the Difference between the Diftances meafured, and the fame taken by Sound, is either none at all, or only a few hundredth Parts, unlefs when the Wind was fair (excepting that at the Church of South Weal, of which I fhall fpeak afterwards.) Thus in the Obfervations made from the Churches of Dagenbam, Wariey, Tborndon, and Barking, the Diftances taken from the Sound feem fomething fhorter than they fhould be, becaufe the Wind accelerated the Sound. But in forming this Column of Diftances by the Sound, I allow'd nothing for the Acceleration of the Winds; but I only divided the Number of Vibrations, or of Half-fecends, by $9 \frac{1}{7}$ or 9,25 , the Number of Semi-feconds in which Sound defcribes one Mile.

Alfo the Equability of the Motion of Sound is evident from this Table; as will appear from comparing the Vibrations and the Diftances, or from the Column of Diftances from the Sound only.

Now that nothing might be wanting for the Conirmation of this Matter, I made a Journey to the Sands at Foulne/s on our Efex Shore. Thcfe Sands, which are continually cover'd and wafh'd over by every Day's Tide, make a large and exact Plain of many Miles. Upon this Plain I meafured out only fix Miles; for neither the Tide nor my own Time would permit me to make Ufe of a longer Diftance. At the End almoft of every Mile I made Expeiments by difcharging Guns. From which Experiments I found, that all my former Obfervations were juft and true, that is, that Sound paffes a Mile in
${ }_{2}^{\frac{1}{2}}$ Half-Seconds, two Miles in $18 \frac{1}{2}$ Half-Seconds, three Miles in $27 \frac{1}{4}$ HalfSeconds, and fo on.
8. As to the 15 and 19 Queries, I confefs I could never fatisfy myfelf in there of the Af. Matters, by any of the Experiments I made. cending
And firt as to the Progrefs of Sound by the fhorteft Way, as in Query 19. The Reafon of my-doubting of this was the Difference between the Space between the Village of Weal and Upminfter meafured Trigonometrically and by ofsounct, the Sound, as exhibited in the foregoing Table. The Trigonometrical Menfuration was taken in fo many Manners, and with fuch good Angles, that I could have no Scruple about it. But becaufe by the Motion of the Sound the Diftance feems greater, and the Superficies of the intermediate Soil puts on fuch a Figure as is exhibited in Fig. 175; therefore I had fome Sufpicion Fig. 175. whether the Sound might not move with a crooked Motion? or whether the Acclivity intervening in A might not oppofe the Undulations of the Sound, and thereby retard it.
That I might fomehow untye this Knot, I caufed an Experiment to be made, by the Sound of a Gun from the Top of Langdown Hills into the Valley beneath, at the Diftance of 3,79 Miles. The Interval was carefully meafured Trigonometrically, by Means of Angles and a Bare that was large enough ; and the Experiment was made when a gentle Gale a little oppofed the Sound. I counted $35 \frac{1}{2}$ Half-Seconds between the Flafh and the Report; which Number fo well agrees with the Diftance, and approaches fo near to the other Experiments, that there can be no Doubt but that Sound defcends. from the Top of a Hill ftrait down into the Vale beneath, (through the Air) and not according to the uneven Surface of the intermediate Ground.
Therefore I imagine there was fome Error in the foregoing Obfervations at Weal, becaufe I have not obferved any fuch Thing, either in the laft Experiment at Langdown, nor in any other.
As to the Motion of Sound up and down ; that is, whether it is carried after the fame Manner, and in the fame Degree, from the Top of a Mountain to the Bottom, and back again? I can hardly hope to fatisfy myfelf or any, other in this Matter. Here in Efex and the Parts adjacent we have no Hills high enough to make the Experiments requifite for this Purpofe. For the higheft of all I have yet feen, fuch as thofe call'd Lanyddown Hills, do not much exceed Half a Furlong. For I have meafured the higheft Summit of the fame, both Trigonometrically as alfo with my portable Barometer, and find the fame by the firlt Method to be 36_{3} Feet high.
But the laft Summer, when I took a Journey to the Weftern Coafts of the Kingdom, I had a Mind to try from a certain Hill, the Height of which I meafured a few Years ago, and found it, (if my Memory fails me not) to be about three Furlongs. At which Time the Wind blew obliquely, but fo gently, that it would hardly have extinguifh'd a lighted Candle. Then I order'd fome Muskets to be difcharged at the Foot of the Hill and at the Top, and I found the Sound to come both Ways nearly in the fame Space of Time, If there was any fmall Difference it feem'd to confint in this, that the Sound afcended fomething fooner up the Mountain than it defcended down the fame.

But I could hardly meafure the Time with the Exactnefs that was neceffary, becaufe it happen'd unluckily, that my Time-keeper was a little out of Order by the Carriage. Therefore I muft leave this Experiment to be made by others with better Succefs. And indeed I could wifh it might be tried at the Alpes.

Motion of

 Sounds in Italy.9. Some Obfervations and Experiments made at my Defire in Italy, by the moft learned Dr. Newton.

Ricbard Townley, Efq; inform’d me by Letter, An. 1704, "That Sounds " were feldom heard at Rome fo far as in England, and in our Northern Cli" mates. Particularly he faid, that white he was at Rome fome Guns were " difcharged at the Caftle of St. Angelo, while he was upon Mount Trinidad, " and that he obferved the Sound was much more languid in that Place, than " in any other at the fame Diftance. And after his Death his Brother wrote " to me, that in the Ycar 1688 , leaving Rome he came to the Caftle "Genidolpbe, (being a higher Situation near the Lake Albanus, about twelve " Italian Miles from Rome) he obferved the Sound of great Guns difcharged " from the aforefaid Caftle St. Angelo, which feem'd to him to be very weak " and faint. Alfo at another Time, when his Chariot pars'd near the Walls " of the aforefaid Caftle, and great Guns were difcharged from thence, they "did not feem to make fo loud a Noile there as he expected.

As this was obferved by thefe two Gentlemen, and the Phenomenon itfelf feem'd to be new and unknown before, I had a great Mind to enquire into the Caufe of it. Therefore I wrote a Letter to the learned Dr. Newton, who fent me Word back in OZOber . ${ }^{1} 706$, what himfelf and his Friends had obferved about it.

He tells me, that in his Journey from Bononia towards Florence, at the City of St. Michael in Bofoo (near Bononia) he heard the Report of Guns that were difcharged ; which Guns were difcharged at Mirandula, and were diftant 40 Miles: For at that Time the French Army were then befieging this Place. And the Night following lodging upon the Apennines, being 20 Miles farther off, he heard the fame Sound.
When he received my Letter at Florence, he acquainted a certain Nobleman with the Contents, who afterwards communicated my Requeft to the Great Duke. He fays, "The Great Duke immediately gave Orders, that " Experiments might be made for my full Satisfaction." He appointed fofepk Averrani, a noted Philofopher at $P i f a$, to fupervife and direet thefe Experiments. The Refult was this.
" In the lower Tower at Florence a great Gun was often difcharged between " the Hours of One and Three at Night, and certain Men at Legborn were " appointed, to obferve diligently whether they could hear the Report. Some " of thefe who were placed at Lanterna and Marzocco did not hear it ; poffibly " becaufe the Clafhing of the Waves of the Sea might difturb the Sound. " But others who ftood upon the Fortifications of the old Tower, which is "call'd Denjon, and thofe that were fent to that call'd Mount Rotondo, (which " is about five Miles diftant from Legborn towards Mount Nero) could hear " it well enough. And as often as it was difcharged, 50 often the Report

The Motion of Sounds.

" was plainly heard in thofe Places. Now the Diftance of this Florentine "Tower from Mount Rotondo in a right Line, is thought to be not lefs than " 55 Miles. And it is worth obferving, that the intermediate Country " abounds with Hills, which of Neceffity mutt fomething impede the Paf" fage of the Sound. To which may be added, that the fame Evening there "was a moderate Wefterly Wind, which may be fairly fuppofed to hinder " fomething the Expanfion of the Sound, fince Leghorn is fituate to the South"Weft in refpect of Florence.
"Now that an open Place might be had, that Tract of Sea was made "Choice of, that lies between Legborn and that call'd Porto Ferraio, the Di"ftance of which is found to be 60 Miles, according to the Calculation of " skilful Navigators. And the Sound of Guns of War is often heard from "Legborn to the aforefaid Porto Ferraio, and the neighbouring Places; non " is there any Occafion for the Affirtance of a fair Wind, to help the Pro" grefs of the Sound, that it may be heard the better. For any Wind what" ever, whether for it or againtt it, is a Hindrance to Sound, and makes it lefs "fonorous. Perhaps becaufe the Noife that is thence made in the Sea is a " greater Impediment, than the Courfe of the Air ruhing thither would be " an Affitance. Wherefore the Sound is then only heard, when the Wind " is quite ftill, or whifpers very foftly, and when the Air is ferene, and the "Sea calm. Neither even then is it heard indifferently from all Places, but " only from thofe which are fomething lofty ; fuch are thofe two Forts which " are call'd the Star and the Falcon, and the Place call'd Mulini. Befides, it " is neceffary that the Obferver fhould keep himfelf very attentive, nor fhould " be incumber'd with the Noife of any near him. And then he may, hear as "well by Day as Night, if the Atmofphere be ferene and calm ; except that " in the Night-time Sound feems to be fomething ftronger and fharper, when " no other Noifes mix with it, which by Day continually affault the Ears.
"It has alfo been told us by Witneffes very deferving of Credit, that many "Years ago, when there were Tumults at Mefina, and the City itfelf was " befieged, that the Reports of the great Guns reached the Ears of the Inha" bitants of Augufia and Syracufe.
"Likewife when the French bombarded Genoa, it is certain that the Sound " reach'd as far as the Black Mountain, which is near Legora.
"From thefe Obfervations we are inclined to believe, that there is no Dif" ference in this Matter between Italy and the Northern Climates.
"As to the other Query, Whether a Wind that blows with or againft a "Sound accelerates or retards its Motion? As yet we cannot anfwer this " with any Certainty. Yet we will produce the following Experiments.
"A great Gun (60) was planted upon the Curtain of the lower Fort at "Florence, and fo fixt, that its Mouth might be directed towards Artemino, " which is a Country Palace of the Great Duke of $\mathcal{T} u f$ cany, ftanding upon a " pretty high Hill, looking towards the Weftern-fide of the faid Fort, from " whence it is diftant about 12 Miles. We chofe a Day when a Wefterly "Wind blew pretty ftrong, that the Motion of the Sound might be hin"der'd by the oppofite Wind. But this was of littie Ufe, for at Evening

The Motion of Sounds.

© the Air was quite calm, or at moft had fo little Motion, that it would " hardly diffipate the Flame of a lighted Candle. Then leaving fome skilful " Perfons here, we retired to the aforefaid Palace Artemino, and between the os firft and third Hours of the Night, the Cannon was difcharged feveral "Times ; and we conltantly counted 49 Seconds between the Flafhing and "t the Report. And we allo at Arteming fired fome Bombs, between the " Flaning and Report of which the Obfervers aforefaid, which we left be" hind in the Forr, counted only 48 Seconds. Whence it appear'd, that " the Sound went fwifter from Artemino to Florence by only one Second, than s6 the contrary Way.
"We dare not trult our Obfervation fo much as to affirm, that this little "Difference of Velocity muft be imputed to the Force of confpiring or op" pofite Wind. For poffibly it may arife from the Miftake of the Obferver, " who counted the Vibrations of the Pendulun, which may eafily happen. It " may fo fall out, that he may not fee the Flafh till after the Vibration of "6 the Pendulum was begun, or may hear the Sound before the Vibration is "compleated ; fo that by this Means he may make his Reckoning one more 66 than it fhould be, whilft the Space of Time in both Cafes is the fame. "W When it was Day we order'd the Gun to be difcharged again, but the " Wind was neither favourable to our Work or our Wifhes. For a lit" tle before it had gone about to the North. So that the Difference of the " Time and of the Velocity of the Sound could hardly be perceived in fo cs finall a Change of the Wind: So that we counted 49 Vibrations of the " Pendulum, as before.

As to the Space, which Sounds pafs over in any given Time, they are not yet fatisfied about this Matter ; but from fome Experiments they apprehend it to be, as has been determin'd by the Experiments of the Academy del Cimento.

From thefe Obfervations it abundantly appears, that Sounds may be heard much farther in Italy than my aforefaid ingenious Friend has inform'd us. For the excellent Dr. Newton has heard the Explofion of great Guns at the Diftance of 60 Miles. Thofe that were difcharged at Florence at his Requeft, were heard 55 Miles. The Guns difcharged at Legborn were heard at the Diftance of 60 Miles. Thofe difcharged at Mefina were heard by fome at nearly the Diftance of 100 Italion Miles, as appears by the Maps. Thofe difcharged at the Siege of Genoa were heard at above 90 Miles by the Maps.

All which Things confider'd, I cannot but think, that Sounds are as freely propagated in the Southern Countries as in thefe to the North. Though Examples are not wanting of a farther Progrefs of Sounds in fome Northern Countries of the Earth. A certain Dane affured me, that when he lived in Denmark he heard very plainly the Sound of fome Bombs, which were difcharged at Carelfcroon, when he was diftant 80 Miles, if I rightly remember. The very skilful Dr. Hearn, Phyfician to the King of Sweden, fent an Account to our Royal Society concerning great Guns difcharged at Ulm, A.D. 1685 ,

The Motion of Sounds.

the Noife of which travel'd 30 Swedifh Miles, which are nearly equal to 180 Englifh Miles. Alfo in that Sea-fight between England and Holland, A. D. 1672 , the Noife of the Men of Wars Guns was heard by fome that were diftant above 200 Miles: For it pals'd over our Inand as far as Shrop/bire and Wales.

Therefore what was obferved by the two Brothers Torwnleys, is peculiar to the forefaid Caftle of St. Angelo, or at leaft to Rome. That Diminution of Sound, which they took Notice of, muft be owing either to the Situation of the aforefaid Caftle, or to the intermediate Houfes rifing high and unequally in that City, or to the foreign Noifes intermingling, or to contrary Winds, or to fome other Caufe of a like Nature: Or perhaps they made their Obfervations in fuch a Conftitution of the Air, in which Sounds are much more faint, even though they have favourable Winds, than at other Times when they are quite contrary.
10. I have often obferved in Summer, when the Air was hot, that Sounds feem'd to be fainter than ufual, and to come very weak to our Ears; whereas in another Seafon, efpecially in Winter in frofty Weather, they were much more fhrill and ftrong. Alfo when the North or Eaft Winds blew, though of the contrary Way, I perceived Sounds to be lowder than when the Winds came from the contrary Quarters. This Kircher alfo took Notice of at Rome; tho' it is not conftant and perpetual.
Nor could I conclude any Thing with more Certainty, from the Infpeetion of the Quickfilver afcending or defcending in the Barometer. For fometimes when it rofe to the very Top, Sounds were louder and ftronger, and fometimes weaker. When on the contrary they were more noify, when the Mercury fell to the Bottom.

There is a like Uncertainty when the Air is ferene or cloudy. In rainy and moift Weather I have often obferved that Sounds were blunt and dull. But after Showers that were violent, they have acquired much Strength, as Kircher has obferved at Rome. But the Contrary alfo has often happen'd. May 31, 1705, the Air was here much clearer and freer from Vapours than ever I remember to have feen it before. The Sky was fo very clear and limpid, that I could eafily perceive the moft diftant Objects. Yet I could not hear the great Guns which were then difcharged on Blackbeath, (excepting one, whofe Report I heard but very faintly) though I could eafily fee the Flafh of every one. And at the fame Time the Motion of the Clouds and Wind confpired with that of the Sound. For a very mild Air then breathed, and every Thing then feem'd to concur to affift the Sound. And on the contrary, when the Conftitution of the Air and Heavens was entirely changed, when all Things were turbid, and the Atmofphere was full of Vapours, I have obferved that Sounds were loud, and as often dull and heavy.

I muft leave the Caufes of there Variations to be enquired into by others, becaufe I confefs they are as far above my Capacity as it is to affign what is the proper Medium or Vehicle of Sound. Whether it be the purer and more

The Motion of Sounds.

ethereal Part of the Air, or the denfer and more vaporous Part, or both together?

As to what concerns grofs Clouds, it is certain they very much blunt and deaden Sounds; for then Sounds leem to be generally very languid and dull. This certainly arifes from thofe grofs Vapours and clofe Particles that conftitute a Cloud.

The fame I have obferved of fnowy Weather: For when Snow has juft fallen upon the Ground, Sounds inmediately grow dull. But as foon as its Superficies becomes frozen and icy, they are again more flrill and ftridulous. I have heard Bells and Guns tinkling and bellowing as loud as before the Snow fell. Mr. Toconley lately affured me, he had obferved, (as indeed I have taken Notice of myfelf) as he was riding on Horfeback through fome Town, that the Noife of the Bells, which were ringing not far off, could hardly be heard by him when a Houfe cover'd with Snow interpofed. So that entering the Town, he very much wonder'd to find the Bells ftop on a fudden, as he pass'd by fome Houfes between, and again to ring out when he came to a Vacuity free from Houres. And this he obferved all the Way paffing through the Town, that the Noife of the Bells came to his Ears or not, according as the Buildings did or did not interpofe. Of the In-1 11 . The moft illuftrious Academy del Cimento found by Experiment, that
Ahuence of the Motion of Sounds was not hinder'd by contrary Winds, nor promoted by fair Winds. But that however the Winds blew, the fame Space was always defribed in the fame Time. Gaffendus was of the fame Opinion and almoft all other Philofophers.

Yet for all that, the Contrary appears from Experience. They feem to have fallen into this Miftake, becaufe they made their Experiments at too fhort a Diftance: For it is very probable that thefe Philofophers made their Obfervations from the Diftance of one Mile only, or two or three at the moft: Therefore it cannot be wonder'd at, that they are fo faulty. But if they had tried with good Inftruments, at ten or twelve Miles, which I have often done, they would foon have perceived their Error.

I myfelf have often fallen into this common Miftake, feduced by the Authority of thefe Gentlemen; till after the Obfervation of great Guns upon Blackbeath, for three Years and more, I at laft very happily difcover'd and retracted it. Now when firt I perceived that Sounds arrived at my Ears fometimes fooner and fometimes later, I entertain'd a Sufpicion that I muft have made fome Miftake ; either that I had mifcounted the Vibrations of my Pendulum, or had not rightly obferved the Flafh of the Powder, or had fallen into fome other Error of the like Kind. But when the Guns were difcharged on Purpofe for me, every Half Hour, from Six a-Clock to Midnight, and I found the Sound to come always without any notable Variation,

The Motion of Sounds.

riation, in the Space of 120 or 122 Half-Seconds, even though the Wind was quite contrary ; and at other Times when the Wind was fair, whether direct, or a-crofs, or oblique, the Sound of the fame Guns was obferved to come in the Space of $111,112,113,114,115,116$, or at moft 117 Semi-Seconds: Then I was fully perfuaded that there was fome material Difference, which produced that Variety in the Obfervations.

Nor do fair or foul Winds only accelerate or retard the Motion of Sounds, but alfo according to their various Degrees, whether they blow more vehemendy or more gently, fo much the more or lefs they promote or hinder. Concerning which I fhall fubjoin fome particular Obfervations in the following Table. Firft taking Notice, that the Guns upon Blackbeath are diftant from the South about 60 Degrees; that is, that they decline to a Point fomething more remote from S W b S.

The Day of the Month and Year.	The Hour of the Day.	The Numb. of Vi brations	The Point of the Wind	The Courfe of the Clouds.	The Height of the Mercury.
1704.	The 6 Hour. ? At Midnight. ${ }^{5}$ At $11 \frac{1}{2}$ Morn	$\begin{aligned} & \hline 120 \\ & 122 \\ & 119 \end{aligned}$	$\begin{gathered} \text { NEbEI } \\ E_{2} \end{gathered}$	NEbE E	$\begin{array}{\|ll\|} \hline & \\ 29 & 99 \\ 30 & 22 \end{array}$
Feb. $13\{$					
1705.			$\begin{gathered} \text { SW } 7 \\ \text { SbW } \end{gathered}$		
Mar. 30 Apr. 2 3 3 51324	ro in the Morn. $8 \frac{1}{2}$ Afternoon.	$11314{ }^{\frac{1}{2}}$		S W	29
	10 in the Morn.	$116^{\frac{1}{2}}$	$\mathrm{S}_{4}\{$	Lower Clouds Si Up. dittoW bN $\}$ S W by W	2980
		III	SWbW		$29 \quad 70$
	I in the Aftern. $8 \frac{1}{2}$ in the Morn. 5 Afternoon.	120	NbE_{2}		$29 \quad 26$
		116	SWbWo ${ }_{\text {W }}$	N W	29.59
Sept. 11 \{	7 Afternoon. ${ }^{10} \frac{1}{2}$ Morning. 10 in the Morn. At Noon. 1 I in the Morn.	$115{ }^{\frac{1}{2}}$	$\begin{gathered} \mathrm{Wb}_{2} \\ \mathrm{WbN} 2 \\ \text { SS W6 } \end{gathered}$	WbN $\}$	Mortar.
		${ }_{112}{ }^{\text {12, }}$		S S W	$29 \quad 38$
Oftob. 6		117	ESE_{182}	S E	$29 \quad 34$
Nov. 30		115	SS W 4	SSW	2910
Febr. 15				S W	$29 \quad 60$
1706.	11 $\frac{1}{2}$ Morn. At Noon. At Noon.				
Nov. $29\{$		116 118	SWo SWbS SW	S W b W	$30 \quad 06$
Febr. 7		113	SWbW_{4}	W	2983

I have chofe thefe Obfervations out of many, which were all carefully made, and repeated twice, thrice, or oftner. Thus from the Experiments made April 5, and Sept. 29, it appears, that violent Winds prefs forwards and hatten Sounds. For on April 5, when the Motions of the Wind and Sound nearly confpired together, and the Wind was pretty ftrong, (as is denoted by the
the Figure annexed [7] and in the fame Manner the Cipher [0] denotes a calm Air, and the Figures $1,2,3,4, \mathcal{E}^{2}$. fignify the various Strength of the Wind) at that Time, I fay, the Sound travel'd its Journey in the Space of 1II Semi-feconds. But on April 24, when the Wind blew the fame Way, and the Air was calm, it perform'd the fame Journey in the Space of 116 Semi-feconds. So Feb. 7, 1706, when the Wind blew from the fame Quarter, and brought the Sound along with it, but with a Strength that was not above Half as much, there pafs'd ${ }_{113}$ Semi-feconds before the Sound compleated its Journey. So again Sept. 29, 1705, the Wind blowing pretty ftrong, and not to fair, the Sound perform'd its Courfe within in 12 Semifeconds. From which, and from the other Examples in the Table, it plainly appears, that ftrong Winds affift the Propagation of Sound, and that weak ones do not promote it fo much.

The fame is evident alfo from thofe Winds, or Torrents of Air, which directy favour or hinder the Progrefs of Sound ; that is, that they make its Motion either fwifter or nower. And thofe Fluxions of the Atmofphere which are intermediate, in like Manner caufe an intermediate Progrefs of Sound, or make an intermediate Number of Vibrations of the Pendulum.

The greateft Difference which I have yet obferved, in the Progrefs of Sound, for the Space of almoft 13 Miles, is equal to about nine or ten Halffeconds, and that is when ftrong Winds help the Sound, and gentle ones only hinder it. But when thofe that promote or obftruct are very mild or none at all, then the Difference hardly exceeds two or three Half-feconds.
12. That I might know to a Certainty how much Space is pals'd over by of the Ve. Winds in any affign'd Time, I made Ufe of certain light Bodies in my Ex-locity of periments, fuch as Down, foft Feathers, \mathcal{O}° c. which feem'd to be better adaptWinds. ed to the Purpofe than that Inftrument, which is defcribed in the Pbilofopbical Tranfactions, n. 24, or that other more convenient one in the Shape Vid. fuof a Windmill, invented (if I miftake not) by the the moft ingenious Dr. pra, V. is. Hook.

From the many Experiments which I have made, by the Help of thofe light Bodies, when the Strength of the Wind was very different, I found that the moft vehement Wind hardly pafs'd over fixty Miles in the Space of an Hour. For Example, Auguft II, 1705, there was fuch a Storm of Wind, that it almoft overturn'd the Windmill itfelf, near the Place where I made my Obfervations. [I generally denoted the Force of the Wind, as I haye faid already, by the Figures, $0,1,2,3, \mathcal{B}^{\circ} c$. as far as 10 or 15 , or more Degrees.] I eftimated the Force of the aforefaid Wind to anfwer to about 12 or 14 of thefe Degrees; and obferved from many repeated Experiments, that that Whirlwind defcribed about 33 Feet in the Space of one Half-fecond, or 45 Miles in an Hour. Whence I collect, that the mof furious and moft flormy Wind, not excepting that Tempeft which raged in November,

$$
\mathrm{Ggg}_{2}
$$

1703, Hour.

Having thus meafured the Velocity of the moft rapid Winds, it will inot be difficult to guefs what is the Velocity of thofe which are lefs, violent: For I have obferved their Courfes alfo, and am certified by various Experiments, that fome of thefe traverfe fifteen Miles in an Hour, foune thirteen, fome much more, and fome much lefs. Some creep with fo Now a Motion, that they hardly go a Mile an Hour. Again, fome Winds move fo very flow, that a Man on Foot or on Horfeback may eafily overgo them. This appears to our Senfes, whenever we ftop, and feel a gentle Air funning and overtaking us. But if we go along with it, we thall not perceive it at all; but if we ftep forwards quick, inftead of an Air that accompanies us, we frall find it contrary and blowing in our Faces. Thus when the Atmofiphere is quite at Reft, and ftagnating as it were, if we walk or ride, we then perceive a gentle Air as is were meeting us, and of juft fuch a Strength as antwers our own Motion. And an Air of Wind feems to move with the fume Motion or Velocity, as we ourfelves move the contrary Way.

We may make many ufeful Inferences from thefe Obfervations about the Velocity of the Winds. Particularly we may affign one Reaion why the Mercury afcends and defcends fo long before fair Weather or Rain follows.

But I thall omit fuch Things as thefe, as being foreign from my Purpofe. I Shall only oblerve this as to Sounds, that when their Motion is fwifter than the Wind, it appears that thofe Parts of the Atmofphere on which Sounds are imprefs'd, or by which they are carried, are not the fame as thofe of which Winds are compofed, but fome others more etherial or volatile, as far as may be conjectured. For the fwifteft Winds hardly fly above 60 Miles in an Hour, whereas Sounds can pafs above 700 Miles in the fame Space of Time.

Now if it fhould be objected, that Winds make Sounds fwifter or flower, it might be anfwer'd, that this does not proceed from the proper Elux or Tendency of the windy Particles alone, but rather from the conjunct and confpiring Motion of all the Particles of the Atmofpherc, as well the grofs as the ethereal. Which Direction of the Courfe or Motion, if it favours the Undulations of the Sounds, their Motions will be thence accelerated, but if it is contrary to them, they will be retarded, as is very probable.
Of the Ve- 13. Therefore I conclude very ftrongly from what has been now faid, and locity of many other Things before taken Notice of, that Sounds are propagated according to thefe Degrees of Velocity; that the Diftance of a Mile, or 5280 Englif Feet, is defcribed in the Space of $9 \frac{1}{+}$ Half-feconds, or which is the fame Thing, they defribe 571 Feet in one Semi-fecond, or 1142 Feet in the Space of one Minute.
Now Sounds pafs over the aforefaid Space if the Courfe of the Atmofphere is oblique, and is their mean Progrefs on Motion. But if the Wind increafes the Rapidity of the Sound, it is poffible they may pafs over 600 Feet
or more in the Space of a Half-fecond. But on the contrary if it hinders, they may not pass over above 560 Feet in the fame Time.
Now the aforefaid Obfervations and Experiments may not be a little ferviceable
To a Pbilofopber, for explaining the abftrufe Phenomena of Sound.
To a Mariner, who may learn from hence, how far Ships are from him, which he fees fuctuating or lying at Anchor before him, or how far he is from Land which he fees at a Diftance. Thefe Things may be known by the Difcharge of Guns made on Purpoie, or from a Signal given, and that very furely and exactly.
To a Soldier, to find at what Diftance the Camp of the Enemy is from him, or a City befieged. For the Elevation of great Guns upon Fortifications, for directing of Bombs, Ξ^{3}.
To a Geograpber, for the eafy and exact Menfuration of the Diftances of Places. For any one in the Space of a few Hours may make a Map of a whole Country very exactly by this Means. For Guns difcharged will fhew the Diftances, and any Mathematical Inftrument for meafuring Angles, or the common Inftrument of Surveyors call'd the Plain Table, or only a Ruler provided with Sights, will Thew the Situation of the feveral Places : From whence it will be no difficult Matter to delineate them.

Laftly, this Method of Obfervation may be applied very conveniently to the Meafuring of inacceffible Places, efpecially very wide Rivers, and fuch Places whofe Diftances are otherwife very difficult to meafure.

To the Meafurer of Ecbo's. Of this ludicrous and pleafant Phenomenon of OftbeMoSounds, the Echo, though many learned Men have formerly and lately made tion of very anxious Enquiries, yet they are not well agreed about many Things con- Echo's cerning it. Particularly about the Space neceffary for the Repetition of 1 , 2, 3, or more Syllables, or which comes to the fame, of the Space defcribed by the Echo in a certain Space of Time. Merfennus allows Paces to the Repeating of a Word of one Syllable: Blancanus 24 Paces, with whom Dr. Plott agrees. But Kircher affirms, that nothing certain can be determin'd about it, becaufe different Winds, and the different Intention and Remiffion of the Force of the Sound, and many other Circumftances, produce an immenfe Variety.
But it is not difficult to affign a Reafon for all this Difagreement. For it may arife from many Caufes: From the Dullnefs or different Difpofition of our Senfes: From the various Audibility of the Sounds : From the grave or acute Tone of the Syllables themfelves, or their contracted or prolonged Pronunciation; or from any other Caufe, that prolongs the Interval of Time. For I make no Doubt, for Example's Sake, but that if any Object that reflects Sound could return all the Syllables of this Verfe,

Vocalis Nympbe, que nec reticere loquenti,

it could hardly return all the Syllables of the Verfe following, becaufe their Pronunciation muft be fomething longer,

Corpus adbuc Ecbo, non Vox erat, \mathcal{E} tamen ufum. And much lefs could it repeat all the harfh and long Syllables of the follow ing Verfe, tho' their Number is much fewer, viz.

Arx, tridens, roftris, fpbynx, prafter, torrida, feps, firyx.
But we may conclude from the foregoing Obfervations about the Motion of Sound, that in the fame Manner as Sounds, fo Echo's defcribe certain determinate Spaces in certain Times. This I have often been convinced of by Experience, that the E.cho returns in twice the Time in which the Voice reach'd the reflecting Object. For Example, if the Obftacle reflecting the Sound was diftant a Furlong, then the Return of the Echo was made in the fame Interval of Time, in which the primary Sound would have defcribed two Furlongs, if it had not been interrupted.

And this in meafuring the Diftances of Places was often of great Ufe to me. For Example, as I ftood upon the Bank of the Tbames, over-againft Woolwich, the Echo of a Monofyllable was reverberated by the oppofite Houfes in fix Half-feconds of Time. Whence I collect, that the Breadth of the River Thames in that Place was 1712 Englifh Feet from Bank to Bank, or above a Quarter of a Mile: For as 9,25 Semi-feconds is to 5280 the Feet in one Mile; fo is 6 Semi-feconds to 3424,8 Feet. The Half of which is 1712,4 Feet.

Lattly, by this Means the Height of Thunder-clouds, and the Diftance of Thunder and Lightning itfelf, may eafily be known.

OftboNa- XI. The moft learned Archbifhop of Arnagh compares the Science of ture and

 turc andProperties Hearing with that of Seeing, or with the Science of Vifion, and divides it into Direct, Reflected, and Refracted, in the fame Manner as the other; fo that he confiders not only direct and reflected Sounds, as others had done before him, but alfo refracted Sounds. He oblerves, that as Vifion has been perfected in a great Meafure by our Anceftors, by excellent Optical, Catoptrical, and Dioptrical Inventions; fo he doubts not but the Hearing may be greatly improved by Acouftick, Catacouftick, and Diacouftick Inftruments, or by Phonicks, Cataphonicks, and Diaphonicks, (for he denominates them both Ways) as well in refpect of the Object as of the Medium, or of the OrVid.fupr. gan. He propofes Problems thereto belonging, which are exhibited in this V.I.C.V. Difcourfe, but not only without any Demonftration, but alfo without Deter-
S. XXII. mination or Conftruction. But there are many Differences, by which the Propagation of Light is diftinguifh'd from the Diffufion of Sound. Among which this is a notable one, that Light is difperfed always according to right Lines, whilit Sound is fcatter'd every Way according to Curves, or any crooked Paths, and becomes fenfible, though the Obftacle of any opague Body is interpofed.

And thofe very Things which the very learned Author treats of concerning the Diffufion of Sound, plainly manifeft its Difference from the Propagation of Light. For he teaches, that Sounds very eafily run along Walls, or fmooth Arches, which have an Elliptical or Cycloidal Flexure rather than a Circular,

Properties of Sound.

Circular, and that with a kind and expeditious Courre; and readily moves along the fott Superficies of Water, complying with the fonorous Tremors with which the Air is ruffled. Now this I fear is not fo generally obferved in the Propagation of Light: For in the Ellipfis we have this only demonftated in Catoptricks, that the Rays of Light proceeding from one Forus D, Fig. 176. and impinging upon the Elliptical Curve A BC, being thence reflected will be collected in the other Focus E. But if the Rays proceed from any other Point G, except the Foci, they will no longer meet in the fame Point, but will be fo retlected as by their Contact to form the Cauftick Curve $f \mathrm{Ff}$; fo that being upon its Convexity, they can have only a reflected Ray or two, and not more, but lying in the Curve itfelf, they will coincide with thofe that are neareft. But fuch as are within the Concavity of the fame, will have no reflected Rays, nor can hope for any Advantage from them.

As to the Cycloid, the learned Mr. Fohn Bernoulli has fhewn, in the AEts Fig. 17\%. of Leipfick for 1697, that a Ray of Light, if it were to pais through Media, whofe Denfities varied in every Point according to a fubduplicate Ratio of the Altitudes, would be fo continually refracted, as that it would be bent into the Curve of a Cycloid. But I cannot perceive what the Figure of a Cycloid would contribute to the better Diffufion of Light. For this Curve is without any Foci, fo that it cannot recollect the Rays to a Point, but the reffected Rays will pafs from it into irregular Curves, unlefs when Rays PM, QN, parallel to the Axis KL fall upon the Cycloid EMKNH; for then the Cauftick Line form'd by the Contact of the reflected Rays MR, N S, would be compofed of the two Cycloids ERL, HSL, generated by a Circle of Half the Diameter, and would exhibit very denfe reflected Rays about L the Confine of each, at the Middle of the Bafe of the reflecting Cycloid. But as well in thefe as in other Caufticks, refulting from any Yofition of the luminous Point and the Rays, the fame Obfervations would take Place, which we have already fhew'd to belong to Cautticks form'd by an Ellipfis.
I have nothing to add concerning the plain Superficies of W^{\top} ater3, fince it appears, that the Rays of Light will pafs through it, either altogether refracted, or will be fent back the contrary Way by Reflexion, juft as by the Surface of a folid Chryftal, nay fomething more flrongly by this than by that; fo far are they from creeping eafily along its Side, that they may the more expeditioufly be fent directly forwards, and obtain that ready Progrefs, which the Author attributes to the Harmonic Tremors creeping along the foft Surface of the Waters, and by its waving Motion accommodating itfelf to their Flexure. Nay we may juftly doubt, whether the moft fmooth Superficies of Specula, as well as of Light, would much conduce to the Reflexion of Sound, fince the Echo itfelf feems to inhabit the very rough Receffes of Caves, rather than polifh'd Walls, and fuch as are lined with a thin fine Mortar ; fince it often returns an Anfwer from uncultivated Vallies, from uneven Caverns, and from the Ruins of old Buildings.

Yet I would not be undertood as defigning to detract any Thing from the Credit, or the Praife due to what is advanced by the learned Author, who

I think is rather to be encouraged to the Publication anew of this Theory of Sounds, that we may know by what Law thefe fonorous Tremors are propagated through the Air, Water, and all Kind of Bodies of any Denfity, both fluid and folid: And in what confifts that Congruity between Light and Sound, which as yet is unknown to us. Hence the Foundations of Acoufticks being confirm'd, this Science may hereafter be wonderfully improved, after the Difcovery of proper Inftruments for congregating, increafing, promoting, multiplying, and diftinguifhing Sound. I fhall endeavour in fome Manner to explain his Acoufticon, or the Phonick Sphere propofed by him, and that rather by divining than interpreting; firft giving his own Words, that they may be compared with my Conjectures to be added afterwards, and that every one may be able to judge how exactly they anfwer.

I Ball bere add, lays the Author, a Semiplane of an Acouftick or Pbonical Sphere, as an Attempt to explicate the great Principle of this Science, which is, the Progreffion of Sounds. You are. to conceive this rude Semiplane as parallel to the Horizon, for if it be perpendicular thereunto, I fuppofe the Extremity will be no longer Circular, but Hyperbolical, and the loweer Part of it Juited to a great Circle of the Earth. So that the whole Phonical Sphere, if I may fo call it, will be a folid Hyperbola, fanding upon a concave Spberical Bafe. The Diagram
Fig. 178. tranfmitted from London was after this Manner, but without any Notes or Explication by which it might be illuftrated.

Therefore fubftituting this other Figure, I fhall attempt to explain the Mind Fig. 179. of the Author. Let the Globe of the Earth be CGFE, and at the Point C of its Superficies let a Sound be excited. This will be propagated round about by the Earth itfelf, and alfo by the Air; fo that at what Time it arrives at the great Circle of the Earth defcribed with the Pole C, tho' perhaps infenfibly, or at leaft might arrive at it, if it were forcible enough, being diffufed through the Air it would fill up a certain Space, according to the different Degrees of eafy Paffage, not extended altogether fpherically, but unequally, and circumfcribed by the Perimeter of the Hyperbola GLAKE, about the Axis CAO, which is perpendicular to the fonorous Body C: Or rather determin'd by the Superficies of an Hyperbolical Conoid, which is generated by the Rotation of the Hyperbola A LG about its Axis. Therefore the entire Phonical Sphere, through which the Sound is extended in a given Time, will be the folid Space comprehended by the Hyperbolical Conoid GAEB, which ftands upon the great Circle of the Earth GBE, and is terminated below by the concave hemifpherical Superficies GCEB. Which Space being cut any where by a Plain parallel to the Horizon will exhibit the Semicircle LIK, fuch as the Author's Figure fhews, which he calls a Semiplane, becaufe the View of his Diagram exhibits only one Half of it, the other Half remaining conceal'd beyond the vertical Hyperbola, which itfelf cuts the Phonick Sphere through the Axis into two equal Parts. But what is the Species of this Hyperbola, or by what Principles this Doctrine is fupported, neither the Author himfelf fhews, nor have I any Foundation to build Conjectures upon.

Properties of Sound.

Therefore proceeding in an indirect Order of Inveftigation, I fhall firt explain, through what Species of Lines the fonorous Tremors muft be propagated, that they may be expanded into fuch an Hyperbola in a given Time ; fecondly, what we muft fuppofe the Variation of Rarity to be at different Altitudes of the Air, that admitting the common Law of Refraction obferved by the Rays of Light, fo that it may bend the Directions of Sounds according to the Species of Lines fo found; and thirdly, what muft be the Law of Refraction on the other Hand, which the fonorous Tremors obferve in thofe Curves, fuppofing the Variation of the Air's Denfity to be fuch as moft Philofophers and Mathematicians allow, according to the reciprocal Ratio of the Weight of the incumbent Atmofphere, prefing the lower Parts downwards; which they contend to be confirm'd by Experiment.

For which let us confider, that the fonorous Body C communicates its Tremors every Way according to the Directions $\mathrm{C} n, \mathrm{C} m, \mathrm{C} b$, or certainly Fig. 180 . according to thofe Lines by which the Impulfe was made, that by reftoring itfelf it repel'd the Air, and urged it on by the frequent Ofcillations by which it is agitated, and is put into a tremulous Motion when diffufed according to the fame Directions. Therefore in a certain little Time let thefe Tremors be conceived to arrive at the Points m, n, h, whence purfuing their Way after another given Time they will be fucceffively propagated, the firft to the Point N , the Second to M , and the Third to H . Again, after another given Time they will arrive together, the firft at G , the other at L , the laft at A. Therefore I fhall now call the Lines $\mathrm{C} n \mathrm{NG}, \mathrm{C} m \mathrm{ML}, \mathrm{C} b \mathrm{HA}$, the fonorous Rays being thofe through which every Tremor is fucceffively diffufed; but the Lines $n m b, \mathrm{NMH}, \mathrm{GLA}$, which the aforefaid fonorous Rays, and all other that are fynchronous and intermediate to them, together approach to in any given Time, I fhall call fonorous Waves.

And indeed in a Medium which is every where quite uniform, the Caufe cealing which compels the fonorous Tremors to go out of their Direction, it is plain the fonorous Rays muft always proceed itrait on, or go directly the fhorteft Way from one Term to another, which will make the Waves to be perfectly circular, and concentrical to the fonorous Body. For fince they find no greater Difficulty to pafs here than elfewhere, they will be promoted at equal Diftances in every given Time. Now every Ray will cut its Wave perpendicularly, and all the Waves will be concentrical and fimilar, as is plain from the Elements.

But in a Medium of unequal Denfity, as in the Air furrounding the Earth, which according to its different Diftance has a different Degree of Rarity, (for now we fhall abftract from its Vicifitudes of Heat, Cold, Humidity, and Drynefs, which cannot be reduced to any certain Rule) the Ray CHA alone paffing perpendicularly through all the aerial Layers, or Superficies concentrical to the Earth, will continue direct and unrefracted; but others falling obliquely upon the fame Superficies, will be refracted at every Point by a certain continual Flexure, and will be bent into the Curves $\mathrm{C} m \mathrm{ML}, \mathrm{C} n \mathrm{NG}$: and according to the different Facility of Paffage will not proceed every Vol. IV.
where to the farme Diftance in the fame Time. Wherefore the Points $\mathrm{A}, \mathrm{L}, \mathrm{G}$, or $\mathrm{H}, \mathrm{M}, \mathrm{N}$, which the Sound emitted through any Rays at the fame Moment of Time, will be unequally diftant from the fonorous Body C , and thence the Lines ALG, HMN, $b m n$, will by no Means be Circles concentrical to the fonorous Body, but Curves of another Kind, which however will be fimilar to one another, and finilarly pofited. Wherefore in the Hypothefis of our Author, who will have that extream Wave ALG to be Hyperbolical, which furrounds the ultimate Limits of the Terraqueous Globe; it mutt follow, that any other intermediate ones HMN, $b m n$, muft be like Hyperbola's, and finilarly pofited to the different Vertices A, H, h, but defcribed with the fame Center, to the fame Axis, and under like Figures of their Latera. For by whatever Method it may be fhewn, that becaure of the fimultaneous Appulfe of the Sound to the Points A, L, G, through the fynchronal Paffages CHA, CML, CNG, the Wave ALG will become a Curve of fuch a Species, fuppofe Hyperbolical ; the fame will prove from the fame Foundations, becaufe alfo of the fimultaneous Appulfe of the Sound to the Points H, M, N, by the fynchronous Lines $\mathrm{C} b \mathrm{H}, \mathrm{C} m \mathrm{M}, \mathrm{C} n \mathrm{~N}$, the Wave HMN will pafs into a Curve of the fame Species, which in this Cafe will be a fimilar Hyperbola, and fimilarly pofited, as appears of itfelf. Nor can there be any Doubt but that the fonorous Rays C H A, CML, CNG, muft always cut thofe fimilar Waves ALG, HMN, bmn, perpendicularly or at right Angles, as happens in the circular Waves. And as the learned Mr. Huygens, in his French Treatife concerning Light, $p .44$, has proved this in a like Subject concerning Lucid Waves, we need not fpend any more Time in confirming this Obfervation here.
Therefore the Inveftigation of the Paffage according to which the Propagation of the fonorous Rays are perform'd, in the Hypothefis of our Author, is reduced to this purely Geometrical Problem; to find the Nature of thofe Curves, which cut perpendicularly any fimilar Hyperbola's which are defcribed about the fame Axis, and the fame Center in a fimilar Manner. Let ALG,
Fig. 181. HMN $b m n$, and innumerable others intermediate, be fimilar Hyperbola's and fimilarly pofited either above or below thefe, having the fame common Center O, and defcribed with the fame Axis OAH, to which the other OS is conjugate. Through the Point C the Curve CmML or C n NG is to be drawn, which may cut perpendicularly all the Hyperbola's propofed. Thro' the given Point C, between the Afymptotes OA, OS, let an Hyperbola $\mathrm{C} m \mathrm{ML}$ of fuch a Nature be defribed, that fuppofing the Ratio of the tranfiverfe Diameter of the former Hyperbola's AL, HM, \mathcal{B}°, to the Latus Reflum of the fame to be equal to the Ratio of t to r; the Powers of the Ordinates LQ denominated by the Exponent r may be reciprocally proportional to the Powers of the Abfciffes from the Center OQ, denominated by the Exponent $\%$. That is, making $\mathrm{OQ}=x$, and $\mathrm{QL}=y$, it may be $y^{y}=\frac{1}{x^{*}}$. Or drawing any other Ordinate $m i$, MI ; fo that the Ratio of the

Diftances from the Center OQ, O I, may be fuch a Multiple of the Ratio of the Ordinates I M, QL, reciprocally, as the Fraction $\frac{r}{t}$ is a Multiple of Unity. I fay, that this will fatisfy the Demand. For drawing LP a Tangent to any Hyperbola AL in the Point where it is cut by the Curve CML, as alfo SL R a Tangent of the Hyperbola CML in the fame Point; it appears from what we have fhewn in the Demonftration of Huygens's Theorems, $c .7$. n. 9. that it will be $O Q$ to $Q R$ as the Exponent of the Power of the Diftances O Q, to the Exponent of the Power of the Ordinates Q L, that is, as t to r. But as t to r, or the Latus tranfuerfum to the rectum, fo is (by 37 L. Conic.) the Rectangle OQP to the Square of QL. Therefore it is as $O Q$ to QR, or taking a common Altitude QP, as the Rectangle OQP to the Rectangle $P Q R$, fo is the Rectangle OQP to the Square of QL, which therefore will be equal to the Rectangle PQR. Therefore the Angle PLR will be a right one. And hence the Curve C ML cuts the Hyperbola A LG perpendicularly in the Point L. And in the fame Manner it will be proved to be perpendicular to the other Hyperbola's HMN, $b m n$, in the Points $\mathrm{M} m$, in which it cuts them. 2. E. D.

Hence we may infer, firft, that if the Hyperbola A L G, determining the Phonick Sphere of the Author, and the other like concentrick ones H M N, $b m n$, are equilateral ; then becaufe of the Equality of the Sides t and r, the Hyperbola CML will be that of Apollonius, and alfo equilateral. For its
Equation before exhibited will be changed into this $y=\frac{1}{x}$, where the Ratio
of the Ordinates is fimply reciprocal to the Ratio of the Diftances from the Center. Therefore alfo the fonorous Rays, as alfo the fonorous Waves, according to this Hypothelis would be Hyperbola's of the fame Species, but only in a different Pofition. I remember that Nerwton fhews in his Opticks, l.3. p. 287. Ob. 10. that when Rays of Light received into a dark Room are made to pafs over the Edges of two Knives, they are alike bent into Hy perbolical Frindges, fuch as CML; of which Phenomenon, if the phyfical Caufe could be affign'd, the fame perhaps might prevail with us to believe, that the Rays of Sound are alfo Hyperbolical, fuch as the Syftem of the Archbihop of Armagh feems to require.

Secondly, it is to be obferved, that if many fuch Curves were defcribed, or Hyperbolical Rays $m \mathrm{ML}, n \mathrm{NG}, \xi^{2} c$. perpendicularly cutting the $\mathrm{Hy}-$ perbolical Waves ALG, HMN, \mathcal{J}^{c}. they could not meet exactly in one Point C, though they might approach nearer and nearer towards \mathbf{C} and might come to a Diftance lefs than any affignable. Therefore thofe Hyperbolical Rays muft be conceived to proceed from a Corpufcle C of fome Extenfion, and not from a Mathematical Point, which is moft agreeable to it. For Sound is produced by the Collifion of Bodies, and cannot be geHhh 2 nerated
nerated by the Tremor of what is ftrictly a Point, or one Form of Extenfion.

Nay, fince all the Waves propagated from a fonorous Body, as we have feen above, ought to be fimilar Hyperbola's; it is proper we fhould conceive the fonorous Body C to be as it were a very fmall Fibril vibrating very fiwifty, whofe leaft and as it were initial Wave, being almoft infinitely fmall $2,3,4$, is itfelf truly Hyperbolical, or rather the phyfical Apex of fome Hyperbola. So that the vibrating Fibril of the fonorous Body C, for Example, while it is ftruck, being difturbed from its direct Situation $2 \mathrm{C}_{4}$, by the Force of Percuffion into the concave Situation 254, then being reftored by the Force of its very vehement Elafticity and alfo of its proper Tenfion, it fwells into the convex Hyperbola 234 , and again reduced by alternate Vibrations, and fluctuating on each Side expands its Tremors into Hyperbolical Waves always fimilar to the initial ones 234,254 , upwards and downwards of their own Nature, in a Medium without Refiftance. But perhaps being hinder'd by the Obftacle of the Earthly Globe CE, whofe Center is T, it may propagate its Hyperbolical Waves only upwards, and defcribe the Phonick Sphere imagin'd by our Author, interrupted and limited in its lower Part by the Terreftrial Hemifphere.

Now if the Doctrine of P. Pardies is true, which is propofed Artic. 8 I . of his Staticks, that Strings ftretch'd by the Force of their own Weight affume an Hyperbolical Figure, fuch as 254 , whofe Center is the fame as that of the Earth ; every one may fee this would be molt congruous for confirming the Syftem of our Author. Hence alfo a Reafon would be fupplied, why every Fibril of a fonorous Body C, while it is agitated by harmonical Vibrations, would put on the Form of the Hyperbola 254 , having its Center in the Center of the Earth T, and in like Manner would arife to another equal to it 234 , and thence would diffufe the Tremor through other and larger Hyperbola's, the Center of all which would be O, equally diftant from the fonorous Body C, as the fonorous Body itfelf is diftant from the Center of the Earth. Wherefore the Diftance CO, equal to the Diameter of the Terraqueous Globe, would determine the Limit beyond which no fonorous Wave would be propagated, and no Sound could be heard. And the Line OS, as being the Afymptote of any of the Hyperbolical Rays, through which the Sound is convey'd, would be the Confine of that happy Region, in which Men might philofophize in the utmoft Tranquility, fecure from all Noife of Earthly Affairs.

Now that no one may think this Speculation is to be defpifed on this Account, hecaufe every Fibril of a fonorous Body, as being very fhort and very much diftended, fhould feem always to remain in a ftrait Situation $2 \mathrm{C}_{4}$, nor can ever be bent into the concave or convex Hyperbola's 254,234 ; it is to be confider'd, that Hyperbola's are fo much the more enlarged, and approach fo much the nearer to a right Line, the longer their Axes become. Therefore becaufe of the vaft Diftance of the Centers T or O, like Lines which falling Bodies defcribe, are efteem'd as Parallels tho' directed to the

Properties of Sound.

Center of the Earth, and the Arches of a horizontal Circle are not diftinguifhed from a right Line that is a Tangent; fo thofe initial Hyperbola's 254,234 , may be faid almoft to coincide with the right Line ${ }_{2} \mathrm{C}_{4}$. Whence the Curvature of the vibrating Fibrils in a fonorous Body is not fenfible, nor does the Species of the Hyperbolical Waves difcover itfelf, till they are dilated into a larger Space GLA L G, and approach nearer to their Center.

Yet here it is to be obferved, that it will follow from thefe Principles, the Sound will not pafs at the Sides beyond the Space comprehended by the extream Hyperbolical Rays $298 \mathrm{~g}, 476 \mathrm{~g}$, which the right Lines $\mathrm{T}_{2}, \mathrm{~T}_{4}$, would touch, drawn from the Center of the Earth through the Terms of the vibrating Fibril. And indeed the Tremors of that Fibril would not proceed according to any other Direction than by $\mathrm{T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}$, and other intermediate ones comprehended by the Angle $2 \mathrm{~T}_{4}$, correfponding to the feveral Particles of the fame Fibril. Therefore the Space withour the faid Hyperbola's $298 \mathrm{~g}, 476 \mathrm{~g}$, would remain without any harmonical Tremor, nor according to the Meaning of the Author could the Phonical Sphere be extended to the whole Hemifphere of the Earth. Therefore no one Fibril of the fonorous Body muft ever tremble, but that at the fame Time it muft draw the Terms of the other Fibrils with which it is connected, and between which it is diftended, and muft likewife excite them to an harmonical Tremor. Thefe muft bring others with which they are connected, and make them tremble likewife ; juft as a mufical String ftretch'd on a wooden Inftrument evidently communicates its Tremors to it. Hence harmonical Ofcillations are prefently transfufed into other Bodies, with which they are mediately or immediately connected, tho' always more and more weakened, and at laft becoming infenfible are fpread through the Superficies of the Earthly Hemifphere, and creep on farther and farther. This the Ear itfelf can teftify, if applied to the Earth, and may diftinguifh any great Noife, tho' raifed atar off. Therefore alfo from other Places other fonorous hyperbolical Rays emerge through the whole Hemifphere of the Earth, by which the Phonick Sphere of the Archbifhop of Armagh may be fufficiently replenifh'd.

I intend to be fhorter in difculfing the two remaining Problems which I have propofed above. And yet I fhall endeavour to folve the fecond Queftion after a more general Manner, that its Ufe may be the more extenfive. Let $\mathrm{N} n \mathrm{G}$ be fuppoted to be any Ray, either lucid or fonorous, changed Fig. 18:. into a Curve of any Kind, by a continual Refraction. 'Tis enquired after what Law the Denfity muft be fuppofed to be varied, or the Rarity of the Medium at its different Altitudes; that admitting the Theory of Refraction, which fuppofes the Sine of Refraction to be always proportional to the Rarity of the refracting Medium, that Ray may become a Curve of fuch a Nature? Let the Axis of the Curve $\mathrm{N} n \mathrm{G}$ made by the refracted Ray, be the right Line CO, in which taking any Point C, with any Radius C L let the circular Quadrant L P_{p} be defcribed, and drawing any where the Tangent $\mathrm{NR}, n r$, of the refracted Ray, from C let there be drawn a Ray parallel to the faid Tangent, meeting the Circle in P , and drawing P F parallel to the Axis, let it meet the Ordinate NQ perpendicular to the Axis in the

Point F , I fay that the Curve thence arifing $\mathrm{F} f \mathrm{~F}$ by its Ordinates FQ , $f q$, will exprefs the Rarity of the Medium at its different Altitudes. For becaure C P is parallel to RN, the Angle PCB will be equal to that Angle which the refracted Ray $\mathrm{N} n$ makes with the Peipendicular at the Point N . And thereforc B P or F Q will always be the Sine of Refraction, the whole Sine being C P. Wherefore fince the Law of Refraction is fuppofed to be fuch, that the Sine of the fame is proportional to the Rarity of the Medium, the fame Line FQ will denote the Rarity of the Mediunn at the Altitude Q , or at the Point N of the fame Altitude, through which the Ray paffes. ©. E.D.

Now in our Propofition, in which $\mathrm{QN}=\frac{1}{x^{r}}$, becaufe of $y^{r}=\frac{\mathrm{I}}{x^{t}}$, if FQ denoting the Rarity of the Air be called z, it will be $z=$ $\sqrt{x^{2 r+2 t}+t t}$; or taking r and CP for Unity, 'tis $z=\frac{t}{\sqrt{x^{2+2 t}+t t}}$. And in the Cafe in which the hyperbolical Wave is equilateral, and therefore the Ray alfo is a like equilateral Hyperbola, 'tis $y=\frac{l}{x}$, becaufe $t=\mathrm{I}$, and therefore it will be $z=\frac{1}{\sqrt{x^{+}+1}}$.
Now becaure as well Facobus Hermannus in the Acts of Leipfick Iyo6, as Dr. D. Gregory in his Altronomy, l. 5 . prove the Curve which deternines the Degrees of the Rarity of the Air to be the Logarithmic Curve, fo that the Altitudes $\mathrm{OQ}, o q$, or x, will be the Logarithms of the Numbers that expound the Rarities of the Air in the Points Q, q; it is plain that the Curvature of the continually refracted Rays $\mathbf{N} n$, NG, proceeds in fuch a Manner, that the Sines of the Complement of Incidence and of Refraction being raifed to the Power $\frac{r}{r+t}$, fhall have a Ratio compounded of the Ratio of the Right Sines raifed to a like Power, and of the Ratio of the Logarithms of the Rarities.
But tho' I might grant that the ordinary Law of the Refraction of Light gives the Sines of Incidence and Refraction proportional to the Rarities of The Medium ; yet I muft not diffemble, that perhaps this may not be very exact. For the Ratio of the Sines in the Refraction out of Air into Glafs is about fefquialter, yet Air is above a thoufand Times rarer than Glafs. But when Geometricians perceived, that the Sine of Refraction in the Paffage into another Medium became greater, according to the greater Facility with which Light could penetrate it in the common Hypothefis, or according to the greater Difficulty in the Opinion of Cartefus, who fuppofes on the contrary, that Light is more refracted, becaufe of the greater Difficulty in a rarer Mediunt than in a denfer, as heavy Bodies becaufe of a greater Difficulty in penerrating denfer Bodies, in theie are more refracted by rebounding from the Perpendi-

Afcent of Water between two Gla/s-Planes.

cular; and that both Laws agree in this, that according to the greater Rarity of the Medium there would be a greater Refraction. Hence it has obtain'd that the Sines are faid to be proportional not to the Facility or Difficulty of the Paffage, either of which by fome is call'd in Queftion, but to the Rarity of the Medium in which all agree, tho' the true Proportion does not altogether anfwer to it in the fame Geometrical Ratio. Therefore where-ever Mention is made of Rarity, perhaps we fhould fubftitute Facility of Paffage in the common Hypothefis, or Difficulty in that of Cartefus, except where we fay, that the Rarity arifing from the Weight of the incumbent Atmofphere correfponds to the Altitudes, as Numbers correfpond to their Logarithms. For this is moft exactly agreeable to Truth.

A Paper omitted.

XII. Some Theorems concerning the infinite Divifibility of Matter, which n.339.p.82, demonftrate its great Rarity, and the Tenuity of its Compofition, by Means of which many Difficulties in Phyficks are removed. By Dr. Fohn Keill.

C H A P. V.

Hydroftatics. Hydraulics.

'THE following Experiment feems to be of Ufe in difcovering the Afcent of Proportions of the Attractions of Fluids; I fhall give what Account w I can of it, though I have not here Conveniencies to make it in fo fucceffful cela a Manner as I could wih.

I faftened two Picces of Glafs tagether, as flat as I could get; fo that they Dr. B.Tay. were inclined in an Angle of about two Degrees and a Half, then I fet them ${ }^{\text {p. }} 533^{3}, 33^{6}$. in Water with the contiguous Edges perpendicular. The upper Part of the Water, by rifing between them, made this Hyperbola, Fig. 183. which is as I copied it from the Glafs.

I have examin'd it as well as I can, and it feems to approach very near to the common Hyperbola. But my Apparatus was not nice enough to difcover this exactly.

The perpendicular Afymptote was exactly determin'd by the Edge of the Glafs; but the Horizontal one I could not fo well difcover.
II. Some Days ago a Mctiod, propofect to me by an ingenious Friend, for The Carf of making a perpetual Motion, which feem'd plaufible, and eafily demonftrable the Afrent from an Obfervation of the latc Mr. Hawksbee, faid to be grounded upon Ex- fion of War ${ }^{\text {and }}$ periment, was tried; which (thoug! not fucceeding) has given Occafion not ter in Capilonly to rectify fome Miftakes, into which we had been led by the late Mr.

Hawksbee, but likewife to detect the real Principle by which Water is raired and fufpended in capillary Tubes above the Level.
Fig. 184. My Friend's Propopal was as follows.] Let $A B C$ be a capillary Siphon, compofed of two Legs $A B, B C$, unequal borh in Length and Diameter; whofe longer and narrower Leg $A B$ having its Orifice A immert in Water, the Water will rife above the Level, till it fills the whole Tube $A B$, and will then continue fufpended. If the wider and thorter Leg $B C$ be in like Manner immertt, the Water will only rife to fome Height, as $F C$, lefs than the entire Height of the Tube $B C$.

This Siphon being fill'd with Water, and the Orifice A funk below the Surface of the Water DE, my Friend reafons thus:
Since the two Colums of Water $A B$ and $F C$, by the Suppofition, will be furpended by fome Power acting within the Tubes they are contain'd in, they cannot determine the Water to move one Way or the other. But the Column $B F$ having nothing to fupport it, muft defcend, and caufe the Water to run out at C. Then the Preffiure of the Atmofphere driving the Water upward through the Orifice A to fupply the Vacuity, which would otherwife be left in the upper Part of the Tube BC, this muft neceffarily produce a perpetual Motion, fince the Water runs into the fame Veffel, out of which it rifes. But the Fallacy of this Reafoning appears upon making the Experiments.
Exp. 1. For the Water, inftead of running out at the Orifice C, rifes upwards towards F, and running all out of the $\operatorname{Leg} B C$, remains fufpended in the other Leg, to the Height $A B$.
Exp. 2. The fame Thing fucceeds upon taking the Siphon out of the Water, into which its lower Orifice A had been immerft, the Water then falling in Drops out of the Orifice A, and itanding at laft at the Height $A B$. But in making thefe two Experiments, it is neceffary that $A G$, the Difference of the Legs, exceed $F C$, otherwife the Water will not run either Way.
Exp. 3: Upon inverting the Siphon full of Water, it continues withour Motion either Way.
The Reafon of all which will plainly appear, when we come to difcover the Principle by which the Water is furpended in capillary Tubes.

Mr. Hawksbee's Obfervation is as follows.
Fig. 185. Let $A B F C$ be a capillary Siphon, into which the Water will rife above the Level, to the Height $C F$, and let $B A$ be the Depth of the Orifice of its longer Leg below the Surface of the Water $D E$. Then the Siphon being fill'd with Water, if $B A$ be not greater than $C F$, the Water will not run out at A, but will remain fufpended.

This feems indeed very plaufible at firt Sight. For fince the Column of Water $F C$ will be fufpended by fome Power within the Tube, why fhould not the Column $B A$ being equal to, or lefs than the former, continue fufpended by the fame Power ?

PlatexI. l'shiv. Part I I'age 424

Exp. 4. In fact, if the Orifice C be lifted up out of the Water $D E$, the Water in the Tube will continue furpended, unlefs $B A$ exceed FC.

Exp. 5. But when C is never fo little immers'd in the Water, immediately the Water in the Tube runs out in Drops at the Orifice A, tho' the Length $A B$ be confiderably lefs than the Height $C F$.

Mr. Hawkfbee, in his Book of Experiments, has advanced another Obfervation, namely, that the fhorter Leg of a Capillary Siphon, as $A B F C$, muft be immers'd in the Water to the Depth $F C$, which is equal to the Height of the Column, that would be fufpended in it, before the Water will run out at the longer Leg.

Exp. 6. From what Miftake this has proceeded, I cannot imagine; for the Water runs out at the longer Leg, as foon as the Orifice of the fhorter Leg comes to touch the Surface of the ftagnant Water, without being at all immers'd therein.
I proceed now to enquire into the Caufe of the Afcent and Sufpenfion of Water in capillary Tubes.

That this Phænomenon is no Way owing to the Preflure of the Atmofphere, has been, I think, fufficiently prov'd by Mr. HawkJuee's Experiments.

And that the Caufe affign'd by the fame Perfon, namely, the Attraction of the concave Surface, in which the fufpended Liquor is contain'd, is likewife infufficient for producing this Effect, I thus demonftrate.

Since in every capillary Tube the Height, to which the Water will fpontaneoully afcend, is reciprocally as the Diameter of the Tube, it follows, that the Surface containing the fufpended Water in every Tube is always a given Quantity: but the Column of Water fufpended is, as the Diameter of the Tube. Therefore, if the Attraction of the containing Surface be the Caufe of the Water's Sufpenfion; it will follow, that equal Caufes produce unequal Effects, which is abfurd.

To this it may perhaps be objected, that, in two Tubes of unequal Diameters, the Circumftances are different, and therefore the two Caufes, tho' they be equal in themfelves, may produce Effects that are unequal. For the leffer Tube has not only a greater Curvature, but thofe Parts of the Water, which lie in the middle of the Tube, are nearer to the attracting Surface, than in the wider. But from this, if any thing follows, it muft be, that the narrower Tube will fufpend the greater Quantity of Water, which is contrary to Experiment. For the Columns fufpended are as the Diameters of the Tubes.

But as Experiments are generally more fatisfactory in Things of this Nature, than Mathematical Reafonings, it may not be amifs to make ufe of the following, which appear to me to contain an Experimentunn Crucis.

The Tube C D is compofed of two Parts, in the wider of which Fig. 186. the Water will rife fpontaneouny to the Height $B F$, but the narrower Part, if it were of a fufficient Length, would raife the Water to a Height equal to $C D$.
HED
I i i
Exp.

Of the Afcent and Sufpenfion

Exp. 7. This Tube being fill'd with Water, and the wider End C immers'd in the ftagnant Water $A B$, the whole continues fufpended.

Exp. 8. The narrower End being immers' d , the Water immediately fubfides, and ftands at laft at the Height $D G$ equal to $B F$.

From which it is manifeft, that the Sufpenfion of the Water in the former of thefe Experiments is not owing to the Attraction of the containing Surface: fince, if that were true, this Surface being the fame, when the Tube is inverted, would fufpend the Water at the fame Height.

Having fhewn the Infufficiency of this Hypothefis, I come now to the real Caufe of that Phrenomenon, which is the Attraction of the Periphery, or Section of the Surface of the Tube, to which the upper Surface of the Water is contiguous and coheres.

For this is the only Part of the Tube, from which the Water mult recede upon its fubfiding, and confequently the only one, which by the Force of its Cohefion or Attraction, oppofes the Defcent of the Water.

This likewife is a Caufe proportionable to the Effedt which it produces; fince that Periphery, and the Column fufpended, are both in the fame Proportion as the Diameter of the Tube.

Tho' from either of thefe Particulars it were eafy to draw a juft Demonftration, yet to put the Matter out of all Doubt, it may be proper to confirm this Affertion, as we have done the former, by actual Experiment. Length; and let $A F$ and $B G$ be the Heights, to which the Water would fpontaneounly rife in the two Tubes $E D$ and $D C$.

Exp. 9. If this Tube have its wider Orifice C immers'd into the Water $A B$, and be fill'd to any Height lefs than the Length of the wider Part, the Water will immediately fubfide to a Level with the Point G; but if the Surface of the contain'd Water enter never fo little within the fmaller Tube $E D$, the whole Column $D C$ will be fufpended, provided the Length of that Column do not exceed the Height $A F$.

In this Experiment it is plain, that there is nothing to furtain the Water at fo great a Height, except the Contact of the Periphery of the leffer Tube, to which the upper Surface of the Water is contiguous. For the Tube $D C$, by the Suppofition, is not able to fupport the Water at a greater Height than $B G$.

Exp. 10. When the fame Tube is inverted, and the Water is rais'd into the lower Extremity of the wider Tube $C D$, it immediately finks, if the Length of the fufpended Column $D H$ be greater than $G B$; whereas in the Tube $D E$ it would be fufpended to the Height $A F$. From which it manifefly appears, that the Sufpenfion of the Column $D H$ does not depend upon the Attraction of the Tube $D E$, but upon the Periphery of the wider Tube, with which its upper Surface is in contact.

of Water in Capillary Tubes.

For the fake of thofe who are pleas'd with feeing the fame Thing fucceed in different Manners, we fubjoin the two following Experiments, which are in Subftance the fame with the gth and roth.
$A B C$ is a Siphon, in whofe narrower and fhorter Leg $A B$, if it Fig. 190. were of a fufficient Length, might be fufpended a Column of Water of the Height $E F$; but the longer and wider Leg $B C$ will fufpend no more than a Column of the Length $G H$.

Exp. 1 1. This Siphon being fill'd with Water, and held in the fame Pofition as in the Figure, the Water will not run out at C the Orifice of the longer Leg, unlefs $D C$, the Difference of the Legs $A B$ and $B C$, exceed the Length $E F$.

Exp. 12. If the narrower Leg $B C$ be longer than $A B$, the Water Fig. igr. will run out at C, if $D C$, the Difference of the Legs, exceed $E F$; otherwife it will remain fufpended.

In thefe two Experiments it is plain, that the Columns $D C$ are fufpended by the Attraction of the Peripheries at A, fince their Lengths are equal to $E F$, or to the Length of the Column, which by the Suppofition thofe Peripheries are able to fupport; whereas the Tubes $B C$ will fuftain Columns, whofe Lengths are equal to G H.

Though thefe Experiments feem to be conclufive, yet it may not be improper to prevent an Objection, which naturally prefents itfelf, and which at firft View may be thought fufficient to overturn our Theory.

For fince a Periphery of the Tube $E D$ is able to fuftain no more Fig. 188. than a Column of the Length $A F$, contain'd in the fame Tube, how comes it to fuftain a Column of the fame Length in the wider Tube $D C$, which is as much greater than the former, as the Section of the wider Tube exceeds that of the narrower?

Again, if a Periphery of the wider Tube $D C$ be able to fuftain a Fig. 189. Column of Water in the fame Tube, of the Length $B G$; why will it fupport no more than a Column of the fame Length in the narrower Tube E D ?

Which Queries may likewife be made with regard to the IIth and 12th Experiments.

The Anfwer is eafy; for the Moments of thofe two Columns of Water are precifely the fame, as if the fuftaining Tubes $E D$ and $C D$ were continued down to the Surface of the ftagnant Water $A B$; fince the Velocities of the Water, where thofe Columns grow wider, or narrower, are to the Velocities at the attracting Peripheries, reciprocally as the different Sections of the Columns.

Exp. 13. From which Confideration arifes this remarkable Paradox, That a Veffel being given of whatfoever Form, as $A B C$, and containing any affignable Quantity of Water, how great foever; that whole Quantity of Water may be fufpended above the Level, if the upper Fart of the Veffel C be drawn out into a capillary Tube of a fufficient Finenefs.

But whether this Experiment will fucceed, when the Height of the Veffel is greater than that, to which Water will be rais'd by the Preffure of the Atmofphere, and how far it will be alter'd by a Vacuum, I hall give an Account fome other time.

Having difcover'd the Caufe of the Sufpenfion of Water in capillary Tubes, it will not be difficult to account for the feemingly fpontaneous Afcent of it ; For fince the Water that enters a capillary Tube, as foon as its Orifice is dipt therein, has its Gravity taken off by the Attraction of the Periphery, with which its upper Surface is in contact, it muft neceffarily rife higher, partly by the Preffure of the ftagnant Water, and partly by the Attraction of the Periphery immediately above that, which is already contiguous to it.

The Attion of Glafs Tubes upon Water and Quick-
filver, by the fame. n. 363 p. 1083.

Fig. 193.

Fig. 194 .
III. In a former Difcourfe, I maintain'd, that the Sufpenfion of Water in a capillary Tube was owing to the Attraction of a fmall annular furface on the infide of the Tube, which touch'd the upper Part of the Water. Among the feveral Experiments made ufe of to prove this Affertion, was that of a Glafs Funnel of feveral Inches Diameter, having its fmall End drawn out into a very fine Tube, which Funnel being inverted and fill'd with Water, the whole Quantity of Water therein contain'd was fuftain'd above the Level by the Attraction of that narrow Annulus of Glafs, with which the upper Surface of the Water was in contact.

Soon after that Difcourfe was printed, came out a Book publifh'd by a Learned and Ingenious Member of this Society, in which that Experiment was accounted for in the following Manner.

If there be a Funnel, as $A B C$, full of Water, and whofe wide End fands in a Veffel of Water as BC; and the Top of the Funnel A ends in a Capillary T'ube open at A, the whole Water will be fuftain'd; the Pillar A a by the Attraction of the Circle of Glafs within the Tube immediately above it; and all the reft of the Pillars of Water, as $F f, D d, E e, G g, \mathcal{E}^{2} c$. in fome meafure by the Attraition of the Parts of the Glafs above thein, as F, D, E, G : And that the fmall Pillars or Threads of Water, D d, and E e, do not gide down to $F f$, and $G g$, and fo go quite down, feems lo be owing to tbeir Cobefion with the Pillar $A a$, which is fuftain'd by the Capillary Tube A: For if you break off the faid Tube at DE, the whole Water will prefently fink down.

As this Solution was different from what I had betore given, and the Reputation of that Gentleman was fufficient to give Weight to any of his Opinions; I thought myfelf under an Obligation to examine his Account of the Experiment, in order either to demonftrate its Infufficiency, or to retract my own Solution. Accordingly at the next Meeting of the Society, I produced the following experiment.
The Funnel $A F G B C$, whofe lower Part $B C F G$, was cylinitrical to a confiderable Height, and whofe Top was drawn out into a fine Tube at A, being fill'd with ${ }^{\text {T}}$ Nater to the Height $B F$, fo that the Surface of the Water F G, did not reach to the arched Part of the Funnel; I touch'd the End A with a wetted Finger, whereby a fmall Quantity
of Water being infinuated into the Capillary Tube at A, the Water contained in the Furnel was fufpended above the Level of the Water in the Ciftern $D E$, as in the former Experiment.

In this Experiment it is manifeft, that the little Columns, into which we may fuppote the Cylinder of Water $F G B C$, to be divided, are no way fuftain'd by the Attraction of the arched Part of the Glafs above them, fince they have no Contact with it. Nor is there any fuch middle Pillar of Water, which, by its Contact with the Tube at Top, is both fuftain'd itfelf, and helps to fupport the Pillars about it. Upon the Suppofition of which two Particulars, that Gentleman's Solution was founded.

This Experiment may be thus accounted for: The Cylinder of Water $F G B C$, by its Weight balances a Part of the Preffure of the Atmofphere, which is incumbent on the Water in the Ciftern, and endeavours to force that Cylinder upwards. The reft of that Preffure is balanced by the Spring of the Air $A F G$, which is included between the Cylinder of Water FGBC, and the little Column of Water in the Capillary A. But as this Air by its Spring preffes equally every way, it muft balance as much of the Preffure of the Atnofphere upon the little Column of Water at A, as it does of that upon the Water in the Ciftern. The Remainder of the Preffure of the Atunofphere upon the Column of Water at A, is fuftain'd by the Force, with which that Column adheres to the Capillary Tube, which therefore does exactly balance the Weight of the Cylinder of Water FGBC, and is the real, though not the immediate, Caufe of its Sufpenfion.

The Experiment fucceeds in the fame Manner, when a Column of Quickfilver is raifed into the Funnel, inftead of the Column of Wa$\operatorname{ter} F G B C$, the Top of the Tube being touch'd with a wet Finger as before. But then the Height of the Quickfilver in the Funnel muft be as much lefs than that of the Water, as its fpecifick Gravity is greater.

I proceed now, according to Promife, to examine whether the Experiments therein contain'd, would fucceed in Vacuo; and whether Water could be fufpended in a wide Tube by means of a Capillary at Top, at a greater Height than what it can be rais'd to by the Preffure of the Atmofphere.

In order to this, I boil'd fome Water, and afterwardis purged it of its Air, by means of the Air-pump; which being done, thofe Experiments all fucceeded in the exhaufted Receiver, in the fame Manner as in the open Air.

The $13^{\text {th }}$ Experiment in particular, was made with a Tube of about 35 Inches in Length, and a Quarter of an Inch Diameter, the Top of it being drawn out into a fine Capillary ; which being fill'd with Water purged of its Air, as before-mention'd, the whole Quantity continued fufpended in the exhaulted Receiver.

This plainly dhews that the Succefs of that Experiment does not

The Aetions of Glafs Tubes

depend upon the Preffure of the Air, fince the fmall Quantity of Air left in the Receiver, was by no Means capable of fuftaining the Water at fo great a Height, and coniequently that the Height at which Water may be fufpended in this Manner, is not limited by that Preffure.

But here I mult not omit taking Notice of a confiderable Difficulty, which prefents iffelf to thofe who attentively confider this Experiment In order to make which the better appeaf, it will be proper to obferve, what happens, when a fimple Capilliary Tube is fill'd with Water purged of Air, and inclos'd in the exhaufted Receiver.

In this Cafe, the whole Column of Water contained in the Tube $A C B$, is fufpended by the Attraction of the Annulus at the Top of the Tube A : And though that Annulus does not immediately act upon any Part of the Water, except what is either contiguous to it, or fo near as to be within the Sphere of its Attraction, which extends but to a very fmall Diftance; yet it is impoffible that any other Part of the Water, as for Inftance, that at C, fhould part from the Water above it, and fink down; becaufe its Defcent is oppos'd by the Attraction of the contiguous Annulus at C. For this being equal to the upper Annulus at A, is capable of fuftaining a Column of Water of the Length $A B$, and confequently is more than fufficient for fupporting the Column of Water below it, C B. From which it is plain, that no Part of the Water contain'd in the Tube can poffibly defcend, unlefs the upper Part, affifted by the Weight of the Water below it, be fufficient to overcome the Attraction of the Annulus of Glafs at A.

But in fuch a compound Tube, as that made ufe of in our Experiment, $A C B$, the Cafe is very different, and it does not eafily appear, why in a Vacuum any Part of the Water in the wider Part of the Tube, as for Example at C, fhould not leave that which is above it, and defcend, fince the Annulus at C is by much too wide to fuftain a Column of Water of fo great a Length as CB.

The beft Anfwer I can give to this Difficulty, is, that the Cohefion between the Water contained in the Capillary and that below it, is futficient to balance the Weight of the Column fufpended. But how far this Cohefion may depend upon the Preffure of a Medium fubtile enough to penetrate the Receiver, is worthy of Confideration. For though fuch a Medium will pervade the Pores of the Water, as well as thofe of the Glafs, yet it will act with its intire Preffure upon all the folid Particles, if I may fo call them, of the Surface of the Water in the Ciftern; whereas fo many of the folid Particles of the Water in the Tube, which happen to lie directly under the folid Particles of the Water above them, will thereby be fecured from this Preffure; and confequently there will be a lefs Preffure of this Medium upon any Surface of the Water in the Tube below the Capillary, than upon an equal Surface of the Water in the Ciftern. So that the Column of Water fufpended in the Tube may be fuftain'd by the Difference be-
iween thofe two Preffures. This Explication feems to be favoured by the following Experiments, which may all be accounted for in the fame Manner, though I Chall anon mention another Caule, which contributes to the Succefs of the firft and fecond.

The firt I hall mention is the famous Experiment of the Sufpenfion of Mercury purged of Air, to the Height of 70 or 75 Inches in the Torricellian-Tube, in the open Air. To which we may add the fuftaining of Mercury, likewife purged of Air, within the exhaufted Receiver, as related by the learned Monf. Papin in his Continuation du Digeffeur. If forbear to mention the Sufpenfion of Water purged of Air in the Vacuuin, which he defcribes in the fame Book; becaufe there is little Difference between that Experiment and our own above-mentioned; the very Top of the arched Part of his Tube, which Top we may fuppofe as fimall as we pleafe, fupplying the Place of the fine Capillary at the Top of our Tube. But we muft not omit the Experiments made by the fanous Monf. Hu;gens *, of the cohering of polifhed Plates, with *Vid. fupra a confiderable Force in the exhaufted Receiver; as likewife of the run- V. II. p. 24. ning of Water and Mercury, when purged of Air, thro' a Siphon of unequal Legs in the Vacuuin: All which he accounts for from the fame Principle, and much in the fame Manner, as we have ufed for explaining the Experiment abuve.

As to the Exiftence of fuch a Medium, I fhall content myfelf to refer to what has been faid by Sir Jfaac Neroton in the Queries at the latter End of the laft Edition of his Opticks: And as I have lately produced fome Experiments upon Quickfilver, which were exactly the Reverfe of thofe made by Dr. Taylor, the late Mr. Harokbee and my felf upon Water; by which I am now enabled to throw this whole Affair into a little Syftem by itfelf, I hall lay it down in the following Propofitions, the Proof of which is contained in the Experiments annexed.

Prop. 1. The Particles of Water atsraif one anotber.
This, I think, is now univerfally acknowledged, and therefore needs no Demonftration; the Sphericity of the Drops of Rain, and the running of two Drops of Water into one another upon their Contact, manifettly proving it.
Prop. 2. The Particles of Quickfiver attract one anotber.
This is likewife manifeft from the Spherical Figure, into which a Drop of Mercury forms itfelf upon a Table; and from two of them immediately running together, as foon as they come to touch.

Prop. 3. Water is attracted by Glafs.
This plainly appears from all the Experiments that we have fhewn upon this Subject.

Prop. 4. 2uickfiver is attrafted by Glafs.
Experiment 1. If a fmall Globule of Quickfilver be laid, upon a clean Paper, and be touched with a Piece of clean Glafs; upon drawing the Glafs gently away, the Quickfilver will adhere to it, and be drawn away with it. And if the Glafs be lifted up from the Paper, the Quick-

The Action of Glafs Tubes

filver will be taken up by it, in the fame Manner as a Piece of Iron is drawn up by the Loadftone, and will Itick to the Glafs by a plain Surface of a confiderable Breadth, in Proportion to the Bulk of the Drop, as manifettly appears by an ordinary Microfcope. Then if the Glafs be held a little obliquely, the Drop of Mercury will roll nowly upon its Axis along the under fide of the Glafs, till it comes to the End, where it will be fufpended as before.

- Exp. 2. If a pretty large Drop of Mercury be laid upon a Paper, and two Pieces of Glas be made to touch it, one on each fide; upon drawing the Glaffes gently from each other, the Drop of Mercury will adhere to them both, and will be vifibly drawn out from a globular to an oval Shape; the longer Axis paffing from the middle of thofe Surfaces, in which the Drop touches the Glaffes.

Prop. 5. The Particles of Water are more ftrongly attraEted by Glafs, than by one anotber.

This manifeftly appears from the rifing of Water in fmall Tubes above the Level. For when the Water begins to rife into a Capillary Tube, all the Particles of Water, which touch the fmall Avnulus at the Buttom of the Tube, mult have quitted the Contact of the other Water, and have rifen contrary to their Gravity, to come into Contact with the Giafs. After the fame Manner the other Experiments of Dr. Taylor, Mr. Harwk/bere and myfelf, upon this Subject, are eafily explicable. For upon a careful Examination, it will be found in them alls, that fome Parts of the Water quit the Contact of the other Water, and join themfelves to the Glafs.

Prop. 6. The Particles of Quickfilver are more frongly attrafited by one another, than by Glafs.

Exp. r. If a fmall Tube as A B, open at both Ends, be dipt into a Glais Veffel fill'd with Mercury, and be held clofe to the fide of the Veffel, that the rife of the Mercury within it may appear; the Mercury will partly enter into the Tube, but will Itand within it at fome Depth, as C E, below the Surface of the Quickfilver in the Veffel, CD; and this Depth will always be reciprocally as the Diameter of the Tube.

In this Experiment a Column of Quick filver of the height C E endeavours to force the Mercury higher into the Tube ; and as Glafs has been already prov'd to attract Quickfilver, the Attraction of the annular Surface on the Infide of the Tube, which is contiguous to the upper Part of the Mercury, will likewife confpire to farther its Afcent. What oppofes the Afcent of the Quickfilver, is the Power by which that Part of it, which endeavours to rife into the Glafs, is drawn back by the Attraction of the other Mercury, with which it is in Contact laterally, and this does not only balance the Attraction of the Glafs, but likewife the Weight of the Column of Mercury C E, and confequently this Attraction is confiderably ftronger than the Attraction of the Glass.

upon Water and Quickfilver.

The Caufe therefore that fufpends the Weight of the Column of Mercury C E, being the Difference between the Attraction of the annular Surface of the Tube at E, and that of an equal Surface of the Quick filver in the Ciftern, from which the Mercury, that endeavours to rife into the Tube, muft recede, in order to unite itfelf to fuch an Annulus of the Glafs, will always be proportional to that annular Surface, or to the Diameter of the Tube. And fince the Column fuftained muft be proportional to the Caufe that fufpends it, that Column muft likewife be as the Diameter of the Tube. But the Column fufpended, is as the Square of the Diameter of the Tube, and the height CE conjointly; from which it follows, that the height CE muft be as the Diameter of the Tube reciprocally, as it is found to be by Experiment.
The Experiment of the Afcent of Water above the Level in a Capillary Tube, is juft the Reverfe of this.
Exp. 2. Quickfilver being poured into the inverted Siphon A C B, Fig. 198. one of whofe Legs A C is narrower than the other C B; the height CE, at which the Mercury ftands in the wider Leg CB, is greater than the height CD, at which it ftands in the narrower Leg CA.

On the contrary, Water ftands higher in the narrower Leg, than in the wider.

Exp. 3. A BCD reprefents a rectangular Plane of Glafs, which Fig. 199. makes one fide of a wooden Box. On the Infide of this is another Glafs Plane of the fame Size, which at the End AC is prefs'd clofe to the former, and opens to a fmall Angle at the oppofite End B D. When Mercury is poured into this Box to any height as C E, it infinuates itfelf, between the two Glafs Planes, and rifing to different heights between the Glaffes, where the opening is greater or lefs, it forms the common Hyperbola C G F; one of whofe Afymptotes E F is the Line on which the Surface of the Mercury in the Box touches the inner Glafs; the other is the Line AC, in which the Planes are joined. This Hyperbola being carefully examined by Mr. Hawkbee and my felf, the Rectangle E H G, wherefoever taken, proved always equal to itfelf, to as great an Accuracy as could be expected, when the Planes were opened to any confiderable Angle: But when the opening was very fmall, the Inequalities of the Planes, though the beft I could procure, bearing a greater Proportion than before to the Diftance between them, occafioned a fenfible Variation. Which, by the Way, I take to be the Reafon why the Ordinates found by the late Mr . Hawkjbee, in examining the Curve produced in a contrary Situation, upon dipping two Glafs Planes fo join'd into Spirit of Wine, do not anfwer to thofe of the Hyperbola.

Exp. 4. A B is a Perpendicular Section through two Glafs Planes Fig. 200. join'd at A, and open'd to a fmall Angle at B. C reprefents a pretty large Drop of Mercury, the larger the better, which being made to defcend as far as C, by holding the Planes in an erect Pofture, with the End A downwards, retires from the Contact of the Planes to D, upon inclining the Planes towards an horizontal Situation; and the IGDVol. IV.

Diftance

Diftance CD becomes greater or lefs, as the Planes are more or lefs inclin'd towards the Horizon.

A Drop of any Oily or Watery Liquor moves the contrary Way, as has been thewn by the late Mr. HarwkBee.

Exp. 5. A B is a Tube open at both Ends, and a Foot or two in Length, whofe lower Part is drawn out into a fine Capillary at B. This Tube being filled with Mercury, the whole Column of Quickfilver will be fuftained in it, provided the Capillary Tube at B be fufficiently fmall. But if the Mercury in the End B be fuffer'd to touch any other Mercury, it runs all out of the Tube. If, without letting it touch any other Mercury, a fmall Part of the End B be broken off, the Mercury will run out, till it comes to fome leffer height as BC, at which it will again ftop, the height $B C$ being nearly in a reciprocal Proportion to the Diameter of the fmall End of the Tube.

The Seventh Experiment in the former Paper is the Reverfe of this,
Exp. 6. Is the fame in Subftance with the former, but made with a large Glafs Funnel AB, inftead of a Tube.

The Reverfe of this in Water is the thirteenth Experiment in the former Paper.

In all thefe Experiments it is eafily feen, that the Effect is owing to the Difference between the two Attractions, by which Mercury tends to Glafs and to its own Body; they being always oppofed to one another, fo that a particular Explication is no Way neceffary. But perhaps it may fave fome little Trouble to the Reader, to remove the following Objection, which will readily occur to him.

In the Experiments brought to demonftrate the fourth Propofition, the Globule of Mercury adheres to the Glafs in a Plane Surface, which cannot be done without increafing the Surface of the Globule, and confequently removing fome of its Particles from the Contact of one another. If therefore they tend more ftrongly to one another than to the Glafs, why do they not recede from the Glafs, and affume a Figure perfectiy Spherical, that they may all have the greatelt poflible Contact with each other?

To this we may anfwer, That the Power, by which Mercury is attracted either by Glafs, or by other Mercury, is proportional to the attracting Surface; and therefore, though, cateris paribus, the Tendency of Mercury to Glafs, is not fo ftrong as its Tendency to other Mercury, yet in this Cafe a much greater Number of Mercurial Particles coming into Contact with the Glafs, than what recede from the Contact of one another, it is no Wonder that the Attraction of the Glafs prevails, and caufes the Globule to adhere to it. For the Number of Mercurial Particles, which lofe their Contact with the other Mercury, is no more than what makes up the Difference of Surface, which arifes from changing the Figure of the Drop: Whereas the Particles, which by this Means come to adhere to the Glafs, are all thofe that conftitute the plane Surface, in which the Globule touches it.

10 Which Confideration ought likewife to be apply'd to the Sufpenfion of Quickfilver in Glafs-Tubes, either at extraordinary heights in the open Air, or at leffer heights in a Vacuum, as above-mentioned. For the Top of the Tube being Spherical, or nearly fo, it will be found, that the Contact of the Mercury with the Extremity of the Tube, is to the Contact with other Mercury, which would be gained by its leaving the Top of the Tube, and defcending a very fmall Space, in a Ratio infinitely great; and confequently that the Contact of the Mercury with the Top of the Tube is one Caufe of its Sufpenfion.
Corol. yf. From this Propofition it appears, that in a Barometer made with a narrow Tube, the Quickfilver will never ftand at fo great a height as in a wider. Which accounts for the Pbenomenon fo often mentioned, in the yearly Hiftory of the Royal Academy of Sciences at Paris, by Monf. De la Hire; that in the Barometer, which he conftantly made ufe of for his annual Oblervations, the Quickfilver did not rife fo high, as in another he kept by him, by about three Lines and a half, which is near a third of an Inch our Meafure: For he tells us, that the Tube of his Barometer is very fmall. So that there is no need to have recourfe to any Peculiarity, either in the Quickfilver or the Glafs of which that Tube was made ; or to an unperceived Remnant of Air left in the Tube, from fome of which Caufes that Effeet, and fome others of the fame kind, were imagined to proceed.

Corol. 2d. In a Barometer made with a fmall Tube, the Mercury will rife and fall irregularly. For, as the height of the Mercury depends partly upon the Diameter of that Part of the Tube that touches the upper Surface of the Mercury; it is plain, that the unavoidable Inequalities in the Diameter of the Tube will be more confiderable, in refpect to the whole Diameter; and confequently will affect the height of the Mercury, more in a fmall Tube than in a wider. And this I take to be the Reafon, why it is fo very difficult, not fo fay impoffible to make two Barometers which fhall exactly agree in the height of the Quickfilver in all Conftitutions of the Air, efpecially if the Tubes be very narrow. This Irregularity is ftill more confiderable in the Pendent Barometer, in which the Quickfilver moves through a large Space in order to make a fmall Alteration in the length of the Column fufpended. The fame Confideration is eafily extended to thofe Levels, that depend upon the rifing of Mercury to the fame height, in the oppofite Legs of a bent Tube, an Inftrument of which kind has been lately offered. And as the Effect is juft contrary in Levels made with Water or Spirit of Wine, due Regard ought to be had to this Property in the Conftruction of thofe Inftruments, by making the Tubes fufficiently wide, in order to diminifh the Error as much as poffible.
IV. We often fee the Motion of Water, when it runs out at a Hole Of the Moin the Bottom of a Veffel, to be compared with other Powers, not only tion of Runin Hydraulicks, but in the Application of its Principles to the Animal by by farers,

Oeconomy. The Quantity of which Motion as no one that I know of has hitherto rightly determined, in its Place the Writers on Hydraulicks are ufed to have Recourfe to the Weight of a Column of Water incumbing on the Hole. They that do this do not confider, that no Motion can be compared with a Weight at reft. Now the Motion of running Water may eafily be determined after the following Manner.

Let $S H A H S$ be the indefinite Superficies of Water, $C C$ a circular Hole made at the Bottom, $A B$ a perpendicular right Line drawn through the Center of the Hole, SGCCGS a Column or Cataract of Water running through the Hole C C, S G C a Curve by the Rotation of which about the Axis $A B$ a Solid is generated, or the Cataract SGCCGS. For when Water defcends freely, and by an accelerated Motion like all heavy Bodies, it will be neceffarily contracted into a leffer Space, as it acquires a greater Velocity by falling, and flows out of the Hole C C with fuch a Velocity as is acquired by falling from the Height $A B$.

But the Velocity of a heavy Body acquired by falling, as has been demonftrated by Galileus, is in a fubduplicate Ratio of the Altitude from from whence it falls. Wherefore if any Ordinate $D E$ be drawn to the Curve $S G C$, and this be call'd y, and $A D$ be made x; the Velocity of the Water in the Section $E E$ will be expounded by $\sqrt{ } x$, and the Product of that Velocity drawn into the Section it felf, will be $y y \sqrt{x}$.

This Product is as the Quantity of Water paffing through that Section in a given Space of Time; and as the fame Quantity of Water in a given Time paffes through all the Sections of the Cataract, that Pro* duct will always be the fame, and will be y $\sqrt{x}=1$, or $x y+=1$.

This is the Equation of the Curve SGC, Part of which (comprehended within a given Veffel, the great Neroton has delineated, and has plainly indicated its Equation, Prop. 32. L. 2. of his Principia; and is the firft who has explained to the learned World the true Velocity of running Water, derived from its genuine Principles.

The Curve itfelf is an Hyperboloid of the fourth Order, one of whofe Afymptotes is the right Line $A S$ parallel to the Horizon, the other is $A B$ perpendicular to the fame.

The Power of which is the Quadrato-Cube of the Ordinate $F G$, drawn at the Point G; where the right Line $A G$, bifecting the Angle contained by the Afymptotes, meets the Curve.

The Space $S A D E S$, included between the Curve $S G E$, the Ordinate $D E$, and the Afymptotes $A D, A S$, is equal to four Thirds of the Rectangle $H D$, contained by the Abfcifs $A D$ and the Ordinate $D E$. And therefore the Space $S H E$ is one third Part of the faid Rectangle.

The Solid SGEEGS, generated by the Rotation of the Space $S A D E S$ about the Axis $A D$, is double to the Cylinder incumbing on the Section $E E$. Whence the Concave Solid, which the Space $S H E G S$ produces by its Converfion about the fame Axis, is equal to the incumbent Cylinder. All which Things are eafily found by the inverfe Method of Fluxions.

Theorem 1. If Water runs out of a Veffel of an infinite Extent, through a circular Hole made at the Bottom, the Motion of the whole Cataract of Water towards the Horizon is equal to the Motion of a Cylinder of Water, under the Hole itfelf and the Altitude of the Water, whofe Velocity is equal to the Velocity of the Water running through the Hole; or is equal to the Motion of a Quantity of Water which runs out in any given Time, of which the Velocity is the fame as that, by which a Space equal to the Altitude of the Water may be defcribed in the fame given Time.
Demonffration of the firft Part. To the Curve SGC let another Ordinate $d c$ be drawn as near the former $D E$ as may be.
The Curve being converted about the Axis $A B$, the Ordinates $D E$, $d e$, will generate two Circles, between which the nafcent Solid $E E e e$ will be intercepted. That Solid is equal to the Product of the Altitude $D d$ drawn into the Section $E E$; and its Motion is equal to the Product of the Solid itfelf drawn into the Velocity of the fame, or to the Product of the Altitude $D d$, the Section $E E$, and the Velocity of the Water in that Section. And fince it is fhewn above, that the Product of any Section of the Cataract and the Velocity of the Water in that Section, is a conftant Quantity; the Motion therefore of the whole Cataract will be equal to the Product of that conflant Quantity drawn into the Sum of all the Altitudes $D d$, or into $A B$, that is, to the Motion of the Cylinder under the Hole iffelf, and the Altitude of the Water, whofe Velocity is equal to the Velocity of the Water flowing through the Hole. 2.E.D.
Corol. 1. The Altitude of the Water being given, the Motion of the Cataract will be in the Ratio of the Aperture.
2. The Aperture being given, the Motion of the Cataract will be in a fefcuplicate Ratio of the Altitude, or in a triplicate Ratio of the Velocity, with which the Water runs through the Hole.
3. The Motion of the Cataract being given, the Aperture will be reciprocally in a fefcuplicate Ratio of the Altitude, or in a triplicate Ratio of the Velocity reciprocally.

Demonftration of the fecond Part. The Quantity of Water running in a given Time is to the Cylinder under the Aperture, and Altitude of the Water, as the Space which Water running out with an equable Velocity will defcribe in that given Time, is to the Altitude of the Water. And fince the Velocity which is communicated to the Quantity of flowing Water is to the Velocity of the Cylinder in the fame Ratio reciprocally, the Quantities of the Motions on each fide will be equal.Q.E.D.

Corol. 1. The Altitude of the Water and the Quantity running out being given, the Motion of the Cataract is in a reciprocal Ratio of the Time, in which that Quantity runs out.
2. The Altitude and Time being given, the Motion of the Cataract will be as the Quantity of Water running out in that Time.
3. The Time and Quantity of the running Water being given, the Motion of the Cataract will be as the Altitude.
4. The Motion of the Cataract and Altitude being given, the Quantity of the Water is as the Time.
5. The Motion of the Cataract and Quantity of running Water being given, the Altitude is at the Time.
6. The Time and Motion of the Cataract being given, the Quantity of running Water will be reciprocally as the Altitude.

Theorem 2. If $B A$ be taken to $B D$, as $D G^{4}$ to $D G^{4}-B C^{4}$; and if the Water runs out of a given Cylindrical Veffel G G E E, which is always full, through a circular Aperture CC made in the Middle of the Bottom; the Motion of the Cataract of Water towards the Horizon will be equal to the Motion of the Cylinder under the Aperture and Altitude $A B$, whofe Velocity is equal to the Velocity of the Water going out at the Aperture. Or it will be equal to the Motion of the Quantity of Water which flows out in any given Time, of which the Velocity is fuch by which a Space may be defcribed in the fame given Time equal to the Altitude $A B$.

Demonftration of the firft Part. Let $A S$ be drawn parallel to $D G$, and with Afymptotes $A S, A B$, through the Points G, C, let Newton's Curve $S G C$ be fuppofed to be defcribed.

That the fame Altitude of the Water may continue, the Place of that which runs out muft be fupply'd with the Cylinder of Water $g g G G$, which defcends with that uniform Velocity which is acquired by falling from A to D; as the aforefaid excellent Author teaches us in that Yropofition.

The Motion of the Cataract $S \lesssim G G$ is equal to the Motion of this Cylinder, by the foregoing Theorem. Therefore the Motion of the defcending Water, being compounded of the Motion of the aqueous Cylinder $g g$ G G, and of the Motion of the Cataract GGCC, will be equal to the Motion of the whole Cataract SGCCGS, that is, by the firft Theorem, to the Motion of the aqueous Cylinder under the Aperture and Altitude $A B$, the Velocity of which is equal to the Velocity of the Water running out at the Aperture. 2. E. D.

The fecond Part follows from the firt.
Corol. 1. Hence arife all the Corollaries of the foregoing Propofition, by fubftituting the Altitude $A B$, for the Height of the Water.
2. If the Veffel was of a Figure different from a Cylinder, or the Figure of the Aperture inftead of Circular was Square, Triangular, or any other, or the Aperture were not in the Middle, or were in the Side of the Veffel, the Motion of the Cataract will be the fame, that is, equal to the Motion of an aqueous Prifm under the Aperture and Altitude $A B$, whofe Velocity is equal to the Velocity of Water running out. For the fame Quantity of Water wild pafs with the fame Velocity as in the former Hypothefis, both through the Aperture itfelf, as alfo through all the Sections of the Cataract.

Of the Motion of Running Waters.

3. If the Diameter of the Veffel fhould have a very large Ratio to the Diameter of the Aperture, the Altitude $A D$ might be neglected, and the Altitude of the Veffel itfelf might be ufed for the Altitude of the Cylinder, or of the aqueous Prifm.
Hitherto we have confidered only that particular Cafe, in which the Water runs out of the Veffel by the Force of its Gravity. This we did the more willingly, as well becaufe Mathematicians are commonly ufed to admit that only, when they treat of the Impetus of Fluids, as alfo becaufe we think that Property of the Hyperbolical Curve above explained, in which it forms a Cataract of defcending Water, not to be unworthy of the Confideration of Geometricians. Otherwife that Cafe might have been eafily deduced from the general Theorem, which we fhall next propofe.

Theorem 3. If Water flows through any full Canal $A B C D$, accord- Fig. 205. ing to the Line $E F$, to which both the Orifices of the Canal $A B$ and $C D$ are perpendicular ; the Motion of the Water towards the Orifice $C D$, or the Motion of the Impediment, which being oppofed in the Orifice itfelf, ftops the Motion of all the Water, is equal to the Motion of an aqueous Prifm under any Section of the Canal C H, and the Line of Direction or the Length of the Canal $E F$, which is moved with the fame Velocity with which the Water flows through that Section; or is equal to the ivioticn of a Quantity of Water which in any given Time flows out of the Canal, the Velocity of which is the fame by which a Space equal to the Length of the Canal may be defcribed in the fame Time.

Caf. 1. Let the Line of Direction be any right Line $E F$.
The firt Part is eafily demonftrated in the fame manner as the firft Theorem. For the Product of any Section of the Canal CH, and of the Velocity of the Water in that Seetion, is a conftant Quantity.

The fecond Part follows from the ifift.
Caf. 2. If the Line of Direction $A B C D E$ is compounded of feveral Fig. 206. right Lines $A B, B C, C D, D E$, inclined to each other, the Motion of the Water will be the fame. For the iVotion of the Water in the whole compounded Canal $A B C D E$ is made up of the Motions of the Water in the Parts of the Canal $A B, B C, C D, D E$, added together. Now it is determined, that Water running according to the right Line $A B$, if it changes that Direction into another, by which it proceeds according to the right Line $B G$, lofes none of its Motion. For Fluids do net obferve the Laws which are obferved in the Motion of folid Bodies, whenever their Direction is changed. Otherwife a Fluid would quite ftop, when it changes its Direction into another Perpendicular to the former, which we do not find by Experiments. Wherefore Water running out of a Iiole in a Veffel, whether downwards, or horizontally, or if it is forced directly upwards, maintains the fame Velocity. Now if at any time it Thoula be difcover'd, cither by Experiment or by fome ftricter way of reafoning, that any Change of Motion fhould of it.

If the Line of Direftion $A B$ be a Curve, it muft be refer'd to this Cafe, as it is to be conceived as compofed of many little right Lines.

Caf. 3. If the Canal $A B$ is divided into feveral Branches $B C, B D$, $B E$, equal in Length, the Motion of the Water will be found after the fame Manner, taking for the Line of Direction the Length $A B D$, compounded of the Length of the principal Canal $A B$, and the Length of each Branch $B D$. Now it is all one whether the Water flows from the principal Canal towards the Branches, or from the Branches towards the principal Canal. Now if the Branches are unequal, the Motion of the Water muft be found in each Branch, taking for the Line of Direction a Length compofed of the Length of each Branch, and the Length of the principal Canal.

This is eafily deduced from the fecond Cafe.
Caf. 4. If the unequal Branches into which the Canal $A B$ is diftributed, are again united into one $F G$, to find the Motion of the Water for the Line of Direction we muft make ufe of the whole Length: $A B D F G$, compos'd of the Length of the principal Canal $A B$, of each Branch $B D F$, and of the recompounded Canal $F G$. If the Branches are unequal, the Motion of the Water muft be found in each, and the Sum of their Motions mult be added to the Motion of the Water in the recompounded Canal. This follows from Caf. 2 and 3.

Corol. r. The Length of the Canal being given, and any Section of the fame, the Motion of the Water will be in the Ratio of the Velocity with which the Water flows through that Section.
2. Any Section being given, and the Velocity of the Water flowing through that Section, the Motion of the Water will be as the Length of the Canal.
3. The Length of the Canal being given, and the Velocity of the Water in any Section, the Motion of the Water will be in the Ratio of that Section.
4. The Motion of the Water being given, and alfo any Section, the Length of the Canal will be in the reciprocal Ratio of the Velocity.
5. The Motion of the Water being given, and the Length of the Canal, any Section will be reciprocally as the Velocity.
6. The Velocity being given in any Section, and the Motion of the Water, that Section will be reciprocally as the Length.
7. The Length of the Canal being given, and the Quantity of Water running out in any certain Time, the Motion of the Water will be reciprocally as that Time.
8. The Length of the Canal, and the Time being given, the Motion of the Water will be as the Quantity running out.
9. The Time being given, and the Quantity of Water running out, the Motion of the Water will be as the Length of the Canal.
10. The Motion of the Water, and the Length of the Canal being given, the Quantity flowing out will be as the Time.

11. The Motion of the Water, and the Quantity running out being given, the Time will be as the Length of the Canal.
12. The Time being given, and the Motion of the Water, the Quantity running out will be reciprocally as the Length of the Canal.
13. If two Quantities of Water meet directly with a contrary Motion, and the Superficies with which they impinge are alike, as alfo the Velocities with which thofe Superficies meet; and if one of the Quantities of Water is only equal to one little Drop, and the other Quantity is a whole Ocean, or an infinite Quantity of Water ; it may be fo order'd that the Drop fhall fuftain the whole Ocean, or force it to move the contrary Way with the fame Velocity as before, and it felf fhall proceed the fame Way after meeting. Which is a wonderful Paradox in Hydraulicks.
14. If a certain Quantity of Water flows through a Canal which is compofed of two cylindrical Tubes of unequal Diameters, and runs from the larger Tube towards the narrower; and the Motion of the Water is neither leffened nor increafed as it flows; as foon as the firft Part of the Water fhall enter at the Beginning of the leffer Tube, it will immediately begin to run flower, and by a continual Efflux out of the wider Tube into the narrower, the Water by Degrees will be more retarded in the narrower Tube, till the whole fhall come into that Tube. The Matter will happen juft on the contrary, when the Water flows out of the leffer Tube towards the wider. This is another Paradox in Hydraulicks. But the Water is fuppofed every where to cohere with it felf.

Thefe two Corollaries arife from Cafe I.
15. From Cafe 2 a Method is fupply'd for eftimating the Motion of Mof the of tbe the Blood in any of the Arteries.
16. Any two Arteries being given that tranfmit an equal Quantity of Arteries. Blood, the Impetus of the Blood is greater in that which is more remote from the Heart, than in the nearer. This is a remarkable Paradox in the Animal Oeconomy.
17. From the third Cafe arifes another Pafadox in the Animal Oeconomy, that the Motion or Impetus of the Blood is greater in all the capillary Arteries taken together, than in the Aorta it felf. Alfo that it is greater in the capillary Veins than in the Arteries.
18. From the fourth Cafe a Method is derived of determining the Motion of the Blood in any of the Veins.
19. From the fame is derived a third Paradox in the Animal Oeconomy, that the Impetus of the Blood is greater in any Vein, than in the Artery correfponding to that Vein; and therefore that it is greater in the Vena Cava than in the Aorta.

Problem I. To find the Motion of the Air rufhing out of the Lungs. -Of the Mo-
Let l be the Length of the whole Aerial Duct, from the Mouth and tion of the Air Noftrils to the furtheft Branches of the Trachea.
$q=$ to the Quantity of Air emitted from the Lungs at a moderate Expiration. Expiration.
$2=$ to the Quantity expell'd at a very moderate Expiration.
$t=$ to the Time of a moderate Expiration.

Then by Theor. 3. Caf. 3. the Motion of the Air rufhing out of the
Lungs at a moderate Expiration will be $=\frac{q l}{t}$.
At a very ftrong one will be $\frac{Q /}{T}$.
That is, the Motion of the Air rufhing out of the Lungs is equal to the Motion of the Quantity of Air which is emitted at one Expiration, of which the Velocity is the fame, by which the Length of the whole Aerial Canal is defcribed in the Time of an Expiration. Q.E.I.

The famous Philofopher Alpbonfus Borellus has determin'd by Experiment, that the Quantity of Air emitted by a moderate Expiration is about is or 20 cubical Inches. Now it is different not only in different Men, but in the fame Man at different Times. I have made an Experiment after this manner.

I hung a Weight to the lower End of a wet Bladder, and fitting a Glafs Tube to the upper Part of about an Inch Diameter, ftopping my Nofe I breath'd Air gently into the Bladder, for the Space of three Seconds, the Weight in the mean time being at Reft upon the Table. Afterwards I dipt the Bladder, with the Air included and the Weight hanging to it, into Water that was contain'd in a cylindrical Veffel, carefully obferving to what Height the Water was raifed, When this was done the Quantity of Water was eafily found, which being poured into the Veffel arofe to the Height before obferved. This Experiment being repeated ten times, and the Quantities being added together which were found at each Time, their tenth Part, or the mean Quantity of Water contain'd in the Veffel, was found to be equal to 35 cubical Inches. And this is the Quantity of Air contain'd in the Bladder ; then adding about one twelfth Part, or three cubical Inches, becaule of the Condenfation of the Air made by the Coldnefs of the Water, it being then WinterSeafon, it becomes 3^{8} cubical Inches. Befides a little muft be added, both becaufe of the Preffure of the Water in the Bladder, as becaufe of the Vapour which is fent forth with the Breath into the Moifture fqueezed together; which muft neceffarily be from the Coldnefs of the Water, and the Contact of the wet Bladder. Therefore I eftimated the Quantity of Air that was emitted by gentle Expiration in the Time of three Seconds, in a round Number of 40 cubical Inches.

By a very ftrong Expiration I emitted 125 cubical Inches in the Time of one Second.

And by fuch a very ftrong Expiration, with a violent ftraining of the Lungs, continued almoft to choaking, I emitted from my Breaft 220 cubical Inches. Whence it is plain, which I Mall take notice of by the bye, that much more Air remains in the Lungs than is emitted at one moderate Expiration.

If therefore we fuppofe $l=2$ Feet,
$q=40$ cubical Inches,
$Q=125$ cubical Inches,
$t=3$ Seconds,
$\tau=1$ Second,
The feccific Gravity of Air to the Gravity of Water, as 1 to 1000,
A cubical Foot of Water $=1000$ Ounces Avoirdupois,
The moderate Motion of Air going out of the Lungs will be equal to the Motion of the Weight of four Scruples and nine Grains, which moves one Inch in a Second ; or to the Motion of a Weight of $1 \frac{1}{3}$ Grain, which in the fame Time defcribes the Length of 5 Feet and 7 Inches. This is the Velocity of the Air rufhing through the Larynx, fuppofing the Section of the Larynx equal to one fifth of a fquare Inch.

The greateft Motion of the Air expell'd out of the Breaft is equal to the Motion of a Weight of about $1^{\frac{1}{4}}$ of an Inch, defcribing one Inch in a Second ; or to the Motion of a Weight of $1 \frac{1}{3}$ of a Grain, defcribing 5^{2} Feet in the fame Time. This is the Velocity of the Air rufhing, through the Larynx in the ftrongeft Expiration.

Corol. 1. The Quantity of Air being given, and the Length of the Aerial Canal, the Motion of the Air is in a reciprocal Ratio of the Time of Expiration.
2. The Quantity of Air and the Time being given, the Motion will be in a direct Ratio of the Length.
3. The Length and Time being given, the Motion is as the Quantity of Air.
4. The Motion and Quantity of Air being given, the Length will be in the direct Ratio of the Time.
5. The Motion and Length being given, the Quantity of Air will be directly as the Time.
6. The Motion and Time being given, the Quantity of Air will be reciprocally as the Length of the Aerial Canal.
7. The Motion of the Air is in a Ratio compounded of the quadruplicate Ratio of any homologous Diameter of the Animal, and the inverfe Ratio of the Time of Expiration. Or in a Ratio compounded of the Ratio of the whole Weight of the Animal, a fubtriplicate Ratio of its Weight, and the reciprocal Ratio of the Time.

For the Weight of the Animal, the Cube of any homologous Diameter and the Quantity of Air expell'd are in the fame Ratio. Now it is fuppos'd, that the Bodies of Animals are Machines made after the fame manner.

Sibolium. You are to underftand the Length here made ufe of to be either the Length of the Aerial Canal, if all the Branches of the Trachea are fuppos'd equal in Length, or the mean one between the different Lengths, if the Branches are unequal.

Problem II. To determine the Impetus, or the Impreffion, which the internal Surface of the Lungs receives by expiring the Air.

Since Action and Reaction are qual and contrary, it muft neceffarily
follow, that by whatever Motion the Air to be expired is urged by the internal Superficies of the Lungs, by the fame on the contrary the Suferficies of the Lungs is repell'd by the Air.

Whence by the foregoing Problem the faid Impetus in a moderate Expiration will be equal to $\frac{q l}{t}$,
in a very ftrong one it will be equal to $\frac{2 l}{T}, ~ 2 E . I$.
Hence fuppofing the fame Things as are fuppos'd above, the moderate Impetus of the Air upon the Lungs is equal to the Motion of about ${ }_{1 \frac{1}{2}}^{2}$ Drachm, which in the Space of a Second defcribes one Inch. Or to the Motion of the Weight of 19 Pounds, moving $\frac{1}{\delta+1}$ of an Inch in the fame Time, which is the Velocity of the Air in Contact of the inward Superficies of the Lungs. But we fuppofe with the very learned Dr. Fames Keil, that the internal Superficies of the Lungs is equal to abour 21900 fquare Inches.

But the greateft Impetus of the Air upon the Lungs is equal to the Motion of the Weight of about $1 \frac{1}{4}$ Ounce, moving one Ounce in a Second ; or to the Motion of the Weight of 19 Pounds, which defcribes the $\frac{1}{15}$ Part of an Inch in the fame Time. This is the Velocity of the Air at the Superficies of the Lungs in a violent Expiration.

Corol. 1. The Corollaries fubjoin'd to the foregoing Propofition follow from hence.
2. A moderate Impetus incumbing upon a Part of the Surface of the Lungs, which is equal to the Section of the Larynx, is the Motion of the Weight of ${ }^{\frac{1}{2} 32}$ of a Grain defcribing the Space of an Inch in a Second ; or the Motion of the Weight of $1 \frac{1}{3}$ of a Grain, which defcribes the $\frac{16 \pi 5}{16 \pi=}$ Part of an Inch in the fame Time. But the greateft Impetus upon an equal Superficies is the Motion of the Weight of the t'3 Part of a Grain, which defcribes one Ounce, or the Motion of the Weight of $1 \frac{1}{3}$ of a Grain, which makes ${ }_{1!5}$ Part of an Inch in every Second of Time.
3. The Impetus of the Air in a moderate Expiration imprefs'd upon the Lungs, is equal to the Motion of a Column of Water that runs one Inch in a Second, the Bafe of which Column is the internal Surface of the Lungs, and its Height is zriss of an Inch. And in the moft vehement Expiration of all, the Altitude of the Column is the $\frac{10}{300}$ Part of an Inch.
4. The Impetus incumbent upon a Superficies equal to a great Circle of a Globule of Blood, in a gentle Expiration, is the $\frac{7}{14}$ Part of the Weight of a Globule of Blood, in a vehement Expiration it is $\frac{2}{3}$ of the fame Weight moving one Inch in a Second. But by the way I think fit to explain after what manner I meafur'd the Diameters of the Globules of Blood, fince it may be of Ufe for determining the Magnitudes of other minute Objects. I took a fine Hair which was pretty long, and wound it feveral times about a fine Needle, fo that all the Convolutions
might exactly touch one another, as I could plainly perceive by the Help of a Microfcope. Then I took with my Compaffes the Diftance between the extream Circumvolutions on each Side, and apply'd it to a Diagonal Scale, and divided the Space found by the Scale by the Number of Circumvolutions. Whence was found the Breadth of one Circumvolution, or the Diameter of the Hair. Then I cut the fame Hair into a great Number of very fmall Parts, and fcatter'd them on the Plain of my Microfcope, on which a little Blood had been fmear'd fo as that the Globules might be diftinctly difcern'd. When I look'd upon them with my Microfcope, in fome Places I found the Bits of Hair fo conveniently difpofed, that I could count how many Globules were oppofed to the Diameter of a Segment or Bit of Hair. But the Segments were unequal in Diameter, becaufe the Hair was fenderer towards its Extremity than nearer the Root, fo that fometimes 7 or 8 , fometimes 12 or 1_{3} Globules anfwer'd to a tranfverfe Section of the Hair. Now when both Experiments were often repeated, at laft I eftimated the mean Diameter of the Hair at the $\mathrm{y}^{\frac{1}{2} 4}$ Part of an Inch, and the Diameter of a Globule of Blood at a tenth Part of the Diameter of the Hair, or at the site Part of an Inch.
5. The Impetus which is fuffer'd by the internal Superficies of the Lungs by expiring the Air, is lefs than the Motion of the mildeft Particle of Dew falling from the Heaven.

Scholium. In the Solution of the two foregoing Problems the Confideration is neglected of that Impediment, which the Air fuffers at its going out of the Lungs, by its Friction againft the Sides of the Artery Trachea and its Branches; fince it is but little, nor can it be eafily eftimated exactly by any Experiment. Nor have we been very folicitous about keeping nicely the Ratios of the Numbers, fince the only thing we propofed was, to explain the Method of eftimating thofe Forces, fomething more certainly than has hitherto been done, by which in Expiration the Air acts upon the Blood-veffels, that involve the internal Superficies of the Lungs. Whence it may be known, whether thole Forces are fufficient to produce thofe Effects, which are attributed to them by fome very learned Writers on Medical Subjects.

Problem III. To determine the Impetus of the Blood; in the Vena - Of the MoCava, near the right Auricle of the Heart; or the Motion of the Blood flowing through all the Arteries and the Veins, except the Veins Blood, $\underbrace{\text { Bec. }}$. of the Lungs.

Let q denote the Quantity of Blood projected into the Aorta, by one SyItole of the Heart.
$l=$ to the mean Length of the intire Arterio-venous Duct, taking in both the longer and fhorter Branches.
$t=$ to the Time between two Pulfes,
Thence by Theor. 3. Caf. 4. the Impetus required $=\frac{q l}{t}$.
That is, the Impetus of the Blood in the Vena Cava is equal to the Motion of the Quantity of Blood which is projected into the Aorta by
one Syftole, of which the Velocity is fuch, that the whole Length of the Arteries and Veins may be defcribed in the Space of Time intercepted between two Pulfes. 2. E. I.

If in an human Body are fuppofed
$q=2$ Ounces Avoirdupois,
$l=6$ Feet,
$t=\frac{3}{4}$ Seconds,
The Impetus of the Blood in the Vena Cava will be equal to the Motion of the Weight of 12 Pounds, which defcribes the Length of one Inch in a Second. Or to the Motion of the Weight of Pounds, which in the fame Time defcribes half a Foot. This is nearly the Velocity of the Blood flowing in the Cava. But we fuppofe, by the Menfuration of the learned Man above named, that a Section of the Cava is $\frac{3}{4}$ of a fquare Inch.

Corol. All the Corollaries of the firf Problem, changing what is to be changed, refult from this Problem.

Problem IV. To determine the abfolute Motion of the Blood in the Vena Cava, or the Motion of the Blood flowing through all the Arteries and Veins, except thofe of the Lungs; abftracting from the Refiftance of the Veffels.

Let the natural Velocity of the Blood be to that Velocity with which the Blood would flow, abftracting from all Refiftance, as i to x. And whereas by the Corollary of the foregoing Problem, and Corol. 1. Prob. 1. the Motion of the Blood is in the Ratio of the Velocity, thence the Motion required is $=\frac{x q l}{t}$, Q. E. I.

Now if the Proportion found by the Experiment made by the abovemention'd learned Man, be admitted as near the Truth, it will be $x=2,5$.

Whence the fame Things being fuppos'd as above, the abfolute Motion of the Blood in the Vena Cava is equal to the Motion of the Weight of 30 Pounds, which defrribes the Length of an Inch in a Second; or to the Motion of a Weight of 2 Pounds, defcribing $1^{\frac{1}{4}}$ Foot in the fame Time. With this Velocity nearly the Blood moves through the Cava, abftracting from all Refiftance.

Problem V. To find the Motion of the Blood in the Pulmonic Vein, near the left Auricle of the Heart, or the Motion of the whole Blood flowing through the Lungs.

Befides the Characters ufed in Prob. 3. let λ be the mean Length of the Pulmonic Arterio-venous Canal.

Whence by Theor. 3. Caf. 4. the Motion required is found $=\frac{q \lambda}{t}$.
That is, the Motion of the Blood flowing through the Lungs is equal to the Motion of the Quantity of Blood, which is projected at one Syftole into the Pulmonic Artery, having that Velocity with which the Length of the Pulmonic Arteries and Veins may be defcribed in the Time contain'd between two Pulfes. 2. E. L

If in the human Body we fuppofe $\lambda=\mathrm{I}_{\frac{1}{2}}$ Foot,
The Motion of the Blood in the Lungs will be equal to the Motion of the Weight of 3 Pounds defcribing the Space of an Inch in a Second.

Problem VI. To determine the ablolute !ioment of the Blood in the Pulmonic Vein.

By the fame Argumentation as is ufed in Prob. 4. the Motion required will be found $=2,5 \times \frac{q \lambda}{t}$. 2. E. I.

The fame Things being fuppos'd as above, the abfolute Motion of the Blood flowing through the Lungs is equal to the Motion of the Weight of $7 \frac{1}{2}$ Pounds, which every Second defcribes one Inch.

Scholium. By the Experiment of Dr. Keil the Proportion is deter ${ }^{2}$ min'd, which the natural Velocity of the Blood flowing through the Aorta and its Branches obtains, to the Velocity with which the Blood would flow through the fame, abitracting from the Reliftance of the Arteries and the preceding Blood. We have transfer'd the fame Proportion to the Blood flowing through the Pulmonic Artery. Becaufe if we take away or diminifh in any Ratio the Refiftance which the Blood fuffers as it flows through each Artery, the Blood of neceffity will be alike accelerated in each Artery. For unlefs it were fo, the two Venerictes of the Heart would either not be contracted in the fame Time, or would not eject the fame Quantity of Blood. Either of which Things could not be done withour the greateft Perturbation and Danger of the whole Machine.

Corollary to the three foregoing Problems.

Hence follow the Corollaries fubjoin'd to Prob. 5. mutatis mutandis. Scbolium to the four Problems above.
It is to be obferved, that the Velocity of the Blood flowing as well through the Lungs as through the other Parts of the Body, though in reality it is not equable, yet here it is fuppos'd to be fo, that the mean Motion of the Blood may be found.

General Scholium. If any one fhall think the Numbers not to be fufficiently accurate, which are here interfperfed in fpecious Characters, he may eafily correct them by deriving other Numbers from Experiments that approach nearer to Truth, as alfo the aforefaid Examples of Motions; or by the Affiftance of the Corollaries of the Propofitions themfelves.
V. I am bufy at prefent for a Coal-mine, which hath been left off be- The Heflian caufe of the Impurity of the Air; I have therefore improved the Heffian Bellows : An Account of that Contrivance is printed Lipfie in AEtis Eruditorum anno 1699. with this Title, Rotatilis Suctor et Preffor Heffracus: And it may be applied for Wind as well as for Water. At that Time the Shape of the Tympanum was Cylindric, as may be feen Fig. 2 10. where Fig. 210. $D A F C$ is the Circumference : $C P, D P, A P$, are the Radii which bear the Wings $C m, D n, A 0: C E$ is the Aperture through which the Wind muft be driven in the Direction of the Tangent C B : And it may be obferved, that when the Engine is working, every Wing from the End of

$$
\text { prov'd, by } M r \text {. }
$$ D. Papin. n. 300. p. 1990.

The Heflian Bellows improv'd.

the Aperture E, till it comes to the Beginning of the fame Aperture C, drives always the fame Air, with the fame Swiftnefs, and at the fame Diftance from the Center: So that in perufing all that Circumference, the Air doth find Refiftance by Friction, and gets nothing at all. I do therefore now make the Circumference of the Tympanum in the Spiral Shape, which is to be feen Fig. 211 , where the Spiral Circumference is $A F G B$, the Radii are $A P, C P, D P, \mathcal{E}_{c}$. The Wings are $A M, C N, D O, \exists^{\circ}$. The Aperture is $A B$. And it is to be obferved, that every Wing in going round drives new Air, becaufe the Air which is firft in Motion finds Place to recede from the Center towards the Spiral Circumference; and fo it gives room to new Air to come to the Wing: And when the Wings come near to the Aperture, they drive their new Air into the Aperture without any Friction; and the Air which hath been firtt driven and removed from the Wing, cannot lofe its Swiftnefs, becaufe the Wings which continually follow do continually drive new Air, which keeps that which is before always in the fame Swiftnels. This new Shape of the Hefian Bellows affords alfo another Advantage; becaufe the Air in going round follows the Spiral-line, which is nearer to the ftrait Line than a circular Circumference; and when the Air comes to the Aperture, it gets into it without any Lofs of Subftance ; but in the Cylindrical Machine, the Air doth always go round in a circular Circumference, and when it comes to the Aperture, the Wind is driven directy in the Direction of the Tangent, but juft in the Beginning at C; and afterwards the Impulfion is oblique: And this Obliquity is always increafing until the Wing comes to the punctum A : Now it is known how much Di minution fuch an Obliquity can make to the Strength. I believe therefore that this Spiral Figure is a good Improvement to this Engine. And indeed I have made fuch Bellows, where the Radius $A P$ is but $10 \frac{1}{2}$ Inches, the Wing $A m 2$ Inches broad and 9 Inches high; becaufe the Tympanum is allo fo high, or little more; the Aperture $A B$ is alfo 9 Inches, or a little more, fo that it makes a fquare Hole. When I work this Engine with my Foot, it makes fuch a Wind, that it may raife up two Pounds Weight; and without doubt, a ftronger Man could do much more: But this is more than fufficient for our Purpofe, fince we mult but drive Air enough for the Refpiration of fuch Men that can work in the Mine; and we may eafily with Boards make wooden Pipes, to carry the Wind to the very Bottom : So that the Air within will be continually renewed as well as without.

As to the Engine to demonftrate the Power of Water expanded by Fire, we have here made very good Experiments of that Matter before Winter. We have raifed Water to the height of 70 Foot, by a very commodious Way, which may be yet very much improved. The Heffian Bellows may be very ufeful to a Furnace, I have already made a litrle Trial of it, and I had a very ftrong Fire in a Furnace, to melt Glafs, Iron, or any other hard Metal ; and yet I could open the Furnace above the Matter to be wrought upon, and yet no Flame would get out through the Aperture ; nor cold Air from without get into the Furnace : So that

The Number of Acres in England.

it is very like this will be a great Conveniency for feveral forts of Work, fince Men may work the Matters when they are moft foftened in the Fire; and they may be drawn up perpendicularly, that they may not be bent, as they are when we draw them horizontally. I believe that would be good, efpecially to make eafily Glafs Pipes and Looking-Glaffes of an extraordinary Bignefs.

VI. Account of a Book omitted.

Toannis Poleni in Gymnafio Patavino Phil. Ord. Prof. 8 Scient. Societatum Regalium, quæ Londini \& Berolini funt, Sodalis, De Motu Aqua Mixto, Libri Duo, E`c. 4to. Patavii 1717.

C H A P. VI. Geograpby. Navigation.

1. SEveral Perfons have given us, as they have fuppofed, the juft
Number of Acres contained in England, or South Britain, Number of Acres contained in England, or Soutb Britain, or very near it. Sir William Petty reckons about 28 Millions; others, 29 Millions; others, a few more. But they have all been miftaken in land in Eng. under-reckoning.

And the Reafon of their Miftakes feems to have been, their reckon-330. p. 266. ing only by the Maps; that is, by computed, and not by meafured Miles; by which only the Number of Acres can be known.

I have feen an Account of the Number of Acres in each County: Which Account, whether taken from Doomfday-Book, or from any other Regifter, cannot be true. For tho' we have loft fome Lanc; yet there is a great deal more now gained, which in the Conqueror's Time lay under Sea. Within 120 Years, very much has been recovered out of the Seas, and maintained by Banks, in the Marfhes and Fenns of Efex, Kent, and the Ine of Ely. And in fome Parts of Lincolufbire, the Land has gained of the Sea four Miles in a direct Line from Land to Sea, in the Memory of Men now living.

Nor is it the truer, for having been taken from any other Record : For if the Numbers of Acres, according to the faid Account, in each Shire, be put together, they exceed not 39 Millions and a Quarter: Which Number, though it comes much nearer to the Truth than any of the former, yet is a great deal thort of it.

For however, according to vulgar Computation, England, or South Britain, is reckoned in Length but 305 Miles; and in Breadth, about 290 Miles : Neverthelefs, it appears by an exact Wheel-meafure, That from Nerw-Haven in the South of England to London, are 5^{6} meafured Miles; and that from thence by a ftrait Line continued to Rerwick in the North, are 339 of the fame meafured Miles; in all 395 meafured Miles, the true Length of England. And again, that from the South

Vol. IV.
Mm m
Foreland

The Number of Acres in England.

Foreland in the Eaff, to the Land's End in Cornwall, are about 367 Miles of the fame Wheel-meafure, the true Breadth of England.

This being known, it is ealy to know alfo, how many fquare Miles and confequently how many Acres are contained in England, or South Britain.

If a Jine be drawn on a Chart of England, from the Soutb Foreland in Kent to Berwick; and from the two Ends of this Line, two more Lines meeting at the Land's End in Cornwall, they will make the Triangle A BC: Which Triangle, as it excludes as much more of the Land, as it includes of the Sea, as may antwer the fmall Number of Miles obtained by the Curvity of the Roads; it may therefore be allowed to be equal to the Area of England, or South Britain.

Next, if to the Triangle ABC, another fimilar and equal Triangle $B C D$, be added; both together make the Rhomboid ABDC. Which being divided at EF, maketh the Rhonsoids ACEF, and BDEF, equal to one another. One of which is therefore equal to the Triangle ABC . And the Rectangle AGHF, ttanding upon the fame Bafe, and between the fame Parallel Lines with the Rhomboid ACEF, by the 35 th of the ift of Euclid, is equal to the faid ACEF ; equal to the Triangle AEC; equal to the Area of England, or Soutb Britain.

Now the Length between Berwick and the South Foreland in Kent, being about 5 Miles more than between Berseick and Nero-Haven, which is 395 Miles: Therefore the Line AB, may be taken for 400 Miles; and fo the Line AF, for 200. And the Line A G being lefs by about 7 Miles, than between the South Foreland in Kent, and the Land's End in Cornwall, which is 367 Miles, the faid A G may be taken for 360 Miles. Therefore AG, 360 , being multipiy'd by A F, 200, produceth 72000 fquare Miles: And 72000 being multiplied by 640 , the Number of Acres contained in one fquare Mile, produceth 46 Millions and 80000 , the Number of Acres contained in England, or South Britain.

Whence it appears, Firft, that if the Province of Holland contains, as is computed, but one Million of Acres, then England is more, by a Fraction of 80000 Acres, than 46 times as big as Holland.

Next, if in the Province of Holland, containing but one Million of Acres, are two Millions and 400 Thoufand Souls, or two Millions and four roths, as they are faid to be; then England, which contains 46 Millions of Acres, to be proportionably populous, fhould have twice 46 Millions of People, and four 1oths of 46 ; that is, about 110 Millions.

But to allow room enough for Perfons of all Degrees, if England were half as populous as Holland, with only 55 Millions, it were a good Proportion, and would be near five times our prefent Number : And about 22 times as many as in the Province of Holland.

To people England in a competent Time with this Number, there are many Ways practicable : By which, I have computed, the prefent Number may be doubled in 24 or 25 Years. And probably quadrupled in about 36 Years.

The Longitude of the Cape of Good-Hope.

One of thefe Ways, though not the fpeedieft, would be the introducing of Strangers : Yet to make ufe of this, or of any other Way, to multiply the People, before we have provided the Means of employing them, would be prepolterous.

But when we fhall mind our true Intereft, in employing and encouraging every where our own Hands, and the Hands of other Nations, as the French and Dutcb do, in all the forts of Hufbandry, Mianufactury, and Merchantry: When our Nobility and Gentry themfelves, thall be Examples in fome or other of thefe Particulars: When we fhall hereby be univerfally engag'd to inclofe, and to improve every Foot of our Land; to make the utmoft Ufe of all our Home Growths, above and under Ground ; and of all our Ports, (about 200 great and fmall, more than in all the Kingdoms and States of Europe put together: And when Scolland and Ireland finall buth of them afterwards be improved in like Manner; when all IMens Heads and Hands Ghall be thus employ'd about fome one honeft and profitable Bufinels, it is ealy to forefee how highly it will advance the Briti/b Monarchy and People, at Home, and all over the World, in Beauty, Strength and Glory.
II. I conclude that the Eiclipfe of the Moon of Dec. 12 th 1703 . began at London at about 31 or 32 Minutes after 4 in the Morning.

At Cambridge, about 4 Miles from Bofton in New England, Mr. Braitle found, + that at 44 Minutes after 11 at Night, part of the Moon's Difk looked fomewhat dufkifh, and that at 52 Minutes, the Shadow was well enter'd: So that from hence, as well as from a Comparifon of the Ingrefs and Egrefs of the principal Spots, it probably began there about 49 Minutes after 11; whence it follows, that Cambridge in New Englamh lies $4^{\text {h }} 4^{\frac{1}{2}}$, or 7037^{\prime}, to the Weftward of the Meridian of Londion.
III. 'Tis now above thirty Years, fince I had a Difpute with fome of the French Geographers about the Longitude of the Cape of Good Hope, faid to have been obferv'd by the Religious Miffionaries fent to Cbina in the Year 1685 . By an Emerfion of the firlt Satellite of Jupiter, they determined that Cape to be $1^{11} 11$, or $17^{\frac{1}{2}} \mathrm{gr}$. more Eafterly than

The Dificrence of Longitude betweey Iondon and Cambridge in NewEngland, ky Mr. J. Hodgron. n. 292. p. 1637. tyid. fupra 1.: 21.

ThiLongituce of the Cape Good Hope, छัc, by Dr. E. Halley. n. 361. p. 99^{2}. Paris; that is, 20 gr . from London: Which, for the Realons I then gave, $\|$ I concluded could not be more than 17 gr . Very lately I $\|$ Vid. Supra have fallen upon an Obfervation which I believe will determine the Con- V.I. C. Vir. troverfy in my Favour; for I had accidentally a Journal of an Officer S. XXVI. of the Ship Emperor, put into my Hands, who in his Return from India, on the fifth of March 1718 . obferv'd the End of a Lunar Eclipfe, when the vifible Alcitude of the Moon's Center was $13{ }^{\circ}{ }_{25}$, he being then in the Latitude of $34^{\circ} 23$ South, and as they found afterwards, juft 180 Leagues to the Eaftwards of Cape Bonne Efperance. By Calculation I find, that in that Latitude, the Moon had that height at $7^{\mathrm{h}} \boldsymbol{1}^{\prime} \frac{1}{2} P$. M. and by comparing this Eclipfe with that we obferv'd with great Exactnefs on Fcb. in io, 1682. (which agrees perfectly well with our Numbers) I conclude the middle of this to have happen'd at London at $3^{\text {h }}$

The Longitude of the Cape of Good-Hope.

$4^{\prime} P . M$. to which adding $1^{\text {h }} 4^{\prime}$ for the Semiduration (this being very certain from the obferved Continuance of the Eclipfe of 1682) the End will be found to have been at London at $5^{\text {h }} 34^{\prime}$. The Ship was therefore in a Meridian 26° to the Eaftwards of London: But The was at that Time 180 Leagues to the Eaftwards of the Cape, which Diftance in that Latitude, gives eleven Degrees of Longitude; this therefore being deducted from the Longitude of the Ship, leaves juft 15 gr . or one Hour, for the Difference of Meridians between London and the Cape. So that by this Account, the Cape is yet nearer our Meridian than I had formerly plac'd it, and near fix Degrees nearer than M. De la Hire places it in his Tables.

This Eclipfe was attended with aH the Circumftances requifite to make the Conclufion as certain as the Nature of the Thing will admit of: For the Moon was nearly in Perigeo, and the Eclipfe almoft central; fo that fhe emerged out of the Shadow as fwiftly as poffible. The Sea was very fmooth, there having been little Wind for above 30 Hours before; and the Moon was not too high to be well obferved with a Fore1taff: Nor were they long at Sea, before they made the Land; for in leifs than five Days, on the tenth of March, at Noon, they had palt Cape d' Agulbas, the moft Southerly Promontory of Africa, which then bore from them North Eaft, about feven Leagues diftant. The End of this Eclipfe, though not vifible here, might have been feen in Germany, both at Nurenburg, Leipfick and Berlin; but we do not hear that it was any where obferved there: However, our Numbers in this Cafe may be fecurely relied on.

On this Occafion, I fhall infert an Obfervation or two I procured to be made at the Cape, by Mr. Alexander Brown, a Scotch Gentleman. He carried with him a very good Brafs Quadrant of above two Foot Radius, and at the Dutcb Settlement at Table Bay, having rectify'd his Pendulum Clock by correfpondent Altitudes, on the $4 t h$ of Auguft 1694. at $5^{\mathrm{h}} 59^{\prime}$ Manè, the Diftance of the bright Limb of the Moon from the Right Shoulder of Orion, was obferv'd to be $25^{\circ} 3^{\prime}$. And the next Morning Aug. 5. at $5^{\text {h }} 21^{1} 1^{\prime \prime}$ ", the fame Limb was diftant from Procyon $25^{\circ} 57^{\prime}$, and at $5^{\mathrm{h}} 3^{6} 4^{\circ} 8^{\prime \prime}$, from the Lucida Arietis $58^{\circ} 29^{\prime}$.

It were much to be wifh'd, that the Moon had, either of thefe Mornings, been obferv'd at Greenreicb or Paris, or at fome Place in Europe whofe Longitude from them is well known: But that failing us, I had recourfe to the Period of the Lunar Motions, which is perform'd in 18 Years and ten or eleven Days; after which, the Errors of our Lunar Computations return very nearly the fame; and I found among my own old Obfervations, one that agreed well with that of the $4^{\text {th }}$ of Auguft, viz. Anno 1676. Fuly $23^{\circ} 13^{\text {h }} 11^{\prime} 35^{\prime \prime}$ at Oxford, 1 obferv'd the Moon to apply to the Star in medio Collo Tauri, by Bayer mark'd A. The Star at that Time was diftant from the Southern and neareft Cufp of the Moon, by the Micrometer $20^{\prime} 3^{\prime \prime \prime}$, and at $13^{\mathrm{h}} 17^{\circ} 15^{\prime \prime}$, when it feem'd to immerge upon the bright

The Variation at Paraiba, $\mathcal{E}^{\circ} c$.

Limb of the Moon, it was diftant from the Northern Cufp 23° $20^{\prime \prime}$; but this is lefs certain, by reafon of the hazy Air. The Star at that time was in $\gamma 28^{\circ} 56^{\prime}$ with $1^{\circ} 13^{\prime} 20^{\prime \prime}$ North Lat. whereby I found, that our Lunar Tables, founded on Sir Ifaac Nereton's Theory of her Motion, gave her Place at that Time only two Minutes too flow; which Error being allowed on the 4 th of Auguft 1694. the Refult was, that $5^{\mathrm{h}} 59^{\prime}$ at Cape Bonne Efperance, was at London $4^{\mathrm{h}} 53^{\prime}$; whence the Difference of Longitude $16 \frac{1}{2}$ Degrees, fufficiently near what we had before determin'd.
IV. The Gentlemen of the Royal Asademy of Sciences in France, have, of the Variafor fome Years paft, apply'd themfelves with much Candour and Dili- tion at Paraigence, to examine the Chart I publif'd in the Year i yoi. for thewing at one View the Variations of the Magnetical Compars, in all thofe Seas with which the Englifh Navigators are acquainted; and I find, that what I did fo long ago, has been fince abundantly verified by the concurrent Reports of the French Pilots, who of late have had frequent Opportunities of inquiring into the Truth thereof. So that I am in ba, छ゙c. And the Longitude of the Magellan Straights, छ'c. by Dr. E. Halley, n: 341. p. 165. Hopes, I have laid a fure Foundation for the future Difcovery of the Law or Rule by which the faid Variations change, in Appearance regularly, all the World over. Of this I have long fince given my Thoughts, 十 and as yet I fee no Caufe to retract what I there offer for a Reafon of this Change; but of this we might be more certain, had we a good Collection of Obfervations made in that Ocean, which di-

```
+ Vid.Supra
``` vides \(A f i a\) and America, and occupies about two Fifths of the whole Circumference of the Globe. This, we hope, may be effectually fupply'd by the French, who may return from Peru by the Eaft Indies.

In the mean time I cannot omit to take Notice of two Particulars, feeming to call in Queftion the Truth of my aforefaid Map, in the Memoirs of the Royal Academy of Sciences.

The one is in the Memoirs of the Year 1700. concerning the Varia- of the Variation obferved at Paraiba in Brazile, about 25 Leagues to the Northwards tion at Paraiof Pernambouc, by M. Couplet le fils, whole Words are thefe:
- May 20. 1698. Having before carefully drawn a Meridian Line, which I made ufe of for Aftronomical Obfervations, I obferved the Declination of the Needle touch'd by the Loadftone to be \(5^{\circ} 35^{\prime} . \mathrm{N}\). W.' And the fame Obferver tells us, that he found the Latitude of the Town of Paraiba \(6^{\circ} 38^{\prime} 18^{\prime \prime}\). Now it happen'd, that I was in the River of Paraiba, in March 1699. and there fitted and clean'd my Ship; fo that I had full Opportunity to obferve the Variation both on Board and on Shore, and found it conftantly to be above 4 gr . North Eaft; fo that I am willing to believe this to be an Error of the Prefs, putting N. W. for N. E. or rather of the Memory of M. Couplet, who, it feems, loft all his Papers by Shipwreck in his Return. The fame may be faid of the Latitude of Paraiba, which, though I did not obferve myfelf, yet at the Fort of Cabo Dello, at the Mouth of the River, and which is about 3 Leagues more Northerly than the Town, I found the Latitude not

\section*{The Longitude of the Magellan Straights.} lefs than \(6^{\circ} 55^{\circ}\) South, and by Confequence that of the Town more than 7 Degrees.

The other is in a Difcourfe of M. de Lifle, in the Memoirs of 1710; where he compares the Variations oblerved in fome late Voyages, with my Map of the Variations. Amony other Things, 'tis there faid, that on the Eaft-fide of the Inand St. Thomas, under the Equinoctial Line, M. Bigot de la Canté, had, in the Beginning of the Year 1708, found the Variation \(1 \frac{1}{2}\) gr. whereas my Chart makes it but \(5 \frac{1}{2}\) gr. I never indeed obferved myfelf in thofe Parts; and 'tis from the Accounts of others, and the Analogy of the whole, that in fuch Cafes 1 was forc'd to fupply what was wanting; and 'tis poffible, that there may be more Variation on that Coaft than I have allowed. But confulting my Chart, (which was fitted to the Year 1700,) I find I then make the Variation at the Ifle of St. Tbomas, full \(7 \frac{1}{2} \mathrm{gr}\). and not \(5^{\frac{1}{2}} \mathrm{gr}\). the which, by the Year 1708 , might well arife to near 9 gr . So that the Difference will become very tolerable; whereas an Error of 6 g . fuch as is here reprefented, would render the Credit of my Chart juftly furpected.

Of the Longitude of the Magellan Straigbts.

But a further Thing I might complain of, is, that in the fame Memoir of M. de Lille, the Geography of my Chart is called in Queition; and we are told, that I have placed the Entrance of the Magellan Straights at leaft io Degrees more Wefterly than I ought to have done: For that the Ship St. Louis, in the Year 1 708, failing from the Mouth of Rio Gallega, in about the Latitude of 52 gr . South, and not far from Cape Virgin, directly for Cape Bonne Efperance (which Courfe perhaps was never run before) had found the Diftance between the two Lands not more than 1350 Leagues, which, he concludes, is much lefs than my Chart of the Variation makes it. I know not from what Computation M. de Lifle has clrawn this Confequence; but I find by my Chart that I have made the Longitude of Rio Gallega 75 gr . Welt from London, and that of Cape Bonne Efperance \(16 \frac{1}{2}\) Eaft from it ; that is in all \(91_{2}^{\frac{1}{2}} \mathrm{gr}\). Difference of Longitude. This with the two Latitudes, gives the Diftance, according to the Rhumb-line, 1364 Leagues; but according to the Arch of a great Circle, no more than 1287 Leagues. So that inftead of invalidating what I have there laid down, it does abfolutely confirm it, as far as the Authority of one fingle Ship's Journals can do it.

I do not pretend, that I have had Obfervations made with all the Precifion requifite, to lay down inconteftably the Magellan Straights in their true Geographical Site; but it has not been without good Grounds, that I have placed them as I have done. For when Sir \(\begin{aligned} & \text { Fobn }\end{aligned}\) Narborough, in the Year 1670, wintered in Port St. Jutian, on the Coaft of Patagonia, Capt. Fobn Wood, then his Lieutenant, and an approved Artift in Sea-Affairs, did obferve the Beginning of an Eclipfe of the Moon, Sept. 18. Stil. vet. at juft 8 at Night: And the fame Beginning was obferv'd by M. Hevelius at Danizick, at \(14^{\text {h }} 22^{\prime}\); whence

\section*{The Variation in the Atlantic, \(\mathscr{O}^{\circ} \mathrm{c}\).}

Port St. Fulian is more Wetterly than Dantzick \(6^{\mathbf{h}} 22^{\prime}\), or than London \(5^{\mathrm{h}} 6\), that is \(7^{\frac{\mathrm{x}}{2}} \mathrm{gr}\). Befides, I have had in my Cuftody a very curious Journal of Capt. Strong, who went into the South Seas in queft of a Plate-wreck, and who difcover'd the two Iflands he called Falkland's Ifles, lying about 120 Leagues to the Eaftwards of the Patagon Coaft, about the Lat. of \(51^{\frac{1}{2}}\). This Capt. Strong had a quick Paffage from the Inand of Trinidada (in \(20 \frac{1}{2}\) South) to the Magellan Straights; and in this Journal, which was very well kept, I found, that Cape Virgin was, by his Account, 45 Degrees of Longitude more Wefterly than that Ifland, whofe Longitude I know to be juft 30 Degrees from London; that is in all, 75 gr .

From thefe concurrent Teftimonies, I adventured to fix the Longitude of this Coaft as I have done; and I can by no Means grant an Error of io Degrees to be poffible in it, though perhaps it may need fome fmaller Correction. I will however readily grant, that thofe that go thither from Europe, fhall find the Land more Eafterly than is here exprefs'd, by reafon of a conftant Current fetting to the Weftward near the Equator, where Ships are many times long detained by Calms, whilft the Stream carries them along with it; which Thing befals all Ships bound to any Part of the Eaft Coaft of the Soutb America.

Variation
TED
\begin{tabular}{|c|c|c|}
\hline Variation. & Latitude. & Longit. from London. \\
\hline \(6^{\circ} 20^{\prime}\) Eaft. & \(21^{\circ} \quad 26^{\prime}\) South. & \(28^{\circ} 14^{\prime}\) Weft. \\
\hline \(6 \quad 30\) & 2148 & 28 10 \\
\hline 700 & \(215^{8}\) & \(28 \quad 23\) \\
\hline 645 & 2445 & \(27 \quad 56\) \\
\hline \(6 \quad 36\) & \(27 \quad 11\) & \(27 \quad 17\) \\
\hline 504 & 3353 & \(16 \quad 58\) \\
\hline \(\bigcirc 00\) & \(34 \quad 21\) & \(\begin{array}{llll} & 1 & 29 & 30\end{array}\) \\
\hline I 00 Weft. & 3415 & O1 33 Eaft. \\
\hline 416 & 3341 & \(06 \quad 23\) \\
\hline 846 & \(34 \quad 39\) & 13020 \\
\hline 1156 & 1430 & \(16 \quad 15\) at the Cape of \\
\hline 1130 & 3251 & 1341 Good Hope. \\
\hline 10 00 & 30.21 & 1146 \\
\hline 0944 & 29 51 & 1144 \\
\hline 0934 & \(29 \quad 28\) & \(113{ }^{\text {I }}\) \\
\hline 0922 & \(28 \quad 56\) & 1105 \\
\hline 0904 & \(27 \quad 38\) & 10 OI \\
\hline 0830 & 2655 & 0845 \\
\hline \(08 \quad 02\) & 25 41 & \(07 \quad 22\) \\
\hline \(07 \quad 32\) & \(24 \quad 32\) & 0543 Wer \\
\hline O1 52 & 1600 & 0630 Weft at the Ifle of St. Helena. \\
\hline
\end{tabular}

A Mechanical VI. The moft ufeful Projection of the Spheric Surface of Earth, and Way to divide Sea for Navigation, is that commonly call'd Mercator's; tho' it's true \({ }_{\text {the }}^{\text {the Nautical }}\) Nature and Conftruction is faid to be firft demonftrated by Mr. Wright, in Mercator's Projection. And the Relation of that Line to the Curva Catenaria, by Mr. ridian at any Latitude, is to a Degree of Longitude in the Equator, as J. Perks. n. the Secant of the fame Latitude is to Radius.
345. P. 331. The Reafon of which Enlargement of the Elements of Latitude is, to counterbalance the Enlargement of the Degrees of Longitude. For in this Projection, the Meridians being all parallel, a Degree of Longitude at (fuppofe) 60 Deg. Lat. is become equal to a Degree in the Equator, whereas it really is (on the Globe's Surface) but balf as much, the Radius of the Parallel of 60 Deg. (that is its Cofine) being but balf the Radius of the Equator. Therefore to proportion the Degrees of Latitude to thofe of Longitude, a Degree (or Elemental Particle)
ticle) in the Meridian, is to be as much greater than a Degree (or like Particle) in the Equator, as the Radius of the Equator is greater than the Radius of the Parallel of Latitude, viz. its Cofine.

Let the Radius CD reprefent half of the Equator, \(D M\) an Arc of Fig. \(214^{\circ}\) the Meridian; \(M S\) its Sine, \(C E\) its Secant; then is \(C S\) equal to its Cofine : and CS:CM::CD(=CM):CE, that is, as Cofine : to Radius: : fo is Radius: to Secant. The Cofines being then, in this Projection, fuppos'd all equal to Radius, or (which comes to the fame) the Parallels of Latitude being all made equal to the E quator, the Radius of the Globe, at every Point of Latitude, (by the precedent Analogy) is fuppofed equal to the Secant of Latitudes and confequently the Elements (Minutes, \(\mathcal{E}^{\circ}\).) of the Meridian muft be proportional to their refpective Secants.

The Way Mr. Wright takes for making his Table of Meridional Parts, is by a continual Addition of Natural Secants, beginning at I Minute, and fo proceeding to 89 Deg. Dr. Wallis (in Pbil. Tranf. \(N^{\circ} 176\). .) finds the Meridional Part belonging to any Latitude by this Series, putting \(S\) for its Natural Sine, viz. \(S+\frac{1}{3} S^{3}+\frac{\pi}{3}+{ }^{3}+\frac{1}{7} S^{7}+\frac{1}{9} S^{9}\) \& ca which gives the Merid. Part required. How to find the fame mechanically by Means of an eafily conftructed Curve Line, is what I fhall now fhew.
1. Prepare a Rular \(A B\) of a convenient Length, in which let \(B\) o Fig. 213. be equal to the Radius of the intended Projection. To the Point \(o\) as a Center (on the narrower Edge of the Rular) faften a little PlateWheel \(w b\) tight to the Rular, and of a Diameter a little more than the Thicknefs of the Rular. Let \(K R\) (Fig. 214.) reprefent another long Fig. 214. Rular, to which \(A R\) is a perpendicular Line. Place the Rular \(A B\) upon the Line \(A R\), with the Center of the Wheel at \(A\) Then with one Hand holding faft the Rular \(K R\), with the other Hand nide the End \(B\) of the Rular \(A B\) by the Edge of \(K R\); fo will the little Wheel wo \(b\) defcribe on the Paper a Curve Line \(A C B\), to be continued, as far as is convenient.
2. Having drawn the Curve \(A C B\), draw a ftraight Line \(K R\) by the Edge of the Rular \(K R\) : which Line is the Meridian to be divided, and alfo an Afymptote to the Curve \(A C B\).
3. In this Meridian, (accounting \(R\) to be the Point of its Interfection with the Equator,) the Point anfwering to any Degree of Latitude is thus found. In the Perpendicular \(A R\), make \(R G\) equal to the Cofine of Latitude (Radius being \(A R\),) and from \(G\) draw \(G C\) parallel to \(K R\), and interfecting the Curve in \(C\). With Center \(C\) and Radius \(C M=A R\), ftrike an Arc, cutting the Meridian at \(M\); fo is \(M\) the Point defir'd
4. In the Curve \(A C\), let \(c\) be a Point infinitely near to \(C\), and \(c m\); (\(=C M\), a Tangent to the Curve at \(c\), making the little Angle \(M C m\), to which let the Angle \(R A r\) be equal: So is \(R r=M d\) (a Perpendicular from \(M\) to \(c m\).) Draw \(C D\) equal and parallel to \(A R\), interfecting

Vol. IV.
\(\mathrm{N} n \mathrm{n}\)
\(K R\)

\section*{The Nautical Meridian Line}
\(K R\) in \(S\). With Center \(C\) and Radius \(C D\) draw the Arc \(D M\), and its Tangent \(D E\) and Secant \(C E\).
5. Becaufe of the like Triangles CDE, \(M d m ; C D: C E:: M D\) : \(M m\), that is, as Radius to Secant of the Arc \(D M\), (whofe Cofine is \(C S=G R\),) : : fo is \(M d(=R r\) a Degree or Particle of the Equator:) to \(M_{n i}\) the Fluxion or correfpondent Particle of the Meridian Line \(R M\). Whence, and from what is premifed concerning the Nature of this Nautical Projection, 'tis evident, that \(R M\) is the meridional Part, anfwering to the Latitude whofe Cofine is \(G R\). Or thus; With Center \(R\) and Radius \(A R\) defcribe the Quadrant \(A x \alpha\), in which let the Arc \(A x\) be equal to the given Lat. From \(x\) draw \(x C\) parallel to \(K R\), and interfecting the Curve in \(C\), fo is \(C_{x}\) the Meridional Part defir'd, being equal to \(R M\), as is caly to fhew.
6. As to the other Properties of this Curve, 'tis evident, from its Conftruction, that its Tangent (as \(C M\)) is a Conftant Line every where equal to \(A R\); the Curve being generated by the Motion of the Wheel at the End of the Rular which is its Tangent. And from hence the Curve \(A C B\) may, for Diftinction, be call'd the Equitangential Curve.
7. The Fluxion of the Area \(A R M C\) is the little Sector or Triangle \(M C d\), which fame is alfo the Fluxion of the Sector \(C D M\) : whence the Areas \(A R M C, C D M\) are equal, and the whole Area \(A C B, \& c\). \(K M R\) being infinitely continued, is equal to the Quadrant \(A R \alpha\).
8. To find the Radius of Curvature of any Particle, as \(C c\), from \(C\) draw an indefinite Line \(C \tau\) perpendicular to \(C M\), (on the Concave lide of the Curve) and from \(c\) another Line perpendicular to \(c m\), which Lines, (becaufe of the Inclination of \(C M\) to cm) will fomewhere meet as at \(\tau\), making an Angle \(C T c=M C m\). Thefe Angles being equal, their Radii are proportional to their Arcs : therefore, \(M d: C c:: M C\) : \(C T\). But \(C c=d m\) (becaufe of \(C M=c m\)) fo that \(M d: d m(:: C D\) : \(D E\)) :: \(C M: C T\). But \(C D=C M\), therefore \(C T=D E=\) Tangent of the Arc \(D M\).
9. So that fuppofing \(A T\) t a Curve Line, in which are all the Centers of Curvature of the Particles of \(A C B\), any point as \(\tau\) being found as before, the Length \(A T\) (by the Nature of Evolution of Curves,) is every where equal to the Tangent of its correfpondent circular \(\operatorname{Arc} D M\). The Point \(\tau\) is alfo found by making \(M T\) perpendicular to \(R M\), and equal to the Secant \(C E\) : for fo is the Angle \(C M T=M C D\); and the Triangle \(M C\) T equal to the Triangle CDE.
10. Let \(A H b\) be an Equilateral Hyperbola, whofe Semiaxis is \(A R\) and Center \(R\). In the Meridian let \(R P\) be equal to the Tangent \(D E\). Join \(A P\), and draw \(P H=A P\) and parallel to \(A R\). Compleat the Pa rallelogram HNRP, fo will the Point \(H\) be in the Hyperbola, and its Ordinate \(H N(=R P=D E=C T)\) be equal to the Curve \(A T t\). From whence, and from Prop. 3. Coroll. 2. of Dr. Gregory's Catenaria
+ Vid. Supra.
V. I. C. I.
s. XIII. (Pbil. Tronf: \(\mathrm{N}^{\ominus} 23 \mathrm{I}, \dagger\)) it appears, that the Curve \(A\) I \(t\) is that called

\section*{in Mercator's Projection divided.}
the Catenaria or Funicularia, viz. the Curve, into whofe Figure a Nack Cord or Cbain naturally difpofes its felf by the Gravity of its Particles.
" 11 . Hence we have another Property of the Catenaria not hitherto " taken Notice of (that I know of) viz. that fuppofing \(A R(=a\), the "conftant Line in Dr. Gregory) equal to the Radius of the Nautical "Projection, and \(R N\) the Secant of a given Latitude, then is \(N \tau\) the " Catenaria's Ordinate at \(N\), equal to \(R M\) the Meridional Part anfwer" ing to the Latitude, whofe Secant is \(R N\).
12. That T \(A\) is the Catenaria is alfo demontrable from Dr. Gregory's firt Prop. Let \(\tau u\) be the Fluxion of the Ordinate \(N \tau\) : and \(t u\) (\(=N n\)) the Fluxion of the Axe \(A N\). Then becaufe of like Triangles \(\tau C M, \mathcal{T} u t, C M: C T(=\tau A):: \mathcal{T} u: u t\), that is, as \(C M\) a conftant Line is to \(\mathcal{T} A\) the Curve : : fo is the Fluxion of the Ordinate to that of the Axe \((\dot{y}: \dot{x})\) according to Prop. 1. Catenaria.
13. From the Premiffes the Conftruction and feveral Properties of the Catenaria are eafible deducible; one or two of which I'll fet down.

The Area \(A T M R\) is equal to \(A O P R\) a Rectangle contained by Radius \(A R\), and \(R P\) the Tangent anfwering to Secant \(H P=\tau M\). For becaufe of the like Triangles \(C M m, C E e ; C M: C E:: M m\) : \(E e\), (that is, putting \(r, s, t, m\) for Radius, Secant, Tangent and Meridional Part \(R M\))r:s:: \(\dot{m}: \dot{i}\) whence \(r i=s m\), and all the \(r i\) \(=\) all the \(s \dot{m}\), that is \(A O P R=A T M R\), which agrees with Dr. Gregory's Cor. 5. of Prop. 7.
14. Suppofing the former Conftruction, let be added the Line R H, including the Hyperbolic Sector ARH. I fay the fame Sector is equal to half the Rectangle \(A R M Q\) contained by Radius \(A R\) and the Meridional Part \(R M,\left(=\frac{1}{2} r m\right)\) For the Sector \(A R H=\) Triangle \(R N H\) wanting the Semifegment \(A N H\), The Fluxion of the Triangle \(R N H\) is \(\frac{s i+t \dot{s}}{2}\). The Fluxion of \(A N H\) is \(t \dot{s}\). So the Fluxion of the Sector \(A R H\) is \(\frac{s i+t s}{2}-t s=\frac{s i-i s}{2}\). 'Tis found before (Sect. 13.) that \(r: s\left(s: \frac{s s}{r}\right):: m: i\); whence \(s i=\frac{s s}{r}\) in. And becaufe of the like Triangles \(C D E, E f e, C D: D E:: E f: f e\). But \(E f=\) \(M m=\dot{m}\), becaufe both \(E f\) and \(M m\) are to \(M d\) in the fame Reafon, viz. as s to \(r\); therefore \(r: t\left(t: \frac{t t}{r}:: \dot{m}: \dot{s}:\right.\) whence \(t \dot{s}=\frac{t}{r}\) in, and \(\frac{s i-t s}{2}=\frac{s s-t t}{2 r} \dot{m}=\frac{r r}{2 r} \dot{m}=\frac{r}{2} r m\), the Fluxion of the hyperbolic

Sector \(A R H\), whofe flowing Quantity is therefore equal to \(\frac{1}{2} r m=\frac{1}{2}\) ARM2.
Q. E. D.
15. This fhews another Property of the Catenaria, viz. that it fquares the Hyperbola; for \(R M\) is equal to \(N \tau\) the Ordinate of the Catenaria.
16. Let \(A R\) be Radius, \(A C B\) the Equitangential Curve; \(M R N\) its Afymptote, in which let \(M, N\), be any two Points equally diftant from \(R\). Upon \(M\) draw \(M L\) parallel to \(A R\) and equal to the Difference of the Secant and Tangent of that Latitude, whofe Meridional Part is \(R M\) (by Sect. 3, 4.) Upon \(N\) draw \(N O\) parallel to \(A R\), and equal to the Sum of the forefaid Secant and Tangent. Do thus from as many Points in the Afymptote, as is convenient, and a Curve drawn equably through the Points \(L-A-O, \& c\). will be a Logaritbmic Curve, whofe Subtangent (being conttant) is equal to Radius \(A R\).
17. Let no be an Ordinate infinitely near and parallel to \(N O\). \(O p=N n\) the Fluxion of the Afymptote; \(O \tau\) the Tangent, and \(\tau N\) the Subtangent to the Logarith. Curve in \(O\). Then \(o p: p O:: 0 N\) : \(N\) T. But \(O N=s+t\), therefore op \(=s+i \cdot p O=m\) (the Fluxion of the Meridian or Afymptote.) So the Analogy is \(\dot{s}+i: i m:\) : \(s+t: N T\). By Sect. 13, 14. \(s: m:: t: r\). alfo. \(i: m:: s: r\). and thence \(\dot{s}+\dot{t}: \dot{m}:: t+s: r\). wherefore is \(N T\) (the Subtangent to \(L A O\)) equal to Radius \(A R\) a conftant Line, and confequently the Curve LAO is the Logarithmic Curve, and its Subtangent known.
18. The fame Demonftration ferves for \(L M\) (any Ordinate on the other Side of \(A R\)) only changing the Sine + into - ; and then it agrees with Mr. Fames Gregory's Prop. 3. pag. 17. of his Exercitations, viz. That the Nautical Meridian is a Scale of Logaritbms of the Differences whereby the Secants of Latitude exceed tbeir refpective Tangents, Radius being Unity. So here \(R M\) is the Logarithm of \(M L\), the Difference of the Secant and Tangent of the Latitude, whofe Meridional Part is \(R\) M.
19. Suppofing the precedent Conftruction, if through any Point \(C\) of the Curve \(A C B\) be drawn a right Line \(G C W\) parallel to \(M R\), terminated with the Logarithmic Curve in \(W\) and the Radius \(A R\) in \(G\) : I fay, that the fame right Line \(W G\) is equal to the intercepted Part of the Curve Line \(A C\).
20. Let w\(g\) be a Line infinitely near and parallel to \(W G\), and terminated by the fame Lines; and \(C S, W \sigma\), perpendicular to the Meridian ; \(C S\) interfecting \(w g\) in \(z\), and \(W \sigma\) in \(y\). Let \(C M\) be a Tangent to \(A C\) in \(C ; W_{\tau}\) a Tangent to \(A W\) in \(W\); \(f o\) is \(C M=\sigma\) ri Becaufe of like Triangles \(C z c, C S M\); and \(W\) y w, \(W_{\sigma \tau} ; C S: C M:: C z: C c:\) alfo \(W_{\sigma}: \sigma \tau:: W y: y w\). But \(W \sigma=C S ; \sigma \tau=C M ; C z=W y\); therefore is \(y w\) the Fluxion of \(G W\), equal to \(C c\), the Fluxion of the Curve \(A C\). Confequently \(G W=A C\) q.e. \(d\).
21. It may be noted, that this Equitangential Curve gives the Quadrature of a Figure of Tangents ftanding perpendicular on their Radius. In Fig. 214. let \(A_{j} \Gamma\) be a Curve, whofe Ordinates as \(g 2\), \(G I\), are equal to the Tangents of their refpective intercept Arcs \(A k\), \(A \chi\). Let \(\Gamma G\) be produced to touch the Curve \(A C\) in \(C\) : then is the Area \(A \Gamma G\) equal to the Rectangle contained by Radius \(A R\) and \(G C\) the produced Part of the Ordinate; or \(A \Gamma G=A R \times G C\). The Demonftration of which, and of the following Section, 1 for Brevity omit.
22. If we fuppofe the Figure \(A C B, \& c . K R(\) Fig. 214.) infinitely continued, to be turned about its Afymptote \(R K\) as an Axe, the Solid fo generated will be equal to a rectangled Cone, whofe Altitude is equal to \(A R\); and its Curve Surface will be equal to half the Surface of a Globe whofe Radius is \(A R\). So that if the Curve be continued both ways infinitely (as its Nature requires) the whole Surface will be equal to that of a Globe of the fame Radius \(A R\).

The Defcription of the Rular and Wheel, Fig. 213. is fufficient for Fig. 213. the Demonftration of the Properties of the Curve: But in order to an actual Conftruction for Ufe, I have added Fig. 216. where \(A B\) is a Fig. 216. Brafs Rular ; w \(b\) the little Wheel, which mutt be made to move freely and tight upon its Axe (light a Watch-wheel) the Axe being exactly perpendicularly to the Edge of the Rular. s reprefents a little Screwpin to fet at feveral Diftances for different Radii, and its other End is to nide by the Edge of the other fix'd Rular. \(p\) is a Stud for the convenient holding of the Rular in its Motion.
N. B. Moft of the Properties of this Curve by the Name of la Tractrice, are to be found in a Memoire of \(M\). Bomie among thoje of the Royal Academy of Sciences for the Year 1712, but not publißed till 1715 : Whereas tbis Paper of Mr. Perks was produced before the Royal Society in May 1714, as appears by their Journal.
VII. I.] I have lately thought of a new Inftrument for drawing a Meridian Line; it is eafy in its Ufe, and fufficiently exact.

Take the Gnomon of an horizontal Dial for the Latitude of the \(A\) New Way Place, and to the Hypotbenufa fix two Sights, whofe Centers may be of drawing a parallel to the fame: let the Eye-fight be a fmall Hole; but the other's Meridian Diameter mult be equal to the Tangent of the double Diftance of the Line, by Mr. Nortb-Star from the Pole, (the Diftance of the Sights being made Ra-268. p. 763. dius.) Let the Stile be riveted to the End of a ftraight Ruler: When you would make ufe of it, lay the Rular on an horizontal Plane, fo that the End to which the Stile is fix'd may over-hang; then look through the Eye-fight, moving the Inftrument, till you fee the NorthStar appear to touch the Circumference of the Hole in the other Sight, on the fame Hand with the Girdle of Caflopeia; or on the oppofite Side to that, whereon the Star in the Great Bear's Rump is, at that

> Time:
time: then draw a Line by the Edge of the Rular; and it will be a true Meridian Line, as it is eafy to demonftrate.

I do not hear that any of the Occultations of Aldebaran by the Moon were obferv'd laft Year: I expected feveral, but was always hin. der'd by the Weather from obferving any.
-on the fame
2.] I have fent fome farther Thoughts upon the Inftrument for ty the fame. Mr:270.p.815. drawing a Meridian Line, and have improved it fo far, that no other Star will be made ufe of than the Polar one to obtain the Hour and Minute of the Day or Night.

Let there be taken a Telefcope of about 16 Foot, or longer if you pleafe; in the Plane of its Focus place a Ring of Brafs at right Angles to the Axis of the Glass, the Diameter of the inward Circle equal to the double Tangent of the Pole-Star's Diftance from the Pole; the focal Length of the Object Glars being made Radius, as was faid in the Defcription of the Meridian Inftrument; let the Ring be divided into 24 Hours, with their Minutes number'd from the Right-hand towards the Left, as in our common Nocturnals; the Eye Glafs muft be equal in its Diameter to the Horary Ring : but this perhaps will be thought too chargeable, efpecially for fuch large Telefcopes as I am fpeaking of, which has made me think of this Contrivance: The Eye Glafs mutt lie in a broad Index towards one End, this is to turn on a Center Pin, that lies in the Center of the Glafs, and confequently over the Center of the Horary Ring, from which it muft be equal to the Diftance of the Focus of the Eye Glass ; then let the Tube be elevated to the Height of the Pole, and directed to the Pole-Star, till by turning the Index through the Eye Glafs, you perceive the Ster to touch the Horary Ring on that Side the Star in the Great Bear's Rump lies, or on the oppofite to that in the Hip. of Caffopeia; but on the contrary, had not the Glafs inverted the Object, then bring one of the twelves to be in a Perpendicular to the other by a Plumb-line; fo will the Star ftand at its Horary Diftance from the Meridian; or if the Latitude of the Place be unknown by the Right Afcenfion of the Sun and Star, the Time of its coming to the Meridian will be eafily obtained; and then the Hour of the Night found, will as eafily give the Star's Horary Diftance from the Meridian ; then elevate the Tube towards the Star, bringing the Meridian, or 12 and 12 into the Plane of the Perpendicular ; turn the Glafs about, till you fee the Pole-Star ftand at its Horary Diftance from the Meridian; fo will the Inftrument when fixed, fhew the Horary Diftance thraughout the whole Day, or as long as - it remains in this Pofition, by the apparent Motion of the Star in the Ring. The beft Time to fix the Inftrument will be, when this, or any of the other two Stars above-mentioned, are about 6 Hours from the Meridian. It is to be obferv'd, that the Latitude of the Place is now given with the utmoft Precifenefs : for the Axis of the Glafs lies now in
the Axis of the World; and if one of the Sides of the Tube be parallel thereto, as it ought to be at the upper End, hang a Line and Plummet from the Point of the Sufpenfion; find another Point equal in Diftance to the Length of the Line, or a Knot towards the lower End, the Diftance from this Knot to the former Point will be but the Chord of the Latitude; and if from the fame Edge of the Index, another Line and Plummet be hung towards the lower End of the Tube, thefe two Lines, when at reft, will be in the Plane of the Meridian.

This Inftrument may be made to fhew the Hour with as much Facility as a Clock or Sun-dial, if the Horary Ring be made to move within a larger fixed one; and the outward Circle of the former be divided into the Days of the Month, refpect being had to the RightAfcenfion of the Sun and Star: Then by bringing the two oppofite Points in the fixed Circle to the Perpendicular, which is done at the fixing the Inftrument, move the Circle till the Day of the Month come to any of thefe, and the Ring is rectified for that Day; and if the Air be clear, you will fee the Star ftand at the true Time of the Day or Night.

It may be objected, that in a few Years, by the Annual Increafe of its Declination, the Pole-Star will, by moving in a leffer Circle, be brought too far from the Edge of the Ring, that the exact Hour and Minute cannot well be diftinguifh'd: but this Inconveniency, when it is one, may be eafily remedied feveral Ways; either by making a leffer Ring, or by extending a fine Thread of Silk crofs the Ring, till it cuts the Star, and at the fame Time it gives the Hour ; or, which will yet. make this Inftrument commodious for other Purpofes, there may be made an Index to move on the Center of the Hour-wheel, which being brought to cut the Star with the Edge that proceeds from the Center, it will at the fame Time cut the Hour: And now we need not be follicitous about the exact Diameter of the Ring, provided it do but a little exceed the Diftance of the Pole-Star from the Pole, the focal Length of the Glafs being made Radius.
Mr. Flamfeed has difcovered, that there is a Parallaxis of the Earth's Annual Orbit at the Pole-Star of about 40 or 45 Seconds; whereby the Diameter of the Star's Parallel is greater in June than in December, by about 1 Min. 2 Seconds; which he has evinced from feven Years fucceffive Obfervations, whereby the Earth's Motion is indubitably demonftrated, as appears from his Letter to Dr. Wallis on that Subject.

Now if on the Edge of this Index there be drawn a Scale of Degrees, Minutes and Seconds, to the Radius of the Glafs, we fhall not only have a very accurate Inftrument for the Hour, but be furnifhed with one, whereby we fhall fee the Truth of the Earth's Motion confirmed by the Accefs and Recefs of our Star towards and frorn the Pole, according to the Earth's Place in the Ecliptick, as that learned Perfon has difcovered; and that nut only when the Star tranfits the Meridian,

\section*{Infruments for finding the Meridian.}

Meridian, but in clear Air at any Time of the Day; one fhall likewife oblerve that Annual Increafe of the Pole-Star's Declination, caufed by \({ }^{*}\) the Preceffion of the Equinox.

My own Obfervations affure me, that the Pole-Star may be feen in the Day time with a Telefcope of 16 Foot; for with one of this Length I faw that Star on the \(26 t \mathrm{~b}\) of April I 701 , from \(40^{\circ} \mathrm{Clock}\) in the Morning till 7 , and could have feen it longer, had not Clouds interpofed; and again the firft of May, I did not look for the Star, till the Sun had been up more than half an Hour, viz. at 5 in the Morning, yet I foon found it, and faw it afterwards as oft as I pleafed, till half an Hour after 9 the fame Morning; fo that I doubt not, this Star may be feen in a clear Day throughout the whole Year.

The Declination of the Pole-Star for the Year \({ }^{1} 700\), is \(87^{\circ} 42^{\prime} 5^{\prime \prime}\), as I find it by Ricciolus's Catalogue of fixed Stars, in the Appendix to Sir Edward Sberbourn's Sphere of Manilius, E'c. Hence its Diftance from the Pole at this Time may be affumed \(2^{\circ} 17^{\prime}\). the focal Length of my Object Glafs is 15 Foot' 6 Inches, fo that the Diameter of the Ring will be 14 Inches, and 84 hundredth Parts of an Inch, which is the natural Tangent of the former Arch \(2^{\circ} 17^{\prime}\) doubled; a Circle large enough to be divided into Minutes and Halves, which will be fo magnified by the Eye-Glafs, that it will be eafy to diftinguifh the Time to a few Seconds.

It is true, there is fome Difficulty in fixing up this Inftrument; and when it is fo, to keep it from varying from its due Pofition; but yet it is not infuperable: But for fmall Inftruments, of about 2 or 3 Foot long, there cannot be a more accurate, eafy, and expeditious Way than this for drawing a Meridian Line. But whether the many Benefits that may accrue to Aftronomy, do not make the larger one worth the Charge and Trouble of compleating it, I leave to the Confideration of the Learned.

An Infrument for finding the any Place, the moft commodious, I think, is an Inftrument of Sir Cbr. Meridian. By Wren's, or two of Mr. Gray's, or one publifh'd in the Appendix of a Mr. W. Derham. n. \({ }^{291}\). p. 1575.
VIII. Among all the Ways contriv'd for finding the Meridian of Book call'd the Artificial Clockmaker.

Sir C. Wren's Contrivance, I am informed, is thus: At one End of a Rular, erect a Sight, to fee the Pole-Star, \(\mathcal{E}^{\circ} c\). through. At the other End fet up two Circles of fmall Wire, one within the other; the Diameter of the innermoft, equal to the doubled Tangent of the Diftance of the Pole-ftar from the Pole, the Diftance of the Sight being Radius; and the Diameter of the outermoft Circle, equal to the double Tangent of the Diftance of the next Star to the Pole-Star, from the Pole. Your Inftrument thus prepared, if you look thro' the Sight, and bring the two Circles to the two Stars, whofe Diftances from the Pole they reprefent; a Line paffing through a Sight and Center of the Circles, is the Elevation of the Pole : and two Plumb-lines hung up, one over

\section*{Infruments for finding the Meridian.}
the Sight, the other over the Center of the two Circles, will exactly lie in the Meridian of the Place.

Mr. Gray's Contrivances being printed, I need not give any Defcription of them.

The laft Inftrument is what I have made ufe of for feveral Years, and I would recommend it, upon my own Experience, for a very nice Way to find the Meridian of any Place, and to fee the Tranfits of the Celeftial Bodies over it, whether Northward or Southward.

The Inftrument is thus made of Wood, or rather Iron, or Brafs, to endure the Weather, without fwelling or contracting, viz. Prepare a fmall flat Iron Bar, C, C, at each End of which rivet on two upright Sights, to turn ftiffly, at the Joints \(I, I\). Let one of the Sights \(c, d\), have a Perforation big enough to fee the Pole-Star through it; the other Sight \(a, b\), a very fmall Perforation, to fee the Sun through. Juft behind the Joints fix two upright Arms \(C, D\), and \(C D\), but to bend off, fo as to be out of the Way of the Sights, when you look through them. Thefe Arms ought to be long enough for the Plumb-lines to reach the Polar-Star, on the one Side; and the Sun at his greatelt Height, on the other Side, when you look through either of the Sights. The Plumb-lines therefore are Tangents to their oppofite Sights, and their Lengths may be found by a Table of natural Tangents, and making the Diftance of the two Sights Radius. Thus in the Latitude of London, if the Inftrument be two Feet from Sight to Sight, the Southern Plumb-line hath need to be near four Feet, and the Northern Plumb-line near two Feet ten Inches. On the Tops of thefe two Arms, place two fmall crofs Pieces \(D E\) and \(D E\), to turn with a Point at \(D\), which crofs Pieces are to hold the Plumb-lines \(E F\) and \(E F\) and to turn off and on, fo as to bring the Plumb-lines to the Sights exactly. Place this Inftrument on a Pedeftal \(H\) to turn round on it ftiffly at the Pin \(G\).

Your Inftrument being thus prepared, the Way to Set and U/e it is thus; plant it in a convenient Place, where the Polar-Star may be feen by Night, and the Sun by Day. When that Star is on the Meridian, is the Time to fet this Inftrument, which is thus to be done, viz. Through the Sight with the large Hole \(c, d\), look at the Pole-Star, and turn the whole Inftrument about, until you fee the oppofite Plumb-line nicely to interfect the Pole-ftar. Or when you have brought the Plumbline near the Star, you may more eafily bring the Plumb-line to interfect, by moving the Sight \(c\), \(d\), backward or forward, at the Joint I, inttead of the moving the whole Inftrument. And that you may more eafily fee the Pole Star through the Sight, let the Plumb-line be a very fine Cats-gut String or Horle-hair, \(\xi^{\circ} \mathrm{c}\). And if it be white, or fome fuch light Colour, it will be the better feen, with the Help of a Candle thining on it by Night, when it is neceffary.

The Sight \(c\), \(d\), and oppofite Plumb-line being thus fet in a direct Line with the Polar-Star on the Meridian, it is manifet, that the InVol. IV.

\section*{Infruments for finding the Meridian.} ftrument lieth exactly in the Meridian, fo as to fee any Star on the Meridian to the North. And that you may fee the fame Southerly; the next Day, or when you pleafe, you may hang up the Plumb-line E, F, upon the Southern Arm \(C, D\), fo as that the Plumb-line may exactly interfect the Perforation \(c, d\). This may eafily be done by moving the top Joint, with the Plumb-line on its Crofs-piece backward and forward, till the Plumb-line hangeth to your Mind. If the Sight with the leffer Perforation \(a, b\), be not exactly under the Northern Plumb-line, it mult be brought to be fo, by turning the Sight, by Help of its Joint at I; and then all the Inftrument is fet right, fo as to fee the Sun, Moon or Stars, come on the Meridian towards the South.

But to fee the Sun tranfit the Meridian, it is neceffary to guard the Eye, with a colour'd Glafs, or a Glafs darkened with the Smoak of a Lanp or Candle.
AGlafs tolook Chufe two Pieces of Glafs cut into the fame Size and Figure; but
 the Sun.

\section*{-tbe fame Inftrument varied.}

Pig. 218. take care they do not refract vitiouny ; which may be known by moving the Glafs before the Eye. If the Objects you look on feem to dance about, the Glaffes are falfe and refract; but true if all feems fteady. Smoak one of thefe Glaffes over the Flame of a Lamp or Candle, until it be obicured enough to take off the Sun-rays fufficiently, but not fo as to darken it too much. This may be feen by looking upon the Sun with it, or upon the Candle. One of the Glaffes being thus darkened, lodge them both together, and faften them in a little Cafe fit for the Purpofe, with the fmoaked Side innermooft, and an edging of Card between, to keep the Glaffes afunder, fo as that the Soot may not be rubb'd off, or difordered.
'Tis good to have two Glaffes thus prepared, one for a ftrong Sun; the other lefs darkened, for the Sun behind a thin Cloud, Mift, or, \(\mathrm{E}^{\circ} \mathrm{c}\).

With one of thefe Glaffes held behind, or before the Sight \(a, b\), you may plainly fee the Sun pafs.

Inftead of an intire Inftrument, prepare only two Sights (as in Fig. 218.) with Perforations as before. Let thefe Sights be nailed or fcrewed down, upon the Tops of two Stakes at \(I, I\), fo as to turn ftiffly upon them. The Plumb-lines (one at leaft) may be hung up at the End of an Houfe (as at K, Fig. 218.) or on the Bough of a Tree (if the Wind would not fhake it) or any where you fee fit: And the Sights mult be ftuck up, fo as to bring the Pole-Star to interfect, and all be performed, as hath been before directed.

This, although in a Manner the fame with the Initrument before, yet is more convenient in fome Refpects. Chiefly becaufe the Plumblines may be made longer, and the Sights fet farther afunder, than in the Inftrument before can conveniently be done; which is fome, altho \({ }^{\circ}\) no great Advantage for feeing the Tranfits. Alfo, thefe Sights may be made fo light, as to be eafily carried about; or they may be eafily made \(_{2}\) or imitated in any Place where-ever you come.

\section*{Infruments for finding the Meridian.}

To know when the Polar-Star comes on the Meridian, the Way is this; fubtract the Right Afcenfion of the Sun from the Right Afcenfion of the Pole-Star, the Remainder giveth the Degrees, Minutes and Seconds when the Pole-Star tranfits the Meridian above the Pole. Divide thefe Degrees by 15, it gives the Hours; and every Degree under 15 mul tiplied by 4, gives the Minutes; and every Minute multiplied by 4, gives the Seconds, of apparent Time of the Pole-Star's Southing. I farce need fay, that it comes under the Pole at 12 Hours Diftance, only niaking fome fmall Allowance for the Alteration of the Sun's Rigbt Afcenfion in that 12 Hours Time.

But you may fhorten your Labour, by ufing Tables of the Sun's R. Afc. in Time, inftead of his R. Afc. in Degrees, \&xc.

If the Sun's R. Afc. exceedeth the Pole-Star's, add 360 Degrees, or 24 Hours, and then fubtract.
The R. Afc. of the Pole-Star is determin'd by Mr. Flanffeed to be \(0^{n} 33^{\prime} 4^{\prime \prime}\) of Time, Anno 1690, and the Increafe of its R. Afc. in 10 Years \(\mathbf{I}^{\prime} 16^{\prime \prime}\) of Time. Therefore this prefent Year 1703, the R. Afc. of the Pole-Star is \(0^{\text {h }} 35^{\prime} 22^{\prime \prime}\) of Time.

Or you may fee, when the Pole-Star cometh to the Meridian, by hanging upa Plumb-line, and obferving when the Tbill Horfe in Cbarles's Wain called Alioth, comes near the Line, together with the Pole-Star, on one fide the Pole; or the bright Star of the Third Magnitude in Caffopein's Thigh on the other fide, as is reprefented in Fig. 219.

The foregoing Inftruments may be fet by any other Scar, as well as the Pole-Star. But the Pole-Star in our Northern Hemifphere, is moft convenient, becaufe it maketh but a finall Circle round the Pole, and therefore moves flower, and confequently is longer in tranfiting the Meridian. And therefore a fmall Error in Calculation, or a little Expence of Time in fetting the Inftrument, may be admitted.

The Ufes of thefe Inftruments are, 1. You may fee with all imagi- Tbe Ufes of nable Exactnefs, when it is Noon, even to I, 2, or at moft 3 Seconds thrfe Inj, rus of Time. For you may fee, when the very Limb of the Sun toucherh mints. the Meridian, and whilft all his Difk is paffing it. So that by much it exceeds all Sun-Dials: fo far that if you once ufe this Inftrument, you will be ready to lay afide all Sun-Dials; the beft of which (unlefs we except Mr. Molineux's) can never fhew the Time to one or many Seconds.

But befides all this, another valt Conveniency is, That it will fit moft Latitudes. So that there is no Need of having a ftrict Regard to the Elevation of the Pole, nor any Danger of Error in making and retting, as is in moft other Inftruments, but all is with Eafe and Certainty performed. Therefore,

2 dly , Into whatfoever Place you come, you may eafily fee the Errors of the Sun-Dials there, and which go trueft, and which falfe.
\(3 \mathrm{~d} / \mathrm{y}\), As the Sun, fo alfo the fix'd Stars may be feen to tranfit the Meridian, whereby the Howr of the Night may as exactly be known, as
of the Day by the Sun, knowing the R. Afc. of the Star that tranfits. For (as before for the Pole-Star) fubtract the R. Afc. of the Sun from the R. Afc. of the Star, the Remainder converted into Time, is the Time of that Star's Culmination or Southing. And if 12 Hours be added or fubtracted (making due Allowance for the Alteration of the Sun's R. Afc. in that Time) it fheweth the exact Time of that Star's coming to the Meridian Northward.
\(4 t b l y\), The Hour of the Day and Night being thus to 1, 2 or 3 Seconds, difcoverable by the aforefaid Inftruments, I doubt not, but that they may be ufeful in finding the exact Differences of Meridians, either by the Eclipfes of Jupiter's Satellites, or the Occultation of the Fix'd Stars by the Moon.

I do not pretend, that thefe Inftruments are any otherwife ufeful in finding the Longitude, than by fhewing the exact Time of the Day or Night; which is one Thing abfolutely neceffary in this Matter. Neither indeed will they ferve without a well adjufted Pendulum-Watch or Pocket-Watch, that will keep Time exactly from one Obfervation by the Meridian-Inftrument to another. Nor indeed are they ufeful on Shipboard, but only on Land, where they remain fix'd. But on Head-Land, or any where on Shore, they may be ufeful to the Seaman : And indeed (until better Difcoveries are made) thefe MeridianInftruments may be Ufe, where-ever long Telefcopes can be of Ufe, for feeing the Appulfes of the Moon to the Fix'd Stars, or the Eclipfes of Jupiter's Satellites; which is only on Land: Unlefs (which I have thought feafible) a convenient ftanding for a Man, a Telefcope might be hung pendulounty in a Ship, which (efpecially in a calm Sea) may be as little fubject to Difturbance, as the Pendulums of Watches are, which will retain their Motion at Sea.
\(5 t b l y\), You may with all Exactnefs continue a Meridian-Line for many Miles, by looking through either Sight, and feeing what Objects are interfected by the Plumb-Lines.

Of a Meridian Line drawn thro' France, \(\mathcal{F}^{\circ}\). Communicated by Mr. Geof. froy, n. 278. p. 1097.
IX. Monfieur Cafini open'd the Aflembly (of the Academy Royal of Sciences, Nov. 12.1701 .) with a Difcourfe containing the Obfervations he had made in his laft Voyage, with a Defign todetermine the Paffage of a Meridian-Line (taken from a Point in the Obfervatory at Paris) from one End of France to the other. In the firf Part of this Difcourfe, he went back to the moft ancient Aftronomers, and recounted their Opinions of the Spheric Figure of the Earth, and their Methods to know its Dimenfion; and then proceeded to thofe of the Moderns. And in the laft Place, he related the Method of the late Monfieur Picard, of the Academy Royal, as the moft exact. Then he fpoke of his own Obfervations on the fame Subject, of the Ufe he had made of the Satellites of \(\begin{aligned} & \text { fupiter, more fit for this than the Eclipfes of the Moon, in that they }\end{aligned}\) are more frequent; and faid that his Obfervations had been confirmed by the like made in Cbina. He fhewed the Method he took to deter-

\section*{Of a Meridian-Line drawn tbrough France.}
mine the Paffage of the Meridian taken from a Point in the Obfervatory at Paris. By the Means of Triangles, which he made through the whole Courfe of his Journey, and very exact Calculations, he determined the Place of this Meridian, and marked all the confiderable Places through which it paffed, from Paris to the higheft Mountains of the Pyreneans, which feparate Rouffillon from Catalonia; among thefe Mountains he obferved one of a prodigious Height, it being 1440 Toifes high. But the moft extraordinary Obfervation was that of the Inequality of the Degrees of the Meridian on the Earth; which is fuch, that Monfieur Caffini found that going Southward one Degree furpaffed another an 800 th Part, which may give great Reafon to doubt of the exact Roundnefs of the Earth. Upon this Occafion he reported two different Opinions, the one of Monfieur Huygens and Nerwton, the other of a Mathematician of Strafourg named Eifenfcbmidius. The two former hold, that the Earth is flatted towards the Poles, fo that it is fomething of the Shape of an Holland Cheefe: Which they both conclude by Phyfical and Algebraical Deductions, from an Obfervation made at Cape Verd ; that the Pendulums, though of the fame Length, make their Vibrations there much flower than in the Northern Couns tries. The other Mathematician holds, that the Figure of the Earth is Elliptique, fo that it is ftretch'd out towards the Poles, and has the Form of an Egg. M. Caffini. left the Queftion undecided. The Cities through which he obferv'd the Meridian of Paris to pafs, are Dunkirk. Amiens, Aubigny, Bourges, Aurillac, Rodez, Alby, and Carcaflione.

\section*{X. A Paper Omitted.}

Guilielini Muggrave Regix Societatis Socii de Britanniâ quondam n.352.p.j88. Pene-Infulâ, Differtatio.

\section*{Chap. VII.}

\section*{\(M U S I C\).}

\({ }^{2} \mathrm{H}\)Aving made the Trial of a Mufical Experiment before the So-The Tweory of ciety, I fhall give a farther Account of it; that the Theory of Mulic redicead Mufic, which is but little known in this Age, and the Practice of it to Arithmetiwhich is arriv'd to a very great Excellency, may be fixed upon the fure Foundations of Matbematical Certainty.

The Propofitions, upon which the Experiment was admitted, were; \({ }^{\text {portions, by }}\). T. SalThat Mufic confifted in Proportions, and the more exact the Propor-mon. n. 302. tions, the better the Mufic : That the Proportions offer'd were the fame \({ }^{\text {P. } 2072 .}\)
that the Ancient Grecians us'd: That the Series of Notes and half Notes was the fame our Modern Mufic aimed at: Which was there exhibited upon Finger-boards calculated in Mathematical Proportion. This was demonftrated upon a Viol, becaufe the Strings were of the greateft Length, and the Proportions more eafily difcern'd; but may be accommodated to any Inftrument, by fuch mechanical Contrivances as fhall render thofe Sounds, which the Mufic requires.

To prove the foregoing Propofitions, two Viols were Mathematically fet out, with a particular Fret for each String, that every Stop might be in a perfect Exactnefs: Upon thefe, a Sonata was perform'd by Mr. Frederick and Mr. Chriffian Stefkins; whereby it appear'd, that the Theory was certain, fince all the Stops were owned by them, to be perfect. And that they might be prov'd agreeable to what the beft Ear, and the beft Hand performs in modern Practice; the famous Italian, Signor Gafperini, play'd another Sonata upon the Violin in Confort with them, wherein the moft compleat Harmony was heard.

The full Knowledge and Proof of this Experiment may be found in the two following Tables, wherein Mufic is fet forth, firft Arithmetically and then Geometrically : The Mathematician may, by cafting up the Proportions, be fatisfied that the five forts of half Notes here fet down, do exactly conftitute all thofe Intervals, of which our Mufic does confift. And afterwards he may fee them fet forth upon a Monochord, where the Meafure of all the Notes and half Notes comes exactly to the middle of the String. The Learned will find, that thefe are the very Proportions which the old Greek Authors have left us in their TVritings, and the practical Mufician will teftify, that thefe are the beft Notes he ever heard.

The Explication of the Firf Table.
Between the two loweft Lines, you have the Series of all the 12 half Notes in an Octave, from A re to A lamire, which added together make an Octave or exact Duple Proportion: The feveral Parts alfo added together make all thofe Intervals of which ir is conftituted. As for Example, the two half Notes from \(A\) to \(A * \frac{18}{18}\), and from \(A\) make a Major Tone \(\frac{8}{9}\); to which if an Hemitone from \(B\) to \(C \frac{15}{16}\) be added, you have a leffer Third 5 .

In like Manner between the two next Lines, you have the Series of all the 12 half Notes, in an Octave from C faut to C fol fa ut: The two firt Tones added together make a greater Third: And ro you may add a Tone or Hemitone, till you arrive at every Interval in the Octave, which is fo call'd, becaufe eight Sounds are required for expreffing thofe feven gradual Steps, whereby we commonly afcend to it.

It may be alfo obferved, that the Proportions falling upon the fame Notes in two Keys, one Finger-board will be fufficient for both.

It is acknowledg'd by all that are acquainted either with Speculative or Practical Mufic, that every Interval is divided into two Parts, whereof one is greater than the other: An Eighth \(\frac{1}{3}\) into a Fifth \(\frac{2}{3}\) and a

Fourth \(\frac{3}{4}\). Again, a Fifth \(\frac{2}{3}\) into a greater Third \(\frac{4}{3}\), and a leffer Third §. Thus alfo a greater Third \(\frac{4}{5}\) muft be divided into a Tone Major \(\frac{8}{9}\) and a Tone Minor \%. The Leffer Third (to comply with the Practice of Mufic) is rather compounded of, than divided into a Tone Major \(\frac{8}{9}\) and an Hemitone, which is its Complement, \(\frac{15}{18}\).

GTGVL
I

\section*{The Theory of Mufic reduced to}

Three Tones Major, two Tones Minor, and two of the aforefaid Hemitones, placed in the order found in the Scheme, exactly conftitute the practical Octave; which is fo call'd, becaule it confifts of eight Sounds, that contain the feven gradual Intervals. But it is alfo neceffary to fet down the Divifions of the whole Tones, which are the true Chromatic half Notes, becaufe there is great Ufe of them in Practical Mufic.

To make all our whole Notes, and all our half Notes of an equal Size, by falfifying the Proportions, and bearing with their ImperfeEtions, as the common Practice is, may be allow'd by fuch Ears, as are vitiated by long Cuftom: But it certainly deprives us of that fatisfactory Pleafure, which arifes from the Exactnefs of fonerous Numbers; which we fhould enjoy, if all the Notes were truly given according to the Proportions here affign \({ }^{\circ} \mathrm{d}\).

It is very eafie to fatisfie our felves in the Arithmetical Scheme, by thofe Operations, which Gaffendus has fet down in his Manuduction to the Theory of Mufic, Tom. V. pag. 635. As for Example, his Rule for Addition is, That two Proportions being given, if the greater Number of one be multiplied by the greater Number of the other, and the leffer by the leffer, the two Numbers produc'd exhibit the compounded Proportions. Thus take a Practical Fifth \(\frac{2}{3}\) and a Practical Fourth \(\frac{8}{4}\) for the two Proportions given, multiply 3 by 4 and you have 12 : then multiply 2 by 3 and you have 6 : which compounded Proportion of 12 to 6 makes the Practical Octave \(\frac{1}{2}\).

Thus, according to his Arithmetical Operations of Addition, Subtraction, Multiplication, of Continuation and Divifion, is our whole Syitem proved, which for the more eafy Application to Practical Mufic, Shall be alfo fet forth Geometrically upon the fix Strings of a Viol. The Explication of the Second Table.
Thefe fix Lines reprefent the fix Strings of the Viol in the common Tuning.

The founding Part of each String from the Nut to the Bridge is fuppos'd to be 30 Inches long; the two middle Strings \(C\) and \(E\) are drawn out to 15 Inches, the half of the whole.
'Tis eafie to meafure every Interval with a Pair of Compaffes. Suppofe you are to take the 20th Part of the String G; 'tis an Inch and a half for the firft half Note; if you take the whole Note from G to A, 'tis the tenth Part, and muft be three Inches.

After thefe are taken away, your String will be but 27 Inches long, fo that if you advance one Note, or a Major Tone further, you muft take a 9 th Part of it, which will be three Inches more, whereby you arrive at a greater Third, being the fifth Part of the whole String. Thus the Series of all the Notes may be demonitrated.

All the Strings are Unifon at the Stops where the tuning requires: So that though the Proportions be carried on as far as the Frets allow, yet the String is open the fame with the Stop of rhat String to which it is
tuned; and accordingly the Series of the Notes proceeds as if they were all upon a Monochord.

This Calculation ferves but for two Keys \(A\) and \(C\), which are called Natural, becaufe they have no effential Flats or Sharps.

But becaufe the Compofer begins upon any Key, and the Series of Notes muft take its terminus à quo from thence; the Inftrument-maker can provide fuch moveable Finger-boards as will ferve exactly for every Key. They are taken out and put in upon the Neck of the Viol, with as much Eafe as you pull out and thruft in the Drawer of a Table. Three, or at moft five of them, will be fufficient to accommodate all the Keys that are made ufe of.

This Mathematical fixing of the Frets enables every Practitioner, who ftops clofe to them, to give the Proportions of the Notes in a greater Exactnefs, than can be done upon the Bafs-Violin, or Violin itfelf: Since they may be fet fortli more perfectly by a Pair of Compaffes dividing a Line, than the niceft Ear can direct.

Though the Frets for the feveral Strings do not ftand in a ftrait Line, and the Places are allo fhifted in different Keys, yet the Ear naturally directs the Fingers to them; infomuch that thofe Perfons, who have all their Lives Time been accuftom'd to flop upon Frets, that go quite crofs the Finger-boards of their Inftruments, do with very little Practice fall right upon thefe. Such is the Power of a mufical Genius, as may be undeniably proved by thofe that play upon the Violin ; who, when they change the Key, fall upon the right Stops, though they have no viifble Direction where to ftop, nor Time to alter, by the Ear, the Note they firft pitched upon.

By this Standard of Regular Proportions may the Voice be formed to fing the pureft Notes; they are all the fame in Vocal and Inftrumental Mufic ; if then the Inftrument which governs the Voice be perfeet, the Ear will of Neceffity bring it to Perfection. It is pity that a good natural Voice fhould be taught to fing out of Tune, as it muft \(\mathrm{do}_{2}\) if it be guided by an imperfect Inftrument; and this may be the Reafon why fo few attain to that Melody, which is fo much valued ; but fince we now know wherein Perfection lies, a conftant Practice will come to the Attainment of it. The dividing Wholes into Chromatic Hemitones is very neceffary, but very difficult for the Voice to be broken to: If it learns from an Inftrument whofe whole Notes, and whofe half Notes are fuppofed to be equal, the Sound muft needs be very uncertain and unharmonical; whereas the Proportions truly fixed, would bring it to a Perfection in the niceft and moft charming Part of Mufic.

The Chromatic Hemitones are the fmalleft Intervals our modern Mufic aims at, though the Ancients had their Enharmonic quarter Notes, which they efteem'd their greateft Excellency: Thefe may alfo in Time be recover'd, fince we know their Proportions; for as the Diatonic Tone is divided into Chromatic Hemitones, fo after the fame manner may the Chromatic Hemitones be divided into thofe leaft Enharmonic Intervals, which were ever made Ufe of. But if we go no further, Vol. IV.

\section*{Of the Ancient Greek and Roman Lyre.}
yet this Experiment demonftrates the true Theory of Mufic, and brings the Practice of it to the greatef Perfection.
Of tbe Ancient II. Reading over lately the Tbird Ode of the Fourth Book of Horace, Greek and which Scaliger, Dacier, and the reft of the Critics and Commentators fo Roman Lyre ; and a Paffage in Horace \(<x\)-I pinin'd by \(D r\). much admire, I hit upon a Paffage, which I think none of them (and I have examin'd the Chief) have clearly explain'd. The Ode begins :

2uem tu Melpomene, \&c.
The Paffage I fpeak of is this;
0 Teftudinis Aurea
Dulcem que Atrepitum, Pieri, temperas!
O Mutis quoque Pifcibus
Donatura Cygni, fl libeat, fonum!
At firft it feem'd to me a wild Rant, or extravagant Whim for Horace, fo great a Judge and Mafter in the Art of Poetry, fo particularly remark'd for his Propriety of Thought, in fo labour'd and exquifite a Poem, to fay that his Mufe could give even to Mute Fifhes the melodious Voice of the Swan ; I look'd upon the Fancy as perfectly forc'd and groundlefs, founded upon nothing that was real or true in Nature: But upon a fecond Confideration, I fancied this might be the Meaning of the Paffage;

That, after he had in the Verfes going before, acknowledged how much he was indebted to the Bounty of his Mure, he here makes a fudden Exclamation to extol her great Art and Myftery, who by mixing various Notes, could compofe fuch fweet Harmony on the Gilded Lyre or Tefudo, and by her furprizing Power, could give even to Mute Fibes, or the hollow Shells of the Teftudines Aquatice or Water Tortoifes, (a Sort of Fifh of which I imagin'd they made their Lyres in old Times) the fweet Melody of the Swan. As for the Comparifon to the Voice of a dying Swan, though that be a Fiction, yet a Vulgar Error univerfally embrac'd, was ever fufficient Authority for a Poet or Orator to draw from it a Comparifon or a Simile.

This put me upon fearching for Matter of Fact, whether or no the ancient Lyre was made of the Shell of a Tortoife; and looking into ancient Authors, I find that it was a current Piece of Hiftory generally received among the Ancients, that Mercury was the firft Inventor of the Lyre (whence Horace in his ioth Ode of the ift Book ftyles him Curve Lyre Parentemi) and that he made it of the Shell of a dead Tortoife, which he accidentally found on the Banks of the River Nile. Out of many, I will produce two Teftimonies to this Purpofe;

Nicander, who wrote above 100 Years before Horace, in his Alexipbarmaca, fpeaking of Antidotes proper againt the Poifon of the Salamander, recommends both the Sea and the Mountain Tortoije in thefe Words,
\[
\begin{aligned}
& \text { "A A } \\
& \text { 'Aufne }
\end{aligned}
\]

Phale XIV: lid.IV. Part 1. Page \(4744^{\circ}\)

Thus turn'd by Foannes Gorreus,
Cum curvâ auxilio veniunt Teffudine -
Que Pelagi fluctus velocibus innatat alis,
Aut montara etiam Cytifo que vefcitur, © quam
Reddidit e muta modulanti voce cañorans
Mercurius, piEFo infontis qui Cortice carnenz
Exemit, geminumq; Ancona intendit in oris.
Grevinus in his Treatife de Venenis in the Chapter de Salamandra, pag. 119. gives us a Comment on thefe Verfes, and relates at large the Hiltory of the firft Lyre, but I cannot but take Notice that this Verfe

Reddidit e muta modulanti voce canoram--Is fo home and appofite to our Purpofe, and comes up fo clofe to Horace's Thought,

> O mutis quoque pifcibus

Donatura Cygni \(\sqrt{2}\) libeat Jonum, that it does not only explain the true Meaning of it, but makes me inclinable to believe, that Horace might have in his View this very Paffage; which he feems alfo again to allude to (though not fo fully and exprefly) in his 11 th. Ode of the \(3 d\) Book, where he invokes his Lyre,

Guque Teftudo refonare Jeptern

\section*{Callida nervis,}

Nec Loquax olim neque grata -
The other Inftance is from one of Lucian's Dialogues, who writ above a hundred Years after Horace; whence 'tis plain the Mechanifm of the ancient Lyre, and the Opinion concerning its firt Invention, prevail'd fince, as well as before, Horace's Days. In this Dialogue he introduces Apollo and Vulcan talking after his jocofe way of Mercury to this Purpofe.

Ap. Teftudinem mortucm alicubi offendens Inftrumentum ex ea concinnavit; Bracbia enim adaplans fugum uppofuit, deinde Clavos infigens, \(\mathcal{B}\) Hremifpherium repandum infra fubjiciens, Septem Cbordasextendebat, atq; modulabatur quiddam valde fonorum, O Vulcane, © ad Mufice Melodiam compofitum.

Fig. 220. is taken from Father Merfennus (Lib. I. de Inftrumentis, p.7.) Fig. zze: which he tells us he copied from the Sculpture of an antique Gem, that belong'd to one Jacobus Gaffarellus. \(A\), \(A\), fhew the wrixess of Lucian, the 'Ayxisys or Bracbia of Nicander, made of the Horns of fome Bealt. B
 raifed or depreft \(c, c\), the \(\chi\) ç \(\delta\) au, or Strings, which were fix'd at their t'other End to \(D\) the \(\mu a y\) áfion Hemijpberium or Belly: This is very like Figure 221. which is an entire Tefudo Aquatica or rather Fluviatilis, ta- Fig, 22w. ken from fohnfonus de Animalibus as delineated in his eigbtieth Table de 2uadrupedibus; making Allowances for their different Pofture, one being reprefented full and flat, whilft only half of the other appears becaufe 'tis fhewn fide-ways.

\section*{Of the Ancient Greek and Roman Lyre.}

The Belly of Merjennus's Lyre mark'd \(D\), agrees nicely in Figure and Shape with the Back or Shell of Fobnfonus's Teffudo Aquatica, mark'd \(E\). They are both curiounly teffelated, checker'd into Areas or Scales \(F, F\), \(F, F, F, F\), of fomewhat a Square Figure; and each of thefe Scales again in both is neatly wrought about their Edges with a Line running paralsel to their Margins \(g, g, g, g, g, g\); and the Shell of the Lyre, as that of the Tortoife, terminates in a narrow Limb or Verge, cut into fmaller Scales \(b, b, b, b, b, b\) incompaffing the whole : fo that both thefe Figures, though drawn by different Artifts, perhaps at two thoufand Years Diftance, do manifeftly own the Lineaments of the fame natural Original.

Paufanias too in his Defcription of Greece (as I find it quoted by Gefner) mentions a Mountain in Arcadia called Partbenius Mons, qui \(\mathcal{T}_{e}\) fiudines exbibet ad compingendas Lyras aptiflimas; and in another Place, Arcadum Querceta ingenti magnitudine Teftudines exbibent, ex quibus Lyras conficeres aquales illis que ex Indica Teftudine componuntur. From whence 'tis plain the Ancients made their Lyres of the Shells of Tortoifes, perhaps not very curious in the Choice of their Materials, but might take promifcuouny the Land or River Tortoife, which occafions Paufanias and Nicander to mention the Mountain, whereas Horace fpeaks of the River Tortoifay.

And indeed moft of the Inftruments, \(\xi^{\circ} c\). now in Ufe were at firt rude, plain, and fimple, tho' improv'd by Length of Time, and Fancy of Artificers: Thus the Flute, Flagelet, Hautboy, and Organs, are only Improvements of the Tenues Avence or Oaten-Pipes of the Field, or the Calami impares functi of the Ancients, Reeds of unequal Lengths rudely put together; thus their Trumpets were at firft made only of rude Horns of Beafts, and fometimes of the common Buccina Wbelks or large Sea-fhells, hence Virgil,

> Rauco ftrepuerunt Cornua cantu. . And Perfius,

Buccina jam prifcos cogebat ad arma 2uirites.
And thus their Lyres were at firft made of the Tortoife-Shell ; tho' in After-Ages the Number of the Strings was encreafed, and the Model alter'd; and the Inftrument tho' improv'd, and very unlike its firf Original, yet ftill retain'd its Ancient Name.

This appears from thofe other Schemes Merfennus gives in the fame Table of feveral Sorts of the ancient Lyres (but thefe I take to be more Modern than that which is here expreft) and from thofe defcribd by Leonardo. Agoftini, in the Second Part of his Collection of the Gemme Anticbe, which fhew us, that as the Fancy of the Workman, the Mode of the Times, real Convenience or an imaginary Beauty in the Inftrument determin'd it, they were fafhion'd into various Shapes, and frequently like their Lamps of Old into capricious, fantaftical odd Figures.

\title{
The Philofophical Tranfactions \\ ABRID G'D.
}

\section*{PARTII.}

Containing the

\section*{PHYSIOLOGICALPAPERS.}

\section*{Chap. I.}

\section*{Phyfiology. Metcorology. Pneumatics.}
\begin{tabular}{|c|c|c|}
\hline - & & 1. \(\sim H E\) Heat of Winter Air, when Water begins \(A\) Scale of the to freeze. This Heat is known by rightly Degrees of placing the Thermometer in Snow preffed \(\begin{gathered}\text { Heat, } 270 \text {, p... }\end{gathered}\) together, at what Time it begins to thaw. \\
\hline - , 1, 2. & & The Heat of Winter Air. \\
\hline 2, 3, 4 . & & The Heat of the Air in Spring and Autumn. \\
\hline 4, 5, 6 . & & The Heat of the Air in Summer. \\
\hline 46. & & The Heat of the Air at Noon, about the Month of \(\mathfrak{F} u l y\). \\
\hline 12. & 1 & The greatef Heat that the Thermometer receives by the Contact of a Human Body. This Heat is much the fame as that of a Bird fitting upon her Eggs. \\
\hline 1475 & 12 & The Heat of a Bath, which is almoft the greateft that any one can endure long, with his Hand agitated and immerfed in it. The fame almoft is the Heat of Blood juft let out. \\
\hline 17 & \(1 \frac{1}{2}\) & The greateft Heat of a Bath that any one can endure long, his Hand being immerfed and at reft in it. \\
\hline \(20{ }_{17}^{2}\) & \(1 \frac{1}{6}\) & The Heat of a Bath in which Wax fwimming and melt. ing, by moving about grows hard and lofes its Tranfparency. \\
\hline 24 & 2 & The Heat of a Bath in which Wax fwimming grows liquid by the Heat, and is preferved in continual Flux without Ebullition. \\
\hline & \(2 \frac{1}{1}\) & The intermediate Heat between the Degrees in which the Wax melts and the Water boils. \\
\hline 34 & 2 & The Heat by which Water boils violently, and a Mixture of two Parts of Lead, of three Pasts of Pewter, and \\
\hline П & & \(*\) \\
\hline
\end{tabular}

\section*{A Scale of the Degrees of Heat.} and of five Parts of. Bifmuth grows ftiff in cooling. Water begins to boil by a Heat of 33 Parts, and in boiling conceives a Heat of more than \(34 \frac{1}{2}\) Parts. But Iron with a Heat of 35 or 36 Parts ceales to excite an Ebullition, when hot Water is dropt upon it ; and of 37 Parts, when cold Water does the fame.

The leaft Heat by which a Mixture of one Part Lead, of four Parts Pewter, and of five Parts Bilmuth, grows hot and melts, and is preferved in a continual Flux.
The leaft Heat by which a Mixture of equal Parts of Pewter and Bilmuth melts. This Mixture cools and coagulates by a Heat of 47 Degrees.
A Heat by which a Mixture of two Parts of Pewter, and one Parr of Bifmuth is melted, as alfo a Mixture of three Parts of Pewter, and two Parts of Lead. But a Mixture of five Parts of Pewter, and of two Parts of Bifmuth, cools and grows ftiff with this Heat. And a Mixture of equal Parts of Lead and Bifmuth does the fame.
\(3 \frac{2}{2}\) The leaft Heat by which a Mixture of one Part of Bifmuth, and eight Parts of Pewter is melted. Pewter alone is melted with a Heat of 72 Parts, and cools and grows ftiff by a Heat of 70 Parts.
The Heat by which Bifmuth is melted, as alfo a Mixture of four Parts of Lead, and one Part of Pewter. But a Mixture of five Parts of Lead, and one Part of Pewter, grows ftiff when melted, and cools in this Heat.
The leaft Heat by which Lead is melted. Lead grows hot and melts in a Heat of 96 or 97 Parts, and cools and grows ftiff in a Heat of 95 Parts.
\(4^{\frac{1}{4}}\) The Heat by which Bodies heated in the Fire by cooling quite leave off to thine in the Darknefs of the Night, and again by growing hot begin to fhine in the fame Darknefs, but with a very faint Light which can hardly be perceived. In this Heat a Mixture of equal Parts of Pewter and Regulus Martis will melt ; but a Mixture of feven Parts of Bifmuth, and four Parts of the fame Regulus Martis, will cool and grow ftiff.
\(4 \frac{1}{\frac{1}{2}}\) The Heat by which Bodies heated in the Fire grow red hot, but not fo in the Twilight. By this Hear a Mixture of two Parts of Regulus Martis, and of one Part of Bifmuth, as alfo a Mixture of five Parts of Regulus Martis, and one Part of Pewter, by cooling grows ftiff. The Regulus by itfelf grows ftiff with a Heat of 146 Degrees.
\(4 \frac{1}{4}\) The Heat by which Bodies heated in the Fire plainly grow red hot in the Twilight, juft before the Rifing or Setting of the Sun, but not fo in open Day-light, or but very obfcurely. The Heat of burning Coals in a fmall Kitchen Fire, made of bituminous fuffile Coals, and without blowing with Bellows. The fame is the Heat of Iron in fuch a Fire, that grows red hot as much as it can. The Heat of a fmall Culinary Fire made of Wood is fomething greater, perhaps of 200 or 210 Degrees. But the Heat of a large Fire is fomething greater ftill, efpecially if provoked by the Ufe of Bellows.
In the firft Column of this Table we have the Degrees of Heat in Arithmetical Progreffion, beginning the Computation from that Degree in which Water begins to freeze, as it were from the loweft Degree of Heat, or the common Limit of Heat and Cold, and making the external Heat of a Human Body to be 12 Degrees. In the fecond Column are had the Degrees of Heat in Geometrical Progreffion, fo that the fecond Degree is as great again as the firft, the third as great again as the fecond, and fo on; and the firt is the external Heat of the Body of a Man adequate to Senfe. Now it appears from this Table, that the Heat of boiling Water is almoft three Times greater than the Heat of the Human Body, and that the Heat of melted Pewter is fix Times greater, and the Heat of melted Lead is eight Times greater, and the Heat of melted Regulus is twelve Times greater, and that the ordinary Heat of a Culinary Fire is 16 or 17 Times greater, than the fame Heat of a Human Body.

This Table was conftructed by the help of a Thermometer and a piece of red hot Iron. By the Thermometer I found the Meafure of all the Degrees of Heat, till I came to the Heat with which Pewter is melted, and by the red hot Iron I found the Meafure of the reft. For the Heat which red hot Iron communicates to cold Bodies which are contiguous to it, in a given time, that is, the Heat which the Iron loles in a given time, is as the whole Heat of the Iron. Therefore if the Times of cooling are taken equal, the Heats will be in a Geometrical Ratio, and therefore are eafily found by a Table of L.ogarithms.

Therefore firft I found, by a Thermometer contructed with Linfeed Oyl, that when the Thermometer was put into melting Snow, the Oyl took up a Space of 10000 Parts. The fame Oyl rarified by a Heat of the firft Degree, or by that of a human Body, took up the Space 10256 ; and by the Heat of Water juft beginning to boil, it took up the Space 10705 , and by the Heat of Water boiling vehemently it took up the Space 10725, and by the Heat of melted Pewter cooling, when it began to be ftiff and put on the Confiftence of an Amalgama, it took up the Space 11516, and the Space 11496 when it was quite ftiff. Therefore the rarified Oyl was to the dilated in the

Ratio.

\section*{Dr. Hook's Marine Barometer.}

Ratio of 40 to 39 , by the Heat of the human Body; in the Ratio of 15 to 14 by the Heat of boiling Water ; in the Ratio of 15 to 13 by the Heat of cooling Pewter, when it began to grow Itiff and coagulate; and in the Ratio of 23 to 20 by the Heat by which cooling Pewter grows quite ftiff. The Rarefaction of Air with equal Heat was ten times greater than the Rarefaction of Oyl, and the Rarefaction of Oyl was about 15 times greater than the Rarefaction of Spirit of Wine. And from what is here found, by fuppofing the Heat of the Oyl proportional to its Rarefaction, and for the Heat of the human Body writing 12 Degrees, the Heat of Water when it begins to boil will come out 33 Degrees, and when it boils vehemently 34 Degrees; and the Heat of Pewter either when it melts, or when it begins to cool and becomes of the Confiftency of an Amalgama, will be of 72 Degrees, and when it cools and grows hard, of 70 Degrees.

Thefe things being known, that I might find the reft, I heated a thick piece of Iron till it was red hot, and taking it out of the Fire with a hot pair of Pincers, I immediately put it in a cold Place, where the Wind blew conftantly; and putting upon it little Particles of different Kinds of Metals, and other Bodies that would melr, I obferved the Times of Cooling, till all the Particles grow ftiff and loft their Fluidity, and the Heat of the Iron was equal to the Heat of the human Body. Then fuppofing that the Exceffes of the Heat of the Iron and the rigid Particles above the Heat of the Atmofphere found by the Thermometer, are in Geometrical Progreffion when the Times are in Arithmetical Progreffion, all the Degrees of Heat became known. I placed the Iron in a Wind blowing uniformly, and not in a quiet Air, that the Air heated by the Iron might always be carry'd away by the Wind, and the cool Air might fucceed in its Place with an uniform Motion. For thus equal Parts of the Air would be made hot in equal Times, and would conceive a Heat proportional to the Heat of the Iron.

Now the Heats thus found will have the fame Proportion to one another with the Heats found by the Thermometer, and therefore we have rightly affumed, that the Rarefactions of the Oyl are proportional to its Heat.

An Account of Dr. Hook's Marine Barometer, by Mr. E. Halley, n. 259 . p. 791.
II. Dr. Hook, who has made many Attempts to improve the Barometer, and to render the minute Divifions on the Scale thereof more fenfible, judging that it might be of great Ufe at Sea, contrived feveral Ways to make it ferviceable on Board a Ship; one of which he explained to the Royal Society at their weekly Meeting in Gre/bam-College, fanuary 2. 166 . Fince which Time he hath further cultivated the Invention, and fome Years ago produced before the faid Society, the Inftrument I am now to defcribe.

The Mercurial Barometer requiring a perpendicular Pofture, and the Quickfilver vibrating therein with great Violence upon any Agitation, is therefore uncapable of being ufed at Sea, (though it hath Jately
lately been contrived to be made portable.) So it remained to find out fome other Principle, wherein the Pofition of the Inftrument was not fo indifpenfably neceffary: For this, all thofe that ufe the Sea are obliged to the great Facility Dr. Hook has always Thewn, in applying philofophical Experiments to their proper Ufes.

It is about 40 Years fince, that the Thermometers of Robt. de Fluctibus, depending on the Dilatation and Contraction of included Air by Heat and Cold, have been difufed, upon Difcovery that the Air's Preffure is unequal ; that Inequality mixing itfelf with the Effects of the Warmth of the Air in that Inftrument. And inftead thereof was fubftituted the feal'd Thermometer, including Spirit of Wine (firft brought into England out of Italy by Sir Robert Soutbwell) as a proper Standard of the Temper of the Air in relation to Heat and Cold; that æthereal Spirit being of all the known Liquors the moft fufceptible of Dilatation and Contraction, efpecially with a moderate Degree of either Heat or Cold. Now this being allowed as a Standard, and the other Thermometer that includes Air being graduated with the fame Divifions, fo as at the Time when the Air was included, to agree with the Spirit-Thermometer in all the Degrees of Heat and Cold, noting at the fame Time the precife Height of the Mcreury in the common Barometers: It will readily be underitood, that whenfoever thefe two Thermometers fhall agree, the Preflure of the Air is the fame it was, when the Air was included and the Inftrument graduated: That if in the Air-Thermometer the Liquor ftand higher than the Divifion marked thereon, correfponding with that on the Spirit-Glafs, it is an Indication that there is a greater Preffure of the Air at that Time, than when the Inftrument was graduated. And the contrary is to be concluded, when the Air-Glafs ftands lower than the Spirit, viz. that then the Air is fo much lighter, and the Quickfilver in the ordinary Barometers lower than at the fame Time of Graduation.

And the Spaces anfwering to an Inch of Mercury will be more or lefs, according to the Quancity of Air fo included, and the Smallnefs of the Glafs Cane, in which the Liquor rifes and falls, and may be augmented alinoft in any Proportion, under that of the fpecific Gravity of the Liquor of the Thermometer to Mercury. So as to have a Foot or more for an Inch of Mercury, which is another great Convenience.

It has been obferved by fome, that in long keeping this Inftrument, the Air included either finds a Means to efcape, or depofits fome Vipours mix'd with it, or elfe for fome other Caufe becomes lefs elaftic, whereby in Procefs of Time it gives the Height of the Mercury fomewhat greater than it ought; but this, if it fhould happen in fome of them, hinders not the Ufefulnefs thercof, for that it may at any Time very eafily be corrected by Experiment, and the rifing and falling thereof are the Things chiefly remarkable in it, the juft Height being. barely a Curiofity.

Vol. IV. Part II.

In:

\section*{A New Barofoppe.}

In there Parts of the World, long Experience has told us, that the rifing of the Mercury forbodes fair Weather after foul, and an Eafterly or Northerly Wind, and that the falling thereof, on the contrary, fignifies Southerly or Wefterly Winds, with Rain, or ftormy Winds, or both; which latter is of much more Confequence to provide againft at Sea than at Land; and in a Storm, the Mercury beginning to rife, is a fure Sign that it begins to abate, as has been experienced in high Latitudes both to the Northwards and Southwards of the Equator.
\(A B\) reprefents the Spirit-Thermometer, graduated from o , or the freezing Point, through all the poffible Degrees of the Heat or Cold of the Air, at leaft in thefe Climates.
\(C D\) is the Air-Thermometer, graduated after the fame Manner, with the like Degrees.
\(E F\) is a Plate applied to the Side of the Thermometer \(C D\), graduated into Spaces anfwering to Inches and Parts of an Inch of Mercury, in the common Barometers.

G, a Hand ftanding on the Plate at the Height of the Mercury thereon, as it was when the Inftrument was graduated, as fuppofe here at \(29 \frac{1}{2}\) Inches.
\(L M\) a Wire on which the Plate EF flips up and down, parallel to the Cane of the Thermometer \(C D\).
\(K\), any Point at which the Spirit ftands at the Time of Obfervation; fuppofe at \(3^{8}\) on the Spirit-Thermometer; flide the Plate EF till the Hand Gftand at \(3^{8}\) on the Air-Thermometer, and if the Liquor therein ftand at \(3^{8}\) likewife, then is the Preffure of the Air the fame as at the Time of Graduation ; viz. 29,5; but if it ftand higher, as at 30 at \(I\), then is the Preffure of the Air greater; and the Divifion on the niding Plate againft the Liquor, Shews the prefent Height of the Mercury to be 29 Inches 7 Tenths.

I had one of thefe Barometers with me in my late Southern Voyage, and it never failed to prognoftick and give early Notice of all the bad Weather we had.

A New Barojoppe, by \(M r\). Cafwell. n. 290. p. 1597.

Fig. 2.
III. I have made a new Sort of Barofcope, 'tis cheap and very exact, I here fend you its Calculation as it occurr'd to my Thoughts before I made it. Suppofe \(A B C D\) is a Bucket of Water, in it the Barofcope \(x r e z y o s m\), which confifts of a Bodyxrsm, and a Tube ezyo, the Body and Tube are both concave Cylinders communicating with each other, and made of Tin (for Want of Glafs:) The Bottom of the Tube \(z y\) has a Lead-weight to fink it, fo that the Top of the Body may juft fwim even with the Surface of the Water by the Addition of fome Grain-Weights on the Top. The Water when the Inftrument is forced with its Mouth downwards gets up into the Tube to the Height \(y u\). There is added on the Top a fmall concave Cylinder, which I call the Pipe, to diftinguifh it from the Bottom

\section*{A New Barofope.}

Imall Cylinder, which I call the Tube: This Pipe is to fuftain the Inftrument from finking to the Bottom, \(m d\) is a Wire, \(m S, d E\) are two Threads oblique to the Surface of the Water, which Threads perform the Office of Diagonals: For that while the Inftrument finks more or lefs by the Alteration of the Gravity of the Air, there, where the Surface of the Water cuts the Thread, is form'd a fmall Bubble, which Bubble afcends up the Thread, while the \(\$\) of the common Barofcope afcends.
The Circumference of the Body is 21 Inches, therefore its Area \(=35\) : the Altitude \(m s=4\), therefore the Body's Solidity \(=140\), each Bafe \(x m, r s\), has a Convexity whofe Altitude is 6.5 , therefore the Conoid on each Bafe is nearly \(=11 \frac{1}{2}\), therefore \(d\) the whole Body is \(=\left(140+1 I^{\frac{1}{2}}+11 \frac{1}{2}=\right) 163\), and \(b\) the entire Altitude of the Body \(=(4+.65+.65=) 5.3\). The inner Circumference of the Tube is 5.014 , therefore its Area \(n=2\) the Length of the Tube \(=45\), therefore the Tube's Capacity \(=9\), therefore \(C\), the Content of the Body and Tube \(=163+9=172\) Cubic Inches, that is almoft \(2 \frac{1}{3}\) Quarts.

Suppofe the Air's Preffure when greateft \(=30.5\) Inches of \(\$=\) \((30.5 \times 14 \Rightarrow 427\) of Water, and \(f=427\), therefore \(f c=73444\). Put \(a\) for the Depth o \(u\), of the Air in the Tube when the Body is juft all immerfed, the Air in the Inftrument on Immerfion contracts fomewhat by the Cold of the Water; this Contraction I find is nearly as much as would be produc'd by an Addition of I Inch to the Atmofphere's Altitude 427; this in cold Weather, but in warm Weather 'tis probably twice as much : But we will now fuppofe it \(=\mathrm{I}\), therefore the Depth of the Surface of the Water in the Tube below the Surface of the outer Water is \(=b+a\), cherefore the Preffure on that inner Surface, is as the Altitude of the Atmofphere above it \(=f+b+1+a=F-a\) (putting \(F=f+b+1\).) Then for that the Spaces into which the Air is contracted, are reciprocal to their refpective Preffures, and for that while the Inftrument is out of the Water, the Preffure \(f\) anfwered to the Space \(C\), therefore, \(F+a: f:: C: \frac{f c}{F+a}=\) Space which the Air takes up in the Inftrument under Water; therefore, \(\frac{f c}{F+a}-d=\) that Part of the Tube which is poffeffed by Air \(=a n\) (fuppofing the Tube's Area \(2=n\)). Therefore \(f c-F d-a d=F a n+a a n\). \(\quad\) Therefore \(a a+F+\frac{d}{n}\)
\(x a=\frac{f \varepsilon-F d}{n}\). Put \(F+\frac{d}{n}=2 g\), therefore \(a a+2 g a\),
\(=\frac{f c-F d}{n}\) therefore \(a=\sqrt{: \frac{f c-F d}{n}+g g}-g\).
Then fuppofe the Atmofphere's Gravity left, fo much as to fink the \(\varsubsetneqq \frac{1}{10}\) Inch \(=1.4\) of Water, and therefore putting \(q=F-\mathrm{r} .4\), and in the lat Equation \(x\) inftead of \(a\), and \(\gamma\) inftead of \(g\), you have \(\alpha=\) \(\checkmark \frac{f c-c d}{n}+\gamma \gamma: \gamma\). Thus I find \(a=2.72=2.94\) and therefore \(\alpha-\) \(a=.22\), which \(.22 \times n\) gives .44 Cubic Inches, and (fuppofing a Cube-Inch \(=253\) Grains) \(\cdot 44 \times 253=1\) II Grains Weight of Water that was gotten up into the Tube in the firth Cafe more than in the Second, and therefore the Barofcope requires am Addition of 11 I Grains on its Top to fink it with the Level of the Water in the fecond Cafe more than in the first, and this upon the finking of the \(\overline{8}\) in the common Barofope only \(\frac{1}{10}\) Inch; now I Grain in this new Barofcope is nearly as difcernable as \(\frac{1}{10}\) Inch in the common, and therefore this new Barofoope is more exact than the common it Times.

Put \(f=247 . c=172 . d=163 . n=2\) as above, only change \(F\), put \(F\), put \(F 437.3\), that is, fuppofe the Body funk in Water 4 Inches lower, , in this Cafe \(\alpha=208\), therefore \(a-\alpha=.64\), which multiplied into \(\varphi n=1.28\) Cubic-Inches, which \(\times 253\) gives 324 Grains, and \(\mathrm{f}_{0}\) much the Body's Top \(x m\) being funk 4 'aches under Water, the Body becomes heavier, than while \(x m\) was at the surface of the Water. Therefore this x .28 divided by the aforefaid Depth 4 gives .32 the Area of the Top-Pipe, fuch as would ballance or buoy up the Body at any Depth. Strictly f peaking, the Pipe fhould be gradually bigger upward in order to futtain the Inftrument at any Depth, but as to Sene it is cylindrical, and its Circumference \(=2.005\). But for that the leaf Altoration of the Air would make the Body's Top \(x m\) in that Cafe pals through the 4 Inches (which 4 Inches I fuppofe, all the Variety of Depth that the Inftrument has room given it in the Bucket to afcend or defcend) therefore the Pipe is made a fall Matter bigger, (viz.) its Circumference is 2.14; whereby the Pipe, according as the Body finks more, gives more Refiftance to the defending Body. The Pipe's Area is .3643 ; therefore the Capacity of the Pipe in 4 Inches Altitude is \(=1.457\). But as abovefaid to give juftly no Refiftance, its Capacity fhould be 1.28. Therefore this 1.28 taken from 1.457 , leaves .177 the actual Refiftance in 4 Inches Depth, viz. \((.177 \times 253=) 44\) Grains.

\section*{A New Barofope:}

But this Refiftance will not be the fame in all Weathers, in order therefore to calculate what it will be when the of the common Barofcope is very low: For Example, but 28 Inches high \(=392\) of Water; \(f\) mult be fuppofed \(=392\), therefore \(F=f+b+1=398.3\), and the reft as before; viz. \(d=16_{3}, f c=67424 . F d=649229\). thence by the aforelaid Equation \(\left.\begin{array}{l}a=2.59 \\ \alpha=2.84\end{array}\right\}\) therefore \(\alpha-a=.25\), which \(\times n\) gives .50 Cubic Inches, which \(\times 253=126\) Grains. So that this Barofcope when the \(\wp\) is loweft, is more exact than the common 126 Times, fuppofing the Body immerfed afrefh when the \(\nabla\) is fo low.

Next while the is fo very low, fuppofe the Top of the Body deprefs'd 4 Inches under Water; therefore \(\varphi=F+4=402.3\), the reft are as before, viz. \(f c=674^{24}\), then \(\alpha\) will be 19 : but bcfore, while the Top of the Body was at the Surface, \(\alpha\) was 2.59 ; therefore the Difference \(69 \times\) Tube's Area 2, gives 1. \(3^{9}\) Cube-Inches, which \(\times 253\) gives 349 Grains, and fo much the Barofope is heavier, when the Top \(x m\) is 4 Inches under Water; or which comes to the fame, fuppofing that \(\mathcal{A}\) at 28 , and \(x m\) at the Surface; this Barofcope by the \(Z^{\prime}\) 's afcending \({ }_{16}^{14}\) Inch will become heavier 349 Grains. The Pipe's Capacity in 4 Inches Altitude was 1.457, from which take the abovefaid 1.38, the Refidue \(==.077\), which \(\times 253\) gives 19 Grains in 4 Inches; fo that the Pipe will fuftain the Barofcope, and alfo 44 when the \(\wp\) is \(30 \frac{1}{2}\) high, and but 19 Grains when the \(\overline{\text { is }} 28\) high. The fewer Grains Difference there are in its finking, through 4 Inches, the more nice the Barofcope will be.

There where the Thread cuts the Surface of the Water, is form'd a Bubble, therefore this Bubble while the Inftrument finks in Water 4 Inches, which is all the room that I give it, the Bubble moves on the 2 Diagonal Threads 20 Inches, it follows therefore that 180 Grains Difference would make the Bubble walk over 120 Inches, if the Threads were folong, but as it has been above calculated, about 120 Grains Difference of Weight of the Inftrument is produc'd by fo much of the Alteration of the Air, as would make the \(\bar{Y}\) of the common Barofope \(\frac{1}{10}\) Inch; therefore when the \(\$\) afcends \(\frac{1}{10}\) Inch, the Bubble of this new Barofcope afcends 120 Inches; therefore this new Barofcope is more exact than the common Barofcope by about 12.00 Times. \&
I. While the 8 of the common Barofcope is often known to be ftationary 24 Hours together, the Bubble of the new Barofcope is rarely found to ftand ftill one Minute.
2. Suppofe the Air's Gravity encreafing, and accordingly the Bubble afcending, during the Time that it afcends 20 Inches, it will have many fhort Defcents, of the Quantisy of \(\frac{1}{2} \operatorname{Inch} 1,2,3\), or more Inches, each of which being over it will afcend again. Thefe Retroceffions are frequent, and of all Varieties in Quantity and Duration, fo that there is no judging of the general Courfe of the Bubble by bare Infpection, though you fee it moving but by waiting a little Time.

\section*{A New Thermometer.}
3. A fmall Blaft of Wind will make the Bubble defcend; a Blaft that cannot be heard in a Chamber of the Town, will fenfibly force the Bubble downward. The Blafts of Wind fenfible abroad caufe many of the abovefaid Retroceffions, or Accelerations in the general Courle; as I found by carrying my Barofcope to a Place where the Wind was perceptible.
4. Clouds make the Bubble defcend. A fmall Cloud approaching to the Zenith, works more than a great Cloud near the Horizon. In cloudy Weather the Bubble defcending, a Break of the Clouds (or clear Place) approaching to the Zenith, has made the Bubble to arcend; and after that Break had paffed beyond the Zenith a confiderable Space, the Bubble again defcended.
5. All Clouds (except one) hitherto by me obferved, have made the Bubble to defcend. But the other Day the Wind being North, and the Courfe of the Bubble defcending, I faw to the Windward a large thick Cloud near the Horizon, and the Bubble ftill defcended, but as this Cloud drew near the Zenith, it turned the Way of the Bubble, making it to afcend, and the Bubble continued afcending till the Cloud was all paffed, after which it refumed its former Defcent. It was a Cloud that yielded a cold Shower of fmall Hail.

An Account of

\section*{a New Ther-}

1V. This New Thermometer is compos'd of a Bowl or Bottle of mometer, \(b y\) Glafs, \(A\), which has no other opening, but by a little Tunnel at the \(M r\).Geoffroy. End; and which defcends almoft to the Bottom of the Bowl. This n. \(274 \cdot\) P. 961 , Tunnel is open at both Ends \(B C\).
962 . at the Bottom of the Bowl.

The Space of the Bottle of Glafs is fill'd with Air, which hàs no Communication with the exterior Air.
Fig. 3. When the Air contain'd in this Space is rarified by the exterior Air which touches the Bottle, it preffes at the fame Time the Liquor \(E\), and obliges it to rife by \(B\) in the Tunnel \(B C\). On the contrary, when it condenfes by the exterior Cold, by not preffing the Liquor \(E\), it permits that which is in the Tunnel to fall.

The Readinefs with which the Air condenfes or rarifies by Cold and Heat, makes the Effects of this Thermometer much more fudden than thofe of any other fort: Befides, the Effects of this is much greater, the Air being capable of a greater Rarefaction, or of a greater Condenfation, than any other Liquor.

The Caure of V. Remarks on the Second Paper in the Hiftory of the Royal Academy the Variation of Sciences, for the Year 1711 , concerning the Caufe of the Variation of the of the Baro- Barometer: Sberwing that the Way of accounting for it in that Paper is inmeter, छ'c. by Jufficient, and that the Experiment made ufe of to prove what is there faguliers. n. afferted, does no Way prove it.
351. p. 570. "The Paper is as follows.] "It appears hy the Barometer, that when it "rains, or a little before the Rain, the Air commonly becomes lighter. "That
"That it muft rain when the Air becomes lighter is eafy to imagine ; "for the imperceivable Particles of Water, that fwim about in the "Air in prodigious Quantity, not being fufficiently fuftain'd when the "Air has loft a certain Degree of its Weight, begin to fall, and feveral " of them joining together in the Fall make Drops of Rain. So when " about half of the Air is drawn out of the Recipient of the Air-Pump, " (and confequently the remaining Air is as weak again as at firft) fome" thing like a fmall Rain falls. But why fhould the Air become lighter? " One might imagine that in the Place where it rains, it may have loft. " fome of its Weight and Bulk, by Means of the Winds carrying away "fome Part of it: But Monfieur Ieibnitz, in a Letter to the Abbot "Bignon, gives a more ingenious and more new Reafon for it.
" He pretends that a Body, which is in a Liquid, weighs with that "Liquid, and makes up Part of its whole Weight, fo long as it is "fuftained in it ; but if it ceafes to be fuftained, and confequently falls, " its Weight no longer makes a Part of the Weight of the Liquid, which " thereby comes to weigh lefs. This may naturally be applied to the "above-mentioned Particles of Warer ; they encreafe the Weight of " the Air when it fuftains them, which is diminifhed when it lets them
6. fall : And as it may often happen that the Particles of Water that " are higheft, fall a confiderable Time before they join with thofe that. " are low, the Gravity of the Air diminifhes before it rains, and the " Barometer fhews it.
"This new Principle of Monfieur Leibnitz is furprizing. For mult " not a ftrange Body, whether fuftained in a Liquid or not, always " weigh? Can it gravitate upon any other Bottom than that which "fuftains the whole Liquor? Does that Bottom ceafe to carry a "ftrange Body, becaufe it talls? And is not that Body all the while it " is falling, part of the faid Liquid as to the Weight? At that rate, whilft " a Chymical Precipitation is made, the whole Matter ought to weigh " lefs, which has never been obferved, and fcarce appears credible. "Notwithtanding thefe Objections the Principle holds good, when " more clofely examin'd. What fuftains a heavy Body is prefs'd by it.
" A Table, for example, which futtains a Pound Weight of Iron, is prels'd " by it, and is fo only becaufe it fuftains the whole Action and Effect of "the Caufe of Gravity, (whatever it be) to puth that Lump of Iron lower.
" If the Table fhould yield to the Action of that Caufe of the Weight " (or Gravity) it would not be prefs'd, and therefore would carry no" thing. After the fame Manner, the Bottom of a Veffel, which contains " a Liquid, oppofes itfelf to all the Action of the Caufe of Gravity againft " the faid Liquid: If a ftrange Body fwims in it,the Bottom oppoles itfele " alfo to the faid Action againft that Body, which, being in Equilibrio with " the Liquid, is in that refpect really a Part of it. Thus the Bottom is " prefs'd both by the Liquid and the ftrange Body, and fuftains them both.
"But if the Body falls, it yields to the Action of Gravity, and confe" quently the Bottom does no longer fuftain it; neither will it fuftain
" it, till the faid Body is come down to the Bottom. Therefore du" ring the whole Time of the Fall, the Bottom is eafed of the Weight " of that Body, which is no longer fuftained by any Thing, but pufh'd " down by the Caufe of Gravity, to which nothing hinders it from " yielding.
"Monfieur Leibnitz to confirm his Notion, propofed an Experi" ment. He fays, that two Bodies muft be tied to the two Ends of " a Thread, the one heavier, and the other lighter than Water, yet " fuch as both together may fwim in Water: Put them into a Tube " full of Water, the Tube being tied to one End of the Beam of a "Ballance whofe other End has a counterpoifing Weight: Then if we " cut the Thread which ties the Bodies together (that are of unequal "Weight) fo that the heavieft may prefently defcend, he fays, that " in fuch a Cafe the Tube would be no longer in Equilibrio, but its "counterpoifing Weight would preponderate, becaule the Bottom of " the Tube would be lefs prefs'd. It is plain, that the Tube muft be "fufficiently long, that the falling Body may not reach the Bottom " before the Tube has Time to rife. In Chymical Precipitations, the " Veffels are either too thort, or what is precipitated falls fometimes "too faft and fometimes too flow ; for then the little Bodies are always " (as to Senfe) in Equilibrio with the Liquor that contains them.
"Monfieur Ramazzini, the famous Profeffor at Padua, to whom "Monfieur Leibnitz had propofed his Experiment, has made it with "Succefs, after fome fruitlefs Trials. Monfieur Reaumur (to whom "the Academy had recommended it) has alfo made it with Succefs.

Remarks upon Monfieur Leibnitz's New Principle.] Let \(A B\) be the Bottom of a Veffel full of any Fluid, whofe Top is either wider than the Bottom as \(G H\), narrower as \(E F\), or equal to it as \(C D\). The Preffure of the Fluid upon the Bafe \(A B\) will be equal to the Weight of \(C B\), or of a Cylinder or Prifm of the fame Fluid, made up of the Area of the Bafe multiplied into the perpendicular Height above it.

If the Fluid be equally denfe every way as Water, or of a Denfity uniformly diminif'd as you go upwards, this Propofition (called by Mr. Boyle the Hydroftatical Paradox) will hold good. This is demonftrated, by all Hydroftatical Writers.
rig. 5. Let EF reprefent Part of the Surface of the Earth, and G EFHa Pillar of the Atmofphere, whofe Height is \(G E\) the whole Height of the Air. Let us imagine the Vapours rifing out of the Earth to form themfelves into two Clouds \(A\) and \(B\), and to fettle in that Place where the Air is of the fame fpecific Gravity with themfelves. It, is evident that they will caufe the Air to rife fo much higher as their Bulk amounts to, and will therefore make the Surface which was at \(G H\) to rife up to \(I K\), fo that the Buttom \(E F\) which was prefs'd by a Pillar of Air as \(G E F H\), is now prefs'd by an higher Pillar as \(I E F K\). Now if the Clouds \(A, B\), by any Caufe foever, change their Place, fo as to come downwards, (for Example to \(C, D\)) the

Height of the Pillar IE EK will remain the fame as it was, and therefore the Bottom \(E F\) will be prefs'd as before by the foregoing Propofition.

Corol. I.] If the Clouds \(A B\) defcend, and in their Defcent keep the fame Bulk as they had before, the Surface \(I K\) will remain the fame, and therefore \(E F\) will be prefs'd as before.

Corol. 2.] Whether a Body be fpecifically lighter or fpecifically heavier than a Fluid; fo long as it is detain'd in it, it will add to the Fluid as much Weight as the Weight of an equal Bulk of that Fluid: Wherefore a Body does not lofe all that Weight which it added to the whole Weight of the Fluid, when it ceafes to be fuftain'd in the laid Fluid; contrary to Monfieur Leibnitz's Principle.
Scbol.] If a Cloud (by any Caufe whatfoever) becomes fpecifically heavier than that Part of the Air in which it fwims, the Excefs of its Gravity above an equal Bulk of Air will make it defcend, and accelerate its Motion downwards; and then indeed it will lofe of its Weight by the Refiftance of the Medium, till it comes to an uniform (or fenfibly uniform) Motion : but all the Weight that it will lofe will only be the Excefs of its Gravity above that of the Air; for with the reft of its Weight it will ftill make up Part of the Weight of the Air.

Experiment 1.] Having with a Weight in the Scale \(C\) of the Fig. Gi Balance \(A B\) counterpois'd the long Glafs of Water \(E I\), with a Horfe-Hair I let down the leaden Weight \(W\) into the Water, which from \(F G\) arofe up to \(E H\); and therefore the Water became heavier by the Weight of a Bulk of Water equal to the Lead. Having with another Weight in \(C\) made up the Counterpoife to the whole, with fine Sciffars I cut the Thread of the Plummet; and all the while the Plummet was falling, the Water defcended rather than rofe; and when the Lead was at the Bottom the Water overpois'd, becaufe it had then added to it all the Excefs of Weight of the Lead above an equal Bulk of Water, which by Experiment is about \(\frac{10}{1} \frac{1}{i}\) of its Weight. Had Meffieurs Reaumur and Ramazzini tried the Experiment thus, the Succefs had been the fame; but M. Ramazzini (as I undertood from a Gentleman who was prefent) tried it in the following Manner, as I have fince done.

Experiment 2.] Making ufe of the abovementioned Machine, after Fig. 7d I had balanc'd the Water and Lead in it, I fix'd to the End of the Beam \(B\) the Thread of the Plummet, which in the former Experiment I held in my Hand. This added to the Weight hanging at \(B\), and oblig'd me to put into the other Scale a Weight equal to \(\frac{10}{1 i}\) of the Lead, to recover the Equilibrium. Then cutting the Thread or Hair, the Scale with the Weights overpois'd whilf the Lead was falling; but the Equilibrium was reftor'd when it came to the Bottom. So that the Lead even then muft have loft only its Excefs of Weight above Water.
Vol. IV. Part II.
Rrs
Expe-

Experiment 3.] I tried the Way propofed by Monfieur Ieibnitx in the following Manner.
Fig. 8. I took a Cork \(C\) weighing an Ounce, and fomething more than four times lighter than an equal Bulk of Water, and a Ball of Antimony \(W\) about four times fpecifically heavier than Water, and of four Ounces Weight. The Cork laid upon the Water in the Veffel \(E A B D\) rais'd the Water from SS to \(G G\), and added an Ounce to the Weight of the whole Water: then fufpending the Ball of Antimony by a String, and letting it hang in the Water at \(N\), it rais'd the Water from \(G G\) to \(H I I\), and fo added another Ounce to the Weight of the Water. Then tying the Antimony to the Cork, the Cork had added to it three
Fig. 9. Quarters of the Weight of the Antimony which the Hand before had fuftain'd, and made it fink fo as to be almoft cover'd, and raifed the Water to \(i k\), adding three Ounces to its Weight. Hanging this Veffel of Water upon the Balance, and a Counterpoife at the other End, upon cutting the String the Veffel of Water was rais'd up, and the Equilibrium was not reftor'd till the Antimony came to the Bottom.

By oblerving that as the Cork (being freed from the Weight of the Antimony) arofe, and that during the Fall of the Body, the Water funk to \(b b\), it appears that this is, in Effect, the fame Experiment as the former, and concludes no more. As to the real Caufe of the Variation of the Barometer, namely, the Accumulation of the Air by Winds over the Place where the Barometer rifes; and Part of the Air being blown away where the Mercury in the Barometer finks, fee Dr.
V.dI. p. 20. Halley's Account of it in the Pbil. Tranfact. Num. 181.

Poffcript.] In making the firf Experiment before the R. Society, of a Piece of Lead fufpended by a Thread, whilft it was wholly cover'd with Water in the large Tube in which it hung (whofe Length was four Feet) it was obfervable, not only that the End of the Balance (to which the Tube of Water with the Lead in it was fixed) did not rife when the Thread was cur, (to let the Lead fall from the Top to the Bottom of the Tube) as it mult have done according to M. Leibnitz's Principle; but that the faid End of the Balance began to defcend from the Time that the Lead began to fall. Therefore to be fure that it was not the Plummet's rubbing againft the Sides of the Tube in its Fall, which cauled that Pbenomenon, I hung to the Balance a long Glafs of three Inches Diameter inftead of the Tube, and making the Experiment as before, it fucceeded in the fame manner: The End of the Balance, which carried the Veffel of Water, funk as foon as the Thread of the Plummet was cut; tho' this Glafs was not above half fo long as the Tube.

When by holding of the String I drew the Lead upwards and downwards in the Water, there was no fenfible Alteration of the .Equilitrium. Neither was it alter'd by cutting the String of a StonePlummet, becaufe of the Shortnefs of the Glafs, and the little Excefs of fpecific Gravity in the Stone: for the greater the Difference is
betwixt the Body made ufe of in this Experiment and Water, as well as the bigger the Body itfelf is, the better the Experiment will fucceed.
Hence it appears, that when a Body, fpecifically heavier than a Fluid, is (by what Caufe foever) detain'd in any Place of the raid Fluid, it adds as much to the Weight of the whole Fluid as an equal Bulk of the faid Fluid amounts to: And when the faid Body, by the Action of its Excefs of fpecific Gravity above the Fluid, defcends with an accelcrated Motion; folong as that Motion is accelerated, the Refiftance of the Fluid (which is as the Square of the Velocity) takes off fomething of the whole Weight of the Body; but as much as the Body lofes, fo much the Water gains, over and above what was given it by its rifing on Account of the immers'd Body.

A Body therefore that falls in a Fluid is fo far from making the Fluid lighter as it falls, that it makes it prefs more upon the Bottom that fuftains it, when it is falling, than when it was at reft in the Fluid.

If the Velfel of Water be long enough for the falling Body to come to an uniform Motion before it reaches the Bottom, the Force imprefs'd on the Whter under the Body will make it prefs the Bottom, as much as if the Body were actually at Bottom, the Body in that Cafe lofing all its Excels of Gravity above that of the Water, and the Water gaining it.

Hence it Follows, that a falling Cloud, when it comes to an uniform Motion, will not only add to the Weight of the Air as much as the Weight of an equal Bulk of \(\mathrm{Air}_{3}\) but even as much as its whole Weight amounts to, tho' it be fpecifically heavier than the Air about it.

All the Diminution of Weight that can be allow'd in this Cafe is this. If we imagine the Air to have a fmooth, regular Surface, as we have at firft fuppos'd, (or if that not allow'd, we may take ahy imaginary Surface of it above the Clouds) when a falling Cloud is diminifh'd in Bulk, (as when it is chang'd into Rain) the Surface of the Air will fubfide in Proportion to that Diminution, and therefore will weigh lefs, by fo much as is the Weight of a Quantity of Air equal to the Bulk that Cloud has loft: But when the Drops of Rain after Acceleration (occafion'd by their Excefs of Gravity above that of the Air) are come to an uniform Motion by the Refiftance of the Air, they refore to the Air the Weight that it had loft. Now this uniform Motion being acquir'd in about two Seconds of Time, and the Diminution of Gravity in the Air being infenfible, when compared to near three Inches of Mercury (for fuch is the Variation of the Barometer with us) can no way be the Occafion of thofe fo fenfible Alterations in it, which happen fome time before Rain or Fair Weather.

Add to tbis, that the whole Quantity of Rain that falls in England and France, in the Space of one Xear, Scarce ever equals two Incbes of Mercury : And in moff Places between the Tropicks, the Rains fall, at cer. tain Seafons, in very great Quantities, and yet the Barometer Jowews there very little or no Alleration.
Experiments made quith the Elafticity of different Kinds of Air, were made by help of a Tube 32 Barometer, Digits long, Paris Meafure, and 2 Lines Diameter, in different Parts by \(D_{r}\). J. Scheuchzer. ก. 344 . P . 260. of Switzerland, on occafion of an Excurfion upon the Alps, undertaken in Septeinber 1714 .

The firt Column thews the Air left in the Tube. The fecond the Height of the Mercury above the Superficies of the Quickfilver. The third the Spaces of the expanded Air. The fourth thews the Defcent of the Mercury becaufe of the Air that is left.

Sept. 6. At Zurich, the Height of the whole Barometer at 8 a-Clock before Noon was 26 Paris Digits, 4 Lines. But at \(9 \frac{1}{3}\) it was 26 Dig. \(4 \frac{1}{2}\) Lines.
\begin{tabular}{|c|c|c|c|}
\hline Column I. & Column II. & Column III. & Column IV. \\
\hline Digits. & Digits. Lines. & Digits. Lines, & Digits. Lines, \\
\hline 3 & 199 Twice. & \(12 \quad 6 \frac{1}{2}\) Twice. & 6. \(7^{\frac{1}{2}}\) \\
\hline 6 & 168 & 15 7! & \(988:\) \\
\hline & \(16 \quad 7 \frac{1}{2}\) & 15 & \(9 \quad 9\) \\
\hline 9 & & & \\
\hline 12 & 11 II Twice. & 203 Twice. & \(145^{\frac{1}{3}}\) \\
\hline 15 & \(9 \quad 9\) Twice. & 226 Twice. & \(167^{\frac{1}{2}}\) \\
\hline 18 & \(75^{\frac{1}{2}}\) \} & \(\left.24 \quad 8 \frac{1}{2}\right\}\) & 18 II \\
\hline & 76 & 2483 & \(1810{ }^{\frac{1}{2}}\) \\
\hline 21 & 53 & 27 - Twice. & \(21 \quad 1{ }^{\frac{2}{2}}\) \\
\hline 24 & 3 & 2811 Twice. & \\
\hline 27 & 16 & \(30 \quad 7 \frac{1}{2}\) Twice. & \(2410 \frac{1}{2}\) \\
\hline 30 & - 4 & \(3110^{\frac{1}{2}}\) Twice. & 26 \\
\hline
\end{tabular}

Sept. 11. in a Plain of the Alps call'd Ennentemen gen libeten, near the Mountain Liber, under the Government of Glarys, at one in the Afternoon, the Sky being clear, the Altitude of the whole Barometer was 23. 10 Twice.
\begin{tabular}{|c|c|c|c|}
\hline Column I. Digits. & Column II. Digits. Lines. & Column III, & Column IV. \\
\hline 3 & & Digits. Lines. & Digits. L \\
\hline 6 & \(15 \quad 7^{\frac{1}{2}}\) & \[
\begin{array}{ll}
13 & 6 \\
16 & 4
\end{array}
\] & \\
\hline 9 & 133 & 18 & \\
\hline 12 & \(11{ }^{1} \frac{1}{2}\) & 20 & \(128 \frac{1}{2}\) \\
\hline 15 & 9 & \(22 \quad 9\) & 1410 \\
\hline 18 & 6 11 & 25 & 16 11 \\
\hline 21 & 11 & 26 10 & 18 II \\
\hline 24 & 30 & 28 10 & 2010 \\
\hline 27 & 14 & 305 & 226 \\
\hline 30 & 0 & 318 & 238 \\
\hline
\end{tabular}

Sept. 12;

\section*{Barometer in Switzerland.}

Sept. 12. At 7 before Noon, the Sky clear, auff \(\mathscr{S}_{\text {ljet }}\) an Eminence of the Mountain Liber, the Altitude of the whole Barometer was 2 I. 8.

Column I. Column II. \(\quad\) Column II!. Digits.
\begin{tabular}{r|cc|}
its. & Digits. Lines. \\
3 & 17 & 6 \\
6 & 14 & 7 \\
9 & 12 & 6 \\
12 & 10 & 5 \\
15 & 8 & 5 \\
18 & 6 & 5 \\
21 & 4 & 7 \\
24 & 2 & \(9 \frac{1}{2}\) \\
27 & 1 & 4 \\
30 & 0 & 2
\end{tabular}

Column IV.
Digits. Lines.
\begin{tabular}{ll}
14 & 6 \\
17 & 3 \\
19 & 6 \\
21 & 6 \\
23 & 6 \\
25 & 3 \\
27 & 1 \\
29 & \(0 \frac{1}{2}\) \\
30 & 6 \\
31 & 8
\end{tabular}
\begin{tabular}{cc}
4 & 2 \\
7 & 1 \\
9 & 2 \\
11 & 3 \\
13 & 3 \\
15 & 3 \\
17 & 1 \\
18 & \(10^{\frac{1}{2}}\) \\
20 & 4 \\
21 & 6
\end{tabular}

Sept. 12. At 9 before Noon, the Sky clear, \&uff dem \(\mathbb{B L a t t e n f t o c k , ~}\) an Eminence of the Mountain Liber, the Altitude of the whole Barometer was 21. 6.
\begin{tabular}{r|cc|cc|cc}
3 & 17 & \(2^{\frac{7}{2}}\) & 14 & 6 & 4 & \(3^{\frac{1}{2}}\) \\
6 & 14 & 5 & 17 & 5 & 7 & 1 \\
9 & 12 & 4 & 19 & 6 & 9 & 2 \\
12 & 10 & \(4^{\frac{1}{2}}\) & 21 & 5 & 11 & \(1 \frac{1}{2}\) \\
15 & 8 & 7 & 23 & \(4 \frac{\pi}{3}\) & 12 & 11 \\
18 & 6 & 7 & 25 & 3 & 14 & 11 \\
21 & 4 & 8 & 27 & 3 & 18 & 10 \\
24 & 2 & 9 & 29 & 0 & 18 & 9 \\
27 & 1 & 3 & 30 & 5 & 20 & 3 \\
30 & 0 & 3 & 31 & 6 & 21 & 3
\end{tabular}

Sept. 14. At 12 within the Iron Mine at Saruneta, about 300 Paces from the Entrance, the Sky without being clear. The Height of the whole Barometer was 24.4 . and \(24 \cdot 3\).
\begin{tabular}{r|rr|rr|rr}
3 & 18 & 9 & 13 & 1 & 5 & 5 \\
6 & 15 & 9 & 16 & 1 & 8 & 7 \\
9 & 13 & 5 & 18 & 5 & 10 & 11 \\
12 & 11 & 3 & 20 & 7 & 13 & 1 \\
15 & 9 & 1 & 22 & 9 & 15 & 3 \\
18 & 7 & 0 & 24 & 10 & 17 & 4 \\
21 & 4 & 11 & 27 & 0 & 19 & 5 \\
24 & 3 & 0 & 28 & 10 & 21 & 4 \\
27 & 1 & 4 & 30 & 6 & 23 & 0 \\
30 & 0 & 3 & 31 & 6 & 24 & 1
\end{tabular}

Out of this Metallic Mine, in the open Air, I obferved the fame Alitude of the Mercury in the whole Barometer, alfo in 3 and 9 Digits of Air that was left in the Tube. But it muft be obferved, that in the inmoft Parts of the Mine, where I made my Experiments, the Air was rarified by means of a Fire lighted the Day before, (with which the Miners mollify the Hardnefs of the Vein, and the Place was moderately warm'd like a Stove.
N. B!
N. B: It is found by mamy Experiments miade tofore the Roval Society, that the Elafic Force of comprefsed Air is ws the compreffing Weights directly. By thefe Obfervations of the learned Scheuchzer it appears, that the fame Rule obtains very nearly in rariffed Air. For though fome Difference is found, yet it is not fo great but that it may be owing to the unequal Diameters of the Tube. Now that thefe Experiments may be rigbtly mante, it is necelfary, that the Capacity of the Tube be divided into equal Parts, by putting the Mirtury in by desrrees, inflead of taking Parts equal in Length.
VII. Obfervations on the Weather in a Voyage to China, I709, by Mr. J. Cunningham. n. 292. p. 1639.

in a Voyage to China.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Day of the Mon. & \[
\left\lvert\, \begin{aligned}
& \text { Ther. } \\
& \text { Altit. } \\
& \text { below } \\
& \text { Ex- } \\
& \text { tream } \\
& \text { Hear. }
\end{aligned}\right.
\] & Philof. Barom Altit. & \begin{tabular}{l}
Latitude \\
N. or S.
\end{tabular} & Longitude E. from St . Jago. & Needlei Variation E. or W. & Needles In clin, or Depreflion of the N. orS. Point under theHorizor & Winds. & Weather. \\
\hline 22 & 7 & & 2223 S & 154 & 702 E & & NNE toE by N. & Fair with a shower. \\
\hline 23 & 5 & & 2347 & 239 E & & & NNE. to N NW. & Fair and pleafant. \\
\hline 24 & 5 & & 25 & 328 EF & & & NNE to NE by E. & Fair and pleafant. \\
\hline 25 & \(6 \frac{1}{2}\) & & \(26 \quad 38\) & 409 El & 800E & 3900S & NE by N onNE. & Fair and pleafant. \\
\hline 26 & \(6{ }_{2}^{1}\) & & 27.49 S & 452 El & & & NE by E to N. & Fair and plearant. \\
\hline 27 & 8 & & 2916 & 607 E & & & N to NW. & Fair fometimes cloudy \\
\hline 28 & 8 & & 30 OI & 734 E & & & WNW to WS W. & Cloudy \&fqually with Rain and Lightring. \\
\hline 29 & \(10 \frac{1}{2}\) & & 3126 & 1020 E & & & WNW to N by E freth. & Squally with much Rain \& fome Thunder \\
\hline \[
\begin{gathered}
\overline{\text { Marcb }} \\
1 . \\
\hline
\end{gathered}
\] & \(12 \frac{1}{2}\) & \({ }^{8}\) & 3110 & 1149 E & & & \(\overline{\text { NW to W moderate. }}\) & Uncertain with Thun\(\mathrm{d} \in \mathrm{r}\) and Rain. \\
\hline - & 13 & 10 & 3116S & 1357 E & 450 E & 42005 & W to N W moderate. & Fair and cloudy. \\
\hline 3 & \(17 \frac{1}{2 \frac{1}{3}}\) & 14 & 3113 S & 1604 E & & & \(W\) to S frefh. & Cloudy and fqually \({ }_{\text {e }}\) \\
\hline 4 & \(23 \frac{1}{2}\) & 18 & \(30 \quad 2651\) & 1751E & & & S by E to SE by E. & Squally and cloudy. \\
\hline 5 & 26 & 191 & 3068 1 & 1717 E & & & ESE and E by S. & Fair and cloudy. \\
\hline 6 & 24 & 20 & \(3^{2} 07071\) & 08E & 305 E & & E by S to E by N moderate. & Fair and cloudy. \\
\hline 7 & 23 & 26 & 3306516 & 1654 E & & & \[
\begin{aligned}
& \text { E by } N \text { to SE by } \\
& \text { Efmall. }
\end{aligned}
\] & Fair and cloudy. \\
\hline 8 & 32 & 32 & 33145 & 1826E & 205 E & & SE to SSW moderate. & Fair and cloudy. \\
\hline 9 & 33 & \(35 \frac{1}{2}\) & 3245 S 1 & 1959 E & & & s to SSW blowing hard. & Clofe and fqually. \\
\hline 10 & 29 & 34 & 3227 & 13 E & & & S by E \& S moderate. & Gray and cloudy. \\
\hline 11 & 29 & \(32 \frac{1}{2}\) & 320152 & 2232 E & & & S by E to SE by E. & Squally, clofe and cloudy. \\
\hline 12 & \(28 \frac{1}{2}\) & 33年 & 323651 & 1223 E & & & SSE to E by S. & Dry, clofe \& cloudy \\
\hline 13 & 27 & 34 & \(33-425\) & 2242 E & & & E by Sto F by Neafy. & Fair and cloie. \\
\hline 14 & 26 & 31 & \(3+\mathrm{c} 8 \mathrm{~S}=\) & 2323 E & 115 E & & Vasiable and fmall. & Fair and clole. \\
\hline 4 & 26 & 30 & \(3+1052\) & 2526 E & 057 E & & N toNW by Nealy. & Fair and lerene. \\
\hline 16 & 24 & 30 & 3440 S 2 & 2745 E & -20E & & N by W to NNE. & Far and lerene, fometimes ciofe. \\
\hline & 25 & 30 & 3455 S 2 & 2948 E & 02218 & & \[
\begin{aligned}
& \text { Noy E to NNW } \\
& \text { a fine Gale. }
\end{aligned}
\] & Fair and ferene. \\
\hline 18 & \(25^{\frac{5}{2}}\) & 30 & \(\overline{34595}\) & 3327 E & 119 W & 4700 S & N to NNW. & Fair and ferene, this Forenoon cloudy. \\
\hline 19 & \(3+\) & 38 & 344453 & \(\overline{3625 E}\) & & & NNW to SW and
S by W. & Thick and fqually,
this Forenoon fair. \\
\hline 20 & 26 & \(31{ }^{\frac{1}{2}}\) & \[
34225
\] & 3745 F & 625W & & SW to NW ealy. & Fair and cloudy. \\
\hline \(\frac{21}{22}\) & 28 & 33 & 342953 & 390.15 & & & NW by N to W eafy. & Fair and cloudy. \\
\hline 22 & 37 & & 34085 & +1315 & & & W to S S Efine. & fair and fometimes squally. \\
\hline 23 & \(\frac{30}{261}\) & & 3435 & 4341 E & \(7{ }^{705 \mathrm{~W}}\) & & Sto W S W fine. & Variable Weather. \\
\hline 25 & \(26 \frac{1}{3}\) & & 3408 & 1506 E & 850W & & SSW to WSW fmall. & Fair and fleafant. \\
\hline 25 & 27 & \(30^{\frac{1}{4}}\) & 33 58 & 4702 El & \(85^{2 W}\) & & SW by Sto SE by S eafy. & Variable. \\
\hline
\end{tabular}

Obfervations on the Weather
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Weather. & Winds. & Needles In clin. or De preflion of the N. or S Point under the Horizo & & | Longitoude E. from the Cape of GoodHope. & Latitude & \[
\begin{aligned}
& \text { Philior } \\
& \text { Baro } \\
& \text { Altit. }
\end{aligned}
\] & Ther Altit. below Extream Heat. & \\
\hline The fame. & SW to SE imall. & & & 8759 & 28015 & 35 & 31 & 27 \\
\hline Variable. & SE. and SE by E. & & \(\overline{35^{8} \mathrm{~W}}\) & \(892+\mathrm{E}\) & 25.55 S & 33 & 30 & 28 \\
\hline Squally \& Rainy with Thunder \& Lightning & SE by E to SSE. & & & \(\overline{9029 \mathrm{E}}\) & 2359 S & 20 & 27 & \({ }^{2} 9\) \\
\hline Variable. & SE and SE by E. & \(8 \longdiv { 6 2 0 0 }\) & 12 W & 9132E & 22405 & 24 & 25 & 30 \\
\hline Fair and ferene. & SE toSS E. & & 700 W 9 & 9242 E & 21235 & 22 & 22 & 31 \\
\hline Fair and pleatant. & SE and S E by E . & & 535 W 9 & \(93 \quad 20 \mathrm{E}\) & 1954 & 19 & 19 & fune 1 \\
\hline The fame. & SE by E and ESE. & & & 9410 E & 18 O2S & 17 & 17 & 2 \\
\hline The fame & SE by E and ESE. & & +40W 9 & 9455 E & \(16 \quad 30 \mathrm{~S}\) & 13 & 14 & \\
\hline The fame. & E by S to E by iv. & 753 & +50 W & 9515 & 15 ncS & 10 & 12 & 4 \\
\hline The fame. & E by N to E by S . & & \(\div 12 \mathrm{~W} 9\) & 9534 H & 13405 & 7 & \(7{ }^{\frac{1}{2}}\) & 5 \\
\hline The fame. & E to NE by E. & 45200 & ; 20 W 9 & 9542 F & 13015 & 3 & 5 & 6 \\
\hline The fame. & E by N to ESt. & & 515 W 9 & 95 561 & 1259 S. & 3 & 5 & 7 \\
\hline The fame. & Eby N to SE. & & \(+42 \mathrm{~W}\) & 9617 E & \(12 \quad 65\) & 3 & 5 & 8 \\
\hline The fame. & ESE to ENE. & & 426 W 9 & 9628 E & 1143 S & 1 & \(5 \frac{1}{2}\) & 9 \\
\hline The fame. & E by N and E . & & 352 W 9 & 9634 E & 1110 S & 1 & 5 & 10 \\
\hline The fame. & E. by N to ESS. & & \(3{ }^{32 \mathrm{~W}} \mathrm{~S}\) & 96 54 E & 1018 S & 0 & 4 & 11 \\
\hline The fame. & E by S to ESE. & 646 & 326 W 9 & 9737 E & 845 S & 1 & 5 & 12 \\
\hline The fame. & Eby S to NNE. & & 312 W 9 & 9721 E & \(75^{22}\) & 1 & \(5 \frac{1}{2}\) & 13 \\
\hline The fame. & ESE to NNE. & & & 95 56E & 723 S & \(\bigcirc\) & \(\frac{5}{4}\) & 14 \\
\hline The lame. & SSE to S E. & & & 9516 E & 6 - 45 S & \(\bigcirc\) & 5 & 15 \\
\hline The fame. & S SE, SSW and calm. & & & Betwixt & & 0 & 4 & 16 \\
\hline The lame. & SSW, SE and calm. & & & Java Head & & \(\bigcirc\) & \(2 \frac{1}{2}\) & 17 \\
\hline The fame. & SE and E by S. & & & and & & 0 & 2 & 18 \\
\hline The fame. & ENE and SE. & & & Batavia & & \(\bigcirc\) & 2 & 19 \\
\hline The fame. & NE by E to SSE. & & & & & \(\bigcirc\) & 1 & 20 \\
\hline The lame. & NNE to S. & \(3 \overline{40005}\) & & \(\overline{\text { Longit. }}\) from natavia & & - & I & 21 \\
\hline The fame. & \(\checkmark\) to SS E. & & & 0005 W & & \(\bigcirc\) & \(1{ }^{\frac{1}{2}}\) & 22 \\
\hline The fame. & NW by W and S W. & & & 20 47 E & 527 S & 0 & \(4 \frac{1}{2}\) & 23 \\
\hline Cloudy with fome Rain. & \(S\) by W and SE by E . & & & 148 E & 524 S & - & 2 & \({ }^{2} 4\) \\
\hline Squally with Thander Lightning and Rain. & ESEcon by E. & & & 155 & 5515 & \(\bigcirc\) & 3 & 25 \\
\hline Cloudy with Rain. & ESE to NE by E & \(4 \longdiv { 3 8 0 0 5 }\) & & 151 & 612 S & \(2 \frac{1}{2}\) & \(6{ }^{1}\) & 26 \\
\hline The fame. & Calm & & & 159 E & 616 S & \(\bigcirc\) & 5 & 27 \\
\hline Variable. & Eby N to ESE fmall. & & & 202 E & \(6 \underline{295}\) & 0 & 5 & 28 \\
\hline Fair. & ESE and SE fmall. & & & 218 E & 6215 & - & 5 & 29 \\
\hline Uncertain. & Variable Breezes. & & & 233 & 629 S & - & 5 & 30 \\
\hline Fair with fome Rain. E & E by S to NE by E & & & 243 E & 644 S & 0 & 4 & 7uly 4 \\
\hline Fair with fume Rain. & NEby EtosE by E & & & 255 E & 639 & 0 & \(4 \frac{1}{2}\) & 2 \\
\hline Fair and rerene. & NE by Eto S E by E. & & & 334 E & 035 & \(\bigcirc\) & 3 \(\frac{1}{2}\) & 3 \\
\hline The fame. & NE toSSE. & & & 349 E & 6 & \(\bigcirc\) & \(3 \frac{1}{2}\) & 4 \\
\hline \(\qquad\) & & & & \(\frac{349 E}{}\) & 635 S & \(\bigcirc\) & S & 5 \\
\hline
\end{tabular}
in a Voyage to Clina.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Day of the Mon. & \begin{tabular}{l}
Ther. \\
Altit. \\
below \\
Ex- \\
tream \\
Heat.
\end{tabular} & Philof. Barom Altit. & Latitude N . or S . & Longitude E. from Batavia. & Netdles Variation E. or W. & Needles In clin. or Depreffion of the N. or S. Point under the Horizon & Winds. & Weather. \\
\hline 6 & 8 & 2 & 6125 4 & 407 E & & & if. SE rmall. & The fame. \\
\hline & 6 & - & 6215 & 428 E & & & SE. by S to E. & The fame. \\
\hline 8 & 6 & \(\bigcirc\) & 622 S 4 & 443 E & & & S E by E.to ENE & The lame. \\
\hline 9 & & 1 & 628 S & 513 E & & & E by S to E by N. & The fane. \\
\hline \(\frac{9}{10}\) & 821 & - & 6 50 S 5 & 537 E & 125 W & 4110 S & SE by E to E by N. & The fame. \\
\hline 11 & 6 & \(\bigcirc\) & \(\overline{6445} 5\) & 547 E & & & ENE to SSE. & The fame, with fome Rain. \\
\hline 12 & 5 & \(\frac{1}{2}\) & \(\overline{6235} 5\) & 505 E & & & E by N to SE. & Fair and ferene. \\
\hline 13 & 5 & 0 & 6 605 S & 617 E & & & SE to E by S. & The fame. \\
\hline 14 & 6 & 2 & 510 S & 654 E & & & SE to ESE. & The fame, with fome Rain. \\
\hline 15 & 4 & \(\bigcirc\) & \(4205 ?\) & 709 E & & & SE byStoESE. & Frir and cloudy. \\
\hline 16 & 5 & - & 408 S 7 & 727 E & & & SE by E to NE by E. & Fair and ferene. \\
\hline 17 & 5 & \(\bigcirc\) & \(\overline{400 S} 7\) & 730 E & At the Banjar & Bar of on Borneo & E to S E and calm. & Fair and cloudy. \\
\hline 18 & 8 & 4 & \(\overline{4005}\) & \(\overline{730 \mathrm{E}}\) & & & E to S E by S fmall. & Cloie and cloudy with Rain. \\
\hline 19 & \(7 \frac{1}{2}\) & I & 400S 7 & 730 E & & & SE frefh. & Clofe and clearing up. \\
\hline 20 & 6 & 0 & 415 S 7 & 706 E & & 40005 & SSE to SE & Fair and ferene. \\
\hline 21 & 5 & \(\bigcirc\) & 45 IS 5 & 508 E & & & \(\bar{S} \mathrm{E}\) by S and SE. & Fair and cloudy \\
\hline 22 & \(22_{2}^{1}\) & \(\bigcirc\) & 459 S & 312 E & & & SE by E to E by S. & The fame. \\
\hline 23 & 4 & \(\bigcirc\) & 445 S & 125 E & & & Sby Eto E by S. & Clofe with ome Rain. \\
\hline 24 & 7 & 4 & 40950 & 017 E & & & Variable. & Squally with Thunder \\
\hline 25 & 0 & \(\bigcirc\) & 4015 & -13E & & 3500 S & S to E by S. & Fair and clofe with Lightning. \\
\hline 26 & \(1 \frac{1}{2}\) & \(\bigcirc\) & 332 S & & & & E by S to S E by S. & Fair and ferene. \\
\hline 27 & 3 & 0 & In the St & Streights & & & ENE tos by E. & Variaule. \\
\hline 28 & 5 & - & of & Banca. & & & SF by S to S. & Fair and feren \\
\hline 29 & \(4 \frac{1}{2}\) & \(\bigcirc\) & 159 & & & & S E by Eto S. & The fame. \\
\hline 30 & 4 & 0 & \(\bigcirc{ }^{015} \mathrm{~L}\) & Longit. & 150W & & SE to NNE & The fame. \\
\hline 31 & 4 & \(\bigcirc\) & 12 jN & trom \(P\) Pto & Condore. & 3100 S & S E to S E by S. & The fame. \\
\hline Aug. & \(2 \frac{1}{2}\) & 0 & \[
319 \mathrm{~N}
\] & 136 \(\bar{W}\) & & & SSE to Sby W. & tair and clole. \\
\hline 2 & 1 & \(\bigcirc\) & \(\overline{507 \mathrm{~N}}\) & 052W & & & S by W tos E. & Variable with Thum der and Lighming \\
\hline 3 & 1 & \(\bigcirc\) & \(\overline{004 \mathrm{~N}}\) & \(\overline{025 \mathrm{~W}}\) & & & Variable. & Fair and clofe. \\
\hline 4 & 1 & \(\bigcirc\) & 747 N & 008 L & & & SSW to SW by S & Fair and pleaiant. \\
\hline 5 & 3 \(\frac{1}{2}\) & \(\bigcirc\) & 916 N & 125 F & & & W to SW. & Fair, clole and hazy. \\
\hline 6 & 2 & \(\bigcirc\) & 1014 N & 307 F & & & , W by W to W. & Fair and hazy. \\
\hline 7 & 1 & 0 & 1204N & \(43 . \mathrm{F}\) & & 530 S 12 & jW by W tosW by s & Fair and ferene. \\
\hline \(\underline{3}\) & 1 & - & \[
2405 \mathrm{~N}
\] & \(5{ }^{58 \mathrm{~F}}\) & & \(400 S^{13}\) & SW and SW by W. & The fame. \\
\hline 9 & \(1^{\frac{1}{2}}\) & 0 & \[
1615 \mathrm{~N}
\] & 7021 & & & \(\bar{W}\) by \(\operatorname{tos} \mathrm{S}\) by S. & Fair and cloudy \\
\hline 10 & 2 \(\frac{1}{2}\) & - & 1814 N & 720 F & & & Variable. & Squally. \\
\hline 11 & \({ }^{\frac{1}{2}}\) & \(\bigcirc\) & 1949N7 & \(\overline{712 \mathrm{E}}\) & & & W S W to W N W. blowing hard. & squally and much overcaft. \\
\hline & \(\frac{1}{2}\) & \(\bigcirc\) & \(\overline{2117 \mathrm{~N}}\) & 702 E & & \(2 \overline{30 S}\) & \[
\sqrt{\text { W S W to SS W. }}
\] & Fair and clofe with fome Rain. \\
\hline & & & & & & cre. & & Weath: \\
\hline
\end{tabular}

\section*{Obfervations on the Weather}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Weather. & Winds. & Needle: Inclin. or De pref. of the N. or S.Po. under the Horizon. & \begin{tabular}{l}
Needles \\
Variation E. \\
or W.
\end{tabular} & Longitude from Pulo Condore & Latitude N . or \(S\). & Philor Barom Altitude. & Ther. Altit. below Extream Heat. & Day of the Mon. \\
\hline Fair and ferene. & SSW to SE by fmall. & & & 736 E & 2158 & \begin{tabular}{l}
above \\
Extr.
\end{tabular} & Heat. & 13 \\
\hline Fair and pleafant with one Shower. & SE to N NE. & 600 N & & 747 E & \(\overline{2215 N}\) & \(\bigcirc\) & \[
\begin{aligned}
& \text { i be- } \\
& \text { low }
\end{aligned}
\] & 14 \\
\hline Fair and pleafant. & E by N to NE by E. & & & 809 E & 22 & \(\bigcirc\) & 1 & 15 \\
\hline The fame. & Variable and calm. & & 120 W & 843 E & 2232 N & 0 & & 16 \\
\hline Fair, with fome drizling Rain. & W S W to S W eary. & & & 948 E & 2310 & - & \({ }^{\frac{1}{2}}\) & 17 \\
\hline \(\overline{\text { Fair and ferene. }}\) & Variable and fmall. & & & 1004 E & 2332 N & & \(1 \frac{1}{2}\) & 18 \\
\hline The fame. & N to N E by N frefh. & & & 10 & 2356 N & - & \(2 \frac{1}{2}\) & 19 \\
\hline Fair and hazy. & N by Eto N E byN & & & 1028 E & 2412 N & \(\bigcirc\) & 4 & 20 \\
\hline The fame. & NE by E to Nby E. & \(6 \longdiv { 1 2 0 0 \mathrm { N } }\) & & 1043 E & 2422 N & - & 1 & 21 \\
\hline The fame. & NE to NNE. & & & 11015 & 2432 N & 0 & 3 & 22 \\
\hline Fair and pleaiant. & NE by E to NNE & & & 1155 & 2447 N & - & \(4^{\frac{1}{2}}\) & 23 \\
\hline Variable. & ENE to NE by N & & & 1128 E & 2456 N & \(\bigcirc\) & & 24 \\
\hline Fair and pleafant. & EN E to N by E moderate. & & & 1138 E & 2509 N & \(\bigcirc\) & 5 & 25 \\
\hline The fäme. & N by E to N E by & & & 1208 E & 2509 N & 0 & 6 & 26 \\
\hline The fame. & ENE to NNE. & & & 1220 E & 2507 N & 0 & 5 & 27 \\
\hline Variable. & E by N to NNE. & & & 1150 E & 25.29 N & \(\bigcirc\) & 5 & 28 \\
\hline Variable. & N E by E to N . & & & 1202 E & 2537 N & 0 & 4 & 29 \\
\hline Clofe and qqually. & \[
\begin{aligned}
& \mathrm{N} \text { by E to } \mathrm{NE} \text { by E } \\
& \text { frefh. }
\end{aligned}
\] & & & 1147 E & 2549 N & \(\bigcirc\) & \(3{ }^{\frac{1}{2}}\) & 30 \\
\hline Variable. & NE by N to E by N & & & 1153 E & \(\overline{2602 \mathrm{~N}}\) & \(\bigcirc\) & 2 & 31 \\
\hline Fair and pleafant. & NNE to NE by E. & & & 1156 E & \(26 \quad 05\) & \(\bigcirc\) & 2年 & Sep. 1. \\
\hline The fame, with fome Rain at Night. & N E fmall. & & & \[
\begin{aligned}
& \hline \text { At Cro } \\
& \text { Ifland. }
\end{aligned}
\] & codile & & & 2 \\
\hline Fair and pleafant. & N N E fmall. & & & & & & & 3 \\
\hline The fame. & N by E to NE. & & & & & & & 4 \\
\hline Fair and cloudy. & N E moderate. & & & & & & & 5 \\
\hline The fame, at Night much Rain. & N E frefh, at Night
S W blowing hard. & & & & & & & 6 \\
\hline Cloudy with fome Rain. & N E frefh and mode-
rate. & & & & & & & 7 \\
\hline Fair and plcalant, at Times overcaft. & NE moderate. & & & & & & & 8 \\
\hline Fair and hazy. & N E moderate. & & & 1238 E & \(\overline{2544 \mathrm{~N}}\) & - & 3 & 9 \\
\hline The fame. & \[
\begin{aligned}
& \mathrm{NE} \text { by } \mathrm{N} \text { to } \mathrm{NE} \\
& \text { by E. }
\end{aligned}
\] & & & 1213 E & 2611 N & 0 & \(3{ }^{\frac{1}{2}}\) & 10 \\
\hline The lame. & NE to NNE. & & & 1247 E & 2611 N & - & 5 & 11 \\
\hline Fair and pleafant. & \[
\begin{array}{|l|}
\hline \text { E by } N \text { to E bys } \\
\text { fmall. }
\end{array}
\] & & & 1237 E & 2622 N & 0 & \(4^{\frac{1}{2}}\) & 12 \\
\hline Fair. & \[
\begin{aligned}
& \text { ENE to N E mo } \\
& \text { derate. }
\end{aligned}
\] & & & 1240 E & 2626 N & 0 & \(8 \frac{1}{2}\) & 13 \\
\hline Fair and cloudy. & NNE to ENE. & & & 1259 E & 12637 N & 0 & \(6 \frac{1}{2}\) & \({ }^{14}\) Day \\
\hline
\end{tabular}

Weather:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Weather. & Winds. & Needles In-1 clin. or De pref. of the N.orS. Pounder the Horizon. & \begin{tabular}{l}
Needles \\
Varia- \\
tion E. \\
or W.
\end{tabular} & \[
\left|\begin{array}{l}
\text { Longi- } \\
\text { tude } \\
\text { from } \\
\text { Pulo } \\
\text { Condore }
\end{array}\right|
\] & Latitude N . or S . & Philor Barom Altitude. & Ther Altit. below Extream Heat & Day of the Mon. \\
\hline Fair and cloudy. & N E fmall. & dif. & & & & 31 & \(23 \frac{1}{2 \frac{1}{2}}\) & 19 \\
\hline The fame. & NNE to ENE. & & & & & 30 & 24 & 20 \\
\hline Cloudy with fome Rain. & NNE to SE. & & & & & 29 & 24 & 21 \\
\hline Fair and cloudy. & N to N W freh. & & & & & 30 & 25 & 12 \\
\hline fair and plealant. & \[
\begin{aligned}
& \text { N by W to W NW } \\
& \text { fmall. }
\end{aligned}
\] & & & & & 30 & 26 & 23 \\
\hline The fame. & S and S S E fmall. & & & & & 32 & \(27^{\frac{1}{4}}\) & 24 \\
\hline The fame. & S E moderate. & & & & & 28 & 24 & 25 \\
\hline The fame. & SE toS by E moderate & & & & & 26 & \(22 \frac{1}{2}\) & 26 \\
\hline Cloudy with fome Rain. & \[
\begin{aligned}
& \mathrm{NW} \text { to } \mathrm{N} \text { by W } \\
& \text { moderate }
\end{aligned}
\] & & & & & 27 & 20 & 27 \\
\hline Thick and hazy with Rain. & N W finall, fome-
times frefh. & & & & & 45 & \(\overline{36 \frac{1}{2}}\) & 28 \\
\hline The fame. & NW to N moderate. & & & & & \(5^{8}\) & 45 & 29 \\
\hline Fair and cloudy. & \(\mathrm{N} N W\) to N by E
fmall. & & & & & 59 & 46 & 30 \\
\hline
\end{tabular}

Note 1. That the Altitude of the Spirits in the Thermometer and Philofophical Barometer was commonly taken at Noon.

Note 2. That the Account of the Winds and Weather at Sea, is from Noon to Noon.

Note 3. That the middle Inclination of the Dipping-Needle is fet down with the Difference alfo which was made, as either Side of the Compafs was turn'd Eaft or Weft: Which Difference at firft was not taken Notice of.

From whence this Difference fhould arife, I cannot determine, the Compafs feeming to be juftly pois'd and equally divided.

For the few Chafmata in the Columns of the Thermometer and Barometer, there needs no other Apology, than that I was not on Board to take an Account of them my felf.

A Regifer of VIII. Note I. The Inland Cbufon is in \(30^{\circ} 25^{\prime}\) N. Latitude upon the Weather, the Coaft of Cbina.
\&c. at
sc. at Chu- Note 2. That the following Obfervations were of a portable Ba-
fan in China, 1700 . by Mr. rometer from England; which by a Barometer let up here were alJ. Cunning- ways \(\frac{6}{20}\) of an Inch lower.
ham. n. 292. Note 3. That the Barometer ftood about 18 Feet above the Su-
p. 1648. p. 1648. perficies of the Sea at high Water.
1. Grey cloudy Weather, very cold and moderate Gales from N W to N.
2. Grey cloudy Weather with moderate Gales from NW to N, and very cold.
3. Grey cloudy Weather, very cold and fmall Gales from N by W and N N W. At Night little Wind and more ferene.
4. Grey cloudy Weather, very cold and moderate Gales at N N W and N by W.
5. Fair and ferene Weather with fmall Gales from N N W to N. The Air temperate.
6. Fair and pleafant Weather, with fimall Gales at NW and N N W.
7. Fair and pleafant Weather, fomewhat hazy, and fmall Gales at N N W. At Night calm.
8. Fair and pleafant Weather, with fmall Gales at N. At Night little Wind.
9. Fair and ferene Weather, with fmall Gales at N. At Night calm.

Io. Very ferene and warnı Weather, with fmall Gales at \(\mathbf{N}\) by W. In the Night calm.
11. Dry and Cerene Weather, with fmall Gales from SE. At Night calm.
12. Dry and ferene Weather, with fome fmall Northerly Breezes. At Night calm.
13. The Morning foggy, all Day ferene with fmall Breezes at N NW.
14. The Morning grey and cloudy, toward Noon thick hazy Weather with drizling Rain till 8 at Night. All Day frefh Gales from W by \(S\) to N W. At Night lefs Wind and fair.
15. Grey cloudy Weather with moderate Gales from N W to N.
16. Fair and pleafant Weather with fmall Gales from \(\mathbf{N}\) to \(\mathbf{N}\) by E .
17. Dry and ferene Weather with fmall Gales at N N W.
18. Grey cloudy Weather, with moderate Gales from NW. In the Night cold.
19. Dry Weather fomewhat cloudy, with fmall Gales from N W to N. Cold at Night.
20. Dry and pleafant Weather, with fmall Gales at N N W.
21. Fair and pleafant Weather, with fmall Gales from \(W\) by \(S\) to N.W.
22. Fair and pleafant Weather, fomewhat hazy with Gales at SE.
23. Fair and pleafant Weather, the Afternoon overcalt, with moderate Gales at N W to N.
24. Dry Weather, fomewhat cloudy, with moderate Gales from W N W to N.
25. Fair and pleafant Weather, with fmall Gales from N by W. At Night calm and cold.
26. Fair and pleafant Weather, with fmall Breezes at N W, for the moft part calm. Y Altitude \(30{ }^{28}{ }^{\frac{8}{8}}\).
37. Grey cloudy Morning, with fmall Gales at W N W. \(\underset{\text { a Altitude }}{ }\) \(30 \frac{\circ}{20}\). In the Afternoon fair and pleafant with fmall Southerly Breezes. At Night calm.
28. Fair and pleafant Weather, with fmall Gales at N W. \(\begin{gathered} \\ 30 \frac{5}{50} \text {. }\end{gathered}\) The Afternoon finall Breezes at S W. At Night calm, and the Breezes veering to N , the Air temperate. \(3^{\frac{4}{20} .}\)
29. Fair and ferene Weather, with Calms. \(30^{\frac{5}{23}}\). In the Afternoon fmall Gales at SE . At Night grey cloudy Weather, the Gale veering to N . \({ }^{3} 30 \frac{6}{20}\).
30. A grey cloudy Morning, with moderate Gales at N W and W N W. \(30 \frac{\circ}{\%}\). All Day more ferene. In the Evening overcaft, and fome Rain at 9 of the Night. 1700.

\section*{The Weatber at Chufan in China.}

11．Fair and pleafant in the Morning，fince overcaft with variable Breezes，the as before．

12．Grey cloudy Weather，in the Forenoon fmall Gale at S E． 830 名． In the Afternoon the Gale frelhning at NW．§ \(30 \frac{5}{2}\) ．With fome Rain all Night．

13．Grey cloudy Weather，with moderate Gales from N W to N． \＄． \(30 \frac{4}{2}\) ．Cold all Night．

14．A fharp Morning and fair pleafant Weather，with fmall Galcs at N N W and N． \(30 \frac{6}{20}\) ．At Night calm．\％ \(30 \frac{5}{20}\) ．

15．Fair and pleafant Weather，with moderate Gales at SE． 30走 falling to \(30 \frac{1}{20}\) ．

16．The Morning fomewhat cloudy，with fmall Gales at SE． \(30 \frac{2}{20}\) ．At Noon veer＇d to N W，and the Sky overcaft ；at Night fome Rain，much Wind and Cold．
17．A fharp Morning and grey cloudy Weather，with moderate Gales from N W to N N W．\％ 30 亨．All Day overcaft，at Night little Wind and much Rain．

18．Thick clofe rainy Weather，all Day and Night，with fmall Gales at N W．

19．Grey cloudy Weather，with moderate Gales at N W to N． Some Kain at Night and very cold．
20．Grey cloudy Weather，with moderate Gales at N N W． \(3^{\circ}\) 2．Ait Night little Wind．
\({ }_{21}\) Grey cloudy Weather and cold，with moderate Gales from NN W to NW．क्ष \(30 \frac{3}{23}\). At Night drizling Rains．

22．In the Morning clole Weather，with drizling Rains and mode－ rate Gales at N W and N N W．후 \(30 \frac{6}{15}\) ．The Afternoon dry，grey and cloudy．
23．A grey cloudy Morning and calm， 30 名，towards Noon more ferene and a frmall Breeze at ES E．In the Evening overcaft with forne Rain and frefh Gales，all Night at N N W．
24．Grey cloudy Weather，fomewhat clofe，with frefh Gales from NNW to N W by W．

25．Grey cloudy Weather，with moderate Gales at N W．
26．Clofe Weather with drizling Rains，and fmall Breezes at NE， for the moft calm．In the Night the Gale frefhned at N． \(30 \frac{6}{50}\)

27．The Forenoon grey cloudy Weather，and fmall Gales at NNE． \％ 30 \％．The Afternoon and all Night clofe Weather with drizling Rains，the Breeze veering to E N E．
29．Grey cloudy Weather with fome drizling Rains，and fmall nor－ therly Gales．叉 30 跒．

29．In the Morning fomewhat fair，then overcaft with drizling Rains and clofe Weather all Day and Night，fmall Gales from N N E to NE．

Vol．IV．Part II．
Ttt
30．A

\section*{The Weather at Chufan in China．}

30．A grey cloudy Morning，with Gales at ENE． 8 Day the forefaid Weather．

31．In the Morning fair and pleafant，with fmall Gales at SE． 30 年．In the Forenoon overcaft，If falling to \(30 \frac{1}{20}\) ．The Afternoon and Night clofe thick foggy Weather，with fome drizling Rain and calm．

1．Dry Weather，fonewhat clofe，with fmall Gales at S E．of \(30 \frac{\%}{25}\) ． The Afternoon overcaft and clofe Weather，with fmall Gales at E S E． Of falling to 29 结，and much Rain in the Night．

2．Clole Weather and drizling Rains，with moderate Gales at N NE． 730 ．At Night blowing frefh，\％rifing to \(30 \frac{1}{20}\) ．
3．Clofe and cloudy Weather，with drizling Rain，and moderate

4．A grey cloudy Morning，with moderate Gales at NE． \(80 \frac{1}{20}\) ． Atternoon clofe and thick \(W\) eather，with drizling Rains．\％ 30. Much Rain in the Night．

5．Thick clofe rainy Weather，wich moderate Gales at NE． 30 \({ }_{20} \frac{1}{20}\) ．At Night fair and cold．

6．A grey cloudy Morning，with frefh Gales at NE．ㅇ \(30 \frac{6}{20}\) ．At Noon \(30 \frac{7}{20}\) ．At Night \(30 \frac{6}{20}\) ，and fome Rain，

7．Clofe and cloudy Weather，in the Morning．\＆ 30 ㅇ．Towards Noon drizling Rains，and encreafing in the Afternoon，with fmatl Winds at N E．\(\quad\) \％ 30 嗸．

8．Thick clofe and cloudy Weather，with drizling Rains and fmall

9．Clofe and cloudy Weather，with drizling Rains and fmall Gales at ESE． \(30 \frac{4}{20}\) ．At Night fair． \(30 \frac{6}{15}\) ．

10．A grey cloudy Morning with frefh Gales at N． \(30 \frac{7}{20}\) ．In the Evening and all Night rainy Weather．

11．A clofe and cloudy Morning with drizling Rains and fmall Gales at N． \(30 \frac{5}{50}\) ．All Day the aforefaid Weather．

12．Thick clofe rainy Weather all Day and Night，with moderate Gales at N N W． \(30 \frac{2}{20}\) ．Much Rain at Night．

13．Very thick clofe rainy Weather，with freh Gales at NW．
30．In the Night cold．
14．A Rharp cold Morning，with much Snow falling and clofe Wea－ ther，with frefh Gales at N W．\(\$ 30 \frac{2}{50}\) ．Continu＇d Snowing a little all Day and Night following． \(30 \frac{1}{20}\) ．

15．Fair Weather，freezing hard，with fome Sun－hining and frefh Gales at N N W and N by W． 30 欹．

16．Fair and ferene Weather all Day and Night，freezing hard，with moderate Gales at N N W．

17．Fair and ferene Weather，（the Sun diffolving moit of the Snow） with freih Gales at N by W． 30 \％．At Night fomewhat cold， freezing hard．

\section*{The Weatber at Chufan in China．：}

18．Grey cloudy Weather，freczing hard，with moderate Gales at N by W．Y \(30 \frac{1 \mathrm{I}}{20}\) At Night rifing to \(30 \frac{17}{20}\) ．

19．Grey cloudy Weather，with little Froft，and moderate Gales at NNW． \(30 \frac{10}{20}\) ．
20．Grey cloudy Weather，fomewhat clofe，with moderate Gales at N NW．\＆ \(30 \frac{25}{25}\) ，freezing in the Morning，and inclining to thaw at Night．

21．In the Morning fomewhat ferene，the reft of the Day overcaft， with moderate Gales at N W，and fome Thaw．\＆ \(29 \frac{25}{20}\) ．

22．Fair and ferene Weather，with fmall Gales at W N W． 30 \％ thawing all Day with the Heat of the Sun，at Night cold，but not freezing．y as before．

23．Grey and cloudy Weather，with fmall Gales at SE，thawing a little．舛 \(30 \frac{3}{30}\) ．At Night much Rain and calm．\＆ \(30 \frac{9}{20}\) ．

24．A fair and ferene Morning with fmall Gales at N N W and N． § 30 告．All Day overcaft，and drizling Rains all Night．
25．Clofe hazy Weather，with drizling Rain and no Wind． \(30 \frac{5}{20}\) ， At Night much Rain．
26．Very clofe hazy Weather，with drizling Rains and fnall Breezes at SE． \(30 \frac{1}{\frac{2}{30}}\) ．In the Afternoon falling to \(29 \frac{18}{20}\) ，at Night much Rain \({ }_{3}\) the Wind veering to N N W．blowing fometimes in Gufts．

27．Clofe Weather，with drizling Rains and moderate Gales at NW．\({ }^{\circ} 0^{\frac{2}{2}}\) ．In the Afternoon fair，and at Night freezing．

28．Grey cloudy Weather，freezing hard all Day，with moderate Gales from NW to N． Chincfe New Year．

29．Fair and ferene frofty Weather，with moderate Gales at N by W． \(8.30 \frac{6}{85}\)

30．The Morning fair and ferene，all Day overcaft with moderate Gales at N to NW．I \(30 \%\) Frofty Weather．

31．Pair and ferene Weather，freezing hard，with moderate Gales at W NW． 30 \％

1．Fair and pleafant Weather，with fmall Gales from W，veering to SSE，and at Night to N N W，but no Froft． \(730 \frac{6}{50}\) ．

2．Fair and pleafant Weather，in the Morning，little Wind，in the Forennon fine Gales at NW．\＆ \(30 \frac{3}{25}\) ．At Night little Wind．
3．Dry Weather，fomewhat overcaft，with imall Gales at N W． \(\boxed{\boxed{7}} 30 \frac{6}{20}\) At Night little Wind．
4．Dry Weather，fomewhat clofe，with fmall Gales at SE ． \(30 \frac{6}{20}\) ．
5．Fair and cloudy Weather，with fmall Gales at N W． \(80 \frac{1}{50}\) ．
6．The Morning clofe and overcaf，the Afternoon ferene，with fmall Gales at NW． 30 里

\section*{The Weatber at Chufan in China.}
y. Fair and cloudy Weather, with fmall Gales at N N W. \(30 \%\)
8. Fair Weather, fomewhat cloudy, with variable Breezes round the Compars. \begin{tabular}{l}
\\
\hline
\end{tabular}
9. Fair and pleafant Weather, with finall Breezes at S E. \(\quad 30\) \% At Night little Wind from N N W.
10. Cloudy Weather, with moderate Gales at N by W, in the \(\mathrm{Af}_{-1}\) ternoon and all Night drizling Rains. \(\wp 30 \frac{4}{20}\).
11. Clofe Weather, with drizling Rains and fmall Gales at N by W. § \(30 \frac{2}{20}\). All Night much Rain.
12. Clofe Weather, with fome drizling Rains and fmall Gales at: N by W, and N N W. § 30 言.
13. Fair and pleafant Weather, with fimall Gales from N to SSE. \(\square 30\) 옹․
14. Clofe and cloudy Weather, with drizling Rains, and fmall Gales at N N W. \({ }^{2} 30{ }_{2}^{\circ}\). Afternoon and Night fair, pleafant and calm. \(\%\) as before.
15. Fair and ferene Weather, and no Wind. \(3^{\frac{3}{2} c}\). The Afternoon overcaft, with clofe Weather, and moderate Gales at SE, and tome Rain. \(\quad 30\).
16. Cloudy Weather and fomewhat clofe, with fmall Gales at N N W. \% \(29 \frac{12}{20}\). In the Night frefher Gales.
17. Grey cloudy Weather with moderate Gales at N N E. \(30 \frac{3}{20}\).
18. Grey cloudy Weather, with moderate Gales at N. ఫ \(30 \frac{4}{15}\).
19. Grey cloudy Weather, with moderate Gales at \(\mathbf{N} \mathbf{N}\) W. \% 30 熹.
20. Grey cloudy Weather, with fmall Gales at N by W. \(30 \frac{6}{20}\). Very cold with fome Snow at Night.
21. Grey cloudy Weather, with fmall Gales at N. § \(30 \frac{2}{20}\). Some Snow this Morning, whitening the Tops of the Hills and lying all Day.
22. In the Morning fome Sun-fhining diffolving the Snow; all Day grey cloudy Weather, and temperate with fmall Gales at \(\mathrm{N} N \mathrm{~N}\). \({ }^{9} 30 \frac{3}{20}\).
23. Dry Weather, fomewhat cloudy, calm in the Morning, at Noon blowing freh from N W till Night, then little Wind. \(\quad 30 \frac{5}{20}\).
24. Fair and pleafant, with fmall Gales at \(S \mathrm{E}\), the Afternoon calm, at Night moderate Gales from N N W. \(30 \frac{6}{20}\).
25. Fair and plealant, with moderate Gales at SSE and SE. \%. \(30 \frac{6}{20}\).
26. Grey cloudy Weather,' with drizling Rains all Day and Night, and moderate Gales at SE. \(\geqslant 30\) : 5 .
27. Fair Weather, clearing up with fmall Gales at SE.
28. Fair and pleafant Weather, with fmall Gales N W. In the Afternoon veering to W S W, and about to SE. \(30^{\circ} \mathrm{F}\).
1. Dry Weather, fomewhat cloudy, with moderate Gales at S E. Mareb. 830 \% 8.
2. The Morning fair and very ferene, the Afternoon overcait with fmall Gales at SE . \(30 \frac{{ }^{\frac{6}{2}}}{20}\).
3. The Morning fair and ferene, the Afternoon overcaft with moderate Gales at ESE and SE. \(30 \frac{3}{50}\).
4. Grey cloudy Weather with moderate Gales at SE. At Night blowing frefh from NE. \(\quad 30\) 咢.
5. Grey cloudy Weather, with fome Rain, and moderate Gales at SE. At Night fome Thunder, Lightning and Rain. § below 30.
6. The Morning ferene and temperately warm, with fmall Southwardly Breezes. The Forenoon and all Day overcaft, in the Afternoon fome Rain, clofe hazy Weather with fmall Gales at N by E and N. 30 .
7. Grey cloudy Weather, with fmall Gales at ESE. At Night much Rain. \(\quad 30\).
8. Grey cloudy Weather, fomewhat hazy, with moderate Gales at N and N by E. 30 s \(^{4} \mathrm{c}\).
9. Fair and pleafant Weather in the Forenoon, with fmall Gales at SE. \(30 \frac{{ }^{\circ}}{20}\). The Afternoon overcaft, and little Wind all Night. 30 रे.
10. Dry Weather, fomewhat clofe, with fmall Gales at \(S E\), in the Evening fome Rain. \(30 \frac{4}{\text { ธ० }}\). In the Night much Wind and Rain.
11. Clofe and cloudy Weather, with fmall Rains and moderate Gales at N N W. 30 - \(\frac{\text { - }}{20}\).
12. Clofe and cloudy Weather, with moderate Gales from SE to NE. \(30 \frac{4}{20}\).
13. Grey cloudy and clofe Weather, with fome Rain and fmall Gales at S E. 30.
14. Grey cloudy and clofe Weather, with fmall Gales variable from SE to N W. \% \(30^{\frac{3}{20}}\).
15. Very clofe hazy Weather, calm all Day. \(29^{\frac{1}{2} \text { ? }}\). At Night fmall Gales at W N W with fome Rain.
16. Clofe and cloudy Weather, with fmall Gales from N W to N. 30.
17. Fair and ferene Weather, with fmall variable Gales. 30 ैธ.
18. In the Morning overcaft with moderate Gales at N W, prefently veering to SE , with drizling Rains all Day. \(3^{\frac{{ }^{\frac{3}{2}}}{20} \text {, falling }}\) to \(29 \frac{1}{2}\) ?
19. Grey cloudy Weather, for the moft part calm. \(\% 29 \frac{13}{20.0}\)

\section*{The weather at Chufan in China.}
20. Vety thick foggy Weather ail Day, with fmall variable Breezes, for the mont part calm. \(\xi^{2} 29 \frac{17}{20}\).
21. In the Morning foggy, the rek fair and ferene Weather, with finall Southwardly Gutes \({ }^{2} 29 \frac{18}{20}\).
22. The Morning fair and ferene, the Afternoon overcalt with fome Rain and variable Gales. 30 .
23. Grey cloudy Weather, the Afternoon and all Night drizling Rains and moderate Gales at N N E. 30.
24. Clofe Weather with continu'd drizling Rains, and at Night much Rain with moderate Gales from N N E to N, and very cold. \({ }^{9} 30 \stackrel{\text { I }}{20}\).
25. The Morning fomewhat cloudy, the Afternoon ferene, with moderate Gales at N. \(\$ 30 \frac{1}{20}\).
26. Dry Weather, fomewhat cloudy, with fmall variable Gales. 30 It.
27. Grey cloudy Weather, with fmall variable Gales, fometimes calm. \({ }^{5} 30 \frac{2}{20}\).
28. Clofe hazy Weather, with fome Rain and fmall variable Gales, fometimes calın. Y \(29 \frac{18}{20}\).
29. The Forenoon grey cloudy Weather, the Afternoon very clofe and hazy with much Rain. I \(29 \frac{17}{10 .}\). Small variable Breezes, for the moft part, calm.
30. Clofe and cloudy Weather, with moderate Gales at N N E. \(29{ }^{\frac{18}{28}}{ }^{20}\). At Night rifing to 30, and the Gale frefhning.
31. Fair Weather, fomewhat cloudy, with fmall variable Gales. 930

April. I. The Forenoon overcaft, Afternoon more ferene, with fmall Southerly Gales. \(30 \frac{1}{20}\).
2. Fair and pleafant Weather, with fmall Gales at S W. \(30 \frac{2}{20}\).
3. Grey cloudy Weather, blowing frefh in the Forenoon at \(\mathrm{NF}_{4}\). Afternoon moderate. \(30 \frac{t}{20}\).
4. Fair and ferene Weather, the Horizon fomewhat clofe, with eafy Gales at S. \(30 \frac{4}{20}\). In the Afternoon the Gale veer'd to W, and the Sky fomewhat hazy.
5. Clofe and cloudy Weather, with fome drizling Rain in the Forenoon, and fmall Gales from S to ESE. The Night calm and rainy. \(\% 30\).
6. Clofe foggy Weather, with drizling Rains and calm. \(29 \frac{10}{20}\).
7. Fair and pleafant Weather, fomewhat cloudy and calm. In the Evening finall Gales at E to NE . All Night clofe foggy Weather. F \(29{ }^{\frac{1}{2}{ }^{\frac{1}{2}} .}\)
8. Clofe foggy Weather, with fmall Northerly Breezes, for the moft part calm. of \(29 \frac{15}{20}\).
9. The Forenoon clofe and cloudy, Afternoon fair and pleafant, with fmall Gales at N. In the Evening calm. \(¥ 29 \frac{15}{20}\).

10．Fair and pleafant Weather，fometimes overcaft，with fmall Gales from \(S W\) to \(S\) ． \(39^{\frac{1}{2} \%}\) ．

11．Fair and pleafant Weather，with fmall Gales from \(S\) to \(S E\) ．
830.

12．Fair Weather，fometimes overcaft，with moderate Gales at N．
（3） 30 年
13．Dry Weather，fomewhat hazy，with frefh fharp Wefterly Gales． § 30 走．In the Evening ferene and little Wind．\％ \(30{ }^{\frac{3}{2}} \mathbf{0}\) ．
14．Fair and pleafant Weather，with fmall Gales at S E． \(30^{\frac{3}{2} \sigma .}\) ．
15．Fair and pleafant Weather，with fmall Gales from \(S\) to S E ．In she Evening calm． \(30{ }^{2} \%\) ．

16．The Forenoon fair and pleaiant，with moderate Gales at S E． \＄ \(30 \frac{\frac{3}{30} \text { ．In the Afternoon overcaft，with fome Rain and fmall Gales }}{}\) at N W ． \(3^{\circ}\) ，
17．The Forenoon fair and pleafant，with moderate Gales at SE． \(30 \frac{2}{20}\) ．The Afternoon overcaft，and the Gale frefhning at Night． 30.

18．Fair and pleafant Weather，fomewhat cloudy，with fmall Gales at SE． 8 30．
19．Cloudy Weather，with a hazy Sky，and fmall Gales at SE． \％ \(29 \frac{19}{\frac{19}{20}} 0\)
2i20．Dry cloudy Weather，with fine Gales at SE． 29
21．Grey cloudy Weather，with fome Rain in the Forenoon，and fmall Breezes at SE ，for the moft part calm ；the Afternoon fair． 29.
22．Clofe and cloudy Weagher，with hazy and calm；in the After－ noon fome Rain and fmall Breezes at S E．§ \(299^{\frac{1}{20}}\) ．
23．Dry Weather，fomewhat foggy and cloudy，with fmall Gales at SE． \(299^{\frac{15}{20} .}\) In the Evening thick foggy Weather．
24．Grey cloudy Weather，fomewhat foggy，with moderate Gales at SE．\(\quad 29 \frac{1}{2} \%\) ．At Night much Fog．
25．Cloudy and foggy Weather，with fine Gales at S E． \(29 \frac{\frac{15}{2} 5}{8}\) At Night much Rain，Thunder and Lightnigg，with little Wind． \(29 \frac{1}{8} 8\).
26．Clofe and cloudy Weather，with fmall Gales at NW． \(29 \frac{8 \varepsilon}{26}\) ． In the Afternoon fomewhat hazy，with fmall drizling Rain．

27 ．The weather clearing up with eafy Gales at SE． \(29 \frac{17}{20}\) ． The Afternoon overcaft，and \(n\) the Evening much Rain with fome Thunder and Lightning，the Wind veering to N W，and back to S E． \(29 \frac{18}{26}\) ．
\({ }^{28}\) Grey cloudy Weather，with fome Fog，and fmall Gales from W to NW．ఫ 29 敦。
\({ }^{29}\) Clofe and cloudy Weather，with fmall Gales from N W to N． \％ \(29 \frac{13}{\frac{1}{25}}\) ．At Night fome Rain．
30．Grey cloudy Weather，Comewhat clofe，with frelh Gales at N W． § \(29 \frac{17}{20}\)
1. A fair and ferene Morning, with fmall Breezes at \(W\) by S. : \(29 \frac{18}{30}\). All Day and Night fair and pleafant, with fmall Breezes at NW. ₹ \(29 \frac{10}{20}\).
2. Fair and ferene Weather, with fmall Breezes at SE, and fometimes calm. \(80^{\text {d. }}\). In the Afternoon and all Night frefh Gales.
3. The Weather fomewhat cloudy, with frefh Gales at S E. \(\$ 29\) 4y. In the Afternoon falling to 29 皆. The Wind veering to W N W, had much Rain with Thunder and Lightning all Night.
4. The Morning clofe foggy Weather, almoft caln. \$ 29 沝. The Afternoon clear'd up, blowing frefh from \(\mathbf{N}\) to \(\mathbf{N E}\). \(\square^{\frac{1}{2}} \frac{1}{20}\).
5. Fair and pleafant Weather, fomewhat cloudy, with moderate Gales at S E.
6. Fair and pleafant Weather, fomewhat cloudy, with moderate Gales at SE. \({ }^{8} 29 \frac{10}{10}\). Towards Noon little Wind. In the Afternoon a fine Gale at \(\$ \mathrm{E}\) by E , and at Night thick foggy Weather. \% \(29 \frac{17}{2}\).
7. Grey cloudy Weather, fomewhat foggy, with fmall Gales at S E, \(\Varangle\) below \(29 \frac{18}{25}\).
8. Fair and pleafant Weather, fomewhat foggy on the Hills, and fmall variable Breezes from S W to N W. \(\varliminf_{2} 9_{27}^{18}\). At Night much Fog.
9. Fair and pleafant Weather, with fome Fog on the Hills, with fmall variable Breezes from \(S \mathrm{~W}\) to NW. \(30^{\circ}\). The Afternoon ferene.
10. The Forenoon fair and pleafant, falling from \(29 \frac{18}{20}\) to \(29 \frac{17}{20}\). The Afternoon overcaft with fimall Gales from \(S\) to \(S\) E.

II Grey cloudy Weather, with fmall Gales N.E. \(\quad 29 \frac{11}{20}\). In the Afternoon fome Rain.
12. Fair and pleafant Weather, fomewhat cloudy, with fmall Northerly Gales. \(29 \frac{18}{200}\).
13. Fair and ferene Weather, with fmall Gales at \(S \mathrm{~W}\), fometimes calm. \(\vartheta\) above \(29 \frac{11}{20^{\circ}}\)
14. Fair and ferene Weather, with fmall Gales variable from \(W\) to NE. \(30^{\mathrm{d}}\). The Afternoon fomewhat overcaft.
15. Fair and pleafant Weather, with fmall Gales at NE. At Night calm.
16. Fair and ferene Weather, with fmall Gales from NE to SE. 7 falling to \(29 \frac{17}{20}\). In the Evening overcaft with fome Fog.
17. The Morning fome Fog on the Hills, all Day fair and ferene, with fmall Gales at SE.
18. The Morning fomewhat clofe and foggy, all Day fair and pleafant with fine Gales at SE. \(\$ 30^{d}\).
19. Fair and pleafant Weather, with fine Gales at SE. \(30^{\circ}\).
20. Fair and pleafant Weather, with freh Galcs at SE, the Sky fomewhat hazy. \(29 \frac{18}{80}\).

\section*{The Weather at Chufan in China．}

21．Grey cloudy Weather，with frefh Gales at SE．falling be－ tow \(29 \frac{18}{20 .}\) ．At Noon fome fmall Rain．

22．Cloudy hazy Weather，with fmall drizling Rains and moderate Gales at SE．of below 29 II
\({ }_{23}\) ．Clofe and cloudy Weather，with moderate Gales at S E． 29 \({ }_{25}^{15}\).
24．Thick hazy Weather，with continual Rain，and frefh Gales from NNE to SE．of falling below 29 劣

25．Clofe and cloudy Weather，with moderate Gales from E to NE．

26．The Forenoon thick hazy Weather，and the Afternoon grey cloudy Weather，with fmall Gales at NE．rifing above \(29 \frac{11}{250}\)
27．Grey cloudy Weather，with moderate Gales at \(S\) E．O above 29 捛．Some Rain at Night．
28．Grey cloudy Weather，with the Wind from S to SSE，fome－ times fmall Gales，and fometimes blowing frefh．\(\$ 29 \frac{15}{75}\) ．Rain at Night．
29．Grey cloudy Weather，with fine Gales at SE，and drizling Rains． \(829 \frac{15}{20}\) ．At Night fmall Gales at NE，fometimes calm with thick Weather．
30．Thick foggy Weather，for the moft Part calm，and fmall driz－ ling Rains． 29 名．At Night fmall Gales at S E．
31．Grey cloudy Weather，fomewhat foggy，with fmall Gales at S E． \％ \(29 \frac{18}{25}\) ．At Night fome Rain．

1．Grey cloudy and foggy Weather，with fome Rain in the Fore－ noon，and fmall Gales at W． \(29 \frac{13}{20}\) ．In the Afternoon，rifing to \(29 \frac{15}{50}\) ．The Wind veering to N ，and the Weather clearing up．
2．The Forenoon fair and pleafant Weather and calm． 29 奖． The Afternoon overcaft，with fome fmall Rain，and fmall Gales at SE．

3．All this Forenoon clofe thick rainy Weather，with fmall Gales at NE．falling below \(29{ }^{\frac{13}{20}}\) The Afternoon dry，cloudy and calm．
4．Fair and pleafant Weather，with fine freh Gales from \(S E\) to SSE．\(\ddagger\) above \(29 \frac{1}{20}\) ．
5．Fair and ferene Weather，very hot，with fmall Gales from W S W 10 NW ．above \(29 \frac{15}{20}\).
6．Fair and ferene Weather，with variable Gales round the Compafs． \％ \(29 \frac{15}{35}\) ．The Afternoon fomewhat cloudy，and at Night calm．
7．The Forenoon overcaft and foggy，with fmall Gales at S E，and fince Noon drizling Rains．falling to 29 愫 Much Rain in the Night，blowing in Gufts．
8．Clofe hazy Weather，with drizling Rains all Day，and fmall va－ riable Breezes，for the moft Part calm．\(\$ 29 \frac{13}{20^{\circ}}\) ．At Night fair．
Vol．IV．Part II．
Uuu
9．This

\section*{The Weatber at Chufan in China．}

9．This Morning clearing up，with fome Drops of Rain and calm． rifing to \(29 \frac{16}{20}\) The Afternoon overcaft，and fome Rain in the Evening．

19．Grey cloudy Weather，fomewhat foggy，with finall Gales at SE， rometimes calm． \(29{ }_{20}^{13}\) ．The Afternoon and Night drizling Rains．

11．This Morning clumdy and foggy，with drizling Rains and calm． b below 29 浆．The Afternoon clofe and foggy，with drizling Rains and small Gales from ESE to SE．\％falling to 29 is．

12．Clofe foggy Weather，with little Wind at SE ，and fometimes calm． \(29^{\frac{1}{7}}\) ．The Afternoon and all Night very much Rain．

13．Clofe foggy Weather，with much Rain in the Forenoon，and driziing in the Afternoon，with fmall variable Breezes，fometimes caln．
\(29 \frac{13}{20}\) ．
14．The Morning clofe and foggy，the Forenoon clear＇d up，with fair and pleafant Weather，and fmall Breezes at S W．\({ }^{2} 29\) 筑．The Afternoon overcaf，with finall Gales at \(S E\) ．In the Evening fome ve－ hement Thunder，with Lighening and much Rain．\％below \(29 \frac{14}{2}\) ．

15．The Forenoon clofe foggy Weather，the Afternoon grey and cloudy，with fmall Gales from \(S E\) to NE ，fomerimes calm．₹ be－ low \(29 \frac{14}{2}\)

16．The Forenoon clofe and foggy，with fome Rain；at Noon cleared up with fmall Gales from SE．\％above 29 品．At Night cloudy with fome Lightning．

17．The Morning very hazy and catm，the Forenoon clear＇d up with frall Gales at SE．of above 29 袼．The Afternoon overcaft，with the Gale veering to \(\mathbf{N}\) by \(\mathbf{E}\) ，much Rain，Thunder and Lightning． \＆as before．

18．Grey cloudy Weather in the Morning，and cleared up in the Afternoon，with fmall Gales at SE．\(\wp 29 \frac{16}{20}\) ．The Afternoon over－ cift with frefh Gales continuing all Night．

19．This Forenoon grey cloudy Weather，fometimes clearing up， with frefh Gales at SE．\(\quad 729 \frac{15}{2}\) ．

20．Fair and cloudy Weather，with moderate Gales at SE． 29 \(\stackrel{4}{50}\) ？

21．The Forenoon fair and fomewhat cloudy，the Afternoon ferene and pleafant，with fmall Gales at SE．\(\%\) below \(29 \frac{16}{20}\) ．

22．The Forenoon fair and pleafant，with fine Gales at S E．\(₹\) be－ low 29 ． 16 ．The Afternoon grey and cloudy，with little Wind．

23．Fair and pleafant Weather，with fmall Breezes at SE，for the moft Part calm，with fome Lightning in the Night．\(\oint 29 \frac{16}{16}\) ．

24．Fair and pleafant Weather，with fmall Gales at SE，fometimes faln．\％ \(29 \frac{16}{\frac{16}{20} \text { ．At Night overcalt and calm，with fome Lightning．}}\)

25．Fair and ferene Weather，with fmall Gales at SE，in the Fore－ noon．\(\quad 29 \frac{16}{20}\) ．The Afternoon fine frefh Gales from \(S E\) to \(S\) by \(E\) ， and blowing very frefh all Night．

\section*{The Weatber at Chufan in China}

26．Fair and pleafant Weather，blowing very freth from \(S\) by \(E\) to S by W，about Noon little Wind．of below \(29{ }^{\frac{16}{20} .}\) The Afternoon moderate Gales at S E．
27．Fair and ferene Weather，with moderate Gales at S E．¢̧ below \(29 \frac{12}{20} 0^{\circ}\)
28．Fair and ferene Weather，with moderate Gales at SE．is before．
29．Fair and ferene Weather，with fine Gales at SE． \(29 \frac{\text { 类．The }}{}\) Evening overcaft and blowing frefh all Night．
30．Cloudy Weather，and fomewhat hazy，with frefh Gales from ESE to NE，\％below 29 年年．The Afternoon much Rain and blowing hard all Night at SE．\(\quad\) \＆ \(29 \frac{13}{25}\) ．

1．Cloudy and hazy Weather，with fome Rain and hard Gales at SE． \(829 \frac{12}{20}\)
2．The Forenoon fair and fomewhat cloudy，the Afternoon ferene， with fine frefh Gales at SE．F below 29 哭．All Night cloudy．
3．Dry Weather，fomewhat cloudy，with fine Gales at \(S E\) ． 29 2．

4．Fair and ferene Weather，with fine frefh Gales at SE．\(\quad 29 \frac{14}{30}\) ． The Evening overcaft．
5．Fair and pleafant Weather，fomewhat cloudy，with a fmall Shower in the Forenoon，fome Thunder and eafy Gales at S E．\＆above 29 处 At Night little Wind．

6．Fair and ferene Weather，with fmall Gales at SE． 829 26．At Night little Wind，

7．Fair and pleafant Weather，fomewhat cloudy，with fine Gales ae SE． 829 表．
8．The Forenoon overcaft，with fome Rain and Gufts of Wind ar SE；the Afternoon fair and pleafant，with eafy Gales at SE．I above \(29 \frac{13}{50}\) At Night fome fmall Rain．
9．Fair and pleafant Weather，fometimes cloudy，with fine Gales at SE．Of above \(29^{\text {iz．}}\)
10．The Morning fomewhat hazy and cloudy，all Day fair and fe－f rene Weather，with eafy Gales at SE．\％below 29 装．
11．Fair and pleafant Weather，with fmall Gales at S E．\(\$\) below 29 \(\frac{n}{2 \pi}\) ．The Afternoon overcart and little Wind．F falling to \(29 \frac{11}{25}\) ．Some Thunder and Lightning．
12．The Forenoon fair and pleafant，with fmall Gales at SE．̧̧ be－ low 29 年．The Afternoon overcaft，with feveral fmall Showers of Kain and little Wind，all Night calm．
13．Fair and pleafant Weather，with fome Clouds and calm．\(\% 29\) \({ }^{3}\) Towards Noon overcaf，and the Wind in finall Gales veering to SW．with clofe rainy Weather all the Afternoon，in the Evening dry

\section*{The Weather at Chufan in China.}
14. This Morning and Forenoon clofe and cloudy Weather, with much Rain and finall Gales at W. \(29 \frac{\text { 告. The Afternoon dry and }}{}\) cloudy, the Wind and \(\%\) as before.
15. Fair and pleafant Weather, with fmall Breezes from W to \(S\) W, fometimes calm. \(29 \frac{16}{26}\).
16. Dry cloudy Weather, with fmall Gales at SE. \(29 \frac{10}{20}\).
17. Fair and pleafant Weather, iometimes cloudy, with fine freh Gales at SE by S. \(\%\) above \(29 \frac{14}{25}\).
18. Fair and pleafant Weather, fometimes overcaft, with frefh Gales at \(S \mathrm{E}\). At Night blowing very hard. \(\$ 29 \frac{34}{24}\).
19. Fair and pleafant Weather, with finall Gales at S E. \(\quad 29^{\frac{16}{20} .}\)
20. Fair and ferene Weather, with fine frefh Gales in the Forenoon, and fine frefh Gales in the Afrernoon. \(\% 29 \frac{15}{25}\). At Night calm.
21. Fair and ferene Weather, with fine Gales at S E. \({ }^{\circ} 29^{\frac{1}{2} \xi_{0}}\).
22. Fair and ferene Weather, with fine Gales at SE. \(29^{\frac{15}{25} \text {. At }}\) Night fometimes little Wind, at ot her Times blowing frefh.
24. Fair and ferene Weather, with fine Gales at SE. \(29 \frac{16}{26}\). Afternoon blowing frefh.
25. Very fair and ferene Weather, with fmall Gales at S E. \(29^{\frac{1}{3} \text { ². }}\) At Night fome Lightning.
26. Grey cloudy Weather, with fmall Gales at S E, at Night calm and fome Lightning.
27. Grey cloudy Weather, with fmall Gales at N N W in the Forenoon, veering to NE in the Afternoon. \(29 \frac{15}{2}\). At Evening much overcaft, with Thunder, Lightning and fome Rain.
23. Fair and pleafant Weather, fomewhat cloudy, with fmall variable Gales from N W to NE. \(29 \frac{15}{\frac{15}{20} .}\)
29. Grey cloudy Weather, with fmall variable Gales from NE tc S W, fometimes calm. \(\ddagger 29 \frac{1}{\frac{1}{2} \frac{5}{8} .}\) In the Evening a fmall Shower of Rain, with fome Thunder and Lightning.
30. Fair and ferene Weather and calm. \(29 \frac{12}{20}\). In the Afternoon fmall Gales at N N W, very hot and fultry; at Night little Wind with fome Thunder and Lightning.
31. Fair and pleafant Weather, fometimes cloudy, with fine Gales: at SE. \(29 \frac{15}{\frac{1}{2} \delta}\). Some Thunder and Lightning in the Afternoon.
1. The Morning fomewhat overcaft, all Day fair and pleafant, with fmall Gales at \(S E\). 29 望 \(\frac{6}{20}\). The Afternoon fine Gales.
2. Very fair and ferene Weather, with fine Gales at SE. \(29 \frac{13}{20}\).
3. Fair and ferene Weather, with fine Gales at SE. \(29 \frac{19}{20}\).
4. Fair and ferene Weather, with fine Gales at S E. \(\$ 29 \frac{18}{2} \%\).
5. The Forenoon grey cloudy Weather and calm, the Afternoon ferene with fmall Gales at SE by E. \(29 \frac{17}{30}\).
6. Fair and ferene Weather, with fmall Gales at N N W. \(29, \frac{75}{20}\). The Evening overcaft, with fome Lightning.
7. Fair Weather, fometimes overcaft, with frefh Gales from-S to SSE. \(\quad 29^{\frac{17}{206}}\)
8. Fair

\section*{The Weatber at Chufan in China．}

8．Fair and pleafant Weather in the Forenoon，and cloudy in the Afternoon，with fmall Gales at SSE．\(\quad 29 \frac{15}{20}\) ．
9．Fair and ferene Weather，with finall Gales in the Forenoon，and frefhning in the Afternoon at SE．\(\quad 29 \frac{10}{20}\) ．

10．Fair and ferene Weather，with fmall Gales from \(S E\) to \(E\) by \(S\) ． \(\$ 29\) 望多．At Night calin．

11．Fair and ferene Weather，calm in the Forenoon，and fmall va－ riable Gales in the Afternoon，and Lightning at Night． \(729 \frac{18}{20}\) ．
12．Fair and ferene Weather，with fmall Gales at SSE，at Night calm and hazy． \(29 \frac{17}{120}\) ．

13．Fair and ferene Weather，calm in the Forenoon，and fmall variable Breezes in the Afternoon． \(829 \frac{18}{25}\)

14．Fair Weather，fometimes overcaft，with fmall Gales at N W by W． 29 䂞．

15．Fair Weather，fomewhat clofe，and fome Rain in the Afternoon， with fmall variable Gales．\％ \(29 \frac{18}{25}\) ．

16．Fair and ferene Weather，calm in the Forenoon，and fmall va－－ riable Breezes in the Afternoon． \(29 \frac{15}{25}\) ．

17．The Weather cloudy and overcaft，with fome Rain in the Af－ ternoon，and fmall variable Gales round the Compafs． \(29 \frac{16}{20}\) ．

18．Grey cloudy Weather，with fome Rain，and eafy Gales at NE： \％ \(29 \frac{16}{20}\) In the Night very frefh Gales from N E to S E，and fome－ times at N W．
19．Grey cloudy Weather，with fome Rain，and frefh Gales from SE to ESE． 29 星

20．Fair and pleafant Weather，with fine Gales at SE． \(29 \frac{10}{20}\)
21．Fair and pleafant Weather，with fine Gales at SE． \(29 \frac{16}{200}\) ．
22．Fair and ferene Weather，with fmall Gales at SE．\(\quad 29 \frac{18}{205}\) ．
23．Fair and pleafant Weather，with fmall Gales at SE ．In the Af－ ternoon fomewhat cloudy，and the Gale frefhning． 29 d8．In the Night blew very frefh．
24．Fair and ferene Weather，with moderate Gales at S E．In the Evening much overcaft，and at Night much Rain with fome Thunder and Lightning．The Wind at N W． 29 立
25．The Morning grey and cloudy，all Day fair and pleafant，with fmall Gales at NW ．In the Afternoon veering to SE ，and at Night calm． \(29 \frac{16}{20}\) ．
26．Fair and pleafant Weather，with fmall Gales at S E．\({ }^{2}\) 2916．
27．Grey cloudy Weather，with drizling Rains this Morning and Forenoon；and fair in the Afternoon，with frnall variable Gales：

\section*{82919.}

28．Fair and pleafant．Weather，with fmall Gales from N to N E： \({ }^{2} 29\) 啝．At Night calm．
29．Fair pleafant Weather，with fmall Gales at NE．I 29 䍄． At Night fome drizling Rain．．

\section*{The Weather at Chufan in China．}

30．Fair and pleafant Weather，fomewhat cloudy，with eafy Gales at NE．\(\quad \stackrel{\circ}{29} \frac{26}{26}\) ．

31．Grey cloudy Weather，with fame Rain，and moderate Gales at

\section*{Spipmber．}

1．Fair Weather，fometimes overcaft，with frefh Gales from N to N NW．\({ }_{2}{ }_{2} \frac{14}{\frac{14}{2} .}\) ．

2．Cloudy Weather，with forme Rain，and bluftering Gales at N NW． 29 水志．

3．Fair and pleafant Weather，with moderate Gales at NNW，forme times overcaft and blowing fresh；at Night little Wind． \(29 \frac{1}{20}\) ．
4．Fair and pleafant Weather，with fall Gales from \(\mathbf{N}\) W to \(\mathrm{N}_{0}\) At Night calm．\(\% 2928\) ．

5．Fair and pleafant Weather，with foal Gales at N．\(\% 29 \frac{7_{8}^{3}}{20}\) ．
6．Fair and pleafant Weather，with foal Gales at N and N by W ． § \(29 \frac{18}{\frac{18}{20}}\)
7．Fair and pleafant Weather，with fall Gales at N by W and N NW．\(\%\) below \(29 \frac{13}{20}\) ．

8．Fair and pleafant Weather，with fall Gales at N N W．\＆below 29 童名．
9．Fair and ferene Weather，with feal Gales at N． \(29 \frac{58}{20}\) ．
10．Fair and ferne Weather，with foal Gales at N．
15．Fair and ferne Weather，with final Gales at SE，and at Night veering to ENE．\(\quad 29^{\frac{1}{2} \frac{8}{2}}\) ．

12．Fair and ferne Weather，with fall Gales at SS E． 1 ㅇ \(29^{\frac{1}{2} \frac{8}{20}} 2\)
13．The Forenoon fair and pleafant，the Afternoon grey cloudy Weather，with foal Gales at ES E．of \(30^{\circ}\) ．

14．Grey cloudy Weather，with finall Gales from E SE to E NE， fometimes calm． \(30^{\mathrm{d}}\) ．In the Night variable Gales with forme Rain．

15，Grey cloudy Weather，with fall Gales from NE to SE by E． \({ }^{7} 39^{4}\) ．

16．The Morning cloudy and overeat，all Day clear＇d up with eafy gentle Gales at SE．\(\quad 30^{\mathrm{d}}\) ．

17．Fair and ferne Weather，with moderate Gales at SE．\％ \(30^{\mathrm{d}}\) ．
18．Fair and ferene Weather，with moderate Gales at SE．
19．Fair and ferne Weather，with fall Gales at SE． \(2^{\frac{1}{2} \text { 2．}}\)
20，Clofe hazy Weather，with fall Gales from NE． \(3^{\frac{1}{20}}\) ．In the Afternoon forme Rain．

2I．Grey cloudy Weather，with moderate Gales at N by E and N NE \({ }^{5} 30^{\frac{3}{2} \sigma}\) ．In the Evening little Wind．

22．Dry temperate Weather，fomewhat grey and cloudy，with fall Gales af N by W．\＄ \(30 \frac{5}{20}\) ．

23．Fair and pleafant Weather，fomewhat cloudy，with mall．Gales at N NW．ஒ \(30 \frac{4}{20}\) ．

\section*{The Weather at Chufan in China.}
24. Fair and pleafant Weather, with fmall Gales at N N W. \(30 \frac{2}{10}\)
25. Fair and pleafant Weather, with fmall Gales at N N W. \(30 \%\).
26. Fair Weather, fomewhat cloudy, in the Afternoon fome Showers of Rain, and fmall Gales froun N N W to N W by W. \(300^{\frac{2}{2} \sigma}\), rifing at Night to 30 zt.
27. Fair and cloudy Weather, with fmall Gales from N N W to N. 830 走.
28. Fair and pleafant Weather, with fmall Gales from N by W to N by E .
29. Dry and cloudy Weather, with fmall Gales at N N W.
30. Fair and pleafint Weather in the Forenoon, with fmatl Gales at N NE, the Afternoon overcalt with Gufts of Wind and fome Showers of Rain.
1. The Morning overcaft, all Day fair and pleafant, with fmall Ozober. Gales from N NE to N.
2. The Morning grey and cloudy, all Day fair and pleafant, with fmall Gales at \(\mathbf{N}\) by W.
3. Grey cloudy Weather, with moderate Gales at \(N\) and \(N\) by \(E\), fometimes blowing frefh; at Night thick and hazy with fome Rain.
4. Thick hazy Weather, towards Noon clear'd up, Afternoon overcaft with Rain and dark Weather. Small Gales at N N E.
5. Grey cloudy Weather, with fmall Gales/at NN E, inclining to Rain.
6. Thick hazy Weather, with much Rain and finall Chies at NNE. § below \(30^{\text {d }}\).
7. The Morning clofe and cloudy Weather, with fome Rain, and fmall Gales at N and N by W. below \(30^{\mathrm{d}}\). All Day thick hazy Weather, with drizling Rains.
8. Hazy Weather, with drizling Rains and fmall Gales at N N E and NE, 30 는.
9. Clofe hazy Weather, with drizling Rains, and fmall Gales at NE.

10. Clofe atrd cloudy Weather, with fome Rain, and moderate Gales at N E. \(\quad 30 \frac{1}{2 \times}\).
\({ }^{2}\) ir. Greyl cloudy Weather, with fome Rain at Night and fmall Gales at N N E. 30 : 0 .
12. The Morning ferene, with fmall Gales at N E. \% 30 \% Afternoon grey cloudy Weather. \% 30 :
53. Dry cloudy Weather, with frail Gales at N by E . \% 30 ㅇ. The Afternoon more ferene and almoft calm.
14. Grey cloudy Weather, with moderate Gales at NE, fometimes blowing frefh. \(30 \frac{2}{20}\).

\section*{The Weather at Chufan in China.}
15. Grey cloudy Weather inclining to Rain, with moderate Gales at \(N\) by W. 夕 \(30 \frac{2}{25 \cdot}\). At Night much Rain.
16. Grey cloudy Weather, with fome Rain at Night, and freft Gales at N and N by W. \(8^{3} 30 \frac{4}{25}\).
17. Grey cloudy Weather, with moderate Gales at N by E, blowing frefh in the Night at N N W. \(30 \frac{1}{20}\).
18. Fair and pleafant Weather, with moderate Gales at NW by N. \% \(30 \frac{5}{20}\).
19. Fair and ferene Weather, with fmall Gales at N W. \(30 \frac{6}{25}\).
20. Fair and ferene \(W\) eather, with fmall Gales at W N W and W by N. 호 \(30{ }_{i j}^{6}\).
21. Fair and ferene Weather, with friall Gales at NE and NE by E. \({ }^{5} 30 \frac{6}{20}\).
22. Fair and ferene Weather, with fmall Gales at \(\mathbf{N}\) and N by E . 9 \(30 \frac{6}{20}\).
23. Fair and ferene Weather, with fmall Northerly Breezes, fometimes calm. 앙․ \(30 \frac{1}{20}\).
24. A grey cloudy Morning, blowing frefh at N N W. All Day fair and pleafant, with moderate Gales at N. 30 앙
25. The Forenoon overcaft, with fine frefh Gales at W N W, and Iharp Weather, the Afternoon more ferene and fmaller Gales. \(3^{\circ}\) \(\stackrel{7}{20} 0\)
26. Fair ferene Weather, with fine fharp Gales at N N W. 30 \(\frac{8}{25}\)

2\%. Fair and ferene Weather, with fmall Gales at ESE and SE, fometimes calm. \(\quad 30 \frac{6}{20}\).
28. Grey Goudy Weather, with frefh Gales at N N W and N. Y \(30 \frac{8}{20}\).
29. Fair Weather, fomewhat cloudy, with moderate Gales from N by W to NW. \(30 \frac{8}{20}\)
30. Grey cloudy Weather, with moderate Gales at NW. \(30 \frac{8}{25}\).
31. Fair and ferene Weather, with moderate Gales at N by W and N. \({ }^{\circ} 30 \frac{10}{20}\). Very cold.

November. 1. Fair and ferene Weather, with fmall Gales at W NW. \(30 \frac{6}{25}\).
2. Grey cloudy Weather, with fome Rain in the Evening, and moderate Gales at N N W. \(30 \frac{5}{20}\).
3. Fair and ferene Weather, fomewhat hazy, with very frefh Gales at N by W and N N W. below \(30 \frac{6}{20}\).
4. Fair and ferene Weather, with fmall Breezes at N by E. 30 \(\frac{6}{25}\). At Night calm.
5. Fair and ferene Weather, with fmall Breezes at S E. Sometimes calm. \(30 \frac{6}{20}\).
6. Fair and ferene Weather, with fmall Breezes from W S W to W N W. ఫ \(30 \underset{2}{5}\).
7. Fair and ferene Weather, with foal Gales at NW. \(30 \frac{6}{25}\).
8. This Morning foggy; all Day ferene, with moderate Gales from SW to NW . \(30 \frac{6}{20}\).
9. Fair and plealant Weather, fometimes overcaft, with moderate Gales at SE and ESE. \(30 \frac{1}{50}\). At Night little Wind and calm.
10. Fair and ferene Weather, with moderate Gales at SE. ఫ \(30 \frac{5}{30}\).
11. Grey cloudy Weather, with fall Gales at N and N by W. In the Evening calm. O \(30 \frac{2}{20}\)
12. Fair and pleafant Weather, with imall Gales at N. In the Evening calm. \(80 \frac{1}{2}\).
13. Fair and pleafant Weather, with fall Gales from \(S\) by \(E\) to SE. \(\underbrace{2} 30 \frac{4}{20}\). At Night calm.
14. Grey and cloudy Weather, fomewhat hazy, with moderate Gales from W N W to NW. \(\xlongequal[7]{ } 30 \frac{5}{2} 3\).
15. Grey cloudy Weather, with fret Gales at N NE, and forme fall Rain. \(\$ 30 \frac{5}{20}\).
16. Fair and plealant Weather, with moderate Gales from \(S\) to \(S\) E. \(830 \frac{6}{30}\).
17. Grey cloudy Weather, with moderate Gales from \(S\) by \(W\) to ESE. ㅇ \(30 \frac{5}{20}\). At Night blowing hard, and veering to NW, with much Rain.
18. Grey cloudy Weather, with fresh Gales at NW. In the Afternoon blowing very hard. \(\wp 30^{d}\).
19. Grey cloudy Weather, with moderate Gales at NW. چ \(30 \frac{6}{25}\). At Night rifing to \(30 \frac{10}{20}\).
20. Fair and pleafant Weather, with finall Gales from N to E , and about to SE. In the Evening little Wind. \(30 \frac{10}{\circ 5}\), falling to \(30 \frac{6}{25}\).
21. Grey cloudy Weather, for the molt Part calm, with final Northerly Breezes. \$30 30.
22. Grey cloudy Weather, with moderate Gales at NW. \& \(30 \frac{6}{2}\).
23. Grey cloudy Weather, with fine Gales at NW. \(\bar{y} 30^{6}\).
24. Grey cloudy Weather, with early Gales from W N W to NW. \(830 \frac{6}{20}\).
25. Grey and cloudy Weather, with early Gales at NW. \(30 \frac{6}{20}\).
26. Fair and ferene Weather, with fall Gales at N W, fometimes calm. \& \(30 \frac{6}{20}\).
27. Thick hazy Weather, with drizling Rains, and at Night much Rain, with fall Southerly Breezes, for the molt Part calm. \(\$ 30 \frac{2}{20}\).
28. Hazy Weather, with drizling Rains all Day and Night, and fall Gales from N to N NE. \({ }^{\circ} 30 \frac{1}{25}\), riling to \(30 \frac{10}{200}\)

Viol. IV. Part II.
Xx x
29. Grey

\section*{The Weatber at Chufan in China.}
29. Grey cloudy Weather, with fmall Gales at N NE. 30 ?
30. Grey cloudy Weather, with fine Gales at N. § \(30 \stackrel{8}{30}\).

December, 1701.
I. Grey cloudy Weather, and very cold with fine Gales at N. \(¢\) \(30 \frac{12}{25^{\circ}}\) Some Froft at Night.
2. Dry Weather, fomewhat cloudy, with moderate Gales at N N W. Ø \(30 \frac{8}{85}\).
3. Fair and ferene Weather, with fmall Gales at NW. \(\$ 30 \frac{6}{10} 0\)
4. Fair and ferene Weather, with fmall Gales at N W and W N W. \% \(30 \frac{6}{30}\). At Night overcaft.
5. Dry cloudy Weather, with moderate Gales at \(\mathbf{N}\) by W. © \(30 \frac{29}{25}\).
6. Fair and pleafant Weather, with fine Gales from E to SE, and at Night calm. \(30 \frac{3}{20}\), falling to \(30 \frac{5}{20}\).
7. Grey cloudy Weather, with frefh Gales at N W and W N W. \(330 \frac{8}{25}\).
8. Fair Weather, fomewhat cloudy, with frefh Gales at N W. \(30 \stackrel{12}{50}\).
9. Fair and pleafant Weather, with fine Gales at N N W. I \(30 \frac{11}{25}\).
10. Fair and ferene Weather, with fmall Gales at N W to N. \(30 \frac{11}{25}\). At Night calm.
11. Fair and ferene Weather, with fmall Gales at N W. \(\%\) 30 立.
12. Fair and ferene Weather, fometimes cloudy, with fmall Gales at N W. 오 30 ? 20.
13. Fair and ferene Weather, with fmall Gales at NW. \(30 \%\). At Night calm.
14. Fair and ferene Weather, with fmall Gales at N W. \(80 \frac{6}{25}\). At Night calm.
\({ }^{1} 5\). Fair and ferene Weather, with fmall Gales at S S W. \(\ddagger 30^{8}\). At Night the Gale frefnned from S S E.
16. Grey cloudy Weather, with moderate Gales at SE. \(30 \frac{6}{20}\). At Night fome Rain.

If Grey cloudy Weather, with drizling Rains, and fmall Gales at N W. \(\$ 30 \frac{5}{20}{ }^{\circ}\) At Night calm.
18. Grey cloudy Weather, with moderate Gales at N W. \(30 \frac{6}{20}\) Some Sleet in the Night.
19. Grey cloudy Weather, with moderate Gales at N W. \(30 \frac{?}{20 .}\)
20. Fair and ferene Weather, with fmall Gales at NW. At Night 30 虫.
21. The Forenoon fomewhat hazy and calm. of \(30 \frac{5}{30}\) The Afternoon ferene, with fmall Gales at N W. \(30 \frac{6}{25}\).

22．Fair and ferene Weather，freezing，with freh Gales at N N゙ W． § \(30 \frac{11}{20}\) ．

23．Serene Weather，freezing hard，with frefl Gales at N N W．\％ 30 㕵各．At Night little Wind．

24．Serene Weather，freezing hard，with moderate Gales at W NW． \(\$ 30 \frac{11}{2}\) ．
25．Fair frofty Weather，with moderate Gales at N Wi．\＆ \(30 \frac{10}{20}\) ．
26．Fair frofty Weather，with fmall Gales from W N W to N N W． \(\$ 30 \frac{10}{20}\). At Night Fog．

27．Fair and ferene Weather，freezing with little Wind at NW ，for the moft part calm．\＄ 30 ？．

28．Fair and ferene Weather，freezing with fmall Breezes at N， and fometimes calnı．Ø \(30 \frac{{ }^{\frac{8}{2}}}{26}\) ．
29．Fair and ferene Weather，freezing with fmall Northerly Breezes， for the moft part calm．\({ }^{\circ} \mathrm{F} 30\) ．At Night fome Wind and Rain．

30．The Morning foggy，all Day fair and pleafant，with fmall Gales from SE，to E by S．\({ }^{\frac{7}{7}}{ }^{\frac{4}{2} \text { ．}}\) ．

31．Clofe and cloudy Weather，with drizling Rains，for the moft part calm． \(30^{\frac{2}{20}}\) ．

1．Thick hazy Weather，with drizling Rains，for the moft part calm，faruars， with fmall variable Breezes． \(830 \frac{3}{30}\) ． 1702.

2．Grey cloudy Weather，with fome Rain，and fmall Gales at N E． 830 童．
3．Grey cloudy Weather，with fmall Gales at N and N N W． \(30 \frac{5}{25}\) ．

4．Grey cloudy Weather，with fmall Northerly Gales． \(30^{2 \%} 8\).
5．Grey cloudy Weather，with fmall Northerly Gales． \(830 \frac{{ }^{\circ}}{2} c\). Afternoon and Night ferene．

6．Fair and pleafant Weather，with moderate Gales at S E．In the Evening and all Night calm．I \(30 \frac{7}{20}\) ．

7．Clofe and hazy Weather，with fmall Gales at ESE and SE， fometimes calm． \(830 \frac{2}{20}\) ．

8．Clofe and cloudy，in the Morning little Wind，towards Noon blowing fomewhat frefh at N N W，and in the Evening moderate．

9．Grey cloudy Weather，with fmall Northerly Gales．
10．Grey cloudy Weather，with fmall variable Gales，fometimes calm． \(30 \frac{4}{23}\) ．

11．Fair and ferene Weather，with fmall Breezes at S E． 39 文．

12．The Weather overcaft，with moderate Gales at W NW． \(30 \%\) \％．
\(\mathrm{X} \times \mathrm{x}{ }^{2}\)
13．Fair

\section*{The Weather at Chufan in China.}
13. Fair and pleafant Weather, with moderate Gales at N W. छ 30 i2.
14. Fair and ferene Weather, with fmall Gales at N. \(30 \frac{10}{20} 0\).
15. Fair and ferene Weather, with fmall Gales at SE. \(\$ 30 \frac{3}{20}\).
16. Grey cloudy Weather, with fmall Gales from SS W to SE. The Afternoon clofe and hazy, with fome Rain. \(83^{\frac{2}{2} \frac{2}{0}}\).

1\%. Clofe hazy Weather, with moderate Gales from N W to N by W. \({ }^{4} 30{ }^{\frac{2}{2}} \mathrm{E}\). At Night little Wind. The Chinefe Nerw-Year began this Day.
18. Clofe and cloudy Weather and calm. \(30^{\frac{2}{2}}\). The Afternoon finall drizling Rains.
19. Grey cloudy Weather, with frefh Gales at \(\mathbf{N}\) by W, and a little Snow. \(\$ 30{ }^{25}\).
20. Grey cloudy Weather, with fmall Gales at N W, the Afternoon firene, and freezing hard at Night. \(\$ 30 \frac{\circ}{20}\).

2I. Fair and ferene Weather, freezing, with fmall Gales at N N W, for the moft part calm. of above \(30 \frac{0^{\circ}}{20}\).
22. Fair ferene Weather, freezing hard, with fmall Northerly Breezes, for the moft part calm. \& \(30 \frac{{ }^{\circ}}{20}\).
23. Grey cloudy Weather and calm. \(30 \frac{6}{20}\).
24. Clofe hazy Weather, with drizling Rains and calın. \(q\) \(30 \frac{2}{2 \tau}\).
25. Grey cloudy Weather, with fmall Gales at NE. \(\ddagger 30^{\frac{6}{20}}\) At Night little Wind and fome Rain.
26. Clofe and cloudy Weather, with fmall Gales at N E. \(30 \frac{8}{20}\). At Night calm. \(30 \frac{2}{20}\).
27. Thick hazy Weather, with drizling Rains and fmall Gales at N by E. \$f \(30 \frac{1}{20}\), blowing frefh at Night.
28. Grey cloudy Weather, with frefh Gales at N N W. \(30 \%\). At Night \(30 \frac{8}{20}\).
29. Grey cloudy Weather, with fine Gales at N W.
30. Fair and pleafant Weather, with moderate Gales at N W. § \(30 \div\)
31. Fair and ferene Weather, with fmall Gales at NW. 30 \%

A Regiffer of IX. I herewith fend you a Copy of my Regifter of the Weather at \({ }^{\text {the }}\) Weather Oates in Effex, from the 9 th of December 1691, to the End of the Year for 1692. by Mr. J. Locke. n. 298. p. 1917.
1692. I thall firft explain fome Things in the Table.

The Firft Column having D at the Top, contains the Day of the Month.

The next with \(H\), the Hour of the Day, which beginning from I of the Clock in the Morning, I count round in one continued Series to 24, which is 12 of the Clock at Night.

The Column Tber is that of the Thermofcope, which was a fealed one, whereof you will find a larger Account hereafter.

The Column Bar marks the height of the Mercury in the Barofcope.
The firft Number is the Inches of its height, the fecond Number marks the 2oth Parts of an Inch above that Inch mark'd by the firf Number.

The Column Hyg is that which marks the Moifture of the Air. The Inftrument I us'd was the Beard of a wild Oat, of which each Turn was divided into fixteen Degrees.

The Column of the Wind mark'd the Point the Wind was in, but not always exactly, becaufe the Weathercock vifible out of my Window, was ftiff, and turn'd not eafily; nor was the Houfe it ftood on fituate exactly Eaft and Weft; fo that it was not eafy by the ftanding of the Weathercock, to know exactly the Point of the Wind: Wherefore I contented myfelf to fet down barely one of the 4 Cardinal Points, when the Wind was pretty near it ; and when it was more remote, the two Cardinal Points between which it was, putting the Letter of the Cardinal Point firft to which it was neareft ; as when the Wind was between the South and the Weft, if it were nearer the Wcit than the South, I writ W. S. and fo of the reft.

I mark'd befides, the Force of the Wind, which I divided into four Degrees. 1. When it juft moved the Leaves. 2. When it blew a pretty frefh Gale. 3. When it was hard and whifling Wind. 4 . When it blew a Storm. Though thefe Divifions were not made with that Exactnels as they might have been, had one had an Inftrument on purpofe, yet they may give fome Help to thofe who would make Obfervations from fuch Regifters as thefe, (o) was when there was not Wind enough to move a Leaf as I could fee.
As to the Weather, Cloudy fignifies more of the Sky (vifible out of the Windows of my Study, which were Eaft and South) cover'd with Clouds, than not. Fair the contrary. Between when it was uncertain whether more of the Sky was covered or clear. Covier'd when no part of the clear Sky appear'd. Clofe when the Sky was cover'd with one uniform thick Cloud.

I have often thought that if fuch a Regifter as this were kept in every County in England, and fo conftantly publifhed, many Things relating to the Air, Winds, Health, Fruitfulnefs, \(\xi^{\circ} c\). might be collected from them, and feveral Rules and Obfervations concerning the Extent of Winds and Rains, \(\mathcal{E}^{\circ}\) c. be in Time eftablifh'd, to the great Advantage of Mankind. From this folitary one there is little to be collected, befides the ordinary Obfervation, which I fer down commonly every Morning, there feldom happen'd any Rain, Snow, or other remarkable Change, which I did not fet down.
N. B. That the Thermofcope mark'd 4, which 1 made ufe of till Mar. 7. 1701. was one of thofe fold by Mr. Tompion, wherein o mark'd Temperate, and the Figures from thence increafing both upwards and downwards, fhew'd the Increafe of Heat and Cold from Temperate. Sept. 22. 1701. I began to ufe a new fealed Thermofcope, adjufted to a Scale made by Mr. Fobn Patrick, who places o at the Top, fuppofing it to be the Heat under the Line, and fo the Figures increafe downwards, with the Increafe of Cold. Temperate being placed at 45. This Thermolcope is mark'd 5 in my Regifter.

December, 1691.

N. B. I fufpect that from the 23 d to the 29 th inclufively, the Hy grofcope has been counted 16 Degrees, i. e. one whole Turn too high, it being all that while very hard Froft.

Fcbruary.
 iween the Thermoicope to-day and yefterday Morning, there is the Difference of two whole Degrees and \({ }_{8}^{6}\) a greater Rife than one fhall ordinarily find. The Thermofcope was unmov'd in a Corner of a very large Room, out of all Reach of the Fire, whereby it might be alter'd.

March.
\begin{tabular}{l|lll|l|}
1 & 8 & 2. & 7 & 28.17 \\
2 & 8 & 3. & 1 & 29. \\
3 & 7 & 0. & 6 & 8 \\
3 & 16 & 1.0 & 7 & 8 \\
4 & & 3. & 1 & 14
\end{tabular}
S W 3|Fair.
SW 3 Fair.
WS 2 Fair.
WS i Rain very gently till 20 , hard till 23 .
NE 2 The Ground cover'd with Snow. Clofe.

The Weather in Effex.

\section*{The Weather in Effex.}

April.
D. H There. Bar. tyg. Wind. Weather.

50
\(0 \infty\)
0
\(\omega\)
0
0
0
0.0
0
\(=0\)
\(\cot\)
\(+\omega\)
\(\omega\)
0
+0

SE. Rain.
NE I Cloudy.
N
F
F Fair.
Close.
\begin{tabular}{l|ll}
NE & Cole. \\
\hline Clone.
\end{tabular}
NE 1 A little Fog.

NE Not a Cloud.
E Not a Cloud, but a thick Air called a red Wind.
1 High Clouds.
Clouds.

In the Clofet on the North Side of the House.

In the Chamber on the South Side of the House.

The Weather in Effex.

N. B. Cloudy fignifies mare of the Sky cover'd than clear. Fair fignifies more open Sky than cover'd with Clouds.

\(6.12 \left\lvert\, \begin{array}{ll}\mathrm{W} & 3 \\ \text { Fair. }\end{array}\right.\) 2 Cloudy.

Junte. \({ }_{4}\) A Shower for about half an Hour, and then fair and calm again, at i1 Rain again, the \(q\) a little raifed. Several Showers in this Day.

\section*{The Weather in Effex.}

Jug.
In my Absence, the Thermofcope being obferv'd, it was found from the 15 th of June, to the 11 th of \(A u g u f\), never to get fo high as 3. and was very often below Temperate; fo cold was this Summer.

Augur.

Seprember.

OETober.

 D.|H| There. |Bar. |Hyg. Wind. Weather.

Observations on the Wear. sher, Rain, Barometer for 1699, 1700, 1701, 1702, by Mr. W. Derham. n. 286. p. 1443.
X. 1.] Mr. Townley having communicated to me an Account of the Weather, \(\varepsilon_{c}\) I h hall compare my Obfervations on that Subject, made at Upminfer in Eflex, with thole which he made at Townley in Lameafoire.
As to the mot remarkable Weather, efpecially Rain of 1702 , and the Effects thereof: Mr. Townley tells me, that it is a general Complaint in the North of England, that there were but fall Crops of Hay, which Calamity befel the Southern Parts alpo; the Cause whereof may be perceiv'd by the following first Table of Monthly Rain; in which the growing Months of March and April appear to have been dry Months in Lancaßire, and May no wet Month, confidering the Quantities of the other Months, and of other Years. Here at Upminfter, April was fortunately a wet Month, till the 23 d , or elfe, no doubt, we fhould have fuffer'd more than we did in the Want of Hay; for the growing Month of March was a

\section*{ObServations on the Weather, Rain, Winds, \&c.}
dry Month, by the following Table; and May (which by the fame Table feemeth to have had near a due Quantity of Rain) was a very dry Month: For very little Rain fell from April 23 till May 29, and then fell in great Showers, the greateft Quantity of that Month's Rain. Mr. Torenley doth not tell me Particulars, but I guess it to have been after this manner with them in the North of England; for befides that March and April were dry Months with them, and May fomewhat more wet; yet probably the Wet of May did not fall early in May; for it appears by the following Table the third, that the Mercury was high, and on Somewhat a fix'd Station on May 13.

Thus much for the Weather in the Spring-Months of the Year 1702, and the Effects it had on Hay, which Effects I have forme reafon to think extended to many Parts of this Kingdom.

As to the other Months, there is little remarkable, befides the vat Difproportions of Rain between Lancaßire and EJex, which I Mould farce take notice of, if it was not what happeneth almoft every Year, as will appear by the following Table the firs: The Cafe of this I cannot judge of, unlefs it be that Lancafbire is a more hilly Country than E. \(\int\) ex, which fort of Lands, as they more need Wet than Vales and low plain Countries do, fo have greater Shares of it than there have; and perhaps fomething may be attributed to the Weftern Situation of Lancafbire near the Sea; from which Quarter the Winds in England blow more than from the Eaftward.

At the Foot of the Table of Rain, befides the Quantity which Cell in each Year, I have added the Depth thereof in Inches; or what Depth it would have been of, if the Earth had not imbib'd it, but it had flagmated on the Surface thereof.

I have added two Tables more, of the Stations of the Mercury in the Barometer at Towniley in Lancaßire, and at Upmingler in Eflex, with the Differences thereof; and this obferv'd at three times of the Day, viz. in the Morning, and about three in the Afternoon at Townley, but as Noon at Upiminfler, and at nine a-Clock at Night. One Table to the frt Day of every Month; the other the mort remarkably low, high and more fettle Stations of the \(\S\) the lat Year 1702.

By the fe Barometrical Tables it may be feen how far true that Upi- The Mercury non is of forme learned Men, viz. That the \(\$\) afcendetb and defenders riffs and falls in all Places at the fame Time, and in the fame Proportion. It is manifest, in all Places that the doth commonly rife and fall in one diftant Place, when it Time, hut not doth fo in another, but not alike: Alfo when any confiderable Varia- in the fame ton is in one Place it is fo in another; when remarkably high, remark- Proportion. ably high; when low, low ; when a great Afcent or Deicent, generally the fame elfewhere; but only the Differences of all thee are not in cially as to wet and dry.

A remarkable Defcent of the Mercury.

There is one thing more in the following third Table, which I think deferves Remark, becaule I believe it to be the moft confiderable Alteration of the Mercury, that hath ever happen'd fince the Invention of the Barofcope, and that was the Defcent on Febr. \(3^{d}\) and \(4 t b 1702\); concerning which, Mr. Townley in a former Letter gives me this Account, "That on Febr. 3d the \(\S\) was at three in the Morning at 29. 15. at " 3 h. 28. 50. and at 10 at Night at 27.5 . The next Day it fell yet " lower, and about 12 was at the loweft, viz. 27.39; but for an Hour " before, and as much after, it varied only fo much as to make it fen" fible that it was fallen, and began to rife again; the loweft he had " ever feen it before was on Nov. 18, 1674, when it fell to 27.63 . "That Mr. Flamfteed at the Oblervatory obferv'd as remarkable a De" fcent of his \(\underset{\sim}{\circ}\); and that it happen'd about the fame Time of the " Day, viz. two of the Clock in the Afternoon at both Places.

And laftly, he tells me, "That the Defcent in Febr. Jaft was the " greateft that has been fince the filling his Tube, which was in Marcb "1665." The Particulars which I obferved here at Upminfler about that Defcent were, That on Febr. 2 the \% was high, viz. 29.80. the next Morning 29.50. at Noon 29. 16. at Night 28. 43. the next Morning, (viz. Febr. 4.) at feven of the Clock, it was fallen to 28.5. and was globofe, as if it had rifen, or was inclin'd to rife: But it continu'd in the fame Station till Afternoon, and then began to rife about two of the Clock, and rofe haftily. The Weather accompanying was fair on Febr. 3d in the Morning, hazy at Noon, and Rain at Night, and a violent Tempeft in the Night, and all the next Morning, of Febr. \(4^{\text {th }}\).

\section*{TABLE I .}

A Table, fhewing how many Pounds, and Centefimals of a Pound Troy of Rain, fell at Townley in Lancafbire, and at Upminfer in Efex, in each Month of the Years 1699, \(8 \%\). with the Quantity and Depth every Year.

\section*{Obfervations on the Weatber, Rain, Winds, \&cc.}

TABLE III.

TABLEII.
A Thable flewing the Height of the and Upminfler, on the firt Day of every Month in the Year 1702, three times a Day, ruiz, about 7 in the Morning, and 9 at Night; and about 3 Atterrioun at Town/ey, with the Difference of the \(\begin{aligned} & \text { 's Variation, and its Difference between }\end{aligned}\) both Places.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Firit
Day
of the
Month. & \[
\left\{\begin{array}{c}
\not ४ \\
\text { Hight } \\
\text { at } \\
\text { Town. }
\end{array}\right.
\] & \[
\begin{gathered}
\not \subset \\
\text { Height } \\
\text { at } \\
\text { Upmr. }
\end{gathered}
\] & Daily Differ. at Town. & Daily Differ. at Upmr. & ఫ lower at Town. \\
\hline Jan. & \(|\)\begin{tabular}{ll}
29 & 06 \\
28 & 90 \\
& 58 \\
\hline 9
\end{tabular} & 29 \(\begin{array}{r}28 \\ \hline \\ \hline 10 \\ \hline\end{array}\) & \[
\begin{aligned}
& 16 \\
& 3=
\end{aligned}
\] & 07
11 & \begin{tabular}{l}
22 \\
31 \\
52 \\
\hline
\end{tabular} \\
\hline Feb. & \[
\begin{array}{|cc}
29 & 58 \\
& 40 \\
& 30
\end{array}
\] & \[
\begin{aligned}
& 96 \\
& 91 \\
& 80
\end{aligned}
\] & 18 & 05
11 & 31
51
50 \\
\hline Mar. & \[
\begin{aligned}
& 36 \\
& 36 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& 68 \\
& 66 \\
& 58 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 00 \\
& 04 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
02 \\
08 \\
\hline
\end{tabular} & \begin{tabular}{l}
32 \\
30 \\
18 \\
\hline
\end{tabular} \\
\hline April & \[
\begin{aligned}
& 70 \\
& 68 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 79 \\
& 73 \\
& 79 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
02 \\
01
\end{array}
\] & 06 & 09
05
10 \\
\hline May & \[
\begin{aligned}
& 20 \\
& 49 \\
& 09
\end{aligned}
\] & \[
\begin{aligned}
& 51 \\
& 49 \\
& 44
\end{aligned}
\] & 11 & 02
05 & 31
35 \\
\hline June & \[
\begin{aligned}
& 56 \\
& 61
\end{aligned}
\] & \[
\begin{aligned}
& 78 \\
& 82
\end{aligned}
\] & 05 & 04 & 22
21 \\
\hline July & \[
\begin{aligned}
& 84 \\
& 90 \\
& 92 \\
& \hline 2
\end{aligned}
\] & \begin{tabular}{|r|}
\hline 8 \\
\hline 30 \\
01 \\
\\
\hline 11
\end{tabular} & 061
0.1 & 03
01 & 14
11
19 \\
\hline Aug. & \[
\begin{aligned}
& 62 \\
& 49 \\
& 42
\end{aligned}
\] & \[
\begin{array}{|cc|}
\hline 29 & 80 \\
74 \\
& 67 \\
\hline
\end{array}
\] & \begin{tabular}{l}
13 \\
02 \\
\hline
\end{tabular} & Of & 18
25
20 \\
\hline Sept. & \[
\begin{aligned}
& 92 \\
& 95 \\
& 95
\end{aligned}
\] & \[
\begin{array}{|cc|}
30 & 09 \\
& 12 \\
& 11 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 03 \\
& \mathrm{co}
\end{aligned}
\] & \begin{tabular}{l}
03 \\
0 \\
\hline
\end{tabular} & 17
17
16
18 \\
\hline Octob. & \[
\begin{aligned}
& 56 \\
& 54
\end{aligned}
\] & \[
\begin{array}{|rr|}
\hline 29 \quad 74 \\
& 76 \\
& 75 \\
\hline
\end{array}
\] & 02 & \(\mathrm{O}_{2} \mathrm{O}_{1}\) & 18
21 \\
\hline Nov. & \[
\begin{aligned}
& 46 \\
& 5 c \\
& 58
\end{aligned}
\] & \[
\begin{aligned}
& 71 \\
& 75 \\
& 761
\end{aligned}
\] & 04
08 & 0. & 25
25
18 \\
\hline Dec. & \[
\begin{aligned}
& 3 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 34 \\
& 09
\end{aligned}
\] & & 16
25 & 15
01 \\
\hline
\end{tabular}

A Table fhewing the Loweft Stations of the Tounley and Upminfer; with the Difference of the \(\xi_{\text {at }}\) bothPlaces
\begin{tabular}{|c|c|c|c|}
\hline \[
\left|\begin{array}{c}
\text { Day } \\
\text { of the } \\
\text { Month. }
\end{array}\right|
\] & \[
\begin{aligned}
& \text { Y at } \\
& \text { Town. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ४ at } \\
& \mathrm{Upmr} .
\end{aligned}
\] & Differ. \\
\hline Feb. 3 & \[
\begin{array}{ll}
29 & 15 \\
28 & 50 \\
27 & 50
\end{array}
\] & \begin{tabular}{ll}
29 & 50 \\
& 16 \\
28 & 43 \\
\hline
\end{tabular} & 35
66
93 \\
\hline & 37 & 05
05
62 & 66 \\
\hline Dec. 23 & 77
71
50 & 18
12
10
25 & 31
41
35 \\
\hline \multicolumn{4}{|l|}{Migh Stations of ¢ Aİ.1702.} \\
\hline & \multicolumn{3}{|l|}{Tpmr Town.} \\
\hline 30 & \[
\begin{array}{|ll}
30 & 25 \\
& 25 \\
& 19
\end{array}
\] & \[
\begin{array}{|r|}
\hline 29 \\
95 \\
\\
\\
\\
\hline
\end{array} 8
\] & \begin{tabular}{l}
30 \\
30 \\
36 \\
\hline
\end{tabular} \\
\hline Mar. 12 & 33
35
32 & \[
\left|\begin{array}{ll}
30 & 02 \\
& 05 \\
& 07
\end{array}\right|
\] & 31
30
25 \\
\hline -et. 21 & 07
18
22 & \begin{tabular}{l}
29 \\
\hline 29 \\
\hline 09 \\
\hline 00
\end{tabular} & 13
19
27 \\
\hline
\end{tabular}

More lettied Stat. An. 1702.

2.] A Frofpect of the Weather, Winds and Height of tbe Mercury in Obfervations the Barometer, on the firft Day of the Month; and of tbe whole Rain in on the Weaewery NIonth in the Year \({ }^{1703}\), and the Eeginning of 1704. Obferv'd at Townley in Lancaftire, by R. Townley, Ejq; and at Upminfter in Effex, by Mr. W. by Nit. W. Derham.
Tbe Weatber Weather|Winds | Winds |Barom.'Barom.| Rain |Rain n. \(n\) Mion. at at at at at at at at at Town. Upmin. Town. Upminft. Town. Upm. Town. Upm.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\tau b c
\]
Mon. & \[
\left\lvert\, \begin{gathered}
\text { Weather } \\
a t \\
\text { Town. }
\end{gathered}\right.
\] & \[
\left|\begin{array}{c}
\text { Weatber } \\
a t \\
\text { } \left.\begin{array}{c}
\text { pmin. }
\end{array} \right\rvert\,
\end{array}\right|
\] & \[
\begin{gathered}
\text { Winds } \\
\text { at } \\
\text { Town. }
\end{gathered}
\] & \[
\left|\begin{array}{c}
\text { Winds } \\
a t \\
\text { at } \\
\text { Upmint. }
\end{array}\right|
\] & \begin{tabular}{l}
Barom. \\
at \\
Town.
\end{tabular} & \begin{tabular}{l}
Barom. \\
at \\
Upm.
\end{tabular} & \[
\left\{\begin{array}{l}
\text { Rain } \\
\text { at } \\
\text { Town. }
\end{array}\right.
\] & \[
\left\lvert\, \begin{gathered}
\text { Rain } \\
a t \\
\text { Upm }
\end{gathered}\right.
\] \\
\hline \[
\begin{aligned}
& 170 \frac{1}{4} \\
& \text { Jan. }
\end{aligned}
\] & Overcaft & Overcaft & \[
\begin{aligned}
& \hline S S E \\
& S E E \quad 2
\end{aligned}
\] & \[
\left|\begin{array}{ll}
\mathrm{E} & 0 \\
\mathrm{SE} \text { by }
\end{array}\right|
\] & \[
\begin{aligned}
& 80 \\
& 82 \\
& 85
\end{aligned}
\] & \[
\left|\begin{array}{rr}
30 & 07 \\
10 \\
& 10
\end{array}\right|
\] & 3139 & 406 \\
\hline Feb. & Overcaft & Mifing
Cloudy & W & NW by \(\mathrm{Ni}^{\text {I }}\) & \[
\begin{aligned}
& 90 \\
& 02 \\
& 02 \\
& 02
\end{aligned}
\] & 23
26
26 & 593 & 219 \\
\hline Mar. & Overcaft & \begin{tabular}{l}
Overcaft \\
Fairer
\end{tabular} & S & \[
\left|\begin{array}{ll}
\widehat{S E} b y E o \\
S E & 1
\end{array}\right|
\] & & \[
\begin{array}{r}
2958 \\
45 \\
40 \\
\hline
\end{array}
\] & 2078 & 1604 \\
\hline Apr. & & \[
\begin{array}{|}
\text { Rain } \\
\text { with bail } \\
\text { Fair }
\end{array}
\] & W NW & \[
\left|\begin{array}{c}
\text { Sy W } \\
\text { Clouds } \\
S \text { W by W }
\end{array}\right|
\] & \[
\left.\begin{array}{r}
28 \\
72 \\
94 \\
07
\end{array} \right\rvert\,
\] & \[
\begin{aligned}
& 17 \\
& 18 \\
& 3^{8}
\end{aligned}
\] & & \\
\hline
\end{tabular}

From the ere Tables it is to be obferv'd,
1. That much more Rain falleth at Townley than Upminfer.

I have an Extract of the Rain at Paris and Lifle, as far as the French have publifh'd their Obfervations. And by comparing the Rain of one Place with that of another, I find that there is about twice as much Rain falleth at Townley, as doth either at Upminfter, Paris, or Lifle. Mr. Townley hath formerly obferv'd, that as much more Rain falleth at Townley as Paris. And M. de la Hire obferves, that more Rain falleth at Lifle than Paris. But Townley doth far exceed.

At Lifle, one Year with another, the Depth of the Rains amounts to 22 Inches 3 Lines, Paris Meafure, or 23 in \(3 \%\) which make about \(23 \frac{1}{2}\) Inches Englijh, or \(24 \frac{1}{2}\). At Paris, one Year with another, they amount to 20 Inches \(33^{\frac{1}{2}}\) Lines Paris Meafure, which is near 22 Inches Engliß. But at Townley, one Year with another, according to Mr. Townley's Computation formerly, the Rains amount to above 41 Inches Depth. And by taking eight other Years, in which the Rain was obferved both at Townley and Upminfter (viz. from 1696 to 1704) I found that all the eight Years Rain at Townley amounteth to above \(1,00 \mathrm{l}\). Troy, at Upminfter \(82{ }_{3} l\) only. Which faid Sums being divided by 8, give \(212 l . \frac{1}{8}\) one Year with another, at Townley, and 103 l . at Upminfter. Each of which Sums being doubled, and making a Decimal Fraction of the laft Figure, doth nearly give the Number of Inches, which all the Rain would have rifen to, if the Earth had not fwallow'd it up, viz. \(42 \frac{1}{2}\) Inches at Townley, and about \(20 \frac{1}{2}\) Inches at Upminfter. Wherefore the Rain at Upminffer is lefs than at Paris, at Paris than at Lifle, and at every one of the Places lefs than at Towonley by much. The Reafon of which vaft Surmount at Townley, is doubtlefs from the Height of the Hills thereabouts, which retard or ftop the Wefterly Clouds: From which

Objervations on the Weather, Rain, Winds, \&cc.
which Point the Winds blow more than any other here in England. But,
2. Notwithftanding the great Difproportion of Rain between one Place and another, yer there is a great Agreement between our Barometers; one rifing or falling when the other doth; and that much, or little, as the other doth; altho' not always fo exactly in the fame Proportion.

And this is what I find Monfieur Maraldi hath obferv'd, by comparing his Obfervations at Paris with mine at Upminfer, in the Years 1697 and 1698 . Only at Paris the \(\%\) is commonly three or four Lines lower than at Upminfler. And fo it appears to be at Townley, from this and fome other Tables, viz. three or four Tenths of an Inch lower at Townley than an Upminfer. Which is an Argument that Townley and Paris are fituated higher above the Surface of the Sea than Upminfter (which is nearly in the fame Level with London) is.
3. There is fome Agreement between the Winds at Townley and Upninjfer. Which altho' not always exactly in the fame Point, yet do often tend the fame way, blowing within a Point or two perhaps of the fame Courfe; efpecially when the Wind is fomewhat ftrong. Or if the Winds have differ'd, yet the Scudd (as the Seamen call the Current of the Clouds) hath commonly fhown the Motion of the upper Air to agree thereto.

This doth often happen, tho' not always. And this Monfieur Maraldi hath obferv'd at Paris in the aforefaid Years, viz. "That there are " a great many Days, during the different Seafons of the Year, where "the Winds are the fame in both Places, [i. e. Paris and Upminfer.] "When the Wind was the fame, both in one part and the other, it "was ordinarily pretty ftrong, and of long Continuance. And alfo " he obferved that the Winds had changed alike in both Places, Vid. Hif. de l'Acad. Roy. des Sciences, An. 1699.

Obfervations on the Weather, Rain, Winds, \&c.
Tables of the Weather, Etc. For. 1705, by the fame. n. 309. p. \(237^{8 .}\)

Objervations on the Weather, Rain, Winds, \&ce.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{M A R C H.} & \multicolumn{3}{|r|}{6...12...9} \\
\hline & Weather & Wind & Courfe of the Clouds & Barom. & Th. & Rain \\
\hline 5 & \begin{tabular}{l}
Cloudy \\
Fair
\end{tabular} & \(\overline{\text { N NE } 3}\) & NE & \[
\begin{array}{r}
29 \quad 61 \\
65
\end{array}
\] & \[
\begin{aligned}
& 94 \\
& 90
\end{aligned}
\] & \\
\hline 10 & Froit Sun-fhine Cloudy & \[
\begin{aligned}
& \text { So } \\
& \text { E NEI }
\end{aligned}
\] & Wb N & 41
40
40 & \[
\begin{array}{r}
86 \\
112 \\
90
\end{array}
\] & 01 \\
\hline 15 & Rain & EI & S & \[
\begin{array}{r}
24 \\
17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
94 \\
105 \\
\hline
\end{array}
\] & \\
\hline 20 & Dark with Storms of Snow & \(\overline{\mathrm{NbE}} 2\) & & 65 & 88 & \\
\hline 25 & Brighter with fnal! Snow & \(\mathrm{NbW}_{2}\) & & \[
\begin{aligned}
& 21 \\
& 33 \\
& 48
\end{aligned}
\] & \[
\left.\begin{array}{r}
83 \\
10_{4} \\
81
\end{array} \right\rvert\,
\] & \\
\hline 30 & Turbid and rainy & S b W 3 & & \[
\begin{array}{r}
35 \\
30 \\
22 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 116 \\
& 127 \\
& 108
\end{aligned}
\] & \[
\begin{array}{r}
1 . \\
5 \quad 55 \\
\hline
\end{array}
\] \\
\hline \multicolumn{6}{|l|}{} & \\
\hline & Weather & Wind & Courfe of the Clouds & Barom. & Th. & Rain \\
\hline 5 & \begin{tabular}{l}
Cloudy \\
Dirty \\
Drops
\end{tabular} & \[
\left|\begin{array}{|l|}
\hline \text { WS W W } \\
\text { S W } 5
\end{array}\right|
\] & & \[
\begin{array}{ll}
\hline 29 \quad 72 \\
& 70 \\
& 66 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 102 \\
& 122 \\
& 120
\end{aligned}
\] & \\
\hline 10 & Rainy & EbNI & SbW & \[
\begin{array}{r}
34 \\
32 \\
25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
98 \\
117 \\
106 \\
\hline
\end{array}
\] & \\
\hline 15 & Froft with Sun-fline Cloudy & N 0 & & \begin{tabular}{l}
82 \\
90 \\
96 \\
\hline
\end{tabular} & \[
\begin{array}{r}
79 \\
1 \quad 16 \\
98 \\
\hline
\end{array}
\] & \\
\hline 20 & \begin{tabular}{l}
Cloudy \\
Milder
\end{tabular} & \[
\begin{aligned}
& \hline W \mathrm{~W}^{2} \text { I } \\
& \mathrm{W}^{2}
\end{aligned}
\] & & 91
92
85
8 & \[
\begin{aligned}
& 101 \\
& 134 \\
& 120
\end{aligned}
\] & \\
\hline 25 & Hoar-froft Thunder with much Kain & \[
\begin{array}{ll}
W & 0 \\
& 1
\end{array}
\] & \[
\begin{array}{lll}
\hline \text { N b W } \\
\text { N } & \text { b }
\end{array}
\] & \[
\begin{aligned}
& 70 \\
& 80 \\
& 87 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
86 \\
125 \\
117 \\
\hline
\end{array}
\] & \\
\hline 30 & Fair and warm & W bN I & & \[
68
\]
\[
73
\] & \[
\begin{aligned}
& 100 \\
& 109
\end{aligned}
\] & \[
\begin{array}{r}
1 . \\
15 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

Obfervations on the Weather, Rain, Winds, \&c.

Objervations on the Weather, Rain, Winds, \&cc.

Obfervations on the Weatleer, Rain, Winds, \&xc.

Obfervations on the Weather, Rain, Winds, \&cc.
 which may give a commodious View of the whole Year.

Thefe Tables cannot want much Explication beyond their Titles, except in the Columns of Winds and Clouds, in which I have made ufe of the Marks in Englijh. For their Variety was not known to the Romans.

The four principal Quarters are denoted by thefe Letters: \(\mathbf{N}\) the North, S the South, E the Eaft, and W the Weft.

The intermediate Points are denoted by a Conjunction of thefe Letters; N W denotes the Wind which Seneca calls Corus, we the NorthWeft, which he fays blows from the Weftern Solftice; S W Africus, or the South-Weft; S b W, South and by Weft, denotes that Point which lies next to the South ; S S W, South-South-Weft, the next to this; S W b S, South-Weft and by South, the next to this, or that which lies between this and the South-Weft: And fo of the reft.

The numeral Figures annexed to the Winds fhew the Strength of the Winds. The Cypher o denotes the Tranquillity of the Air, or that no Wind blows: I denotes fo mild a Wind, that it would hardly extinguifh a lighted Candle : 2 is a ftronger Wind: \(7,8, \mathcal{E}^{2} c\). as far as 15 or 20 , denote more violent and raging Winds.

As to the Column of the Thermometer, it is to be obferved, that the Degree of Freezing is about 85. But Hoar-froft will happen about go, or fomething higher.

In the Column of Rain, fometimes I have put down the Weight of the Rain that has failen on the rainy Days mark'd in the Table. And at the End of every Month is fet down the Quantity of all the Rain fallen in that Month. In this whole Year there fell 84,62 Pounds of Rain, of thofe Pounds which we in England call Troy Weight.

The Funnel which receives the Rain is circular, the Diameter of which is equal to 12 Englif Inches.

Laftly, Thefe Obfervations were made three times in a Day, except I was abfent or otherwife employ'd. The Hours of obferving, both before and after Noon, are mark'd at the Top of each Month.

About the End of February, and the greateft part of March, our People were generally feized with a Difficulty of Breathing, and a Cough. Let the Phyficians judge whether this might not proceed from the Eaftern Wind, together with a cold and moift Temper of the Heavens, which the Tables fhew were then cold but not frofty.

Apr. 1. in the Morning Parelia were feen by fome, but I did not happen to fee them.

The Month of fune was fo hot and dry, that the Springs fail'd, the Fruits languiff'd, and the Grafs was dry'd up. Honey-dews were alfo frequent. Likewife the Corn was blafted.

Aug. 11. the Wind was fofierce, that it did great Injury to the Fruits of the Trees.

And though Plenty of Rain fucceeded, yet the Ponds were dry in September, and there was a great Scarcity of Hay.

\section*{Obfervations on the Weather, Rain, Winds, \&c.}

December 19. This Morning (I think) was the greateft Defcent of the Mercury in the Barometer, in the following Manner.

The Changes of the Heavens and of the Weather were not fo remarkable as thofe of the Mercury. Only in the Afternoon the Wind was violent, and much Rain fell in the Night. But we heard that Day there was a dreadful Tempeit at Corbeil.

This greatelt Deicent of the Mercury was obferved by others. In the Obfervatory at Greenwich the Mercury defcended to 27,80 Inches; in the City of Canterbury to 27,90 .

In the Reckoning of the Rain I had almoft forgot to mention the Depth of the Rain. If the Earth had not abforb'd it, it would have arofe to 16,924 Englifh Inches: Therefore this Year is to be accounted a dry Year: For the mean Proportion of Rain every Year is about \(20^{\frac{1}{2}}\) Inches at Upminfter; and \(42 \frac{1}{2}\) at Torunley in Lancafkire; alfo 22 at Paris in Fraince, and 24 Inches at Lifle a City of Flanders, as I obferved above.
XI. The Society having put into my Hands Dr. Sckeucbzer's Obfervations of the Weather, EEc. made at Zurich in the Year 1708, and having received from Dr Micb. Angelo Tilli the Quantity of Rain which he oblerved to fall at \(P_{i f a}\); I have compar'd thefe Obfervations with mine made at the fame time at Upminfter; and have put what I could of them into the annexed Tables. In the former of which, I have reprefented Dr. Scheuchzer's and my Barometrical Obfervations: In the latter, his Rain Oblervations, thofe of Dr. M. A. Tilli, and mine own; all reduced to our Englifh Meafure. But becaufe I am not as yet certain of the true Proportion between the Tufan and Engli/b Weight, I have therefore given Dr. M. A. Tilli's Rain, both in the Tufcan Pounds n and Ounces, as he fent ir me; as alfo reduced to our Englifh Troy Pound and Centefimals of that Pound, according to Mr. Greares's Proportion, which is different from that affigned by sir forzas Moor.

Tables of the Barometrical Altitules for 1708, of \(\mathrm{Zu}-\) rich in Switzerland; \(a\)-d of the Rain at Pifa in Italy, and Zurich, ad Upminmer. for 1707, 1703, by Mr. W. Derham. n. 34. P. 342. Witb Remarks on tbe Wind, Hiat, and Cold, \&c.
As for the Tbermometer, it would have been in vain to have compared Dr. Scheuchzer's Oblervations with mine, by Reafon we have Vul. IV. Part II. they being every where in all, or mon Refpects differenit foalewith fuall Bottles of Spirits; fome accordingly with longer, fome ithth horter; fome with wider, fome with narrower Canes or Shanks; fome fill'd with more highly rectify'd, and confequently more expanfive Spirits; fome with more phlegmatic and duller Spirits.

The Difference particularly between Dr Scbeucbzer's and my Thermometer is, his is about one Foot long ; that I obferved with all along ('till it was broken this Year) about two Feet and a half; and that I now obferve with three Feet and a Quarter ; the Bore of the Stalk is fmall, and the Ball is large, and confequently the Rang great, anfwering every the leaft Alteration of Heat and Cold.

But yet, thus much I have been able to obferve by comparing Dr. Scbeucbzer's and my Thermometrical Obfervations, viz. That notwithftanding the Alpine Snows have mighty Effects on the Weather in Switzerland, and other conterminous Places, yet there is much more Agreement between the Heats and Cold at Zurich and Upminfter, than before comparing them I imagin'd. (I fpeak with relation to the laft Year only, having no other Obfervations.) For in Winter, altho' I imagine we have more warm Days than they; and in Summer, that they have greater Heats than we; yet I oblerve that the Colds and Heats in both Places, begin and end nearly about the fame Time: And that oftentimes any remarkable Weather (efpecially if of fomewhat long Continuance) affecteth one as well as the other Place. Thus, for Inftance, June, which was (fome part of it at leaft, particularly the very Day after the Soltitial-Day, Fune 12.) remarkably cold in England, feems to have been not very different at Zurich; Dr. Scbeuchzei's Thermometer divers Times that Month (tho' not on the very fame Days perhaps) defcending as low, or rather lower than in the Month before, yea, as many Days in the Winter Months. I obferved too, that all this Month their cold Weather conftantly preceded ours here about five or more Days. An Indication that the Weather in both Places was influenced by the fame Caufes, whether from the Alpine Hills and Cold, or the Influx of the Moon and other heavenly Bodies, or any other Caufe.

And as in June there was a great Agreement in the unufual Cold, fo in Auguft there was not much lefs Agreement in Heat; the Heats in both Places being great, and beginning to abate about the fame Time, only a little fooner here than there.

In Winter alfo, although I imagine we have a greater Number of warmer Days than they, yet I find that a warm Winter Month there is fo here; and a cold one there, is a cold one here likewile. Thus in February and March, October and November, a great Agreement feems to have been between the Heats and Colds of both Places, fome Days excepted. But January was at the Beginning not fo conftantly cold,
for the Seafon at Upminfer, as it feems to have been at Zurich. Ansl December laft, which from the eighth Day to Cbriftmas-Day, was here moderate and open Weather, and after that more intenfely cold than even in the Long-froft, Anno 1683, by the fewer Thermometrical Obfervations which Dr. Scbeucbzer made then, than in other Months, the greateft part of that Month feems to have been intenfely cold at Zurich, as the latter part thereaf was with us remarkably in England.

As to the Winds, which I did not enter into Tables, becaufe it may -of tho be fufficient to obferve in general, that although many Days they agree Winds. in both Places, yet there are many more in which they differ. When they do agree, I find it is chielly when the Winds are ftrong, and of long continuance; and more, I think, when Northerly and Eafterly, than in the other Points. Alfo, 1 have obferv'd, that a frong Wind in one Place hath been a weak one in the other.

As to the Earcinetrical Obfercations, I have thought it worth while -of tbe Baroto fperify them. Mine own Oblervations I felected, which were made metrical Obat Noon; and Dr. Scheuchzer's as near Noon as might be. For which fervations. reafon, I commonly took his Morning Obfervations, becaufe made, for the moft part, about ten or eleven a-Clock. Alfo I touk thofe made with his bent Barometer; becaufe they feem'd to me (efpecially at the beginning of the Year) to be the moft accurate.

The Altitudes of this Mcroury he mealureth by the Paris Foot, which I have reduced to our Englifh Meafure; for which reafon I have alfo all along noted cheir Differences.

It is manifert from the Tables, that throughout the whole Year, the Mercury was lower at Zurich than at Upminfter, by fometimes one, fometimes above two Inclaes Einglijh. The moft remarkable Difference was at the latter End of Seprember and Begirining of Oztober, when the Difference was for a good while above two Inches Engliffo. The reafon of which, I guefs, was becaule at Zuricb, I imagin'd the Air was more, inclin'd to wet, at that Time, than at Upmingter; as alfo, becaufe the Winds were then at Northerly and Eafterly with us, which, 'tis well known, do make our Barometers rife, even in our wet Weather. But the mean Difference between Dr. Scbeucbzer's and my Barometers, I take to be about half an Inch Einglif. From whence I conclude, that the Situation of Zurich is near a Quarter of an Englifh Mile higher than that of Lipminfler above the Surface of the Sea; or elfe that that Part of the terraqueous Globe, lying nearer the Line, is (according to the receiv'd Opinion, higher, or farther diftant from the Center, than ours is, lying nearer the Pole.

It may be oblerved from the Barometrical Tables, that (as near the Equinoctial the Barometer is obferved to ftand nearly at a Stay, but the more Northerly the Latitude, the greater the Rang of the Mercury, fo) at Zuritu, the Difference laft Xear was not fo great between the higheft and lowell Stations of the \(\%\), as it was either at Pa;is or Upminjler.
\[
-4 B=\quad \text { For }
\] Paris, Dr. Scbeucbzer faith, 'twas one Inch two Lines and an half; but at Upminfter it was eighteen Inches, (and fome Years it is more) which is greater than either of them.

I obferve, although there be fome, and that a pretty deal of Agreement between the rifing and falling of our Barometers, one being very often high or low, when the other is fo; and one oftentimes rifing or falling when the other doth fo; and one rifing much or little, or falling much or little when the other doth ; yet it is not fo certainly fo, as it is nearer home. I have before given a Table of fome Heights of the Mercury obferved at Upminfer, and at 200 Miles diftance in Lancaßire at the fame time. And in the Hijt. de l'Acad. Roy. des Scierr. Anno 1699. Monfieur Maraldi, by comparing his Obfervations at the Paris Obffervatory with mine at Upminfter, takes notice, "That there " is a great Agreement between the Variation of the Heights of the "Barometers in both Places; that he finds almoft always that when " one rifeth or falleth, the other doth fo too, although not always "alike: That the Days in each Month whereon the Mercury hath been "higheft or loweft, it hath been the fame at Paris as at \(U\) minjocr; but "ordinarily fomewhat more than three or four Lines lower at Paris "than Upminfter." But the Agreement between the Variations of Dr. Scbeuckzer's Barometers and mine, although often great, yet is not fo conftantly, nor fo certainly great as nearer home, viz. at London, Lancafhire, Paris, and other Places, with which I have made the Comparifon.
-onthe Rain. The Rain was obferved at Pifa in Italy, by Dr. Mich. Angelo Tilli; and at Zurich in Switzerland, by Dr. 7. F. Scbeucbzer, and by my felf it Upminpler in Efex.

The Rains for the moft part are more frequent at Upminster, that either at Zurich or Pija; I mean, we have more Rainy Inays than they. But yet the Rains in both thefe Places are much greater in Quantity, in the whole Year, and in fome Months, efpecially the Autumnal and Winter Months, than our Rains are at Upminster. May, F̛une, and July, and a great part of August, in 1707, feem to have been very dry, and I fuppofe fearching Months at Pifa, as in fome meafure fome of them were here: And in that Time lefs Rain fell there than here. But the following Autumnal Months made at Pifa fufficient Amends, either by the great Quantity that fell at a Time, I fuppofe in Thunder, or fuch like hatty large Showers; or elfe by the Quantity and Frequency of both. What a prodigions Quantity was that, for inftance, of above 32 Pounds on August 19? (If it all fell on that, and not fome on the preceding Days). But we find very large Quantities at a time to have fallen on divers Days, where it is manifeft the Rain was weighed every Day, viz. ten Pound, nine Pound, and other large Quantities for feveral Days together, in the cooler

\section*{Obfervations on the Weather, Rain, Winds, \&c.}
cooler Autumnal Months. But as the Weather groweth warmer, I imagine their Rains at Pifa are fewer ; and what falleth, falleth in large Quantities. For which reafon the Quantity of Rain in the Spring Months of March, April, and May, 1708, (oftentimes dripping Months in England) is nearly the fame both at Pifa and Upminster.

As to the Rain at Zurich, I oblerve, that altho' their Rains are lefs frequent than ours in Effex, yet they feem to be more frequent than sheirs at Pifa: But the Quantity at Zurich is greater than at Upminfter, and lefis than at Pifa.
'Tis Dr. Scheucbzer's Opinion, "That more Rain falleth in Sweit" zerland than in France; at Zurich than at Paris." To confirm which, he giveth us this Table of eight Years Rain at Paris, to which I Thall add mine for Upminfler.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Thbe Rain at Paris in eight Years.} & AiUpm. \\
\hline \begin{tabular}{l}
The \\
Year.
\end{tabular} & \begin{tabular}{l}
Deptb in \\
Lines of \\
Paris \\
Meajure.
\end{tabular} & \begin{tabular}{l}
Deptb in \\
Inches of \\
Paris \\
Meafure.
\end{tabular} & Deprb in Englifh Incbes E \(^{\circ}\) Centefim. & Deptb in Englifh Inches E Centefin:. \\
\hline 1699 & 224 \% & Inch Lin.
18
18 & 19 & 1511 \\
\hline 1700 & \(240 \frac{1}{2}\) & \(20 \quad \frac{1}{2}\) & 2137 & 19 03 \\
\hline \({ }^{1} 701\) & 256 & 2141 & \(22 \quad 77\) & \(18 \quad 69\) \\
\hline 1702 & 196: & \(164 \%\) & 1745 & \(20 \quad 38\) \\
\hline 1703 & \(208 \div\) & 174 & \(18 \quad 51\) & \(23 \quad 99\) \\
\hline 1704 & \(23^{8}\) & \(1910 \frac{1}{\frac{1}{2}}\) & \(21 \quad 20\) & 1580 \\
\hline 1705 & 266 & 13103 & \(14 \quad 82\) & 1693 \\
\hline 1706 & \(183 \frac{1}{2}\) & \(15 \quad 3 \frac{1}{2}\) & \(16 \quad 31\) & \(24 \quad 29\) \\
\hline Total & Dcptb & 14210 & \(152 \quad 36\) & 15422 \\
\hline
\end{tabular}

It is manifeft from this Table, that the Zurich Rain laft Year (altho it amounted not to the Quantity which fell at \(P i \sqrt{a}\) in a whole Year, yet) exceeded both the Paris and Upnimfeer annual Rains of eight Years before. But whether it conftantly doch fo or not, will appear from future Obfervations.

I take notice too, that there is a greater Difference between thefe laft eight Years Rain at Paris and Upminfter, than I found in the eight Years, in which I formerly compared the Rain of Townley, Paris, Lije

Life and Upminjer together; for by that Comparion it appeared, that leis Rain fell at Upminjfer than at either of the other three Places. But according to thefe later eight Years in the Table, a fnall Matter more falleth at Upminfoer than at Paris. For the mean Proportion for Paris (which according to former Years was above 20 Inches Paris Meafure, or 22 Inches Engliff) is according to thefe laft eight Years, no more than 17 Inches, 9 Lines Paris Meafure, or 19 Inches Englifb: And Upmingtor Kain, which I formerly computed at, Year by Year, about 20 Inches and an half Englifh, is for thefe eight Years much the fame, or a little more than that at Paris.

The Proportions therefore which I fhall now lay down for the yearly Rain of all Places, whofe Rain I have had Information of, are thele; for Zurich ('till farther Obfervations are made) \(32 \frac{1}{2}\) Inches; for Pifa ('till farther Obfervations) \(43 \frac{1}{4}\) Inches; for Paris, 19 Inches; for \(L i f l e\), 4 Inches; for Torviley in Lancaßbire, \(42 \frac{1}{2}\) Inches; for Upminfer, \(19 \frac{1}{4}\) Inches; all the fame, that is Englifh Neafure.

The laft Obfervation I make is, the great Ufe of Cold to the making of Rain. That Exhalations and Vapours are the Matter of Rain, is not to be doubted; how they are raifed, I fhall not enquire; it is filficient for my prefent Purpofe to fay, that when thofe Vapours are raifed, they are conftipated and condenfed into Clouds and Rain, chiefly by the Cold of the Air to which they are elevated. And the greater the Quantity of Vapours raifed is, and withal the more intenfe the Cold of thofe airy Regions, the greater is the Quantity of Rain. Now this is manifeft from the annexed Tables, compared with I)r. Scbeucbzer's and my Weather, \(E^{\circ} c\). Obfervations. Thus for inftance Fanuary, which Dr. Scbeucbzer frequently oblerved was fometimes warm, lometimes cold, and appeareth farther to have been fo by his Thermometrical Column, and which was the fame with us in South Britain, that Month, I fay, had Plenty of Rain at Zurich, Upminfter, and Pifa too. The fame might be faid of February for Zurich, and probably Pija too. So alfo for December in 1707, at Pifa and Upminster; and December laft at Zurich and Upminster. But with us February was for the moft part a cold Month, and the Rain the lefs, by reafon the Vapours either could not be raifed in Plenty enough, or not be carried high enough, or fufpended long enough to be united, but foon were precipitated back again to the Earth.

From thefe Caufes affign'd, the Plenty of Exhalations and Cold of the airy Regions, I conceiv'd it is, that at Upminster, about the Equinoxes, we have often more Rain than at other Seafons. But I cannot fay this is certain and conftant. Thus it was at the autumnal Equinux in 1ラ○7, not only at Uphinster, but at PiJa too: So at Zurich, Pija and Upminster, about the Vernal in 1708 ; and at Zurich and Upminsier the laft autumnal Equinox: And this 28 th of March 1709, is a pregnant Proof of this. For, not only unufual Cold of the Winter hath

\section*{Obfervations on the Weather, Rain, Winds, \&c.}
been fucceeded by as unufual Quantities of Rain all this Month, but at this very Time the Weather is open; but withal cool. Particularly Marcb 26, many Vapours arofe, fo as to fiH the Air with a warm ftinking Fog. The Night following a fmart Shower of Hail fell, a manifet Indication of the Cold of the Middle, or Top of the lower Region of the Air. And the Day after, viz. March 27, proved fo wet a Day, that almof five Pound of Rain fell through my Tunnel, a large Quantity for the Compafs of twelve Inches Diameter in fourteen or fifteen Hours Time. The Winds and Clouds were all the while calm and ftill, and frequently changing from Point to Point, near round the whole Compafs; and the Rain that fell, fell thick in fmall Drops. Which makes me think, that the warm foggy Vapours, raifed in great Plonty the Day or two before, as foon as they were mounted aloft, met with fudden extreme Cold of the middle Region, and were thereby haftily condenfed, and the Air being at the fame Time very light (the Barometer being then very low) they fpeedily tumbled down in fmall and thick Drops of Rain.

And this I take to be the very Cafe of the Vernal and Autumnal Rains, that in Spring, when the Earth and Waters are loofed from the Brumal Conftipations, the Vapours arife in great Plenty. So alfo in Autumn, when the Heats that diffipated them in Summer, and alfo warmed the fuperior Kegions, are abated, the Vapours raifed then in great Plenty are foon condenfed by the Cold of the fuperior Regions, and fo are forced down in more plentiful Rains, than at other Seafons, when either the Vapours are fewer, or Cold of the fuperior Regions lefs.

For a farther Illuftration of this, let us cåt an Eye upon fune laft, a Month as unfeafonably Wet, as 'twas unufually Cold. The Cold thereof I have already taken notice of; and the wet Weather accompanying it was fo unfeafonable to us in Soutb Britain, that altho' we had great and welcome Crops of Hay after a great Scarcity the preceding Year, yet we had fcarcely any good Weather to make it in. So Dr. Scbeuchzer faith it was with them in Switzerlaud, in his Remarks on that Month: Tbis Month, as appears from meafuring the Rain, weas more tban ordinary wet, to the Injury botb of Men and Vegetables. Much Hay was rotted, the Corn alfo that was not yet cut grew too luxuriant. The Vines and tbeir Bloffoms received mucb Damage from the continual Rains; their tender Buds foll off, tbeir Leaves were canker'd, and there appear'd but fimall Hopes from the appronching Autumn, \&c.

Having confider'd the Ufe of Cold to the Production of Rain, I fhall remark one Thing concerning the Alps; and that is, I cannot but think that thofe, and all fuch like high Muntains, and the Snows they are cover'd with, are of great Ufe to the neighbouring, and more diftant Countries, in generating their Rain, and performing other great Offices of Nature. From fome Obfervations I have made in comparing Dr. Scheuchzer's and my own larger Tables, having fo frequently obferved the Rifing and Fallings of the Barometer, fome of the molt confiderable Variations of the Wind, the moft remarkable Alterations of Heat and Cold, and of Wet and Dry; I have lo often obferved many of thefe to precede in one Place what hath followed in another, that I am apt to think that even England may fometimes partake of the Effects of the Alpine Mountains upon the Air and Vapours. It is certain that their very cold Weather in December latt, and the Relaxation thereof preceded ours: Which makes me inclin'd to think it might probably be derived from them to us. All the former part of that Month, efpecially from about the 8 th Day till the 24 th , was here mild and open. But on Cbriftmas Day it began to be colder, and the following Days to freeze harder and harder; infomuch that on December 30, my Thermometer was a great deal lower than ever I had feen it before. And two Perfons in London told me, that the Spirits in their Thermometers fell feveral Degrees lower this laft Winter, than they had done in the felf-fame Thermometers during all the long and remarkable Froft in the Year 1683 . Whether at Zurich the Cold was more exceffive than it ufed to be in other Years, Dr. Scbeachzer doth not fay; but he noteth the Air to have been exceffively cold, and his Thermometrical Obfervations fhew it to have been fo fome time before, in, and after Cbristmas. And Dr. Newton, in a Letter to me from Florence, fays, "The Cold was there fo great, that for twenty "Years paft they had not been fenfible of greater; it wanting on "Trelfth-day but half a Degree of the Extremity". Their Truelfitoday,, I reckon, fell on December 26, O. S. and confequently their fo eminenly Freezing Day preceded ours about four Days.

And as their Cold, fo by Dr. Scbeucbzer's Obfervations, I find the Relaxation thereof preceded ours a fhort Time. For about the latter End of December, the Weather appears to have been milder, at leaft lefs intenfely cold with them. And fo was ours at the Beginning of fanuary, about as many Days after theirs, as their Cold preceded ours.

Thus I have given one eminent Inftance of what I found leffer Examples frequently, as I run over Dr. Scbeucbzer's laft Year's Obfervations. But whether there may be any farther Reafons for any fuch Conclufions about the Influences of the Alpine Eminences and Colds upon far diftant Places, future Obfervations will determine. But as to their Influences nearer home, Dr. Scheuchzer faith, The Alps are not only the fruitful Motber of Rivers and Clouds, but alfo of Snow and Rain. It is very credible, tbat fucb Places as are near the Sea and the Alps, abound more with Rain than Places which are more remote.

To thefe Remarks I migtt add Dr. Scbeucbzer's Obfervations of the Occurrences in each Month, of what was curious as to Meteors, the State of Health and Difeafes, \(\xi^{2}\). , Alfo the Increare and Decreate of their Zuricb River, the Limat, which (like other Rivers that have their Source in the \(A l p s\)) he puts beyond all Doubr (in my Opinion) to receive greater Increments from the melting of the Alpine Snows, than from all the Wet proceeding from their Rains. But for them, I refer to his Obfervacions at large.

From Dr. Filli's Table of Rain, compar'd with the other Tables, it appears, that although, in the Year before, Fune and other Summer Months were dry, yet laft June was a wet Month at \(P_{i j a}\), as well as Zu ricbland Upminffer; and fo likewife was it about the Autumnal Equinox: And for the lame Reafons I imagine, which I have already mentioned.

As to the Excels of the Pifa Rain above that of other Places, he attributeth it to che fame Caufe, that I did that of Lancafoire, namely, the Height of the Hills, and the Blowing of the Winds for a long Time from fome one Quarter. His Obfervation is this, I eafily allow, that our Rain always or for the moft part exceeds yours, for the Reajon you bave obferved. And especially if the rougb Corfician Mountains, at the Time of Autumn, are covered early with Snow. Then the Southerly Winds and Showers provail for a long Tinie. Bist it plainly apperr's that the Nortb Winds blow more frequently about tbe Hills of Florence than the City of Pifa. For this City is furrounded with Hills on the Nortb-fide, and is diftant about five Miles from the Sea at an equal Interval.

The farne Account of the Situation of Pifa, and the great Quantity of Rain falling there, I remember I had fome Time fince from a very ingenious Member of this Sociery, Mr. Afon, who hath been there.

\section*{ObServations on the Weather, Rain, Winds, Sic.}

A Table Shewing the Heights of the Mercury in the Barometer in Englifls Inches and Censefimals of an Inch, both at Zurich in Switzerland, and at Upmintter in South Britain, together with the Differences of those
Heights, for the Year 1708.

 Weigbt, wbi b fell tbrough a Tunnel of balf a Brace Square, from May till the End of December 1707: As allo the Quantity of Rain at Upminfter in Effex at the fame Time, which fell tbrougb a round Tunnel of 12 Incbes Diameter, in Pounds Troy, and Centefunals of a Pourd.

Objervations a the Weather，Rain，Winds，\＆c．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline OW｜mNONNN & GNNNN & ベくが可 & ごがご & －60Na & & & \％ 3.9 \\
\hline & WOO & \({ }_{0}\) & & \(\bigcirc 0\) & & त & \\
\hline & NOm
F \({ }_{\text {a }}^{\text {a }}\)＋ & \(\omega\)
+
+ & & \(\xrightarrow{9}+\) & & － & \\
\hline & & \(\underset{\sim}{\omega}\) & & & & － & \\
\hline & － & \(\sim\) & & & & & \\
\hline & & cr \(\begin{gathered}\text { c } \\ \text { a }\end{gathered}\) & \(\sim\) & N

0 & \(\infty\) & － & \\
\hline & & vicc w & N
+
+ & N－A
O－m & N & － & \\
\hline & \begin{tabular}{|cccc|}
\hline 0 & 0 & 0 & -1 \\
a & \(N\) & \(N\) & \(N\) \\
\hline
\end{tabular} & \(\left\lvert\, \begin{array}{ll}0 & 0 \\ \infty & 0 \\ N\end{array}\right.\) & & \begin{tabular}{|ccc|}
0 & 0 & 0 \\
\(\infty\) & \(N\) & 0 \\
+ & \multicolumn{1}{c}{} \\
\hline
\end{tabular} & & － & \\
\hline
\end{tabular}

Obfervations on the Weather, Rain, Winds, \&cc.
1 Taill of the Rain at Zurich in Switzerland, at Pifa, and Upminfter, in the Year 1703. All reduced to the Depth in Englifh Inches, and Centefimals of an Incb.

Obfervations on the Weather, Rain, Winds, \&c.

Obfervations on the Weather, Rain, Winds, \&rc.

Obfervations on the Weather, Rain, Wind's, \&c.
A Proppect of all the Rain in the foregoing Tables, in every Month, Half Year, and the whole Year, from June 1. N. S. or May 21. O. S. 1707. to the End of the Year 1708.
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& D_{\text {of }}, \\
& o f \\
& \text { of be } \\
& \text { Pifa } \\
& \text { Rain. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Leptb } \\
& \text { of fbe } \\
& \text { Upm. } \\
& \text { Rain. }
\end{aligned}
\] & \[
\begin{aligned}
& D_{c p+b} \\
& o f \\
& \text { of the } \\
& \text { Zurich } \\
& \text { Rain. }
\end{aligned}
\] \\
\hline & \[
\begin{array}{|c}
\hline \text { Engl. } \\
\text { Incbes. }
\end{array}
\] & Engl. Inches. & \[
\begin{aligned}
& \text { Eng1. } \\
& \text { Incbes. }
\end{aligned}
\] \\
\hline May. & \(\bigcirc 12\) & 105 & \\
\hline June. & - 88 & 134 & \\
\hline July. & - 36 & I 27 & \\
\hline Auguft. & \(57^{5} 7\) & 218 & \\
\hline September. & \(\begin{array}{lll}6 & 45\end{array}\) & 290 & \\
\hline Octuber. & \(\begin{array}{ll}3 & 43\end{array}\) & 133 & \\
\hline November. & \(4 \quad 22\) & \(1 \quad 18\) & \\
\hline Ibe Half Year's Rain. & 2122 & 1125 & \\
\hline December. & \(6 \quad 392\) & 243 & \\
\hline Anno 1708. & & & \\
\hline January. & \(6^{6} 41{ }^{2}\) & 288 & \\
\hline February. & \(3 \quad 280\) & - 46 & 165 \\
\hline March. & \begin{tabular}{|l|l|}
\hline 2 & 65
\end{tabular} & \(2{ }^{2} 1\) & 151 \\
\hline April. & \(125^{\circ}\) & - 964 & \(4 \quad 69\) \\
\hline May. & \(13 \quad 33^{\prime 2}\) & 202 & 191 \\
\hline The Half Year's Rain. & \(233^{11}\) & 1078 & \\
\hline Deptb of the wbole Year's Rain. & \(4453{ }^{2}\) & 22.03 & \\
\hline June. & 490 & 232 & \(5 \begin{array}{ll}51\end{array}\) \\
\hline The Half Year's Rain. & & 10671 & 1731 \\
\hline July. & & 111 & 3 50 \\
\hline Auguft. & \(\begin{array}{ll}2 & 27\end{array}\) & 294 & \(3{ }^{3} 5\) \\
\hline September. & \(7 \begin{array}{ll}7 & 21\end{array}\) & I 463 & \(3 \quad 02\) \\
\hline October. & \(3_{5}^{5} 33{ }^{\circ}\) & - 23 & 244 \\
\hline November. & - \(13{ }^{\circ}\) & - 86 & - 62 \\
\hline December. & & 197 & 62 \\
\hline The Half Year's Rain. & 19848 & 57 & 1535 \\
\hline The whole Year's Rain. & & 1924 & 3266 \\
\hline
\end{tabular}

An Account of the Rain at Upmintter for 18 2 kars, by Mr. W. Der ham. n. 371 . p. 130 .
XI. The latt Year (1714) having been fo remarkably dry, that the Ponds hereabouts are for the moft part dry, and the Springs generally ei her very low or quite failing, I made an Extract (out of my Regifters of the Weather, \(\varepsilon^{\circ} c\).) of the Quantity of Rain which fell at Upminffer the laft IS Years. The Particulars of which, every Year, may be feen in the Table. In one Columin of which, the Weight of the llain in Pounds Troy, and Centefimals of Pounds, may be feen; in the other, the Depth of it in Inches and Centefimals of inches, or what Height it would have been, had it not been imbib'd by the Earth, or leffen'd by Exhalations, but been fuffer'd to have flagnated on the Ground.
Remarks on Among the Dry Tears, 1704 she Dry Yoar 1704. was complain'd of for one; which I remember the News- Dup rs re- ported to have been fo confiderable at Venice, that they were forc'd to fetch their Water in Barks five Leagues off, as far as

A Table of Rain which fell at Upminfter, from the Year 1697, to the Year 1714.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year.} & \multicolumn{2}{|l|}{Weight} & \multicolumn{2}{|l|}{Depth.} \\
\hline & & Cent. & Inch & Cent. \\
\hline 1697 & 77 & & 15 & 52 \\
\hline 1698 & 122 & 32 & 24 & 46 \\
\hline 1699 & 75 & 54 & 15 & I 1 \\
\hline 1700 & 95 & 13 & 19 & 03 \\
\hline 1701 & 93 & 45 & 18 & 69 \\
\hline 1702 & 101 & 89 & 20 & \(3^{8}\) \\
\hline 1703 & 119 & 94 & 23 & 99 \\
\hline 170 & 79 & 02 & 15 & 81 \\
\hline 1705 & 84 & 62 & 16 & 93 \\
\hline 1706 & 121 & 43 & 24 & 29 \\
\hline 1707 & 81 & & 16 & 31 \\
\hline 1708 & 96 & & 19 & 22 \\
\hline 1709 & \({ }^{1} 32\) & 82 & 26 & 56 \\
\hline 1,10 & 91 & \(\varepsilon_{4}\) & 18 & 37 \\
\hline 1711 & 118 & & 23 & 60 \\
\hline 1712 & 1.8 & 79 & 23 & 76 \\
\hline 17:3 & 15 & 80 & 23 & 16 \\
\hline 1714 & 55 & 95 & 11 & 19 \\
\hline
\end{tabular} the Brentra; fo that publick Prayers were put up for Rain. Yet we may obferve, that feveral other Years were drier that that with us at Upminfter. But among them all, none comparable to the laft Year 1714. In which the whole Quantity of Rain was no more than 55 l. 95 Hundredths, or 11 Inches 19 Hundredths; whereas the leaft Quantity of any of the preceding 18 Years, exceeded 15 Inches in Depth.

What Effects this Drought hath had in the Bodies of Animals, I leave others to judge. It is well known how contagious and fatal a Diftemper hath raged among, not only our own black Cattle, but in many other Parts of Europe. And 1 obferved the Itch was Epidemical among the poorer Sort, at the Beginning of the Year; that the Meafles were very common fome Parts of the Year; and that Pleurifies and Malignant Fevers infefted a great many, efpecially in the Summer Months. But how far thefe Diftempers might be owing to the dry Seafon, I leave to the Phyficians.

To compare with thefe, we have collected out of the Memoirs of the Royal Academy of Sciences, the Quantity of Rain and diffolved Snow which has fallen at the Obfervatory at Paris for \({ }_{2} 3\) Years together ; according to the accurate Obfervation of M. De la Hire, and have reduced the Frencb Meafure to our own. But it is to be obferved, that the Diverfity of Stile makes the Years not exactly the fame, though, as to this Matter, the Difference may feem very inconfiderable.
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Frencb} & \\
\hline Anno & Inch & Lin. & Inch Cent. \\
\hline 1689 & 18 & \(11^{\prime}\) & \(20 \quad 23\) \\
\hline 1690 & 23 & \(3{ }^{\frac{1}{4}}\) & \(24 \quad 87\) \\
\hline 1691 & 14 & \(5^{\frac{1}{4}}\) & \(15 \quad 40\) \\
\hline 1692 & 22 & \(7 \frac{1}{2}\) & \(24 \quad 14\) \\
\hline 1693 & 22 & 8 & \(24 \quad 18\) \\
\hline 1694 & 19 & 9 & 2807 \\
\hline 1695 & 19 & \(7 \frac{1}{4}\) & \(20 \quad 96\) \\
\hline 1696 & 19 & \(5^{\frac{1}{2}}\) & \(20 \quad 76\) \\
\hline 1697 & 20 & & \(21 \quad 68\) \\
\hline 1698 & 21 & 9 & \(23 \quad 20\) \\
\hline 1699 & 18 & \(8 \frac{1}{4}\) & \(19 \quad 93\) \\
\hline 1700 & 20 & \(0^{\frac{1}{3}}\) & \(21 \quad 38\) \\
\hline 1701 & 21 & \(4 \frac{1}{4}\) & \(22 \quad 78\) \\
\hline 1702 & 16 & 4 & \(17 \quad 42\) \\
\hline 1703 & 17 & \(4 \frac{1}{4}\) & 185 \\
\hline 1704 & 19 & \(10^{1}\) & \(21 \quad 20\) \\
\hline 1705 & 13 & \(10 \frac{1}{4}\) & 1482 \\
\hline 1706 & 15 & 3 & \(16 \quad 32\) \\
\hline 1707 & 17 & 11 & 19 II \\
\hline 1708 & 18 & \(3{ }^{\frac{1}{2}}\) & 1951 \\
\hline 1709 & 21 & \(9{ }^{1}\) & \(23 \quad 21\) \\
\hline 1710 & 15 & \(8 \frac{1}{4}\) & 1710 \\
\hline 1711 & 25 & 2 & 268 \\
\hline
\end{tabular}

The Rain af Paris for 23 rears.
XIII. Upon Tuefday, the \(16 t b\) Day of Fuly 1706, about Eight of the Clock in the Morning, it began to rain in and about Denbigh, which continued inceffantly for 30 Hours, but not very violently, till about Three or Four a-Clock in the Morning upon Wednefday, when it rain'd fomewhat fafter, attended with a terrible Noife (like Thunder) with fome Flafhes of Lightning, and a boifterous Wind. About Break of Day the Rain and Wind began to abate of their Violence, which leffen'd gradually every Hour, till about One or Two a-Clock in the Afternoon, and then it perfectly ceafed, and the Air became clear and fomewhat catm.

Upon Tuefday the Wind blew South Weft; but on Wednefday it was come to the North Weft.

The Effects of this great Storm were difmal, for it occafion'd the overflowing of all the Rivers in Denbigb/bire, Flint/bire, and MerionethBire, \&c. which Spoil'd a great deal of Corn, and took off all the Hay that was mowed, near the Banks of the Rivers, which was Vol. IV. Part II.
carried by the Stream in fuch vatt Quantifies down to the Bridge3, that-it ctionik'd the Arches and Inlets, infornuch that it broke down above a Dozen great Bridges. Grat Oaks and other large Trees were unrooted and fwept away, with feveral (Muickfer Hedges; and fome Quillets by the Side of the River-Eluyy, fo covered with Stones and Gravel, that the Owners can't well tell whereabouts their Hedges and Landmarks ftood; and the fame River has alter'd its Courle in fome Places, to as to rob the Landlords on one Side of fome Acres, and beftowed as much on the oppofite Side. Two or three Rivulets, that convey'd Water to fome Mills, have been fo choak'd up with Stones and Gravel, that the Owners don't think the Profit will countervail the great Charge of clearing them.

It is affirmed by many, that the great Floods were not fo much the Effects of the Rain, as the breaking out of an infinite Number of Springs, in fuch Places, as they were never known to flow from before. In the Town of Denbigh a great many broke out in the Houfes and Stables, efpecially in that Part which lies next the Cafle on the North Side of it; fonse of which broke out with a great deal of Violence, and in fuch a Quantity, that it is affirmed by leveral Men of the Town, that three of thefe new Springs, which Howed out of the Stables of three Inns, were fufficient to turn any Corn Mill.

At a fmall Diftance, Northward of Denbigh, lies Park-Snodiog, a Rocky Hill, out of which broke out a great many Springs, which flowed fa plentifully for nine or ten Days, that the Cattle water'd in them for that Time; whereas before and after, the People were forc'd to water them all Summer long at a Well in the Highway, at fome Diftance from this Park-Snodiog. There are feveral deep Holes and Trenches cut in the Highways adjoining to the River Elay, EFc. fome fo very large, as to hide three or four Horfes, which is not attributed fo much to the overflowing of the River, as to the breaking out of Springs in thofe very Places.

In Comb Mountain there is a Pit of a circular Form, which in the Summer time ufed to have little or no Water in it, and in Winter, as much Water as would fwell the Surface to about fourteen or fixteen Yards crofs over: But now in the midft of Summer it rofe up at leaft a Yard and a half higher than it was ever known to do in the wetteft Winters; and overflowing its Banks, it fell down the Hill with fuch Violence, as to penetrate into the very Body of a Rocky Road, and dug Pits in it, that will bury the biggeft Horfes; and the Road, which was a common Highway, is now become irreparable.
XIV. 1.] In the Month of Marcb 1701, in the Forenoon, between the Hours of 10 and 11, I oblerved a remarkable Water-Spout in the Downs. It bore \(\mathbf{N}\) by E off our Ship, about two Leagues diftance by in the Downs. Eftimation; the Wind, at E NE. a Top-fail Gale, and very cold. don, n. 270 . The Horizon was entirely open and ferene, except the Northern Parts p. 805. thereof from N N W to NE by E. or thercabouts. The higheft Part of the Cloud appear'd to make an Angle of 45 Deg. of Elevation. About one half of the Cloud, (viz. the upper) was very white, and the other extreamly black. The Spout itfelf, (which hung from the lower Part of the whitifh Cloud) hovered up and down for about 20 Minutes, and during two or three Minutes of the Time, that Part of the Sea exactly under the Spout, did fparkle up Water to a confiderable Height. The fparkling run along to the Leeward, (the Cone of the Spout moving that Way, and making, it feems, a Difcharge, tho' not vifible to us in its Fall) and continued running along for fix Ships length. Afterwards the Body of the Spout did quickly contract itfelf, and then difappear'd. About two Hours afterwards the Heavens were intirely overcalt, and during that Afternoon there fell abundance of Hail, and buth Wind and Cold increafed. I have feen feveral Water-fpouts in the Mediterranean fome Years ago, and thofe ufually during the Time of a ftark Calm and hot Summer Weather; but to fee one in our Northern Climate at this Time of the Year, and during Weather both Cold and Windy, is, I think, a litcle un. ufual.
2.] The 27th of Auguf 1701. being upon the Coaft of Barbary, to the Northward of the Town of Bona, upwards of 10 Leagues diftance at Sea, about 7 a-Clock at Night, foon after Sun-fetting, there appeared in the NE. (which was direetly up the Gulf of Lyons from us) great and continued Flafhes of Lightning one after another, with farce any Intermiffion, and this without Thunder continued till the next Morning ; the Flahhes of Lightning fometimes reprefenting the ludden Appearance of a Star, and at other times of a Flaming Sword, and again of a Silver Cord ftretched along the Clouds, or as che irregular Crack of a Wall from Top to Bottom.

About eight next Morning we had Thundring, with a Continuation of Lightning of the Kind and Appearance above-mentioned, all from the N . . or thereabouts.

About nine the fame Morning, fell down from the Clouds (which look'd difmally black, lowring, and, as it were, heavy with Rain) in the faid NE. quarter, thrce Water-fpouts, that in the middle being the greateft, feem'd as big as the Maft of a Ship, and I judg'd it to be at leaft a League and a half diftant from us; fo that in itlelf, no doubt, it was bigger than three Mafts. The other two were not 4 E 2
by half fo big. All of them black, as the Cloud from whence they fell ; all of them fmooth, without any Knot or Irregularity; only at firt falling, fome fell perpendicularly down, and fome obliquely, and all of them finaller at the lower end than above, giving the Reprefentation of a Sword; fometimes alfo one of 'em would bow iffelf, and again become ftraight, and alfo fometimes became fmalter, and again increafed its Bulk; fometimes it would difappear, and immediately fall down again; fometimes it became extenuated to the Smallnefs of a Rope, and again became grofs as before.

There was always a great boiling and flying up of the Water of the Sea, as in a Jette d'eau, or Water-work; or this rifing of the Water had the Appearance of a fmoaking Chimney in a calm Day. Some Yards above the Surface of the Sea the Water ftood as a Column or Pillar, and then fpread itfelf, and was diffipated as Smoak: And the Sword-like Spout from the Clouds either came down to the very middle of this Pillar, and as it had been joined with it, as the greatef, which fell perpendicularly down, flill did from beginning to end: Or elfe it pointed to this Column of Water, at fome Diftance, either in a perpendicular or oblique Line, as the other two leffer.

There were three or four Spouts more, which appear'd at the fame time in the fame Quarter of the Heavens, but neither for Bulk or Duration like thefe three: Thofe appear'd or difappear'd feveral times, during the Continuance of thefe three.

It was hardly diftinguifhable whether the Sword-like Spout fell firf down from the Cloud, or the Pillar of Water rofe firit from the Sea, both appearing oppofite to one another all of the fudden, as in the twinkling of an Eye. Only I obferved of one, that the Water boiled up from the Sea to a great Height, without the leaft Appearance of a Spout pointing to it either perpendicularly or obliquely, and here the Water of the Sea never came together in the Form of a Pillar or a Column, but did fly up fcatteredly, the Sea being in a boiling Rage round the Place. The Wind being then N E. the faid boiling advanced towards the S W. as a fitting or moving Buth upon the Surface of the Sea, and at laft ceafed. This proves that the boiling or flying up of the Water of the Sea may begin before the Spout from the Cloud appears to us: And indeed if there be any fmall Matter of Priority betwixt thefe two Appearances, the boiling or throwing up of the Sea-water has it: Which begins firft to boil, and then frames it felf into a Pillar of Water, efpecially on the lower Part thereof.

It was obfervable of all of them, but more perceptible of the great one; that towards the end it began to appear like a hollow Canal, only black in the Borders, but white in the Middle; and though at firft it was altogether black and opaque, yet now one could very di-
finctly perceive the Sea-Water to fly up along the Middle of this Ca nal, as smoak up a Chimney, and that with great Swiftnefs, and very perceptible Motion. And then foon after the Spout or Canal brake in the Middle, and difappear'd by little and little: The boiling up, and the Pillar-like Form of the Sea Water continuing ftill the laft, even for fome confiderable Time after the Spout difappear'd, and perhaps till the Spout appear'd again, which it commonly did in the fame Place as before, breaking and forming ittelf again feveral times in a quarter of an Hour, or half an Hour's Time.
The Middle one of the three, exceeded all the reft in Bignefs, Perpendicularity, Conftancy of Form and Situation, as well as Duration; but at laft vanimed.

I know not, if any has accounted for this Pbanomenon, but I imagine it may be folv'd by Suction (improperly fo call'd) or rather Pulfion, as in the Application of a Cupping-glais to the Flefh, the Air being firtt voided by the kindled Flax.

It was farther obficrvable, that the oblique Spouts pointed always from the Wind; that is, that the Wind being at N. E.. the oblique Spouts always pointed to the S. W. tho' at the lame Time and Momene there were others perpendicular, which remained ftill fo , notwithitanding the Wind.

Alfo that fuch as were curved had fill the Convex fide from the Wind, and the Concave towards it; that is, the Wind being at N.E. the Concave was towards the N. E. and the Convex towards the S. W.

It rained a great deal during the Continuance of thefe Spouts, and after their total Difappearance we had half an Hour's violent Gale of Wind from the N. E. with very little Rain, the Weather afterwards clear'd up.

\section*{The Explication of the Tables.}

A The Spout of a black Colour, falling out of a black Cloud per-Fig. 10. pendicularly.
B The Water of the Sea, rifing in the Form of a Pillar or Column in the Middle, and fcatter'd round about the faid middle Column, in form of Smoak, or rather like the falling of a Fette d'eax. Thefe two meet one another directly, and the Column of Water from the Sea is commonly groffer than the Spout from the Clouds.
A A curved Spout, joining with the rifing Water of the Sea at B. Fig. 14.
A Reprefents a black Spout, falling obliquely from the Clouds of the Fig. 12. fame Colour.
B Reprefents the afcending Column of the Sea-Water as in Fig. 10. with this Difference, that here the Spout and Column of Water meet not.
E and W in this Fig. fignify Eaft and Weft.

\section*{Spouts in the Mediterranean.}

Fig. 13. I 23 Reprefent the fucceffive Progreffion of the boiling of the Sea from Eaft to Weft, or from N.E. to S. W. and that without any Appearance of a Spout from the Clouds, pointing to cither of thele Places.
Fig. 14. A Reprefents the big perpendicular Spout a little before its breaking, white in the Middle.
B The Column of Sea Water joining therewith.
222 The Water of the Sea, afcending in the Form of Smoak up \({ }_{2}\) Chimney, all along the Column at B to the Clouds.
Fig. 15. A The breaking of a perpendicular Spout, commonly beginning in the Middle at A.
B The Rife of the Sea Water, which begins to fail, and the middle Column to difappear.
Fig. 16. A An oblique Spout, which after reaching to the Sea in a curved Line, or obtule Angle, does foon after break at \(A\), and difappear.
B the Rifing of the Sea Water alfo beginning to ceafe.
Fig. 17. A A perpendicular Spout beginning to fall.
\(B\) The beginning Afcent of the Water of the Sea under it.
Fig. 18. A An oblique Spout beginning, or darting itfelf out of the Clouds.
B The rifing or boiling of the Water, anfwering to it in an oblique Line.
Thefe fometimes reach down to the Sea or rifing Water, and fometimes they do not reach thither, but contintie a while, as here reprefented.

1 WaterSpout at Hatfield in Yorkmhire, by Mr. Abr. de la
Pryme.n. 281. p. \({ }^{12}+8\).
3.] On the 15th of Aug. 1687. about two in the Afternoon, appeared a Spout in the Air at Hatfield in York/bire; it was about a Mile off coming directly to the Place where I was; I took my Profpective Glaffes to obferve it as well as I could.

The Seafon was very dry, the Weather extreme hot, and the Air very cloudy, the Wind aloft, and pretty ftrong, and (which is remarkable) blowing out of feveral Quarters at the fame Time, and filling the Air hereabours with mighty thick and black Clouds, layer upon layer; the Wind thus blowing foon created a greatVortex, Gyration, and Whirling amongt the Clouds ; the Center of which every now and then dropt down in the Shape of a thick long black Pipe, commonly call'd a Spout; in which I could diftinctly view a Motion like that of a Screw, continually drawing upwards, and fcrewing up (as it were) whatever it touch'd. In its Progrefs it mov'd flowly over a Hedge-Row and Grove of young Trees, which it made to bend like Hazle Wands, in a circular Motion; then going forward to a great Barn, it twitch'd off in a Minute all the Thatch, and fill'd the whole Air therewith. Coming
to 2 very great Cak Tree, it made it bend like the foregoing Trees, and broke one of the greateft and ftrongeft Branches, that would not yicld to its Fury, and swifting it about, flung it a very conwderable. Difance off; then coming to the Place where 1 ftood, within 300 Yards of mine, l bebeld this odd Pbenomenom, and found that it proceeted from nothing but a Gyration of the Clouds by contrary Winds mecting in a l'pirst or (enter; and, where the greateft Condenfation and Gravitation was, falling down into a Pipe or great Tube (fomething like the Cocbica Arcbomedis) and that in its working or whirling Motion, either fucks up Waser, or deftroys Ships, छ \(\subsetneq\) c. having travell'd about a Quarter of a Mile farther, it diffolv'd by the Prevalensy of the Wind that came out of the Eaft.
जait. I have feen another Spout in the fame Place, which very much confirms me in my Notion of the Origin and Nature of them. The Weather here in this Part of the Country, hath been exceeding wet and cool, infomest that it feem'd rather to be Spring than Midfummer; yet the 2 ift of \(\mathcal{H}\) une 1702 was pretty warm; on the Afternoon of which Day, about two of the Clock, no Wind ftirring below, tho' it Was fome whar great in the Air, the Clouds begun to be mightily agitated and driven together; whereupon they became very black, and were (molt vifibly) hurried round, from whence proceeded a moit audible whirling Noife, like that commonly heard in a Mill. After a while, a long Tube or Spout came down from the Center of the congregated Clouds, in which was a fiwift fpiral Motion like that of a Scruw, or the Corklea Archimedis, when it is in Motion, by which fpiral Nature and fift turning, Water afcends up into the one as well as into the other. It travell'd flowly from Weft to North Eaft, broke down a great Oak-Tree or two, frighted fome out of the Fields, and made others lie down flat upon their Bellies, to fave being whirl'd about and kill'd by it, as they faw many Jackdaws to be that were fuddenly catch'd up, carried out of Sight, and then caft a great way ainangit the Corn; at laft it pars'd over the Town of Hatfield to the great Terror of the Inhabitants, filling the whole Air with the Thatch that it pluck'd off from fome of the Houfes; then touching upon a Corner of the Church, it tore up feveral Sheets of Lead, and roll'd them itrangely together; foon after which, it diffolved and vanifhed without doing any further Mifchief.
By a! the Oblervations that I could make of this, and the former, If found that had they been at Sea, and join'd to the Surface thereof, they would have carried a valt Quantity of Water up into the Clouds, and the Tubes would then have become much more ftrong and opake than they were, and have continued much longer.

It is commonly faid that at Sea the Water collects and bubbles up a Foot or two high under thefe Spouts before that they be joined: But the Miftake lies in the Pellucidity and Finenefs of thofe Pipes, which do moft certainly touch the Surface of the Sea before that any confiderable Motion be made in it, and that when the Pipe begins to fill with Water, it then becomes opaque and vifible.

As for the Reafon of their diffolving of themfelves after that they have drunk up a great Quantity of Water, I take it to be through the great Quantity of the Water that they have carried up, which muft needs thicken the Clouds, and impede their Motion, and by that Means diffolve the Pipes.
\(A\) Fall of Wa. ter from a
Spout in Lancalhire, by \(D_{r}\). R. Richardfon. ก. 363. p. 1097.
5.] We have frequent Accounts of Damage done at Sea by Spouts of Water, yet fuch rarely happening at Land, induc'd me to take the following Relation of a remarkable one, which fell on Emost-nore, nigh Coln in Lancaßire, on Tuefday the 3d of June 1718, about Ten in the Morning; when feveral Perfons, who were employ'd in digging Peat nigh the Place where this Accident happen'd, upon a fudden were to terrified with an unufual Voice in the Air, that they left their Work and ran Home, which was about a Mile from the Place: But to their great Surprize, they were intercepted by Water; for a fmall Brook in the Way was rifen above fix Feet perpendicular in a few Minutes Time, and had overflown the Bridge.

It is to be obferv'd, that there was no Rain at that Time on Emofl . more, only a Mift, which is very frequent upon thofe high Mountains in Summer-time. There was a great Darknel's in the Place where the Water fell, without either Thunder or Lightning, (as I had my Information from an Eye-witnefs.) The Meadows at Wicolae were fo much floated, that the like had not been feen in feveral Years before, tho' there it was a very bright Day.

I went to view the Place where the Water fell; tho' I believ'd this Inundation might proceed from an Eruption of Water out of the Side of the Mountain; fuch being not unfrequent, where Lead or Coal have been dug, but neither have ever been fought for here. The Ground was torn up to the very Rock, where the Water tell, which was above feven Feet deep, and a deep Gulf made for above half a Mile, and vaft Heaps of Earth caft up on each Side of it, fome Pieces remaining yet above twenty Feet over, and fix or feven Feet thick. About ten Acres of Ground were deftroyed by this Flood. The firft Breach where the Water fell is about fixty Feet over, and no Appearance of any Eruption, the Ground being firm about it, and no Cavity appearing. The Ground too on each Side the Gulf was fo fhaken, that large Cbajms appear'd at above thirty Feet Ditance.

Pa

UnED
\(\square\)
XV. On the 7 th of fune 1711 , there happened a very great Storm of Hail, accompanied with terrible Thunder and Lightning. It begun about Rotberbam (a little beyond which was lomething of a Hurricane) where it burnt a noted Tree. About One of the Clock it reached Wentwortb-Woodboufe. The Hail-ftones were from 3 to 5 Inches in Circumference, and fome fay larger, which killed leveral Pigeons; but the chief Damage done here was in the GlafsWindows. In Waßh Field, about two Miles from thence, it did vaft Damage. Some Part of the Field efcaped, and the Barley received no Damage; but the Generality of the Wheat was cut off, about half a Yard from the Ground, and the Rye about two Feet. The Stubble, tho' green at firft, turn'd white, that it look'd like a Field newly fhorn. The Rye was afterwards mown, inftead of fhearing, and yielded not above a Buthel of Corn in a Wain-load. Some of the Wbeat took Root, and grew up. The Breadth of this Storm was about half a Mile, as appear'd by the Effects. In Places adjoining there was no Hail, but large Drops of Rain. A Joyner meafured one of the Hail-ftones with his Compaffes, and it was an Inch and half in Length; but thefe were not Globular, but moftly Oblong. The Generality of them at Bolion-upon-Dearne were of the Bignels of Cherries; tho' one was taken up that was an Inch and half in Diameter, and round, not long, and fomewhat flat, as the others were. Great Quantities of Twigs and fmall Boughs were beaten off the Trees.
XVI. 1.] Having receiv'd from Mr. Townley an Account of the \(S_{\text {tate }}\) Obfervations of the Atmofphere in Lanca/bire, during the late great Storm, I fhall compare his Oblervations with mine at Upminffer: I fhall not give a long Hiftory of the Devaftations, \(\mho^{\circ} c\). but fhall make a few Remarks of a more Philofophical Confideration.

To look back then to the preceding Seafons of the Year, April, Moy, on the Great Storm, Noo. 26. 1703 . by Ar. W. Derham. n. \(=89\). fune and \(\mathcal{F} u l y\) were wet Months in our Southern Parts. In April there fell \(12,49 l\). of Rain thro' my Tunnel. (And about \(6,7,8\), or \(9 l\). I efteem a moderate Quantity for Upminfer.) In May there fell more tban in any Montb of any Year fince sbe Year 1696, viz. 20, 77 1. June likewife was a dripping Month, in which fell 14, 55l. And '̛uly, altho' it had confiderable Intermifions, yet had \(14,19 \mathrm{l}\). Above 11 1 . of which fell on \(7 u l y\) 2Stb and 29 th in violent Showers; and I remember the News Papers gave Account of great Rains that Month from divers Places of Europe; bue the Norib of England (which alfo efcaped the Violence of the late Storm) was not fo remarkably wet in any of thole Months; at leaft not in that great Proportion more than we, as ufually they are; as I guefs from the Tables of Rain, which I had from Mr. Townley: Particularly July Vol. IV. Part. II.
was a dry Month with them, there being no more than \(3,65 l\). of Rain fell through Mr. Tosunley's Tunnel of the fame Dianeter with mine.

September was a wet Month, efpecially the latter Part of it ; there fell of Rain in that Month \(14,86 \%\).

OEtober and November, tho' not remarkably wet, yet have been open warm Months for the moft Part. My Thermometer (whofe freezing Point is about 84) hath been very feldom below 100 all this Winter, and efpecially in Nowenber.

I have given this Account of the preceding Difpofition of the Year, particularly as to Wet and Warmelh, becaufe I am of Opinion, that thefe had a great Influence in the late Storm; not only in caufing a Repietion of Vapours in the Atmofphere, but alfo in raifing fuch Nitro-fulphureous or other heterogeneous Matter, which, when mix'd together might make a fort of Explofion (like fir'd Gunpowder) in the Atmofphere. And from this Explofion, I judge thofe Corufcations or Flafies in the Storm to Lave proceeded, which mort People, as well as myfelf; obferved, and which fome took for Lightning.

On Tburfday, Nov 25. in the Morning was a little Rain, the Winds high is the Afternoon S. by E. and S. In the Evening there was Lightning, and between Nine and Ten of the Clock at Night a violent but thort Storm of Wind and much Rain at Upininfier, and of Hail in fome other Places. There fell in that Storm 1,65l of Rain. The next Morning, Friday Nov. 26. the ind was S. S. W. and high all Day, and fo continued. About 12 at Night the Storm awaken'd me, which gradually increas'd till near Three that Morning. And from thence till Seven it continued in the greateft Excefs; and then began flowly to abate, and the Mercury to rife fwiftly. The Barometer I found at \(12 \mathrm{~h} . \frac{1}{2}\) P. M. at 28,72 , where it continued till about 6 the next Morning, or \(6 \frac{1}{t}\), and then haftily rofe ; fo that it was got to 8: about 8 a-Clock, as in the Table.

How the Wind fate during the late Storm, I cannot pofitively fay, it being exceffively dark all the while, and my Vane was blown down. But by Information from fome that were forc'd to venture Abroad, and by my own Guef, I imagine it to have blown about S. W. by S. or nearer to the S. in the Beginning, and to veer about towards the Weft towards the End of the Storm, as far as W. S. W.

The Degrees of the Wind's Strength being not meafurable, but by guefs, I thus determine, with Refpect to other Storms. On Fib. 7. 169\% was a terrible Storm that did much Damage. This I number ro Degrees; the Wind then W. N. W. Another remarkable Sturn was Feb. 3. \({ }^{17} 70^{\frac{1}{2}}\), at which Time was the greateft Defcent of the ever known. This I number nine Degrees. But this laft of November, I number at leaft 15 Degrees.

As to November 17 th (whereon Mr. Towonley mentions a violent Storm in Oxfordfhire) it was a ftormy Afternoon here at Upininfter, accompany'd with Rain, but not violent, nor q very low. November the \(11^{t h}\) and \(12 t b\) had both higher Winds and more Rain; and the ? was thofe Days lower than even in the laft Storm of November 26 lb .
I have had Accounts of the Violence of the Storm at Norwoich, Beccles, Sudbury, Colcbefter, Rocbford, and feveral other intermediate Places.

I have recciv'd an Account from a Clergyman at Lewes in Suffex, not only that the Storm made great Defolations thereabouts, but "That a Phyfician travelling foon after the Storm to Tijebyrft, a" bout 20 Miles from Lewes, and as far from the Sea, as he "rode pluck"d fome Tops of Hedges, and chewing them, found "them falt. Some at Lewes hearing this, tafted fome Grapes that "were ftill on the Vines, and they alfo had the fame Relith. The "Grafs on the Downs in his Parifh was fo falt, that the Sheep in "the Morning would not feed till Hunger compeli'd them, and " afterwards drank like Fifhes, 2s the Shepherds report. This he " attributeth to Saline Particles driven from the Sea.———He \({ }_{4} \mathrm{~F}_{2}\) " heareth
" heareth alfo, that People about Portfmoutb were much annoyed " with fulphureous Fumes, complaining they were almoft fuffocated " therewith.
-sen the fanne in Suffex, by 1. Fuiler, \(E / q\);
2.] We live ten Miles off the Sea in a direct Line, and yet can fcarce perfuade the Country People, but that the Sea Water was blown thus far, or that during the Tempeft the Rain was falt, for all the Twigs of the Trees the Day after were white, and tafted very falt; as I am inform'd almoft by every Body, though I did not tafte them time enough myfelf, nor obferve it, and that not only upon this Hill where we live facing the Sea, but in all other Places within 14 or 15 Miles of the Sea, as well in the Vallies, between which and the Sea are feveral high Hills, as on the Hills themfelves.
-on tho fime
3.) On the 8 th of December 1703 , we had a dreadful Storm from the
by Mr. Lewenhuek, itid. South-Weft, infomuch that the Water mingled with fmall Particles of Chalk and Stone, was fo dafh'd againft the Glafs-windows, that many of them were darken'd therewith.

The lower Windows of my Houfe, notwithftanding that they look to the North Eaft, and fo ftood from the Wind, were fo cover'd with the Particles of the Water, which the Whirlwind caft againft them, that in lefs than half an Hour's time they loft moft of their Traniparency. Suppofing this might be Sea-water, I view'd thefe Particles with my Microfcope, and found they had the Figure of our common Salt: As to the upper Windows, where the Rain had beat againft them, there was little or no Salt to be found fticking upon them.

During the faid Storm, and about eight of the Clock in the Morning, I caft my Eye on my Barometer, and obferv'd that I had never feen the Mercuy fo low; but half an Hour after the Mercury began to rife, though the Storm was not at all abated, at leaft to any Appearance ; from whence I concluded the Storm would not laft long, which accordingly fo happen'd.

Some think that the fcattering of this Salt Water will do a great deal of harm to the Fruits of the Earth; but I am of Opinion that a little Salt fpread over the Surface of the Earth, efpecially where it is heavy Clay-ground, does render it fruitful; and fo it would be if the Sand out of the Sea were made ufe of to the fame Purpofe.
——on the Came, by the Came, n. 295. P. 1793.
4.] From the Waves of the Sea, which the Winds had carried over our Meadows and Orchards, I prefaged a fruitful Year. Since that feveral Perfons concern'd in Tillage and Grazing have affured me, that they never knew fuch a plentiful Year for Grafs, as alfo for Pcale and Beans, as the laft Summer was.
XVII. The Society having put into my Hands fome Papers relat- Tbe Hiftory ing to the late great irof and having myfelf receiv'd Accounts there of tbe great of from my Friends at home and abroad, I Thall endeavour to give an Account of the Degree and Effects of this remarkable Froff.

As to the Degree of this Froft, I believe it was greater (if not more The Degree of univerfal alfo) than any within the Memory of Man. The greateft that hath happen'd within our Memory, was the Long Froft in 1683; but England. the late Froft, although of fhorter Continuance, was more intenfe than that. My Thermometer was lower on December 30. (\(\dagger\)) than it had (\(\dagger\)) Vid. Suever been fince 1697, when I firft began my Thermometrical Ob-pra S. XI. fervations: The felf-fame Thermometer in our Repofitory in Gre/bamCollege was lower than ever it was before: [The Particulars of its greateft Defcents are thefe; Fanuary 26. 1696. 41 Gr . Fanuary 5. 1683. 40 Gr. and 7anuary 3. 1708-9. 43 Gr. \(]\) And laftly, that in another felf-Same Glafs in London, [Mr. Y. Patrick's] the Spirits were four or five Degrees lower than in : 683 .

In London the greateft Contraction of the Spirits was on Fanuary 3. which was an exceffive cold Day at Upminfter allo: But the far greateft Contraction with us was on December 30. before. The Reafon of the Difference is, becaufe my Thermometer is always abroad in the open Air, where no Sun-fhine toucheth; but thofe two London-Glaffes are within Doors, in Rooms where no Fires are made. And it is ealy to oblerve, that the Froft doth not prefently exert its greateft Force, nor fo foon abate its Force within Doors, as without.

Cf this Intenfenefs of the Cold with us, I have receiv'd Confirmations from other Places in the Southern Parts of our Illand.

The Defcent of the Spirits in my Thermometer on December \(3^{\circ}\). was within One tenth of an Inch as great as the Defcent effected at another Time (and that in a Cold Day too) with artificial Freezings performed both with 'now and Salt, and alfo Snow and Spirits. Borh which Mixtures I have feveral Times made ufe of, and find them nearly of equal Power: If any Difference be, I have fometimes thought the Prefurence due to the Mixture of Spirit of Wine with the Snow.

Although the Froft was fo rigorous in the Southern Parts of our Degree of the Ine, yet the Northern felt little thereof; as I have been certified Frof in Scotby erfons that have come from thence, as well as by feveral Letters. Dr. Sloane writes to me in general, that he hath received many Informations from thofe Parts, which do all agree that the Winter was no way extremely cold there, but as other Winters. The Lord Biflop
of Carlife in a Letter to Dr. Woodzward, fays, "In Fanuary laft, I had "a fulticient Occafion to thke Notice of the Froft and Cold being " more intenfe in the Southern Pares than here, and the Snow nuth "thicker. I'began my London Journey on the 26 th of that Montn, "three Days before the Thaw, and affure you that for feveral Miles " (near the Banks of the River Eden, in both the Counties of Cum"berland and Weftionelatd) my Horfes hardly ever trod upon Snow. "When we came to tanesizoor, on the Confines of Corkfoire, we found " the Ground covered pretty thick, and the deeper ftill the farther ". we came to the Solith. None of our Rivers or Lakes were frozen " over; and the extraordinary Flocks of Swans that reforted hither " (nothing of the like having been feen by the eldeft Man living) "was a fure Argument that the Temperature of Climates was ftrange. " ly inverted."

From Edimburgh, Sit Robert Sibbald fays, "I can learn no extraor" dinary Liffects of the cold Safon here. It was a long Winter: The "Cold came early in O80b. and continued till near May. There was " much Snow, which lay long upon our South Hills near this Place. "We had not much Snow to ipeak of, and it lafted not long."

Degree of the Froft in other Parts of Europe.

In Switzerland.
(*) Vid. Supra. S. XI. In Italy.

In Denmark. As to the Noribern Parts, Dr. Woodward tells me, that in a Letter he received from Mr. Otbo Sperling, from Copenbagen, he calls it Hyems Atrociffima. And I find it noted in the Minutes of the Royal Society of May 4. 1709. "That Dr. Fudichar faid the Ice was frozen " in the Harbour of Copenbagen 27 Inches; and that April 9. "N. S. People had gone over between Scbonen and Denmark on the "Ice." Which Accounts give me a better Opinion of fome Papers I have by me, which were fhew'd to the Society, concerning the Froft at Copenbagen, faid to be taken from the Obfervations of Mr. Romer. 'Tis faid there, "That fuch a Froft hath
" not been known in the Memory of Man in thefe Countries, and
"that the Froft on January 7. and Februsry 23. 170 \%. did very nearly "approach the Point of Arvícicial Fretzing."

In the Northern Parts of Gerinany, it was much the fame; of which -in GerI have a printed Account, The Title of the Book is, Confideratiomany. Pbyfico Matbematica Hyemis proximè praterlapfe, छ'c. being an Academical Exercife, perform'd in the Univerfity of Hall, Fune 13.1709. by G. Remus, a Dantzicker, and printed at the fame Place [Hale Magdeburgice. 1 This Difiertation being, I fuppofe, in but few Hands, I Shall give a Short Account of it.

The Aluthor having complain'd of the Defrets of Meteorology, and Mcteorological Inftruments, and given fome Directions concerning obferving the \(N\) inds \(y_{z}\) \& \(c\). tells \(u s_{2}\) he had the Help of the Obfervations of three eminent Perfons in his Differtation about the Winter, of Dr. Wolfius of Hell: Dr. Hambsrger of the Univerfity of Fena; and Reverend Mr. Terfor of Ciza, The Winter he diftributes into five Periots. The firt of which he begins at Oitober 19. 1709. at which Time he fays the cold Weather began with them, the Northerly Winds then blowing, and frofty Weather decompanying it. But with us at Upminfer, it begth fooner: For all the latter End of Sepsember, the Winds were Durtherly, and an Hoar-Froft on Micbaelmas, and the following Days. After which, a great Part of Oriober to the 23d Day, my Kegitter Thews the Wieather to have been, for the moft part Hoar-frofty, or Frofty, very agreeably to Mr. Remus's Obfervations. The End of this firft Period he placeth on November 5. the fame with our Oatcber 23. O. S. their Stile, I perceive by divers Comparifons, and Hints in his Paper, being the New Stile.

As to his next Period, which with its Interval takes in November and December, I find a pretty deal of Agreenent between his Obfervations and mine, the Weather often being warm, or cold here, as it was there, and the Winds alfo not very different. Only I obferve the Cold in one Place commonly to precede the other. Alfo the furious \(W\) ind, that he faith blew the Night before December 13. was not perceivable here 'till the fecond Day after. viz. December \(\left\{\begin{array}{c}14 \text { N. S. } \\ 3 \text { O. S. }\end{array}\right.\) about Noon: At which Time it had much fpent isfelf, and
was only a brifk E.fterly Wind, but no Starm.
The third Period he begins on \(\mathcal{f}^{3}\) nuary 5 . Of which he faith, The crene was prefently changed, and to the Apiniboment of all, Europe a Perivd began, whicb was ciery remarkatle for its murufual Cold. The very fane \(\left\{\begin{array}{c}\text { Fan. 5. } \\ \text { Dec. } 25 .\end{array}\right\}\) the Wind and Weather began here to change, as there he faith it did, and the Cold alro to incriafe. The moft remarkable Depreffions of the Spirits there, may be feen with rive in this Tadyle.
\begin{tabular}{|c|c|c|}
\hline Day of tbe Month. O. S. & Degree of the Thermometer at Hall, at \(10^{\text {bo }}\) p. M. & Degree of the Tbermometer at Upminiter, at \(9^{\mathrm{p}} \mathrm{p}, \mathrm{M}\). \\
\hline Dec. 27 & & \(6_{5}\) \\
\hline 28 & \(884 \frac{1}{1}\) & 75 \\
\hline 29 & \(84 \frac{1}{2}\) & \\
\hline \begin{tabular}{l}
30 \\
3 \\
\(3^{\text {a }}\) \\
\\
\hline
\end{tabular} & \({ }_{100}^{97 \frac{1}{2}}\) & 45
52 \\
\hline Jan. I & Totus intra & 52
63
6 \\
\hline 2 & Spheram. & 54 \\
\hline
\end{tabular}

It is to be oblerved that the Scale of their Thermometer runs dowrwards from fome Point above, down towards the Ball. But the Ball, or the Bottom of the Stalk, bing a certain Place that all Thermometers agree in, and every one is acquainted with, I therefore make the Degrees of the Scale of my Thermometers to begin at the Top of the Ball, or (which is all one) at the Bottom of the little Tube, or Stalk, and fo reckon upwards; every Degree being one Tenth of an Englifb Inch; the Freezing-Point in my old Thermometer (here noted) at 82 gr . equal to 8 Inches two Tenths from the Ball; and the molt intenfe Cold at 44 gr . But in my later Thermometers (which I now ufe, and are much nicer than my old one) the Freezing-Point is at 100 gr . ten Englifb Inches from the Ball, and the moft intenfe Froft near to, or jult in the Ball.

It may from the foregoing Table be perceived, that the Froft kept a pretty equal Pace in both Places at its Beginning. And my Notes give me Reafon to think it did the fame the greateft Part of its Duration: But I cannot be very fure thereof, my old Thermometer (the only one I then had) happening to be broke on fanuary 11. For which Reafon I am unable to give fuch another Thermometrical Table of his next Period, as I have done in this.

This third Period he makes to end Fanuary \(\left\{\begin{array}{ccc}25 & \text { N. S. } \\ 14 & \text { O. S. . }\end{array}\right\}\) with a Wefterly Wind, and a Thaw, which held for a few Days. With us the Wind was Southerly at the fame Time, and a Thaw accompanying it for a few Days likewife.

The fourth Period he begins fanuary \(\left\{\begin{array}{lll}31 & N . S . \\ 20 & O & S .\end{array}\right\}\) in which I obferve there is a great Agrecment between our Obfervations as to the Cold; and thofe Days on which he noteth the Wefterly Winds
to have been ftrong, it was the fame here. And fome Agreement alfo, but lefs, is in the coafting and Ghitting of the Winds throughout this Period.

The fifth and laft Period he placeth between February \(\left\{\begin{array}{rll}17 \\ 6\end{array}\right.\) and Marcb \(\left\{\begin{array}{rrr}17 & \text { N. S. } \\ 6 & 0 & \text { S. }\end{array}\right\}\) In this, he fays the cold Weather returned, and continued long: And the fame it did with us. But as to the End of this Period, I find fome Difference, and fome Agreement between our Obfervations. The Snow was more with them than us ; the Winds changed with us from the Eafterly Points, to the Wefterly and Southerly, a Day or two fooner than with them; then agreed with them; and foon after veer'd about to the Eafterly and Northerly, as it did with them. And I obferve, that when the Winds agreed in both Places, my Notes fhew the Wind to have been of fome Force here.

As to the Warmth of the Weather all this time, I find a pretty deal of Agreement; only as the Wind changed two Days fooner here, fo we had the mild Weather, he mentions, two Days fooner: Then it grew colder here, as he faith it did with them. And whereas he noteth April \(\left\{\begin{array}{ccc}1 & 3 & N . \\ 2 & O & S .\end{array}\right\}\) to have been the firt Day on which the Spirits rofe to the Point of Warmth, I found by my Thermometer the Day before to have been as warm as that, as allo were the following Days; and each of them warmer than had been all the preceding Winter; but yet that we had divers warm Days before that Time, particularly March 12, 13, 14, 18, 19, 28. O. S. were warm Days, but the relt in that Month for the mott part cold.

The IVaters were the firft Thing that felt the dire Effects of this The Effect Froft. And thefe were in many Places frozen to an extraordinary of the Frott Depth; although I hardly believe to that Depth, as in the Long Froit -a Fluids. in 1683 . Of which Froft we have a fufficient Inftance in our River of Thames; whofe Waters were fo frozen, that above Bridge, 'tis well known, many Bonths were erected, Fires made, and Meat drefs'd; and on Ganuary 10. 168 \(\frac{1}{4}\), I faw a Coach and two Horfes drive over the River into Sousbwark, and back again, a great Number of People accompanying it. But this laft Winter the Cafe was greatly different, according to the Account I receiv'd from Mr. Lowthorp, who fays, "He "faw feveral People crofs the Thames at fome Diftance above the "Bridge: But that was only towards Low-water, when the great "Flakes of Ice that came down, ftopp'd one another at the Bridge, " till they made one continued Bed of Ice from thence almoft to the "Temple. But when the Flood came, the Ice broke, and was all carVol. IV. Part II.

\section*{The Effects of the Froft}
" ried with the Current up the River. I was told the like happened * between Wefminfer and Lambetb, a little above Wbiteball.

As for other Waters, they alfo had their Share; efpecially where they lay expofed to the Northerly and North Eafterly Winds. The Sea-waters were cover'd with Ice in many Places near the Shore, in Harbours, and where they lay calm and ftill. Of this I have already given a pregnant Inftance in the Harbour of Copenbagen, and the Sea between Denmark and Schonen. And in a Letter from Dr. Newton, he tells me, "The Sea was frozen both on the Coaft of Genoa and Leg"born.

As for the Northern Parts of Germany, the laft cited Differtation gives this Account of its Effects on Fluids: Water was frozen into Ice beyond tbe ufual Depth, and other Liquids appear'd to be congealed, which in Midft of Winter are thougbt to be out of Danger of freezing. A Fountain in a certain Village of Silefia, wbich tho' at other simes was found to be iocl in Summer and warm in Winter, yet this Winter it was cover'd with pretty thick Ice, to the great Wonder of every one. The publick News keve fometimes told us of bot Eatbs converted into Ice. Tbo' this cannot bappen to thofe that are very bot-- at Hall we faw Iceicles adbere to the Salt Fountains, wbich is reported no! to bave bappen'd for an Age. D. Breynius affures me by Letter, that the Sea itfelf was cover'd witb Ice on the 8 tb of April, as far as bis Eye could reach. He expofed a Lixiviunz to the Air, which bad been plentifully impregnated with Pot-afh, wbich by thofe who bad ufed it for many Years was affirm'd never to freeze; yet in a Bort time it was found converted into Ice. He adils, that a certain Friend of his bad obferved, tbat a depblegmated Spirit of Tartar had froze. The Obfervations of Hall relate, that spittle bardly difinis'd from a Man's Mouth became Ice. The Rivers were froze thrice, even thofe which for tbeir Rapidity were always Proof againgt freezing. Thus far D. Remus.

There Effects, I am apt to think, the Waters felt not only in England, Denmark, Germany, France and Italy; but in all the Nortbern World alfo, excepting Scolland, Ireland, and probably fome other Inlands, or Places near the Sea; altho' even fome of thefe appear from the foregoing Account to have been great Sufferers too. This Univerfality of the Froft, I fufpect from the Multitudes of divers kinds of Birds (utter Strangers to thefe Parts, and many of them Inhabitants of the Northern colder Countries) which were feen and kill'd in many Parts of England. In our Effex-Mar/hes, we had many wild Swans, Brent-Geefe, many of the rarer Gull-kind, and divers other forts of Birds, utter Strangers to thefe Parts. Mr. Bellers gave Dr. Woodrward this following Catalogue of Birds kill'd within four or five Miles of Coln St. Aldwins, or Edwins, in Gloucefferfire, between the Beginning of November, and the latter End of March 1708, which he faith are never found there in moderate Winters.

\author{
1. Lanius
}
1. Lanius cinereus major, the greateft Butcher-Bird, or Mattagefs; fometimes feen in Derbyhire, but commonly in Germany, as Mr. Wilbougbby faith. 2. Fringilla montana, the Brambling. 3. Numenius, five Arquata, the Curlew. Thefe Birds, though Strangers to the inland Parts, I have feen common enough on the Sea-coatts of Eflex: And Dr. Woodward fays, he faw them feveral Times this laft Winter at the Poulterers in London. 4. Gallinula Erytbropus major, the Red-ihank, or Pool-Snipe. 5. Gallinula Hypoleucos Gefneri, the Sand-piper. 6. Scberniclos, the Stint. 7. Corvus aquaticus minor, five Graculus Palmipes, the Shag. 8. Merganfer, the Goofander. 9. Mergus cirratus lonyiroffer, the Dun-diver. 10. Mergus major cirratus, the Smew, or white Nun. 11. Colymbus major, the Greater Loon. 12. Larus major, the Greater Gull. 13. Cygnes ferus, the Elk, or Hooper, or wild Swan. 14. Brenta, the Brent-Goofe. 15. Anas niger Aldrovandi; feldom feen in England, but frequent in Norway. 16. Tadorna, the Shell-Drake, or Burrough-Duck. 17. Anas Fuligula prima Gefneri, the Tufted-Duck. 18. Anas fera fufca Geineri, Penelops Veterum, the Poker. 19. Anas Platyrbyncbos mas Aldrov. the Golden-Eye. 20. Anas Platyrbyncbos roftro nigro \& plano, the Cadwall.

In the Differtation before-cited, we are told, how Animals fuffered both with them, and in other Places; "That the Frefh-water Fi/h were " every where kill'd in their Parts, and that a vaft Deftruction befel

Efficts of the " their finall Birds. Both which, he is inform'd, happen'd in his own " Country alfo at Dantzick. Nay, fome did not ftick to affirm, that " they faw Birds, as they flew along, drop down out of the Air, their "Strength failing: That the Lufatia Letters faid, many Cows were " frozen to Death in their Stalls. And many Travellers on the Road " were fome quite frozen to Death, others loft their Hands, Feet, "Nofes or Ears; and others fainted, and were in great Danger of Life " or Limb, when brought too foon near the Fire. Of thefe Particu" lars, he gives divers Inftances from their News Papers; of two " Gentlemen, and a Sinith in England, and above 60 Men, and many "Cattle near Paris; and the like at Venice, and 80 French Soldiers " near Namur, all kill'd on the Road, with the Cold." Whether any fuch Perfons perifhed on our Roads in England, I have not heard: But we were told of fome that did; particularly fome Poft-Boys, and, I think, fome Drovers. Our Frefh-water Fifh were, many of them, deftroyed, in Ponds that were fhallow, and efpecially if long frozen over; fome for want of Air, where the Ponds were not kept open; and fome with the cold Air at the Holes in the Ice, where in great Numbers they came to get Breath. On the Italian Coaft fome of our "Ma-
"riners on Board our Men of War, died of the Cold; and feveral loft
"Parts of their Fingers and Toes: Aṣ Dr. Newton informs me.

\section*{The Effects of the Frof.}

But the greateft Sufferers in the Animal-Kingdom, were Birds and Infeets. Robin Redbreafts, which before the Froft were numerous, are fince that very fcarce about us; and notwithftanding their Recruits in the following Summer, yet even ftill, in this fucceeding Winter, their Scarcity remains. Larks, both Wood and Sky-Larks, became, in a Manner, Rarities in our Country the following Spring and Summer; nor are they as yet become fo numerous as heretofore. But whether this was an univerfal Calamity that befel that Family of finall Birds, or whether it only happened to our \(E \iint e x-L a r k s\); or whether they were not driven from thefe Parts by the Froft, I cannot fay; becaufe I have been told, that in fome other Counties of England, which abound in large common plough'd Fields, and where Larks are commonly more numerous than about us, they have had large Flights of Larks this prefent Winter \(170 \%\) But I have enquired of the London Poulterers, and they tell me, they have Larks from almoft all Parts of England, and have not this following Year receiv'd a Quarter, fcarce a tenth Part, of the Larks they ufed to have ; by reafon the Froft kill'd them, as the Bird-Catchers fay.

In the Infect-Tribe, 1 have particularly obferv'd the Death-Watch to be great Sufferers; notwithftanding that Infect's great Precaution, and Art, to fecure itfelf againft the hard Weather, in dry Places within Doors, under downy light Duft, \(\varepsilon^{\circ} c\). Few of them appear'd the following Summer; and in Places where they ufed in Juby to be very fonorous with their ticking Noife, only now and then one was heard; a manifeft Sign of their being either kill'd, or render'd lefs fertile and venereous.

Effects of the Froft on Vegetablos.

But among all the Sufferers by the Froft, the Vegetables were the moft univerial; few of the tender Sorts efcaping. About us, Bays, Rofemary, Cypreffes, Myrtles, moft of the Pbillyrea's, even Junipers, among Shrubs; and Articbokes, Colly-Flowers, and a great many other Olitory Plants, fuffer'd greatly. By Enquiries made on Purpofe among the London Gardeners, I have been inform'd, fome of them have loft to the Value of \(80 \%\). 100\%. 200l.

But the moft exact Account I have met with, is from Mr. Fa. Bobart of the Oxford Phyfick-Garden. He takes Notice, that the Damages of this Froft do not come up to thofe in 1683 ; which Froft being of longer Continuance, cleft the Oaks, and Bodies of the Vines, \&rc. But in the laft Froft there were Intervals of Relaxation, befides feveral confiderable Snows, which prov'd a good Guard to many Plants. But the Snow melting, and the Cold withal continuing, prov'd of evil Confequence to many bulbous and tuberous Roots, and abundance of other Things. "But (he fays) the fharp, dry, and cutting Winds " from the North, and North-Eaft, were deitructive to many of the
"Omments of our Gardens, which before feem'd to be almuft
" naturaliz'd to our Clime; as Cyprefs, Bays, Rofemary, Alaterni, Pbil"lyrea's, Arbuti, Laurufines, \&c as alfo to moft of our frutefcent
"Herbs, fuch as Lavenders, Abrotonums, Rue, Tyme, and divers others " of fuch Race, efpecially fuch as had their Heads above the kind
"Covering of the Snow. And not fuch Exoticks only, but fome " of our own Natives, as is vifible in moft of our Furze-fields, " and divers Hollies, efpecially of the finer ftrip'd Race, have felt the
"Smart of the Rigour of the Seafon, by the Lofs of their Leaves,
" and fometimes their Lives.
"And what hath been more obfervable this Year, than in others,
" is the Sap of our finer mural Fruit-Trees, as of Peacbes, Necta-
"r rine, Apricocks, \&cc. was fo congeal'd and diforder'd, that it prov'd
" ftagnated in the Limbs and Branches, and equal to Chill-blains in
"Human Bodies; which, in too many Parts of the Tree, turn'd to
" fo frequent Mortifications, that it is very much to be doubted, whe-
" ther fufficient Vigour is ever to be expected from them, to be worth
" their ftanding, notwithftanding their weak Endeavours of fhoot-
" ing.
" And it is no lefs obfervable, that the very Buds in thefe finer
" Trees, as well Leaf-Buds, Bloffom-Buds, (which are but the Ova-
" ries of the fucceeding Fruits) were quite kill'd, and dry'd into a fa-
" rinaceous Matter, by the too great Sharpnefs of the Cold, before
" they grew out, though Life remain'd in the Branch.
" The Plumbs, being more hardy, produc'd their Bloffoms well
" enough ; but through the chilling Wets, which happen'd too plen-
" tiful about that Time, and the great Defect of nutritive Warmth,
" they grew weak; with their little Stalks, or Pedicles, languih-
" ing, and turning yellow, generally dropt off, and came to no-
" thing.
" It might reafonably have been fuppos'd, that fuch conjoin'd Cold,
" with repeated Wets, fhould have deftroyed the injurious Injelts,
" which ufually infert the firft Product ; but even in this Year, they
" have prov'd vivid, in too great Plenty, among the Apples and Pears
" (efpecially the former) whofe Bloffoms, as well as Leaves, have been
" a Pabulum for thefe voracious Erucas, whofe Eggs lay dormant all
"the Winter, fo dry in their Bags, that there were fo many efcap'd
" from being frozen, that in many Places they prov'd enough to de-
" ftroy the whole Verdure.
" Fig-Trees, whofe fofter Texture was more eafily penetrated, have " fuffered much, moft of them being cut down.
" Many Exotick Greens, and rare Plants coming from Africa and
" other warm Regions, have mightily fuffered, efpecially in fuch Stoves
" and Confervatorics as had not Fire enough.

What he obferveth concerning the Deftruction of Wheat, was, I believe, a general Calamity, as alfo the Particulars he takes Notice of much the fame in other Places too, viz. "Where the Land was poor, "s and coldly expofed', there the Wheat was kill'd; that many Lands " of Wheat efcaped tolerably well on the warm Side, when the other "Side was quite kill'd with the Extremity of Cold.

By the warms and cold Sides, I fuppofe our Obferver means the funny and thady Sides. But with us the Wheat fuffer'd rather more on the Southern, funny Side, than the Northern; I fuppofe by reafon the Ground was fomewhat open'd by the Sunfhine, and the covering of Snow melted, and Way thereby made to the Severity of the nocturnal Froft. Upon which Account I have heard it faid by fome Oblervers, that Vegetables fuffered more the laft Winter from the Suin, than the Froft.

In Efex alfo, I obferved many fmall Fields of three or four Acres of Whear, to efcape pretty well, where fenced with thick high Hedges againtt the cold Winds, efpecially where they were cover'd long with Snow ; at leaft they came off better than other Parcels of Land expofed to the Winds, that diflodg'd the Snow, and aggravated the Cold alfo. So at Upminffer, the beft Pieces of Wheat were fuch, I obferv'd, as lay on gentle Defcents facing the Weft or S. W. efpecially when guarded on the Eaftern Side with a Hill, or a Wood; which fenced off the cold piercing Eafterly and North Eafterly Winds.

Not only Sbrubs and Plants, but the larger Trees, have in fome Places had their Share of Suffering too. But it was obferv'd by fome Perfons of the Society, that the Calamities which befel Trees, arofe not purely from their being frozen, but principally from the Winds thaking and rocking them at the fame Time, which rent and parted their Fibres.

Thefe have been fome of the moft remarkable Effects of the Froft on the Vegetables of the more Southerly Parts of our Inland, the North.rly efcaping better. From Edinburgh, Sir Rob. Sibbald fays, "The " Corn did not rife, and ripen, fo foon as wont; but there hath been " a plentiful Harveft, well brought into the Barns and Yards. And " the Price of Victuals (which was high) falls lower daily. There "was no greater Number of thofe who died, than was ufual during " the Winter formerly.

As to other Places, I find the Effects were, in the more Southerly Parts of Europe, much the fame on their Vegetables as on ours. In Italy Dr. Nereton faith, "Almoft all the Lemon and Orange-Trees, " with thofe of the like Kind, are deftroyed in this Country by the " Froft, and a great many Olive-Trees. The Leaves of the Bay- Trees *s have the fame Colour now, as all others have when they are falling * in October. Befides which, there are two other Accidents he tells me of, owing probably to the Froft. One hrappen'd at Florence, where,
where, " on the fide of a Hill were formerly many Buildings, * which twice falling down, by the Earth giving way, a Wall was "erected in the Time of this Great Duke's Grandfather, with an In"fcription on the Wall, which feparates the Ground from the next "Street, that for the future no Perfon fhould build there. After the "Great Froft, this Wall hath fallen down too. The Hill is full of "Stones, and they will have it, that as thofe increafe, the Ground is "pufh'd forward, and thereby thrown down." But I am apt to think, the Froft might have a great Concern herein.

The other Accident was at Pifa, "where, upon the melting of the "Snows, and the great Rains which fell after the Froft, altho' the Arro "did not fwell over the Banks at Pifa, yet the Water at fome Diftance "from the River, in a middle Row of Houfes betwixt the River and " the great street on the Northfide, with great Violence broke out, and " if it had not been immediately perceiv'd, and the Breach fopp'd by " the throwing in of a great Quantity of Bricks and Timber, that Part " of the Town might have been in Danger of being drowned, where " the Palece, and the Publick-Scbools, or (as they call it) the Sapienza " ftand.

Dr. Mich. Angelo Tilly tells me from Pifa, "That the Froft hath de" Atroy'd a W orld of Trees both in City and Country about them.

In Switzerland, among the high Alpine Ridges, they felt dire Effects of the Froft ; yet fome Places efcap'd. Of which Dr. Woodward imparted to me the following Account from Mr. Fobn Scheucbzer, "Some "Places that were defended towards the North by very high Moun"tains, did not feel thofe dreadful Effects, which our Trees fuffer'd laft "Winter, efpecially our Walnut-trees and Vines. At Vefena near the "Lake Rivarius, the Trees and Vines fuffer'd no Damage, fo that the "Vintage is good there, but we have none. The Walnut-trees " were loaded with Fruit, and other Trees likewife, as if they had grown " in a Climate different from their Neighbours. The Village Vettis is " fituate at the Bottom of Galanda, a very high Mountain on the Con" fines of the Grijons. The Inhabitants of this affure us, that they hard" ly ever knew a milder Winter; when on the contrary the Inhabitants " of the next Village Valentic, lying near the Fabarian Baths, were much " afraid left all the Vettions fhould perith with Cold, all Intercourfe be-
"tween them being intercepted by the hard Weather. Allo the Woods " which were expos'd to the North Wind, which were planted with " hardy Trees, fuch as Firs, Yew-trees, and Larch-trees, became burnt "up, rufty, and ftript of their Leaves.

As to the Northerly Parss of Germany, the Cafe was there after the manner it was with us; as Mr. Remus informs us. "The cold Wea"ther deftroy'd the Trees and Shrubs in grait Numbers, efpecially fuch " as appear'd above the Surface of the Snow. The Cherry-trees, Apple-
"trees, and Plumb-trees defpifed the Severity of the Winter. Our "Prefident

\section*{The Caufes of the Froft.}
"Prefident (Dr. Wolfius) apply'd many Particles of the Boughs to his " Microlicope in the Month of March, but could not perceive that any "thing was wanting to the Intirenefs and Turgidnefs of the Fibres. " There were Plenty of Bloffoms on the Cherry-trees, few on the Apple" trees, \(\mathcal{E}^{\circ}\) c. The Almonds, Peaches, and Apricocks, of whatever fort " they were, very rarely efcaped. The Pears fuffer'd much. Such Vines " were preferved, as were cover'd by the Earth, and thereby fecured " from the Cold; but fuch as were neglected and not fufficiently de" fended were all loft. This we faw, and were inform'd of it by the "News. But we fhall re!ate what the Prefident too'r notice of. When " we could vifit our Gardens foon after the Equinox, the Snow being " melted and the Ice thawed; the Bark, the Wood, and the Pith of " fuch Trees as had been fpoiled by the Froft, efpecially the Pears and "the Apricocks, were grown black, fo that many pull'd them up. " When we apply'd to our Microfcopes fome Pieces of fuch Boughs " as had grown the laft Summer, we found tize little Fibrils torn as if " the Wood had been rotten. But in other Parts of the Branches no " fuch Difruption was obferved, only there was no Greennefs or Sap.
"For as about the middle of April the Trees were cherifh'd by the "Heat of the Sun, in the Apricock Trees many new Buds put forth " from the old Wood, and in fome from the younger Wood, where "the Bloffoms ought to grow; in fome there was no Succor. In the "Pears all the Buds put out, and Bloffoms grew; yet not fo vigorous " as ufual, and leaving no Rudiments of Fruit. At that Time the " Bark obtain'd its full Greennefs, blacker proceeded from the Center " of the Pith towards the outfide, the Subftance of the Wood recover'd " its Whitenefs. The Fibrils of the new Year were black ftill, yet " when feen through a Microfcope they feem'd to abound with Sap, " not otherwife than the fame Fibrils of the Cherry-tree or Apple-tree, " which the Froft had left untouch'd. The Pith under the Buds was " tinged with an unufual Blacknefs, yet the Root of the Bud, when " pufh'd on into a Succor, appear'd through the Microfcope to be very "green and turgid. Now it is very remarkable, that as the Froft had " fpared the Plumbs, fo it alfo fpared the Buds of the Apricocks, that " were grafted into the Bark of the Succors of the Plumbs, which now " grew up into tall Leaves according to Trees of its Kind, in which the " Froft had not fpared fo much as one Bud.

As to the Caufes of this Great Froft, they are, I confefs, to me fo véry much hidden, that I intended wholly to have pafs'd over that Matter. But Mr. Remus having ingenioufly enquir'd into them, I Thall briefly give his Opinion.
The Caufes of The Fountain of Heat enjoy'd by the Earth, being the Sun, and
tbe Froft. that Heat being not always the fame, he enquires into the Reafon why it is not fo. The Variation of the mutual Diftance between the Earth and Sun at the Apogee and Perigee; the Mutuation of
the Earth's Place in Refpect of the Heavens, or its being juftled at a greater Diftance from the Sun, and the Obitruction of the Solar Rays by the Spots on the Sun, he rejects. And as to the true Caufes, having affign'd good Philofuphical Reafons for the perpendicular warming more than the oblique Rays, for the Wind cooling the Air, and the North and Eaft more than other Winds, \(\xi^{\circ}\). he then enumerates his Caufes in thefe Words: On the Sun's Part is required a very great Diftance from the Zenith, and a fmall Continuance above the Horizon. On the Earth's Part is required an Atmospbere full of Exbolations, and abounding witb Clouds: Allo Eafterly and Nortberly Wind:, and efpecially violent ones. Rut what is maft of all neceffary, tbat the Action of the Sun Bould be binder'd for a long Time, cbiefly' then when the Coules of the Froft concur.

Having affigned his Caufes, he applies them to his five Periods, and the more remarkable Accidents that happen'd in them.

But after all, there are fome other more hidden extraordinary Caufes, that he hath not reach'd. For we have all his Caules very commonly concurring in other Winters, without the fame Effects as in the laft. This prefent, next fucceeding Winter 17 El , we have had (befides what is common to all Winters, the Obliquity of the Sun's Rays, Eit.; the Winds as much Northerly and Eatterly, and as Itrong; and as much dark Weather; and all concurring too together, as happen'd during the Great Frof: And yei no moure than ordinary fevere Weather.

But as to mifty, cloudy, dark Weather, which he reckons anzons his principal Caufes, I am fo far from thinking it a Caufe, that I rather take it to be the Reafon we have not more frequent fevere Frofts, at leaft in our Ifland Places, furrounded by the warm Vapours of the Sta. Clouds and Vapnurs do indeed intercept, and keep off the Sunbeans; and probably imbibe and retain a great deal of Warmth themfelves; nay, perhaps they may (as he faith) reflect back fome of the Sun-rays: But we conftantly in Winter find, that the fewer the Exhalations are, and the clearer the Air, and after the Warmth of the Sun by Day, the fharper the Froft is at Night.

I do not pretend to affign Caufes; yet thus much feems to me reafonable: That the great Mint of Meteors being the fuperior Regions of the Air, and the Source of Exhalations being the TerraqueousGlobe, in thofe two flaces we are to feek for the farther, and more grand Caufes of the late Froft. And in the fourteen and more Years Obfervations I have made of the Weather, \(\xi^{2}\) c. 1 have found a great deal to be attributed to the Increafes and Decreafes of the Cold of the upper Regions, as alfo to the inner Difpofitions of our Globe, at leaft to the greater or lefs Plenty of Vapours and Exhalations. But not as yet having Obfervations enough to clear and demonftrate my Hypothefis, I fhall defer what I might have faid.
Vol. IV. Part II.
XVIII. 1.) Strange were the Effects of the Thunder and Lightning which happen'd at Mrs. Clofe's Houfe at New-Forge in the County of Down in Ireland, on the gtb of Aug. 1707. I waited on her about a Fornnight after to inform myfelf of the Particulars. She told, that the whole Day was clofe, hot, and fultry, little or no Wind ftirring till towards the Evening; that there was a fmall Breeze with fome minling Rain, which lafted ahout an Hour ; that as the Air darken'd after sun-fet, fhe faw feveral faint Flafhes of Lightning, and heard fome Thunder-claps, as at a Diffance; that between 10 and 11 of the Clock, both were very violent and terrible, and fo increafed and came on more frequent till a little before 12 of the Clock; that one Flath of Lightning, and one Clap of Thunder came both at the fame Time louder and more dreadful than all the refh, which, as the thought, Thook and inflam'd the whole Houle; and being fenfible at that Initant of a violent ftrong fulphureous Smell in her Chamber, which The did not perceive before, and feeling a thick grofs Duft falling on her Hands and Face as fhe lay in Bed, fhe concluded that Part of her Houre was thrown down by the Thunder, or fet on Fire by the Lightning ; that ariifing, and calling for Candles, the found her BedChamber full of Smoak and Duft, as aifo the Kitchen that was beneath it: The reft of the Houfe being fafe, fhe only obferv'd the Looking-glafs, that hung in her Chamber to be broken.

The next Day the found, upon further Search and Enquiry, that Part of the Top or Cornifh of the Chimney, which ftood without that Gable-end of the Houfe where her Chamber was, was ftruck off; that Part of the Copeing of the Splay of the Gable-end itfelf was broken down, and the Shingles on the Roof adjoining thereto (to the Number of 12 or 16) were raifed or ruffed, but none fhatter'd or carry'd away ; that Part of the Ceiling in her Chamber beneath thofe Shingles was forc'd down, and Part of the Plaifter and Pinning-ftones of the adjoining Wall, was alfo broken off and loofen'd, (the whole Breach 16 or 20 Inches abroad.) That at this Place there was left on the Wall a fmutted Scar or Trace, as if made black by the Simoak of a Candle, which was directed downwards towards another Place on the fame Wall whereon a Breach was alfo made as the former, and of the lame Dimenfions, Part of which was behind the Place where the Looking-glafs did hang; that the Boards on the Back of a large Hair-Trunk full of Table and other Linnen, ftanding beneath the Looking-glafs, were forc'd in, and fplinter'd as if by the Blow of a Smith's Sledge; that two Parts of three of the Linnen within this Trunk were pierced or cut through, the Cut appearing of a Quadrangular Figure, and between two or three Inches over; that the End of the Trunk was likewife forc'd out, as the Back was drove in; that at about two Feet diflance from the End of this Trunk (where
(where the Floor and the Side-Wall of the Houfe joined) there was a fmall Breach made in the Plaiker, where a fmall Chink or Crevice was to be feen between the fide Poard of the Floor and the Wall, fo wide as that a Man could thruft his Fingers down; and that juft beneath this again, in the Kitchen, the Cieling was forced down, and fome of the Lime or Plaiter of the Wall broke off; that exaetly under this again, ftood a large Tub or Veffel of Wood inclofed with a Crib made of Brick and Lime, which was broke and fplinter'd all to Pieces, and moft of the Brick and Lime-Work about it forc'd and fcatter'd about the Kitchen.
I went from Place to Place, viewing each Particular ; and as I found all was done on or near the Gable-end of the Houfe, I have endeavoured to explain it by a Draught, wherein the feveral Breaches are Fig. ze. diftinguifh'd: And as I conceiv'd all to be effected by fome irrefittible Body, I have alfo by two Parallel Lines traced out its irregular Motion.

The Looking-glafs was broke with that Violence, that there was not a Piece of it to be found of the Largenefs of Malf-a-Crown: Several Pieces of it were fticking like Hail-fhot in the Chamber-Door (being of Oak) and on the other Side of the Room; Several of the Edges and Corners of fome of the Pieces of the bruken Glafs were tinged of a light Flame Colour, as if heated in the Fire; the Curtains of the Bed were cut in ieveral Pieces, thought to be done by the Pieces of the Glafs ; feveral Pieces of Mullin and wearing Linnen, left on a Trunk, were thrown and fcatter'd about the Koom, no way finged or fcorched; and yet the Hair on the Back of the Trunk, where the Breach was made, was finged; the uppermoft Part of the Linnen within the Trunk was fate and well, and the lowermof Parcel, confifting of 350 odd Ply of Linnen, pierced through, of which, none was any way fmutted, but the uppermoft Ply of a Table-cloth that lay above all the reft. She cold me, there was a yellow Singe or Stain perceivabie on fome Part of the other Linnen fo damag'd the next Day; and the whole Linnen fmell'd ftrong of Sulphur; but neither this yellow Stain or Smell was perceivable when I was there: That the Glafs of two Windows in the Bed-Chamber above, and two Windows in the Kitchen beneath, was fo matter'd, that there was fcarce one whole Pane left in any of them; that the Pewter, Brafs, and Iron Furniture in the Kitchen were thrown down, and fcatter'd about the Kitchen, particularly a large Girdle about 20 Pounds Weight, that hung upoa an Iron Hook near the Cieling, was found lying on the Floor: That a Cat was found dead the next Morning in the Kitchen, with its Legs extended as in a going Pofture, in the Middle of the Floor, with no other Sign of being hurt, than that the Furr was finged a litcle, about the fetting on of the Tail.

She told me too, that about fome few Days before this Accident happen'd, The remov'd a Table Prefs-Bed from the Place where the Hair-Trunk ftood, wherein two little Girls (her Daughters) ufed to lie; which fhe look'd upon as a particular Piece of Providence.

The Wall both above and below a little Window in the fame Gableend, was fo Thatter'd at the fanme Time, that the Light could be feen through the Crevices in the Wall; and that upon a large Stone on the outide of the Wall beneath this Window, was to be feen a Mark, as if made by the Stroke of a Smith's Sledge, or large Iron Crow, with which a Splinter or Piece of the Stone was broken off of fome Pounds Weight. I was further informed, that from the Time of that great Thunder-clap, both the Thunder and Lightning diminifh'd gradually, fo that in an Hour's Time all was ftill and quiet again.
-at Ipiwich
by Mr.
Bridg.
116. p. 317.
2.] There happen'd at Ipfwich on the \(16 t b\) of \(\mathcal{F u l y} 1708\), a moft violent Storm of Thunder and Lightning; it began about Six to be perceiv'd at fome Diftance, and arofe in the South-Weft. I was then on the higheft Eminence about this Town, whence I could plainly diftinguifh the working of the Storm: The Inftant I perceiv'd the Flafh (which I judg'd to be about four Miles diftant) it feem'd to extend itfelf like a Bow, and caft its Light a confiderable Way round it, and the Shaft of Lightning (if I may fo call it) did not run in a waving angular Figure, as ufual, but in a ftraight Shaft of Fire, like the Fuze of a Bomb, directly from the Cloud to the Ground; upon which, and finding the Storm approach, I haften'd Home; and foon after, we had two or three prodigious Flafhes of Lightning, and the Noife of the Thunder that fucceeded them was to great, and caufed fuch an Emotion in the Air, that it made the Rooms fhake, and the Windows rattle, as in a great Storm of Wind. Dr. Dade affur'd me, that at that Time the Lightning feem'd to dwell fome confiderable Space on the Ground, and that he could very plainly feel the Heat of it in his Face. The Paffage-Boat was at that Time coming from Harwich, and juft got to the Town, when a terrible Flafh came, which kill'd the Mafter, and three more P'erfons that were on Board. I faw one of them the next Day; he had a Wound in his Thigh, his Breaft was lacerated, as if he had been whipp'd with Wires, and his Face and Body as black, as if he had been blown up with Gunpowder, and Thoufands of fmall black Spots about him. The Mafter of the Veffel was not at all disfigur'd, had only one Wound on his Side, like a frefh Burn, no other Mark about him; the Chain of his Watch was melted, yet no Burn could be perceiv'd on his Breeches or Cloaths. The third Perfon was very much torn and fhat-
ter'd about the Head, the Crown of his Hat was taken clear out, as if it had been cut out, and feveral Parcels of his Hair drove into the Subftance of the Hat. The fourth was very little disfigur'd, only a black Spot on his Side, and a fmall Wound, as if made with a cauterizing Iron. There were feveral others a-board wounded and ftunn'd. One Artis had his Hair burnt clofe to his Head behind, and his Peruke untouch'd: He had a Scratch on his Arm about four Inches long, and a fmall Hurt below the Elbow ; he fell that Night into a violent Fever, grew delirious, and is pronounc'd irrecoverable. Whether he receiv'd any Hurt on his Brain, or the Violence of the Fever caules the Delirium, remains undetermin'd. There was no Mark to be feen on his Coat, Waftecoat, or Shirt, where he had his Hurt on his Arm. Two of the Perlons kill'd, were on the outfide, and the other two under the Tilt of the Boat; and what is pretty remarkable, the two that were within the Tilt, fate on each Hand of a Woman, that receiv'd no Damage. One Perfon had the Soal of his Shoe unripp'd from the Leather, and no other Damage. I wonder the Blaft lighting fo directly on the Boat, did not Chatter it all to Pieces: There was another Boat that follow'd them, and receiv'd no Damage, and took out the reft of the poor frighted Wretches; the Mafter of which does affirm, he law the Fire light on the Bow-fprit of the former Boat, where meeting a fmall Refiftance, it flew into fmall Streams like a Rocket, part into the Boat, part into the Water; which, if true, no doubt, was the Caufe of the Mifchief being done in to many different Parts of the Boat; and does in fome Meafure folve the feeming Difficulty of the Woman's being unhurt between the two Perfons that were kill'd.
3.] At Colcbefter, on Yuly 16, 1708. about Eight of the Clock at -at Col. Night, (the greater Part of the Afternoon being cloudy, but more chefter on tbe thick toward Night, with Thunder at a Dittance for above an Mr.J.Nelfon Hour before, and much Lightning) I hard a Thunder-Crack fo ibid. loud, as if it were clofe to me, (the like I never heard before;) at which Time the Thunder and Lightning broke into Mr. King's Houfe, beginning at the South-fide thereof, at the Gable-end, breaking feveral Roof-Tiles, and near 20 other, as at 6 in the Figure, Fig. 20. continuing its Courfe perpendicular, and in a ftraight Line (the only Motion that feems confiftent with fuch Violence, which, it feems, was otherwife in the Gentlewoman's Houfe in Ireland) it went into a Lean-to, and lighting on a bunching out of the Wall at \(d\), it enter'd into the Strong-Beer Buttery through the Laths, and forc'd a Cork out of the lower Tap-hole of a But: In its Way at \(a\), it hiver'd a Ctud about three Inches fquare, fo that one Side remain'd nail'd to Laths, yet not much thicker than a Lath, and alfo brake it in two, as if it were a Tobacco-pipe. Below the Beam at \(b\), it
clave or fplit a Stud, about four Inches fquare, feveral Feet down, which is there ftanding; this was from its violent razing on the outfide. At the Time of this Blow, Mr. King was in the Lean-to, but receiv'd no Hurt; he fmell'd a trong fulphureous Scent. It caft the broken Wall divers Rood with the Violence. There was fome little Damage done to Alballocos Church about the fame Time in the faid Town.

Divers Boats were carrying Perfons from Harwich to Ipfwich on the Orwell; the Violence of the Thunder and Lightning kill'd four dead immediately, made a Lad run mad, and wounded the reft that were in that Boat, which were twelve Perfons, and melted a Watch and the Chain all of a Lump which was in a dead Man's Pocket; this was about the fame Time of the aforemention'd. Mr. Ibomas Holborow of Colcbefter was Eye-witnefs to this: Being in one of the Boats, he fmell'd fuch a Scent of Sulphur, as he could not bear. This was about 18 Miles N. E. of Colchefter, and one Mile S. E. it was no more violent than an ordinary Storm.
-in Yorkfhire, with ciolent Rain; ty Mr. R. Thorefby. n . 519. p. 289.
4.] On the 5th Day of Fuly 170S, we had a Storm of Thunder, Ligbtning, and violent Rain; I was then at the Spaw at Harrow-gate, near Knaresborougb; where having a fpacious View upon the open Foreft, I obferv'd the Motion of the Clouds and Storm, which began in the Weft, and wheel'd about by the North and Eaft to the South. When the Night drew on, the Lightning appear'd more dreadful. The Intermiflion between the Flathes was very fmall; the Claps of Thunder were very loud, and the Flahes of Lightning were continu'd. The Reverend Mr. Furnis of Bewerly writes, that Tbomas. Horner, with others, flying from the Violence of the Rain, which feem'd rather to f.ll in Spouts than Drops, took fhelter in a neighbouring Barn, whence, after feveral frightful Thunder-claps, they were expell'd by the Bolt, as they term'd it, but really the Lightning, which finged the Hair of the faid Horner, blew another Man backward, who was climbing tp the Hay-Mow, left a fulphureous Stench behind it, and burnt the Barn and Hay. The Inundation of Rain was furprizing; it tore up nuuch of the Road and Street, from the Church to the Bridge, and made Pits in fome Places, feveral Yards deep, threw down Part of a Barn and a Stable, both of them lately built; it puh'd into moft of the Houfes in the Town; the Water, in fome, was as high as the Soals of the Windows, and block'd up the Door of one Houle with Gravel, almoft to the very Top. Several Perfons were in great Danger, but only one Woman drown' d : She was hurry'd away with the Violence of the Stream, and not found till the fourth Day after. It removed the Bole of a large Oak feveral Yards; bore down the moft Part of four Wood Bridges, and has left at the End of the great Stone Bridge, or within about 100 Yards of it, as much Gravel, \(\mathrm{G}^{c}\). as is compured
at above a thoufand Cart Loads. For all this Deluge, the River Nidd kept within Bounds.
5.) We had much Thunder and Lighening in Yorkßire, on the -in York\(12 t b\) of December 1710, in the Morning. The Lightning was fo fe-mire, by the vere, that one Sainor a Gardener, as he was riding over Brambam-moor, thought his Hair had been burnt, and his Face forch'd at one Flanh, which being more fevere than the reft, did actually fet on Fire the Stick he had in his Hand, as he was ready to depofe upon Oath before the Mayor of Leeds, who prefented me with the faid Hazle Rod, which the Gardener had given him. It yet retains Part of the Blacknefs, tho the Man (little minding it as a Curiofity) had beat off much of the End of the Rod in forcing his Horfe forward.
6.] At Sampford Courtney in Devonjbire, on the 7 th of OEFober 1711 , -in Devonin the Afternoon, when the Minifter was officiating, (from whom Ifhire, commuhave this Account) there was fo great a Darknefs, that he could hardly nicatrd by fee with Spectacles: As foon as Prayers were ov-r, fome Men went berlayne. to ringing, and feveral others were talking in the Church-Porch; an. 336. p. 528. great Fire-Ball, on a fudder, fell in between them, and threw fome one way, fome another, but no one received any Hurt: The Ringers faid they never knew the Bells go fo heavy, and were forc'd to leave off: And being very weary, and looking out of the Belfrey into the Church, faw four Fire-Balls a little bigger than a Man's Fift, which of a fudden broke to Pieces, fo that the Church was full of Fire and Smoak.

Foln Goodman's Man receiv'd a full Blow in the Neck, which made him bleed both at the Nofe and Mouth; but he is very well now. He fays, that the Fire and Smoak went up into the Tower, which broke a great Beam on which one of the Bells hung, which fell down on the Floor. It likewife carried away one of the Pinnacles of the Tower next the Town, and threw fome of the Stones near a Barn Door at a pretty Diftance from the Church, and has done fome Damage to the Barn at one End. The Chimney of the Houte was remov'd in fuch a manner, b the Thunder and Lightning, that all People admir'd that it ftood, and did nut fall upon the Houle. Tho' the People ran about in great Confternation, no one was hurt.
XIX. I have collected what I can remember, relating to a Me-A Fing Meteor I faw in Famaica about the Year 1700. As I was riding one teor, fe in Morning from my Habitation, fituated about three Miles North- Jamaica, hy Weft from t. Jago de la Vega, I faw a Bull of Fire, appearing to ham n. 35\%. me of the Bignef of a Bomb, fwiftly falling down with a great p. 837.

\section*{A Lunar Rain-Bow.}

Blaze. As I thought it fell into the Town; but when I came within a Quarter of a Mile of the Town, I faw many Feople gather'd together a little to the Southern in the Savanna, to whom I rode up, where they were admiring at the Ground's being ftrangely broke and plough'd in by a Ball of Fire, which, as they faid, fell down there. I obferv'd there were many Holes in the Ground, one in the middle of the Bignefs of a Man's Skull, and five or fix fmaller Holes round about it, of the Bignels of a Man's Fift, and fo deep (eipecially the biggeft) as not to be fathom'd by what long Switches or Sticks they had at Hand. I did not hear that any was fo curious as to make any farther Search: It was oblerv'd, that the green Grafs was perfectly burnt near the Holes, and a ftrong Smell of Sulphur remain'd thereabouts for a good while after.

Note, that we had a terrible rainy Night before, with much Lightning and great Thunder-Claps, which we have very frequently in Fan:aica, often killing Cattle in the Fields. Mr. Henry Lord, who lives at Dry-River, had two Sons ftruck dead with Lightning, in 1716, without any Wounds or Appearance of Hurt found about them. And as there Claps are much louder and ftronger than any I ever heard in Europe, fo are our Showers of Rain, pouring down in a molt violent manner. We have Lightning all the Year round, but our great Rains are in the Months of May, Auguft, and Oitober. I knew May for two or three Years without Rain, which was look'd upon as a great Wonder: And we paid dear for it in our Indigo: For a Caterpillar appear'd and wove a fine Silk about the Indigo-Plant, and deftroy'd it all, hurting nothing elfe. MayRains ufed to deftroy thefe Worms. Auguft and OEFober never go out without a Flood, we having then univerfal Rains all over the Inand, coming from the Sea: For we have often Rains in the Mountains from the Clouds lodging there, when we have none in the Lowlands.

Our Inand is full of Mines, and, if fearch'd into, I queftion not but very rich. We are very fubject to Earthquakes, leveral happening every Year, efpecially after great Rains, which fill up all our great Cracks in the Surface of the Earth: For ia a very dry Time, we have them fo very large, deep, and gaping fo open and wide, that it is dangerous to ride over fome Parts of the Savannaes, for fear a Horfe fhould get his Legs into them. Our Earthquakes make a Noife or
4 Lunar Rumbling in the Earth, before we feel the Shake; and feem to run Rain-Bow Sect
in Derbyfhire, in Derbyfhire, by -, communicated by \(M\).
XX. A Gentleman of great Veracity told me, he had feen a R. Thorefly. Luinar Rain- Bow in Derbyjbire on Cbrifmas 1710. That walking ton. 33 r. P. 320 .
wards Patterton Green, about eight in the Evening, he obferved with great Satisfaction the Bow, which the Moon had fix'd in the Clouds: She had then pafs'd her Full about 24 Hours, the Evening had been rainy, but the Clouds were difpers'd, and the Moon fhin'd pretty clear. This Iris was more remarkable than that which Dr. Plot obferved at Oxford, the \(23 d\) of November 1675, that being only of a white Colour, but this had all the Colours of the Iris Solaris, exceeding pleafant, diftinet, and grateful to look upon; only faint, comparatively to thofe we fee in the Day; as muft neceffarily follow, both from the different Beams that caufe it, and the Difpofition of the Medium. What puzzled him the moft was the Largenels of the Arc, which was not fo much lefs than that of the Sun, as the different Dimenfions of their Bodies, and their refpective Diftances from the Farth, feem to require: But as to its Entirenefs, and Beauty of its Colours, it was admirable and furprizing. It continu'd about ten Minutes, before the Interpofition of a Cloud hinder'd his further Obfervation.
XXI. As I was obferving the Immerfions of the third and fourth \(A\) Glade of Satellite of Saturn on the 20 th of March 170\(\}\), in the Evening; I Light feen in efpy'd a very odd fort of Light in the Conftllation of Taurus, the Heavens, the lower End of which was below the Bull's Eye, and the other Derham, n. a good Way above it, and that Star about the middle of the lower 305. p. 2220 . End thereof (as in Fig. 21.) which reprefents its Appearance to Fig. 21. me. This Glade of Light had the fame Motion that the Heavens had, and was much like the Tail of a Comet, but pointed at the upper End. This Light, I doubr nor, is fuch as Dr. Cbildrey firt cobferved in England; and Coffini, and others afterwards in France.
XXII. On Thurjday, April 3, 170\%, I perceived in the Weftern \(A\) Pyramidal Part of the Heavens, about a Quarter of an Hour after Sun-fet, a Appearance long flender Pyramidal Appearance, perpendicular to the Horizon. The feen in Effex, Baje of this Pyramid, 1 judged to be the Sun (then below the by Mr. W. Horizon.) Its Apex reach'd 15 or 20 Degrees above the Horizon. Derham. n. It was throughout of a rufty red Colour; and when I firft faw it, \({ }^{310}\), p. 2411 . pretty vivid and ftrong; but the Top-part fainter much than the Bottom, nearer the Horizon. At what time this Appearance began, whether at, or how foon after Sun-fet, I cannot fay. But about a Quarter of an Hour after Sun-fet I perceived it, and had, for fome time, a fair Profpect of \(\pi\), the Horizon being pretty free and open where I then was. But after a while, it grew by Degrees weaker and weaker, fo that in about a Quarter of an Hour after I firlt faw it, the Top-part (a.b. d.) was farce vifible. But Fig. 22. the Lowet-part remain'd vivid much longer; but yet grew by De-

Vol. IV. Part II. 4 I grees

\section*{Aurora Borealis in Ireland.}
grees thorter and Shorter. I faw the Remains of the lower half (b. d. e. f.) a full Hour after Sun-let; and thould perhaps have feen it longer, had the Horizon been open. But it was often in my Walk pent up with Trees.

The whole Atmofphere feem'd hazy, and full of Vapours, efpechatly towards the Sun-fet. The Moon and Stars were that Evening bearded at that Time, and fucceeded with an Halo about the Muon afterwards. Which Difpofition of the Air was probably the Caule of the Phænomenon. But the Pyramid was undoubtedly imprinted upon the far diftant Vapours of the Atmofphere; it being manifeltly farther off, or lying beyond fome finall thin Clouds (C. L. c. l.) that intercepted it, and in thole Parts cover'd and hid it.

I do not remember I ever faw any Thing like it, except the white Pyramidal Glade, which is now entituled by the Name of the Aurora Borealis; that being (except in Colour and Length) like it.

I have fearched every Night fince for this Pyramis Vefpertina, but have not feen any fuch Appearance, altho' the next Evening was hazy and likely. I alfo look'd out to fee whether the Aurora Borealis would fucceed in the Room thereof, but difcover'd no fuch Thing.
\(f\) Meteor in Yorkhhire, by Mr. R. Thorelby. n. 33 1. p. 322 .
XXIII. A ftrange Meteor was feen at Leeds 1710, on Holy T"burfo day ; the common People call'd it a Flaming Sword. It was feen not only in the Neighbouring Towns, but a great Way North, as alfo above fifty Miles South of Leeds. It appear'd here at a Quarter paft ten at Night, and took its Courfe from South to North: It was broad at one End, and fmall at the other; and was by fome thought to refemble a Trumpet, and mov'd with the broad End foremoft: the Light was fo bright, that People faw their own Shadows. I was reading (the Curtain of the Window being drawn) fo faw nothing, except a fudden Flafh of Light. It is remarkable, that all Perfons (tho' at many Miles Diftance from each other, when they faw it) thought it fell within three or four Furlongs of them, and that it went out with bright Sparklings at the fmall End. An ingenious Clergyman told me, that it was the ftrangeft Deceptio vifus he was ever fenfible of, if it was not abfolutely extinguifh'd within a few Paces of him; and yet others faw it many Miles off, further North in a few Moments.
AftrangeMe- : It has been feen in the Counties of Nottingbain and Derby, as well ceor, or Au rora Boreailis fern in Ireland, \(b\) b \(M\). Neve, n. 320. P. 310.
XXIV. 1,] On Sunday, November 16, 1707, after a frofly Morn-

Hour after eight in the Evening, there appear'd a very ftrange Light in the North. The Evening was clear and Star-light, only the Horizon was darken'd with condenfed Vapours in the North, reaching, as I guefs, ten or fifteen Degrees above the Horizon. Out of this Cloud proceeded feveral Streams or Rays of Ligbt, like the Tails of fome Comets, broad below, and ending in Points above. Some of them extended almoft to the Tail of \(U r \sqrt{a}\) Minor, and all were nearly perpendicular to the Horizon, and it was as bright, as if the Full Moon had been rifing in the Cloud. But what I wonder'd at moft, was, the Motion of the dark and lighter Parts running ftrangely through one another in a Moment; fometimes to the Eaft, and lometimes to the Weft. It continued, after I firft faw it, about a Quarter of an Hour, often changing irs Face and Appearance, as to Form and Light; fometimes broken, fometimes entire and long Rays of Light in the clear Sky, quite feparate from and above the Cloud, and none below in the Cloud.
2.] Much fuch another Appearance Mr. Barret was credibly inform'd - by Mr. W. was feen in his Neighbourhood in Efex, in September or OEFober Derham, it. 1706.
XXV. The Theory of the Air feems to be perfectly well underftood, Am Account and the differing Denfities thereof at all Altitudes, buth by Reafon of fiveral exand Experiment, are fufficiently defined: For fuppofing the fame Air to occupy Spaces reciprocally proportional to the Quantity of the fuperior or incumbent Air, I have (\({ }^{*}\)) elfewhere prov'd, that at 40 Miles n. 34 r. p.itey. high, the Air is rarer than at the Surface of the Earth, about 3000 Times; and that the utmoft Height of the Atmofphere, which reflects Light in the Crepufculum, is not fully 45 Miles: Notwithftanding which, it is manifelt that fome Sort of Vapours, and thofe in no fmall Quantity, arife nearly to that Height. An Inftance of this may be given in the great Light, \((t)\) September 1676 , mention'd by Dr. Wallis, which was feen in very diftant Counties, almoft over all the South Part of England. Of which, though the Doctor could not get fo par- 1. S. LXXI. ticular a Relation, as was requifite to determine the Height thereof, yet from the diftant Places it was feen in, it could not but be very many Miles high.

So likewife that Meteor which was feen in 1708 , on the \(31 / f\) of July, between nine and ten a-Clock at Night, was evidently between 40 and 50 Miles perpendicularly high, and as near as I can gather, over Sbeernefs and the Buoy on the Nore. For it was feen at London moving horizontally from E. by N. to E. by S. at leaft 50 Degrees high; and at Redgrave in Suffolk, on the Yarmoutb Road, about 20 Miles from the Eaft Coaft of England, and at leaft 40 Miles to the Eaftward of London, it appear'd a little to the Weftward of the

South, fuppofe S. by W, and was feen about 30 Degrees high, niding obliquely downwards. We may conclude, that it was not many Miles more Wefterly than Redgrave, which is above 40 Miles more Eafterly than-Iondon. Suppofe it, therefore, where perpendicular, to have been 35 Miles Eaft from London, and by the Altitude it appear'd at in Iondon, viz. 50 Degrees, its Cangent will be \(4_{2}\) Miles; for the Height of the Metcor above the Surface of the Earth, which alfo is rather of the leaf, becaule the Altitude of the Place thewn me, is rather more than lefs than 50 Degrees: And the fame may be concluded from the Altitude it appear'd in at Redgrave, near 70 Miles diftant. Though at this great Diftance it appear'd to move with an incredible Velocity, darting, in a very few Seconds of Time, for about ia Degrees of a great Circle from North to South, being very bright at its firt Appearance; and it died away at the End of its Courle, leaving for fome Time a pale Whitenefs in the Place, with fome Remains of it in the Track where it had gone; but no hifing Sound as it pars \({ }^{\circ}\), or Bounce of an Explofion, were heard.

It may deferve Enquiry, how fo great a Quantity of Vapour fhould be raifed to the very Top of the Atmolphere, and there cullected, fo as upon its Accenfion, or otherwife Illumination, to give a Light to a Circle of above 100 Miles Diameter, not much inferior to the Light of the Moon. 'Tis hard to conceive what fort of Exhalations fhound rife from the Earth, either by the Action of the Sun, or fubterranean Heat, fo as to furmount the extreme Cold and Rarenefs of the Air in thofe upper Regions.

Like to this, but much more confiderable, was that famous Metcor which was feen to pafs over Italy on the \(21 / 1\) of Marcb O. S. Anno 1676, about an Hour and three Quarters after Sun-fer, which happen'd to be obferv'd by the famous Profeffor of Mathematicks in Bononia Geminian Moniariari, as may be feen in his Italian Treatife. He obferves that at Bononia, its greateft Altitude in the S. S. E. was 38 Degrees, and at Sienna 58 to the N. N. W. that its Courfe by the Concurrence of all the Obfervers, was from E. N. E. to W.S. W. that it came over the Adriatick Sea, as from Dalmatia: That it crofs'd over all Isaly, being nearly vertical to Rimini and Savigniano on the one Side, and to Legborn on the other: That its perpendialar Altitude was at leaft 38 Miles: ? That in all Places near this Courfe, it was heard to make a hifling - Noife, To make a Noife like a Sky-rocket, to bijs tbrough ibe Air like a Train of Gun-poreder: That having pals'd over Leghorn, it went off to Sea towards Corfica: And laftly, that at Legborn, it was heard to give a very great Blow, It tbunder'd with a greater Report than that of
3 a large Cannon: Immediately after which, another fort of Sound was heard, like the rattling of a great Cart running over Stones, which continued about the Time of a Credo.

He concludes, from the apparent Velocity it went on with at Buisenin, at above 50 Miles Diftance, that it could not be lefs fwift than 160 Miles in a Minute of Time. To this he adds the Magnitude thereof, which appear'd at Bononia bigger than the Moon in one Diameter, and above half as big again in the other ; which with the given Diftance of the Eye, makes its real leffer Diameter above half a Mile, and the other in Proportion. This fuppofed, it cannot be wonder'd that fo great a Boly moving with fuch an incredible Velocity through the Air, though fo much rarified as it is in its upper Regions, fhould occation fo great a hilfing Noife, as to be heard at fuch a Diflance as this was. But 'rwill be much harder to conceive, how fuch an Impetus could be in? prefs'd on the Body thercof, which by many Degrees exceeds that of any Cannon Ball; and how this Simpcius Should be determined in a Direction fo nearly parallel to the Horizon, and what fort of Subftance it mutt be that could be fo impell'd and ignited at the fame Time: There being no Vuliano, or other Spiraculuin of fubterraneous Fire in the N. E. Parts of the World, that we ever yet heard of, from whence it might be projected.

I have confider'd this Appearance, and think it one of the hardelt Things to account for, that I have met with in the Pbezizomena of Meteors, and am induced to think, that it muft be fome Collection of Matter form'd in the Etber, as it were by fome fortuitous Concourfe of \(A\) toons, and that the Earth met with it as it pafs'd along in its Orb, then but newly form'd, and before it had conceived any great Impetus of Deicent towards the Sun. For the Direction of it was exactly contrary to that of the Earth, which made an Angle with the Meridian at that Time (the Sun being in about 11 Degrees of Arics) of 67 Gr . that is, its Courfe wals from W. S. W. to E. N. E., wherefore the Mefeor feem'd to be moved the contrary Way: And befides falling into the Power of the Earth's Gravity, and lofing its Motion from the Oppofition of the Medium, it feems that it defcended towards the Earth, and was extinguifh'd in the Tyrrbene Sen, to the W. S. W. of Legborn. The great Blow being heard upon its firt Immerfion into the Water, and the rattling, like the driving a Cart over Stones, being what fucceeded upon its quenching; fomething like which, is always obferved upon quenching a very hot Iron in Water.

There has fallen into my Hands an Account of much fuch another Appearance, feen in Gcrmany, in the Year 1686, at Leipfick, by the late Mr. Gotifreid Kircb, who, in his Appendix to his Epbemerides for the Year 1688, gives us this remarkable Relation in the following Words.

On the ninth Day of July, O. S. at Half an Hour paft One in tbe Morning, there appeared a Ball of Fire with a long Tail, in \(8 \frac{1}{2}\) Degrees of Aquary, and 4 Gr. to the North, which continued immoreable for Half a Quarter of an Hour. Iss Diameter was nearly equal to the Semidianneter of
the Moon. At firft its Light was \(\int 0\) great, that by it one migbt reat without a Candle. It afterwards vanifh'd in its Place by degrees. The fame Pbanomenon was alfo feen at the jame Time by otbers in otber Places, particularly at Schlaize, a Iown II German Niles diftant from bence (Leipfick) to the South, at the Altitude of about 60 Degrees from the Soutbern Horizon.

At the Time of this Appearance the Sun was in \(26 \frac{1}{2} \mathrm{Gr}\). of Cancer, and by the given Place of the Meteor, 'tis plain, it was feen about \({ }_{5}^{5}\) of an Hour palt the Meridian, or in S. by W. and by its Declination it could not be above \({ }_{2} 4\) Degrees high at Leipfick, though the fame, at Scblaizi, was about 60 Gr . high: The Angle therefore at the Meteor, was about 36 Gr . Whence, by an eafy Calculus, it will be found, that the fame was not lefs than 16 German Miles difant in a right Line from Leipfick, and above \(6 \frac{1}{2}\) fuch Miles perpendicular above the Horizon, that is, at leaft 30 Englifß Miles high in the Air. And though he fays of it, that it continued immoveable for balf a 2uarter of an Hour; 'tis not to be underftood that it kept its Place like a fix'd Star, all the Time of its Appearance; but that it had no very remarkable progreffive Motion. For himfelf has at the End of the faid Epbemerides given a Figure of it, whereby it appears, that it darted downwards obliquely to the Righthand, and where it ended, left two Globules or Nodes, not vifible but by an Optick Tube.

The fame Mr. Kirch, in the Beginning of a German Treatife of his, concerning the great Comet which appear'd in the Year 1680, intituled, 尺etioe bimmels jeitung, printed at Nurenburg, Anno 168 I , gives us a Relation of fuch another luminous Meteor feen likewife at Leipfick, on the \(22 d\) of May, 1680, ft. vet. about Three in the Morning: Which, though himfelf faw not, was obferved by divers Perfons, who made various Reports of it ; hut the more intelligent agreed, that it was feen defcending in the North, and left behind it a long white Streak where it had pafs'd. At the fame Time at Haarburgh, the like Appearance was feen in N. E. or rather N. N. E. as alfo at Hamburg, Lubeck and Stralfund, all which are about 40 German Miles from Leipfick: But in all thefe Places, by Perfons unacquainted with the Manner of properly defcribing Things of this Kind. So that all we can conclude from it is, that this Meteor was exceeding high above the Earth, as well as the former.

All the Circumftances of thefe Pbrenomena agree with what was feen in England in 1708.

IAn Accomnt of XXVI. 1.] The Society having received Accounts from many Parts Lights foen in of Great Britain, of the unufual Ligbts, which have appeared in the \({ }^{\text {theAir, March Heavens, defired me to draw up a general Relation of the FaEE, and }}\)

\section*{6, 1715-16,}
 Halley.n. 347.
poled to them, relating to the Caufe. The Account of this Appearance take as follows.

On Tuefday the fixth of Marck, \(\mathcal{\rho}\). wee. in the current Year 1716, (the Afternooon having been very ferene and calm, and fomewhat warmer than ordinary) about the Time it began to grow dark, (much about feven of the Clock) not only in L.cndon, but in all Parts of England, where the Beginning of this wonderful Sight was feen; out of what feem'd a dufky Cloud, in the N. E. Parts of the Heaven, and farce ten Degrees high, the Edges whereof were tinged with a reddifh yellow, like as if the Moon had been hid behind it, there arofe very long luminous Rays or Streaks perpendicular to the Horizon, fome of which feem'd neariy to afcend to the Zenith. Prefently after, that reddifh Cloud was fwiftly propagated along the Northern Horizon into the N. W. and ftill farther Wefterly; and immediately fent forth its Rays from all Parts, now here, now there, they obferving no Rule or Order in their rifing. Many of thefe Rays feeming to concur near the Zenith, formed there a Corona, or Image, which drew the Attention of all Spectators. Some liken'd it to that Reprefentation of Glory wherewith our Painters in Churches furround the Holy Name of God. Others to thofe radiating Stars, wherewith the Breafts of the Knigbts of the Order of the Garter are adorn'd. Many compar'd it to the Concave of the great Cupola of St. Paul's Church, diftinguifh'd with Streaks alternately light and obicure, and having in the middle a Space lefs bright than the reft, refembling the Lantern. Whilft others, to exprefs as well the Motion as Figure thereof, would have it to be like the Flame in an Oven, reverberated and rolling againft the arched Roof thereof: Some thought it liker to that tremulous Light which is caft againft a Cieling by the Beams of the Sun, rellected from the Surface of Water in a Bafon that's a little thaken; whofe reciprocal vibrating Motion it very much imitated. But all agree, that this Speitrum lafted only a few Minutes, and exhibited itfelf variounly tinged with Colours, yellow, red, and a dunky green: Nor did it keep in the fame Place; for when firt it began, it appear'd a little to the Northwards of the Zenith, but by degrees declining towards the South, the long Sirie of Light, which arofe from all Parts of the Northern Semicircle of the Horizon, feem'd to meet together, not much above the Head of Caflor, or the Northern Iwin, and there foon difappear'd.

Afrer the firt Impetus of this afcending Vapour was over, the Corona appear'd no more; but ftill, without any Order as to Time, or Place, or Size, Juminous Radii, like the former, continued to arife perpendicularly, now oftener, and again feldomer; now Rere, now there; now longer, now fhorter. Nor did they proceed as at firf out of a Cloud, but oftener would emerge at once out of the
pure Sky, which was more than ordinary ferene aud ftill. Nor were they all of the fame Form. Muft of them Seem'd to end in a Point upwards, like erect Conses; others like truncate Cones or Cylinders, fo much refembled the long Tails of Comets, that at firft fight they might well be taken for fuch. Some of thefe Rays would continue vifible for feveral Minutes; when others, and thofe the much greater Part, juft fhew'd themfelves, and died away. Some reem'd to have little Motion, and to fand, as it were fix'd, among the Stars, whilft others, with a very perceptible Trannation, mov'd from Eatt to Weft under the Pole, contrary to the Motion of the Heavens; by which Means they would fometimes feem to run together, and at other times to fly one another.

After this Sight had continued about an Hour and a half, thofe Beams began to rife much fewer in Number, and not near fo high, and by Degrees that diffuled Light, which had illuftrated the Northern Parts of the Hemifphere, feem'd to fublide, and fettling on the Horizon formed the Refemblance of a very bright Crepufculum: That this was the State of this Pbenomenon, in the firlt Hours, is abundantly confrm'd by the unanimous Confent of feveral. For, by the Letters we have receiv'd from almoft all the extreme Parts of the Kingdom, there is found very little Difference in the Defcription from what appear'd at London and Oxford; unlels that in the North of England and in Scotland, the Light feem'd fomewhat ftronger and brighter.

Hitherto I have related the Obfervations of others: As to myfelf, I had no Notice of this Matter, till between nine and ten of the Clock; upon the firft Information of the Thing, I immediately ran to the Windows, which happen'd to regard the South and South-Weft Quarter; and foon perceiv'd, that though the Sky was very clear, yet it was tinged with a ftrange fort of Light; fo that the fmaller Stars were fearce to be feen, and much as it is when the Moon of four Days old appears after Twilight. I perceiv'd at the fame Time a very thin Vapour to pais before us, which arofe from the precife Eaft Part of the Horizon, afcending obliquely, fo as to leave the Zenith about fifteen or twenty Degrees to the Northward But the Swiftnefs wherewith it proceeded was farce to be believed, feeming not inferior to that of Lightning; and exhibiting, as it pars'd on, a fort of momentaneous Nubecula, which difcover'd iffelf by a very diluted and faint Whitenefs; and was no fooner formed, but before the Eye could well take it, it was gone, and left no Signs behind it. Nor was this a fingle Appearance; but for feveral Minutes, about fix or feven Times in a Minute, the fame was again and again repeated; thefe Waves of Vapour regularly fucceeding one another, and at Intervals very nearly equal; all of them in their Afcent producing a like tranfient \(N_{s}\) becula.

\section*{Surprizing Ligbts in the Air.}

By this Particular we were firft affured ; that the Vapour we faw, became confficuous by its own proper Light, without Help of the Sun's Beams ; for thefe Nubecule did not difcover themfelves in any other Part of their Paffage, but only between the South-Eaft and South, where being oppofite to the Sun, they were deepeft immers'd in the Cont of the Earth's Shadow; nor were they vifible before or after. Whereas the contrary muft have happen't, had they borrow'd their Lighe from the Sun.

I their made all the Hafte I could to a Place where there was a free Profpe \(\begin{gathered}\text { of of the Northern Horizon. Bing come there, not much }\end{gathered}\) paft ten of he Cluck, I found, on the Weftern Side, viz. between W. and N. W. the Reprefentation of a very bright Twilight, contigious to the Horizon; out of which arofe very long Beams of Light, not exatly erect toward the Vertex, but fomething declining to the South; which alcending by a quick and undulating Motion to a confiderable Height, vanim'd in a little Time, whilft others, tho' at uncertain Intervals, fupply'd their Place. But at the fame Time, through all the reft of the Northern Horizon, viz. from the NorthWeft to the true Eaft, there did not appear any Siga of Light to arife from, or join to, the Iorizon; but what appear'd to be an exceeding blatk and difmal Cloud feem'd to hang over all that Part of it. Yet was it no Cloud, but only the ferene Sky more than ordinary pure and limpid, fo that the bright Stars fhone cleatly in it, and particularly Cauda Cygni, then very low in the North; the great Blacknels manifefly proceeding from the Neighbourhood of the Light which was collected above it. For the Light had now put on a Form quite different fromi all that we have been defcribing, and had fafhion'd itfelf into the Shape of two Lamine or Streaks, lying in a Pofition patallel to the Horizon, whofe Edges were but ill terminat\(e d\). They extended themrelves from the N. by E. to the North-Eaf, and were each about a Degree broad; the undermoft about eight or nine Degrees high, and the other about four or five Degrees over it; thefe kept their Places for a long Time, and made the Sky fo light, that I believe a Man might eafily have read an ordinary Print by the Help thereof.

Whilft I was viewing this furprizing Sight, and expecting what was further to come, the Northern End of the upper Lamina by Degrees bent downwatds, and at length clofed with the End of the other that was under it, fo as to fhut up on the Northfide an intermediate Space, which fill continued open to the Eaft. Not long after this, in the faid included Space, I faw a great Number of fmall Columns or whitifh Sereaks to appear fuddenly, erect to the Horizon, and reaching from the one Lamina to the other; which inftantly difappearing, were ton quick for the Eye, fo that I could not jodge whether ethey arofe from the under, or fell from the upVol. IV. Part II.

4 K
per,

\section*{Surpriaing Lighis in the Air.}
per, but by their fudden Alterations, they made fuch an Appearance, as might well enough be taken to relemble the Conflicts of Men in Battle.

And much about the fane Time, there began on a fudden to appear, low under the Pole, and very near due North, three or four Jucid Areas, like Clouds, difcovering themielves, in the pure but very black Sky, by their yellowifh Light. Thefe, as they broke out at once, fo after they had continued a few Minutes, difappear'd as quick as if a Curtain had been drawn over them: Nor were they of any determined Figure, but both in Shape and Size inight properly be compar'd to fimall Clouds illuminated by the full Moon, but brighter.

Not long after this, from above the aforefaid two Lamince, there arofe a very great Pyramidal Figure, like a Spear, tharp at the Top, whofe Sides were inclin'd to each other with an Angle of about four or five Degrees, and which feem'd to reach up to the Zenith, or beyond it. This was carried with an equable, and not very now Motion, from the N. E. where it arofe, into the N. W. where it difappear'd, ftill keeping in a perpendicular Situation, or very near it; and paffing fucceffively over all the Stars of the Little Bear, did not efface the fmaller ones in the Tail, which are but of the fifth Magnitude; fuch was the extreme Rarity and Perfpicuity of the Matter whereof it confifted.

This fingle Beam was very remarkable for its Height above all thofe that for a great while before had preceded it, or that follow'd it.

It being now paft eleven of the Clock, and nothing new offering itfelf to our View, but repeated Pbajes of the fame Spectacle; being returned to my Houfe, I went to my upper Windows, which conveniently enough regarded the N. E. Part of the Heavens, and loons found that the two Lamine or Streaks parallel to the Horizon, had now wholly difappear'd; and the whole Spectacle reduced itlelf to the Refemblance of a very bright Crepufculum feteling on the Northeru Horizon, fo as to be brighteft and higheft under the Pole itfeif; from whence it fpread both Ways into the N. E. and N. W. Under this, in the middle thereof, there appear'd a very black Space, as it were the Segment of a leffer Circle of the Sphere cut off by the Horizon. It feem'd to the Eye like a dark Cloud, but was not fo; for by the Telefcope the finall Stars appear'd through it more clearly than ufual, confidering how low they were: And upon this as a Bafis, ous Lumen Auroriforme refted, which was no other than a Segment of a Ring or Zone of the Sphere, intercepted between two Parallel leffer Circles, cut off likewife by the Horizon; or the Segment of a very broad Iris, but of one uniform Colour; viz. a Flame-Colour in. clining to yellow, the Center thereof being about forty Degrees be-
low the Horizon. And above this, there were feen fome Rudiments of a much larger Segment, with an Interval of dark Sky between, but this was fo exceeding faint and uncertain, that I could make no proper Eftimate thereof.

1 attended this Phaxnomenon till near three in the Morning, and the rifing of the Moon: But for above two Hours together, it had no manner of Change in its Appearance, nor Diminution, nor Increafe of Light ; only fometimes, for very fhort Intervals, as if new Fuel had been caft on a Fire, the Light feem'd to undulate and fparkle, not unlike the rifing of a vaporous Smoke out of a great Blaze, when agitated. But one Thing I affured my felf of, that this lris-like Figure did by no Means owe its Origin to the Sun's Beams: For that about three in the Morning, the Sun being in the Middle between the North and Eaft, our Aurora had not follow'd him, but ended in that very Point where he then was: Whereas in the true North, which the Sun had long pals'd, the Light remain'd unchanged, and in its full Luiftrc.

Thus I have endeavour'd by Words to reprefent what I faw; I have annexed a Figure exhibiting that particular Appearance of the two Fig. 23. Lamine, which I faw at London between the Hours of ten and eleven: Becaufe I do not find, among the many Relations I have feen, any one that has taken Notice of it. In this Figure \(A B\) is the under Lamina, fomewhat broader and brighter than the upper CD: It had near its under Edge the Lucida Lyra, and below its Northern Extremity, on the Left-hand, Cauda Cygni : And as well above and below thefe, as in the intermediate Space between them, and indeed all round about that Part of the Heavens, the Sky was fo unufually dark and black, as if all that Exotic Light that had Thew'd itfelf before, had been then collected into thofe two Streaks. Only at 2, between the Weft and North-Weft, and no where elfe, out of a Brightnefs adjoining to the Horizon, there arofe conical Beams, as \(M, L, N\), after the fame Manner as at firit.
Whilft we ftood looking on, the Streak C D, at its Northern End, bent downward, and joined with the under \(A B\) at \(E\), and included the Space \(D C E A B\), which ftill kept open at the other End towards the Eaft ; and in the mean Time, out of the very clear Sky, fome luminous Spots, fituated and figured as in the Scheme at G, G, G, G, prefented themfelves to the Eye, in Colour much like the Lamine. Thefe did not fhew themelves all together, but came fucceffively, yet fo as two or three of them were feen at a Time; and as their coming was inftantaneous, fo they went away in a Monent. At the fame Time likewife, the feveral little white CoJumns mark'd \(F, F, F, F\), occupied that Part of the Space between the two Streaks next to \(E\), and by their fudden and very irregular Motion, and the vanifhing of fome, whilft others, at the fame Time,
emerged, gave occafion to the Conception of thofe that fancied Battles fought in the Air. Lattly, from about the Middle of \(C D\), there arofe fuddenly a Cone or Obelifk of a pale whitifh Light, greiter than any we had yet feen, as \(H\); which moving from Eaft to Welt, with a Notion lufficiently regular, was trannated to \(K\), in the North Veft, and there difappe:ar'd.

That we might by the fame Scliene fhew the Appearance of the latt Hours, after Midnight; we have made the Light at \(\mathcal{Q}\), much bigger than what appear'd in the Wett about ten of the Cluck; fo as to reprefent truly that other. In this Cafe, the Point (Q) mult, by the Inagination, be fuppofed transferr'd to the Interfection of the Horizon and Meridian under the Pole. The Scheme inceed could by no Means be contriv'd to anfwer the wonderful Variety this Pberiomonon afforded; fince even the Eye of no one fingle Obferver was fufficient to follow it in the Suddennels/ and Frequency of its Alterations.

Thus I have attempted to defcribe what was feen, and am forry I did not fee the firft and molt furprizing Part thercof my felf: The like is not recorded in the Englifh Arnals lince 1574, that is, above a hundred and forty Years ago, in the Reign of Queen Elizabeth. Then, as we are told by the Hittorians of choie Times, Cambden and Stow, for two Nights fucceffively, viz. on the \(14^{\text {th }}\) and 15 tb of November that Year, much the fame wonderful Pbsenomened were: feen, with almoft all the fame Circumftances as now.
Nor, indeed, was this then fo rare a Sight as it has been fince: For we find, in a Book entituled, A Deforiprion of Metecrs, reprinted at London in the Year 1654, whofe Author writes himfelf W. F. D. D. that rhe lame Thing, which he there calls Rurning Spears, was feen at Liondon on fanuary 30, 1360; and again by the Teftimony of Stow, on the \(7^{\text {th }}\) of ORzober 1564. And from foreign Authors we learn, that in the Year 1575 , the dame was twice repeated in Brabant, viz. on the \(13^{t h}\) of February, and \(28 t \mathrm{~b}\) of September; and feen and defcribed by Cornetius Gemima: Who in a Difcourfe he wrote of the Prodigies of thofe Times, after feveral ill-boding Prognofticks, thus very properly defcribes the Cupola and Corona, that he faw in the \(P\) bafian (as he calls it) of Fedruary. A little wwile after new Flames rifing like Spears, the Heavere Seemi'd to be on Fire on the Nortbern Side quite up to the Zenith. And lajthy, tbat notbing migbto feem reprefented before which bitberto bad bappen'd, the Appearance of the Heavens woas chanzed for the Space of an Hour, into the jtrange Likoness of a Box with rwbich they play at Dice, blere and white contimually cbanging, not with lefs Uncertainly and Swiftnefs than the Rays of the Sun, wben they are reflected back by an interpofed Speculum. Here it is not a little remarkable, that all theit four already mentioned, fell exactly upon the fame Age of the Moon, viz. abont two Days after the Change.

As to the other of September in the fame Year 1575, there are the Words of Gemma. It was not indeed fo terrible, yet with greater Variety that otber Pbenomenon appear' \(d\), which wee faw in October following, juft after the Sun wens fot. In this were many fining Eows, from which iffued spears, Cities with Turrels, and Armies of Soldiers. Hence the Rays proceeded every Way, as alfo the Floating of Clonds and Images of Battles. rkey fed from and parfued one anotber, with a coonderful Alternation. From hence 'tis manifeft, that this Phomomenon appear'd in our Neighbourhond chree feveral Tinjes, and that with confiderable Intervals, within the Compafs of one Year; though our Englifh Hiftorians have not recorded the two latter; nor did Gemma fee that of November 1574, is 'tis mont likely, by reafon of Clouds. - Alter this, in the Year 1580, we have the Authority of Michacl Mafling; that at Bokneng in the Country of Wirtenburg in Germanm, thefe :Pbnfmata, as he likewife ftiles them, were feen by himfelf no leis than feven Times within the Space of twelve Monchs. The firft of thafe, and molt confiderable, fell out on the very fame Div of the Month with ours, \(n\). on Sunday the fixth of March, and was attended with much the fame Circumitances. And again the fame Things were feen in a very extraordinary Manner on the 9 th of April and totb of Seplember, following: But in a lefs Degree, on the 6th of April, \(27 f t\) of Sepienber, \(26 t b\) of December, and \(16 t b\) of February, 158 r . The laft of which, and that of the \(21 / 1\) of September, muit needs have been more confiderable than they then appear'd, becaufe the Moon being near the Full, neceffarily effaced all the fainter Lights. Of all thefe, however, no one is mentioned in our Annals to have been feen in England, nor in any other Place that I can finct. The next that we hear of, was that of the Year 1621 , on September 2d, ft. vet. Teen all over France, and well defcrib'd by Gafendus in his Pbyytce, who gives it the Name of Aurora Borealis. This, tho little inferior to whe we lately faw, and appearing to the Northwards both of Roues and Paris, is no where faid to have been obferv'd in England, over which the Light feen'd to lie.
Another was feen all over Germony, in the Year 1623 , thius defcrib'd By Kopler. On the is, Day of November, Anno 1623, a fiery Meteor was feen, or a burning Ball, Aying over all Germany from Weft to Eafl. In Auftria tbey faid it gave a Sound like a Clap of Thunder, wbich I cannot think is true; for the Defrriptions that are extant to not conform stois.

And fince then, for above 80 Years, we have no Account of any fuch Sight, eicher from home or abroad. The firt we find on our Books, was one of fmall Continuance Feen in Freland by Mr. Neve, on Vid. Supra, p. the \(16 t b\) of Norember 1707. And in the Miffellaners Berolinenfia, pub- \({ }^{13+}\) lifhed in 1710, we learn, that in the fame Year 170\%, both on the 24 th of Fanuaty, and 19 th of Frove \(r\) ry, fo. vet. Something of this

\section*{(•) \(M\) M. Maflin Lib. de Co-} meta, \(1 ; 80\).
kind was feen by Mr. Olaus Romer at Copcnbagen, and again on the \({ }_{2} 3^{d}\) of February, the fame Afronomer obferv'd there fuch another Appearance, but much more confiderable; of which yer he only faw the Beginning, Clouds interpoling. But the fame was feen that Night by Mr. Goffried Kirch, at Berlin, above 200 Miles from Copenbagen, and lafted there till paft ten at Night. To thefe add another finall one of innall Duration, feen near Lonion, a little before Midnight between the ninth and tenth of Auguft 1 jos, by the Lord Bifhop of Hereford ; fo that, it feems, in little more than eighteen Months, this fort of Light has beenfeen in the Sky, no lefs than five Times in the Years 1707 and 1708.

Hence we may reafonably conclude, that the Air, or Earth, or both, are fometimes, though but feldom, and with great Intervals, difpofed to produce this Plamomencn: For though it be probable that many Times, when is happens, it may not be obferv'd, as falling out in the Day-time, or in cloudy Weather, or bright Moon-fhine: Yet, that it Chould be fo very often feen at fome Times, and io feldon at others, is what cannot well be chat Way accounted for. Wherefore confidering what might be noof probably the Material Critfe of thefe Appearances; what firft occurr'd was the Vapour of Water rarified exceedingly by fubterrancous Fire, and tinged with fulphureous Steams; which Vapour is now generally taken by our Naturalifts to be the Caufe of Earthquakes. And as Earthquakes happen with great Uncertainty, and have been fometimes frequent in Places, where, for many Years before and after, they have not been felt; fo thefe, which we might be allow'd to fuppofe produc'd by the Eruption of the pent-up Vapour through the Pores of the Earth, when it is not in fufficient Quantity, nor fudden enough to fhake its Surface, or to open it felf a Paffage by rending it. And as thefe Vapours are fuddenly produc'd by the Fall of Water upon the Nitro-fulphureous Fires under Ground, they might well be thought to get from thence a Tincture which might difpofe them to fhine in the Night, and a Tendency contrary to that of Gravity; as we find the Vapours of Gunpowder, when heated in Vacuo, to thine in the Dark, and afcend to the Top of the Receiver, though exhaufted: The Experiment of which, I faw very neatly performed by Mr. 7 . Whitefide.

Nor Thould I feek for any other Caufe than this, if in fome of thofe Inftances, particularly this whereof we treat, the Appearance had not been feen over a much greater Part of the Earth's Surface than can be thus accounted for. It having in this laft been vifible from the Weft Side of Ireland, to the Confines of Ruffia and Poland on the Eaft (nor do we yet know its Limits on that Side) extending over at leaft thirty Degrees of Longitude; and in Latitude, from about fifty Degrees over almoft all the North of Europe; and in all

\section*{Surprizing Lights in the Air.}

Places exhibiting at the fame Time the fame wondrous Circumftances as we are informed by the Publick News. Now this is a Space much too wide to be fhaken at any one Time by the greatelt of Earthquakes, or to be affected by the Perfipiration of that Vapour, which being included, and wanting Vent, might have occafion'd the Earth to tremble. Nor can we this Way account for that remarkable Particular attending thefe Lights, of being always feen on the Northfide of the Horizon, and never to the Sourh.
Wherefore laying afide the explaining thefe Things by the ordinary Vapours or Exhalations of the Earth or Waters, we are forced to have Recourfe to other forts of Eiflucia of a much more fubrile Nature, and which perhaps may feem more adapted to bring atout thofe wonderful and furprizingly quick Motions. Such are the Magnetical Effluvia, whofe Atoms freely permeate the Pores of the moft folid Bodies, meeting with no Obitacles from the Interpofition of Glafs or Marble or even Gold itfelf. Thefe by a perpetual Efflux do, fome of them, arife from the Parts near the Poles of the Magnet, whilf others of the like Kind of Atoms, but with a contrary Tendency, enter in at the fanme Parts of the Stone, through which they freely pats; and by a kind of Circulation furround it on all Sides, as with an Atmofphere, to the Diftance of fome Diameters of the Body.

That the Fact may be the better comprehended, I fhall endeavour to exthibit the Manner of the Circulation of the Atoms concern'd therein, as they are expofed to View, by placing the Poles of a Terella, or Spberical Magnet, on a Plane, as the Globe on the Horizon of a right Sphere : Then ftrewing fine Steel Duft or Filings very thin on the Plane all round it, the Particles of Steel, upon a continued gentle knocking on the underfide of the Plane, will by Degrees conform themfelves to the Figures in which the Circulation is perform'd. Thus, let \(A B C D\) be a Terella, and its Poles \(A\) the South, and \(B\) the North; and by doing as prefrib'd, it will be found that the Filings will lie in a Right Line perpendicular to the Surface of the Ball, when in the Line of the Magnetical Axis continued. But for about forty-five Degrees on either Side, from \(B\) to \(G\) or \(I\), and from \(A\) to \(H\) or \(K\), they will form themfelves into Curves, more and more crooked as they are remoter from the Poles; and withal more and more oblique to the Surface of the Stone. Hence it may appear how this exceeding fubrile Matter revolves; and particularly how it permeates the Magnet with more Force, and in greater Quantity in the circumpolar Parts, entering into it on the one Side, and emerging from it on the other, under the fame oblique Angles: Whillt in the middle Zone about \(C\) and \(D\), near the Magneet's Equator (if I may ufe the Word) very few, if any of thefe Particles do impinge, and thofe very obliquely.

\section*{Surprising Lights in the Air.}

Now by many and very evident Arguments it appears, that our Globe of Earth is no other chan one great Magnet, or (if I may be allow'd to allege an Invention of my own) rather two; the one including the other, as the Shell includes the Kernel; for fo and not otherwife, we may explain the Changes of the Variation of the Magnetical Needle. It Suffices that we may fupport the fame fort of Circulation of fuck an exceeding fine Mutter to be perpetually performed in the Earth, as we observe in the Terella; which futile Matter freely pervading the Pores of the Earth, and entering into it near its Southern Pole, may pals out again into the \(E E b\) er, at the fame Difrance from the Northern, and with a like Force; its Direction being fill more and more oblique, as the Diftance from the Poles is greater. To this we beg leave to fuppofe, that this fubtile Matter, no otherways difcovering itself, but by its Effects on the Magnetic Needle, wholly imperceptible, and at other Tines invifible, may now and then, by the Concourie of several Cafes very rarely coincident, and to us as yet unknown, be capable of producing a fall Degree of Light; perhaps from the greater Denfity of the Matter, of the greater Velocity of its Motion: After the fame Manner as we fee the Eiffuria of Electric Bodies by a frog and quick Friction emit Light in the Dark : To which fort of Light this feems to have a great Affinity.

This being allow'd mine, I think we nay affign a Caufe for many of there itrange Appearances, and for lome of the molt difficult to account for otherwife; as why there Lights are rarely feen any where elfe but in the North, and never, that we hear of, near the Equator: As alto why they are more frequently feen in Iceland and Greenland, than in Norway, though nearer the Pole of the World. For the Magnetical Poles, in this Age, are to the Weftward of our Meridian, and more fo of that of Norway, and not far from Greenland; as appears by the Varation of the Needle this Year obferv'd, full twelve Degrees at London to the Wert.

The erect Pofition of the luminous Beams or Stria fo often repeated that Night, was occafioned by the rifing of the Vapour or lucid Matter nearly perpendicular to the Earth's Surface. For that any Line erected perpendicularly upon the Surface of the Globe, will appear erect to the Horizon of an Eye placed any where in the fame Spherical Superficies; as Euclid demontrates in a Plane, that any Line erected at right Angles to it, will appear to be perpendicular to that Plane from any Point thereof. That it Should be fo in the Sphere, is a pretty Propofition, not very obvious, but demontItrated from Prop. 5. Lib. 1. Theodofii Splbaric. For by it all Lines erect on the Surface pals through the Center, where meeting with thole from the Eye, they form the Planes of Vertical Circles thereto. And by the Converfe hereof, it is evident, that this luminous Matter

Matter arofe nearly perpendicular to the Earth's Surface, becaufe it appear'd in this erect Pofition. And whereas in this Appearance, thofe Beans which arofe near the Eait and Weft, as \(L, M, N\), were furtlieft from the Perpendicular, on both Sides inclining towards the South, winilt thofe in the North were directly upright: The Caufe thercof may well be explain'd by the Obliquity of the Magnetical Curves, making fill obtuler Angles with the Meridians of the Ierreillu, as they are further from the Poles.

Hence alfo it is manifeft, how that wonderful Coroma that was feen to the Southwards of the Vertex, in the Beginning of the Night, and fo very remarkable for its tremulous and vibrating Light, was produced; to wit, by the Concourfe of many of thofe Beams arifing very high out of the circumjacent Regions, and meeting near the Zenith: The Ifflesia whereof they confifted mixing and interfering one with another, and thereby occafioning a much ftronger, but uncertain wavering Light. And fince it is agreed by all Accounts that this Corona was tinged with various Colours, 'tis more than probable, that thefe Vapours were carried up to fuch a Height, as to emerge out of the Shadow of the Earth, and to be illuftrated by the direct Beams of the Sun: Whence it might come to pafs that this firft Corona was feen colour'd and much brighter than what appear'd afterwards in fome Places, where the Sight thereof was gone down much lower under the Horizon. Hence too it will be eafily underftood that this Corona was not one and the fame in all Places, but was different in every differing Horizon ; exactly after the fame Manner as the Rainbow feen in the fame Cloud is not the fame Bow, but different to every feveral Eye.

Nor is it to be doubted, but the Pyramidical Figure of thefe afcending Beams is Optical: Since, according to all likelihood, they are parallel-fided, or rather tapering the other Way. But by the Rules of Perfpective, their Sides ought to converge to a Point, as we fee in Paintings the Parallel Borders of ftraight Walks, and all other Lines parallel to the Axis of Vifion, meet as in a Center. Wherefore thofe Rays which arofe higheft above the Earth, and were neareft the Eye, feem'd to terminate in Cufps fufficiently acute, and have been for that Reafon fuppos'd to reprefent Spears. Others feen from afar, and perhaps not rifing fo high as the former, would terminate, as if cut off with Planes parallel to the Horizon, like truncate Cones or Cylinders: Thefe have been taken to look like the Battlements and Towers on the Walls of Cities fortified after the ancient Manner. Whilft others yet further off, by Reaion of their great Diftance, good Part of them being intercepted by the Interpofition of the Convexity of the Earth, would only fhew their pointed Tops, and becaufe of their Shortnets have gotten the Name of swords.

Next the Motion of thefe Beams furnifhes us with a new and moft evident Argument to prove the diurnal Rotation of the Earth. For thofe Beams which rofe up to a Point, and did not prefently difappear, but continued for fome Time, had moft of them a fenfible Motion from Eaft to Weft, contrary to that of the Heavens ; the biggeft and talleft of them, as being neareft, fwifteft; and the more remote and fhorter, Nower. By which Means, the one overtaking the other, they would fometimes feem to meet and joftle; and at other Times to feparate, and fly one another. But this Motion was only Optical, and occafion'd by the Eye of the Spectator being carried away with Earth into the Ealt; whillt the exceeding rare Vapour of which thofe Beams did confilt, being raifed far above the Atmofphere, was either wholly left behind, or elfe follow'd but with Part of its Velocity, and therefore could not but feem to recede and move the contrary Way. And after the fame Manner as the Stars that go near the Zenith, pafs over thofe Vertical Circles which border on the Meridian, much fwifter than thofe Stars which are more diftant therefrom; fo thefe luminous Rays would feem to recede fafter from Eaft to Weft, as their Bafes were nearer the Eye of the Spectator; and è contra, nower as they were further off.

Nor are we to think it ftrange, if after fo great a Quantity of luminous Vapour had been carried up into the Etber out of the Pores of the Earth, the Caufe of its Effervefcence at length abating, or perhaps the Matter thereof confumed; thefe Effuvia fhould at length fubfide, and form thofe two bright Lamine which we have defcrib'd, and whofe Edges being turn'd to us, were capable to emit fo much Light. I chofe to call them Lamine, becaufe, without Doubt, tho' they were but thin, they fpread Horizontally over a large Tract of the Earth's Surface. And whilft this luminous Matter dropp'd down from the upper Plate to the under, the many little white Columns were formed between them by its Defcent, only vifible for the Moment of their Fall. There by the Swiftnefs with which they vanif'd, and their great Number, fhewing themfelves, and difappearing without any Order, exhibited a very odd Appearance; thofe on the Right feeming fometimes to drive and pufh thofe on the left, and rice verfa.

I have omitted feveral Particulars of lefs Moment: But thefe are the principal Pbenomena; of whofe Caufes I hould have with more Certainty given my Thoughts, if I had feen the whole from Beginning to End; and could have added my own Remarks to the Relations of others; and efpecially, if we could by any Means have come at the Diftances thereof. If it Thall by any be thought a hard Suppofition that I affume the Effuvia of the Magnetical Matter for this Purpofe, which in certain Cafes may themfelves become luminous,
fuminous, or rather may fometimes carry with them out of the Bowels of the Earth, a fort of Atoms proper to produce Light in the Atither. I anfwer, that we are not as yet acquainted with any other Kinds of Effuvia of terreftrial Matter, which may ferve for our Purpole, than thofe we have here confider'd, viz. the magnetical Atoms, and thole of Water highly rarified into Vapour. Nor do we find any Thing like it in what we fee of the celeftial Bodies, unlefs it be the Effluvia projected out of the Bodies of Comets to a vaft Height, and which feem by a \(V\) is centrifuga to lly with an incredible Swiftn ef s the Centers both of the Sun and Comet, and to go off into Tails of a fcarce conceivable Length. What may be the Conftitution of thefe Cometical Vapours, we Inhabitants of the Earlb can know but little, and only that they are evidently excited by the Heat of the Sun; whereas this Meteor feldom is feen but in the Polar Regions of the World, and that moft'commonly in the Winter Months.

1 beg Leave on this Occafion, to mention what, near 25 Years fince, I publifh'd in \(\mathrm{N}^{\circ} 195+\) of thete Tranfactions, viz. That + Vid. Supra, fuppofing the Earth to be concave, with a leffer Globe included, in V.II.C. IV. order to make that inner Globe capable of being inhabited, there \({ }^{\text {p. }} 615\). might not improbably be contain'd fome luminous Medium between the Balls, fo as to make a perperual Day below. That very great Tracts of the 代therial Space are occupied by fuch a fhining Medium, is evident from former Inftances *. And if fuch a Medium fhould * Vid. Supra be thus inclofed within us, what fhould hinder but that we may fup- C. III. S. V. pofe that fome Parts of this lucid Subftance may, on very rare and extraordinary Occafions, tranfude through and penetrate the Cortex of our Eartb, and being got loofe, may afford the Matter whereof this our Meteor confifts. This feems favour'd by one confiderable Circumftance, viz. that the Eartb, becaufe of its diurnal Rotation, being neceflarily of the Figure of a flat Spberoid, the Thicknefs of the Cortex, in the Polar Parts of the Globe, is confiderably lefs than towards the Equator; and therefore more likely to give Paffage to thefe Vapours: Whence a Reafon may be given why thefe Lights are always feen in the North.
2.] At Paris, the Light was fo inconinderable, that it was not re- A Defcription garied: But a Letter to Mr. Alexander Geekie, Surgeon, dated on of the fame Board a Ship in Nevis Road in America, April 19, 1716 , informs us, Phanomenon "That on the fixth of March, at Nine a Clock in the Evening, cean on the O . " we being then in the Latitude of \(45^{\circ}, 36^{\prime}\) (off of the \(\mathbf{N}\) W. p. 130 .
"Coaft of Spain); A clear Cloud appear'd Eaft to us, not far " diftant from our Zenith, which afterwards darted itfelf forth in" to a Number of Rays of Light, every way like the Tail of a "Comet, of fuch a great Length, that it reach'd within a fhort \(4 \mathrm{~L}_{2}\)

\section*{Surprizing Lights in the Air.}
" Way of the Horizon. There likewife appear'd a Body of Lighe, " N. N. E. of us, and continued as light almoft as Day, till after " 12 a Clock. It appear'd at a good Ditance from us, and darken'd " on a fudden.
Hence it fhould feem, that the Vapour which caufed this Appearance, arofe indifferently out of the deep Ocean Sca , as well as from the Land; by which we may conclude the great Subrilty of the Matter thereof, fince it could permeate fo great a Quantity of Water, and yet retain its Velocity. ebelane, ibid.
3.] Since this, moft of the fame Pbenomena have been repeated three feveral Nights fucceffively, viz. on the laft of March, and firit and fecond of April. The beft and fulleft Defcription of the two firtt, is, from a Letter of Dr. B. Taylor, dated April 2, from Cott-rfock, near Oundle in Nortbamptonßire, who thus defcribes them. "On Saturday " Night laft, and laft Night, I faw Appearances of the faine Kind, " with thofe of March 6, but not to compare for Extent and Strength. "They both began foon after Sun-fet, and continu'd till after 12, bue " how much longer, I cannot tell. They were both about 10 or 15 " Degrees to the Weftward of the North, and took up about 80 De" grees of the Horizon; and the Aurora rofe about 30 gr . high, with " a dark Bottom, like what was feen in the firlt; and from whence " there fprung out feveral Bodies of Light, which immediately ran in" to Streams, afcending about 30 , or at moft 40 gr . high. There " was no flafhing nor waving Light, but, in all other Refpects, thefe "Lights were of the fame Kind with what we faw at London. Indeed " in that laft Night, there was one Phanomzzon like the flafhing Light ; "for a Body of Light about 15 or 20 Degrees long, parallel to the "Horizon, rofe till it came about 6 Degrees above the black "Balis, and then fent up two ftrong Streams of Light about " 40 gr . high, which at Top dafh'd againtt one another, and difap" pear'd.

At London, the firt Night, March 31. It did not begin to radiate, till towards Midnight, and was feen but by few, the Beams not rifing very high, and fcarce appearing over the Houfes; but by the Relation of thofe that faw it, it was much more confiderable than the next Night following Eafter-day; for it then fent out but few, and very fhort Beams, moftly terminating in a fharp Point, and prefently difappearing: Only it beginning to ftream as foon as it became dufky, it was very obfervable, that thofe Rays which arofe out of the Weft-end of the luminous Arch, next the Sun, were enlighten'd by its Beams, and fhew'd themfelves much brighter than thofe which arofe under the Pole, or to the Eaftward thereof. And after nine, till Midnight, no more Beams arofe; and the luminous A rch with its black Bafis, fettled down very low in the Northern Horizon.

The fane two Nights, by the Obfervation of Mr. William Lingen, the like Appearance was feen at Dublin, about the Hours of nine or ten; at which Time, in the former Nighx, it was near as light as in a Moonlight Night. And from France, we have an Account, that both thofe Nights, the fame was feen at l'aris, with much the fame Circumftances as at Dublin. So that, it feems, this Meteor, though no Ways comparable to that of the 6 th of March, was feen not lefs than 150 Leagues, and probably much farther.

On April 2. when it began to be dark, a luminous Arch appear'd in the North, with a very narrow black Bottom under it, very low, and deprefs'd to the Morizon; nor was it feen at, or about London, to projeet any pointed Rays as the former.

But what was molt remarkable that Evening, was, what was feen at London, by Martin Folkes, Efq; about nine that Night. He being then in the open Air, faw in an Inftant, a bright Ray of very white Light, appear in the Eaft, out of the pure Sky, then very ferene and ftill; it very much refembled the Tail of a Comet, and was about 20 gr . inclin'd from the Perpendicular to the Right, beginning about \(\gamma\) of Bayer in the Corona Borea, and terminating about the Informis, by fume call'd Cor Caroli. This hiving appear'd but a very little Time, difappear'd at once, as in a Moment: When, on a fudden, fuch another Beam was inftantly produced, not exactly in the fame Place, but in the fame Situation. Its lower being about 20 gr . high, was terminated exactly between \(x\) and \(\gamma\), in the Right Hand and Arm of Hercules, and the Middle of it pafs'd over \(\sigma\) and \(\rho\) in the Girdle of Bootes, and thence proceeded Weftwards, leaving Cor Caroli four or five Degrees to the Northwards. After it had continu'd in this Pofition near ten Minutes immoveable among the Stars, it began to move flowly towards the North: And the lower End paffing over the Northern Edge of the Crown, and the Ray itfelf over Cor Caroli, it grew fainter, and vanifh'd, having continued in all about 20 Minutes. This latter, with fome Interruptions, was extended between Caffor and Pollux, very far into the Weft: And about that Time, the fame, or fuch another Beam, was feen at St. Afaph, by Dr. Stanley.
XXVII. 1.] On February 5, 1716-17, at eight at Night, at Sutton at \(\tau_{\text {woNorthern }}\) Hone in Kent, an Aurora Borealis appear'd. It occupied at leaft \(\frac{1}{3}\) or Auroras forn near : of the Horizon; it was low, and hot out bright Rays, and, I believe, would have appear'd very light, had it not been that the Moon fhone at the fame Time, being about five Days old, and that the Aurora difappear'd before the Moon fet.

Again, on the 3 oth of Marcb following, there was another Auroria Borealis. I faw it not till part nine: 'Twas dim then, and its higheft Part cover'd the loweft Star in Caffopea's Cbair. It did not feem due North,

\section*{Aurora Borcalis, \(8^{\circ} \mathrm{C}\).}

North, but one Point to the Weft. About ten it fhot out very bright Rays, high, and tending fomewhat towards one another. Near eleven a Clock, there was (befides the Northern Brightnefs) a long Streak, not very broad, extended Eaft and Weft; which beginning in the Serpent's Head, near Hercules's Club, and covering ArEturus, proceeded near Berenice's Hair, and fo went over Cor Leonis, and thence to the Canicula, and ended a little beyond that Star. It fhone very bright at firlt, but faded away in about eight or nine Minutes. If it had Motion (which I am not fure of) it was fouthward. I waited for the next Fit of Brightnefs of the Aurora; and in about feven Minutes, the eaftern Part of the Streak, viz. from the Serpent's Head to near Berenice's Hair, became vifible again, though dim, and was quite effaced in four or five Minutes more: And I did not yet perceive any Change of its Place.
-one of them Seen at London, by M. Folkes, \(E / q\); n. \(35^{2}\). P. \(5^{86}\)
2.] Being in the Street, between eight and nine a Clock, on Marcb 8, \({ }^{171} 1\), I perceiv'd a Light over the Houfes to the Northwards, little inferior to that the Full Moon gives when the firft rifes. Upon this, I made all the Hafte I could into the Fields, where I was for lome Time entertain'd with the Sight of an Aurora Borealis, attended with moft of the Pbonomena of that very remarkable one of the 6th of March 1715-16.

The whole Northern Part of the Horizon was in the fame Manner cover'd with fomewhat refembling a very black Cloud, from behind which, there iffued a confiderable Light, whofe lower Part was pretty well defin'd by the common Edge of the Cloud, but the upper died away more gradually. This upper Limb of the I.ight refembling the Arch of a Circle, whofe higheft Point between nine and ten of the Clock (when the Meteor was moft confiderable) was elevated about 12 Degrees, and bore, as I imagin'd, about 20 Degrees weftward of the due North. It touch'd the Horizon in the Weft, at the Diftance of about 65 or 70 Degrees from the North, whence the whole intercepted Arch of the Horizon would have been of near 100 Degrees, had not fome fẹw Degrees in the Eaft been hid by Clouds, which lay between us and the Meteor.

The feeming black Cloud, when I firft faw it, ran nearly parallel to the Horizon, and at the Diftance of 6 or 7 Degrees, but in about Half an Hour, it changed its Figure very much, finking down in the North to about half its Height, and rifing in the Weft near as much. What I principally took Notice of this for, was, that the Light iffuing from behind it, did not change with it, but remain'd of the fame Figure, however the Cloud approached, or receded from differing Parts of its Limb.

There arofe at firft, fome Streams in the N. N. W. but of no confiderable Length, few of them paffing 5 Degrees above the Arch; but
beginning from behind the feeming Cloud, fo as to be about 12 Degrees high in all. 'They were pointed at the Ends, and nearly Vertical to the Horizon. Between Times there was nothing but the Arch to be feen, and that only refembling a common Aurora; and again in an Inftant, by a fort of a tremulous Motion, feveral Parts of it would appear converted into a vaft Number of parallel Streams, for the moft Part very little higher than the Arch itfelf. About 20 Minutes before Ten, a fmall Part of the Arch, almoft due North, grew remarkably lighter than the reft, and continued to increafe for about half a Minute; when there fuddenly broke out fome very tall Strcams of at leaft 60 Degrees high, as I found by one in particular, which arofe full North, and paffing over the Pole Star itielf, reach'd fome Degrees beyond it. This was the moft remarkable Time of the Appearance; fome fuch Lances, though not fo high, immediately fhooting out of the Place that firft of all radiated, as did fome more a good way to the Eaft. They were all nearly perpendicular to the Horizon, and moft of them did arife quite from the black Subftance at Bottom, tho' I faw fome few that did not reach fo low, appearing as if their lower Parts had been broken off. Some of them were full as bright as any I faw the laft Year, the Axes (if I may fo call them) of fome of the talleft Streams coming up very near to the Colour of that pale Fire we fee in fome Sorts of Lightning.

About this Time the Ground Weftward was all cover'd with an odd fort of Mift, the fame from which I remember laft Year, a great many People faid there came an ill Smell, which I did not at all perceive.

About 10 the Pbenomenon very much decreas'd, and fo continu'd till after 11, only fending up now and then two or three Streams; at half an Hour after 11 it was again pretty much increas'd, and I faw it agein fend out fome Streams almoft as confiderable as I had before feen this Evening; the Arch yet continu'd, but not fo entire ; and from what I could judge, its middle was fome Degrees nearer the North, than when I firlt took Notice of it. Till a Quarter of an Hour before I: the Light continually abated, and then I left it; but I was inform'd that it continu'd till towards Day-break, but never ftream'd remarkably after I went away.

Though I could not this Time fee any Stars through the black Matter at Bottom, I am fenfible it was not a Cloud, though it bore the Refemblance of one: For when a real Cloud (as feveral fmall ones ciid) came over any Part of it, their Difference was very confpicuous.

I have fince receiv'd two Letters, one from Wiflich in the Ine of Ely, the other from within 14 Miles of the Bath, both which take Nutice of it, though with no further Particulars, than that they had feen
feen the faine Light, tho not confiderable, as in the Beginning of March the laft Year.

As Accoume of XXVIII. On the \(19^{t h}\) of Mariblo \(1718-19\), a wonderful Lumino 1 s an extraordi- Meteor was feen in the Heavens all over England. Some of its
E. Halley. hitherto receiv'd by our Nacuralifts; fuch is the very great Height thereof above the Earth; the vaft Quantity of the Matter; the extravagant Velocity wherewith it mov'd; and the prodigious Explofions heard at fo great a Diftance, whofe Sound, attended with a very fenfible Tremor of the fubject Air, was certainly propagated through a Mediuin incredibly rare, and next to a Vacuum.
+ Vid. Su- I have formerly + collected what I could find of fuch Meteors, pra. p. 135. but none feem to come up in any Circumitance to this late Appearance; of which I fhall give an Account from the many Relations thereof communicated to the Royal Society; tho' it was not my good Fortune to fee it myfelf.

Sir Hons Sloan being Abroad at that Time, happen'd to have his Eyes turn'd towards it, in its very firlt Eruption; and gave me an Account of it in the following Terms: "That paffing along Eaft"ward by the N. E. Corner of Soutbampton.ftreet in Blcomblbury-Square, " London, at about a quarter after Eight at Night, I was furpriz'd to " fee a fudden great Light, much beyond that of the Moon, which " Ihone then very bright. I turn'd to the Weftward where the " Light was; which I apprehended at firf to be artificial Fire" works or Rockets. The firt Place I obferv'd it in, was about " the Pleiades Northerly, whence it mov'd after the Manner of, but " more flowly than a falling Star, in a feeming direet Line, de" fcending a little beyond, and withal below, the Stars in Orion's " Belt, then in the S. W. The long Stream appear'd to me to be "b banch'd about the Middle, and the Meteor in its Way turn'd " Pear-fafhion'd, or tapering upwards. At the lower End it came "c at laft to be bigger and fpherical, tho' it was not fo big as the "Full Moon. The Colour of it was whitifh, with an Eye of "Blue, of a moft vivid dazling Luftre, which feem'd in Bright"c nefs very nearly to refemble, if not furpais that of the Body of os the Sun in a clear Day, beheld by the naked Eye. This Bright"c nefs oblig'd me to turn my Eyes (which had their Pupils adapted " to the Light of the Moon) from it feveral Times, as well "t when it was a Stream, as when it was Pear-fanhion'd and a
"Globe ; tho' I had a great Curiofity to obferve it with Attention.
\({ }^{6}\) It feem'd to move in about half a Minute or lef's, about the
"Length of \(20^{\circ}\), and to go out, as I guefs'd, about as much a-
" bove the Horizon. There was left behind it, where it had

\section*{An extraordinary Meteor.}
" pafs'd, a Track of a cloudy or faint reddifh yellow Colour, fuch " as red-hot Iron or glowing Coals have, which remain'd more than " a Minute, feem'd to fparkle, and kept its Place without falling. "This Track was interrupted, or had a Chafm towards its upper " End, and about two Thirds of its Length. I did not hear any
"Noife it made, but the Place where the Globe of Light had been,
" remain'd after it was extinct, of the fame reddifh yellow Colour
" with the Stream for fome Time, and at firft fome Sparks feem'd
"t to iffue from it, fuch as come from red-hot Iron beaten on an
"Anvil.
All the Relations agree in this, that the Splendor was little inferior to that of the Sun ; that within Doors the Candles gave no Manner of Light; and in the Streets, not only all the Stars diliappear'd, but the Moon then nine Days old, and high towards the Meridian, the Sky being very clear, was fo far effaced as to be fcarce feen, at leaft not to caft a Shade, even where the Beams of the Meteor were intercepted by the Houfes: So that for fome few Seconds of Time, in all refpects it refembled perfect Day.

The Time when this happened was generally reckon'd at a Quarter paft Eight; but by the accurate Account of the Reverend Mr. Pound (who only faw the Light) agreeing with what has been fent us from the Parifian Obfervatory, it appears to have been at \(8^{\text {n }} 8^{\prime}\) apparent Time at London. And the Sun being then in \(9: \frac{\mathrm{gr} \text { r. of }}{}\) Aries, the right Aicenfion of the Mid-Heaven was \(130 \mathrm{gr} .45^{\prime}\), whereby the Pofition of the Sphere of fix'd Stars is given. Hence the \(L u-\) cida Pleindum will be found at that Time to have been \(25 \frac{1}{4} \mathrm{gr}\). high, in an Azimutb 6 gr . 10 the Northward of the Weft, and coniequently the Arch the Mereor mov'd in, was inclin'd to the Horizon with an Angle of about 27 gr . having its Node or Interfection therewith, nearly Soutk Soutb Weft; as will more plainly appear from what follows:

At Oxford, five Minutes carlier, Mr. Fohn Wbitefide, Keeper of the Afmole Mufaum, immediately after the Extinction of the Meteor, made Hafte out to fee what it might be, and well confider'd the Situation of the Track it had left in the Sky: He found it to have pafs'd about \(1 \frac{1}{2}\) Degree above the preceding Shoulder of Orion, and about \(3 \frac{1}{2} \mathrm{gr}\). above the middle of his Belt, where there appear'd a luminous Nubecula of a reddith Light, being a Dilatation of the Track, feeming to have been occafion'd by fome Explofion there; and by what he could learn from thofe that faw it, it was thereabout that it broke out, and firft began to efface the Stars. Hence it proceeded as to Senfe in an Arch of a great Circle, and paffing in the middle between the Tail of Lepus (\(\forall\) Bmyero) and \(\beta\) in the Fore-foot of Canis major, it terminated about \(\xi\) in the Breaft of the fame, nearly in 95 gr . of Right-Afcenfion, with 23 gr . South DeVol. IV. Part II.
clination : and at the Place of its Extinction there remain'd a large whitin Nebula, much broader and of a ftronger Light than the reft of the Track, which he took for a certain Sign of a very great Explofion made there. By Computation it will be found that the Angle this Track made with the Horizon of Oxford was nearelt 40 gr . and its Interfection due S. S. W; and that the Place of its Extinction was about 9 gr . above the Horizon, in the Azimuth of \(3^{2} \mathrm{gr}\). to the Weft.

At Worcefier, Mr. Nicbolas Fatio faw this Meteor deficend obliquely towards the South, making an Ang!e with the Horizon of about \(65^{-0}\), and interfecting it about S. S. W. \(\frac{1}{2}\) S. as may be collected from a Scheme thereof fent up by him to the Royal Society. By this the Track left all Orion and Canis major to the Weftward, and divided the Diftance between Sirius and Procyon, fo as to be almoft twice as far from Procyon as Syrius. The Time here was one Minute before Eight, this City being about 9' of 'Time to the Weft of I.ondon, and confequently the Right-Afcenfion of the Mid-Heaven \(128 \frac{1}{2}\) \(g r\).

Now the Situation of the three Cities, London, Oxford, and Worceffer being nearly on the fame W. N. W. Point, whereon the Track of the Meteor had its greateft Altitude above the Horizon, equal to the Angle of its vifible Way; if we fuppofe it at London to have been 27 gr . high, and at the fame Time at Worcefier to be 65 gr . high, in the Plane of the Vertical Circle paffing through London and Worcefer: fuppofing likewife the Diftance between them, to be 90 Geographical Miles, or one Degree and half of an Arch of a great Circle of the Earth, we may by a Trigonometrical Calculus find the perpendicular Height to have been \(6+\) fuch Miles; and the Point over which it was then perpendicular to have been 30 fuch Miles W. N. W. from Worcefter. And the Geographical Mile to the Englifh Statute Mile being as 23 to 20, this Height will be no lefs than \(73 \frac{1}{\frac{1}{2}}\) Englifh Miles. The Place alfo directly under it, will be found to be about Preffain on the Confines of Hereford and RadnorShires. The Oxford Obfervation too concurs nearly in the fame Conclufion.

This Altitude being added to the Semidiameter of the Earth as Radius, becomes the Secant of eleven Degrees, fo that the Meteor might be feen above the Horizon in all Places not more than 220 Leagues diftant from it. Whence it will not be ftrange that it mould be feen over all Parts of the Iflands of Great Britain and Ircland, over all Holland, and the hither Parts of Germany, France and Spain, at one and the fame Inftant of Time.

Having thus fix'd one Point in the Line of its Motion, let us fee what Courfe the Meteor took from thence; and firft at the Town of Kirkby-Stepbens \(s_{3}\) on the Borders of York/bire and Wefmoriand,

\section*{An extraordinary Meteor.}
in a Meridian very little to the Weftward of Worcefter, but about \(2 \frac{E_{2}}{2}\) gr . more to the North, it was obferv'd to break out as from a durky Cloud, directly under the Moon, and from thence to defcend, nearly in a Perpendicular, almoft to the Horizon. Now the Moon being at that Time in the third Degree of Leo, was about half an Hour paft the Meridian, and confequently much about a Point to the Weft, or S. by W. and the Situation of Preftain from Kirkby-Stephens, being fufficiently near upon the fame Point, it follows, that the Direction of the Track of the Meteor was according to the great Circle paffing over thofe two Places.

And this is further confirm'd by the Obfervation of Sam. Cruwys, Efq; who at Tiverion, about twelve Geographical Miles, nearly due North from Exeter, obferv'd the firft Explofion of this Meteor exactly in his Zenith, as he was affur'd by applying his Eye to the Side of his Door, which he took to be perpendicular, and looking upwards: And from thence he faw it defcend to the Southward directly in the fame Azimuth, without declining either to the Right or Left: Hence it it plain, that the Track likewife pafs'd over this Place, which by our Maps is found to lie in a Line with Prefain and KirkbyStepbens.

On this Suppofition, that the firf Explofion, attended with the reddifh Nubecula, was directly over Tiverion, let us compare the Oxford Obfervation with it, in order to determine more nicely the perpendicular Altitude there. At Oxford this Nubecula was found to be \(3 \frac{1}{\frac{1}{8}} \mathrm{gr}\). above the middle Star of Orion's Girdle, at \(8^{\mathrm{n}} 3^{\prime}\), and was therefore \(26 \frac{1}{2} \mathrm{gr}\). above the Horizon; and the Diftance between Oxford and Tiverton, being \(1^{0} 55^{\prime}\), or 115 Geographical Miles, it will be as the Sine of \(61^{\circ} 35^{\prime}\), to the Sine of \(63^{\circ} 30^{\prime}\). So the Semidiameter of the Earth being \(3437 \frac{1}{4}\) fuch Miles, to \(349^{8}\) Miles, the Diftance of the Meteor from the Center of the Earth; from which deducting the Semidiameter, there remain \(60 \frac{1}{4}\) Geographical Miles for the Height of the Meteor above Tiverton: This is confirmed by the Obfervation of the Reverend Mr. Derbam, who at Windfor faw the aforefaid Nubecula about two Degrees above the moft Southerly of the Seven Stars in the Shield of Orion; that is (the Time being \(8^{\prime \prime} 6^{\prime}\)) in the Altitude of \(23 \frac{1}{2} \mathrm{gr}\). Whence the Diftance between Tiverton and Windjor, being 150 meafur'd Miles, or 130 Geographical, by a like Proportion, we fhall find the fame Height of the Meteor 60 fuch Miles, wanting only one Quarter. So that in a Round Number we ma conclude it to have been juft 60 Geographical, or 69 Statute Miles, above the Earth's Surface. Nor is it pofible to come at a precife Determination of this Matter, by reafon of the Inaccuracy of our Datra which were only the Notes of Perfons under the Surprize of the Suddennefs of the Light, and no ways pretending to Exactnefs: However, fuch as they are, they abundantly evince the Height thereof
to have exceeded 60 Englif乃 Miles, not to fay 38 or 40 , as fome would have it.

I was unwilling to leave off, till I had pitch'd upon fome Hypothefis that might fubject the Motion of this Metcor to a Calculus, that the Curious might be able to compute the vifible Way thereof, either in refpest of the Horizon, or among the Fix'd Stars. This I found might be perform'd with tolerable Exactnefs, fuppofing that it mov'd in the Arch of a Circle concentric with the Earth, but 60 Geographical Miles without it; and that the Point of the firft Explofion was over the Latitude of \(50^{\circ} 40^{\prime}\), and \(3^{\circ} 40^{\prime}\) to the Weft of London; and that of the laft Extinction over Lat. \(47^{\circ} 40^{\prime}\), with \(4^{\circ} 50^{\prime}\) Weft Longitude: The Time being fix'd to 8 Minutes paft Eight at London. Hence it is eafy, by a Trigonometrical Procefs, to obtain the vifible Altitude and Azimuth of the Meteor at either of its Explofions, as feen from any Place whofe Longitude and Latitude is known; and from the Time given, the Points in the Sphere of Stars anfwering to thofe Azimuths and Altitudes are readily deduced. Let thole that contend for a much lefs Height of this Meteor, try if they can, on fuch their Suppofition, reconcile the feveral Pbonomena before recited with one another, and with the Obfervation of the Reverend Mr. William Ella, between Gainforougb and Redford. Here at \(8^{\mathrm{h}} 5^{\prime}\), the Meteor was feen to pafs precifely in the Middle between Sirius and the Fore-foot of Canis major, moving obliquely to the Southward, in a Line whofe Direction feem'd to be from the Middle between the two Shoulders of Orion. The Latitude of the Place being nearly \(53^{\circ} 20^{\prime}\), and Longitude Weft from London \(0^{\circ} 45^{\prime}\). Let them try how they can account for its being feen five Degrees high at Aberdeen in Scotland, and near as much at Peterbead, half a Degree more northerly : And then let them judge whether it did not exceed the reputed Limits of our Atmofphere. Laftly, if the apparent Altitude of the Meteor at Paris was not \(5^{\frac{1}{2}}\), but II gr. on the W. by N. Point, when it muft have been in its greateft Luftre, there will be no Pretence to bring it lower than I have made it, efpecially if it be allow'd to have follow'd the Track I have affign'd it, over Prefain, Cardiff, Minebead, Tiverton, and Breft in Britany.

Allowing this to have been the Path it mov'd in, the real Magnitude and Velocity of this Meteor might be affign'd, if the feveral Accounts of its apparent Diameter, and of the Tinie of its Paflage from one of its Explofions to the other, were confiftent. But fome of them making its vifible Appearance nearly equal to the Sun's, which, in the Opinion of many, it far exceeded, we may fuppofe with the leaft, that, at the Time when it firft broke out over Tiverton, its Diameter was half a Degree. And its horizonial Diftance being \({ }_{1} 50\) Geographical Miles from Loiddon, and its Altitude

\section*{An extraordinary Meteor.}
tupe 60 , the Hypothenufal or real Diftance from the Eye, will be more than 160 fuch Miles; to which Radius the Subtenfe of half a Degree will be above an Englijh Mile and half, being about 2800 Yards quamproxime. After the fame Manner it is difficult to affign its Velocity, whillt fome make it half, others lefs than a Quarter, of a Minute, in paffing from its firt Explofion to its laft Extinction: But the Diftance it mov'd in that Tiime being about 3 gr . or \(\mathbf{1 8 0} \mathrm{Geo}-\) graphical Miles, we may modeflly compute it to have run above 300 fuch Miles in a Minute; which is a Swiftnefs wholly incredible, and fuch, that if a heavy Body were projected horizontally with the fanie, it would not defend by its Gravity to the Earth, but would rather fly off, and move round its Center in a perpetual Orb, refembling that of the Moon.

Of feveral Accidents that were reported to have attended its Paffage, many were the Effect of Fancy; fuch as the hearing it hifs as it went along, as if it had been very near at Hand: Others imagin'd they felt the Warmth of its Beams; and fome there were that thought, at leaft wrote, that they were falded by it. But what is certain, is, the wonderful Noile that follow'd its Explofion. All Accounts from Devon and Cornwal, and the neighbouring Counties, are unanimous, that there was heard there, as it were, the Report of a very great Cannon, or rather of a Broadfide, at fome Diftance, which was foon follow'd by a rattling Noife, as if many fmall Arms had been promifcuoully difcharg'd. What was peculiar to this Sound, was, that it was attended with an uncommon Tremor of the Air, and every where in thofe Counties, very fenfibly fhook the Glafswindows and Doors in the Houfes, and according to fome, even the Houfes themfelves, beyond the ufual Effect of Cannon, though near; and Mr. Crurys at Tiverton, loft a Looking-Glafs, that being loofe in its Franne, fell out on the Shock, and was broken. Nor do we yet known the Extent of this proctigious Sound, which was heard, againif the then Eafterly Wind, in the Neighbourhood of London, as I am inform'd; and by the learned Dr. Tabor, who diftinetly heard it beyond Lswes in Suffex; but whether the Report heard near Lewes were of that Explofion right over Devonffire, or rather of that latter, and much greater at the Extinction over Britany, I fhall not undertake to deterinine, till we have fome further Accounts from France, whence, hitherto, we have only had, that at Paris, the Time of the Appearance was at \({ }_{17}\) Minutes paft Eight.
It remains to attempt fomething towards a Solution of the uncommon Phenomena of this Meteor; and by comparing them with Things more familiar to us, to thew at leaft how they might poflibly be effected. And firtt, the unufual and continued Heats of the laft Summer in thele Parts of the World, may be fuppos'd to have excited
excited an extraordinary Quantity of Vapour of all Sorts; of which the aqueous, and moft others, foon condens'd by Cold, and wanting a certain Degree of feecific Gravity in the Air to buoy them up, afcend but to a fmall Height, and are quickly rcturn'd in Rain, Dews, Eic. whereas the inflammable fulphureous Vapours, by an innate Levity, have a fort of Vis centrifuga, and not only have no need of the Air to fupport them, but being agitated by Heat, will afcend in Vacuo Boileano, and fublime to the Top of the Receiver, when moft other Fumes fall inftantly down, and lie like Water at the Bortom ; the Experiment whereof was firt fhewn me by the Reverend Mr. Wbitefide. By this we may comprehend how the Matter of the Meteor might have been raifed from a large Tract of the Earth's Surface, and afcend far above the reputed Limits of the Armofphire; where, being difingag'd from all other Particles, by that Principle of Nature that congregates Homogenea vifible in fo many Inftances, its Atoms might in Length of Time coalefce and run together, as we fee Salts fhoot in Water; and gradually contracting themfelves into a narrower Compals, might lie like a Train of Gunpowder in the Ktber, till catching Fire by fome internal Ferment, as we find the Damps in Mines frequently do, the Flame would be communicated to its continued Parts, and fo run on like a Train fir'd.

This may explain how it cance to move with fo unconceivable a Velocity; for if a continued Train of Powder were no bigger than a Barrel, it is not eafy to fay how very faft the Fire would fly along it ; much lefs can we imagine the Rapidity of the Accenfion of thefe more inflammable Vapours, lying in a Train of fo vaft a Thicknefs. If this were the Cafe, it was not a Globe of Fire that ran along, but a fucceffive kindling of new Matter: And as fome Parts of the Earth might emit thefe Vapours in greater Plenty than others, this Train might in fome Parts thereof be much denfer and bigger than in others, which might occafion feveral fmaller Explofions, as the Fire ran along it, befides the great ones, which were like the blowing up of Magazines. Thus we may account for the rattling Noife like fmall Arms, heard after the great Bounce on the Explofion over Tiverton: The Continuance of which for fome Time, argues, that the Sound thereof came from Diftances that increafed.

What may be faid to the Propagation of the Sound through a Medium, according to the receiv'd Theory of the Air above 300000 Times rarer than what we breathe, and next to a Vacuum, I confefs I know not. Hitherto we have concluded the Air to be the Vehicle of Sound: And in our artificial Vacuum, we find it greatly diminifh'd: But we have this only Infance of the Effect of an Explofion
plofion of a Mile or two Diameter, the Immenfity of which may perhaps compenfate the extreme Finenefs of the Medium.
XXIX. 1.] On November 10, 1719, in the Morning, about five An Accouns of of the Clock (as I was obferving Jupiter) I found certain white Streaks \({ }^{\text {an Extraordi- }}\) in the Sky, feeming nearly perpendicular; which, whilft I confider'd them, feem'd inftantly to vanifh, and foon after others came as inftantancoufly in their Room: Looking up towards the Zenilh, I perceiv'd an entire Canopy of fuch kind of white Strix, feeming to defrend from a white Circle of faint Clouds, about 7 or 8 Degrees in Diameter, which Circle fometimes would vanifh on a fudden, and as fuddenly he renew'd. I ublerv'd that the Center of this Place of Concourfe was not exactly in the Zenith, but rather 14 Degrees to the Southwards thereof; which I eftimated by a Star, which on each Return thereof thew'd its felf about the Center of the Circle. This Star is the \(33 d\) Star of the Great Bear in Tycho's Catalogue, whole Diftance from the Pole at this Time is \(52 \frac{1}{2}\) Degr. and which about half an Hour palt Five that Morning pafs'd the Meridian ; fo that thofe Rays center'd very rearly on the Meridian itfelf. It was a very entertaining Sight, till the Day-break began to obfcure thefe Lights, which were but faint, though fufficiently diftinguifhable. They came none of them lower than to about 30 or 40 Degr. of Altitude, and feem'd not to have afcended from the Horizon. The Sky was perfectly ferene and calm, which feems to be one of the concomitare Circumitances attending the Aurora Boroalis, of which this was certainly a Species. For the Night following, a Ncighbour gave me notice of a ftrange ftreaming of Lights feen in the Air, which thereupon I attended from the Hours of \(9 \frac{1}{2}\) to 11, when a Fog came to thick as to put an End to my Profpect. But during that whole Time there afcended out of the E. N. E. and N. E. a continu'd Succeffion of whitifh Stria, arifing from below; and after changing, as 'twere, into a fort of luminous Smoak, pafs'd over Heau witiz an incredible Swiftnefs, not inferior to that of Lightning; and as it pafs'd, in fome Part of its Paffage, feem'd, as 'twere, gildect, or rather, as if the Snioak had been ftrongly illuminated by a Blaze of Fire below. Some of the Strice would begin high in the Air, and a whole Set of them fubordinate to one another, like Organ Pipes, would prefent themfelves with more Rapidity than if a Curtain had been drawn from before them; fome of which would die away where they firt appear'd, and others change into a luminous Smoak, and pafs on to the Weftwards with an immenfe Swiftnefs. And I am of Opinion, that had it not been for the Moon, then ten Days old and very bright, this for the Time would have been reckon'd as confiderable an Appearance as that of the \(6 t b\) of. March, 1786.

\section*{Aurora Borealis, ©ீc.}
-the Jame in Devonffire, by Mr. W, Maunder, ib. p. 3101 .
2.] On the \(26 t h\) of Ocrober, between Seven and Eight in the Evening, I faw fome fmall Appearance of an Aurora Borealis, viz. three or four large Corufcations in form of Pyramids, of reddifh Colour inclining to yellow, which rofe about 50 Degrees above the Horizon, and continued but few Minutes. But the North Part of the Hemifphere was very bright and red ali the Evening both before and after, till ten, if not longer.

November 10. Thefe Lights were feen again about four in the Morning, of which fome fay, that the Element open'd fometime at one Place, then at another; from whence came great fhining lights that continu'd a while, and then went away by Degrees, and the Holes clofed up again. This continu'd till Day-break.

The Evening following, coming from Iiverton about half an Hour after Eight, I faw the North Part of the Horizon very light and reddifh (notwithftanding the Moon being about ten Days old, was then in or paft the Meridian, and Thone very bright.) In a mort Time the ftreaming luminous Rays began to appear very plain; fome in one Shape, fome another; many of them like Cones or Pyramids, but moft of them badly terminated; fome of which mounted very high, almoft to the Zenith, to which Place, or near, they all or moft feem'd to point. Shortly after there appear'd a long Streak of about 30 Degrees parallel to the Horizon and about 15 or 20 diftant from it, and about two or three broad, but badly terminated, and of a fiery red Colour: Which fent out fome of the fame ftreaming Beams towards the Zenith. About fix or feven Minutes after, there appear'd (fomewhat fudden) a circular Figure like an Tris, but twice as broad, of a pale Colour. The Eaft Part was terminated by the Horizon at full Eaft, if not fomething to the South, and the Weft End about North Weft ; the upper Part of its Arch being 50 or 60 Degrees high, great Numbers of luminous Rays darted from it upwards and downwards, (or elfe paffing crofs it from the Horizon) at oblique Angles pointing to the Zenith, efpecially from the North Eaft Part. This continu'd, as near as I can guefs, about eight or nine Minutes, when it divided and difappear'd. After an Interval of three or four Minutes, another Iris-like Figure appear'd, (of a Colour, as it feem'd, paler than any of the ftreaming Lights had been) whofe Diameter was lefs than that of the former, and fhew'd more than its Semicircle above the Horizon, the upper Part of its Arch approaching near the Zenith. I could not obferve any Rays to pafs from, (or a-crofs) this as from the other. The Center of this laft was much more to the Weft than that of the firft. After the Continuance of a Minute or two, it began to break in the upper Part of irs Arch, and fhining Particles being fent out from both its broken Encis towards the Zenith 2 (to which they were near before) or rather a little beyond it

\section*{Aurora Borealis, \(E^{\circ} c\).}
to the South or South-Weft, they there formed a furt of Corona, curving and bending fomewhat like Flames reverberated on the Arch of an Oven: 'Tho' this exprefleth it but badly, yet I know not how to defcribe it better. It feem'd to me and orhers to be finely tinged with various Colours, Red, Yellow and Blueifh, \(\xi^{\circ}\) c. and fent out every way from it (except South and South- Wieft) long Flame-colour'd Rays. After this had continu'd about two Minutes, its fhining Light abated, and it left behind it for fome Minutes, fomething like a whitith Cloud (like in Colour to what the Light on the 1 gth of March laft left behind it, after the fiery Particles were extinguifh'd, but thinner).

All this while the Moon thone very bright, from which this Corona was not very far diftant, perhaps nut ewenty Degrees, to the NorthEaft. After this there continu'd to be fent up many fiery-colour'd or yellowifh ftreaming Lights, fometimes more, fometimes lefs; now here, now there, all along the North Part of the Hemifphere, but moftly from the North-North-Eaft. All this while fomething like fmall whitin Clouds (which, to me, leem'd to move towards the Zenith, or to point a little more Southward, but difappear'd as they approach'd the Moon) were carry'd very fwiftly, and at very fhort Intervals, moftly coming from the Eaft and North-Eaft, but many alfo from North and North-Weft. We took but little Notice of this at firft, fuppofing it had been nothing but the Reflection of the other Lights, or the Shadows of the Clouds (whereof the North Parts were pretty full) as the Streams of Light pafs'd behind them: But at laft, we obferv'd, that when the Lights at any Time abated, thefe kinds of Clouds continu'd to fly as fwift and frequent as ever. This I faw till Twelve or One next Morning: Many others faw it next Morning till almoft Break of Day, when it appear'd much more red and fiery than it was in the Evening; the Moon perhaps being then fet. Some People obferv'd tall Cones to arife in the Eaft, and to be carry'd to the Weft pretty fwiftly in an erect Pofition, but I faw them not. It has been reprefented here in all forts of Appearances, Armies, Battles, Eิ\%.
3.] On the roth of November, the Afternoon having been very - the fume at calm and ferene, about Six in the Evening the Sky was tinged with Dublin, bya ftrange kind of Light, and fome Streams began to project from \({ }^{\text {ibid. p. } 1104 .}\) the North and N.E. One of tliem arofe about N. by E. and was nearly a Subtenle of an Arc between that and S. W. by Weft; it was a little curvated toward the Sun, and what I faw of it (for the North Part of the Horizon was conceal'd by Houfes) very much refembled the ' \(\Gamma\) ail of a Comet: About the fame Time there was one or two which arofe in the Eaft, afcending obliquely fo as to leave the Zenith feveral Degrees to the Northward.
Vos. IV. Part II.

4 N
Thefe

\section*{Aurora Borealis, \(\Xi^{\circ} c\).}

Thefe Striac continu'd to appear and difappear alternately, till toward Eight in the Evening; they were Pyramidal, and their Vertices frequently projected feveral Degrees to the South of our Zenith.

Between Nine and Ten, I was agreeably furpriz'd with a kind of Corufcation, or Flafhing, that fhew'd itfelf between twenty and fixty Degrees from the Zenith, in the South or South by Weft; and which from four or five, fometimes from more Places at once, darting with a Velocity not much inferior to that of Lightning; and by interfering with each other produced a beautiful Tremor or Undulation in that fubtile Vapour, which I cannot better illuftrate, than by comparing it to the Beams of the Sun, reflected on a Cieling from the Surfaces of two or three Bafons of Water: Thele Wares of Light were only vifible at the Inftant of Corufcation, and were of a pale whitifh Colour, fomewhat refembling the Flathes produced by the violent Agitation of Quickfilver in an exhaufted Receiver; but fo Itrong, that a Genteman, who was in a Room by himfelf without a Candle, affur'd me, he took it for common Lightning: Thus it concinu'd inceffantly for more than an Hour, during which Time feveral lucid Areas, like little Clouds, difcover'd themfelves in the pure Sky, and after they had continu'd about five or fix Minutes, as near as I could guefs, would inftantaneouny difappear; moof of them pretty much refembled a very thin white Smoak or Vapour illuminated by the Full Moon.

About three quarters paft Ten, this Vapour was almoft fpent, or by a brink Gale at South by Weft difpers'd and driven to the Northward ; at which Time, between the Weft and North, a vaft Body of it, like a very bright Flame-colour'd Crepufculum, feem'd to be fix'd: From this Bafis feveral Beams or Strice of fhining Matter were at uncertain Intervals, emitted; and though it was not fo fenfible to the Eaftward of the North, yet feveral mighty Pillars were alfo ejected from thence; one, which, if I miftake not, arofe directly under the Pole, was above all others that had preceded it, both as to its Magnitude and Denfity fo furprizing, that I am perfuaded the fmalleft Print might have been read by the Light thereof, had not that of the Moon, which fhone very bright, pretty much effac'd it: 'Twas tinged with a kind of Yellow and Violet Colour. In about two or three Minutes it died away, and was fucceeded by others of an inferior Order: It was now ahout a quarter paft eleven of the Clock, and nothing but repeated Pbafes of the fame Spectacle offering themfelves to view ; the vibrating Motion had ceas'd; the Vapour fhew'd itfelt no longer in lucid Areas, the Streams of Light were not fo frequent, and thofe more languid than before; and the bright \(A u\) rora having fettled nearer the Horizon, I concluded the Scene was at an End, and accordingly gave over the queft of new Pbrnomena,

\section*{Aurora Borealis, \(\Xi^{\circ} c\).}
with only obferving, that about N. E. there appear'd fome Clouds that reflected an unufual kind of reddifh Light. Others, who fat up longer than I did, reprefent the End with very furprizing Circuinftances.

On Tuefday the 24 th of November, we had the fame Phenomena re- \(\qquad\) peated, though not with the fame Variety: About a Quarter paft T'en of the fame. at Night, a vaft Body of Gining Matter was collected between N. W. by W. and N. by E. in the Form of the Segment of a Circle, whofe Center was about 25 or 30 Degrees below the Horizon; from its Peripbery a few fhort Pyramidal Streams, of the fame luminous Vapour, afcended by a flow and nearly uniform Motion, and were exceeding rare, fo as not to efface the fimalleft of the Fix'd Stars ; and in a Minute or two vanifh'd: The Light which that Collection of Vapour emitted, was fo great, that in the otherwife very dark Night, 1 could thereby (at three Quarters paft Ten) read the Title of the laft Pbilof. Tranjert. which then happen'd to lie on my Defk ; and at four or five Yards diftance, fee the Imalleft Books in my Study.
XXX. At Streatbam in Surrey, on December the ifth, about one a An Aurora Clock at Night (or rather in the Morning of Dec. the I \(2 t b\)) I was call'd Borealis in to oblerve Corufcations which appear'd of a much different Colour, Surrey, by Mr. and in a very different Manner, from any I had before feen.

The Streams of Light that darted upwards from the Horizon, feem'd to be at confiderably a greater Diftance, but not at all in lefs Quantity than thofe of Nov. 10. But thcir meeting in a Point near the Zenith, and there forming a kind of Canopy, was what was particularly remarkable in thefe Corulcations.

The Streams of Light rofe from the Horizon only towards the North, and on each Hand towards North-Eaft and North-IVeft : But near the Zenith a Canopy was form'd of Streams of Light meeting in a Point, not only from thofe Quarters, but alfo from the South, Esc. Only to thofe Points they extended downwards from the Zenith but a little Way, and were neither in fo great Quantity, nor quite fo bright as thofe Northwards. At firf I thought the Point in which the Streams met, was exactly the Zenith, but upon obferving it fomething longer, I found it was not fo, but a few Degrees to the South of the Zenith. The Streams of Light near the Zenith, which form'd this Canopy, were of a pretty bright Colour, and in great Quantity, and darted very fwiftly.

On each Sicie of the North, towards E. and W. but not exactly in the N . it felf (at leaft when I faw it) from about 10 or 15 gr . to 40 or 50 gr . above the Horizon, the Streams were of a glowing red Colour, whereas all that I had ever feen before, were very pale. The Rednefs was like that of a burnt Brick, and neareft of any Thing I
hive feen to the Colour, which remain'd for a few Minutes, like that Tract through which the Meteor pafs'd in the Spring.
'The Streans appear'd of this fierce Colour when I firt faw the Corufcations, and continu'd fo for fome Time, till the Rednefs by degrees wearing off, in about \(\frac{1}{4}\) of an Hour, they appeared of the ufual Palenefs, when I left them ftill forming a Canopy near the Zenitb.

The Air was very calm and ferene, not a Breath of Wind flirring ; as I remember it was alfo, Nov. 10.

The Moon was now a Day or two older than it was on Nor, 10. and a good deal farther to the Weft, than when I faw the Corufcations that Night being full South. She had now round her what is commonly call'd a Burr, larger than ordinary, and feveral very lucid Clouds at a little Diftance.

Farthern Aurora'sfiat \(a\) troab, sic. by Dr. T.Robinfon, n. 342 . f. 48 j.
XXXI. I am of Dr. Halley's Opinion, that thofe Phofphorous or Luminous Appearances in the Firmament, proceed from the various Iffurvia perfpir'd out of our Globe, or paffing through it; for I have feen thoie Lights over Vefuvius, the Strombulo Inands, and towards Etma, in dark Nights, when thofe Vuliano's were not flaming nor burning, their Sides and Tops being paffable to Travellers at that Time, and all their outward Parts quitt. We are certain that Iceland and Greenland abound with Vulcano's; fo may North-Eaft Lapland, North Ruffia, and Tartary, where vaft Chains of Mountains are faid to run. The fefsuits, and other Travellers, relate many prodigious Eruptions of Fires, and Earthquakes, towards the North of Cbina; but nearer the Pole, the Earth muft be clos'd and pent up many Months, by the long fevere Freezings and continual Snow and Ice, which relaxing towards Spring, may give went to that vaft Mafs or Magazine of perfpirable Matter, that had been kept fo long in hot Subterraneous Prifons. This may be one Reafon why Animal Bodies themfelves are often fenfible of Changes at that Seafon in our Climate, when Perfiration is upon fuch an Increafe.

Experime is Ty Re Motion of Pendulums in Vacuo, ly
Mr. W. DerMr. W. Der-
ham. n. 294 . p. 1785 .
XXXII. Defiring to know what Difference there might be between the Vibration of Penduluns in Vacuo, and in common Air, I recommended the Experiment to Mr. Hawkkbee, who having provided himfelf with a proper Receiver, and all other Things neceflary, with a Friend of mine in London, made the Experiment. The Movements he tried with were an Eight-Day Clock vibrating Seconds, and an half Seconds Movement of mine. The Iffue of their Experiment was, my Pendulum vibrated two Tenths of an Inch on each Side farther in Vacuo, than it did in the free Air, and went feven Seconds flower in twenty Minutes, than the other Movement.

\section*{The Motion of Pendulums in Vacuo.}

But in the open Air, my Pendulum in twenty Minutes, went only \(3 \frac{1}{1}\) Seconds flower than the other Pendulum.

This Experiment I try'd over myfelf; the Inftruments I made ufe of, were, firt, an Air-Pump of Mr. Harwkbec's.

The next was a Small Movement, with a Pendulum of about ten Inches, that vibrates Half-feconds, and is driven by the Power of a Spring. This Inftrument I thought commodious, not only for being eafily fitted with a Receiver, but alfo for vibrating Half-feconds very nicely, and alfo becaule its Vibrations are equal, not fome large, fome fhorter.

The laft Inftrument was a very well regulated Month-Piece, that vibrates Seconds all the Year, with as much Exactnefs as moft do.

Being thus furnifh'd, the Refult of many repeated Experiments, Day after Day, was, That (as before) in Vacuo the Vibrations were always larger than in the Receiver unexhaufted. At the firt, when my little Movement was newly clean'd, the Vibrations were above \(\frac{1}{50}\) of an Inch larger than in the free Air. But afterwards (I fuppofe, from fome of the foul'd Oil of the Pump \{pirtled on the Wheels, in letting in the Air, whereby the Force of the Spring on the Pallets was blunted, from hence, I lay) as the Vibrations in the unexhaufted Receiver were a little contracted, fo in the Receiver exhaufted, they were more contracted, and only about 0,25 of an Inch larger than in the free Air.

The Alseration in Time, which this Difference of the Vibrations produc'd, was conftantly only about two Seconds in an Hour flower, in the Receiver exhaufted, than in it unexhaufted. For if in four, five, or more Hours going, the two Penduluins did not vary a Quarter of a Second in the open Air, or when the Receiver was put over the little Movement, (but unexhaufted); yet when the Receiver was exhaufted, the Half-feconds Movement would lofe, at the Rate of two Seconds in every Hour, in every Experiment, in many Hours going.

And becaufe I had a Mind to fee what Alterations would arife from varying the Vibrations, therefore by opening and fhutting the Pallets, I caufed the Vibrations in fome Experiments to be as large as the Receiver would bear; in others, to be as fhort as potfible; always adjufting the Pendulum to vibrate Half-feconds nicely in the Air. But ftill the Succefs was much the fame, or the Difference farce perceptible. But only I imagin'd when the Pendulum vibrated but a little Way from the Perpendicular, that the Vibrations in Vacuo were not fo much enlarged, as when it vibrated in a larger Arch.

In all thefe Experiments (which were repeated divers Times with the fame Succefs) I had no other Reafon to move me to think, but that the Vibrations were enlarg'd in Vacuo by the vaft Rarefaction

\section*{The Motion of Pendulums in Vacuo.}
of the Medium, but this, That perhaps the different State of the Air might alter the Force of the Spring, which drove the Movement. For the Trial of this, I put a well-adjutted Pocket-Watch (with Hook's Regulator, i. e. the common fmall fpiral Spring to the Balance) into the Vacuum; and after feveral Trials, at the fame Pitch of the Spring, I found not the leaft Alteration in the Watch's going, in many Hours; neither the Springs, nor any other Part of the Watch, feeming to be in the leaft affected by the Vacuum: But the Balance circumvolving, or keeping the fame Turns, as in the open Air.

1 then try'd what the Succefs would be, by putting the Half-ieconds Pendulum again into the Receiver, and only pumping out a Part of the Air. And accordingly I left no more Air in, than what kept the included Mercurial Gage at about fix Inches Height; the Event of which was, that the Vibrations were then not above \(\frac{1}{\mathrm{r}}\) of an Inch larger on each Side, than in the Receiver unexhaulted: And the Time loft but about Half a Second in an Hour, or \(\frac{3}{4}\) at moft. And fo, according as the Mercurial Gage was more or lels high, I always found the Vibrations greater or lefs; they gradually decreafing, according to the Quantity of Air re-admitted. From thefe Experiments we may remark,
1. What Mr. Boyle long fince obferv'd (from a cock'd Piftol going down as fiercely in his Vacuum, as in the Air) may be hereby farther confirm'd, viz. That the Air is not the Caufe of the Motion or Reftitution in Solid Bodies, as Springs. For if it was, it would certainly have been difcover'd in fo tender an Inftrument as a well-adjuited Pocket-Watch, lying under the perpetual Influence of two Springs.
2. As in Vacuo (where the Preffure of the Atmofphere is taken off) heavy Bodies defcend quicker than they do in the open Air ; fo it may be oblerv'd, that Pendulums move fwifter in the Receiver exhaufted, than in it unexhaufted.

That heavy Bodies defcend quicker in Vacuo, is evident, from the fwift Defcent of the lefs heavy Bodies, as Cork, the Down of Sowthifles, the lighteft Feather, \&c. which do all precipitantly defcend, like a stone, in a tall exhautted Receiver.

And that the Pendulum, in our Experiment, mov'd fafter in Vacuo, is manifeft, from its vibrating but two Seconds in an Hour flower, when the Vibrations were \(\frac{1}{5}\) of an Inch on a Side, enlarg'd by the higheft Rarefaction of the Air. Whereas I find by Experiment, that near the fame Increafe of the Vibrations, doth, in the open Air, make the Pendulum gro fix or more Seconds flower in an Hour. I fay, near the fame Increafe, becaufe it is fcarce poffible to manage the Pallets fo, as nicely to make the fame Vibrations as were in Vacuo.

\section*{Gun-powder fir'd in Vacuo.}
3. The laft Thing I fhall deduce thall be by way of Query, viz. Whether the Variations of Pendulums obferv'd under the Equinoctial, and between the Tropics, do not arife as much or more from the Rarity of the Medium, and the Encreafe of the Vibrations confequent thereupon? It is fcarce, I think, to be doubted, but that the Air is much thinner and finer near the Line, than it is withour the Tropics. And it is evident from the Barometer, that on the Tops of high Mountains the Atmofphere gravitates lefs than nearer the Center. And therefore (although I like the Notion of the Decreafe of Gravity from the Encreafe of the Diftance from the Earth's Center too well to difcard it, yet) I am apt to think that this is not the only Reafon of the Pbenomenos.

I wifh that Capt. Halley, when he obferv'd at St. Helena his Clocks \(t 0\) go nower than in England, had at the fame time obferv'd whether the Vibrations were not enlarg'd. It might be worth the while for fuch as have Opportunity, to take Notice, whether their Pendulums between the Tropics do not make larger Arches than higher Latitudes? Alfo in what Latitude they begin to alter? Whether the Vibration be greater near the Line, than in any other Parts between the Tropics? Or, whether the greateft Encreafe be not always in thofe Places where the Sun paffeth their Zenith? If the Vibrations be found larger under the Line, or in any other Part of the Torrid Zone, then it may be obferv'd, how much larger they are, and in what Proportion they encreaie, or decreafe, by approaching nearer unto, or receding from the Place of their greatert Encreafe?

Alfo it may be worth obferving, Whether Pendulums do not vary on the Tops of high Places, or in different States of the Atmofphere, according as the Mercury is high or low in the Barometer? But then in this, and indeed in the former Cafes, it is neceffary, or at leaft very expedient, that the Movement be fo exactly well made, that the Power, whether Weight or Spring, do at all Times exert the very fame Force upon the Pads or Pallets. For molt Clocks are apt to vibrate fometimes larger, fometimes leffer Arches in the 24 Hours, according as the Weight or Spring doth more or le!s exert its Forces on the Work.
XXXIII. 1.] A Candent Iron being included in a Recipient proper for that Purpofe, and the Air withdrawn (which was in about two Minutes of Time) the Mercury then in the Gage ftanding at 29 Inches \({ }_{2}^{2}\), a Quantity of Gun-powder was inmmediately made to defcend upon the red hot lron, which continu'd upon the Surface of it fome finall Time before it went off, and then was ob-
```

An Expleri-

``` Gun-powder in Yacuo, Mr.F.Hawh:bee. n. 298 . p. 1086. ferv'd not to fire all at once, and the laft of the Quantity that did fo feem'd to give the greateft Flafh; upon which the Mercurial Gage

Gage was taken Notice of to delcend fomething more than an Inch, it rifing again th of the fane: And upon feveral Repetitions of the like Quantity of P'owdes (the factitious Air being always withdrawn) the Appearances were very refembling. Again upon purging the Recipient of the factitious Air, and the Mercury elevated in the Gage, as at firlt, three Quantities were caufed to defcend upon the Iron, whofe Explofion as well as the Air produc'd from them, feem'd in Proportion to the Quantity of Powder; the Mercury then in the Gage fubfiding to 26. But upon dropping fix Quantities (the Recipient being firtt purg'd as before) which Quantities not defcending all at once, but fucceflively as fatt as might be, the Quantities that firlt reach'd the (ftill Ignited) Iron taking Fire, by their Flame making an Explofion of the whole, at once blowing up the Recipient, although the Wtight of the Air incumbent on it was equal to \(144.6 \frac{1}{2}\), accounting the Receiver at 3 Inches \(\frac{1}{2}\) Diameter, but was fomething more, which does fufficiently allow for the want of Height of Mercury. The Gage then Itanding at \(29 \frac{1}{2}\), inftead of 30 , from which the Calculation is made. The Gun-powder us'd was the common glaz'd fort; and the Weight of the fix Quantities, which remov'd the Recipient, with fu great a Preffure incumbent on it, was but feven Grains, each Quantity weighing fomething more than one. I did- not obferve the Recipient to be broke before it reach'd the Floor. It was thick lin'd with Sulphureous and Nitrous Steams, fo that the Flafhes of Fire through the Cloudinefs of the Glais feem'd very much to refemble faint Lightnings. The Content of the Recciver was equal to about 25 Ounces \(\frac{1}{\frac{1}{2}}\) of Watar, allowing for the Bulk of Iron and Pedeftal.

The Quality 2.] Upon making the late Experiment before the Society, of firing of tbe Air pro. Gun-powder in Vacuo, it was hinted as well worthy of Trial, duc'd by Gun. Whether the factitious Air of fir'd Gun-powder was endu'd with
powder, ly the powder, hythe , any Quality differing from common Air? In order to the Satisfa1807. ction of the Query, I included a Candent Iron in Vacuo, the Mercury then in the Gage ftanding at 29 Inches \(\frac{1}{2}\) : Upon dropping the firft Quantity of Powder, (by a Quantity is to be underftood fomething more than a Grain weight) its Explofion made a Defcent of the Mercury in the Gage about an Inch, undulating very little. The fecond Quantity being let fall, the Mercury fubfided about \(\frac{3}{4}\) of an Inch; and fo for feveral Quantities following it defcended by pretty equal Stages, till it had fallen about fix or feven Inches; and it was obferv'd, upon every Quantity fir'd, the Undulations of the Mercury increas'd. But after it had fubfided fix or feven Inches from \(29 \frac{1}{2}\), the feveral Defcents of it became lefs, very little or nothing cxceeding \(\frac{1}{2}\) an Inch, although the Quantities firft were equal ; but
fill the Undulations encreas'd, and the Explofions manifefly did fod too: 'Till at laft the Receiver feem'd to be in great Danger of being blown up by a fingle Qnantity, the Undulations of the Mercury being then augmented in fix or feven Inches. Now 26 Quantitics or \({ }^{2} 2\) Grains having been fir'd upon the Iron, and the Mercury in the Gage having fallen to \(12 \frac{1}{4}\), I diligently attended to obferve the Gage, which in feven Minutes had afcended 2 Inches \(\frac{1}{6}\), the next five Minutes it arofe but 1 Inch \(\frac{2}{4}\), and fo lefs fucceffively every five Minutes, that in an Hour and 17 Minutes, it had attain'd but to 21 Inches, the Iron not being quite cold. At Nine the fame Night I obferv'd the Gage, and found the Mercury elevated to 22 Inches \(\frac{1}{6}\) precifely: Next Morning at Nine it had attained to \(22 \frac{1}{2}\), and fo continu'd all that Day, the Iron being then reduc'd to the Temperature of the outward Air. So that from \(12 \frac{1}{4}\) to \(22 \frac{1}{2}\), feems to be the Weight or Spring of Heat equal to about \(\frac{1}{3}\) of an Atmofphere of Air, which would prels the Mercury upon the upper Part of the Gage, but equal to fuch a Degree of Heat as was then contain'd in the Receiver, when the Gage was fallen to \(12 \frac{1}{6}\) : The remaining Space from \(22 \frac{1}{2}\) to \(29^{\frac{1}{2}}\) is fuppos'd to be fupply'd with factitious Air, and anfwers to about \({ }_{4}^{3}\) Part of the Recipient's whole Content, which was equal to 25 Ounces \(\frac{1}{2}\) of common Water, allowing for the Iron and Pe deftal. This Air produc'd from Gun-powder, I find to be actuated by Heat and Cold as common Air: For, holding my warm Hands upon the Receiver, the Mercury in the Gage would immediately defcend, and rife again when reduc'd to the Temperature of the outward Air. This I repeated feveral Times with the like Succefs. What more occurs in this Experiment is, Why the Explafions of the like Quantities of Gun-powder fhould be greater when refifted by Air, than in Vacuo, where nothing leems to hinder the Extenfion of their Flame.
XXXIV. I took fome Malt Duft, and having well dry'd the fame, Defrent of put a Quantity of it into a fine Mullin Bag, where being loofely in- Male Duft in clos'd, it would, upon fhaking, difcover iffelf plentifully in the open Vacuo, byMr. Air, undulating and floating a confiderable Time before it would de- F . Hawkib. p . fcend; but being included within a Receiver, from which the Air was \(194^{8 .}\) well exhauited, and then Maken, the Duft defcended as a ponderous Body, precipitating in ftraight Lines from the Top to the Bottom of a tall Receiver.
XXXV. Having had the Honour to make fome Experiments laft \(A n\) ExperiYear before His Majefty and their Royal Higbmefles the Prince and ment toprove Princefs of Wales; among orhers, I fhew'd that of a Guinea and a \({ }^{a n I n t e r p p e r s ' d ~}\) Piece of fine Paper; then of a Guinea and a Feather dropp'd to- Dr. J. T. Degether from the Top of an exhautted Glafs Receiver about 20 faguliers. n.

Vol. IV. Part II. 40 Inches 354. P. 717.

\section*{Experiments proving a Vacuum.}

Inches high; both which fell to the Bottom at the fame Inftant of Time: Now fince the chief Refiftance of a Medium (and indeed
(t) See Sir Ii. Newton's Primiciaia, PookII.
Prop. 40. almoft all of it) depends upon the (\(\dagger\)) Quantity of its Matter; therefore this Diminution of Refiftance, whereby the Feather fell as foon as the Guinea, thew'd a Diminution of the Quantity of Matter, and confequently prov'd an inter \(\int\) pers'd Vactum. Some Time after this, I was inform'd, that fome Plenifts objected againft the Shortnefs of the Glads-Receiver; as if the Difference of Time in the Lall of the two Bodies, which they affirm'd to be real, could not be perceiv'd in fuch a Glafs; and that fome Philolophers from abroad affirm'd, that in a Glafs-Receiver feven or eight Feet long, there would be fuch a manifett Difference in the Time of the faid Bodies, as to thew this Experiment no Proof of a Vacuum: To obviate this, I contrived a Machine for the Purpole, which confifted of a firong Wooden Frame 15 Feet high, that held the Air-Pump and four Cylindric Glafs-Receivers of about two Feet long each, and lix Inches Diameter: Of thefe, having fet the firlt upon the Air-PumpHate, I laid on the Top of it a Brals-Plate of feven Inches Diameter, that had an oil'd Leather fix'd to it above and below, with an Hole through the Middle, of between four and five Inches Diameter; then on that Plate I fet the next Receiver, with a like Plate at Top; and after the fame Manner fix'd the other two with Plates between them : The upper Receiver being a little narrower at the Neck, went into the Hole of a Board, whereby it was fcrew'd down pretty hard on the other Glaffes, and fix'd to the whole Machine. On the Top of this upper Receiver, I had the Brals Plate, wet Leather, and Brafs Springs which contain'd the Bodics to be dropp'd.

Having acquainted his Majefty with what I had prepar'd, he order'd me to fhew him the Experiment with this long compounded Receiver, at Hampton-Court ; and when I made it before him and her Royal Highnefs, he was pleas'd (by pulling down a String fix'd to a Leaver at the Top of the Machine) to let loofe the Bodies himfelf.

When the Receiver was full of common Air before Pumping, the Guinea came to the Bottom, juft as the Paper was about the Middle of the fecond Glafs; but when the Receiver was exhaufted, the Guinea and Paper came to the Bottom precifely in the fame Inftant of Time.

Upon my giving an Account of the Succefs of this Experiment to the Royal Society, they order'd me to repeat it before them on the 5 th of December 1717.

I made the Experiment firft with two of the Receivers; then with all the four; dropping a Guinea and a fmall Piece of Paper together; and the Succefs anfwer'd Expectation: But not being willing

\section*{Experiments on the Refiftance of the Air, \&cc.}
willing to try with a Down Feather, becaure I fear'd the Air might infinuate between fome of the Glaffes, by reafon the Number of Perfons prefent fhak'd the Room, the Society order'd me to make the Experiment at Home, before one or more of their Members.

Martin Folkes, Efq; was prefent when I made the Experimene at my Houfe, where we made four Trials in the following Manner :

The whole Machine being fix'd, as above mention'd, we firft let fall a Guinea and two Papers, the one plac'd over, and the other under it, (before any Air was pump'd out) and the Guinea came to the Bottom when the Papers were only in the middle of the fecond Glats from the Top. Then having laid a Feather on the Brafs-Springs clofe by the Guinea, we let them loofe both together; and the Feather was fallen only down to the fourth Part of the Length of the firf Glafs, or one fixteenth of the whole Diftance, when the Guinea was got down to the Bottom of the Receiver. We then laid two Papers and two Feathers, one of each under, and the other over the Guinea between the Springs; and having drawn out fo much of the Air as to bring up the Mercury in the Gage-Tube within a Quarter of an Inch of the greateft Height to which it could be then rais'd by the Preffure of the external Air, we caus'd the Bodies to fall all at once: And though the Papers came down to the Bottom at the fame Time as the Guinea, yet the Feathers, being much lighter, wanted about three Inches. But at laft, having laid the Papers, Feathers, and Guinea, as before, we pump'd out all the Air, and then the Feathers, as well as the Papers, came to the Bottom of the Receiver at the fame Inftant of Time as the Guinea.
XXXVI. 1.] I took twelve Balls, (fix of which were folid Leaden Experiments Globes, of about two Inches Diameter; three hollow Glafs Balls to find bow of about five Inches Diameter; and three light Pafteboard hollow Globes of about the fame Diameter), and having carried them to the Aiflance of therds upper Gallery in the Lanthorn, on the Dome of St. Paul's Church, Falling BoI caus'd them to fall down by two at a Time, in the following Man- \(\frac{\mathrm{dies}, \mathrm{T}, \mathrm{D} \text { Dr. }}{\mathrm{J} \text {. Deia. }}\) ner;

Firft, a Leaden Ball and a Glats Ball.
Secondly, a Leaden Ball and a Glafs Ball.
Thirdly, a Leaden Ball and a Glafs Ball.
Then I let fall, in the fame Manner, the three other Leaden Balls, each with a Pafteboard Ball.

After that, having the Leaden and Pafteboard Balls brought up again, I repeated the Experiment twice more with a Leaden and Pafteboard Ball: Then I made the Experiment twice more with a Pafteboard Ball alone, to fee how long it would be in falling.

\section*{Of the Refiftance of the Air}

Upon the whole, it appear'd, that the Leaden Balls were a very little longer than \(4^{\frac{1}{2}}\) Seconds in falling; the two largeft of the Glars Balls 6 Seconds, and the Pafteboard Balls \(6 \frac{1}{2}\) Seconds.

The Height of the Gallery, from whence the Bodies fell, was 272 Foot above the Pavement of the Church (then cover'd with Boards) upon which they fell.

The Times of the Falls were taken two Ways above, viz. with a Wheel-Chronometer, which meafures a fmall Part of Time accurately, nearer than to a Quaiter of a Second, (made and contriv'd by Mr. Grabam; and with an \({ }_{2}^{1}\) Second Pendulum: And the Differences of Time between the Fall of the Leaden Balls, and the other Balls, were taken below, by Sir Ifaac Newton, Martin Folkes, Efq; and another Perfon, who all agreed in their Obfervations of the Time, which they made each with an half Second Pendulum.

The following Table gives the Marks, Weights, and Diameters, of the feveral Balls, in three Columns.
\begin{tabular}{|c|c|c|}
\hline Leaden Balls.
\[
\begin{aligned}
& 1 c \\
& 2 c \\
& 3 c \\
& 4 c \\
& 5 c \\
& 6 c
\end{aligned}
\] & & Diameters in Incbes and Decimals.
\[
\begin{array}{cc}
2, & 1 \\
1, & 99 \\
2, & 0 \\
2, & 0 \\
2, & 0 \\
1, & 9^{8}
\end{array}
\] \\
\hline \begin{tabular}{l}
Pafteboard Balls. \\
A \\
B
\end{tabular} & \[
\begin{array}{ll}
0: & 3: \\
0: & 1: 14 \\
0: & 1: 17
\end{array}
\] & \[
5 \text {, }
\] \\
\hline \[
\begin{aligned}
& \text { Glafs Balls. } \\
& \text { D } \\
& \text { E } \\
& \mathrm{F}
\end{aligned}
\] & \[
\begin{aligned}
& 0: 3: 13 \frac{1}{2} \\
& 0: 5: 3 \frac{1}{2} \\
& 0: 6: 0 \frac{1}{2} \\
& 0:
\end{aligned}
\] & \[
\begin{array}{lr}
3, & 9 \\
5, & 42 \\
5, & 55
\end{array}
\] \\
\hline
\end{tabular}
N. B. The Polar and Equatorial Diameters of the Glafs Balls being different, I have fet down a mean Diameter for each of 'em ; the true Diameters are thus, of \(\mathrm{D}_{4}\) and 3,8 . of \(\mathrm{E} 5,6\) and 5,25 of \(\mathrm{F} 5,7\) and 5,4 Inches.

The particular Experiments are as follows.
Exp. I. Fall of \(1 c\) and D. \(c\) fell by the Pendulum in \(4 \frac{1}{2}\).
The Fall of \(D\) was fo near it, that the Difference was not taken either above or below.

\section*{Exp. II. Fall of \(2 c\) and \(E\).}

26 fell by the Chronometer in \(5^{p}\), by the Pendulum in \(4^{2^{\prime P}}\). Time of the Fall of E not taken above. The Difference taken below \(1 \frac{17}{4}\).
Exp. III. Fall of \(3 c\) and \(F\).
\(3 c\) fell by Chronometer in \(4^{\frac{1}{2}}{ }^{4}\), by the Pendulum in \(4 \frac{1}{2}^{\prime \prime}\). F fell in fix Seconds. The Difference taken below, was \(1 \frac{1}{1 \prime}\).
Exp. IV. Fall of \(4 c\) and A.
\(4 c\) fell by Chronometer in \(4^{\frac{3}{3}}\), by the Pendulum in \(4^{\frac{1}{3}}\). A fell in \(6 \frac{1}{2}\) Seconds. Difference taken below \(=2^{\prime \prime}\).
Exp. V. Fall of \(5 c\) and \(B\).
We made no Oblervation above nor below.
Exp. V1. Fall of \(6 c\) and C.
6 c fell by Chronometer in \(4^{\frac{1 n}{} \text { n }}\), by the Pendulum in \(4^{\frac{1}{4}}\). C not taken above. Difference below \(=2 \frac{1}{\ddagger}\) ".
Exp. VII. Fall of \(1 c\) and \(B\).
I c fell by Chronometer in \(4^{3 \prime \prime}\), by the Pendulum in \(4 \frac{3}{3}^{\prime}\). B not taken above. Difference taken below \(2 \mathbf{8}^{\prime \prime}\),
Exp. VIII. Fall of \(5 c\) and A.
56 fell by the Pendulum in \(4^{3^{\prime \prime}}\). A fell foul, and So was not obferv'd. at all. Difference taken below \(2^{\prime \prime}\).
Exp. IX. Fall of B alone.
By the Chronometer in \(6 \mathbf{1}^{\prime \prime}\), by the Pendulum in \(6 \frac{\frac{1}{2}^{\prime \prime}}{}\).
Exp. X. Fall of C alone.
By the Chronometer in \(6 \frac{1^{\prime}}{2}\), by the Pendulum in \(6 \frac{1}{1}^{\prime \prime}\).
By Galileo's Theory, the Lead, which was \(4 \frac{t_{1}^{\prime \prime}}{4}\) in falling, muft fall four Foot the firft \({ }^{\frac{1}{2} / 1}\); or fixteen Feet the firf Second, which amounts to 324 Foot in \(4 \frac{1^{n}}{2}\). But as the Sound of the Ball (as it ftruck the Bottom) by which we reckon'd our Time, had 272 Feet to move, we muft abate \(\mathrm{a}^{\frac{3}{4}}\) of a Second nearly, (fuppofing Sound to move one Mile in \(42^{\prime \prime}\)) which will take away 35 Feet, that the Body muft have fallen in the laft ; of a Second, and reduce the Number of Feet to 289: So that the Lead will have only failen 17 Feet thort of the Theory, which muft be attributed to the Refiftance of the Air.
The large Glafs Ball in the 6 Seconds of its Fall, would in a Vacuum go through 576 Feet: Bur taking away the laft \(\frac{1}{6}\) of a Second 47 Feet, for Motion of Sound, it muft only fall 529 Feet in Vacuo. Now fince it fell but 272 , there have been 257 Feet taken off from the Fall by the Air's Refutance.

Likewife the Pafteboard Ball in \(6 \frac{1}{2}\) Seconds muft have fallen 676 Feet: But deducting the lat Quarter of a Seeond, or 51 Feet, for the Motion of the Sound, there remains only 625 Feet for its Fall in Vacuo. But as it fell only 272 Feet, we mult allow a Ketardment of 353 Feet for the Refiftance of the Air.

\section*{Of the Refiftance of the Air}

At a Mean we may call the Weight of the Glafs Ball five Oz . Troy, and its Diameter 5 Inches and \(\frac{1}{2}\); and the Weight of the Patteboard Ball two Ounces Troy, and a litele more than five Inches Diameter.

The Leead Balls all fell within near a Foot of one another, and made an Imprellion in the Boards of about \(\frac{1}{3}\) of their Depth.

The Barometer ftood at 30, I Inches, and the Mercury was very convex, and therefore inclin'd to rife ftill.

Some furt ber Experiments on tb fame, by the faine, isid. F. 1075
2.] Having found by our former Experiments, that thin Glafs Balis, and even Balls of pafted Paper, were too heavy to make fo confiderable a Difference between the Time of their Fall and the Fall of Leaden Balls, that it might be eafily obferv'd; I contriv'd a Way to make dry'd Hogs Bladders perfectly round, by blowing them (when moift) within a ftrong fpherical Box of Lignum Vite, and letting them dry in the faid Box before I took them out : Which I did by opening the Box that fcrew'd in the Middle, and had a Hole in the Pole of one of its Hiemifpheres to let the Bladder paifs through, in order to tie it after blowing; and fome few fmall Holes all over the Box, that, in blowing, no Air might be confin' \(d\) between the infide of the Box and the Bladder, fo as to hinder it from putting on a fpherical Figure. Befides, I took off the Ends of the Ureters, the Fat, and a great deal of the upper Coats of the Bladders, before I blow'd them in the Box, to render them ftill lighter.

The Bladders I us'd, were fome of the thinneft I could find ready blown at a Druggif's, which I moiften'd in Water, taking Care to leave none in the infide.

Having prepar'd five Bladders in the Manner aforefaid, I took them up to the upper Gallery in the Lanthorn on the Top of the Cupole in St. Paul's Church; and there, by a Contrivance which I Thall defcribe, I let them fall by one at a Time, together with a Leaden Ball of about two Inches Diameter, and weighing 2l. Troy: And I took Notice of the Time of the Fall of each Bladder, knowing by former Experiments that the Balls are about 4 Seconds, or a little longer Time, in falling the fame Height, which is 272 Feet.

The following Table, confifting of five Columns, gives in the firft, the Marks of the Bladders ; in the next their Diameters; in the third their Weights, in Grains Troy; in the fourth the Times of their Fall in Second Minutes of Time; and in the fifth, the Difference of Time between the Falls of the Leads and of each Bladder; taken below by Sir If. Newton, Dr. Halley, Dr. Furin, Martin Folkes, Efq; and Mr. Graban the Clock-maker. The Time was taken above with Mr. Grajain's Chronometer; and below with the fame Inftrunent,
ment, and three half Second Pendulums, all which agreed very well together.
The Experiments having been made twice over, the Table is twice fet down; and thofe Experiments in which the Bladders fell ftraight down, and the moft regularly, have this Mark before them (*).
\begin{tabular}{|c|c|c|c|c|}
\hline Marks. & Diameters in Inches. & Weigh in GrainsTroy & Time of tbe wbole Fall & Diff. between the Lead and Bladder. \\
\hline A & 5, 3 & 128 & \(19{ }^{\prime \prime}\) & \(14{ }_{8}^{2}\) Seconds. \\
\hline B & 5, 193 & 156 & \(17 \frac{1}{1}\) & \(12 \frac{1}{4}\) \\
\hline C & 5,33 & \(137^{\frac{1}{2}}\) & 18 \% & 14 ¢ \\
\hline D & 5, 26 & \(97^{\frac{1}{2}}\) & 22 & \(17 \frac{6}{8}\) \\
\hline * E & 5, 02 & 99! & 21 \% & 17 \\
\hline * A & & & \(19^{\prime \prime}\) & \(14{ }^{\frac{1}{2}}\) \\
\hline B & & & 188 & \(14 \frac{1}{4}\) \\
\hline * C & & & \(18 \frac{1}{1}\) & 14 \\
\hline D & & & 24 & 191 \({ }^{\frac{1}{8}}\) \\
\hline E & & 19 & \(21 \frac{1}{4}\) & \(16 \frac{6}{8}\) \\
\hline
\end{tabular}

The Diameters and Weights may be rely'd upon, being taken the Day that the Experiments were made, and the Day after; but the Diameters and Weights taken ten Days before, not agreeing with thefe, I have left them out. For the Bladders by drying had loft their Weight, and alter'd their Diameters.

As the Necks of the Bladders in drying fhrink, fo as to open a little, they muft be blown before each Experiment. And for the Manner of letting them fall exactly in the fame Inftant of Time, it is defcrib'd by Figure 25, in which

A, A, A, A, is the Hole through which the Bodies fell : 1, 2, is Fig. \({ }_{5} 5^{\circ}\) a Board laid over the Hole. G, D, D is another Board fix'd to the firft Board by the two Wood-Screws D, D with a Pulley G at the other End of it, over the Hole. W, is a two Pound Ball of Lead faften'd to a ftrong Thread, which going over the Pulley, is ftretch'd horizontally from \(G\) to the Nails \(F\); to which it is faften'd, fo as to be about a quarter of an Inch above the Board.

B is one of the Bladders, hanging with the Neck or heavieft Part downwards, by Means of a Loop of fine Thread as EH, which goes over the Horizontal Thread GEF. Now when with a Pair of Sciffars the Thread of the Lead (which in all is but one Foot long) is cut juft at E, before the Loop of the Bladder, the Lead pulling away the String, the Loop of the Bladder nips off the remaining Thread FE, and begins to fall exactly in the fame Inftant as the Lead: But if the Thread fhould be cut between E and

\section*{Of the Refiftance of the Air, \(\mathcal{E}^{\circ} c\).}

F, as the Lead. falls, its Thread might give the Bladder an oblique Direction.

He that obferves the Time either with a Pendulum or Chrono. meter may take it very exactly, by feeing the Motion of the Sciffars as they cut the Thread.
N. B. As the Diameters of the Bladders were taken by wrapping a Thread twice round them, and fomething muft be allow'd for the Thicknefs of the Thread; I have here under fet down the Diameters of the Bladders, as corrected by that Allowance. Viz. A 5, 28 Inches ; B 5, 19; C 5, 30; D \(5 \frac{1}{4}\); and E juft 5 Inches in Diameter.

The Bladder E was rough, with feveral Wrinkles and Inequalities, which made it be longer in falling than it ought to have been, according to its Diameter and Weight.

A Pail of Water thrown down met with fuch a Refiftance in falling 272 Feet through the Air, that it was all turn'd into Drops like Rain.

\section*{XXXVII. Papers, \&c. of Mr. Hawkßbee's Onitted.}
n. 303. p. 2129.
n. 304. p. 2165.
1. An Account of feveral Experiments on the Mercurial Phofpborus, made before the Royal Society.
2. An Account of feveral Experiments made before the Royal Society, concerning the Attrition of Bodies in various Mediums.- Of Amber on Woollen in Vacuo. - Of Flint on Steel in Vacuo. - Of Glafs, and various other Bodies in Vacuo. - Of Glafs on Woollen - of Glafs on Oyter-Sbells - of Oyfter-Sbells on Woollen - of Woollen on Woollens - of Glafs on Glafs - of Glafs on Glafs under Water.
3. An Experiment conserning the Production of Ligbt on a night Altrition of the Hands on a Glafs Globe exhaufted of its Air, \&cc.
4. An Experiment concerning the Eleciricity of Glafs, produc'd by a fmart Attrition of it.
5. A Continuation of the Experiments of the Attrition on Glafs.
6. Some further Exteriments relating to the Electricity of Glafs, and of the Effits of the Effluvia, \&c.
7. An Experiment confirming a former one, concerning the Production of Ligbt by the Effurvia of one Gla/s falling on anotber in Motion.
8. An Experiment Thewing the Difficulty of Separating two Hemifpheres, upon the injecting of an Atmofphere of Air on their Outward iurfaces, without exbauffing the included Air.

\section*{ก. 305 p.}
2221.
9. An Experiment concerning the Proportion of the Weight of Air, to the Weight of an equal Bulk of Water, without knowing the abiolute Quantity of either.
10. An

Fin: 23.

10. An Experiment fhewing, that the Ajcent of Liquids in Sinall Mid.p. \(222 j\) Tubes open at both Ends, is the fame in Vacuo as in the open Air.
11. An Experiment concerning the Quantity of Air produc'd from a n. 311. p. certain Quantity of Gun-powder fird in common Air.
12. An Experiment fhewing, that the Springs, or confituent Parts Ibid. pe \(2+1\). of Air are capable of fuffering fuch Diforder by a violent Impulfe, as to require Time to recover their Natural State.
13. An Experiment, fhewing the Caufe of the Defcent of the Mer-n. 292. p cury in the Barometer in a Storm. 1629.
14. Experiments on the Production and Propagation of Ligbt from n. 296. p. the Pbojpborus in Vacuo.
1855.
15. Experiments concerning the Propagation of Sounds in Coindenjed n. 297. P. and Rarefied Air. 1 goz.
16. Experiments concerning the Reflition or Rebounding of Bodies n. 298. p. in Various Mediums.
17. Some farther Experiments concerning the Elearicity and Ligbt n. 315 .p. 82. produc'd from various Bodies by Altrition - of Glafs - of SealingWax - of Sulphur and Rofin.
18. An Account of the Succefs of an Attempt to continue feveral n.; 18. p.21\%. Atmo/pheres of Air condens'd in the Space of One, for a confiderabie Time.
19. An Experiment concerning the Production of Ligbt in an ex-n.318. p.219. haufted Glafs, lin'd on the Infide with Sealing-W'ax, upon an Attrition made on its Outfide.
20. Experiments concerning the Mfent of Liquids between the neari: n.319. p. 25 8. contiguous Surfaces of Bodies - between two Glajs Planes in the Open Air - and in Vacuo - between Marble and Brafs Planes in the Open Air.
21. The Afcent of Liquors between two Round Glafs Planes in the Isid. P. 265. Open Air.
22. The Afcent of Water through a Trube fill'd with Abses in the open Ibid. p. 262. Air - and in Vacuo.
23. The Afcent of Liqwors, in Small Tubes of unequal Tbicknefs, but Ibid. p. 260 . equal Bores or Cavities.
24. The Afient of various Liquors between two Square Glafs Iliid. p. 266. Planes.
25. An Account of an Experiment concerning the different Denfities n. 315. p. 93. of the Air, from the greateft Degree of Heat to that of Cold in our Climate.
26. An Account of an Experimitnt concerning the different Weights n, \(\hat{200} \mathrm{p} \cdot \mathrm{\beta} 306\). of the fame forts of Bodies, but of very unequal Surfaces in Water, which were of equal Weight in coinnion Air.
27. An Experiment concerning the different Denfities of common Water n.319-p.267. from the greateft Degree of Heat in our Climate to the Freezing Point obferv'd by a Thermometer.
28. Experiments in relation to the Weight of common Water under lod. p. 2(.). different Circumftances.

Vob. IV. Part II. 4 P 29- An

\section*{182}

Mr. Hawkfbee's Experiments.
n. \(320 . \mathrm{p} .302\). Weler purg'd of Air.
IUid. p. 304. 30. An Experiment concerning the Freezing of common Water, ting'd with a Liquid, faid to be extracted from Shell-Lac.
n. 321. p.367. 31. An Experiment, fhewing that aflual Scund is not to be transmitted through a Vacuuin.
Ifi.: p. 369. 32. An Experiment concerning the Proparation of Sound paffing from the fonorous Body into the common Air, in one Direftion only.
33. An Experiment concerning the Propagation of Sound through Water.
13. \(32=\) P. 391 . 34. An Experiment, fhewing that an Object may become lifible through fuch an Opake Body as Pitch in the Dark, while it is under the Circumftances of Attrition and a Vacuum.

35. An Attempt to produce Ligbt on the Infide of a Globe Glays lin'd with melted Flowers of Sulphur.
Ibid. p. 44 . 36. A Repetition of the foregoing Experiments, \&cc.
n. j2s.p. igs.
37. Experiments concerning the 'Iime requir'd in the Defcent of Bodies of different Magnitudes and Weights, \(\Xi^{\circ} c\).
Ilid. p. 199. 38. Experiments concerning the Effects of Air pafs'd tbrough red bot Metals, \&c.
n. 328.p.204. 39. A Defcription of the Apparatus for making Experiments on the Refraelions of Fluids; With a Table of the Specific Gravities, Angles of Obfervations, and Ratio of RefraEtions of feveral Fluids.
n. 33 1.p. 325 .
40. A Repetition of an Experiment of Dr. Hook's, concerning two Liquors, which when mix'd togetber poffefs lefs Space, than when Sepatate; with another Experiment confirming the fame.
Ibid. p. \({ }_{2} 28\).
41. An Account of an Experiment, concerning an Endeavour to produce Light through a Metallic Body, under the Circumitances of Altrition and a Vacuum.
n. 332.p.395. 42. An Account of an Experiment concerning the DireEtion of a Drop of the Oil of Oranges between two Glafs Planes, towards any lide of them that is neareft prefs'd together.
n. 333.p. 4 3r. 43. Experiments on keeping Fifhes in Water under different Circumbftences.
n. 334 p.475. 44. Of the Angle requir'd to furpend a Drop of the Oil of Oranges, at certain Stations, between two Glass Planes, plac'd in the Form of a Wedge.
45. The Specific Gravities of feveral Metallic Cubes in Comparifor with their like Bulks of Water.
46. An Experiment concerning the Afcent of Water between two Glafs Planes in an Hyperbolic Figure.
Itid. p. 541. 47. A Defcription of feveral Strata of Earth, Stone, Coal, \&cc. found in a Coal-Pit at the Weft End of Dudley in Staffordfbire, by Mr. Fettiplace Bellers, F.R.S. To which is added a Table of the Specific Gravity of each Stratun, by Mr. F. Hawkßbee.
n. 335-P.505. 48. Experiments concerning the Proportions of the Power of the Loadfone at different Diftances; with a Defcription of the Load-ftone made ufe of.

\section*{Of the Lake Vetter.}
49. An Experiment concerning the Proportions of the Afcent of Spirit n. 337.P.151. of Wine between two Glafs Planes, whofe Surfaces were plac'd at different Diftances from each orher.
50. Experiments concerning the Afcent of Water between two Glafs Ibit. p. isj. Planes in an Hyperbolic Curve.
51. A farther Account of the Afcending of Drops of Spirit of Wine IVid. p. 155 between two Glafs Planes twenty Incbes and a balf long; with a Table of the Diffances from the Toucbing Ends and the Angles of Elevation.

\section*{C H A P. II. Hydrology.}

'BOTH Olaus Magnus and other Writers having related fome Things An Account of furprifing and unufual concerning the LakeVetter, I thought it the Lake Vetworth while to enquire more narrowly into the Nature of that I.ake, and the Veracity of thole Authors ; and where I had not an Opportunity of Urban \(\begin{gathered}\text { den } \text {; } \text { br. }\end{gathered}\) making Oblervations myfelf, to afk the Teftimonies of Perfons of a Hearne. good Character living in the Neighbourhood of it, who could folve all n. 298. p. my Queftions with Matters of Fact.

The Lake Vetter running from North to South, from ARkerfund in Nericia to Jonekoping in Smoland, meafures fourteen Swedifb Miles in Length, one of which is equal to five or fix Miles Englifh, and ten of them make almoft a Degree: But in Breadth it is only three Miles, and in fome Places hardly more than two. This Lake upon Account of the high Mountains about it, which in fome Places begin upon the Borders of it, and in other Places are at a little Diftance from it, appear depreffed towards the Shore to People ftanding near it. It is remarkably deep, but its Depth is fo unequal, that in fome Places you find the Bortom at eighty Fathoms, but in feveral Parts on the Borders of Offrogotbland, and in a few of \(W_{i}\) ifrogotbland, at three hundred Fathoms you find no Bottom. An Inhabitant of Vadfen, Benediftus Amberni, in order to found the Depth of the Lake upon the Borders of the State of Grennen, let down fome Fathoms of Rope with a Hatchet at the End of it, but not finding any Bottom, when he gathered up the Rope, inftead of the Hatchet he found a Horle's Skull very neatly faftened to it. An Aby fs like to this at the Precipices of the Mountain Obreen, which are called the Weffern Wall, has always deceived thofe who have attempted to found it; fo that few dare venture upon it for fear of the Weft Wind, which growing formy of a fudden eafily lofes the Veffels down the Sides of the Mountains in Spite of all the Anchors they throw out on cvery Side. In the fame manner formerly at a certain Province of Weftrogotbland, the Governor Count Yobannes Oxenfiern after throwing out three hundred Fathoms could find no Bottom, which is attefted by fome Fifhermen ftill alive, who were employed in that Affair. This Water
is no lefs clear than it is deef, fo that you can difcern a very fmall Piece of Money at a confiderable Depth. Ericus Simonius Paftor and Overfeer of Vadften fays, that in a clear Day he has been able to perceive a Silver Penny in the Water fixty Fathoms deep. But at fome Diltance from the Surface it appears tinged fomewhat green: And no wonder if the Filth coming from fo many fmaller Lakes, Mountains and Woods, thould taint this limpid Water confiderably.

Although this Lake of Vetter is larger than moft others, yet the moft Part of it is free of Rocks, and there are very few Inands in it. The chief of thefe is called Vifing foe, formerly the Seat of the Family of the Brabde, and lies in the Middle of the Lake between Grenna of Smoland and Wefrogotblend, and North from that is the Illand of Roknen over againt the Baths of Medevien. There are befides thefe fome fmall Illands near the Shore, but they are very fmall and few in Number. But being freely expoled to Winds and furrounded with very high Mountains, no wonder if it is but feldom calm, and the Boats are toffed upon it in frequent Storms ; which come often fo unexpected that there begins a Motion within it while the Waters are as fmooth as a Mirror, before the leaft Breath of Wind is felt. Which feems to be owing to the Tempeft heaving up the Waters elfewhere, and gradually protruding them before the Winds have reached that Part. For it is no unfrequent Thing in the \(V\) etter for the Veffels to be toffed by the Winds in one Part, while hard by it is fo calm that others are obliged to make ufe of Oars. This feems to indicate that Commotions may be raifed in the Waters by fubterraneous Winds, and Varenius attempts to explain the like Effects in his Univerfal Geograpby. A great many Phenomena confirm this Conjecture. For when the Tempeft and Clouds are threatening, you may perceive a kind of howling and thundering Noife in the Waters while the Air continues ferene, which I had occafion myfelf to hear feveral times while at the Batbs of Medevien when the Air was quite calm, and was always followed with a violent Storm. But the Inhabitants of Vi fing foe are moft fenfible of this, having their Ears confounded with a Noife like that of Guns, from that Part of the Inand whence they expect the Storm to come next Day. And when thefe Explofions are heard towards the Eaft, they have a Storm from that Quarter for the moft part attended with Hail and Rain. The various puffing up of the Waters, the fudden rifing of Vapours, and hafty flying out of Blafts, which fome People have oblerved in this Lake, are worthy to be taken Notice of. Something of this Kind was oblerved not without Surprize by Abrabam Winandz the Architect, who happening once to pafs by thofe Coafts with fome Friends, while the Waters were quite calm, faw little Clouds darting up from the Bottom here and there, and joining themfelves with the Air in Form of Smoak, fell down in gentle Showers upon them every now and then all that Day; all which argue ftrongly that there are fuch Things as fubterraneous Winds.

Doubtlefs the fame Wind, with the Storm coming from above, is the Caufe why in the Spring, the Ice which juft now is ftrong and thick enough

\section*{Of the Lake Vetter.}
enough to bear Horfes and Carriages, is fo broken and difperfed, that you may prefently fail very fafely upon it. But before this dreadful breaking of the Ice, the horrible Noife of the Waters which precedes it, warns the frightened Travellers that are upon it to get off as quick as poflible; but if they happen to be far from the Shore, they are either immediately drowned, or drove up and down for fome Time upon Fragments of Ice, and fometimes the Ice prefently finks when the Air is very litele moved.

Whether or not there are metallic Vapours ferving to produce thefe fubterraneous Winds, I thall not pretend to determine. But that theie are not wanting there is plain, from feveral Mountains of Nericia and Weftrogotbland, on the North Side of the Veller, with Veins of Iron Ore, and perhaps more noble Metals more lately difcovered, and other different Kinds of Minerals, viz. Antimony, Loadfone, Chalk, Mica Sterilis, feveral Sorts of Silver and Lead Ores, and Marchafite, whence Sulphur, Vitriol, Allum, and orher foffile Subftances ufe to be extracted. And in the Waters themfelves there is found a great Quantity both of Marchafite, and a rufty Kind of Oker. The Ignis fatuus muft likewife be referred to this Place, being not only obferved frequently upon the Borders of the Lake, but in the Night Time it is feen lying in the Middle of the Waters, and confounds the Fihhermen, and a great many are perfuaded that this is owing to metallic and fulphureous Exhalations. Nor is the Granate, Porphyry, Jafper, Chryftal, and other precious Stenes produced in this Lake, formerly collected by Count Peter Brabens, and to finely polifhed, as to be ufed amongtt the bridal Ornaments of the Ladies of Vijing/uurg, generated without the Affiltance of mineral Vapours. All thele acknowledge a mineral Origin, not to mention the Baths of Medevien, in the Borders of the Vetter.

Amongtt the other Properties of this Lake, we muft not pals over the remarkable Whirl-pools and violent Torrents here, which though they have only one Vent, yet being directly oppoled to the Winds and Waves, are very troublefome to the Fihermen. Hence it has been fufpected on Account of its valt Depth, and the private Channels, and fubterraneous Winds, that there muft be a Communication under Ground of the Vetier with another Lake, ten Swedibh Miles to the Weft of it, called the Venner. And this is the more probable, from the different Quick-fands that are betwixt thele two Lakes two of which in the Parifh of Fegren, called the black and white Quick-fands, Haddorpbius had meafured. He found them to be of a prodigious Depth, and obferved in them an inteftine Mution, as if they were turgid with a Kind of Ferment. The fame Opinion is likewife ftrengehened from this, that fome Years the Vetter is confiderably fwelled witlout any manifett Caufe, and falls again afterwards the fame Way. Mr. Daniel Ridley Minifter at Mosala, has ublerved concerning this Lake thefe feven Years by-paft, that in fome certain Places it gradually decreafed, fo
as you could walk dry-footed fome Fathoms, where Boats ufed former: ly to go, the Seafons in the mean Time, viz. in the Years 1680,1682 , \(168_{4}\), and 1685 , being every where fufficiently rainy. But in the Year 1686, towards Autumn, the Waters began again gradually to increafe till the prefent Year 1688. But whether the Vetier keeps its ftated Times, the fame as they fay of the Venner, increafing feven Years, and then diminithing other feven, I am not able to determine. It is likewife furprifing, that in a ferene Air they can hear the Cannon at Stock. boim and other Places thirty Miles diftant. So that in the Year 1685 , when the Princes of Stockbolm were buried, they heard the Report of the Cannon exactly at fix o'Clock. And with the fame Eafe in the Year \(16 ; 6\) they heard the Explofion of the Guns in a Sea-Fight diftinetly at about thirty Miles Diftance.

As to what Olaus Magnus, Meffenius, and other Hiftorians relate concerning Gilbert's Cave in the Inland of Vifing Joe, I leave to the Credit of thefe Authors. This however is certain, that there ftill remains a Ca vern full of a fulphureous and very naufeous Stench, which I imagine, according to the Opinion of the People in that Place, to be owing to the Naftinefs gathered in Length of Time in the Cave fittuated near the Waters, exhaling fulphureous and moift Vapours. And that there appear upon the Borders of it different Spectres and Phantoms, for the moft part refembling Women, fometimes Horfes and other Animals, friking about, no Body who is intent upon thole Curiofities will deny. There are feveral Stories both of former Ages and of the prefent, which I could bring in to confirm this, if I was not refolved to pafs' it over fo flightly.

But I mult not neglect to mention the famous River Motala, which, as I faid, is the only Mouth of the Vetser, and at certain Times ufes to lay afide its Fluidity, and ftop its Courfe in fuch a Manner, as you could go freely into it, and fometimes take up Fifhes that were left in the Bottom of it without any Impediment, as it happened in the Years 1682 and 1685 , about Cbrifturas. The common People in that Country are unanimoulfy perfuaded, that the Courfe of the River is never fopt without fomething bad following it, and that it always prefages either a great Dearth or a War, or fome public Difafter, in the fame manner as a Whale's coming into the Tbames is faid by the Englift to portend fomething fatal. But whatever Stories they have about, if they are not conformable to the Laws of Nature, give no Satisfaction to a phyfical Perfon, enquiring into the natural Caules of fuch furprifing Effects. I was therefore follicitous in enquiring into thofe Things which feemed to give Light to this Phrenumenon, although I never had the Opportunity of feeing the Courfe of the River itopt. But however variouny the Inhabitants near this River attempt to explain this Affair, imagining that at that Time the Waters retiring from the Shores fink into the Channel, yet I have always fufpected that this Part of the River above where the Current was ftopt mult be obftructed with Ice

\section*{Of the Lake Vetter.}
or Snow, fo as to dam it up, while the Waters below run on towards the Sea. And what gives a Foundation for this Opinion is, that this ftopping of the River never happens in the Spring, Summer, or Autumn, but always about Cbriftmas, or the Beginning of the new Year; and that it is always near the Bridge, where the Water being at leaft above three Yards deep, the Stone Pillars upon which the Bridge is buile retard a good deal the Courfe of the Kiver there. That this Conjecture is agrecable to Truth, the above-mentioned Minifter of the Church at Motala afferts, both from his own Experience and that of other Perfons. His Houfe ftands juit upon the Borders of the Bridge, and fays that there are long Herbs, fuch as Water-Grafs, Knot-Grafs, \(\exists^{2}\) c. which fhooting out from the Bridge into the neighbouring Current germinate in the Water, and the Ice faftens to them like Knobs, and congealed Snow, which being pufhed away by the River, and ftopt by the Pillars of the Bridge, at laft may be heaped up fo as to ftop the Current. There are likewife a great many Builders there, who fay, that before they expect the Current to be ftopt, there are large Heaps of Snow fent out from the Lake, which fticking like Glue to whatever Body they meet with, fink gradually to the Bottom. Nor is it an uncommon Thing for the Waters in the Lake one Day to be very quiet, and the next Day all in Commotion ftopt near the Bridge. But whatever is the Caufe of it, it is ftill furprifing, that this does not happen when the Cold is very intenfe, but when the Air is more mild, generally about Cbrifmas, or the Beginning of janzary. Perhaps the Cold continues fill violent under the Waters, though the Air is become milder, or the Ice become fofter fticks to the Herbs or other Obftacles which it meets with in its Way, and produces thefe Obftructions.

But I muft not pafs over in Silence fome remarkable Particulars of Some Particaa Fountain not far from the Vetter in the Parifh of Nyen (where are the lars of aFoumBaths of Mederien too) near the Church and the Minifter's Houfe, which I had from the Minifter there, whofe Name is Yonab Frodelius, a very worthy Man, and alio from others. They call it the hungry Fountain, or the Foreteller of the Crop, becaule it is never quite filled with Water but there follows a Dearth next Year. It is furrounded on all Sides with foft fandy Hills, in the Middle of which is a flat Valley, but not at all marfhy. Out of this rifes the Fountain by fecret Veins, which has this Particular, that in a rainy Summer for the moft Part it becomes dry, and on the contrary, in the drieft Summers, immediately before a Dearth, and according to others (whom I am not at leifure to meddle with) likewile before a War, it lays the high Road between Motala and Vadfen under Water, as is certified by a great many People who live there. In the Year 1685 , which was very rainy, this Fountain was almoft dry, and not above half a Foot deep; and in the Summer following, the Water began to increafe. And the Truth of this is confirmed this prefent very dry Summer, this Spring having greatly abounded with Water, whillt all the reft in the Neightourhood

\section*{A New Costrivance for Diving.}
were quite dried up. But the chief Things to be obferved about it are thefe.
1. That it prefages a bad Crop or Dearth to Offrogotbland only of all the Places that are nigh it.
2. This whole Country, efpecially in the Neighbourhood of the Fountain, is of a very fandy Soil, in fome Parts mixed with a very hard Clay, and therefore requires a great deal of Water to make it fertile. Befides too,
3. The Crops are only bad there in dry Seafons, whilft the contrary happens in Iemptia, and other more Northern Provinces.
4. That the Plenty of Meteors, and of the Seafon, fometimes depends upon the Difpofition of the Earth, and what lies hid under its Surface.
5. That the Waters of this Fountain, ftrained as it were through the Sand near the Sand Hills, are collected together by infenfible Veiris.
6. That the Waters may be increafed or fwelled up before a dry Seafon, and fall away in a rainy one, for phylical Caufes, to treat of which more largely I fhall take another Opportunity.

A New Contrivance for Diving. Erc by Dr. E.Halley. 349. p. 492.
II. Many Methods have been propofed, and many Engines contriv'd, for enabling Men to abide a competent while under Water: And the refpiring frefh Air being abfolutely neceffary to maintain Life in all that breathe, feveral Ways have been thought of for carrying this down to the Diver, who mut, without being fupply'd therewith, return very foon, or perifh.

We have heard of Divers for Spunges in the Archipelago, helping themfelves by carrying down Spunges dipp'd in Oil in their Mouths; but confidering how imall a Quantity of \(A\) ir can be fuppos'd to be contain'd in the Interftices of a Spunge, and how much that little will be contracted by the Preflure of the incuinbent Water, it cannot be believ'd that a Supply, by this Means obtain'd, can long fubfift a Diver. Since by Experiment it is found that a Gallon of Air included in a Bladder, and by a Pipe reciprocally infpir'd and expir'd by the Lungs of a Man, will become unfit for any further Refpiration, in little more than one Minute of Time; and though its Elafticity be not much alter'd, yet in paffing the Lungs, it lofes its vivifying Spirit, and is render'd effete, not unlike the Medium found in Damps, which is prefent Death to thofe that breathe it ; and which, in an Inftant, extinguifhes the brighteft Flame, or the fhining of glowing Coals, or red hot Iron, if put into it. I Shall not go about to fhew what it is the Air lofes by being taken into the Lungs, or what it communicates to the Blood by the extreme Ramifications of the Afpera Arteria, fo intimately interwoven with the Capillary Blood-Veffels; much lefs to explain how it is perform'd, fince no Difcovery has been made to prove that the ultimate Branches of the Veins and Arteries there, have any Anafomofes with thofe of the Trachaca; as by the Microfcope they are found

\section*{A new Contrivance for Diving.}
found to have with one another. But I leave this to the Anatomifts; and only conclude from the aforefaid Experiment, that a naked Diver, without a Spunge, cannot be above a Couple of Minutes inclos'd in Water, (as I once faw a Florida-Indian at Bermudas) nor much longer with a Spunge, without fuffocating; and not near fo long without great Ufe and Practice: Ordinary Perfons generally beginning to ftifle in about half a Minute of Time. Befides, if the Depth be confiderable, the Preffure of the Water on the Veffels is found by Experience to make the Eyes Blood-fhot, and frequently to occafion fpitting of Blood.

When therefore there has been Occafion to continue long under Water, fome have contriv'd double fexible Pipes to circulate Air down into a Cavity enclofing the Diver, as with Armour, to bear off this Preffure of the Water, and to give leave to his Breaft to dilate upon Infpiration: The frefl Air being forc'd down by one of the Pipes with Bellows, or otherwife, and returning by the other of them, not unlike to an Artery and Vein. This has indeed been found fufficient for fmall Depths, not exceeding twelve or fifteen Foot: But when the Depth furpalfes three Fathoms, Experience teaches us, that this Method becomes impracticable: For though the Pipes and the reft of the Apparatus may be contriv'd to perform their Office duly, yet the Water (its Weight being now become confiderable) dues io clofely embrace the Limbs that are bare, or cover'd with a flexible Covering, that it obftructs the Circulation of the Blood in them ; and preffes with to much Force on all the Junctures, where the Armour is made tight with Leather, Skiņ, or fuch like, that if there be the leaft Defect in any of them, the whole Engine will inftantl: fill with Water, which will rufh in with fo much Violence, as to endanger the Life of the Man oelow, who may be drown'd before he can be drawn up. Upon both thefe Accounts, the Danger encreafes with the Depth. Befides, a Man thus hut up in a weighty Cafe, as this muft needs be, cannot but be very unwieldy and unactive, and therefore unfit to execute what he is defign'd to do at the Bottom.

To remedy thefe Inconveniences, the Diving-Bell was next thought of; wherein the Diver is fafely convey'd into any reafonable Depth, and may ftay more or lefs Time under Water, according as the Bell is of greater or leffer Capacity. This is moft conveniently made in the Form of a Truncate Cone, the fmaller Bafis being clofed, and the larger open; and ought to be fo poiz'd with Lead, and fo fufpended, that the Veffel may fink full of Air, with its greater or open Bafis downwards, and as near as may be in a Situation parallel to the Horizon, fo as to clofe with the Surface of the Water all at once. Under this Couvercle the Diver letting, finks down together with the included Air; and if the Cavity of the Veffel may contain a Tun of Water, a fingle Man may remain

Vol. IV. Part I!. \(4 Q\) therein fix Fathoms deep. But this included Air, as it defcends lower, does contract itfelf according to the Weight of the Water that compreffes it; fo that at thirty three Feet deep or thereabouts, the Bell will be half full of Water, the Preffure of it being then equal to that of the whole Atmofphere. And at all other Depths, the Space occupied by the comprels'd Air in the upper Part of the Bell, will be to the under Part of its Capacity fill'd with Water, as thirty three Feet to the Depth of the Surface of the Water in the Bell below the common Surface thereof. And this condens'd Air, being taken in with the Breath, foon infinuates itfelf into all the Cavities of the Body, and has no fenfible Effect, if the Bell be permitted to deficend fo now as to allow Time for that Purpofe. The only Inconvenience is found in the Ears, within which there are Cavities opening only outwards, and that by Pores fo fmall as not to give Admiffion even to the Air itfelf, unlefs they be dilated and diftended by a confiderable Force. Hence on the firft Defcent of the Bell, a Preffure begins to be felt on each Ear, which by Degrees grows painful, like as if a Quill were forcibly thruft into the Hole of the Ear; till at length the Force overcoming the Obftacle, that which conftringes thefe Pores yields to the Preffure, and letting fome condens'd Air nip in, prefent Eafe enfues. But the Bell defcending ftill lower, the Pain is renew'd, and again eas'd after the fame Manner. But when the Engine is drawn up again, the condens'd Air finds a much eafier Palfage out of thofe Cavities, and even without Pain. This Force on the auditory Paffages might be fufpected to be prejudicial to the Organs of Hearing, but that Experience teaches otherwife. But what is more inconvenient in this Engine, is, the Water entering into it, fo as to contract the Bulk of Air (according to the aforefaid Rule) into fo fmall a Space, as that it foon heats and becomes unfit for Refpiration, for which Reafon it mult be often. drawn up to recruit it: And befides the Diver being almoft cover'd with the Water thus entering into his Receptacle, will not be long able to endure the Cold thereof.

To obviate thefe Difficulties which attend the Ule of the common Diving-Bell, I have thought of Means to convey Air down to it, whilft below; whereby not only the Air included therein, would be refrefh'd and recruited, but alfo the Water wholly driven out, in whatever Depth it is; and will furnih Air at the Bottom of the Sea in any Quantity defir'd. The Defcription of my Apparatus take as follows:

The Bell I made ufe of was of Wood, containing about fixty Cubick Feet in its Concavity, and was of the Form of a Truncate Cone, whofe Diaineter at Top was three Feet, and at Bottom five. This I coated with Lead fo heavy, that it would fink empty, and

\section*{A New Contrivance for Diving.}

I diftributed the Weight fo about its Bottom, that it would go dowa in a perpendicular Situation, and no other. In the Top, I fix'd a Itrong, but clear Glafs, to let in the Light from above; and likewife a Cock to let out the hot Air that had been breath'd; and below, about a Yard under the Bell, I plac'd a Stage which hung by three Ropes, each of which was clarg'd with about one hundred Weight, to keep it fteady. This Machine, I fufpended from the Maft of a Ship, by a Spritt, which was fufficiently fecur'd by Stays to the Maft-head, and was directed by Braces to carry it over board clear of the Ship-fide, and to hring it again within board.

To fupply Air to this Bell when under Water, I caufed a couple of Barrels, of about \(3^{6}\) Gallons each, to be cas'd with Lead, fo as to fink empty, each having a Bung-hole in its loweft Part, to let in the Water, as the Air in them condens'd on their Defcent ; and to let it out again, when they were drawn up full from below. And to a Hole in the uppernoft Part of thefe Barrels, I fix'd a Leathern Trunk or Hofe, well liquor'd with Bees-Wax and Oil, and long enough to fall below the Bung-hole, being kept down by a Weight appended; fo that the Air in the upper Part of the Barrels could not efcape, unlefs the lower Ends of thefe Hofe were firf lifted up.

I fited thefe Air-Barrels with Tackle proper to make them rife and fall alternately, after the Manner of two Buckets in a Well; which was done with fo much Eafe, that two Men, with leis than half their Strength, could perform all the Labour; and in their Defcent they were directed by Lines faften'd to the under Edge of the Bell, which pafs'd through Rings plac'd on both Sides the Leathern Hofe in each Barrel; fo that niding down by thofe Lines, they came readily to the Hand of a Man, who ftood on the Stage on purpofe to receive them, and to take up the Ends of the Hofe into the Bell. Through thefe Hole, as foon as there Ends came above the Surface of the Water in the Barrels, all the Air that was included in the upper Parts of them, was blown with great Force into the Bell, whilft the Water enter'd at the Bung-holes below, and fill'd them : And as foon as the Air of one Barrel had been thus receiv'd, upon a Signal given, that was drawn up, and at the fame Time the other defcended; and by an alternate Succeffion furnifh'd Air fo quick, and in fuch Plenty, that I my felf have been one of five, who have been together at the Bottom, in nine or ten Fathoms Water, for about an Hour and half at a Time, without any Sort of ill Confequence: And I might have continu'd there as long as I pleas'd, for any Thing that appear'd to the contrary. Befides the whole Cavity of the Bell was kept entirely free from Water, fo that I fat on a Bench, which was diamerrically plac'd near the Bottom, with all my Cloaths on. I only obferv'd, that it was ne\({ }_{4} Q^{2}\)
ceffary to be let down gradually at firf, as about 12 Feet at a Time; and then to ftop and drive out the Water that ienter'd, by receiving three or four Barrels of frefh Air, before I defcended farther. But being arriv'd at the Depth defign'd, I then let out as much of the hot Air that had been breath'd, as each Barrel would replenifh with cool, by means of the Cock at the Top of the Bell; through whofe Aperture, though very fmall, the Air would rufh with fo great Violence, as to, make the Surface of the Sea boil, and to cover it with a white Foam, notwithftanding the great Weight of Water over us.

Thus I found I could do any Thing that was requir'd to be done just under us; and that, by taking off the Stage, I could, for a Space as wide as the Circuit of the Bell, lay the Bottom of the Sea fo far dry, as not to be over Shoes thereon. And by the Glafs Window fo much Light was tranfmitted, that, when the Sea was clear, and eipecially when the Sun fhone, I could fee perfectly well to write or read, much more to take up any Thing that was under us: And by the Return of the Air-Barrels, I often fent up Orders, written with an Iron Pen on fmall Plates of Lead, directing how to move us from Place to Place. At other Times, when the Water was troubled and thick, it would be as dark as Night below; but in fuch a Cafe, I have been able to keep a Candle burning in the Bell as long as I pleas'd, notwithftanding the great Expence of Air requifite to maintain Flame.

I take this Invention to be applicable to various Ufes; fuch as Fifbing for Pearl, Diving for Coral, Spunges, and the like, in far greater Depths than has hitherto been thought poffible: Alfo for the litting and plaining of the Foundations of Moles, Bridges, \&ec. upon rocky Bottoms; and for the cleaning and ferubbing of Ships Bottoms when foul, in calm Weather at Sea.

By an additional Contrivance, I have found it not impracticable for a Diver to go out of this Engine to a good Diftance from it, the Air being convey'd to him with a continu'd Stream, by fmall Aexible Pipes; which Pipes may ferve as a Clue to direct him back again, when he would return to the Bell.

Of an Erup. tion of Waters in York. Mire, by Mr. R. Thoreby. n. 306 . p. 2236.
(t) Vid.Supra
V.II. C. II.
III. I have lately enquir'd of a Neighbour concerning the extraordinary Eruption of Waters at Craven, which the Vicar of Kildmick fent (\(\dagger\)) an Account of to the Royal Society: I am not only fully fatisfied of the Truth of what Mr. Pollard fays, but alfo, that, as he conjectures, a great Part of the Land is not to this Day recover'd from the Sand and Stones, though a great Number of People were employ'd about it. Upon the opening of tbe Rock, at the Foot of which the Town of Starbotbann ftands, the Water gufh'd out in fo vaft a Quantity, as if it would have fwept away the whole Town. The

Waters came rolling impetuoully down, almoft at once; feveral Houfes were utterly ruin'd, and others wreck'd up to the Chamber Windows; one, particularly, was fo cover'd, that a great Piece of the Rock was left upon the Top of the Chimney. My Neighbour was an Eyewitnefs of this fad Accident, and has fpent much Time in clearing fome Part of his Land.
IV. On Oefober the 7 th, ry06, after a very rainy Day, and foutherly Wind, there happen'd a prodigious Flood in the North of Ireland (the like not in the Memory of Man) which broke down feveral Bridges, and the Sides of fome of the Mountains. It came running p. 309. down in vaft Torrents from the Mountains, and drown'd abundance of black Cattle and Sheep, fpoil'd a great deal of Corn and Hay in the Stacks ; it laid abundance of Houles two or three Feet deep in Water, and broke down feveral of the Forges and MillDams.

On July 3d, 170\%, there happen'd another Flood, which came fo fuddenly from the Mountains, as if there had been fome fudden Eruption of the Waters. And on the \(26 t b\) of the fame Month, in the County of Antrim, there happen'd a very fudden and furprizing Flood, which rais'd the Six-Mile-River at that Rate, that it broke down two ftrong Stone Bridges, and three Houfes, and carried away 600 Pieces of Linnen Cloath that lay bleaching, fill'd feveral Houfes feveral Feet deep with Water, tore down fome large Rocks in its Paffage, and left feveral Meadows cover'd a Foot or two deep with Sand. In the South-Eaft Part of the County of Derry, they had that Day but little Rain, with fome Thunder; but beyond the Mountains, in the North-Weft Part of the County, the River Roe had a great Flood.
V. There is no petrifying Quality in the Water of the Lake Lough-Neath, as fome believe; I have liv'd 14 Years at Dung annon, within five Miles of it, and have been often there about the Skirts Neagh in for many Miles, and in a Boat upon it feveral Times; I have Ircland, by view'd it often when the Waters have been very low, and a large Strand left in feveral Places: And many Trees lay in the Verge of the Lough (of which, I believe, fome might have lain there fome hundreds of Years) which had been over-turn'd by the Lougb's encroaching on the Land, where great Woods had grown; and many Roots of great Trees were ftanding in their proper Places, where the Water had prevail'd on the Land; and I perceiv'd no Alteration in the Wood at all, but it was firm, found Wood, without any Petrifaction.

Mr. Brownluw told me, that he had drove feveral Holly Stakes into the
the Ground within the Verge of the Lough, and that fome of them continu'd there many Years, but that he found no Alteration.

There has indeed been great Quantities of fuch fort of Stone, like to Wood, found upon the Strand after great Flonds and Storms of Wind, which have put the Lougb into a Fernent; the Waves breaking down the Banks, encroaching on the Land, and tumbling over Irees, by which Encroachment this Sort of Stones are dilicover'd : And if ever they were Wood, they were petrify'd by the Farth, and not by the Water; of which kind I have feen leveral Pieces big and little, fome like Oak, fome Afh, and fome like Holly, with Bark, Grain, and Knots, like Wood; fo that any by the Eye would judge it Wood, till they come to try it. I had a Piece about fixteen Inches long, that look'd as if it had been a great Chip cut out of the Side of an Oak Block, with the Bark on it; and in cutting fuch large Chips, there happens generally fuch Shakes and Flaws, fo that there will be a Separation of Parts at one End, and they remain firm at the other, as it was in this. I could have rais'd feveral of fuch Splinters, of this large Chip, fome bigger, and fome lefs; and when fo rais'd, they would have flapp'd down as though they were a Spring. Some of thofe Stones would appear at one End as if rotten, and decay'd Wood; but trying it, it was as much Stone, as any other Part.

The Lake is reputed to be twenty four Miles long, and twelve Miles broad, and Navigable from Cbarkmount to Portlenone, which is about thirty five Miles. It does not abound with many Sorts of Fifh; but, thofe that are, are very good; fuch as Salmon, Trout, Pike, Breame, Roach, Eels, and Pollans, with which laft, it does abound. The Englifh call them Frefb-water Herrings. They catch them in the Summer with Sieves, as they do Herrings. They are much in Shape and Bignefs like to the largeft Smelts, full of very large bright Scales, and pleafant Meat, being eat frefh. Thefe were fuppos'd to be a Fifh peculiar to that Lake; but fince I came here, I find Lough Earne has the fame Sort, but not in fo great a Plenty. They are generally caught here in their Eel-Nets, running to the Sea; fo that I am of Opinion, that they are that Sort of Fifh that is caught in the Sea, or between the frefh and falt Water, call'd Sbads; and that the large ones come from the Sea, as the Salmon doth, and leave their Spawn in the Lough; which, when they grow to be big, go to the Sea, and there come to their full Growth: And that which confirms me in my Opinion, is, that at the Salmon Filhing at Coleraine, they catch many of the large ones going up to the Lough. There is one fort of Trout in Lough-Neagh very large: I have feen one weigh 30 Pound weight; and the largeft Salmon that I ever faw, weigh'd not more than 35. This fort of Trout the Iribs call a Budagh'.

That there is fome healing Quality in the Water of this Lough is certain ; but whether diffus'd through all Parts thereof is not known, nor pretended. The Fifhing Bay, which is about half a Mile broad, hath a fine fandy Bottom, where any one may walk with Safety and Eate from the Depth of his Ankle to his Chin, upon an eafy Declivity, at leaft three hundred Yards before a Man fhall come to that Depth. Others, as well as myfelf, have obferv'd that the Bottom has chang'd from Cold to Warm, and from Warm to Cold, and this in different Spots through the Bay.

The firt Occafion of taking Notice of this Bay for Cure, was in the Reign of King Charles the Second: There was one Mr. Curningbam, who had an only Son grown to Man's Eftate. This young Man had the Evil to that Degree, that it run upon him in eight or ten Places: He had been touch'd by the King, and all Means imaginable had been us'd for his Recovery; but all did no good, and his Body was fo wafted, that he could not walk. When all Hopes of his Recovery were pafs'd, he was carried to the Lougb, where he was warh'd and bath'd; and in eight Days Time, bathing each Day, all the Sores were dry'd up, and he was cur'd, and grew very healthy, married, begot Children, and liv'd nine or ten Years after. This Account I had from Capt. Morris, and his Brother, who were EyeWitneffes. After fo remarkable a Cure, many came there, who had running Sores upon them, and were cur'd after a little Time. The Natives thought it could not do well, but upon fome particular Time appropriated for that Service; and now great Crowds come there on Midfummer-Eve, of all forts of Sick; and fick Cattle are brought there likewife, and driven into the Water for their Cure; and People do believe they receive Benefit. I know it dries up running Sores, and cures the Rheumatifm, but not with once bathing, as People now ufe it; and the drinking the Water, I am told, will ftop the Flux. I look upon it to be one of the pleafanteft Bathing Places I ever faw.
VI. About June 1711, at Brofely near Wenlock in Sbrop/Bire (about Of the Eraptwo Nights after a remarkable Day of Thunder) there was heard a ter- tion of a rible Noile in the Night, which awaken'd feveral People; who rifing Surning in to fee what it was, came at laft to a Boggy Place under a little Hill, shropihire, about 200 Yards off the River Severn; where they perceiv'd a mighty by Mr. R. Rumbling and Shaking in the Earth, and a little boiling up of Water Hopton. n. through the Grals: They took a Spade, and digging up fome Part \(33+\) P. 475 of the Earth, immediately the Water flew up to a great Height, and a Candle, that they had, fet it on Fire.

To prevent the Spring being deftroy'd, there is an Iron Ciftern plac'd about it, with a Cover upon it to be lock'd, and a Hole in the Middle thereof; that any who come may fec the Water thro'. Water immediately takes Fire, and burns like Spirit of Wine, and continues to do fo as long as you can keep the Air from it; but by raking up the Cover of the Ciftern it quickly goes out: The Heat of this Fire much exceeds the Heat of any Fire I ever faw, and feems to have more than ordinary Fiercenefs with it.

Some People out of Curiofity, after they have fet the Water on Fire, have put a Kettle of Water over the Ciftern, and in it Green Peale, or a Joint of Meat, and boil'd it much fooner than over any Artificial Fire that can be made. If any green Boughs, or any Thing elfe that will burn, is put upon it, it prefently conlumes them to Alnes.

The Water of itfelf is as cold as any Water I ever felt; and what is remarkable, as foon as ever the Fire is out, if you put your Hands into it, it feels as cold as if there had been no fuch Thing as Fire near it. It fill [in September] continues boiling up with a confiderable Noife.

Of a Mineral VII. About twelve Years ago a Mineral Water was accidentally Water at difcovered in Canterbury. In digging the Ground, they firtt met Canterbury, by Dr. Moulins. n. 312. f. 2462 . with a black fat Mold, extending itfelf three Feet deep, and gradually changing into another Sort of Earth, very fat, and like Butter. This fecond Lay was two Feet thick ; the Colour of it Yellow, fomerhing mix'd; its Odour ftrong and Mineral; and a Piece of it being for fome Time expos'd to the Sun, fmell'd much like burning Sulphur. After this they found a Quickfand of a darker Colour than the firft Earth, mix'd with feveral little Stones, and the Smell ftronger than before. Two Feet further, under the Quickfand, a hard Rock appear'd, out of which Water gufh'd with fome Violence. They dug two Wells at about feven Feet diftance from each other; one about eight or nine Feet from its Surface, and twelve from the Surface of the Ground about it, and reacheth the Rock: The other is not fo deep by two Feet, and only toucheth the Sand. This laft is fomething ftronger of the Sulphur, but the other is Atronger of the Mineral Spirit and ferruginous Parts.

Two Drams of the fecond Lay of Earth, found in digging, being put into four Ounces of Spirit of Vinegar, there prefently arofe a confiderable Ebullition; and foon after the Spirit was ting'd with a yellow brownifh Colour, which fuffer'd no Alteration with the Infufion of Logwood, nor with Galls, but with Oil of Tart. p. delig. turn'd greenilh, and with the Infufion of Lig. neph. of a pale Red.

The Water taken up at the Spring is extraordinary Jimpid, but grows fomething whitifh in a quarter of an Hour, and in half an Hour the Spirit is loft, and the Mineral hangs firft on the Sides of
the Glafs, and then falls gradually to the Bottom. It won't keep quite fo well as the Spaw or Tunbridge Water. Its Tafte is mafculine and auftere; the Smell ferruginous and ftrong, fomething upon the Sulphur: People fay it imells like Gun-powder. It will make the Root of the Tongue of the Drinkers look blackifh. Linnen walh'd in it turns yellow. It will not lather with Soap. The Glaffes the Water is dipp'd with grow yellow, which no Scowering can take off, and are apt to fly. In frofty and cold Weather it is fo warm as to mele Ice and Snow ; in other Seafons 'tis cold ; tho' not fo cold as lome Spring Waters are.

The Weight of this Water varies much according to the Stafons of the Weather. In May 1704, it weigh'd three Grains lighter than common Water in the Quantity of a Pound. In the Spring of \(1705^{\circ}\) it was equal in Weight to common Water; and is now ftill heavier in Auguft following, becaufe of the exceeding dry Weather of that Summer. But in general about Midfuminer, if the Weather is no ways extraordinary, 'tis pretty equal to common Water in Weight.

A fingle Grain Weight of good Gall will turn a Pint and a half of this Water of a very noble deep Red, and in an Inftant. Syrup of Violets turns it of a Grafs green. With the Infufion of Brafile, it giveth a deep lively Blue: With that of Lign. neph. firf a lighe Green, then a light Yellow, with a blue Crown: With the Infufion of Logwoot, a blue Black: With that of Fuftick Wood, a dufky Yellow: With the Flowers of Pomgranates, a fair Violet: With the Leaves of Tea, a fine purplifh Blue: With good Nantz Brandy, an elegant Sky-colour. It turns a Solution of the Saccb. Saturni milky in an Inftant; and the Solution of Sublimate in fome Time longer. Ol. Tart. per deliq. Sp. Sal. Armon. Sp. Vitr. Ec. make no renfible Alteration.

In calm Weather, in Winter efpecially, a thick oily Film covers the Surface of thefe Waters, of as great a Variety of Colours as a Rain-bow; a Spoonful of it drunk, hath the Effect of, and compofes as much to Sleep as, a moderate Dofe of Opium. Some of this Scum, being dry'd by Evaporation, tafted very fat, and felt fo between the Fingers. Some of this Powder being caft upon a red hot Iron, moft of it immediately burn'd away with fparkling; and what remain'd was of the Colour of Ruft of Iron, and tafted partly Stiptic and Earthy, and partly Saltifh.

The Water itfelf, being gently evaporated, yields a yellowifh Sediment, more or lefs, according to the Seafons. Laft Spring a Quart yielded fix Grains of it; but in September following, the fame Quantity afforded me nine Grains; whereas a Pound of Tunbridge Water gave but one fingle Grain of Sediment to Mr. Boyle, as appears by his Memoirs of Mineral Waters. This Sediment, being boil'd in com-

Vol. IV. Part II. 4 R mon

\section*{Of the Spaw Waters.}
mon Water, made a itrong Lixivium, with which Acids caus'd no ienfible Fermentation; but Syrup of Violets turn'd it Green. This Lixivium being evaporated, yielded a fat Sulphurous Salt, that would not coagulate into Cryftals. I can get but three or four Grains of it out of ten Grains of Sediment; but from the Colour and Tafte of the Lixiv:um, 1 have Reaton to fufpect, that there is a larger Proportion of Saline Particles, which, as I conceive, being Volatile, evaporate away with the Water.

As for its Medicinal Virtues, from the many and truly wonderful Cures, I believe it to be one of the moft excellent Waters of this Kind, as yet found out in England. The little Well is very uleful in Difeales of the Breaft, as in Afthmas, Coughs, Rheums and Catarrhs. It hath cur'd feveral given over of Confumptions of the Lungs. Moft Diforders of the Stomach are cur'd by this Water. It feldom fails in the Cure of Rheumatick Gouty Pains of the Limbs, or other Parts of the Body, in the Scurvy and Melancholy Diftempers, Jaundice, Vapours, all forts of Stoppages, Scabs, Itch, \(\mathcal{B}^{\circ} c\). But in Gravel, Cholick, and Green-ficknelj̈, 'tis a true Specifick; as alfo in inward Ulcers, if not too far gone. A Porter of Bolton, who had been with many Doctors, and was laft Spring difcharg'd out of St. T'bomas's Hofpital, as an incurable Perfon, hath been cur'd of his Ulcer in the Bladder this Summer, with drinking of this Water for three Months together.

In Agues it is beyond the Bark: I have feen fome Rebellious ones, that could not be remov'd by the Bark, perfectly cur'd by this Water, and fome Conftitutions quite worn out by the frequent Relaples of this Diftemper, reftor'd again. This is allo remarkable, that it agrees beft with old, decay'd, and weak Conftitutions. The Water fits pleafantly upon the Stomach, works off by Urine very brifkly, caufeth a good Appetite, clears the Spirits, and procures Sleep. It is not binding, as fome other Chalybeats are, but keeps the Budy open to moft People, and upon fome it brings now and then a gentle Loofenefs, which carries off the Diftemper. For thefe four Years I have prefcrib'd them to many Scores of People every Seafon, and I could never obferve any Inconveniency, or ill Symptom arife from the Drinking of them.

An Examen of the Spaw Waters, prowing them to be Alcalies, by Dr. F. Slaıe D. 3 37. P. 447
VIII. I have long fince been of Opinion, that People have been miftaken in their Notions about the Nature and Properties of thofe Mineral Waters, which are of the Cbalybeat or Iron Species. Germany abounds much with thefe Waters, and they beftow one general Name upon them, and call them Sour Brunns, that is, Sour Wells, or Springs of Water. Henricus ab Heers agrees with Vitruvius, Fallopius and Helmont, in juftifying the Acidity of feveral forts of Sparw and Cbalybsal Waters; bur, not being fatisfied with their Reafons,
affigns others; and after a tedious Harangue, concludes, that they owe their Birth and great Virtues to Vitriol and Sulphur. He obferves, that Vieriol and Sulphur are found in the Glebe or Earth from whence thefe Waters fpring; but yet does not give us one Proof or Experiment of his having tound any real Vitriol, or true Sulphur, or any Acidity in thefe Waters.

Dr. Fordis, who practifed Phyfick at Francford, and often at Swalbac in Summer Time, at my Defire, examin'd thofe Waters. He gave me an Account of fome Ocres, or Ferruginous Parts, which he calcin'd and tortur'd in the Fire, to make them confefs their Sulphur Original ; but in all his Experiments did not Catisfy me, that the Water held one Drop of an Acid by Diftillation, \(E c\).

That which gave me the firf Sufpicion, that the Cbalybeat Waters did not contain any rough, or vitriolic, or acid Salts in them, proceeded from an accidental Ule of a ftrong Iron Water, in which I diffolv'd Soap, and found it lather and walh my Hands well, and then I us'd a Wafhball and Thav'd with it, and try'd feveral other Waters of this fort, which did the fame, and much better than fome PumpWaters.

I confulted my Palate, and try'd whether I could difcover any Sharpnefs or Acidity in our Englifh Steel-Waters at Tunbridge, at Black-Boy in the Parifh of Franfeld in Suffex, Hampfed, Sunning-Hill in Berkfoire, sec. but I was io far from difcovering any fuch Thing, that thefe Waters feem'd rather to leave a fweetifh Flavour behind: Thus many Alkali Salts, if nicely examin'd (of che fix'd kind) have affected my Tafte.

I made Experiments with feveral Sorts of fuch Spirits as are apt to ferment with Acids; fuch as Spirit of Hartborn, of Sal Armoniac, \&xc. but thefe made no Ferment, nor any Motion or Change in thefe Waters.

I confider'd the Difeafes in Human Bodies, which thefe Waters were prefcrib'd, by Phyficians, to cure ; that they were often fuch as proceeded from fharp, acid, or acrimonious Caules, as Cardilage, or Heart-burnings, four Vomitings, corrofive Diarrbeas, Cholicks, from Scurvies and Stranguries; and that for thefe Diftempers fweetning and alkalifate Remedies are made ufe of.

I confider thefe Waters as containing in them the Properties of Iron; and I find by Experience, that it is moft oppofite to Acids, being one of their great Correctors, and therefore rather to be efteem'd an Alkali.

Take fome Filings of Iron, perhaps a Dram, and pour on them about an Ounce of the milder Acids, fuch as Vinegar, Verjuice, or the Juice of Lemons, and it will deftroy the Sharpnefs of thefe Juices: Or if you pour on thefe Filings Mineral Acids, as the very corrofive Spirit of Nitre, or of Salt, or what is call'd Oil of Vitriol, they will immediately lofe their Acidity, be difarm'd of \({ }_{4}\) R 2
their Mharp Points, and by Evaporation give a Salt that will tafte iweetifh, and is by Chymilts call'd Saccbarum Martis, if duly prepar'd ; which is fately given inwardly, and is efteem'd a good altering Medicine.

Steel beaten to a fine Powder, is, without any farther Preparation, given inwardly with great Succefs for Stomachic Difeafes, as in the Green-Sickneis, Hypochondriac, and various other Acid and Acrimonious Difaffections.

I confider'd Milk to be a very proper and obvious Subject to bring this Controverfy to a plain and unqueftionable Decifion. I made this Experiment with all poffible Exactners : I firlt prov'd the Chalybeat Waters, more particularly the Sparv Waters, by trying whether they tinged with Galls. Thefe being very good, I put part of the \(\mathrm{W}_{\mathrm{i}}\) ters to cold Milk; fome I only made lukewarm, and fome I boil'd together, in equal Proportions : But they were fo far from affording any Curd or Coagulation, that they continu'd feveral Days without being four.

The German Phyficians (on the miftaken Notion of their being Acid) Atrietly prohibit their Patients the Ufe of all manner of Lafficinia, whilft they are in a Courfe of thefe Waters.

This Prejudice too, has prevail'd much amongtt moft of our Water Drinkers in England; but I do atteft, that I have frequently advis'd, in fome Cafes, Milk to be given daily in the Evening, through a whole Courfe of Steel Waters, with good Effect : Nay, I do affirm, that fome others could not bear the Waters without having a third Part of Milk, or more, mix'd with them, and have continu'd them fo for many Weeks, with good Advantage: Nor do I find the leaft Reafon to prohibit the Ufe of Milk in a Courfe of Batb Waters; having been there above a Year and half, making the beft Scrutiny I can into the Properties, Virtues, and Vices (if they have any) of thofe Waters.

Since our Experiments difcover that thofe Things which are of a fweetning Alkalifate Nature, do fo very well agree with thefe Mineral Waters, it will appear by the following Experiment, that Acids do very much difagree.

I put but one Drop of Oil of Vitriol to a large Glafs full of Atrong Spaw Waters, which before the Addition of this Acid did give a deep Purple to the Solution of Galls; but now would not give the leaft Tincture, though I put in four Times as much of the Galls. From hence I conclude, that the Virtues of the Cbalybeat Ingredients, which I take to be the Life and Soul of thefe Waters, were fo far bound up or deftroy'd, as to have loft their Cordial or corroborating Faculty ; and that the Bile or Gall in the Human Bowels, could not be able to leparate the Cbalybent (which are the only Medical) Particles, and mix them with the Chyle, in order to anfwer any End in Phyfic.

\section*{Of the Pyrmont Waters.}

Let this be a Caution to thofe that defign to make thefe Waters pafs better by Urine, that they do not make ufe of any Acids; it being a. common Practice to ule Spirit of Vitriol, Spiritus Nitri dulcis, \&cc. as a Diuretick: Unlefs it fhould fo happen that they have a Defign to take off, and diveft them of their warm Cordial or altering Power, and fo to bring them near to common Water; which, I muft confefs, we are forc'd to do, efpecially in the Ufe of Batb W'aters, in fome hot inflammatory Cafes.

I thall conclude with one fhort Experiment in Favour of our Alkalies; that if you put any Alkali Salt, volatile or fix'd, fuch as Volatile Salt of Harthorn, or of Sal Armoniac, or fix'd Salt of Tartar, or Wormwood, or any other true Alkali, you will then deftroy the above-nam'd Acid Spirit, recever the Virtue of the Waters, and difpofe them to give their Tincture as they ufed to do in their natural State.
IX. Having procur'd about a Dozen Quarts of Pyrmont Waters of tbc Nature this laft Summer, I made fome Trials with them. I found by the and Virtues Tafte, that they contain'd a rich Cbalybent Virtue, and alfo made of tbe Pyra very brifk and lively Impreffion on the Palate, more grateful and ipirituous, than the beft Spaw Waters I ever tafted. The Spaw Wa- Slare. n. 351. ters are look'd upon as moot excellent, if they fparkle a little in a p. 564. Glafs; but thefe, in Summer-time, when pour'd into the Glafs, nay, fometimes even' in the Bottle, as foon as the Cork was open'd, and the Air was admitted, would make a notable Ebullition, fomewhat like bortled Cyder, though this was foon over; but they did yet continue their fimart and brifk Tafte, and highly Cbalybeat Relifh, to the laft Drop, though we were fome Hours in drinking them off. In the Winter-time, thefe Waters do not fparkle, nor ferment, at leaft mine did not; but they were not carefully preferv'd, being expos'd in cold Cellars; and yet, notwithftanding, they loft not the Cbalybeat Tafte, and alfo retain'd a very pleafant brifk Guft. Thefe Waters have been reckon'd in the Number of the German Acidule, and fome of my Friends, to whom I gave a Glafs of the Water, have afcrib'd to it a fharp Tafte, and have been ready to run away with a poffefs'd Opinion of its being four: But, when I have defir'd them to confider, they have own'd that the fmart and brifk Tafte mifled them to call it Acid or truly four: Thus Cyder and foft Ale, when bottled, will give fuch an acute Affection to the Palate, when it is far from being four: And even Volatile Alkalies of Sal Armoniac, or of Harthorn, may be made to give the like Pungency to the Tongue.

In order to a more nice Enquiry, whether any Acidity were difcoverable in thefe Pyrmont Waters, we dropp'd in confiderable Quantities both of Spiric of Harthorm, and of Spirit of Sal Arwoniac, both
both juftly prepar'd ; but could not difcover the leaft Luetation or Motion to appear upon this Conjunction, as it ufually does with an Acid.

I made a yet more nice and certain Examen of thefe Waters, by mixing Milk with them, fometimes in equal, fometimes in double Proportion; and in various Degrees of Warmth, both in lukewarm Degrees, and alfo with a boiling Heat, but I could not perceive any Curdling. But rather, on the contrary, the Water preferv'd the Milk from Coagulation, for four or five Days, even in September, it being hot Weather.

Take a very little Gall in Powder, about half a Grain to a Glars of a Quarter of a Pint; this does in a Moment render it turbid, and make a dark Purple, efpecially if you ftir it: But if you drop the Powder on the Surface of the fame Water, it then caufes a fine blue Tincture. If you will make a very fine Tincture pleafant to the Eye, take five Leaves of ftrong Green Tea, put them into the Bottom of a Glafs holding a Quarter of a Pint, and you will fee thofe Leaves unfold themfelves, and in a Quarter of an Hour, tinge the Water with fuch a ceruleous Azure Blue, that few Vegetables do afford the like. We obferve, that the longer thefe Leaves, or any other Stiptics, (which are the Precipitators) do ftay together, the more they degenerate into a deep Purple, or even to an Atramentarious Colour.

In reference to the internal Uie of thefe Waters, I drank about a Quart at a Time, after this Manner : I firft began with the Spare Waters, which I procur'd very good, and drank them for a Week, and they agreed very well. I then drank the Pyrmont Waters for three or four Days, and continu'd the Ufe of thefe Waters alternately, until I had drank about twenty Days. By the Refult of my Experiment, it feem'd to me very plain, that the Pyrmont Water was more agreeable, gave more Strength and Spirit, and was as much or more preferable for its internal Virtue, as for its excelling the other in a brifker and more fprightly Tafte.

There is another Excellency in thefe Waters, which will make them more ufeful to us, than any foreign Cbalybeat Waters we yet know, becaufe thefe will keep better; they are not fo foon fpoil'd by any accidental Infinuations of Air, as the Spaw are fubject to be. The Cbalybeat Mineral is here throughly diffolv'd and well united, and mix'd in this Water, fo that it does not eafily precipitate: For which Reafon, it may alfo the better pafs the rafa lactea, and even enter into the Mafs of Blood it felf, and work the more confiderable Effects. That this is not a bare Hypothefis, may be prov'd by this Experiment.

Having fuffer'd the Spaw Water to be expofed in a Bottle whicls was half full, and unftopp'd twelve Hours, I examin'd it, and found
found it tafte juft like common Water ; but the Pyrmont Waters that were open'd to the Air after the fame Manner, tafted ftrong of the Mineral, and gave their Tincture as at firft 3 nay, they continu'd thus for full two Days, and perhaps might have done fo longer, but I thought that 'Time fuffic'd.

Having had lately fome Difcourfe about a Purging Quality contain'd An Additional in thefe Waters, I am now inquiring whether they in Reality do con- Account. Ibid, tain any purging Ingredients or Properties.

I evaporated about a Quart of this Water ad ficcitotem; I then poured on the Reliquie fome Rain-Water, enough to diffolve and take up the Salts, and exhal'd that Water, and had a Grain or two of the Salts, that tafted Muriatic, fuch as moft River and Pump Waters give. It is well known that the Purging Waters have a very bitter Tafte, and by Dr. Grew, that Salt was call'd Sal Catbarticem amarrm, which diftinguin'd it from all other Species of natural Salts: That of the Pyrmont Water above-mentioned has no Relation to this, but to the Sea Salt, not being in the leaft bitter.

It is alfo well known, that unlefs our Waters be impregnated with a confiderable Quantity of this bitter Salt, it will not purge at all: Two or three Grains fignify nothing, nor have the leaft Cathartic Power. For Example, put two Drachms of the purging Salts to a Quart of common Water; and this Quantity will give but a Stool or two to one who is naturally very eafy to work upon. I have examin'd feveral other Cbalybeal Waters, and found much the like Ingredients, and never any that I could fufpect to carry any purging Properties.

I think we can much better demonftrate that the Cbalybear Waters do contain Stiptic and Reftringent Virtues, becaufe they owe their Birth to the Iron Mineral, and more particularly to the Pyrites, which Dr. Liffer fuggetts, (not without fome Reafon) to be the Parent even of all Iron Ores, as it is doubtlefs the Caufe of all Cbalybeat Waters: 'Thus I have often examin'd the Solution of the Pyrites by the RainWater at Depiford, and at other Places, where Copperas is made, and found it a very ftrong Cbalybent Water. It is from this Mineral we have our ftrong Stiptic and conftringent Medicines, for externał and internal Ufe; we have our Powders and Salts of Steel, or Vitfiol of Mars, from hence; nay, even obftinate and inveterate Dinirbseas have, by a judicious Ufe of Tunbridge and other Iron Waters, receiv'd a Cure.

But it is afferted that the Waters really do purge at Pyrmont, where they are drank.

This we do allow to be true, that Tunbridge Waters do not only purge, but fometimes vomit, when drank haftily and in great Quantity; but our Phyficians have corrected this Irregularity, and we hear of no fuch Complaints, where they obferve a juft Regimen:

And we do all agree, that thofe Waters are, in their own Nature, binding, and do oft require fome opening Medicine. The Quantities of Water drank at Pyrmont are very large, often two or three Englib Quarts. It is no Wonder that their Weight forces them through the Bowels; for any common Water, drank haftily, and in fuch Quantity, will do the fame. Whereas, if you take this Method, and will drink Pyrmont, or any other Chalybeat Waters leifurely, viz. a Pint-Glafs in an Hour, or rather two Half-Pint Glaffes, yod may drink three Pints in fo many Hours without Danger of lofing them by Dejection. But if any one will be careful, and take this Caution with him, he will fcarce fail of Succels; that is, let him be very quiet and ftill, both in Body and Mind; the lefs he Itirs or walks, the better he will pafs off his Waters by Urine.

I fhall mention only one Obfervation more, which is, that none of our Englifh Steel Waters do ftrike fuch a Purple as the foreign celebrated Cbalybeat Waters do ; for ours do give a more turbid and dark Colour, and the worle the Waters are, the blacker Sediment they make: Thofe of Iflingron abound with a coarfe Oker, the Mineral is not well diffolv'd, but gives an atramentarious Colour ; but the Pyrmont Waters excel all I have happen'd to examine, in its bright Cerrubeous Luftre.
N. B. Moft of the Experiments alledg'd by Dr. Slare, in the foregoing Difoourfe, were likewife by bim Sewn before the Royal Society, Feb. 28. 1717, and it was found that the Pyrmont Waters gave a mucb brigbter Tincture with Galls and Tea, and bad a mucb more exalted Chalybeat Tafte tban the Spaw; and a fmall Quantity of eacb being kept for fome Time in Bottles, to compare them, the Pyrmont was found to bave retain'd its Virtues mucb better than the Spaw. The Prefident, and feveral of the Members prefent, baving drunk a Glafs of it, found it of a very agreeable Relifh, and to fit eafy on the Stomach.

> X. Accounts of Books Omitted.
1. 276. p. 1. Mloyfii Ferdinandi Comit. Marfgli Danubialis Operis Prodromus,
1038. Ad Regiam Societatem Anglicanam. Folio 1700.
2. Dr. Ebm's Treatife of \(\mathrm{St}_{\mathrm{t}}\) George's Bath by Landeck, in the Lord-
n. 308. p. 2346.

\section*{C H A P. III.}

\section*{Mineralogy,}

"TH E: Marble for this Purpofe ought to be very fmooth with-The Way of out any Spot, and hard, that it may better bear the Force of Colouring the Fire, and therefore Alabafter is by no means proper for thele Ufes.
2. Fire is requifite to open the Pores, but in fuch a Degree as that - 735 it fhall not be foorchect, for then the Colours will be deftroyed; neither miult it be too cool, for then, though it receives the Colours, yct they will be lels hixed. For Marule even when it is cold, will inbibe fome Colours, as Saffron, and Stone-blue for a blue Colour; but thefe Colours are cafily difipated by the leaft Heat of the Fire: And therefore the Degree of Heat ought to be fufficient, gently to boil the Liquor that is poured upon the Marble.
3. The Menttrua are different, according to the Diverfity of the Stuff to be difolved, a Lixive of Horfe's Urine made with four Parts of Put-anh, and one Part of Quick-lime, (N. B. Dog's Urine is better than Horle's) Alio Spirits of Wine, common Lixive, Wine and fome oleagenous Bodies mixed.
4. The Colours laid on with a Vehicle are thefe. 1. Stone-blue, diffoivcd in Spirit of Wine, or a Lixive of Quick-lime. 2. Lackmus in common Lixive. 3. Saffron or Sapgreen diffolved in a Lixive of Urine and Quick-limee, or in Spirit of Wine. 4. Vermilion or Cochineal diffolved as above. 5. Dragon's Blood diffolved in Spirit of Wine according to Art. 6. Brafil Wood diffolved in Spirit of Wine. 7. Alkanet Root extracted with the Oil of Turpentine; for it cannot be diffolved in any other Menftruum, neither in Spirit of Wine, nor a Lixive. 8. Sapgreen the lefs, mixed and diffolved in Spirit of Wine, or a Lixive of Quick-lime as before. There is another kind of Dragon's Blood, called the Tears of it, which being mixed with Urine, produces a beautiful enough Colour, but it is hard to be got. Thofe Colours that are mixed with Urine anfwer the beft.
5. The Colours which are rubbed on without any Vehicle are thefe. 1. Dragon's Blood very well purified, for a red Coiour. \({ }^{2}\) Gum Gutta, for a yellow Colour. 3. Green Wax, for a green Colour. 4 . Sulphur, Pitch, and Turpentine, for a brown Colour; it is only required that the Marble be fufficiently hot, and to the earthy Colours are communicated to it by rubbing, which you will find by Experience.

Thefe Colours are either eafily or difficultly wafhed out The red Colour may be extratted in fix and twenty Hours, with Oil of Tartar by Deliquium, without hurting the Polifh of the Marble in the dealt; and the brown with Aqua fortis in a Quarter of an Hour, but the Polifh will be hurt.

> VoL. IV. Part II.

For

For a Golden Colour, take Sal Armoniac, white Vitriol, and Verdigreafe, and reduce them to a very fine Powder.

Of a Quarry of Marble in Jreland, by
Mr. F. Ne-
vile. n. 337.
p. 278.
II. I was lately with Mr. Cole in the Mountains in the County of Fermangh in Ireland, where I had difcover'd a Marble Quarry. The Country wherein it lies, is fo flrange for the natural Wonders in it, that it would make a little Hiftory to delcribe all that is to be feen : It lies on the North-fide of Calcagh, in the Parifh of Kila.for, in the County of Fermanagh. There are Marble-Rocks, whofe perpendicular Heighe is 50 or to Feet, difcover'd b fubterranenus Rivers, which by Degrees have waf'd away the Earth and loole Stones, and difcover'd thele mighty Rocks. There are many great lits fallen in on the Sides of the great Mountain; feveral of them in a finall Compais of Ground, io that it is cangerous travelling near them. There are many Caves form'd, fome very large, the Sides and Arches of Marble, fome of a Liver-Colour, varicd in white with many little Figures; fome of a light blue varied with whites but I could find no entire black and white amongtt thens.
1II. On the 18ib of Auguf 1 708, at Fatfeld, in the Pariß of Chefier \({ }_{a}\) An Acolliery Le Sirrect, about Three of the Clock in the Morning, by the fictilen blown up; by Eruption of a violent Fire, which cifcharged itfelf at the Noutns of - Comme nicatrd ly \(^{2}\) Dr. A. Charlett. n. 318 . p. 215 . three Pits, with as great a Noife as the firing of Cannon, or the loudeft Claps of Thunder, threefcore and nine Per!ons were deftroyed in one Inftant. Three of them, viz. two Men and a Woman, were blown quite up from the Bottom of the Shaft, fifty-feven Fathom deep, into the Air, at a confiderable Diftance from the Mouth of the Pit: One of the Men with his Head almoft off, and the Woman with her Bowels hanging about her Heels.

The Engine, by which the Coals were drawn up, and is of a great Weight, was removed and caft afide by the Force of the Blaft; and what is more wonderful, the Fifh which were in the Rivulet, that runs twenty Yards under the Level, and at as great a Diftance from the Mouth of one of the Pits, were in great Numbers taken up dead, floating upon the Water: Whether this happen'd by the violent Concufion of the Air, or whether they were choaked with the Sulphur (that to be fure in Abundance cifperfed itfelf abroad) I leave to others to determine; only this I obferve, that for feveral Days a very ftrong and noifome Smell continued to come out of the Pits.

As to the Caufe of it, it is to be premifed, that Coal Mines are in general fubject to Stith or Sulpbur.

Stith, as vulgarly fo called by the Pitmen, I think corruptly, from Stench or Stink, is a want of Air, or rather fuch a Foulnefs in the Air, that overcomes the Spirits of the Men, and fo fuffocates them, as well as extinguifhes the Candles.

Sulpbur differs in this, that as the other fuffers not the Candles to burn, this makes them burn too faft; and the Flame by the impulfive Quality of the Air, or attracted by the Sulphur, extends itfelf upwarts
into a prodigious Length, and as a Match lighted for the Difcharge of a Cannon, as fpeedily fets on Fire that Vapour, equally deffruetive.

Now to prevent both thefe Inconveniencies, the Viewer of the Works takes the beft Care he can to preferve a free Communication of Aif through all the Works; that as the Air gocs down one Pit, it fhould afeend another; but it happen'd in this Colliery, that there was a P it which ftcod in an Faldy, where the Air had not always a free Paffige, and which in hot and fillery Weather was very much fubject to Sulphur: And it being then the Middle of Auguft, and fome Danger apprehended from the Cloferefs and Heat of the Scafon, the Men wiere withdrawn from cheir Work in that Pit, and turned into another; but an Overman, fome Days after this Change, and upon fome Notion of his own, being induced, as is fuppofed, by a frehh, cool, frofty Breeze of Wind, which blew that Morning, and which always clears the Works of all Sulphur, had gone too near this Pit, and had met the Sulphur juft as it was purging and difperfing it felf; upon which the Sulphur immediately took Fire by his Candle, and fo he proved the Occafion of the Lofs of himfelf and fo many Men, and of the greateft Fire that ever was known in thefe Parts.
IV. 1.] The Eruptions of Mount Vefurius happen fo frequently, that An Acrount of that they are almoft innumerable, and there is not a Month paffes, far lefs a Year, when there is not fome deftructive Commotion in it, fometimes greater, and fometimes lefs. But in 1707 , there happened a ty bise in Horoursvery great Eruption of it, in which there were many Things obferved ableJ. Valerta. which have not been taken Notice of in any other neither before nor fince.

In the Year 170\%, when the Weather was very hot, in the latter End of \(\mathcal{F u l} y\), Mount \(V\) ejucius, which had remained quiet for a good while, began to give fome Signs of an approaching Commotion, for firft there were internal Roarings heard in the Middle of the Mountain; but as yet there was no Appearance neither of smoak nor Flame. After thele Sounds it began gradually to fend out Smoak and Flame, which in the Night time efpectally fhone over all Cainpanio. In the mean time at different Intervals, it fent out fuch dreadful Explofions as are hardly to be imitated by the largett Artillery. After this it continued to chrow up Athes, as of fome Stuff that had been powdered, tolfing them up into the Air for feveral Days and Nights, and difperfing them over the neighbouring Country, according as the Wind blew, fometimes into the Sea, fometimes on the Stabian Coalt, fometimes towards Nola, and fometimes towards Acerra. Nor mult I neglect to mention the great Showers of Stones, which deftroyed every Thing where they fell, even the very Cattie. Next there rufhed our from its Mouth, as at other Times, a Torrent of Bitumen, which they call melted Gravel, which at firt had the Appearance of a gentle Stream of Fire, moving downward only with fuch a Celerity, as you may obferve in melted Pitch, or other fuch like Subitances. This Matter, which I would compare to Glais made of Sand melted in the hottelt Furnaces, in the fame man-
ner as Giass, after it had cooled by going on, acquired a ftony Hardnefs. But it is worth while to obferve, that the upper Surface of this Matter when it was cold, was formed into fmall fpongy Stones, while the lower refembled a folid, broad, and very hard Flint, which has been ufed of a long time in paving the Highways; as it that which was next to the Air had imbibed fome of its Particles, while the under Parr, having no Air mixed with it, formed a very compact Mafs. But amonglt a great many Phænomena of this boiling Mountain, there were two which had not beenfeen or known for many Ages: For the third or fourth Day, it began to fend forth Flafhes of Lighening from its Orifice, having the fame Appearance as thofe which you fee dart from the Heavens, but tortuous and flow, and at the fame Time were heard Explofions like Claps of Thunder, fo that at firft we were afraid that it really thundered. The Flathes at firft were fo thick and frequent, that we expected it would rain, till we undertlood that they came from the Mountain, and that the dark Clouds were not owing to the Vapours, but to the Afhes flying fo thick about. On the fecond of Auguft, at four in the Afternoon, the Air at Naples was fo full of Afhes, that the Sun's Rays being excluded, there was univerfal Darknefs, and to fuch a Degree, that we could not know our Friends and Acquaintances in the Streets. No Night was ever darker than that Day ; for if any one went abroad with a Torch, he was obliged to return again, which happened only in the Time of Titus as Xipbilinus informs us. The Magiftrates of the City and the Priefts, ordered Supplications to be put up by the People, and that the Relicks of St. Ya nuarius the tutelar Saint of Naples, fhould be carried in Proceffion with the ufual Ceremony to the Capuan Gate, which is towards the Mountain. After they had got there, in the Midft of the thickeft Darknefs, at length about the firlt or fecond Hour of the Night, one or two Stars began to fhine towards the North, where perhaps the Afhes did not lly fo thick, and the blue Sky to appear, and after that the Darknels which had robbed us of the Day gradually diminifhed. Then the Athes were driven off from us towards the Sea. The next Day however was not quite clear, but the Air was ftill fomewhat obfcured with the Athes, and retained----dubie diforimina Lucis.

Thus Vefurius laying wafte the Country with Aftes, exhaufted with throwing up melted Gravel for feveral Days, fo that the black Torrent iffuing out from it reached almoft to the Sea; at laft after fifteen Days almoft became fettled, and the People about Naples who had fled, returned Home. The Inhabitants too of the Town being at laft freed from Fear, and defirous to perpetuate the Memory of St. Finuarius, who affifts them always in Straits, ordered a Gold and Silver Medal to beftruck, on one Side of which was the Head of St. Fanuarius, with this Infcription, DIVO JANUARIO LIBERATORI URBIS FUNDATORI QUIETIS ; and on the Reverfe was \(V\) efuvius quiered, and the following Infeription, POSTQUAM COLLAPSI CINERESET FLAMMA QUIEVIT, CIVES NEAP. INCOLUMES.

\section*{Eruptions of Mount Vefuvius.}
2.] April 17,1717 , with much Difficulty I reach'd the Top of \(\rightarrow\) f Mownt Mount Vefurius, in which I faw a vaft Aperture full of Smoak, which Vefuvius, and hinder'd me from feeing its Depth and Figure. I heard within that \({ }^{\text {its }}\) Eruptions horrid Gulph, certain odd Sounds, which feem'd to proceed from the Mr. E. Berks. Belly of the Mountain; a fort of Murmuring, Sighing, Throbbing, ley. n. 35t. Churning, Dafhing (as it were) of Waves, and between whiles a Noife P. 708. like that of Thunder or Cannon, which was conftantly attended with a Clattering, like that of Tiles falling from the Tops of Houfes in the Streets. Sometimes, as the Wind chang'd, the Smoak grew thinner, difcovering a very ruddy Flame, and the Jaws of the P'an or Crater. ftreak'd with Red, and feveral Shades of Yellow. After an Hour's Stay, the Smoak being mov'd by the Wind, gave us fort and partial Prolpects of the great Hollow, in the flat Bottom of which, I could difcern two Furnaces almoft contiguous; that on the Left feeming about three Yards in Diameter, glow'd with red Flame, and threw up red-hot Stones with a hidcous Noife, which, as they fell back, caufed the before-mention'd Clattering. May 8, in the Morning, I afcended to the Top of Vefurius a fecond Time, and found a different Face of Things. The Smoak afcending upright, gave a full Profpect of the Crater, which, as I could judge, is about a Mile in Circumference, and an hundred Yards deep. A conical Mount had been formed fince my laft Vifit, in the Middle of the Bottom. This Mount, I could fee, was made of the Stones thrown up and fallen back again into the Crater. In this new Hill remained the two Mouths or Furnaces already mention'd, that on our Left-hand was in the'Veriex of the Hill which it had form'd round it, and raged more violently than before, throwing up every three or four Minutes, with a dreadful Bellowing, a vaft Number of red-hot Stones, fometimes in Appearance above a Thouland, and at lealt three hundred Fect higher than my Head, as I food upon the Brink. But there being little or no Wind, they fell back perpendicularly into the Crater, increafing the conical Hill. The other Mouth to the Right, was lower in the Side of the fame new-form'd Hill. I could difcern it to be fill'd with red-hot liquid Matter, like that in the Furnace of a Glafs-Houie, which raged and wrought as the Waves of the Sea, caufing a fhort abrupt Noife, like what may be imagin'd to proceed from a Sea of Quickfilver clafing among uneven Rocks. This Stuff would fometimes Spew over, and run down the convex Side of the conical Hill, and appearing at firft red-hot, it changed Colour, and harden'd as it cool'd, thewing the firlt Rudiments of an Eruption, or, if I may fo fay, an Eruption in Miniature. Had the Wind driven in our Faces, we had been in no fmall Danger of ftifling by the fulphureous Smoak, or being knock'd on the Head by Lumps of melted Minerals, which we faw had fometimes fallen on the Brink of the Crater, upen thofe Shots from the Gulph at Bottom. But as the Wind was favourable, I had an Opportunity to furvey this odd Scene
for above an Hour and a half together; during which, it was very oifervable, that all the Volleys of Smoak, Flame, and burning Stones, came only out of the Hole to our Left, while the liquid Stulf in the other Mouth wrought and overHow'd, as hath been already delcribed. June 5, after a horrid Noife, the Mountain was feen at Neples to fpew a little out of the Craier. The fame continued the 6th. The \(7 / 6\), nothing was obferv'd till within two Hours of Night; when it began a hideous bellowing, which continued all that Night, and the next Day till Noon, caufing the Windows, and, as fome affirm, the very Houles in Naples to Thake. From that Time it fpew'd vaft Quantities of molten Stuff to the South, which ftream'd down the Side of the Mounting, like a great Pot boiling over. This Evening I returned from a Voyage through Apulia, and was furprized, pafing by the North-fide of the Mountain, to fee a large Quantity of ruddy Smoak lie along a huge Tract of Sky over the River, of moten Stuf, which was itidtt out of Sight. The gth, Vejucius raged lefs violently ; that Night we faw from Naples a Column of Fire thoot between whiles out of its Summit. The roth, when we thought all would have bsen over, the Mountain grew very outrageous again, roaring and groaning moft dreadfully. One cannot form a jufter Idea of this Noife, in the moft violent Fits of it, than by imagining a mix'd Sound made up of the raging of a Tempeft, the Murmur of a croubled Sea, and the Roaring of Thunder and Artiliery, confufed all together. It was very terrible as we heard it in the further End of Naples, at the Diftance of above twelve Miles. This moved my Curiofity to approach the Mountain. Three or four of us got into a Boat, and were fet afhore at Torre del Greio, a Town fituate at the Foot of Vefuvius to the South-weit, whence we rode four or five Miles before we came to the burning River, which was about Midnight. The Roaring of the Vicicano grew exceeding loud and horrible as we approach'd. I obferved a Mixture of Colours in the Cloud over the Crater, green, yellow, red and blue; there was likewife a ruddy difmal Light in the Air over that Tract of Land where the burning River flow'd; Afthes continually flower'd upon us all the Way from the Sea-Coaft. All which Circumitances, fet off and angmented by the Horror and Silence of the Night, made a Scene the moft uncommon and aftonifhing, I ever faw; which grew ftill more extraordinary, as we came nearer the Stream. Imagine a vaft Torrent of liquid Fire rolling from the Top down the Side of the Mountain, and with irrefiftible Fury bearing down and confuming Vines, Olives, Fig-trees, Heufes; in a Word, every Thing that ftood in its Way. This mighty Flood divided into different Channels, according to the Inequalities of the Mountain. The largeft Stream feemed half a Mile broad, at leatt, and five Miles long. I walked to far before my Companions, up the Mountain, along the Side of the River of Fire, that I was obliged to retire in great Hatte, the fu'phureous

\section*{An Earthquake in the North of England.}

Steam having furprized me, and almot taken away my Breath. During our Return, which was abrout three a-Clock in the Morning, we conftantly heard the Murmur and Groaning of the Mountain, which between whiles would burft out into louder Peals, throwing up huge Spouts of Fire and burning Stones, which falling down again, refermbled the Stars in our Rockets. Sometimes I obferv'd two, at others three diftinet Colurns of Flame, and fometimes one vaft one, that fiemed on fill the whole Crater. Thef: burning Columns, and the fiery Stones feemed to be hot 1000 Feet perpendicular above the Summit of the Volecro. The 11 th at Night 1 oblerved it from a Terrafs in Naples, to throw up incelfantly a valt Body of Fire, and great Stones co a furprizing Height. The 12 tb in the Morning, it darken'd the Sun with Athes and Smoak, caufing a fort of Eclipfe. Horrid Bellowings this and the foregoing Day were heard at Naples, whither Part of the Athes alfo reached. At Night I obferved it throw up Flame, as on the \(11^{t h}\). On the 1 tht, the Wind chanzing, we faw a Pillar of black Smoak thot upright to a prodigious Height. At Night I otferved the Mount to calt up Fire as betore, tho' not lo diftinctly becaure of the Smoak. The 14 th, a thick black Cloud hid the Mountain from Natpies. The 1516 in the Morning, the Court and Walls of our Houfe in Naples were cover'd with Athes. In the Evening, Flame appear'd on the Mountain through the Cloud. The \(16 t b\), the Smoak was driven by a Weiterly Wind from the Town to the oppofite Side of the Mountain. The ry/b, the Smoak appear'd much diminif'd, fat and greafy. The \(18 t b\), the whole Appearance ended, the Mountain remaining perfectly quiet without any vifible Smoak or Flame. A Gentleman, whofe Window look'd toward \(V_{e f u}\) inus, affur'd me, that he obferv'd this Night feveral Flafhes, as it were of Lighening, iffue out of the Moutla of the Voliano. I thall not mention the Conjectures I have formed concerning the Caufe of thefe Pbenomena, from what I oblerved in the Lacus Anfaneti, the Solfatara, Grc, as well as in Mount Vefuquius. But this I may fay, that I fas the fluid Matter rife out of the Center of the Bottoin of the Crater, out of the very Middle of the Mountain, contrary to what Borelli imagines, whofe Method of Explaining the Eruption of a Volcano by an inflexed Siphon, and the Rules of Hydroftatics, is likewife inconfiftent with the Torrents flowing down from the very Vortex of the Mountain.
V. On the 2816 of Decenbbr 1703, there happen'd an Earthquake An Accoant of in thefe Parts. From Hrll I am inform'd, that it was felt about three anEarthquake or four Minutes after five in the Evening; that it heav'd up Chairs and Tables, made Pewter-Difhes and the Windows rattle, fhook whole Houfes, and threw down Part of a Chimney. The Shock came and R. Thorefoy. went fuddenly, and was attended with a Noile like the Wind, though n. 289. p. there was then a perfeet Calm.

\section*{Subterrancous Trees in Hatfield-Chace.}

It was felt in much the fame Manner at iseverly and other Places, and particularly at Soutb-Dalton. It was more violent near \(I\) intoln, where it heav'd up the Chairs; and, as a certain Clergyman informed mir, moon cvery Limb of him. At Selby it was fe.t pretty much ; as alio near Navenby, where the Noife which preceded it feemed to fome like the Kumbling of two or three Coaches driven furiouly, and immediately the Chairs they fat on were fhool violently, and the very Stones were feen to move.
of Trees
found under Ground in HasfeldChace, by Mr. Abr. de la Piyme. n 275 . P. \(9^{80}\).
VI. 1.] The Levels of Hatfeld-Chace in 2orkibire, were the greateft Chace of red Deer that King Cbarles the Firlt had in all England; containing in all Limits above 180000 Acres, about half of which was yearly drowned and furrounded with an Ocean of Waters. This he bargains with, and fells to one Sir Cornelius V crmuidur, a Ditscinan, to difchace, drain, and reduce to Arable and Parure Land; which to the Surprize of all, and to the great Advantage of the Country round it, he at length effectually perform'd at the Expence of above 400000 Pounds.

In the Soil of all, or moft of thefe 180000 Acres of Land (of which 90000 were drained) even in the Buttom of the River of Oufe, in the Bottom of the adventitious Soil of all Marfoland, and round about by the Skirts of the Lincolinfire Woolds unto Gainllurg, Bautry, Doncaffer, Bain, Snaith, and Holden, are found infinite Millions of the Roots and Bodies of Trees, great and little, of moit of the Sorts, that this Inand either formerly did, or at prefent does produce, as Firs, Oaks, Birch, Beech, Yew, Wirethorn, Willow, Ah, Ėc. the Roors of ail, or molt of which ftand in the Soil in their natural Poftures, as thick as ever they could grow, as the Bodies of moof of them lie by their proper Roots. Moft of the great Trees, by all their Length about a Yard from their great Roots (unto which they did moft evidently belong, both by their Situation and the Samenet's of the Wood) with their Tops commonly North-Eaft, though the fmaller Trees lie almolt every Way crofs thofe, fome above, forne under, a third Part of all which are Firs, fome of which have been found of thirty Yards length and above, and have been fold to make Mafts and Keels for Ships. Oaks have been found of 20,30 and 35 Yards long, yet wanting many Yards at the fmall End. Some of which have been fold for 4, 8, IO and 15l. a-piece; which are as black as Ebony, and very lafting and durable. The Ahes are as foft as Earth, and are commonly cut in Pieces by the Workinens Spades, which as foon as flung up into the open Air, fall away into Dutt; but all the reft, cven the Willows themfelves, which are fofter than Ahes, preferve their Subftance and Texture to this Day. I have feen fome Fir-Trees, that as they have laid all along, after that they were fallen, have ftruck up great Branches from their Sides, which have grown into the Thicknels and Height of confiderable Trees.

It is very obfervable, and manifefly evident, that many of thofe Trees of all forts have been burnt, but efpecially the Fir-Trees, fome quite through, and fome all on a Side, fome have been found chopp'd and fquared, fome bored through, others half riven with great wooden Wedges, and Stones in them, and broken Ax-heads, fomewhat like Sacriiicing Axesin Shape; and all this in fuch Places, and at fuch Depths, as could never be opened from the Deftruction of this Foreft until the Tinie of the Drainage. Near a great Root in the Parifh of Hatfeld, were found 8 or 9 Coins of fome of the Roman Emperors, but exceedingly confumed and defaced with Time ; and it is obfervable, that upon the Confines of this low Country, between Eurningbama and Brumily in Lincolyflire, are feveral great Hills of loofe Sand, under which (as they are yearly worn and blown away with the Sand) are difcovered many Roots of great Firs, with the Impreffies of the \(A x\) as freilh upon them, as if they had but been cut down a few Wieeks; which I have feveral Times taken Notice of.
Hazle Nuts and Acorns have frequently been found at the Bottom of the Soil of thofe Levels and Moors, and Fir-Tree Apples, or Cones, in great Quantities, by whole Bulbels together. And at the very Bottons of a new River or Drain, that the Drainers cut, (almoit 100 Yards wide, and 4 or 5 Miles long, at the Charge of above 30000 l . befides the great Sluice at the End thereof, which coft near 30000 l . more), were found old Trees iquared and cut, Rails, Stoups, Bars, old Links of Chains, Horfe-heads; an old Ax fomewhat like a Batcle-Ax, two or three Coins of the Emperor Vofipafian; one of which I have feen, with the Emperor's Head on the one Side, and a Spread Eagle on the other ; but that which is more oblervable, is, that the very Ground at the Bottom of the River was found in fome Places to lye in Rigg and Fur, manifefting therehy that it had been plow'd and tilled in former Days.

Mr. Edw. Canly told me, that about 50 Years ago, under a great Tree in this Parihh, was found an old-haped Knife, with a Haft of a very hard black fort of Wood, which had a Cap of Copper or Brals on the one End, and a Hoop of the fame Metal on the other End, where the Blade went into it; which Blade foon mouldering away, he got a new Blade put therein, with this Diftich upon it,

> Fiver fince No's Flood was I left, My old Blade's conjum'd, but tbis is the Haft.

The fame Gencleman allo found an Oak Tree within his Moors 40 Yards long, 4 Yards in Diameter at the great End, 3 Yards and a Foot is the Middle, and two Yards over at the fmall End; fo that the Tree feems to have been as long again; for which he was proffier'd \(20 \%\). At another Time he found a Fir-Tree 36 Yards long, befides the computed Length thereof, which might well be 15 Yards more. About 50 Years ago, at the Bottom of a Turf-pit, was found a Man lying at his length, with his Head upon his Arm, as in a common Pofture of Sleep, whofe Vol. IV. Part II. \(+T\) Skin

Skin being as it were tann'd by the Moor-Water, preferved his Shape intire, but within, his Flefh and moft of his Bones were confumed and gone; an Arn of whom is now in the Poffeffion of Dr. Nat. Fobnfon.

Though thefe Things may feem Atrange, yet many Authors have related the fame.

Cambden and others have told us, and it is a Thing well known, that moft of the great Moraffes, Moffes, Fens and Bogs in Somer Jetfire, Cbefbire, Lancafbire, Wefmoreland, York/bire, Staffordbire, Lincolnfire, and other Counties in England, are full of the Roots and Bodies of great Trees, moft of which are Fir; and that they have the fame Pofitions and Impreffions of the Fire and Ax upon them, that thofe have.

Giraldus Cambrenfis tells us, that in King Henry the Second's Days, by the Force of extraordinary Storms, the Sands were driven fo much off from the Sea-fhores, in Pembrokefhire, that under them were difcovered great Numbers of the Roots and Bodies of Trees in their natural Poftures, with the Stroaks of the Ax as frefh upon them, as if they had but been cut down yefterday, with a very black Earth, and fome Blocks like unto Ebony; the fame were difcover'd again at Neugall, in the fame County in 1590, and in Cardiganfbire, and other Places fince.

Dr. Plot mentions the like Roots and Trees to be found in Sbebben Pool, the old Pewit Pool, and at Layton and other Places in SlaffordBire; and from their natural Situations and Poftures concludes, that they did certainly grow there.

Dr. Leigh, in his Hiftory of Cbeßire, obferves, that in the draining of Martin Meer (which was perform'd but a few Years ago) were found Multitudes of the Roots and Bodies of great Firs, in their natural Poftures, with great Quantities of their Cones, 8 Canoes, fuch as the old Britons fail'd in, and in another Moor was found a Brafs Kettle, Beads of Amber, a fmall Millitone, the whole Head of an Hippopotamus, and Human Bodies intire and uncorrupted. I fuppofe he means, as to outward Appearance.

Many Places of the Soil of Auglefea and Man, as alfo of the Bogs of Ireland, are likewife full of Roots and Trees; but of what Sort I have not yet learn'd.

Verftegan tells us, that in many Places of the Moors and Moraffes of the Netberlands, great Fir-Trees are commonly found with their Tops lying to the North-Eaft, juft as they do in thefe Levels, and Helmont mentions the Peel there, a Turf Moor of 9 Miles broad.

I have likewife read in fome of the Frencb Naturalifts, I think in Monfieur de la Ferr, that Trees and Roots are alfo frequently found in the Low Grounds, Levels and Moraffes of France, Switzerland and Savoy.

Rammazzini affures us, that in the Territories of Modena (which are feveral Miles long and broad, and at prefent a moft fruitful dry Country, tho' in the Time of the Cofars it was nothing but a great lake) are found at 30,40 , and 50 Feet deep, the Soil of a low marfhy

Country,

Country, full of Sedge, Reeds, Shrubs, Roots, Trees, Nuts, Ears of Corn, Leaves of Trees, Branches and Boughs of Oaks, Elms, Wallnuts, Ahes, Willows, and the very Trees themfelves, fome broke, fome whole, fome ftanding upright, fome lying at their Length, \(\xi_{c} c_{c}\) with old Coins of the Roman Emperors, old Marbles and Stones fquared, cut, carved, and wrought, with the Hands of Men, \(\mathcal{E}^{\circ}\) c.

Moft Men refer all this to Noab's Flood; but if fo, how comes it that the Trees and their Roots lie fo near to one another, and why lengthways, from South-Weft to North-Eaft? Why fome of them burit, foine chopr, fome riven, fome fquared, fome bored through ? Why the Soil at the very Bottom of a great River lying in Rigg and Fur? And why the Coins of Roman Emperors found in thofe Places, Ec.? But Lans of Opinion, that all thofe Trees grew in the very Places where we now find them, both in this Country, and all orhers where they are found; to which I have heard but two Objections: The firft, That Cafar exprelly fays, that no Fir-trees in his Time grew in Britain: But that Cefar may have been miftaken in this Point, may appear from what he mentions of the next Tree, the Beecb, which he excludes alfo; and which is fo common in every Part of this Nation: And in an old Deed relating to this very Chace, Fir-trees or Buthes are mention'd as growing here and there one, about 300 Years ago; and it is very well known, that there was a Tree of the very fame Wood grow. ing upon Hatfeld Moor Side within there 30 Years, which a while after was cut down, it being the very laft of that Kind that was feen flourifhing here.

The fecond Objection is, That thofe forts of Trees grow always on high Mountains and Rocks, and never thrive, nor naturally grow upon fuch Low Grounds and Moraffes, as thefe are, where we now find them ; but though they do indeed in all cold Countries of the North, thrive beft there upon the hardeft Rocks and Mountains, yet are they fometimes feen even there plentiful and great, in the Jow Moraffes of Liefland, Courland, Pomerania, and other Countries thereabouts; and in the Low Forefts and Woods Weft of New England, as I have heard Travellers affirm, what thefe Trees require, is a fandy Soil ; and if it lie never fo high, or never fo low, there they will grow, and there it is natural to them And as the Reverend Mr. Earat of Hatfeld lately obferv'd in the digging of a Pir of a great Decoy in thefe Levels, the Routs of the Firrs always food in the Sand, and the Oaks in the Clay; and I have obferved the fame in Multitudes of Places of thefe Commons.

The Reafon why all thefe Woods were deftroy'd, we may learn from the Rowan Hiftorians; who frequently tell us, that when their Armies and Generals purlued the wild Britons, that they always fled into the Faftneffes of miry Woods and low watery Forefts. Cefar himfelf confeffes the fame; and fays, that Caffibelan and his critons, after their Defeat, paffed the a bames, and Hed into fuch low Morafles and Woods,
that there was no Poffibility of following them. We find alfo, that the ftout Nation of the Silures did the fame when they were fet upon by Oftorius and Agricola. The like did Venutius King of the Erigantes, who fled into the great woody Moraffes of this Country, and perhap,s into thofe very fame that formerly overfpread thefe Levels. And Herodian tells us, that it was the Cuftom of the wild Britons to keep in the fenny Bogs and thick marfhy Woods, and when Opportunity of fer'd, to iffue out, and fall upon the Romans, who were at length fo' plagued with them, that they were forced to iffue out Orders for the deftroying and curting down of all the Woods and Forefts in Britain, efpecially of all thofe that grew upon low Ground and Moraffes. This Order, I think, is mention'd in Vopifcus; and that they were accordingly thereupon cut down, is evident in many Writers, who tell us, that when Suetonius Paulinus conquer'd Anglogea, he cut down all the Woods there. Galen tells us, that the Romans kept their Soldiers continually employed in cutting down of Woods, draining of Marthes and Fens, and in paving of Bogs. It is manifeft alfo, that they did not only do this themfelves, but alfo impofed the fame Tafk upon the Britons; for Galgacus in his Speech to his Soldiers, tells them, that the Romans made Slaves of them, and wore out their Bodies in cutting down of Woods and in cleanfing of Bogs, amidft a thoufand Stripes and Indignities; and Dien Cafftrs tells us, that the Emperor Severus loft 50000 of his, Men in a few Years time, in cutting down of the Woods, and cleanfing of the Fens and Moraffes of the Nation.

As I have fhew'd in general, that the Romans were the Deftroyers of all thofe great Woods and Forefts, fo now I hall fhew in particular, that they actually were in this Part of the Country, and deftroy'd this great and beautiful Foreft of Fratfield-Cbace.

The common Road of the Romans out of the South into the North, was formerly from Iindum (Lincoln) to Segelocum (Little burrow upon Trent) and from thence to Danum (Doncafter, where they kept a ftanding Garrifon of Crifpinian Horfe) a little off on the Eaft and North-Eaft of their Road between the two laft named Towns, lay the Borders of the great Foreft, which fwarm'd with wild Brilons, who were continually making their Sallies out of the fame, and their Retreats into it argain, interrepting their Provifions, taking and deftroying their Carriages, killing their Allies and Paffengers, and difturbing their Garrifons; which at length fo enraged the Romans, that they were refolved to deftroy it; and that they might do the fame more effectually, they marched with a great Army againft the fame, and encamped upon a great Heath or Moor, not far from Finningly, (as by their Fortifications there yet to be feen, is apparent) where it is probable, that a great Battle enfued; for hard by, is a little Town, called Offerfield. Now as the litter Part of the Word is never ufed to be added to any other, but where there hath been a Battle; fo the former feems to tell us what Romen General it was that fought, to wit, the famous Oforius, whom all the Roman

Hiftorians affure us, was in thofe Parts. But who got the Victory, is not fo eafy to be judged of, though, no Doubt, it was the valiant Romans, who befides the Mulcitudes of the Britons that they new, drove the relt back into the great Foreft and Wood, that cover'd all this low Country: Whercupon the Rowans, that they might both deftroy it and the Enemy the ealier, took the Opportunity of a ftrong SouthWeft Wind, and fet great Fires therein, which taking hold of the Firtrees, burnt like Pitch, and confumed infinite Numbers of them; then when the Iir had done what Mifehiet and Execution it could, the Romans brought cheir Army nearer, and with whole Legions of captive britons chopp'd and cut down nioft of the Trees, that were yet left ftanding, laving only here and there fome great ones untouched, as Monuments of tieir Fury, and unacedful of theis Labour; which being deftitute of the Support of the Underwood, and of their neighbouring Trees, were eafily overthrown by the ftrong Wind; all which Trees falling crofs the Rivers that formerly ran through this Low Country, foon damm'd up the famic, turned it into a great Lake, and gave Origin to the great Turl Moors that are here, by the Gyrations and Workings of the Waters, the Precipitation there-from of terreftrial Matter, the Confumption and Putrefaction of rotten Boughs and Branches, and the valt Increafe of chick Water Mofs, which wonderfully flourifhes, and grows upon luch rotten Grcunds; which, even now, fince the Drainage, and fince rhat the Country is laid dry for many Miles round about, yes for all that, are fo turgid with Water, and fo foft and retten, that they will fearce bear Men to walk upan thens.

Hence it if, that old Roman Coins, old Roman Ax-heads, \(\mathcal{V}_{6}\) c. have been found by thole Routs and Trees that lie at the Bottom of thele Monrs and Levels. Hence it is, that in all thefe Grounds are found great Numbers of Trees, that are burnt, ione in two, and fome lengthways, others hewn and chopp'd. Hence it is, that they lie by their own proper Roots with their Tops North-Eaft: Hence it is, that fome of the greatest Trees are found with their Roots on, and others, as they have laid all along, have had Branches growing out of the Sides, unto the Thicknels and Height of conliderable Trees. Hence it is, that both the Clay ansh Moor Suil of the Country, is in fome Places two or three Yards higher than it was formeriy, by the growing up of the fame, and the daily Warp that the Rivers contilually caft thereon, Esc.

As the Romans were the Deftroyers of this great Foreft, fo were they likewife of all thofe others that formerly grew upon the Low Councries of Cbefbire, Lanca/bire, Yorkßbire, Limoinfbire, Stafivdjoire, Somer fetfire, \&cc, and of the very Countries before-mention'd beyond Sea, where fuch Trees are found. But as the Romans were nor niuch in Wales, the JJe of Man, nor Ireland, io it cannot be fuppoled that it flould be them that cut down their Woods; but though they did not,

\section*{Subterraneous Trees in Hatfield Chace.}
yet others did, for Hollinhead and others of our Hiftorians tell us, that Edward I. being not able to get near the Welfb to fight them, by their Continuance and Skuiking in boggy Woods, commanded them all to he deftroyed by Fire and \(\Lambda \mathrm{x}\) : And I doubt not at all, but that the Roots and Trees, before mention'd by Cambrenfis in Pembrokefbire, were the Reliets of fome of thole, that were then deftroy'd: And as for thofe in Man, and other Iflands, they have all been cut down in the Time of War, and have laid till they were grown over with the Soil of the neighbouring Grounds: And as for thofe that are found in the Bogs of Ircland, many of our Hiftorians exprelly fay, that Henry the Second, when he conquer'd it, cut down all the Woods that grew upon the Low Countries thereof, the better to fecure his Conquett and Poffeffion of the fame, to keep the Country in a fettled Peace, and to difarm the Enemy, who commonly trufting to fuch Advantages, are apt to rebel.

I may alfo add, that it is a very common thing for Generals, even to this very Day, to deftroy all the Woods that grow upon advantageous Places and Faftneffes in an Finemy's Country, if they intend to keep it ; and that they always do it with Fire and Ax.
—on the fame, b) the fame. n. 277. p. 1073.
2.) I have received fome farther Informations about the Fir-Trees of Hatfield-Cbace. I have been told by feveral Gentlemen, that about 20 Years ago, one Sanderfon, of Hatfield, died, aged near 80 Years, whofe Father, much of the fame Age, did frequently affure him, and other Gentlemen that were curious in the Matter, that he could very well remember many Hundreds of great Fir-trees, flanding one here and another there, in a languifhing decaying Condition, half as high as Houles, and fome higher, whole Tops were all dead, yet their Boughs and Branches always green and flourifhing, growing all of them in thefe Levels: And Gobn Hatfield of Hatfield, Efq; who is not above 40 Years of Age, has by him a large Twig that his Father pluck'd off from the Sprout of a green and Hourilhing Shrub of Fir, that grew from the great Root of one of the fame kind in thefe Commons. And an old Man of Croul tells me, that he has heard his Father fay, that he could remember Multitudes of Shrubs and fmall Fir-trees growing here, while this Country was a Chace, and while the Vert was preferved, before the Drainage. And in many old Charters, that I have feen, of Roger de Mowbray, Lord of Axholm, who lived in the Year 1100, relating to Hurff, Bell-wood, Ro/s, Santoft, \&xc. it appears, that then all thefe Places were cover'd with a great old decaying Foreft or Wood; and not them only, but alfo all that low Common between Croul Caufey and Autbrop upon Trent; and though there be not one Stick of any fuch Thing now to be feen, yet it is not only plainly manifeft, that the fame was true, from the Ronts there found, but alfo from the faid Roots, thas moft of the Trees that then grew there, were Firs. All which were but the After-growth, and Relicts of the great Foreft, that was deftroyed by the Romans.
VII. There happen'd an Inundation at Dagenham and Havering in Of SubturraEffex, about four or five Years ago, by a Breach in the Thames Wall neous Trece of at an extraordinary high Tide; and by Means of the great Violence of Dagenham inn the Water, a large Channel was torn up, or Paffage for the Water of W. Derham. 100 Yards wide, and 20 Fcet deep in fome Places; and in fome more, n. \(335 \cdot\) p. \(47^{8}\). fome lefs. By which means a great Number of Trees were laid bare, that had becn there interred many Ages before.

The Trees were all of one Sort, except only one, which was manifeftly a large Oak, with the greateft Part of its Bark on, and fome of its Head and Roots. The reft of the Trees were taken to be Yow, from the Hardnefs, Roughnefs, and Weight of the Wood, notwithftanding we have no Yew growing any where thereabouts; and it feem'd ftrange to me, that \(Y\) ow fhould grow in fuch vaft Quantities, in fuch a Soil, and fo near the brackifh Waters. Some took it to be Horn-beam, which grows plentifully alfo with us in the higher Lands (but I do nor remember to have feen it in watery Places near us) but I rather incline to the Opinion of its being Alder, (which grows plentifully by our FreflWater Brooks) the Grain of the Wood, and Manner in which the Boughs grow, Esc. much more refembling that of Alder, than Hornbeain.

By lying fo long under Ground, the Trees are become black and hard, and their Fibres are fo tough, that one may as eafily break a Wire of the fame Size, as any of thofe Fibres. This Toughnefs they maintain, if the Wood be kept dry ; but by drying, thofe Trees become cracked, and very flawy within, but look found outwardly, and with Difficulty yield to Wedges. But the Trees lying in the Marhes, which are covered by every Flood, and laid bare by every Ebb, in a fhort Time become very rotten.

There is no doubr, but thofe Trees grew in the Place where they now lie, and that in vaft Multitudes; they lying fo thick upon, or near one another, that in many Places I could ftep from one to another. And there is great Realon to think, that not only the Markes, which are now overflow'd (which are about 1000 Acres) are covered underneath with thofe fubterraneous Trees, but alfo all the Markes along by the River Side, for feveral Miles: For we difcover thefe T'rees all along the \(\tau\) bames Side over againft Rainbam, Wennington, Purfleet, and other Places: And in the Breach that happened at Weft Tborrock about 21 Years ago, they were wathed out in as great Numbers (as I have been inform'd) and of the fame kind of Wood, as thofe found lately in Dagenbana and Havering Levels.

Thefe Trees are of different Sizes; fome above a Foot Diameter, fome lefs. I met with two of the leffer Sort, ftanding upright, in the fame Pofture in which they grew ; their Tops juft above Low-Water, and their Bottoms (at leaft the Bottom of the Channel) at 16 Feet Depth. We endeavoured to draw them out, but could not do it with
all our Strength. They feemed to be about two Inches Diametcr in their Trunk, had tome of their Boughs on, were dead, and in all Likelihood, being young and light, efcaped the Force of what threw the other more large and unwieldy ones down.

Moft of the Trees had their Roots on, and many of them their Bougbs, and fome a Part of their Bark. There was only one that I perceived had any Signs of the \(A x\), and its Head had been lopped off.

I could fee all along the Shores vaft Numbers of the Stamps of thofe fubterraneous Trees, remaining in the very fame Pofture in which chey grew, with their Roots running fome down, fome branching and fpreacting about in the Earth, as Trees growing in the Earch commonly are feen to do. Some of thofe Stumps I thought had Signs of the \(A x\), and moft of them were flat at top, as if cut off at the Surface of the Earth; but being rotten and battered, I could not fully fatisfy myfelf, whether the Trees had been cut or broken off.

The Soil, in which all thofe Trces grew, ,was a black oozy Earth, full of the Roots of Reed; on the Surface of which oozy Earth the Trees lay proftrate, and over them a Covering of grey Mould, of the felf fame Colour and Confiftence with the dry Sediment, or Mud, which the Water leaves behind it at this Day. This Covering of grey Earth is about 7 or 8 Feet thick, in fome Places 12 Feet or more, in fome lefs; at which Depths the Trees generally lie.

Another Thing I took notice of, was the Pofture in which the Trees lay, which was indeed in no kind of Order, but fome this way, tome that, and many of them a-crofs: Only in one or two Places I oblerved they lay more orderly, with their Heads for the moft part towards the North, as if they had been blown down by a Southerly Wind, which exerts a pretty ftrong Force upon that Shore.

As to the Age in which thofe Trees were interred, it is hard to determine. Many think they have lain in that fubterraneous State ever fince Noab's Flood. But although I have not the leaft Doubt, but that at this Day we have many Remains of the Spoils of that Deluge, even in the highef Mountains; yet I rather think thefe Trees to be the Ruins of fome later Age, occafioned by fome extraordinary Inundations of the River of Tbanes, or by fome Storms, which blow Sharply upon this Shore : Either of which Acts of Violence night be able to root up, and tumble down Trees growing in fo lax a Soil, as thefe manifeftly grew in at that Time. And as for extraordinary Inundations of the Thames, there is at this Day a Mark, which, if occafioned by an \(\ln\) undation, was the Mark of an Inundation very prodigious, beyond all ever known to have been in that River; and that is a Bed of Sbells, if, not a kind of Marble too, lying crofs the Highway on the Defcent near Stifford-bridge, going from S. Okendon.

Below this Bed of Shells, at above 50 or 60 Yards Diftance in the Bottom of the Valley, runs a Brook that empties itielf into the Thames at Purfleet, about three Miles from thence; which Brook ebbs and

\section*{Subterraneous Trees in Effex .}
flows as the Thames docs, but not at any certain Height, by Reafon of Mills flanding thereon ; but above a pretty High-water in the Brook, the Surface of the Bed of Shells I find to lie above 20 Feet perpendicular. Confequently if this Bed of Shells was repofited in that Place by an Inundation of the Thames, that Inundation muft be fuch, as would have drowned a vaft deal of the adjacent Country, and have over-topped the Trees by the River, in Weft-T borrock, Dagenbam, and the other Marfhes, and probably by that Means overturned them.

Now had thefe Trees been left there by the Univerfal Deluge, we fhould not find the Bed of Earth, in which they grew, fo entire and undiliturbed, as it manifeftly is at this Day, a fpongy, light, oozy Soil, full of Reed-root; and I afure myfelf (alchough I never try'd it) of much lefs fececific Gravity than the Stratum above it is. Whereas I can from Experiments affirn, that in the three Places where I have tried it, the Strata are in a furprizing Manner gradually fpecifically heavier and heavier, the lower and lower they lie.

As for the Manner bow thefe Grees came to be interred, this I take to be from the gradual Increafe of the Mud, or Sediment, which every Tide of the \(T\) bames leaves behind it. I prefume, thofe Trees might be thrown down before the Walls or Banks were made, that keep the Thames out of the Marfhes ; and then thofe Trees were over-flown every Tide. And by Reafon they lay thick, would foon gather a great deal of the Sediment. And after the Thames Walls were made, every Breach in them, and Inundation, would leave great Quantities of Sediment behind it; as I found in going over fome of the Marfhes, foon after the late Breach, where I found the Mud generally above my Shoes, and in many Places above my Knces. And it is a I ractice among us (of which we have divers Inflances) that where a Breach would coft more to ftop, than the Lands over-flown will countervail, there to leave the Lands to the Mercy of the Tbames; which by gradually growing higher and higher, by the Additions of Sediment, will in Time fhut out the Water of the River, all except the higheft Tides. And there Lands they call Saltings, when covered with Grafs; or elfe they become Reed ground, \&c.
That it was the Sediment of the Thames that buried thele Trees, is farther manifeft from what I faid before, of the Likenefs of the Earth above them, in all Refpects, to the Sediment the River now lets fall, when dry, which may be obferved to confift of many diltinet Layers; fome \(\frac{3}{0}\) of an Inch thick, fome lefs, and fome farce \(-\frac{1}{2}\) of an Inch. All which feveral Layers are, no doubt, the feveral Quantities, which every Tide left behind it. This Sediment, when dry'd by the Sun and Wind, becomes tough and hard, and looketh like a grey Iapis Scifilits or Slate, divifible into nuany Plares or Layers. And what if we fhould afcribe the Conformation of Slate, Mufocria-glafs, and other the like laminated Concretions, to a like Work of Nature, by adding new Layers of fuch Petrifactions, and Particles, as the Fofill is made of?
Vol. IV. Part. II.
4 U
I pre-

\section*{Strange Bones found under Ground, and of}

I prefume there will be no doube but that the fubterraneous Wood receives its Blacknefs from Vieriolic Juices in the Earth. I have try'd the Experiment, and find that Alder-Wood, whether green or old, becomes blackifh, much of the fame Colour as the Wood mentioned in this Paper, in a Solution of Cupperas Which is not only an Argument, that the Blacknefs of the Wood is owing to Vitriol, but alfo that the Wood is Alder, or fome fuch like Wood, that will become black with Vitriol; for I am informed that all fubterraneous Wood is not black, particularly Fir. I have tried Horn-beam fince, after the fame Manner, and find that allo becomes black, as the Alder doth.

Oi ircoys Bones dug ap nrar Canter. bury. Aod of the Lfthmes berwern Dover a Natais, E゚: by Mr. W. Sommer. n. 272. p. 88z.

Fig. 26, 27.
VIII. 1.] Mr. Gobn Somner, in the Month of Scplember 1688, finking a Well at a new Houfe of his in Clartbain, a Village about three Miles from Canterbury, towards Ahbord, on a fhelving Ground or Bank-fide, within twelve Rods of the River, running from thence to Canserbury, and io to Sandwich Haven; and digging for that purpofe above feventeen Feet deep, through gravelly and chalky Ground, and two Feet into the Springs, there met with, and turned up a Parcel of ftrange and monfrous Bones, fome whole, fome broken, together with four Teeth, perfeet and found, but in a manner petrified, and turned into Stone ; weighing (each Tooth) fomething above half a Pound, alnoft as big (fome of them) as a Man's Fift: Cheek-Teeth, or Grinders, as to the Form, they are all, not much unlike, (but for the Bignefs) the Grinders of a Man. I remember to have read in Ludovicus Vives, of fuch a Tooth, but a little bigger (dens molaris pugno major) which was fhewed to him for one of St. Clbrifopber's Teeth, and was kept in a Church that bore his Name. Juft fuch another Tooth, of the Bignefs, he faith, of on ordinary Fif, was feen by Acofta in the Indies, digged out of the Ground, in one of their Houfes there, with many other Bones; which put together reprelented a Man of a formidable, or as he fpeaks, deforimed Bigness; as he judged of it. And fo mutt we have judged of thefe Teeth, and of the Body to which they belonged, had not other Bones have been found with them, which could not be Man's Bones. Some that have feen them, by the Teeth and fome other Circumftances, are of Opinion, that they are the Bones of an Hippopotamus, or Equus Fiuvialis; that is, a River Horfe; for a Sea Hor \(\int\) e, as commonly underftood and exhibited, is a fictitious Thing. Yet Pliny makes Hippopotamum (mari, berre, amni coimunem) to belong to Sea, Land, and Rivers. But what the Diffesences and Properties of each Kind are, I leave to others to enquire. The Earth or Mould about them, and in which they all lay, being like a Sea-Earth, or Fulling-Earth, not a stone in it, unlefs you dig three Feet deeper, and then it rifes a perfect Gravel.

It is not eafy to define or determine what the Creature was; and doubtlefs dubious enough it is, whether of the two, the Sea or the Land, may more rightly lay Claim to it. But I am of Opinion, that it is fome

Marine,

Marine, or Se -bred Creature, to which the Land can of Right lay no Claim. But fuppoling it a Sea-bred Creature, how then (will fome fay) fhould it poffibly come there? and at fuch a Depeth under Ground? I anlwer, firft, with as little Wonder as a Land-creature fhould, which who with Reafon can imagine to have ever had at firt fo deep a Burial ? Next, I fay, the Mould, Soil, or Earth, wherein it lay, was altogether miry, like to that canum (oofe, fome call it) on many Parts of the Seacoatt, both in England and abroad. But how poffibly (will it be faid) a Sea-creature, when found at fo remote a Diftance from the Sea? For Solution (it may be) of this, and the like incidental Doubts, and removing all Ruos out of the Way of this Conjecture; I Thall confider the four following Queries:
1. Whether the Situation and Condition, Face and Figure, of the Place, may poffibly admit of the Sca's once infinuating itfelf thither?
2. Whether (that Pofibility being granted, or evinced) the Sea did ever actually infinuate itfelf fo far as to this Place, and when?
3. How in Probability, and when, this Valley or Level, being once Sea-land, fhould come to be fo quite deferted and forlaken of the Sea, as it is at this Day; the Sca not approaching by fo many, a dozen Miles, or more?
4. By what Means the Sea, once having its Play there, this Creature comes to lor'ge, and be found fo deep in the Ground, and under fuch a fhelving Bank?
1. As for the firft (the Place's Capacity and Aptitude for the Sea's Influx or Infintiation) fuch as know the Situation, withal, cannot but know, and muft agree it to be fo. As for Strangers, and fuch as are unacquainted with the Place, they are to be informed, that the Place (the locus loci) we are upon, is a Part of that wide, fair, and fruitful Level, or Valley, extending itfelf not lefs than twenty Miles in Length, between a continued Series and Range of Hills, Downs, or high Grounds, lying at a pretty Diftance each from other all the Way; beginning at the Eaft Kentifb Shore, and ftretching itfelf Weftward by Sandwich, Fordwich, Cancerbury, Cbaribam, Cbilbam, Godmerbam, Wye, Afoford, fometimes in a direct, fometimes in a winding Courfe, as far at length, as to that famous fpacious Level of Romney-mar/h; and it is wafh'd and water'd all along, at leaft from about A/bford, by a fweet and pleafant River running through the midft of it, as far as to Sandzevich, and there by the Creck, or Haven, emptying itfelf into the Sea: Nothing at all of Obftruction, by the Interpofition of Hills, or high Grounds, hindering or controlling the Sea's free Play and Paffage for to many Miles together. The Place then, with the Parts, the Tract above and below it, from the Condition or Conftitution of it, is plainly not unapt or uncapable of the Sea's Infinuation and Influence.

If any fhall object, Canterbury's being in the Way, as an Obftruction or Bar; they are eafily enough aniwer'd. For although that City feems (and incleed is at this Day) for the moft part fomewhat elevated above the Pitch of the reft of the Valley or Level we are upon; yet not fo much as to defend itfelf many times from Floods and Overllowings, in the lower, and moft depreffed Parts of it, even by the Springs it ftands upon; towards the helping whereof, by the Care and Providence of former Ages, it is very certain, and by digging Wells, Vaults, Cellars, and the like, daily experimented, that the moft Part of the City, not excepting the very Heart and Center of it, is made and raifed Ground: The Tokens of Foundations upon Foundations, to a very confiderable Depth, daily appearing, and the Ground (as at Amfferdam, Venice, and elfewhere) for fupporting Superitructures, in feveral Places often ftuck and ftuffed with Piles of Wood, or long Poles and Stakes, forced intu the Ground, as Wells and Cellar-diggers have informed me. And, as if, where now the Bull-ftake Market-place is kept, the River had fometime had its Courfe or Current, Pits, and other like 'Tanner's Utenfils, have, not many Years fince, been met withal in digging for Cellars thereabouts. To this let me add, that my next Neighbour in Cafle-fireet, within thefe thirty Years finking a Cellar, did a good Depth (five or fix Feet deep) light upon, and was put to fome Stop and Stand in his Work by, a itrong and well-couched arched Piece of Roman Tile or Brick, which he was fain to take, or break afunder, and remove, before he could proceed. However, then Canterbury may now feem to ftand in the Eftuary's W'ay, yet Time was, when in Probability it did not; when, I mean, the Place, the Soil, which now the City occupies, as the reft of the whole Valley both above and below it, was of too low a Pitch to be an Obftacle to it.

As to the fecond Enquiry, (whether probably the Sea did ever actually infinuate itfelf fo far as to this Place, and when) the Anfwer is nor fo eafy: Record of it, we have none. The heft and eldeft Account we have now of the Condition, Site, and Conftitution, of thefe our Eaftern Parts and Tract, we owe to Hulius Ccefar, and the Romans after him ; from whom we have not the leaft Hint of any fuch Thing, but rather the contrary ; both the Sea-coaft and Inland Parts, by his and their Relation, bearing in a manner one and the fame Face and Figure then, as now. However, that the Level we are upon, was fometime an AEffuery, or Arm of the Sea, feveral Criteria, or Tokens are not wanting : For Example, befides what may be argued and inferr'd from this Parcel of ftrange Teeth and Bones now under Confideration; much (as I conreive) there is of Probability for it, refulting from our River's Name of Stoure more anciently, not feldom both called and written Eftur, Afture, \&cc. which I doubt not to proceed and come from the Latin Eftuarium, and in procefs of Time to have been corrupted and contracted into Sture and Stoure; giving Name in part to Stournouth, a Place
about fix Milcs Eaftward from Canterbury; fo called from the River's difemboguing there into the Sea or Salt-water flowing up thither, as alfo giving Name to the Manor of the Archbifhop's, at this Day, and for fome Ages patt called W'ffynte-Court, at Cantcrbury; but more anciently, as in the Conquorrs's Time, (witnefs Domefiay Book) called the Manor of Eflure and Efturefate, from its Situation by the Sture or Stoure. From which Occafion, doubtlefs, the late Lord Finch's Seat in -_ about five or fix Miles nearer to the Spring-Head, at this Day vulgarly mifcalled Eaf-Stewerd, is of old fometimes called Eflure, fometime Et fure. From Suxon Monuments and Records I could eafily trace the Name up to a very high Date, by many Examples.

But to proceed to other Criteria; as by the Teeth and Bones now under Confideration, we have an Inftance on that Side of the Valley for the Probability of the Sea's quondam Occupation of it; lo I thall give here another no lefs remarkable from the other, or oppofite fide of it. By credible Relation, then, at a Place called W'bffere, an obfcure Village about three Mitcs from Canterbury, Eaftward, lying under the Brow of the Hill ftretching out by Upfreete, as tar as to the Weft-end of Sarr. wall, by which you make your Entrance into Tbanet, upon the like Occafion to that here at Cbartkam, (the digging or finking of a Well) at a very great Depth, ftore of Oyfters and other-like Shells, together with an Iron Anchor, firm and unimpaired, were found and turned up in our Time. The like I have been told of an Anchor in our Days, digged up at Broomedowne, on the fame fide of the Level, fomewhat above Canterbury, Weftward.

As to the third Query, how in Probability, and when this Valley or Level, being once Sea-land, fhould come to be fo quite deferted, and forfaken of the Sea, as it is at this Day, the Sea not approaching it by fo many, a dozen Miles, or more? In Anfwer whereof, I muft needs fay and grant, that in cafe this Level were once Sea, an. Eftuary I mean, or Arm of it; lo very long it was ago, as we may not realonably think, that Canterbury (whether as a City, or never fo mean a Pagus, or Village) was then in rerum naturn, or a Place inhabited; which haply it may have been, if not as long as Julius Cafar's Days, yet undoubtedly not long after. For an Account we have of it (as of fome other Places in Kent ; in the Romans Time, from Polomy, Antonisus's Itinerary, and eliewhere. Now elder Records, either of Kent, or of Britain, that we may confide in as authentic, we have none, that I know of, before the Romans Time. We muft either, therefore, throw off all further Inquiry, or elfe caft about for Information as we can. Such as are for this latter, will tell you, that the World is very aged, many thoufand Years old, and that many and manifold are the Alterations which Time hath made in feveral Parts and Quarters of the World ; to the Notice and Difcovery whereof no written Record, or unwritten Tradition at this Day, can reach or direct us: Tradition itfelf (longer liv'd many times than any written Evidence) failing us for Age. Of fuch a Nature they conceive

\section*{Strange Bones found under Ground, and of} conceive may this of the AFfuary be, fo very ancient, as Time hath quite worn out the Memory of it; and that the Reafon of the Sea's Receís here, with an abfolute Valedietion to the Place of its wonted Refort, was its breaking, burfing, and cleaving afunder, that Ijthmus, or Neck of Land, between Gaul and Britain, rendering the litter of the fame Continent with the former: Such Things ('tis certain) have happen'd elfewhere. Thus (fays Seneca) hath the Sea rent Spain from the Continent of Africk. Thus (as he adds) by Deucalion's Flood was Sicily cut from Italy. More Inftances of this Kind may be found in Mr. Cambden's Cantium, and elfewhere. And although there be no certain Evidence of fuch an Accident here, from ancient Hiftorians or Geographers, yet is the Thing fo ftrongly and rationally argued, by him elpecially, as by Verfegan alfo, Twine, and others before him; and the Conjecture back'd with fuch Plenty of probable Criteria, by the former, that I cannot but be of that Opinion; efpecially, when to the Plenty of Arguments mufter'd up by Mr. Cambden, I hall have contributed this one, by him and the relt omitted; which is, that by a received conllant Tradition, Rommey-Marfh, that large and fpacious Level, containing (faith Mr. Cambden) fourteen Miles in Length, and cight in Breadth, was fometime Sea-Land, lying wholly under Salt-water. And if I may guefs at the Time and Occafion of both that, and our Cantertbury Level's Recovery from the Sea, I fhall be apt to pitch upon that of the Sea's breaking through, and in Time working and wafhing away that Iffbmus between us and France. And then, whereas beforetime Romney Level (which had and hath its Stoures too, or Eftuaria as well as ours) and this other not improbably (no high Lands, as we fee, interpofing or impeding their Conjunction) were but one and the fame Level, and lay under the Sea; now both the one and the other (the Sea having fo much more Play and Elbow-room, than formerly, by cleaving afunder the Iftbmus) were refcued from it, and of an. Effuary became fuch a rich and noble Valley or Level, as is fecond to none in England.

And if from hence any one fhall take an Hint, to confider of the \(\mathrm{Ne}_{\mathrm{e}}\) tberlands or Low Countries, and enquire whether thofe in whole, or in part, may not have arifen out of, and conjecturally affigned for our Kentifs Lowlands, I fhould not at all wonder at it.

As to the fourth Query, by what Means the Sea once having its Play there (at Cbartbam) this Creature comes to lie and be found fo deep in the Ground, and under fuch a fhelving Bank? My Anfwer is, That fuppofing this with the reft of the Level or Valley once occupied by the Sea, or Salt-water; that being a Creature which by Fluxes and Refluxes always is in Motion, and thereby in Time beating upon, and working itfelf into the Bank, or rifing Ground there, might at length fo far undermine, eat into, and loofen it, as to fetch down fo much Mould or Earth upon, or over the Place, as to lodge the Creature at In great a Depth. Or elfe perhaps, the continual Agitation of the Water might in Time force, drive up, and caft over it that great Quan-
tity of Oofe, Earth, and other Matter, under which it lay. By the way, it is obferved, that the Nature of the Soil here and there is fuch, fo loofe, fupple, rotten and fandy, that meerly of itfelf, it is apt to fink, and fall in; as was lately experienced by a Saw-pit digg'd hard by, which after a little Time, by the Earth's giving way on each Side of it, fell in, and fill'd up itfelf.

Fig. 26, 27. Reprefeni two of tbe Teeth above mention'd.
2.] Mr. Somner is of Opinion, (with Mr. Cambden, and other Antiquaries) That is highly probable (if not abiolutely certain) that France and England (or Gaul and Britain) were anciently joined by an Tffemus, or Neck of Land, where now is the narrow Paffage between Dover and Calais: Which, many Ages fince (beyond the reach of any Hiftory now extant) was (by the Seas violently beating upon it on both Sides) worn away, or broken through. Whereby, what was once an Iffonus, is now become a Fretum or narrow Sea.

Mr. Cambden is his Britannia (in that Chapter where he treats of Kent, or Contiums) gives us many cogent Arguments, which, if taken all togrether, feem to me a convincing Evidence, that there had once been iuch a Conjunction ; but not for many Ages now paft.

To which I may add one more (of which Mr. Cambden takes no notice in this Place I from the Unity of Language between the ancient Gauls and Britons; and from the great Intercourle between thofe in Gaul, and the Druides in Bribain (of which ancient Writers take notice:) which is not likely to have been, if there had not been an eafy Communication between the one and the other. Which, though it be not a Pbyfical Argument (as are thofe of Mr. Camiden) is a good Moral Inducement, in Confirmation of them.

To thofe Arguments of Mr. Cambden, Mr. Somner adds another, a Parcel of firange and monjtrous Teetb and Bones, which in the Month of September 1685 .) upon digging a Well in the Parifh of Cbartbam (about three Miles Southward from Canterbury) in the Land of Mr. Jobn Somner, were found at the Depth of feventeen Feet under Ground. Which Bones and Tietb (from the Figure and Greatne's of them, and from the Condition of the Earth wherein they were found) he judgeth to have been the Remainders of fome Hippopotamus, or other large Marine Animal, which (niany Ages fince) had perifhed there; which hatls fince been covered with this Depth of Earth.

This Cbartbam he obferves to lie about the middle of a large rich Valley, for about twenty Miles or more in Length, and of a confiderable Breadth; having on each ide of it, at a confiderable Diftance, a long Tract of Hills, or high Grouncis. Through which Valley, there now runs the River Sture, Stoure, or Efiute, for twenty Miles or more, by Ajbford, Wye, Godmerßain, Cbilbam, Cbartban, Canterbury, Fordwich, and fo to Sandwich, where it difcharges itfelf into the Sea.

This fong and large Vale, (from the Situation of the Place, the \(\mathbf{N}_{1-}\) ture of the Soil, and the Remains of this Marine Anima!, lodged itre lat fo great a Depth under Ground) he judgeth to have been (in former Ages) an A.jftrarium, or Arm of the Sea, into which the Sea, (being ftopped by the Ifthmus, which then joined France and England, from the Courfe which now it takes) did difcharge itfelf; which, in Procets of Time, being filled up, (partly by the Earth, Sand, Onfe of other Matter brought in by the Sea, and lodged there, partly by thi. Firth wathed down, or falling upon it from the Hills on both Sives) is reduced to the State we now fee.

Let us then confider, what muft have been, if this Hypothefs be true ; and how it agrees with what we fee.

Firtt, if fuch an IIthnus had once been, where now is the Pals between Dover and Calais, the great Seas on both Sides muft continually bear upon it with a fierce impetuous Tide, twice in four and twenty Hours. The Northern Sea between us and Holland (called Oceamus Germanicus) on the Eaftern Side; and the Weftern Sca between Us and France (called Oceanus Britannicus) on the Weftern Side. Which (in Procefs of Tme) may well be fuppofed likely enough to wear away, or break through a narrow Iftbmus.
The Weftern Tide coming in fiercely between Us and France, fretting on the Coaft on both Sides, mult needs be fuppofed to bring with it a great deal of Earth, Sand or Mud. But, being ftopped in its Current by this \(y\) ljbmus, did not depofit it (as might be thought) on the Side of it, (which might ftrengthen it) but found an Opportunity of difcharging itfelf on the fpacious Level of Romney-Mar/h; (which, as Cambden tells us, is fourteen Miles in length, and eight in breadtb) fretting that Iftbmus as it comes along; and then (at ftanding Water, about the Tide's Recefs) letting it fall on that Level, and lodging it there : But then again, fretting that Iffomus, and the Coaft all along, as the Tide returns, with a like Force as it came in. Which gives us a fair Account, both how that Iftbmus might be wafhed away, aud how that Level might be raifed to that Height it now is, For no Man can doubt (who doth well know the Situation of the Place, and the Nature of the Soil) but that all that Level had heretofore been Sea. And, even at this Day, it lies fo much lower than the Surface of the Sea at High-Water, that it would (much of it) be overflowed every Tide, if not defended (at a valt Charge) by Dimp-cburch Wall, for many Miles together.

Whether it had a like Opportunity of fuch an Indraught (and in what Proportion) on the Frencb Coaft, I cannot tell. But, that this is the Condition of Romney-Mar \(\sqrt{3}\), no Man doubts.
The Nortbern Sea (between us and Holland) muft, in like Manner, have beat on the Eaft Side of that Iffbmus with a like impetuous Tide, twice in four and twenty Hours. But, being there ftopped in its Courfe, would have the like Opportunity of difcharging itfelt on the Coaft of

Holland, (as the Weftern Sea on Rommey-Marhb.) Whence it is, that Holland and Zealand, which (by the Confent of all) is juiged to have been once Sea, is now raifed thirty or forty Feet higher than it had once been.

And the fame Northorn Sea, which (on this Account) hath fo large an Inlet (Eaftward) on the Coaft of Holland; would (Weftward) infinuate itflf likewife on the Englifb Coaft, where-ever it might find low Grounds. Which is thę Cale of this Valley, where now runs the River Sture, Stoure or Effure (which Name it is fuppofed to have taken from the Corruption of Affuariumz) for more than twenty Miles; (and nothing appears why we fhould not think it had fo done;) entering at the low Grounds near Sardruicb (clofe by that Jfibmus) and runwing up that Level (by Comterbury, Cbaribam, Cbilbam, and fo forth) as far as Afinford, or farther, which Valley had once been much deeper than now it is. For, it feems, that even at Cbartham (which is now twelve Miles from the Sea) the Ground is raifed at leaft feventeen Feet; and the Soil, at that Depth, found to be of a like Condition, as where the Sea is known to have been; and nearer to the Sea, it may well be prefumed to have been yet deeper. Which is confirmed by the Reliques of this Marine Animal there found; and by Anchors, and Shells of Fifhes, found elfewhere in the Borders of this Valley, at a great Depth under Ground.

Now, that the Sea may thus raife the Ground on fuch In-draughte, by Sand, Earth and Mud, brought in and lodged there at every lide, is not at all unlikely: For we fee the fame at this Day. Particularly, in the Ilte of Oxney (ncar adjoining to Ronncy-Marfo) there was a low Level, oft in Danger of being overflowed by the River Rotber: But, fomewhat more than threefore Years ago, the Sea being let in, hath raifed that Level very confiderably; by bringing in, and lodging there a confiderable deal of Earth and Mud every Tide: But withal, it hath fo fretted the Channel, by which it enters and goes out again, that the Channel by Rye, which (within my Memory) was fo fhallow near what was call'd Kent-Bridge, that Men were wont to ride through it; but now (by the Tide's entering and returning) that Bridge is long fince fwallowed up, and the Channel become fo broad and deep, that a Veffel of good Burden might ride there at Anchor. A fit Refemblance of the Sea's fretting this I/Rbmus, and filling up the AEfuaries on both Sides of it.

The like, in good Meafure, is to be feen at (what they call) the Dog. ger Sands, which is a Bank of Sands lying (obliquely) from about the Coaft of Norfolk toward the Coaft of Zealand, or North-part of Holland, which is the Place where the Northern and Weftern Tides (fince the Rupture of the Iftbmus) do now meet ; and do there (at Atill Water, for about half an Hour or more, or at the turning of the Tide) depofit the Mud and Sand, which by their rapid Motion) is both Ways brought thither. Which is fuppoted to be the true Caufe of Vol. IV. Part II. 4 X that new Ifibmirs, (if the World laft long enough) I cannot fay, but I am apt to think that the former Ifthmws, if the Tides had ftopped there, and had not found thofe In-draughts, on which to lodge what it wafhed from thence, might have continued, and been more itrengthened, by what (upon the Return of the Tide) would daily be lodged there.

And upon this Account (I think) it is, that the If bmas at Corintio, though beat upon by two Seas (which gave it the Name of Bimaris Corintbus) is not thereby deftroyed: becaufe there are not fuch Tides to wafh it away, nor fuch In-draughts, on which to lodge what fhould be wafhed from thence.

But the Cafe is much otherwife with this Ifbbmus of ours; where are all Things to countenance this Hypothefis. The fteep Cliffs at Dover, and thofe at Calais, anfwering directly the one to the other; and appearing to View, as if that between them had been violently torn away. And the Sea between them (even at this Day) being much fhallower at that Place than on either Side of it (as Cambden doth well oblerve) which are ftrong Prefumptions, that there had been formerly fuch a Conjunction.

The greateft Doubt in this Cafe is, that there is no Hiftory extant, which takes notice of fuch an Iftbmus, or fuch a Rupture, in this Place, which being a Thing remarkable, might have been thought worthy to be reported.

Which yet need not be thought very Atrange, confidering that we have no particular Account of the Britibl Coaft (which might determine this Queftion) older than the Romans Accefs hither with 'yulius Cufar: Whereas this might happen'd many Hundred of Years before that Time, when though the Ifland might be known, yet not the particular Coaftings of it to the Greeks or Latins.

But I have this farther to fay; Plato tells us a Story (as of a Thing which happened fome Ages before his Time, and which at that Time was in a manner generally forgotten) of an Inand fomewhere in the Allantick Ocean, which by a Teluge and Earthquake (in the Space of 2 Night and a Day) was deftroyed and fwallowed up by the Sea; whereby that Sea (formerly navigable) was for fome Time become unnavigable or unfafe, by Reafon of the Mud and Reliques of that abforbed Inand. The Words of Plato (as tranflated in Heny Stepbens's Edition, p. 25.) runs thus; Poft autem, quum diluviorsm © terre motuum intemperies extitiffer, anius nostis \(छ\) diei fpatio, omne illued bellicaforuns bominum genus in verranm aliforptum fuit, illaque etiam Atlantica Infula ('ATha тis mo@u) maris futsibus plane obvoluta difparvit, unde E illud mare trajeitu diffcile eft, quum lutum adbuc copiofum Infula iftius reimarferit.

Which feems to me very applicable to the Rupture of this Jftmmus: Whereby this Iland was not indeed wholly deftroyed, but was broken off from the Continent, to which it was before united. And, upon Huch
fuch an Accident, the Sea muft needs be difturbed, and put out of its Courfe, and render'd unfafe for Paffage, before it came again to be fettied. For though the firft Breach might be made in the Space of one Night and Day, we cannot fuppofe the whole Bulk of it, when once broken, was prefently carried fmooth away; but firlt the Top or upper Part of it (in a Day and Night's Time) and afterwards the lower Parts of it by Degrees. Which would render that Sea, if not quite unpaffable, at leatt troublefome and unfafe.

And if in fome Circumftance this Narration chance to differ from the Matter of Fact, as calling the Rupture of this Ifbimaus the Subverfion of an Ifrand, this muft be allowed in the Narrative of an oid Tradition from Hand to Hand: For as fuch it is there brought in.

For Plaso doth there introduce Critias (then an ancient Man) telling a Story, which (when a Boy of ten Years old) he had heard from his Grandfather (who was ninety Years of Age) of what Solon (long fince dead had told him; namely, that an Egyption Prieft had (long before) told Solon, that it did appear from fome old Agyptian Records (of which the Grecks had no Knowledge) that fuch a Thing had happen'd in an Age fo long before, as in comparifon of which tbe Greeks were but as Cbildren. And all this Tradition (through fo many Hands, and at fucir great Intervals of Time) is, at every Step, reported from the Relator's prefent Memory. And 'tis very poffible, that fome one or other of cinefe Relators might to tar miltake, or miliremember, as to call chat a Diffolution or Difappearance of an Ihand (xparion) which was but a Iearing if from tbe Continent.

It ferves, however, to the prefent Purpofe, if at leaft fo much of the Story be true, Tbat long before Plato's Time, tbere bad bees fome juch Diffolution or Rupture of an Ifle or Ifibinus, fomewbere in sbe Atlantick Oceall, (that is, in the Northern Sea) of which there were fome Symptoms yet remaining in Plato's Time. For, this being admitred, it is as applicable to the prefent Cale (as to any we know) of which there are fo many Symptoms yet remaining to this Day.

I know that Rudbeck in his Atlantice, Cap. 7. Sect. 8. pag. 293. doth endeavour (in Favour of his Sueonia) to put an allegorical Senie upon this whole Paffage.

But I fee not why it may not be underftood in a plain literal Senfe, as a true Matter of Fraet, (though perhaps a little difguifed, as was wont to be the Fafhion in that Age in relating old Stories) and is very confiftent with all that Rudbeck cites out of Plato, in that whole feventh Chapter of his Atlantica.

For the Name of the Atlantick Sea (wherein this Inand is faid to be) was not then (nor is now) confined to the Coaft of Sweden, but extended as far as the Britifh Inand, and much farther. And when Rudbeck tells us out of Plato, that the whole Allantica was as big as Lieyn and Afra (which whether meant of eitber of them fingly, as Rudbeck underftands it, or of botb togetber, as the Words feem to im- fuppofe it to be Plato's Meaning, that this wbole Region was fwallowed up; but rather fome fmall Part of it, from whence perhaps the whole might take its Denomination. And though he tells us from another Writer, that it was five Days Voyage from the Brilifh Inand, to (that part of) his Atlantica, where for thirly Days togetber tbe Sun doth not Jet; this hinders not, but that the Britifh Inands may be part of the Atlantick Region, though fo far diftant from the utmoft Northern Cape of it.

I know not whether I may yet venture farther: This Author tells us, that this Eftuary (from Sandwich to Afbford) might perhaps flow fo much farther, as to meet with that Eftuary on Romney-marf, and (both being conjoin'd) become one Level.

There is, I think, about three or four Miles diftance between Ahford and the neareft part of Romney-marrb : How the intermediate Lands be qualified, I do not well remember.

But if this be admitted, that the two Aftuaries (that of Stoure, and that of Romney-mar/h) in former Times may thus have met; this opens a new Scheme, of which before we were not aware. For then we muft fay, that the two Tides (that from the North and that from the Weft) which now meet at the Dogger Sands, did then meet at the Confluence of the'f two AEftuaries: And then (as was faid of the Dogger Sands) bringing, on both Sides, Earth, Mud, and Sand, to this Place, and lodging it there, might firft form an Iftbmus there, and, by Degrees, fill up thofe Eftuaries on both Sides: In the mean while, wafhing away that Iftbmus between Dover and Calais, and opening a new Paflage as now it is.

There be many other Aftuaries in England, where the Sea now en. ters a great Way into the Land; and how far it might have entered farther in former Times, who can tell? As that Sea by Brifo! between Wales and Cornwall: That of the Humber between YorkBire and Lisicolmpire: And we may reafonably think, that the Wafbes and the Ferns in Lincoinfire, may have heretofore been Sea, or overflowed by the Sea at high Tides: And that of the Tbames (between Kent and Eiejex) which now flows (above London and Brentford) within a Mile of Kingfion (at Spring-Tides); it may perhaps feem too daring, to think it may formerly have llowed as far as Oxford (between Sbot-over IHill and Foxcomb Hill) and fo onward toward Walling ford (in the Romans Time called Galena) ; but there is this to countenance it, that (if I be not much mifinformed) there be frequently found (in our Stone-Quarsies and Gravel-pits) about Oxford, Fifh-fhells, and even the Bodies of Fifh perrified, at great Depths under Ground. And there have been (no (toubt) and now are (in Englaid) many other Effuaries, Creeks, or Arms of the Sea (entering a great Way within Land) fome whereot may be in a Manner filled up, and become firm Land; others much narrower, fhallower and morter, than in former Times they have been. For it is the Nature of Effuaries, where the Tides flow in, to leave behind
behind them, at their Return, much of Mud, Oofe, or Sleech, as they all it, which doth in Time come to be firm Land.
3.] At Hothe in Kent (which is one of the Cinnue Ports) there was -on the fame, (in our Fathers Time) a convenient Harbour for limall Veffels, which by the fame, is now fwarved up; \{everal Attenipts have heen made to recover the \({ }^{\text {ibid. p. } 978 .}\) Harbour, but with fmall Succefs. For when (with great Labour and Charge) thcy have (in fome Mieafure) opened it, it hath foon been filled up again, b; what the Sea calts up. And whoever confiders the vaft Quantier of (what they call) Beach; that is, a vaft Multitude of finall loofe Stones and Fifh-fhells, caft up by the Sea at Hytbe, Iyd, and elfewhere, on the Coaft of Ronmey-marfin, (for divers Miles in Length and Breadth, and to a great Depth) will not think it ftrange, that a Creek or AEfluary fhould come in Time to be filled up, and become firm Land. And in many Places of this Bcachy Ground, where (within the Memory of Perfons now living) nothing was to be feem, but fuch loofe Stones and Shells (to a great Depth) it comes (by Degrees) to be covered with Earth, and becomes Pafture Ground.

On the contrary, that what was formerly Firm-land, may be fo defroyed or wathed away, as to become Sea, is evident from (what they call) the Goodwein-Sands, on the Coalt of Kemt, which is faid to have been the Lands of Earl Goodwir, but loft by an Inundation about the Time that Tinterden Steeple was built, (which gave Occafion to that Ironicat Proverb of Things Cutemporary, that Tenterden Steeple quas ibe Cauje of Goodwin Sends.) The Occafion of fuch different Eff fects, depending on the different Situation of the Shores, and the fetting of the Tides; fo as to wafh ofi from one Place what it lodgeth on another.

And many fuch Alterations (no doubt) have been of the Face of the Earth, all the World over, of which we have no particular Hiftories. For the World was of great Age, before the writing of any Hittories (except the Biblc) now extant.

And who knows, but tiat in former Ages, even amidft the Alps, there may have been large Lakes, which, in process of Time, by Earthquakes or other Accidents) may have been (rain'd of their Water, and become fruitful Valleys: Of which it is faid, divers Symptoms have been difcover'd, even amidit the Alps, in later Ages.
And fomething of the like Noture hath happen'd within fome few Years laft paft, in Gamaica, in Sicity, and other Places.
4.7 Since I wrote laft on the Subject of the Ifiomus, \&xc. I find \(\underset{\text { rame, } \text {, the }}{ }\) Mr. Lufkin thas informed us of divers Bones of an extraordinary fame, by the 276 Bignefs, found lately in a Gravel Pit, not far from Harwiib in Ejcix P . 1030 . (much like thofe found at Cbartbans in Kent,) at a great Depth under + Kia, infra, Ground, which Bones he thinks rather to have been the Bones of an S. X. Elephant, than of an Hippopotamos, or other Marine Animal.

\section*{Strange Bones found under Ground, and of}

But which ever it is, it will equally prove thofe Valleys to have been much deeper in former Times, than now.

I obferve, that the River in Effex, and that in Kent, near which the Bones were found, are both of them samed the Stowr; which, whether it be a Corruption of the Latin AIftuarium (as Mr. Somner conjectures) or of the Britifs ys-drer, (that is, the Water) I will not dilpute.

And that the Bones were found (in both Places) much at tile fame Depth, (about 16 or 17 Feet under the Surface of the Earth) which therefore may (probably) have been lodged (in both Places) much about the fame Time: And perhaps, when the. Emperor Clandius brought his Elepbants into Kent and Effex; as Mr. Luffin intintates out of Dion Cafiris.

I obferve alfo, that thofe petrified Bones, in both Places, were found in gravelly Grounds, (as are thule petrified Shells, and Bolies of Fifhes, in Gravel Pits and Stone-Quarrits near Oxford). How far the Steams, Fumes, or Fluors of the Liarth, which contribute to the Formation of Stone or Gravel, may conduce to the petrifying of thefe bones, Shells, or other Bodies; I leave to the Confideration of the Naturalifts.

And whether the Impregnation of fuch Steams, may not Swell fiech petrified Bodies, to a larger Proportion than before they had. Like as we obferve Wood (and other like Materials) in a moitt Air to Swell; by the Diftention of their Pores, upon the Intromifion of moilt Particles. For I take all Petrifications to be made, either by Incruffation or Intromifion of itony Particles.
And I well remember, that (many Years ago) at Mohdajb in Kemt, (not far from Feverflam) on fome high Grounds, and very itony, (which uled to be fometimes Pafture, and fometimes plow'd) I have oblerved divers Oyfer-foells (petrified, or partly fo) much larger and thicker than the ordinary Proportion of Oytters in thofe Parts, and very weighty; which Oyfter-Shells might have been purpofely thrown there long before, as being reputed a good Manure for Land; and might have been there impregnated with like Halitus, Effuvia, as are the numerous Stones on thofe Lands.

I have known the Inhabitants, heretofore, have ufed to caufe the Stones, in thofe Lands (becaule they are very numerous) to be gather' d up, and carried off the Lands by Cart-loads, to make more Room for the Grafs to grow. But of later Years, they forbear (I have been told) fo to do, as thinking the Warmth (or fomewhat equivalent) of thofe Stones, is rather an Help, than Hindrance of the Earth's Fertility.

But (to return to what I was fpeaking of I fee not why we may not think the Stowr in Eifex, and the Stower in Kent, to have been (both of them). Eftuaries of the Northern Tyde; before the Rupture of that Iftbmus between Dozer and Calais: (And the like of the River
near Malden, and other fmall Creeks on the Coaft.) Though not fo great as thofe of Humber and the Tbames: which were then Effuaries of the fame Sea; as are many others on the Coaft of Scolland.

Ifay, before sbat Rupture; For, fince that Rupture, the Cafe (as to the \(T\) bames) is fomewhat altered. For the Weftern Tide (between us and France) which was then ftopped at this 1 fb brus, doth now flow on (through that Frermm) beyond the Mouth of the Tbanies, as high as the Dogger-fands; which doth therefore fupply the Eftuaiy of the Tbames, which was formerly furnifhed from the Northern Sea.

And thefe fmaller. Efluaries might fooner be fwarved up by what every Tide lodgett. there, while thofe greater Aftuaries are but mortned, and become narrower, than they had formerly been.

And as to the Tbames in particular; it feems very evident, if we confider their Situation, and the Nature of their Soil, that much of the L.ow Grounds (in Kent and Effex) on both Sides of the Mouth of the Ibames (adjacent to the Sea) had formerly been Sea, (as well as that of Rommey-mar/b.) And when the Mouth of the Tbames was fo much wider, no doubt but it Howed much farther than now it doth. And how far, who can tell?

It may perhaps be objected, that the fmall Rivers now remaining, in the Bottons of thefe Valleys, which may have been fuppofed (in former Times) to have been AEfuaries, do now run more wriggling (with more Turnings and Windings) than do thefe Valleys. But this need not at all fiem ftrange, when as we may daily fee the fame, in the Bottom of a muddy Ditch (or Water-courfe) when the Water is almoft drained off, the Mud yet remaining foft: the little Water, vet remaining, will work out of itfelf (amidft the Mud) a wriggling Paffage (according as the Mud will more or lefs give way) much more crooked, than was fuch Ditch when full of Water, and the like muft needs happen in the gradual Draining of fuch AEfuaries, according as the foft Earth will permit. Which Crookednefs will continue, wher the Banks on both Sides do (by Degrees) grow firmer.

As to what I faid concerning the Ine of Oxney; A low Level in that Ifte, which had for divers Years lain under Water, is now raifed by intromitting the Tide, to a confiderable Height above what it had formerly been; and the Channel from thence to Rye, is (by the Tide's paffing in and out) become much wider and deeper than heretofore. Both which are evident, and not to be denied.

If we look in the more ancient Maps of Kent (older than the Year 1640) we will find, that what we call the Ihe of Oxney, was then but a Peninfuia; being (by a fmall Jjtbmus or Neck of Land at the North-Eaft Corner of it) continued to the reft of the Country: And the Tide from Rye to that Place (which now flows ftraight onward on the North Side of the Ine) was there ftopped by that Iffimus, and did

\section*{Large Teetb found under Ground, \&cc.}
wheel about on the South Side of it: Or rather, the River Rotber did. (from the North Side of the Ifland) wheel about by the South Side (to that Eaftern Corner) and thence (by the Channel) to Rye.

While Things were in this ftate; divers Moorifh or MarM-lands, adjoining to the River Rotber, were oft in Danger (upon great Rains) to be drowned. But fo it once happened (by what Accident I know not) that this drowned Land had unexpectedly (in a Night's 'Time, or little more) difcharged iffelf on another Level, fomewhat lower tha: itfel?

Upon which Indication, it was thought advifcable (by cutting that Jfftrmus) to allow thofe Waters on the North Side of the Inand a ttraighter Paflage towards Rye; and to let thofo lower Grounds for fome Time to lye under Water (paying the Rent of them) till fuch Time as (oy intromitting the Tide) they might be fomewhat heightned, and then timely recover'd. In Order to which, Commilioners of Sewers have ever fince from Time to Time been iffued out for that Purpofe; and the Work in a good Meafure effectect, though not finim'd.

An Account of Large Teeth dug up in Ireland, by Mr. F. Neville. n. near the Side of a fimall Brook, that parts che Countics of Carion and 3+6. p. 367. Monagban.

Two of them are of a larger and two of a fmaller Sort; the largent is the fartheft Tooth in the under Jaw, the other is like it, and belongs to the oppofite Side; the lefier Tooth I take to we the third or fourth Tooth from it, and has its fellow: Thefe are all that were found, and one of them in a Piece of the Jaw-bone, which fell to Dirt as foon as taken out of the Earth; there was Part of the Scull tound allo of a very large Size and Thicknels, but as foon as expolcd to the Air, that mouldered away as the Jaw had done.

The Account I had, led me laft Week to the Place where I was refolved to make the niceft Search I could; but the Water-wall of the Mill being built, and the Ground all incumbered with the Earth, that was thrown up, I could have little Opportunity of doing any Thing but to enquire of the Workmen the Manner of finding the Teeth, and where and how they lay. There were fome few Pieces of Bones found, but none entire, yet by thofe Bits that were found, one might guels that they were Parts of thofe that were of a larger Sizc.

The Place where this Moniter lay was thus prepared; which makes me believe it had been buried, or that it had laid there fince the Deluge. It was about four Feet under Ground, with a littie Rifing above the Superficies of the Earth, which was a Plain under the F'oot of a Hill, and about 30 Yards from the Brook or thereabout. The Bed whereon it lay, had been laid with Fern, with that Surt of Rulhes here called

\section*{Large Teeth found under Ground, \&ec.}

Sprits, and with Bufhes intermixed. Under this was a fiff blue Clay, on which the Teeth and Bones were found: Above this was firft a Mixture of yellow Clay and Sand, much of the fame Colour; under that a fine white fandy Clay, which was next to the Bed: The Bed was for the moft Part a Foot thick, and in fome Places thicker, with a Moifure clear through ir ; it lay fad and clofe, and cut much like Turf, and would divide into Flakes, chicker or thinner as you would; and in every Layer the Seed of the Ruthes was as frefh, as if new putled, fo that it was in the Height of Seed-time, that thofe Bones were Jaid there. The Branches of the Fern, in every Lay as we opened them, were very diftinguifhable, as were the Seeds of the Rufhes and the Topss of Boughs. The whole Matter fmelt very four, as it was dug, and iracing it I found it 34 Fect long, and about 20 or 22 Fect broad.

It will be well worth Confideration, what fort of a Creature this might be, whether Human or Animal: if Human, there was fome Realon for the Interment, and for that Preparation of the Bed it was laid on; if Animal, it was not worth the Trouble; if Human, it muft be larger than any Giant we read of; if Animal, it could be no other than an Ftcphant, and we do not find, that thefe Creatures were ever the Product of this Climate. And confidering, how long this muft have laid here, I do not believe the Inhabitants then had any Curiofity or Conveniency to bring fuch into this Kingdom; for I fuppofe the beft of their Ships could not carry one. Then if an Elephant, or fome other Beaft which muft have Proportion to the Teeth, it muft have laid there ever fince the Floot; and if fo, then the Bed, on which it lay, muft be of its own making: Whence it will follow, that the Flood coming on him, while he lay in his Den, he was there drown'd, and covered with Slime or Mud, which fince is turn'd into the Subftance of the Earth before-mention'd. There were alfo a great many Nut-fhells found about the Bed, perhaps thofe might have been on the Bułhes, which compofed Part of the Bcd.

The two large Teeth are of equal Weight, two Pound three Quarters each: The two little Teeth are fix Ounces each; but there are fome of them wafted, and fome of the Holders that go into the Jaw broken off.
2.] The Four Teeth, with fome of the Fragments of the Bones that were found with them, have been brought to Dublin, where I have exa- on Remarks min'd them particularly, and taken the following correct Sketches.

I am fully convinced, that they muft certainly have been the Four Grinding Teetb in the lower Jaw of an Elepbant: And that the many loofe Fragments of thofe large Bones, that were found with them, muft have been Remains of the fame Animal.

Vol. IV. Part II.

Fig. 28.
Fig. 28. \(A A\) is the larger Grinder of the under Jaw on the right Side, weighing two Pounds and three Quarters of a Pound.
\(b, b, b, b, b, b, b\), are white, rough, indented Borders, feven in Number, of an irregular Shape, arifing about the tenth of an Inch higher than the hard black fhining Surface of the Tooth; this rough raifed Work ferves for the bruifing and grinding the Animal's Food, the tough Grains of Rice, Leaves, Fruits, and the Boughs of Trees, and is made of fo extreme an hard Texcure, that it refembles large knotted Threads of white Glafs, laid on and clofely faftned to the dark Superficies of the Toobb: And anfwers that glaffy Surface wherewith Nature has armed the Outfide of the Teetb of mort Animals, to prevent their wearing from the conttant Attrition in Chewing of their Foods.
\(c_{,} c, c, c, c_{3}\) is that Part of the Tooth which rifes above the Gums, and continues even now diftinguifh'd from the reft of the Bone, by having its Colour of a different Shade.
\(d, d, d, d, d, d, d\), are many ftrong Tangs or Roots, feemingly united all together, by which the Tooth reccived its Senie and Nourifhment, and though it was fo large and ponderous, by thefe it kept firmly fixt into the Jaw.

For the Mechanifm Nature Phews itfelf to have followed in framing the Teeth of this Animal, is no more than this: Whereas in other Creastures, the has divided that bony Subitance wherewith they chew their Food, each having its peculiar Roors to lecure its Articulation in the Jaw-bone; The has in this of fo great Bulk, for the greater Strength, Stabiliment, and Duration of its Teetb, and the better to provide for a compleat Attrition of the Aliment, in order to perfect the Digeftion to thoroughly, as to fuftain the Life of the Animal for two or three hundred Years, (as it is a common received Opinion in the Eaft) The has, I fay, contrived to make the Subitance of the Teetb in their Roots below, and in their upper Parts above the Gunis, clofely unite together; and coalefcing thus, form a few large maffy Teeth inttead of many fmall ones.

As for Inftance, in Man's Rody, that is of fo much a lefs Size, the Number of the Teeth, (when the whole Sett is compleat) reckons to thirty-two; whereas in the large Elepbant, the Teeth of both the Jaws amount in all but to Eight, befides its two great Tufks, which rather ferve as Horns for its Defence, than Teeth to prepare its Food; and therefore I think not fo very properly call'd Teeth.
Fig. 29. Fig. 29. E, E, is the fmaller Grinding Tootb of the under Jaw on the fame Side; its Surface covered over with the fame white indented Work, as before defcribed for grinding of the Food.
\(f, f, f\), are three large Roots, that kept it firmly fixed in the JawBone.

This fmaller Toot's weighed full fix Ounces.

\section*{Large Teeth found under Ground, \&cc.}

Fig. 30. G, G, is the large Grinder of the under Jaw on the left Side, Fig. 30. much of the Size, and Shape, and Weight, with its fellow Tooth, deferibed Figure 28. It frews its Ronts and all its Parts, with the reugh protuberant white Work on its upper Surface made after the fame Contrivance, and formed after the fime ftrong Model as the furmer.

And truly if one confiders it, 'tis piain, that were not the Feetb of this Creature made of fo large a Size, and withal of fo maffy and firm a Subitance, 'twere ablolutely impoffible they could refift the Force, and bear all that Proffure, wherewith thofe vait Mufcles exert themfelves, that nove the lower Jaw in Maftication, in this fo ftrong an Animal.

Iig. 31. II, \(H\), is the fimaller Grinding. Tooth of the under Jaw on the Fig. 31. fame Side; it is lefs compleat than the fmall Tooth defcrib'd before in Fig. 29. for fome of the Root is wanting, and Part of its outward grinding Surface is broke off at \(k, k\), fo that it weighs fomewhat lefs; yet what remains, exaetly fhews the fame kind of Work and Shape of the other Tooth, that anfwer'd it on the right Side.

Thele Four Teetb here defcrib'd, fully compleat the Set of the Teeth, wherewich Nature has furnimed the lower Jaw of the Elef hant; and are anfwered by juft as many more, formed after the fame Manner in the upper Jaw, as Dr. Mowlins informs us, who diffected the Elepbant that was burnt at Dublin in 168i. In its Anatomy, p. 40. Speaking of the Tecth, he affures, there were befides the Tufks, only four Teeth in each Jaw, two in every Side; and that thefe eight Teeth were all Molares, fo that he had no Incifores.

But notwithftanding this, perhaps it will be faid, we may not haitily conclude from hence, that our Great Teeth dug up in Ircland, muft certainly have been the Four Grinders of an Elenbant, fince they might as well belong to fome other large kind of Terreftrial or Marine Animal. As for the Hint of their being buman or gigentick, 'tis fo groundlefs a Thought, and fo contradietory to comparative Anatomy, and all Natural Hifiony, it does not deferve our Confideration.

To obviate this, I take Notice firft in general, that the differing Kinds of living Creatures, wherewith Nature has ftock'd the World, are not more diftinguifhed by the Make of any Part of their Bodies from one another, than by the various Shape and Difpofition of their Teeth: And hence it is, we fhall not find any two diftinct Clafes of Animals, that do exactly agree in the fame Make and Ranging of their Teeth.

But to be more particular, I thall here fet down at length, the Words of two late Authors, that purpofely have defcribed the Teetb of the Elephant.

Dr. Blair, in his Defeription of the Teeth of this Ainimal, fays, Vid. Infra, V. Dr. Moulins well obferves, that they are all Molares, being two Inches broad v. p. 117. in sbat Part of sbem wberewith they grind, and fix Inches and a half

\section*{Large Teeth found under Ground, \&cc.}
long on the Rigbt Side, and five Incbes and a balf on the Left. Their Surface, though flat, is yet very unequal, for they bace alternetcly placed, running from th Right to th Left side, an Hollowimess and then an Eminnence; and tbis Eminence is furrounded by a rough protuberant Border. Tbere are nine of tbefe Holloumijes, and as many Eminences, undulated as tiocy pain: Sea Wares.
'Tis remarkable, how very exactly all this agrees with our Figures: 'Tis true, thole Hollowneffes and Eminences, which he mentions to be isinn, do not fo nicely hit with the Number of thole in our Teeth; but this Difference procceds from hence, that he defcribes here the Grinders of the upper, whereas ours are the Teetb of the lower Jaw; though fuch a Diftinction as this, I am ape to think, may very well arife even in thofe of the fame Jaw, in various Animals, from fome peculiar Difpofition in one from another, nay, and perhaps in the fame Animal, at different Times, according as it happens to be older or younger.
- Vid. infra. A little farther * where he gives an Account of thofe of the under
V.v.p.12t. Jaw, he fays,

Tbe bind Tootb of the Rigbt Side is four Incbes, and tbat on the Left foue; the one balf of their Surface, where they begin to appear above tbe Gums, is femicircular, with the forementioned Ridges and Sulci running branfverfly, four on the Rigbt Side, and five on the Left; the obber balf (or Tooth I fuppofe he means) bas five of thefe Eminences wbere it grinds on the Rigbt, and four oin the Left : Each of the four Teeth is six Incbes long, and bas \(\sqrt{12} x\) or feven of the forementioned Eminences, ant as many Depreflions: Thefe Teetb are the moft firm, Solid, and weigbty Bones, of any Animal yet knowns.

Mr. Rey in his Synopfis Animalium ©uadrupedum, when he comes to give us the Defcription of the Elepiant, has the following Words: Os pro mole Bellue parvum, qualuor in utrique naaxillâ Dentibus molaribus feu Dertium molariuns Maffis inftrulfun ; fiquidem plurimi Dentes in Os folidum \(\mathcal{E}\) durum ita infixi funt, ut cum eo \(\mathcal{E}\) inter \(\sqrt{c}\) unum \(\mathcal{O}\) continuum Corpus efficiant. Dentes bi lineas parallelas andulatas ofto vel novem in luperficie maffe efficiunt; funlque reliquo offe candidiores: Maffe integres, Dentium fingulariun modo, per Gomphofin maxillis injoruntur. Inciforibus omnino carct.

Thus Mr. Ray deferibes the Teetb of this Animal: And if we compare Dr. Elair's Words with his, and the Particulars of both Accounts with the Defcription and Figures we have given of the Teetb dug up in ireland, and oblerve how they all agree exactly, even fo as one may fay they tally together; I think it will amount to nothing lef's than DerionItration, and that all our Ileas have been taken from one and the fame Nattria! Objes, and as they, fo we, mutt certainly have defcribed no vehr Fieth but thofe of the Eletitont

But then perhaps it wiil be a.te'd, what is become of all the reft of the Teetb, that were in the upper Jaw, which beiny as firm and dolid Bones, as thoie that are here preferved, might for the fame ileafon have fill remained cintic.

\section*{Large Teeth found under Ground, \&ic}

But fince we find it otherwife, 'tis obvious to imagine a probable Conjecture, how this might coine about. From what Mr. Nevil mentioris, 'tis plain that the Bed where all thefe Bones were found, muft once have been the outward Surface of the Earth, the Green-Sod, producing Rußes, Ferns and Nuts: And when the heavy Beaft firft fell dead upon this Spot, the Skull, with all the Bones and Teeth of the upper Jaw, being the highett l'arts of the Animal, might likely fall in fuch a Pofture, as to be expofed fome while above the Earth; though thufe of the under Jaw firt consing to the Ground, might make themfelves a Bed, and being covered with the Mould, remain preferved; whillt the upper Teeth, and molt of the other Bones, lying expofed to the Injuries of the Air and Weather, before they got a Covering, might rot and quickly moulder all away.

But though this be allow'd, yet ftill a greater Difficulty remains unfolved; how this large body'd Animal, a Native of the remote warm Ciimates of the IVorld, fhould be depolited in this wild Nortbern Ifland, (where Greeks or Romans never had a footing) fo many Miles from Sea, and diftant from thofe Places of the Ine, where People might moft probably refort.

And to make the Difficulty yet greater, we muft confider, not only from the dark black Colour of the Teeth, contracted by their lying long under Ground, and the remarkable Alteration wrought on their bony Subitance, which (by the mineral Steams and Exinalations it has imbib'd whilft it was in the Earth) is now become more folid, hard, and ponderous, than it was naturally at firft, (nay, in fome Parts we find it plainly petrified) but alfo from the perifhing of all the other Bones of the Animal's Body, and trom the confiderable Deptb of Eartb that covered thole that were found: We mutt conclude from hence, that they have lain in this Place for many Centuries: I won't fay, with Mr. Newi, ever fince the \(F 160 \%\), becauic I can't fuppofe that the night 'Texture of vegetable Subitances, Nues and the Seeds of Rufles, could pofibly have been preferved to long: But this, at leaft, may fafely be affirmed, that thefe Remains muft be Cotemporaries with fome of the remote Ages of the World; which carries us fo far back into the carlielt Times, that we can never imagine the rucie Inhabitints of Ireland, or any of their ncighbouring Countrics, were Mafters of fo much Art, in thofe Days of Ignorance and Darknefs, as to make Carriages by Sea ftrong and capable, or of Curiofity and Politenefs enough, to tranfiport a Beaf of this large Size from thofe far diftant Countries, where 'twas bred.

Thele Coniderations, grounded on other Inftances of the like kind, make me irclinect to think, this Alcpbane might not be broughe hither by any Care or Induftry of Man; but the Surface of this Terraqueous Globe might, in the carlieft Ages of the World, after the Deluge, but before all Records of our oldent liffories, differ widely from its preFent Geegrapis, as to the Diftribution of the Owais and Dry-land, its IJandi,

Ilands, Continents, and shores, fo as to allow this Beaft, and others of its Kind, for ought I know, that may by fome fuch Accident hereafter be luckily difcovered, a free and open Paffage into this Country fro:n the Cuntinent.

For otherwife, how can we ever explain that that other vaft lares ftately Animal the Moofe-Deer, little inferior to the Elephant itleif, could have been brought to Ircland, (where elfewhere I have flewn it formerly was common) from diftant North, Anerica, even long before chat Quarter of the World was known, and is the only Region, I can hear. where this great Beaft is found at prefent.

And can we well imagine, that Foxer, Otters, Badyers, Tygers, Wholen, with Linves, and fuch ravenous Aizitnals, as we have been told, have lately been difcovered by the great Snows that fell this prefent Winter, in the Iftend of Sardinia and other Places, fhould ever be imported (being ufelefs noxious Beafts of Prey) by the Induftry of Man, to propagate in Iflands?

Nay, how can we fuppofe, that Bir's of fhorteft Flight, the various dorts of poifonous Serpents, and of offenfive creenigg Vamin, withall the various Tribes of finaller Infe7s, could pofiibly be found in If?ands, unlefs they had been fock' \(d\) with thofe Inhabitants, when the Intercourfe between them and the Continent was free and open ?

But in whatever Manner this Elephant might firf have made its way for Ireland, this is beyond Difpute, that the Bones of Elephants have been difcovered deep under Ground, in other Haces, as well as this Kingdom, and thofe too out of the Way, far diftant from the native Countries of this Animal.

For not many Years ago, in a Hill near Erfurt, a Town of the Upper Saxony in Germany, feveral Parts of the Skeleton of an Elephant were
- Vid. fupra, dug up; an Account of which is given by Temtzelius *.
V.II. C.III. And I am well perfuaded, by the bett Conftruction I can make of
S. XXXVIII. thofe imperfect and obfcure Accounts, we have in Evert Iforand Iedes curious Travels from Mufcory to Cbina over Land, Cbap. 6. (which he confeffes he only gather'd from the barbarous Offiacks, Inhabitants of that Country) concerning the vaft Fieth and Bones and Limbs of spammuthor, as he calls them, frequently found (and diligently fought atter to make Profit of them) in the Hills and Banks of feveral Rivers in Siberia, the Keta, Yenize, Trugan, Montgamfen, and Lena; that they are nothing elfe, tut the Remains and Skelesons of Elepbants buried there, and accidentally difcovered by the Earth's opening, and falling down, on the fudden Thaws, after fevere long Frofts.

Mr. Cambden in his Britcmaia is of Opinion, that thofe great monArous Teeth and Bones, which he takes Notice to have been at feveral Times dug up in many Parts of Great Britain, muft have been the Remains of Eleplants; but then he thinks, they muft be of thofe that Dion Caffus the Hiftorian tells us the Roman Emperor Claudius brought over, when he made his Expedition into that Ifland. But that this

\section*{Large Teeth found under Ground, \&c.}
truly is fo, I own is but Surmife as yet, and has not been fairly proved by him or any other.

What Mr. Somner * has publifhed is more remarkable; he informs = Vid. Supra. us, that in the Year 1668, in the Village of Cbartbam near Canterbury, p. 222. in England, digging witbin twelve Rods of a River, they found a Parcel of firange monfrous bones, fome rebole, fome broken, togetber with four Teeth, perfif and jound, each weigbing fomething above balf a Pound, and fome of ioem almofl as big as a Man's liff. They are all Ckeck Tectb or Crinders: tbe Earto in whicb tbey lay being like a Sea-Earth, or Fulling-Earth, seitb not a Slome in il.
'I' is obfervabie how this Account, in many of its Circumftances, agrees with that of Mr. Nevil's; as that the Teeth were all Grinders, four in Number, found with other large broken Bones, near a Brook, and in a claiey Earth, without a Stone: But then the Weight and Magnitude of our largeft Ieetb to far furpafs thofe, that were found in England, that there did not come up to a fifth Part of thofe, which flews, they could not be the Teeth of the fame Animal. I muft confefs, the suthor does not fo much as fufpect they were Elepbants Teeth, but on the contrary, is of Opinion that they belong'd to another Species, the Hippopotamus or River-Horje, a Bealt that's yet a greater Stranger in thele Parts of the World, than the Elepbant itfelf; and therefore its Paflage hither can never be accounted for, but by fome fuch like Suppofition, as we hâve made.

Mr. Luffin + differs in his Judgment from Mr. Sommer about thefe \(+V_{i d}\). infra. Teeth, which he thinks muft have been Elepbants Teetb; as he is pofi-p. 245. tive thofe large Bones he defcribes in the fame Letter, and found near Harwich in EIfex, certainly muft have been.

Not having feen any of the Bones or Teeth concern'd in this Controverfy, either thofe that were found in Kent, or thofe in EJfex, I cannot well take upon me to determine any thing in this Matter: But this at prefens I can fafely day, that if the Figures of the Teetb given us by Mr. Sommer \(\|\) be genuine and well expreft, they no way feem to agree \|rid. Fig. either in Shave or Make, or in that particular and Cbarafleriffick Work 26, 2\%. on the grinding Superficies, with the Teeth of the Elepbant; or with the Defcription and Figures we have given, which are correct and natural.

I am inclined to think, (even from thefe imperfect Hints) that if we had more correct Hiftories and Obfervations of this kind, made in diftant Countries, fiilfully regiftred, with all their inftructive Circumfances, they might lead us into great and momentous Trutbs relating to the Deluge; to the wife Methods of Providence, in replenifhing all Regions of the frorld with Amimal Beings foon after the 1 lood; and to the Knowledge of feveral important Changes, that may have happen'd on the Surface of this our Terraquecus Globe.
[Tbe Tootb Fig. 34. is Nine Incbes and a haif long, ubereby tbe Magwitude of the others may be efinmated.]

\section*{Large Teeth found under Ground, \&c.}

\section*{Remarks by} 3.1 This Account of Mr. Nevil's, with Mr. Molyneux's Draughts of Dr.E.Haliey. the Teeth, and his Remarks upon them, having been produced and ibid. read before the Royal Society, they order'd, that what Teeth they had of like fort fhould be look'd out and laid before them ; to which Sit Hans Sloan was pleated to furnifh a yet greater Variety, out of his Collection of Natural Rarities. And to obviate all Doubts, there being at this Time in Wefominfler the entire Skull of a large Elephant with the Teeth in it, That was likewife ordered to be viewed and compared with the Figures: Which done, it appeared that the Teeth! in Queftion could be no other than thole of an Elephant.

By this Enquiry we ware likewife fatisfied, that the Number of Teeth found being but four, was no Objection; it appearing that the Nomben of Molars in this Animal is not certain. Pliny, Lib. XI. c. 37. fays exprenly, Dinettes Elephanio i:tus ad mandendian quatuor, prato es qui prominent. And in the Remains of that mighty Elephant detcribed by
- Vide. fupra, Tenadius*, there were no more than four Teeth found. In that at Ir eft-
V. II. C.IIt. mingler there were fix, viz. one in each lower Jaw, and two in each of
S. Xxivill she upper, whereof the inner Tooth is about three Times as long as the other, and both together longer than thole of the under Jaw, by about an Inch; the upper foal Teeth being much worn by grinding. These
Fig. 32.
Fig. ii. we have thought it to reprefent by Fig. 32. Shewing the rough grinding Surface of the left under Tooth, being confiderably concave; and by Fig. 33. the fame Roughnels on the upper Teeth is Shewn, having a Convexity tallying with the Concavity of the under, which is a Circumfiance not observed by any of thole that have delcribed them.

And altho', by the Observation of Mr. Du Verne, Dr. Moulins, and Dr. Blair, who diffected three different Elephants, it appears, that each of them had eight Molares; yet from thee it is alfo evident, that in the Divifion of them Nature observes no Rule: For Dr. Monlins found the two Teeth, in each of the upper Jaws of that he diffected, to be divided after a different Manner; fo that the inner Tooth on the one Side, and the outer on the other, was bigger than its adjoining Fellow, yet not fo as to be very unequal: And Mr. Du Verney and Dr. Elair had on both Sides the much greater Tooth outwards: Whereas the Wefminfler Skull, on the contrary, has only a final one outwards, and the much greater Grinder within. All which confidered, we may with Affurance conclude, that this Elephant found in Ireland had but four Teeth in his Head when he died; and that the two greater were thole of the upper Jaws, and the other two thole of the under.

Again, by the Size of the grinding Part, we may conclude there to he the Teeth of a very young and fall Elephant; fince they are not much above half the Length of thole, that are to be feer at \(W_{e} f t-\) ziinffer, which belonged to a Bealt of not more than between 10 and II Feet high; nor much above one Third of the Length of a Fofl Elephant's Grinder in the Royal Society's Repolitory, the which is here Fig. 34. reprelented by Zig. 34. Hence it is not to be wondered at, that the Bones

Bones of fo young an Animal, having not acquired their Firmity, as being in a growing State, fhould be diffolved by long lying in the Earth, as ailo the Roots of the Teeth.

Maltbew Paris in his Hiftory affures us, that in his Time Louis IX. (afterwards St. Loxis) King of France, made a Prefent of an Elephant to his Cotemporary Henry III. of England, and that in the Year 1255, after the Englifs had been fourfcore Years Mafters of Ireland. Of this, fays Mastbew, Nec credimus, quod unquam aliquis Elepbas vijus eft in Angliâ, prater illum.
X. Having read Mr. Somner's Account of Arange Bones found at An Account of Cbaribam, I think it not improper to acquaint you with fomething like Large Bopes it: That in 1701, at Wrabnefs, a fmall Village, fituate in the moft found near Colchefler, by Eaftern Parts of Effex, upon the River Stour, near Harwich, divers Mr. J. Luffkin Bones of an extraordinary Bignefs were found at fifteen or fixteen Feet n.274.P.924. beneath the Surface of the Earth, in digging for Gravel to mend the Roads with, Ecc. the largeft and moft remarkable of which was procured and fent to me by Mr. Rich, Minitter of the Place.

We read in Cambden, p. 351. that in the Time of King Ricbard II. and in the Reign of Queen Elizabetb, there were found in the moft Eaftern Promontory of Effex, at a Place call'd Odulfinefs, which I take to be W'alion, large I'ceth, and Bones of an extraordinary Bulk, which were efteemed the Bones of Giants. But Mr. Cbildrey in his Britannia Baconica, p. 100. rather thinks them to be the Bones and Teeth of fome Elephant, buried there by the Romans.

I hat thefe were the Bunes and Teeth of fome Elephant, I am prone to believe; firtt, becaule they far furpafs in Magnitude the Bones, \(\mathcal{E} c\). of the largeft Creatures that we have at this Day in our Inland.

Secondly, becaufe 'tis evident from Dion Caffius, as quoted by Mr. Cambden, (fee the Romans in Britain, and in his Britannia, pag. 347.) that Abundance of Elephants were brought over into England by the Emperor Ciaidius, in his Wars with the Britons; even into Eflex, as appears from the fame Dion, a litele after in thefe Words: Claudius having at laft joined Plautius, and took the Command of the Army, paffed the River (meaning the Thames) and upon a fair Engagement with the I nemy, who were polted there to receive him, obtained the Vietory, took Camalodunum, \&c.

Thirdly, in comparing this Bone with the Oftcology of Dr. Moulins, in his Anatomical Account of the Elephant burnt at Dublin, \&cc. I find it perfectly to agree to and with the Os bumeri thereof, not only to outwird A ppearance or Form, but to Meafure alfo; from which Circumftances we may conclude, that thefe were the Bones, \(\mathcal{E}^{3}\) c. of fome Elcphant, rather than of any other Animal.

And it does leemingly appear to me, that thefe Teeth and Bones mention'd by Mr. Somner, might have been the Teeth and Bones of fome Ekephant, rather than that of the Hippopotamus: and that,

Vol. IV. Part II.

Firft，in refpect of the Place；for，as Mr．Cambden fays in his Bri－ tannia，p．197．fpeaking of Cbilham in Kent，of which this CWartbain is a neighbouring Village，fituate in the fame Down，and on the fame River Stour，that it is a current Report amonglt the Inhabitants，that Julius Cefar encamp＇d there，in his fecond Expedition again！t the tri－ lons；and thence it was called Gulbam，as if one thould lay，Julius Sta－ tion or Houfe．

It appears farther，Britan．p．208．that \(R^{\prime}\) utupire（which whether Ricbborough or Stoner matters not）fituate near the prefent Sandewich，was the Place of Claudius＇s landing in Eritain；and that through this Down was his neareft Paffage to the Ibames whither he was going，is indifpu－ table．So that＇tis highly probable，that during the Stay，paffing or repaffing of thefe Roman Armies through thefe Downs，fome one of their Elephants might perifh or die，and he buried there．

Secondly，By the Teeth themfelves，for if you compare the Icons given by Mr．Somner，with the Defcriptions of Dr．Moulins，p．40．you will find them the very fame as to Breadth and Depth， \(\mathcal{E}^{2} c\) ．and their being Molares；for，fays the Doctor，thefe eight（which were all the Elephant had，befides the two Tufhes）were Molares，for he had no Im － cijores．

And laftly，to folve that great Difficulty which obliged this Gentle－ man to imagine this Down to have been an．Eftuary，that his Hippopota－ mus might thercin dig itfelf a Grave，otherwife how fhould thefe Bones be found at fuch a Depth？For who with Reafon（fays Mr．Somner）can imagine，that any Land Creature could ever have had（at firft）fo deep a Burial ？

But＇tis eafily explained，why thefe Bones thould at this Day be found at fuch Depths，if we confider the Alteration or Rifing of the Vallies， by the continual wafhing down of the loofe Earth or Soil by the Rains and Snows from the adjacent Hills，and by the annual Rollings of the Grafs，Sedge， \(\mathcal{E}^{2} c\) ．for Proof whereof take the following Inftance from Dr．Plott＇s Nat．Hift．of Stafford／bire，Chap．vi．p．48．p．220．fpeaking of a Mofs， \(\mathcal{E}^{3}\) ．wherein there was found a Lump of Coins of Edzeard IV． of England（fuppofed to be loft in a Purfe or Cluth now rotted away） at 18 Feet deep，which being about 200 Years fince（that is，when they were found）whoever pleafes to compute it，will find this Mofs grew about one Foot in 11 Years，or one Inch per Annum and \(\frac{1}{23}\) proxime．．Di－ vers other Inftances of Alteration are mentioned in the fame Hiftory，as in Chap．3．par． 11,12 and Chap．6．par． \(45,46,47,48,83\) ．Now it will be eafily granted，that if this Mofs grew or advanced itfelf above its Surface 88 Feet in 200 Years，then this Vale or Down might advance itfelf 17 Feet in almoft 1700 Years．

Cuins，どヶ．
found under Ground in Lincolnihire， by－n． 279. f． 1156

XI．1．］In July 1 yoi，one Edward Lenton，who lives with one Pbilip Wolverfion of Flee in Soutb Holland in Lincolnßire，being about to fence in a Hay－ftack，and digging a Grip for that Purpofe about the Depth of
half a Yard, ftruck his Spade upon a Pot, which when he broke, there was no lefs than 36 Pound Weight of old Roman Copper Coin found in it. The Pieces were found fet in Rows edge-ways, one by another, and ftuck fo together with the Verdigreafe or Ruft of Copper, that many of them required a Chizel, or fome fuch Thing, to feparate thern; but being leparated, clean'd and brighten'd, the Heads or Figures of all, or moot of them, were very fair, (fome as when newly ftamped) and the Infcriptions of many are very legible. The Fellow careleny gave thein away, and difperfed them up and down the Country to fuch as defired thens. Here was amafs'd together a great Variety of Coins in this Pot: They fay Dr. Hart of Wifuich has a Dozen of the beft Pieces; and an Apothecary ar Long Sutton a Score of the fame, the largeft and moft legible: And Pbilip Wolverfion himfelf has two or three, lo very large and fair, that he will not part with them. The Place where they were found, is in the midft of the vafteft Flat or Level in England, and in a Ground that for many Ages paft ufed to be cover'd with Water in the Winter, and over grown with Reed in the Summer. 'Tis about a Mile and a half South by Weft from Fleet-Church, and about as far South by Eaft from Holbeach. There are no Banks or Hillocks, old Works or Ruins, to be feen near it; nor any Remains or Tokens of any Thing extraordinary to have been there; (but the old Sca Bank about two or three Miles off; which Dugdale from a Paffage in Tacitus believes to be caft up by the Roman Soldiers). But all is as flat as the Sea, and a low Country, producing a coarfe flaggy Grafs for the moft part, round about it. The Pot, which was narroweft at the Top and Bottom, but thicker in the middle, had an Inicription about it, which, though it feemeth in fome of the Shreds or Pieces to be fair at firft Sight, yet is not legible, though what it may be to Men fkill'd in Antiquities, I know not.

Near the River W'elland, (about 5 or 6 Ycars ago) that runs thro' the Boats, or. Town of Spalding in Lincolnfire, at the Depth of above eight or ten horns, 8 . leet, there were found 'yettys, as they call them, to keep up the old River's Bank, and the Head of a Tunnel that emptied the Land-water into the old River; and at a confiderable Diftance from the prefent River, 1 guefs 20 or 30 Yards, there were dug up (about the like Depth) feveral old Boats; which Things fhew, that anciently the River was either much wider than now it is, or ran in another Place, or both. On the other, viz. the North-Weft Side of the River, and more upwards in the Town, were digg'd up (at about the aforemention'd Depth) the Remains of old Tan-vats or Pits, a great Quantity of Ox-borms, and Sboe-foals, (of a itrange Form) and I think the very Tanners Knobs, \(\mathcal{E}^{c}\) c. which Things fhew, that the Surface of the Country lay anciently much lower than now it does, and has been raifed by the Sea's throwing in its Sand in the Maritime Parts (now moft inhabited) and by the Moor or robsed Sedge in the fenny Parts next the high Country; the whole Level is about 50 Miles in Length, and 30 Miles over in the broadeft
\[
+Z_{2}
\]

Parts.

\section*{An uncommon Sinking of the Earth.}

Parts. No Record (printed or MS.) or Tradition whatfoever, (that I ever heard of tell us when thefe Mutations here difcoverable happen'd.

One Thing farther I have to add, that lately at the laying of the prefent new Sluice or Goat (as they call it) at the End of Hamoreleck, at its Fall into Beffon Haven, taking up the Foundation of the old Goat, they met with the Rools of Trees, many of them iflining from their feveral Poles or Trunks, fpread in the Ground, which when they had taken up (Roots and Earth they grew in) they met with a folid, gravel!'y, and ftony Eoil, of the high Country Kind, (but black and difcoloured by the Change that had befallen it) upon which hard Earth they laid the Foundation of this new Goat: Where thefe Roots were dug up, was certainly the Surface of the old Country, the ceriain Depth whercof I cannot now tell, but that it was much deeper than that at Spalding, as the Land is there at prefent higher. The Arckimedean Screw, or fcrew-like Trunk or Cylinder, by which the Workmen cleared themfelves of Water, was very pretty.

A Remark, ly Mr. R. Thorefby, itid.
2.] The Matter of Fact in thefe Relations, is indifputable, this worthy Perion being an Eye-witnels; and I take it for an experimental Confirmation of Mr. Ray's Opinion, that the great Level of the Fens running through Holland in Lincolnbire, the Ithe of Ely in Cambridgefbire, and Marßland in Norfolk, was fometime part of the Sea, and atterated by Earth brought down by Floods from the upper Grounds, by the great Quantity of Mud there fubfiding, which by degrees raifed it up. The * Vid. fupra, Form of the Sboe was much like thofe found with fome Urns at Kiroy V. III. P. II. Thore in Wefmoreland, as defcrib'd in Pb. Iran. N \({ }^{1} 158\).
S. XXVI.

Of an uncommo: Sinking of tbe Earth, by Mr. J. Sackette. n. 349 . P. 469 .

Fig. 35.
XII. I fhall give the beft Account I can, of what is remarkable, and known to almoft all hereabouts, concerning the prefing forward of the Cliffs, and finking of the Hills in the Neighbourhood of the Town of Folkfone in Kent. I fhall give a Sketch of the Situation of the Country, by defcribing a ftraight Road from what we call the Mooring-Rock, to Tarlingbam-Houfe; the Manner of the Country, as to the Rifing and Falling, being much the fame, for about a Mile on either Hand of the Road defcribed.
\(A\), the Mooring-Rock, about half way between High and L.ow- Water Mark. B, the Foot of the Cliff, 50 Yards from the Kock. C, the Top of the Cliff, about 6 Yards high. C D, a Plain of 50 Yards. \(D E\), a cragged Cliff, of 60 Yards high. E F, a Plain above a Mile long. \(F G\), an Hill of fteep Afcent, near half a Nile \(G H\), the Land from the Top of the Hill to the Houte, near a Mile. I, Tarling-bam-Houfe, lying near two Miles and a half N. N. W irom the Rock. EGH, a Line of Sight. KBL, the Shore at High-Water Mark.

The Mooring-Rock (though it lies furrounded with great Numbers of other Rocks) is iffelf a moft noted one, known by this Name, Time out of Mind. At this Veffels uie to be moored, while they are loading other Rocks, which they take from hence, not only for our

\section*{An uncommon Sinking of the Earth.}
own Pier-Heads, but for thofe of Dover-Pier, and a very great Quantity of them were Mipp'd in the 'Time of Oliver's Ufurpation, and carried to Dunkirk, for the Service of that Harbour.

This Rock has remain'd fix'd thus, for the Memory of Man; and old Men have obferved, that for forty Years and upwards, the Diftance between it and the Foot of the leff. Cliff \(A R\), has been much the fame; neither can they be much out in their Guefs, the Diftance being fo fmall. Though there feems nothing extraordinary in this, yet its what they take fpecial Notice of, to their great Surprize: For they fay, and prove by good Marks and Tokens, that the leffer Cliff \(B, C\), has been conftantly falling in, infomuch, that from Time to Time, in their Memory, near 10 Rods forward to the Land has been carried away by the Sea. From whence, as it appears that the Plain between the Top of the leffer Cliff and the Foot of the higher C D, has been formerly double the Brcadth that it is at prefent, fo the Diftance bstween the Rock and the Foot of the leffer and lower Cliff \(A B\), fhould have increafed in Proportion, and would have been double at prefent, to what it has been formerly. But this Diftance remaining the fame, or rather lefs, (in the Opinion of many) is what is greatly wonder'd at: Nor can it be accounted for otherwife, than by fuppofing, that the Land preffing forward into the Sea, is wafhed away by the high Tides; and, as often as this happens, preffes forward again. This preffing forward of the Land into the Sea, would be incredible, were it not fhewn to be Matter of Fact; and that not only at this one Place of Obfervation, but by the like Obfervations all along this Coaft, as far as the Situation continues the fame.

Now let us climb both thefe cragged Cliffs, and place our felves at the Top of the higher one, ar the Point E. And here we are to obferve, that (as old Men inform us) upward of forty Years ago, not fo much as the Top of Tarling bam-Houfe could be difcern'd, neither from hence, nor yet a good Diftance off at Sea; but it difcover'd it felf by Degrees; till at this Day, not only the whole Houft, but a great Tract of Land below it, is p'ainly to be feen, as in the Line of Sight \(E, G, H\). In this there can be no Fallacy, and we can afcribe it to nothing lefs than the finking of the Hills (for their Tops could never wear away confiderably, bsing always cover'd with Grafs, and never broken up by the Plough, or otherwife). Thefe Hills are all of Chalk, and have probably very large Caverns within, Springs of Water always Rowing plentifully from the Foot of them; and I have had it oblerved to me, that upon their Tops frequent Cracks have been taken Notice of. Whatever be the Caufe of it, 'tis not to be doubted, but that thefe Hills are greatly funk. And this finking of the Hills, the People at this Place believe, forces the Cliffs and all the Land forward into the Sea. The Cliffs confift of great ragged Sand stones, till we come to near a Yard (at fome Places more) of the Bottom; then we meet with what they call a Slipe, i. e. a תlippery fort of Clay always wet. Upon.

Upon this Slipe, at the Bottom, they prefume, that the hard fony Land above, nides forwards toward the Sea, as a Ship is launched upon tallow'd Planks.

We whofe Names are under-written, do hereby teftify the Truth of the Matters of Fact in this Account; Benjamin Mafler, a Jurat of the Town, aged 74. Robert Hammond, Sen. a Jurat of the Town, aged 77. William Godden, a Fifherman, aged 74. Tbomas Marh, a Fifherman, aged 72. William Hall, a Fifherman, aged 73. Fames Godden, a Fifherman, upwards of 60 .

Parr of a Hill XIII. Let \(S, \mathcal{T}\), Fig. 36. reprefent part of the Ridge of an Hill, grafnnizg down dually rifing from \(S\) to \(\tau\), for near half a Mile ; and \(S, T, W, U\), the in Ireland. Communicated by the Bifiop if Clogher. n . North-fide of the Hill, with a Declivity from \(S\) to \(U\), and from \(\tau\) to \(W\). The perpendicular Height at \(X\), to the Plain of the Bottom at \(X, 150\) 337. P. 267.

Fig. 36. Feet, and the Slope Line or Hypotenufe \(X\), ,, 630 Feet.
The Declivity is pretty uniform from \(X\) to \(L\), and from \(L\) to \(\Upsilon\) confiderably fteeper: The Bank \(\Lambda, E, F, D\), overgrown with fhrubby Wood, all the Ground on the Side of the Hill being firm, green, and arable ; of a mixed Soil, Clay and Gravel, but more clayey.

On Fuefday the roth of March, 1712-13, in the Morning, the People obferved a Crack in the Ground, like a Furrow made with a Plough, going round from \(A\), by \(B C\), to \(D\). They imputed this to (what they call) a Thunderbolt; becaufe there had been Thunder and Lightning on Monday Night. Bu: on Tuefday Evening an hideous dull Noife railed their Curiofity; and they obferved that the whole Space \(A, B, C, D\), containing about three Irifb (i. e. \(4 \frac{1}{4}\) Englifb) Acres, had been all Day in 2 gentle Motion: And the Noife continued all Night, occafioned by the rubbing of Buthes, tearing of Roots, rending and tumbling of Earth. The Motion ceafed on Wednefday after Noon, when they faw the Bufhes on the Bank \(E F\), were removed, fome ftanding and fome overthrown, to the plain Meadow \(\mathcal{X}_{y}\). The green Ground above \(E F\), when it came to the Top of the fteep Part at \(E F\), rent with hideous Chafms, ten, fifteen, or twenty Feet deep, and tumbled down in Rolls of a Yard or two thick, and ten or twenty long and broad; not unlike a imooth Water breaking over a Cataract, and tumbling in Waves below.

There was a Precipice at the Top \(X x_{3}, 65\) Feet perpendicular, making the Slope-Line \(X x, 126\) Feet. The Ground from \(x\) to \(L\), was made more level, the whole perpendicular Height of \(x\) not exceeding the Plain of \(L\), above 30 Feet; but the Ground at \(L\), in the whole Line from \(E\) to \(F\), was mounted above 20 Feet higher than the unmoved Ground on either Side at \(E\) and \(F\); and the Height of \(L\), above the Plain of \(y\), is 55 Feet.

There was a Ditch HI, went crofs the Ground, which being broken off at 0,0 , is removed, together with the moving Part, 34 Feet lower down than the immoveable; but, at the Bottorn \(y\), it is tumbled 60 Feet over the plain Meadow. The Breadth at the Bottom \(a, b\), is 400 Feet, and at \(c, d\), about 300 .

\section*{Of the Sunk Inland in the Humber recovered.}

The whole Face of the :recipice \(X x\), is of a blue Clay, mixed with many little bue Stones. The Metal is very hard when dry; but upon any Rain foftens to a kind of Mortar, without the Degree of Toughnefs and Stiffnels that is natural to Clays. It is very much like that Gravel or Sand (as shey call it) which is fomewhat of a grey marly Nasure, and with which of late they fo much improve the ploughed Land in this Country.

About \(x\), there are Charms or Gapings full of Water, which make a Rill down the Hiatus \(B, E, A\), but in no greater Quantity, than might have been expected from a Well funk to a lefs Depth. Though I was told, that there were Holes in the higher Mountains, that received Water under Ground ; yet I can find no fuch Thing, nor any Symptoms of a Current under Ground, either where it enters or rifes, in all the neighbouring Ground for fome Miles.

It feems to me, that there has been no Vacuity under Ground to receive the fubfiding Earth; for what the Bank \(E, L, F\), is raifed higher, and what is tumbled down to the Plain \(a, b\), may very well compenfate the Subfiding at the Precipice \(X, x\).

Before the Rupture, the Declivity from \(X\) to \(L\), was not altogether uniform, but was hollower where \(x\) is now, than the adjacent Parts: It might have been, by the Detcription I have from the People, io Feet deep in the Middle, and roo Fect Diameter; and they have a Tradition, that this was made by a Subfiding before the Forty-one Wars, (the oldent Epocba the Country Irifb know.)

It lies in the I.ands of Slat-beg, two Englijß Miles S. W. of Clogber, on Mr. Mowtray's Eftate.

I have enquired diligently of the Neighbours, if they found any Shocks or Indications of an Earthquake, but don't find the leaft Appearance of any.

They impute it to the great and conftant Rains we have had laft Harveft and Winter, which have foak'd and fteep'd all the Ground, but cannot guefs after what Manner they fhould produce this Effect; for it is impolfible any Water fhould ftand on the Ground, or in the Vicinity, it being all on the Declivity of the Hill.
XIV. This inand goes by the Name of the Sunk Inand; fo called, I An Account fuppofe, from the finking Marfh Ground about. It is yet within the of the Sunk Memory of Man fince it began to raife its Head above the Ocean, 1 Humber, rethere being feveral old People here alive who can remember when there coverd from appeared nothing of it but a wafte and barren Sand; and that only at the Ses: Cam-Low-Water too; when for the Space of a few Hours it fhewed its mwnicatad by, Head, and then was buried again till the next Tide's Retreat: Thus \(\begin{aligned} & \text { layne, E/g. Chamber }\end{aligned}\) fucceflively it lived and died until the Year 1666, when it began to n. 361. p. maintain its Ground againtt the Infult of the Waves; about which 1114. Time it began to be relcued wholly from future Danger, by the Care
and Induftry of Colonel Gilby, who having, as I am inform'd, a Leafe or Gift of it from the Crown, did raife Banks about the tifing Grounds of it, and to defending it from the Encroachments of the Water, it became firm and folid, and in a thor Time afforded good Pafturage for Sheep and other Cattle. The Expences at firft, to improve it to what it is, mutt needs have been very confiderable ; it being encompafs'd with high Banks, and deep Canals for receiving and difcharging the Liquid Element, which every now and then notwithitanding threatens to repoffefs it, but hitherto in vain.

This Inand is now about 9 Miles in Circumference, within the Banks, which feem to render it impregnable againft all future Attacks of the Sea, and is of a very fat and fertile Soil, affords good Grafs, Corn and Hay, and is replenifhed with numerous Flocks of Sheep, which are of a larger Size and finer Wool, than thofe in Holderne \(\int_{s}\), from which it is divided by about two Miles in Water; and from Lincolinpire by about four. It is ftor'd with vaft Numbers of Rabbets, that feem innumerable, they appearing through all Parts in prodigious Swarms; their Skins are counted the fineft in England, of a dark Moufe-Colour, fhagg'd, and foft as Silk.

There are alfo Cows and Horfes feeding conftantly in the Place, with great Plenty of Wild Fowl.

The Inhabitants are not fo numerous, there being only three Families, that live conftantly upon the Place; however they are never too folita5 , there being Abundance of Workmen and Labourers, that continually refort thither, Fometimes I am told to the Number of a Hundred and upwards, for the repairing of the Banks, \(\xi^{\circ} c\).

The yearly Income of the Proprietor amounts to about \(800 \%\) and pays the King's Taxes to thofe who collect for the Eaff-Riding, and is ufually uplifted by thofe of the Liberty and Townfhip of Otiringbam, from the Marhes of which there is a Paffage over the Sands to the Sunk at Low-water. But this Cuftom of paying the King's Cefs to them, proceeds from the Conveniency, not Neceffity; for it never belong'd to that, or any other Parifh, fo that I cannot refolve you, in what Diocefe this Inand lies, unlefs it had been united to fome neighbouring Parifh, or converted to one of itielf; which if effected, the Tythe of Lambs, Wool and Rabbets, \(\mathcal{E}^{\circ}\) c. would make up a handiome Benefice. It lies nearer indeed to the Diocefe of York, by at leaft two Miles, than to that of Lincoln, being two Miies South of Holdernefs, in the River Humber, and four Miles North of Lincolnfire.

33 Feet Diancter; whereas the former is not fully 18. Thefe as they luak fell acrofs, fo that ubitructing each other, only the Root of one of them reaches the Bottom, whereas the firft ftands perpendicular.

When the firit Tree funk, it was obferved that the Water boil'd up in the Hole; but upon the linking of the greater P'it, that Water drain'd off into it, from the former, which now continues dry. The depth thereof to the firm Bottom is nine Feet three Inches; and the Tree that ftands upright in it is three Feet cight Inches in Girt, and its Trunk about eighteen Feet long, half of which is now within the Pit. In the Buttom of the greater Pit there is a Pool of Water about eight Feet Diameter; whofe Surface is eleven Feet three Inches below the Ground, and the Trees that are in this Pit are much of the fame length with the other, but fomewhat finaller, the one being in Girt three Feet five Inclies, the other but two Feet nine laches.

The Soil, on which thefe Trees grew, is gravelly; but the Bottom is a Quick-fond over a Clay, upon which there are Springs, which feed large Ponds adjoining to Sir Cbarles Potts's Houle, at about a Quarter of a Mile from thefe Holes.

The Nature of the Soil leems to afford us a reafonable Conjecture at the Caufe of this odd Accident: The Springs running over the Clay at the Bottons of a Bed of very minute Sand, fuch as Quick-fands ufually are, may reafonably be fuppofed, in many Ages, to have wafh'd away the Sand, and to have thereby excavated a kind of fubterraneous Lake, over which thele Trees grew: And the Force of the Winds on their Leaves and Branches, agitating their Roots, may well have loofened the Sand under them, and occafioned it to fall in, more frequently than elfewhere; whereby in length of Time, the thin Bed of Gravel being only left, it might become unable to fupport its own Weight, and that of the Trees it bore. That this is not a bare Conjecture, may appear from the boiling up of the Water at firt in the leffer Hole, and its itanding in the higger and lower. And if it fhall be found, that it was a very windy Day, whercon this Accident happen'd, it will much add to the Probability of this Solution.

An Accident not unlike this lately happened in Fiect-freet, London, by the Defect of the arched Roof of a very deep Common-Sewer. The Earch gradually falling into the Sewer, was carried away by it, fo as not to obitruct the Water; and the continual Tremor of the Ground, occafioned by the conftant paffing of Carts and Coaches, by Degrees thook down the Earth, fo as to leave a very great Cavern, the Top whereof at length grew fo very thin, that one Day a weighty Cart having juft paft it, a great fpace of the Pavement funk in, in the middle of the Strect, not without hazard to a Coach then driving by.
XVI. 1.] There are Grounds in Scotland, which we call Moffes, from whence the Country People dig Turf and Peats. The Surtace is conel Vol. IV. Past II. 5 A that n. j30.p.2g6.
that Scurf there is a black, moint, fpungy Earth ; in fome Places Thallower, and in fome deeper; from 3 or 4 to 7 or 8 Feet deep; and in fome Places, but not in many, to twice or thrice that Depth. They cut the heathy Scurf with a flat kind of a Spade, which they force Horizontally betwixt the Scurf and the fpongy Earth, and turn up the Scurf in flat thin Flakes, which they call Turfs. It is over-run with the fmall Roots of Heath or Heather, and when dried, makes a healthy brifk Fire; but with much Afhes of a whitifh, dufkifh, or reddifh Colour ; always the whiter, as it contains more of the woody Roots.

The black fpongy Earth, which is under the Turf, they cut out in oblong Squares, with Iron Spades made of that Shape, about 8 or 9 Inches long, and about 4 or 5 Inches broad: And as the Men cut them \(u p\), the weaker Men, Women and Children, carry them in fmall Whee!-barrows, fcattering them on fume dry Ground, to be dried by Sun and Wind: Some become harder, fome fofter, according to the Nature of she Mould, or Earth ; the more folid, the better Fire; and they are lefs efteened, which are more fpongy. And when they have cut off one Surface, of 4 or 5 Inches deep, they proceed downward to another, until at latt they come to the hard Channel, unlefs they be ftopped by Water; which alio they ordinarily remove by making a Channel to fome Defcent, if they can; and if they cannot, there the Water ftagnates.

And in fuch wafted Pits, where Water hinders to cut the fpongy Earth to the Bottom ; the Pits will be filled up again, in a good Number of Years, with new Ground of fpongy Earth; which in Progrel's of Time, will come to the Confiftence of Peat-Mofs, as at firtt, and a Scurfy Heath- Turf will at laft grow on the Top of it.

I have obferved that Peat-Yits, which have been digged fince I remember, have grown up again with new Peats; and that fometimes oftner than once in the fame Pits; fome Moffes growing in Phorter Time than others. Bur I have obferved alfo, that when they dig the Peats to the Channel, and in Places where the Water runs off, and doth not ftagnate, that the Moffes did not grow, nor renew there again; which moved me to order my Tenants not to cut the Moffes to the Channel, nor in very large Openings ; but rather in fmaller Pits, that they may grow again more hattily: And the Event hath anfwer'd my Defign. But Sir Rabert Adairs has told me, That without cutting the Moffes, in the Method of Pits, but by cutting in fully to the Channel, and by laying the heathy Turf, which is cut off the Top of the Mofs, on the Channel, fo as to cover the Channel over, that in Progrefs of Time a Mofs would grow there again; but not fo laftily as in the Pits.

I never obferved any of thefe Moffes, which did not ftand on Plains: Albeit the heathy or heathery Turf, do over-fpread the Faces and Declivities of the Scots Mountains for the moft Part: There are many Moffes which ftand very high on thefe Hills; fometimes not very far

\footnotetext{
from
}

\section*{Of ibe Mofles in Scotland, \({ }^{\circ} \%\).}
from the Top. But the Peat-Moffes are always in a Plain, though there be Deffents to them, and Defcents from them; yet I never obferved them to ftand on fuch a Plain, as the Water might ftagnate on: And they always have a Defcent to them, from fome higher Grounds, whereby Water did defeend to that Plain; which I take to be the Parent of Peat.

In many of thefe Moffes, there are found Quantities of Fir and Oak Wood; I never obferved nor heard of orher Woods in them. Thefe are ordinarily found in whole Trees; but the fmaller Branches are feldom found uncohfumed: I have feen very math, and very great Trees, of both Kinds; beit generally fpeaking, the Oak is always black; the Fir fometimes whiner, fometimes redder, as is obferved in all FirWoods: But neither Fir nor Oak are found with any Bark upon chem. The Fir is generally as frem and tough, and as fit for Ule, as any other old-Wood is: Only the Wooxt of thefe found in Mofies, has fo imbibed the Water, that it takes a long Time to dry, aud fit it for Uth, efpeciatly the Oak; infonuch, that when it is put into any fmall Work, it readily warps and changes its Figure. We never fint any of the Oaks ftanding in the Woods, have that Blacknefs; fo that I prefume, rhe BLackenefs accrues fromthe Water?

There afe tholy Places, whele Woods do not now grow ; ftheit Propte endenvour to cuitivate them ; and yet the Moffes in thofe Places are well ftored with this kind of under-ground Timber, both \(\mathrm{O}_{2} t\) and Fir, but efpecially Fir; fuch are Orkner, the Levoes (which are 界cs) Calbnefs, Tarbanhigs, and the Coan of Bucbain. But yet it wotld aty pear, that there have been Woods of old in thefe Places, or how cite could they come to thefe Moffes? For a Proof of which, tike the fol: lowing Account:

In the Ycar 165 . I being then about 19 Years old, and necifionally in the Parith of Loclorin, paffing from a Place called Acbadifcald, to Gonnazd, I went by a very high Hill, which did rife in a conftant fteepneis from the Sea; only in lefs than half a Mile up from the Sea, there is a Plain about half a Mile round; and from thence the Hill rifes in a conitant Steepnefs, for more than a Mile in Afcent. This little Plain was at that Time all covered over with a firm ftanding Wood, which was fo very old, that not only the Trees had no green Leaves, but the Birk was totally thrown off; which, the old Countrymen told the, was the univerfal Manner in which Fir-Woods did terminate ; and tivat in 20 or 30 Years after, the Trees would ardinarily caft themlelves up from the Root; and that they would lie in Heaps, tiil the People would cur them, and carry them away. They likewile mew'd me, that the outfide of thefe ftanding white Trees, and for the Space of one Inch inward, was dend white Timber; but what was within that, was good folid Timber, even to the Very Pith, and as full of Roin as it could fand in the Wood.

\section*{Of the Moffes in Scotland, \(E^{\circ} \mathrm{C}\).}

About fifteen Years after, I came the fame Way, and faw not foo much as a Tree, or Appearance of the Root of any; but in the Place thereof, the whole Bounds, where the Wood had ftood, was all over a plain green Ground, covered with plain green Mofs. I alked the Country People, who were with me, what became of the Wood, and who carried it away? They told me, no tody was at the Pains to carry it away; but that it being all overturn'd from the Roots by Winds, the Trees did lie so thick and fivarving over one another, that the green Mols (there, in the Britif Language called Fog') had overgrown the whole Timber; which, they faid, was occafion'd by the Moifture that came down from the high Hill, which was above it, and did ftagnate upon that Plain; and they faid, none could pafs over it, becaule the Scurf of the Fiog would not fupport them. I would needs try it; alad accordingly I fell in to the Arm-Pits, but was immediately pull'd up by them. Before the Year 1699, chat whole Piece of Ground was turn'd into a common Mols; where the Country People are digging Turf and Peats. The Peats, as yet, are not of the beft, and are lofs and fpongy, but grow better and better; and as I am inform'd, it does now afford good Yeats.

This Matter of Faet, did difcover the Generation of Moffes; and whence it is, that many Moffes are furnilh'd with fuch Timber.

Thcie Highland Woods are ordinarily ttored with other Kind of Timber, as Birch, Alder, Ah, befides Shrubs, and Thorns; yet we rever find any of thofe Woods remaining in the Mofles.

What the Reafon may be, That the Fir and Oak do not now grow in feveral Countries, where they are found fo plentifully in the Moffes, Inquirendun eff. I Thall only add, that in a Mois near the Town of Elgin in Murray, though there be no River or Water, that runs into the Mofs, yet three or four Feet in the Mofs, there is a fort of little ShellFifh, refembling Oyfters, found numerouny in the very Body of the Peats, and the Fifh alive with them; though no fuch lith be found in any Water near to that Mols, nor in any adjacent River, nor in the ftagnating Pits that are in that Mofs; but only in the very Subitance of the Turf: Some of which were fent to mefrom the Place, a little before I came from Scotland.

\section*{- on rbe} Same, by Dr bans Sloan. stid. p. 302.
2.] What the Earl of Cromertic obferves in the Molfes, \&cc. in Scotland, I have found to be true alfo in the North of Ireland. I have been an Eye-witnefs there, that when the Turf-diggers have come to the Bottom, or firm Ground, by having dug out all the Earth proper to make Turf or Pear, and come to the Clay or other Soil, by draining off the Water, that then there have appeared Roots of Fir-Trees, with their Stumps it inding a Foot or two ftraight upright, and their Branches fpread out on every Side horizontally on that firm Surface; as if it had been formerly the outward Face of the Ground, and Place of their Growth. And I have obferv'd thefe Routs to be fometimes fo aca: one another,
as that their Branches were, as it were, matter, grew over, and gave place to one anrther, as we every Day iee in Routs of Trees, where they grow too elufe. I fisw once the Body of a Fir-Tree dug up fo bige, as to be juidg'd fit for the main Poft of a Wind-Mill; which was difcover'd \(\mathrm{d}_{2}\) as many of them (which are not found in digging Turf) are, by the Grals, which grew over it, being in a very dry Summer of a yellowith Colour.

Mr. de la Pyme fent me fome of the Cones found with this Timber in the great Fens of Liziolinßire, which differed in nothing trom thote of the Scotcb Fir, which is plentifully growing in Scolland at this Day, and which fome Years fince wese judged fo proper by fome to afford Mafts for the Navy Royat, that fome Perfons were fent thither for that Purpole. Bat they were not able to bring about what they intended, by reafon of the Dificulties in the Roads, by which they were to be conveyed to the Sea; which in Norway I have heard is in a great Meafure effected by the Rivers. Cafar, indeed, in his Commentaries, fays, that the Sorts of Timber in this Inand, are the fame as in France, proter fagum \& abietem, cxcept Beach and Fir. The Earl of Cromertic is a fufficient Witnefs of his Mittake, as to one Sort of thefe Trees, and the Beaches in the Cbiltorn Countries near London, prove the fame, as to the other. For the Ufes of this under-ground Timber, beffides thofe of other Wood, it is fplit into Pieces, and being lighted, fupphies the Ule of Candles. It is alfo made into Ropes, as may be feen in the Muicum of the Royal Society, by a long piece of fuch Rope, bought by tinc Honourable Edeward Soutbreell, Elq; in Newry Market in Ircland. The long foaking in Water having render'd the Wood of thofe Trees fit to be made into Ropes. This feems to prove, that as the loaking of Hemp, Flax, Aloc Leaves, EJc. in Water, diffolves the pulpy part, and leaves the fibrous fit for making into Threads and Ropes, fo the long lwaking of Trees may make in Length of Time the fance, or an analogous Change in thole of Wood and Timber. I have leen what I thought had been Pieces of Wood, not only in Claypits, but even in Quarries or Stone-pits, in the Blocks of Stone raifed out of their Strata, or Layers; and have been affured by Mr. Bellers, that he hath feen large P'ieces of Wood in the Stone-pits in GloucefferDire; and alfo in Lancafbirc there is a Mols, or Turf-Bog, where the black ipongy Mould, made ufe of for Peats, fmells very itrong of Bitumen, or Petroleum; of the Oil of which it yields a very great Quantity by Diftillation. And the late Sir Ediward Hanmes has told me, that near the Lord Bhefrugton's Howle at Blefjngton in Ireland, there appeared a Light, where the Horles trampled with cheir Feet on a certain Space of fott Ground: On my Defire he procured me fome of this Mould, which agrees exactly in its dark Colour, Lightnefs, Eor, with Peat Earth. And on Examination of this by a Microfcope, I found the Light proceeded from many fmall half tranfparent whitifh live Worms, which lay in it.

\section*{Of the Moffes in Scotland, \(6 \%\).}

The Blacknels of the Oak, comes, in my Opinion, from the vitriolic Juices of the Earth foak'd into the Oak, which being aftringent, is turn'd black by them. Ink is made of Galls, an aftringent Excrefcence of a fort of Oak in Twkey, made by an Infect there ; and of green Vitriol, which is made of the Pyrites diffolved by Rain-Water, and Iron. Farth of all Sorts, and even human Calculi, and the Ahes of Vegetables, have in them Particles of Iron, in greater or leffer Quantities: The Pyrites is alio very common. The Particles of Iron coming to be diffolved by this Pyrites, Subacid, or other Salts diffolved by Watef, or perhaps by Water it felf, and carried into thefe Bogs, there faftens to the Tree, foaks into it, and turns it black.

Thefe Particles in fome River Water, faftening to the Oak-Timber floated in it, give the fame a darkinh Colour, taken Notice of by Mr. Pepus inths Naval Memoits of Englent, p. 71. where we are cold by the moft famous Ship-Builders of England, "That the beff forcign "Plank for the Royal Navy, was brought either from Dantzick, "Quinbcruw, (that is Koningliberg) or Rigu, of the Growth of Polma " and Prufia, or from Hamburg; namely, that fort thercof, which is " fhipped from thence of the Growth of Eobewia, diftinguifh'd by its - Colaur, as being much more black than the orher, and render'd io "(as is faid) by its long fobbing in the Water during its Paffage tlif" "ther."
In the Turf Bogs of Preland it Feet deep, are found not onty the Moufe-Dest Horns, inentioned in one of the Trenfastions, but likewife their whole Skeletons, wherein the Bones bear the fame Proportions to the like Bones of other Deer, as the Horns bear to their Horns. There are alfo found therein, Gold Chains, Pieces of Money, and Roots of Heath, feveral mufci, and Branches of Trees, fo foft, as to give no Refiftance to the Turf-Spade: And I was told, that in cutting Turf in one, they at feveral Feet decp eut through what the Irifo call a Rufkin of Butter (which was a Firkin, or Veffel, made of the Barks of Trees, ufed by the old Irifo for putting up their Burter.) And I remember, that in digging the wet Dock at Deptford, there were found at the Buttom, about nine Feet deep, Grafs Leaves, Hazel-Nuts, and Roots of Trees: And there was alfo found a Piece of Money, as they call'd it; which prov'd to be a Liaden Seal to fome Buil of Pope Gregory the IXth, who continued Pope from the Year of our Lord 1227 , to 1241 .
- Vol. V. From Leland, * who wrote in the Reign of King Henry VIII. we may learn the common Opinion in his Days, of the Caule of the Deftruction of Woods, the growing of Moffes and Pools; and that, at that Time, in Wales, the Senfe of the Inhabitants was, that the under-growing Trees found there, had formerly grown there.
"In thefe Deycs in Mone where they digge Turves be founde greate Leland's Itime-
"Rootes of Trees that ferve Men for Wood. For after the Trees wer rary, Vol. V.
"cut doune fogging Yerth and Moffe overcoverid them, and now the p. 13.
" fame Yerth parid away for Turves, the old mayne Rootes appere.
"Likcwife at low Wati riabout al the fhores of both Shores of "Aberdein and Towen Merioneth appere like Rootes of Trecs.
"I faw hard by on the lift Honde a great Fenny More, owe of wich
"the Inhabitantes therabout digge Turts for Fier, and by the fame
" Fenne is a fair LLin, cawllid LLinridde ii Miles from Serateflur.
"Sirateflure is fet round about with Montanes not far diftant, except
"s on the Weft Parte, wher Diffrin Tyve is. Many Hilles therabout
" hath bene well woddid, as evidently by old Rotes apperith, but
"s now in them is almoft no Woode.
"The Cauffes be thefe ; Firft the Wood cutt doun was never copi-
"fid, and this hath beeno a great Caute of Deltruetion of Wood tho"rough Wales. Secondly after cutting doun of Woddys the Gottys " hath fo byeten the young Spring that it never grew bueelike airubbes. "Thirddely Men for the nonys deltroied the great Wodd is that thei "Thould not harborow Theves.
"From \(W\) bitchurch a Mile and a half of I cam by the Pale of the " large Parke of Blakmer longging to the Esle of Sbraußorri, wherein is a "s very fair Place or Loge.- The Park, hath both redde Dere and falow. "In the Parke (as I hard fay) be iii. faire l'oles, of the wich I faw " by the Pale the largeft called Blaksin, whoreof the Park is namid.
". "It is to be fuppolid that thes Pooles for the moit pare in Morifch "Groundes, and lying fumwhat in low Groundes, dreane the nooift "Places about them, and fo having no Place ro iffue owt ftagne there. "Sum be likelyhod have hegon of Marle Pittes. IFor the Sandy "Grounde of yum Parts of sbropfbire, and elpecially of Cbeftrefoire c. and Lancafirefbire, will nor bere Corne plentifully but it bo merlyd. " From blakemers to byklems in a Foffe iii. Miles of Sand hard by "Cbolinely, fint I faw the great Numbre of Firre-Trees, the wiche "the Irhabitants thereby communely digge up for Fier Wood, but "there did I fe no Fyrre-Trees grouing. Oftentimes in diggin in this "Moffe or More for Peetes or Turves they finde the hole Trees of the " firft, fum fhort and fum veri long, without T wike or Bow, lying " fumtime not a Foote, Tiumtime iii. or iiii. Foote depe in the Grounde, "hut how or when thes Trees cam doune ether be cutcing or Wind "Faulle no Manne ther can telle. The-Wood of them in Burning "favorith of Refine.
"- Morle (in Darbybpire) Mr. Lelondes Place is buildid faving the Fun" dation of Stone fquarid that rifith within a great Moote a vi. Foote "above the Water, all of Tymbre after the commuhe fort of building " of Houfes of the Gentilmen for moft of Lancaltreflire. There is as "s much Pleafur of Orçhardes of great Varite of Frute and fair made "Walkes and Gardiates is ther cis in any Place of Lamcaffefaire. He " brennith
" brennith al Turfes and Petes for the Comnioditic of Mofies and "Mores at hand. For Cboteley Moffe that with breking up of A"bundance of Water yn hid did much hurt to Landes thereabout, anet "Rivers with wandring Moffe and corrupte Water, is within lefs than "a Mile of Morle. And yet by Morle as in Hegge Rowes and Grovettes 's is meately good Plenti of Wood, but good Huibandes keep hit for "a Jcwell.
"Syr Fobn Hoicrofles Houfe within a Mile or more of Morle flood in
" jeopardi with Aleting of the Moffe.
"Riding a Mile and more beyond Morle I fiw on the right hond a
"Place nere by of Mr. Adderion, and lo a ii. Miles of to Lidiale Mofe,
" in the right fide wherof my Gide faid that ther were Rootes of lyme
"Wood.
p. 8ı. "Al Aunderneffe for the molt parte in time paft hath been ful of Woot,
"and many of the Moores replenifhid with hy Fyrre Trees.

Olifervations en the Strata in Coal-
Mines, E®c. by J. Strachey, \(E / g ;\) n. 360 . p. 968.

Fig. 37.
XVII. I have made fome Obfervations relating to the different Strata of Earths and Minerals found in the Coal-Mines of Merd \(p\) in Somerfelfbire. The Draught (Fïg. 37.) you mult luppole the Sention of a Coal Country, and to take in about four Miles from the NorthWeft, to the South-Eaft, and may be applied to the Veins of Coal, as they lie at Faringdous Gourney, and likewife at Bifaep-Sutson, which latt Place is near Stocey, but in the Parilh of Cbiw-Magna in Somerfetfisire. For Dilcovery of Coal they fint fearch for the Ciop, which is really Coal, though very friable and weak, and fometimes appears to the Day, as they term it, or elle for the Cliff, which is dark or blackinh Rock, and always keeps its regular Courle as the Coal does, lying obliquely over it: For all Coal lies fhelving like the Tyle of a Houte, not Perpendicular nor Horizontal, unleis it be broken by a Ridge, which is a parting of Clay, Stone or Rubble ; as if the Veins by fome violent Shock were disjointed and broken, to as to let in Rubble, \(\mathcal{E}^{\circ}\). between them. The Obliquity or Pitch, as they term it, in all the Works hereabour, is about 22 Inches in a Fathom; and when it rifeth to the Land, is called the Crop, but in the North Baffeting. In the Works near Stowey, and likewife at Faringdon, it rifeth to the North-Weft, and pitcheth to the South-Eaft; but the farther they work to the South-Weft, the Pitch inclines to the South; and è contra, when they work towards the North-Eaft. So likewife they obferve, as they work to the SouthWeft, when they meet with a Ridge, it caufeth the Coal to trap up; that is, being cut off by the Ridye, they find it over their Heads when they are through a Ridge: But on the contrary, when they work through a Ridge to the North-Ealt, they fay it traps down, that is, they find it under their fect.

Coal is generally dug in Valleys or low Grounds. The Surface: in thele Parts is moltily a red Soi', which under the firft or fecond Sppite degenerates into Malm or Licom, and often yields a Rock of Raldith

Firefone, till you come to four, five, and many Times to ctwclve or fourteen Fathom depth, when by Degrees it changeth to a grey, then to a dark or blackith Rock, which they call the Coal Clives. Thefe always lie flelving and regular as the Coal doth. But in thefe Parts they never meet with Fireftone over the Coal, as at Newcaftle and in Staffordfbire. Thefe Clives vary much in Hardnefs, in fome Places being little harder than Malm or Lonm, in others fo hard as that they are forced to fplit them with Gun-powder: So likewife in Colour, the Top inclining to red or grey, but the nearer to Coal the blacker they grow; and wherefocver they meet with them they are fure to find Coal undes them. But to their Difappointment 'tis not always worth the digging. The firt or uppermoft Vein at Sutton is called the Stinking Vein. It is hard Coal, fit for mechanick Uies, but of a fulphurous Smell. About five Fathom and half, feldom more than feven Fathom, under this lies another Vein, which from certain Lumps of Stone mix'd with it like a Caput morrum,n, not intlammable, called Cals-bead, they call the Catbend Vim. About the fame Depth under this again lies the Tbree Coal V'ein, lo called becaufe it's divided into three different Coals; between the lirit and fecond Coal is a Stone of a Foot, in fome Places two Fect thick; but the middle and third Coal feem placed loofe on each other, without any Separation of a different Matter. Thefe three Veins before-mentiond are fometimes work'd in the fame Pit: But the next Vein which I am going to mention, is generally wrought in a leparate Pit ; for though it lies the like Depth under the other, the Cliff between them is hard and fubject to Water; wherefore I have reprefented a Pit funk through the three upper Veins at \(A\), and another Fig. 3i. funk upon the firce Coal Veius only at \(B\); and fo if they fink on any of the lower Veins they go more to the North-Weft.

Next under the three Coal Voins is the Peaw Vein, fo denominated becaufe the Coal is figured with Eyes refembling a Peacock's Tail, gilt with Gold, which Bird in this Country Dialect is called a Peaw. The Cliff alfo over this Vein is variegated with Cockie-puells and FernBranches, and this is always an Indication of this Vein, which, as I before hinted, is always fearched for about \({ }_{1} 5\) Fathom to the North- Weft of the former.

Under this again, between five and fix Fathom lies the Smitb's Coal Vein, about a Yard thick; and near the fame Depth under that again, the Sbelly-Vein: And under that a Vein of 10 Inches thick, which being little valued, has not been wrought to any Purpofe.

Some fay there is alfo another under the laft, but that has not been proved within the Memory of Man. At Faringdon they have the fame Vcins, which, as I am informed, agree in all Parts with thofe of BibopSutton before-mentioned. But as Faringdon lies four Miles South-Eaft from Bibop-Sutton, fo, in the regular Courfe, they would lie a Mile and a halt deeper than thofe at Sutton. But as in Fact they are dug V ol.. IV. Part II. 5 B near
near the fame Depth, it fullows there mutt be a Trap, or fivemal Iraps down, which in all mult amount to that Depth between the faic! Works.

Between Faringdon and Higb Littleton the fame Veins frem to retain their regular Courle; but at Litfleton their undermoit and decpett Vein is the belt Coal, which at Faringdon proves Imal!.

On the other hand, in the Parith of Siamsn-Drese, to the North-Ean of the Coal-works at Sutton aforefuic, about a Mile diftant, and in the true Courfe with thofe at Suttor, the fame Veins are found again, But here they wind a little, and their Courle or Drite runs alinoft North, and they dip to the Eat; which Winding is attributed :o Ridges, which the Workmen have met with on both Sides, and have occafioned them to difcontinue the Work that way. At stanson they have little of the red Earth or Malin on the Surface, but come inimediately to an Iron-Gritt or grey Tile Stome, which is a Fore-runner of the Coal Clives; in all other Matters they agree with the Works near Stowy.

In the fame Parifh of Stanton-Drew, a little to the Eaft ward, they have another Coal-work, but the Veins are in all Refpects different from the former. Their Drift or Courfe is to the Eleven a-Clock Sun, as they term it, they Pitcb to the Five a-Clock Morning, and rife to land; confequently to the Five a-Clock Evening Sun. They have feveral Veins, but as yet only three are thought worth working. The uppermoft about three Feet thick fmall Linne Coal. The next is abotit three Fathom under it, about two Feet and an half thick, fit for culinary Ufes: The undermoft is about the like Deptli under the former, only ro Inches thick, but good hard Coal.

At Clutton, about two Miles from thefe latter, in the fame Drift, viz. almoft to the South Eaft and by South, thefe laft Veins appear again. The Surface here is red, and fo continues to ten, and fometimes to fourteen Fathom, and in other Refpects agree with the luft mention'd Works at Stanton-Drew.

At Eurnet, Queen-Cbarlton, and Brifleton, they have four Veins which pitch to the North nearly, and confequently the Drift lies almoft Eaft and Weft. The Surface is red Land generally to the Depth of four on five Fathom. The uppermoft is from three to fix Feet thick at Erifleton, but lefs at Cbarleton and Burnet. The next call'd P'ot-Veir, is fix Fathom under the former, eighteen Inches thick, all hard Coal. Ibirdly, The Trencb-Vein, feven Fathom under the other, which is from two Feet and a half to three Feet thick, all foiid Coal. Foursbly, RockVein, always diftinguifhed by a Rock of Paving-Stone, called lenant, lying over it, which Rock is fometime twenty Feet thick or more, and therefore this Vein is never wrought in the fame Pit with the former Vein, but about 200 Yards more to the South, or to Land, as they term it. It's computed feven Fathom under the former.

This is all I can lay in Relation to the different Veins of Coal and Earth in the Coal-works in thefe Parts; wherein all agree in the oblique Situation of the Veins; and every Vein hath its Cliff or Clives lying over it, in the fane oblique Manner. All of them pitch or rife abour twenty-two Inches in a Fathom, and almoft all have the fame Sirata of Earth, Malm, and Rock over thein, but differ in refpect to their Courfe or Drife, as alfo in Thicknefs, Goodnefs, and Ufe.

Now as Coal is here generally dug in Valleys, to the Hills which interfere between the feveral Works aboveniention"d, feem alfo to obferve a regular Courfe in the Strata of Stone and Earth found in their Bowels. For in thefe Hills (I mean thofe only that are difperfed between the Coal-works above-mention'd) we find on the Summits a fony Arable mixt with a fpongy yellowifh Earth and Clay; under which are Quarries of Lyas, in Eeveral Beds, to about 8 or 10 Feet deep, and fix Fet under that, through yellowifh Loom, there is a blue Clay inclinable to Marle, which is about a Yard thick: Under this, is another Yard of whitifh Loom, and then a deep blue Marle, foft, fat, and foapy, fix Feet thick; only at about two Feet thick it is parted by a Marchafite about fix Inches thick.

It is to be obferved, that thefe Beds of Stone and Marie, different from Coal, lie all horizontal.
XVIII. 1.] About half a Mile from Reculver toward's Herm, there of the Foffils appear in the Cliff Strata of Shells in a greenifh Sand; they feem to be of Reculver firm, and fome of them are entire, but when you go to take them from their Beds, they crumble to Powder between your Fingers; but that n. 368 . p. 762 . which is moft remarkable, is, that in the lower Yart of the Strata, where the Shells are more thickly difperfed, there lies fcatter'd up and down Portions of Trunks, Roots, and Branches of Trees; the Wood is become as black as Coal, and fo rotten, that large Pieces of it are eafily broken with one's Fingers. I know not what Depth thefe may lie, the Strata's Surface not appearing above two Feet from the Beach, but I judge it from the Superficies of the Top of the Cliff, about 12 Feet. I faw the Stump of one Tree ftanding upright, broken off about a Foot from the Ground. The Shells were of the White Concbites.
2.] It is very likely, that the Black Wood, mention'd by Mr. Gray, \(-A\) Remark is Oak, which has lain fo long as to be turn'd of that Colour by the vitriolic Juices of the Earth, in which it has lain; as Galls and a Solution of Vitriol turn of that Colour. I never faw any Oak that had lain any Time in any Kind of Earth, where Water came to foak into it, that was not turned of that Colour: And I have feen many Trees of Black Wood of great Bignefs, taken up (as well as leffer Pieces) and all of it was Oak. It looks at firt taking up like Ebony, is very ponderous, but as it dries, it fplits, grows friable, light, and comes to be good for little.

\section*{Some Remarks on Foffils.}

\section*{Some Remarks} en Foffils, iy Mr.E.Lhuyd. n. 291. p. 1566 .
XIX. r.] The State of Foffils is quite different in Effex, from what it is in Wales and Ireland. In thofe Countries the Shells are generally Cry;alline, but in Edex (and fometimes about us at Oxford) they are Teftaceous: Which Difference is, doubtlefs, to be attributed to the Soil, and particularly to Chalk and Flint, which all thofe Countries want, excepting a fmall part (I know not by what Chance of Dilurian Diffolation) got into the Nortb part of Ireland. But there 'tis remarkable that their Chalk is abfolutely petrify'd: I mean, whercas the Flints are here imbodied in Chalk, they are there in a Chalk-white Lime-fiome. And as chalky Countries only afford thofe Echinise I have ftil'd Pileatus, Galeatus, and Cordatus; fo I could never find them in all my Travels, but at that Place; from whence, in the Time of Paganifin, the Druids procur'd them, and fold them amongt our Nortbern Brisons for Stones of miraculous Efficacy againft Perils by Fire and Water; perfuading the Vulgar they were generated in Cocks Kuecs, as Thoutiands in the Higb-lands believe at this Day. And one Fellow had the Impudence to tell me (finding me a little hard of Belief) that he himfelf had taken one (that his Mafter had fhew'd me) out of a Cock's Knee with his own Hand.

We were furpriz'd here at Oxford, to find fo many Fofils, fcarce diftinguifhable from Sea Sbells; the Cale being ufually otherwife in thofe piaces I fearched. We have indeed in thefe Parts, one or two Folfit sbells of a Teftaceous Subftance, but in Colour they recede farther from thofe of the Sea, than thofe in Effex. I find that thole in Effex are fometimes found imbedded in folid Stone; which takes off any Objection fome might offer, of their being an accidental fcattering of Gulls, Crows, \&xc. on the Harruicb Cliffs.

Of Hanwich 2.] Harwich Cliff is a fort of Promontory, which divides Orsect Cliff, and its Hacen from the Ftftuarium contained between that and Walton Nafe; Foilis, by Mr. it is fituate on the fouthern Part of the Town, about a Quarter of
S. Dale. ibid.
p. 1568. a Mile diftant, or not fo much, and contains many Acres of Land. The Height of it from the Strand or Beach to the Top, where it's higheft, is 40 or 50 Feet. At the Bottom of this Cliff, there is a Stratum of Clay about a Foot thick, which is fucceeded by another of Stone for a Foot more; in this Stratum of Stone are imbedded divers Shells (though but thinly) as well of the Turbinate, as Bivalve Kind, and alfo Pieces of Wood and Sticks; over this, are divers Strata of blueih Clay, about the Height of twenty Foot, or more; this Clay hath Pyrites or Copperas Stones, fticking in it, but no Shells, that I could obferve: Above this, are likewife divers Stra:a, which reach to within about two Feet of the Surface, fome of which are only of fine Sanc, other fmall Stones and Gravel, mixt with Fragnents of Shells, and in others fmall Pebbles are mixt; and it is in fome of thefe laft mentioned Sirata, that the Foflll Sbells are imbedided, which lie promiilcuouny together, I mean the Rivalve or Turbinate; neither do the

Strata with the Shells obferve any Order in their lying, being fometimes higher, and fometimes lower in the Cliff; and fometimes 2 or 3 one above another with other Strata of Sand, Fragments, and Gravel, between. Above all thefe, is a Covering of common fandy Earth, which is about 2 Fect thick, in which, in fome places are Veins of a Species of Offeocolla, though more tender than Ofteocolla Officinaru:n, which is brought from Gernany: This I call OReocolla Anglicana, it doth incrult abcut fmall Strings, like the Fibres of the Roots of 'Trees, it's of divers Magnitudes, and fends forth Branches here and there, but is fo tender, as not to be gotten out of the Earth in any large pieces. Whether like the German it appears above the Earth, I never could difcover.

Before this Cliff, the Shore, as far as the ebbing of the Sea would permit my Oblervation, was rudely paved with Stones, divers of which are vein'd with that fort of Body, which by Helmont and other latter Naturalifts, is called Ludus Paracelfa: Of thefe Stones the Inhabitants have a Tradition, that they are form'd by the Clay, which tumbling down from the Clift, and being wafhed by the flowing of the Sea, are in a fhort Time converted into Stone; and Mr. Siles Taylor in his Manufcript Collections of Harwich and Dovercosrt, (a Copy of which I have) thus writes concerning it. Ibe Wafbing of thefe Cliffs difcovers a blueifh Clay, which tunbling down rpon tbe Sbore, altbo' wafbed by the Sea at High-water, within a 乃ort time turns into Stone: There they may be feen, foime tbat are new fallen, as foft as the Cleyy in the Cliff; and otbers that bave lain tbere longer, crafted over and bard, but if opened or broke, the Clay fill foft in the middle; others that bave lain longeft petrified to the very beart, and with thefe the Walls of the Town are for the moft part - built, and the Streets generally are pitcb'd. How far this is Matter of Faet, I will not determine, my Stay at Harwich being alwaws too fhort for me to make Oblervations fo critical as this Pbenomenon doth deferve; and although I nuift at the fame time own, that many of the Stones are wafhed out from the Stratum, at the Bottom of the Cliff; yet I have fometimes been inclined to Mr. Trelor's Opinion, becaufe he lived long upon the Spot, being Store-kepper of the King's Building-yard for many Years, and by his Collestions, \&c. feems to be a perfon of probity and learning; and alfo, becaufe divers of the faid Stones have Cracks or Chops in them, as Clay and Earth will have by being expored to the Sun; and there is vet [2nno r-02, 7 lying upon that Shore a Stone, in which a large pile (perhaps of Oak) fuch as was formerly made ufe of there, to prelerve the Cliff from the Injuries of the Sea, doth evidently appear to be imbedded; which can owe its Situation to no other Original, than by being preft into the Superficies of the Clay, while foft, and peetifying with it, which heing fquare, rakes off an Objection, which fome might make, had it been round, of its being lodged there in the general Deluge.

I am

\section*{Of Harwich Cliff, and its Fontls.}

I am not infenfible, that this Manner of Perrification is not only difo ferent from the common Methods Nature lifes in that Operation, but allo is oppos'd by divers learned and ingenious Men; as particularly by the Reverend Mr. Jokn Morton in Oxendon in Nurthansponjlire, whole Thoughts upon this Subject I fhall tranicribe from a Letter of his, 10 me, dated Auguft 4, 1699 - Ab Haswich, under tbe Cliff, upoin the Sea-froore, there is a Stratum of "C!ayey. Stone, suicb is cover'd bere wind there with ragged Stones of a ciojer sexture, whicb was formerly (I conjeciure) anotber entire Stratum, but is broken tbus by sbe Tearing of the Waves. Tbe Clayey-Stone Stratum, Mr. Luffkin, and you, were of opiwion, had been formerly a fofter Sulfance, but was daily perrified by tbe ica Water. Having argued a little about it, wiben turning to ti.e Cliff, I found a Stratum there, of the very fame fort of Clayey-Stone, suitb that upon dbe Sbore; yes the Sea Water viry feldom comes up bibbir, unlefs by Storms, and at Spring-tides. I broke a litcle piece off, and fow'd it to you, and tben you quas convinc'd (I tbink) it was not bardned or petrified by the Sea Water, but in its natural flate, And I bave cften mut witb juft fucb for's of Stone in many of our Stone-Pits bere, in Inland Countries. If appears 10 me, that the Water fould bave ratber fofined, than bardined sbe Sione upon the Shbre, tha' by wafbing away the loofor Clayey matier and otber Eariby fiuff, that is fometimes left upon is at tbe ebb, it mijbse feems do be a fort of P' C trification, and occafion this miftake.

As to Petrifactions: Tcie only obferied ibeje sbree forts. int, A Stony Incruftation, upon Sticks and any tbing that lies in sbe way, in tbe Petr:fying Springs; tbe Eartb in tbofe Waters is ufually intermixt witb particles of Stone, ibat trickle down into it witb the Water, and are tbere detain'd. Of tbis firft fort you bave doubsiefs many infarces in Effex, and I tbink there is one at Harwich Cliff; tho' tbis in my opinion is not fo properly call'd a Petrifaction. 2 dhy, Tbe fecond fort is that, wbicb is perform'd by tbe Permeation or Infinuation of tbe finer forts of Scory Particles, as it is in tbe cafe of fome of car Petrifying waters, (I belicue) particularly tbat at Knarefborough fometimes; the Stony particles bowever of the Knarefborough Spring are very fine. And many of tbe Foffil-hiells bave undergone the fame fate. 3dly, Tbe third, wibicb indeed is a Petrification, properly fo cail' \(d\), is often met wiib on the fides of Caves and Grotto's, as Pooly-hole in the Peak, and in the Fiffures, and Clefts of Mines and Quarries. Of this kind are the feveral forts of Fluors, the Lap, Stillatiti, Stalaginita, \&ic. tbat we meet with in the Fiffures, and Hiatus's of the Eartb. Thefe are continually growing (as ibey vulgarly fay) tbat is, are receiving an additional increafe of real and folid Stone, as is obferved in many Caves in tbe Peak, E'c. This I take to be perform'd in fucb a manner, as the Incruftations are, viz. the particles of Stone are brougbt along with tbe Water, as their Vehicle, and are depofited at lengtb upon ibe fides of the Cave or Fiffure, (tbis is matter of faet, tbat tbere is alicays a watry Stream, and ufually Water trickling down upon the fides of tbofe Caves) but bere, the particles of Stone are extremely minute and finc, and do tbere-
by naturally concrels and join sogetber very cloje; wherens in our Incruftations the Particles of Stome being grofer, the Stone is rough and coarfe, and friable. And ibis I leave 10 your fudgment, if it be not a more reafonable Hypothelis than that of Dr. Plot, in pag. 33. of bis Hiftory of OxfordMire, criz. That the very Body of the Water is turned into Stone as it drops down from the Racks. I know not indeed of any otber forts of Petrification, tban tbefe I bave already mention'd. As to tbat Hypothetis of the Tranmutation of a Stratum, c. gr. of Chalk to Clay of Coal to common stone, or the like, I muft confefs I never met wistb any tbing in Nature wbich would countenance it, tbat is, fuch a Tranfmutation in the Bowels of the Eartb. Nor is tbere any ibing tbat prowes it, that cever I bave neet with in any Natural Obfervations: Only fome will guefs and fancy fuck a Ibing; but for making it out, I am fure. I am no more able to do it, than 10 imake the Philofophess Stone, whatever tbey arc.

A late Author is of Opinion, that this Bed of Stones was the Foundasion of soe Loamy Cliff, webere the Cliff bas been wojbed awol, or cut: Ind that they are the Production of a Vitrioline fuice, in Conjunction with the Leams as the common Copperas Stones are by the fame Juice in a Gravel, and that the latter were only to be found where the Cliff was, gravelly, and not where sbe Loain is. How far thefe Stones are the Efiect of a Vitrioline Yuice, I will not determine, but this I can affirn, that I have now by me fome of the Pyrites, or common Capperas Stones, which I didpick out of the Clinyey Stratum of this Cliff, in which they may be frequently met with. Nor do I remember at any Time to have ubierved) thefe Slones to be invefted with either Gypfum or Tricbilis, as the fame Author affirms, but with the aforefaid Iudus Peracelf, and fome other forts of Lad. Stalagmina frequently.

How thofe Shells or Marine Bodies come to be hare pafited, is a Subject, which hath imploved the Heads and Pens of divers learned, and ingenious Men. I thall not pretend to determine the Controvarfy; I thall only make fome Remarks on the pofitive Affertion of the aforefaid Author, concerning the imbedding of thele Foffll Sbells in this Cliff, and the Alteration of the Channel, viz. Tbat this Bed of Sbeits, woich covers the Cliff, was carried tbitber at the making of the Hiarbour or, clearing of it. For the Harbour or Cbannel there is arsificial, and of no old date, the Current baving been formerly on the otber fide of Landguard-Fort, wobicb then flood in Effex. Againft the firlt Part of which, altho' many Reafons might be given to prove the contrary, I fhall only mention the following; and as our Author begs the Queltion, How elfe could the Sbells lie a-top of this Cliff? So I fhall allo atk him, why the fame Strata of Sand, and Fragments of Shells, with the lame Foffils imbedded, are to be found at Walion Nefs, on the other Side of the Effuarium, which is 5 or 6 Miles broad from Harwich, as likewife at Bawdfey Cliff in Suffolk, which is 8 or 9 Miles diftant, and in other Cliffis on that Shore, where I have met with them. A fecond Queftion may here be afk'd, How it comes to pafs, that none of thole Buc-
ciws Heleroftrophe, (whereof fuch Plenty of their Exuriae are in all the Cliffis hercabouts) are not now to be found in this Channel, nor the adijacent Seas? (where I have divers Times been a Finhing) for I callnot think the clearing this Harbour could have deftroyct all that Species of Shell-Fih, whereof there was then fuch Plenty; and therefore fome other Original mult be allow'd them, than what this Author has affign'd. Nor can I allow the llarbour here to be Artificiel, becaufe fo great a Work as this is, eiz, the making a Channel two Miles wide, as it is in this Place, would not have been withous fome Record thereof in Hiftory ; and befides the Earch, Eec. which muft arife by this Work, muft confequently have made a much greater Hill than the Cliff ever was; and another Doube will from hence arife, why the Workmen fhould bring all the Farth, \&oc. to this fide. the Channel, and not lay fome thercof on the other, as it's plain they did not. The Ground on which Landguced Fort itands, as far as Walton Colemefs, which is about three Miles, is only a fundy Level or Beach, which I believe hath in Time fubfided there, as may be obferved at the Mouths of other great Rivers. And as to the Argu. ment, which our Author brings of Landguard Forb, being accounted to ftand in Effex, to confirm his Hypothefis of the Cluange of this Channel, it will be of no Eurce with any one, who doth but oblerve, that not only Parts of Parifhes, but likewife of Counties, are often divided from thofe Parifhes and Counties to which chey belong, and included in others, of which I could give you many Initances, e. gro a Part of Kent is on the Efex Side the Ibames; and in Oxfordjbire the Parifhes of Sbilton do belong to Berkpire, Daylesford to WarwickBire, Compton to Gloucefierbire, and Siratton-iludly to BuckingbamBire, although all included in the other: And chere is a Farm, which doth belong to the Parilh of Braintree, that is feparated from it at leaft two Miles, and many others might be given, but let thefe fuffice. And to me a probable Reafon of this Fort's being accounted in Eflex, is, the Sands here fubfiding, made at firf, I fuppofe, an \(I n-\) fula, which being neareft to Efex; was accounted of that County; or adly, the Inand fo made belonging to none but the Crown, it was at the Pleafure of the hing's Officers, to call it of which County they pleafed. Nor was it tbe Gentleman in Cambden's Ignorance (whatever this Author faith) that made him mention thefe Stones for Petrifaetions made by the Sea; for Mr. Taylor in his aforefaid Collections did not omit the Tradition, the Inhabitants of this Town have, about the Alteration of the Mouth of this Haven, which I will tranfcribe in his own Word's. It's generally believed, tbat Stoure did formerly in a fraigbter Current (tkan nowo it dotb) difcbarge itfelf into the Sea, about Hoalley-bay, under the High-land of Walton-Colncis and Felix-Stow in the County of Suffolk, betwixt wbich and Landguard-Fort are (as tbey are reputed) certain Remains of the old Cbannel, which ibe neigblowning Inbabitanis jailh call Fleets, retaining at tbis Day tbe Tra-
dision of soe Courfe of the Water, and tbe Entrance into tbis Hover :o bave beretofore been by end sbrough tbem.

And I ans of Opinion that this Tradition is Matter of Fact, having before hinted what Mutations the Mouths of great Rivers dally undergo by the Lodgment of Sands, \(\mathcal{F}^{\circ}\). which may be affign'd as a better Reafon for this Alteration than that of our Author, i.e. that it was artificial; and the ycarly wafhing of the Cliff on the Harwicb fide, doth likewife add to its Probability; it being a conftant Oblervation, that where the Sea gaineth on one Side, it lofeth on the other. And that this Level was fo made, I am confirmed by the modern Removal of the Fort, more towards the Point; more Sands, I conjecture, being added after the old Fort was built: This Alteration is taken notice of by the aforefaid Mr. Tayler in thefe Words: And alsbo' feveral now living presend so sbe Remembrance of the building it, [Landguard-Fort]; yet we find tbere was an ancienter lort tiereabouts, and called by the fame Name [Anno 1553.] whicb was not far diftant from tbis modern one, a littie Nortb of it, uehere are \(y t\) to be feen two Faces and Flankers of a Baition, the reft of it being caten away by tbe Sea, but in its Place bath left upon tbe Sbore a long row of Sand Banks.

The Spring mentioned by Mr. Gibjon in his Englifb Edition of Cambden, from the aforefaid Manufcript of Mr. Silas Tayler, is a very fmall inconfiderable Thing; nor could I obferve that it did petrlfy or incruftate either Pieces of Wood or Sticks; but I have a Piece, which I broke off from a large Pile upon that Shore, which was petrified fo far as it was drove into the Earth, and the Sea-Water came ; and do fufpect there yet remains forme others of the fame. And of this fort I believe is that large Piece fent from hence, which Mr. Tayler mentions to be referved in tbe Repofitory of the Rogal Sociely.

I have already taken notice, that the Foffil sbells are imbedded in a loofe Stratum of Sand, Gravel, Ec. which may ferve to demonftrate, that their Matrix is not a Clay Bed upon the Top of the Cliff; as likewife for another Argument, to evince, that they could not be there fiattered by Crowes, Gulls, and other Sea Fowls, as well as that fone of them are likewife bedded in Stone at the Bottom of the Cliff; and although fome few of thein may be met with upon the Top of the Cliff, yet it's only where the Earth has been broken by digging Ditches, E̛ं.

A Calologue of the Foffits, found by me at this Cliff.
1. Buccinum foffile heteroftrophum roftratum levem maximum Li Reri referens. 2. Buccinum foffile roftratum maximum Lifteri referens. 3. Buccinum foffile minus ventricofum, mucrone obrufo. 4. Buccinum foflile tenue confragofum. 6. Buccinum foffile, Ariis prominulis marginalibus infignitum. 7. Buccino-turben foffile reticulatum minus. 8. Buccino-turben foffile fulcatum. 9. Buccino-turben foffile roftraVol.. IV. Part If.
tum. 10. Buccino-turben maximum roftratum foffile, fpiris intus ftriis elatis infignitis. 11. Cochlea foffilis maxima umbilicata quinque fpirdrum. 12. Cochlea foffilis umbilicata, mucrone obtufo. 13. Nierita parya foffilis. 14. Turbo foffilis, fpiris duabus ftriis eminentibus infignitis. 15. Pecten minor foffilis unica aurita. 16. Auricularia maxima. 17. Pe¿tunculus foffilis fere circinatus feriis tenuibus, valvis per ginglymon connexis. 18. Peetunculus foffilis craffus softro acuto thriis majoribus. 19. Pectunculus foffilis fafciis tranlverfis undantibus notatus. 20. Pectunculus vulgaris fonilis. 2 I . Pectunculus fofilis atriis majoribus \& elatioribus. 22. Pectunculus maximus folfilis, Lifterianum maximum referens. 23 . Pectunculites maximus ftriis latis. \({ }^{2}\). Concha parva foffilis, fafciis tranfuerfis inlignis. 25. Concha longa foffilis fafciata. 26. Conchites lavis maxima. 27. Conchites parva fafciata. 28. Trigonella minor, five vulgatior Anglica Libbopk. Brit. 816.

An Account of XX. Mr. Coxe of Mears-Abby in Nortbampror? ire lately difcover'd Land ard Ri- fome Land and River-Sbells under Ground, in a boorifh Pafture in ver-Shells, छ゙c. fousd under Ground by Mr. J. Morton. n. 305. p. 2210 . Mears-Afbby Field, which Place I went afterwards to view.

It is the more remarkable, becaufe Land and River-Sbells are fo very rarely met with in digging into the Earth, in Compariton of Sea Shells, and the Teeth and Bones of Marine Animals, which occur almout every where and in all Countries. The Reafon of which is now no longer a Difficulty, thefe Bodies having been fhewn to be all Remains of the Univerfal Deluge ; and the Marine Shells being more ponderous than thofe of the Lands and Rivers funk, and were lodged deepper in the Earth, and fo were preferved by that Means; whereas the latter being left generally upon the Surface, perifh'd, and are at this Day rarely met with.

Cauling one to dig into the moorifh Ground above-mentioned, we found a fmall Number of Snail Shells of various kinds buried there. At about a Foot in depth they lay very thick; and finking ftill downwards, the Number rather encreafed till we came to the depth of about three Feet. 'Twas troublefome to fink deeper on Purpofe; but we made Triais for a confiderable Extent of Ground, viz. about 250 Fett in length, and 130 in breadth. Befides, the fame Shells were caft up in reveral Places, at Diftance, by Moles. What we principally obferved in this Search, was, 1. A noift moorifh black Earth, in fome Places a Foot and a half, in others fomewhat above two Feet in Thicknefs. The lower half of it is blacker and denfer than the upper half, of a bituminous Nature, and has all the Characters of Peat-Farth. Befides Shelis we found Stalks and Leaves of Grals, and alfo of many kinds of other Vegetables, repofited as ufual in like Bituminous Moors in orher Parts of this Illand. 2. White Earth ; fo at firt we ralid it: But upon clofer Infpection it appeared to be little more than ISay half walted. So deep as we funk into it, we found it every where copionlly interfperfed with Shells.

\section*{Land-Shells, \(8^{\circ}\) c. found under Ground.}

The finding thefe Shells under Ground, made it very reaforiable to enquire, whether there were any of the like at this Time, living upon the Surface. I diligently fearch'd this Place, but could not meet with any live ones of any Kind whatever, there.

The Foffil Shells were fome the Exuvic of Land-Snails, the reft of Kiver or Freh-water Snails: Of the former, there were the three following Kinds: 1. A fmall Buccinum, of five Wreaths, the Buccinuia exiguum quinque anfraftuum, Tis. 7. Lift. in Trailat. de Cocbleis Tervejtr. Angl. A Kind obferv'd by Dr. Liffer to live in Mofs upon old Garden Walls at Effrope in Lincolnfire; by my felf at the Mofly Roots of old Trees in many of the Norsbampronfire Woods, as alfo amongft Mols upon the boggy Sides of feveral ftanding Springs.
2. A Cacblea of the compreffed Kind, but not fo much compreffed as fome of them are. It has fix Wreaths, and a fmall circular Sinus in the Center. This, if it is not the Cocblea umbilicata, Eic. N. 79. iift. Hiff. Concbil. Lib. 1. has not hitherto been mention'd by any Writer; though common enough in the Woods in Nortbamplonfbire: I found a great Number of them, for the Compais of Ground, inclofed in the Earth, than ever I have done in any of the Places where they naturally breed.
3. The Corblea cirvina, Tif. 3. Lift. de Cocbl. Terreft. Ang. The common ftrip'd Snail Shell. But moft of thefe in the Moor are white, of the Colour of the Shells that have been a long Time dead. In fome I Law faint Footteps of their former Stripes. Moft of the Shells of this Kind, were lodg'd about four Feet deep.

We met with only two different Kinds of River Shells: 1. A Perewinkle Shell of three Wireaths, generally lefs than the Buccinum trixm Spirar. Tit. 24. Lijf. de Cocbleis Fluvintil. Ang. There was a greater Number of thefe buried in the Moor, than of any of the former Kinds.
2. A Perewinkle Shell of five Wreaths, much fmaller, and more prominent than thofe of the Buccinum longum fex Spirarum, Tit. 21. Fiff. de Cecb. Fluviat. 'Tis otherwife very like that Buccinum in the Fathion of its Wreaths. It has not yet been defcrib'd by any Author. We find the Kind now living in one of the Norlbamplonfoire Brooks, call'd the Ife.

The moorifh Ground, wherein thefe Shells were buried, extends from near the Top to very near the Foot of a fmall Hill. Above the Moor, upon the Top, and at the Brow of the Hill, is a fandy Soil of a reddifh Colour. The whole Face of the Moor is plain and even, conformable to the ref of the Hill not thus moory of the fame Declination with it, and appears to be in a natural and undifturbed State, as much fo as any of the Slades in the neighbouring Fields; excepting that three or four 'Trenches have been cut through it of late.
'Tis evident, that thefe Shells were left at the Deluge, when thofe from Sca were alfo repofited at Land; and not buricd fince by De-

\section*{The Skeleton of an Animal imprefs'd in Stone.} terrations from the Ground above: For then the upper parts of the Mobr muft have been cover'd with a reddif Sand, fuch as the Ground is, for the mair, compos'd of: But nothing like that appears near the Shells in this Moor. Befides, here are dug up feveral Shells, that in all Likelihood never bred here, but are Inhabitants of a different Soil; particulary the ftriped Snail-fhell: For thele Animals have peculiat joils, and affect particular Regions.

An Account of \(t b_{c}\) Skeleton of alargeAnimal imprefs'd in Stone, by Dr. W. Stukeley. 1. \({ }^{560}\). P . 236.
XXI. At the Reverend Mr. South's at Elßois near Newark in Notting bampoire, was lately difcover'd a Skeleton, alnioft entire, of a large Animal (which I have procur'd for the Repofitory of the Royal siociecty) imprefs'd in a very hard Etone; it had lain Time out of Mind, at the fide of a Well, where it had fervid for a Landing-place to thofe that drew Water; but upon removal, the uider fide exhibited this unuluat Forn.

The Stone itfelf is a blue Clay-ftone, the fame as (and undoubtedly came from) the neighbouring Quarries of Fulbeck, of thereabouts, upon the Weftern Cliff of the long Trat of Hills, extending quite through the adjacent County of Lincoin.

It is a great Pity, that fo confiderabie a Rarity lhould be maim'd and imperfect; but where the remaining part of the Stone is, which contain'd the upper Part and Continuation of the Skeleton, or that which was the other fide, and tally'd with it, is utterly unknown. This Skeleton at firlt was taken to be Human, which upon View I am per-
Fig. 38. Suaded it cannot be; it feems rather to be that of a Crocodile or Porpef. There are fixteen Vertebre of the Back and Loins, very plain and diftinet, with their Proceffes and intermediate Cartilages. Nine whole or partial Ribs of the Left-fide, the Os Sacrum, Ilium in fru, and two Thigh Bones difplac'd a little, the Beginnings of the Tibia and Fibula of the Right Leg; on one Corner there ieem to be the \(V^{\prime}\) figia of a Foot, with four of the five Toes, and a litele way off, an entire Toe, now left perfect in the Stone: There are no lefs than eleven Joints of the Tail, and the Cartilages between them of a white Colour, diftinguifhable from the reft. We fhould impofe upon our Senfes, to queftion whether thefe be the real Reliques of an Animal; for the very Bones themfelves are now to be feen as plainly, as if preferv'd in an Egyptian Mummiv; a very little while ago, the Society had a Draughe of a Crocodile, though a fmall one, found after the like NFanner, inclos'd in Stone, from a Quarry in the Mountains of Upper Germany. I fuppofe the fame Reaion accounts for both, and all the reft of thefe Kinds of Foffils; and it is an ocular Evidence, and a great Confirmation of what I laid before the Royal Society, in a late Difcourle, where I hinted at a Solution of fome obvious and remarkable Phenomena, in the external Face of the Globe, confequent to its Formation, as fet forth ins the Mofaic Account; and of fome Changes it fuffer'd at the univerfal Cosactysim, and Proofs of that great Catafirophe of the Animal aind Ve-
getable World in Plante, Shells, and Parts of 1iving Creatures found in Rocks and Quarrics.

It is remarkable, that all the Stone Pits about the Country whence, this came, abound with prodigious Quantities of Shells, and the like, and the grearcit Part of the Subftaice of the Stone is a Compofition of them. There are many Accounts, of them in the Tranfatficns, and thais Stone has many Shells of ditferent Kmd's in it. Sir Hans Sloane has a Filh Skeleton, amongt his immenie Treafure of Curiofities, found near this Place, given by the Duke of Rutiand. If we look upon a Map of the Country, and obferve the Lincoinfire Alps, how they run fifty Milss North and South, and on the Weft-fide are fteep and rocky, we may fee the Reafon why thefe Quarries fhould be fo ftuft with them; for it is juft to conceive, that upun retiring of the Waters of the Deluge from the Superficies of this Country, into the Eaftern Seas, thefe hevy Bodies met a full Stop, and were intercepted by this Cliff, which has retained fuch vaft Quantities of them ever fince: Whilit thofe which fell upon common Mould are moftly rotten, and niew loit.
Ste Sir Ifach Newton's Doctrine of the Attracivon of the Particles of Nlatter, according to the Quantity of its Solidity, Proximity, and Surface; efpecially that it is infinitely greater in the Point of Contact, upon which depends its Cohefion and all the Varieties of Phyfical Action, will eafily direct us to a Notion of Petrifaction. We learn how a proper Degree of Heat or Cold, Moifture, Motion, Reft and Time, promose this Principle, from the comman Experiments of Chryftallization and Freezing, even before the Fire, and in many chymical Mixtures. Whence we cannot be ignorant of Stone growing in the Quarries gradually, not by any fancied Vegetation, though there is formething like it in Corals, but generally by Appofition of Parts to Parts, as is notorious in the Fluors of fubterraneous Grots and Caverns. So that we have no Reaion to doubt but what was Clay, Sand, or Earth 3000 Years ago, may now be Stone or Marble, according to the Proportion of Concurrence of fuch mentioned Caufes. This will perfuade us, that the now barren and rocky plains of the Countries of Syria, India, and Aiabia, are owing to natural Caufes, as well as ay immediate Curfe of God, for the Difobedience of its ancient Poffeffors his peculiar People ; becaule the fame is obfervable of the famous Countries of Grecce and Airica, warm Regions fo renowned for Fertility in ancient Authors. Wherefore there may be fome Likelihood in the Opinion of thofe who think that in many Ages the whole Face of the Globe may become one great Rock. Dr. Ploit, in his Natural Hiftory of Oxfordfoire, gives an Account of a Tunulus, now a perfect Mount of Stone; and upon St. Vincent's Ruck near Briffel, are Fortifications now become folid Cliff. I remember, about fix Years ago, Mr. Ralpb Widdrington, Brother to the Earl of that Name, Thew'd me many human Bones taken from whole Skeletons, with Britiß Beads, Chains, Iron Rings,

Rings, Brafs Bitts of Bridles, and the like, which were dug up in a Quarry, near the Seat of the Family, at Blankncy, Lincolofbire; which very probably was plain Mould, when thele old Corples of the Britons were interred; and fince then I faw many human Bones and Armour, with Roman Coins, Fibule, Erc. found in a Stone Pit in the Park at Hunftanton, Norfolk; belonging to Sir Nicholas L'Eftrange, in whole Cuftody they now are, which were conjectured to have been buried in Earth after a Battle. From whence we may judge it a vulgar Miftake, when in the Rtins of the old Caftles and Walls we admire the Tenacity of the Mortar, and are apt to praife our Anceftors, for an Art which we fuppofe now loft; when doubtlefs the Strength of the Cement is owing to the Length of Time: And in future Ages our modern Buildings may obtain the fame Judgment.

From all which Inftances, I infer the ancient State of thefe Cliffs, where this Skeleton was, and Shells are daily found, intimately mixt in the Subftance of the Stone, to have been formerly of a fofter Confirtence, capable of admitting them into its Bowels, and to have im. mur'd them as part of itfelf; and that Earth which is now manageable by the Plough, may poflibly in Time affume the fame Denfity, at leaft very little below the Surface; for in this very Cliff the upper sirata are yet Clay, growing harder as deeper. What Creature this has been, for want of a Natural Hiftory of Skeletons, we cannot pofitively determine ; but generally find the like to be amphibious or marine Animals. Why fuch, rather than many others, fhould chance to be thus entombed, may be thought, becaufe they were able, much longer than Terreftrial Animals, to live in that World of Waters, even till they began to abate and fall away into their deftin'd Receptacles; fo that while the Bodies of the reft foon perithing, were corrupted, and their Bones feparated and difperfed much earlier; this Skeleton, with others of its like, fell entire into the Fiffures of this Bed of Clay, which has fince turned into Stone, and made this noble Monument and pregnant Token of that general Inundation.

Sicc. hy Mr. R. Thoreby ก. \(277 . \mathrm{P}\). 1674
XXII. Dr, 7 . Cay prefented me with a Cloryfal (and other Natural Curiofities) which he brought from Milan: I fhall give you his Defcription of it, firt premifing his Arguments upon a iort of Spar within a Flinf. That within the Flint (fays he) feems to differ from the reft of its Subftance, and fomewhat to refemble Spar: Though atter all, Spar being nothing elfe but a Cbryfalline fort of Lime-Stone, it differs not from Flins in Reality, but only in Appearance, i.e. in the Manner of Concretion: Though if the enclofed Matter hau in its Nature differed from the reft of the Stone, the Thing had not been very uncommon; it being ufual enough for Stones (efpecially thofe of a Globular or Oval Form) to have Coat upon Coat, and thoie Coats fometimes very different one from another, lome of them foft, fome hard; nay, fomeimes, after a long Space of Time, one of thefe Ccurs will Mrink from
another, after the Manaer of a Kernel, when the Shell grows dry; and then, if the incloled Subitance continue foft and marly, they call that Stone Geodes; but if ftony, it makes one of thofe rateling Stones that are known by the Name of the Etites or Eagle-Stone.

To confirm what I have advanced, many Infances may be brought, that it is no unufual Thing for Stones to enclofe Subftances of a very diff:rent Nature from themfelves: The Sbelis which I have feen in Sufpex Marble is one Proof; and the Stones found in our Coal-Pits, and known among the Workmen by the Name of Cat-keads, may ferve for another; they are found in a particular Stratum near the Coal, and enclofe a Forn, or fometimes Polipody Leaf in the middle of them; and for that Reafon being ftruck with a Hammer very readily break there: I think they are a fort of Iron-Stone, a-kin to that which they call in Staffordbire Ballmine; and Dr. Lafter, Minera ferri Pileformis; they have it upon the Wettern Coatts near Wbitebaven, and call it there by the Natne of Cat-fcamps: 1 have feen it too upon the lorkbire Coafts \(^{\circ}\) in Robin-Hood's Bay: It may be called Lapis Minere ferr, Pileformi fomialis in cuipus Medisullio unuina vel plura Lilicis folia repicejontantur. I have Specimens of both Sorts. And as an Inftance, that one and \(i b_{c}\) fante Piece of Rock does not always boos into Stone at one and the faine Time, tut firft one Part of it, and tben anotber, and they too not atter the fame regular Manner: I have a Piece of Rock Cbryfal, where one may eafily obferve the Modus Concrefiendi, in the Middle to have differed from that of the outfide; nay fometimes I have feen in the Middle of Some tranfparent Stones, a fmall Drop that never would take the folid Form of the reft of the Stone at all.

1 have received from Dr. Cay a Piece of an Iron Eolt (two Inches long) Iron. found in a stone Quarry, now returned into Iron Ore again; this being a Property that Iron has, and no other Metal, as Dr. Liffer obferves in his Journey to Paris.

I have received from Sueden a Piece of Copper Ore regularly thot into Copper-Ore. an Oczoedrous Form: It has cight folid Triangles, and confequently fix angular Points ; and is of the Bignefs and Figure of the Draughr, Fig. 46. (ifg. 46.) it came from the Copper Groves at Fallium, where very many of the fame Form were then found.
XXIII. I fhall give an Account of my Obfervations on feveral natu- of the Lumiral folid Nöriucic's, not hitherto by any, as I know, catien notice of ; nous quaitios (I think I may be well affured fome of the Pbenomera never were:) and Thall frit fpeak a little concerning the artificial Phofpborus, which
is a Subject I have made a great Number of Experiments about, whereis a Suhject I have made a great Number of Experiments about, where-
by 1 was naturally led to the following Remarks.

Many Years ago (about the Year 1650.) Mr. Boyle communicated to me his Way of making the Pbofphorus with Urine: But his Chymilt, Mr. Bilgar, was forc'd to evaporate a prodigious Quantity of Urine, to get a very hetle of the Pbojfocrus; which induced me to think for fome other Matter,

Matter, from which more might be made than from Urine: It being then a very hot Sunsmer, I caus'd a Piece of the dry'd Mattert in the Fields, where they empty che Houles of Office, to be digg'd up, in which, when brokin in the Dark, a great Number of finall Particles of Pbo/phorus appear'd; but of this could be made fittle or no Pbofphorus, cill another Matter was anded to it in Diftilldtion.

Reflecting on the artificial Pbo/pbor:ls, I confidered whether there might not be, in rerain nstiari, other natural ones, befides thofe that Mr. Boyle and fome others have given an Account of.

Human Urine and Dung do plentifully abound with an Oleofum and common Salt, fo that I take the arrificial Pbojpborus to be nothing elle but that Animal Oleofum, coagulated with the Mineral Acid of Spirit of Salt, which Coagulum is preferved, and not diffolved in Water, but accended by Air.

Thefe Confiderations made me conjecture that Amber (which I take to be a Mineral Oleofun coagulared with a Miperal Volatile Acid) might be a natural Pbopporus, to I fell to make many Experiments upon it; and at laft found, that by gently rubbing a well polifh'd Piece of Amber with my Hand in the Dark, which was the Head of my Cane, it produced a Light; whercupon I got a pretty large Piece of Amber, which I caufed to be made long and taper, and drawing it gently through my Hand, being very dry, it afforded a confiderable Light. I then ufed many kinds of foft Animal Subftances, and found none did fo well as that of Wool. And now new Pkwomena offered themfelves; for upon drawing the Piece of Amber 'fwifty thro' the Woollen Clott, and fqueezing it fretty hard with my Hand, a prodigious Number of little Cracklings were heard, and every one of thofe produced a little Flafh of Light, but when the Amber was draw'n gently and fiightly through the Cloth, it produced a Light, but no Crackling; but by holding one's Finger at a little Diftance from the Amber, a large Crackling is produced, with a great Flafh of Light fucceeding it, and, what to me is very furprizing, upon its Eruption it frikes the Finger very fenfibly, wherefoever apply'd, with a Puh or Puff like Wind. The Crackling is full as loud as that of Charcoal on Fire; nay, five or fix Cracklings, or more, according to the Quicknefs of placing the Finger, have been produced from one fingle Friction, Light always fucceeding each of them. Now I make no Queftion, but upon ufirg a longer and larger Piece of Amber, both the Cracklings and Light would be much greater, becaufe I never yet found any Crackling from the He:d of my Cane, although 'tis a pretty large one; and it feems, in fome Degree, to reprefent Thunder and Lightaing; but what to me is more ftrange, is, that though upon Friction with Wool in the Day-Time, the Cracklings feem to be full as many, and as large, yet by all the Trials I have made, very little Light appears, though in the darkeft Room; and the bett Time of making thefe Experiments, is when the

\section*{Amber, Diamonds, Gum-Lac.}

Sun is 18 Degrees below the Horizon; and when the Sun is fo, though the Moon fhines never fo bright, the Light is the fame as in the darkeft Room, which makes me chufe to call it a NoExiluca.
- As the artificial Pbofpborus led me to that of Amber, fo Amber directed me to that of a Diamond, from its being Electral as well as the other; which is alfo a Natural Pbofphorus, or rather a Noctiluca, exceeding all others, and may, without any Exception, be called a Mineral Phofphorus, it being, as I think, the moft pure of all cleofums, coagulated with a Mineral Acidum; and if in the Dilcovery of this I have not obliged the Learned, I am in Hopes I fhall all thofe who deal in Diamonds: Mr. Bogle has given the World an Account, at the latter End of his Book of Colours, of Nir. Clayton's Diamond, and atterwards fays, that fome Diamonds would not Thine in the Dark: but if any one elfe has fince then made a Difcovery, that all Diamonds would give Light in the Dark, they have been very unkind to the World in not letting them know it, becaufe I am well affured that a great many People have been but too often cheated with them, which I hope to prevent. I have now by me a yellow Diamond, which I have fhewn to a great many Jewellers and others, and but a few of them will allow it to be a Diamond; but by as many Trials as I have made, I think my Way of diftinguifhing Diamonds is fo certain, that none need fear to affirm them to be io.

A Diamond, by an eafy night Friction in the Dark, with any foft animal Subftance, as the Finger, Woollen, Silk, \(\xi^{c}\), appears in its whole Body to be Luminous; nay, if you keep rubbing for a little while, and then expoie it to the Eye, 'twill remain fo for fome little Time: But if the Sun be 18 Degrees below the Horizon, if any one holds up a Piece of Bays or Flannel ftretch'd tight between both Hands, at fome Diftance from the Eye, and another rubs the Bays or Flannel with a Diamond fiviftly and pretty hard on the other fide of it, the Light to the Eye of him that holds it, feems much more pleatant and perfect, than any other Way I have yet try'd. But what to me feems more furprifing is, that a Diamond being expos'd to the open Air, in View of the Sky, gives almoft the fame Light of itfelf without rubbing, as if rubb'd in a dark Room; and if in the open Air you put your Hand or any Thing elfe a little over it, to hinder its Communication with the Sky, it gives no Light: I have try'd all or moft of the precious Stones, but could find no fuch Pbienomenon in any of them. All thele Experiment were made at the latter End of May, and Beginning of Yune, and therefore, I cannot pretend to account for the Pbenomena that may attend Experiments made while the Sun is on the other Side of the Equator.

I am well affur'd, that all or moft of the Bodies which have an Electricity yield Light; for in my Opinion 'tis the Light that is in them, which is the Caufe of their being Electral; yet this. Electricity never Shews itfelf without Friction ; if you rub any Budy that has an Electri: Vol. IV. Part II. 5 D eity, feem to the Eye, as hanging at the Body by a fine Hair.

I forbear fueaking of \(\mathfrak{y e t}\), which feems to me to be a black Amber, having moft of the Properties of Amber, but not lo perfect and pure.

I nulf not forget to fpeak of another Subftance, not hitherto by any (as I know) taken Notice of to be endu'd with a luminous Quality, which is alfo another natural Pbofphorus or Noctiluca, and that is Cunz Lac, and alio red Sealing-Wax, which is made with Gum Lac and Cinnabar, the Cimabar no Way impeding, but rather promoting its luminous Quality ; for I caufed long taper Rolls to be made up of Lac alone, and of pure red Sealing-Wax, both being well polifh'd: The Seal-ing-Wax upon Friction, feems to me to emit its Crackling and Light fooner than the Lac, which I impute to the Cimnabar's conftringing its Parts, tho' I think Lac, per fe, has the greateft Electricity, both having all or moft of the Properties of Amber; and by all the Tryals I have hitherto made of Lac and Sealing-Wax, I find that though the Cracklings are as plentiful in the Day-time, as when the Sun is down, yet in the darkeft Places I could difcover but a little Appearance of Light, fo that this deferves the Name of a Noctiluca or Pbojpborus, as well as the others; it being no other than a vegetable Oboofum, coagulated with an Animal Volatile Acidum. I don't know in the Animal Kingdom any Thing but Pifmires, that affords a Volatile Acid, and in the Eaff-Indies there's a large kind of them that live on the Sap of certain Plants, affording both a Gum and a Colour, which Sap palfing through the Body of thofe Infects or Animals, is by their Acid Spirit converted into an Animal Nature; which is the Realon, that with the Colour extracted from Gum-Lac (which Gum-Lac is nothing elfe but the Excrements of thefe Infects or Animals) almoft as good, and full as lafting, Colours are made as from Cocbineal: I am the more confirmed herein, becaufe I know of an Artificial Way of converting Vegetable Colours into an Animal Nature very much like this, by which the Colours are made more pleafant and permanent. After the fame Manner the remaining Gum, which is an Oleofum, being digefted and paffing through the Bodies of thofe Infects or Animals, is by their Volatie Acid converted into a Vegetable Animal Pbofpborus or Noeriluca; the Artificial Pbofpborus is a Mineral Animal Pbosphorus, whereas I take the others to be altogether Mineral.
A Treatife on XXIV. According to Avicenna, Ambergreaje is generated in the ManAmbergreafe, ner of a Fungus upon Rocks and Trees in the Bottom of the Sea. by G. 7. Ca-
zuelli, n. 290 . p. 159 . Others again will have it, that Fungufes grow upon the Surface of the Sea, in the fame Manner as they grow upon the Surface of the Earth. Hieronymus ì Hueria, in his Notes upon a Tranflation of Pliny afferts, that there are certain Sea-Weeds or excrementitious Maffes upon the Surface of the Sea, formed like a kind of Fungus, which have no Smell when they are firft gathered, nor do they become fragrant till they are prepared: And that it is not a Bitumen, nor the Seed of the Whale,

\section*{Of Ambergreafe.}

Whale, becaufe thefe when once hardened, cannot be rendered foft घgain like the srue Ambergreafe. Fonatius Alzine in his Hiftory of Bijai, fays it is called by the Indinns Tefa Bonganfifo, that is, the Excrement of the Whale, becaufe it is fometimes found in the Whale, and fometimes vomited up by it. And he imagines that it is produced from Sea Weed, refinous Sea Plants, the Refin of Trees growing in the Bottom of the Sea, or even from rotten Sea Weed, or what they call Sea Ware, fwallowed by the Whale and digefted into a kind of Mucilage. Nitolaus Monardes will have it to be a kind of Bitumen flowing from Fountains in the Bottorn of the Sea; and Guilli du Wallig. is of the fame Opinion. Simon Sethi and others fay that it fprings up in different Places, and that there are Fountains of it as of Bitumen. Garcias ob Orta is of Opinion that probably there are Iflands or Countries where Ambergreafe may be found. Ferdinand Lopez Caft ammeda will have it to be the Dung of Birds of the Ifland Maldiva, which feed upon odoriferous Herbs. Sercatius Marel told Carol. Clufius that it was produced from a vifcid Matter found in the Stomach of the true Whale. Others again alledge, that it is fwallowed by the Fifh called Azelum, and taken out near its Back-bone. Ferdinand Caftrillo frys it is a Liquor collected about the Oefophagus of Fifhes, as fome who are return'd from Brafil teitify. Fran. Combes fays that the Inhabitants of Iolo will have it to be the Excrement of the Fifh Gudiamina, which is different from the Whale, and larger. * Some fay that it is produced from an odoriferous Fruit fwallowed by the Whale. Some call it the Seed, fome the Liver, fome with the Cbinefe (who call it Hay amo fay, that is, preferving Cloaths from the Moth) the Excrement of the Whale; while fome again will have it to be a Foam of the Sea. Ctefias fays it is the Seed of the Elephant. Fucbfius calls it a Compofition of Alocs Wond, Civet, Storax and Ladanum. The Lutai Indians according to Combes fay, that it is produced from maffy or vifcid Excrefcencies fticking to a large Aromatick Tree in the Sea. Others, and thofe of better Senfe, again alledge, thar it is produced from the Refin of that Tree, and this Opinion the Author himfelf goes into, adding that the crude Ambergreafe is void of all Plavour, fo like the Refin of the Pilis (of the Almond and Piftach Kind) and fo eafily inflammable, that many have been deceived by it, and fuffered for their Heedleffnefs. Hieronimus à Huerta fays it is the Opinion of fome, that Ambergreafe is the Refin or Gum of Trees, or the Refin of the Pine-tree. Tlomas Bartbolin in the Me-dico-philofophical Tranfactions of Copenbagen of the Year 1673, Obf. 122. f. 306. + affirms that it has the fame Origin with Amber, (iziz. after he had proved Amber to be the Refm of Trees) and makes no doubr but that there are odoriferous Trees in America which pourout Juices of the fame Nature. Tacius writes, that as the Trees in the Eaft fweat Tbus and Balfans (and why not alfo Ambergreafe?) fo it was poffible that thofe

\footnotetext{
- Foes Lron. in his Defeription of Afriea fays that Ambergreafe is thrown up by the Fifh Ambara. + Odoardus Barbrfa remarks the fame.
}

\section*{Of Ambergreafe.}
of the Weft might fweat Amber. All thefe Opinions and Conjectures being confidered, is it not moft probable that its Origin is derived from Trees? For that it is produced in the Manner of Fungufes is extremely doubtful; and that it is derived originally from Sea Weed, or a putrid Recrement of the Sea, I cannot eafily believe. Neither is it probable that it is a Bitumen, or kind of Earth; and that it is made by Art, is falfe. That it is the Dung of Birds, the Seed of the Elephant, or of the Whale, or a Liquor, thé Liver, Seed, or Excrement of fome other Fifh, appears to be fahulous. I thall willingly grant, however, that fometimes Anibergreafe being unfit for Nutrition (as Odoardus Barbofa remarks) has been vomited up by Whales, or other Fifhes of the Whale Kind, or has been found in their Oefophagus, or fometimes in their Stomachs, thefe Monfters devouring whatever comes in their Way. I very much fufpeet too, begging Pardon of thofe who are of the contrary Opinion, that that refinous Fluid, which the Indians of different Provinces call Agacabac, Hagabac, Bintogo, Biusuro, Apitono and Malibabo, Cayancang and Bolotic, and which is the very fame with that dry and hard Refin, which was brought to me in large Lumps from the Mountains of Ilocos and Paynan, is not the true Aimbergreaje. But after a violent Storm, and heavy continued Rain, overflowing the whole Country, it is hurried down into the Sea by the Impetuofity of the Torrent, from the uninhabited inland Parts, and inaccefible Tops of the Mountains, and being wathed and toffed about violently by the Waves, and fomewhat cleared and foftened, by means of the Salt Water and the Force of the Sun's Rays, it is worked up and prepared in the Form that we find it, " from a Refin either lately wafhed from the Trees, or hardened by lying fome Time upon the Mountains; and is more or lefs pure, as it has been macerated a longer or thorter while as the Sea Water has been more or lefs toffed, and expofed to the Sun. But fuch weighty Bodies are feldom thrown out upon the Shore, except after the Country has been overflowed with continued Rains, and the Sea ftrongly agitated with furious Tempefts. Thofe large, folid, and pure Pieces of Ambergreafe, free of heterogeneous Bodies, gathered upon the Shore at Palagpag, and brought to Manilla in January 1694, afford a ftrong and evident Argument for this Conjecture. (Note, towards the End of February 1693 there was a violent Tempeft.) They were partly of the Colour of yellow Amber, or that of Gum Arabick; more dunky than the Refin fent from Ilocos, which was almoft as pellueid as Cryftal, and very like the Refin which was brought from Paynan, but lefs odorous when they were burnt, eafily melting in the Fire, in the fame manner as the Refin, and almoft of a ftony Hardnefs, fo that neither the Knife nor she Teeth could make any Impreffion upon them. Partly, or on one Side, of a whitifh gray Colour, varioully cracked, and brittle indeed, but more folid than any Ambergreafe I have ever feen.

\footnotetext{
- Barbofa fays, that by being continually expofed to the Sun and Moon, it becomes
nous.
}

They were fold however for genuine and the beft Kind of Ambergreaje. A certain Perfon made a Objection to this Opinion of mine, faying that Ambergreafe could not be the Refin of Trees, becaufe if was found in fuch large Lumps; to which I anfwered, that the various little Lumps of Refin of which thefe large ones are compofed, being homogeneous and adhefive, and drove againft one another by the Force of the Waves or Torrent, might unite and cohere firmly together fo as to form larger Pieces. And why fhould it be impoffible for large Pieces of this Refin to be found, when thefe Mountains nourifh refinous Trees of an incredible Height, and at Pilis and Lauvan there are found Blocks of Refin of a hundred Feet long, and thofe Fragments that were brought from Ilocos and Paynan plainly fhew that the Stock they were taken from nuft have been very large. Fran. Combes in his Hiftory of the Inands of Mindanai, f. 15. lays that upon the Shore Iolo (called by the Dutcb Date Ifand) there was found a Piece of Ambergreafe larger than the Body of an Ox, but it was almoft all fold for common Refin. Franc. Colin feems to mean the fame, in his Hiftory of the Pbilippine Thands f. 49. when he fays that in the Inand Iolo there was found a Piece of Ambergreafe of a gray Colour, and of the very beft Kind, weighing upwards of two hundred Pounds. And I imagine Ignatius Alzina in his Hitory of the Byfaian Ifands means alfo the fame, where he tells of a Piece of Ambergreafe found at Iolo, thicker than a Man's Body, and twice as long, which on Account of its great Plenty was fold very cheap. In the Year 1632, at the Cape of the Holy-Gboff, upon the Coaft of Igbabao, there was found a Fragment of Ambergreaje weighing about five and fifty Pounds, which being extremely good, was fold for a thirty Imperial Crowns the Ounce. For an Indian who found it accidentally, had filled three Bafkets with it, two of which, not knowing what it was, and confequently ignorant of the Value of it, he had carried Home to burn inftead of Refin (for formerly the Byfaians for the moft Part made this Uie of the Ambergreafe, not diftinguifhing it from Refin) and was going to do the fame with the third, if a Gueft he had in his Houfe, who knew a little more of the Affair, had not difcovered by the Fragrance of the Smoak, that it was not common Refin, but exceeding fine Ambergreafe. \(\dagger\) In Eangabui, an old Woman gathering of Shell Fift, found a Piece of Ambergreaso of the Bignefs of one's Arm, which the took to be common odoriferous Refin, (for there are a great many different Kinds of odoriferous Refins thrown out upon the Shore, as Batete, which fmells like Ambergreafe, and I take it to be the fame with what they call the black Ambergreafe; becaufe when purified, it is frequently fold for a cheaper Kind of Aimbergreafe; Dairiangao, and Raporago, which fmell like Gum Benzoin, Tangay and Samato, with others Samata, fmelling

\footnotetext{
+ Cappar Beyam about the Year 158c, met with a very large Lump of Ambergreafe in the Sea between Aden and Miecc.
}

\section*{Of the Afbeftus, incomibuftible Cloth, \&c.}
like liquid Amber or Balsam) ret it apart for Fumigation, and hard almoft confumed the whole of it before the was informed what it was. Ambergreafe is frequently very adhefive, and there are many who affirm that it is fometimes found as loft as Tar, which Fran. Comber feems likewise to infinuate, when he fays, that fometimes it is gathered loft and recent upon the Shore, and after being kept and prepared, turns out extremely good. But the common Opinion is, which both Heronywus de Huerta and Fran. Comber confirm, that the crude Ambergreate, or that which is new gathered, has no Sort of Fragancy. But Fob. Bolero Bees, f. go. an Ambergrieaje Merchant at Ava lays, that even when it is not adulterated, it has a very fragrant Smell, and fo fharp, as being held to the Note, to feet it prefently a bleeding. Alphonsus de Ovalle in his History of Chili writes, that the gray Ambergreafe has a feet Smell, and the black a more pungent one, but this Difference of Smell and Colour proceeds from hence, that the black has been a fhorter while in the Sea, and left expofed to the Sun than the gray. * I therefore impute the Bleaching, Hardness, and Denfity of Ambergrease to the Sun, and the Sea Water, as Thomas Bartwolime in the Me-dico-philofophical Tranfactions at Storkbolm in the Year 1671. Obf.57. f. 113 . imputes the Solidity of Amber to the fame Causes. I have a Piece of the whiteft and fineft Kind of Ambergreafe bored in different Places, with five Shell Fifth, and a Bit of rotten Wood flicking in it. Which is a certain Argument, that the Goodnefs of it is owing to its being frequently wafted, and long expofed upon the Shore.

Of the Ambertaus, and the sway of making sc Incomburtitle Cloth, by Seignior J. Campini. n. 273. P. 911.
XXV. 1.] I have four forts of the Abeffus in my Museum. The first from Corsica or Cor \(\int u\), long, of a woody Form, of half a Palm length and more, of a whitifh Colour, fomething inclining to a reddifh. The fecond of a filverifh Lead Colour, fitter and thorter, about three Inches, this was from Seftri di Ponente in Liguria. The third (which is the wort of all) is like Scales or Lamina one upon another (like an Onion) of a blacking Earth Colour, with rome white, black, and dark red Veins, interfperfed, farce two Parts of an Inch Roman long, therefore fitter for making of Paper, than fining or weaving. The fourth for, given me by Signior Boccome, found in the Pyrencans, forme whereof were a Roman Palm long; its Filaments, though longer, were yet thicker and rougher; I have heard of another fort in Volateranis Monsibus.

Some have fuppofed, that the Wieks of the fepulchral Lamps of the Antients were made of this; but from Experiments I conclude it unfit for that Purpofe, always finding the Wieks made of it to go out, and not contract or continue up the Oil for the Flame.

I have kept it for 3 Weeks in a Glafs-houfe Fire, but found it una'ter'd; but it would not preferve a Stick wrapt in it from the Fire ; whence I conclude, the Amiantus lofes nothing in the Fire, because it

\footnotetext{
* Senarrtus upon Bitumen, thinks that the odorous Ambergreafe is a Bitumen flowing from Fountains in the Sea, and when it is exposed to the Air upon the Surface of the Sea, is thickened and coagulated in the manner of Amber.
}

\section*{Of the Arbefus, incombufible Cloth, \&cc.}
does not burn nor flame; but in the handling it waftes, though not much, as I found by an exact Ballance.

As to the Manner of Spinning it, I have tried thus; firt, I laid the Stone in Water (if warm, the better) for fome Time to foak; then it is opened and divided with the Hands, that the Earthy Parts may fall out of it, which are whitifh like Chalk, and hold the thready larts together ; this makes the Water thick and milky ; this is repeated fix or leven Times with frefh Water, where it is again opened and fqueezed, till all the heterogeneous Parts are wafhed out, and then the Flax-like Parts are collected, and laid in a Sieve to dry.

Of the four furts of Amiantus, I found that from Corfica beft, being long and foft; and the Cyprian worlt; I am in doubt, whether mine was of the beft fort, fince the Cyprian was commended by Pancirollus and others. The Way of fpinning it, difcovered to me, was thus: Lay che Aimiantus, cleanfed as betore, between two Cards, fuch as they Fig. \(39,40\).
card Wool with, where let it be gently carded, and then clapt up in between the Cards, fo that fome of it may hang out at the Sides; then lay the Cards, falt upon a Table or Bench. (Fig. 4T.) Take a fmall Reele, (Fig. 42.) made with a little Hook at the End, (Fig. 43.) and a Part to turn it by, (Fig. 44.) to that it may eafily be curned round; this Reele is to be wound over with fine Thread; then having a fmall Veffel of Oyl ready, (Fig. 45.) with which the Fore-finger and Thumb are con-

Fig. 41. Fig. 42,43, 44.

Fig. 45. ftantly to be kept wet, both to preferve the Skin from the corrofive Quality of the Stone, and to render the Filaments thereof more foft and plyant : thus by twifting the Thread upon the Reele about, with the Afocfius lianging out of the Cards, fome of it will be worked up together with it; by little and little this Thread may with Care be woven into a coarfe fort of Cloth, and by putting it into the Fire, the Thread and Oyl will be burnt away, and the incombuttible Cloth remain. But finding this Way of uniting the Stone with the Thread very tedious, inftead of the Thread I put fome Flax upon a Diftaff, and by taking thrce or four Filaments of the Afoeftus, and mixing them with the Flax, I found they might eafily be twitted together, and the Thread thus made much more durable and ftrong: So that there is no Need of carding, which rather breaks the Filaments, than does any Good; upen only and feparate the Filaments after wafning upon a Table, and take them up with the Flax, which is fufficient. As to the making of Paper, in the wafhing the Stone, there will remain feveral fhort Pieces in the l3ottom of the Water, and of thefe after the cominon Method Paper may be made.

The beft Way of preferving the Cloth, or any other Thing made of the Stone, when made (for by Reafon of its exceeding Drynel's it is very apt to break and wafte) is to keep it always well oyled, which is the only Prefervative for it ; and when the Cloth is put in the Fire, the Oyl burns off, and the Cloth comes out white and purified.
2.] In the Grounds of Francis Gordon of Acbindore, in the Shire of Aberdeen, near the Higblands, on the Side of a Hill of a Heath kind of Ground, fomewhat inclining to what we call Mors, in a very imall Brook,

Brook, and hard by it, in the Bounds of ten or twelve Yards, I found a great many Stones, fome a Foot in length, which appeared plainly like Wood: But becaufe I could not perceive any Footltep of Wood thereabout, neither could any of them be found, except in that very Spot of Ground, I could not be perfuaded they were petrified Wood. Then I went to cut up the Ground about the Place with my Knife, where I found likewife fome Pieces of the Stone, and very near the Superficies I got feveral Pieces of a fibrous Matter, which my Knife could not cut; this I immediately judged to be an incombufible Matter, as it proved afterwards, when I try'd it by the Fire. And becaufe, fo far as I then remember'd I had heard or read of it, I thoughe it had been always efteemed certain Filaments that came off the Lapis Amiantbos, I refolved to obferve more narrowly the Production of it.

When I found fome Picces of the Stones very hard in the Middle, and the fibrous Matter on the Outfides and Ends, I was inclined to believe that the Flax came from the Stone: But then finding feveral Pieces of the Flax fo condenfed and preffed together, that at firft they appeared to be hard Stones, but being a little wet, the Filaments were eafily parted from one another. Many more I got, fome lefs and fome more condenfed into the Nature of a Stone; and all of it, both that which was condenfed together, and what was not, was lying about an Inch within the Ground, parallel with the Surface fo interwoven with the Fibres of the Roots of the Grais, that it feemed to me much more probable to believe, that the Lint turned into the Stone, than the Stone into the Lint: Efpecially feeing moft Part of the Stones appeared to tender and brittle on the Outfide, that it's hard to believe how they could turn into that tough Subftance of Flax.

The Stones are of different Sorts, fome are white, the Colour of the Lint, and of a very foft Subftance; fo they may be eafily cut with a Knife without blunting it; others are much mix'd with a whitifh \(\mathcal{T}\) alk, but moft of them are of a grayifh Colour, and very hard.

As for the Production of the Flax, I think it's hard to determine in this Place; becaufe the greateft Quantity I found of it was lying, as I faid before, about an Inch at moft within the Ground, parallel with the Superficies, interwoven with the Roots of the Grafs, without any Root of itfelf, but alike at both Ends, as if it were cut with a Knife. The Ground wherein it is found is of a grayifh Colour, about one Inch or two thick, under which there is a black Earth for a Foot in Depth. So that I could find nothing in the Places where moft of it was got, that I could rationally conclude to produce it: But in fome other Spots I found much of a Talkib Sand, and fome Pieces of Flax near to it; as alfo Pieces of the Stone much whiter than the reft, and very like Talk; which would incline one to believe that it was produced of it. Yet there being no Appearance of any Talk in the other Places, where moft of it was found, I can fcarce conclude any Thing about the Production of it, but leave it to others.

Pliny, Aldrowandus, and Olous Wormius make it very fhom, whereas fome of this I found five, fix, liven, and fome eight Inches long.

As for the making of it into Cloth, they all conclude ir very hard: Pliny calls it invensu rarum, textu difficile propler brecitatem. Olaus Wormius in his Mufoum fays, Modus voro, quo ex eo finnt lina, jam penitus ignoratur. I confefs indeed, it is true what I'liny fays; yet it may be feen, by the Experiment I have fhewn, in making Yarn of it, that Cloth may be made of it alfo, for the Difficulty is much grcater in the one than the other.
3.] I receiv'd the following Account from a Gentleman in the Higblands, (not many Miles from Coupar of Angus) who had lately built an Houft of a fingular kind of Stone, digg'd out of a Quarry not far from him. This tone, after the Rubbifh (which is not very deep) is done away, lies Horizontally in a Bed endu'd with parallel Fibres, with few Interftices, foft at the Beginning, and eafy to be fmooth'd and polifh'd without any Tool, but rather with Sand, or another hard Stone of a blueith Colour, which afterwards hardens fo, that it refiteth the Injuries of Air or Prejudice of Fire. When firf the Quarrier began to dig it, he was at a mighty Lofs; for endeavouring to cut and raife it after the ordinary Manner with Wedges, and other ufual Inftruments, it broke and crumbled all to Pieces: But afterwards, obferving more nasrowly the Duct of its Fibres (io to fpeak) he endeavoured to cut it with Spades lengthways; and by this Means he procured Stones as big as he had a Mind, which fmoothed very cafily along the Traet of their Fibres; but when cut tranfverfe, no Means nor Methods could render them fmooth, but their Surface remain'd unequal as the Extremities of a Piect of Wood. Altaough this Quarry has but few Interitices, yet in thofe it has the true Alleficos, of a whitifh Silver Surface, confitting of feveral fafciculi with parallel Fibres, like to thofe of the mufcular Fibres of falted Beef; eafily feparable from each other, pure white, till it becomes fo fmall as the fineft Flax; and fo ductile, that it may be fpun into the finett Thread, whereof it were caly to make the inco:n7. buttible Cloth, fo famous for Shrines among the Ancients. In other Places of thofe Interfices was likewife to be obferved a reddina Sub. fance, near to the Colour of Sanguis Draconis; but whether fibrous or not, I camot fay, fince the Genteman could not flew me any of it; but added, he believed it might be good for dying. I got a Imall Par-
 cel of the -iflefios from him; and he told me, if he had known its Value, he could have preferv'd fome Pounds of it. I am ready to think the fecond kind was fibrous too, which might make a very beautifut Cloth, being ftriped with the other. This whole Quarry may be laid to be Aflegfos of diterent Colours, the blueifh being of a much coaricr, and the white and red of a finer Grain.

\section*{XXVI. Papers Omitted.}
1. A Defcription of fome Shells, brought from the Molucca Thamis, by Mr. Sylvanus Landon, and Mr. Rowelefton Jaccbs, by Mr. Y. Petiver. Vol. IV. Part II. 5 E
n. 282. \(p\). 1266.

ก. 299. \(p\). \(195^{2}\).
n. 286. p. 1419.

ก. 301. p. 2042.
n. 302. \(p\). 2082.
n. \(318, \mathrm{p}\). 2397.
2. A Defcription of fome Sbells, fent from Fort St. George, by the Reverend Dr. George Lewis to Mr. F. Petiver, by the fame.
3. An Account of fome Skells and Animals fent from Carolina to Mr . F. Petiver.
4. A Defcription of fome Corals, and other curious Submarines, fent from the Pbilippine IRes, by the Reverend G. F. Camelli to Mr. F. Petiver.
5. Catalogus Concharam fofflium, Metallorum, Minerakium, \&c. qux a Cl. D. Jobanne Scbeucbzero nuper accepit D. F. Petiver.
6. Mineralia quxdam, Conchylia petrefacta, \& alia Oofflia è Berolino, a Cl. Cbriftian. Maximiliano Spenero, Doct. Med. Reg. Pruff. Aul. Acad. S. R. I. Cur. \& Soc. Scient. Reg. Brandenburg. Colleg. ad D. 7. Pesiver miffa.
7. De Conchyliis Turbinatis, Bivalvibus \& Univalvibus; item de Minerelibus, Fofflibus \& Tbermis Pbilippenfibus, ex MSS. R. P. Geo. \(\mathcal{F} 0\). Camelli communicavit D. 7. Petiver.
n. 337. p.222. 8. A thort Account of fome Swedifh Minerals, \&cc. fent from Mr. Angeftein, Overfeer of the King of Sweden's Mines, to Mr. F. Petiver.
9. An Advertifement of a Catalogue of feveral Specimens of Figured

घ. 324. P. 77. Foffls, to be had of Mr. Alban Tbomas.
XXVII. An Account of a Book omitred.
n. 291. p. stor.

\section*{C H A P. IV.}

\section*{Magnetics.}

Of the Inven- I.
tion and ImHE Doetrine of the Magnet has been, I believe, more improv'd by the Englijh, than by any other Nation ; and I am of Opinion, that the Mariner's Compafs was original!y an Englifh Invention; not sbe Mariner's Compars, by only becaufe England was of old as famous for Navigation as any other Dr. f. Wallis. Nation, long before the Holland Sea-Trade was in being; but (fince n. 276. p. 1035.n. 278 . p. 1106 . new Inventions commonly take their Names from the Place where the Invention iffelf is taken) from the Name itfelf of the Mariner's Compafs.

The Word Compafs (in Latin Circulus Nauticus) is an antient Englijb Word, for what we otherwife now call by a Frencb Name a Circle. In Kent, where I was born and bred, it was commonly ufed in that Senfe, when I was a Youth; and Mirffero in his Dictionary takes Circle and Compafs indifferently to fignify the fame with Circulus : And hence it is that Circinus is in Englijh call'd a Compafs, (or a Pair of Compafes) as being the Inftrument wherewith we defcribe a Compafs or Circle; but whether

\section*{Of the Mariner's Compafs.}
whether Circinus, call'd by us a Pair of Compafles, may have fome like, Name in another Language, I do not know, nor how antiently.

I do not know that the Word Compafs, or any Word like it, was ever ufed in any other Language for a Circle Indefinively, or for any otioer Circle than the Circulus Nauticus. In Frencb it is Cercle, Cercbio in Itatian, Circulo in Spanifs, or fome nther Word deriv'd from the Latin Circulus ; and from hence the Ciriulus Nauticus may come to be call'd the Mariner's Compafs, which Name being given it by the firit Inventors, might give Occalion for like Names in other Languages, Frauch, Italian, Gerinan, \&c. Compa/s, Compaffo, Zee-Comparss, \&cc. which Name, together' with the Art, I guefs they borrow'd from England.

I might urge the lame trom another Name, Boffolo, Boffola, \&ic. For as Circulus Nauticus is the Mariner's Compafs, fo Pyxis Nautica is the Mariner's Box, (for the Englifb Box is from the Latin Pyxis) and Pyxidula (as a Diminutive from Pyxis) mutt be Boxel, or fome Word like it, which eafily palfeth into the French Buxole, Bouffole; and the Italian Bofoca, Boujula; which all feem to be from the Englifo Boxel (Pyxiduta) a little Box; foftening the found of the Letter \(x\) in \(J\); as in Alefandro for Alexandro.

All which, though it be not a direct Demonfration, yet (fince it is not agreed by whom, or where the Compa/s was invented) may in the Silence of Hiftury be admitted as a probable Conjeifure, and a plaufible Pretence to the Invention, till a better claim do appear; for New Invensions commonly take their Names from whence the Invention itfelf is taken.

And where Inventions creep in by Degrees, it muft not be thought Atrange, if it be not ealy to fay, who is the Firf Inventor.

In the prefent Cafe, he who firft obferved (I know not by what Acci(dent) that the Magnet hath a Polarity, or Inclination Northward, made the Firft Step towards this Invention. This (I think) was at firft wont to be flewed, by putting a Magnet into a little Boat, fwimming on Water, when it was obferved, that this Magnet would of itielf fo fteer this little Boat, as that a certain Point in the Magnet would (if not hindered) turn toward the North. Which Point was thereupon called the Magnet's Norib Pole.

He that afterward obferved that this Verticity, or Polarity, was communicable to a Piece of Iron or Steel, rubbed on a Magnet, added a further Step.

And he who contrived a Way to fet a Needle or Piece of Steel fo touched on a tharp Pin, fo as in the Air to move horizontally thereon, fo as of itfelf to find out the North, and point toward it, as before the fwimming Magnet in its Boat had done on the Water, had now difcovered a new Experiment in Natural Philolophy, very furprizing.

But this cannot yet be called Circulus Nauticus (or the Mariner's Compafs) till they had further contrived a Way how to put a Needle

\section*{Of the Invention and Improvements}
thus poifed into a Box, with a Compafs or Circle round it ; fo divided as to denote the Azimutbal Points of the Horizon, or, as they be now called, the Points of the Compafs; and fo commodioully to fix this Box, fo prepared, to the Ship, as thercby to inftruct the Mariner or Steerfman toward what Point of the Compafs the Ship moved; that by the Help of the Rudder he might put it into fuch a Courfe, as was proper for his Voyage. And it was now indeed Pyxis Nautica or Circulus Naulichs, (the Mariner's Box or Compafs) but not till then. And he who firft contrivect this Application, did compleat this Invention of Circulus Noutitus. But all thofe antecedent Difcoveries were Secps towards it, and Parts of the Invention.

Now it is not likely that all thefe Difcoveries were made at once, by the fame Man, at the farme Time, but fucceffively, by the joint Advice of civers inquifitive Men, and in a confiderable Tract of Time; yet all perhaps of the fame Nation, and probably the Englifb.

But whoever gave the firt Hint of this Invention, certain it is, that the great Improvements of the Magnetic Doctrine are due to the Englifh, and ehicfly to thofe about London and Grefain College. And it is fit the Memory of it fhould be preferved.

The Cafe is much the fame with that of Printing, which we cannot reafonably fuppofe to be invented all at once, nor perhaps all by the fame Man; but rather, by the concurrent Advice of divers, and in 3 confiderable Tract of Time, before it came to that Degree of Perfec. tion which we now call Printing.

It might be firt obferved, that the Shape of a Letter, Figure, or Picture, graven on Wood or Metal, might (with help of a convenient Preparation of Oil, Ink, or coloured Liquor) be Itamped on Paper; and, if once, then as oft as you pleafe.

And if by ftamping the Print on Paper, then as well by due Application of the Paper to the Print, thus prepared.

And if one, then by the fame Reafon to two or more, if fitly conjoined, and even to a whole Page at once; and, of that, as many Copies as we pleafe.

But, this being admitted, it remains further to be contrived, how all thefe Prints or Stamps for a whole Page fhall be fo compoted into one Frame, that the Paper may be applied to all at once.

It is then to be confidered farther, what kind of Ink, (or fomewhat inftead of Ink) is to be applied to the Face of the Letters, thus compofed; for common Writing-Ink will not ferve the Turn.

Then, how the Paper fhall be applied (with an equal Preffure, and fufficient) fo as to take off juft fo much of that Ink, as reprefients the Face of thofe Letters, and no more.

And after all this, it mult be further contrived, how to erect fuch a Structure, as what we now call a Printing-Prefs, and how to manage it, fo as to anfwer all thefe Exigences: For, till all this be done, we

\section*{Of the Mariner's Compals.}
are not arrived at what we call Printing. But all thofe previous Contrivances, mutt be owned as Parts of the Invention.

And in the Magnetic Doarine likewile. And to thofe previous Difcoverics, mutt be added, the fubfequent Improvements of Magnetic Knowledge, fince the firt UJe of the Mariner's Compass.

But whoever was the firtt Inventor of the Mariner's Compals, it is certain, that the Deftrine of the Mugnet has receiv'd very great Improvements from the Englif; from Elagiave, Gunter, Gellibrand, Gilbert, Norwood, Wrigbl, Erigs, Fofler, Sec. and of late by Capt. Halley in his Map of the Magnetic Variations; which I look upon as an excellent Defign, well contriv'd, and well executed, and which fixes the Bufinefs of the Magnetic Variation in thefe Seas for the prefent Time.

I think it is agreed on by all Hands, that what we call tbe Variation of the Needle, is an Englijh Difcovery, (of Mr. Gellibrand, if I miftake nor, one of Sir Tbomas Cirefbam's Profeffors at Grefham College) about the Year 1625. that is, that the Magnetic Needle in its horizontal Pofition doth not retain the fame Declination or Variation from the true North, in the fame Place, at all Times, but doth fucceffively vary that Declination from Time to Time; which, though it were about that Time a New Difcovery, is now admitted as an undoubted Truch.

It was about the Beginning of the Keign of King Cbarles the Firt, that Mr. Gllibrand (if 1 have not been mifinformed) caufed the Great Concave Dial to be crected in the Prizy-Garden at Wbireball, with great Care to fix a true Mcridian-Line; and with a large Magnetic Needle, fhewing its Variation from that Meridian from Time to Time. And, 1 think it were not amifs, if exact Oblervation were now made, whether the Meridien be now juft the fame as it was then ; for it is very poffible, that the Pole of the Earth may in Time fuffer fome little Variation (which may not readily be difcerned) which may caufe an Alteration of the Meridian Line: And this, if fo, will be more difcernible nearer the Pole, than farther off.

What we call the Dipping Needle, is admitted alfo to be an Englifo Difcovery, (I think of Mr. Blagrave's) fomewhat older than the former, that is, that the Magnetic Needle, beffides its Horizontal Direction toward the North, hath allio a Direction of Altitude above the Horizon, if ballanced on an Horizontal Axis; pointing, as it were, with its Northern End in our Climate to fome Point within the Body of the Earth. Whether or no this Direction do vary from Time to Time as dorh that of its Horizontal Pofition Northward, I cannot tell; nor do I know whether or no it hath been yet oblerved; nor whether or no the Southern Find in other Parts of the World do dip, as the Northern End doth with us.
'Tis alfo an Englifh Obforvation, that not only a Magnetic Needle, but any Piece of Iron (if kept long in the fame Pofture) thall of itfelf contract a Polarity. As for Inftance, an ereet Bar in a Window, after long Continuance in that Pofition, will, if duly poifed, be found with its
upper End, to point toward the North; and Southward with the otlier Lind. Ard if afterwards it be continued long in a contrary Polition, it will attain a contrary Polarity.

And Mr. Gilbert's Notion (of the Earth's whole Body being but one great Magnet; and, leffer Magnets being fo many Terrella's, fympathizing with the whole) is Englifh alfo.

It hath been obferved alfo, that a magnetic Necdle, if heated redhot, will lofe its Polarity ; and, if then cooled in a contrary Pofition, will acquire a contrary Polarity.

It hath alfo been obferved by our Englifh Mariners, (and, I think, more than once) that, upon a great Flath of Ligbtning at Sea their Magnetic Needle hath loft its former Polarity, and contracted the contrary.

In general, the Doctrine of Magnetifm hath been more improved by our Einglifh Naturalifts, than (for ought I know) by any other Nation. And, if fome one would take the Pains to give us a true Hiftury of thefe (and the like) Improvements, it would be an acceptable Work, and for the Honour of the Nation.

\section*{Magnetical} Exprimums amioblimuafious, by Mr. w. Derlam. n. 303. p. 2136 .
II. I.] Having lately invented an Azimutb Compafs, as I was preparing it for obferving the Magnetic Fariation, I took Occafion to try divers Magnetic Experiments, and by that Means happened upon this odd Pbenomenon.

Having touched a Piece of Wire, fo that it itrongly tended N. and S. I was minded to fee whether it would have any Inclination to either of the Poles of the World, when turned round like a Ring, fo that the two Ends of the Wire met: And having again itraightened it, I was furprized to find it had quite loft its Verticity; the Calife of which, I prefently concluded, to be the Contact of the Northern and Southern Ends of the Wire, which I thought might io influence one the other, as to confule its Poles; although I confeis I had never obferved any fuch Confufion to arife upon the bare Contact of the Northern and Southern Ends of ewo other touched Pieces of Wire.

Upon this, I touched ftrongly the fame, and other Pieces of frefh Iron Wire, and having found them all greedily to turn N. and S. I coyleft them round fo as that the Ends fhould not come near one another, and again fpeedily opened them ftraight; and found, as before, that every Piece had utterly loft its Verticity: Nay, the Magnetic Virtue was to abfolutely deftroyed by bending the Wire, that it had not only loft its Inclination to either Pole, but the two Ends of each Wire feemed indifferent to the Poles of the Load/fone, viz. whereas befure the bending, the adverfe Poles of the Loadjfone would repel, and the fimilar Poles attract the adverfe, or fimilar Ends of the Wire; now the repulfive Virtue was quite extinguifhed, and either End would indifferently be attracted by either Pole of the Magnet ; all one as if
the Wire had been heated red-hot (which is well known to deftroy the Virtue) or never had been touched at all.

This I experimented over and over again upon Wires of different Lengths, with the fame Succefs. Only this muft be obferved, if you only bend the Wire round, fo as that it fhall fpring back into its Place, or recoil, fo as to be near the fame Straightneis, that then no fuch, or but little of fuch, Effect will enfue. But to produce this Effect, the Wire muft be forply bent, fo as that Violence may be exerted upon it. If it be coyled two or three times round a fmall round Stick, it will beft fucceed. And farther alfo, it is neceffary that every Part of the Wire fhould be bent, to evacuate the Magnetic Virtue: For if the Ends, or any other Part happen not to fuffer the Violence of bending, that Part Thall retain its Magnetifm : As for Inftance, if the Wire be all coyled, except half an Inch, or indeed half a tenth of an Inch at each End, every Part fo coyled fhall both lofe its Verticity, and shall incline indifferently to either Pole of the Magnet ; but the two Ends (although not able to turn the whole Wire N. and S.) fhall ly from, or tend unto the refpective Pole of the Magnet: Or if every Part of the Wire be coyled, except a fmall Bit at one End only, all that coyled Parr, when extended, Shall utterly be deprived of its Magnetifm as before; and only that uncoyled Bit retain its Averfion, or Inclination to the Magnetic Poles.

From the Confideration of all which Particulars, it is very manifeft, that the Violence exerted upon the Wire by bending, doth utterly extirpate the Magnetic Virtue, or at leaft make fuch a Confufion therein, that it is as if wholly deftroyed: Which is a Cafe very odd, and never (that I have ever met with) taken Notice of before.
2.] The Account which I lately gave of the Defruition of the Mag- FurtherObfirnetic Virtue in a touched Piece of Iron Wire, by Berding, or Coyling round, I thought had been New : But by looking over what others have written of Magnetics, I find in Grimaldi de Lumine \(8^{3}\) Colore, that he, and in our Pbil. Tramf. \(\mathbf{N}^{\circ}{ }_{188 .}\). that M. de la Hire had hit upon the fame Difcovery before me. And I am glad that I have the Authority of others on my Side, the Experiment not fucceeding in fume Tryals fince.

The Matter of Fact was thus, and to me furprizing: I touched and coyled feveral Iron Wires, but the Effect that enfued was not fuch as I told the Society. The Verticity was indeed much weakened, but not totally deftroyed, and the Ends of the Wires wourd be attracted or repelled by the Poles of the Magnet; whereas I faid they wied only to be attracted. The next Morning I tried again; and then the Magnetifni of the Wires was cotally deftroyed, as I related. This Experiment I repeated divers Times, and on divers Wires this Winter, and commoniy find, that, all the Day, coyling will evacuate the Magnetifm; but that it will not abfolutely do it in the Evenings. But whether is well know that the Orb of the Activity of Magnets, is larger, or lefs, at different Times. That noble Magnet in the Society's Repofitory, found in Devonfoire by Dr. Cotton, is known in fome Weathers (or at fome Tines) to keep a Key, or other Piece of Iron, fufpended to aniother Iron, at 8, 9, or 10 Feet Diftance. But at other Times, the Iron will drop down at the Diftance of 3 or 4 Feet from the Magnet. Now whether at all, or how far this may reach the fore-mentioned Cafe, I cannot lay, not having as yet fufficiently experimented the Matter.
- Finding the Cafe thus with Coyled, or Bent Wire, I was minded to try the Event of Twifting of Iron Wire from End to End, after it had been well touched. The Succels was, the Verticity was always weakened, and fometimes inverted. And when it was fo, the Load flone dird accordingly commonly repel or attract, all one as if the twilting the Wire had given a new Touch the conerary Way.

But in fome Wires fo twifted the Verticity was wholly deftroyed, or rather much confufed: For I found by drawing one of the Poles of the Load-ftone along near the Sides of the Wire, that in fome Places it would attract, in others repel, and fo attract and repel all along the Wire. Nay, I fancied in fome Places, that one Side of the Wire would. be attracted, the other repelled by one and the fame Pole of the Load-ftone.

To thefe odd Changes I could add divers others, which the Twiffing produced: But thefe do fufficiently flacw, that the Magnetic Virtue is put into great Confufion by the Violence exerted upon the Wire by Twiffing: Which not only feparateth the Fibres of the Iron (as may be feen with the Eye, efpecially affitted with a Microfcope) but alfo changeth their Situation from Longways to Screw-ways.

I then try'd what would be the Iffuc of Splithing or Clearing touched Wires: Particularly whether they would exert the fame Eiffects that Magnets are faid to do, when fawn in two Meridionally. Concerning
\(\prod\) Treatije of Magicer. Lo. dies and Mo. tions. Cl. 9 . which Dr. Ridley || faith, "Cut a Piece from a Magnet-ftone meridio" nally, and that End which was placed S. when it was whole, being " fevered, will turn North, although naturally at firft it was the S. "Point." But Mr. Barlow is of a contrary Mind, and faith, That the Poles of fuch a Piece of Magnet, when fevered, will abhor the fame Poles, to which it grew in the whole Magnet. But he fub-
+ M.ogret. idunrifac. santh. Ch. 2. joinst; "But here you muft beware of an Error, which fome un" happily have entangled themfelves withal, who beholding the afore" mentioned Difcord, wrongfully fuppofed, that if both thefe Mag" nets the greater and the lefs i. e. the Piece cut off] were conve-
" nicntly placed to fwim in Water, the little one would not with
" his End point unto the South of the Earth as it did in the Mag-
" net being entire, when it was a Part of the true North End, but
" would point contrarily. There is (faith he) no Manner of any fuch

\section*{Magnetical Experiments.}
"Alteration, but that both the great one, the little one, and all the " like, that are cut Meridionally one from another, will abfolutely "point the fame Way which the entire one did. Only the Meridian " will be fomewhat removed, \(\mathcal{E}^{c}\)."

Dr. Gilbert is as exprefs as Mr. Barlowe. For (L. 2. c. 5.) fpeaking of a Magnet divided, and thewing how that the Parts, which in the whole Stone coalefced, do by Separation repel one another, he faith, Tbut wabat was the \(N\) and \(S\). Pole before, is fuch filll. Non enim (faith he, imsmutatur Verticitas (quod malè affirma: B. Porta.) Nam licet [Poli feparati] non conveniunt, ut alter ad alterum inclinaret; tamen uterque in idem Ho rizontis punilum convertuntur.

How the Truth lieth between Dr. Ridley and the two latter Authors, I cannot determine, having never fo cut a Magnet. But by the Magnetic Laws, as well as from the Authority of Dr. Gilbert and Mr. Barlow, I doubt not but the latter is the trued Opinion.

But in Cleft Wires the Cafe is very uncouth: Oftentimes the Poles are quite changed: So that what was the Nortb, becometh the Soutb; Pole of the Wire in all Refpects; I mean, not only turning, but alfo embracing, or avoiding the Poles of the Load-Itone, as if it had re-1 ceived a new, and contrary Touch. Sometimes one balf of the Wire will retain its Magnetifm, which it had before fplitting, and the other half have it quite changed. Sometimes no Change at all will enfue, only the Magnetifm be much weakened; as indeed it always is in all the Experiments where the Wire is fplir. (But generally, where one of the Halves hath fuffered Change, the other not, I have obferved, that 'tis the thinnelt and weakeft that hath been changed, and the thickeft hath retained its Touch.) Sometimes where one of the fplit Halves received an inversed Verticity, or feemeth to have no Verticity at all, one of its Ends will incline to one of the Poles of the Magnet, not according to its Touch, but in an inverted Order, and the other End be attracted indifferently by both the Poles of the Loadfone. And in fome Cafes, that End thall be attracted by one Pole, but be neither attracted nor repelled by the other; but fland as it were hefitating whether it, had beft fly to, or from that Pole of the Loadftone. Only if that Pole of the Magnet be too near, then that End of the Wire wilt conftantly lly thereto: As indeed it is the Nature of all Magnets and Magnetic Bodies to do, when they touch or approach very near one another, though they repelled before.

The Caufe of thefe great Changes in touched Wire produced by Splitting, I have fomerimes imagined to arife from the Violence exerted thereon by bending. But in fome Wires that I fplit, or cleft with very little bending, one half hath been utterly changed, the other not.

In orhers that I cleft, by fuffering the Halves to bend as much as they would, no Change hath been; and forne have quite fuffered Change.

\section*{Magnetical Experiments.}

Sometimes I have imagined that the Splitting the Wires in a N. or S. Pofition, or that the Beginning to fplit at the N. or S. End of the Wire firf, might be the Caufe of this Contraverfion of the Poles. But Trials fhewed there was little in any of this.

Thus I would have done with Split or Cleft Wires; but there is one Thing very furprizing, viz. Tbat the laying one, or sbe otber Side of the Half uppermoft, will caufe a great Alteration in its Tendency, or Averfion to the. Poles of the Magnet (as I have faid). But if you lay the contrary Side of that Half uppermoft, the fame End thall be attracted by one, and repelled by the other Pole of the Magnet. In other Pieces, where the Ends are regularly attracted or repelled, only in an inverted Order (as if new touched) if it lay with the round Side uppermoft at that Time, and be then turned upfide down, viz. the flat cleft Side uppermoft, 'tis ten to one if one of the Ends be not either attracted by both the Poles, or repelled by both; or elfe attracted or repelled by one, and hefitates as to the other. For io it often befals.

The Caufe of this Lubricity of the Magnetifm, I imagined might be, becaufe the Sides or Edges of the Wire had received contrary Poles by Splitting: And confequently were turned toply-turvy, that what was the N. might then be the S. Edge of the Half. But I could never difcover but that the Sides of each lind, or of any other Part, were the fame, when I held the Loadfone to one or the other Side. Which indeed I always did in every Experiment for greater Certainty Sake.

My Hand being in, I try'd the old Experiment of touching Wires, by rubbing tbem backwards and forwards with one of the Poles of the Loadftone, becaufe it might probably give fome Light into the aforementioned ftrange \(P b\) denomena.

Mr. Barlow was I think the firft that difcovered the Error of this Way of Touching, viz. That it weakeneth or much hurteth the Touch. This I try'd, and found what is faid not only to be true, but alfo that the Reafon thereof is, Becaufe the Poles of the Wire, or Needle, So toucbed, are not at the Ends, but in or near the Middle of tbe Wire or Needle. Sometimes one is near the Center, the other at one or both Ends. For in fome Wires fo touched, both the Ends of the Wire would be attracted by one Pole of the Loadifone, and repelled by the other: And in fuch Cafe the repelling Pole a!ways found a fympatheric Part near the Center of the Wire. In others (efpeciatly where a Verticity fucceeded, as fometimes it will do, and that pretty ftrongly too, in fuch a Cafe) the Verticity would he inverted, and the Ends of the Wire be attracted and repelled in a direct contrary Manner to the Natural Form. And the Reafon of all this will be manifeft from thefe following Experiments.

I touched a Wire from End to End with only one Pole of the Magnet: This gave fo vigorous a Touch, that I am almon of Upinion, If is the belb Way of Toucbing. The Coniequence was, the End where

\section*{I began always turned contrary to the Pole that touched it. I again} touched the fame Wire, and others ton with the other Pole of the Magnet, from the fame End, and then that End turned the contrary Way, e. g. Mark one End of a Wire for the North End, and touch that Wire, by drawing the N . Pole of the Magnet divers Times along the Wire from the N. to the S. End; this Wire, fo touched, fhall have a vigorous Verticity, but the North End fhall fand South: But if you touch that, or another Wire, (for it is all one, becaufe the latter deftroys the former Touch; I fay, if you touch) by drawing the N. Pole of the Magnet from the S. to the N. End of the Wire, then this N. End will turn N. And fo it will do the fame, if you touch with the Southern Pole from the N. to the S .

There is one Experiment more, doth yet give farther Light into what goeth before, viz. I touched an Iron Wire exactly in the Middie with only one Pole of the Loadftone, without drawing it backwards or forwards. The Event was, that in that Place that Pole of the Wire was, and the two Ends were the contrary Pole of the Wire, and were accordingly repelled or attracted by the Poles of the Loadftone: And the Middle, and an Inch or more on each Side, was attracted by the Pole only that touched it.

If we reflect and compare the foregoing Experiments one with another, they not only illuftrate one another, but feem to lay open a fair Way towards the Difcovery of a great many of the intricate Pbanomena of Magneticks.
III. 1.] Without mentioning the Difficulties that attend the making of Experiments of this Nature, 1 fhall give an Account of their Succefs.

I took a Quadrant of four Feet Radius, and having fix'd it to the Floor, in the Pofition of the Needle, whofe South Point directed itfelf to no Degrees, I then fix'd a Board (likewife on the Floor) in a direet Angle from the fame, the Graduations on which Board were 3 Inches diftant from each other. The Needle was fufpended on a Point arifing from the Center of the Quadrant, from whence were meafured the feveral Stations of the Magnet. The Magnet was laid on a thin Piece of Buard, under which, to one Side was nail'd a narrow Slip of Wood, to flide it along the Side of the foremention'd graduated Board, whereby the Stone might be always kept in the fame Direction to the Needle. The Stone that I ufed, weighed about fix Pounds; was rough, and of an irregular Figure; yet I could difcover no Inconveniency in the Experiment arifing from the fame, it being, and acting at all Diftances in the fame Pofition as it is firlt plac'd on the Board: And I fee no Reafon to doubt, but the Proportions of its Power will be regular, and agretable to the feveral Diftances, as more than once I have obferv'd. For when the Stone hath been differently pofited on the fore-mention'd thin Board, different Angles of the Needle would enfue at the fame Stations, yet their Proportions one to another would be nearly the fame. My

\section*{Of the Power of the Loadffone at different Diftances.}

Meaning is this: Suppore the Stone was fo plac'd, as at 3 Inches from the Needle, it would give the Needle an Angle of 90 Degrees, the Stone being continued in the fame Direction, at the feveral Stations, the Proportions of its Power one to another would be much the fame, as if the Angle of the Needle at the firft Beginning made but 87 , or even but 80 Degrees on the Quadrant; for upon a finall Alteration of the Poles of the Stone, fuch Diverfity of Angles will utate.

In thefe Experiments I made ufe of two Needles, ore of a Radius of 6 Inches, the other but one Inch; which laft, after many Trials, I found to be moft accurate, befides the Advantage it gave in beginning the Experiment 6 Inches nearer the Stone, than the other; and from two Feet Diftance from the fame, it became nearly agreeable to the Angles made by the long Needle to all the farther Dittances; as you will find by the following Tables, which were made with the feveral Needles in the fame Direction of the Stone. I meafured the Angles by a Silk Thread ftrained directly over the Needle to that Past of the Quadrant to which it was direftul s which was the beft Way i could contrive to come neareft the Truth.

It may be oblerv'd from the following Tables, that the long Needle at 9 Inches from the Stone, made fomewhat a larger Angle than tire fhort Needle at 3 Inches Dittance from the fame; that the fhort Needle at the Diftance of 9 Inches, made an Angle of 9 Degrees lefs than the long one at the fame Place. But this Odids will eaflly be accounted for, if we confider the Difproportions of the Nicedles Lengths; for the Point of the long Needle at 9 Inches, was brought within an Inch as near the Stone, as the Point of the fhort Needle was, when but 3 Inches diftant from the fame: The Point of the fhort Needle at 9 Inches from the Stone, was 5 lnches farther from it, than the long one at the fame Station. Thefe Difproportions being confider'd, it is no Wonder fuch Difference of Angles fhould enfuc upon the Ufe of the feveral Needles near the Stone; for at two Feet, and the farther Diftances, they become nearly agreeable, as I faid before. When I fpeak of Diftances from the Needle, 1 always mean from the Center of it.

Farther it is obfervable, that the Stone at 5 Fcet Diftance from the Needle made an Angle of 2 Degrees with one, and with the other of two and a half; yet upon the Abfence of the Stone, they would return to no Degrees, as at firlt : Which plainly fhews, that the Influence of the Stone cxtended farther; alchough Obfervations, at remoter Stations, could not eafily be determined.

At greater Diftances, and even the more remote in thefe Tables, the Power of the Stone is fo weak, and the meafuring the Angles at all Times exactly, fo difficult, that 'tis well if we cone fometimes within 10 or 20 Minutes of the Truth.

\section*{Of the Power of the Loadftone at different Diftances.}

Experiments by the 乃ort Needle.
\begin{tabular}{|c|c|c|}
\hline Diftances of the Load. fone from the Needle in Inches. & The feveral Angles of the Needle at the feveral Ditances. & The differences compared one with another, at the feveral Ob fervations, in Minutes. \\
\hline & & \\
\hline & 0 & 330 \\
\hline & & 570 \\
\hline & & 735 \\
\hline & 45 & \\
\hline & & \\
\hline & \(24-00\) & 36 \\
\hline 27 & 18 & 270 \\
\hline 30 & \(13-30\) & 150 \\
\hline & -0 & 135 \\
\hline & & 105 \\
\hline & & \\
\hline & & \\
\hline & 30 & \\
\hline & 50 & \\
\hline & 3-20 & \\
\hline & \(3-\infty\) & \\
\hline & & \\
\hline
\end{tabular}

Experinents by the long Needle.
\begin{tabular}{|c|c|c|}
\hline Diftances of the Load. frone from the Needle in Inches. & The fereral Angles of the Needle at the feveral Diflances. & The differences compased one with anocher, at the feveral Obfervations, in Minutes. \\
\hline & \(D\)
\(87-30\) & 345 \\
\hline & \(81-45\) & - 570 \\
\hline & \(7^{2}-15\) & -1137 \\
\hline & \(53-20\) & -1100 \\
\hline 2 & \(35-00\) & - 660 \\
\hline & 24-10 & - 380 \\
\hline 27 & \(17-50\) & 280 \\
\hline \(30=\) & \(13-10\) & 180 \\
\hline 33 & \(10-10\) & - 130 \\
\hline 3 & 00 & 90 \\
\hline 39 & 30 & 75 \\
\hline 4 & - 15 & 65 \\
\hline & \(4-10\) & 40 \\
\hline 48 & \(3-30\) & - 30 \\
\hline & -00 & 25 \\
\hline & \(2-35\) & 20 \\
\hline & \(2-15\) & 15 \\
\hline & 0 & 00 \\
\hline
\end{tabular}

The Stone with which thefe Experiments were made, was of this Form, and weigh'd exactly fix Pound, one Ounce, and a Quarter, Averdupois-Weight. Its Breadth at the North-pole was four Inches, at the Southpole five Inches; the Poles running through the Stone, in the Direction of the prick'd Line. The Length of the fhorteft Side was fix Inches and a Half, and of the longent side feven Inches and a Half. Its Thicknefs at the North-pole was one Inch and a Half, and at the South-pole one Inch.
2.] By Order of the Royal Society, Mr. Hawkjbee and myfelf made an Expreinacise with the great Loadfone belonging to the Society, in order io difcover the Law of the Magnetical Attraction, an Account of which I gave to the Society, in a Letter to Dr Sloare, dated fure 25, 1712. Since wht, Mr. Hawkfoes made another Experiment of the fame of that Experiment with thofe of the other, I find the Numbers of the firft Experiment to be very much more regular; wherefore I conclude the firlt Experiment to be the beft. It was made in the following Manner:

We placed the Great Loadftone belonging to the Royal Society fo, that its two Poles lay in the Plane of the Horizon, and were in a Line exactly at Right Angles with the natural Direction of the Needle we made ufe of (which was that Dr. Halley had made to obferve the Variations with:) And by means of a Carriage contriv'd for that purpofe, the Stone was eafily moved to and fro, the Poles continuing always in the fame Line. The Needle was fo placed, that the Center it play'd upon, was in the fame
\begin{tabular}{|c|cc|}
\hline Diff. Feet. & \multicolumn{2}{|c|}{ Variat } \\
\hline 1 & 81 & 45 \\
2 & 58 & 00 \\
3 & 30 & 00 \\
4 & 16 & 00 \\
5 & 9 & 20 \\
6 & 5 & 35 \\
7 & 3 & 30 \\
8 & 2 & 20 \\
9 & 1 & 35 \\
\hline
\end{tabular} Line with the Poles of the Stone; the North-pole being towards the Needle. We meafur'd the Diftances from the Center of the Needle to the Extremity of the Stone: and we found the Variations of the Needle from its natural Pofition, to be as in this Table.

\section*{C H A P. V.}

\section*{Agriculture. Botany.}

Of the Manuring of Lands by sei-fhells \(i n\) Ireland, by the Archbiziloop of Dublin. n. 314. p. 59.

TH E Counties of London-Derry and Donegal in Ireland, are very mountainous, and thofe Mountains covered with Bogs and Heath, infomuch that there is little Arable Ground in them, except what has lately been made fo. There are three Ways practifed to reduce Heath and Bog to Arable Land: The firft is, by cutting of the Scurf of the Ground, making up the Turf fo cut in Heaps, and when the Sun has dried thefe Heaps, they are then fet on Fire; when burnt as much as they can be, then thofe Heaps are fcattered on the Ground, and it being ploughed, it beareth Barley, Rye, or Oats, for about three Years.

The Inconveniences are, firt, that fuch Burning defiles the Air, caufeth Rain and Wind, is not practical in a wet Summer, and by deftroying the Sap of the Earth and Roots of the Grafs, and all other Vegetables, renders it ufelefs for feveral Years after the third, in which it is ploughed.

\section*{Of the Manuring of Lands by Sea-Shells.}

The fecond Way is by Liming; this is much better than the former, becaufe it doth not fo much depauperate the Ground, will laft long, and beareth better Grain, and whatever is pretended, doth not deftroy the Grafs, if due Care be taken not to over-plough it ; but then this is very dear, and Lime-ftone is not every where to be had, and in many Places Fire is wanting.

Dung is the common Manure in all Places, and therefore I fhall fay nothing of it .

Marl is not ufed, that I have obferved, in the North, but about the Sea-fide the great Manure is Sbells: Any one that will look into the Map, will fee how the Bay of London-Derry, commonly called Lougbfoyle, lies; towards the Eaftern Part of it there lie feveral Eminencies that hardly appear at low Water ; thefe are made of Shells of Sea-Fifh of all forts, more particularly of Perewinkle, Cockles, Limpet, \&c. The Country Men come with Boats at low Water, and carry Loads of thefe Shells away; they leave them in Heaps on the Shore, and there let them jie till they drain and dry, and by that Means become much lighter for Carriage; they carry them by Boats as far as the Rivers will allow them, and then in Sacks on Horfes, perhaps fix or leven Miles into the Country; they allow fometimes 40 , but moftly 80 Barrels to an Acre; they agree with boggy, heathy, clayey, wet, or ftiff Land, but not with fandy. They feem to give the Land a fort of Ferment, as Barm doth to Bread, opening and loofening the Clods, and by that Means making Way for the Roots to penetrate, and the Moifture to enter into the Fibres of the Roots: The Manure continues fo long, that I could find none that could determine the Time of its enduring.

The Realon of its long Continuance feems to be this, that the Shells melt every Year a little, till they be all fpent, which requires a confiderable Time, whereas Lime, \(\xi^{6}\) c. operates all in a Manure at once; but it's to be obferved, that in fix or feven Years the Ground grows fo mellow, that the Corn that grows on it becomes rank, and runs out in Straw to fuch a length, that it can't fupport itfelf, and then the Land muft be fuffered to lie a Year or two, that the Ferment may be a little quieted, and the Clods harden, and then it will bear as long again, and for ought I know and could find, it continues to do fo with the like Interniffions for 0 or 30 Years.

In the Years in which the Land is not ploughed, it bears a fine Grafs, mixed with Daifies in Abundance; and it is pleafant to fee a fteep high Mcuntain, that a few Years before was all black with Heath, on a fudden look white with Daifies and Flowers.

It fines the Grafs, but makes it Phort, tho' thick. Obferving that this Nanure produced Flowers in the Field, I made my Gardener ufe thefe Shails in my Flower-Garden, and never faw better Carnations, or Flowers fairer or larger than in that cold Climate; and it contributes to deftroy \({ }^{7}\) eeds, at leaft doth not produce them fo much as Dung; it likewife produces very good Potatves at about a Foot Diftance from

\section*{Of the Manuring of Lands by Sea-Shells.}
one another ; and this is a Method of reducing boggy barren Land. They lay a little Dung or Straw on the Land, and jprinkle it with Sheils; fometimes they cut the Potators, if large, that they may go the further, and then dig Trenches about lix or feven Feet Diftarce, and throw the Earth or Soil, they take ont of them, on the Potatoes, io as to cover them, and then fencing the Plot of Ground fo planted, let them grow. Plant them in April or May, and they are ripe in Auguft ; they dig them as they have Occafion, and let them lie till next Year, then dig them again, and fo the third Year; every Year they by this Means go deeper in the Earth, and the latt ther dig them, then pick them out as carefully as they can, that little Seed may remain ; and the fourth Year they plough the Ground, and fow Barley, and the Produce is very good for fome Years. Some Potatoes will remain and grow up withcut any Hurt to the Barley of Oats; and thofe they dig and pick out, and the Ground remains good and arable ever after.
'Tis obfervable, that Shells do beft in boggy Ground, where the Surface is Turf; Turf generally is nothing but the Product of Vegetables, fuch as Grafs, Heath, \(\xi c\) c. that being rotten, the Salt is wathed away by the Water, and there remains only the earthy, and efpecially the fulphureous Parts of them, as appears from the Inflammability of Turf; now Shells being chielly a Salt, it incorporates with the Sulphur of the Plants, and renders them fit for the Vegetation of new Plants.

And this appears further from this, that Shells that have been under the Salt Water are much better than fuch as have been in the Earth, to dry at the Strands : Almoft about the Bay of Londondery, if you dig a Foot or two, it yields Shells, and whole Banks are made up of them; but thefe, tho' more intire than fuch as are brought out of the Shell Inand, are not fo profitable for Manure.

I obferved in a Place near Newtown-Lamavady, about two Miles from the Sea, a Bed of Shells, fuch as lie on the Serand; the Place was cover'd with a Scurf of wet fpouty Earth, about a Foot thick; che Country People ufed the Shells, but they were not reckon'd fo good as thole that are found in the Sea or near it.

The Land about the Sea-fide bears very indifferent Wheat, nor will the Shells do in that Particular, without fome Dung; but I very much doubs, whether that be not due to the Ignorance of the Farmers, that generally underftand nothing of Wheat.

Some Thoufands of Acres have been improved by the Shells, and that which formerly was not worth a Groat per Acre, is now worth four Shillings: They have in many Places thus improved the very Mountains, that before were very Turf Bogs. In thefe they meet with this Inconveniency, that if the Seafon for Ploughing proves wet, their Horfes fink fo deep in the Soib that they can't plough it, efpecially after two or three Years.

They commonly made Lime of the Shells formerly, and fome do fo ftill. I have nor, that I remember, feen any fuch Lime, but I underitood that it bound very well, and I believe it is not fo corrofive as Lime made of Stone; for I find, in the Hiftory of Colan, that they make up their Land with Lime of Oyfter-Shells, and which I believe would be impraticable with Common Lime.

About 30 Years ago they made Lime of the Shells, and manur'd their Lands with it; but a poor Countryman, that, out of Lazinefs or Yoverty, had not provided to make Lime, threw the Shells unburnt on his Land; his Crop prov'd as good as his Neighbours, and the fecond and third Crop better, and all tonk the Hint, and have ufed thens to over fiñce.

Where Shells are not to be procur'd, Sea-Rack or Sand fupply the Want of them, but are not fo good; Sca-Rack lafts but three Ycars, and Sand little longer.
'Tis certain, Ireland has been better inhabited than it is at prefent : Mountains that now are cover'd with Bogs, have formerly been plow'd; for when you dig five or fix Feet deep, you difcover a proper Soil for Vegetables, and find it plow'd into Ridges and Furrows. This is obServable in the wild Mountains between Aidinagb and Durdaik, where the Redoubt is built, and likewife on the Mountains of Almore: The fame, as I am inform'd, has been offerv'd in the Counties of London-Der5y, and Donegal; a Plow was found in a very deep Bog in the latter, and a Hedge with Wattles Atanding under a Bog that was hive or lix Fett deep above it. I have leen the Stun3p of a large Tree in a Bog, ten Feet deep, at Cafle-Forbes; The trunk had been burnt, and fome of the Cinders and Afres lay ftill on the Stump. I have fien likewife large old Caks grow on Land, that had the Remains of Ridges and Furrows: And I am told, that on the Top of a high Mountain in the North, there are yos remaining the Streets and Footteps of a large Town; and indeed there are but few Places, which do not vifibly (when the Bog is remov'd) retain Marks of the Plow; which fure muit prove, that the Country was well inhabited. It's likely that the Danes firft, and then the Engiifb, deftroy'd the People; and the old Woods feem to thofe that pretend to judge, to be about three or four hundred Years ftanding, which was near the Time chat Courcey and the Englifb fubdued the North of Ire'ard, and 'tis likely made Havock of the People, that remain'd after the Danes were beat out of Ireland.
II. The Burning of the Surface of the Land is fo much practis'd in Of the ManuDeconfire, that 'tis elfewhere known by the Name of Devon/biring; but it is ufed only for bad Lands, and by worfe Hufbands, for it robs the Ground. ring of Land by Sea-Sand in Devomairc, by Dr. A.
Salt quickens dead Land, and is ufed in the South Weft Part of the Bury. n. 316 Country, which would elfe be the barrennelt, but is now the richeft Part P. \(14 \%\). of it. They go as far as the Sea will permit them, at the lowelt Ebb, \(\forall\) OL. IV. Part II. \({ }_{5} \mathrm{G}\) and the Country, and fpread it upon the Land, and thereby improve it both for Corn and Graft. In other Parts they force their barren Land, by mingling the Earth with Lime, and catting it upon the Ground.

In this they differ, that Crude and Single Salt, if ftrew'd upon the Ground, does not improve, but corrode it; but Limb, tho unmingled, betters it: But in this they agree, that they produce not Grails fit for the Scythe, but for Pafture, hurt and tweet, and which grows all the Winter; fo that their Sheep know not cither Hay or Water, nor are their highest Grounds parch'd by the Sun in the hotteft Summer. The bet Way is, to mix there Male and Female Salts ; for the Sea Salt is too lusty and active of itfelf; the Lime has a more Baliamic, but gentier Salt, and regularly join'd with the other, is thereby invigorated. How to mix thofe two, Glaaber thus directs: Take (fays he) QuickLime, let it Jack by Time without Water; ben take Salk and Water, mingle them together, and make them into Balls-or Pieces, which you pleafe; dry whens as you do Bricks, then burn them for about two Hours; this Comport will anrich the poorest Land.

Thole who are much devoted to Agriculture, fhould chafe fuch a Situation for a Dwelling, as is heft accommodated with Lime, Salt, and Coals; and if our Gentry underitood this Hufbandry, they would fo far free Salt from its Tax, as it Thould be employed on Land, whit is not intended to pay for it.

ObServations relating to the Motion of the Sap in Vegetables, by Mr. R. Bradley.n. covery of the other.
349. P. 486.

Thole Plants, which I call Terreffinl, are fuch as Trees, Shrubs, and Herbs, which grow only on the Land. There like Land-Animals have Diverfities of Food, a Method of Generating, and certain Periods of Life.

Of the Amphibious Race, which live on Land as well as in the Watess, are the Willows, Rushes, Mints, \&ec. There are not unlike in many Respects to the Otter, Tortoise, Frog, \&c.

The Aquatics, whether of Lakes, Rivers, or the Sea, are very numerows: Thee may be compar'd with the Fifh-kind, and will not live out of their proper Elements. In Freß Waters are the Waber-Lillies, Plantaine, \&rc. and in the Sea, Corals, Fuck, \&ec.

Plants lem to poffefs only the next Degree of Life below the mot ftupid Animal; or where Animal Life leaves off, the Vegetable Life feems to begin.

The Seafons of Motion in Plants are the fame with thole of Animals, which dep during the Winter. An Artificial Heat will give Motion: to either of there ir the coldest Time.

The common Opinions relating to the Sap's Motion, are as follows: Firlt, the Sap does not rife by the Pitb; becaufe fome have obferv'd the Trunks of large Trees to be without that Part, and yet the fame Trees have continued to put forth Fruit and Branches on their Tops. I have obferv'd, that the Pitb is not found in thofe Branches of a Tree, which exceed two or three Years Growth; and it is certain, that the Piib, which is in a Branch of this Year, will (the greatelt Part of it) be diftributed into thofe Boughs, which form themfelves the next Scafon.

It is faid by fome, that the Tree does not receive its Nourifhment by the Bark, for that Trees having loft that Part, will ftill continue their Growth. Others tell us, that if the Bark be cut away round the Trunk of a Tree, it will prefently die. Thefe various Opinions feem to have been fet on Foot without extraordinary Confideration, upon the Belief, that a Tree has but one Bark; whereas, upon Examination with the Microfcope, we find four diftinet Coverings to each Branch, withour the woody Parts. The two outermoft Barks may be taken from a Tree without any great Damage, but the other two, which lie nearer the Wood, being ftripp'd off, will kill the Tree.

Some affirm, that the Sap doth neither rife nor fall in the woody Part of the Tree, becaufe they have not been able to difcern any \(S a p\) to iffue out of that Part when a Branch has been cut. The Microfcope plainly nows us the Veffels in the Wood, through which the Sap rifeth from the Ruot; but as thefe Tubes are not large enough to admit into them any Thing more grofs than Vapour, fo they have not been efteem'd to be of any great Ufe. The Explanation of Figure 47. will in fome meafure difcover the Office of thefe and of fuch other Parts of a Plant, as are feverally defign'd for the Growth of Vegetables; but let us firt enquire a little into the Nature of the Roor.

The Root of a Tree is chiefly compofed of a Parencbyma, more grois than that in the Stem or Body of the Tree; it has likewife Veffels and a Covering. The Root, that is, the principal Part of it, receives into it fuch Juices of the Earth, as are proper for it, and no other. Somewhat like a Wiek of Cotton, which having been impregnated with Oil, will only admit Oil into it. This Provifion being made in the Stomacb of the Plant (as I call it) chiefly in the Autumn Months, the Tree is prepared for Germination, fo doon as the Earth is fufficiently warm'd, either by the Sun's Beams, or an artificial Heat, fuch as Horfe-dung, Bran and Water, or other fuch like Eerments, Thefe Heats raife into Vapour the Juices contained in the Root, and by that Means caufe Vegetation.

Fig. 47. is part of the Branch of an. Apple Tree made in May \(1315 \%\) and
Fig. 47. cut in April 1716 . It was cut in Figure of a half Cylinder, the length fomewhat more than the Diameter, which was about a Quarter of an Inch. This being magnified with one of Campan's Microfcopes, difcovers the following Parts, viz.
\(1,2,3,4,5,6,7\), Are Capillary Veffels, which run longitudinalDy through the Branch, in the ligneous part, which was made in the Year 1715. Through thefe Tubes, the Steam rifech from the Root, the Strength of which is well explain'd by the Engine for raining Water by Fire, invented by the late Captain Slavery.

From \(A\) to \(B\), we may view Veffels of the fame fort, mate at the fame Time.

8, 9, Are Veffels of the fame Ute with the former, now forming themselves for the Ute of the Year 1716.

By this Means the Diameter of the Branch is increas'd, and additional Nourifhment fuffer'd to pats into thole Buds, which are to make new Branches. Thefe are made out of the fourth or innerniof Bari, mark' \(d\) C, C.

The Mouths of the Capillary Tubes of the Years 1515 , and 1716 , \(\operatorname{are} \mathrm{D}, \mathrm{E}\). The Vapour which sifeth from the Root, is continued is thee Veffels, to the Extremities of the Branches, where it meets with Parts (not here deferib'd) like to Glands; which Glands, if we may fo call them, are likewife found at every Knot or Joint. At thee Places, the Vapour coming near the Air, is condenfed, and returns between the Barks, by means of its own Weight, down F, G, H, leaving in each Bark mark'd I, K, L, fuch Juices as each of them naturally is inciin'd to Separate from it; till at lat, the more oily part paling to the Roo, may lengthen the Fibres thereof, as icicles are lengthened; and by its oleous Particles, preferve them from rotting by the Vies. The parts which compote the feveral Barks, are Parcncbyazous or Spungy

The firn mark'd M , is of a clover Texture than the fecond N , and the fecond clofer than the third O , and fo on till there parenchymous parts are interwoven with the longitudinal Wood.-Vcfels, where they are fomewhat conftrain'd, till they come to make the Pith, marked 1 . Then they are much larger than in any ocher part of the Tree; and by what I have obferv'd, lem to contain a more finifn'd Juice than the reft, and may well enough be filed the Medulla.

We may note, that when the fourth or innermost Bark C , has once compleated its Sap-Veffels, and is firmly join'd to the wooden part, then the third Bark O , takes its place for the fuccceding Year; and fo the reft, except that the firf, mark'd M , splits and divides itself, to supply the place of the fecond.

The following Enquiry I recommend to the Curious, viz. If the feveral Barks, having different Texture of parts, admit into each Separate and different Juices from the reft; whether thole Juices may not be of very different Virtues; the firft more Affringent than the others, the fecons perhaps Emetick; and the third Cathartick.
IV. The nice and curious Texture of the Flower in Plants, and its same rew ObFerniture, has eniploy'd the Enquiries of many Learned Men. But fince thefe Searchers into the Hiftory and Operations of Nature, feem not fo fuccefsfully to have reuch'd her Defign in this Cafe, as in many others, 1 fhall attempe to ascount for the Fabric and Uhe of thefe Parts, and to make the Propagation of Vegetables more intelligible, whereby the Ways of Nature will appear more harmonious, and of a piece.

It has been long ago obferv'd, that there is in every particular Seed a Seminal Plant, conveniently lodg'd between the two Lobes, which conftitute the Bulk of the Seed, and are defign'd for the firft Nourifhment of this tender Plant.

Dr. Grew is the only Author I can find, who has obferv'd that the Tarina (or fine Powder which is at its proper Seafon Thed out of thate Thece or Apices Seminiformes, which grow at the Top of the Stemina) duth fome Way perform the Office of Male Sperm. But herein I think the falls fhort, in that he fuppofes them only to drop upon the outfide of the Userus or Vacrium seminale, and to impregnate the included Seed by lome firituous Emanations or energetical Inpprets.

That which is now fubjected to Enquiry, is, whether it be not more proper to fuppofe, that the Seeds which come up in their proper Involucra, are at firft like unimpregnated Ova of Aninals; that this Fari\(m_{a}\) is a Congeries of Seminal Plants, one of which mult be convey'd into every Ovem before it can becorse prolifick; that the Etylus in Mr. Ray's Language, the upper part of the Pißillum in Mr. Tournefort's, is a Tube defign'd to convey thefe Seminal Plants into their Neft in the Ova; that there is fo vaft a Provifion made, becaufe of the Odds there are, whether one of fo many fhall ever find its Way into, and through fo narrow a Conveyance.

To make this Suppofition the more credible, I Thall lay down the Obfervations I have made upon the Situation of thefe Stamina and the Stylus in fome few Species of Plants.

Firft, in the Corona Imperialis, where the Uierus or Vafoulum feminale of the Plant ftands upon the Center of the Flower, and from the Top of this arileth the Stylus, the Vafculum feminale and Stylus together reprefenting a Pifillum. Round this are planted fix Stamina, upon the Einds of each of thefe are Apices, fo artfully fixt, that they turn every Way with the leaft Wind, being in Height alnoft exadly equal to the Sfllus about which they play, and which in this Plant is manifeftly open at the Top, as it is hollow all the Way. To which we mult add, that upon the Top of the Stylus there is a fort of Tuft, confifting of pinguid Vill, which I imagine to be plac'd there, to catch and detain the Farine, as it fies out of its Thece. From hence I fuppofe the Rain either wafhes it, or the Wind fhakes it down the Tube, till it reach the Vafculxom feminale.

In Capri-folium, or Howey-fuckle, there rifes a Siylus from the rudiments of a Berry, into which it is inferted to the Top of the Monoperalous Flower, from

\section*{Of the Flower in Plants.}
from the Middle of which Flower, are fent forth feveral Stamina, that fhed their Farina out of the Cafes upon the Orifice of the Stylus, which in this Plant is villous or tufted, upon the fame Account as the former,

In Alliunz or common Garlick, there arifes a Tricoccous Uterus, or SeedVeffel, in the Center of which is inferted a fhort Stylus, not reaching to high as the Apices, which thus aver-topping it, have the Opportunity of fhedding their Giobules into its Orifice more eafily. For which Reaton I can difcern no Tuft upon this (as in the former) to enlure their Entrance, that being provided for by its Situation juft under them.

I fhall now make fiuch Reafonings or Reflections as the foregoing Account doth fuggeit, and will fupport.

Nothing can be more natural than to conclude, that where a fine Rowder is curioufly prepared, carefully repofited, and flaed abroad at a peculiar Seafon, where there is a Tube fo planted, as to be lit to receive it, and fuch Care in difpoling this Tube, that where it doth not lie direetly under the Cafes that fhed the Powder, it hath a particular Apparatus at the End to enfure its Entrance: Nothing can be more genuinely deduced from any Premifes, than from this it may, that this Poseder or fome of it was defigned to enter this Tube. If thefe Stamina had been only excretory Ducts, as has been hitheres fuppofed, to feparate the grofer Parts, and leave the Juice defigned for the Nourifment of the Seed more referved, what need was there to lodge thefe Excrements in fuch curious Repofitories? They would have been conveyed any where, rather than where there was fo much Danger of their dropping into the Seed Veffel again, as they are here.

Again, the Tube over the Mouth of which they are Mied, and into which they enter, leads always directly into the Seed Vefel.

To which we muft add, that the Tube always hegins to dic, when thefe Tbece are empty'd of their Contents; if they laft any longer, it is only whilft the Globules which enter at their Orifice, may be fuppofod to have finifhed their Paffage. Now can we well expect a more convincing Proof of thefe Tubes being defigned to convey thefe Globules, than that they wither when there are not more Globules to convey?

If I could fhow that the Ora, or unimpregnated Sced, are ever to be obferved without this Seminal Plant, the Proof would arife to a DemonItration; but having not been fo happy as to difeern this, I recommend the Enquiry to thofe who are Mafters of the beft Microfcopes. Though, in the mean Time, I have made fome Steps towards a Proof of this Sort, and have met with fome fuch Hints as make me not defpair of being able to do it : For, not to infift upon this, that the Seminal Plant always lies in that Part of the Seed, which is neareft to the Infertion of this Stylus, or fome Propagation of it into the Seed Vefel; I have difcovered in Beans, and Peafe, and Phafioli, juft under one End of that we call the Eye, a manifeft Perforation difcernible by the groffer fort of Magnifying Glaffes) which leads direetly to the Seminal Plant, and at which I fuppofe the Seminal Plant did enter; and

I am apt to think, that the Beans or Peafe which do not thrive, will be found deflitute of it.

1 Shall now defcribe fome other Plants, whereby it will appear, that there is a particular Care always exercifed to convey this Powder into a Tube, which may convey it to the Ova. Now in Leguminous Plants, if we curefully take off the l'etala of the Flower, we fhall difcover the Pod or Siliqua clofely covered with an involving Membrane, which about the Iop feparates into many Stamina, each fraught with its Quantity of Farina, and thefe Stamina are clofe bound upon the Brufh, which is oblervable at the End of that Tube, which here alfo leads directly to the Pod: It Itands not upright indeed, but fo bended, as to make near a right Angle with it.

In Rofes there ftands a Columm, confifting of many \(\tau u b e s\) clofely clung together, though eafily leparable, each leading to their particular Cell, the Stamina in a great Number planted all round about. In Tibbymalu, or Spurge, there rifes a Tricoccous Veffel, that whilft it is imall and not eafily difcernible, lies at the Bottom till impregnated, but afterwards grows up, and ftand's fo high upon a tall Pedicle of its own, as would incline ane to think that there were to be no Communication betwixt this and the Apices, which he lees dying below.

In Strase-berries and Ra/p-berries, the Hairs which grew upon the ripe Fruit (which I fuppofe may be furprizing to fome) are fo many Tubes leading each to their particular Sced, and therefore we may obferve, that in the firft opening of the Flower, there ftands a Ring of Siaminz within the Petala, and the whole inward Area appears like a little Wood of thefe Hairs or Pulp, which when they have received and conveyed sheir Globules, the Seeds fwell and rife in a carneous Pulp.

I have obferved, and can deduce the Contrivance and Adminiftration of the Parts in all the Plants I have obferved, and I doube not but others may be able to pertect what I have rudely hinted; and that from this Theory many Corollaries may be derived, which will let in Light into nany Parts of Natural Philofophy. I thall at prefent only fuggett, that hence one would conclude, that the Petala of the Flower were rather defigned to fever fuperfluous Juices, from what was left to afcend in the Siamina, than the Stamina to perform this Office, cither for them, or the unimpregnated Semina; and obferve the Analogy between Inimal and Vegetable Generation, as far as was neceffary, there fhould be an Agreement between them.

Tibe Explication of the Figures.] Fig. 48. reprefents a yellow Lilly. A the Top of the Piftillum or Tube, at which the Seminal Plants are fuppofed to enter, and through which they are conveyed to the unimpregnated Seed in the Seed Veffel.
\(=b, b, b, b, b, b\), the Apices Seminiformes, which when they are ripe open, and fhed that Powder which enters the Tisbe at \(A\).
\(C\), the Place of she Seed Veffel at the Bottom of the Tube, the SeedVeffel iffelf being concealed under the Leaf in this Draught

Fig \(4^{8 .}\)

Fig. 49. D, the Siliqua in a Flower of the Pea-kind.
IF, the The which arifes from the Siliqua, and conveys the Plants to it. \(F\), the Membranous Coat that involves the Siliqua laid open.
\(g, g, g, g, g, g\), the Apices, which, before the Membranous Tegument is laid open, appear to rile from its Edges, and by the Petal of the Flower, are kept cole upon the Orifice of the Tube, chat they may conveniently the their Farina into it.
Fig. 50.
Fig. 50. A French-Eean reprclented fidwife.
Fig. 51. The fame opened.
b, The Seminal Plant.
i, A Perforation, at which, 'ti fuppofec?, the Seminal Plant firft enter'd.

Of the Quick
V. I had lately a large Melon-Fruit, which I Split lengthways throw'
of Moldinef.
EEc. in a Me. Jon, by Mir. R. Bradley,
\[
\text { n. } 349 \cdot \mathrm{p} \cdot 42 \mathrm{O} \text {. }
\] the Middle, in order to oblerve the Vefids which compoled the Membrane or Tunic of each Ovary; but not continuing the Work I had begun, I laid by one half of the Melon, to be examined when I might have more Leifure.
At the End of four Days, I found several Spots of Moldincis began to appear on the flefhy Part of the Fruit, fomewhat Green towards the Rind; and of a paler Colour towards the Middle of the Fruit. There Spots grew larger every Hour, for the Space of five Days; at which Time the whole Fruit was quite covered.

This furprizing Vegetation made me curious to examine if there was any Difference between thole Parts which were Green and the others, befides their Colour. The first being len with the Microfcope, ap-
Fig. 52. pear'd to be a Fungus, whole Cap was filled with little Seeds, to tine Number of about five Hundred; which fred themfelves in two Minutes after they had been in the Glaffes.

The other Sort had many Grafs-like Leaves, among which appeared
Dig. 53. Some Stalks with Fruit on their Top, each Plant might well enough be compared to a fort of Bull-Rufh. They had their Seed in great Guancities, which I believe were not longer than three Hours before they began to vegetate; and it was about fix Hours more, before the Plants were wholly perfected: For, about fever of the Clock one Morning, I found three Plants at forme Diftance from any others ; and about four the fame Day, I could difcern above five Hundred more growing in a Clutter with then, which 1 fuppofed were Seedling Plants of that Day. The Seed of all there were then ripe and falling.

When the whole Fruit had been thus cover'd with Mold for fix Days, this vegetable Quality began to abate, and was entirely gone in two Days more. Then was the Fruit purified, and its felly Parts now yielded no more than a finking Water, which began to have a gentle Motion on its Surface, that continued for two Days without any other
Fig. 54. Appearance. I found then feveral foal Maggots to move in it, which grew for the Space of fix Days; after which they laid themfelves up

\section*{The Husbandry of Canary Seed.}
in their Bags. Thus they remain'd for two Days more without Motion, and then came forth in the Shape of Flies. The Water at chat Time was all gone, and there remained no more of the Fruit than the Seeds, the Velfels which compofed the Tunics of the Ovaries, the outward Rind, and the Excrement of the Maggots ; all which toge- Fig. 55. ther weighed about an Ounce. So that there was loft of the firft Weight of the Fruit when it was cut, about twenty Ounces.
\({ }^{2}\) We may judge from this, and other Cales of the like Nature, how much vegetable Life is dependent on Fermentation, and animal Life on Puerefaction.
VI. To prepare I and for Canary seed, let it be broke up fome Tim of the Hur in April, and ploughed again about Midjummer, and ploughed again bandry of Lain Auguf, that by frequent Tillage the Weeds may be burnt up, and dettroyed. Plough the laft Tlime about the latter End of February, or
 the Beginning of March, if the Seaton proves dry; if not, youl had p. 9r. beft wait for a dry Seafon; for in fuch a Seafort only will the Ground be fit to receive the Seed. With a Hoe, that has a Bit about the Bignefs of an Onion-Hoc) you muft from Time to Time carefully cut up the Weeds. If they are not kept entirely under, much of the Seed will be loft for Want of ripening. In very good Land half a Bufhel of Seed will be enough to fow an Acre. It will thrive beft upon a Itiff Clay: It will grow upon any fort of Loamy Land, that is rich enough to bear Hemp. If you apprehend that the Land is not fuffciently ftrong, you will do well to allow from half a Bufhel to feven Gallons of Seed to fow an Acre with.

The Sced is ripe fooner or later, according as the Spring affords you an early or late Seafon of fowing it. In fome Summers 'tis cut in Aiu\(g u / \sqrt{6}\), but the moft ufual Time is after Wheat-Harvelt. When it is cut it muft in moft Years lie five or lix Days in fwarth, and then be turn'd, and lie till one Side is dryed and rotted as much as the other, which may be about four or five Days longer. The certain Number of Days cannot be fixed, becaufe they mult be more or lels, according as the Weather proves fair or rainy.

The Realon of its lying fo long in fwarth is, that the lower Heads of the Seed (being expoted to the Air, Wind and Sun) may the better perfect their Ripenels, and the Grals and Weeds that fprung up with the Stalks be thoroughly withered, and the Ears or Heads well and fufficiently rotted, and that the Seed upon threfhing may come out clean.

The Produce upon Land that is very good, is about fix Quarters per Acre.

If the Land be but indifferent, or if the Weeds be not kept under, then from four to five Quarters upon an Acre, is as nush as you can expect.

> Vos. IV. Part II.

\section*{Experiments on Vegetation.}

The Price of Seed is, from two Pounds to fix Pounds per Quarter; but the mot ulual Price is from forty Shillings to three Pounds.

It is diffirult to threfh. So much of the Seed as, after thrething, is beaten out (as foon as 'tis fanned) is to be run through a Wire-Sieve (fuch as is uled to feparate Cockle from Corn) and the Hulks of every fifting, that will not pals through the Sieve, are to be thrown by in a Heap to be threfhed over again.

The ordinary Price for threfhing is Five Shillings, but in fome Y'ears the Threher has Six Sillings per Quarter.

Experiments en Vegetation A. Mr. Abr. de la Pryme. n. 281 . P . 1214.
VII. Some have made Experiments of the Meliorating, Fertilizing, and Multiplying of Grain, by fteeping them in divers Liquors. Dirby fomewhere mentions, a Plant of Barley all rifing from one Corn, that by Stecping and Watering with Salt Petre diffolved in Water, brought torth 249 Stalks, and above 18000 Grains. And the laft Edition of Cambden mentions a Thing very obfervabie, that the Corn fown in a Field in Cormoall, after a great Battle in the Civil War Time, brought forth four or five Ears on every Stalk. I have try'd jome fuch like Experiments on feveral Grains, and though the Encreate was not fuch as I expected, I communicate them to you.

On the \(22 d\) of Marcb, 1699, I laid to fteep a Pea, a Barley-Corn, and a Wheat-Corn in Brimftone-Water.

A Pea, a Wheat, a Barley, and an Oat-Corn, in Allum-Water, and the fame in an old Diffolution of Salt of Tartar, in the Caput Mortuums of Sal Armoniar diffolved in Urine, in a Diffolution of the Salt of Walls, in a Diffolution of Salt-Petre, in a Diffolution of Noftoc or Star-Gelly, and in Urine.

I feeped them thus five Days and five Nights, and fet them in a Garden in a good Soil, againit a North Wall full in the Sun, on the zytb of the fame Month after a rainy Night, with a Pea, a Wheat, a Barley, and an Oat Corn unitecp"i.

Upon the 10 th of April following, I found that fome were juft come up, tome not.

The Pea, the Barley, and the Wheat Pteeped in Brimftone-Wates came all up together.

The Pea fteeped in Allum-Water was very big and fwelled, but not fo much as fprouted, but the Barley, Wheat, and Oat above Ground.

The Pea fteeped in the old Solution of Sale of Tartar, was half come up, the Wheat fcarce fprouted, but the Barley and Oat quite up.

The Pea, the Wheat, the Barley, and the Oat fteep'd in the Caput Mortuum of Sal Armomiac difulv'd in Urine were all up together; as were alfo the next Row, that were fteep'd in the Solution of Salt of Walls.

The Pea and Wheat fteep'd in the Diffolution of Salt-Petre were about half up, but the Barley and Oat quite up.

Thofe wheh were fteep'd in Noffor, were none of them come up, nor farce fprouted.
-The Barley and Oat fteep'd in Urine, were come up, but the Pea and Wheat fearce fprouted.
\({ }^{1}\) And, to my Surprize, the Yea, Wheat, Barley, and Oat, that were not at all fteep'd, were all of them as foon up as any of the former, except only the Wheat, which was about half up.
I fet them all about a Finger deep in the Ground, and there was all the Time of their Growth very fine Weather.

From all which I fuppofe, that Allum-Water is againt the Nature of Peas, and retards their Growth, but agrees well enough with Wheat, Barley, and Oats.

That the Solution of Salt of Tartar is not friendly to the Nature ci ther of Pcas or Wheat, but agreeable to the Nature of Oats and Barley.

That the Water of Salt-Petre had not any of the great Power or Virtue that Ifufpected, E?c.

And that thele Steepings did not further any of the faid Grains is their Growth and Coming, but plainly retarded fome or molt of thern.

Then I digg'd all of them up, but three Spires of Barley, which I let fland about a Foot and a half, or two Feet, from one another; which grew and increafed fo exceedingly, that they had fixty, fixty-five, and fixty-feven Stalks a-piece, from their fingle Grain and Root, with every one an Ear on, and about forty or fomewhat more Corns a-piece in them; which Increafe proceeded not fo much perhaps from the Grain having been fteep'd in any Liquors, as from the Fertility and Gondnefs of the Soil, and their competent Diftance one from another. I oblerved that new Slioors contintally ftruck up from the Root; and that as in the Eaft and Wef-Indies, there are Trees that always bear Bloffons? and Flowers, green and ripe Fruit at the fame Time, fo that here, if the invigorating Heat of the Sun had not been cool'd and weaken'd by the Approach of the Winter-Seafon, there would have been continusily new, ripe Corn, and empty Ears, on the fame Root.
VIII. At Sution-Collffeld in Wrarwickfire, a peaty Ground near a Pool of the Great (of which it was formerly a Part) was fown with Turnip-Seed on the \(2 d^{\text {and Speds ve- }}\) Day of Firly 1702. In lefs than three Days Time the Turnips were feen above Ground. At three Weeks End the Koots were in Bignefs equal to Walnuts. Within lefs than five Weeks after the Sowing, the Drienta bs Gardener drew great Quantities of Turnips to lell, they then being as big as large Apples. At the End of fix Weeks, vitx. on the 1216 Day of AK\(g\) aft, a large Turnip was plucked up (though probably not to big as ieveral ortiers then growing upon the fame Ground) which, together with its Top and long defeending Part of the Root, weighed above two Pounds and fourteen Ounces. At the fame Time alfo was weighed an Ounce of the fame Sort of Turnip-Seed, thaz the Gardener had lown his Ground with; and afterwards a thoufand of the Grains were

\section*{The Culture of Tobacco in Ceylan.}
counted fingly out of the Ounce fo weighed; and the reft of the Ounce was divided into Heaps, as near as could be gueffed, equal to the 1000 Seeds firt fevered and laid together: And it was found, that the whole Ounce contained above 14600 fingle Grains; which number multiphied by 46 (viz. the Number of Ounces that the Turnip weighed) produced 671600 , viz. the Number of fingle Grains of Seed required to equal the Weight of the Turnip. From whence may be gathered, that (upon Suppofition that the Increate of the Turnip was all along uniform and equal, from the Time it was fown, till it was pluck'd up) the Grain of seed which it fprung from, weighing when it was fown but triss of an Ounce, was increas'd in Weight according to the following Proportions, ciz.

Some Days after another Ounce of the fame Sort of Seed was exactly weighed, and the Grains were found to be in Number 14673.

Another Turnip of the lame Crop was pluck'd up on the 2 if of Oetober, and was found to weigh above 10 Pounds and a half, which unufual and wonderful Bulk it acquir'd (it being fuppofed as above that the Growth was all alike) by increafing the Weight of the seed it was raifed from, 15 Times in every Minute of an Hour, from the fowing to the drawing of it.

The Gardener neglected to thin his Turnips in cue Time, clie probably their Growth had been more confiderable.

At another Time, in two other Sorts of Turnip-Seed, it was found by counting, that an Ounce of one Sort contained 14702 Grains; and an Ounce of the other Sort no fewer than 14905 Grains.

It is credibly reported, that of late Years Turnips have been pretty frequently found growing in feveral Counties of this kingdom, that have weighed above twice as much; one of which was feen at Birning. bam about the Year 1710.

\footnotetext{
of tbe Culture IX. There are two Sorts of Tobacco, both which, they call Durkol, of Tobacco in the Signification is a Smoaking-Leaf; for Dun is Snoak, Kol a L. eaf, the Ceylan, by Mr. Strachan. n. 279. p. 1164. one they call Hingele Dunkol, or Singele Dunkol, for they make no Diftinction of \(H\) and \(S\); the other is called Dunkol Kapada, which Word Kapada fignifies gelding, and is derived from the Portuguefe; which Tobacco is very intoxicating, and much ftronger than the tormer; it is the fame Plant, the Difference is only that Singelefe Tobacco has little atcendance,
}
tendance, upon the other a great deal of Pains is taken, until it be fir for Ufe; and it is done after the following Manner:

They clear a little piece of Ground, in which they fow the Seed of robacco, as the Gardeners here fow Panley and Coleworts; againtt the Time that this is ready for tranfplanting, they choole a piece of Ground, which they hedge ahout; when the Buffalo's begin to chew the Cud, they are put within this Hedge-Ground, and let ftand until they have done, and this they contiaue Day and Night, until the Ground be fufficiently dunged; then the Ground is tilled with a Spade, in Form of a Pick-ax, fuch as Carpenters ufe when they fimooth Planks, by hoeing the Ground, and curning the fame, and mixing the Dung among the Earth; when they have made the Ground fnooth, they remove the Plants out of the Bed, wherein they were fown, and fet them in this Ground, about a Foot Diftance one from another, and then they grow up almoft like a Dock; when the Stem has got 15 Leaves, they cut off all the Tops of the Plants; if they defire not to have the Tobacco to be very ftrong, they let it grow until it have 18 or 20 ; if they will have ir Itronger, they top it when it has got 10 or 12 Leaves, not counting the 3 or 4 loweft Leaves, which are nearelt the Ground, becaufe they never grow fo big and good, as thole above them. Thus the Moifture of the Ground being hinder'd from watting in more Leaves, Flowers and Seed, all the faid Moifture enters into the Leaves remaining, fo that thefe Leaves will be 4 or 5 Times larger, fuller of Fatnefs, Strength and Virtue, than the Tobacco which is not ordered after this Manner. Now the Moifture afcending from the Root, being conftrained within the Bounds of thefe Leaves, forces its Way betwixt the Stem and Leaves remaining, and fends forth young Sprouts, and would grow forth in Branches, if no Care were taken to hinder. Therefore every 3 or 4 Days they go through all the Stems, and break off thefe Buds whenever they fpring forth, and this they continue, until thefe Leaves be ripe (which takes as much Time as the Singele Tobacco does, which gets Flowers and ripe Seed, and then begins to wither and fpoil, if no Uie be made of it) which is known by the Thicknefs and Firmnefs.

Then before the Leaf begins to wither, and is green, they cut down the Stem together with the Leaves, and do bring them into their Houfes, and lay them in a Heap; and thus the Leaves will begin to ferment, turn hot, and fweat, then when the Leaves begin to fiveat, they turn the innermoft ourmoft, that they may calily ferment; otherwife the inner. mof would ferment too much, fpoil, and rot: Thus the longer they lie in a Heap together, the Tobacco turns the more dark of Colutr. When they think it has fweat enough, they hang it afunder upon Cords, till the Leaves be dry, then they leparate the Leaves from the Staliks, and lay them up in Bundles together, until they have Ufe for then.

Now the other Tobacco, called Singele Dunkol, is only fown, and then planted, and has Liberty to grow, to fhoot out, Hower, and feed; thus all ripen together: Then it is cut dows and caft together in a Heap;

\section*{Of the Plant Gin-feng or Nin-zin.}
fome will ferment too much, and rot, others will ferment not at all, and \({ }^{31}\) will remain green, although it be dry, and will have a fmell of Hay or dry Grafs. The Soldiers, who delight to fmoak a big Pipe full, and that frequently in one Day, do fmoak this common fort, fome will mix fome of the Kapada among it ; the Cingualefer, who finoak not fo much at once, neither to frequently, do take a piece of the Kapada, and roll it together, then roll a piece of dry I.eaf of the Witb"ekn Irees about this, and kindle it at one End, and fuck at the other, until it be confumed. Some do chow it among Betle, taking but very little at once.

Oratarta nan Plant callec' Gin-
leug, Erc. by Fathor Jartous, tokern from the Tandb Vol.of Letters of the Miffionary Junits. n. 337 p. 297.
X. The Map of Tartary, which we made by Order of the Emperor of Chima, gave us an Opportmaty of fecing the famous IPlant Gin-feng or Nin-zim, fo much efteem'd in China, and fo little known in Europe. Towards the End of July syo9, we arrived at a Village, not above four fimall Leagues dittane from the Kingdom of Corea, which is inhabited by thofe Terturs called Calca tatz?. One of theté Tariars went and found upon the neighbouring Mountains four Plants of the Ginferig, which he brought us entire in a Bafket. I took one of them, and defigned it, as well as I could.

The molt eminent Phyficians in Cbias have writ whole Volumes up)on the Virtues and Qualities of this Plant, and make it an Ingredicat in almoft all Remedies which they give to their chief Nobility; for it is of too high a Price for the common People. They affirm, that is a iovereign Remedy for all Weakneffes occafion'd by exeetive Fatigues either of Body or Mind ; that it diffolves pituitous Humburs ; that it cures Weaknels of the Lungs, and the Picurify; that it ftops Vomitings; that it frengthens the Stomach, and helps the Apperite; that it difperfes Fumes or Vapours; that it fortifies the Breaft, and is a Remedy for Mort and weak Breathing ; that it ftrengethens the Vital Spirits, and increafes Lymph in the Blood: In thort, that it is good againit Dizzinefs of the Head, and Dimnels of Sight, and that it prolongs Life in old Age.

No Body can imagine that the Chinefe and Tartars would fet fo high a Value upon this Root, if it did not conftantly produce a good Effect. Thofe that are in Health often make ufe of it to render thenlelves more vigorous and ftrong: And I am perfuaded, that it would prove an excellent Medicine in the Hands of any European who underitands Pharmacy, if he had but a fufficient Quantity of it, to make fuch Trials as are neceffary, to examine the Nature of it chymically, and to apply it in a proper Quantity, according to the Nature of the Difeale for which it may be beneficial.

It is certain, that it fubtilizes, increafes the Motion of, and warms the Blood; that it helps Digeftion, and invigorates in a very fenfible manner. After I had defigned the Root, I obierved the State of my Pulfe, and then took half of the Root, raw as it was, and unprepar'd: In an Hour after, I found my Pulfe much fuller and quicker; I had in Appe-
cite, and found my felf much more vigorous, and could bear Labour much better and eafier than before.

But I did not rely on this Trial alone, imagining that this Alteration might proceed from the Reft that we had that Day: But four Days after, finding nyy felf fo fatigued and weary that I could fearce fit on Horfeback, a Mundarim, who was in Company with us, perceiving it, gave me one of thefe Ruots: I took half of it immediately, and an Hour after I was not the leaft fenfible of any Wearinefs. I have often made Ufe of it funce, and always with the fame Succefs. I have obferved alfo, that the green Leaves, and efpecially the fibrous Part of tisem chewed, would produce nearly the fame liffect.

The Tartars often bring us the Leaves of Gin-feng inftead of Tea; and I always find iny felf to well atcerwards, that I thould readily prefor them before the bett Tca. Their Decoction is of a grateful Colour; and when one has taken it twice or thrice, its Tafte and Smell become very pleatant.

As for the Root of this Plant, it is neceffary to boil it a littie more than Tea, to allow Time for extracing its Virtue; as is practifed by the Cbinefe, when they give it to fick Perlons, on which Occalion they feldom ufe more chan the fifth Part of an Ounce of the dry'd Root. But as for thofe that are in Health, and take it only for Prevention, or fome night Indifpofition, I would advife them not to make lefs than ten Dofes of an Ounce, and not to take of it every Day. It is prepared in this Manner: The Root is to be cut into thin Slices, and put into an Earthen Pot well glazed, and filled with about a Quarter of a Pint of Water Paris Mealure: The Por muft be well covered, and fet to boil over a gentle Fire; and when the Water is confumed to the Quantity of a Cupful, a little Sugar is to be mix'd with it, and it is to be drank immediately. After this, as much more Water is to be put into the Pot upon the Remainder, and to be boiled as before, to extract all the Juice and what remains of the fipituous Part of the Root. Thefe two Dofes are to be taken, one in the Morning, and the other at Night.

The Places where this Root grows are berween the thirty-ninth and forty-feventh Degree of Northern Latitude, and between the tenth and - ewentieth Degree of Eaftern I.ongitude, reckoning from the Meridian of Pekin. There is there a long Tratt of Mountains, which the thick Forefts, that cover and encompafs then, render almont unpaflable. It is upon the Declivities of thele Mountains and in thefe thick Forefls, upon the Banks of 'Torrents or abour the Reots of Trees, and amidft a Thoufand other different forts of Plants, that the Gin-fing is to be found. It is not to be met with in Plains, Vallies, Marfhes, the Bottoms of Rivulets, or in Places too much expoled and open. If che Foreft take Fire and be confumed, this Plant does not appear till two or three Years after: It alfo lies hid from the Sun as much as poffible s which thews that Heat is an Enemy to it. All which makes me believe, tiat if it is to we found in any other Countey in the World, it miy be

\section*{Of the Plant Gin-feng or Nin-zin.}
particularly in Conada, where the Forefl and Mountains, according to the relation of thofe that have lived there, very much refemble the fe. :

The Places where the Gin-feng grows, are on every Side feparated from the Provinces of euan-tong (which in our old Maps is called Lecotrm: by a Barrier of wooden Stakes, which incompaffes this whole Provilice, and about which Guards continually patroll, to hinder the Chinefe from going out and looking after this Root. Yet how vigilant fiever they are, their Greedinef's after Gain incites the Cbinefe to lurk about privately in theie Deferts, lometimes to the Number of two or three Thouland, at the Hazard of lofing their Liberty, and all the Fruit of their Labour, if they are taken either as they go out of, or come inte, the Province.

The Emperor having a mind that the Tarsars fhould have the Advantage that is to be made of this Plant, rather than the Chinefe, grave Orders this prefent Year 1709 to ten Thoufand Tartars, to go and gather all that they could of the Gin-feng, upon Condition that each Perfon flould give his Majefty two Ounces of the belt, and that the relt fhould be paid for according to its Weight in fine Silver. It was computed, that by this Means the Emperor would get this Year about twenty Thouland Chinefe Pounds by it, which would not coft him above one fourth Part of its Value. We met by Chance with fome of thefe Tartars in the midft of thofe frightful Deferts: And their Mandarins, who were not far diftant out of our Way, came one after another, and offer'd us Oxen for our Subfiftence, according to the Commands they had received from the Emperor.

This Army of Herbarifts obferved the following Order. After they had divided a certain Tract of Land among their ieveral Companies, each Company, to the Number of an Hundred, fpreads itfelf out in a ftraight Line to a certain fix'd Place, every Ten of them keeping at a Diftance from the rett. Then they fearched carefully for the Plant, going on leifurely in the fame Order; and in this Manner, in a certain Number of Days, they run over the whole Space of Ground appointed them. When the Time is expir'd, the Mandarins, who are cincamp'd with their Tents in fuch Places as are proper for the Subfittence of their Hories, fend to view each Troop, to give them frelh Orders, and to \({ }^{\text {* }}\) inform themfelves if their Number is compleat. If any one of them is wanting, as it often happens, either by wandering out of the Way, or being devoured by wild Beafts, they look for him a Day or two, and then return again to their Labour as before.

The poor People fuffer a great deal in this Expedition. They carry with them neither Tents nor Beds, every one being fufficiently loaded with his Provifion, which is only Millet parched in an Oven, upon which he muft fubfint all the Time of his Journey; fo that they are conftrain'd to fleep under Trees, having only their Branches and Barks, if they can find them, for their Covering. Their Mandarins fend them from time to time fome Pieces of Beef, or fuch Game as they happen

\section*{Of the Plant Gin-feng or Nin-zin.}
to take, which they eat very greedily and almoft raw. In cinis manner thefe ten thoufand Men paffed fix Months of the Year; yet notwithftanding their Fatigues, continued lufty, and feemed to be good Soldiers. The Tartars, which were our Guard, did not fare better, having only what remained of an Ox, that was killed every Day, and had firft ferved fifty Perfons for their Subfiftence.

A, fhows the Root of the Plant; which, when wan'd, was white and Fig. 56. a little rugged and uneven, as the Roots of other Flants generally are.
\(B, C, D\), reprefent the Length and Thicknefs of the Stalk; which is fmooth and pretty round, of a deepifh red Colour, except near its Beginning at \(B\), where it is whiter, by Reafon of its Nearnefs to the Ground.
\(D\), is a fort of Knot or Joynt, made by the Thonting out of four Branches, which all rife from the fame Center, and divide from another at equal Diftances, and at the fame Height from the Ground. The: underfide of the Branch is green, mix'd with white; the upper Part is much like the Stalk, of a deep red, inclining to the Colour of a Mulberry. Thefe two Colours gradually decreafe and unite together on the fides in a natural Mixture. Each Branch has five Leaves. It is remarkable, that thefe Branches feparate from each other at equal DiEances, as well in Refpect of themfelves, as of the Horizon, and make with their Leaves a circular Figure, nearly parallel to the Surface of the Ground.

Tho' I have finifh'd the Defign but of half of one of the Icaves at \(F\), yct any one may eafily conceive and perfect the reft in the fame Manner. I do not know that ever I faw Leaves, fo large as thefe, that were fo thin and fine: Their Fibres are very diftinguifhable; and on the upper fide they have fome fmall whitif Hairs. The Skin between the Fibres rifes a little in the middle above the Level of the Fibres. The Coluur of the L.eaf is a dark green above, and a fhining whitifn green underneath. All the Leaves are ferrated, or very finely inclented on the Edges.

From \(D\), the Center of the Branches, there rifes a fecond Stalk \(D\) \(E\), which is very ftraight and finooth, and whitifh from Buttom to Top, tearing a Bunch of round Fruit of a beautiful red Colour. This Bunch was compofed of twenty-four Berries, two of which are here drawn, marked 9, 9. The red Skin that covers the Berry, is very thin and fmooth: It contains within it a white foftifh Pulp. As thefe Berries were double (for they are fometimes found fingle) each of them hat two rough Stones, feparated from one another, of the Size and Figure of our common Lentils, excepting that the Stones have not a thin Edge like L.entils, but are almoft every where of an equal Thicknefs. Each Berry was fupported by a fmooth, even, and very fine Sprig, of the Colour of thofe of our fmall red Cherries. All thefe Sprigs rofe from the fame, Center, and fpreading exactly like the Rays of a Sphere, they make

Vol. IV. Part II. is not good to eat. The Stone is like the Stones of other cummon Fruit ; it is hard, and inclofes a Kernel It is always placed upon the fame Plan or Level with the Sprig that bears the Berry. From whence it is, that the Berry is not round, but a little flat on each fide. If it be couble, there is a kind of Depreflion or hollow Place in the middle, where the two Parts unite. It has alfo a fmall Beard at Top, diametrically oppofite to the Sprig on which it hangs. When the Berry is dry, there remains only a ihrivel'd skin that fticks clofe to the Stones, and is then of a dark red, or aimoft black Colour.

This Plant dies away, and fprings again every Ycar. The Number of its Years may be known by the Number of Stalks it has fhot forth, of which there always remains fome Mark; as may be feen in the \(1 \cdot \%\) gure by the Letters \(b, b, b, \& c\). From whence it appears, that the Root \(A\) was feven Years old, and that the Root Fig. 57. was fifteen.

As to the Flower, not having feen it, I can give no Defeription of it. Some fay that it is white and very fmall: Others have affured me, that this Plant has none, and that no Body ever faw it. I rather believe that it is fo imail, and fo little remarkable, that they never took notice of it: And what confirms me in this Opinion, is, that thole that look for the Gin-feng, having Regard to, and minding only the Root, commonly neglect and throw away all the relt of the Plant, as of no Ufe.

There are fome Plants, which befide the Bunch of Berries I have deferibed, have alfo one or two Berries like the former, plac'd an Inch or an Inch and a half below the Bunch. And when this happens, they lay, if any one takes Nutice of the Point of the Compafs that thele Berries diredt to, he can't fail of finding the Plant at fome Places diftant that way, or thereabouts. The Colour of the Berries, when the Plant has any, diftinguithes it irom all others, and makes it remarkable at firtt Sight: But it fometimes happens that it vears none, tho the Root be very old; as that reprefented Fig. 57. had no Fruit, tho' it was in its fifteenth Year.

They having fowed the Seed in vain, without its producing any Plant, might probably give Occafion to this Story, which is current among the Tartars. They fay that a Bird eats it as foon as it is in the Farth, and not being able to digeft it, it is putrified in its Stomach, and atterwards fprings up in the dlace, where it is lefe by the Bird with its Dung. I rather believe that the Stone remains a long Time in rhe Ground, before it Thoots out any Root. And this Opinion of mine feems the more probable, becaufe there are found fome Roots, which are not longrer, and not fo big as ones little Finger, tho' they have fhot forth fucceflively, at leaft ten Stalks in as many different Years.

Tho' the Plant I have here deferibed had four Pranches, yet there are fome that have but two, others but three, and fome that have five or feven; which laft are the molt beautiful: Yet :very lruinch has always
five Leaves, as well as this here figur'd, unlefs the Number has been diminif'd by any Accident. The Height of the Plants is proportionable to their Bignefs and the Number of their Branches. Tirofe that bear no Fruit, are commonly fmall and very low.

The Root, the larger and more uniform it is, and the fewer fmall Strings or Fibres it has, is always the better; on which Account, that marked Fig. 57 . is preferable to the other. I know not for what reafon the Chinefe call it Gin feng, which fignifies the Reprefertation or Form of Man: Neither I my felf, nor others who have fearched and inquired into it on purpofe, could ever find it had any Refemblance to the Signification of its Name; though among other Roots there may now anci then be found fome which by accident have very odd Figures. The Tarlars with more Reafon call it Orbota, which fignifics the cbief of Planes.
it is not true, that this Plant grows in Cbinc, as Father Marsini affirms from the Authority of fome Cbinefe Books, which make it to grow on the Mountains of Yong-pinfor in the Province of Peking. They might eafily be led into this Miftake, becaufe that is the Place where it firft arrives when it is brought from Tarlary into China.

Thofe that gather this Plant, preferve only the Root, and bury together in fome certain Place in the Earth, all that they can get of it, in ten or fifteen Days Time. They take Care to wafh it well, and cleanie it with a Brußh from all extraneous Matter; then they dip it into fcalding Water, and prepare it in the Fume of a furt of yellow Millet, which communicates to it part of its Colour. The Millet is put into a Veffel with a little Water, and boils over a gentle Fire; the Roots are laid upon friall traniverfe pieces of Wood over the Veffel, and are thus preparct, being covered with a Linnen-cloth or forne other Veffel placed over then. They may alro be dry'd in the Sun, or by the Fire; but then, though they retain their Virtue well enough, yet they have not that yellow Colour which the Chinefe fo much admire. When the Roots are dry'd, they muft be kept clafe in fome very dry Place; otherwife they are in Danger of corrupting, or being caten by Worms.
[Tbis Plant (Gin-feng) grows 10 sbe Height of abous 18 Inibes.]
XI. Araliafrum is a Gerus of Plants, whofe Flower A* is complete \(t\), regular, polypetalous, and hermaphrodite, ftanding on the Ovary B. The Ovary, which is crown'd by a Calyx cut into feveral Parts, becomes a Berry D, in which are, for the moft part, two Hat Seeds, like a Semicircle, which both together reprefent a fort of a Heart. Add to this, the Stalk, which is fingle, ending in an Umbel, of which each Ray bears but one Flower. Above the Middle of the Stalk come out feveral Pedicles, (as on that of the Anemone) on the Extremities of which grow fe- 354 . P. ;o5. veral Leaves like Rays, or like an open Hanc.
- Vid. a RALIA Inf. rei kerb. Tab. 154.
+ Complete, that is 10 Say, that bas a Calyx.

The Species of this Genus are, [r. Araliafrum Quinquefolii Solio, majus, Nin-zin vocatum D. Sarrazin. Gin-fong. Des lettres edifiantes \& curieufes, Tom. X. pag. 172.
2. Araliaffrusn 2uinquefolii folio, minus. D. Sarrazin. Plansula Marilandica, foliis in fummo caule sernis, quorum unumquodque quinquefariam dividitur, circa margines ferratis. N. 36. Raii Hift. III. 658.
3. Araliaftrum Fragraric folio, minus. D. Vaillant. Nafurtium Marianums Anemones Jiluaticre foliis, enneaptyllon, floribus exiguis. Pluk. Mantiff. 135. Tab. 435. Fig. 7.

To thew wherein Araliaftrum differs from Aralia, (from whence it takes its Name) 'tis convenient to give allo the Character of this laft Genus, fuch as Mr. Vaillant eftablifh'd it, in his Demonftrations of the Year 1717.

Aralia * is altogether like the Araliaffrum, as to the Structure and Si tuation of its Flower, but its Berry confits of five Seeds plac'd round an Axis. Moreover its Leaves are branched, almot like thofe of \(A n\) gelica; and its Stalks (which in fome Species are naked, and in others have Leaves fet alternately) bear each icveral Uimbels at their Top, in the Form of a Bunch of Grapes.

The Species of Aralia are, 11. Aralia caule aphyllo, radice repense. D. Sarrazin Cbriftopboriana Virginiana Zarze radicibus furculafis \(\mathbb{O}^{3}\) fungofis, sarfaparilla noftratibus dicl. Pluk. Almag. 98. Tab. 238. Fig. 5. Zarfaparilla Virginienfibus noftratibus dida, lobatis umbellifere foliis, Americena. Ejufd. Almag. 396.
2. Aralia caule foliofo levi, D. Sarrazin. Aralia Canadenfs. Intt. rei Herb. 300.
3. Aralia caule foliofo Es bipido, D. Sarrazin.
4. Aralia arborefcens spinofa, D. Vaillant. Angelica arborefiens, spinofa, feu Arbur Indica, Fraxini folio, cortice spinofo, Raii Hitt. II. 1798. CbriAopboriana arbor aculeata Virginienfis, Pluk. Almag. 98. Tab. 20.

All the Sp.cies of thefe two Genera, except the laft of each of them, are common in Canada. The Inhabitants of that Colony, and thofe of Virginia, call the firf Species of Aralia by the Name of Sarfaparilla, becaufe its Roots have almoft the fame Figure and Virtues.

Mr. Sarrazin writes, that he had a Patient who had neen cured of an Ancfarca, about two Years before, by the U'fe of a Drink made of thefe Roots; and affures us, that the Roots of the fecond Species, well boil'd and apply'd by way of Cataplafin, are very excellent for the curing of old Ulcers; as alfo the Decoction of them, with which they bathe and fyringe the Wounds. He does not at all doubt, but the Virtues of the third species (which I thall brietly defcribe) are the fame with thofe of the fecond.

Its Roots creep, and fend forth Stalks, which rife commoniy to the Height of a Foot and half, and fometimes to two Feet; the buttom part of them is rough, with reddifh, ftiff, and prickling Hairs. Thefe Stalks are fet from the Bottom to almoft the Top (which are divided fucceffively into feveral naked Branches charg'd with Umbels) with branch'd alternate Leaves, almoft like thofe of Podagraria birfula Angelice folio © odore D. Vaillant; which Plant is grav'd in the fecond Tome of Boccone's Mufeum, by the Name of Cerefolium rugofo Angelice folio, Aromaticum, Tab. 19. and in Rivini by that of Myrrbis folio Podagraric.
XII. Monfieur Marcband acquainted the Affembly of the Academy of Sciences in France, with the Difcovery of a new Simple. The firft that brought it into Reputation, was a Portugueze Surgeon, who having lived many Years in Brazil, difcovered the Virtues of this Plant; after returning into Portugal with a Defign to raife a great Trade with it, he fent feveral Specimens of it every where. He called the Plant Iquetaia, and ateributed to it no lefs Virtues than the Cure of Apoplexies, Plesrifres, and Intermitting Fevers. He added one Thing, which though more particular, yet feemed more probable, which was, that the Leaves infus'd with Senna, took from it its difagreeable Tafte and Smell, without altering any Thing of its Purgasive Quality. The Samples that he lent, were not in fufficient Quantity to make Experiment on the Diftempers, he faid it was proper for; but there was enough to try, whether they had the Virtue to correct the Tatte and Smell ot Sinn. Therefore ther: was infus'd two Dracbins of it, with as much Senna in a Cbopine of Water, and the Experiment confirm'd the Matter of Faet: Being deft rous to know what Species of Plant it was, and it being impoffibie to difeover it by the Leaves, which the Portugueje Surgeon had taken io much Care to cut very Imall, Monfieur Homberg, who had fome of is fent him, perceived fome iceds fwimming on the Water, in which they were infus'd; and taking up as many as he could of there Seeds, gave them to Monfieur Marchand, who fowed them ; from whence grew up a Plant, which we need not go to Brazil to feek, it grows in Europe; nor need we go out of France to find it; nay, we may have it all round Paris; 'tis the Scropbularia aquatica. To be the more certain of it, there was fome of our Scropbularia fowed on a Bed, and fome of the other Seed on another, and there was obferved but fome fmall Differences, which may be well attributed to the different Culture and Soil. There was likewife try'd the Virtue of our Scropbularia, and it was found to have the fame Fffect, in taking away the Tafte and Smell of Senna. Monfieur Marcband concluded from this Dilcovery, that it was more fit to labour to know the Remedics that are in our own Land, than to run over all the Earth in queft of that, with much Labour and Charge, which we may have for nothing at Home, if we took the Pains to fearch: And added, that a knowing Botanift (meaning his Father) after many long

\section*{Of the Attmella, for \(c\).}

Travels arowed, that there might be found in all Countries Remedies for all Difeales, and that having apply'd himfelf to this Matter, he had difcovered a good Number of Simples commonly to be found, that had great Virtues, of which he had graved the Plants. He named among others, the Achillea Montana Penee, which fmoaked in a Pipe as Tobacce, confiderably eales an AfBbin.?

Of ibe Attmelia amd its Litiantriptic litiste, by Dr.
\(P\) Honton. n .
LtS. p 790.
XIII. Atmella, Acemeila, and Hacmell., for the Seeds are fo named which were fent to me in the Year 16 gr from the Ifand Ceylon, where this Plant grows and is very well known.

The Plant itfelf, which I reared in the Year :592, bears Flowers on the Tops of the Stalks, compofed of feveral imaller tubulous Flowers collected together, and forming a kind of Head, fupported by a fixleaved or many-leaved Calix, very much refembling the wing-ftalked Curaffa Marigol, with the Orange Flower (of which there is a Figure in Pliknet's Phytog. in Herman's Par. Batavo, in the Horto Monlipel. Magnol. and the Flora Noribergenfi of Volkamer) but fomewhat yellow. After the Flowers are fhaken, the Seeds follow, which are of a greyifh brown Colour, long, Hat, with a double Eeard at Tup, to which the Flowers were contiguous. It grows up in fquare Stalks covered with conjoined Leaves, longer and more prickly than thofe of the Nettle or Dead-nettle; whence it is conjectured that this Plant is ctoubtlefs of the Thiftle or Artichoke Tribe, and of the fame Species with that called Biatins by Cafulpinus, and after him by Tournefor:, from its forked Seed. Wherefore fince this Plant hitherto has no Name, I think froms the Nature of the Plant the following may be given it.

Bidens Uriica folio Lithontriptica Zeylanica, or the Lithontriptic Nettle-leav'd Bidens of Zeylan. For amongft all the Medicines which have been ufed for diffolving the Calculus, this Plant of late Years is become the moft celebrated, both amonglt our Countrymen living in that Ifland, and very lately it is likewife become very famous amongft ourfelves.

A Soldier, who in the Year 1690 firft gave an Account of this Herb to our Eaft-India Company, declared that he had cured upwards of a hundred Perfons of the Stone and Nephritick Complaints. And the Governor and chief Council of the Dutcb in the Inand of Cylon, teftify in Letters wrote that fame Year, its Succefs on two Perfons who were troubled with the Stone; for they fay that thefe Perfons voided a great deal of Sand, and broken Pieces of Stone, almoft without any Pain.

Colombo, chief Surgeon to the Horpital in the above Inand, in Letters which he wrote to me in the Year 1699, in order to confirm the Truth of the above, fays, that he is pofitive there is no Medicine that has hitherto been found more effectual againft the Stone and Nephritick Diforders; and he farther adds, that with very great Pains he had found out three Species of it. The firft of thefe is covered with light green Leaves, and its Seed is of a dirty yellow Colour. The fecond has

\section*{UחED}
\(\square\)

Leaves of a deep green Caft, and its Seed is of the fame Colour with the other. The Seed of the third is black, and the Leaves are a great deal larger than thofe of the other two, which he fays are the beft. He adds, that this Plant is extremely fertile, each prociucing upwards of ten thotifand Seeds.

They make ufe both of the Leaves of this Plant and the Seeds, which Colombo praifes above all the reft of the Plant; as alfo of the Root, Stalks and Branches.

The Leaves being gathered before the Flowers puth out, dried in the Shade, and reduced to a Powder, are given in a proper Vehicle, or infufed in hot Water, and drank in the fame manner as Tea. They are likewife infufed in Spirit of Wine, and a Spirit is diftilled from the Root, Stalks and Branches.

Another Governor of the Hofpital at Ceylon afferts, that he had ufed the Fiowers, Roots, Extract and Salt with good Succefs in the Pleurijy, Colick and Fevers.

Mr. Colombo in his Letters commends likewife for their Lithontriptic Acolber Plant: Quality, the Bark of the Roots. and the Roots themfelves, of a certain Herb, called by the People of Colon, Mangul Caranda Potit!; but what Kind of Herb this is, 1 know not.
XIV. Feru Bark comes from a Tree of about the Bignefs of a Plumb Tree, with Leaves like Ivy, but not quite fo big, and are always green. The Indians call it Averango. It is gather'd in Auturn, and the Rind taken off all round, as well from the Trunk as Boughs, which grows again in four Months, as Curk does: The Trunk is about the Bignefs of a Man's Tbigh; it bears a Fruit not unlike a © befnut, (except in its out Rind or Shell) which is properly called Cbina Cbina, and is eneen' dby the Natives beyond the Bark taken from the Trunk or Boughs. This Account I received from an ingenious Apothecary at Cadiz in Spaiz, A.D. 1694, who had liv'd in Pere, and had feen it growing, and gather' d it feveral Times. From this Hiffory I made this Obfervation, that probably Cbina Cbina, or the Rind of the Fruit, was firft only in Ufe, and the more powerful Medicine uled in fmaller Quantities, and that the Bark of the Tree came not into Ufe, till fome Time after; when the Virtues of it known in Eurcpe, occafioned a greater Demand for it.
XV. Of the W'alnut-Tree Authors feem to have known but fix Spe-A new Kird cies, tho' I can reckon nine. They confounded (unlefs I am deceived) of Walnutwith the common fort, that which the Country People call Noix Amgleu- Tree, \&8c. by fes, which one may call Nu: Juglans putanine duriflimo, which appears me. n. 273. to me to be that which in Hermolaus, and in the Hiftoria Lugdunenjes is p.gos. called Moratie Moracillde, and which Cefalpin calls Surde.

I don't fee that the fame Authors have diitinguifh'd another Species, which might be call'd Nux Yuglans fructu pracoci, becaufe they are fooner ripe than the others, and caten about the 巨eaft of St. Yobn ein Comonux, which

\section*{A Now Kind of Walnut-Tree, © \({ }^{\circ}\).}
which has given them, amongt the Country People, the Name of Noix Goanneties. As for that Species I am to treat upon, I can't find any Author that knew of it, and therefore I thall call it Nux. Juglans, folio eleganter diferifo, or Acantbi-folia.

The Oil which is preffed out of the Walnut-Tree, in certain Provinces is ufed inftead of Butter and Oil-Olive. In Beryy, where they have very good Wool, and where they trade very much in Cattle, they have yet but very little Butter; and that little which they have, is worth nothing, and is very dear; fo that they ufe Nut-Oil in dreffing their Meat to eas. For this Reafon there are an infinite Number of Walnut-Trees planted in the middle of the plough'd Lands, in fuch fort, that afar off one would take thefe Lands for Woods of Wal-nut-Trees.

The Want of thefe Trees in this Country obliges the Inhabitants to cultivate them, and they take care to nourifh them in particular Places, as in a fort of Nurfery, in order to plant chem afrefh when they die, whether it be of Age (which is rare) or whether they decay, or that they are fell'd, for the Wood to work with.

The laft Autumn, two Leagues from Selles in Berry, in the Parifh of Lis, as I walked in an Orchard, looking upon fome Plants near a Place where they bred up a vaft Number of young Walnut-Trees, I perceiv'd in the middle a fort of Leaf, (or Foliage) which I had never taken Notice of before. I went thither forthwith, and having examin'd it, as I lenew not the Subftance of this Leaf, I tafted it. The Tafte, Smell, W'ood and Figure of the Tree, perfuaded me to believe that it was a Walnut-Tree, and I concluded that this was one, tho' I did not remember that I had ever read, or heard of any fort like this.

This Tree is very young, and did never yet bear any Fruit, perhaps, becaufe it may be (in a manner) chnak'd up, and that there is neither Air nor Nourifhment enough, by reafon of the great Number of other Walnut-Trees, which grow round about it. It is near fix Feet high, and two Inches Diameter at the Bottom. 'Tis adorned at the Top with many Branches, and (as the Country People faid) was about eight or nine Years old, and that they had always found its Leaves like thofe which I faw.

The (common) Walnut-Tree bears its Leaves by Pairs, upon a Stalk, which terminates with a like Leaf, that is ordinarily bigger than the reft: And it has very feldom above three Pairs upon each Stalk.

This has fometimes four or five Pairs, and fumetimes more, which are one while oppofite, another while alternate, altho' its Leaves ar-pear fmaller than thofe of the common Walnut-Tree, becaufe of the Cuttings or Slaßes. They are neverthelefs as big, if one minds their Circumference taken from the Extremities of thefe Slapes.

The firf Pair, and fometimes the fecond, are lefs cut than the reft, being fo only upon the Circumference: but the others are cut fo deep, that it looks as if the Nerve in the middle of the Leaf was only a Stalk;

\section*{Papers Onitted.}
and the Cuts of the Leaves are fometimes by Pairs, fometimes fingle on one fide. Thefe I caves are fometimes forked at the End, and fometimes end with a Point. There are alfo fome Places, where it looks as if the Leaf was torn on purpofe, almoft like the Angelica Caniadenfis, folis quati premorfis. There are others, where it feems that they are double, as if the Stalk or the Nerve was winged, juft as the winged Stems, or Trunks, or Camles alasi. All thefe Cuts and Slaftics are not like Indentures or Notches, bur finifh with a Round. And notwithflanding all thefe Irregularities, they look fo pretty, that I can't compare them better (60 any thing) than thofe wroughe Leaves, which ferve for Ornaments to the Painters, almoft like thofe which adorn the Capital of (Columns of) the Corinsbian Order, or that which in He raldry they call tbe Montles, or that which the Botanits term Aciso thus or Branca Urfinc, which is the firft Original of this fort of Ornament.

Dalecbamp las obferv'd an Aereal Honey of a yellowifh Colour upon the Leaves of a Walnut-tree, during the greateft Heats of the Summer ; which can be nothing but an Effect of the Tranfpiration of this Iree, as of all other Trees, wherein the fame thing is te be found as I prov'd in a Difcourfe to the Acadeny laft Year, in fpeaking of the syeamore.

\section*{XV. Papers Omilsod.}
8. An Account of Mr. Sam. Brown's (a Phyfician at Fort St. George) -w. 271.p. 843 . Tbird Book of Eafs-India Plants, with their Names, Virtues, Defcriptions, Eic. by Mr. 7. Petiver.
2. An Account of the Fourtb Book of the fame.
n274.p.92-.
3. - of the Fiftb Book. n. \(275 . p .100 \%\)
4. - of the Sixtb Book: r.277.P.1055.
5. - of the Seventb Book. m. 2 S2.p.1251.
6. - of the Eigbtb Book. \%. 299 p. 1952.
7. G. F. Camelli de Plamis Pbilippenfibus Scandentibus Trailatus, fent 7.293 p \(170 \%\). to Mr. Petizer. To which is added, a Catalogue of Herbs he formerly lent him, the Defigns of which are defcribed by Mr. F. Ray in the \(A p-\) pendix to his Tbird Volume of Plants.
8. G. 7. Camelli de P'antis Pbilippenfious Scandentibus, Pars Seo \(n .29+\hat{1} .1763\). cunda.
9. Pars Tersia. n.29j.p.1809.
10. - Pars Quarta.
n. 296 .f. 1816.
11. An Account of feveral Rare Plants lately obferved in feveral \(\pi \cdot 332 \cdot \mathrm{~F} \cdot \mathbf{3 7 5}\).
 caries Phyfic Garden at Cbeljea, by Mr. \(\mathfrak{F}\). Peiver, in Seven Tracts.
7. 3 4. 3 .p. 229 .
7. 344.p. 269 .

Vol. IV, Part II.
5 K
XVI. \(\pi, 346.0 .853\).

\section*{Accounts of Books Omitted.}

\section*{XVI. Accounts of Books Omitted.}
n.210.p.2442: 1. The whole Art of Hufbandry, by Fobn Mortimer, Efq; 8 vo.

ब.285.p.1411. 2. Gazopbylacii Natura \(\mathcal{E}^{\circ}\) Artis Decas. In quâ Animalia Quadru. peda, Aves, Pifces, Reprilia, Infecta, Vegetabilia; item Fofflia, Corpora marina, \& Stirpes Minerales, è Terrà eruta; Lapides figura infignes, \&cc. Deforiptionibus brevibus \& Iconibus illuftrantur. Hifce annexa eft Supellex Antiquaria, Numifmata, Gemme excifx \& Sculpturæ, Opera Figulina, Lucernæ, Urnæ, Inftrumenta varia, Infcriptiones, Bufta, reliquaq; ad Rem Prijcam fpectantia; item Machinæ, Effigies clarorum Virorum, omniaq; Arte producta. A Gacobo Petiver, R. S. S.
m. 331.p.344. 3. Gazopbylacii Natura Ev Artis, \&cc. Vol. I. in V. Decadibus, per 7. Petiver.
*.306.p.2253. 4. Samuelis Dale, Pbarmacologie five ManuduEtionis ad Materiam Medicam Supplementum ; Medicamenta Offcinalia complectens: Ut \& Notas Generum Characterifticas, Specieram Synonyma, Differentias, 8Vires. Cum duplici Indice, generali Altero nominum \&i fynonymorum pracipuorum; Altero Anglico-Latino, in Gratiam Tyronum. 12 mo . Lond. 1705.
v. 325.p.35. 5. Index Plantarum Horti Lugduno-Batavi, per Hermannum Boerbaven. Lugd. Bat. I710. 8 ro.
n.345.p.350. 6. Ludovici Ferdinandi Marfliii Differtatio de Generatione Fungorunn. Romæ 1710. Svo.

A GENE:-

\title{
A GENERAL \\ \\ } \\ \\ I
} \\ \\ I
}

\author{
The MATTERS contain'd in thefe Two Volumes.
}

Note, The Numeral Leesers diftinguifh the Volumes, ii fignifes the Second Part in each Volume, and the fmall Figures fignify the Pages.
A.

A\(\operatorname{covst}\) IC Experiments, Wol. IV. Page 396.
Acres, how many in England. IV. 449.

Age, of the Age of MSS. Authors, Esc. V. ii. 1 .

The Great Age of Old Bagles, V. 3+4. of feveral Perfons in Shroffhire, V. ii. 112. in York. Pbirc, 115 . in Norw-England, 165 . The Menfes till 70 Years of Ace, V. 352. A new Sett of Teeth after 80 Years of \(1 \mathrm{gq}, \mathrm{V}\). 353 . The Age of the World to be found by the Encreafe of the Saltnefs of the Sea, V. ii. 216.

Asricalture of the Chinefe, V. ii. 175.
Air, Experiments thewing how much the Refifance of the Aif retards Falling Bodies, IV. ii. 175, 178.
To Eftimate the Mction of the Air flowing out of the Lungs in Expration, IV. \(44^{1}\).
"The Human Allantoois diffover'd, V. 309.
An Altar to Herculcr, V. ii. 47.
Amber, of its Luminous Quality, IV. ii. 275 .
A Treatife on it, 279.
Amulets, V. ii 123.
A Courfe of Anatomy, V. 184.
A derid, where fituated, V. ii. 77.
sinimals, of Carnivo:ous A imals, V. 1, to g .
A new Clafs of Animalt, 177.
Aninialsules in the Ltch, V. 18.

Ancurijma, two Cafes of it, V. 334, 335.
Of the Ant-bear, V.ii. 180.
Antiquities, vid. Roman.
Antiquities in Northumberland, V. ii. 57. Freneb and Irip, 57. in Ireland, 125.
Antient Brafs Inftruments, V. 98 to 108.
Antient Trumpets, 109.
Approximation, the Method of Approximatios. in Extratting the Roots of Equations in Numbers, improv'd, IV. 80.
A particular Apopleaic Care, V. 210.
Arialifrum, a new Genus of Plants, IV. ii. 319. Arferic, of its Preparation, V. 420.
Arteries and Veins, Tables of them explain'd, V. 328. Spermatic, 329 . Offfications of the Artries, \(341,3+4\).
Abefiws, and the incombuftible Cloth made of it, IV. ii. 282. Abocfers found in Scotland, 28j, 28 .
An Afbmatic diffected, V. 220.
Afromomical Obfervations for 1711, 1712 at Grecmuicb, 1V. 281, for 1713, 291. A Collection of Afroxomial Obfervations for \(173 \%\) 1718, IV. 329. for 1710, 336. Apronomical Matters in N(cw-England, V. ii. 16 r.

Attrazion, a Defence of it, V. 428. The Laws of it, IV. 353 .

Attmella, a Lithontriptic Plant from Crilan, IV. ii. 322.

Aurorice Borcales, IV. ii. 134, 135, 153, 154. \(163,168\).
\[
5 \mathrm{~K}=
\]
P. Bers

\section*{\(A\) General I N D E X.}

Barometer, of Dr. Hook's Marine Earometer, IV. ii. f. Barometrical Experiments in Seviburland, 16. Berometrical Altitudes at Tounly, Upminfer, and Zurich, 62, 66, 67, 77. The Laufe of the Variation of the Barometer, if

Barefrope, a New one, IV. ii. 6. Obfervations made with it, \(n\)

The Jefuits Bats, an Accuunt of it, IV. ii. \(j=3\).

Bramines, Indian, an Account of their Opinions and Worthip, V. ii. \(16 \%\).

Tycho Brahe's Caftle, V. ii. 132.
A Triple Bladider, V. 284.
Beads of the Druids, V. iु, :2t.
- fumours in tbe Brieft, V. 216,218 ,

Sicaffs, V. ii. 146, 156 . in Wales, \(116,118\).
Belimi, fome Account of him, V. ii. 137.
Ritds, Migration of them, V. 33. Birds in Torklbire, V. ii. 117. in Nirw-Ergland, 160. surange ones in Weles, V. 33.

Pirtbe, the Regularity of ticm in both Sexes, V: iit 240.1

Elood, to eftimate its Motion, IV. 441, 445 . Its fpecific Gravity, V. 320. The Circulation of the Biood feen in the Omentum of a Cat, 329, 330. in Tadpoles, 331. The Blood Veffed of the Lungs of a Frog injected, and vew'd weth a Microfcope, V. 227. Pleuritic Blood view'd with a Microfcope, 1V. 224. A Atrange Eruption of Blocd, V. 349. A Periodical Evacuat on of it at the Thump, 35: White Blood, ibid'.

Bomes, Itrange ones dug up near Casterbwry, IV. ii. 222, 227, 233. near Colchegiter, 245 in NirwEngland, V. ii. 159. Human Bones of an extraordinary Size near St. Albans, V. 387 .

On the Fratture of the Neck of the ThighBone, V. 398. The Lofs of Bancs lupplied by a Callus, 387.

Burning-Glafs, Experiments on Metals with the D. of Orleans's, IV. 190. with M. Villectic's, \(19^{3}\).

> c.

Calenture, a Hiflory of one, V. 364 .
California, a Paflage by Land to it, and fome Account of it, V. i. 191.

Callws's fupplying the Lofs of Boncs, V. 387. Conary-Seed, how cultivated, IV. ii. 309. Cancer, a Arange one, V. 214.
Cantharides, of their internal Ufe, V: 405.
Cape of Good Hape, an Account of it, V. ii. 153.

Carteia, where fituated, V. ii. 83.

Casucillasuni, V. ii. 43.
A Cuslybeat Water at Campesbury, IV. ii. 19\% Chances, a Problem in them iolv'd, V. i. 255.

Charaders unknown at Camara in Salfit, V. i. 60. in IV ales, 120. in New-Engiand, 165. The Censer of Ofcillation, IV. 3 30.
Of tise Laws of the Coustripesal Force, U*C. IV'. 359, 367.
Crilan, fome Account of it, V. ii. 176, to 163.

Cimnamen Trees n Ceilar, V. ii. 18 c .
A Cbild crying in the Womb, V. 305. A Clill born full of the Small-Pox, 308. An Emaciated one diffected, \(V .=70\).

Coal-mines, of the Strata in them, IV. is. 360,

A Colliers blawn up, IV. ii. 206.
Coins, vid. Reman.
Coins, Era found under Ground in Lincolngire. IV. ii. \(246,248\).

Cins, Wrlb, V. ii. 121. Norman at York, V. ii. 30. Swediz, ibid.

Pewter Money \(C a i n d\) by the late \(\mathcal{K}\). James in Ireluand, V: ii. 31.

Coffin, \({ }^{2}\) Leaden one found in a Roman Barial Place, V. ii. 41.
Cobalt, V 420.
Cold Difiolutions and Fermentations, V. 421.
Colic, an unufual one, V. 264. An extraordinary
Effect of the Calic, 266.
Colours, and Ligh, Experments on them, IV. 173.

Cofivenefs, an extraordinary Cafe of it, V. 269 . 270.

Compafs, of the Invention and Improvements of it, I. is. 268.

Computations, the common ones of Intereft corrected, V. 11. 242.

Combinations, and Alternations improv'd, IV. 60.

Oblervations on the Comet, An. 1664. at R.mp, IV. 339. An. 1680 . in Saxony, 340. An 1718. at Berlin, 342. A fmall Telefcopical Comst, 1717. \(3+1\).

Conic Sections, fome Properties of them, IV 3 . Copper Ore, IV. il 274.
Clorks, keeping Time with the Sun's Apparent
Motion, IV. 394.
Of the Contagious Difeare amongt the Cows, An. 1714. V. 48.

Comvulfions, of an uncommon kind, V. 206. Cormea, Incifions on it, V. 204.
Curves, a new Method of Tangents to thems IV. 7. Quadrature of a Curve of the Third Order, IV. 25 . Problems of Curvies refolv'd, 35,45

\section*{A General IN DEX.}

35, 45. 46. Confruction and Mcafure of them, 51. A new way of defrribing thum, 57. The Length of them, 41. The Curve a Failing Eody would dectribe, \&o 351 .

Chufor in Chi a an Acoount of it, and of the Coming, V. ii. 171.

Cloyfal, IV, i1 27 :
If he Operations is Chynijing, to be folv'd by Arraction, V. \(4^{28}\)

\section*{D.}

A Daniß Spur, V. ii. 108.
Denmirk, Obfervables there, V. ii. 128.
Of the Death-wasch, V. 26, 29.
A Draf and Dumbl Petfon recovering his Speech and Hearing aftet a Fiver, V. 357.

Two Deaf Perfons underitanding what is faid to them by the Motion of the Lipr, V. ii. 219.

Doicier, the Lise of quickett Difocmf, IV. 351.

Diamends, their luminous Quality, IV. ij. 275.

Ihe Difformtial Method illofrared, IV. 141. Some Hittory of that Mechod, 162, 171.

Dizing improv'd, IV. ii. 183.
A Dijfesian of a Morbil Body, V. 319.
Dropfy, V. 231. a Briffitil Body diffected, 286. A Drepfical Care, the Gall-Bladder difrended, 287. Dr wir milaken for Grasidation, 288. A Drofjy of one of the Ovaries, 290.

The Dofes of Purging and Vomiting Medicines, V. 394, to 402.

Dera ilianor, the Caufe of its Motion, V. 199. A Bore taken from the Falx of it, 202.

\section*{E.}

Ear, Obfervations on its Structure, V. 204.
An Earsbquake in the North of England, An. 1703, IV. ii. 210. Eartbquakes in New-England, V. î. 164 .

Eafer, the Rule for finding it explain'd, IV. ii. 27 .

Eclo, of its Motion, IV. 413.
Elifobath, Anatomy of one, V. 82. The Parts of Generation in a Female, 167. Microfcopical Obfervations on its Skin, ibid. The way of euming Elepbants in Ceilan, V. ii. \(1 ; 6\).

An Emaciafed Child diffected, V. 270.
Strange Epilepric Fits, V. 209.
Egrafiom, an univerfal Solution of Cobic and Biquadratic, IV. 66. Egmarions of the \(3^{3}\) d, \(5^{\text {th }}, 7^{\text {th }}\), 9 th, Efc. Powers folv'd, 77. The Method of Approximating in extracting the Roots of Equafions in Numbers improv'd, 80 ..

A Scries for exprefing ute Raot of any Qeadia. tic Equation, 87.

Exhalations, noctumal is the Indies, V. ii. 215 .
\[
\mathrm{F}
\]

Face, an unufual Blacknefs in it, V. 195.
Fiamjers, Curiofities there, V. ii 134.
Ficningo, the Natural Hilrory and Defcription of that Bird, V. 63.

Frafiure, of the Neck of the 'Thigh-Bone, an Obiervation on it, V. 338. A remaskioie Fratiure of the Skull, V. 202.

Fermentation, cold, V. 421.
Fija, in W'ales, V. ii. 115 , 188. in California, 193. The Way of Fiju:ng in Cbufan, 175. A remarkable Skin of a \(F^{\prime} \beta^{\prime}\) 's Stomacn, 220.
Ficus I dica, V. ii. 181.
Folfils, Remarks on them, IV. is. 264. of \(R_{P}\) enluer Ciiff:, 26;. of Harwich Cijff, 264. in Wales, V. ii. 119, 120.
Froft, of the Great one, An. 1708. IV. is. 113.

Flower, of the Parts, and Ufe of the Flower in Plants, IV. ii. 305.

Forsus, of a Bitch receiving no Nourifhment at the Mouth, V. 34. Bones of a dead Fetas taken out of a Cow's Uterus, 54 . Patt of one voided by the Navel, 300. tifough an Impoll. hume in the Groin, 301. Exrra-uterine Fatas's, 301.

Fourtain, a remarkable one in Sweien, IV. ii. 187.

Foruls a Pin in the Gizard of one, V. 53.
Fluxes, how car'd in Scotland, V. ii. \(12 \%\).

\section*{G.}

Gorgriare, an Account of a ftrange one cur'd, V. 388.

Glandule Remales, and U'terus in a Puerpera, V. 290.

Gibralear, the Geography of fome Roman Towns near it, V. ii. 31.

Of Gin-fong, a Tartasian Plant, IV. ii. \(314,319\). Gum Lec, its Luminous Quality, IV. ii. \(275^{\circ}\). Gurnard, yellow, deferib'd, V. 35.
Gurs, a Piece of a Dog's Gaf cut out and cur'd. V. 271.

\section*{H.}

Hair, a Bunch of Hair voided with the Urine, V. \(279,28 \mathrm{~s}\). Balls of Hair taken from the Uterus and Ovaris of Women, 295.
A Hars diffected, V. 196.
Harwich Criff, an Account of it, IV. ii, 264 .

\section*{A General I N D E X.}
tiemorrbages uncommon, V. 348. Vid. Blood. Of the Hemorrboid Vein, V. \({ }^{3} 40\). Hen, a Mountain. Her diffected, V. 196.
Heat, a Scale of the Degrees of it, IV. ii. r.
Heart, the Anatomy of the Hears of Land-Tortoifes, V. 74. The left Ventricle of the Heart prodigioufly diftended, 229 . The \(V^{\prime}\) ena dergas inferted into the Right Auricle, E゚ं. 233. Of the Force of the Heart, 231, to 249.
Head, a Bullet in the Head for 30 Years, V. 233.

The Heffian Bellows improv'd, IV. 447.
Holland, Remarkables there, V. ii. 134 .
Horace, a Paffage in that Poet explain'd, IV. 474.

Horn-like Excrefcencies on the Fingers, V. 386.

Hattentots, fome Account of them, V. ii. 153.
Hydatides, in a Sheep's Kidney, V. 54. in a Tuniour in the Neck, 214 . voided by Stool, 277. with the Urine, \({ }^{278}\).
Hypocaujla, of the Ancients, V. ii. 6 z.

\section*{1.}

Imagination, the Force of it, V. ii. 161.
Infecis, in Spain, V. 10. in the Barks of Trees, 1 1.
Inferiptions, vid. Roman.
Infcriptions, an Etrufcan one on Tages's Statue, V. ii. 58. French and Irijp, 57.

Indians, fome Account of their Meclianic Arts and Phyfic, V. ii. 182.

The Iliac Paffion, one that died of it diffeeted, V. 268. The Intefines in the Cavity of the Thorax, V. 266. The Intefines grown Cartilaginous, 268.

Infrite Series's, a Difcourfe on them, IV. 90, 130.

Interef, the common Computations of it correted, V. ii. \(24^{2}\).

Amundations in Yorkjaire, IV. ii. 192. in Ireland, 193.
Iquetaia, a new Plant from Brafil difcover'd, IV. ii. 321 .

Sron, IV. ii. 274.
Of an Ifhmuus between Dover and Calais, IV. ii. \(2: 2\), to 233 .

Italy, Obfervations made there, V. ii. 136, 141 .
A New Ifand rais'd out of the Sea in the Arcbipelago, V. ii. 196, to 213. An Account of the Sunk Ifand in the Humber recover'd, IV. ii. 251.

Tupiter, an Occultation of a fix'd Star by \(\mathcal{F}_{u}\) pitre, 1V. 304, 318. Emerfions of the Firft Satellite of Yupier, 1713, at Rome, 306. A Tranfit of 'Yufiter's Fourth Satellite over the Dike of fufisir, \(30 \%\). Tables for computing
the Eclipfes of Tupiter's Firt Sateliite, 308. Vid. Collection of Apronomical Obfervations, 329, 336.

\section*{K.}

Kcpler's Problem folv'd, IV. 208.
Kiancy, an Uleer in it, V. 252.
Kmift, of the Prufian one fwallow'd by a Man, V. ii. If3.

\section*{L.}

Lagrals, an Experiment of powder'd Blue pafing them, V. 254.
Lake, Obfervables in the Lake Vetter, in Sweden, IV. ii. 183. Of the Lake Lougb-Neagh, in Ireland, 193.
Ligbe and Colours, Experiments on them, IV. 173.

A Glade of Light in the Heavens, IV. ii. 133. Ligbes in the Air. E̛'r. 139, 151. in the Wakes of Ships in the Sea, V. ii. 213.

Litbofirata of the Antients, V. ii. 69.
Logaritbms, a new way of computing them, IV. 87. A general Method of making them, 156. A new Method of making them, 160.

Long-Life, Infances of, in Sbroplbire, V. ii. 69. in Nerw-England, V. ii. 165.

Longitude, Obfervations of the Occulations of the fix'd Stars by the Moon ufeful for finding it, IV. 298.

The Longitude of Cambridge in Now-England, IV. 451 I. of the Cape of Good Hope, ibid. of the Magellan Streigbts, 453. of Lima in Peru, IV. 339 . of the Ifland Virgo Gorda, ibid. of Nuremberg, ibid.
Lungs, an Apoftemation of them curd, V. 221, 225.
Lyre of the Greeks and Romans, IV. 474.

\section*{M.}

Mad Dog', Cafes of their Bites, V. 366, to 369. of a Mad Fox, 369.

Magnetical Experiments, IV. ii. 291, 295. of the Law of the Magnetical Attraction, 2950 297. Vid. Variation.
Males and Femalcs, of their Equality, V. ii. 240.

Man, whether naturally carnivorous, V. ii. I, to 9.
The Mantegar defcrib'd, V. 18:.
The Manaring of Land by Sea-Sbills in IreLand, IV. ii. 298. by Sea-Sand in Devonthire, 301.

Manufripers, how to judge of the Age of them, V . ii. I .

\section*{A General I N D E X.}

Of a Phyfic Menuferipr at Florence, V. ii. 140. MSS. Welje, V. ii. 118.

Manma, in lialy, V. ii. \(14^{2}\).
Marble, the way of colouring it, IV. ii. 205. A Quarry of Marble in Ireland, 206.

Mars, a Tranfit of Mars near a fix'd Star, IV. 305. Vid. Collection of Afronomical Obfervations, \(329,336\).

The Maxima and Minima occurring in the Motions of the Heavenly Bodies, IV. 219. The Maxima and Menima applied to 'I'angents, IV. 7

Medical Obfervations in Scoland, IV. ii. 127. The Manfes cill 70 Years of Age, V. \(35^{2}\).
Meridian, an Inttrument to find it, IV. 464.
A New way of drawing a Meridian Line, IV. 461, 462. The Nautical Meridian Lire mechanically divided, IV. 4;6. Of a Meridian Line drawn through France, IV. 468.

Mreals, Experiments on them with a Buming Glafs, IV. 193.

Mereors, an Account of feveral, IV. ii. 131, so \(86 \%\) A Fiery one in Yamaica, IV. ii. 131.

Micrometer, how to ufe it in Solar Obfervations, IV. 230.

A Pocket Micrefrope, IV. 199. The way of making Microfopes, IV. 203. Remarks on Microfropes, V. ii. 238.

Microfoppical Obfervations, IV. 200. V. ii. 224, to 238.

Mines in Wales, V. ii. 119.
Mineral Wasers. Vid. Cbalybeap, Psmont, spari.

Monfrous Calves, V. 34, 35. A Monfrous Birth, V. 304.

Moldiarfs, of its speedy Propagation in a Mclon, IV. ii. 308 .

Nioon, Ecliples of the Moon, An. 1-00. IV. 268. An. 1703. 269, 271. An. 1707. 271, 272. An. 1708. 275. An. 1710. 275. An. 1712.277. An. 1713. 302. An. 1715. 278. An. 1718. 334.

Occultations of fix'd Stars by the Moox, ufeful for finding the Longitude, IV. 298. An Oc. cultation of a fix'd Star by the Moom, 302. Occulpation of Jupizer by the N.oon, 303. Obfervations on the Moor, \&c. 332, \(33^{8 .}\)

Of a Mortification, V. 337.
A Mofaic Work at Leicefier, V. i. 63. Another in Sufix, ibid.

Moffes in Scotland, IV. ii. 253, 256.
The Mution of a ftretch'd String, IV. 391.
Some Remarks on Maffians, V. ii. 9.
Muffe, its Theory reduced to Arithmetical and Geometrical Proportions, IV. 469.

Mufcles, Obiervations on their Texture, V. \(390,392\).

Myopes, how they may ufe Telefcopes without Eye-Glaffes, IV. 188.

\section*{N.}

Nafural Hiforr, Obfervations in Sbroppirs, V. ii. 112. in Yorkfoire, 115 in Wales, from 117 to 122. in Ircland, 125. in Scotland, 123. 127.

Neri-England, Obfervations made there, \(\mathbf{V}\). ii. 159.

Nebule, or Lucid Spots amongt the Fix'd Stars, IV 224.

The Optic Nerve wafted, V. 202.
Nourijhment, a Woman fix Days in the Snow without any Nourifoment, V. \(35^{8 .}\)
\[
0
\]

Oprics, a Spharico-Catoperic Theorem, IV. 184.

Opium, taken in a large Quantity without procuring Sleep, V. 357.

Opofium Male diffected, V. 169. Obfervations on the Opa Ium, V. 177.
Oyfers, large ones in Ccilam, V. ii. 181.

\section*{P.}

Painters, fome Remarks on them, V. ii. 6.
Palm-Trees, V. ii. 143.
Of the Root Pareira Brava, V. 404.
Parhelia, IV. 227.
Parrus Cefareus, its Operation, V. 197.
Pavement, Vid. Mofaic.
Planits, of Calfini's Orbit of them, IV. 206. A Solution of Kepler's Problem, 208. Obfervations on fome of the Primary Planets, IV. 318, 329, 336.
Plants, of the Parts and Ufe of the Flower in Plants, IV. ii. 305 . A New Genus of Plants, IV. ii. 319. Of the Taftes and Virtues of Plones of the Sweet Clas, V. 406. Coal-Plawes, V. i. 121. Plants in Wales, 122. in NirwEmilard, 160.
Of the Plajue at Copbenbagen, An. 1711. V. 381.

The Pediculus Ceri defcrib'd, V. 25 .
Pewter Mong coin'd by the late K. James in Ireland, V. ii. 31.

Pbaricoperr. Vid, Flamingo.
Of the New Pbilitfine Lilands, V. ii. 185, 189.

Printins, of its Invention and Improvements, V. ii. 11, to 26.

Poines, Mathematical, of their Proportion to one anotier, IV. 1.

Poifons, Experiments with Poifons on feveral Animals, V. 8.

Poraroes, IV. ii, 299.

\section*{A Gexeral I NDEX.}

A Polytus in the Vona Pulmomalis, V. 219. 'The Serusture of the Fina Puimonalis, ibid. A Puerpere diffected, V. 290, 298.
Purgalizers, of their Principles, V. 403.
A Hyramidal Appearance in the Heavens, IV. ii. 133 .
\(P_{\text {yrmont }}\)-Waters, of their Virtues and Quaities, 13. 2i. 201.

\section*{Q.}

The ๑uadrasures of Figuses, IV. 26. Quadra.rix to the Hyperbola, IV. 37. Vid Curves.

\section*{\(R\).}

Of the Rain at Toumky and Upminfor, in 1699 , 1700, 1701, 1702, 1703, 1704, IV. ii. 65, 67. at Uperinfer for 1705, 74. at Zarich, Pifa, and
 for 18 Years compurd, 100.

A Lunar Rainhow in Derleyfare, IV. ii. 132.
Raixtorus, Marine, V. ii. 215.
Refiftancr, of a Solid of the leaft Refijance, IV. 345, 348.
Racks, two ftrange ones in Ncru-England, V. ii. 164,165 .

Roman Antiquities in WriifßirP, V. ii. 31. in Sufex, 63. A Leaten Coffin found in a Romen Burying Place, 41. Roman Coins in Yorkfirire, \(32+34\). in Lititealmain, IV. ii. \(=60\). Roman Monuments at Aacll in lorkjbire, V. ii. 40. A Votive Monument, 35. The Vefligia of a Roman Town at Aiell, 37. Roman Inicriptions at rork, proving tha: the Nixth Ligion zefided there, 41. Roman Infcriptions in Yorkjbire, 44. at Catrfram, 43. at Lancbeffer, 49, 40. A Roman Sudatory at \(W\) roxeter, V. ii. 61. A Teffelated Pavemont, 63. a Bath, 64. Roman Mill-Stones, \(3^{3}\). Urns, ibid. Roman Camps on the Downs in Suf. fex, 76.

The Rgaal-Oat, an Infcription on it, V. ii. 114.

\section*{S.}

Sals, the Clinese Way of making it, V. ii. 175.

Of the Salmefs of the Ocean, V. ii. 216.
Saf, of the Motion of it, IV. ii. 302.
Saturn's Satellites, their Motions reclified, with Obfervations on them, IV. 320. Calfini"s Tables of their Motions corrected, 323. Vid. Collcetion of Apronomical Obfervations, 329 , 336.

\section*{A Scerpion devour'd by a Rat, V. 43.}

Small-Pox, of the Inoculation of it, V. 370 , 10 3.9.

Smalt, its Preparation, V. 420.
Ratcle-Srakes in Nouv-England, V. ii. \(1 L_{2}\).
Spain, of Infects and Marine Animals there, \(V\). 10.
spanv-Waters, an Examen of them, 1V. ii. \(19^{8 .}\)

Stars, a new Shar in Callo Cirnvi, IV. 280. 223. A Hiftory of the New Stors for the Lath 150 Years, IV. 222. Nebshr, or Lucit Spors amongf the Fix'd Srars, 224. 'The Changa of Latitude of fome of the Fix'd Stars, 225 . Vid. Collection of difonomical Obfervations, \(3 * \%\) 33 .
Of Secrectiens in an Animal Body, V. \(2 \ddagger 9\).
Series's Infmite, IV. 90, 130.
Serporss in Ciian, V. U. 179.
Slecp, in extroodinary S'repy Pesfon, P: 353.

Spleen, Human, of the Glands of it virible to a zalled Eye, V. 252. 'I wo, and Three Spleens in one Body, itid.

Sholls, land and River-Shells fourd under Grourad, IV, ii. 270.
Sbirp, of Worms found in their Heads, V. 15. Hyjasides found in a Sbacp's Kidaey, V. 51.

Of the Silk of Spiders, V. 20.
Of Silk-Worms, and their Silk, V. 18.
A Sirking of the Earth in Kinf. IV. ii. 249.
Parr of a Hill Sinking down in Preland, 2;a. The Sinking of three Oaks into the Ground in Nor. folk, 253 .

Of the Sunk Ifland in the Humber recover'd, IV. ii. \(25 \%\)

Spring, a Eurning one in Sbropiaire, IV. ii. 19 .

Sruiszrrland, of the Icy Mountains chere, V. ii. 152.

A Solid of the leaft Refiflance, IV. 346, 348.

Sound, Experiments on it, IV. 396. The Nature and Properties of \(S_{\text {cund, }} 414\).

Water Spouss, in the Dosviz, IV. ii. 103. in the Midifrranean, ibid. in Yorkflire, 106. in Lawcabire, 108.

A Sform of Rain at Dinbigb, IV. ii. ror. Of Hzill in Yorkfire, 109.

Of che great Storm of Wind, Nov. 26. 1;03. IV. ii. 109. a frange Effect of it in Sulfex, 112.1 in Hollard, itid.

Stomarh, Iron, Nuils, Lead, Err, found in the Stomach of an Idiot, V. 273.

A Srow voided by Srool, which had obdrucled the Dudius Coninusis Bilarias, V. 2;4.

Of a ball voided by Srosl, V. \(2 ; 6\).
Two large Stores voided by the Urethra, V. 283. A Lillection of one tiat died of the

Stenr,

\section*{A General I N D E X.}

Some, 234. Experiments relating to the Cure o? the Stone propos \({ }^{\circ} \mathrm{d}, 284\).
Strues of Fruit, the Mifchicf of fwallowing them, V. 256, 10263.

A Skeletun imprefs'd in Srone, [V. ii, 272.
Subrermancous Trees in Halfold Chere, IV. ii.
212, 218. at Dagenbam, 219. in Scoslond, 253, 256. at Reculzer Chefo, 263

Sugar, of its Virtues, V. 353.
Sum, 2 New Way to find its Parallax, IV. 213.

Spots in the Sun, An. 1703. IV. 228. An. 1704, 231. From 1703, to 1708, 235. From 1708, to 1711, 240. Mr. Craberic's Opinion of there Spots, 241.

An Eclipie of the Sur, An. 1694. IV. 247. An. 1703. \({ }^{2}\) 49. An. 1706, 249, to 254. An. 1708, 255. Uf the Total Eclipfe of the Sun, April 22. 1715, 255, 10 267. An. 1918, 268.

Mock-Sers, and Circular Arches, IV. 227.
Snfex, of the Site of fome Romaw Towns there, V. i1. 63.

Skyll, 2 remarkable Fracture of it, V. 202.
Scurvy, a Hiltory of a very extraordinary one at Paris, \(8699, \mathrm{~V} .359\).
sforax figuide, the way of making it, V. \(4 \%\)

\section*{T.}

Taugenfs, a New Method of them, [V. 7.
Tafies, Obicrvations on the Clafs of Sweet Tafies in Plante, V. 4c6, to 417.
Tea, of shree Sorts of it in Cbina, V. ii. 174.

Teetb, a New Sets of them after 80 Years of Age, V. 353.

Large Tereb (of an Elephant) dug up in Ire iont, iv. ii. \(236,237,244\). Large Teesb and Bones, in Norw.England, V. ii. 1590 in Norsbumterland, 47.

Telefioper, how they may be us'd by Myopes without E.ye-Glaftes, IV. 188.

Telefropis Sights firft ufed by Mr. Craberie, IV. \(345^{\circ}\)

A Pagar Temple at Cannara in Salfet, V. ii. 60.

Teneriffe, a Journey to the Pike, V. ii. 147.
Tbirmemerer, a new one, IV. ii. 10.
Tobacso, hew cultivated in Ceilan, IV. ii. 314.

Tornadoes, \(V\) ii. 171 .
Torroife, the Anatomy of the Heart of a LandTortoife, V. 94.

Twbre Fallopianae, impermeable, V. ii. 266.
Tumoxrs, one in the Neck with a bony Subfance, V. 211. nother full of Hydatides. 214 A Schirrous une on the Breaft, 216.

Another, 218. A large one on the Thigh,V. 388.

Turnips, of their great and fpeedy Vegetation, IV. ii. \(3: 1\)

Thymder, Accidents by Tbunder and Lighte: ning, IV ii. 126, to 131. The Direction of Ship-Compaftes chang'd by Iluader and Lightning, \(V\). ii. 163.

Antient Trumpets found in Irelard, V . ii. 109.

\section*{U.}

One of the Uresers diffended, V. ii. 266.
Urine, feveral folid Bodies voided with the Urine, V. 281. Of one that liv'd 27 Years without making any Urine. V. ii. 115. A Boy who voided Urime by the Navel, V. ii. 183 . Of a Paftage for the Drink and Urine to the Bladder dilinet from the Ureters, V. ii. 264

Urns, \&ec in Irelend, V. ii. 95 . in Noofolk, 97.
Uperus, a Diffection of it, in a Pmerpera, \(V\). 290. Balls of Hair taken from the Urerus and Ovaria, 295.
\[
\mathrm{V}
\]

Vacum, Experiments of Pendulums in Vacus, IV. ii. 168. Gun-powder fir'd in Vacag, IV. ii. 171, 172. The Defcent of Malt-Dult in Vaino, 173. Experiments proving an Interfpers \({ }^{\circ} \mathrm{d}\) Vacuam, 173.

The Effects of the Indian Varniff, V. 487.
The Fariation at Paraiba, IV. 453. in the Aliantic and Esbiopic Oceans, +56 .
\(V\) recration, Experiments on it, IV. ii. 310.
Vrins, and Arteries, Schemes of them explain'd,
with feveral Anatomical and Chirurgical Obferva-
tions, V. 328.
Venercal Difeare, of its Antiquitv, V. 381
Fenus, the Caufe of it appearing in the Daytime for feveral Days together, IV. 300.

Feinvius, Eruptions of it, An. 1707 IV. ii. 207. An. 1717, 209.

Varser, Oblervables in the Lake Vittor in Swoden, IV. ii. 183.

\section*{W.}

Waies, Obfervations in a Journey through it, V. ii. \(11 \%\), 50123.

Halnut-Tree, a new Kind, IV. ii 323.
Water, of the Afcent of Wafer between two Glafs Planes, IV. 42j. The Caufe of the Ar. cent and Suspenfion of W'aser in Capillary Tubes, 423. The Act:on of Glafs Tubes on Water and Quick filver, 428.
Of the Motion of Running Waters, IV. 436.

\section*{A General I ND E X.}

Water finking, and secovering its Sweetnefs, V. ii. 171.

The W'eatber, in a Voyage so Chima, IV. ii. 18. at Chujan in Chine, IV. ii. 27. at Oates in Eflex, 1692. IV. ii. 48, at Upminfer in Eflex, for \(1699,1700,1,01,1702\). IV. ii. 62, 1067. at Upminfler 1703, 17a4. IV. ii 67. at Upminfer 1705 , IV. ii. 74, to 77 . at Upminfer, Z wricb

A large Win cut off she Cheek, V. 215 .
Witrey, a Roman 'Town, V. ii. 99.
Of one that could neitner Write nor Read, yet cou'd caft up Sums, V. ii. 219.

Woudpalor, the Structure of its Tongue, V. 55Worns, in the Heads of Sheep, V. 15 :
World, a Propofal to find its Age, V. ii. 216.
Wroxeter, a Romass Sudatory difcover'd thereg. V.ii. 61.

\author{
THE END.
}

Uned
\(\square\)

\title{
PHILOSOPHICAY.
}

TRANSACTIONS

\author{
VOL. IV \\ 1700-1720
}```

[^0]: ${ }^{2}$ In his Letter dated Feb. 26. 1715-16. Af. vet. and printed at the End of Raphforis Hiftory of Fluxions.
 ${ }^{6}$ Printed in the Philofopbical Tranfactions, N. 342. and in Tome VII. du Juurnal Literaire.
 c. Dated 17 March 1693. and printed at the End of Raphfon's Hiftory of Fluxions.

 - Entituled, Analy si per Scrics numero terminorum infinitas.

[^1]: ar One in the Leiffoc Journal of 'June, the other in the Memoirs of the French Academy
 for Auguf.

[^2]: ${ }^{6}$ P. 16, E゚c. Therefore for thefe and other Reafons, I fhall not feem to do the fame Thing over again, Vorc. $^{\circ}$.
 ${ }^{\text {c }}$ Here the Reader will find no Rocks, which the operofe Analyfis of my Brother throws in his Way, and the Intricacies and Thorns of third Differences, with which the Way is every where befet ; he will find no fuch Things in my Method. - Neither has he to fear the Prolixity of my Brother's Calculation, nor the Obfcurity of Taylor's, which is equally offerfive and troublefome, p. 18. .. which my Brother has deduced by his moft operofe Analyfis - rot only thoie Things which were formerly propofed by my Brother with great Pomp, and folved with no leis Labour and Difficulty, I have folved by the Law of Uniformity alone, without any Analytical Calculus, $\vartheta^{\circ} \mathrm{c}$.
 ${ }^{\text {d }}$ See the foregoing Note - alfo what is now taken from p. 18.

 - I truft with Joy that the Publick will give him Thanks, that I have had Occafion of publifhing fuch Things now, which perhaps, with many other Things, might have lain buried for ever in my Papers, altho' they will not a little enlarge the Boundaries of the fublimer Geomerry, p. 17. What was omitted there by Incogitancy, I fhall here make Amends for, by a new Method of Solution, which difpatches Problems with fingular Facility, not only all thofe which my Brother propofed concerning Ifoperimeters, but innumerable others of a like Kind, ib. - by Help of a certain Principle derived from the Law of Uniformity, which no one has hitherto obferved, by the Infipection of the Figure alone, and almoft without any Calculation, I fhall deduce Equations for Curves required, that offer themfelves as it were of their own Accord, छ'c. as in Note ${ }^{c}$. I fhall not feem to do the fame Thing over again, if in this Argument, which is difficult of itfelf, I fhew a Way or Method that is thort, plain, clear, and eafy, by which any one, endued but with a moderate Capacity, may arrive at thofe abftrufe 'Iruths, not upon the Credit of others, but be convinced with his own Eyes; fo that, E ${ }^{\circ}{ }_{6}$, as in Note ${ }^{c}$.

[^3]: ' ${ }^{\text {' For this I fhall }}$ ufe, (as he has done in his Analyfis) the Notion of a very fimall Arch,

[^4]: ${ }^{8}$ P. 16. ${ }^{\text {i }}$ P. 17. ' P. 18. See alfo Ep. for an eminent Mathematician, and Rernoulli's own Writings almoft every where.
 ${ }^{k}$ He allows the Marquis de 「'Hopital culdertood that Method, and knows that illuitrious Peifon learn'd it from the great Bernoulii; and is well affured, that the Rules in the faid Book the Analyfis of infinitely fmull Quantities) owe their Original to the famous Ber*oulli. AZ. Lripf. Anm. 1718. P. 4 64.

[^5]: ${ }^{2}$ In the mean Time it may be concluded, that he, together with Mr. Nerwtor at the Beginning, remain'd in that Error, till at laft they were deliver'd from it by the Ufe of the Calculus Differentialis, and were taught the Rulles of Differencing Differences by the famows Bernoulli, ib. p. 465 .

 - Memoirs of the Academ. for 1693.
 - Journal des Şavan!, An, 16-0.
 coine

[^6]: Vol. IV.

[^7]: ${ }^{2}$ N. B. Mr. Gafcoigne beving, againft thefe Words, inferted a roughdrawn Figure in the Margin of Mr. Crabtrie's Letter, I bave alfo represented it in Fig. 118. imagining it may fomerwat explain Mr. Gafcoigne's Fig. 118. Hypothefis, and webat Mr. Crabtrie faith againft it.

